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Resumo

Este trabalho investiga a gestao do risco de inadimpléncia na concessao de crédito,
uma preocupacao central para instituigoes financeiras. O objetivo principal foi aplicar o
Modelo de Chances de Riscos Proporcionais (MCRP) para a modelagem do risco de
crédito, desenvolvendo um escore capaz de classificar clientes com base em sua proba-
bilidade de inadimpléncia. O MCRP foi escolhido por sua flexibilidade em lidar com
a natureza discreta do tempo até a inadimpléncia e por sua capacidade de extrair in-
formacoes detalhadas sobre o comportamento do cliente. A metodologia foi validada com
dados simulados, demonstrando que o escore de risco proposto ¢ robusto, apresenta desem-
penho consistente e superior a técnicas tradicionais como o modelo logistico. Conclui-se
que o escore é uma contribuicao eficaz para a literatura de modelagem de risco de crédito,

oferecendo uma ferramenta pratica para a tomada de decisoes na concessao de crédito.

Palavras-chave: Escore de Crédito, Inadimpléncia, Modelo de Chances de Ris-

cos Proporcionais, Andlise de Sobrevivencia, Tempo Discreto, Escore de Risco.



Abstract

This study addresses the critical issue of default risk in credit granting, a central concern
for financial institutions. The main objective was to apply the Proportional Odds Hazard
Model (POHM) for credit risk modeling, developing a score capable of classifying clients
based on their probability of default. The POHM was chosen for its flexibility in handling
the discrete nature of time-to-default and its ability to extract detailed information about
customer behavior. The methodology was validated with simulated data, demonstrating
that the proposed risk score is robust, exhibits consistent performance, and surpasses
traditional techniques like the logistic model. It is concluded that the score is an effective
contribution to the credit risk modeling literature, offering a practical tool for credit

granting decision-making.

Keywords: Credit Scoring, Default, Proportional Odds Hazard Model, Survival

Analysis, Discrete time-to-event, Risk Score.
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8 Introducao

1 Introducao

A concessao de crédito desempenha um papel crucial nas economias desenvol-
vidas. A alocacao eficiente desse capital em empreendimentos rentaveis impulsiona o
crescimento economico, fomentando a criacao de produtos e servigos que atendem as

demandas do mercado.

Contudo, credores se preocupam com o risco envolvido nessa operacao, visto que
os clientes podem nao conseguir honrar o pagamento de seus empréstimos, por diversos
motivos. Sendo assim, é de interesse dessas instituicoes financeiras avaliar o risco associado
ao cliente, antes de fazer a concessao do crédito, para evitar casos de inadimpléncia e,
assim, tornar o negécio lucrativo. Sob esse cenario, surgiram os Modelos de Credit Scoring,

como ferramenta capaz de quantificar o risco de crédito envolvido em uma operacao.

Este trabalho tem como objetivo principal a modelagem do risco de crédito uti-
lizando o modelo de chances de riscos proporcionais (MCRP), proposto por Vieira et al.
(2023). Esse modelo permite uma andlise mais detalhada das varidveis que influenciam a
inadimpléncia, considerando tanto aspectos temporais quanto caracteristicas especificas
dos clientes. A aplicacao dessa metodologia proporciona uma avaliacao mais precisa do
risco, auxiliando instituigoes financeiras na tomada de decisoes estratégicas quanto a con-
cessao de crédito. Mais especificamente, sera proposto um escore que medira o risco de
inadimpléncia de um cliente. Este escore sera calculado a partir das estimativas do MCRP

e utilizado para classificar os clientes em mal ou bons pagadores.

Além disso, o uso do MCRP oferece vantagens significativas em termos de flexibi-
lidade e interpretacao dos resultados. Ao contrario de modelos tradicionais, que frequen-
temente assumem uma distribuicao continua para o tempo até a inadimpléncia, o modelo
de chances de riscos proporcionais nao impoe essa restricao, permitindo uma anélise mais
realista e adaptada as caracteristicas dos dados disponiveis. A metodologia proposta sera

ilustrada em um conjunto de dados artificiais que imitam dados presentes na literatura.

A estrutura deste estudo é organizada da seguinte maneira: primeiramente,
apresenta-se uma revisao da literatura sobre modelagem de risco de crédito, juntamente
com os fundamentos tedricos do modelo de Cox. Em seguida, detalha-se a metodologia
empregada, incluindo a descricao dos dados utilizados e as técnicas de analise aplica-
das. Posteriormente, os resultados obtidos sao apresentados e discutidos, com énfase nas
implicagoes praticas para a gestao de risco em instituigoes financeiras. Finalmente, sao

apresentadas as consideracoes finais e sugestoes para pesquisas futuras.
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2 Conceitos Basicos em Analise de Sobrevivéncia

2.1 Introducao

A Analise de Sobrevivéncia é uma classe de métodos estatisticos utilizada para
analise de dados no qual o foco de interesse é o tempo até ocorréncia de determinado
evento de interesse. KEssa técnica é muito utilizada na drea médica para estudos sobre
morte, mas ganhou aplicagoes em varios outros campos do conhecimento, como sociologia
na andalise histérica de eventos, engenharia com analise do tempo de vida de equipamentos

e na economia com analise de inadimpléncia.

As técnicas de Andlise de Sobrevivéncia tém ganhado destaque em diversas dreas,
pois, além de identificar a ocorréncia ou nao de um evento de interesse, estimam o mo-

mento em que tal evento ocorre, permitindo situa-lo temporalmente.

De acordo com Colosimo e Giolo (2006), uma caracteristica crucial nesse conjunto
de técnicas é a presenca de censura, que se refere a possibilidade de informacoes incom-
pletas nos dados, ou seja, quando uma observacao nao é acompanhada até a ocorréncia
do evento de interesse. Um exemplo na area economica seria quando o acompanhamento
dos depositos de crédito de um cliente de um banco termina para analise, e nao ocorre
o evento de inadimpléncia. Isso implica que toda a informacao disponivel se resume ao
conhecimento de que o evento nao aconteceu durante o periodo observado, deixando em

aberto o momento em que ele poderia ocorrer apds o término do acompanhamento.

Considerando a censura, é preciso incluir uma variavel que identifique se o tempo
da ocorréncia do evento foi observado ou nao. Essa variavel é conhecida na literatura como
varidvel indicadora de censura ou falha. B importante destacar que, mesmo nos casos em
que ocorre censura, todos os resultados do estudo devem ser considerados na analise
estatistica, pois a exclusao da censura nos calculos estatisticos pode levar a estimativas

distorcidas.

A classificacao dos tipos de censura pode ser dividida em trés categorias princi-
pais: censura a direita, censura a esquerda e censura intervalar. Na censura a direita, o
tempo registrado (ou censurado) é menor do que o tempo que teria sido observado se nao
houvesse interrupcao. Por outro lado, na censura a esquerda, o evento de interesse ocorre
antes mesmo do tempo ser registrado, ou seja, o tempo registrado é maior do que o tempo
de falha.

Por fim, na censura intervalar, nao é possivel identificar o tempo exato em que
ocorreu a falha; apenas conhecemos um intervalo de tempo em que o evento de interesse

ocorreu.
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Assim, é necessario incluir uma variavel dicotomica na andlise para indicar se o
tempo de sobrevida de um individuo foi observado ou nao. Essa variavel, chamada de
variavel indicadora de censura ou simplesmente censura, é definida como igual a um se o

tempo de sobrevida é observado e igual a zero se o tempo de sobrevida é censurado.

2.2 Representacao do tempo de sobrevivéncia

Na Andlise de Sobrevivéncia, busca-se estimar o comportamento da variavel
aleatéria tempo de sobrevivencia, T' > 0, o que pode ser aprimorado com o uso de varidveis
explicativas. O comportamento da varidvel resposta pode ser expresso por meio de varias
funcoes equivalentes. Essas fungoes, como a funcao de sobrevivéncia ou a funcao de risco
(ou taxa de falha), sdo utilizadas para descrever diferentes aspectos do tempo de sobre-
vivéncia, que pode ser discreto ou continuo. Se uma dessas funcoes é especificada, as

outras podem ser derivadas.
2.2.1 Representacao para tempo continuo

Funcgao densidade de probabilidades

Considere T' como uma variavel aleatéria nao negativa e continua. A Fungao
Densidade de Probabilidade (FDP) de T, denotada por f(t), é uma fungao que satisfaz
as seguintes condi¢oes (MEYER, 1983):

1. f(t) > 0 para todo t > 0
2. [ ft)dt=1
3. Pa<T <b)= [P f(t)dt ,¥0<a<bh

Essa fungao pode ser interpretada como o limite da probabilidade de um individuo
experimentar o evento de interesse no intervalo de tempo [¢, ¢+ At), dividida pela duragao

do intervalo e pode ser expressa por:

£(t) = lim Pt <T < At)

> (). 2.
At—0 At y 820 (2.2.1)

Funcao de sobrevivéncia

Denotada por S(t), a fun¢ao de sobrevivéncia representa a probabilidade de um
individuo nao apresentar o evento de interesse até um dado instante ¢, ou seja, a probabi-
lidade de que o individuo sobreviva além desse tempo t. Esta funcao é uma das principais
funcoes probabilisticas utilizadas para descrever o tempo de sobrevivéncia e é definida

por:
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S(t) = PIT > 1] = /OO Flu)du , t>0. (2.2.2)

A fungao de sobrevivéncia (2.2.2) é uma fungao nao crescente e absolutamente continua,
tal que lim 0 S(t) = 1 e lim; o S(t) =0

Funcao de risco

A Fungao de Risco, também denominada fungao taxa de falha e denotada por
h(t), representa o risco instantaneo de um individuo apresentar o evento de interesse em
um dado instante t. Para uma variavel aleatdria continua, esta funcao é definida como
o limite da razao da probabilidade condicional de um individuo experienciar o evento de
interesse no intervalo de tempo [t,t + At), dado que nao tenha experienciado o evento

antes de t, pelo intervalo de tempo At. A fungao h(t) é expressa por:

Pt<T<t+ AT >t
h(t) = Jim ST <t+AHT21)

AtS0 At ! (22:3)

No caso de varidveis aleatdrias continuas, a fungao de risco h(t) assume valores

reais positivos e nao possui um limite superior.
Funcao de risco acumulado

Outra func¢ao importante derivada da fungao h(t) é a Func¢ao de Risco Acumulada,
ou Taxa de Falha Acumulada, representada por H(t). Embora H(f) ndao tenha uma
interpretacao direta, ela é 1til em procedimentos de estimagao nao-paramétricos e na
escolha do modelo mais adequado para ajustar um conjunto de dados especifico. A fungao
H (t) fornece o risco acumulado até o tempo t e, no caso de uma variavel aleatéria continua,

¢ definida por:

H(t) = /Oth(u) du, t>0. (2.2.4)

Principais relagoes entre as fungoes f(t), S(t), h(t) e H(t)

Apresentam-se, a seguir, algumas relacoes matemadticas importantes entre as
funcoes de densidade, sobrevivéncia e risco. Tais relacoes podem ser utilizadas para

determinar uma das fungoes, dado o conhecimento de outra. Observe que:
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L PA<T<t+AUT>t) . P{t<T<t+At}N{T >1})
h(t) = lim Al = Jlim, ALP(T > 1)
_ limApg P(tSTA<tt+At) (225)
P(T >t)
_ )
S(t)

A funcao densidade de probabilidades, f(t), é definida como a derivada da Fungao

de Distribuicao Acumulada, F'(t), isto é,

d

ft) =2 F().

