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Resumo

Regressão Gama Inversa Robusta

O modelo de regressão gama inverso é uma técnica estatística utilizada para modelar fenô-

menos aleatórios que assumem valores contínuos positivos tais como o tempo até a falha de

um equipamento, o tempo entre chegadas em sistemas de fila, como em repartições públicas

ou instituições financeiras, entre outros. A inferência para os parâmetros deste modelo é fre-

quentemente baseada no procedimento de estimação por máxima verossimilhança. Entretanto,

o método clássico de estimação por máxima verossimilhança pode apresentar resultados dis-

torcidos na presença de observações atípicas. Neste trabalho, propõe-se um novo método de

estimação robusto para os parâmetros do modelo de regressão gama inverso. Para motivar a

necessidade de um novo estimador robusto sob esta classe de modelos, é demonstrado que a

função de influência do estimador de máxima verossimilhança não é limitada. O novo procedi-

mento inferencial que é proposto neste trabalho é baseado na classe de M-estimadores, a qual

contém o estimador de máxima verossimilhança como um caso particular e é vastamente co-

nhecida por produzir estimadores robustos. Para avaliar o desempenho e ilustrar a necessidade

do novo estimador foram realizados estudos de simulações de Monte Carlo na ausência e na

presença de contaminação nos dados. A partir dos estudos de simulação constatou-se que, na

ausência de contaminação, o estimador de máxima verossimilhança é mais eficiente. Porém,

na presença de contaminação, o estimador de máxima verossimilhança foi fortemente afetado,

levando a estimativas distorcidas. Em contrapartida, o estimador proposto se mostrou superior
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ao estimador de máxima verossimilhança no que diz respeito à estabilidade das estimativas, as

quais não foram afetadas pela contaminação nos dados.

Palavras-chave: Estimador de máxima verossimilhança, Estimador robusto, Função de in-

fluência, Outlier, Regressão gama inversa.
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Abstract

Robust Inverse Gamma Regression

The inverse gamma regression model it is a statistical technique used for modeling random

phenomena characterized by positive continuous values, such as the time until equipment failure

and interarrival times in queuing systems-common in public service and financial institutions.

The inference for the parameters of this model is typically performed using the maximum li-

kelihood estimation method. However, this estimation approach can lead to distorted results in

the presence of atypical observations. In this work, we propose a new robust estimation method

for the parameters of the inverse gamma regression model. To motivate the importance of a

robust alternative, we demonstrate that the influence function of the maximum likelihood esti-

mator is unbounded. The new inference procedure is based on the class of M-estimators, which

includes the maximum likelihood estimator as a special case and is well-known for producing

robust estimators. To evaluate the performance and illustrate the necessity of the proposed esti-

mator, we conducted Monte Carlo simulations in both presence and absence of contamination

in the data. From the simulation studies, it was found that in the absence of contamination, the

maximum likelihood estimator is more efficient. However, in the presence of contamination,

the maximum likelihood estimator was significantly affected, leading to distorted estimates.

In contrast, the proposed estimator demonstrated superiority over the maximum likelihood es-

timator in terms of the stability of the estimates, which were not affected by data contamination.
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Capítulo 1

Introdução

Fenômenos aleatórios que assumem valores contínuos positivos são frequentemente obser-

vados nas mais diversas áreas do conhecimento, tais como engenharia, economia, biologia e

ciência dos materiais. Alguns exemplos de estudos sobre fenômenos que produzem dados no

intervalo (0,∞) são: o tempo até a falha de um equipamento, o tempo entre chegadas em sis-

temas de fila, como no transporte público ou redes de comunicação, fluxos de partículas ou

radiação, intensidades de terremotos ou tempestades, crescimento de patrimônio financeiro ou

dados econômicos, entre outros.

O modelo de regressão gama inverso é uma abordagem estatística usada para modelar variá-

veis dependentes contínuas e positivas, especialmente quando os dados apresentam assimetria

positiva (Bourguignon e Gallardo, 2020). A base desse modelo é a distribuição gama inversa,

amplamente utilizada em aplicações onde valores muito altos da variável resposta têm maior

variabilidade, como na análise de sobrevivência e confiabilidade (Glen, 2017). A distribuição

gama inversa é especialmente útil quando se quer modelar o tempo até o evento de falha, ou

seja, o tempo que um sistema ou componente leva para falhar, sendo mais apropriada para siste-

mas onde a falha ocorre com maior probabilidade no início da operação (comumente associada

ao conceito de “falha precoce” ou “falhas devido a defeitos de fabricação”).

Trabalhos recentes que utilizam modelos baseados na distribuição gama inversa podem ser
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encontrados na literatura, como, por exemplo, os artigos citados a seguir. Lin et al. (1989) uti-

lizaram o modelo gama inverso em estudos de confiabilidade para avaliar o tempo de vida de

determinados equipamentos, descrevendo as principais causas de falhas desses equipamentos.

Mead (2015) apresentou um novo modelo de confiabilidade utilizado em problemas de teoria

da difração e problemas de corrosão em novas máquinas. Os autores propuseram uma generali-

zação da distribuição gama inversa chamada de distribuição gama inversa generalizada (GIG).

Mousa et al. (2016) utilizaram a abordagem não paramétrica de kernel para estimar a função

densidade de probabilidade denominada de kernel gama inversa, com suporte pertencente ao

intervalo (0,∞). Os autores mostraram que a densidade estimada tem as mesmas propriedades

que a distribuição gama inversa, e que a mesma é livre de viés. Glen (2017) estudou algumas

propriedades da distribuição gama inversa e como esta pode ser utilizada no contexto de análise

de sobrevivência. Bourguignon e Gallardo (2020) propuseram um modelo de regressão onde

a variável resposta segue uma distribuição gama inversa, reparametrizada por parâmetros que

denotam média e precisão da distribuição. Magalhães et al. (2021) desenvolveram um esquema

de correção de viés para reparametrizações do modelo de regressão gama inversa com precisão

variável, derivando expressões para o viés de primeira ordem, obtendo assim estimadores corri-

gidos. Uma diferente parametrização para a distribuição gama inversa no contexto de modelos

de regressão é apresentada por Rigby et al. (2019) na qual atribui-se estrutura de regressão

para a moda da variável resposta. Esta última abordagem de regressão usando a distribuição

gama inversa se torna mais adequada principalmente em situações nas quais os dados apresen-

tam forte assimetria à direita. Neste caso, a modelagem da moda da resposta é mais adequada

por ser mais representativa da tendência de concentração dos dados. Por esta razão, o modelo

de regressão gama inverso a ser estudado neste trabalho é aquele apresentado por Rigby et al.

(2019).

A inferência para o modelo de regressão usando a distribuição gama inversa (Bourguignon e

Gallardo, 2020; Rigby et al., 2019) é normalmente baseada no estimador de máxima verossimi-

lhança (EMV). Entretanto, este, pode ser altamente influenciado pela presença de observações
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discrepantes nos dados. No Capítulo 3 mostra-se mediante o estudo da função de influência que

o EMV sob a classe de modelos de regressão gama inverso proposto por Rigby et al. (2019) não

é robusto.

As observações discrepantes ou outliers apresentam padrões distintos da maior parte dos

dados e podem causar distorções graves em estimadores usuais para os parâmetros do modelo

suposto. Por exemplo, geralmente os modelos de regressão linear são ajustados a partir do es-

timador de mínimos quadrados que são sensíveis a presença de outliers. Isto ocorre porque o

estimador de mínimos quadrados é obtido a partir da minimização da soma dos quadrados das

diferenças entre os valores observados e os valores previstos pelo modelo. Segundo Montgo-

mery et al. (2021), quando há outliers nos dados, as grandes diferenças de valores geradas por

esses pontos extremos fazem com que o modelo “se ajuste” para reduzir o erro para esses pon-

tos, distorcendo as estimativas dos parâmetros para os dados. Segundo Maronna et al. (2019),

é natural pensar que na presença de pontos atípicos é suficiente utilizar um bom método de re-

jeição de outliers para resolver o problema, mas isso geralmente não é verdade. De acordo com

Rousseeuw e Leroy (2003), métodos para identificar outliers baseados em estimadores clássicos

não são confiáveis devido à sensibilidade dos mesmos. Uma situação comum que pode ocorrer

é que os resíduos podem passar despercebidos devido a pontos atípicos inflarem a estimativa

da dispersão do modelo suposto, deixando de capturar pontos que deveriam ser classificados

como outliers. Além disso, dado que uma observação é apontada como outlier, é necessário

identificar qual é a melhor abordagem para tratá-la.

Existem várias abordagens tradicionais para tratar outliers em análise de dados, especial-

mente em modelos de regressão. A escolha da abordagem depende do contexto e do tipo de

dado em estudo, mas todas possuem desvantagens quando comparadas a técnicas robustas. A

primeira delas, segundo Ghosh (2019), consiste em identificar e então excluir esses pontos do

conjunto de dados antes de ajustar o modelo, porém, ao excluir outliers, pode-se perder dados

que, apesar de serem atípicos, são relevantes para entender a variabilidade do fenômeno em

estudo. Além disso, se os outliers são comuns em um determinado contexto (por exemplo, em

3
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vendas de produtos, onde ocorrem picos ocasionais), excluí-los pode resultar em uma amostra

não representativa do comportamento real dos dados. Ribeiro (2020) cita que o melhor método

de rejeição de outliers não se compara ao desempenho dos melhores procedimentos robustos,

pois a estimação robusta transita suavemente entre a aceitação ou rejeição total de uma obser-

vação.

Huber (1964) desenvolveu uma nova abordagem de estimação sob modelos paramétricos

baseado na minimização de uma generalização do logaritmo da função de verossimilhança. Tal

classe de estimadores foi denominada M-estimadores. A generalização é feita através da substi-

tuição da contribuição individual −log(f(y,θ)) no logaritmo da função de verossimilhança por

uma função ρ(y,θ). Esta classe de estimadores é conhecida por produzir estimadores robustos

que possuem propriedades ótimas como consistência e normalidade assintótica.

Um ramo de obtenção de estimadores robustos bastante utilizado e que pode ser visto como

caso particular dos M-estimadores é o baseado no método de minimizar divergências entre den-

sidades. Métodos de obtenção de estimadores baseados em minimizações de divergências em-

píricas podem ser facilmente encontrados na literatura. De acordo com Ghosh (2019) e Ribeiro

(2020), ao realizar a minimização de uma divergência empírica entre duas densidades estamos

minimizando a discrepância entre a distribuição de probabilidades postulada e a distribuição

empírica dos dados observados com respeito ao parâmetro de interesse. Basu et al. (1998) pro-

puseram um procedimento de estimação robusto obtido através da minimização empírica de

um tipo de divergência potência entre duas densidades. Tal procedimento de estimação visa

alcançar considerável robustez a pontos atípicos e ainda manter a eficiência assintótica próxima

à do estimador de máxima verossimilhança, características as quais são controladas a partir de

uma constante de afinação. Ferrari e La Vecchia (2012) propuseram um procedimento de esti-

mação robusta baseado na maximização de uma Lq-verossimilhança reparametrizada, definida

em termos da transformação de Box-Cox. O estimador resultante procura balancear a robustez

e eficiência baseado em uma constante de afinação. Ribeiro e Ferrari (2023) desenvolveram

um procedimento de estimação robusto sob modelos de regressão beta baseado no trabalho de

4
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Ferrari e La Vecchia (2012) que é um caso especial dos M-estimadores. O estimador proposto,

denominado de estimador de máxima verossimilhança substituto, oferece um balanço entre ro-

bustez e eficiência por meio de uma constante de afinação selecionada por um método orientado

pelos dados que garante eficiência total na ausência de outliers.

