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Resumo

Regressao beta nao linear robusta

A regressao beta é frequentemente utilizada para modelar dados restritos ao intervalo
continuo unitario, a exemplo de taxas, fracoes e proporcoes. O método inferencial padrao
utilizado para estimacao dos parametros da regressao beta é o método da maxima ve-
rossimilhanca. Entretanto, este método ¢ sensivel a observacoes discrepantes nos dados,
podendo, em muitos casos, conduzir a resultados erroneos sobre a relagao entre a resposta
e as covariaveis de interesse. Nesse sentido, Ribeiro e Ferrari (2023) e, mais recentemente,
Maluf, Ferrari e Queiroz (2025) propuseram métodos de estimagao robustos alternativos
ao método da maxima verossimilhanca, objetivando reduzir a influéncia de observagoes
atipicas no processo de estimacao. Os referidos métodos de estimacao robustos foram
desenvolvidos sob modelos de regressao beta que consideram em suas estruturas de re-
gressao preditores que sao fungoes lineares de seus parametros. Assim, o presente trabalho
se propoe a adaptar os métodos de estimacao robustos aqui mencionados, estendendo-os
a modelos de regressao beta nao lineares.

O processo tedrico de obtencao dos estimadores robustos sob estruturas nao lineares
de regressao beta foi desenvolvido e estudado por meio de suas propriedades tedricas.
Também foi mostrada uma adaptacao do teste de Wald como alternativa robusta para
avaliacao da significancia dos parametros da regressao. Para selecao do valor 6timo da
constante de afinagao necessaria nos procedimentos robustos, propusemos uma adaptacao
ao método orientado a dados desenvolvido por Ribeiro e Ferrari (2023), com o objetivo de
deixar o processo de selecao mais estavel e computacionalmente mais eficiente em cenarios
onde se utiliza o erro padrao estimado por meio de método bootstrap.

Foram realizados estudos de simulagoes de Monte Carlo e aplicagao com dados simula-
dos, por meio dos quais foi verificado que os modelos de regressao beta nao lineares sob os
estimadores robustos proporcionam menores viéses na presenca de contaminagao quando
comparados aos modelos sob os estimadores tradicionais. Por fim, apresentamos outros
resultados relacionados ao processo de estimacao robusta e efetuamos discussoes a partir

de uma aplicacao com dados reais.

Palavras-chave: Constante de afinacao; Distribuicao beta; Inferéncia robusta;

L,-verossimilhanca; Regressao beta nao linear robusta; Robustez.
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Abstract

Robust nonlinear beta regression

Beta regression models are frequently employed for modeling data restricted to the
unit interval, such as rates, fractions, and proportions. Parameter estimation in beta
regression is typically performed using maximum likelihood estimation. However, this
method is known to be sensitive to outliers, which can lead to biased or misleading
inferences regarding the relationship between the response variable and the covariates of
interest. To address this issue, Ribeiro and Ferrari (2023), and more recently, Maluf,
Ferrari and Queiroz (2024), have proposed robust estimation methods as alternatives
to the maximum likelihood approach. These methods aim to mitigate the influence of
atypical observations on the estimation process. Their techniques were developed under
beta regression models in which predictors are incorporated linearly into the regression
structures. This study aims to extend these robust estimation methods to nonlinear beta
regression models, thereby broadening their applicability.

To this end, we develop a theoretical framework for obtaining robust estimators under
nonlinear regression structures and investigate the theoretical properties of the resulting
models. In addition, it is shown a robust adaptation of the Wald test for assessing the
statistical significance of regression parameters. To select the optimal value of the tuning
constant, we propose a modification of the data-driven procedure introduced by Ribeiro
and Ferrari (2023), designed to improve stability and computational efficiency, particularly
in settings where standard errors are estimated via bootstrap methods.

A comprehensive Monte Carlo simulation study and an application using simulated
data are conducted to evaluate the performance of the proposed methods. The results
demonstrate that nonlinear beta regression models estimated via robust methods yield
reduced bias in the presence of contamination when compared to models fitted with
conventional estimators. Finally, we present additional findings regarding the robust
estimation process and discuss their implications through an application to real-world

data.

Palavras-chave: Beta distribution; L,-likelihood; Nonlinear robust beta regression mo-

del; Robust inference; Robustness; Tuning constant.
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Introducao 1

1 Introducao

A modelagem adequada de dados continuos limitados ao intervalo unitério surge
naturalmente como um obstaculo a ser superado em diversas areas do conhecimento.
Tais tipos de dados sao geralmente utilizados para representar fenomenos e situacoes que
envolvem, por exemplo, taxas, proporcoes, porcentagens e fragoes. Dentre os diversos
casos praticos, pode-se citar a fracao da renda familiar gasta com alimentagao, escores de
qualidade de vida e taxas especificas de mortalidade. Para lidar com dados que possuem
tal caracteristica dentro do contexto de regressao, pode-se modelar a média p; de uma
variavel y; denominada de resposta que assume valores no intervalo (0,1) em funcao de
outras variaveis que sao conhecidas e fixadas. Estas tiltimas sao comumente chamadas de

covariaveis ou variaveis explicativas.

Para dados desta natureza, se torna apropriado supor uma distribui¢ao de pro-
babilidades para y; que tenha suporte no intervalo continuo (0,1) e acomode diversas
formas. Considerando um contexto de regressao, na literatura existem algumas propostas
baseadas em distribuigoes de probabilidades com suporte no intervalo (0,1), a exemplo
dos trabalhos de Kieschnick e McCullough (2003), Ferrari e Cribari-Neto (2004), Gémez-
Déniz, Sordo e Calderin-Ojeda (2014), Lemonte e Bazdn (2016), Smithson e Shou (2017)
e Queiroz e Ferrari (2024). Para o desenvolvimento deste trabalho, focaremos em abor-
dagens nas quais a distribuicao de probabilidades da variavel resposta, condicionada aos

valores das covariaveis, segue uma distribuicao beta.

O modelo probabilistico beta é uma distribuicao de probabilidades associada a
uma variavel aleatéria continua que assume valores no intervalo (0,1). A funcdo den-
sidade de probabilidade (probability density function; PDF) da distribuicao beta possui
dois parametros e, a depender da combinacao entre estes, pode assumir diversas formas,
incluindo formas assimétricas. Considerando uma reparametrizacao desta distribuigao,
Ferrari e Cribari-Neto (2004) propuseram uma classe de modelos de regressao em que y;
segue uma distribui¢ao beta indexada pela média p; e por um parametro de precisao ¢.
Nesta abordagem, a média p; é modelada através de uma estrutura de regressao linear
gu(pe) = X8 com g,(-) : (0,1) = R denominada de fungao de ligagdo. Sendo assim,
obtém-se que u; = g;l(XtT B) € (0,1). Assim, ao estimar p; por fi;, sempre serd obtido
um valor ajustado dentro do intervalo (0,1). Também, este modelo é heteroscedastico
pois a variancia de y; varia com as covariaveis através de sua média p;. Uma extensao
natural desta abordagem ¢ supor que a precisao dos dados também varie de acordo com as
covariaveis. Tal proposta foi introduzida por Smithson e Verkuilen (2006) onde supoe-se
que y; segue uma distribuicao beta indexada pela média p; e precisao ¢;. Nesse sentido,

atribui-se uma estrutura de regressao linear também para a precisao ¢;.
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O método mais utilizado para estimar os parametros do modelo de regressao
beta é o método da maxima verossimilhanca, por meio do qual é obtido um estimador
de maxima verossimilhanga (mazimum likelihood estimator; MLE) para cada parametro.
Entretanto, os MLEs nao sao considerados robustos, ou seja, podem ser fortemente in-
fluenciados pela presenca de observacoes discrepantes nos dados de interesse. Ribeiro e
Ferrari (2023) ilustraram esse comportamento do MLE ao analisar um conjunto de dados
sobre praticas de gestao de risco de algumas firmas a partir de um conjunto de dados
disponibilizados por Schmit e Roth (1990). No trabalho, verificou-se que a presenga de
observagoes atipicas conduziu a efeitos desproporcionais na curva de regressao beta ajus-
tada, quando comparada as curvas obtidas com os dados sem as observagoes tidas como
atipicas. Ribeiro e Ferrari (2023) demonstraram matematicamente que o procedimento de
estimacao de maxima verossimilhanca nao é robusto para os parametros dos modelos de
regressao beta e, portanto, podem ser desproporcionalmente influenciados pela presenca

de observacoes atipicas.