Visto que F(t) = 1-S(t), tem-se que

f(t) = %[1 —8(t)] = —%S(t) — _S'(t). (2.2.6)

Uma vez que -=log(u) = %

substituindo (2.2.5) em (2.2.6) obtém-se que

h(t) = —i((g _ —%logS(t). (2.2.7)

Consequentemente, integrando ambos os termos (2.2.8) resulta em

logS(t) = — /Oth(u) du=—H(t),

o que implica em

S(t) = eap {—/Dth(u) du } — cap{—H(1)}. (2.2.8)

De (2.2.6) tem- se que

F(8) = h(t)eap {— /0 ) du } | (2.2.9)
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2.2.2 Representacao para tempo discreto

Funcgao de probabilidade

Considere T' como uma variavel aleatdria discreta que assume valores inteiros
nao negativos, ou seja, t = 0,1,2,... A funcao de probabilidade, ou distribuicao de
probabilidade de T', é uma funcao que associa a cada possivel valor da variavel aleatoéria

sua respectiva probabilidade. Essa fungao, denotada por p(t) = P(T = t), deve satisfazer
as seguintes condigoes (JAMES, 2015):

1. 0<p(t) <1lparatodot=0,1,2,... e

2. > 2op(t) =1

Funcao de sobrevivéncia

Definida como a probabilidade de um individuo nao apresentar o evento de inte-
resse até um dado instante ¢, a fungao de sobrevivéncia, no caso em que 7' é uma variavel

aleatéria discreta, é expressa por:

S(t) = P[T > 1] = i p(k) = i P(T=k),t=0,1,2,... . (2.2.10)

A funcao de sobrevivéncia é uma funcao definida em todos os reais nao negativos.
Funcao de risco

No caso de uma varidvel aleatéria discreta, a Fungao de Risco (ou funcéo taxa de
falha) é definida como a probabilidade condicional de um individuo apresentar o evento

de interesse no instante t, dado que nao o tenha apresentado antes de t. Assim, temos:

ht)=P(T =t|T>1t), t=0,1,2,... . (2.2.11)

Observe que, para os valores de t que sao negativos ou nao inteiros, a fungao de
risco (2.2.11) é igual a zero. Além disso, por se tratar de uma probabilidade condicional,

a fungao de risco para varidveis aleatérias discretas é limitada ao intervalo [0, 1].
Funcao de risco acumulado

A funcéo de risco acumulado, H(t), representa o risco acumulado do individuo

até o tempo t. No caso de uma variavel aleatoria discreta, essa fungao é definida por
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Ht) =S hik), t=0,1,2,... . (2.2.12)
k=0

A funcgao de risco acumulado (2.2.12) nao tem interpretagao direta e é uma fungao

que assume valores reais positivos, nao sendo limitada superiormente.
Principais relagoes entre as funcgoes f(t), S(t), h(t) e H(t)

Descrevem-se, a seguir, algumas relagoes matematicas importantes entre as fungoes

de densidade, sobrevivéncia e risco de uma variavel aleatoéria discreta.

Dadas as equagoes (2.2.10) e (2.2.11), observa-se que

P(T'=tNnT >t) P(T =1)
M) =PI =T 20 = =575 =~ PT=0)+P(T >0 (22.13)
(O ;
O +s@ T
que resulta em
p(t) = 1E<—Z>(t)3(t), t=0,1,2,... . (2.2.14)

Além disso, a distribuicao de probabilidades pode ser expressa em termos da

funcao de sobrevivéncia por meior da seguinte expressao:

1 —.5(0), se t =0.
p(t) = (2.2.15)
St—1)—=S(), set=1,2,... .

Veja ainda que, para t = 1,2,... tem-se que

s~ SOBWSE)  SE-1 S0 SO T] S(k)

1 5(0)S(1) " S(t—-2)S(t—1) Sk—1) (2.2.16)

k=1

Visto que S(0) = 1 —p(0) e h(0) = p(0), a funcdo de sobrevivéncia pode ser

obtida a partir da funcao de risco por meio da seguinte expressao:
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S(t) = [1 — h(0)] ]!‘[1 p(k;)Sj-k) Ohe 1 — h(0)] IH {1 - p(k;?fg(k)}
= [L—=h(0)] It = (k)] (2.2.17)

t
=it - rk)], t=012,...,
k=0

A partir das equagoes (2.2.14) e (2.2.17), é possivel expressar a distribui¢ao de

probabilidades em termos da funcao de risco por meio da seguinte expressao:

%ﬁ[l —h(k)], t=0,1,2,... . (2.2.18)

k=0

p(t) =

2.3 Tempos discretos

O objetivo de diversas analises estatisticas, especialmente na anélise de sobre-
vivéncia, é modelar o tempo até a ocorréncia do evento de interesse. Conforme Berger e
Schmid (2018), é comum assumir que o tempo de sobrevivéncia é uma variavel aleatéria
medida em uma escala continua, e existe uma vasta literatura sobre o tema. No en-
tanto, na pratica, as medicoes de tempo costumam ser discretas. Em algumas situagoes,
a hora exata do evento pode nao ser conhecida, apenas o intervalo durante o qual o evento

ocorreu.

De acordo com Tutz e Schmid (2016), o tempo até a ocorréncia do evento de

interesse pode ser discreto devido a:

1. Medigoes intrinsecamente/genuinamente discretas;

2. Dados agrupados.

Os dados agrupados representam eventos que ocorrem em intervalos de tempo
especificos, e a variavel resposta se refere a um desses intervalos, que podem ter tamanhos
iguais ou diferentes. Exemplos desse tipo de anédlise incluem estudos como o tempo,
em meses, até a morte de homens diagnosticados com Sindrome da Imunodeficiéncia
Adquirida (AIDS) (BRUNELLO; NAKANO, 2015) e o tempo, também em meses, de
pacientes com cancer de cabega e pescoco (CARDIAL; FACHINI-GOMES; NAKANO,
2020).
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Em relagao aos tempos genuinamente discretos, cujas medicoes representam niimeros
naturais, destacam-se diversas aplicacoes, tais como: o tempo até a gravidez, que em estu-
dos clinicos é geralmente medido pelo niimero de ciclos menstruais (BERGER; SCHMID,
2018); o tempo até a evasao universitaria, medido em semestres (VALLEJOS; STEEL,
2016); e o tempo até a degeneragdo macular relacionada a idade entre idosos, monitorado
por visitas anuais de estudo (BERGER et al., 2019).

De acordo com Tutz e Schmid (2016), os métodos estatisticos desenvolvidos para

tempos discretos oferecem vérias vantagens:

1. Interpretacao facilitada: A consideracao de modelos para tempos discretos per-
mite formular os riscos como probabilidades condicionais, o que facilita a inter-

pretacao em comparacgao com as fungoes de risco continuas.

2. Adequacao aos dados discretos: Na pratica, diversos tempos de evento sao in-
trinsecamente discretos ou observados em uma escala discreta. Portanto, a utilizacao
de modelos para tempos discretos mostra-se mais adequada do que a aproximacao

dos dados observados por meio de um modelo de sobrevivéncia continuo.

3. Auséncia de problemas com empates: Diferentemente dos modelos de sobre-
vivéncia para tempo continuo, os modelos para eventos discretos nao apresentam

problemas com empates.

4. Possibilidade de incorporagao em MLG: Modelos para tempos discretos podem
ser integrados na estrutura de um Modelo Linear Generalizado (MLG), permitindo

que a estimativa seja obtida usando softwares padrao para a estimativa de MLG.

5. Aplicagcao em modelos avangados: A incorporagao na estrutura de MLG per-
mite utilizar a metodologia também para modelos avancados, como aqueles que

incluem parametros especificos em modelos de fragilidade.

2.3.1 Discretizagao de distribuigoes continuas

Em muitas situagoes praticas, variaveis que tém uma natureza continua podem ser
registradas de forma discreta. Por exemplo, o tempo até a ocorréncia de inadimpléncia de
crédito pode ser medido em dias ou meses, mesmo que o conceito subjacente seja continuo.
Nesse contexto, torna-se 1til e apropriado modelar tais variaveis por meio de distribuigoes
discretas, derivadas de modelos continuos, preservando uma ou mais propriedades carac-
teristicas da distribui¢ao original, tais como sua funcao de densidade de probabilidade,
funcao geradora de momentos, funcdo da taxa de risco, entre outras. Chakraborty (2015)

fornece uma revisao abrangente sobre métodos e técnicas para criar versoes discretas de
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distribuigoes de probabilidade continuas. De acordo com Jayakumar e Babu (2018), entre

as varias abordagens para discretizar distribui¢oes continuas, destacam-se as seguintes:

Discretizar a funcao de distribuicao acumulada continua;

Discretizar a funcao densidade de probabilidade continua;

Discretizar a funcao de risco continua;

Obter distribuicao discreta de tempo de vida a partir da taxa de falha alternativa.

A primeira metodologia mencionada, que sera a unica abordada em detalhes neste
trabalho, sera explicada a seguir. Considere X como uma varidvel aleatéria continua nao
negativa com fungado de distribuigdo acumulada Fx(x). A varidvel aleatéria discreta
T pode ser obtida através de T = | X |, em que |X| representa a “parte inteira de
X7, ou seja, o maior inteiro que é menor ou igual a X. Dessa forma, a distribuicao
de probabilidades da variavel aleatdria discreta T' pode ser expressa como (NAKANO;
CARRASCO, 2006):

PT=t)=Pt<X<t+1)=Fx(t+1)—Fx(t), t=0,1,2,... . (2.3.1)

Nesse contexto, diversas publicagoes sobre analise de sobrevivéncia utilizam essa
metodologia para determinar analogos discretos de distribui¢oes continuas, resultando em
novas distribuicoes de probabilidade discretas. Além disso, esses analogos discretos sao
aplicados em diferentes areas. Exemplos incluem Nakagawa e Osaki (1975), que desenvol-
veram a distribui¢ao Weibull discreta (WD); Jayakumar e Babu (2018), que introduziram
a distribuigdo Weibull Geométrica discreta; Vieira et al. (2023), que trabalhou com a dis-
tribuigdo Log-logistica discreta; Cardial, Fachini-Gomes e Nakano (2020), que estudaram
a distribuigdo Weibull discreta exponenciada (WDE); Sarhan (2017), que apresentou a
distribuigdo banheira de dois parametros discreta (DTPBT); Chakraborty (2015), que
propos a distribuicdo Gumbel discreta; e Brunello e Nakano (2015), que também in-
vestigaram a distribuicado WD em um contexto bayesiano. A seguir serd apresentada a

distribuicao Weibull discreta e a distribuicao log-logistica.

