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Resumo

Este trabalho investiga a gestão do risco de inadimplência na concessão de crédito,

uma preocupação central para instituições financeiras. O objetivo principal foi aplicar o

Modelo de Chances de Riscos Proporcionais (MCRP) para a modelagem do risco de

crédito, desenvolvendo um escore capaz de classificar clientes com base em sua proba-

bilidade de inadimplência. O MCRP foi escolhido por sua flexibilidade em lidar com

a natureza discreta do tempo até a inadimplência e por sua capacidade de extrair in-

formações detalhadas sobre o comportamento do cliente. A metodologia foi validada com

dados simulados, demonstrando que o escore de risco proposto é robusto, apresenta desem-

penho consistente e superior a técnicas tradicionais como o modelo loǵıstico. Conclui-se

que o escore é uma contribuição eficaz para a literatura de modelagem de risco de crédito,

oferecendo uma ferramenta prática para a tomada de decisões na concessão de crédito.

Palavras-chave: Escore de Crédito, Inadimplência, Modelo de Chances de Ris-

cos Proporcionais, Análise de Sobrevivência, Tempo Discreto, Escore de Risco.
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Abstract

This study addresses the critical issue of default risk in credit granting, a central concern

for financial institutions. The main objective was to apply the Proportional Odds Hazard

Model (POHM) for credit risk modeling, developing a score capable of classifying clients

based on their probability of default. The POHM was chosen for its flexibility in handling

the discrete nature of time-to-default and its ability to extract detailed information about

customer behavior. The methodology was validated with simulated data, demonstrating

that the proposed risk score is robust, exhibits consistent performance, and surpasses

traditional techniques like the logistic model. It is concluded that the score is an effective

contribution to the credit risk modeling literature, offering a practical tool for credit

granting decision-making.

Keywords: Credit Scoring, Default, Proportional Odds Hazard Model, Survival

Analysis, Discrete time-to-event, Risk Score.
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2.3.3 Distribuição log-loǵıstica discreta . . . . . . . . . . . . . . . . . . . 18

2.4 Obtenção de estimadores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Estimador de Kaplan-Meier de S(t) . . . . . . . . . . . . . . . . . 19
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4.4 Avaliação da acurácia do modelo . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Ilustração da metodologia proposta . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Banco de dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Sumário 7

5.2 Análise descritiva. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Ajuste do MCRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Obtenção do escore de risco e classificação dos indiv́ıduos segundo a meto-

dologia proposta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Comparativo de Desempenho Preditivo . . . . . . . . . . . . . . . . . . . . . 46

6 Considerações finais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Referências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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8 Introdução

1 Introdução

A concessão de crédito desempenha um papel crucial nas economias desenvol-

vidas. A alocação eficiente desse capital em empreendimentos rentáveis impulsiona o

crescimento econômico, fomentando a criação de produtos e serviços que atendem às

demandas do mercado.

Contudo, credores se preocupam com o risco envolvido nessa operação, visto que

os clientes podem não conseguir honrar o pagamento de seus empréstimos, por diversos

motivos. Sendo assim, é de interesse dessas instituições financeiras avaliar o risco associado

ao cliente, antes de fazer a concessão do crédito, para evitar casos de inadimplência e,

assim, tornar o negócio lucrativo. Sob esse cenário, surgiram os Modelos de Credit Scoring,

como ferramenta capaz de quantificar o risco de crédito envolvido em uma operação.

Este trabalho tem como objetivo principal a modelagem do risco de crédito uti-

lizando o modelo de chances de riscos proporcionais (MCRP), proposto por Vieira et al.

(2023). Esse modelo permite uma análise mais detalhada das variáveis que influenciam a

inadimplência, considerando tanto aspectos temporais quanto caracteŕısticas espećıficas

dos clientes. A aplicação dessa metodologia proporciona uma avaliação mais precisa do

risco, auxiliando instituições financeiras na tomada de decisões estratégicas quanto à con-

cessão de crédito. Mais especificamente, será proposto um escore que medirá o risco de

inadimplência de um cliente. Este escore será calculado a partir das estimativas do MCRP

e utilizado para classificar os clientes em mal ou bons pagadores.

Além disso, o uso do MCRP oferece vantagens significativas em termos de flexibi-

lidade e interpretação dos resultados. Ao contrário de modelos tradicionais, que frequen-

temente assumem uma distribuição cont́ınua para o tempo até a inadimplência, o modelo

de chances de riscos proporcionais não impõe essa restrição, permitindo uma análise mais

realista e adaptada às caracteŕısticas dos dados dispońıveis. A metodologia proposta será

ilustrada em um conjunto de dados artificiais que imitam dados presentes na literatura.

A estrutura deste estudo é organizada da seguinte maneira: primeiramente,

apresenta-se uma revisão da literatura sobre modelagem de risco de crédito, juntamente

com os fundamentos teóricos do modelo de Cox. Em seguida, detalha-se a metodologia

empregada, incluindo a descrição dos dados utilizados e as técnicas de análise aplica-

das. Posteriormente, os resultados obtidos são apresentados e discutidos, com ênfase nas

implicações práticas para a gestão de risco em instituições financeiras. Finalmente, são

apresentadas as considerações finais e sugestões para pesquisas futuras.



Conceitos Básicos em Análise de Sobrevivência 9

2 Conceitos Básicos em Análise de Sobrevivência

2.1 Introdução

A Análise de Sobrevivência é uma classe de métodos estat́ısticos utilizada para

análise de dados no qual o foco de interesse é o tempo até ocorrência de determinado

evento de interesse. Essa técnica é muito utilizada na área médica para estudos sobre

morte, mas ganhou aplicações em vários outros campos do conhecimento, como sociologia

na análise histórica de eventos, engenharia com análise do tempo de vida de equipamentos

e na economia com análise de inadimplência.

As técnicas de Análise de Sobrevivência têm ganhado destaque em diversas áreas,

pois, além de identificar a ocorrência ou não de um evento de interesse, estimam o mo-

mento em que tal evento ocorre, permitindo situá-lo temporalmente.

De acordo com Colosimo e Giolo (2006), uma caracteŕıstica crucial nesse conjunto

de técnicas é a presença de censura, que se refere à possibilidade de informações incom-

pletas nos dados, ou seja, quando uma observação não é acompanhada até a ocorrência

do evento de interesse. Um exemplo na área econômica seria quando o acompanhamento

dos depósitos de crédito de um cliente de um banco termina para análise, e não ocorre

o evento de inadimplência. Isso implica que toda a informação dispońıvel se resume ao

conhecimento de que o evento não aconteceu durante o peŕıodo observado, deixando em

aberto o momento em que ele poderia ocorrer após o término do acompanhamento.

Considerando a censura, é preciso incluir uma variável que identifique se o tempo

da ocorrência do evento foi observado ou não. Essa variável é conhecida na literatura como

variável indicadora de censura ou falha. É importante destacar que, mesmo nos casos em

que ocorre censura, todos os resultados do estudo devem ser considerados na análise

estat́ıstica, pois a exclusão da censura nos cálculos estat́ısticos pode levar a estimativas

distorcidas.

A classificação dos tipos de censura pode ser dividida em três categorias princi-

pais: censura à direita, censura à esquerda e censura intervalar. Na censura à direita, o

tempo registrado (ou censurado) é menor do que o tempo que teria sido observado se não

houvesse interrupção. Por outro lado, na censura à esquerda, o evento de interesse ocorre

antes mesmo do tempo ser registrado, ou seja, o tempo registrado é maior do que o tempo

de falha.

Por fim, na censura intervalar, não é posśıvel identificar o tempo exato em que

ocorreu a falha; apenas conhecemos um intervalo de tempo em que o evento de interesse

ocorreu.
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Assim, é necessário incluir uma variável dicotômica na análise para indicar se o

tempo de sobrevida de um indiv́ıduo foi observado ou não. Essa variável, chamada de

variável indicadora de censura ou simplesmente censura, é definida como igual a um se o

tempo de sobrevida é observado e igual a zero se o tempo de sobrevida é censurado.

2.2 Representação do tempo de sobrevivência

Na Análise de Sobrevivência, busca-se estimar o comportamento da variável

aleatória tempo de sobrevivência, T > 0, o que pode ser aprimorado com o uso de variáveis

explicativas. O comportamento da variável resposta pode ser expresso por meio de várias

funções equivalentes. Essas funções, como a função de sobrevivência ou a função de risco

(ou taxa de falha), são utilizadas para descrever diferentes aspectos do tempo de sobre-

vivência, que pode ser discreto ou cont́ınuo. Se uma dessas funções é especificada, as

outras podem ser derivadas.

2.2.1 Representação para tempo cont́ınuo

Função densidade de probabilidades

Considere T como uma variável aleatória não negativa e cont́ınua. A Função

Densidade de Probabilidade (FDP) de T , denotada por f(t), é uma função que satisfaz

as seguintes condições (MEYER, 1983):

1. f(t) ≥ 0 para todo t ≥ 0

2.
∫∞
0

f(t) dt = 1

3. P (a ≤ T ≤ b) =
∫ b

a
f(t) dt , ∀ 0 ≤ a ≤ b.

Essa função pode ser interpretada como o limite da probabilidade de um indiv́ıduo

experimentar o evento de interesse no intervalo de tempo [t, t+∆t), dividida pela duração

do intervalo e pode ser expressa por:

f(t) = lim
∆t→0

P (t ≤ T < ∆t)

∆t
, t ≥ 0. (2.2.1)

Função de sobrevivência

Denotada por S(t), a função de sobrevivência representa a probabilidade de um

indiv́ıduo não apresentar o evento de interesse até um dado instante t, ou seja, a probabi-

lidade de que o indiv́ıduo sobreviva além desse tempo t. Esta função é uma das principais

funções probabiĺısticas utilizadas para descrever o tempo de sobrevivência e é definida

por:
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S(t) = P [T > t] =

∫ ∞

t

f(u) du , t ≥ 0. (2.2.2)

A função de sobrevivência (2.2.2) é uma função não crescente e absolutamente cont́ınua,

tal que limt→0 S(t) = 1 e limt→∞ S(t) = 0

Função de risco

A Função de Risco, também denominada função taxa de falha e denotada por

h(t), representa o risco instantâneo de um indiv́ıduo apresentar o evento de interesse em

um dado instante t. Para uma variável aleatória cont́ınua, esta função é definida como

o limite da razão da probabilidade condicional de um indiv́ıduo experienciar o evento de

interesse no intervalo de tempo [t, t + ∆t), dado que não tenha experienciado o evento

antes de t, pelo intervalo de tempo ∆t. A função h(t) é expressa por:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
, t ≥ 0. (2.2.3)

No caso de variáveis aleatórias cont́ınuas, a função de risco h(t) assume valores

reais positivos e não possui um limite superior.

Função de risco acumulado

Outra função importante derivada da função h(t) é a Função de Risco Acumulada,

ou Taxa de Falha Acumulada, representada por H(t). Embora H(t) não tenha uma

interpretação direta, ela é útil em procedimentos de estimação não-paramétricos e na

escolha do modelo mais adequado para ajustar um conjunto de dados espećıfico. A função

H(t) fornece o risco acumulado até o tempo t e, no caso de uma variável aleatória cont́ınua,

é definida por:

H(t) =

∫ t

0

h(u) du , t ≥ 0. (2.2.4)

Principais relações entre as funções f(t), S(t), h(t) e H(t)

Apresentam-se, a seguir, algumas relações matemáticas importantes entre as

funções de densidade, sobrevivência e risco. Tais relações podem ser utilizadas para

determinar uma das funções, dado o conhecimento de outra. Observe que:
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h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
= lim

∆t→0

P ({t ≤ T < t+∆t} ∩ {T ≥ t})
∆tP (T ≥ t)

=
lim∆t→0

P (t≤T<t+∆t)
∆t

P (T > t)

=
f(t)

S(t)
.