Ao longo do tempo foram propostas diversas abordagens para lidar com ob-
servacoes discrepantes em problemas que envolvem a modelagem de dados onde a variavel
resposta assume valores no intervalo (0,1) ou ao menos em um intervalo continuo limi-
tado. Nos trabalhos de Bayes, Bazan e Garcia (2012), Migliorati, Brisco e Ongaro (2018) e
Brisco, Migliorati e Ongaro (2020), por exemplo, foram introduzidas abordagens que nao
envolvem procedimentos robustos de estimagao dos parametros, mas a utilizacao de dife-
rentes tipos de misturas de distribuicoes beta. Contudo, conforme pontuado por Ribeiro e
Ferrari (2023), tais abordagens garantiram uma maior flexibilidade para acomodar dados
com observagoes atipicas, porém, ao custo de trazer maior quantidade de parametros e

complexidades adicionais aos respectivos modelos.

Recentemente foram publicados trabalhos que, de fato, consideram métodos ro-
bustos para estimacao de parametros nos quais é mantida a distribuicao beta repara-
metrizada por Ferrari e Cribari-Neto (2004) como base para constru¢ao dos modelos de
regressao. Ghosh (2019) propos o estimador de minima divergéncia poténcia entre den-
sidades (minimum density power divergence estimator; MDPDE), um estimador robusto
baseado na minimizacao da divergéncia poténcia entre densidades. Tal método envolve
uma constante de afinacdo, denotada por o (o > 0), que, conforme demonstrado por
Basu et al. (1998), controla o balanceamento entre eficiéncia assintética e robustez do
referido estimador. A escolha de um valor ideal para « constitui um problema adicional
no processo de estimagao, uma vez que valores mais altos para « privilegiam a robustez

do estimador em detrimento da eficiéncia.

Ribeiro e Ferrari (2023) propuseram um estimador robusto, denominado estimador
de maxima verossimilhanca substituto (surrogate mazimum likelihood estimator; SMLE),

baseado na maximizagao da L,-verossimilhanga reparametrizada introduzida por Ferrari
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e La Vecchia (2012). Este procedimento de estimagao também depende de uma constante
de afinacao similar a do MDPDE. Além disso, o processo desenvolvido contempla um
método para selecao de um valor 6timo para a constante de afinacao, que se baseia nos
dados de interesse e assegura eficiéncia assintética maxima na auséncia de observagoes
atipicas. Ribeiro e Ferrari (2023) demonstraram, ainda, que tanto o MDPDE quanto o
SMLE sao estimadores bem definidos, robustos e possuem boas propriedades assintoticas
para distribuicoes beta que sejam limitadas. Portanto, nao ha garantias desses resultados
caso o método de estimacao seja aplicado sob distribuigoes beta que sejam ilimitadas.
Mais recentemente, Maluf, Ferrari e Queiroz (2025) efetuaram simulag¢oes com cendrios
envolvendo distribuicoes beta ilimitadas nas quais o MDPDE e o SMLE apresentaram con-
sideraveis indices de falhas no processo de estimagao, seja por nao alcancar convergéncia
para as estimativas dos parametros ou seja por nao ser possivel calcular seus erros padrao

assintOticos.

Maluf, Ferrari e Queiroz (2025) propéem duas novas abordagens para obtengao
de estimadores robustos sob modelos de regressao beta, usando a PDF da variavel res-
posta transformada pela funcao logito. O primeiro deles, chamado de estimador logit de
minima divergéncia poténcia entre densidades (logit minimum density power divergence
estimator; LMDPDE), é baseado no método de Ghosh (2019), enquanto o segundo, deno-
minado estimador logit de maxima verossimilhanga substituto (logit surrogate mazimum
likelihood estimator; LSMLE), é uma adaptagao do método introduzido por Ribeiro e
Ferrari (2023). Para ambos os estimadores propostos foi implementado o método ori-
entado aos dados de interesse desenvolvido por Ribeiro e Ferrari (2023) para selegao da
constante de afinagao ov. Maluf, Ferrari e Queiroz (2025) demostraram matematicamente
e ilustraram por meio de simulacoes que ambos estimadores propostos sao bem definidos,
robustos e mantém boas propriedades assintéticas sem a necessidade de exigir restrigoes
em relagao a distribuicao beta para a qual os parametros de regressao estao sendo esti-
mados. Portanto, o LMDPDE e o LSMLE representaram uma evolucao dos estimadores

anteriores, uma vez que funcionam bem mesmo sob distribuicoes beta nao limitadas.

Considerando a capacidade da distribui¢ao beta em assumir uma grande quanti-
dade de formas, o modelo heteroscedéstico introduzido por Ferrari e Cribari-Neto (2004)
se mostrou bastante flexivel e adequado para modelar dados oriundos de uma grande
quantidade de fenomenos. A modelagem simultanea do parametro de precisao introdu-
zida por Smithson e Verkuilen (2006), trouxe mais flexibilidade ao ajuste de modelos de
regressao beta. No entanto, em ambos os casos foram consideradas estruturas de regressao
lineares nos parametros. Posteriormente, Simas, Barreto-Souza e Rocha (2010) apresen-
taram uma forma mais geral para o modelo de regressao beta com precisao variavel, na
qual as estruturas de regressao sao descritas por relagoes nao necessariamente lineares nos

parametros, e da qual os modelos anteriores representam casos particulares. Essa tltima
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abordagem tem o potencial de flexibilizar ainda mais a classe de modelos de regressao

beta com precisao variavel.

Todos os métodos de estimacao robustos aqui mencionados foram desenvolvidos
e aplicados a modelos de regressao beta que consideram em suas estruturas de regressao
preditores que representam funcoes lineares de seus parametros. Segundo a definicao
de robustez de estimadores que utilizaremos ao longo desse trabalho, e de acordo com
nosso conhecimento, nao existe trabalho publicado recentemente que tenha se proposto a
desenvolver métodos de estimacao robustos para modelos de regressao beta nos quais a
estrutura de regressao é flexibilizada para contemplar formas nao lineares. E importante
ressaltar que o conceito de linearidade que sera considerado neste trabalho diz respeito
a estrutura de regressao vinculada aos parametros dos modelos e nao a relagao entre a
média da variavel resposta e as variaveis preditoras. Nesse sentido, o presente trabalho
se propoe a replicar os métodos de estimacao robustos referentes ao SMLE e LSMLE,
estendendo-os a modelos de regressao beta nao lineares, e possibilitando a utilizacao
dos referidos métodos sob modelos nos quais uma estrutura linear de regressao nao seja
adequada. Além disso, pretende-se estudar o comportamento de tais modelos por meio

de suas propriedades tedricas e aplicagoes a dados reais e simulados.

O presente texto esta organizado em 6 capitulos. Nesse primeiro capitulo foi feita
uma introducao ao tema e apresentado um breve histérico com os trabalhos mais recen-
tes relacionados a regressao beta robusta, incluindo a delimitacao do escopo do estudo
desenvolvido na dissertacao. No Capitulo 2 é descrito o modelo probabilistico beta e as
suas principais caracteristicas. Adicionalmente, no mesmo capitulo sao introduzidos os
modelos de regressao lineares e nao lineares baseados na distribuicao beta, e o processo de
estimacao dos parametros do modelo nao linear por meio do método da maxima verossi-
milhanca. No Capitulo 3 sao revisados alguns conceitos e medidas referentes a inferéncia
robusta que serao usadas na sequeéncia do trabalho. No quarto capitulo é desenvolvido o
processo de estimagao por meio do SMLE e LSMLE sob modelos de regressao beta nao
lineares, e é proposta uma adaptacao ao método orientado a dados para selecao da cons-
tante de afinacao. Neste Capitulo também é apresentado um teste de hipéteses robusto
para avaliacao da significancia dos coeficientes de regressao sob o modelo de regressao
beta robusto. Ainda, no Capitulo 4 é feita uma breve introdugao sobre bootstrap e o
detalhamento dos processos de reamostragem utilizados no trabalho e, na sequéncia, uma
explanacao referente a implementacao computacional efetuada para viabilizar a realizacao
dos estudos e aplicagoes praticas. No Capitulo 5 sao apresentados os resultados obtidos
nos estudos de simulacao e nas aplicacoes a dados reais e simulados, objetivando ilustrar
caracteristicas da regressao beta nao linear robusta, suas vantagens e situagoes nas quais
é recomendada a sua utilizagao. Por fim, no Capitulo 6 é feita uma recapitulagao dos

resultados obtidos no trabalho, incluindo limitagoes observadas na pesquisa, além de su-
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gestoes de tépicos decorrentes desta dissertacao que podem ser melhor aprofundados em

trabalhos futuros.
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2 Modelos de regressao baseados na distribuicao beta

2.1 A distribuicao beta

A distribuicao beta é uma familia de distribuicoes de probabilidade continuas
definida com suporte em um intervalo limitado e parametrizada por dois elementos, ambos
positivos, aqui denotados por a e b, que aparecem como expoentes na funcao densidade
da variavel aleatéria e controlam a forma da distribuicao. Conforme apresentada por
Johnson, Kotz e Balakrishnan (1995), a distribui¢do beta constitui um caso particular da
distribuicao de Pearson Tipo I, quando variavel resposta é transformada para restringir

o suporte ao intervalo (0,1).

