Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/54052
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMatsushita, Raul Yukihiro-
dc.contributor.authorBrandão, Helena Santos-
dc.contributor.authorNobre, Iuri Ribeiro-
dc.contributor.authorSilva, Sergio da-
dc.date.accessioned2026-02-12T20:28:40Z-
dc.date.available2026-02-12T20:28:40Z-
dc.date.issued2024-05-25-
dc.identifier.citationMATSUSHITA, Raul Yukihiro; BRANDÃO, Helena Santos; NOBRE, Iuri Ribeiro; SILVA, Sergio da. Differential entropy estimation with a Paretian kernel: tail heaviness and smoothing. Physica A: Statistical Mechanics and its Applications, [S.l.], v. 646, e129850, 2025. DOI: https://doi.org/10.1016/j.physa.2024.129850. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378437124003595?via%3Dihub. Acesso em: 12 fev. 2026.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/54052-
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleDifferential entropy estimation with a Paretian kernel : tail heaviness and smoothingpt_BR
dc.typeArtigopt_BR
dc.subject.keywordEntropia diferencialpt_BR
dc.subject.keywordKernel de Paretopt_BR
dc.subject.keywordCaudas pesadaspt_BR
dc.identifier.doihttps://doi.org/10.1016/j.physa.2024.129850pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0378437124003595?via%3Dihubpt_BR
dc.description.abstract1Differential entropy extends the concept of entropy to continuous probability distributions, measuring the uncertainty associated with a continuous random variable. In financial data analysis, accurately estimating differential entropy is pivotal for understanding market dynamics and assessing risk. Traditional methods often fall short when dealing with the heavy-tailed distributions characteristic of financial returns. This paper introduces a novel approach to differential entropy estimation employing a Paretian kernel function adept at handling tail heaviness’s intricacies. By incorporating an additional smoothing parameter, the Pareto exponent, our method offers flexibility in adjusting to light and heavy-tailed distributions. We compare our approach against established estimators through a comprehensive Monte Carlo simulation, demonstrating its superior performance in various scenarios. Applying our method to foreign exchange market data further illustrates its practical utility in identifying stochastic regimes and enhancing financial analysis. Our findings advocate for integrating the Paretian kernel estimator into the toolkit of financial analysts and researchers for a more nuanced understanding of market behavior.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-8864-6356pt_BR
dc.identifier.orcidhttps://orcid.org/0009-0003-8633-5353pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-8279-4083pt_BR
dc.contributor.affiliationUniversity of Brasilia, Graduate Program in Statisticspt_BR
dc.contributor.affiliationUniversity of Brasilia, Graduate Program in Managementpt_BR
dc.contributor.affiliationUniversity of Brasilia, Graduate Program in Statisticspt_BR
dc.contributor.affiliationUniversity of Brasilia, Graduate Program in Managementpt_BR
dc.contributor.affiliationFederal University of Santa Catarina, Graduate Program in Economicspt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
dc.description.unidadeFaculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE)pt_BR
dc.description.unidadeDepartamento de Administração (FACE ADM)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Estatísticapt_BR
dc.description.ppgPrograma de Pós-Graduação em Administraçãopt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.