(2.2.5)

A função densidade de probabilidades, f(t), é definida como a derivada da Função

de Distribuição Acumulada, F (t), isto é,

f(t) =
d

dt
F (t).

Visto que F (t) = 1–S(t), tem-se que

f(t) =
d

dt
[1− S(t)] = − d

dt
S(t) = −S ′(t). (2.2.6)

Uma vez que d
du
log(u) = u′

u

substituindo (2.2.5) em (2.2.6) obtém-se que

h(t) = −S ′(t)

S(t)
= − d

dt
logS(t). (2.2.7)

Consequentemente, integrando ambos os termos (2.2.8) resulta em

logS(t) = −
∫ t

0

h(u) du = −H(t),

o que implica em

S(t) = exp

{
−
∫ t

0

h(u) du

}
= exp {−H(t)} . (2.2.8)

De (2.2.6) tem- se que

f(t) = h(t)S(t).

Desta forma, ao substituir (2.2.8) em (2.2.6) resulta em

f(t) = h(t)exp

{
−
∫ t

0

h(u) du

}
. (2.2.9)
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2.2.2 Representação para tempo discreto

Função de probabilidade

Considere T como uma variável aleatória discreta que assume valores inteiros

não negativos, ou seja, t = 0, 1, 2, . . . A função de probabilidade, ou distribuição de

probabilidade de T , é uma função que associa a cada posśıvel valor da variável aleatória

sua respectiva probabilidade. Essa função, denotada por p(t) = P (T = t), deve satisfazer

as seguintes condições (JAMES, 2015):

1. 0 ≤ p(t) ≤ 1 para todo t = 0, 1, 2, . . . e

2.
∑∞

t=0 p(t) = 1.

Função de sobrevivência

Definida como a probabilidade de um indiv́ıduo não apresentar o evento de inte-

resse até um dado instante t, a função de sobrevivência, no caso em que T é uma variável

aleatória discreta, é expressa por:

S(t) = P [T > t] =
∞∑

k=t+1

p(k) =
∞∑

k=t+1

P (T = k) , t = 0, 1, 2, . . . . (2.2.10)

A função de sobrevivência é uma função definida em todos os reais não negativos.

Função de risco

No caso de uma variável aleatória discreta, a Função de Risco (ou função taxa de

falha) é definida como a probabilidade condicional de um indiv́ıduo apresentar o evento

de interesse no instante t, dado que não o tenha apresentado antes de t. Assim, temos:

h(t) = P (T = t|T ≥ t), t = 0, 1, 2, . . . . (2.2.11)

Observe que, para os valores de t que são negativos ou não inteiros, a função de

risco (2.2.11) é igual a zero. Além disso, por se tratar de uma probabilidade condicional,

a função de risco para variáveis aleatórias discretas é limitada ao intervalo [0, 1].

Função de risco acumulado

A função de risco acumulado, H(t), representa o risco acumulado do indiv́ıduo

até o tempo t. No caso de uma variável aleatória discreta, essa função é definida por
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H(t) =
t∑

k=0

h(k), t = 0, 1, 2, . . . . (2.2.12)

A função de risco acumulado (2.2.12) não tem interpretação direta e é uma função

que assume valores reais positivos, não sendo limitada superiormente.

Principais relações entre as funções f(t), S(t), h(t) e H(t)

Descrevem-se, a seguir, algumas relações matemáticas importantes entre as funções

de densidade, sobrevivência e risco de uma variável aleatória discreta.

Dadas as equações (2.2.10) e (2.2.11), observa-se que

h(t) = P (T = t|T ≥ t) =
P (T = t ∩ T ≥ t)

P (T ≥ T )
=

P (T = t)

P (T = t) + P (T > t)

=
p(t)

p(t) + S(t)
, t = 0, 1, 2, . . . ,

(2.2.13)

que resulta em

p(t) =
h(t)

1− h(t)
S(t), t = 0, 1, 2, . . . . (2.2.14)

Além disso, a distribuição de probabilidades pode ser expressa em termos da

função de sobrevivência por meior da seguinte expressão:

p(t) =

1− S(0), se t = 0.

S(t− 1)− S(t), se t = 1, 2, . . . .
(2.2.15)

Veja ainda que, para t = 1, 2, . . . tem-se que

S(t) =
S(0)

1

S(1)

S(0)

S(2)

S(1)
. . .

S(t− 1)

S(t− 2)

S(t)

S(t− 1)
= S(0)

t∏
k=1

S(k)

S(k − 1)
. (2.2.16)

Visto que S(0) = 1 − p(0) e h(0) = p(0), a função de sobrevivência pode ser

obtida a partir da função de risco por meio da seguinte expressão:
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S(t) = [1− h(0)]
t∏

k=1

S(k)

p(k) + S(k)
= [1− h(0)]

t∏
k=1

[
1− p(k)

p(k) + S(k)

]

= [1− h(0)]
t∏

k=1

[1− h(k)]

=
t∏

k=0

[1− h(k)], t = 0, 1, 2, . . . ,

(2.2.17)

A partir das equações (2.2.14) e (2.2.17), é posśıvel expressar a distribuição de

probabilidades em termos da função de risco por meio da seguinte expressão:

p(t) =
h(t)

1− h(t)

t∏
k=0

[1− h(k)], t = 0, 1, 2, . . . . (2.2.18)

2.3 Tempos discretos

O objetivo de diversas análises estat́ısticas, especialmente na análise de sobre-

vivência, é modelar o tempo até a ocorrência do evento de interesse. Conforme Berger e

Schmid (2018), é comum assumir que o tempo de sobrevivência é uma variável aleatória

medida em uma escala cont́ınua, e existe uma vasta literatura sobre o tema. No en-

tanto, na prática, as medições de tempo costumam ser discretas. Em algumas situações,

a hora exata do evento pode não ser conhecida, apenas o intervalo durante o qual o evento

ocorreu.

De acordo com Tutz e Schmid (2016), o tempo até a ocorrência do evento de

interesse pode ser discreto devido a:

1. Medições intrinsecamente/genuinamente discretas;

2. Dados agrupados.

Os dados agrupados representam eventos que ocorrem em intervalos de tempo

espećıficos, e a variável resposta se refere a um desses intervalos, que podem ter tamanhos

iguais ou diferentes. Exemplos desse tipo de análise incluem estudos como o tempo,

em meses, até a morte de homens diagnosticados com Śındrome da Imunodeficiência

Adquirida (AIDS) (BRUNELLO; NAKANO, 2015) e o tempo, também em meses, de

pacientes com câncer de cabeça e pescoço (CARDIAL; FACHINI-GOMES; NAKANO,

2020).
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Em relação aos tempos genuinamente discretos, cujas medições representam números

naturais, destacam-se diversas aplicações, tais como: o tempo até a gravidez, que em estu-

dos cĺınicos é geralmente medido pelo número de ciclos menstruais (BERGER; SCHMID,

2018); o tempo até a evasão universitária, medido em semestres (VALLEJOS; STEEL,

2016); e o tempo até a degeneração macular relacionada à idade entre idosos, monitorado

por visitas anuais de estudo (BERGER et al., 2019).

De acordo com Tutz e Schmid (2016), os métodos estat́ısticos desenvolvidos para

tempos discretos oferecem várias vantagens:

1. Interpretação facilitada: A consideração de modelos para tempos discretos per-

mite formular os riscos como probabilidades condicionais, o que facilita a inter-

pretação em comparação com as funções de risco cont́ınuas.

2. Adequação aos dados discretos: Na prática, diversos tempos de evento são in-

trinsecamente discretos ou observados em uma escala discreta. Portanto, a utilização

de modelos para tempos discretos mostra-se mais adequada do que a aproximação

dos dados observados por meio de um modelo de sobrevivência cont́ınuo.

3. Ausência de problemas com empates: Diferentemente dos modelos de sobre-

vivência para tempo cont́ınuo, os modelos para eventos discretos não apresentam

problemas com empates.

4. Possibilidade de incorporação em MLG: Modelos para tempos discretos podem

ser integrados na estrutura de um Modelo Linear Generalizado (MLG), permitindo

que a estimativa seja obtida usando softwares padrão para a estimativa de MLG.

5. Aplicação em modelos avançados: A incorporação na estrutura de MLG per-

mite utilizar a metodologia também para modelos avançados, como aqueles que

incluem parâmetros espećıficos em modelos de fragilidade.

2.3.1 Discretização de distribuições cont́ınuas

Emmuitas situações práticas, variáveis que têm uma natureza cont́ınua podem ser

registradas de forma discreta. Por exemplo, o tempo até a ocorrência de inadimplência de

crédito pode ser medido em dias ou meses, mesmo que o conceito subjacente seja cont́ınuo.

Nesse contexto, torna-se útil e apropriado modelar tais variáveis por meio de distribuições

discretas, derivadas de modelos cont́ınuos, preservando uma ou mais propriedades carac-

teŕısticas da distribuição original, tais como sua função de densidade de probabilidade,

função geradora de momentos, função da taxa de risco, entre outras. Chakraborty (2015)

fornece uma revisão abrangente sobre métodos e técnicas para criar versões discretas de



Conceitos Básicos em Análise de Sobrevivência 17

distribuições de probabilidade cont́ınuas. De acordo com Jayakumar e Babu (2018), entre

as várias abordagens para discretizar distribuições cont́ınuas, destacam-se as seguintes:

• Discretizar a função de distribuição acumulada cont́ınua;

• Discretizar a função densidade de probabilidade cont́ınua;

• Discretizar a função de risco cont́ınua;

• Obter distribuição discreta de tempo de vida a partir da taxa de falha alternativa.

A primeira metodologia mencionada, que será a única abordada em detalhes neste

trabalho, será explicada a seguir. Considere X como uma variável aleatória cont́ınua não

negativa com função de distribuição acumulada FX(x). A variável aleatória discreta

T pode ser obtida através de T = ⌊X⌋, em que ⌊X⌋ representa a “parte inteira de

X”, ou seja, o maior inteiro que é menor ou igual a X. Dessa forma, a distribuição

de probabilidades da variável aleatória discreta T pode ser expressa como (NAKANO;

CARRASCO, 2006):

P (T = t) = P (t ≤ X < t+ 1) = FX(t+ 1)− FX(t), t = 0, 1, 2, . . . . (2.3.1)

Nesse contexto, diversas publicações sobre análise de sobrevivência utilizam essa

metodologia para determinar análogos discretos de distribuições cont́ınuas, resultando em

novas distribuições de probabilidade discretas. Além disso, esses análogos discretos são

aplicados em diferentes áreas. Exemplos incluem Nakagawa e Osaki (1975), que desenvol-

veram a distribuição Weibull discreta (WD); Jayakumar e Babu (2018), que introduziram

a distribuição Weibull Geométrica discreta; Vieira et al. (2023), que trabalhou com a dis-

tribuição Log-loǵıstica discreta; Cardial, Fachini-Gomes e Nakano (2020), que estudaram

a distribuição Weibull discreta exponenciada (WDE); Sarhan (2017), que apresentou a

distribuição banheira de dois parâmetros discreta (DTPBT); Chakraborty (2015), que

propôs a distribuição Gumbel discreta; e Brunello e Nakano (2015), que também in-

vestigaram a distribuição WD em um contexto bayesiano. A seguir será apresentada a

distribuição Weibull discreta e a distribuição log-loǵıstica.

