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It is reported a theoretical and numerical study of non-markovian memory effects in backscattering of bal-
listic electrons constrained to move in a corrugated surface topography. Two approaches to model the electron
trajectories are used, better approximation is obtained with the Hamilton-Dirac method for constrained system.
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I. INTRODUCTION

The classical low-field magnetoresistance (MR) in metals
and semiconductors has been recently revised, since it was
recognized that the conventional Boltzmann-Drude approach
fails to describe the electron dynamics in disordered systems
[1–3]. According to the Boltzmann-Drude model, magne-
toresistance must yield no change, in the presence of short
range electrostatic potential, which is in disagreement with
the facts observed in experiments [4–6]. In a recent work, we
report measurements of large linear negative magnetoresis-
tance (LNMR) in aGaAs/AlxGa1−xAs two-dimensional elec-
tron system (2D) with non-planar topography, caused by ran-
dom distribution of corrugations, generated by a combination
of pre-patterning and regrowth processes [7]. The observed
LNMR, that is an anomalous behavior, reached up to20 %of
the zero field resistivity(ρxx(B= 0)), however, in a very small
region aroundB = 0, the resistivity showed a non-anomalous
behavior. Recent theoretical developments for the conductiv-
ity of a classical two-dimensional Lorentz gas [8, 9] allowed
us to attribute this MR to non-Markovian memory effects orig-
inated by specific return processes in backscattering of elec-
trons by corrugations and defects. However, a certain differ-
ence related to the order of magnitude of the full variation of
∆ρxx/ρxx(0) = [ρxx(B)−ρxx(0)]/ρxx(0) appeared between the
theoretical model and our experimental results. This phenom-
enon that may be closely related to a specific “corridor effect”
for scattering with corrugations and antidots, that should pre-
set greater cross sections for electrons, motivate us to explore
further the classical electron dynamics of 2D electrons con-
strained to random-shape topographies in order to analyze the
influence of memory effects that appear in different scattering
processes in these systems.

II. CONSTRAINED DYNAMICS

For a proper description of the low field magnetoresistance
in our samples it is necessary to simulate numerically the dy-
namics of two-dimensional electrons constrained to move in
a randomly-shaped non-planar topography in the presence of
a uniform perpendicular magnetic field. A first approach to
describe the classical electron dynamics in corrugated semi-

conductor systems was made in reference [10], where the case
of random magnetic field was treated departing from the La-
grangian of the system. In the present work we use two dif-
ferent approaches to the study the electron dynamics in con-
strained electron systems to non-planar topographies. As a
first model to describe the magnetoresistance of 2D electrons
constrained to random topographies, we assume that the elec-
tron motion, influenced by the perpendicular uniform mag-
netic field, in the non-planar topography formed by the ran-
dom distribution of corrugations and defects, can be compared
with the simulation of a two-dimensional Lorentz gas com-
posed of electrons and hard scatterers, under the influence of
a perpendicular uniform magnetic field. The array of non-
overlapping scatterers is characterized by a sum of gaussian
potentials with a random distribution. As we are interested in
the classical nature of transport in this system, we used linear
response theory [11], for the calculation of magnetoresistance
ρxx through a different numerical approach. We started with
the Hamiltonian for the classical electron dynamics of a 2D
electron gas under the influence of uniform magnetic field, di-
rected perpendicularly to the plane of the gas (Lorentz gas),

H =
1

2m∗ (
−→p −e

−→
A )2 +Uw(x,y)+U2D(x,y), (1)

where the potential vector is written as:
−→
A =

(−By/2,Bx/2,0). Uw(x,y) = U0(xn + ym) is a sum of
hard potential walls, alongx e y directions, to account for
periodic conditions,U0 is the amplitude and,n and m are
positive integers. The random antidot potential of the antidots
U2D, is simulated by the expression:

UAD (x,y) =
M

∑
i=1

U0exp

[
−(x−x0

Γx

)γ
]
∗exp

[
−(y−y0

Γy

)γ
]

(2)

whereM is the number of antidots,U0 is the maximum am-
plitude of the potential of each scatterer and, the parameterΓx
andΓy accounts for the antidot diameter at the Fermi energy,
andγ allows to vary between soft and hard potential profiles,
for our calculations we employedγ ∼ 2−6. We used dimen-
sionless variables in similar way as those explained in refer-
ence [7]. Four equation of motion are obtained and they were
numerically integrated to obtain the electron trajectories. Ac-
cording to classical linear response theory the conductivity of



