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Resumo

Regressao Gama Inversa Robusta

O modelo de regressdo gama inverso € uma técnica estatistica utilizada para modelar feno-
menos aleatorios que assumem valores continuos positivos tais como o tempo até a falha de
um equipamento, o tempo entre chegadas em sistemas de fila, como em reparti¢cdes publicas
ou instituicdes financeiras, entre outros. A inferéncia para os pardmetros deste modelo € fre-
quentemente baseada no procedimento de estimacdo por maxima verossimilhanca. Entretanto,
o método cléssico de estimagdo por mdxima verossimilhanca pode apresentar resultados dis-
torcidos na presenca de observacodes atipicas. Neste trabalho, propde-se um novo método de
estimagdo robusto para os parametros do modelo de regressdo gama inverso. Para motivar a
necessidade de um novo estimador robusto sob esta classe de modelos, é demonstrado que a
funcdo de influéncia do estimador de maxima verossimilhanga ndo € limitada. O novo procedi-
mento inferencial que € proposto neste trabalho é baseado na classe de M-estimadores, a qual
contém o estimador de mdxima verossimilhanga como um caso particular e é vastamente co-
nhecida por produzir estimadores robustos. Para avaliar o desempenho e ilustrar a necessidade
do novo estimador foram realizados estudos de simulagdes de Monte Carlo na auséncia e na
presenca de contaminacdo nos dados. A partir dos estudos de simulagcdo constatou-se que, na
auséncia de contaminacdo, o estimador de maxima verossimilhanga € mais eficiente. Porém,
na presenga de contaminacdo, o estimador de maxima verossimilhanca foi fortemente afetado,

levando a estimativas distorcidas. Em contrapartida, o estimador proposto se mostrou superior



ao estimador de maxima verossimilhanca no que diz respeito a estabilidade das estimativas, as

quais ndo foram afetadas pela contamina¢ao nos dados.

Palavras-chave: Estimador de maxima verossimilhanca, Estimador robusto, Fun¢do de in-

fluéncia, Outlier, Regressdao gama inversa.
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Abstract

Robust Inverse Gamma Regression

The inverse gamma regression model it is a statistical technique used for modeling random
phenomena characterized by positive continuous values, such as the time until equipment failure
and interarrival times in queuing systems-common in public service and financial institutions.
The inference for the parameters of this model is typically performed using the maximum li-
kelihood estimation method. However, this estimation approach can lead to distorted results in
the presence of atypical observations. In this work, we propose a new robust estimation method
for the parameters of the inverse gamma regression model. To motivate the importance of a
robust alternative, we demonstrate that the influence function of the maximum likelihood esti-
mator is unbounded. The new inference procedure is based on the class of M-estimators, which
includes the maximum likelihood estimator as a special case and is well-known for producing
robust estimators. To evaluate the performance and illustrate the necessity of the proposed esti-
mator, we conducted Monte Carlo simulations in both presence and absence of contamination
in the data. From the simulation studies, it was found that in the absence of contamination, the
maximum likelihood estimator is more efficient. However, in the presence of contamination,
the maximum likelihood estimator was significantly affected, leading to distorted estimates.
In contrast, the proposed estimator demonstrated superiority over the maximum likelihood es-

timator in terms of the stability of the estimates, which were not affected by data contamination.
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Capitulo 1

Introducao

Fendmenos aleatorios que assumem valores continuos positivos sdo frequentemente obser-
vados nas mais diversas dreas do conhecimento, tais como engenharia, economia, biologia e
ciéncia dos materiais. Alguns exemplos de estudos sobre fendmenos que produzem dados no
intervalo (0, 00) sdo: o tempo até a falha de um equipamento, o tempo entre chegadas em sis-
temas de fila, como no transporte ptiblico ou redes de comunicacao, fluxos de particulas ou
radiacdo, intensidades de terremotos ou tempestades, crescimento de patrimonio financeiro ou
dados econdémicos, entre outros.

O modelo de regressao gama inverso € uma abordagem estatistica usada para modelar varia-
veis dependentes continuas e positivas, especialmente quando os dados apresentam assimetria
positiva (Bourguignon e Gallardo, 2020). A base desse modelo € a distribui¢do gama inversa,
amplamente utilizada em aplicacdes onde valores muito altos da varidvel resposta t€m maior
variabilidade, como na anélise de sobrevivéncia e confiabilidade (Glen, 2017). A distribui¢ao
gama inversa € especialmente util quando se quer modelar o tempo até o evento de falha, ou
seja, 0 tempo que um sistema ou componente leva para falhar, sendo mais apropriada para siste-
mas onde a falha ocorre com maior probabilidade no inicio da operacdo (comumente associada
ao conceito de “falha precoce” ou “falhas devido a defeitos de fabricagcdo™).

Trabalhos recentes que utilizam modelos baseados na distribui¢do gama inversa podem ser



cap. 1. Introdugdo §1.0.

encontrados na literatura, como, por exemplo, os artigos citados a seguir. Lin et al. (1989)) uti-
lizaram o modelo gama inverso em estudos de confiabilidade para avaliar o tempo de vida de
determinados equipamentos, descrevendo as principais causas de falhas desses equipamentos.
Mead (2015) apresentou um novo modelo de confiabilidade utilizado em problemas de teoria
da difracdo e problemas de corrosdo em novas maquinas. Os autores propuseram uma generali-
zacdo da distribui¢do gama inversa chamada de distribuicdo gama inversa generalizada (GIG).
Mousa et al. (2016) utilizaram a abordagem nao paramétrica de kernel para estimar a fungdo
densidade de probabilidade denominada de kernel gama inversa, com suporte pertencente ao
intervalo (0, 00). Os autores mostraram que a densidade estimada tem as mesmas propriedades
que a distribui¢do gama inversa, € que a mesma € livre de viés. Glen (2017) estudou algumas
propriedades da distribui¢do gama inversa e como esta pode ser utilizada no contexto de anélise
de sobrevivéncia. Bourguignon e Gallardo (2020) propuseram um modelo de regressdo onde
a varidvel resposta segue uma distribui¢do gama inversa, reparametrizada por parametros que
denotam média e precisdo da distribui¢do. Magalhaes et al. (2021 desenvolveram um esquema
de correcdo de viés para reparametrizagdes do modelo de regressdao gama inversa com precisao
varidvel, derivando expressdes para o viés de primeira ordem, obtendo assim estimadores corri-
gidos. Uma diferente parametrizag¢do para a distribuicdo gama inversa no contexto de modelos
de regressdo € apresentada por Rigby et al. (2019) na qual atribui-se estrutura de regressao
para a moda da varidvel resposta. Esta ultima abordagem de regressdo usando a distribui¢do
gama inversa se torna mais adequada principalmente em situagdes nas quais os dados apresen-
tam forte assimetria a direita. Neste caso, a modelagem da moda da resposta € mais adequada
por ser mais representativa da tendéncia de concentragdo dos dados. Por esta razdo, o modelo
de regressdo gama inverso a ser estudado neste trabalho € aquele apresentado por Rigby et al.
(2019).

A inferéncia para o modelo de regressdo usando a distribui¢do gama inversa (Bourguignon e
Gallardo, 2020; Rigby et al.,[2019) é normalmente baseada no estimador de mdxima verossimi-

lhanca (EMV). Entretanto, este, pode ser altamente influenciado pela presenca de observagdes

2
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discrepantes nos dados. No Capitulo [3|mostra-se mediante o estudo da fun¢do de influéncia que
0 EMYV sob a classe de modelos de regressao gama inverso proposto por Rigby et al. (2019) ndo
¢ robusto.

As observagdes discrepantes ou outliers apresentam padrdes distintos da maior parte dos
dados e podem causar distor¢des graves em estimadores usuais para os parametros do modelo
suposto. Por exemplo, geralmente os modelos de regressao linear sdo ajustados a partir do es-
timador de minimos quadrados que sdo sensiveis a presencga de outliers. Isto ocorre porque o
estimador de minimos quadrados € obtido a partir da minimiza¢do da soma dos quadrados das
diferencas entre os valores observados e os valores previstos pelo modelo. Segundo Montgo-
mery et al. (2021), quando ha outliers nos dados, as grandes diferencas de valores geradas por
esses pontos extremos fazem com que o modelo “se ajuste” para reduzir o erro para esses pon-
tos, distorcendo as estimativas dos parametros para os dados. Segundo Maronna et al. (2019),
¢ natural pensar que na presenca de pontos atipicos € suficiente utilizar um bom método de re-
jeicao de outliers para resolver o problema, mas isso geralmente ndo € verdade. De acordo com
Rousseeuw e Leroy (2003)), métodos para identificar outliers baseados em estimadores cldssicos
nao sao confidveis devido a sensibilidade dos mesmos. Uma situagdo comum que pode ocorrer
€ que os residuos podem passar despercebidos devido a pontos atipicos inflarem a estimativa
da dispersao do modelo suposto, deixando de capturar pontos que deveriam ser classificados
como outliers. Além disso, dado que uma observacdo é apontada como outlier, € necessario
identificar qual € a melhor abordagem para tratd-la.

Existem vdrias abordagens tradicionais para tratar outliers em andlise de dados, especial-
mente em modelos de regressdo. A escolha da abordagem depende do contexto e do tipo de
dado em estudo, mas todas possuem desvantagens quando comparadas a técnicas robustas. A
primeira delas, segundo Ghosh (2019), consiste em identificar e entdo excluir esses pontos do
conjunto de dados antes de ajustar o0 modelo, porém, ao excluir outliers, pode-se perder dados
que, apesar de serem atipicos, sdo relevantes para entender a variabilidade do fendmeno em

estudo. Além disso, se os outliers sio comuns em um determinado contexto (por exemplo, em
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vendas de produtos, onde ocorrem picos ocasionais), exclui-los pode resultar em uma amostra
ndo representativa do comportamento real dos dados. Ribeiro (2020) cita que o melhor método
de rejeicdo de outliers ndo se compara ao desempenho dos melhores procedimentos robustos,
pois a estimacao robusta transita suavemente entre a aceitacao ou rejeicao total de uma obser-
vagao.

Huber (1964) desenvolveu uma nova abordagem de estimacdo sob modelos paramétricos
baseado na minimiza¢do de uma generalizacdo do logaritmo da funcao de verossimilhanca. Tal
classe de estimadores foi denominada M-estimadores. A generalizacdo € feita através da substi-
tuicdo da contribui¢do individual —log( f(y, @)) no logaritmo da fun¢do de verossimilhanga por
uma funcédo p(y, 0). Esta classe de estimadores é conhecida por produzir estimadores robustos
que possuem propriedades 6timas como consisténcia e normalidade assintética.