2.3.2 Distribuição Weibull Discreta

A distribuição Weibull é amplamente reconhecida e utilizada na modelagem de

dados de sobrevivência cont́ınuos devido à sua grande flexibilidade. Essa versatilidade se

deve à presença de dois parâmetros principais: o parâmetro de escala e o parâmetro de
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forma. Esses parâmetros permitem uma variedade de formas para a distribuição, além de

uma função taxa de falha que pode ser crescente, decrescente ou constante, caracterizando-

se por sua monotonicidade.

Neste trabalho, será abordada a versão discreta, introduzida por Nakagawa e

Osaki (1975). Uma variável aleatória T segue uma distribuição Weibull discreta (WD)

com parâmetros η > 0 e q ∈ (0, 1), denotado por T ∼ WD(q, η), se sua função de

probabilidade é dada por:

p(t) = qt
η − q(t+1)η , t = 0, 1, 2, . . . . (2.3.2)

A função de sobrevivência da distribuição Weibull discreta (WD) e a função de

risco são expressas, respectivamente, por:

S(t) = q(t+1)η , (2.3.3)

e

h(t) =

(
qt

η − q(t+1)η

qtη

)
, t = 0, 1, 2, . . . . (2.3.4)

A função de risco da distribuição Weibull discreta assume diferentes formas de-

pendendo do valor de η. Ela é estritamente crescente se η > 1, constante se η = 1

(neste caso, a distribuição Weibull discreta se reduz a uma distribuição geométrica), e

estritamente decrescente se η < 1.

2.3.3 Distribuição log-loǵıstica discreta

A distribuição log-loǵıstica discreta é uma versão discretizada da distribuição log-

loǵıstica cont́ınua. A distribuição log-loǵıstica discreta é útil em diversas áreas, incluindo

biomedicina, engenharia de confiabilidade e ciências sociais. Sua principal diferença em

relação à distribuição WD é que a mesma acomoda funções de risco unimodais.

Segundo Santos (2017), considerando α > 0 como o parâmetro de escala e γ > 0

como o parâmetro de forma da distribuição log-loǵıstica cont́ınua, a função de probabili-

dade da distribuição log-loǵıstica discreta pode ser derivada a partir da Equação (2.3.1)

e é dada por:

p(t) =
1

1 +
(
t
α

)γ − 1

1 +
(
t+1
α

)γ , t = 0, 1, 2, . . . . (2.3.5)

Dessa forma, as funções de sobrevivência e de risco são dadas, respectivamente,

por
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S(t) =
1

1 +
(
t+1
α

)γ , (2.3.6)

e

h(t) =

1

1+( t
α)

γ − 1

1+( t+1
α )

γ

1

1+( t
α)

γ

, t = 0, 1, 2, . . . . (2.3.7)

2.4 Obtenção de estimadores

Na análise de sobrevivência, a obtenção de estimadores desempenha um papel

fundamental na modelagem e na interpretação dos dados relacionados ao tempo até a

ocorrência de um evento de interesse. Do ponto de vista prático, o interesse inicial reside

na estimativa da função densidade de probabilidade f(t), da função de sobrevivência S(t)

e da função de risco h(t). Essas funções podem ser estimadas diretamente a partir dos

dados amostrais utilizando procedimentos não paramétricos.

2.4.1 Estimador de Kaplan-Meier de S(t)

O estimador de Kaplan-Meier é amplamente empregado como uma ferramenta

não paramétrica para estimar a função de sobrevivência em presença de censuras. Ele é

particularmente eficaz para uma análise preliminar dos dados, uma vez que as técnicas

convencionais de cálculo de medidas resumo tendem a falhar nesse cenário (COLOSIMO;

GIOLO, 2006).

Considere os tempos distintos de falha t1, t2, . . . , tk, onde t1 < t2 < . . . < tk.

Existem n indiv́ıduos com seus respectivos tempos de sobrevivência, e entre esses, k são

tempos distintos que não apresentam censura. Dessa forma, temos que k ≤ n, e cada

tempo tj (para j = 1, . . . , k) pode ser observado mais de uma vez. Este estimador é

também conhecido na literatura como estimador limite-produto e é definido como (KA-

PLAN; MEIER, 1958)

Ŝ(t) =
∏
j:tj<t

(
1− dj

nj

)
, (2.4.1)

sendo dj o número de falhas no tempo tj e nj é o número de indiv́ıduos que não experi-

mentaram do evento de interesse, e que não foram censurados até o tempo imediatamente

anterior a tj (COLOSIMO; GIOLO, 2006).

Seja w > 0 e t1 ≤ w < t2, onde w é um tempo qualquer e t1 e t2 são tempos de

falha observados. As estimativas de S(t) respeitam a seguinte relação:
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Ŝ(w) = P (T > w) = P (T > t1) = Ŝ(t1).

Esse é um dos motivos pelos quais a representação gráfica da função de sobre-

vivência estimada pelo método Kaplan-Meier assume a forma de uma escada.

2.4.2 Estimadores de Máxima verossimilhança

Atualmente, este é o método de estimação amplamente utilizado na inferência

frequentista. Além disso, possui uma base teórica robusta, desenvolvida para uma ampla

gama de situações como citado em Dani, Francisco e Migon (2014).

Seja t1, t2, . . . , tn uma amostra aleatória observada de uma variável aleatória

discreta T . Aqui, p(t;ϕ) representa a função de probabilidade da população e ϕ =

(ϕ1, . . . , ϕk)
T é o vetor de parâmetros da função de probabilidade. A função de verossi-

milhança para ϕ, na ausência de censuras, é dada por:

L(ϕ; t) =
n∏

i=1

p(ti;ϕ). (2.4.2)

No entanto, na presença de censura (à direita), os dados censurados devem ser

distinguidos daqueles que sofreram o evento de interesse, frequentemente referidos como

dados não censurados.

Dessa maneira, as observações podem ser reordenadas e divididas em dois gru-

pos: os primeiros k elementos são os não censurados (1, 2, . . . , r), cuja contribuição para

a função de verossimilhança é dada por p(ti;ϕ), e os k − r elementos restantes são os

censurados (k + 1, k + 2, . . . , n), cuja contribuição para a função de verossimilhança é re-

presentada pela função de sobrevivência S(ti;ϕ). Neste caso, a função de verossimilhança

é expressa da seguinte forma:

L(ϕ; t) ∝
k∏

i=1

p(ti;ϕ)
n∏

i=k+1

S(ti;ϕ) , (2.4.3)

que é equivalente a:

L(ϕ; t) ∝
n∏

i=1

[p(ti;ϕ)]
δi [S(ti;ϕ)]

1−δi , (2.4.4)

em que δi é a variável indicadora de falha, que assume valor 1 se o tempo ti for de falha e

0 se for censura à direita. Em (2.4.4), p(·;ϕ) e S(·;ϕ) são, respectivamente, a distribuição

de probabilidade e função de sobrevivência do modelo considerado, i = 1, 2, . . . , n.
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Ao aplicar o logaritmo na função de verossimilhança na equação (2.4.4), tem-se:

ℓ(ϕ; t, δ) = c+
n∑

i=1

[δi log [p(ti;ϕ)] + (1− δi) log [S(ti;ϕ)]] , (2.4.5)

em que c é uma constante que não depende de ϕ.

Os estimadores de máxima verossimilhança são os valores de ϕ que maximizam

L(ϕ; t, δ) ou equivalentemente ℓ(ϕ; t, δ), normalmente representado por ϕ̂, e são obtidos

resolvendo o sistema de equações:

∂ℓ(ϕ; t, δ)

∂ϕ
= 0 . (2.4.6)

2.5 Modelo de riscos proporcionais de Cox

De acordo com Colosimo e Giolo (2006), o modelo de regressão de Cox é uma

ferramenta poderosa para a análise de dados provenientes de estudos de tempo de vida,

onde a variável resposta é o tempo até a ocorrência de um evento de interesse, ajustado

por covariáveis. Este modelo é amplamente utilizado em estudos de sobrevivência devido

à sua versatilidade. Fundamentado na suposição de que os riscos são proporcionais, a

regressão de Cox não requer a especificação de uma distribuição de probabilidade para os

tempos de sobrevivência, o que o torna um modelo robusto e flex́ıvel.

Existem várias razões que tornam a regressão de Cox atraente, como a capaci-

dade de lidar com covariáveis dependentes do tempo, realizar análises estratificadas para

controle de variáveis com rúıdo e funcionar tanto para medidas de tempo discretas quanto

cont́ınuas. No seu artigo original, Cox (1972) introduziu dois conceitos inovadores: o mo-

delo de riscos proporcionais (posteriormente generalizado para riscos não proporcionais)

e um novo método de estimação denominado máxima verossimilhança parcial.

Considerando x um vetor de covariáveis com p componentes, o modelo de re-

gressão de Cox é dado por:

h(t) = ho(t)g(x
′β) , (2.5.1)

em que g(·) é uma função não negativa tal que g(0) = 1 e h0(t) é a função de risco base

(função de risco quando todas as covariáveis são iguais a zero).Dessa forma, o modelo

de Cox é definido como o produto de dois componentes: um paramétrico e outro não

paramétrico, razão pela qual também é chamado de modelo semiparamétrico. O compo-

nente não paramétrico é geralmente denominado função de risco base ou basal. Isso ocorre

porque h(t) = h0(t) quando x = 0, ou seja, h0(t) pode ser considerada a taxa de falha
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de um indiv́ıduo cujas covariáveis possuem valor zero. A função base não é especificada,

mas deve ser uma função não negativa ao longo do tempo.

Por outro lado, a parte paramétrica é uma função positiva e cont́ınua das co-

variáveis. Embora existam outras formas na literatura para essa componente, ela é co-

mumente escrita na forma exponencial, devido à sua propriedade de ser sempre positiva,

da seguinte maneira:

g(x′β) = exp(x′β) = exp(β1x1 + . . .+ βpxp) , (2.5.2)

em que β é o vetor de parâmetros desconhecidos.

Devido à sua linearidade no modelo, é comum referir a soma β1x1 + . . . + βpxp

como preditor linear ou escore, que, na forma matricial, é denotado por x′β.

É importante observar que a constante β0 (intercepto), presente nos modelos

paramétricos, não aparece na função g(x′β). Isso se deve à presença do componente não

paramétrico no modelo, que absorve esse termo constante. A expressão do modelo em

(2.5.2) implica que a razão das taxas de falha ou de risco entre dois indiv́ıduos, l e m, é

constante ao longo do tempo, sendo uma função apenas das covariáveis, como pode ser

observado em (2.5.3).

hl(t)

hm(t)
=

h0(t) exp(x
′
lβ)

h0(t) exp(x′
mβ)

= exp(x′
lβ − x′

mβ). (2.5.3)

Devido a essa razão, o Modelo de Cox também é conhecido como Modelo de

Riscos Proporcionais. Apesar do modelo de Cox ser muito flex́ıvel devido ao componente

não paramétrico, a suposição fundamental de taxas de falha proporcionais não pode ser

violada para a correta utilização do Modelo de Cox. Para avaliar a proporcionalidade dos

riscos, podem ser empregadas técnicas gráficas e testes estat́ısticos.

