Skip navigation
Please use this identifier to cite or link to this item:
Files in This Item:
There are no files associated with this item.
Title: MHM : a novel collaborative spectrum sensing method based on markov-chains and harmonic mean for 5G networks
Authors: Ferreira, Gabriel de Carvalho
Barreto, Priscila América Solís Mendez
Rocha, Geraldo P.
Caetano, Marcos Fagundes
Karvonen, Heikki
Vartiainen, Johanna
Assunto:: Sensores
Processos de Markov
Acesso dinâmico ao espectro
Issue Date: Jun-2020
Publisher: IEEE
Citation: FERREIRA, Gabriel et al. MHM: a novel collaborative spectrum sensing method based on markov-chains and harmonic mean for 5G networks. In: 2020 IFIP NETWORKING CONFERENCE (NETWORKING), 2020, Paris. Proceedings [...]. Paris: IEEE, 2020. Disponível em:
Abstract: Cognitive radios and spectrum sensing are considered fundamental for spectrum optimization in 5G networks. Collaborative spectrum sensing improves detection by collecting data from different nodes and increasing the amount of information available for accurate channel state detection. However, malicious nodes can report wrong information, disturbing the collaborative sensing results and network operation. This paper presents two techniques: (1) a Markov chain-based technique that improves spectrum sensing accuracy while reducing the reporting control traffic; (2) a harmonic mean-based technique that discards less relevant sensing reports, mitigating Byzantine attacks. The two techniques were evaluated in a simulation scenarios based on rural areas. The results show that the proposed techniques increase the accuracy of a classic hard-combining fusion technique, reducing false positives and reporting overhead while improving network resilience to malicious nodes.
Appears in Collections:CIC - Trabalhos apresentados em eventos

Show full item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/42526/statistics">

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.