Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/54051
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_LightweightEnhancedModel.pdf7,99 MBAdobe PDFVisualizar/Abrir
Título: A lightweight and enhanced model for detecting the Neotropical brown stink bug, Euschistus heros (Hemiptera: Pentatomidae) based on YOLOv8 for soybean fields
Autor(es): Lima, Bruno Pinheiro de Melo
Borges, Lurdineide de Araújo Barbosa
Hirose, Edson
Borges, Díbio Leandro
ORCID: https://orcid.org/0009-0000-8713-798X
https://orcid.org/0000-0002-9301-0851
https://orcid.org/0000-0002-4868-0629
Afiliação do autor: University of Brasilia, Department of Mechanical Engineering
EMBRAPA Cerrados
EMBRAPA Soybean
University of Brasilia, Department of Mechanical Engineering
University of Brasilia, Department of Computer Science
Assunto: Aprendizado profundo
Soja - plantio
Análise de imagens
Percevejo (Inseto)
Data de publicação: 27-fev-2024
Editora: Elsevier
Referência: LIMA, Bruno Pinheiro de Melo; BORGES, Lurdineide de Araújo Barbosa; HIROSE, Edson; BORGES, Díbio Leandro. A lightweight and enhanced model for detecting the Neotropical brown stink bug, Euschistus heros (Hemiptera: Pentatomidae) based on YOLOv8 for soybean fields. Ecological Informatics, [S.l.], v. 80, e102543, 2024. DOI: https://doi.org/10.1016/j.ecoinf.2024.102543. Disponível em: https://www.sciencedirect.com/science/article/pii/S1574954124000852?via%3Dihub. Acesso em: 12 fev. 2026.
Abstract: Insect pest detection and monitoring are vital in an agricultural crop to help prevent losses and be more precise and sustainable regarding the consequent actions to be taken. Deep learning (DL) approaches have attracted attention, showing triumphant performance in many image-based applications. In the adult stage, this research considers detecting a vital insect pest in soybean crops, the Neotropical brown stink bug (Euschistus heros), from field images acquired by drones and cellphones. We develop and test an improved YOLO-model convolutional neural network (CNN) with fewer parameters than other state-of-the-art models and demonstrate its superior generalization and average precision on public image datasets and the new field data provided here. Considering the proposal's precision and time of response, the possibility of deploying this technology for automatic monitoring and pest management in the near future is promising. We provide open code and data for all the experiments performed.
Unidade Acadêmica: Faculdade de Tecnologia (FT)
Departamento de Engenharia Mecânica (FT ENM)
Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
Programa de pós-graduação: Programa de Pós-Graduação em Sistemas Mecatrônicos
Programa de Pós-Graduação em Informática
Licença: This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/bync/4.0/).
DOI: https://doi.org/10.1016/j.ecoinf.2024.102543
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.