2.3.2 Distribuicao Weibull Discreta

A distribuicao Weibull é amplamente reconhecida e utilizada na modelagem de
dados de sobrevivencia continuos devido a sua grande flexibilidade. Essa versatilidade se

deve a presencga de dois parametros principais: o parametro de escala e o parametro de



18 Conceitos Basicos em Andlise de Sobrevivéncia

forma. Esses parametros permitem uma variedade de formas para a distribuicao, além de
uma funcgao taxa de falha que pode ser crescente, decrescente ou constante, caracterizando-

se por sua monotonicidade.

Neste trabalho, serda abordada a versao discreta, introduzida por Nakagawa e
Osaki (1975). Uma varidvel aleatéria T' segue uma distribui¢ao Weibull discreta (WD)
com parametros n > 0 e ¢ € (0,1), denotado por T" ~ WD(gq,n), se sua funcao de
probabilidade é dada por:

p(t) =¢" —q"™", t=0,1,2,... . (2.3.2)

A fungao de sobrevivéncia da distribui¢ao Weibull discreta (WD) e a funcao de

risco sao expressas, respectivamente, por:

S(t) = ¢t (2.3.3)
e
qt" _ q(t-s-l)ﬁ
h(t) = (7> ,t=0,1,2,... . (2.3.4)
q
A funcao de risco da distribuicao Weibull discreta assume diferentes formas de-
pendendo do valor de 7. Ela é estritamente crescente se n > 1, constante se n = 1

(neste caso, a distribuigao Weibull discreta se reduz a uma distribuigdo geométrica), e

estritamente decrescente se 7 < 1.
2.3.3 Distribuicao log-logistica discreta

A distribuicao log-logistica discreta é uma versao discretizada da distribuicao log-
logistica continua. A distribuicao log-logistica discreta é 1til em diversas areas, incluindo
biomedicina, engenharia de confiabilidade e ciéncias sociais. Sua principal diferenca em

relacao a distribuicao WD é que a mesma acomoda funcoes de risco unimodais.

Segundo Santos (2017), considerando o > 0 como o parametro de escala e y > 0
como o parametro de forma da distribuicao log-logistica continua, a funcao de probabili-
dade da distribuigao log-logistica discreta pode ser derivada a partir da Equagao (2.3.1)

e é dada por:

1 1
t) = — t=0,1,2,... . 2.3.
p() 1+(§)'\/ 1+(%)y7 07 ) <y ( 35)

Dessa forma, as fungoes de sobrevivéncia e de risco sao dadas, respectivamente,

por
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py = HET R oy (2.3.7)

2.4 Obtencao de estimadores

Na anélise de sobrevivéncia, a obtencao de estimadores desempenha um papel
fundamental na modelagem e na interpretagao dos dados relacionados ao tempo até a
ocorréncia de um evento de interesse. Do ponto de vista pratico, o interesse inicial reside
na estimativa da funcao densidade de probabilidade f(t), da fungao de sobrevivéncia S(t)
e da fungao de risco h(t). Essas fungoes podem ser estimadas diretamente a partir dos

dados amostrais utilizando procedimentos nao paramétricos.
2.4.1 Estimador de Kaplan-Meier de S(t)

O estimador de Kaplan-Meier é amplamente empregado como uma ferramenta
nao paramétrica para estimar a funcao de sobrevivéncia em presenca de censuras. Ele é
particularmente eficaz para uma andlise preliminar dos dados, uma vez que as técnicas

convencionais de célculo de medidas resumo tendem a falhar nesse cendrio (COLOSIMO;
GIOLO, 2006).

Considere os tempos distintos de falha ti,ts,...,t;, onde t; < to < ... < 1.
Existem n individuos com seus respectivos tempos de sobrevivéncia, e entre esses, k sao
tempos distintos que nao apresentam censura. Dessa forma, temos que £ < n, e cada
tempo t; (para j = 1,...,k) pode ser observado mais de uma vez. Este estimador é
também conhecido na literatura como estimador limite-produto e é definido como (KA-

PLAN; MEIER, 1958)

St = 1] (1 — Z—J) : (2.4.1)

Jit;<t J
sendo d; o numero de falhas no tempo ¢; e n; é o numero de individuos que nao experi-

mentaram do evento de interesse, e que nao foram censurados até o tempo imediatamente

anterior a t; (COLOSIMO; GIOLO, 2006).

Sejaw > 0 e t; < w < ty, onde w é um tempo qualquer e t; e ty sao tempos de

falha observados. As estimativas de S(t) respeitam a seguinte relagao:
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S(w) = P(T > w) = P(T > t;) = S(ty).

Esse é um dos motivos pelos quais a representagao grafica da fungao de sobre-

vivéncia estimada pelo método Kaplan-Meier assume a forma de uma escada.
2.4.2 Estimadores de Maxima verossimilhanca

Atualmente, este é o método de estimacao amplamente utilizado na inferéncia
frequentista. Além disso, possui uma base tedrica robusta, desenvolvida para uma ampla

gama de situagoes como citado em Dani, Francisco e Migon (2014).

Seja ti,ts,...,t, uma amostra aleatoria observada de uma variavel aleatoria
discreta T. Aqui, p(t; @) representa a fungao de probabilidade da populagdo e ¢ =
(h1,...,01)T é o vetor de parametros da funcao de probabilidade. A fungao de verossi-

milhanga para ¢, na auséncia de censuras, ¢ dada por:

n

L(g;t) = [ [ p(ts; ¢). (2.4.2)

i=1
No entanto, na presenga de censura (& direita), os dados censurados devem ser
distinguidos daqueles que sofreram o evento de interesse, frequentemente referidos como

dados nao censurados.

Dessa maneira, as observagoes podem ser reordenadas e divididas em dois gru-
pos: os primeiros k elementos sao os nao censurados (1,2,...,7), cuja contribuigdo para
a fungao de verossimilhanga é dada por p(t;; @), e os k — r elementos restantes sao os
censurados (k+ 1,k +2,...,n), cuja contribui¢do para a func¢ao de verossimilhanca é re-
presentada pela fungao de sobrevivéncia S(t;; ¢). Neste caso, a funcao de verossimilhanga

¢ expressa da seguinte forma:

k n
Ligst) o [[ ot o) T] Sttiiop) (2.4.3)
i=1 i=k+1
que é equivalente a:
L(g;t) o< [ [Ip(ts; #)1*[S (ki )] (24.4)
i=1

em que J; é a variavel indicadora de falha, que assume valor 1 se o tempo t; for de falha e
0 se for censura a direita. Em (2.4.4), p(+; @) e S(+; ¢) sao, respectivamente, a distribui¢ao

de probabilidade e fun¢ao de sobrevivéncia do modelo considerado, i = 1,2, ..., n.
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Ao aplicar o logaritmo na fungao de verossimilhanga na equagao (2.4.4), tem-se:

gst.8) = c+ S (B log [t )] + (1 — ) log [S(t:: 8] (2.4.5)

em que ¢ é uma constante que nao depende de ¢.

Os estimadores de maxima verossimilhanga sao os valores de ¢ que maximizam
L(¢;t,d) ou equivalentemente ¢(¢; ¢, d), normalmente representado por @, e sdo obtidos

resolvendo o sistema de equagoes:

ol(g;t,0)
e =0 (2.4.6)

2.5 Modelo de riscos proporcionais de Cox

De acordo com Colosimo e Giolo (2006), o modelo de regressao de Cox é uma
ferramenta poderosa para a analise de dados provenientes de estudos de tempo de vida,
onde a variavel resposta é o tempo até a ocorréncia de um evento de interesse, ajustado
por covariaveis. Este modelo é amplamente utilizado em estudos de sobrevivéncia devido
a sua versatilidade. Fundamentado na suposicao de que os riscos sao proporcionais, a
regressao de Cox nao requer a especificacao de uma distribuigao de probabilidade para os

tempos de sobrevivéncia, o que o torna um modelo robusto e flexivel.

Existem varias razoes que tornam a regressao de Cox atraente, como a capaci-
dade de lidar com covariaveis dependentes do tempo, realizar analises estratificadas para
controle de varidaveis com ruido e funcionar tanto para medidas de tempo discretas quanto
continuas. No seu artigo original, Cox (1972) introduziu dois conceitos inovadores: o mo-
delo de riscos proporcionais (posteriormente generalizado para riscos ndo proporcionais)

e um novo método de estimacao denominado méaxima verossimilhanga parcial.

Considerando x um vetor de covariaveis com p componentes, o modelo de re-

gressao de Cox é dado por:

h(t) = ho(t)g(2'B) , (2.5.1)

em que g(-) é uma fungdo nao negativa tal que g(0) = 1 e ho(t) é a fungao de risco base
(funcao de risco quando todas as covaridveis sdo iguais a zero).Dessa forma, o modelo
de Cox ¢é definido como o produto de dois componentes: um paramétrico e outro nao
paramétrico, razao pela qual também é chamado de modelo semiparamétrico. O compo-
nente nao paramétrico é geralmente denominado fungao de risco base ou basal. Isso ocorre

porque h(t) = ho(t) quando x = 0, ou seja, hy(t) pode ser considerada a taxa de falha
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de um individuo cujas covariaveis possuem valor zero. A funcao base nao é especificada,

mas deve ser uma fungao nao negativa ao longo do tempo.

Por outro lado, a parte paramétrica é uma funcao positiva e continua das co-
variaveis. Embora existam outras formas na literatura para essa componente, ela é co-
mumente escrita na forma exponencial, devido a sua propriedade de ser sempre positiva,

da seguinte maneira:

g(@'B) = exp(a’B) = exp(fra1 + ... + Bpay) (2.5.2)

em que 3 é o vetor de parametros desconhecidos.

Devido a sua linearidade no modelo, ¢ comum referir a soma Siz1 + ... + 5,7,

como preditor linear ou escore, que, na forma matricial, é denotado por x’(3.

E importante observar que a constante [y (intercepto), presente nos modelos
paramétricos, nao aparece na fungao g(x’3). Isso se deve a presenca do componente nao
paramétrico no modelo, que absorve esse termo constante. A expressao do modelo em
(2.5.2) implica que a razao das taxas de falha ou de risco entre dois individuos, | e m, é
constante ao longo do tempo, sendo uma funcao apenas das covariaveis, como pode ser
observado em (2.5.3).

hi(t) _ ho(t) exp(x;3)
hm(t)  ho(t) exp(z;,B)

Devido a essa razao, o Modelo de Cox também é conhecido como Modelo de

= exp(x;08 — x.,3). (2.5.3)

Riscos Proporcionais. Apesar do modelo de Cox ser muito flexivel devido ao componente
nao paramétrico, a suposicao fundamental de taxas de falha proporcionais nao pode ser
violada para a correta utilizacao do Modelo de Cox. Para avaliar a proporcionalidade dos

riscos, podem ser empregadas técnicas graficas e testes estatisticos.

2.5.1 Formulacao do modelo

Dado um conjunto de observacoes de sobrevivéncia, o objetivo comum ¢é estimar
modelos preditivos nos quais o risco do evento depende de covaridaveis. Uma maneira
de determinar tal modelo é estimando os coeficientes 3’s que mensuram os efeitos dos

atributos sobre a fungao taxa de falha no Modelo de Cox.