2.5.1 Formulação do modelo

Dado um conjunto de observações de sobrevivência, o objetivo comum é estimar

modelos preditivos nos quais o risco do evento depende de covariáveis. Uma maneira

de determinar tal modelo é estimando os coeficientes β′s que mensuram os efeitos dos

atributos sobre a função taxa de falha no Modelo de Cox.

Assim, é necessário um método de estimação que permita a construção de in-

ferências sobre os parâmetros do modelo. O método da máxima verossimilhança, fre-

quentemente utilizado, não pode ser empregado devido à presença do componente não

paramétrico. Por isso, Cox propôs um novo método de estimação: a máxima verossimi-

lhança parcial, através do qual é posśıvel estimar os coeficientes das covariáveis sem a
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necessidade de especificar a função base h0(t).

Uma forma simples de entender esse método, segundo Colosimo e Giolo (2006),

considera o seguinte argumento condicional: a probabilidade condicional da i -ésima ob-

servação vir a falhar no tempo ti, conhecendo quais indiv́ıduos estão sob risco em ti é:

P (indiv́ıduo falhar em ti|uma falha em ti e história até ti) =

P (indiv́ıduo falhar em ti|sobreviveu a ti e história até ti)

P (uma falhar em ti|história até ti)
=

hi(t|xi)∑
j∈R(ti)

hj(t|xj)
=

h0(t) exp(x
′
iβ)∑

j∈R(ti)
h0(t) exp(x′

jβ)
=

exp(x′
iβ)∑

j∈R(ti)
exp(x′

jβ)
,

em que R(ti) representa o conjunto dos ı́ndices das observações sob risco em ti. Cox

propôs utilizar o registro histórico passado de falhas e censuras na forma de probabilidade

condicional para eliminar o termo não paramétrico da função de verossimilhança.Assim,

a função de máxima verossimilhança parcial é dada por:

L(β) =
k∏

i=1

exp(x′
iβ)∑

j∈R(ti)
exp(x′

jβ)
=

n∏
i=1

(
exp(x′

iβ)∑
j∈R(ti)

exp(x′
jβ)

)δi

,

em que δi é o indicador de falha, n é o tamanho da amostra, k < n o número de falhas

distintas nos tempos t1 < t2 < . . . < tk.

Essa função obtida para o modelo de riscos proporcionais não é uma verossimi-

lhança verdadeira, porque não utiliza os verdadeiros tempos de sobrevivência dos clientes

censurados e não censurados. Por isso, ela é chamada de verossimilhança parcial.

O logaritmo dessa função de verossimilhança é dado por:

ℓ(β) = logL(β) =
n∑

i=1

δi

x′
jβ − log

∑
j∈R(ti)

exp(x′
jβ)

 . (2.5.4)

As estimativas de verossimilhança dos parâmetros β′s são obtidos maximizando-

se (2.5.4), ou seja, resolvendo o sistema de equações definido U(β) = 0, em que U é o

vetor escore formado pelas primeiras derivadas de ℓ(β).

U(β) =
n∑

i=1

δi

(
xi −

∑
j∈R(ti)

xj exp(x
′
jβ̂)∑

j∈R(ti)
exp(x′

jβ̂)

)
= 0 . (2.5.5)

Assim, o termo “regressão de Cox” refere-se à combinação do modelo de riscos

proporcionais com o método de estimação da máxima verossimilhança parcial.
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Este método de estimação possui duas das três propriedades padrão dos estimado-

res de máxima verossimilhança: resultados consistentes e assintoticamente normais. Isso

significa que, em grandes amostras, os estimadores são aproximadamente não viesadas e

a sua distribuição amostral é aproximadamente normal.

Tanto o modelo de riscos proporcionais quanto a função de verossimilhança parcial

pressupõem que os tempos de sobrevivência são cont́ınuos, o que, em teoria, impede a

ocorrência de empates nos valores observados. No entanto, na prática, empates podem

ocorrer devido a escalas de medição, processos de coleta de dados, arredondamentos e

aproximações, bem como a ocorrência de múltiplos eventos no mesmo instante de tempo.

Também é posśıvel haver empates entre observações censuradas e entre falhas e censuras.

Portanto, são necessárias adequações à função de verossimilhança para lidar com esses

empates.

Com as estimativas dos coeficientes β e seus erros-padrão, é posśıvel construir

um intervalo de confiança de 100(1 - α)% para um determinado βp, utilizando os per-

centis da distribuição normal padrão. Se o intervalo de confiança não incluir o valor

zero, pode-se afirmar que há evidências suficientes para considerar que o coeficiente βp é

significativamente diferente de zero.

2.5.2 Estimação dos parâmetros

Dado um Modelo de Cox com o vetor x de covariáveis de dimensão p e as respec-

tivas estimativas dos coeficientes, então a função taxa de falha para o j-ésimo indiv́ıduo

é dada por:

ĥj(t) = ĥ0(t) exp(x
′
jβ̂) , (2.5.6)

em que ĥ0(t) é a estimativa da função base.

Outras funções relacionadas a h0(t) são importantes, especialmente em análises

gráficas para avaliar a adequação do modelo ajustado. No entanto, como h0(t) não é

especificado de forma paramétrica, outras técnicas são utilizadas para sua estimativa. A

função de risco acumulada base pode ser estimada de maneira simples, segundo Breslow

(1975), onde uma função em degraus com saltos nos tempos distintos de falha é empregada

da seguinte maneira:

Ĥ0(t) =
∑
j:tj<t

dj∑
l∈Rj

exp(x′
jβ̂)

, (2.5.7)

em que dj é o número de falhas em tj.
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Consequentemente, é posśıvel estimar as funções de sobrevivência S0(t) e S(t) da

seguinte forma

Ŝ0(t) = exp{−Ĥ0(t)} (2.5.8)

e

Ŝ(t|xj) = Ŝ0(t)
exp(x′

j β̂). (2.5.9)

2.5.3 Avaliação do modelo (verificação do ajuste)

Apesar de o Modelo de Cox ser flex́ıvel, é necessário avaliar a adequação dos dados

à aplicação da metodologia. Uma maneira de verificar se o modelo escolhido é o mais

apropriado consiste em examinar o comportamento dos reśıduos entre os valores preditos

e observados. Isso permite analisar a suposição de riscos proporcionais e identificar dados

discrepantes na amostra.

Para verificar a suposição de riscos proporcionais no modelo de Cox, é comum

usar um gráfico espećıfico. Inicialmente, divide-se os dados em m estratos, geralmente com

base em uma covariável, como sexo. Em seguida, estima-se ĥ0j(t) para cada estrato. Se a

suposição de riscos proporcionais for válida, as curvas do logaritmo de ĥ0j(t) versus t, ou

log(t), devem ser aproximadamente paralelas. Curvas não paralelas indicam desvios dessa

suposição. É recomendável construir esse gráfico para cada covariável do estudo. Para

covariáveis cont́ınuas, sugere-se agrupá-las em poucas categorias. Essa técnica gráfica tem

a vantagem de indicar qual covariável está violando a suposição, se for o caso.

Uma proposta adicional que vem sendo usada para verificar a suposição de riscos

proporcionais no modelo de Cox é a de analisar os reśıduos de Schoenfeld (1982). Consi-

dere que o indiv́ıduo i experimentou o evento de interesse, sendo observado o tempo de

falha e o vetor de covariáveis xi = (xi1, xi2, . . . , xip)
′. O reśıduo de Schoenfeld é definido

como ri = (ri1, ri2, . . . , rip)
′, onde cada componente riq, para q = 1, 2, . . . , p, é dado por:

riq = xi1 −
∑

j∈R(ti)
xjq exp(x

′
jβ̂)∑

j∈R(ti)
exp(x′

jβ̂)
. (2.5.10)

Esse reśıduo não é definido para censuras, apenas para tempos de falha. Entre-

tanto, essa medida, definida dessa forma, é pouco utilizada, pois não considera a estru-

tura de correlação entre os reśıduos. Para contornar essa limitação, foram desenvolvidos

os Reśıduos Padronizados de Schoenfeld, que são frequentemente utilizados. Nesse caso,
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é necessário usar a matriz de informação observada, I(β), como um fator multiplicativo

aplicado ao reśıduo simples, conforme a seguinte fórmula:

s∗i = [I(β)]−1ri . (2.5.11)

Consequentemente, se a suposição de riscos proporcionais for válida, o gráfico de

βq(t) versus t deve ser uma reta horizontal, já que uma inclinação zero indica a proporci-

onalidade dos riscos.
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3 Modelo de chances de riscos proporcionais (MCRP)

No caṕıtulo anterior, foi apresentada a ferramenta do modelo de Cox para descre-

ver o tempo de sobrevivência considerando a influência das covariáveis em uma variável

resposta cont́ınua T . No entanto, não é posśıvel formular um modelo de riscos proporci-

onais (totalmente) paramétrico quando a resposta é discreta. Como alternativa discreta

ao modelo de riscos proporcionais, este trabalho adotará o modelo de chances de riscos

proporcionais (MCRP), proposto por Vieira et al. (2023).

3.1 Formulação do modelo

Como discutido em (2.2.11), quando T é uma variável aleatória discreta, a função

de risco é uma probabilidade, ou seja, 0 < h(t) < 1. Nesse contexto, não é posśıvel adotar

a estrutura de riscos proporcionais para incluir covariáveis no modelo de regressão. No

entanto, é posśıvel utilizar a razão de chances (odds) de h(t), ou seja:

odds{h(t)} =
h(t)

1− h(t)
. (3.1.1)

Como odds{h(t)} > 0, o modelo proposto é denominado como modelo de chances

de riscos proporcionais (MCRP) e considera que as covariáveis xi = (xi1, xi2, . . . , xip)
′

agem multiplicativamente (proporcionalmente) na chance do risco. Isto é,

h(t|x)
1− h(t|x)

= g(x′β)
h0(t)

1− h0(t)
, (3.1.2)

em que h0(t) é a função de risco base, β = (β1, β2, . . . , βp)
′ é o vetor de coeficientes

associado ao vetor de covariáveis x = (x1, x2, . . . , xp)
′ e g(.) é uma função de ligação que

satisfaz as seguintes condições:

1. g(a) > 0, ∀a ∈ R;

2. g(0) = 1.

Note que o intercepto β0 não aparece no preditor linear x′β. Isto porque a função

de risco base, h0(t), absorve este termo constante (VIEIRA et al., 2023).

Além disso, a propriedade de chances de riscos proporcionais permite interpretar

os coeficientes estimados. Considerando a função de ligação exponencial (g(·) = exp(·)),
a razão de chances do risco entre dois indiv́ıduos (r e s) que possuem os mesmos valores

para todas as covariáveis, exceto a m-ésima, é expressa por
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odds{h(t|xr})
odds{h(t|xs})

=
exp{βmxrm}
exp{βmxsm}

= exp{βm(xrm − xsm)} , (3.1.3)

que não depende de t.

Observe que a Equação (3.1.3) representa uma razão de chances (odds ratio) de

riscos. Por exemplo, se xm for a covariável dicotômica sexo, com xrm = 1 (masculino)

e xsm = 0 (feminino), então a chance de falha (odds do risco) para indiv́ıduos do sexo

masculino é exp(βm) vezes a chance de falha para indiv́ıduos do sexo feminino, mantendo

as demais covariáveis constantes.