1.1 Objetivos

O objetivo principal desse trabalho é propor um método de inferência robusta com base no

procedimento inferencial desenvolvido por Ribeiro e Ferrari (2023), sob o modelo de regressão

gama inverso reparametrizado, indexado pelos parâmetros da moda e forma como definido em

Rigby et al. (2019).

Os objetivos específicos desse trabalho são:

a) propor um método de estimação robusto para o modelo de regressão gama inverso repa-

rametrizado;

b) avaliar via estudos de simulação Monte Carlo o desempenho do estimador robusto em

comparação ao estimador de máxima verossimilhança, na ausência e presença de contaminação

nos dados.

1.2 Organização do trabalho

Esta dissertação está organizada em cinco Capítulos. No primeiro Capítulo, além da in-

trodução, é apresentado uma revisão da literatura recente sobre o modelo de regressão gama

inverso, assim como as principais referências relacionadas à teoria de robustez e os objetivos

a serem alcançados. No segundo Capítulo, apresenta-se a distribuição gama inversa indexada

pelos parâmetros da moda e forma, juntamente com a estrutura de regressão para os parâme-

tros, e a inferência por máxima verossimilhança. No terceiro Capítulo, é feita uma revisão dos

principais conceitos e resultados que serão necessários para avaliar a robustez de estimadores,

discutindo sobre o procedimento de M-estimação, e avaliando a robustez do EMV sob mode-
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los de regressão gama inverso. No quarto Capítulo, é introduzido o estimador robusto baseado

na maximização de uma Lq-verossimilhança reparametrizada sob o modelo de regressão gama

inverso. No quinto Capítulo são apresentados estudos de simulação Monte Carlo para avaliar

o desempenho do estimador robusto em comparação ao estimador de máxima verossimilhança,

na ausência e presença de contaminação nos dados. No sexto Cápitulo são apresentadas as

conclusões com algumas considerações finais, assim como a indicação de trabalhos futuros.

Detalhes técnicos referentes ao Capítulo 4 são deixados no Apêndice A.
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Capítulo 2

Modelo de Regressão Gama Inverso

Neste Capítulo será introduzida a classe de modelos de regressão gama inverso. Primeira-

mente será caracterizada a distribuição gama e sua reparametrização no contexto de regressão.

Em seguida, é apresentado o modelo gama inverso o qual é o objeto de estudo deste trabalho.

2.1 Distribuição gama

Em teoria de probabilidade, o modelo gama é uma distribuição assimétrica, unimodal de

dois parâmetros, com suporte definido nos reais positivos, que pode modelar diversos tipos

de fenômenos, como o tempo até a falha de um sistema ou o tempo de cura de um paciente

submetido a um determinado tratamento (Feller, 1991).

Seja y a variável aleatória que segue uma distribuição gama com parâmetros α, β > 0,

denotada por y ∼ G(α, β). A função de distribuição acumulada (FDA) é dada por (Colosimo e

Giolo, 2021)

F (y;α, β) =
γ(α, βy)

Γ(α)
, y > 0, (2.1)

em que γ(a, z) =
∫ z

0
ta−1e−tdt é a função gama incompleta, Γ(α) =

∫∞
0
tα−1e−tdt é a função

gama completa, β > 0 é o parâmetro de taxa e α > 0 é o parâmetro de forma. A função
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densidade de probabilidade (FDP) associada a (2.1) é dada por

f(y;α, β) =
βαyα−1e−yβ

Γ(α)
, y > 0. (2.2)

Particularmente, segundo Colosimo e Giolo (2021), a média e a variância de y são dadas por

E(y) = α/β e Var(y) = α/β2 = µ2/α, respectivamente. Adicionalmente, a moda e o coefi-

ciente de variação (CV) são dados por (α − 1)β, α ≥ 1 e 1/
√
α, respectivamente. Quando

α = 1, a distribuição gama se reduz à distribuição exponencial, que é um caso especial da gama

com um único parâmetro de forma. A distribuição gama pode ser parametrizada em termos da

média e precisão. Segundo Paula (2023), a FDP da distribuição gama reparametrizada pode ser

expressa por

f(y|(µ, ϕ)) = 1

Γ(ϕ)

(
ϕy

µ

)ϕ

exp
{
−ϕ
µ
y

}
1

y
, (2.3)

sendo y > 0, µ > 0 parâmetro da média e ϕ > 0 parâmetro de precisão. A partir de agora,

é usada a notação y ∼ GR(µ, ϕ) para indicar que y é uma variável aleatória que segue uma

distribuição gama reparametrizada com µ > 0 e ϕ > 0, em que E(y) = µ e Var(y) = µ2/ϕ.

2.2 Regressão gama

Para definir a estrutura de regressão sob a distribuição gama, considere y1, . . . , yn variáveis

aleatórias independentes tal que cada yi possui a FDP dada em (2.3), com média µi e parâmetro

de precisão ϕi. Suponha que a média e o parâmetro de precisão de yi satisfazem as seguintes

relações funcionais:

gµ(µi) = ηµi
= x⊤

i β e gϕ(ϕi) = ηϕi
= z⊤i ν, (2.4)

em que β = (β1, . . . , βp)
⊤ ∈ Rp e ν = (ν1, . . . , νq)

⊤ ∈ Rq são os vetores dos coeficientes de

8
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regressão desconhecidos, com p+q < n, ηµi
e ηϕi

são preditores lineares, e xi = (xi1, . . . , xip)
⊤

e zi = (zi1, . . . , ziq)
⊤ são vetores de valores fixados das covariáveis dos submodelos da média

e precisão, com dimensão p e q, respectivamente, para i = 1, · · · , n. As funções de ligação

gµ : R+ → R e gϕ : R+ → R em (2.4) devem ser estritamente monótonas, positivas e duas

vezes diferenciáveis, de modo que µi = g−1
µ (x⊤

i β) e ϕi = g−1
ϕ (z⊤i ν), com g−1

µ (·) e g−1
ϕ (·) sendo

as inversas das funções gµ(·) e gϕ(·), respectivamente.

2.3 Distribuição gama inversa

2.3.1 Parametrização original

Em teoria da probabilidade, a gama inversa (GI) é uma distribuição de dois parâmetros uni-

modal, positivamente assimétrica, com suporte definido nos reais positivos, que é obtida a partir

do recíproco de uma variável distribuída conforme a distribuição gama. Em outras palavras, se

y segue uma distribuição gama com parâmetros α e β, então y−1 segue uma distribuição GI com

parâmetros α > 0 parâmetro de forma, e β > 0 parâmetro de escala (Bourguignon e Gallardo,

2020). Além disso, a recíproca também é verdadeira, se y segue uma distribuição GI, y−1 segue

uma distribuição gama.

Seja a variável aleatória y que segue uma distribuição gama inversa com parâmetros α, β >

0, denotada por y ∼ GI(α, β). A sua função de distribuição acumulada é dada por

F (y;α, β) =
γ(α, β/y)

Γ(α)
, y > 0, (2.5)

em que β > 0 é o parâmetro de escala e α > 0 é o parâmetro de forma. A função densidade de

probabilidade associada a (2.5) é dada por

f(y;α, β) =
βα

Γ(α)
y−α−1e−

β
y , y > 0. (2.6)

A média e a variância de y são dadas por

9
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E(y) =
β

α− 1
, α > 1, e Var(y) =

β2

(α− 2)(α− 1)2
, α > 2, (2.7)

respectivamente. Adicionalmente, o coeficiente de variação é dado por (α− 2)−1/2. A moda de

y ∼ GI(α, β) é obtida encontrando-se o ponto y que maximiza a função f(y;α, β) ou equiva-

lentemente, o valor de y que maximiza log(f(y;α, β)). Veja que

log[f(y;α, β)] = αlog(β)− log[Γ(α)]− (α + 1)log(y)− β/y.

Derivando em relação à y, tem-se que

dlog[f(y;α, β)]
dy

= −α + 1

y
+
β

y2
.

Igualando a derivada obtida a zero, tem-se: −(α + 1)/y + β/y2 = 0 ⇔ (α + 1)/y = β/y2 ⇔

y2(α + 1) = βy ⇔ y = β/(α + 1). A expressão da moda de y ∼ GI(α, β) será de grande

importância para a definição do modelo de regressão GI que é considerado neste trabalho.

2.3.2 Reparametrização

Modelos de regressão usualmente são construídos para modelar um parâmetro que repre-

sente uma característica simples da variável resposta tais como média, mediana e moda. Con-

tudo, a distribuição gama inversa com FDP (2.6) não está parametrizada em função de quanti-

dades que representam características diretas da variável resposta. Nesta seção é apresentada a

distribuição GI parametrizada em termos da moda e forma, seguindo a parametrização apresen-

tada por Rigby et al. (2019). Considere µ = β/(α + 1) e σ = 1/
√
α, isto é, β = µ(1 + σ−2)

e α = σ−2. Conforme esta nova parametrização, substituindo as expressões de µ e σ em (2.7)

10
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tem-se que

E(y) =
(1 + σ2)µ

(1− σ2)
, se σ2 < 1, e, Var(y) =

(1 + σ2)2µ2σ2

(1− σ2)2(1− 2σ2)
, se σ2 < 1/2.

Estas expressões de média e variância também estão apresentadas em Rigby et al. (2019).

A partir de agora a notação usada será y ∼ GIR(µ, σ) para indicar que y é uma variável ale-

atória que segue uma distribuição GI reparametrizada com µ > 0 parâmetro que denota a moda

e σ > 0 parâmetro de forma. Uma vez que a distribuição GIR preserva a propriedade de reci-

procidade da distribuição IG original, isto é, 1/y segue uma distribuição gama com parâmetros

σ−2 e µ(1 + σ−2) segue que

E[1/y] =
σ−2

µ(1 + σ−2)
e Var[1/y] =

σ−2

µ2(1 + σ−2)2
. (2.8)

Usando a reparametrização proposta, a função densidade da distribuição GIR fica reescrita

como

f(y;µ, σ) =
[µ(1 + σ−2)]σ

−2

Γ(σ−2)
y−(σ−2+1)e−

µ(1+σ−2)
y , y > 0. (2.9)

Na Figura 2.1 são apresentados gráficos da função densidade da distribuição GIR variando

valores de µ e σ na qual percebe-se que à medida que µ aumenta, a variância da distribuição

também aumenta. Isso ocorre porque a variância da distribuição gama inversa tem uma depen-

dência quadrática de µ, o que implica que um aumento na moda tende a aumentar a variância

de maneira mais acentuada. Além disso, também pode-se notar que o parâmetro σ controla a

assimetria, ou seja, à medida que σ aumenta (diminui), a distribuição se torna menos (mais)

simétrica em torno da moda, aumentando a variância. Sendo assim, σ que é um parâmetro de

forma parece afetar a assimetria e precisão da distribuição.