Assim, é necessario um método de estimacao que permita a construcao de in-
feréncias sobre os parametros do modelo. O método da maxima verossimilhanca, fre-
quentemente utilizado, nao pode ser empregado devido a presenga do componente nao
paramétrico. Por isso, Cox propos um novo método de estimacao: a maxima verossimi-

lhanca parcial, através do qual é possivel estimar os coeficientes das covaridveis sem a
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necessidade de especificar a funcao base hy(t).

Uma forma simples de entender esse método, segundo Colosimo e Giolo (2006),
considera o seguinte argumento condicional: a probabilidade condicional da i-ésima ob-

servacao vir a falhar no tempo ¢;, conhecendo quais individuos estao sob risco em t; é:

P(individuo falhar em ¢;luma falha em ¢; e histéria até t;) =

P(individuo falhar em ¢;|sobreviveu a t; e histéria até ¢;)

P(uma falhar em ¢;|histéria até ¢;)

hi(tles) — ho(t)exp(eiB) exp(xiB)

Yieriy hitlEi)  Yier) hot)exp(}B) 3 cnq, exp(x;B)’

em que R(t;) representa o conjunto dos indices das observagoes sob risco em t;. Cox

propos utilizar o registro histérico passado de falhas e censuras na forma de probabilidade
condicional para eliminar o termo nao paramétrico da funcao de verossimilhanca.Assim,

a funcao de maxima verossimilhanga parcial é dada por:

k , n , 5
L(3) — exp(x;0) _ exp(x;0)
(6) g > jer) exp(@;B) H > jeri) Xp(@;B) )

=1
em que d; é o indicador de falha, n é o tamanho da amostra, £ < n o nimero de falhas

distintas nos tempos t; < to < ... < ty.

Essa funcao obtida para o modelo de riscos proporcionais nao ¢ uma verossimi-
lhanca verdadeira, porque nao utiliza os verdadeiros tempos de sobrevivéncia dos clientes

censurados e nao censurados. Por isso, ela é chamada de verossimilhanca parcial.

O logaritmo dessa funcao de verossimilhanca é dado por:

U(B) =1log L(B) = Z(s ziB—log Y exp(z}B) | . (2.5.4)

JER(t:)

As estimativas de verossimilhanca dos parametros 3’s sao obtidos maximizando-
e (2.5.4), ou seja, resolvendo o sistema de equagoes definido U(B) = 0, em que U é o

vetor escore formado pelas primeiras derivadas de ¢(3).

n > jer) Ti exp(m'ﬂ))
_ 5i i — =0. 2.5.5
; ($ ZJGR( )exp(:c B) ( )

Assim, o termo “regressao de Cox” refere-se a combinagao do modelo de riscos

proporcionais com o método de estimacao da maxima verossimilhanca parcial.
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Este método de estimacgao possui duas das trés propriedades padrao dos estimado-
res de méaxima verossimilhanca: resultados consistentes e assintoticamente normais. Isso
significa que, em grandes amostras, os estimadores sao aproximadamente nao viesadas e

a sua distribuicao amostral é aproximadamente normal.

Tanto o modelo de riscos proporcionais quanto a funcao de verossimilhanca parcial
pressupoem que os tempos de sobrevivéncia sao continuos, o que, em teoria, impede a
ocorréncia de empates nos valores observados. No entanto, na pratica, empates podem
ocorrer devido a escalas de medigao, processos de coleta de dados, arredondamentos e
aproximacoes, bem como a ocorréncia de multiplos eventos no mesmo instante de tempo.
Também ¢é possivel haver empates entre observacoes censuradas e entre falhas e censuras.
Portanto, sao necessarias adequacoes a funcao de verossimilhanca para lidar com esses

empates.

Com as estimativas dos coeficientes 3 e seus erros-padrao, é possivel construir
um intervalo de confianca de 100(1 - «)% para um determinado 3,, utilizando os per-
centis da distribuicdo normal padrao. Se o intervalo de confianca nao incluir o valor
zero, pode-se afirmar que ha evidéncias suficientes para considerar que o coeficiente 3, é

significativamente diferente de zero.
2.5.2 Estimacao dos parametros

Dado um Modelo de Cox com o vetor x de covariaveis de dimensao p e as respec-
tivas estimativas dos coeficientes, entao a funcao taxa de falha para o j-ésimo individuo

¢ dada por:

~ A

hy(t) = ho(t) exp(x3) | (2.5.6)
em que hy(t) ¢ a estimativa da funcdo base.

Outras fungoes relacionadas a hy(t) sdo importantes, especialmente em andlises
graficas para avaliar a adequagao do modelo ajustado. No entanto, como hg(t) nao é
especificado de forma paramétrica, outras técnicas sao utilizadas para sua estimativa. A
funcao de risco acumulada base pode ser estimada de maneira simples, segundo Breslow
(1975), onde uma func¢ao em degraus com saltos nos tempos distintos de falha é empregada

da seguinte maneira:

Ho(t) = ) 4 (2.5.7)

N
Jit;<t ZlERj eXp(m.;’B)

em que d; ¢ o nimero de falhas em ¢;.



Conceitos Basicos em Andlise de Sobrevivéncia 25

Consequentemente, é possivel estimar as fungoes de sobrevivéncia Sy(t) e S(t) da

seguinte forma

So(t) = exp{—Hy(t)} (2.5.8)
S(tla;) = Sp(t)*@iP). (2.5.9)

2.5.3 Avaliagao do modelo (verificagao do ajuste)

Apesar de o Modelo de Cox ser flexivel, é necessario avaliar a adequagao dos dados
a aplicacao da metodologia. Uma maneira de verificar se o modelo escolhido é o mais
apropriado consiste em examinar o comportamento dos residuos entre os valores preditos
e observados. Isso permite analisar a suposicao de riscos proporcionais e identificar dados

discrepantes na amostra.

Para verificar a suposicao de riscos proporcionais no modelo de Cox, é comum
usar um grafico especifico. Inicialmente, divide-se os dados em m estratos, geralmente com
base em uma covariavel, como sexo. Em seguida, estima-se iLOj (t) para cada estrato. Se a
suposicao de riscos proporcionais for valida, as curvas do logaritmo de ﬁoj (t) versus t, ou
log(t), devem ser aproximadamente paralelas. Curvas nao paralelas indicam desvios dessa
suposicao. E recomenddvel construir esse grafico para cada covariavel do estudo. Para
covariaveis continuas, sugere-se agrupa-las em poucas categorias. Essa técnica grafica tem

a vantagem de indicar qual covariavel esta violando a suposicao, se for o caso.

Uma proposta adicional que vem sendo usada para verificar a suposicao de riscos
proporcionais no modelo de Cox é a de analisar os residuos de Schoenfeld (1982). Consi-
dere que o individuo 7 experimentou o evento de interesse, sendo observado o tempo de
falha e o vetor de covaridveis x; = (21, Zi2, . - ., Tip)’. O residuo de Schoenfeld é definido

como r; = (741,742, .-, Tip) , onde cada componente r;,, para ¢ = 1,2,...,p, é dado por:

Z]GR(t y Liq exp(x ;ﬁ)

] (2.5.10)
EjeR( eXp(x B)

Tig = T41 —

Esse residuo nao é definido para censuras, apenas para tempos de falha. Entre-
tanto, essa medida, definida dessa forma, é pouco utilizada, pois nao considera a estru-
tura de correlagao entre os residuos. Para contornar essa limitacao, foram desenvolvidos

os Residuos Padronizados de Schoenfeld, que sao frequentemente utilizados. Nesse caso,
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é necessario usar a matriz de informacao observada, I(f), como um fator multiplicativo

aplicado ao residuo simples, conforme a seguinte férmula:

st =[I(B)] ry . (2.5.11)

Consequentemente, se a suposi¢ao de riscos proporcionais for valida, o grafico de
B,(t) versus t deve ser uma reta horizontal, j4 que uma inclinagdo zero indica a proporci-

onalidade dos riscos.
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3 Modelo de chances de riscos proporcionais (MCRP)

No capitulo anterior, foi apresentada a ferramenta do modelo de Cox para descre-
ver o tempo de sobrevivéncia considerando a influéncia das covaridveis em uma varidvel
resposta continua 7. No entanto, nao é possivel formular um modelo de riscos proporci-
onais (totalmente) paramétrico quando a resposta é discreta. Como alternativa discreta
ao modelo de riscos proporcionais, este trabalho adotara o modelo de chances de riscos

proporcionais (MCRP), proposto por Vieira et al. (2023).

3.1 Formulacao do modelo

Como discutido em (2.2.11), quando 7" é uma varidvel aleatéria discreta, a funcao
de risco é uma probabilidade, ou seja, 0 < h(t) < 1. Nesse contexto, nao é possivel adotar
a estrutura de riscos proporcionais para incluir covariaveis no modelo de regressao. No

entanto, é possivel utilizar a razao de chances (odds) de h(t), ou seja:

h(t)

odds{h(t)} = Toh@

(3.1.1)

Como odds{h(t)} > 0, o modelo proposto é denominado como modelo de chances
de riscos proporcionais (MCRP) e considera que as covariaveis x; = (21, T, ..., Tip)
agem multiplicativamente (proporcionalmente) na chance do risco. Isto é,

h(t]z) ho(t)

— 1 —g(x'B)—L 3.1.2
em que ho(t) é a funcao de risco base, 3 = (B1,P2,...,0,) é o vetor de coeficientes
associado ao vetor de covaridveis € = (x1,22,...,2,) e ¢g(.) é uma funcdo de ligagdo que

satisfaz as seguintes condigoes:

1. g(a) > 0, Va € R;

2. g(0) = 1.

Note que o intercepto [y nao aparece no preditor linear /3. Isto porque a funcao
de risco base, ho(t), absorve este termo constante (VIEIRA et al., 2023).

Além disso, a propriedade de chances de riscos proporcionais permite interpretar
os coeficientes estimados. Considerando a fungao de ligacao exponencial (g(-) = exp(+)),
a razao de chances do risco entre dois individuos (r e s) que possuem os mesmos valores

para todas as covariaveis, exceto a m-ésima, € expressa por
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odds (A1, )) _ e (Pt}
odds{h(tlxs})  exp{fmTsm}

que nao depende de t.

= exp{ B (Trm — Tsm)} , (3.1.3)

Observe que a Equagao (3.1.3) representa uma razao de chances (odds ratio) de
riscos. Por exemplo, se x,, for a covaridvel dicotomica sexo, com x,, = 1 (masculino)
e Tgy = 0 (feminino), entdo a chance de falha (odds do risco) para individuos do sexo
masculino é exp(f3,,) vezes a chance de falha para individuos do sexo feminino, mantendo

as demais covaridaveis constantes.

A partir da equagao (3.1.2), observa-se que a fungao de risco de um individuo

com covariaveis  é dada por

g(x'B)ho(t)
1 — ho(t) + g(x'B)ho(t)

Segundo a equagao (2.2.17) e (3.1.4), a funcao de sobrevivéncia na presenga de

h(t|z) = (3.1.4)

covariaveis pode ser escrita como

t t

S(tle) = TJ11 - h(ulz)] U [1 e L - ho(< ’>ﬁ)ho(u) t=0,1,2,....  (3.1.5)

Portanto, utilizando as equagoes (2.2.15) e (2.2.17), a fungao de probabilidade é

expressa por:

h(0|x), set=0.
p(tlx) = (3.1.6)
h(tlx)S(t — 1|x), set =1,2,... .