A partir da equação (3.1.2), observa-se que a função de risco de um indiv́ıduo

com covariáveis x é dada por

h(t|x) = g(x′β)h0(t)

1− h0(t) + g(x′β)h0(t)
. (3.1.4)

Segundo a equação (2.2.17) e (3.1.4), a função de sobrevivência na presença de

covariáveis pode ser escrita como

S(t|x) =
t∏

u=0

[1− h(u|x)] =
t∏

u=0

[
1− h0(u)

1− h0(t) + g(x′β)h0(u)

]
t = 0, 1, 2, . . . . (3.1.5)

Portanto, utilizando as equações (2.2.15) e (2.2.17), a função de probabilidade é

expressa por:

p(t|x) =

h(0|x), se t = 0 .

h(t|x)S(t− 1|x), se t = 1, 2, . . . .
(3.1.6)

Para ajustar o MCRP, é necessário estimar os parâmetros da distribuição base e

da componente de regressão. Esse processo é realizado maximizando a função de verossi-

milhança, dada por:

L(θ) ∝
n∏

i=1

{[
h(0|x)1{0}(ti) [h(ti|x)S(ti − 1|x)]1−1{0}(ti)

]δi [
S(0|x)1{0}(ti)S(ti|x)1−1{0}(ti)

]1−δi

}
,

(3.1.7)

em que

1{0}(ti) =

1, se ti = 0

0, se ti ̸= 0,
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δi é o indicador de falha do i-ésimo indiv́ıduo e θ = (ϕ′,β′) é o vetor de parâmetros do

modelo, sendo ϕ o vetor de parâmetros da distribuição base do tempo de sobrevivência e

β o vetor de coeficientes de regressão.

3.2 MCRP Weibull discreto

Considerando T como uma variável aleatória com distribuição Weibull discreta,

a partir das equações (2.3.4) e (3.1.4) e usando a função de ligação g(x′β) = exp(x′β),

foi derivada a seguinte fórmula para a função de risco no MCRP Weibull discreto.

h(t|x) = ex
′β(qt

η − q(t+1)η)

q(t+1)η + ex′β(qtη − q(t+1)η)
, t = 0, 1, 2, . . . . (3.2.1)

Substituindo h0(t) e g(x
′β) em (3.1.5), a função de sobrevivência pode ser rescrita

como

S(t|x) =
t∏

u=0

[
q(u+1)η

q(u+1)η + ex′β(quη − q(u+1)η)

]
, t = 0, 1, 2, . . . . (3.2.2)

A partir de (3.1.6), (3.2.1) e (3.2.2), tem-se que a função de probabilidade é dada

por

p(t|x) =


ex

′β(1−q)

q+ex′β(1−q)
, se t = 0 .

ex
′β(qt

η−q(t+1)η )

q(t+1)η

∏t−1
u=0

[
q(u+1)η

q(u+1)η+ex′β(quη−q(u+1)η )

]
, se t = 1, 2, . . . ,

(3.2.3)

que resulta em

p(t|x) = ex
′β(qt

η − q(t+1)η)

q(t+1)η

t∏
u=0

[
q(u+1)η

q(u+1)η + ex′β(quη − q(u+1)η)

]
, t = 0, 1, 2, . . . . (3.2.4)

Sabe-se que a distribuição geométrica é um caso particular da distribuição Weibull

discreta. Portanto, ao substituir η = 1 nas equações (3.2.2), (3.2.3) e (3.2.4), obtemos,

respectivamente, as funções de risco, de sobrevivência e de probabilidade para o MCRP

geométrico. Com base na definição dessas funções, é posśıvel determinar a função de

verossimilhança a partir da Equação (3.1.7) e, assim, estimar os parâmetros do modelo.
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3.3 Verificação da suposição de chances de riscos proporcionais

Segundo Vieira et al. (2023), o MCRP (3.1.2) pressupõe que as chances (odds) de

risco para dois indiv́ıduos são proporcionais. Considerando, por exemplo, uma covariável

z dicotômica que assume os valores 0 e 1, o modelo supõe que

h(t|z = 1)

1− h(t|z = 1)
= C

h(t|z = 0)

1− h(t|z = 0)
, (3.3.1)

em que h(.) é a função de risco e C é uma constante que não depende do tempo t.

Seja ol(.) a função chance (odds) de risco de um indiv́ıduo com covariável z =

l, l = 0, 1,

ol(t) =
h(t|z = l)

1− h(t|z = l)
, l = 0, 1 , (3.3.2)

e Ol(.) sua respectiva função chance de risco acumulada. Isto é,

Ol(t) =
t∑

u=0

ol(u) =
t∑

u=0

h(u|u = l)

1− h(u|z = l)
, l = 0, 1 . (3.3.3)

Note que sob a suposição das chances dos riscos serem proporcionais, tem-se a

partir das Equações (3.3.1), (3.3.2) e (3.3.3) que

O1(t) = CO0(t) . (3.3.4)

Aplicando o logaritmo em ambos os lados da Equação (3.3.4), obtém-se a seguinte

expressão:

log[O1(t)] = log[C] + log[O0(t)] . (3.3.5)

Portanto, a relação entre log[O1(t)] e log[O0(t)] é uma linha reta com coeficiente

angular igual a 1 e intercepto igual a log[C].

Assim, a suposição de chances de riscos proporcionais pode ser verificada grafica-

mente ajustando uma reta de regressão simples com coeficiente angular igual a 1 (b = 1

fixo). O procedimento consiste em construir um gráfico cujos pontos são dados pelas co-

ordenadas (log [O0(t)], log [O1(t)]) e o comportamento esperado é que os pontos do gráfico

estejam próximos da reta de regressão ajustada.

Alternativamente, pode-se criar gráficos de t ou log(t) versus log[Ol(t)], l = 0,

1. Curvas paralelas, que mantêm uma distância vertical constante, indicam chances de
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riscos proporcionais.

Ademais, um teste de hipóteses pode ser adotado para checar se as chances de

riscos são proporcionais. Assim, se t(j), com j = 1, 2, . . . , J , é o j-ésimo tempo distinto

observado (censurado ou não), a verificação de proporcionalidade das chances de riscos

pode ser feita testando-se a hipótese de que o coeficiente angular de uma reta de regressão

simples é diferente de 1, isto é, a hipótese de interesse é descrita por:

H0 : b1 = 1 vs. H1 : b1 ̸= 1. (3.3.6)

A estat́ıstica do teste da hipótese (3.3.6) é dada por:

B =
b̂1 − 1√ ∑J
j=1(zj−z̄)2

(J−2)
∑J

j=1(yj−ȳ)2

, (3.3.7)

em que b̂1 =
J
∑J

j=1 zjyj −
∑J

j=1 zj
∑J

j=1 yj

J
∑J

j=1 z
2
j −

(∑J
j=1 zj

)2 , z̄ =

∑J
j=1 zj

J
e ȳ =

∑J
j=1 yj

J
com zj =

log [O0(tj)] e yj = log [O1(tj)]. Assumindo a normalidade de log [O1(t)], B segue uma

distribuição t de Student com J − 2 graus de liberdade.

Os procedimentos descritos para verificação da suposição de chances de riscos

proporcionais podem ser facilmente estendido para covariáveis categóricas com três ou

mais ńıveis, comparando todos os ńıveis dois-a-dois. Para covariáveis númericas, os mes-

mos procedimentos podem ser adotados, bastando categorizar a covariável e comparando

seus pares de ńıveis.



32 Modelagem de risco de crédito

4 Modelagem de risco de crédito

4.1 Introdução

Ao longo da história do desenvolvimento econômico e social das sociedades, o

crédito tem sido um dos principais fatores a serem considerados, pois, permite que agentes

sociais de diferentes setores alcancem expansão econômica.

Sob essa perspectiva financeira:

O crédito corresponde a um valor monetário disponibilizado ao to-

mador de recursos financeiros, na forma de empréstimo ou finan-

ciamento, por um peŕıodo previamente acordado, com a promessa

de pagamento futuro, ao qual se acrescenta uma remuneração, de-

nominada juros. Consequentemente, o risco é inerente ao processo

de concessão de crédito, uma vez que existem incertezas quanto ao

futuro das quantias emprestadas (MACHADO, 2015).

Segundo Santos (2011), “o risco é definido pela incerteza de retorno de um inves-

timento frente à possibilidade de um evento futuro, incerto e independente da vontade do

investidor, cuja ocorrência pode causar prejúızos”. Nesse contexto, o risco de crédito está

associado a fatores internos e externos ao credor que podem dificultar a recuperação do

montante emprestado. Para o Banco Central do Brasil, conforme o Art. 2º da Resolução

3.721/2009, o risco de crédito é definido como a possibilidade de perdas associadas ao não

cumprimento das obrigações financeiras pelo tomador ou contraparte nos termos pactua-

dos, à desvalorização de contratos de crédito decorrente da deterioração na classificação

de risco do tomador, à redução de ganhos ou remunerações, às vantagens concedidas na

renegociação e aos custos de recuperação.

Dentro da esfera do risco, diversos aspectos devem ser analisados, como:

• Risco do Cliente - associado aos C’s do Crédito:

1. Capacidade - habilidade em pagar. Relaciona-se aos meios financeiros para

honrar os compromissos assumidos;

2. Colateral - garantia;

3. Caráter - confiabilidade e “vontade”de pagar;

4. Condição - condições ambientais externas, internas e indicadores econômicos;

5. Capital - reservas e patrimônio.
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• Risco da Operação - envolve caracteŕısticas do produto, prazo, formas de pagamento,

garantia e preço;

• Risco de Carteira - relacionado ao conjunto de clientes e tipos de negócios;

• Risco de Administração de Crédito - compreende o acompanhamento do crédito

concedido.

Nesse cenário, surgiram os Modelos de Credit Scoring, como ferramentas capazes

de quantificar o risco de crédito envolvido em uma operação de forma automatizada,

padronizada e objetiva.

Os Modelos de Credit Scoring utilizam algoritmos matemáticos e técnicas es-

tat́ısticas para calcular a probabilidade de que determinado evento ocorra. Aplicando

fórmulas, o sistema atribui uma pontuação espećıfica para cada caracteŕıstica do propo-

nente/cliente, com o objetivo de prever um resultado.

Historicamente, os modelos de Credit Scoring (CS) foram iniciados pelos estudos

de Durand (1941) na área de financiamento ao consumidor após a Grande Depressão nos

EUA. Este projeto foi pioneiro na utilização da Estat́ıstica como uma ferramenta para

análise de risco de crédito. Na pesquisa, foi utilizada a Análise Discriminante desenvolvida

por Fisher (1936) para identificar bons e maus empréstimos. Nesse contexto, a pesquisa

de Durand pode ser considerada o ponto de partida para futuros estudos focados no

desenvolvimento de metodologias de suporte à concessão de crédito.

No ińıcio dos anos 1950, Bill Fair e Earl Isaac criaram a primeira companhia de

consultoria em métodos de scoring, utilizando dados históricos para melhorar as decisões

de negócios. Posteriormente, em 1958, venderam o primeiro sistema de Credit Scoring

para a área de cartões de crédito, fato considerado um marco importante na história

dos modelos de scoring. Entretanto, o sucesso da companhia e seu foco comercial não

resultaram em um desenvolvimento significativo da literatura sobre o tema, uma vez que

o conhecimento se tornou valioso e foi pouco divulgado pelas empresas.

Apesar dos Modelos de CS representarem uma melhoria na análise de risco de

crédito, diversos fatores dificultavam seu crescimento, como a relutância dos executivos,

limitações tecnológicas, obstáculos no desenvolvimento e implementação dos modelos e,

segundo Myers e Forgy (1963), a falta de estat́ısticos para promover a área de crédito e

transformar a ideia em uma ferramenta operacional bem-sucedida e útil. Diante disso,

apesar da expansão do crédito nos EUA, poucos estudos sobre Credit Scoring foram

produzidos até os anos 1960.