Adicionalmente, segundo Rigby et al. (2019), tem-se que o CV, assimetria γ1 e curtose γ2

11
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Figura 2.1: Gráficos da função densidade da distribuição GIR fixando σ = 0, 5 e variando
µ = 1, 2, 3 e 5, e fixando µ = 1 e variando σ = 0.3, 0.5, 0.75 e 1.

são dados, respectivamente por

CV = σ/
√
1 + 2σ2, γ1 =

4σ(1− 2σ2)1/2

1− 3σ2
, σ2 < 1/3, e γ2 =

3σ2(10− 22σ2)

(1− 3σ2)(1− 4σ2)
, σ2 < 1/4.

A distribuição gama e a distribuição GIR têm propriedades comuns, como unimodalidade

em sua função de densidade e função de variância quadrática. A seguir são listadas algumas

motivações para o uso prático da distribuição GIR em comparação com a distribuição gama,

assim como a principal vantagem de se modelar a moda ao invés da média. A primeira delas é

que a função taxa de falha da distribuição GI pode ter formato de “U”, dependendo do valor do

parâmetro de forma (Glen, 2017). Em contrapartida, segundo Bourguignon e Gallardo (2020),

a maioria das distribuições clássicas de dois parâmetros, como as distribuições Weibull e gama,

possuem funções monótonas de taxa de risco. A segunda vantagem é que, apesar de a distribui-

ção GI e a distribuição gama possuírem o mesmo CV, a distribuição GI permite obter maiores

coeficientes de assimetria e curtose, possibilitando o ajuste de dados com caudas mais pesadas.

Uma vantagem da parametrização em termos da moda em relação à média é que ao modelar a
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moda, significa que se está sempre modelando a região onde a distribuição é mais concentrada.

Em situações em que os dados possuem uma distribuição assimétrica, a modelagem da moda

é mais adequada do que a da média, pois refletirá o comportamento mais representativo dos

dados. Além disso, ao se trabalhar com a moda, espera-se que os efeitos de valores atípicos

sejam menores do que os efeitos causados na estimação da média.

2.4 Regressão gama inversa

Para definir a estrutura de regressão, considere y1, · · · , yn variáveis aleatórias independentes

tal que cada yi possui a FDP dada em (2.9), com moda µi e parâmetro de forma σi. Suponha

que a moda e o parâmetro de forma satisfazem as seguintes relações funcionais

gµ(µi) = ηµi
= x⊤

i β e gσ(σi) = ησi
= z⊤i ν, (2.10)

em que β = (β1, . . . , βp)
⊤ ∈ Rp e ν = (ν1, . . . , νq)

⊤ ∈ Rq são os vetores dos coefi-

cientes de regressão desconhecidos, com p + q < n, ηµi
e ησi

são preditores lineares, e

xi = (xi1, . . . , xip)
⊤ ∈ Rp e zi = (zi1, . . . , ziq)

⊤ ∈ Rq são vetores de valores fixados das

covariáveis dos submodelos da moda e forma, respectivamente, para i = 1, · · · , n. As funções

de ligação gµ : R+ → R e gσ : R+ → R em (2.10) devem ser estritamente monótonas, positivas

e duas vezes diferenciáveis, de modo que µi = g−1
µ (x⊤

i β) e σi = g−1
σ (z⊤i ν), com g−1

µ (·) e g−1
σ (·)

sendo as inversas das funções gµ(·) e gσ(·), respectivamente.

2.5 Inferência por máxima verossimilhança

Os vetores de parâmetros β e ν devem ser estimados com base numa amostra. Um proce-

dimento clássico para a estimação de tais parâmetros é o método da máxima verossimilhança,

o qual visa encontrar o valor de θ que provavelmente produziu os dados observados.
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A função de verossimilhança para θ = (β⊤,ν⊤)⊤ sob o modelo GIR é expressa por

L(θ) =
n∏

i=1

f(yi;µi, σi)

=
n∏

i=1

{
[µi(1 + σ−2

i )]σ
−2
i

Γ(σ−2
i )

y
−(σ−2

i +1)
i e−

µi(1+σ−2
i

)

yi

}
.

Assim, o logaritmo da função de verossimilhança para θ é dado por

ℓ(θ) = log(L(θ))

=
n∑

i=1

log(f(yi;µi, σi))

=
n∑

i=1

log

{
[µi(1 + σ−2

i )]σ
−2
i

Γ(σ−2
i )

y
−(σ−2

i +1)
i e−

µi(1+σ−2
i

)

yi

}

=
n∑

i=1

ℓ(µi, σi),

em que

ℓ(µi, σi) = σ−2
i log[µi(1 + σ−2

i )]− (σ−2
i + 1)log(yi)− µi(1 + σ−2

i )/yi − log[Γ(σ−2
i )].

A estimativa de máxima verossimilhança é definida por θ̂ = argmaxθ∈Θℓ(θ), com θ̂ = (β̂⊤, ν̂⊤)⊤.

Assim, para se obter os respectivos EMVs para os parâmetros β e ν, nos casos em que o lo-

garitmo da função de verossimilhança é diferenciável, pode-se calcular as derivadas parciais de

ℓ(θ) com relação a cada um dos parâmetros, obtendo assim os vetores escore para β e ν que

serão representados por Uβ(θ) e Uν(θ), respectivamente. Adicionalmente, os estimadores para

a moda µi e σi são obtidos indiretamente por meio de β̂ e ν̂ através das estruturas de regressão

definidas em (2.10). O vetor escore para θ é definido por

U(θ) =

 Uβ(θ)

Uν(θ)

 =

 ∂ℓ(θ)
∂β

∂ℓ(θ)
∂ν

 .
14
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As entradas do vetor escore associado à β, Uβj
(θ), j = 1, 2, · · · , p são dadas por

Uβj
(θ) =

∂ℓ(θ)

∂βj

=
n∑

i=1

dℓ(µi, σi)

dµi

dµi

dηµi

∂ηµi

∂βj

=
n∑

i=1

{
σ−2
i

µi

− 1 + σ−2
i

yi

}
dµi

dηµi

∂ηµi

∂βj

=
n∑

i=1

(y∗i − µ∗
i )

1

g′
µ(µi)

xij,

em que y∗i = −(1 + σ−2
i )/yi e µ∗

i = −σ−2
i /µi, com E(y∗i ) = µ∗

i obtido usando o resultado em

(2.8). Considere X uma matriz de dimensão n× p em que cada uma de suas colunas representa

os valores da j-ésima covariável associada ao submodelo da moda, j = 1, 2, . . . , p, y∗ =

(y∗1, . . . , y
∗
n)

⊤, µ∗ = (µ∗
1, . . . , µ

∗
n)

⊤, Tβ = diag(tβ1 , . . . , tβn) = diag{1/g′
µ(µ1), . . . , 1/g

′
µ(µn)},

tβi
= dµi/dηµi

e ∂ηµi
/∂βj = xij . Logo, o vetor escore para β é

Uβ(θ) = X⊤Tβ(y
∗ − µ∗).

As entradas do vetor escore associado à ν, Uνj(θ), j = 1, 2, · · · , q são dadas por

Uνj(θ) =
∂ℓ(θ)

∂νj

=
n∑

i=1

dℓ(µi, σi)

dσi

dσi
dησi

∂ησi

∂νj

=
n∑

i=1

{
− 2σ−3

i log[µi(1 + σ−2
i )]− 2σ−5

i

1 + σ−2
i

+ 2σ−3
i log(yi)

+ 2σ−3
i

µi

yi
+ 2σ−3

i ψ(σ−2
i )

} dσi
dησi

∂ησi

∂νj

=
n∑

i=1

(y†i − µ†
i )

1

g′
σ(σi)

zij,
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em que y†i = 2σ−3
i [log(yi)+µi/yi] e µ†

i = 2σ−3
i [log(µi)+log(1+σ−2

i )+
σ−2
i

(1+σ−2
i )

−ψ(σ−2
i )], com

E[log(yi)] = log[µi(1+ σ−2
i )]−ψ(σ−2

i ), e ψ(z) = d ln[Γ(z)]/dz é a função digama. Considere

Z uma matriz de dimensão n × q onde cada uma de suas colunas representa os valores da i-

ésima covariável associada ao submodelo de σ, j = 1, 2, · · · , q, y† = (y†1, . . . , y
†
n)

⊤, µ† =

(µ†
1, . . . , µ

†
n)

⊤, Tν = diag(tν1 , . . . , tνn) = diag{1/g′
σ(σ1), . . . , 1/g

′
σ(σn)}, tνi = ∂σi/∂ησi

e

zij = ∂ησi
/∂νj . Assim, o vetor escore Uν(θ) pode ser representado por

Uν(θ) = Z⊤Tν(y
† − µ†).

Sendo assim, o vetor escore de θ correspondente à i-ésima observação é dado por

U(yi,θ) =

(
(y∗i − µ∗

i )
1

g′
µ(µi)

x⊤
i , (y†i − µ†

i )
1

g′
σ(σi)

z⊤i

)⊤

. (2.11)

A matriz de informação de Fisher é definida por

Kθθ =

 Kββ Kβν

Kνβ Kνν

 =

 −E( ∂2ℓ(θ)
∂β∂β⊤ ) −E( ∂2ℓ(θ)

∂β∂ν⊤ )

−E( ∂2ℓ(θ)
∂ν∂β⊤ ) −E( ∂2ℓ(θ)

∂ν∂ν⊤ )

 .
Para j, l = 1, 2, · · · , p, segue que

∂2ℓ(θ)

∂βj∂βl
=

∂

∂βl

{
n∑

i=1

[
σ−2
i

µi

− 1 + σ−2
i

yi

]
dµi

dηµi

∂ηµi

∂βj

}

=
n∑

i=1

∂

∂βl

[
σ−2
i

µi

− 1 + σ−2
i

yi

]
dµi

dηµi

∂ηµi

∂βj

+
n∑

i=1

[
σ−2
i

µi

− 1 + σ−2
i

yi

]
d2µi

dη2µi

∂ηµi

∂βj

∂ηµi

∂βl

= −
n∑

i=1

σ−2
i

µ2
i

dµi

dηµi

∂ηµi

∂βj

dµi

dηµi

∂ηµi

∂βl
+

n∑
i=1

(y∗i − µ∗
i )

d2µi

dη2µi

xijxil.
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Daí, tem-se

−E
(
∂2ℓ(θ)

∂βj∂βl

)
=

n∑
i=1

σ−2
i

µ2
i

(
dµi

dηµi

)2

xijxil.

