Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/53805
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFigueiredo, Giovany de Jesus Malcher-
dc.contributor.authorPimenta, Marcos Tadeu de Oliveira-
dc.contributor.authorWinkert, Patrick-
dc.date.accessioned2026-01-29T14:46:49Z-
dc.date.available2026-01-29T14:46:49Z-
dc.date.issued2024-10-01-
dc.identifier.citationFIGUEIREDO, Giovany M.; PIMENTA, Marcos T. O.; WINKERT, Patrick. The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1. Nonlinear Analysis, [S.l.], v. 251, e113677, 2025. DOI: https://doi.org/10.1016/j.na.2024.113677. Disponível em: https://www.sciencedirect.com/science/article/pii/S0362546X24001962?via%3Dihub. Acesso em: 28 jan. 2026.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/53805-
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleThe asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1pt_BR
dc.typeArtigopt_BR
dc.subject.keywordComportamento assintóticopt_BR
dc.subject.keywordFunções de variação limitadapt_BR
dc.subject.keywordp-Laplacianopt_BR
dc.identifier.doihttps://doi.org/10.1016/j.na.2024.113677pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0362546X24001962?via%3Dihubpt_BR
dc.description.abstract1In this paper we study the asymptotic behavior of solutions to the (𝑝, 𝑞)-equation −𝛥𝑝 𝑢 − 𝛥𝑞 𝑢 = 𝑓(𝑥, 𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺, as 𝑝 → 1 +, where 𝑁 ≥ 2, 1 < 𝑝 < 𝑞 < 1 ∗ ∶= 𝑁∕(𝑁 − 1) and 𝑓 is a Carathéodory function that grows superlinearly and subcritically. Based on a Nehari manifold treatment, we are able to prove that the (1, 𝑞)-Laplace problem given by − div ( ∇𝑢 |∇𝑢| ) − 𝛥𝑞 𝑢 = 𝑓(𝑥, 𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺, has at least two constant sign solutions and one sign-changing solution, whereby the signchanging solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space 𝑊 1,𝑞 0 (𝛺) which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space BV(𝛺) of all functions of bounded variation. As far as we know this is the first work dealing with (1, 𝑞)-Laplace problems even in the direction of constant sign solutions.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1697-1592pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-4961-3038pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-0320-7026pt_BR
dc.contributor.affiliationUniversidade de Brasília, Departamento de Matemáticapt_BR
dc.contributor.affiliationUniversidade Estadual Paulista, Departamento de Matemática e Computaçãopt_BR
dc.contributor.affiliationInstitut für Mathematik, Technische Universität Berlinpt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro sencillo del ítem " class="statisticsLink btn btn-primary" href="/handle/10482/53805/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.