Um ramo de obteng¢ado de estimadores robustos bastante utilizado e que pode ser visto como
caso particular dos M-estimadores € o baseado no método de minimizar divergéncias entre den-
sidades. Métodos de obten¢ao de estimadores baseados em minimizacdes de divergéncias em-
piricas podem ser facilmente encontrados na literatura. De acordo com Ghosh (2019) e Ribeiro
(2020), ao realizar a minimizacdo de uma divergéncia empirica entre duas densidades estamos
minimizando a discrepancia entre a distribuicdo de probabilidades postulada e a distribuicao
empirica dos dados observados com respeito ao parametro de interesse. Basu et al. (1998) pro-
puseram um procedimento de estimacdo robusto obtido através da minimizag¢do empirica de
um tipo de divergéncia poténcia entre duas densidades. Tal procedimento de estimagdo visa
alcancar considerdvel robustez a pontos atipicos e ainda manter a efici€ncia assintética préxima
a do estimador de méxima verossimilhancga, caracteristicas as quais sao controladas a partir de
uma constante de afinac@o. Ferrari e La Vecchia (2012) propuseram um procedimento de esti-
magao robusta baseado na maximizagdo de uma L -verossimilhan¢a reparametrizada, definida
em termos da transformacdo de Box-Cox. O estimador resultante procura balancear a robustez
e eficiéncia baseado em uma constante de afinagdo. Ribeiro e Ferrari (2023) desenvolveram

um procedimento de estimag¢ao robusto sob modelos de regressdo beta baseado no trabalho de
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Ferrari e La Vecchia (2012) que € um caso especial dos M-estimadores. O estimador proposto,
denominado de estimador de maxima verossimilhanca substituto, oferece um balanco entre ro-
bustez e eficiéncia por meio de uma constante de afinacdo selecionada por um método orientado

pelos dados que garante eficiéncia total na auséncia de outliers.

1.1 Objetivos

O objetivo principal desse trabalho é propor um método de inferéncia robusta com base no
procedimento inferencial desenvolvido por Ribeiro e Ferrari (2023), sob o modelo de regressao
gama inverso reparametrizado, indexado pelos parametros da moda e forma como definido em
Rigby et al. (2019).

Os objetivos especificos desse trabalho sdo:

a) propor um método de estimagdo robusto para o modelo de regressdo gama inverso repa-
rametrizado;

b) avaliar via estudos de simulacdo Monte Carlo o desempenho do estimador robusto em
comparacao ao estimador de méxima verossimilhanga, na auséncia e presenga de contaminagdo

nos dados.

1.2 Organizacao do trabalho

Esta dissertacdo estd organizada em cinco Capitulos. No primeiro Capitulo, além da in-
troducdo, é apresentado uma revisao da literatura recente sobre o modelo de regressdo gama
inverso, assim como as principais referéncias relacionadas a teoria de robustez e os objetivos
a serem alcancados. No segundo Capitulo, apresenta-se a distribuicdo gama inversa indexada
pelos parametros da moda e forma, juntamente com a estrutura de regressao para os parame-
tros, e a inferéncia por maxima verossimilhanca. No terceiro Capitulo, € feita uma revisdao dos
principais conceitos e resultados que serdo necessarios para avaliar a robustez de estimadores,

discutindo sobre o procedimento de M-estimacao, e avaliando a robustez do EMV sob mode-

5
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los de regressdo gama inverso. No quarto Capitulo, € introduzido o estimador robusto baseado
na maximiza¢do de uma L,-verossimilhanca reparametrizada sob o modelo de regressdo gama
inverso. No quinto Capitulo sdo apresentados estudos de simulacdo Monte Carlo para avaliar
o desempenho do estimador robusto em comparagdo ao estimador de maxima verossimilhanca,
na auséncia e presenca de contaminac¢do nos dados. No sexto Cépitulo sdo apresentadas as
conclusdes com algumas consideracdes finais, assim como a indicag¢do de trabalhos futuros.

Detalhes técnicos referentes ao Capitulo[4]sdo deixados no Apéndice A.




Capitulo 2

Modelo de Regressao Gama Inverso

Neste Capitulo serd introduzida a classe de modelos de regressao gama inverso. Primeira-
mente serd caracterizada a distribuicdo gama e sua reparametriza¢do no contexto de regressao.

Em seguida, é apresentado o modelo gama inverso o qual € o objeto de estudo deste trabalho.

2.1 Distribuicao gama

Em teoria de probabilidade, o modelo gama ¢ uma distribuicdo assimétrica, unimodal de
dois parametros, com suporte definido nos reais positivos, que pode modelar diversos tipos
de fendmenos, como o tempo até a falha de um sistema ou o tempo de cura de um paciente
submetido a um determinado tratamento (Feller, [1991).

Seja y a variavel aleatdria que segue uma distribui¢do gama com parametros o, 5 > 0,
denotada por y ~ G(«, §). A fun¢ao de distribuicdo acumulada (FDA) é dada por (Colosimo e
Giolo, 2021)

(o, By)
F(y; = —" >0 2.1
(y; v, B) T Y70 2.1
em que v(a,z) = [, t*"'e~'dt € a fun¢do gama incompleta, I'(ar) = [ ¢*~'e~"d¢ € a fungdo

gama completa, 5 > 0 é o parimetro de taxa e &« > 0 é o parAmetro de forma. A fungdo
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densidade de probabilidade (FDP) associada a (2.1)) é dada por

ﬁaya—le—yﬁ

f(yaaaﬂ) = Wa

y > 0. (2.2)

Particularmente, segundo Colosimo e Giolo (2021), a média e a variancia de y sdo dadas por
E(y) = a/B e Var(y) = /3% = u?/«, respectivamente. Adicionalmente, a moda e o coefi-
ciente de variagdo (CV) sdo dados por (o« — 1)3, o > 1 e 1/4/«, respectivamente. Quando
«a = 1, a distribuicao gama se reduz a distribui¢do exponencial, que é um caso especial da gama
com um unico parametro de forma. A distribui¢do gama pode ser parametrizada em termos da
média e precisdo. Segundo Paula (2023), a FDP da distribui¢do gama reparametrizada pode ser

expressa por

ol ) = 15 (%)¢p{—%y} . @3)

sendo y > 0, u > 0 pardmetro da média e ¢ > 0 parametro de precisdo. A partir de agora,
¢ usada a notacdo y ~ GR(u, ¢) para indicar que y é uma varidvel aleatéria que segue uma

distribui¢do gama reparametrizada com > 0 e ¢ > 0, em que E(y) = p e Var(y) = u?/é.

2.2 Regressao gama

Para definir a estrutura de regressao sob a distribuicdo gama, considere v, . . . , 4, varidveis
aleatdrias independentes tal que cada y; possui a FDP dada em (2.3)), com média x; e pardmetro
de precisdo ¢;. Suponha que a média e o pardmetro de precisdo de y; satisfazem as seguintes

relacdes funcionais:

9ulii) = nu, =% B e go(di) =1y, =2 v, (2.4)

emque 8= (B1,...,0,) € RPev = (1y,...,1v,)" € R?sdo os vetores dos coeficientes de
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regressdo desconhecidos, com p+q < n, 1), € 1), sdo preditores lineares, e x; = (z;1, . . .  Tip) |
ez = (21, -, ziq)T sdo vetores de valores fixados das covariaveis dos submodelos da média
e precisdo, com dimensdo p e ¢, respectivamente, para ¢ = 1,--- ,n. As fungdes de ligacdo

gy : Rt - Regs : Rt — R em (2.4) devem ser estritamente mondtonas, positivas e duas

T

vezes diferencidveis, de modo que 11; = g,,' (x; 8) e ¢; = g;l(zi v),comg, '(-)e g;1(~) sendo

as inversas das fungdes g,(-) e g,(-), respectivamente.

2.3 Distribuicao gama inversa

2.3.1 Parametrizacio original

Em teoria da probabilidade, a gama inversa (GI) é uma distribuicio de dois pardmetros uni-
modal, positivamente assimétrica, com suporte definido nos reais positivos, que € obtida a partir
do reciproco de uma varidvel distribuida conforme a distribuicao gama. Em outras palavras, se
y segue uma distribui¢cdo gama com pardmetros a e 3, entdo ! segue uma distribui¢do GI com
parimetros o > 0 parAmetro de forma, e 5 > 0 parametro de escala (Bourguignon e Gallardo,
2020). Além disso, a reciproca também € verdadeira, se y segue uma distribui¢do GI, y~! segue
uma distribuicao gama.

Seja a varidvel aleatéria y que segue uma distribuicdo gama inversa com parametros «, 5 >
0, denotada por y ~ Gl(«, 3). A sua funcdo de distribui¢do acumulada é dada por

Fy;a,B) = ﬂ;_g)@) y >0, (2.5)
em que S > 0 é o parAmetro de escala e o > 0 é o parametro de forma. A func¢do densidade de
probabilidade associada a ¢ dada por

ﬁa —a—1

fl000) = Frag eV, y>0. (2.6)

A média e a variancia de y sdo dadas por
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E(y) = a>1 e Var(y) = TR

a—1"

a> 2, 2.7)

respectivamente. Adicionalmente, o coeficiente de variagio é dado por (o —2)~'/2. A moda de
y ~ Gl(a, B) é obtida encontrando-se o ponto y que maximiza a fun¢do f(y; «, 5) ou equiva-

lentemente, o valor de y que maximiza log(f(y; «, 3)). Veja que

log[f(y; a, B)] = alog(B) —log[['(a)] — (a + 1)log(y) — B/y.

Derivando em relagdo a y, tem-se que

dlog[f(y; . )] _ _a+1 B

dy Yy y?

Igualando a derivada obtida a zero, tem-se: —(a + 1)/y + B/y* =0< (a+1)/y = B/y* &
v (a+1) =By & y = B/(a+1). A expressdo da moda de y ~ GI(a, 3) serd de grande

importancia para a defini¢do do modelo de regressdao GI que é considerado neste trabalho.

2.3.2 Reparametrizacao

Modelos de regressdo usualmente sdo construidos para modelar um parametro que repre-
sente uma caracteristica simples da varidvel resposta tais como média, mediana e moda. Con-
tudo, a distribui¢do gama inversa com FDP (2.6)) ndo estd parametrizada em func@o de quanti-
dades que representam caracteristicas diretas da varidvel resposta. Nesta secdo € apresentada a
distribui¢do GI parametrizada em termos da moda e forma, seguindo a parametriza¢do apresen-
tada por Rigby et al. (2019). Considere u = 3/(a+ 1) e o = 1/y/a, isto &, 3 = p(1 + o72)

e o = o~ 2. Conforme esta nova parametrizacio, substituindo as expressdes de y e o em (2.7)

10
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tem-se que

(1+o*)p

E(y)=m, (1+0%)*po

se0? < 1, e, Var(y) = T oP2(1 _207) se 02 < 1/2.

Estas expressdes de média e variancia também estdo apresentadas em Rigby et al. (2019).