Daí, o componente da matriz de informação de Fisher para β é escrita como

Kββ = −E
(
∂2ℓ(θ)

∂β∂β⊤

)
= X⊤Σ T2

βX,

em que Σ = diag(σ−2
1 /µ2

1, . . . , σ
−2
n /µ2

n). Também, tem-se que

∂ℓ(θ)

∂νj∂νl
=

∂

∂νl

{
n∑

i=1

{
−2σ−3

i log[µi(1 + σ−2
i )]− 2σ−3

i

σ−2
i

1 + σ−2
i

+ 2σ−3
i log(yi) + 2σ−3

i

µi

yi
+ 2σ−3

i ψ(σ−2
i )

}
dσi
dησi

∂ησi

∂νj

+
n∑

i=1

{
−2σ−3

i log[µi(1 + σ−2
i )]− 2σ−3

i

σ−2
i

1 + σ−2
i

+ 2σ−3
i log(yi)

+ 2σ−3
i

µi

yi
+ 2σ−3

i ψ(σ−2
i )

}
∂

∂νl

{
dσi
dησi

∂ησi

∂νj

}
=

n∑
i=1

[
6σ−4

i log[µi(1 + σ−2
i )] +

4σ−6
i

σ−2
i + 1

+
10σ−6

i + 6σ−8
i

(1 + σ−2
i )2

− 6σ−4
i log(yi)− 6σ−4

i

µi

yi

− 6σ−4
i ψ(σ−2

i )− 4σ−6
i ψ′(σ−2

i )
]( dσi

dησi

)2

zijzil

+
n∑

i=1

{
−2σ−3

i log[µi(1 + σ−2
i )]− 2σ−3

i

σ−2
i

1 + σ−2
i

+ 2σ−3
i log(yi)

+ 2σ−3
i

µi

yi
+ 2σ−3

i ψ(σ−2
i )

}
d2σi
dη2σi

zijzil

=
n∑

i=1

[
6σ−4

i log[µi(1 + σ−2
i )] +

4σ−6
i

σ−2
i + 1

+
10σ−6

i + 6σ−8
i

(1 + σ−2
i )2

− 6σ−4
i log(yi)− 6σ−4

i

µi

yi

− 6σ−4
i ψ(σ−2

i )− 4σ−6
i ψ′(σ−2

i )
]( dσi

dησi

)2

zijzil

+
n∑

i=1

(y†i − µ†
i )

d2σi
dη2σi

zijzil.
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Então, tem-se que

−E
(
∂2ℓ(θ)

∂νj∂νl

)
= −

n∑
i=1

[
8σ−6

i + 4σ−8
i

(1 + σ−2
i )2

− 4σ−6
i ψ

′
(σ−2

i )]

](
dσi
dησi

)2

zijzil.

Logo, o componente da matriz de informação de Fisher para ν é

Kνν = −E
(
∂2ℓ(θ)

∂ν∂ν⊤

)
= Z⊤T2

νWZ,

em que W = diag{w1, . . . , wn}, wi = −8σ−6
i +4σ−8

i

(1+σ−2
i )2

+ 4σ−6
i ψ

′
(σ−2

i ). Por fim, tem-se que

∂2ℓ(θ)

∂βj∂νl
=

∂

∂νl

{
n∑

i=1

[
σ−2
i

µi

− 1 + σ−2
i

yi

]
dµi

dηµi

∂ηµi

∂βj

}

=
n∑

i=1

[
−2σ−3

i

µi

+
2σ−3

i

yi

]
dµi

dηµi

dσi
dησi

∂ηµi

∂βj

∂ησi

∂νl

=
n∑

i=1

[
−2σ−3

i

µi

+
2σ−3

i

yi

]
1

g′
µ(µi)

1

g′
σ(σi)

zilxij.

Portanto,

−E
(
∂2ℓ(θ)

∂βj∂νl

)
=

n∑
i=1

[
2σ−3

i

µi

− 2σ−3
i E

(
1

yi

)]
1

g′
µ(µi)

1

g′
σ(σi)

xijzil

=
n∑

i=1

[
2σ−3

i

µi

− 2σ−3
i σ−2

i

µi(1 + σ−2
i )

]
1

g′
µ(µi)

1

g′
σ(σi)

xijzil

=
n∑

i=1

2σ−3
i

[
1

µi

− σ−2
i

µi(1 + σ−2
i )

]
1

g′
µ(µi)

1

g′
σ(σi)

xijzil

=
n∑

i=1

[
2σ−3

i

µi(1 + σ−2
i )

]
1

g′
µ(µi)

1

g′
σ(σi)

xijzil.

Logo,

Kβν = −E
(
∂2ℓ(θ)

∂β∂ν⊤

)
= X⊤ΦβνTβTνZ,
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em que Φβν = diag(ϕβν1 , . . . , ϕβνn), ϕβνi =
2σ−3

i

µi(1+σ−2
i )

.

Assim, a matriz de informação de Fisher para o modelo é dada por

Kθθ =

 Kββ Kβν

Kνβ Kνν

 =

 X⊤Σ T2
βX X⊤ΦβνTβTνZ

Z⊤ΦβνTβTνX Z⊤T2
νWZ

 .

As estimativas de máxima verossimilhança β̂ e ν̂ de β e ν, respectivamente, são obtidos

resolvendo o sistema de equações não linear U(θ) = 0p+q, onde 0p+q denota o vetor de zeros

de dimensão p + q. Contudo, não é possível obter uma forma fechada para β̂ e ν̂. Para n

grande, sob certas condições de regularidade, θ̂ (o estimador de máxima verossimilhança de θ)

é consistente. Além disso, θ̂ segue uma distribuição aproximadamente normal, isto é,

θ̂
a∼ Np+q(θ,K−1

θθ ).

sendo K−1
θθ a inversa da matriz Kθθ, e a∼ denota distribuição aproximada.

Dados j ∈ {1, · · · , p} e l ∈ {1, · · · , q}, um intervalo de confiança para βj e νl respectiva-

mente, com (1− γ)100% de confiança são aproximadamente dados por

[
β̂j − zγ/2(K̂

−1

βjβj
)1/2 ; β̂j + zγ/2(K̂

−1

βjβj
)1/2

]
,

e

[
ν̂l − zγ/2(K̂

−1

νlνl
)1/2 ; ν̂l + zγ/2(K̂

−1

νlνl
)1/2

]
,

em que as quantidades K̂
−1

βjβj
e K̂

−1

νlνl
são, respectivamente, as variâncias assintóticas dos estima-

dores β̂j e ν̂l, e zγ/2 representa o quantil da distribuição normal padrão tal que P(−zγ/2 ≤ Z ≤

zγ/2) = 1− γ, em que 0 < γ < 1 e Z ∼ N(0, 1).

Para realizar o procedimento inferencial por meio de máxima verossimilhança como des-
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crito acima pode-se utilizar a função gamlss da biblioteca gamlss do software R informando

family = IGAMMA que correspondente a distribuição gama inversa; para mais detalhes veja

http://127.0.0.1:25156/library/gamlss.dist/html/IGAMMA.html. Esta

foi a forma utilizada para a obtenção das estimativas de máxima verossimilhança dos modelos

de regressão gama inverso considerados nos estudos de simulações discutidos no Capítulo 5.
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Capítulo 3

Medidas de Robustez

Neste Capítulo são apresentadas algumas das principais medidas utilizadas para avaliar a

robustez de estimadores, assim como a classe de M-estimadores que é a base para procedi-

mento inferencial que será proposto. Primeiramente serão definidas as duas principais medidas

que avaliam a robustez de estimadores, e em seguida, é caracterizado o procedimento de M-

estimação.

3.1 Conceitos em inferência robusta

Nesta seção serão discutidos os principais conceitos necessários para o desenvolvimentodo

procedimento inferencial robusto que será proposto. Considere y1, . . . , yn variáveis aleatórias

independentes e identicamente distribuídas (IID). Supondo que essas variáveis são provenien-

tes da família de distribuições paramétrica FΘ = {Fθ,θ ∈ Θ ⊂ Rp}, p ≥ 1, com funções

densidade fθ, serão considerados estimadores T para o parâmetro θ tal que

T(y1, . . . , yn) = T(Fn), (3.1)

e que dependam dos dados y1, . . . , yn apenas através da função de distribuição empírica (FDE)
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definida por

Fn(Z) =
1

n

n∑
i=1

I(yi < Z),

em que I(·) denota a função indicadora. Estimadores que satisfazem (3.1) são chamados de

estimadores funcionais. Estimadores funcionais T(Fn) são comumente consistentes (Serfling,

2009).

Definição 3.1.1. Um estimador T(Fn) é dito consistente, se para ϵ > 0,

lim
n→∞

P (|T(Fn)− θ| > ϵ) = 0,∀θ ∈ Θ.

Em outras palavras, T(Fn)
P−→ θ,∀θ ∈ Θ, em que P−→ denota convergência em probabili-

dade. Tal estimador funcional T(Fn) é dito ser consistente em Fθ.

Definição 3.1.2. O estimador T(Fn) é Fisher-consistente (Kallianpur e Rao, 1955) se é funcio-

nal e satisfaz

T(Fθ) = θ, ∀θ ∈ Θ. (3.2)

A definição de Fisher-consistência difere da definição de consistência de um estimador

T(Fn). Segundo Fasano et al. (2012), a propriedade de Fisher-consistência garante que o

estimador irá atingir o verdadeiro valor do parâmetro θ quando calculado sob a distribuição

populacional dos dados Fθ. Em termos simples, a Fisher-consistência assegura que não haja

viés sistemático no processo de estimação. Segundo Casella e Berger (2024), viés sistemático

é um tipo de erro constante que ocorre de forma repetida e previsível em um processo de medi-

ção, estimativa ou inferência. Ele desloca os resultados consistentemente em uma direção (para

mais ou para menos), levando a estimativas distorcidas do valor verdadeiro. A consistência de

um estimador garante que, a medida que n cresce, o estimador converge em probabilidade para
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o verdadeiro valor θ. Logo, não se pode dizer que Fisher-consistência implica em consistência

e vice-versa.

Definição 3.1.3. Seja Fh,y = (1 − h)Fθ + h∆y a função de distribuição contaminada obtida

após a introdução de uma contaminação infinitesimal h no ponto y. A função de influência (FI)

de T(·) em Fθ é dada por

FI(y;T, Fθ) =
∂

∂h
[T(Fh,y)]|h=0

= lim
h→0

T(Fh,y)−T(Fθ)

h

= lim
h→0

T((1− h)Fθ + h∆y)−T(Fθ)

h
, (3.3)

em que ∆y é a medida de probabilidade que coloca toda massa em y. A Definição 3.1.3 é

bastante intuitiva. A FI descreve o efeito causado no estimador T(·) após uma contaminação

infinitesimal h no ponto y. De acordo com Hampel et al. (2011), a FI avalia o comportamento

assintótico do estimador, quantificando o viés causado pela contaminação nos dados. Dessa

forma, se um estimador T(·) possui FI não limitada para todo y pertencente ao suporte, isto

será um indicativo de que T(·) não é robusto. Uma medida baseada na FI é a sensibilidade a

erro grosseiro não-padronizada (SEGNP), apresentada por Hampel (1974) e definida como

γ∗u = sup
y

||FI(y;T, Fθ)||, (3.4)

com || . || denotando a norma euclidiana. A medida γ∗u mensura o valor máximo do viés causado

na estimativa de T(Fn) conforme a contaminação introduzida. Logo, a medida de SEGNP pode

ser vista como um limite superior para o viés do estimador T(Fn) sob o cenário de contamina-

ção. Dessa forma, deseja-se que γ∗u seja finita. Observa-se que, se existir pelo menos uma das

entradas do estimador T(·) cuja respectiva FI divirja, então γ∗u será infinito. Estimadores que

possuem tal medida finita são denominados B-robustos (Rousseeuw, 1981).