A PDF de uma variavel aleatoria y que segue uma distribuicao beta de parametros

a > 0eb>0 édefinida por

y (1 -y
B(a,b)

fy;ab) = , 0<y <1, (2.1.1)

em que B(a,b) é a fungao beta dada por

B(ab) = /01 1 — ) dt = (—)

e I'(+) é a funcao gama definida por

F(z):/ e du,
0

sendo z um numero complexo cuja parte real é estritamente positiva. Assim, a expressao

(2.1.1) pode ser reescrita como
fly;a.b) = %y“l(l —y)" (2.1.2)

A funcao de distribui¢ao acumulada (cumulative distribution function; CDF) da

distribuicao beta é definida por

F(ZU? a,b) = /_?; f(t; a,b)dt = % /Oy tafl(l _ t)bfldt

_ 1 P \b—1 :By(a,b)
_B(a,b)/ot (L= dt = Fy

em que 0 <y < le By(ab) = [/ t* *(1—t)""'dt é, segundo Johnson, Kotz e Balakrishnan
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(1995), conhecida por funcao beta incompleta.

A PDF em (2.1.2) pode ser reescrita como

f(y;a,b) = exp {log [f(y: a,b)]} Ziyeo,1)]

Y
—} +log [y*~'] +1log ((1 —y)"") } Tiye(o,1)]
+

(b—1)log (1 —y) —log (B(a,b)} Lyye,y,  (2.1.3)

em que Zyye(o,1) ¢ uma funcao indicadora que assume valor 1 quando y € (0,1) e 0, caso
contrdrio. Considerando @ = (a b)" e fazendo w;(0) = a—1, wy(0) = b—1, Ty (y) = log(y),
To(y) = log(1l —y), (@) = B(a,b) e h(y) = Ijye0,1), obtemos que a expressio em (2.1.3)

se reduz a
f(y;a,b) = exp {w1(0)T1(y) + wa2(0)T2(y) — c(0)} h(y)

s 2.14

2

e ¢(@) > 0 sao fungoes que dependem somente dos parametros a e b, e T;(y), i =1, 2, e

em que s = 2 é a quantidade de parametros envolvidos. Observa-se que w;(0), i =1

Y Y

h(y), funcoes que dependem somente de y. Familias de distribui¢oes cujas PDFs possam
ser reescritas na forma da expressao em (2.1.4) sao ditas pertencer a familia exponencial
s-dimensional. Portanto, a distribuicao beta faz parte da familia exponencial bidimen-
sional. Familias exponenciais sao de particular interesse na Estatistica pois apresentam
propriedades matematicas tteis, além de estarem ligadas a conceitos importantes tais
como suficiéncia e redugao de dados (CASELLA; BERGER, 2011).

A distribuicao beta é bastante flexivel a depender dos valores assumidos pelos
parametros a e b. Esta pode exibir uma infinidade de formas, sendo amplamente uti-
lizada pra modelar o comportamento de diversos tipos de fendmenos aleatorios, desde
que a variavel de interesse assuma valores limitados ao intervalo continuo (0,1). N&o
obstante, a distribuicao beta é também aplicavel a fenomenos que produzem valores no
intervalo continuo (¢, d), com ¢ e d constantes reais. Para tanto, aplica-se a transformagao
(y — ¢)/(d — ¢) para representar esse intervalo continuo dentro do suporte exigido para a

distribuicao beta.

Adotando a PDF em (2.1.2), os momentos de ordem n centrados em zero, com

n = 1,23, ..., podem ser obtidos diretamente pela defini¢cao

1
E(y") = /O y" f(y; a,b)dy.



8 Modelos de regressao baseados na distribuicao beta

Assim, temos que

1 1
E(") = (a+n)—1 1 — bfld
(y") —B<a,b)/0 Y (1—y)" dy

B(a+n,b) 1 1 ( + )_1 b—1
g aTn ]_ — d
/0 B y (1—y)" " dy

B(a,b) a+mn,b)
_ B(a+nb)
~ Bl(ab)
I'(a+n)I'(b) I'(a +b)

I'(
I'(a4+n+0) I'(a)l'(b)
['(a+n) I'(a+0b)
Fa+b+n) T(a)

Utilizando as propriedades da funcao gama, podemos reescrever a expressao anterior como

(a+n—-1)a+n—-2)---(a+1)al'(a) [(a+b)
(a+b+n—1)(a+b+n—2)---(a+b+1)(a+bl(a+b) I(a)
B (a+n—1)a+n—-2)---(a+1)a
B (a—l—b+n—1)(a+b+n—2)---(a+b+1)(a+b)

—H atr (2.1.5)

a+b+1r

E(y") =

Tomando n = 1,2, obtemos os dois primeiros momentos de y, por meio dos quais chegamos
a expressoes fechadas para, respectivamente, a média e a variancia da varidavel aleatoéria

y. Portanto, obtemos que

E(y)ZH a+r __a

:Oa—l—bJrr a+b

Var(y) = E(y°) — [E(y)]?

- () i) - (5
- {(a +Z§?a++12+1>] - (aj—b)
(a+ b)2(C;b+ b+1)

Também é possivel obter a média e a variancia por meio da fungao geradora de
momentos M (t), que é dada por E(e"), t = 1,2,... (ROSS, 2009). Com isso, expandindo
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E(e") como série de Taylor, temos que

n=0
[o.¢] . tn
Z;E(y )g
0 to C n t
ZE(?J)E+ZE(Q)E
n=1 :
oo tn
=1+> E(y") = (2.1.6)
n=1 ’

Substituindo o resultado em (2.1.5) em (2.1.6) obtemos que

M(t) =E(e") =1+ Z (1:[ ai:i r) ﬁ. (2.1.7)

Com o resultado (2.1.7) pode-se chegar a outros momentos tteis para obtencao
de medidas importantes sobre a distribuicao. Por exemplo, Johnson, Kotz e Balakrishnan
(1995) apresentam expressoes fechadas para a assimetria e curtose que sao necessarias

para o terceiro e quarto momentos da distribuicao beta.

Ferrari e Cribari-Neto (2004) propuseram uma reparametrizagao da distribui¢ao
beta reescrevendo a PDF (2.1.2) por meio de novos parametros que representam a média e
a precisao de y. Tal alteracao objetivou definir uma estrutura de regressao para modelar
a média u; de uma variavel resposta y; que seja distribuida segundo uma distribuigao
beta. Além disso, para viabilizar a modelagem da média p; foi necessério estabelecer um

parametro ¢ que representasse a precisao da distribuicao beta.

Nesse sentido, toma-se pn = E(y) = a/(a +b) e ¢ = a+ b, resultando em a = p¢
eb=0¢—pup = (1—p)o e, consequentemente, na seguinte expressao para a PDF da

distribuicao beta reparametrizada:

['() y
C(pe)C((1 — p)9)

Sy 1,0) = HoL(] —g)d=meml g <y < 1. (2.1.8)

A CDF da distribuicao beta reparametrizada ¢ da forma

BY(M¢ (1— 1)9)

F(y; p,¢) = / [t pp)d

Denotaremos por y ~ B(u,¢) uma variavel aleatéria y que possui distribui¢ao beta com

PDF na forma (2.1.8). Conforme mencionado anteriormente, a distribuicdo beta é bas-
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tante flexivel, resultando em grande potencial para modelar dados limitados ao intervalo
(0,1). Na Figura 1 s@o apresentadas curvas da PDF da distribui¢ao beta, considerando
diferentes valores para os parametros p e ¢. Percebe-se que as curvas podem apresentar
diferentes formas a depender dos valores assumidos pelos parametros. Quando g = 0,5
e ¢ # 2, as curvas apresentam formas simétricas e unimodais. Para u # 0,5 as formas
apresentadas sao assimétricas podendo ser unimodais, em formas de J ou J invertido.
Para = 0,5 e ¢ < 2, a curva assume a forma de U. Quando p = 0,5 e ¢ = 2, a fungao

densidade da distribuicao beta se reduz a da distribuicao uniforme padrao.

