Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/53806
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorQiangheng, Zhang-
dc.contributor.authorFreitas, Mirelson Martins-
dc.date.accessioned2026-01-29T15:02:29Z-
dc.date.available2026-01-29T15:02:29Z-
dc.date.issued2025-08-06-
dc.identifier.citationQIANGHENG Zhang; FREITAS, Mirelson Martins. Random dynamics of 3D stochastic retarded MHD-Voight equations driven by operator type noise. Communications in Nonlinear Science and Numerical Simulation, v. 152, part B, e109204, 2025. DOI: https://doi.org/10.1016/j.cnsns.2025.109204.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/53806-
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleRandom dynamics of 3D stochastic retarded MHD-Voight equations driven by operator type noisept_BR
dc.typeArtigopt_BR
dc.subject.keywordDecomposição espectralpt_BR
dc.subject.keywordSemicontinuidade superiorpt_BR
dc.subject.keywordRuídopt_BR
dc.subject.keywordEquações diferenciaispt_BR
dc.identifier.doihttps://doi.org/10.1016/j.cnsns.2025.109204pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S100757042500615X?via%3Dihubpt_BR
dc.description.abstract1In this paper, we study the existence, uniqueness and topological properties of pullback random attractors for the non-autonomous stochastic magnetohydrodynamics (MHD)-Voight equation with delays driven by operator type noise. First, we prove the existence, uniqueness and forward compactness of pullback random attractors. Second, we investigate the upper semi-continuity of pullback random attractors as the delay time tends to zero. Third, we consider the upper semi-continuity of pullback random attractors as the strength of noise approaches to zero. Finally, we show that the asymptotic autonomy of pullback random attractors as the time parameter goes to positive infinity. Since the solution of this equation has no higher regularity, we use the spectrum decomposition technique to prove the asymptotic compactness of the solution operator. It seems that this is the first time to study the random dynamics of the non-autonomous stochastic MHD-Voight equation with delays driven by Laplace-multiplier noise.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6942-3931pt_BR
dc.contributor.affiliationHeze University, School of Mathematics and Statisticspt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Mathematicspt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
Collection(s) :Artigos publicados em periódicos e afins

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/53806/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.