Outra característica de interesse relacionada à robustez de estimadores é estudar o com-
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portamento da variância assintótica de um estimador após uma contaminação infinitesimal nos

dados. Rousseeuw (1981) propôs a função de mudança de variância (FMV). Tal medida será

definida seguindo a notação apresentada por Genton e Rousseeuw (1995).

Definição 3.1.4. Seja Fh,y = (1 − h)Fθ + h∆y a função de distribuição contaminada obtida

após a introdução de uma contaminação infinitesimal h no ponto y. A FMV do estimador T(·)

em Fθ é definida por

FMV(y;T, Fθ) =
∂

∂h
[V (T(Fh,y), Fh,y)]|h=0

= lim
h→0

V (T(Fh,y), Fh,y)− V (T, Fθ)

h

= lim
h→0

V (T(Fh,y), (1− h)Fθ + h∆y)− V (T, Fθ)

h
, (3.5)

em que V (T(Fh,y), Fh,y) é a matriz de covariâncias do estimador T(·) sob o modelo contami-

nado Fh,y. Analogamente a FI a definição da medida FMV é bastante intuitiva. Esta avalia o

efeito causado na matriz de covariâncias assintótica do estimador T(·) após uma contaminação

h no ponto y.

3.2 M-Estimador

Uma das principais classes de estimadores que são estudadas a fim de obter estimadores ro-

bustos é a classe dos M-estimadores. Introduzida inicialmente por Huber (1964), esta classe de

estimadores contém o estimador de máxima verossimilhança como caso particular. Considere

y1, . . . , yn variáveis aleatórias independentes, cada uma com densidade fθ(yi) com θ ∈ Θ. O

logaritmo da função de verossimilhança é dado por

ℓ(θ) =
n∑

i=1

log(fθ(yi)).

A estimativa de máxima verossimilhança para θ é obtida maximizando a função ℓ(θ), isto é,
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θ̂ = argmaxθ∈Θℓ(θ), ou, equivalentemente, θ̂ = argminθ∈Θ[−ℓ(θ)]. A ideia proposta por Hu-

ber (1964) é generalizar o procedimento de estimação por máxima verossimilhança substituindo

a contribuição individual −log(fθ(yi)) por uma função ρ(yi,θ), resultando no estimador

T(Fn) = argminθ∈Θ

n∑
i=1

ρ(yi,θ), (3.6)

em que ρ(yi,θ) é uma função diferenciável em seus argumentos. A equação de estimação

associada aos M-estimadores desde que ρ seja diferenciável é dada por

n∑
i=1

ψ(yi,T(Fn)) = 0, (3.7)

em que ψ(·,T(Fn)) = (∂/∂θ)ρ(.,θ)|θ=T(Fn). Qualquer estimador que satisfaz (3.6) é chamado

de M-estimador. Ao considerar ρ(yi,θ) = −log(fθ(yi)), tem-se que ψ(y,θ) é menos a função

escore, e portanto, o EMV é um caso particular.

De acordo com Hampel (1974), a FI para o M-estimador é expressa por

FI(y,T, Fθ) =

[
−
∫

∂

∂θ
[ψ(y,θ)]|θ=T(Fθ)dFθ(y)

]−1

ψ(y,T(Fθ))

=M(ψ, Fθ)
−1ψ(y,T(Fθ)), (3.8)

em que

M(ψ, Fθ) = −
∫

∂

∂θ
[ψ(y,θ)]|θ=T(Fθ)dFθ(y).

Portanto, a FI de um M-estimador é limitada se o produto da inversa da matriz M(ψ, Fθ) pelo

vetor ψ(y,θ) for limitado. Se houver algum componente do vetor ψ(y,θ) que não seja limi-

tado, então este estimador não possui FI não limitada, e, portanto, não será B-robusto. Particu-
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larmente, tomando T(·) = θ̂ como sendo o EMV, obtemos que

FI(y, θ̂, Fθ) = K(θ, Fθ)
−1U(y,θ). (3.9)

Sendo assim, se algum componente do vetor escore não for limitado, a função de influência

do EMV não será limitada, e, portanto, o estimador não será B-robusto. De acordo com Hampel

(1974), para n grande, vale que

√
n(T(Fn)− θ)

D−−−→
n→∞

N(0,V(T, Fθ)),

em que T(Fn) é o M-estimador em questão e V(T, Fθ) é a matriz de covariâncias de T definida

como

V(T, Fθ) =M(ψ, Fθ)
−1Q(ψ, Fθ)M(ψ, Fθ)

−1⊤ , (3.10)

em que

Q(ψ, Fθ) =

∫
ψ(y,T(Fθ))ψ(y,T(Fθ))

⊤dFθ(y).

3.3 Análise de Robustez do EMV

Nessa Seção será provado que o procedimento de estimação por máxima verossimilhança

não é robusto sob a classe de modelos de regressão gama inverso definidos por (2.9) e (2.10),

usando os resultados obtidos na Seção 3.2. Considere o vetor U(y,θ) como o escore para

θ referente a observação y. Tome a partição U(y,θ) = (Uβ(y,θ)
⊤,Uν(y,θ)

⊤)⊤, em que

Uβ(y,θ) e Uν(y,θ) são vetores para β e ν referentes a y. Assumindo y0 > 0 como um valor
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fixado, tem-se que

lim
y→y0

Uβ(y,θ) = lim
y→y0

(y∗ − µ∗)
1

g′
µ(µ)

X⊤ =
1

g′
µ(µ)

{
lim
y→y0

y∗ − µ∗
}
X⊤,

lim
y→y0

Uν(y,θ) = lim
y→y0

(y† − µ†)
1

g′
σ(σ)

Z⊤ =
1

g′
σ(σ)

{ lim
y→y0

y† − µ†}Z⊤.

Observa-se que, a menos de constantes, limy→y0Uβ(y,θ) ∝ limy→y0y
∗ e limy→y0Uν(y,θ) ∝

limy→y0y
†. Além disso, limy→y0y

∗ = −limy→0(1+σ
−2)/y e limy→y0y

† = 2σ−3limy→y0 [log(y)+

µ/y]. Quando y → 0, y∗ → −∞ e y† → +∞ pois, limy→0y
∗ = −(1+σ−2)limy→01/y = −∞.

Agora, analisando separadamente os termos da soma log(y) + µ/y, quando y → 0, temos que

log(y) → −∞ e µ/y → +∞. O termo log(y) decresce para −∞, mas de forma mais lenta em

comparação com µ
y
, que tende a +∞ de forma muito mais rápida à medida que y se aproxima

de zero.

Em contrapartida, quando y → +∞, y∗ → 0 e y† → +∞ pois, quando y → +∞,

limy→∞y
∗ = −(1 + σ−2)limy→∞1/y = 0 e limy→∞y

† = 2σ−3limy→∞[log(y) + µ/y] = +∞.

Portanto, o vetor escore não é limitado quando y → 0 ou y → +∞. Sendo assim, a FI do

estimador de máxima verossimilhança não é limitada e, portanto o mesmo sob o modelo de

regressão gama inverso (2.9) e (2.10) não é B-robusto. Também, por consequência, o EMV

não é V-robusto. Na Figura 3.1 estão apresentadas as curvas do vetor escore para o caso IID.

A partir da Figura 3.1 percebe-se que os componentes do vetor escore crescem e decrescem de

forma ilimitada quando y se aproxima de zero ou tende a infinito, exceto para o escore de µ

quando y → +∞ que é limitado pelo zero. Portanto, do estudo dos limites das entradas do ve-

tor escore e da análise gráfica pode-se concluir que observações que assumem valores próximos

de zero ou que tendem a infinito (valores muito altos) podem ser influentes no ajuste do EMV.

Em outras palavras, em situações que tivermos dados observados y muito próximos a zero ou a

valores muito altos de y, as estimativas obtidas pelo estimador de máxima verossimilhança sob
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o modelo GIR podem não ser confiáveis.

Figura 3.1: Componentes do vetor escore versus y; µ = 1 e σ = 0, 5.
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Capítulo 4

Inferência Robusta

Neste Capítulo será apresentado o procedimento inferencial robusto que será proposto neste

trabalho. A ideia inicial do procedimento inferencial que será adotado aqui é maximizar uma

função alternativa ao logaritmo da função de verossimilhança que conduz à estimação robusta.

4.1 Estimação via maximização da Lq-verossimilhança

Considere y1, . . . , yn observações independentes, em que yi ∼ GIR(µi, σi). A função densi-

dade postulada para yi é dada por (2.9) e será denotada a partir de agora por fθ(yi;µi, σi). Seja

ℓq(θ) a função de Lq-verossimilhança (Ferrari e Yang, 2010), definida por

ℓq(θ) =
n∑

i=1

Lq(fθ(yi;µi, σi)), (4.1)

em que 0 < q ≤ 1 é uma constante denominada constante de afinação, e

Lq(u) =

 (u1−q − 1)/(1− q), se q ̸= 1

log(u) , se q = 1,

é a transformação de Box-Cox (Box e Cox, 1964). Para q = 1, ℓq(θ) é o logaritmo da função de
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verossimilhança e maximizando-o obtém-se o EMV. Portanto, o estimador de máxima veros-

similhança é um caso particular. O estimador obtido pela maximização de (4.1) será denotado

por θ̃q. Uma vez que

fθ(yi;µi, σi)
1−q = exp{(1− q)log(fθ(yi;µi, σi))},

segue que a equação de estimação associada a θ̃q é dada por

n∑
i=1

U(yi,θ)fθ(yi;µi, σi)
1−q = 0, (4.2)

em que U(yi,θ) é o vetor escore associado à i-ésima observação dado em (2.11). Note que

o vetor escore é ponderado por fθ(yi;µi, σi)
1−q, que depende do modelo postulado e da cons-

tante de afinação q. Se yi é uma observação discrepante com relação ao modelo suposto aos

dados, fθ se aproxima de zero e uma escolha de q menor que 1 produz um procedimento de

estimação robusto, uma vez que a observação yi receberá uma ponderação pequena. Além

disso, (4.2) é um procedimento de M-estimação, como descrito na Seção 3.2, com ψ(yi,θ) =

U(yi,θ)fθ(yi;µi, σi)
1−q. Com isso, as propriedades do estimador θ̃q podem ser obtidas dos

resultados presentes na literatura de M-estimação. Uma desvantagem do estimador θ̃q é que

este é obtido a partir de uma função de estimação viciada, ou seja, E(Uq(y,θ)) ̸= 0, com