(0.75:15) \
© — (o 90-15)

Densidade
-
O -
[e]
3
Y
wn
=

Densidade
2
|

2 “ — {0,05:100)
— (0,05:50) — (0,10.100)
— (0,10;50) w | (0,25:100)
o (0,25;50) — (0,50:100)
s 2 — (0,50:50) ® {0.75'100) /\
& (0,75,50) £ o | —— (0,90°100)
— (0.9050) g2 - (0,95,100)
g . (0,9550) g \
o U e _,/ \ _________ \ o 4 / \ / \

Figura 1 Curvas para a PDF da distribuigdo beta reparametrizada para diferentes valores de (i, ¢).

Sob a nova parametrizacao, a variancia da varidvel aleatoria y passa a ser

ab
Valy) = et

_ pp(l — p)

(ho+ (1 =)o) (uo + (1 — ) +1)
o op(—p)

¢+1

_ Vi

o+ 1

em que V(u) = p(l — p). Nota-se que, para média p fixa, a variancia de y diminui a
medida que o valor de ¢ aumenta. Em contrapartida, valores baixos de ¢ resultam em
valores altos para a variancia de y. Por esta razao, ¢ é tido como parametro de precisao

da distribuicao beta reparametrizada. Esse resultado também pode ser visualizado por
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meio da Figura 2 em que estao representadas algumas curvas para a PDF (2.1.8), com p

fixado em 0,5 e diferentes valores do parametro de precisao ¢.

(0.50, 5)
(0.50, 10)
(0.50, 15)
« — (0.50, 25)
(0.50, 35)
(0.50, 40)
(0.50, 45)

<] )

A\

0.0 0.2 0.4 0.6 0.8 1.0

Densidade

Figura 2 Curvas para a PDF da distribuicao beta reparametrizada para
u fixo e diferentes valores de ¢.

2.2 Regressao linear

A reparametrizacao da distribuigdo beta introduzida por Ferrari e Cribari-Neto
(2004) viabilizou a sua utilizagdo em modelos de regressdo. Dada a expressao (2.1.8),
segundo Ferrari e Cribari-Neto (2004) o modelo de regressao beta é obtido assumindo
que, para n realizacoes independentes de uma varidvel aleatéria y com distribuicao beta,

a média p; de cada observagao y; pode ser escrita como
p1
gulp) = wufi = X[ B, (2.2.1)
i=1

em que B = (B1, Ba,...,Bp,)" € RP* é um vetor de parametros desconhecidos associados
a média, X; = (21, 242, . . - ,actm)T € RP* é o vetor de valores conhecidos das p; variaveis
explicativas (covaridveis) para a t-ésima observacdo (t = 1,2,...,n), e g,(-) é uma funcao
de ligagao continua, estritamente monoétona e duas vezes diferenciavel. O principal ob-
jetivo associado a g,(-) é restringir p; ao suporte da distribuicao beta que é o intervalo

continuo (0,1).
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Existem diversas opgoes para a funcao de ligacao g,(-) que atendem aos requi-
sitos mencionados. A rigor, a inversa da CDF de qualquer distribuicao continua pode-
ria ser utilizada, entretanto, as fungoes de ligagao mais citadas e utilizadas (FERRARI;
CRIBARI-NETO, 2004; OSPINA, 2004; PEREIRA, 2010) estao a seguir:

e fungao logito: g¢(u) = log (ﬁ), cuja inversa corresponde & CDF da distribuicao

logistica padrao;
e fungdo probit: g(u) = ®~!(u), em que ®(-) é a CDF da distribuigao normal padrao;

e fungao log-log: g(p) = —log[—log(u)], em que g~ '(u) é a CDF da distribuicao
Gumbel padrao (méaximo), correspondente a uma das duas formas da distribuicao
do valor extremo padrao, tipo I (GUMBEL, 1954);

e funcio complementar log-log: g(u) = log[—log(1 — u)], em que g~*(u) é a CDF
da distribuicao Gumbel padrao (minimo), correspondente a uma segunda forma da
distribui¢ao do valor extremo padrao, tipo I (GUMBEL, 1954);

e funcdo Cauchit: g¢(u) = tan[r(u — 0,5)], cuja inversa corresponde a CDF da distri-

buigao Cauchy padrao.

Apesar de heteroscedastico, o modelo proposto por Ferrari e Cribari-Neto (2004)
considera que a precisao é constante para todas as observacgoes, o que nem sempre sera
apropriado supor. Além disso, no contexto dos modelos lineares generalizados (generali-
zed linear models; GLM) introduzidos por Nelder e Wedderburn (1972), existem trabalhos
onde sao considerados os GLMs duplos, nos quais a média e a precisao sao modeladas
simultaneamente (NELDER; LEE, 1991; SMYTH; VERBYLA, 1999). Nesse sentido,
Smithson e Verkuilen (2006) propuseram uma extensao ao modelo de regressao beta pro-
posto por Ferrari e Cribari-Neto (2004). Sob essa nova abordagem, adicionou-se uma
estrutura de regressao para modelar, simultaneamente a média, também o parametro de

precisao ¢, por meio da estrutura de regressao

p2
-
9o(dr) = Y 2 = 2, (2.2.2)
j=1
em que v = (Y1,%, - - ,Vp) | € RP2 é um vetor de parametros desconhecidos associados
precisao, Zy = (21, 212, - - - 2tpy) | € RP? é 0 vetor de valores conhecidos das py covaridveis

da precisao para a t-ésima observagdo, e g,(-) é uma funcéo de ligacdo continua, estri-
tamente monotona e duas vezes diferenciavel. Observa-se que, diferentemente do que
ocorre com a média, que deve ser mapeada no dominio da variavel resposta, o parametro

de precisao deve assumir valores estritamente positivos, uma vez que Var(y) nao pode
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ser negativa. Dentre as fungoes de ligacao que atendem a esses critérios, sao citadas por

Smithson e Verkuilen (2006) as fungoes de ligacao abaixo:

e funcao logaritmo: g¢,(¢) = log(¢).
e funcao raiz-quadrada: g4(¢) = /.

O requisito de que as funcoes de ligacao g,(-) e g4(-) sejam duas vezes dife-
renciaveis viabiliza o processo de estimacao, em particular, a obtencao da matriz de
informacao de Fisher (Fisher information matriz; FIM). Tal matriz é necessaria para
dimensionar a variabilidade assintotica das estimativas dos parametros de regressao, con-

forme serd visto mais adiante.

2.3 Regressao nao linear

Os modelos propostos por Ferrari e Cribari-Neto (2004) e Smithson e Verkuilen
(2006) consideram nas respectivas estruturas de regressao os preditores X,' 3 e Z, 7,
que representam fungoes lineares de seus parametros 3 e . No entanto, ainda que
a estrutura de regressao seja linear nos parametros, ao aplicar as funcoes de ligagao
mais utilizadas, obtém-se uma relagao nao linear entre a média da variavel resposta y
(E(y)) e as varidveis explicativas. E importante ressaltar que o conceito de linearidade
que serd considerado neste trabalho diz respeito a estrutura de regressao vinculada aos
parametros dos modelos, independentemente dessa relacao nao linear entre a média da
variavel resposta y e as covaridveis. Nesse sentido, chamaremos os modelos introduzidos
por Ferrari e Cribari-Neto (2004) e Smithson e Verkuilen (2006) de regressao beta linear

com precisao constante e regressao beta linear com precisao variavel, respectivamente.

Simas, Barreto-Souza e Rocha (2010), apresentaram uma forma mais geral para
o modelo de regressao beta com precisao variavel, na qual as estruturas de regressao sao
descritas por relacoes nao necessariamente lineares de seus parametros. Dessa forma, seja
Y, t = 1,...,n, uma amostra aleatéria tal que y; ~ B(p,¢:), a média p,; e a precisdo ¢

podem ser escritas, respectivamente, como

gu(,ut) = fu(Xt§ 5) = Nut,

(2.3.1)
96(01) = fo(Zs; ) = Nt

em que f,(-;-) e fs(-;-) sao funcoes que relacionam os parametros e as covaridveis e que
podem ser lineares ou nao lineares. Observe que as estruturas lineares de regressao em

(2.2.1) e (2.2.2) representam um caso particular da forma geral apresentada em (2.3.1),
quando f,(X1;8) = X, B e fo(Zy;v) = Z .