N. M. Sotomayor et al. 341

the 2D electron gas is given by:

σi j =
Nse2

EF

Z ∞

0

〈
υi (t)υ j (t = 0)

〉
Γ e−

t
τ dt (3)

whereNs is the electron concentration,EF is the Fermi energy,
< vi(t)v j(0) >Γ is the velocity-velocity correlation function
double averaged over phase spaceΓ, the indicesi and j stand
for thex andy direction, respectively. The presence of addi-
tional scattering is included through the electron mean scatter-
ing timeτ, where the probability of an electron not suffering a
collision within the time interval [0,t] is given bye−t/τ. From
the numerical computation of the conductivity tensors we are
able to determine the longitudinalρxx and transverseρxy re-
sistivities. Ensembles of electron trajectories, depart inside
a square region of sideal , whereal is the antidot lattice pe-
riod, chosen to be equal to unity. This region contains 500
scatterers, with gaussian potentials, placed according to a uni-
form distribution. The ratioa/l (wherea is the radius of the
scatterer at the Fermi energy) was chosen to be0.001, and
the mean free pathl = (N2a)−1 was 6.3al . N is the two-
dimensional concentration of scatterers. For the integration
process we generate two hundred trajectories for each partic-
ular configuration of scatterers, after this a new configuration
is established and the process is repeated up to ten times. The
2D electrons move in a medium composed of an array of non-
overlapping and randomly distributed, hard-scatterers. We
integrate, numerically, the motion equations for this Lorentz
gas and from this we obtained the relative magnetoresistance
(MR), which is shown in Fig. 1.

FIG. 1. Relative magnetoresistance for a two-dimensional Lorentz
gas obtained by numerical integration.

God agreement with the LNMR experimental results was
found. However, a certain difference between this theoreti-
cal model and our experimental results is related to the or-
der of magnitude of the full variation of the relative magne-
toresistance. While in our experiment the LNMR reaches up
to 30% of its zero value our numerical results show an al-
most80%decrease, that is a better approximation than the re-
sults obtained in reference [9]. A more exact approach to de-
scribe the electron dynamics of a single electron constrained
to move in corrugated surfaces is obtained through the appli-
cation of the Hamilton-Dirac method for systems including
second class constraints [12]. According to this model, the
extended Hamiltonian of the system is given by

He(~p,~r) = Hc−ΦaC−1
ab {Φb,Hc} (4)

where~r = (x,y,z), ~p = (px, py, pz) are the position and mo-
mentum vectors respectively. The indexesa andb assume the
values1,2. Φ1 = φ = z− cosβ(x) = 0 andΦ2 = 1

m
~P.~∇Φ1 =

0 are second class constraints with~P = ~p− e~A being A =
B
2 (−y,x,0) the potential vector. The matrixC−1

ab is the inverse
matrix obtained out of the Poisson brackets{Φa,Φb}. The
canonical HamiltonianHc appearing in 4 is give by

Hc(~p,~r) =
1

2m
(~p−e~A)2−λφ (5)

whereλ is a Lagrange multiplier given by

λ =
1

m(~∇Φ1)2

(
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1
2
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)
(6)

The motion equations of the particle are obtained in terms of
the Dirac brackets [12] and are given by:

~̇r =
1
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)
(7)

and
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1
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(−1
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)
. (8)

The numerical integration of this coupled differential equa-
tions gives us the trajectories of the electron scattering in
constrained non-planar topographies as the one given byφ =
z−cosβ(x) = 0. Fig. 2 shows a scheme of this surface together
with some electron trajectories calculated for different values
of the magnetic field. Scattering by periodic and random ar-
rays of antidot can be added, as well as a random shaped sur-
faces that can be modeled by the addition of gaussian poten-
tials with negative-positive amplitudes and random distribu-
tion. Calculation of magnetoresistance for these systems is
under development and will not be presented here.

FIG. 2. Scheme of a simple corrugated surface with antidots, and
electron trajectories constrained to the non-planar topography.
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III. CONCLUSION

In summary, we have modeled the low field electron dy-
namics of two dimensional electrons constrained to move in
non-planar topographies composed of random corrugations
and defects, contrary to the prediction of the Boltzmann-
Drude approach, the MR of one of this disordered system
shows a dominant large linear negative decrease. A more ex-
act approach, for the electron dynamics in constrained sys-
tems is developed though the Hamilton-Dirac equation.
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