Uq(y,θ) =
∑n

i=1 U(yi,θ)fθ(yi;µi, σi)
1−q, exceto para q = 1. O vício da equação de estimação

associada a θ̃q equivale a falta de Fisher-consistência. Sob modelos de regressão beta, Ribeiro

e Ferrari (2023) contornam o problema da falta de Fisher-consistência reparametrizando a fun-

ção de Lq-verossimilhança com base em ideias de Ferrari e La Vecchia (2012). Será adotada

a mesma estratégia sob modelos de regressão GIR. Sob o modelo GIR (2.9), o interesse resi-

dirá em encontrar o valor de θ que maximiza a função de Lq-verossimilhança reparametrizada
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definida por

ℓ∗q(θ) =
n∑

i=1

Lq

(
f
(1/q)
θ (yi;µi, σi)

)
,

em que f (1/q)
θ (yi;µi, σi) = fθ(yi;µi, σi,q−1), para 0 < q ≤ 1, com σi,q = [q(σ−2

i + 1) −

1]−1/2, desde que σi,q−1 > 0 ou equivalentemente, σ−2
i > q − 1. Desde que 0 < q ≤ 1 e

σi > 0, esta condição segue diretamente. A notação f (1/q)
θ (yi;µi, σi) denota que foi aplicada a

transformação potência, definida a seguir, sob a densidade fθ(yi;µi, σi). Dada uma densidade

h e uma constante α > 0, a transformação potência é definida como

h(α)(y) =
h(y)α∫
h(y)αdy

∝ h(y)α,∀y no suporte, (4.3)

sendo
∫
h(y)αdy < ∞ para 0 < α < ∞. Para a família de densidades postuladas {hθ(.),θ ∈

Θ} fechada sob (4.3), considere τα(θ) : Θ → Θ uma função inversível que satisfaz

hτα(θ)(y) = h
(α)
θ (y),

para todo y no suporte, supondo que esse não dependa de θ. Isso significa que, ao aplicar

a transformação potência em hθ, a densidade resultante h(α)θ (·) pertence à mesma família de

distribuições a que hθ(·) pertence, agora indexada por uma parametrização τα(θ) ao invés de θ.

O modelo gama inverso é fechado sob a transformação potência; veja a seção A.1. A quantidade

f
(1/q)
θ (yi;µi, σi) corresponde ao modelo gama inverso modificado com submodelos da moda e

forma definidos por

g∗µ(µi) = gµ(µi) = x⊤
i β, g∗σ(σi) = gσ(σi,q) = z⊤i ν.

Diferentemente do que ocorre no procedimento inferencial sob modelos de regressão beta ro-

bustos (Ribeiro e Ferrari, 2023), aqui o único submodelo que sofre alteração é o submodelo
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referente ao parâmetro de forma σ. A densidade modificada será denotada por f ∗
θ(yi;µi, σi).

Dessa forma, o estimador proposto é obtido através da maximização de

ℓ∗q(θ) =
n∑

i=1

Lq (f
∗
θ(yi;µi, σi)) , (4.4)

que conduz a equação de estimação

n∑
i=1

U∗(yi,θ)f
∗
θ(yi;µi, σi)

1−q = 0, (4.5)

em que U∗(yi,θ) = ∇θlog[f ∗
θ(yi;µi, σi)] é o vetor escore modificado para θ correspondente a

i-ésima observação dado por

U∗(yi,θ) =


Xi(y

∗
i −µ∗

i )

g′µ(µi)

q−1Zi(y
†
i−µ†

i )

g′σ(σi,q)

(
σi

σi,q

)3

 .

O estimador final θ̂q é chamado de estimador de máxima verossimilhança substituto (EMVS).

A equação de estimação (4.5) associada ao EMVS depende de um valor pré-especificado

para a constante de afinação q ∈ (0, 1]. Observe que o valor de q não é estimado conjuntamente

com θ. Por esta razão, antes de encontrar o valor de θ que soluciona o sistema de equações (4.5)

deve-se fixar um valor para q. Esta constante q controla a robustez e eficiência assintótica do

EMVS. Valores de q muito próximos de 1 privilegiam a eficiência assintótica em detrimento de

robustez, enquanto valores de q mais distantes de 1 acentuam a robustez do estimador. Ghosh

(2019) propõe fixar valores para q ao obter um estimador robusto similar ao EMVS com base

em estudos de simulação, sob modelos de regressão beta. Nestes estudos, o autor compara os

valores das estimativas dos parâmetros da regressão de acordo com diferentes valores de q na

presença e na ausência de contaminação. De forma geral, o autor sugere fixar valores de q ∈

(0, 6; 0, 7). Estratégia similar será adotada neste trabalho. Serão fixados valores da constante
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q menores do que 1, entretanto não muito distantes de 1 para garantir eficiência assintótica do

EMVS próxima ao EMV na ausência de contaminação e robustez do EMVS na presença de

contaminação nos dados.

Analogamente ao EMV, o EMVS requer um algoritmo de otimização não-linear. Nesse

trabalho, todos os resultados numéricos foram obtidos usando o método de otimização não-

linear de Broyden-Fletcher-Goldfarb-Shanno (BFGS). Como estimativas iniciais para o modelo

de regressão gama inverso com σ constante ou variável foram utilizadas as estimativas obtidas

por meio do EMV. Em outras palavras, o algoritmo para encontrar as estimativas do EMVS

é iniciado com base nas estimativas de máxima verossimalhança que são obtidas através do

pacote gamlss como anteriormente citado na Seção 2.5.

4.2 Propriedades

Para provar a propriedade de Fisher-consistência do EMVS seguindo La Vecchia et al.

(2015), é necessário mostrar que o valor esperado da equação de estimação (4.5) sob o mo-

delo postulado fθ é igual a zero para todo θ. Para tanto, mostrar-se-á que a média individual de

U∗(y,θ)f ∗
θ(y;µ, σ)

1−q é nula para todo θ. Assim, tem-se que

Eθ

(
U∗(y,θ)f ∗

θ(y;µ, σ)
1−q

)
=

∫ ∞

0

∇θlog[f ∗
θ(y;µ, σ)]f

∗
θ(y;µ, σ)

1−qfθ(y;µ, σ)dy

=

∫ ∞

0

∇θf
∗
θ(y;µ, σ)

f ∗
θ(y;µ, σ)

f ∗
θ(y;µ, σ)

1−qfθ(y;µ, σ)dy

=

∫ ∞

0

∇θf
∗
θ(y;µ, σ)

f ∗
θ(y;µ, σ)

q
fθ(y;µ, σ)dy.

Desde que fθ(y;µ, σ) = cq(θ)f
∗
θ(y;µ, σ)

q, em que cq(θ) =
[∫∞

0
fθ(y;µ, σ)

1/qdy
]q, tem-

se Eθ (U
∗(y,θ)f ∗

θ(y;µ, σ)
1−q) = cq(θ)

∫∞
0

∇θf
∗
θ(y;µ, σ)dy = cq(θ)∇θ

∫∞
0
f ∗
θ(y;µ, σ)dy =

0, ∀θ. Portanto, o EMVS é Fisher-consistente para θ.

Outra propriedade de interesse que pode ser derivada para o EMVS sob os modelos de re-

gerssão gama inverso é a distribuição de probabilidades assintótica. Da teoria de M-estimação,
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θ̂q ≈ N(θ,Vq(θ)), e

Vq(θ) = Jq(θ)
−1Kq(θ)Jq(θ)

−1⊤ , (4.6)

em que

Jq(θ) =
n∑

i=1

E{∇θ⊤
[
U∗(yi,θ)f

∗
θ(yi;µi, σi)

1−q
]
}

e

Kq(θ) =
n∑

i=1

E{U∗(yi,θ)U
∗(yi,θ)

⊤f ∗
θ(yi;µi, σi)

2(1−q)}.

Neste trabalho, não serão apresentadas as expressões das matrizes Jq e Kq. A obtenção ana-

lítica da matriz de covariância assintótica do EMVS fará parte de trabalhos futuros provenientes

da abordagem proposta neste trabalho.
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Capítulo 5

Estudos de Simulação

Para avaliar o desempenho do EMVS em comparação ao desempenho do EMV na ausência

e na presença de contaminação nos dados, foram realizados estudos de simulação de Monte

Carlo, considerando os tamanhos amostrais de n = 40, 80, 160 e 320. Inicialmente foram

obtidos valores das covariáveis para n = 40, e depois replicados duas, quatro e oito vezes,

obtendo-se assim os valores das covariáveis correspondentes aos demais tamanhos amostrais.

Esse esquema garante que o grau de heteroscedasticidade max(σi)/min(σi) seja constante para

todos os tamanhos amostrais sob os cenários em que ambos µ e σ são modelados por meio de

estruturas de regressão. Para todos os cenários, a função de ligação utilizada foi a logarítmica

nos dois submodelos de regressão. Os submodelos contêm intercepto e as covariáveis utilizadas

no submodelo da moda são geradas a partir de variáveis aleatórias com distribuição uniforme

padrão e permanecem constantes em todas as amostras simuladas. Nos cenários em que o pa-

râmetro de forma σ é variável, as mesmas covariáveis utilizadas no submodelo da moda µ são

também empregadas no submodelo do σ. Em todos os cenários considerados, a proporção de

contaminação nas amostras foi fixada em 5%. A constante de afinação q para o EMVS foi fi-

xada em 0, 7; 0, 8; 0, 9, e 1 (EMV), conforme discutido no Capítulo 4. Todos os resultados são

baseados em 1000 réplicas Monte Carlo que foram conduzidas utilizando o software R. Dife-

rentes combinações dos valores dos parâmetros foram considerados. A seguir são descritos os
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cenários de simulação considerados.

Cenário 1: Modelo de regressão gama inverso: uma covariável no submodelo da moda

e σ constante, valores da moda da resposta em torno de 0,99. Os valores dos parâmetros

foram fixados em β1 = 1, 0, β2 = −2, 0, e γ1 = −1, 5, que conduzem a µ ∈ (0, 38; 2, 65) com

Med(µ) = 0, 99 e σ = exp(−1, 5) = 0, 22. A amostra contaminada substitui as observações

independentes geradas com as 5% maiores modas da resposta por observações geradas a partir

de um modelo de regressão gama inverso com as menores modas geradas. Por exemplo, para

n = 40, 5% corresponde a duas observações contaminadas. Se as duas maiores modas foram

2,65 e 2,60, e as duas menores foram 0,38 e 0,39, então troca-se os valores gerados de y com

µ = 2, 65 e µ = 2, 60 por duas novas observações de y geradas com µ = 0, 38 e µ = 0, 39.

Cenário 2: Modelo de regressão gama inverso duplo: uma covariável em cada submo-

delo, valores da moda da resposta em torno de 5,9. Os valores dos parâmetros foram fixados

em β1 = 1, 0, β2 = 1, 5, γ1 = −1, 8 e γ2 = −1, 0, resultando em µ ∈ (2, 77; 12, 01) com

Med(µ) = 5, 92 e σ ∈ (0, 06; 0, 16) com Med(σ) = 0, 10. A contaminação substitui 5% da

amostra como se segue: as observações geradas com os 2,5% maiores valores de µ e aqueles

gerados com os 2,5% menores valores são substituídos por observações independentes obtidas

por meio de um modelo de regressão gama inverso com média µ(1)
i = min(µ) e µ(2)

i = max(µ),

respectivamente. Por exemplo, se o mínimo e o máximo de µ são 2,77 e 12,01, respectivamente,

então o valor gerado de y com µ = 2, 77 será substituído por uma nova observação gerada para

y com µ = 12, 01. Enquanto que, o valor gerado de y gerado com µ = 12, 01 será substitutído

por uma nova observação gerada para y com µ = 2, 77.