A partir de 1960, outras pesquisas relevantes foram publicadas, como:

• Desenvolvimento de Sistemas Numéricos de Avaliação de Crédito (MYERS; FORGY,
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1963). Os autores verificaram a eficácia das fórmulas preditivas de scoring e introdu-

ziram o conceito de amostra hold-out, diferente daquela utilizada para a modelagem,

importante para testar a capacidade preditiva do modelo em novas amostras.

• Conceitos e Utilização de Técnicas de CS (WEINGARTNER, 1966). O autor ressal-

tou a importância de testar os escores de crédito antes de usá-los e sugeriu validar a

fórmula aplicando-a a clientes inadimplentes para verificar se os escores são baixos.

• Índices Financeiros, Análise Discriminante e Previsão de Falência de Empresas

(ALTMAN, 1968). Introduziu modelos de scoring para empresas.

• Um Modelo de CS para Empréstimos Comerciais (ORGLER, 1970). Propôs um

modelo para avaliar periodicamente a qualidade dos empréstimos concedidos.

A partir dos anos 1970, com o crescimento econômico e a consequente demanda

por crédito, muitas instituições financeiras nos EUA cresceram de forma insustentável,

sem conseguir manter a lucratividade. Ao mesmo tempo, a reconstrução da Europa pós-

guerra contribuiu para que os Modelos de CS fossem reconhecidos como uma indústria.

Desde o ińıcio dos anos 1990, os Modelos de CS tornaram-se o principal mecanismo para

avaliação de risco na concessão de diversos tipos de empréstimos, com decisões sendo

tomadas sem intervenção humana.

Com a divulgação do Acordo de Basileia II em 2004, os Modelos de CS tornaram-

se ainda mais importantes, destacando a necessidade de técnicas que permitissem às

instituições e supervisores avaliar corretamente os diversos riscos enfrentados pelos bancos.

Muitas organizações desenvolveram melhores modelos ou modificaram os já existentes

para conformidade com as novas regras e melhores práticas de mercado, dado que os

reguladores impuseram regras mais rigorosas sobre o desenvolvimento, implementação e

validação dos modelos internos utilizados para estimar o capital a ser provisionado.

Com o cont́ınuo desenvolvimento e crescimento dos mercados financeiros, o crédito

tornou-se ainda mais crucial para a economia. A globalização e a sofisticação dos meios de

comunicação, como a internet, fazem com que os consumidores busquem ofertas de crédito

mais atrativas. Por isso, as instituições financeiras procuram desenvolver ferramentas

eficientes para avaliar e controlar os riscos.

Os Modelos de CS, inicialmente utilizados apenas para decidir a concessão de

crédito, hoje são parte integral de todo o ciclo do crédito, presentes em cada etapa da

gestão estratégica de riscos.
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4.2 Escore de risco

A mensuração do risco de crédito é o processo de quantificar a credibilidade de

um solicitante de crédito, utilizando variáveis explicativas para classificar os solicitantes

como “bons” ou “maus” pagadores. O objetivo dessa classificação prévia é prever com-

portamentos que possam indicar padrões de inadimplência, evitando maiores prejúızos e

a perda de bons clientes para a instituição financeira.

A proposta desse trabalho é formular o escore de risco a partir dos resultados do

MCRP, sendo a sua grandeza associada ao valor estimado do preditor linear do modelo.

No MCRP, quanto maior for o valor do preditor linear, maior é a função de risco do

cliente. Isso implica, no contexto desse modelo, maior probabilidade do cliente inadimplir

(ou inadimplir em um tempo mais recente). Desta forma, o preditor linear x′β pode ser

considerado como um escore de risco para o MCRP, isto é,

ER = x′β = x1β1 + x2β2 + · · ·+ xpβp. (4.2.1)

Note que o escore de risco definido em (4.2.1) assume valores reais. Alternati-

vamente, as transformações exp{·} ou exp{− exp{·}} podem ser incorporadas para obter

escores de risco positivos ou limitados no intervalo 0–1, respectivamente.

4.3 Classificação dos clientes pelo escore de risco

A classificação dos clientes é uma das etapas mais cruciais para as instituições

financeiras. Essa classificação orienta as posturas e estratégias em relação às concessões

de crédito. O objetivo principal é maximizar os lucros e minimizar os riscos, garantindo

uma gestão eficaz das concessões de crédito.

Com base nos pontos mencionados, os critérios de classificação dos clientes pelo

escore de risco têm os seguintes objetivos:

1. Minimizar o erro ao classificar maus solicitantes como de risco baixo, evitando assim

concessões de crédito com alto risco.

2. Minimizar o erro ao classificar bons solicitantes como de risco alto, evitando a perda

de clientes valiosos.

3. Maximizar a precisão total na classificação dos clientes, garantindo que a avaliação

seja justa e precisa.
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4.4 Avaliação da acurácia do modelo

Para exemplificar os termos de acurácia, considere o seguinte caso : Seja X o

status de um cliente (1 = mal pagador, 2 = bom pagador) e Y o diagnóstico do modelo

de risco (positivo, quando o modelo classifica o cliente como de alto risco; e negativo,

quando o modelo classifica o cliente como de baixo risco).

Validação cruzada :

Essa técnica envolve a divisão dos dados em duas amostras, geralmente de ta-

manhos iguais: uma amostra de estimação e uma amostra de validação. A subamostra

de estimação é utilizada para calcular os parâmetros do modelo, enquanto a subamostra

de validação serve para validar esses parâmetros e verificar o poder preditivo do modelo.

Esse processo permite avaliar quantitativamente a capacidade de previsão do modelo em

relação a novas observações.

Total de acertos:

Corresponde ao número de classificações corretas do modelo para a variável res-

posta em relação à variável explicativa.

Sensibilidade:

Corresponde à probabilidade de o modelo alocar o indiv́ıduo i na categoria K,

dado que ele realmente pertence a essa categoria. Considerando o exemplo citado anteri-

ormente, a sensibilidade será definida como a probabilidade de o diagnóstico do modelo

acertar a classificação de risco como alto (Y = +1) para um mal pagador (AGRESTI,

2019), ou seja,

Sensibilidade = P (Y = +1|X = 1)

Especificidade:

Corresponde à probabilidade de o modelo não alocar o indiv́ıduo i na categoria

K, dado que ele realmente não pertence a essa categoria. Considerando o exemplo citado

anteriormente, a especificidade será definida como a probabilidade de o diagnóstico do

modelo classificar um bom pagador como de baixo risco (Y = −1) (AGRESTI, 2019), ou

seja,

Especificidade = P (Y = −1 | X = 2)

Falso Positivo:

Um falso positivo ocorre quando o modelo classifica incorretamente uma ob-
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servação como pertencente à categoria de sucesso, quando na verdade ela pertence à

categoria de fracasso. Considerando o exemplo citado anteriormente, um falso positivo

seria quando o modelo de risco classifica erroneamente um bom pagador como de alto

risco.

Falso Negativo:

Um falso negativo ocorre quando o modelo classifica incorretamente uma ob-

servação como pertencente à categoria de fracasso, quando na verdade ela pertence à

categoria de sucesso. Considerando o exemplo citado anteriormente, um falso negativo

seria quando o modelo de risco classifica erroneamente um mal pagador como de baixo

risco.

Matriz de confusão:

A matriz de confusão é uma tabela que compara os valores reais com os valores

preditos pelo modelo, relatando o número de falsos positivos, falsos negativos, verdadeiros

positivos e verdadeiros negativos. Considerando o exemplo citado anteriormente, a matriz

de confusão seria constrúıda da seguinte forma:

Tabela 1: Matriz de confusão

Valores reais (X)

Diagnóstico do modelo de risco (Y ) Mal pagador Bom pagador

Alto risco Verdadeiro positivo Falso positivo

Baixo risco Falso negativo Verdadeiro negativo

O número total de acertos é dado pela soma da diagonal principal da matriz de

confusão.
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5 Ilustração da metodologia proposta

Este caṕıtulo apresenta a aplicação da metodologia desenvolvida neste trabalho

para a classificação de clientes, detalhando as etapas necessárias para a construção e

avaliação do modelo.

Inicialmente, o banco de dados foi dividido em dois subconjuntos: treino e teste.

O conjunto de treino, correspondente a 70% do total de dados, é utilizado para o de-

senvolvimento e ajuste do modelo. Por sua vez, o conjunto de teste, que representa os

30% restantes, é empregado após a criação do modelo, permitindo simular previsões em

cenários reais e avaliar seu desempenho e capacidade de generalização.

O desenvolvimento do modelo MCRP segue as seguintes etapas principais:

1. Divisão dos dados: Separação dos dados em conjuntos de treino e teste.

2. Construção do modelo: Aplicação do modelo de chances de riscos proporcionais

(MCRP) no conjunto de treino.

3. Avaliação no conjunto de teste: Aplicação do modelo ao conjunto de teste para

verificar seu desempenho em dados não utilizados no treinamento.

4. Análise de métricas: Avaliação das métricas de desempenho, como acurácia,

sensibilidade, especificidade para determinar a qualidade do modelo.

Essa abordagem busca garantir a robustez do modelo e sua capacidade de fornecer

classificações confiáveis em situações práticas.

5.1 Banco de dados

Para a seleção da base de dados utilizada no presente trabalho, realizou-se uma

ampla revisão bibliográfica com o objetivo de identificar bases de dados reais que atendes-

sem aos objetivos propostos. Contudo, em virtude do elevado valor comercial associado

aos dados de risco de crédito e à inclusão de informações senśıveis dos clientes, que pode-

riam infringir os prinćıpios estabelecidos pela Lei Geral de Proteção de Dados (LGPD, Lei

nº 13.709/2018), constatou-se a inexistência de bases públicas dispońıveis nas publicações

revisadas.

Diante dessa limitação, optou-se pela realização de uma análise detalhada da

literatura existente, com o objetivo de identificar as variáveis mais frequentemente em-

pregadas na distinção entre solicitantes de baixo e alto risco no contexto da análise de

risco de crédito. Com base nessa investigação, selecionaram-se as seguintes variáveis ex-

plicativas:
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• Limite de Credito: Refere-se ao limite de credito concedido a cada cliente. Foi

utilizado a transformação log da variável para melhor modelagem dos dados.

• Sexo: Refere-se ao sexo de cada cliente. Foi utilizado dois ńıveis numéricos, com

“0”representando o gênero feminino e “1”o gênero masculino.

• Classificação Social por renda: Indica a classificação social da renda, de acordo

com os critérios da Fundação Getulio Vargas (2014). A variável foi codificada em 5

ńıveis: da Classe E à Classe A, com a Classe B servindo como base de comparação.

• Estado civil: Representa o estado civil de cada cliente, codificado da seguinte

forma: “0”para casados(as), “1”para solteiro(a) e “2”para Viúvo/Separado.

• Idade: Variável que indica a idade de cada cliente, em anos.

A definição dos parâmetros para cada variável baseou-se no trabalho de Bogoni e

Pavan (2014) que analisou como cada caracteŕıstica pode influenciar o risco. A idade foi

considerada uma variável diretamente proporcional ao risco, com a hipótese de que clientes

mais velhos podem apresentar maior probabilidade de inadimplência. Na variável sexo,

homens foram associados a um maior risco em relação às mulheres, possivelmente devido

a padrões comportamentais identificados em estudos prévios. Quanto à classificação por

renda, ńıveis mais altos foram correlacionados a um maior risco, indicando que maior

renda pode estar associada a maior acesso a concessões de crédito e, consequentemente,

maior exposição ao risco de inadimplência. Por fim, no estado civil, indiv́ıduos casados

foram considerados de maior risco em comparação com solteiros ou viúvos/separados, pos-

sivelmente devido ao impacto de maiores responsabilidades financeiras na administração

familiar.