A partir de agora a notagdo usada serd y ~ GIR(u, o) para indicar que y é uma varidvel ale-
atéria que segue uma distribuicdo GI reparametrizada com p > 0 pardmetro que denota a moda
e 0 > (0 parametro de forma. Uma vez que a distribuicdo GIR preserva a propriedade de reci-
procidade da distribui¢@o IG original, isto é, 1/y segue uma distribuicdo gama com pardmetros
o2 e u(l 4 07?) segue que

—2 -2

m e Var[l/y] =

E[1/y] =
Usando a reparametrizacdo proposta, a funcdo densidade da distribui¢cdo GIR fica reescrita

como

[ILL(]_ + 0-72>]U_2 _( —2+1) _H(1+a_2)
g y . 2.
A R 29)

flysp,0) =

Na Figura |2.1|s@0 apresentados graficos da fun¢do densidade da distribuicdo GIR variando
valores de i e o na qual percebe-se que a medida que p aumenta, a variancia da distribuicdo
também aumenta. Isso ocorre porque a variancia da distribui¢cdo gama inversa tem uma depen-
déncia quadrética de i, o que implica que um aumento na moda tende a aumentar a variancia
de maneira mais acentuada. Além disso, também pode-se notar que o parametro ¢ controla a
assimetria, ou seja, a medida que o aumenta (diminui), a distribuicdo se torna menos (mais)
simétrica em torno da moda, aumentando a variancia. Sendo assim, o que ¢ um parametro de

forma parece afetar a assimetria e precisao da distribuicao.

Adicionalmente, segundo Rigby et al. (2019), tem-se que o CV, assimetria 7, e curtose s

11
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Figura 2.1: Grificos da funcio densidade da distribui¢do GIR fixando o = 0,5 e variando
w=1,2,3eb,efixando u = 1 e variando o = 0.3,0.5,0.75 e 1.

sdo dados, respectivamente por

o(1 —202)4/2
1 — 302

302(10 — 220?%)
(1 —302%)(1 —40?)

CV = o /V1+ 202, %:4 L o2 <1/3, ey = L 02 < 1/4.

A distribuicao gama e a distribui¢do GIR tém propriedades comuns, como unimodalidade
em sua funcdo de densidade e funcdo de variancia quadratica. A seguir sdo listadas algumas
motivagdes para o uso pratico da distribuicdo GIR em comparagdo com a distribui¢do gama,
assim como a principal vantagem de se modelar a moda ao invés da média. A primeira delas é
que a funcdo taxa de falha da distribuicdo GI pode ter formato de “U”, dependendo do valor do
parametro de forma (Glen, 2017). Em contrapartida, segundo Bourguignon e Gallardo (2020),
a maioria das distribuicdes classicas de dois parametros, como as distribui¢cdes Weibull e gama,
possuem fungdes monotonas de taxa de risco. A segunda vantagem € que, apesar de a distribui-
¢ao GI e a distribuigdo gama possuirem o mesmo CV, a distribuicdo GI permite obter maiores

coeficientes de assimetria e curtose, possibilitando o ajuste de dados com caudas mais pesadas.

Uma vantagem da parametrizacdo em termos da moda em relagdo a média € que ao modelar a

12
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moda, significa que se estd sempre modelando a regido onde a distribui¢do € mais concentrada.
Em situagdes em que os dados possuem uma distribui¢do assimétrica, a modelagem da moda
¢ mais adequada do que a da média, pois refletird o comportamento mais representativo dos
dados. Além disso, ao se trabalhar com a moda, espera-se que os efeitos de valores atipicos

sejam menores do que os efeitos causados na estimagao da média.

2.4 Regressio gama inversa

Para definir a estrutura de regressao, considere 41, - - - , y,, varidveis aleatorias independentes
tal que cada y; possui a FDP dada em (2.9)), com moda p; e pardmetro de forma ;. Suponha

que a moda e o parametro de forma satisfazem as seguintes relacdes funcionais

9u(i) =mu =%/ B e go(0:) =no, =2, v, (2.10)

emque B = (B1,...,5,)" € RRev = (1,...,1,)" € R? sdo os vetores dos coefi-

cientes de regressdo desconhecidos, com p + ¢ < n, 7,, € 1, sdo preditores lineares, e

xi = (Tit,..,25p) € RPez; = (21,...,2;,) € RYsdo vetores de valores fixados das

covaridveis dos submodelos da moda e forma, respectivamente, para: = 1,--- ,n. As fungdes

deligagdo g, : R™ — Reg, : R" - Rem devem ser estritamente mondtonas, positivas
T

e duas vezes diferencidveis, de modo que y; = g, (x/ 8) e 0; = g, (2] v),com g;;'(-) e g; ' (")

sendo as inversas das fungdes g, () e g,(-), respectivamente.

2.5 Inferéncia por maxima verossimilhanca

Os vetores de parametros 3 e v devem ser estimados com base numa amostra. Um proce-
dimento cldssico para a estimagdo de tais pardmetros é o método da méxima verossimilhanca,

o qual visa encontrar o valor de 8 que provavelmente produziu os dados observados.

13



cap. 2. Modelo de Regressdo Gama Inverso §2.5. Inferéncia por mdxima verossimilhanca

A fungdo de verossimilhanga para @ = (3", )" sob 0 modelo GIR € expressa por

H f Yis K, Uz

=1

n 2 —2
(140, —(672 _ ko 7)
H{M + yi(z )=, }

=1

Assim, o logaritmo da funcdo de verossimilhanga para 6 € dado por

((0) = log(L(H))
— Zlog(f(yi;m,%))

—2
/Ll 1 + O’ )] 7(5;2+1) M
- ZIO { (0’~72) Yi ¢ .
- Zg(ﬂi70i>a
=1

em que

(i, 01) = 07 *log[pi(1 + 07%)] — (07 + Dlog(yi) — ps(1 + 077%) /yi — log[(07?)]-

A estimativa de maxima verossimilhanga é definida por @ = argmax,_o((0),com8 = (87, 07)T.

Assim, para se obter os respectivos EMVs para os parametros 3 e v, nos casos em que o lo-
garitmo da funcdo de verossimilhanca € diferencidvel, pode-se calcular as derivadas parciais de
¢(0) com relagdo a cada um dos pardmetros, obtendo assim os vetores escore para 3 e v que
serdo representados por Ug(@) e U, (@), respectivamente. Adicionalmente, os estimadores para
a moda p; e o; sdo obtidos indiretamente por meio de B e U através das estruturas de regressao

definidas em (2.10)). O vetor escore para 0 € definido por

U(6) - Us(0) | _ 2o
U.(9) %
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As entradas do vetor escore associado a 3, Ug,(0), j = 1,2, - -, p sdo dadas por
oL(0
Uy, (6) = 8(5 j)
dé Hzagz dp; 5%
B Z dpi  dny, 0B;
B o7 14072\ dw O,
B Z{ - Yi } dn,, 05;

= Z yz z ,Uz).r”’

emquey; = —(1+0; %) /y; e uf = —0;?/ s, com E(y}) = p obtido usando o resultado em
(2.8). Considere X uma matriz de dimensdo n x p em que cada uma de suas colunas representa
os valores da j-ésima covaridvel associada ao submodelo da moda, 7 = 1,2,...,p, y* =
Wiy ot = (s )T, T = diag(ts,, - ts,) = diag{1/g, (1), ., 1/g, (1)},
ts, = dp,/dn,, e On,,/0B; = x;;. Logo, o vetor escore para (3 é

Up(8) = X' Tp(y" — u").

As entradas do vetor escore associado a v, U, (0),j=1,2,---,qsao dadas por
00(0)
U, (0) =
'7( ) 81/j

B " dl(pi, 03) do; Oy,
—~  do; dn,, Ov;
- -3 -2 201_5 -3

= > { 207 oglpus(1 + 07 2)] = 7 + 207 log(y:)
p 1+ o0,

_3 M -3 -2 do; aT]aq;
207 (o)) 40 O
Uz yl U’L 1/’(‘71 ) dT]O’,L ayj

- 1
=~ i)
,L.Zl 9,(0i) ™
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—2
em que y! = 20, *[log(y) +pui/yi] e uf = 20, *[log(jui) +log(1+0; %)+ 7i=z — (07 *)], com
Ellog(y;)] = log[u;(1 4+ 0;3)] —(0; %), e ¢(z) = d In[l'(2)] /dz é a fungdo digama. Considere
Z uma matriz de dimensao n x ¢ onde cada uma de suas colunas representa os valores da i-

ésima covaridvel associada ao submodelo de o, j = 1,2,--- ,¢, y' = (yI, - ,y;fL)T, pt =

(,ui,...,ujl)T, T, = diag(t,,,...,t,) = diag{1/g,(c1),...,1/g,(0x)}, t,, = 00:i/On,, e

2j = 0Ny, /Ov;. Assim, o vetor escore U, (6) pode ser representado por
U,(0)=Z"T,(y' — ).

Sendo assim, o vetor escore de 8 correspondente a i-€sima observagdo € dado por

1 1 T
(2 0 = * — * 7 'T7 T - T / T) . 2-1 1
Ul(yi, 0) ((yz oy g () X, (Y — i) 7. z; (2.11)

A matriz de informacdo de Fisher € definida por

820(0 824(0
. _ | Koo Ko | ~E(gg05+) —Elggant)
00 = =
92%¢(0 9%0(0
Kuﬁ Kuu _E( 3ya(ﬁ')r ) _E(aua(u—?— )

Para j,l =1,2,---  p, segue que

o2(0) O {" [agz 1—1—0[2] dy; 677,%}
1

aﬁja/@l B 5_@ i Yi dﬂui aﬁj
_ z”:i [0;2 ~ 1+o;2] du; O,
1 0B | Yi dmi 35;‘

+i o, _ 1+ 0,2 s Oy, O,
i Yi dn;;, 0B; 9B,
o, % dp; Ony, dp; O, d*p;

- + (g — ) =Stz
— i dn,, 985 dny, OB, ;< : )dnii 7

16
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Dai, tem-se

826(0)) " o2 (d,uz- )2
—E = ¢ Tl
(aﬁjaﬁl 2 i \dg,, )

Dai, o componente da matriz de informagao de Fisher para 3 é escrita como

0*((0) T 2
em que X = diag(o;%/p?, ..., 0.%/p2). Também, tem-se que
1 1 Oy n

0ee) _ 90 - _ 9.3 ‘ —-2\1 _ 9 -3 o’
dv,0u, o, {;{ 20; log[pi(1 + 077)] — 20; =2

do; On,,
+ 20; log(y;) + 207 35 + 203 (0; )}LL

)

+Z{ 20; *loglu; (1 + o )]—2053“0'_2

0 [ do; On,.
20 —SIU'L 20 —3 I L Zloi
R E T

- 4070 100; % + 60,8 i
=Y |60; Mlog[pi(1+ 07 %)) + —5— + — — — 60, *log(y;) — 60; 1=
p [ 0; g[ﬂ ( 0; )] 0_7;—2 + 1 (1 + 0_;2)2 0; g<y) g; n