14 Modelos de regressao baseados na distribuicao beta

Os vetores de parametros 3 e 7 sao desconhecidos e, portanto, devem ser esti-
mados. Para este caso, Simas, Barreto-Souza e Rocha (2010) utilizaram o método da
maxima verossimilhancga, por meio do qual sao estimados os valores dos parametros que
maximizam a funcao densidade de probabilidade conjunta da amostra, obtendo-se os
MLEs. Tomando i, ys, . . . ,y, varidveis aleatérias independentes tal que y, ~ B(p,¢), a
fungao de verossimilhanca para @ = (37,4")" é dada por (SIMAS; BARRETO-SOUZA;
ROCHA, 2010)

= H F (e 11,0¢)

) peopr—1 — _
— tor=lq _ (1—pe)pe—1 :
H T a0
e o respectivo logaritmo da funcao de verossimilhanca para 6 é
((8) =log(L(0))

_ Z log(f (ye; pu,91))

- Zlog [ Mt¢t ((((ét)_ Mt)@)yft@ 1(1 - yt)(l_ut)(bt_l

= th(,utaébt), (2.3.2)
t=1
em que

Ce(pes ) = log T(y) — log T(puecpe) — log T((1 — puz)r)
+ (pepe — 1) log(ye) + [(1 — 1) pr — 1] 1og(1 — 1),

com py = g, (M), uma fungdo de B e Xy, e ¢y = g;l(n¢t), uma funcao de v e Z;.

Para obter o valor de @ = (37,4 ")" que maximiza a expressao em (2.3.2) podem-
se calcular as derivadas parciais de £;(p,¢;) com relagao a cada um dos parametros em 3
e v obtendo os vetores escore, aqui representados por Ug(8) e U,(0), respectivamente,
e igualar a zero. Ressalta-se que, nesse caso, a média p; e a precisao ¢; sao estimadas
indiretamente através de 3 e «v por meio das estruturas de regressao associadas a j; e ¢y,

conforme definido em (2.3.1).

As entradas do vetor escore para 8, Ug,(0), em que i = 1,2,...,p;, sao dadas
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pela expressao

0(0)
351

_ Z (%t Mt#ﬁt djig 377ut
a'ut dn,ut aﬁz

— Z{¢t log () —log(L — y¢) — () + V(1 — poe) d1)] }ST/Z%?E

1 Onu
—Zd)t - gu(u)ﬁé’ (2.3.3)

Uﬁz‘ <0> =

em que y; = logito(y:) = log(y:/(1 — wr)), ui = E(y7) = ¥(ude) — V(1 = pe)dr), e ¥(A)
denota a funcao digama, isto é, () = dlogT'(\)/dA.

Seja X uma matriz de dimensao n X p; em que cada coluna de X representa
os valores conhecidos da i-ésima covaridvel, i = 1,2,...,p1, y* = (v5,...,y5)", u* =
(1) e T = diag{dp /dn, . .. dpn/dijn} = diag{1/g,, (1), - .. 1/g,(kn)}. Se-
gundo Espinheira, Santos e Cribari-Neto (2017), definindo J, = 9n,/03, uma matriz de
dimensao nxp;, e & = diag{¢1, ..., ¢, }, entdo o vetor escore Ug(@) pode ser representado

por

Up(6) = J, oT(y" — p*).

As entradas do vetor escore para v, U, (6), com j = 1,2,...,p,, sdo dadas por
00(0)
U, (0) =
'Yj( ) a,y]

_ Z 5’@ ,ut#bt doy a%t
olox dnge 07,

- Z{”t[bg(yt) —log(1 — yt) — (o)

doy Ongy
+ ¢((1 — Mt)ﬁbt)] + log(l — yt) + w(qst) _ ¢[(1 _ Nt)¢t]}d¢ 8%
Net 075
- Z{“t — p7) +1log(1 —y) +¥(en) — (1 - m)cbt)}ﬁm ;Z
_ - 1 Ong
- ; atgfb(@) o5’ (2.3.4)

em que a; = i (y; — py) +1log(l —yz) +1¥(dr) — Y((1 — pe)br).

Seja J, = 0ng/0vy, uma matriz de dimensdo n x pe, H = diag{d¢,/dny, ..

°
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A /dngn} = diag{1/g,(¢1),...,1/g4(¢n)} € @ = (a1,...,a,)", temos que o vetor escore
para vy é

U,(0) = J, Ha.

~

O MLE para 6, denotado por 8 = (BT,'S/T)T, pode ser obtido resolvendo o

sistema de equagoes

Uﬁ(e) =0,
U,(0) =0,
com relacio a @ = (B7,47)". Observe que nao é possivel explicitar os MLEs dos

parametros de regressao 3 e v, denotados por B e 7, de forma analitica, sendo necessario
recorrer a métodos iterativos de estimacao, tais como o Broyden-Fletcher-Goldfarb-Shanno
(BGFS). Maiores informagoes sobre métodos de otimiza¢do numérica podem sem con-
sultados em Press et al. (1992). Tais métodos de otimizagao necessitam de estimativas
iniciais para o procedimento iterativo. Simas, Barreto-Souza e Rocha (2010) sugerem

obté-las a partir do modelo de regressao nao linear normal com estruturas de regressao

gu(ﬂt) = fu(Xt§ ﬁ)7

(2.3.5)
96(0,%) = fo(Zi;7),

para o qual é assumido que y; segue umas distribuicao normal com média y, e variancia
o?, ou seja, y; ~ N (u,0?). Os valores estimados de B e « serdao as estimativas iniciais
B(O) e 49, Observe que o modelo em (2.3.5) representa uma regressio nio linear normal,
utilizando as funcoes de ligacao g, € g4. O ajuste do modelo (2.3.5) pode ser efetuado por

meio da biblioteca nlme (PINHEIRO et al., 2017) do software R (R Core Team, 2024).

Conforme Espinheira, Santos e Cribari-Neto (2017), a FIM dos parametros, aqui
denotada por K, é dada por

(e ([ 26)
senn-[i2 )Ll iR o

sendo Kpg = J] OW J,, Kgy = K1y = JTCTHJy, K.y = J] DJy, W = diag{wy, ..., w,},
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C = diag{ey,...,cn}, D =diag{dy,...,d,}, e

— 21 () + ¥ (1 — )] ( ! ) ,
= o (e — ¥ (1 o) (L — i)},

dy = [ () pe® + ' (1 — ) o) (1 — pg)* — ' ()] (W) :

Sob algumas condigoes de regularidade e para n suficientemente grande, Simas,
Barreto-Souza e Rocha (2010) mencionam que a distribui¢ao conjunta aproximada de
0= (87,477 ¢ normal (k + ¢)-variada, isto ¢

0 = (?) — Npy+p2 <<ﬁ> 3K1> , (2.3.7)
7 n—oo fy

em que K1 ¢ a inversa da FIM, que é da forma

. K‘l(e) _ [KBB KM]

K78 K7

em que

KPP = (Kpg — Koy Ko Kop) ™ = (JT@WJ, — JTCTHI,(J] DJy) "I CTHJ,)
K" = (K"P)T = —KPPKggK_J = —KPP ] ®W J,(J] DJy)~"
K" = (KP)T = —K 2 KggK"? = —(J; DJy) " J, W J, KPP = K7,
K" =K+ K K,gK?PKg K
= (JyDJy)"" + (J, DJy) " J CTHJ,KPP ] CTH J4(J, DJy) ™"
= (Jy DJy) I, + (J, CTH ) KPP J [ CTHJy(J] DJy)™ "]

com [, denotando uma matriz identidade de ordem p,.

Por meio da propriedade de normalidade assintotica dos MLEs é possivel dimen-
sionar, também de forma assintdtica, a variabilidade desses estimadores. Com isso, sob
condigoes usuais de regularidade, pode-se demonstrar que, conforme definido em (2.3.7),
para a s-ésima componente de é, és, obtemos que

(és—es> (K(0)*]7* 24 N(0,1),

n—oo

em que K(0) ¢ a FIM de 0 e K(6)** é o (s,s)-¢simo elemento de K (0)~!. Esse resultado
permite a construcao de intervalos de confianca aproximados para diversas grandezas

relacionadas aos modelos, como por exemplo, para cada parametro estimado. Dessa
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forma, considerando um nivel de confianga de 100(1 — )%, um intervalo de confianga

aproximado para a s-ésima componente do vetor de parametros 6 é

(és — 22V f?(g)ss; O+ 212\ @SS) ,

em que z;_g representa o quantil da distribuicao Normal padrao tal que P(Z < zl,%) =
1 —a/2, com Z ~ N(0,1).
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3 Medidas de robustez

Considerando o ajuste por meio do método da méaxima verossimilhanca, os mo-
delos apresentados no Capitulo 2 se mostram bastante titeis para resolver uma grande
quantidade de problemas e tém sido amplamente utilizados para modelagem de dados
continuos limitados, especialmente aqueles contidos no intervalo unitario. Nao obstante,
conforme ja mencionado anteriormente, os MLEs sob alguns modelos probabilisticos po-
dem ser desproporcionalmente influenciados pela presenca de observacoes discrepantes

nos dados, situacao na qual nao sao considerados robustos.

Neste capitulo, que é baseado nos trabalhos de Ribeiro (2020) e Queiroz (2022),
serao apresentados alguns conceitos referentes a inferéncia robusta que serao utilizados
na sequencia deste trabalho, objetivando melhor caracterizar o conceito de robustez que

estd sendo considerado.