Para ajustar o MCRP, é necessario estimar os parametros da distribuicao base e
da componente de regressao. Esse processo é realizado maximizando a funcao de verossi-

milhanga, dada por:

n 05 gy
2(6) o [T { [0l 0@ )30~ L) 0] [s(0la) 0 @ (0o 0]},
=1
(3.1.7)
em que
1, set; =0

Loy (t;) =
0, set; #0,
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9; é o indicador de falha do i-ésimo individuo e 6 = (¢’, 3’) é o vetor de parametros do
modelo, sendo ¢ o vetor de parametros da distribuicao base do tempo de sobrevivéncia e

3 o vetor de coeficientes de regressao.

3.2 MCRP Weibull discreto

Considerando 7' como uma variavel aleatéria com distribuicao Weibull discreta,
a partir das equagoes (2.3.4) e (3.1.4) e usando a funcao de ligacao g(x’3) = exp(x’3),

foi derivada a seguinte formula para a funcao de risco no MCRP Weibull discreto.

ea:’,@(qt" _ q(t+1)">
h(t|x) = qUADT 1 @B (gt — g(tF D7)’

t=0,1,2,... . (3.2.1)

Substituindo ho(t) e g(x’B) em (3.1.5), a fungao de sobrevivéncia pode ser rescrita

como
t (u—i—l)"
S(t|z) = U { S ew'ﬂ(q — | t=0,1,2,... . (3.2.2)
A partir de (3.1.6), (3.2.1) e (3.2.2), tem-se que a fung¢ao de probabilidade é dada
por
e”'#(1-q) _
m, set=0.
p(t)x) = (3.2.3)
e B(gt" —gt+1)" 1 (u+1)
(qq_(HgTI—) Htuzo |:q(“+1)”+ew'ﬁ(q“"—q<“+1)”)i| , Se t= 1, 2, e,

que resulta em
em'ﬁ(qt” o q(t+1)") t u+1)7

q'
p<t|w) = q(t+1)n

20 [q(““)” + e®'B(q" — qlut 1)")}

4=0,1,2,... . (3.2.4)

Sabe-se que a distribuicao geométrica é um caso particular da distribuicao Weibull
discreta. Portanto, ao substituir 7 = 1 nas equagoes (3.2.2), (3.2.3) e (3.2.4), obtemos,
respectivamente, as funcoes de risco, de sobrevivéncia e de probabilidade para o MCRP
geométrico. Com base na definicao dessas funcgoes, é possivel determinar a funcao de

verossimilhanga a partir da Equagao (3.1.7) e, assim, estimar os parametros do modelo.
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3.3 Verificacao da suposicao de chances de riscos proporcionais

Segundo Vieira et al. (2023), o MCRP (3.1.2) pressupoe que as chances (odds) de
risco para dois individuos sao proporcionais. Considerando, por exemplo, uma covariavel

z dicotomica que assume os valores 0 e 1, o modelo supoe que

h(tlz =1) h(t|z = 0)
Tohz=1 C1ohiz=0)" (3.3.1)

em que h(.) é a fungao de risco e C' é uma constante que nao depende do tempo t.

Seja o,(.) a fungao chance (odds) de risco de um individuo com covaridvel z =
11=0,1,

ht|z = 1)

m@:tﬁﬂgyhau (3.3.2)

e Oy(.) sua respectiva funcao chance de risco acumulada. Isto é,

t t

@@:ZMmzzlmmzn,hay (3.3.3)

— — — h(ulz =1)

Note que sob a suposicao das chances dos riscos serem proporcionais, tem-se a
partir das Equagdes (3.3.1), (3.3.2) e (3.3.3) que

O.1(t) = CO(t) . (3.3.4)

Aplicando o logaritmo em ambos os lados da Equagao (3.3.4), obtém-se a seguinte

expressao:

log[O1(t)] = log|C] + log[Oy(t)] . (3.3.5)

Portanto, a relacao entre log[O;(t)] e log[Op(t)] é uma linha reta com coeficiente

angular igual a 1 e intercepto igual a log[C].

Assim, a suposicao de chances de riscos proporcionais pode ser verificada grafica-
mente ajustando uma reta de regressao simples com coeficiente angular igual a 1 (b =1
fixo). O procedimento consiste em construir um gréfico cujos pontos sao dados pelas co-
ordenadas (log [Oy(t)],log [O1(t)]) e o comportamento esperado é que os pontos do grafico

estejam préximos da reta de regressao ajustada.

Alternativamente, pode-se criar graficos de t ou log(t) versus log[O;(t)], I = 0,

1. Curvas paralelas, que mantém uma distancia vertical constante, indicam chances de
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riscos proporcionais.

Ademais, um teste de hipoteses pode ser adotado para checar se as chances de
riscos sao proporcionais. Assim, se t(;), com j = 1,2,...,.J, é o j-ésimo tempo distinto
observado (censurado ou nao), a verificagdo de proporcionalidade das chances de riscos
pode ser feita testando-se a hipdtese de que o coeficiente angular de uma reta de regressao

simples é diferente de 1, isto é, a hipdtese de interesse é descrita por:

HO : bl =1 ws. H1 : bl # 1. (336)

A estatistica do teste da hipdtese (3.3.6) é dada por:

by — 1
B= by , (3.3.7)

25:1(21'_5)2
(J=2) 2251 (—9)?

J J J J J
~ JZ]‘:I ciY5 — Zj:l Zj Zj:l Yi  _ Zj:l S Zj:l Yj
em que b, = 5 2 = ————— ey = ——— com z; =

J J
JZ}'Izl 232 - (Z;}:l Zj)
log [Oo(t;)] e y; = log[O1(t;)]. Assumindo a normalidade de log[O;(t)], B segue uma

distribuicao ¢t de Student com J — 2 graus de liberdade.

Os procedimentos descritos para verificacao da suposicao de chances de riscos
proporcionais podem ser facilmente estendido para covaridveis categéricas com trés ou
mais niveis, comparando todos os niveis dois-a-dois. Para covariaveis niimericas, os mes-
mos procedimentos podem ser adotados, bastando categorizar a covaridvel e comparando

seus pares de niveis.
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4 Modelagem de risco de crédito

4.1 Introducao

Ao longo da histéria do desenvolvimento economico e social das sociedades, o
crédito tem sido um dos principais fatores a serem considerados, pois, permite que agentes

sociais de diferentes setores alcancem expansao economica.

Sob essa perspectiva financeira:

O crédito corresponde a um valor monetério disponibilizado ao to-
mador de recursos financeiros, na forma de empréstimo ou finan-
ciamento, por um periodo previamente acordado, com a promessa
de pagamento futuro, ao qual se acrescenta uma remuneragao, de-
nominada juros. Consequentemente, o risco é inerente ao processo
de concessao de crédito, uma vez que existem incertezas quanto ao
futuro das quantias emprestadas (MACHADO, 2015).

Segundo Santos (2011), “o risco é definido pela incerteza de retorno de um inves-
timento frente a possibilidade de um evento futuro, incerto e independente da vontade do
investidor, cuja ocorréncia pode causar prejuizos”. Nesse contexto, o risco de crédito esta
associado a fatores internos e externos ao credor que podem dificultar a recuperacgao do
montante emprestado. Para o Banco Central do Brasil, conforme o Art. 2° da Resolucao
3.721/2009, o risco de crédito é definido como a possibilidade de perdas associadas ao nao
cumprimento das obrigacoes financeiras pelo tomador ou contraparte nos termos pactua-
dos, a desvalorizacao de contratos de crédito decorrente da deterioracao na classificacao
de risco do tomador, a reducao de ganhos ou remuneracoes, as vantagens concedidas na

renegociagao e aos custos de recuperacao.

Dentro da esfera do risco, diversos aspectos devem ser analisados, como:

e Risco do Cliente - associado aos C’s do Crédito:
1. Capacidade - habilidade em pagar. Relaciona-se aos meios financeiros para
honrar os compromissos assumidos;
Colateral - garantia;
Caréter - confiabilidade e “vontade”de pagar;

Condigao - condi¢oes ambientais externas, internas e indicadores economicos;

A

Capital - reservas e patrimonio.
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e Risco da Operacao - envolve caracteristicas do produto, prazo, formas de pagamento,

garantia e preco;
e Risco de Carteira - relacionado ao conjunto de clientes e tipos de negocios;

e Risco de Administracao de Crédito - compreende o acompanhamento do crédito

concedido.

Nesse cenéario, surgiram os Modelos de Credit Scoring, como ferramentas capazes
de quantificar o risco de crédito envolvido em uma operacao de forma automatizada,

padronizada e objetiva.

Os Modelos de Credit Scoring utilizam algoritmos matematicos e técnicas es-
tatisticas para calcular a probabilidade de que determinado evento ocorra. Aplicando
formulas, o sistema atribui uma pontuacao especifica para cada caracteristica do propo-

nente/cliente, com o objetivo de prever um resultado.

Historicamente, os modelos de Credit Scoring (CS) foram iniciados pelos estudos
de Durand (1941) na drea de financiamento ao consumidor apds a Grande Depressao nos
EUA. Este projeto foi pioneiro na utilizacao da Estatistica como uma ferramenta para
analise de risco de crédito. Na pesquisa, foi utilizada a Analise Discriminante desenvolvida
por Fisher (1936) para identificar bons e maus empréstimos. Nesse contexto, a pesquisa
de Durand pode ser considerada o ponto de partida para futuros estudos focados no

desenvolvimento de metodologias de suporte a concessao de crédito.

No inicio dos anos 1950, Bill Fair e Earl Isaac criaram a primeira companhia de
consultoria em métodos de scoring, utilizando dados historicos para melhorar as decisoes
de negocios. Posteriormente, em 1958, venderam o primeiro sistema de Credit Scoring
para a area de cartoes de crédito, fato considerado um marco importante na histéria
dos modelos de scoring. Entretanto, o sucesso da companhia e seu foco comercial nao
resultaram em um desenvolvimento significativo da literatura sobre o tema, uma vez que

o conhecimento se tornou valioso e foi pouco divulgado pelas empresas.

Apesar dos Modelos de CS representarem uma melhoria na analise de risco de
crédito, diversos fatores dificultavam seu crescimento, como a relutancia dos executivos,
limitagoes tecnoldgicas, obstaculos no desenvolvimento e implementagao dos modelos e,
segundo Myers e Forgy (1963), a falta de estatisticos para promover a drea de crédito e
transformar a ideia em uma ferramenta operacional bem-sucedida e 1til. Diante disso,
apesar da expansao do crédito nos EUA, poucos estudos sobre Credit Scoring foram

produzidos até os anos 1960.