— 60, "Y(0, %) — 4o, %Y (0,)] ( 4o )2 2ij%i
dno-i ij ~il

-2

_ P _
+ Z{ 20, *log[pi(1 + 0, %)] — 20, 31 o2 + 207 log(y:)

%

7 d20_z
+ 20;3i + 20i31/1(0i2)} a2 — 2%l

40;%  100;° + 60;°

n - - A - _,Uz
— 60; og[ui(1 + 07 2)] + —5 — 60; *log(y;) — 60,
(o o1+ + 25+ MR 6o gt — 6

—4 —2 —6.,0( —2 do; ’
— 60, M(0;?) — 4o %Y (o; )}( ) ZijZil

dn,,
+ Z Zij Zil-

0'2

17
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Entdo, tem-se que

0%((8) " [807% + 40;® o o] de
—E (ayjayl) = —Z {m — 40'1- w (Ui )}:| (@) Zij %4l

i=1

Logo, o componente da matriz de informagao de Fisher para v é

2
K,, = —-E ( 0°((8) ) = Z'T2WZ,

ovov’
. 80; O4+40;® 6.1 2
em que W = diag{w,,...,w,}, w; = e 40, %Y (o; 7). Por fim, tem-se que
0°(e) 0 Z [aﬁ 1 +o;2] dps; Ony,
9p;0v,  Ov, =1 L Hi Yi dny, 95;

20,3 20;3] dy; do; On,, Ong,
dny, dns, 0B; Oy

i 20,3 N 20—1.3} 1 L
= - / / ilLig-.
oy ] g gole) ™
Portanto,
0%(0 " 20,78 1 1 1
()-S5 ()]
Bion) = | vi) 1 9,(1i) 9;(04)
& [201.3 20, 30,2 } 1 1
= - 2 / / xijzll
w4077 ] 9,() 95(0%)
= 1 o2 1 1
= 20{3 {— - — ] 7 7 LijZil
; pi (L4072 ] g,(m) go (i)
i { 20;° } 1 1
- — 7 7 TijZil -
— (1 +0,%)] g,(i) g5(00) "
Logo,

0%((8) .
Kg, = —E (agaw) = X4, T4T,Z,

18
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20,
pi(l+o; %)

ém que (I),BV = diag(gbﬁum SR 7¢/3Vn)’ (bﬁw =
Assim, a matriz de informag¢do de Fisher para o modelo é dada por
Kgs Kgu X'y T%X XT®4,TsT,Z

Koo = =
Kus Kuw ZT®,,TsT,X  Z T2WZ

As estimativas de mdxima verossimilhanca 3 ¢ v de (3 e v, respectivamente, sdo obtidos

resolvendo o sistema de equagdes nao linear U(0) = 0 onde 0,, denota o vetor de zeros

p+q> p+q

de dimensdo p + ¢. Contudo, ndo € possivel obter uma forma fechada para 3 e v. Para n
grande, sob certas condi¢des de regularidade, @ (o estimador de mdxima verossimilhanca de 6)
¢é consistente. Além disso, ) segue uma distribuicao aproximadamente normal, isto €,

é\ ~ Np+q(07 K(;BI)

— . . a . . o~ .
sendo K%1 a inversa da matriz Kgg, € ~ denota distribui¢do aproximada.

Dados j € {1,--- ,p}el € {1,---,q}, um intervalo de confianca para /3; e v, respectiva-

mente, com (1 — v)100% de confianga sao aproximadamente dados por

~—1

~ ~ ~1
[ﬁj - Z’Y/?(Kﬂjﬂj)l/g B+ Z’Y/Z(Kﬁjﬁj)l/ﬂ ’

~—1

= . ~—1
[Ul — Z'Y/Q(KVlVl)l/g - + Z’y/Q(Kull/l)l/Q:| )

-1

. -1 = - . cn - e . .
em que as quantidades K 5 ¢ K, ,, sdo, respectivamente, as varidncias assintéticas dos estima-
dores j3; e 1, e 2,2 representa o quantil da distribui¢do normal padrdo tal que P(—z,,, < Z <

Zypp) =1—7,emque0<y<leZ~ N(0,1).

Para realizar o procedimento inferencial por meio de maxima verossimilhanga como des-
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crito acima pode-se utilizar a funcdo gamlss da biblioteca gamlss do software R informando
family = IGAMMA que correspondente a distribui¢do gama inversa; para mais detalhes veja
http://127.0.0.1:25156/1ibrary/gamlss.dist/html/IGAMMA.html. Esta
foi a forma utilizada para a obten¢do das estimativas de mdxima verossimilhanca dos modelos

de regressdo gama inverso considerados nos estudos de simulagdes discutidos no Capitulo [5

20
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Capitulo 3

Medidas de Robustez

Neste Capitulo sdo apresentadas algumas das principais medidas utilizadas para avaliar a
robustez de estimadores, assim como a classe de M-estimadores que € a base para procedi-
mento inferencial que serd proposto. Primeiramente serdo definidas as duas principais medidas
que avaliam a robustez de estimadores, e em seguida, € caracterizado o procedimento de M-

estimacao.

3.1 Conceitos em inferéncia robusta

Nesta sec@o serdo discutidos os principais conceitos necessarios para o desenvolvimentodo
procedimento inferencial robusto que serd proposto. Considere ¥, ..., y, varidveis aleatorias
independentes e identicamente distribuidas (IID). Supondo que essas varidveis sdo provenien-
tes da familia de distribui¢des paramétrica Fo = {Fp,0 € © C RP}, p > 1, com fungdes

densidade fg, serdo considerados estimadores T para o pardmetro 6 tal que

T(y1,...,Yn) = T(Fn), (3.1

e que dependam dos dados v, . . . , ¥, apenas através da funcdo de distribuicdo empirica (FDE)
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definida por

n

FA(2) =5 3" 1 < 2),

i=1

em que I(-) denota a fungdo indicadora. Estimadores que satisfazem (3.1) sdo chamados de
estimadores funcionais. Estimadores funcionais T(F,,) sdo comumente consistentes (Serfling,

2009).

Definicao 3.1.1. Um estimador T'(F},) é dito consistente, se para € > 0,

lim P(|T(F,) —0| >¢) =0,Y0 € O.

n—oo

Em outras palavras, T(F},) i 0.v0 € O, em que % denota convergéncia em probabili-

dade. Tal estimador funcional T(F},) € dito ser consistente em Fp.

Definicdo 3.1.2. O estimador T(F,,) é Fisher-consistente (Kallianpur e Rao, [1955) se é funcio-

nal e satisfaz
T(Fp) =0, VO € O. (3.2)

A definicdo de Fisher-consisténcia difere da definicdo de consisténcia de um estimador
T(F,). Segundo Fasano et al. (2012), a propriedade de Fisher-consisténcia garante que o
estimador ird atingir o verdadeiro valor do parametro 8 quando calculado sob a distribuicao
populacional dos dados Fy. Em termos simples, a Fisher-consisténcia assegura que ndo haja
viés sistemdtico no processo de estimacdo. Segundo Casella e Berger (2024), viés sistemético
¢ um tipo de erro constante que ocorre de forma repetida e previsivel em um processo de medi-
¢do, estimativa ou inferéncia. Ele desloca os resultados consistentemente em uma direcao (para
mais ou para menos), levando a estimativas distorcidas do valor verdadeiro. A consisténcia de

um estimador garante que, a medida que n cresce, o estimador converge em probabilidade para

22



§3.1. Conceitos em inferéncia robusta

o verdadeiro valor 6. Logo, ndo se pode dizer que Fisher-consisténcia implica em consisténcia

€ vice-versa.

Definicio 3.1.3. Seja F},,, = (1 — h)Fy + hA\, a fungdo de distribui¢do contaminada obtida
apos a introdugdo de uma contaminagao infinitesimal /4 no ponto y. A fun¢ao de influéncia (FI)

de T(-) em Fjp é dada por

0
Fl(y; T, Fy) = %[T(Fh,y)ﬂh:o
i T = T(F)
h—0 h
_ }Lm% T((1—h)F +hhAy) — T(Fg)’ (3.3)

em que A, é a medida de probabilidade que coloca toda massa em y. A Defini¢do é
bastante intuitiva. A FI descreve o efeito causado no estimador T'(-) ap6s uma contaminago
infinitesimal & no ponto y. De acordo com Hampel et al. (2011)), a FI avalia o comportamento
assintotico do estimador, quantificando o viés causado pela contaminacio nos dados. Dessa
forma, se um estimador T'(-) possui FI ndo limitada para todo y pertencente ao suporte, isto
serd um indicativo de que T'(-) ndo é robusto. Uma medida baseada na FI é a sensibilidade a

erro grosseiro nao-padronizada (SEGNP), apresentada por Hampel (1974)) e definida como

Vs = sup ||[FI(y; T, Fy)||, (3.4)

Y

com || . || denotando a norma euclidiana. A medida +; mensura o valor mdximo do viés causado
na estimativa de T'(F,,) conforme a contaminagao introduzida. Logo, a medida de SEGNP pode
ser vista como um limite superior para o viés do estimador T'(F},) sob o cendrio de contamina-
cdo. Dessa forma, deseja-se que v, seja finita. Observa-se que, se existir pelo menos uma das
entradas do estimador T'(-) cuja respectiva FI divirja, entdo ;' serd infinito. Estimadores que
possuem tal medida finita sao denominados B-robustos (Rousseeuw, 1981)).

Outra caracteristica de interesse relacionada a robustez de estimadores € estudar o com-
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portamento da variancia assintética de um estimador apés uma contaminagdo infinitesimal nos
dados. Rousseeuw (1981) propds a funcdo de mudanca de variancia (FMV). Tal medida sera

definida seguindo a notacdo apresentada por Genton e Rousseeuw (1995).

Definicdo 3.1.4. Seja Fj,, = (1 — h)Fp + hA, a funcdo de distribui¢do contaminada obtida
apos a introdugdo de uma contaminacdo infinitesimal 4 no ponto y. A FMV do estimador T(+)

em [y € definida por

0
EMV(y; T, Fp) = [V(T(Fh, ), Fig)llio
— lim V(T(Fh,y)a Fh,y) — V(T, FB)
h—0 h
 Jim V(T(F,), (1 - h)FZ +hA,) = V(T Fo) 55)

em que V(T (F,), Fr,y) € a matriz de covariancias do estimador T'(-) sob o modelo contami-
nado [}, ,. Analogamente a FI a definicdo da medida FMV € bastante intuitiva. Esta avalia o
efeito causado na matriz de covariincias assintdtica do estimador T'(-) aps uma contaminagio

h no ponto y.

3.2 M-Estimador

Uma das principais classes de estimadores que sao estudadas a fim de obter estimadores ro-
bustos € a classe dos M-estimadores. Introduzida inicialmente por Huber (1964), esta classe de
estimadores contém o estimador de maxima verossimilhan¢a como caso particular. Considere
Y1, ..., Y varidveis aleatdrias independentes, cada uma com densidade fg(y;) com 8 € ©. O

logaritmo da fun¢ao de verossimilhanga € dado por

(6) = Zlog(fe(yi».