Cenário 3: Modelo de regressão gama inverso: duas covariáveis no submodelo da moda

e σ constante, valores da moda da resposta em torno de 12,37. Os valores dos parâme-

tros foram fixados em β1 = 3, 7, β2 = −1, 1, β3 = −1, 3, e γ1 = −2, 5, que conduzem a
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µ ∈ (4, 22; 30, 75) com Med(µ) = 12, 37 e σ = exp(−2, 5) = 0, 08.A contaminação substitui

5% da amostra como se segue: as observações geradas com os 2,5% maiores valores de µ e

aqueles gerados com os 2,5% menores valores são substituídos por observações independen-

tes obtidas por meio de um modelo de regressão gama inverso com média µ(1)
i = min(µ) e

µ
(2)
i = max(µ), respectivamente. Por exemplo, se o mínimo e o máximo de µ são 4,22 e 30,75,

respectivamente, então o valor gerado de y com µ = 4, 22 será substituído por uma nova obser-

vação gerada para y com µ = 30, 75. Enquanto que, o valor gerado de y gerado com µ = 30, 75

será substituído por uma nova observação gerada para y com µ = 4, 22.

Cenário 4: Modelo de regressão gama inverso duplo: duas covariáveis em cada submo-

delo, valores da moda da resposta em torno de 6,11. Os valores dos parâmetros foram fixados

em β1 = 3, 0, β2 = −1, 2, β3 = −1, 2, γ1 = −2, 5, γ2 = −1, 0, e γ3 = −1, 0, que conduzem a

µ ∈ (2, 11; 15, 53) com Med(µ) = 6, 11 e σ ∈ (0, 01; 0, 07). A amostra contaminada substitui

5% da amostra como se segue: as observações geradas com os 5% maiores valores de µ são

substituídos por observações iguais a 0,6. Por exemplo, se as duas maiores modas foram 14 e

15, respectivamente, então o valor gerado de y com µ = 14 e µ = 15 serão ambos substituídos

por 0,6.

A Figura 5.1 ilustra os cenários de contaminação descritos acima para uma única amostra

de tamanho 40. As observações contaminadas destacam-se em vermelho. Visualmente, a con-

taminação introduzida nos Cenários 1 e 2 foi muito mais abrupta em comparação aos demais

Cenários, dado que as observações contaminadas se destoam muito das demais observações. O

grau de contaminação introduzido nos Cenários 2 e 3 foi um pouco mais suave porém suficiente

para atingir o efeito desejado.

Nas Figuras 5.2 a 5.18 são apresentados os boxplots das estimativas dos parâmetros obtidas

por meio do EMV e do EMVS para os dados com e sem contaminação, de acordo com os

Cenários 1, 2, 3 e 4, respectivamente. A partir destas Figuras 5.2 a 5.18 é possível observar

algumas tendências gerais com relação ao comportamento dos dois estimadores. Primeiro, nota-
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Figura 5.1: Ilustração dos cenários de contaminação considerados para uma amostra de tama-
nho n = 40.
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se que, na ausência de contaminação, o EMV apresenta o comportamento esperado, ou seja,

apresenta distribuição centrada em torno do verdadeiro valor com variabilidade diminuindo de

acordo com que o tamanho amostral aumenta. Este mesmo desempenho é observado para o

EMVS para todos os valores de q fixados na ausência de contaminação com um leve aumento

da variabilidade das estimativas deste para tamanhos amostrais pequenos. Este resultado é

esperado desde que, para q < 1, o EMVS possui eficiência assintótica menor do que o EMV.

Em contrapartida, na presença de contaminação, as estimativas de máxima verossimilhança

para os parâmetros foram altamente afetadas pela contaminação introduzida nos dados. Em

outras palavras, o EMV apresenta viés severo quando existem observações atípicas nos dados,

levando a estimativas centradas em torno dos valores errados. Por exemplo, no Cenário 1, para o

parâmetro β2, o EMV sob contaminação produziu estimativas em torno do valor −1,10, porém

o verdadeiro valor de β2 neste Cenário é −2,0. Analogamente, observando os resultados do

Cenário 2 para o parâmetro γ2, nota-se que o EMV sob contaminação produziu estimativas em

torno do valor 0,2, porém o verdadeiro valor de γ2 neste Cenário é −1,0.

Por outro lado, na presença de contaminação, as estimativas dos parâmetros obtidas via

o EMVS variando o valor fixado de q permanecem centradas nos verdadeiros valores para a

grande maioria dos cenários. Entretanto, é possível notar uma variabilidade extra que fica mais

evidente em cenários com tamanhos amostrais menores, sobretudo para o Cenário de simula-

ção 2. Por exemplo, observando a Figura 5.5 é possível perceber que para o tamanho amostral

n = 40, mesmo estando centradas nos verdadeiros valores, as estimativas dos parâmetros obti-

das via EMVS apresentam uma maior variabilidade na presença de contaminação nos dados em

comparação às obtidas sem a presença de contaminação. Ainda, é possível identificar pontos

atípicos nos boxplots das estimativas obtidas via o EMVS sob contaminação, em que estes ten-

dem a se concentrar ao redor dos valores das estimativas obtidas via EMV sob contaminação.

Este resultado é esperado para uma minoria de amostras, desde que o valor inicial utilizado

no algoritmo de estimação do EMVS é a própria estimativa de máxima verossimilhança, forte-

mente enviesada sob contaminação.
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O valor fixado para a constante q de afinação exerce um papel fundamental no procedimento

de estimação proposto, desde que a depender do valor de q, atribui-se menores ponderações

para observações discrepantes. Por exemplo, a partir das Figuras 5.7 e 5.8, que apresentam as

estimativas dos parâmetros γ1 e γ2 sob o Cenário 2, é possível perceber que fixar q = 0, 9 não foi

suficiente para garantir que as estimativas obtidas via o EMVS para γ1 e γ2 não fossem afetadas

pela presença de contaminação. Em contrapartida, neste mesmo cenário, os valores q = 0, 7 e

q = 0, 8 foram suficientes para garantir estimativas confiáveis de todos os parâmetros. Além

disso, percebe-se alguma falta de estabilidade da estimação robusta relacionada ao tamanho

amostral n nos Cenários 1 e 3 com q = 0, 8 e n = 160, e Cenário 4 com q = 0, 7 e n = 320. De

forma geral, para a grande maioria dos cenários, observa-se que o valor q = 0, 7 foi adequado

para garantir estimativas confiáveis dos parâmetros na presença e na ausência de contaminação.

Visando avaliar a eficiência assintótica em especial na presença de contaminação nos dados,

o erro quadrático médio (EQM) é uma medida adequada, pois permite quantificar a discrepância

entre as estimativas obtidas e os verdadeiros valores dos parâmetros levando em conta o viés e

a variabilidade empírica das estimativas. O EQM do estimador θ̂t via simulação é obtido por

meio da expressão

EQM(θ̂t) =
1

1000

1000∑
j=1

(
θ̂jt − θt

)2

,

em que θ̂jt é o EMV do t-ésimo elemento θt do vetor de parâmetros θ na j-ésima réplica de

Monte Carlo, com j ∈ {1, . . . , 1000}. Para calcular o respectivo EQM do EMVS basta substi-

tuir θ̂jt por θ̂jtq que denota o EMVS do t-ésimo elemento θt na j-ésima réplica.

Para comparar os EQMs obtidos via EMV e EMVS, calculou-se a razão entre os erros
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quadráticos médios totais (REQMT) definido por

REQMT =
EQMT(θ̂)

EQMT(θ̂q)
=

p+q∑
t=1

EQM(θ̂t)

p+q∑
t=1

EQM(θ̂tq)

,

em que EQMT(θ̂) e EQMT(θ̂q) denotam a soma (o total) dos EQMs para todos os parâmetros

do modelo considerando o EMV e o EMVS, respectivamente.

Na Tabela 5.1 são apresentadas as REQMTs sob todos os cenários considerados. Na ausên-

cia de contaminação nos dados, a eficiência dos estimadores é próxima (EQMT próximo a 1),

em particular para tamanhos amotrais maiores e valor de q mais próximo de 1. Isso significa

que quando não há presença de observações discrepantes o EMV é mais eficiente desde que

REQMT < 1.

Na presença de contaminação, o EQMT do estimador robusto foi consideravelmente menor

do que o do EMV, indicando um melhor desempenho do estimador proposto. Em alguns ce-

nários essa discrepância cresce de acordo com que o tamanho da amostra aumenta. Em outros

casos, a depender do valor fixado para q, a discrepância aumenta de um tamanho amostral para

o outro, diminui, e depois volta a aumentar. Mesmo assim, em todos os casos, o EMVS apre-

sentou um menor erro quadrático médio total na presença de contaminação. Por exemplo, para

o tamanho amostral n = 40 e considerando o Cenário 2, o EQMT do EMV foi 6, 88; 8, 22 e

3, 75 vezes maior que o do EMVS, com q = 0, 7; q = 0, 8 e q = 0, 9 respectivamente. Agora,

considerando o mesmo cenário, quando n = 160, o EQMT do EMV é 38; 43 e 6, 8 vezes maior.

Nos Cenários 2 e 4, na presença de contaminação, as razões entre o EQMT do EMV e o do

estimador robusto são menores do que nos demais cenários. Nestes dois cenários, o parâmetro

de forma σ é modelado por meio de estruturas de regressão. No Cenário 2 considera-se uma

covariável nos submodelos (moda e forma); já no Cenário 4 consideram-se duas covariáveis

nos submodelos. Segundo Ribeiro (2020), sob modelos de regressão beta, isto pode ocorre pois
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o viés produzido nas estimativas dos parâmetros pela contaminação nos dados é menor quando

a precisão é modelada, reduzindo a discrepância entre os EQMTs. O mesmo comportamento é

esperado sob regressão gama inversa, isto é, ao supor o modelo de regressão duplo modelando

µ e σ (mais flexível), pode-se tentar acomodar observações discrepantes, minimizando assim o

impacto do viés no EMV e, consequentemente, no EQMT.

