Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/53805
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1
Auteur(s): Figueiredo, Giovany de Jesus Malcher
Pimenta, Marcos Tadeu de Oliveira
Winkert, Patrick
metadata.dc.identifier.orcid: https://orcid.org/0000-0003-1697-1592
https://orcid.org/0000-0003-4961-3038
https://orcid.org/0000-0003-0320-7026
metadata.dc.contributor.affiliation: Universidade de Brasília, Departamento de Matemática
Universidade Estadual Paulista, Departamento de Matemática e Computação
Institut für Mathematik, Technische Universität Berlin
Assunto:: Comportamento assintótico
Funções de variação limitada
p-Laplaciano
Date de publication: 1-oct-2024
Editeur: Elsevier
Référence bibliographique: FIGUEIREDO, Giovany M.; PIMENTA, Marcos T. O.; WINKERT, Patrick. The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1. Nonlinear Analysis, [S.l.], v. 251, e113677, 2025. DOI: https://doi.org/10.1016/j.na.2024.113677. Disponível em: https://www.sciencedirect.com/science/article/pii/S0362546X24001962?via%3Dihub. Acesso em: 28 jan. 2026.
Abstract: In this paper we study the asymptotic behavior of solutions to the (𝑝, 𝑞)-equation −𝛥𝑝 𝑢 − 𝛥𝑞 𝑢 = 𝑓(𝑥, 𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺, as 𝑝 → 1 +, where 𝑁 ≥ 2, 1 < 𝑝 < 𝑞 < 1 ∗ ∶= 𝑁∕(𝑁 − 1) and 𝑓 is a Carathéodory function that grows superlinearly and subcritically. Based on a Nehari manifold treatment, we are able to prove that the (1, 𝑞)-Laplace problem given by − div ( ∇𝑢 |∇𝑢| ) − 𝛥𝑞 𝑢 = 𝑓(𝑥, 𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺, has at least two constant sign solutions and one sign-changing solution, whereby the signchanging solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space 𝑊 1,𝑞 0 (𝛺) which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space BV(𝛺) of all functions of bounded variation. As far as we know this is the first work dealing with (1, 𝑞)-Laplace problems even in the direction of constant sign solutions.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
DOI: https://doi.org/10.1016/j.na.2024.113677
metadata.dc.relation.publisherversion: https://www.sciencedirect.com/science/article/pii/S0362546X24001962?via%3Dihub
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/handle/10482/53805/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.