A estimativa de maxima verossimilhanga para 8 é obtida maximizando a funcéo ¢(8), isto é,
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~

0 = argmax,_o¢(0), ou, equivalentemente, 6 = argming.o[—¢(0)]. A ideia proposta por Hu-
ber (1964) € generalizar o procedimento de estimagdo por maxima verossimilhanga substituindo

a contribui¢ao individual —log( fg(y;)) por uma funcgdo p(y;, @), resultando no estimador
T(F,) = argmingq Z p(y:, 0), (3.6)
i=1

em que p(y;,0) € uma funcdo diferencidvel em seus argumentos. A equagdo de estimagdo

associada aos M-estimadores desde que p seja diferencidvel é dada por
> 9y, T(F,) =0, (3.7)
=1

emque (-, T(F,)) = (0/00)p(., 0)|o=1(r,). Qualquer estimador que satisfaz (3.6) &€ chamado
de M-estimador. Ao considerar p(y;, 0) = —log(fe(y;)), tem-se que ¥ (y, @) é menos a fungio

escore, e portanto, 0 EMV € um caso particular.

De acordo com Hampel (1974)), a FI para o M-estimador é expressa por

-1

Py, T, F) = |~ [ 25000 0)orindFal)| 00, T(F)

M (1, Fo) "' (y, T(Fy)), (3.8)

em que

M Fo) = = [ 16000 lo-rirdFaly).

Portanto, a FI de um M-estimador € limitada se o produto da inversa da matriz M (v, Fy) pelo
vetor ¢ (y, @) for limitado. Se houver algum componente do vetor 1(y, @) que ndo seja limi-

tado, entdo este estimador nao possui FI ndo limitada, e, portanto, nao serd B-robusto. Particu-
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larmente, tomando T'(-) = 6 como sendo 0 EMV, obtemos que

Fl(y, 0, Fg) = K(6, Fo)"'U(y, 6). (3.9)

Sendo assim, se algum componente do vetor escore nao for limitado, a funcao de influéncia
do EMV nio serd limitada, e, portanto, o estimador nao serd B-robusto. De acordo com Hampel
(1974), para n grande, vale que

Va(T(F,) —6) —— N(0, V(T, Fp)),

n—o0

em que T(F},) é o M-estimador em questdo e V(T, Fp) é a matriz de covariancias de 7" definida

Ccomo
V(T, Fg) = M(¢, Fo)'Q(¢, Fo)M (¢, Fp) ™", (3.10)
em que

Qb Fy) = / (y. T(Fa))b(y, T(Fp)) T dFa(y).

3.3 Analise de Robustez do EMV

Nessa Secdo serd provado que o procedimento de estimacdo por mdxima verossimilhanga
ndo € robusto sob a classe de modelos de regressdo gama inverso definidos por (2.9) e (2.10),
usando os resultados obtidos na Secdo Considere o vetor U(y, 8) como o escore para

T

0 referente a observagdo y. Tome a particdo U(y,0) = (Ug(y,0)",U,(y,0)")", em que

Us(y, 0) e U, (y, 0) sdo vetores para 3 e v referentes a y. Assumindo yo > 0 como um valor
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fixado, tem-se que

lim Ug(y,0) = lim (y* — pu*)— —_—
oo, Uely 8) = T >gu(u) 9. (1)

Ji U 0) = fp '~ = i~
Observa-se que, a menos de constantes, lim,_,, Ug(y, )  lim,_,, " elim,_,, U, (y, 8)
lim, ,,,,»". Alémdisso, lim,,_,,,y* = —lim, o(1+0"2)/yelim,_,,,y' = 20 3lim,_,,, [log(y)+
11/y]. Quando y — 0, y* — —oo e y" — +oo pois, lim,_,oy* = —(1+ 0 ?)lim,_,o1/y = —oo.
Agora, analisando separadamente os termos da soma log(y) + /vy, quando y — 0, temos que
log(y) = —o0 e /)y — +00. O termo log(y) decresce para —oo, mas de forma mais lenta em
comparacao com ’Zj, que tende a +oo de forma muito mais rapida a medida que y se aproxima

de zero.

Em contrapartida, quando y — +oo, y* — 0O e yT — +o0 pois, quando y — 400,
lim, oy = —(1 + 0 2)lim, o, 1/y =0e limy_myJr = 20 °lim, . [log(y) + p/y] = +oo.
Portanto, o vetor escore nao é limitado quando y — 0 ou y — +oco. Sendo assim, a FI do
estimador de maxima verossimilhan¢a ndo € limitada e, portanto o0 mesmo sob o modelo de
regressdo gama inverso (2.9) e (2.10) ndo é B-robusto. Também, por consequéncia, 0 EMV
ndo é V-robusto. Na Figura [3.1] estdo apresentadas as curvas do vetor escore para o caso IID.
A partir da Figura[3.1|percebe-se que os componentes do vetor escore crescem e decrescem de
forma ilimitada quando y se aproxima de zero ou tende a infinito, exceto para o escore de u
quando y — 400 que € limitado pelo zero. Portanto, do estudo dos limites das entradas do ve-
tor escore e da andlise grafica pode-se concluir que observacdes que assumem valores proximos
de zero ou que tendem a infinito (valores muito altos) podem ser influentes no ajuste do EMV.
Em outras palavras, em situacdes que tivermos dados observados y muito proximos a zero ou a

valores muito altos de y, as estimativas obtidas pelo estimador de maxima verossimilhanga sob
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o modelo GIR podem ndo ser confidveis.

moda forma
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Figura 3.1: Componentes do vetor escore versus y; 4 = 1l e o =0, 5.
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Capitulo 4

Inferéncia Robusta

Neste Capitulo serd apresentado o procedimento inferencial robusto que serd proposto neste
trabalho. A ideia inicial do procedimento inferencial que serd adotado aqui € maximizar uma

funcdo alternativa ao logaritmo da fun¢do de verossimilhanca que conduz a estimacio robusta.

4.1 Estimacao via maximizacdo da L, -verossimilhanca

Considere y, . . ., y,, observagdes independentes, em que y; ~ GIR(u;, 0;). A funcdo densi-
dade postulada para y; é dada por (2.9)) e serd denotada a partir de agora por fq(y;; i1i, 0;). Seja
eq(e) a fungdo de L -verossimilhanca (Ferrari e Yang, 2010), definida por

04(0) = Ly(folys; 11, 7)), @.1)
=1

em que 0 < ¢ < 1 é uma constante denominada constante de afinagdo, e

(u'™1—=1)/(1 —q),se ¢ #1

log(u) ,se ¢ =1,

Ly(u) =

¢ a transformacio de Box-Cox (Box e Cox,|1964). Para ¢ = 1, /() é o logaritmo da funcdo de
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verossimilhanga e maximizando-o obtém-se o EMV. Portanto, o estimador de maxima veros-
similhanga € um caso particular. O estimador obtido pela maximizagao de (4.1) serd denotado

por 49~q. Uma vez que

fo(yi; i, 0:)' ™9 = exp{(1 — q)log(fo(y:; i, 0:)) },

segue que a equacdo de estimacdo associada a 8, € dada por

ZU(yiye)fO(yi;,uiaai)l_q =0, (4.2)

i=1

em que U(y;, 0) é o vetor escore associado a i-ésima observa¢do dado em (2.11). Note que
o vetor escore € ponderado por fo(y;; i, 05) 79, que depende do modelo postulado e da cons-
tante de afinacdo ¢q. Se y; € uma observagdo discrepante com relacdo ao modelo suposto aos
dados, fg se aproxima de zero e uma escolha de ¢ menor que 1 produz um procedimento de
estimacdo robusto, uma vez que a observagdo y; receberd uma ponderagdao pequena. Além
disso, (4.2) é um procedimento de M-estimag@o, como descrito na Se¢do com ¥ (y;,0) =
U(ys, 0) fo(yi; pi, 05)179. Com isso, as propriedades do estimador 9~q podem ser obtidas dos
resultados presentes na literatura de M-estima¢do. Uma desvantagem do estimador éq é que
este é obtido a partir de uma funcdo de estimacdo viciada, ou seja, E(U,(y,0)) # 0, com
Uy(y,0) =30 Uy, 0) fo(yi; piy 0:)' %, exceto para ¢ = 1. O vicio da equagdo de estimagio
associada a éq equivale a falta de Fisher-consisténcia. Sob modelos de regressao beta, Ribeiro
e Ferrari (2023)) contornam o problema da falta de Fisher-consisténcia reparametrizando a fun-
¢do de L,-verossimilhanca com base em ideias de Ferrari e La Vecchia (2012). Serd adotada
a mesma estratégia sob modelos de regressdo GIR. Sob o modelo GIR (2.9), o interesse resi-

dird em encontrar o valor de € que maximiza a fun¢do de L,-verossimilhanca reparametrizada
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definida por
* 1
gq(e) - ZLQ (fé /Q)(yhulao'l)) )
i=1
em que fél/q)(yi§Ui70i) = fo(yi; i, 0ig-1), para0 < ¢ < 1, com 0;, = [q(o'i_Q +1) —

1]71/2, desde que 0;,1 > 0 ou equivalentemente, o;

1/9)(

>qg—1. Desdeque 0 < g < 1le
o; > 0, esta condi¢do segue diretamente. A notacao fé Yi; b, 0;) denota que foi aplicada a
transformagdo poténcia, definida a seguir, sob a densidade fg(y;; j1;, ;). Dada uma densidade

h e uma constante o« > 0, a transformacao poténcia € definida como

h(y)”

R (y) = Thiy)dy o h(y)®, Yy no suporte, (4.3)

sendo [ h(y)*dy < oo para ) < a < oo. Para a familia de densidades postuladas {hg(.), 8 €

©} fechada sob (.3)), considere 7,(0) : © — © uma funcdo inversivel que satisfaz

heooy(y) = WY (y),

para todo y no suporte, supondo que esse nao dependa de 6. Isso significa que, ao aplicar
a transformagdo poténcia em hg, a densidade resultante hfga)(-) pertence 2 mesma familia de
distribuicdes a que hg(-) pertence, agora indexada por uma parametrizacao 7, (@) ao invés de 6.
O modelo gama inverso ¢ fechado sob a transformag@o poténcia; veja a se¢ao[A.T} A quantidade
fél/ q)(yi; Wi, 0;) corresponde ao modelo gama inverso modificado com submodelos da moda e

forma definidos por

g5 () = gu(pi) = %/ B, gio(03) = go(0iq) = 2] V.

Diferentemente do que ocorre no procedimento inferencial sob modelos de regressdo beta ro-

bustos (Ribeiro e Ferrari, 2023), aqui o tnico submodelo que sofre alteracdo é o submodelo
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referente ao pardmetro de forma 0. A densidade modificada serd denotada por fg(v:; 1ti, 07).