3.1 Conceitos preliminares

Sejam y;,t = 1,...,n, variaveis aleatorias independentes e identicamente dis-
tribuidas (independent and identically distributed; 1ID) segundo uma familia de distri-
buigoes paramétricas Fg = {Fp,0 € © C RP}, p > 1, em que © é o espago paramétrico
de 0 e fg ¢ a PDF de y;. Seja Z(-) a fungao indicadora, consideremos estimadores para
o parametro @ que dependam dos dados y; somente por meio da fun¢ao de distribuicao

empirica (empirical distribution function; EDF), dada por

1 n
Fu(v) = = 3" Z(y: < v).
Lt
isto é satisfazem a relacao

T (y1, .- yn) = T(F). (3.1.1)

Neste caso, chamamos T'(F},) de estimador funcional para 6. Adicionalmente, dizemos
que T'(F,) também é um estimador Fisher-consistente para 6 se, além de satisfazer a
relagdo em (3.1.1), também satisfaz (KALLIANPUR; RAO, 1955)

T(Fy) =0, ¥V 0 c0.

Portanto, a propriedade de Fisher-consisténcia de um estimador assegura que o mesmo
atingird o verdadeiro valor do parametro estimado, no caso 8, quando este é calculado

sob a distribuicao populacional dos dados, ou seja, sob Fyg.
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3.2 Funcao de influéncia

A funcédo de influéncia (influence function; IF) é uma medida muito conhecida
e utilizada para avaliar a robustez de um estimador funcional. Segundo Hampel et al.
(2011), seja Fp, = (1 — h)Fg + hA, a CDF contaminada apds a introducdo de uma

perturbagao infinitesimal h no ponto y, entao a IF do estimador T' em Fy é dada por

0
IF(y; T, Fp) = o [T (Fhy)] [n=0
_ iy TFEhy) = T(Fp)
h—0 h
_ T((1— h)Fy + hA,) — T(Fp)
= lim )
h—0 h (321)

em que T'(F) é o estimador para € avaliado sob a CDF F' e A, é a medida de probabilidade

que coloca toda a massa em y.

Considerando a expressao em (3.2.1), pode-se interpretar a IF como sendo o efeito
causado ao estimador T apds uma contaminacao infinitesimal A no ponto y. Desse modo,
se mesmo uma perturbacao minima, tendendo a zero, for suficiente para afetar despro-
porcionalmente o estimador T', entao podera ser um indicativo de que este estimador é
sensivel a pequenas variagoes no ponto y e, portanto, nao robusto a observacoes atipicas.
Conforme Hampel et al. (2011), a IF quantifica o viés assintético no estimador T' causado
pela perturbagao nos dados, e este serd considerado qualitativamente robusto se possui

IF limitada para todo y pertencente ao suporte da distribuicao.

Uma medida de robustez desenvolvida a partir da IF é a sensibilidade a erro
grosseiro nao padronizada (unstandardized gross-error sensitivity; UGES). Tal medida é

dada por
Yo = sup || IF(y; T', Fp) |,
y

em que || - || denota a norma euclidiana. A medida 7 representa o viés maximo causado
no estimador T em decorréncia da contaminacao infinitesimal introduzida. Assim, a
medida de UGES pode ser interpretada como um limite superior para o viés do estimador
T sob contaminacao, e é desejavel que tal medida seja finita. Além disso, observa-se que
se o estimador T" contiver ao menos uma entrada cuja respectiva IF divirja, entao v, sera
infinito e T" nao sera considerado robusto. Estimadores que possuem a UGES finita sao
denominados B-Robustos (ROUSSEEUW, 1981).

Conforme pontuado por Ribeiro (2020), a medida em 7, néo leva em consideragao

a escala das covariaveis, podendo gerar confundimento quando utilizada em um contexto
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de modelos de regressao. Sobre isso, Hampel et al. (2011) apresentou duas propostas de
padronizacao dessa medida, por meios das quais obtém-se valores que sao invariantes a es-
cala das covaridveis. A primeira delas é a sensibilidade auto-padronizada (self-standardized

sensitivity; SSS), que é definida por

N[

vi =sup {IF(y; T, Fy) 'V(T, Fp) 'IF(y; T, Fp) } (3.2.2)
Yy

em que V(T', Fy) é a matriz de covariancias assintética de T'. Observa-se que, de fato,
a expressao em (3.2.2) conduz a uma padronizagdo da medida ~;, efetuada por meio de
V(T Fy). Caso o estimador T possua baixa eficiéncia assintética (asymptotic efficiency;

AE), entdo serao obtidos baixos valores para 7.

A segunda proposta de Hampel et al. (2011) introduz a medida de sensibilidade
padronizada pela informacao (information-standardized sensitivity; 1SS), que é expressa

por

N

s = sup {IF(y; T, Fo) "K(T(Fy), Fo) 'TF(y; T, Fp) }* , (3.2.3)
Yy

em que K(T'(Fy), Fy) é a matriz de covariancias assinttica do MLE para 6, avaliada sob
o estimador T'. Ressalta-se que se T for o MLE para 0, entao as medidas em (3.2.2) e

(3.2.3) serao iguais.

3.3 M-Estimadores

Com o objetivo de obter um estimador que fosse robusto a presenca de observagoes
atipicas, Huber (1964) desenvolveu um método de estimacao que se baseou na genera-
lizacao do procedimento de estimacao por maxima verossimilhanca. Segundo o método
de méaxima verossmilhanca, dada vy, ..., ¥y, uma amostra aleatoria tal que y;,t =1,...,n,

possua densidade fg(y;), @ € O, o logaritmo da func¢ao de verossimilhanga é expresso por
00) = log(falur)),
t=1

em que o MLE denotado por  é equivalente ao valor que maximiza ((0). Portanto,

6 = arg max [((0)] ou, equivalentemente, § = arg min [—¢(8)]. Tal método consiste em
0co 0co
substituir a contribui¢ao individual —log(fe(y;)) da t-ésima observacao por uma fungao

p(yt,0), de modo que o estimador proposto seja obtido por meio da relagao

~

Oy = T(F,) = arg min » _ p(y;, 0). (3.3.1)
6co —1
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em que p(-,0) é uma funcao diferenciavel tal que p : X x © — R, com X denotando o
conjunto suporte. Maiores informagoes sobre as condigoes adicionais que a fungao p(-, @)
referente a um M-estimador de localizagao ou escala deve satisfazer podem ser obtidas
em Maronna et al. (2019).

A classe de estimadores resultantes desse método e que, portanto, satisfazem
(3.3.1), foi denominada de M-estimadores. A equagdo de estimagao associada ao M-

estimador §M é dada por

n n a
> w(u T(F)) =) 59" Wt O)lo=r(r) = 0.
t=1 t=1

Observe que ao considerar p(y;,0) = —log(fe(y:)), entdao ¥ (y;, @) serd o negativo da
funcao escore e, portanto, teremos o caso particular referente ao MLE. Conforme Ribeiro
(2020), a IF para 0, ¢ dada por

-1

16 T ) = |- [ g0t O)lorisydfotn)| vl ()
— M(

¥, Fo) " (y, T (Fy)),

em que

0

M(¢, Fp) = %Wj(yve”@:T(Fg)dFe(y)'

Nota-se que se algum componente de 1 (y, @) nao for limitado, entao a sua IF também nao
sera limitada e, consequentemente, a sua UGES nao serd finita. Portanto, o estimador
relacionado nao sera considerado B-Robusto. Tomando T' = é, tal que 0 seja o MLE

para @, a IF fica expressa por
IF(y; 0,Fp) = K(0, Fp)'U(y.0), (3.3.2)

em que K (0, Fp) é a FIM de 0 sob Fg e U(+,0) é o vetor escore para 8. Da mesma forma,
se algum componente do vetor escore nao for limitado, entao a IF nao sera limitada e,

portanto, o estimador 6 nao serd B-Robusto.

Segundo Ribeiro (2020, p. 16, cap. 2), a matriz de varidncias e covariancias as-
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sintéticas de um M-estimador T é dada por
V(T; Fp) = /IF(y,T, Fo)IF(y, T, Fp) " dFy(y)
= [ MO Fa) o0 T(Fn) M. Fo) 00, T(E)) dFaly)
— [ MG Fa) ol T(ER) (000 ()] M Fo) 1] dFaly

T

=M. Fa) | [ 0T [ T dat)] [0 )
= M(w, Fo) ™ QU Fo) [M(w, F) ']

em que
Q. Fo) = / by, T(Fay) [y, T(Fo))|T dFo(y).