A partir de 1960, outras pesquisas relevantes foram publicadas, como:

e Desenvolvimento de Sistemas Numéricos de Avaliagao de Crédito (MYERS; FORGY,
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1963). Os autores verificaram a eficdcia das férmulas preditivas de scoring e introdu-
ziram o conceito de amostra hold-out, diferente daquela utilizada para a modelagem,

importante para testar a capacidade preditiva do modelo em novas amostras.

e Conceitos e Utilizacao de Técnicas de CS (WEINGARTNER, 1966). O autor ressal-
tou a importancia de testar os escores de crédito antes de usé-los e sugeriu validar a

férmula aplicando-a a clientes inadimplentes para verificar se os escores sao baixos.

e Indices Financeiros, Anadlise Discriminante e Previsao de Faléncia de Empresas

(ALTMAN, 1968). Introduziu modelos de scoring para empresas.

e Um Modelo de CS para Empréstimos Comerciais (ORGLER, 1970). Propos um

modelo para avaliar periodicamente a qualidade dos empréstimos concedidos.

A partir dos anos 1970, com o crescimento economico e a consequente demanda
por crédito, muitas instituigoes financeiras nos EUA cresceram de forma insustentavel,
sem conseguir manter a lucratividade. Ao mesmo tempo, a reconstrucao da Europa pds-
guerra contribuiu para que os Modelos de CS fossem reconhecidos como uma industria.
Desde o inicio dos anos 1990, os Modelos de ('S tornaram-se o principal mecanismo para
avaliacao de risco na concessao de diversos tipos de empréstimos, com decisoes sendo

tomadas sem intervencao humana.

Com a divulgacao do Acordo de Basileia IT em 2004, os Modelos de C'S tornaram-
se ainda mais importantes, destacando a necessidade de técnicas que permitissem as
instituicoes e supervisores avaliar corretamente os diversos riscos enfrentados pelos bancos.
Muitas organizacoes desenvolveram melhores modelos ou modificaram os ja existentes
para conformidade com as novas regras e melhores praticas de mercado, dado que os
reguladores impuseram regras mais rigorosas sobre o desenvolvimento, implementacao e

validagao dos modelos internos utilizados para estimar o capital a ser provisionado.

Com o continuo desenvolvimento e crescimento dos mercados financeiros, o crédito
tornou-se ainda mais crucial para a economia. A globalizagao e a sofisticacao dos meios de
comunicag¢ao, como a internet, fazem com que os consumidores busquem ofertas de crédito
mais atrativas. Por isso, as institui¢oes financeiras procuram desenvolver ferramentas

eficientes para avaliar e controlar os riscos.

Os Modelos de CS, inicialmente utilizados apenas para decidir a concessao de
crédito, hoje sao parte integral de todo o ciclo do crédito, presentes em cada etapa da

gestao estratégica de riscos.
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4.2 Escore de risco

A mensuragao do risco de crédito é o processo de quantificar a credibilidade de
um solicitante de crédito, utilizando variaveis explicativas para classificar os solicitantes
como “bons” ou “maus” pagadores. O objetivo dessa classificagao prévia é prever com-
portamentos que possam indicar padroes de inadimpléncia, evitando maiores prejuizos e

a perda de bons clientes para a instituicao financeira.

A proposta desse trabalho é formular o escore de risco a partir dos resultados do
MCRP, sendo a sua grandeza associada ao valor estimado do preditor linear do modelo.
No MCRP, quanto maior for o valor do preditor linear, maior ¢ a fun¢ao de risco do
cliente. Isso implica, no contexto desse modelo, maior probabilidade do cliente inadimplir
(ou inadimplir em um tempo mais recente). Desta forma, o preditor linear ’3 pode ser

considerado como um escore de risco para o MCRP, isto é,

ER = fB,ﬁ = 513'151 -+ 33'252 + e+ xpﬁp' (421)

Note que o escore de risco definido em (4.2.1) assume valores reais. Alternati-
vamente, as transformagoes exp{-} ou exp{— exp{-}} podem ser incorporadas para obter

escores de risco positivos ou limitados no intervalo 0-1, respectivamente.

4.3 Classificacao dos clientes pelo escore de risco

A classificacao dos clientes é uma das etapas mais cruciais para as instituicoes
financeiras. Essa classificacao orienta as posturas e estratégias em relacao as concessoes
de crédito. O objetivo principal é maximizar os lucros e minimizar os riscos, garantindo

uma gestao eficaz das concessoes de crédito.

Com base nos pontos mencionados, os critérios de classificacao dos clientes pelo

escore de risco tém os seguintes objetivos:

1. Minimizar o erro ao classificar maus solicitantes como de risco baixo, evitando assim

concessoes de crédito com alto risco.

2. Minimizar o erro ao classificar bons solicitantes como de risco alto, evitando a perda

de clientes valiosos.

3. Maximizar a precisao total na classificacao dos clientes, garantindo que a avaliagao

seja justa e precisa.
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4.4 Avaliacao da acuracia do modelo

Para exemplificar os termos de acurdcia, considere o seguinte caso : Seja X o
status de um cliente (1 = mal pagador, 2 = bom pagador) e Y o diagnéstico do modelo
de risco (positivo, quando o modelo classifica o cliente como de alto risco; e negativo,

quando o modelo classifica o cliente como de baixo risco).
Validagao cruzada :

Essa técnica envolve a divisao dos dados em duas amostras, geralmente de ta-
manhos iguais: uma amostra de estimacao e uma amostra de validagao. A subamostra
de estimacao é utilizada para calcular os parametros do modelo, enquanto a subamostra
de validacao serve para validar esses parametros e verificar o poder preditivo do modelo.
Esse processo permite avaliar quantitativamente a capacidade de previsao do modelo em

relacao a novas observacoes.
Total de acertos:

Corresponde ao nimero de classificacoes corretas do modelo para a variavel res-

posta em relagao a variavel explicativa.
Sensibilidade:

Corresponde a probabilidade de o modelo alocar o individuo i na categoria K,
dado que ele realmente pertence a essa categoria. Considerando o exemplo citado anteri-
ormente, a sensibilidade serd definida como a probabilidade de o diagndstico do modelo
acertar a classificacdo de risco como alto (Y = +1) para um mal pagador (AGRESTI,
2019), ou seja,

Sensibilidade = P(Y = +1|X = 1)

Especificidade:

Corresponde a probabilidade de o modelo nao alocar o individuo ¢ na categoria
K, dado que ele realmente nao pertence a essa categoria. Considerando o exemplo citado
anteriormente, a especificidade sera definida como a probabilidade de o diagnéstico do
modelo classificar um bom pagador como de baixo risco (Y = —1) (AGRESTI, 2019), ou

seja,

Especificidade = P(Y = —1 | X = 2)

Falso Positivo:

Um falso positivo ocorre quando o modelo classifica incorretamente uma ob-
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servagao como pertencente a categoria de sucesso, quando na verdade ela pertence a
categoria de fracasso. Considerando o exemplo citado anteriormente, um falso positivo
seria quando o modelo de risco classifica erroneamente um bom pagador como de alto

risco.
Falso Negativo:

Um falso negativo ocorre quando o modelo classifica incorretamente uma ob-
servacao como pertencente a categoria de fracasso, quando na verdade ela pertence a
categoria de sucesso. Considerando o exemplo citado anteriormente, um falso negativo
seria quando o modelo de risco classifica erroneamente um mal pagador como de baixo

risco.
Matriz de confusao:

A matriz de confusao é uma tabela que compara os valores reais com os valores
preditos pelo modelo, relatando o niimero de falsos positivos, falsos negativos, verdadeiros
positivos e verdadeiros negativos. Considerando o exemplo citado anteriormente, a matriz

de confusao seria construida da seguinte forma:

Tabela 1: Matriz de confusiao

Valores reais (X)
Diagnéstico do modelo de risco (V) Mal pagador Bom pagador
Alto risco Verdadeiro positivo Falso positivo
Baixo risco Falso negativo Verdadeiro negativo

O numero total de acertos é dado pela soma da diagonal principal da matriz de

confusio.
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5 Ilustracao da metodologia proposta

Este capitulo apresenta a aplicacao da metodologia desenvolvida neste trabalho
para a classificacao de clientes, detalhando as etapas necessarias para a construcao e

avaliacao do modelo.

Inicialmente, o banco de dados foi dividido em dois subconjuntos: treino e teste.
O conjunto de treino, correspondente a 70% do total de dados, é utilizado para o de-
senvolvimento e ajuste do modelo. Por sua vez, o conjunto de teste, que representa os
30% restantes, ¢ empregado apds a criacao do modelo, permitindo simular previsoes em

cendrios reais e avaliar seu desempenho e capacidade de generalizagao.

O desenvolvimento do modelo MCRP segue as seguintes etapas principais:

1. Divisao dos dados: Separacao dos dados em conjuntos de treino e teste.

2. Construgao do modelo: Aplicagao do modelo de chances de riscos proporcionais
(MCRP) no conjunto de treino.

3. Avaliagao no conjunto de teste: Aplicagao do modelo ao conjunto de teste para

verificar seu desempenho em dados nao utilizados no treinamento.

4. Andlise de métricas: Avaliacdo das métricas de desempenho, como acuricia,

sensibilidade, especificidade para determinar a qualidade do modelo.

Essa abordagem busca garantir a robustez do modelo e sua capacidade de fornecer

classificacoes confiaveis em situagoes praticas.

5.1 Banco de dados

Para a selecao da base de dados utilizada no presente trabalho, realizou-se uma
ampla revisao bibliografica com o objetivo de identificar bases de dados reais que atendes-
sem aos objetivos propostos. Contudo, em virtude do elevado valor comercial associado
aos dados de risco de crédito e a inclusao de informagoes sensiveis dos clientes, que pode-
riam infringir os principios estabelecidos pela Lei Geral de Prote¢ao de Dados (LGPD, Lei
n® 13.709/2018), constatou-se a inexisténcia de bases piblicas disponiveis nas publicagoes

revisadas.

Diante dessa limitagao, optou-se pela realizacao de uma analise detalhada da
literatura existente, com o objetivo de identificar as varidveis mais frequentemente em-
pregadas na distingao entre solicitantes de baixo e alto risco no contexto da andlise de
risco de crédito. Com base nessa investigagao, selecionaram-se as seguintes variaveis ex-

plicativas:
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e Limite de Credito: Refere-se ao limite de credito concedido a cada cliente. Foi

utilizado a transformagao log da varidavel para melhor modelagem dos dados.

e Sexo: Refere-se ao sexo de cada cliente. Foi utilizado dois niveis numéricos, com

“0”representando o género feminino e “1”0 género masculino.

e Classificagao Social por renda: Indica a classificacao social da renda, de acordo
com os critérios da Fundagao Getulio Vargas (2014). A varidvel foi codificada em 5

niveis: da Classe E a Classe A, com a Classe B servindo como base de comparacao.

e Estado civil: Representa o estado civil de cada cliente, codificado da seguinte

forma: “0”para casados(as), “1”para solteiro(a) e “2”para Viuvo/Separado.

e Idade: Variavel que indica a idade de cada cliente, em anos.