Dessa forma, o estimador proposto € obtido através da maximizacgao de
0o(0) =D Ly (f(yss 11y 03)) (4.4)
i=1
que conduz a equacao de estimagao

ZU*(yue)fé‘(yi;Mz‘,Uz‘)l_q =0, (4.5)

=1

em que U*(y;, 0) = Vglog|fa(vyi; i, 0;)] é 0 vetor escore modificado para 6 correspondente a
1-ésima observagao dado por
Xiy; —ni)
9y (1)
a1 Zi(y] —ul) <&>3

9:7 (04,q) Ti,q

O estimador final éq ¢ chamado de estimador de maxima verossimilhanga substituto (EMVS).

A equagdo de estimacdo (#.5)) associada ao EMVS depende de um valor pré-especificado
para a constante de afinacdo ¢ € (0, 1]. Observe que o valor de ¢ ndo é estimado conjuntamente
com . Por esta razdo, antes de encontrar o valor de € que soluciona o sistema de equacdes (.5))
deve-se fixar um valor para ¢. Esta constante ¢ controla a robustez e eficiéncia assintética do
EMVS. Valores de ¢ muito préximos de 1 privilegiam a eficiéncia assintotica em detrimento de
robustez, enquanto valores de ¢ mais distantes de 1 acentuam a robustez do estimador. Ghosh
(2019) propde fixar valores para ¢ ao obter um estimador robusto similar ao EMVS com base
em estudos de simula¢do, sob modelos de regressao beta. Nestes estudos, o autor compara os
valores das estimativas dos pardmetros da regressdo de acordo com diferentes valores de ¢ na
presenca e na auséncia de contaminacdo. De forma geral, o autor sugere fixar valores de q €

(0,6;0,7). Estratégia similar serd adotada neste trabalho. Serdo fixados valores da constante
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q menores do que 1, entretanto ndo muito distantes de 1 para garantir eficiéncia assintética do
EMVS préxima ao EMV na auséncia de contaminagao e robustez do EMVS na presenca de
contaminag¢do nos dados.

Analogamente a0 EMV, o EMVS requer um algoritmo de otimiza¢cdo ndo-linear. Nesse
trabalho, todos os resultados numéricos foram obtidos usando o método de otimizacdo nao-
linear de Broyden-Fletcher-Goldfarb-Shanno (BFGS). Como estimativas iniciais para o modelo
de regressdo gama inverso com o constante ou varidvel foram utilizadas as estimativas obtidas
por meio do EMV. Em outras palavras, o algoritmo para encontrar as estimativas do EMVS
€ iniciado com base nas estimativas de maxima verossimalhanca que sdo obtidas através do

pacote gamlss como anteriormente citado na Segao[2.5]

4.2 Propriedades

Para provar a propriedade de Fisher-consisténcia do EMVS seguindo La Vecchia et al.
(2015)), é necessario mostrar que o valor esperado da equacdo de estimagdo (4.5) sob o mo-
delo postulado fyg é igual a zero para todo 6. Para tanto, mostrar-se-a que a média individual de

U*(y,0) f4(y; u, o)~ é nula para todo 6. Assim, tem-se que

Eo (U*(y,0) fg(y: 1. 0)' %) :/0 Velog|fo(y: 1. 0)] fo(ys 11,0)' = fo(y; i1, 0)dy

> Vo fg(y; s 0)
0 fé‘(y;u,a)

* Vofs(y:p. 0)
o Jolysp, o)

fo (s, o)~ foly; 1, 0)dy

fo(y; p, 0)dy.

Desde que fo(y; p1,0) = ¢4(0) f5(y: i1, 0)% em que ¢o(8) = [ [, fo(y; p.0)"/9dy]", tem-
se Bg (U*(y,0)fg(y; 11,0)'7%) = ¢(0) [y~ Vefo(ys p,0)dy = ¢(0)Vo [y folys i, 0)dy =
0, V6. Portanto, o EMVS ¢ Fisher-consistente para 6.

Outra propriedade de interesse que pode ser derivada para o EMVS sob os modelos de re-

gerssdo gama inverso € a distribui¢do de probabilidades assintética. Da teoria de M-estimagao,
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Vq(e) = Jq(e)iqu(e)Jq(e)ilTa (4.6)
em que
Jy(0) = ZE{VGT [U*(yia0)f;<yi;ﬂi70i)1iq}}

K, (0) = ZE{U*(M’ 0\ U* (s, 9)Tf5(y@-;m, Ui)z(pq)}.
i=1

Neste trabalho, ndo serdo apresentadas as expressoes das matrizes J, e K,. A obten¢do ana-
litica da matriz de covariancia assintética do EMVS fard parte de trabalhos futuros provenientes

da abordagem proposta neste trabalho.
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Capitulo 5

Estudos de Simulacao

Para avaliar o desempenho do EMVS em comparacao ao desempenho do EMV na auséncia
e na presenca de contamina¢do nos dados, foram realizados estudos de simulacdo de Monte
Carlo, considerando os tamanhos amostrais de n = 40,80, 160 e 320. Inicialmente foram
obtidos valores das covaridveis para n = 40, e depois replicados duas, quatro e oito vezes,
obtendo-se assim os valores das covaridveis correspondentes aos demais tamanhos amostrais.
Esse esquema garante que o grau de heteroscedasticidade max(o;) /min(o;) seja constante para
todos os tamanhos amostrais sob os cendrios em que ambos x e o sdo modelados por meio de
estruturas de regressdo. Para todos os cendrios, a funcdo de ligacdo utilizada foi a logaritmica
nos dois submodelos de regressdo. Os submodelos contém intercepto e as covaridveis utilizadas
no submodelo da moda sdo geradas a partir de varidveis aleatérias com distribui¢do uniforme
padrdo e permanecem constantes em todas as amostras simuladas. Nos cendrios em que o pa-
rametro de forma o € varidvel, as mesmas covaridveis utilizadas no submodelo da moda p sdao
também empregadas no submodelo do 0. Em todos os cendrios considerados, a propor¢ao de
contaminacao nas amostras foi fixada em 5%. A constante de afinacdo ¢ para o EMVS foi fi-
xadaem 0,7;0,8;0,9, e 1 (EMV), conforme discutido no Capitulo 4l Todos os resultados sdao
baseados em 1000 réplicas Monte Carlo que foram conduzidas utilizando o software R. Dife-

rentes combinacgdes dos valores dos parametros foram considerados. A seguir sdo descritos os
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cendrios de simulacdo considerados.

Cenario 1: Modelo de regressao gama inverso: uma covariavel no submodelo da moda
e o constante, valores da moda da resposta em torno de 0,99. Os valores dos parametros
foram fixados em 3; = 1,0, B2 = —2,0,ey; = —1,5, que conduzem a p € (0, 38;2,65) com
Med(p) = 0,99 e 0 = exp(—1,5) = 0,22. A amostra contaminada substitui as observagdes
independentes geradas com as 5% maiores modas da resposta por observagdes geradas a partir
de um modelo de regressdo gama inverso com as menores modas geradas. Por exemplo, para
n = 40, 5% corresponde a duas observagdes contaminadas. Se as duas maiores modas foram
2,65 e 2,60, e as duas menores foram 0,38 e 0,39, entdo troca-se os valores gerados de y com

i =2,65e pu = 2,60 por duas novas observacgdes de y geradas com = 0,38 e u = 0, 39.

Cenario 2: Modelo de regressao gama inverso duplo: uma covariavel em cada submo-
delo, valores da moda da resposta em torno de 5,9. Os valores dos parametros foram fixados
em $; = 1,0,0, = 1,5,71 = —1,8 e 5 = —1,0, resultando em p € (2,77;12,01) com
Med(p) = 5,92 e 0 € (0,06;0,16) com Med(o) = 0,10. A contaminacdo substitui 5% da
amostra como se segue: as observacdes geradas com os 2,5% maiores valores de p e aqueles
gerados com os 2,5% menores valores sdo substituidos por observagdes independentes obtidas
por meio de um modelo de regressdo gama inverso com média /#’ = min(u) e M,EQ) = max (),
respectivamente. Por exemplo, se 0 minimo e o méximo de p sdo 2,77 e 12,01, respectivamente,
entdo o valor gerado de y com p = 2, 77 seré substituido por uma nova observagdo gerada para

y com p = 12,01. Enquanto que, o valor gerado de y gerado com ;. = 12,01 serd substitutido

por uma nova observagdo gerada para y com p = 2, 77.

Cenario 3: Modelo de regressao gama inverso: duas covariaveis no submodelo da moda
e o constante, valores da moda da resposta em torno de 12,37. Os valores dos parame-

tros foram fixados em 5, = 3,7, B, = —1,1, B3 = —1,3, e 77 = —2,5, que conduzem a
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p € (4,22;30,75) com Med(p) = 12,37 e 0 = exp(—2,5) = 0,08.A contaminago substitui
5% da amostra como se segue: as observagdes geradas com os 2,5% maiores valores de u e
aqueles gerados com os 2,5% menores valores sdo substituidos por observacdes independen-

1 _

tes obtidas por meio de um modelo de regressdo gama inverso com média p, ° = min(u) e

,uZ@) = max(u), respectivamente. Por exemplo, se 0 minimo e o maximo de x sdo 4,22 e 30,75,
respectivamente, entdo o valor gerado de y com p = 4, 22 serd substituido por uma nova obser-

vagdo gerada para y com p = 30, 75. Enquanto que, o valor gerado de y gerado com p = 30, 75

serd substituido por uma nova observacao gerada para y com p = 4, 22.

Cenario 4: Modelo de regressao gama inverso duplo: duas covariaveis em cada submo-
delo, valores da moda da resposta em torno de 6,11. Os valores dos parametros foram fixados
em 5, = 3,0, 8o = —1,2, 83 = —1,2, 1y = —2,5, 7, = —1,0,e y3 = —1, 0, que conduzem a
p € (2,11;15,53) com Med(u) = 6,11 e o € (0,01;0,07). A amostra contaminada substitui
5% da amostra como se segue: as observacdes geradas com os 5% maiores valores de p s@o
substituidos por observacdes iguais a 0,6. Por exemplo, se as duas maiores modas foram 14 e
15, respectivamente, entdo o valor gerado de y com p = 14 e o = 15 serdo ambos substituidos
por 0,6.

A Figura ilustra os cendrios de contamina¢do descritos acima para uma dnica amostra
de tamanho 40. As observagdes contaminadas destacam-se em vermelho. Visualmente, a con-
taminacao introduzida nos Cenérios 1 e 2 foi muito mais abrupta em comparagdo aos demais
Cenarios, dado que as observagdes contaminadas se destoam muito das demais observacoes. O
grau de contaminacao introduzido nos Cenarios 2 e 3 foi um pouco mais suave porém suficiente
para atingir o efeito desejado.