Hampel et al. (2011) demonstra que os M-estimadores gozam da propriedades
analogas aos MLEs no que se refere a sua distribuicao assintética. Assim, sob condi¢oes

de regularidade e para uma amostra n suficientemente grande, vale que

V(T (F,) = ) = N(0,V(T, Fp)).

n—oo

Esse resultado permite a obtencao de erros-padrao assintoticos e estimativas intervalares

para o M-estimador T'.
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4 Inferéncia robusta

Ribeiro e Ferrari (2023) demonstraram que o procedimento de estimagao por
maxima verossimilhanca nao ¢ robusto para os parametros do modelo de regressao beta
especificado na Secao 2.2. Tomando o modelo definido na Secao 2.3, temos que a sua IF
sob 0 método de estimagao por maxima verossimilhanca é dada pela expressao em (3.3.2),
ou seja, o produto entre a inversa da FIM, definida em (2.3.6), e o vetor escore para 6,
obtido a partir das expressoes em (2.3.3) e (2.3.4). Logo, sob a regressao beta nao linear,

o vetor escore para 0 correspondente a uma tnica observacao y; €

-
. o L Onu 1 Ong

U(y:,0) = <¢t(yt — Mt )QL(NO 8,8MT7 atgfb(cﬁt) 8’)/¢T> . (4.0.1)

Para que o MLE sob o modelo de regressao beta nao seja robusto, basta que um

dos componentes da sua IF nao seja limitado. Para a regressao beta linear, os limites
dos componentes do vetor escore divergem quando ¥, tende para os limites do suporte
da distribui¢do beta, ou seja, quando y; — 0 ou 3 — 1 (RIBEIRO; FERRARI, 2023).
Observa-se que esse mesmo resultado também é véalido para o caso nao linear. Portanto,
isto é suficiente para a conclusao de que a respectiva IF nao é limitada e, consequente-
mente, a medida UGES y; nao ¢é finita. Portanto, sob o modelo de regressao beta nao

linear, o MLE nao é considerado B-Robusto.

Desse modo, pode-se afirmar que na presenca de observagoes atipicas, nao héa ga-
rantia de que a inferéncia via maxima verossimilhanca produza estimativas robustas para
os parametros do modelo de regressao beta nao linear. Como alternativa a estimacao via
méxima verossimilhanca sob a regressao beta linear, Ribeiro e Ferrari (2023) propuse-
ram o SMLE, obtido com base na maximizacao de uma reparametrizacao da funcao de
L,-verossimilhanga introduzida por Ferrari e Yang (2010). Posteriormente, objetivando
superar limita¢oes do SMLE, Maluf, Ferrari e Queiroz (2025) propuseram o LSMLE, que
consiste em uma adaptacado do método introduzido por Ribeiro e Ferrari (2023), porém

aplicando a transformacao logito na variavel resposta.

Neste capitulo, que tem como base os trabalhos de Ribeiro e Ferrari (2023) e Ma-
luf, Ferrari e Queiroz (2025), serd apresentado o desenvolvimento do SMLE e do LSMLE
para os modelos de regressao beta com precisao variavel considerando a generalizacao das

estruturas de regressao para o caso nao linear.
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4.1 Estimacgao via L,-verossimilhanca reparametrizada

Sejam y;,t = 1,...,n, observacoes independentes obtidas a partir do modelo de
regressao beta com precisao variavel definido na Secao 2.3, indexado por um parametro
desconhecido @ € © C RP*P2. Segundo Ferrari e Yang (2010), a funcao de L,-verossimilhanga,

aqui denotada por £,(0), é definida por

0g(8) =" Ly(folye: i dr)).

t=1

em que fo(ys; pe; &) é a PDF assumida para y;, e

Ly(u) ={ (™ =1/ =) seq#1, (4.1.1)

log(u), seq=1,

é a transformagao de Box-Cox (BOX; COX, 1964), com ¢ € (0,1] sendo uma constante
denominada de constante de afinacao, que serd melhor discutida nas secoes seguintes.
Observe que o parametro da transformagao de Box-Cox em (4.1.1), representado por «,
é o = 1 — ¢q. Dessa forma, o estimador de maxima L,-verossimilhanga (mazimum L,-
likelihood estimator; ML,E), aqui denotado por Eq, ¢ obtido a partir da maximizacao
de €,(0), ou seja, 0, = arg@ max [(,(6)] ou, de forma andloga, 0, = ar% min [—/,(8)].

€O €O
Ressalta-se que o MLE ¢é um caso particular do ML,E, uma vez que para ¢ = 1, obtém-se

{y(0) = Z log(fo(ys; e 1)),

t=1

e, portanto, Eq sera igual ao MLE 0 usual.

Considerando que

Jo(ye; s 01)' =7 = exp {(1 — q)log(fo(ye; 113 d1)) }

segue que a equacao de estimacao associada ao ML,E fica dada por

Uy(,0) =Y Ul(ys,0) fo(yei 1115 3)' " = 0, (4.1.2)

em que U (y;, 0) é o vetor escore referente a t-ésima observacgao definido em (4.0.1). Ob-
serve que a expressao em (4.1.2) corresponde a um processo de M-estimagcao tal qual o
descrito na Segao 3.3, pois a contribuicao individual de cada observacao esta sendo subs-
tituida pela fungao U (yy, 0) fo(ys; pe; ¢¢)* 7, que corresponde a contribuigao individual no

MLE, porém ponderada por fg(y:; ius; ¢¢)' 9. Assim, a escolha do valor para contante g



26 Inferéncia robusta

controla a ponderagao atribuida para cada observacao. Nesse sentido, temos que quanto
mais distante de um for o valor escolhido para ¢, mais robusto serd o procedimento de
estimacao, uma vez que as observagoes tidas como atipicas receberao uma menor pon-

deracao e, consequentemente, contribuirao menos para o processo de estimagao.

Observa-se que, exceto para ¢ = 1, a fungao de estimacao em (4.1.2) é enviesada,
ou seja, E[U,(y,0)] # 0. Desse modo, o estimador nao sera Fisher-consistente. Para
contornar esse problema e construir um estimador que seja Fisher-consistente, Ribeiro e
Ferrari (2023) utilizaram uma reparametrizacio da func¢ao de L,-verossimilhanca intro-
duzida por Ferrari e La Vecchia (2012), que se baseou em uma funcao de calibracao para
reescalonar as estimativas de 6. Assim, se a familia de distribuigoes postulada aos dados
for fechada sob a transformagao poténcia, entao temos garantida a Fisher-consisténcia do
estimador. Dada uma PDF h e uma constante w > 0, a transformagcao poténcia é definida
como "

R (y) = % x h(y)”,V y no suporte, (4.1.3)
desde que [ h(y)“dy < co. Para a familia de densidades {hg(-),0 € O}, que é fechada
sob a transformacao poténcia em (4.1.3), considere uma funcao continua inversivel 7,,(0) :

O — O que satisfaz
o) () = 1y (),

para todo y no suporte da distribuicao postulada, sendo que este nao depende de 6.
Assim, a aplicacao da transformacao poténcia a densidade hg tem como resultado uma
densidade hg") pertencente a mesma familia de distribuicoes da qual hg pertence, porém,
sob uma parametrizagao diferente, no caso 7,(8). Ribeiro e Ferrari (2023) mostraram que
a PDF da distribuicao beta é fechada sob a transformagao poténcia, desde que p;¢; > 1
e (1 — uy)¢r > 1. Em outras palavras, a distribuigao beta é fechada sob a transformagao

poténcia para todo w > 0 se a densidade beta fg(yy; ue; ¢¢) for limitada.

Ferrari e La Vecchia (2012) demonstraram que apesar de 6, nao ser Fisher-
consistente para 6, é possivel obter um outro estimador por meio do mesmo processo,
porém sob a parametrizacio 7,'(6) = 71/,(0) que atende a propriedade de Fisher-
consisténcia. Desse modo, o novo estimador 6, é obtido a partir da maximizagao da
fungdo L,-verossimilhanca sob a parametrizacdo 71/,(6), aqui denotada por £;(0), que,

sob o modelo de regressao beta nao linear, é definida por

G0) =" Lo(fr o) Wei 1 00) = > Lo(f67” (ye: 123 01)). (4.1.4)
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em que fe(vl/q) (Yes poes &) = fo(yes pg—1; drq-1), Para ¢ € (0,1), com
Htq = (b;ql lq(pepe — 1) +1] e
(bt,q = Q(th - 2) + 2,

desde que ;-1 € (0,1) € ¢ 41 > 0, ou, equivalentemente, ¢y > 1 —qe (1 — )y >
1 —q. Logo, fo(ys; ut; ¢¢) satisfaz a transformagao poténcia definida em (4.1.3) para todo
w=1/qg>0,seud; >1e(l—p)p > 1, 0useja, se a densidade fo(yy; ue; ¢¢) for limitada.