A partir dessas variáveis, criou-se uma base de dados simulada com 1000 ob-

servações, incluindo também a variável tempo (emmeses) até a ocorrência da inadimplência.

Em relação à censura, observou-se que as taxas de censura geralmente se mostram ele-

vadas, resultando em um número reduzido de casos de inadimplência registrados. Tal

cenário é esperado, considerando a lucratividade caracteŕıstica do setor de empréstimos.

Nesse trabalho foi considerada uma taxa de censura aproximada de 50%, visando

a uma aproximação aos dados reais encontrados na literatura em trabalhos como o de

Dirick e Baesens (2017). Essa estratégia possibilitou que a base simulada representasse

com maior fidelidade as caracteŕısticas observadas em cenários reais de análise de risco de

crédito.

As variáveis explicativas foram geradas da seguinte forma: o limite de crédito a

partir de uma distribuição lognormal, o sexo por meio de uma distribuição de Bernoulli,

a classificação social por uma distribuição multinomial com 5 categorias, o estado civil
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por uma distribuição multinomial com 3 categorias e a idade por uma distribuição de

Poisson. Os parâmetros dessas distribuições foram escolhidos de modo que seus valores

(sinais) estivessem de acordo com as observações do trabalho de Bogoni e Pavan (2014).

Os tempos de sobrevivência foram gerados utilizando o método da transformação inversa,

partindo inicialmente de um MCRP Weibull cont́ınuo. Os tempos de censura foram gera-

dos combinando os mecanismos de Tipo 1 (considerando financiamentos com duração de

36 meses) e aleatório (através de uma distribuição exponencial independente do tempo

de sobrevivência), com o parâmetro da distribuição exponencial ajustado para aproxi-

mar a taxa de censura desejada. Por fim, os tempos de sobrevivência resultantes foram

discretizados, tomando-se a parte inteira de seus valores.

A base de dados criada subsidiou a aplicação da metodologia proposta, baseada

na técnica MCRP. Essa abordagem permitiu o desenvolvimento de um modelo robusto e

alinhado aos objetivos do estudo, garantindo, simultaneamente, a conformidade com os

prinćıpios éticos e de proteção à privacidade dos dados.

5.2 Análise descritiva

Nessa seção será apresentado a análise descritiva do banco de dados gerado. Será

utilizado tabelas e gráficos para demonstração.

As Tabelas 2 e 3 representam uma análise descritiva das variáveis numéricas e

categóricas.

Tabela 2: Medidas resumo de cada variável Numérica

Variável Mı́nimo Mediana Máximo Média Desvio Padrão
Limite de Credito 5,704 8,006 10,332 8,010 0,69

Idade 23 40 60 39,87 6,20

Tabela 3: Medidas resumo de cada variável categórica

Variável Nı́vel Frequência Absoluta Frequência Relativa(%)

Sexo
Homem: x = 1
Mulher : x = 0

498
502

49,8
50,2

Classe Social

Classe A : x >R$ 11.262
Classe B : R$ 8.641<x <R$ 11.261
Classe C : R$ 2.005 <x <R$ 8.640
Classe D : R$ 1.255 <x <R$ 2.004
Classe E : R$ 0 <x <R$ 1.254

202
195
191
194
218

20,2
19,5
19,1
19,4
21,8

Estado Civil
Casado : x = 0
Solteiro : x = 1

Viúvo/Separado : x = 2

335
354
311

33,5
35,4
31,1

A partir da Tabela 2 observa-se que os dados numéricos não apresentam uma
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dispersão elevada em torno da média/mediana, exibindo um comportamento centrado

nas medidas centrais, além de apresentarem valores baixos para o desvio padrão.

A Tabela 3 apresenta os dados categóricos e suas frequências absolutas e relativas.

Entre as principais informações, observa-se que o comportamento dentro das classes de

todas as variáveis exibe similaridade, apresentando uma proporção homogênea.

A base de dados utilizada neste trabalho consistiu em n = 1000 observações, das

quais 469 (46,9%) foram censuradas. Todas as censuras foram do tipo à direita, indicando

que o evento de inadimplência não ocorreu dentro do peŕıodo do estudo.

A Figura 1 apresenta a estimativa do tempo em meses até a inadimplência, sem

a consideração das variáveis explicativas.

Figura 1: Estimativa de Kaplan-Meier da função de sobrevivência sem a presença das variáveis
explicativas

5.3 Ajuste do MCRP

Agora, nesta seção do trabalho, será feito ajuste do MCRP. Como dito previa-

mente, o banco de dados é dividido em “treino” e “teste”, onde a tabela de treino é usada

para estimação dos parâmetros e a tabela de teste é usada para avaliar o desempenho do

modelo. A divisão do banco de dados (em 70% treino e 30% teste) foi realizada por meio

de sorteio aleatório das observações.

Outro aspecto relevante consiste na transformação de variáveis categóricas em

variáveis dummies, procedimento que envolve a criação de variáveis binárias 0, 1 para cada

categoria, com exceção da categoria de referência. Por exemplo, no conjunto referente à

Classe Social, com cinco classes (A a E), ao utilizar a Classe B como referência, um
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indiv́ıduo pertencente à Classe D seria representado com o valor 1 apenas na variável

Classe D e com o valor 0 nas demais (Classes A, C e E). Tal procedimento possibilita a

interpretação dos coeficientes de regressão como efeitos diferenciais em relação à categoria

de referência (AGRESTI, 2013).

Considerando T como uma variável aleatória com distribuição Weibull discreta

e usando a função de ligação g(x′β) = exp(x′β), derivou-se a seguinte fórmula para a

função de risco no MCRP de Weibull discreto:

h(t|x) = ex
′β(qt

η − q(t+1)η)

q(t+1)η + ex′β(qtη − q(t+1)η)
, t = 0, 1, 2, . . . . (5.3.1)

A função de sobrevivência pode ser reescrita como

S(t|x) =
t∏

u=0

[
q(u+1)η

q(u+1)η + ex′β(quη − q(u+1)η)

]
t = 0, 1, 2, . . . . (5.3.2)

As estimativas do MCRP Weibull discreto para os dados do banco treino são

apresentadas na Tabela 4:

Tabela 4: Estimativas dos parâmetros do modelo MCRP Weibull discreto para os dados do banco
treino

.

Variável Estimativa LI IC 95% LS IC 95%
η 0,8260 0,7459 0,9062
q 0,4332 0,0413 0,8250

Limite de Crédito -0,2231 -0,3814 -0,0647
Sexo Feminino *
Sexo Masculino 0,8800 0,6464 1,1135
Classe Social A 0,2309 -0,0752 0,5371
Classe Social B *
Classe Social C -0,3068 -0,6501 0,0365
Classe Social D - 0,7849 -1,1504 -0,4194
Classe Social E - 0,7928 -1,1706 -0,4149

Estado Civil Casado *
Estado Civil Solteiro; - 0,7183 -1,0093 -0,4273

Estado Civil Viúvo/Separado 0,0211 -0,2782 0,2359
Idade - 0,0420 -0,0608 -0,0232

Nota : As variáveis com * são as de ńıvel de referência

Com a tabela 4 pode-se observar os coeficientes β para cada variável, juntamente

com seus intervalos de confiança. Valores positivos indicam um aumento nas chances de

inadimplência, e valores negativos, uma redução.

Como os dados foram gerados a partir de um MCRP Weibull cont́ınuo, a veri-

ficação da suposição de chances de riscos proporcionais torna-se desnecessária.
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5.4 Obtenção do escore de risco e classificação dos indiv́ıduos

segundo a metodologia proposta

O Escore de Risco apresentado em (4.2.1) foi calculado para cada observação da

amostra, com base nas estimativas dos parâmetros do modelo apresentadas na Tabela 4.

Dessa forma, o escore de risco de um cliente é estimado por:

ER = x′β =(−0, 2231× Limite de Crédito + 0, 8800× Sexo Masculino

+ 0, 2309× Classe Social A− 0, 3068× Classe Social C

− 0, 7849× Classe Social D− 0, 7928× Classe Social E

− 0, 7183× Estado Civil Solteiro− 0, 0211× Estado Civil Viúvo/Separado

− 0, 0420× Idade )

(5.4.1)

Por exemplo, o escore de risco de um cliente, com limite de crédito R$1200, do

sexo feminino, da classe social C, do estado civil Viúvo/Separado e com 36 anos de idade

é estimado por :

ER = x′β =− log(1200)× 0, 2230 + 0, 8800× 0 + 0, 2309× 0 − 0, 3068× 1

− 0, 7849× 0 − 0, 7928× 0

− 0, 7183× 0 − 0, 0211× 1

− 0, 0420× 36. = 0, 0326

(5.4.2)

O escore de risco (5.4.1) foi calculado para cada indiv́ıduo da amostra de teste.

A Figura 2 apresenta a densidade da distribuição dos escores obtidos, de acordo com as

duas categorias da variável resposta (Inadimplência/Adimplência).
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Figura 2: Gráfico da densidade dos escores de risco

A partir da Figura 2 , observa-se que a categoria de menor risco apresentou um

pico entre os escores mais baixos, evidenciando uma diferenciação em relação à categoria

de maior risco.

O principal objetivo da determinação do escore de risco consiste em minimizar:

o erro de categorizar clientes com alto risco como pertencentes a uma categoria de baixo

risco e o erro de categorizar clientes com baixo risco como pertencentes a uma categoria

de alto risco.

A Figura 3 apresenta o percentual dos erros associados a cada ńıvel de corte no

banco de treino.
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Figura 3: Gráfico do erros associados ao corte

A partir da análise da Figura 3, percebe-se que o erro moderado e o erro total

apresentam uma diminuição à medida que o ńıvel de corte aumenta, com seus mı́nimos

próximos a 0, 03 e 0, 0237, respectivamente. Em contrapartida, o erro grave exibe um com-

portamento crescente à medida que o ńıvel de corte aumenta, apresentando seu mı́nimo

próximo ao ponto de corte 0, 02.

Na escolha do escore, consideraram-se os dois tipos de erro na classificação dos

clientes. O erro do Tipo I, considerado o mais grave, consiste em classificar clientes com

alto risco como clientes com baixo risco, acarretando, assim, uma perda de capital nas

operações. O erro do Tipo II, por sua vez, consiste na classificação de clientes com baixo

risco como clientes com alto risco, o que acarreta a perda de potenciais clientes. Buscou-se

minimizar ambos os cenários, com prioridade para o erro do Tipo I.

Considerando os pontos mencionados anteriormente, determinou-se o ponto de

corte em 0, 0235. Ou seja, clientes com escore de risco inferior a 0, 0235 foram classificados

como de baixo risco, e clientes com ER ≥ 0, 0235 foram classificados como de alto risco.

Tais pontos de corte foram definidos com base na Figura 2, visando ao controle dos erros

do Tipo I e do Tipo II (probabilidade de erro do Tipo I inferior a 10% e probabilidade de

erro do Tipo II inferior a 36%), além de buscar um ńıvel de erro total próximo ao mı́nimo

posśıvel.