Nas Figuras [5.2]a[5.18]sdo apresentados os boxplots das estimativas dos pardmetros obtidas
por meio do EMV e do EMVS para os dados com e sem contaminagdo, de acordo com 0s
Cendrios 1, 2, 3 e 4, respectivamente. A partir destas Figuras [5.2] a [5.18] € possivel observar

algumas tendéncias gerais com relagdo ao comportamento dos dois estimadores. Primeiro, nota-
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Figura 5.1: Ilustragcdo dos cendrios de contaminacio considerados para uma amostra de tama-

nho n = 40.
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se que, na auséncia de contaminagdo, o EMV apresenta o comportamento esperado, ou seja,
apresenta distribui¢ao centrada em torno do verdadeiro valor com variabilidade diminuindo de
acordo com que o tamanho amostral aumenta. Este mesmo desempenho € observado para o
EMYVS para todos os valores de ¢ fixados na auséncia de contamina¢do com um leve aumento
da variabilidade das estimativas deste para tamanhos amostrais pequenos. Este resultado é
esperado desde que, para ¢ < 1, o EMVS possui eficiéncia assintotica menor do que o EMV.
Em contrapartida, na presenca de contaminacdo, as estimativas de médxima verossimilhanca
para os parametros foram altamente afetadas pela contaminagdo introduzida nos dados. Em
outras palavras, o EMV apresenta viés severo quando existem observagdes atipicas nos dados,
levando a estimativas centradas em torno dos valores errados. Por exemplo, no Cenaério 1, para o
parametro 3, 0 EMV sob contaminac¢io produziu estimativas em torno do valor —1,10, porém
o verdadeiro valor de ; neste Cendrio € —2,0. Analogamente, observando os resultados do
Cenario 2 para o parametro s, nota-se que o EMV sob contaminacio produziu estimativas em

torno do valor 0,2, porém o verdadeiro valor de 7, neste Cendrio € —1,0.

Por outro lado, na presenga de contaminagdo, as estimativas dos parametros obtidas via
o EMVS variando o valor fixado de ¢ permanecem centradas nos verdadeiros valores para a
grande maioria dos cendrios. Entretanto, é possivel notar uma variabilidade extra que fica mais
evidente em cendrios com tamanhos amostrais menores, sobretudo para o Cenario de simula-
¢do 2. Por exemplo, observando a Figura[5.5| € possivel perceber que para o tamanho amostral
n = 40, mesmo estando centradas nos verdadeiros valores, as estimativas dos parametros obti-
das via EMVS apresentam uma maior variabilidade na presen¢a de contaminag¢ao nos dados em
comparacdo as obtidas sem a presenca de contaminacdo. Ainda, é possivel identificar pontos
atipicos nos boxplots das estimativas obtidas via 0o EMVS sob contaminagdo, em que estes ten-
dem a se concentrar ao redor dos valores das estimativas obtidas via EMV sob contaminagao.
Este resultado € esperado para uma minoria de amostras, desde que o valor inicial utilizado
no algoritmo de estimagcdo do EMVS € a prépria estimativa de maxima verossimilhanca, forte-

mente enviesada sob contaminagao.
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O valor fixado para a constante ¢ de afinacdo exerce um papel fundamental no procedimento
de estimacdo proposto, desde que a depender do valor de ¢, atribui-se menores ponderacdes
para observagdes discrepantes. Por exemplo, a partir das Figuras [5.7) e [5.8] que apresentam as
estimativas dos parametros 7y; € 7, sob o Cendrio 2, é possivel perceber que fixar ¢ = 0, 9 ndo foi
suficiente para garantir que as estimativas obtidas via o EMVS para v, e 7, ndo fossem afetadas
pela presenca de contamina¢do. Em contrapartida, neste mesmo cendrio, os valores ¢ = 0,7 e
q = 0,8 foram suficientes para garantir estimativas confidveis de todos os parametros. Além
disso, percebe-se alguma falta de estabilidade da estimac@o robusta relacionada ao tamanho
amostral n nos Cendrios 1 e 3 com g = 0,8 e n = 160, e Cendrio 4 com ¢ = 0,7 e n = 320. De
forma geral, para a grande maioria dos cendrios, observa-se que o valor ¢ = 0, 7 foi adequado

para garantir estimativas confidveis dos pardmetros na presenca e na auséncia de contaminagao.

Visando avaliar a eficiéncia assint6tica em especial na presenga de contamina¢@o nos dados,
o erro quadratico médio (EQM) é uma medida adequada, pois permite quantificar a discrepancia
entre as estimativas obtidas e os verdadeiros valores dos pardmetros levando em conta o viés e
a variabilidade empirica das estimativas. O EQM do estimador @ via simulagdo é obtido por

meio da expressao

1000

BEQM(,) = ﬁ Z (55 - Gt)2,

em que 55 € o EMV do t-ésimo elemento #; do vetor de pardmetros 0 na j-ésima réplica de
Monte Carlo, com j € {1,...,1000}. Para calcular o respectivo EQM do EMVS basta substi-

tuir 0A§ por @’;jq que denota 0 EMVS do ¢-ésimo elemento 6; na j-ésima réplica.

Para comparar os EQMs obtidos via EMV e EMVS, calculou-se a razao entre os erros
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quadraticos médios totais (REQMT) definido por

~ ~

em que EQMT(8) e EQMT(6,) denotam a soma (o total) dos EQMs para todos os pardmetros

do modelo considerando o EMV e o EMVS, respectivamente.

Na Tabela[5.1|sdo apresentadas as REQMTS sob todos os cendrios considerados. Na ausén-
cia de contaminagdo nos dados, a eficiéncia dos estimadores € préxima (EQMT préximo a 1),
em particular para tamanhos amotrais maiores e valor de ¢ mais préximo de 1. Isso significa
que quando ndo ha presenca de observagdes discrepantes o EMV € mais eficiente desde que

REQMT < 1.

Na presencga de contaminacio, o EQMT do estimador robusto foi consideravelmente menor
do que o do EMYV, indicando um melhor desempenho do estimador proposto. Em alguns ce-
ndrios essa discrepancia cresce de acordo com que o tamanho da amostra aumenta. Em outros
casos, a depender do valor fixado para ¢, a discrepancia aumenta de um tamanho amostral para
o outro, diminui, e depois volta a aumentar. Mesmo assim, em todos os casos, 0 EMVS apre-
sentou um menor erro quadritico médio total na presenca de contaminacdo. Por exemplo, para
o tamanho amostral n = 40 e considerando o Cendrio 2, o EQMT do EMV foi 6, 88; 8,22 e
3,75 vezes maior que o do EMVS, comq = 0,7; ¢ = 0,8 e ¢ = 0,9 respectivamente. Agora,
considerando o mesmo cendrio, quando n = 160, o EQMT do EMV ¢ 38; 43 e 6, 8 vezes maior.
Nos Cenérios 2 e 4, na presenga de contaminagdo, as razdes entre o EQMT do EMV e o do
estimador robusto sdo menores do que nos demais cendrios. Nestes dois cendrios, 0 parametro
de forma o € modelado por meio de estruturas de regressdo. No Cendrio 2 considera-se uma
covaridvel nos submodelos (moda e forma); ja no Cendrio 4 consideram-se duas covaridveis

nos submodelos. Segundo Ribeiro (2020), sob modelos de regressao beta, isto pode ocorre pois
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o viés produzido nas estimativas dos parametros pela contaminacdo nos dados € menor quando
a precisao é modelada, reduzindo a discrepancia entre os EQMTs. O mesmo comportamento €
esperado sob regressdo gama inversa, isto €, ao supor o modelo de regressao duplo modelando
i e o (mais flexivel), pode-se tentar acomodar observagdes discrepantes, minimizando assim o

impacto do viés no EMV e, consequentemente, no EQMT.
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EMV para v, EMVS paray, comq=0,7
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44



§5.0.

EMV para B4 EMVS para B, comq=10,7
o I 7.7 o | :
= . - .
: Te . ioe
. T e R

IR ===t IR

o -
F e N
SR oy BRI N Nl s
: Lol . : - : ‘
e 2t HBssHES=-
T L w4 R e R
. ] L. AR . |
! : - :
o] L 8 : o] L |
o L] : o . N Y
| Pe
Sem contaminagdo . Com contaminacio Sem contaminagdo : Com contaminagdo
T T T T T T T T T T T T T T T T
40 80 160 320 40 80 160 320 40 80 160 320 40 80 160 320
Tamanho amostral Tamanho amostral
EMVS para 34 comq=20,8 EMVS para 34 comq=10,9
N I N :
4
] H
. H . B
-1 7T L -1 T R
. R — . P08 e 8
T e Y 1. N S
I = o I T 3 N A R
c L : 1 o : L : ; |
: HHs=HEs= L =l
B e R S
.0 S . S § v
o L ¥ SEE. ] ol i 8 .
o * . (=} _; [
Sem contaminagao Com contaminagéo Sem contaminagdo C.om contaminagéo
T T T T T T T T T T T T T T T T
40 80 160 320 40 80 160 320 40 80 160 320 40 80 160 320
Tamanho amostral Tamanho amostral

Figura 5.5: boxplots das estimativas obtidas para o parimetro 3; sob o Cendrio 2 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.

45



cap. 5. Estudos de Simulacdo

§5.0.

EMV para B3, EMVS para 3, comq=0,7
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EMV para v, EMVS paray, comq=0,7
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Figura 5.9: boxplots das estimativas obtidas para o parimetro 3; sob o Cendrio 3 viao EMV e
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via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.

50



§5.0.