A defini¢ao dos parametros para cada variavel baseou-se no trabalho de Bogoni e
Pavan (2014) que analisou como cada caracteristica pode influenciar o risco. A idade foi
considerada uma variavel diretamente proporcional ao risco, com a hipotese de que clientes
mais velhos podem apresentar maior probabilidade de inadimpléncia. Na variavel sexo,
homens foram associados a um maior risco em relacao as mulheres, possivelmente devido
a padroes comportamentais identificados em estudos prévios. Quanto a classificacao por
renda, niveis mais altos foram correlacionados a um maior risco, indicando que maior
renda pode estar associada a maior acesso a concessoes de crédito e, consequentemente,
maior exposi¢ao ao risco de inadimpléncia. Por fim, no estado civil, individuos casados
foram considerados de maior risco em comparagao com solteiros ou vitvos/separados, pos-
sivelmente devido ao impacto de maiores responsabilidades financeiras na administracao

familiar.

A partir dessas varidveis, criou-se uma base de dados simulada com 1000 ob-
servagoes, incluindo também a varidvel tempo (em meses) até a ocorréncia da inadimpléncia.
Em relagao a censura, observou-se que as taxas de censura geralmente se mostram ele-
vadas, resultando em um numero reduzido de casos de inadimpléncia registrados. Tal

cenario é esperado, considerando a lucratividade caracteristica do setor de empréstimos.

Nesse trabalho foi considerada uma taxa de censura aproximada de 50%, visando
a uma aproximacao aos dados reais encontrados na literatura em trabalhos como o de
Dirick e Baesens (2017). Essa estratégia possibilitou que a base simulada representasse
com maior fidelidade as caracteristicas observadas em cenarios reais de analise de risco de

crédito.

As variaveis explicativas foram geradas da seguinte forma: o limite de crédito a
partir de uma distribuicao lognormal, o sexo por meio de uma distribuicao de Bernoulli,

a classificacao social por uma distribuicao multinomial com 5 categorias, o estado civil
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por uma distribuicao multinomial com 3 categorias e a idade por uma distribuicao de
Poisson. Os parametros dessas distribui¢oes foram escolhidos de modo que seus valores
(sinais) estivessem de acordo com as observagoes do trabalho de Bogoni e Pavan (2014).
Os tempos de sobrevivéncia foram gerados utilizando o método da transformagao inversa,
partindo inicialmente de um MCRP Weibull continuo. Os tempos de censura foram gera-
dos combinando os mecanismos de Tipo 1 (considerando financiamentos com duracao de
36 meses) e aleatério (através de uma distribui¢do exponencial independente do tempo
de sobrevivéncia), com o parametro da distribui¢ao exponencial ajustado para aproxi-
mar a taxa de censura desejada. Por fim, os tempos de sobrevivéncia resultantes foram

discretizados, tomando-se a parte inteira de seus valores.

A base de dados criada subsidiou a aplicagao da metodologia proposta, baseada
na técnica MCRP. Essa abordagem permitiu o desenvolvimento de um modelo robusto e
alinhado aos objetivos do estudo, garantindo, simultaneamente, a conformidade com os

principios éticos e de protecao a privacidade dos dados.

5.2 Analise descritiva

Nessa secao serd apresentado a analise descritiva do banco de dados gerado. Sera

utilizado tabelas e graficos para demonstracao.

As Tabelas 2 e 3 representam uma andlise descritiva das varidaveis numeéricas e

categoricas.
Tabela 2: Medidas resumo de cada varidvel Numérica
Variavel Minimo | Mediana | Maximo | Média | Desvio Padrao
Limite de Credito | 5,704 8,000 10,332 8,010 0,69
Tdade 23 40 60 | 39,87 6,20
Tabela 3: Medidas resumo de cada variavel categérica
Varidvel Nivel Frequéncia Absoluta | Frequéncia Relativa(%)
g Homem: x =1 498 498
oxo Mulher : x = 0 502 50,2
Classe A : x >R$ 11.262 202 20,2
Classe B : R$ 8.641<x <R$ 11.261 195 19,5
Classe Social | Classe C : R$ 2.005 <x <R$ 8.640 191 19,1
Classe D : R$ 1.255 <x <R$ 2.004 194 19,4
Classe E : R$ 0 <x <R$ 1.254 218 21,8
Casado : x =0 335 33,5
Estado Civil Solteiro : x =1 354 35,4
Vitvo/Separado : x = 2 311 31,1

A partir da Tabela 2 observa-se que os dados numéricos nao apresentam uma
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dispersao elevada em torno da média/mediana, exibindo um comportamento centrado

nas medidas centrais, além de apresentarem valores baixos para o desvio padrao.

A Tabela 3 apresenta os dados categoricos e suas frequéncias absolutas e relativas.
Entre as principais informagoes, observa-se que o comportamento dentro das classes de

todas as varidveis exibe similaridade, apresentando uma proporgao homogénea.

A base de dados utilizada neste trabalho consistiu em n = 1000 observagoes, das
quais 469 (46,9%) foram censuradas. Todas as censuras foram do tipo a direita, indicando

que o evento de inadimpléncia nao ocorreu dentro do periodo do estudo.

A Figura 1 apresenta a estimativa do tempo em meses até a inadimpléncia, sem

a consideracao das variaveis explicativas.

Curva de Kaplan-Meier
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Figura 1: Estimativa de Kaplan-Meier da fun¢ao de sobrevivéncia sem a presenca das varidveis
explicativas

5.3 Ajuste do MCRP

Agora, nesta secao do trabalho, sera feito ajuste do MCRP. Como dito previa-
mente, o banco de dados é dividido em “treino” e “teste”, onde a tabela de treino é usada
para estimacao dos parametros e a tabela de teste é usada para avaliar o desempenho do
modelo. A divisdo do banco de dados (em 70% treino e 30% teste) foi realizada por meio

de sorteio aleatério das observagoes.

Outro aspecto relevante consiste na transformacao de varidveis categéricas em
variaveis dummies, procedimento que envolve a criacao de varidveis binarias 0, 1 para cada
categoria, com exce¢ao da categoria de referéncia. Por exemplo, no conjunto referente a

Classe Social, com cinco classes (A a E), ao utilizar a Classe B como referéncia, um
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individuo pertencente a Classe D seria representado com o valor 1 apenas na variavel
Classe D e com o valor 0 nas demais (Classes A, C e E). Tal procedimento possibilita a

interpretacao dos coeficientes de regressao como efeitos diferenciais em relacao a categoria
de referéncia (AGRESTI, 2013).

Considerando T' como uma variavel aleatéria com distribuicao Weibull discreta

e usando a fungao de ligagdo g(x’B) = exp(x’B), derivou-se a seguinte férmula para a

fungao de risco no MCRP de Weibull discreto:

ew'ﬁ(qt"
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— ¢D7)

A funcao de sobrevivéncia pode ser reescrita como

(u41)"

t
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As estimativas do MCRP Weibull discreto para os dados do banco treino sao

apresentadas na Tabela 4:

Tabela 4: Estimativas dos parametros do modelo MCRP Weibull discreto para os dados do banco
treino

t=0,1,2,... .

t=0,1,2,... .

Varidvel Estimativa | LI IC 95% | LS IC 95%

n 0,8260 0,7459 0,9062

q 0,4332 0,0413 0,8250

Limite de Crédito -0,2231 -0,3814 -0,0647
Sexo Feminino *

Sexo Masculino 0,8800 0,6464 1,1135

Classe Social A 0,2309 -0,0752 0,5371
Classe Social B *

Classe Social C -0,3068 -0,6501 0,0365

Classe Social D - 0,7849 -1,1504 -0,4194

Classe Social E - 0,7928 -1,1706 -0,4149
Estado Civil Casado *

Estado Civil Solteiro; - 0,7183 -1,0093 -0,4273

Estado Civil Viuvo/Separado 0,0211 -0,2782 0,2359

Idade - 0,0420 -0,0608 -0,0232

Nota : As varidveis com * sao as de nivel de referéncia

Com a tabela 4 pode-se observar os coeficientes 3 para cada variavel, juntamente
com seus intervalos de confianca. Valores positivos indicam um aumento nas chances de

inadimpléncia, e valores negativos, uma reducao.

Como os dados foram gerados a partir de um MCRP Weibull continuo, a veri-

ficacdo da suposicao de chances de riscos proporcionais torna-se desnecesséria.
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5.4 Obtencao do escore de risco e classificagao dos individuos

segundo a metodologia proposta

O Escore de Risco apresentado em (4.2.1) foi calculado para cada observagao da

amostra, com base nas estimativas dos parametros do modelo apresentadas na Tabela 4.

Dessa forma, o escore de risco de um cliente é estimado por:

ER = z'3 =(—0,2231 x Limite de Crédito + 0,8800 x Sexo Masculino
+ 0, 2309 x Classe Social A — 0,3068 x Classe Social C
—0,7849 x Classe Social D — 0, 7928 x Classe Social E
— 0, 7183 x Estado Civil Solteiro — 0,0211 x Estado Civil Viuvo/Separado
—0,0420 x Idade )
(5.4.1)

Por exemplo, o escore de risco de um cliente, com limite de crédito R$1200, do

sexo feminino, da classe social C, do estado civil Viuvo/Separado e com 36 anos de idade

é estimado por :

ER = 2/ = — log(1200) x 0,2230 + 0,8800 x 0 40,2309 x 0 — 0, 3068 x 1
—0,7849 x 0 — 0,7928 x 0
—0,7183x 0 —0,0211 x 1
—0,0420 x 36. = 0, 0326

(5.4.2)

O escore de risco (5.4.1) foi calculado para cada individuo da amostra de teste.
A Figura 2 apresenta a densidade da distribuicao dos escores obtidos, de acordo com as

duas categorias da varidvel resposta (Inadimpléncia/Adimpléncia).
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Figura 2: Grafico da densidade dos escores de risco

A partir da Figura 2 , observa-se que a categoria de menor risco apresentou um
pico entre os escores mais baixos, evidenciando uma diferenciagao em relagao a categoria
de maior risco.

O principal objetivo da determinagao do escore de risco consiste em minimizar:

o erro de categorizar clientes com alto risco como pertencentes a uma categoria de baixo

risco e o erro de categorizar clientes com baixo risco como pertencentes a uma categoria

de alto risco.

A Figura 3 apresenta o percentual dos erros associados a cada nivel de corte no

banco de treino.
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Figura 3: Gréfico do erros associados ao corte

A partir da andlise da Figura 3, percebe-se que o erro moderado e o erro total
apresentam uma diminuicao a medida que o nivel de corte aumenta, com seus minimos
proximos a 0, 03 e 0,0237, respectivamente. Em contrapartida, o erro grave exibe um com-
portamento crescente a medida que o nivel de corte aumenta, apresentando seu minimo

préximo ao ponto de corte 0, 02.

Na escolha do escore, consideraram-se os dois tipos de erro na classificacao dos
clientes. O erro do Tipo I, considerado o mais grave, consiste em classificar clientes com
alto risco como clientes com baixo risco, acarretando, assim, uma perda de capital nas
operagoes. O erro do Tipo II, por sua vez, consiste na classificacao de clientes com baixo
risco como clientes com alto risco, o que acarreta a perda de potenciais clientes. Buscou-se

minimizar ambos os cendrios, com prioridade para o erro do Tipo I.