Figura 5.2: boxplots das estimativas obtidas para o parâmetro β1 sob o Cenário 1 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.3: boxplots das estimativas obtidas para o parâmetro β2 sob o Cenário 1 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.4: boxplots das estimativas obtidas para o parâmetro γ1 sob o Cenário 1 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.5: boxplots das estimativas obtidas para o parâmetro β1 sob o Cenário 2 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.6: boxplots das estimativas obtidas para o parâmetro β2 sob o Cenário 2 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.7: boxplots das estimativas obtidas para o parâmetro γ1 sob o Cenário 2 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.8: boxplots das estimativas obtidas para o parâmetro γ2 sob o Cenário 2 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.9: boxplots das estimativas obtidas para o parâmetro β1 sob o Cenário 3 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.10: boxplots das estimativas obtidas para o parâmetro β2 sob o Cenário 3 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.11: boxplots das estimativas obtidas para o parâmetro β3 sob o Cenário 3 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.12: boxplots das estimativas obtidas para o parâmetro γ1 sob o Cenário 3 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.13: boxplots das estimativas obtidas para o parâmetro β1 sob o Cenário 4 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.14: boxplots das estimativas obtidas para o parâmetro β2 sob o Cenário 4 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.15: boxplots das estimativas obtidas para o parâmetro β3 sob o Cenário 4 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.16: boxplots das estimativas obtidas para o parâmetro γ1 sob o Cenário 4 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.17: boxplots das estimativas obtidas para o parâmetro γ2 sob o Cenário 4 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Figura 5.18: boxplots das estimativas obtidas para o parâmetro γ3 sob o Cenário 4 via o EMV e
via o EMVS variando q. A linha vermelha tracejada representa o verdadeiro valor do parâmetro.
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Tabela 5.1: Razão entre os EQMTs dos estimadores sob os Cenários 1, 2, 3 e 4.

Cenário 1
Ausência de contaminação Presença de contaminação

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

n q = 0, 7 q = 0, 8 q = 0, 9 q = 0, 7 q = 0, 8 q = 0, 9

40 0, 70 0, 87 0, 97 16, 94 13, 30 19, 64

80 0.75 0, 88 0, 97 5, 79 10, 26 35, 89

160 0, 78 0, 91 0, 98 152, 17 2, 72 14, 96

320 0, 76 0, 89 0, 97 17, 30 13, 88 24, 80

Cenário 2
Ausência de contaminação Presença de contaminação

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

n q = 0, 7 q = 0, 8 q = 0, 9 q = 0, 7 q = 0, 8 q = 0, 9

40 0, 63 0, 89 0, 98 6, 88 8, 22 3, 75

80 0, 69 0, 88 0, 97 17, 00 19, 76 5, 45

160 0, 71 0, 86 0, 97 38, 00 43, 00 6, 80

320 0, 73 0, 87 0, 96 74, 22 87, 74 7, 45

Cenário 3
Ausência de contaminação Presença de contaminação

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

n q = 0, 7 q = 0, 8 q = 0, 9 q = 0, 7 q = 0, 8 q = 0, 9

40 0, 63 0, 86 0, 98 4, 26 11, 83 5, 32

80 0, 68 0, 86 0, 97 62, 47 126, 55 5, 19

160 0, 72 0, 88 0, 97 5, 82 2, 63 23, 65

320 0, 72 0, 86 0, 96 123, 08 146, 33 13, 43

Cenário 4
Ausência de contaminação Presença de contaminação

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

EMV
EMVS

n q = 0, 7 q = 0, 8 q = 0, 9 q = 0, 7 q = 0, 8 q = 0, 9

40 0, 31 0, 74 0, 93 7, 39 17, 52 26, 51

80 0, 60 0, 83 0, 96 13, 22 21, 38 49, 60

160 0, 68 0, 86 0, 97 9, 33 20, 24 42, 94

320 0, 69 0, 86 0, 96 3, 21 4, 76 20, 42
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Capítulo 6

Conclusões

6.1 Considerações Finais

Neste trabalho foi realizada uma revisão sobre os modelos de regressão gama inverso no

contexto de modelagem de dados contínuos estritamente positivos que apresentam forte assi-

metria à direita. A parametrização da distribuição gama inversa que foi considerada depende de

dois parâmetros denotados por µ e σ que representam moda e forma da distribuição, respectiva-

mente, assim como previamente apresentado por Rigby et al. (2019). A modelagem de ambos

os parâmetros da distribuição gama inversa foi definida por meio de estruturas de regressão

lineares, e a tradicional inferência pelo método de máxima verossimilhança foi discutida.

A partir da análise da função de influência, foi demonstrado que o procedimento de esti-

mação por máxima verossimilhança sob modelos de regressão gama inverso não é robusto, isto

é, o EMV é influenciado pela presença de outliers nos dados. Este resultado teórico motivou

o desenvolvimento de um novo procedimento de estimação para os parâmetros do modelo de

regressão gama inverso que seja robusto na presença de outliers. Vale ressaltar que, de acordo

com nosso conhecimento, não existem propostas de estimação robusta sob regressão gama in-

versa.

O procedimento inferencial robusto proposto neste trabalho foi baseado nas ideias propostas
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por Ribeiro e Ferrari (2023) sob modelos de regressão beta. O novo estimador denominado de

EMVS é um M-estimador que contém o EMV como caso particular, e sua construção parte

da ideia de substituir o logaritmo da função de verossimilhança por uma função alternativa

denominada de função Lq-verossimilhança reparametrizada. Este procedimento depende de

uma constante de afinação 0 < q ≤ 1 que controla a troca entre eficiência e robustez do

estimador. Aqui, a inferência proposta foi desenvolvida fixando valores para a constante q

assim como feito por Ghosh (2019) sob regressão beta, considerando um estimador robusto

similar ao EMVS.

Para avaliar o desempenho do EMVS comparado ao EMV na presença e ausência de con-

taminação nos dados, foram realizados estudos de simulação de Monte Carlo. A partir dos

resultados apresentados, foi ilustrada a clara vantagem do uso do procedimento robusto em

relação ao método de estimação tradicional na presença de outliers. Na ausência de contami-

nação, o EMV e o EMVS apresentaram comportamentos similares, com o estimador robusto

apresentando uma maior variância para amostras pequenas. Entretanto, na presença de conta-

minação, o EMV apresentou altos vieses, enquanto o EMVS se manteve centrado em torno dos

verdadeiros valores dos parâmetros na maioria dos casos. Ainda, observou-se que o valor de

q = 0, 7 se mostrou mais adequado para garantir estabilidade das estimativas na grande maioria

dos cenários considerados.

Por fim, destacam-se as limitações e possíveis extensões dos resultados aqui obtidos. Pri-

meiro, neste trabalho, o valor da constante de afinação q foi fixado. Do ponto de vista prático, é

de interesse que o valor q seja escolhido com base nos dados. Nesse sentido, o próximo passo

é propor a escolha do valor de q de forma automática, como por exemplo, adaptando o método

orientado pelos dados proposto por Ribeiro e Ferrari (2023) sob regressão beta. Segundo, é de

suma importância mensurar os erros-padrão dos estimadores robustos. Assim, se torna impor-

tante a obtenção da matriz de covariâncias assintótica do EMVS com base nas propriedades dos

M-estimadores ou ainda por métodos de reamostragem como bootstrap paramétrico. Por fim, a

aplicação do EMVS sob regressão gama inversa considerando conjuntos de dados reais é rele-
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vante para ilustração da aplicabilidade do novo estimador. Estas extensões foram inicialmente

consideradas neste trabalho, entretanto, por delimitação de tempo, não foram incluídas.
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Apêndice A

Resultados Capítulo 4

A.1 Transformação Potência

Aqui será mostrado que o modelo gama inverso definido em (2.9) é fechado sob a transfor-

mação potência sob certas condições.

A função densidade de probabilidade é dada por

fθ(y;µ, σ) =
[µ(1 + σ−2)]σ

−2

Γ(σ−2)
y−(σ−2+1)e−

µ(1+σ−2)
y , y > 0. (A.1)

Para α > 0, tem-se que

fθ(y;µ, σ)
α =

[µ(1 + σ−2)]ασ
−2

[Γ(σ−2)]α
y−α(σ−2+1)e−

αµ(1+σ−2)
y .

Daí,

∫ ∞

0

fθ(y;µ, σ)
αdy =

[µ(1 + σ−2)]ασ
−2

[Γ(σ−2)]α

∫ ∞

0

y−α(σ−2+1)e−
αµ(1+σ−2)

y dy.
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Seja σ−2
α = α(σ−2 + 1)− 1,

∫ ∞

0

fθ(y;µ, σ)
αdy =

[µ(1 + σ−2)]ασ
−2

[Γ(σ−2)]α

∫ ∞

0

y−[α(σ−2+1)−1+1]e−
µ[α(1+σ−2)−1+1]

y dy

=
[µ(1 + σ−2)]ασ

−2

[Γ(σ−2)]α

∫ ∞

0

y−(σ−2
α +1)e−

µ(1+σ−2
α )

y dy.

Como σ−2
α = α(σ−2 + 1)− 1 ⇔ σα = 1/

√
α(σ−2 + 1)− 1, com α > 0 e σ > 0. Daí,

∫ ∞

0

fθ(y;µ, σ)
αdy =

[µ(1 + σ−2)]ασ
−2

[Γ(σ−2)]α
Γ(σ−2

α )

[µ(1 + σ−2
α )]σ

−2
α

∫ ∞

0

[µ(1 + σ−2
α )]σ

−2
α

Γ(σ−2
α )

y−(σ−2
α +1)e−

µ(1+σ−2
α )

y dy

=
[µ(1 + σ−2)]ασ

−2

[Γ(σ−2)]α
Γ(σ−2

α )

[µ(1 + σ−2
α )]σ

−2
α

∫ ∞

0

fθ(y;µ, σα)dy

=
[µ(1 + σ−2)]ασ

−2

[Γ(σ−2)]α
Γ(σ−2

α )

[µ(1 + σ−2
α )]σ

−2
α
,

desde que a densidade fθ(y;µ, σα) esteja bem definida para α > 0. Logo, Pela definição (4.3)

f
(α)
θ (y;µ, σ) =

fθ(y;µ, σ)
α∫

fθ(y;µ, σ)αdy

=
[µ(1 + σ−2

α )]σ
−2
α

Γ(σ−2
α )

y−[α(σ−2+1)−1+1]e−
µ[α(1+σ−2)−1+1]

y dy

=
[µ(1 + σ−2

α )]σ
−2
α

Γ(σ−2
α )

y−(σ−2
α +1)e−

µ(σ−2
α +1)
y dy

Assim, a densidade gama inversa de parâmetros µ e σ com µ = moda(y) é fechada sob a

transformação potência, isto é, y(α) ∼ GI(µ, σα). Para obter o EMVS, deve-se considerar

α = 1/q, de onde segue que σ1/q = 1/
√
q−1(σ−2 + 1)− 1. A condição necessária para que o

estimador esteja bem definido é que σ1/q > 0, sendo 0 < q ≤ 1 e σ > 0. Mas σ1/q > 0 ⇔√
(1/q)(σ−2 + 1)− 1 > 0 ⇔ (1/q)(σ−2 + 1) > 1 ⇔ σ−2 + 1 > q ⇔ σ−2 > q − 1. Para

0 < q ≤ 1, a condição σ−2 > q − 1 sempre é válida, desde que σ−2 > 0, para q = 0 deve-se

ter σ−2 > −1 e para q = 1 deve-se ter σ−2 > 0. Este resultado implica que o EMVS sob a

distribuição gama inversa reparametrizada estará bem definido para todo 0 < q ≤ 1.
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