EMV para f3; EMVS para B3 comq=10,7
© ©
Q7 o 7 H
e . : .
© o ‘ S © : ]
5 FAEm=== e 11
: T R 3 :
e | 2
o4 % : S R S T .
' ‘ A R S ' ' ‘ A L .
e e R TR EEE—%Q-EEE
« ] I e * . =l e ® il .
. § T v
© Sem contaminagao Com contaminagéo © Sem contaminagdo Com contaminagéo
' T T T T - T T T T lFI T T T T : T T T T
40 80 160 320 40 80 160 320 40 80 160 320 40 80 160 320
Tamanho amostral Tamanho amostral
EMVS para 3 comq=10,8 EMVS para 3 comq=10,9
© : © :
< : < :
: ° e :
o | : l [ | o | 5 I l |
S 5 e :
e : < | :
o~ — [— ™~ — I
= | » s . — ' 4 H -
' i [ A S : - ' : S S S o
= U A R = i e € Y e
. - Tl P
© Sem contaminagao Com contaminagdo © Sem contaminag¢do Com contaminagdo
! T T T T - T T T T ‘T T T T T : T T T T
40 80 160 320 40 80 160 320 40 80 160 320 40 80 160 320
Tamanho amostral Tamanho amostral

Figura 5.11: boxplots das estimativas obtidas para o pardmetro 3 sob o Cendrio 3 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.
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0 0
o 7] o ]
< 9
o | — =+ o | L R
0 | Q]
o o
a7 : q
- : -
0 | T * g 0 i + + ‘E
o T B L il o T ‘E‘E E‘E E =
' E . o ¥ ' E *
: ; -
o - . o : t 1 T
Ch . ] ¥ »
Sem contaminagao Com contaminagdo Sem contaminag¢do g;m contaminagdo
T T T T T T T T T T T T T T T T
40 80 160 320 40 80 160 320 40 80 160 320 40 80 160 320
Tamanho amostral Tamanho amostral
EMVS paray, comq=0,8 EMVS para y, comq=0,9
w0 ({9}
3 3
o | B o | ' I v 0
9 | 2
Q <
a : a
. 1 T -+ * _T_ -
0 — 0
o T E‘E‘Eﬁ"%%;%— o T EEE$‘EEEE
e L2
1 +
o 1— Ll [ L o L v 5 £
] ® : . % :
Sem contaminagdo Com contaminagéo Sem contaminagdo Com contaminagdo
T T T T T T T T T T T T T T T T
40 80 160 320 40 80 160 320 40 80 160 320 40 80 160 320
Tamanho amostral Tamanho amostral

Figura 5.12: boxplots das estimativas obtidas para o pardmetro y; sob o Cenério 3 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.
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Figura 5.13: boxplots das estimativas obtidas para o pardmetro [3; sob o Cendrio 4 viao EMV e
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Figura 5.14: boxplots das estimativas obtidas para o pardmetro 5 sob o Cendrio 4 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.
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Figura 5.15: boxplots das estimativas obtidas para o parimetro 3 sob o Cendrio 4 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.
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Figura 5.16: boxplots das estimativas obtidas para o pardmetro y; sob o Cenédrio 4 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.
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Figura 5.17: boxplots das estimativas obtidas para o pardmetro v, sob o Cenédrio 4 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.
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Figura 5.18: boxplots das estimativas obtidas para o pardmetro 3 sob o Cenédrio 4 viao EMV e
via o EMVS variando ¢. A linha vermelha tracejada representa o verdadeiro valor do parametro.

58



§5.0.

Tabela 5.1: Razao entre os EQMTs dos estimadores sob os Cenarios 1, 2, 3 e 4.

Cenario 1
Auséncia de contaminacdo  Presenca de contaminaciao
EMV EMV EMV EMV EMV EMV
EMVS EMVS EMVS EMVS EMVS EMVS

n ¢q=07 ¢g=08 ¢=0,9 ¢=0,7 ¢=0,8 ¢g=0,9
40 0,70 0,87 0,97 16,94 13,30 19,64
80 0.75 0,88 0,97 5,79 10, 26 35,89
160 0,78 0,91 0,98 152,17 2,72 14,96
320 0,76 0,89 0,97 17,30 13,88 24,80

Cenario 2
Auséncia de contaminacdo  Presenca de contaminacio
EMV EMV EMV EMV EMV EMV
EMVS EMVS EMVS EMVS EMVS EMVS

n =07 ¢g=08 ¢g=0,9 ¢=0,7 ¢g=0,8 ¢=0,9
40 0,63 0,89 0,98 6, 88 8,22 3,75
80 0,69 0,88 0,97 17,00 19,76 5,45
160 0,71 0,86 0,97 38,00 43,00 6, 80
320 0,73 0,87 0,96 74,22 87,74 7,45

Cenario 3
Auséncia de contaminacdo  Presenca de contaminaciao
EMV EMV EMV EMV EMV EMV
EMVS EMVS EMVS EMVS EMVS EMVS

n =07 ¢g=08 ¢g=09 ¢q=0,7 ¢=0,8 ¢=0,9
40 0,63 0, 86 0,98 4,26 11,83 5,32
80 0,68 0, 86 0,97 62,47 126, 55 5,19
160 0,72 0,88 0,97 5,82 2,63 23,65
320 0,72 0, 86 0,96 123,08 146,33 13,43

Cenario 4
Auséncia de contaminacdo  Presenca de contaminaciao
EMV EMV EMV EMV EMV EMV
EMVS EMVS EMVS EMVS EMVS EMVS

n ¢q=07 ¢g=08 ¢q=0,9 ¢=0,7 ¢=0,8 ¢=0,9
40 0,31 0,74 0,93 7,39 17,52 26,51
80 0,60 0,83 0,96 13,22 21,38 49,60
160 0,68 0,86 0,97 9,33 20,24 42,94
320 0,69 0, 86 0,96 3,21 4,76 20,42
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Capitulo 6

Conclusoes

6.1 Consideracoes Finais

Neste trabalho foi realizada uma revisdao sobre os modelos de regressdo gama inverso no
contexto de modelagem de dados continuos estritamente positivos que apresentam forte assi-
metria a direita. A parametrizacdo da distribuicao gama inversa que foi considerada depende de
dois parametros denotados por € o que representam moda e forma da distribuicdo, respectiva-
mente, assim como previamente apresentado por Rigby et al. (2019). A modelagem de ambos
os parametros da distribui¢do gama inversa foi definida por meio de estruturas de regressao
lineares, e a tradicional inferéncia pelo método de maxima verossimilhanga foi discutida.

A partir da andlise da fun¢do de influéncia, foi demonstrado que o procedimento de esti-
macao por maxima verossimilhanga sob modelos de regressao gama inverso ndo € robusto, isto
é, o EMV ¢ influenciado pela presenca de outliers nos dados. Este resultado tedrico motivou
o desenvolvimento de um novo procedimento de estimacao para os parametros do modelo de
regressdo gama inverso que seja robusto na presenca de outliers. Vale ressaltar que, de acordo
com nosso conhecimento, nio existem propostas de estimagdo robusta sob regressdo gama in-

versa.

O procedimento inferencial robusto proposto neste trabalho foi baseado nas ideias propostas
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por Ribeiro e Ferrari (2023) sob modelos de regressao beta. O novo estimador denominado de
EMVS € um M-estimador que contém o EMV como caso particular, e sua construgdo parte
da ideia de substituir o logaritmo da fun¢do de verossimilhanga por uma funcao alternativa
denominada de fung@o L,-verossimilhanga reparametrizada. Este procedimento depende de
uma constante de afinacdo 0 < ¢ < 1 que controla a troca entre eficiéncia e robustez do
estimador. Aqui, a inferéncia proposta foi desenvolvida fixando valores para a constante g
assim como feito por Ghosh (2019) sob regressdo beta, considerando um estimador robusto
similar ao EMVS.

Para avaliar o desempenho do EMVS comparado ao EMV na presenca e auséncia de con-
taminagdo nos dados, foram realizados estudos de simulacdo de Monte Carlo. A partir dos
resultados apresentados, foi ilustrada a clara vantagem do uso do procedimento robusto em
relacdo ao método de estimacdo tradicional na presenca de outliers. Na auséncia de contami-
nacdo, o EMV e o EMVS apresentaram comportamentos similares, com o estimador robusto
apresentando uma maior variincia para amostras pequenas. Entretanto, na presenca de conta-
minagdo, o EMV apresentou altos vieses, enquanto o EMVS se manteve centrado em torno dos
verdadeiros valores dos parametros na maioria dos casos. Ainda, observou-se que o valor de
q = 0,7 se mostrou mais adequado para garantir estabilidade das estimativas na grande maioria
dos cendrios considerados.

Por fim, destacam-se as limitagdes e possiveis extensdes dos resultados aqui obtidos. Pri-
meiro, neste trabalho, o valor da constante de afinacdo ¢ foi fixado. Do ponto de vista pratico, é
de interesse que o valor g seja escolhido com base nos dados. Nesse sentido, 0 proximo passo
¢ propor a escolha do valor de ¢ de forma automética, como por exemplo, adaptando o método
orientado pelos dados proposto por Ribeiro e Ferrari (2023) sob regressdo beta. Segundo, € de
suma importancia mensurar os erros-padrdao dos estimadores robustos. Assim, se torna impor-
tante a obten¢do da matriz de covariancias assintética do EMVS com base nas propriedades dos
M-estimadores ou ainda por métodos de reamostragem como bootstrap paramétrico. Por fim, a

aplicacdo do EMVS sob regressdo gama inversa considerando conjuntos de dados reais € rele-
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vante para ilustracdo da aplicabilidade do novo estimador. Estas extensdes foram inicialmente

consideradas neste trabalho, entretanto, por delimitacdo de tempo, ndo foram incluidas.
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Apéndice A

Resultados Capitulo 4

A.1 Transformacao Poténcia

Aqui serd mostrado que o modelo gama inverso definido em (2.9) ¢ fechado sob a transfor-

magcao poténcia sob certas condicoes.
A fungdo densidade de probabilidade € dada por

1+o7 2" - _u(4o—2)
= F(U—Q))] y~ e T ¥ > 0. (A.1)

fo(y; u,0) =

Para o > 0, tem-se que

: o _ p( +o7 ) —a(o—241) —2ute™®)
foly; p, o) = oo e '

Dai,

= [1(1+072)]00 [ 2y _eniie?)
fo(y; p,0)dy = y~ T ey dy.
/0 [[(o=2)]« 0
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] 2\l 2 o] —
/ fo(y; 1, 0)*dy = pldtom) / y~lele P Il et “ay
0 0

— 060'72 o0 —
[u(l +o0 2)] _(0524_1)67 H(1+;a2) dy.

Comoo,?=a(c?+1)-1e0,=1/\/a(c2+1)—1,coma > 0ec > 0. Dai,

Ao Tog?) (o) ey st
/ Joly; p, 0)dy = T(o2)]o [u(1+0 >] / N + dy
@+ o) [(o
- [ ( )]a [lu1+0_ / f@y,uao'a
_ e+ o) r<aa>
P2 [u(+ o2

desde que a densidade fy(y; 1, 0,) esteja bem definida para o > 0. Logo, Pela defini¢do (4.3)

fB(y; 1, U)a
I fo(y; p, o)xdy

_ B+ 0N pagorny - et Dot
T T(0.?) Y

07

1+02)0e" _ _ (05 2+1)
[:u( +O_0¢ )] y—(aaz—l—l)efgd

Y

I(0,?) /

a

(a)(

Y, o) =

Assim, a densidade gama inversa de parﬁmetros e ocom pu = moda(y) é fechada sob a

transformacdo poténcia, isto é, 4 ~ GI(u,0,). Para obter o EMVS, deve-se considerar

o = 1/q, de onde segue que 0/, = 1/4/q (072 + 1) — 1. A condigdo necessdria para que o

estimador esteja bem definido € que 01/, > 0,sendo 0 < g < leo > 0. Mas g/, > 0 &

VU)o 2+1)—1>0s (1/9)(c?>+1)>1 e 0 +1>q¢ge 02> q— 1. Para
0 < ¢ <1, acondicdo 02 > ¢ — 1 sempre é vélida, desde que 02 > 0, para ¢ = 0 deve-se
ter 072 > —1 e para ¢ = 1 deve-se ter 02 > 0. Este resultado implica que 0 EMVS sob a

distribui¢do gama inversa reparametrizada estard bem definido para todo 0 < ¢ < 1.
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