http://repositorio.unb.br/handle/10482/52494| Título: | Finite groups in which every commutator has prime power order |
| Autor(es): | Souza, Mateus Figueiredo de Shumyatsky, Pavel |
| ORCID: | https://orcid.org/0000-0002-4976-5675 |
| Afiliação do autor: | Universidade de Brasília, Departamento de Matemática Universidade de Brasília, Departamento de Matemática |
| Assunto: | Grupos finitos Comutadores |
| Data de publicação: | 27-jun-2024 |
| Editora: | Elsevier |
| Referência: | SOUZA, Mateus Figueiredo de; SHUMYATSKY, Pavel. Finite groups in which every commutator has prime power order. Journal of Algebra, [S. l.], v. 658, p. 779–797, 2024. DOI: https://doi.org/10.1016/j.jalgebra.2024.06.014. Disponível em: https://www.sciencedirect.com/science/article/pii/S0021869324003508?via%3Dihub. Acesso em: 30 jun. 2025. |
| Abstract: | Finite groups in which every element has prime power order (EPPO-groups) are nowadays fairly well understood. For instance, if G is a soluble EPPO-group, then the Fitting height of G is at most 3 and |π(G)| 2 (Higman, 1957). Moreover, Suzuki showed that if G is insoluble, then the soluble radical of G is a 2-group and there are exactly eight nonabelian simple EPPO-groups. In the present work we concentrate on finite groups in which every commutator has prime power order (CPPO-groups). Roughly, we show that if G is a CPPO-group, then the structure of G is similar to that of an EPPO-group. In particular, we show that the Fitting height of a soluble CPPOgroup is at most 3 and |π(G)| 3. Moreover, if G is insoluble, then R(G) is a 2-group and G/R(G) is isomorphic to a simple EPPO-group. |
| Unidade Acadêmica: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
| Programa de pós-graduação: | Programa de Pós-Graduação em Matemática |
| DOI: | https://doi.org/10.1016/j.jalgebra.2024.06.014 |
| Versão da editora: | https://www.sciencedirect.com/science/article/pii/S0021869324003508 |
| Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.