Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/48144
Files in This Item:
There are no files associated with this item.
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVila Gabriel, Roberto-
dc.contributor.authorBalakrishnan, Narayanaswamy-
dc.contributor.authorSantos, Helton Saulo Bezerra dos-
dc.contributor.authorZörnig, Peter-
dc.date.accessioned2024-05-29T14:56:02Z-
dc.date.available2024-05-29T14:56:02Z-
dc.date.issued2023-07-07-
dc.identifier.citationVILA, Roberto et al. Family of bivariate distributions on the unit square: theoretical properties and applications. Journal of Applied Statistics, p. 1-27, 2023. DOI: https://doi.org/10.1080/02664763.2023.2232127. Disponível em: https://www.tandfonline.com/doi/full/10.1080/02664763.2023.2232127. Acesso em: 29 maio 2023.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/48144-
dc.language.isoengpt_BR
dc.publisherTaylor & Francispt_BR
dc.rightsAcesso Restritopt_BR
dc.titleFamily of bivariate distributions on the unit square : theoretical properties and applicationspt_BR
dc.typeArtigopt_BR
dc.subject.keywordModelos log-simétricos bidimensionaispt_BR
dc.subject.keywordAnálise estatísticapt_BR
dc.subject.keywordMétodo de máxima verossimilhançapt_BR
dc.identifier.doihttps://doi.org/10.1080/02664763.2023.2232127pt_BR
dc.relation.publisherversionhttps://www.tandfonline.com/doi/full/10.1080/02664763.2023.2232127pt_BR
dc.description.abstract1We introduce the bivariate unit-log-symmetric model based on the bivariate log-symmetric distribution (BLS) defined in Vila et al. [Citation25] as a flexible family of bivariate distributions over the unit square. We then study its mathematical properties such as stochastic representations, quantiles, conditional distributions, independence of the marginal distributions and marginal moments. Maximum likelihood estimation method is discussed and examined through Monte Carlo simulation. Finally, the proposed model is used to analyze some soccer data sets.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1073-0114pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-5842-8892pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-4467-8652pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-1094-3972pt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Statisticspt_BR
dc.contributor.affiliationMcMaster University, Department of Mathematics and Statistics, Hamilton, Canadapt_BR
dc.contributor.affiliationMcMaster University, Department of Mathematics and Statistics, Hamilton, Canadapt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Statisticspt_BR
dc.contributor.affiliationUniversity of Texas at Arlington, Department of Mathematicspt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Statisticspt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
Appears in Collections:Artigos publicados em periódicos e afins

Show simple item record " class="statisticsLink btn btn-primary" href="/handle/10482/48144/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.