Considerando os pontos mencionados anteriormente, determinou-se o ponto de
corte em 0, 0235. Ou seja, clientes com escore de risco inferior a 0, 0235 foram classificados
como de baixo risco, e clientes com FR > 0,0235 foram classificados como de alto risco.
Tais pontos de corte foram definidos com base na Figura 2, visando ao controle dos erros
do Tipo I e do Tipo II (probabilidade de erro do Tipo I inferior a 10% e probabilidade de
erro do Tipo II inferior a 36%), além de buscar um nivel de erro total préximo ao minimo

possivel.

Assim, um individuo com ER = 0,0326 (5.4.2) é classificado como de alto risco
de inadimpléncia. Ademais, o valor do Escore de Risco foi calculado para todos os in-
dividuos dos bancos treino e teste e seus resultados sao apresentados nas Tabelas 5 e 6,

respectivamente.
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Tabela 5: Classificagao - banco treino

Predito
Observado | Adimpléncia | Inadimpléncia Total
Adimpléncia 267 107 374
Inadimpléncia 24 302 326
% de acerto 91,75%* 73,84%** 81,29%***

Nota : * Valor preditivo positivo ** valor predivivo negativo *** Acerto total

O modelo de MCRP apresentou um bom desempenho, com 81,29% de acerto
global, alcangando 91, 75% na categorizagao dos solicitantes de menor risco e uma porcen-
tagem proxima do acerto global para os solicitantes de maior risco. Conforme mencionado
anteriormente, o principal objetivo consistia na obtencao de um escore que classificasse

de maneira adequada as categorias de maior risco para as institui¢oes financeiras.

Tabela 6: Classificagao - banco teste

Predito
Observado Adimpléncia | Inadimpléncia Total
Adimpléncia 120 37 157
Inadimpléncia 12 131 143
% de acerto 90,90%* 77,98%** 83,67%***

Nota : * Valor preditivo positivo ** valor predivivo negativo *** Acerto total

A analise da Tabela 6 revela que os dados se mostram préximos aos do banco de
treino, com 83,67% de acerto global e com acertos nas categorias bastante similares. Tal
caracteristica demonstra que o modelo apresentou bom desempenho em relacao a novos

dados, com resultados satisfatérios.

5.5 Comparativo de Desempenho Preditivo

Nesta secao, comparamos o desempenho preditivo do modelo proposto com os
modelos de regressao logistica e de riscos proporcionais de Cox, ambos amplamente utili-

zados na elaboracao de escores de risco.

Os resultados monstram que o MCRP apresentou desempenho superior ou se-
melhante aos modelos comparados. Especificamente, o modelo logistico alcancou 74% de
acertos no banco de treino e 73% no banco de teste, resultados inferiores aos do MCRP.
Além da acuracia, o MCRP se destaca por ser mais informativo que o modelo logistico,

fornecendo dados sobre a curva de risco e a sobrevivéncia ao longo do tempo, tteis para
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o desenvolvimento de estratégias de negocio. Além de que o modelo logistico nao leva em

consideragao as observagoes censuradas como o MCRP.

Por sua vez, o modelo de Cox obteve 82% de acertos no banco de treino e 85%
no banco de teste, resultados proximos aos do MCRP. Contudo, o MCRP apresenta uma
vantagem conceitual significativa: diferentemente do modelo de riscos proporcionais de
Cox, que pressupoe uma distribuicao continua para a variavel tempo, o MCRP considera
sua distribuicao discreta. KEssa caracteristica é particularmente relevante em contextos
onde o tempo de evento é naturalmente discreto ou medido em intervalos, conferindo ao

MCRP uma maior adequacao para tais dados.
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6 Consideracoes finais

Diante do aquecimento da economia e do aumento da oferta de crédito, as insti-
tuigoes financeiras constataram a necessidade de estruturar processos objetivos e eficientes
para a gestao dos riscos em todas as etapas do ciclo de crédito. Contudo, a expansao do
crédito acarreta também o aumento da inadimpléncia, aspecto que motivou o desenvolvi-

mento do presente trabalho.

A proposta do trabalho consistiu no desenvolvimento de um escore de risco e na
avaliagao de sua capacidade preditiva para a classificagao de solicitantes em categorias de

risco.

A escolha do modelo de chances de risco proporcionais justificou-se pela carac-
teristica da informacao do tempo, que apresenta uma distribuicao discreta ao longo da
mensuragao dos meses. A vantagem da técnica MCRP reside no ganho de informagao pro-
veniente das técnicas de andlise de sobrevivéncia, tais como a fungao de sobrevivéncia e a
funcao de risco ao longo do tempo. Dessa forma, além da classificacao final dos clientes,

o estudo apresenta informacoes sobre o comportamento ao longo do tempo.

O trabalho empregou um banco de dados simulado, elaborado com base em es-
tudos da literatura. Tal banco de dados possibilitou o desenvolvimento do escore de risco

e a classificacao de clientes entre as categorias de Inadimplentes e Adimplentes.

Os resultados observados demonstraram que o escore de risco proposto neste tra-
balho se mostrou adequado para a classificagao de clientes, apresentando desempenhos
consistentes tanto na amostra de treino quanto na amostra de teste, além de exibir re-
sultados superiores aos de técnicas comuns na literatura e na industria, como o modelo

logistico.

O objetivo de propor um escore de risco consistente foi alcancado. As cons-
tatacoes apresentadas neste trabalho representam uma contribuicao para a analise de

dados discretos e ampliam a literatura sobre o tema.

Como tépicos para estudos futuros, a possivel aplicacao da metodologia proposta
em bancos de dados maiores e reais, com a inclusao de mais variaveis explicativas signifi-
cativas podem ser realizados. Ademais, outros modelos de regressao para dados discretos
de sobrevivencia com estrutura proporcional também podem ser considerados, como por
exemplo modelo de chances de sobrevivéncia proporcionais (CARDIAL; COBRE; NA-
KANO, 2025) ou o modelo log sobrevivéncias proporcionais (CHANDIONA; CARDIAL;
NAKANO, 2025).
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Cddigo para Estimativas MRCP e do ER

ittt COVARIAVEIS #5444

# x1. Limite de credito (continua)

# x2. Sexo (categorica 2 niveis)

# x3. Classe Social (categorica 5 niveis: z81, z32, 233 e z534)
# xf. FEstado Civil (categorica 3 niveis: x4l e 142)

# x5. Idade (discreta)

#HH definicao das funcoes #HHH

## risco base — WEIBULL DISCRETA
hO<—function(t,q,eta){

(q"(t eta)—q ((t+1)"eta))/q (t eta)

## funcao de ligacao

link . theta<—function (betal ,beta2  beta3l  beta32 6 betad3 ,h beta34,

betadl ,betad2  betab ,x1,x2,x31,x32,x33,x34,x41,x42 ,x5){

g <— exp(betal *x1 +

beta2 =xx2 +
betadl*xx31
beta32%x32
beta33*x33
betad4xx34
beta4l*x41
beta42%xx42
betab *x5)

+ o4+ + + o+

## risco na presenca de covariaveis
h.x<function(t,q,eta,betal ,beta2 , beta3l  beta32  beta33 6 beta34
betadl ,betad2  betab , x1,x2,x31,x32,x33,x34,x41,x42 ,x5){

g <— link.theta(betal , beta2 6 beta3l  beta32, 6 beta33  beta34 6 betadl,
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beta42 ,betab  x1,x2,x31,x32,x33,x34,x41,x42 ,x5)
gxh0(t,q,eta) / (1-h0(t,q,eta) + gxhO(t,q,eta))

#H## sobrevivencia na presenca de covariaveis
s.x<—function (t,q,eta ,betal ,beta2 , beta3l  beta32  beta33  beta34,
betadl ,betad2  betad , x1,x2,x31,x32,x33,x34,x41,x42 ,x5){
sobrev<—l1
for (u in 0:t){
sobrev<—sobrev % (1—h.x(u,q,eta, betal  beta2 6 beta3l  beta32,
beta33 ,beta34 ,betadl ,betad2  betad  x1,x2,x31,x32,x33,x34,
x41,x42 ,x5))
h

return (sobrev)

### distribuicao de probabilidades na presenca de covartaveis
p.x<—function(t,q,eta,betal ,beta2 6 betadl, h beta32 6 beta33  betad4,
betadl ,betad2  betad ,x1,x2,x31,x32,x33,x34,x41,x42 ,x5){
if (t==0) return(h.x(0,q,eta,betal ,beta2 6 beta3l 6 beta32 6 beta33,
beta34 ,betadl ,betad2 ,betab ,x1,x2,x31,x32,x33,x34,x41,x42 x5))
else return(h.x(t,q,eta, betal ,beta2 6 beta3l  beta32,6 beta33  beta3d4,
betadl ,betad2  betab ,x1,x2,x31,x32,x33 ,x34 ,x41,x42,x5)
*s.x(t—1,q,eta ,betal ,beta2  beta3l  beta32 betad3,
beta34 ,betadl ,betad2  betab  x1,x2,x31,x32,x33,x34,x41,x42 ,x5))

### log verossimilhanca
log _vero MCRP <— function (parametros ,t,x1,x2,x31,x32,x33,x34 ,x41,
x42 x5, censura) {

q <— parametros

eta <— parametros

betal <— parametros

beta2 <— parametros

[1]
[2]
[3]
[4]
beta3l<— parametros [5]
beta32<— parametros [6]
beta33<— parametros 7]
beta34<— parametros 8]

[9]

beta4l<— parametros
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betad2<— parametros[10]
betab <— parametros[11]

theta <— link.theta(betal ,beta2 6 betadl,h beta32 6 beta33  betad4,
betadl ,betad2  betad ,x1,x2,x31,x32,x33,x34,x41,x42 ,x5)
if ((g>0)&&(g<1)8&(eta>0)) {
lvero<—0
for (i in 1l:length(t)){
lvero<—lvero 4+ ( censurali] *log(p.x(t[i],q,eta,h betal,
beta2 ,beta3dl ,beta32 ,betad3d ,betad4d  betadl ,betad2  betab,
x1[i],x2[i],x31[i],x32[i],x33[i],x34[i],x41[i],x42[i].x5[i]))
+ (1—censura[i])=*log(s.x(t[i],q,eta, betal
beta2 ,beta3dl ,betad2 ,beta3d3d ,betad4 , betadl |
betad2  betas ,x1[i],x2[i],x31[i],x32[i],x33[i],
x34[1],x41[i],x42[i],x5[i])) )
¥

return(—1xlvero)

}

else return(—Inf)

#H## obtencao das estimativas dos parametros do MCRP

chute.inicial

est <— nlm(log_vero _MCRP, chute. inicial ,
t=tempo, censura=censura ,
x1=x1,x2=x2 ,x31=x31 ,x32=x32 , x33=x33
x34=x34 , x41=x41 ,x42=x42 , x5=X5 ,
iterlim = 500, hessian=T)

est

est _beta<—est$estimate [3:11]

ES<— exp(est_beta[l]*x]l +
est _beta[2]*x2 +
est _beta[3]*x31 +
est _beta[4]*x32 +
est _beta[5]*x33 +
est _beta[6]*x34 +
est _beta[7]*x41 +
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est _beta[8]*x42 +
est _beta[9]*x5)

### figura com os ER
plot (density (ES|[censura==0]))
points (density (ES[censura==1]),col=2,type="1")
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