Assim, um indiv́ıduo com ER = 0,0326 (5.4.2) é classificado como de alto risco

de inadimplência. Ademais, o valor do Escore de Risco foi calculado para todos os in-

div́ıduos dos bancos treino e teste e seus resultados são apresentados nas Tabelas 5 e 6,

respectivamente.
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Tabela 5: Classificação - banco treino

Predito

Observado Adimplência Inadimplência Total

Adimplência 267 107 374

Inadimplência 24 302 326

% de acerto 91,75%* 73,84%** 81,29%***

Nota : * Valor preditivo positivo ** valor predivivo negativo *** Acerto total

O modelo de MCRP apresentou um bom desempenho, com 81, 29% de acerto

global, alcançando 91, 75% na categorização dos solicitantes de menor risco e uma porcen-

tagem próxima do acerto global para os solicitantes de maior risco. Conforme mencionado

anteriormente, o principal objetivo consistia na obtenção de um escore que classificasse

de maneira adequada as categorias de maior risco para as instituições financeiras.

Tabela 6: Classificação - banco teste

Predito

Observado Adimplência Inadimplência Total

Adimplência 120 37 157

Inadimplência 12 131 143

% de acerto 90,90%* 77,98%** 83,67%***

Nota : * Valor preditivo positivo ** valor predivivo negativo *** Acerto total

A análise da Tabela 6 revela que os dados se mostram próximos aos do banco de

treino, com 83, 67% de acerto global e com acertos nas categorias bastante similares. Tal

caracteŕıstica demonstra que o modelo apresentou bom desempenho em relação a novos

dados, com resultados satisfatórios.

5.5 Comparativo de Desempenho Preditivo

Nesta seção, comparamos o desempenho preditivo do modelo proposto com os

modelos de regressão loǵıstica e de riscos proporcionais de Cox, ambos amplamente utili-

zados na elaboração de escores de risco.

Os resultados monstram que o MCRP apresentou desempenho superior ou se-

melhante aos modelos comparados. Especificamente, o modelo loǵıstico alcançou 74% de

acertos no banco de treino e 73% no banco de teste, resultados inferiores aos do MCRP.

Além da acurácia, o MCRP se destaca por ser mais informativo que o modelo loǵıstico,

fornecendo dados sobre a curva de risco e a sobrevivência ao longo do tempo, úteis para
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o desenvolvimento de estratégias de negócio. Além de que o modelo loǵıstico não leva em

consideração as observações censuradas como o MCRP.

Por sua vez, o modelo de Cox obteve 82% de acertos no banco de treino e 85%

no banco de teste, resultados próximos aos do MCRP. Contudo, o MCRP apresenta uma

vantagem conceitual significativa: diferentemente do modelo de riscos proporcionais de

Cox, que pressupõe uma distribuição cont́ınua para a variável tempo, o MCRP considera

sua distribuição discreta. Essa caracteŕıstica é particularmente relevante em contextos

onde o tempo de evento é naturalmente discreto ou medido em intervalos, conferindo ao

MCRP uma maior adequação para tais dados.
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6 Considerações finais

Diante do aquecimento da economia e do aumento da oferta de crédito, as insti-

tuições financeiras constataram a necessidade de estruturar processos objetivos e eficientes

para a gestão dos riscos em todas as etapas do ciclo de crédito. Contudo, a expansão do

crédito acarreta também o aumento da inadimplência, aspecto que motivou o desenvolvi-

mento do presente trabalho.

A proposta do trabalho consistiu no desenvolvimento de um escore de risco e na

avaliação de sua capacidade preditiva para a classificação de solicitantes em categorias de

risco.

A escolha do modelo de chances de risco proporcionais justificou-se pela carac-

teŕıstica da informação do tempo, que apresenta uma distribuição discreta ao longo da

mensuração dos meses. A vantagem da técnica MCRP reside no ganho de informação pro-

veniente das técnicas de análise de sobrevivência, tais como a função de sobrevivência e a

função de risco ao longo do tempo. Dessa forma, além da classificação final dos clientes,

o estudo apresenta informações sobre o comportamento ao longo do tempo.

O trabalho empregou um banco de dados simulado, elaborado com base em es-

tudos da literatura. Tal banco de dados possibilitou o desenvolvimento do escore de risco

e a classificação de clientes entre as categorias de Inadimplentes e Adimplentes.

Os resultados observados demonstraram que o escore de risco proposto neste tra-

balho se mostrou adequado para a classificação de clientes, apresentando desempenhos

consistentes tanto na amostra de treino quanto na amostra de teste, além de exibir re-

sultados superiores aos de técnicas comuns na literatura e na indústria, como o modelo

loǵıstico.

O objetivo de propor um escore de risco consistente foi alcançado. As cons-

tatações apresentadas neste trabalho representam uma contribuição para a análise de

dados discretos e ampliam a literatura sobre o tema.

Como tópicos para estudos futuros, a posśıvel aplicação da metodologia proposta

em bancos de dados maiores e reais, com a inclusão de mais variáveis explicativas signifi-

cativas podem ser realizados. Ademais, outros modelos de regressão para dados discretos

de sobrevivência com estrutura proporcional também podem ser considerados, como por

exemplo modelo de chances de sobrevivência proporcionais (CARDIAL; COBRE; NA-

KANO, 2025) ou o modelo log sobrevivências proporcionais (CHANDIONA; CARDIAL;

NAKANO, 2025).
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MEYER, P. Probabilidade: Aplicações à Estat́ıstica. [S.l.]: LTC - GRUPO GEN, 1983.
10

MYERS, J. H.; FORGY, E. W. The development of numerical credit evaluation systems.
Journal of the American Statistical Association, Taylor & Francis, 1963. Dispońıvel em:
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Código para Estimativas MRCP e do ER

#######################

##### COVARIAVEIS #####

#######################

# x1 . Limite de c r e d i t o ( cont inua )

# x2 . Sexo ( ca t e go r i c a 2 n i v e i s )

# x3 . Classe Soc i a l ( c a t e go r i c a 5 n i v e i s : x31 , x32 , x33 e x34 )

# x4 . Estado C i v i l ( c a t e go r i c a 3 n i v e i s : x41 e x42 )

# x5 . Idade ( d i s c r e t a )

#################################

##### de f i n i c a o das funcoes #####

#################################

## r i s c o base − WEIBULL DISCRETA

h0<−function ( t ,q , e ta ){
(qˆ( tˆ eta)−qˆ( ( t+1)ˆ eta ) )/qˆ( tˆ eta )

}

## funcao de l i g a c ao

l ink . theta<−function ( beta1 , beta2 , beta31 , beta32 , beta33 , beta34 ,

beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 ){
g <− exp( beta1 ∗x1 +

beta2 ∗x2 +

beta31∗x31 +

beta32∗x32 +

beta33∗x33 +

beta34∗x34 +

beta41∗x41 +

beta42∗x42 +

beta5 ∗x5 )
g

}

## r i s c o na presenca de c o v a r i a v e i s

h . x<−function ( t ,q , eta , beta1 , beta2 , beta31 , beta32 , beta33 , beta34 ,

beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 ){
g <− l ink . theta ( beta1 , beta2 , beta31 , beta32 , beta33 , beta34 , beta41 ,
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beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 )

g∗h0 ( t ,q , e ta ) / (1−h0 ( t ,q , e ta ) + g∗h0 ( t ,q , e ta ) )
}

### sob r e v i v enc i a na presenca de c o v a r i a v e i s

s . x<−function ( t ,q , eta , beta1 , beta2 , beta31 , beta32 , beta33 , beta34 ,

beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 ){
sobrev<−1

for (u in 0 : t ){
sobrev<−sobrev ∗ (1−h . x (u ,q , eta , beta1 , beta2 , beta31 , beta32 ,

beta33 , beta34 , beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 ,

x41 , x42 , x5 ) )

}
return ( sobrev )

}

### d i s t r i b u i c a o de p r o b a b i l i d a d e s na presenca de c o v a r i a v e i s

p . x<−function ( t ,q , eta , beta1 , beta2 , beta31 , beta32 , beta33 , beta34 ,

beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 ){
i f ( t==0) return (h . x (0 ,q , eta , beta1 , beta2 , beta31 , beta32 , beta33 ,

beta34 , beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 ) )

else return (h . x ( t ,q , eta , beta1 , beta2 , beta31 , beta32 , beta33 , beta34 ,

beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 )

∗s . x ( t−1,q , eta , beta1 , beta2 , beta31 , beta32 , beta33 ,

beta34 , beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 ) )

}

### log veros s imi l hanca

log vero MCRP<− function ( parametros , t , x1 , x2 , x31 , x32 , x33 , x34 , x41 ,

x42 , x5 , censura ) {
q <− parametros [ 1 ]

eta <− parametros [ 2 ]

beta1 <− parametros [ 3 ]

beta2 <− parametros [ 4 ]

beta31<− parametros [ 5 ]

beta32<− parametros [ 6 ]

beta33<− parametros [ 7 ]

beta34<− parametros [ 8 ]

beta41<− parametros [ 9 ]
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beta42<− parametros [ 1 0 ]

beta5 <− parametros [ 1 1 ]

theta <− l ink . theta ( beta1 , beta2 , beta31 , beta32 , beta33 , beta34 ,

beta41 , beta42 , beta5 , x1 , x2 , x31 , x32 , x33 , x34 , x41 , x42 , x5 )

i f ( (q>0)&&(q<1)&&( eta >0)) {
l v e r o<−0

for ( i in 1 : length ( t ) ){
l v e r o<−l v e r o + ( censura [ i ] ∗ log (p . x ( t [ i ] ,q , eta , beta1 ,

beta2 , beta31 , beta32 , beta33 , beta34 , beta41 , beta42 , beta5 ,

x1 [ i ] , x2 [ i ] , x31 [ i ] , x32 [ i ] , x33 [ i ] , x34 [ i ] , x41 [ i ] , x42 [ i ] , x5 [ i ] ) )

+ (1− censura [ i ] ) ∗log ( s . x ( t [ i ] ,q , eta , beta1 ,

beta2 , beta31 , beta32 , beta33 , beta34 , beta41 ,

beta42 , beta5 , x1 [ i ] , x2 [ i ] , x31 [ i ] , x32 [ i ] , x33 [ i ] ,

x34 [ i ] , x41 [ i ] , x42 [ i ] , x5 [ i ] ) ) )

}
return(−1∗ l v e r o )

}
else return(− I n f )

}

### obtencao das e s t ima t i v a s dos parametros do MCRP

chute . i n i c i a l

e s t <− nlm( log vero MCRP, chute . i n i c i a l ,

t=tempo , censura=censura ,

x1=x1 , x2=x2 , x31=x31 , x32=x32 , x33=x33 ,

x34=x34 , x41=x41 , x42=x42 , x5=x5 ,

i t e r l im = 500 , he s s i an=T)

e s t

e s t beta<−e s t$ es t imate [ 3 : 1 1 ]

ES<− exp( e s t beta [ 1 ] ∗x1 +

e s t beta [ 2 ] ∗x2 +

e s t beta [ 3 ] ∗x31 +

e s t beta [ 4 ] ∗x32 +

e s t beta [ 5 ] ∗x33 +

e s t beta [ 6 ] ∗x34 +

e s t beta [ 7 ] ∗x41 +
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e s t beta [ 8 ] ∗x42 +

e s t beta [ 9 ] ∗x5 )

### f i g u r a com os ER

plot (density (ES [ censura==0]))

points (density (ES [ censura ==1]) , col=2, type=” l ” )
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