A expressao equivalente a densidade fél/ q)(yt; s ¢¢) para o caso linear corres-
ponde ao modelo de regressao beta modificado definido por meio da densidade especifi-
cada em (2.1.8), com as estruturas de regressao associadas aos parametros y; e ¢, obtidas
a partir de (2.2.1) e (2.2.2), respectivamente. Considerando o caso nao linear especificado
em (2.3.1), os submodelos da média e da precisao associados ao modelo de regressao beta

modificado, que aqui serd denotado por fg(y:; pur; ¢1), sdo dados por

Gn(pe) = gulpieg) = fu(Xe; B) = My

(4.1.5)
92(@) = 9o(Prq) = fo(Ze;7) = ot

O estimador proposto por Ribeiro e Ferrari (2023) é obtido por meio da ma-
ximagao da funcado L,-verossimilhanca reparametrizada definida em (4.1.4). Neste traba-
lho, também maximizaremos a expressao em (4.1.4) mas considerando a flexibilizacao das

estruturas de regressao associadas a y; e ¢, obtendo a equacao de estimagao
> U (40, 0) 5 (ye; e d0)' ™ = 0, (4.1.6)
t=1

em que U*(y;, 0) = Vlog [fg(ys; 5 ¢¢)], com VO denotando o gradiente relativo a 6, é o

vetor escore modificado para 6 referente a t-ésima observacao, dado por

U*(y,, 0) = <q1 Cbt,q(?/Jt* — ) (977ut7 g Hg(Yi — 1) + (yi - MI) 877¢t> ! (41T
g,u(,ut,q) 0BT g;s(gbt,q) oy’

em que ¢ = log(1 — ) e 4 = E(yf) = w((1 - ju)ér) — ¥(¢). Observa-se que o fator

fo(ye; pe; &)~ em (4.1.6) funciona como uma ponderagiao no processo de estimagao. Se

q = 1, o mesmo peso é aplicado a todas as observacgoes e, entao, teremos como resultado

o MLE usual. Por outro lado, quando ¢ < 1, entao as observacoes tidas como atipicas em

relagao ao esperado para o modelo de regressao beta postulado receberao pesos menores

e terao menor influéncia no estimador final 6,,.

O estimador é;, denominado SMLE, goza de propriedades titeis para o processo

inferencial, a exemplo da Fisher-consistente para @ e normalidade assintética. Nesse



28 Inferéncia robusta

sentido, por se tratar de um M-estimador, entao a sua distribuicao é assintoticamente
normal, com HAq ~ N(0,V1,4(0)), em que

Vig(8) = J14(0) " K14(8) [J1,(0)7] ", (4.1.8)

em que
J14(8) =D E{Vyr [U (4, 0)f5 (e s 60)' ] }
=1

K14(0) =Y E{U (4, 0)U" (4, 0) " f (ye: 11 6)*' 7'} .
=1

Ribeiro e Ferrari (2023) apresentaram as matrizes J; ,(0) e K ,(6) para o modelo
de regressao beta linear e demonstraram, ainda, que, para distribuicoes beta limitadas,
o vetor escore modificado expresso em (4.1.7) é limitado para todo y no suporte da dis-
tribuicao e que a sua derivada também é limitada. Isto implica que, sob a condigao
mencionada, o SMLE é B-robusto e que eventuais observagoes atipicas possuem pouca
influéncia sobre o valor estimado de sua matriz de covariancias assintética. Neste trabalho
nao apresentaremos as matrizes .J; ,(0) e K; ,(0) correspondentes aos modelos de regressao
beta nao lineares, uma vez que, conforme sera abordado mais adiante, foi utilizado outro

método para obtencao das estimativas dos erros padrao dos parametros.

4.2 Estimacao via transformacao da variavel resposta

Modelos de regressao beta ajustados por meio do SMLE podem ser tteis para
modelar dados provenientes de diversos fenomenos e situagoes. Entretanto, conforme
pontuado da Secao 4.1, nao existe garantia de que este estimador seja bem definido para
distribuicoes beta que sejam nao limitadas. Distribuicoes beta ilimitadas, que sao aquelas
cujas curvas para a densidade apresentam formas de J, J invertido ou U, sao raras de
serem observadas na pratica, entretanto podem ocorrer para alguns conjuntos de dados
limitados ao intervalo (0,1). Diante disso, Maluf, Ferrari e Queiroz (2025) introduziram
novos estimadores que sao bem definidos e preservam propriedades de robustez mesmo
para distribuigoes beta cujas densidades nao sejam limitadas, ou seja, que tendem ao

infinito em um ou ambos os extremos do suporte da distribuicao.

O processo de obtencao desses novos estimadores se baseou nos trabalhos de
Ghosh (2019) e Ribeiro e Ferrari (2023), e consiste em replicar os métodos empregados nos
trabalhos citados, porém, considerando a distribuicao de uma transformacao na varidavel
resposta, aqui referida por y*. Aqui nos limitaremos ao estimador decorrente do SMLE.

Assim, seja y ~ B(u,¢), considere y* como a transformagao logito de y, ou seja, y* =
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logito(y) = logly/(1 — y)]. A PDF de y* é dada por

. 1 ey (1-m)o
) = Bl ) (1 e
I'(¢) e Y (I-p)o

= > YeER

[(pp)l((1 = p)o) (1 +e7v7)?
A distribuicao de y* é chamada de beta exponencial generalizada do segundo tipo (ezpo-
nential generalized beta of the second type; EGB) e escrevemos y* ~ EGB(p,¢) (MCDO-
NALD; XU, 1995). Ao contrario da distribui¢ao beta convencional, a distribui¢ao EGB ¢

fechada sob a transformacao poténcia para todo y* no suporte da distribuicao, pois

39(3/*7 M, ¢)§ X 89(y*7 [y ¢£)7

para todo y* € R, p € (0,1), ¢ >0e & > 0.

Sejam y; = log[y:/(1 — y¢)],t = 1,...,n, onde cada y; é uma observagao inde-
pendente obtida a partir do modelo de regressao beta com precisao variavel definido em

(2.3.1), e sg(y*, pu, ¢r) a PDF de y*. A funcao L,-verossimilhanca referente a densidade
se(", pe, ¢¢), € dada por

h0) = Ly(sa(yis e 01)), (4.2.1)

em que L, (+) é a transformacao definida em (4.1.1). Como ja mencionado, a maximagao da
funcéo em (4.2.1) conduz a estimadores que nao sao Fisher-consistentes. Assim, conside-
rando que a familia de distribuicoes EGB ¢ fechada sob a transformacao poténcia, estima-
dores Fisher-consistentes podem ser obtidos a partir da reparametrizagao 7, 1(0) = 71/4(0)
de 62(0) . O LSMLE é obtido a partir da maximizacao da reparametrizacao da funcao

L,-verossimilhanca definida em (4.2.1), dada por

n

((0) =" Ly(sr,, 005 1 00)) = > Lo(s5" (73 143 60))-
t=1

t=1

em que sé/q(y;‘;ut; &) = se(y); tu; Grq—1), para g € (0,1), e p, e ¢, satisfazendo (2.2.1) e

(2.2.2), respectivamente. Para o caso nao linear expresso em (2.3.1), os submodelos da
média e da precisao associados a um modelo de regressao beta modificado, que aqui sera

denotado por sy (y;; pu; ¢1), sdo dados por

9n(pe) = gupe) = fu(Xe; B) = Myt

(4.2.2)
95(01) = 96(01q) = fo(Z;Y) = Nge-
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e o LSMLE, que aqui sera denotado por 6761, é obtido a partir da maximizagao da funcao
52*(9) = Z Ly(so(yz; pe; d1))-
t=1
A equacao de estimacao associada ao processo de obtencao do LSMLE é
S UMy, 0)s5(yis i )1 =0, (4.2.3)
t=1

em que U™ (yr,0) = Vglog [s5(y;; pie; ¢1)] é o vetor escore modificado para 6 referente

t-ésima observagao, que para o caso nao linear é dado por

T
) O (g — )+ (yf — pad) O

U™y, 0) = (" — pue™) O ’ 1 t t t t :
(yt ) <¢t g;(ﬂt) 8ﬁ‘|’ q g;(¢t’q) a’y‘r

Maluf, Ferrari e Queiroz (2025) demonstraram que o estimador é; também ¢
Fisher-consistente para 6. Além disso, considerando que o LSMLE pertence a classe dos
M-estimadores, temos que 6, < N(6, V5,4(8)), em que

Vag(8)) = Jog(0) K5,4(0) [J24(0) 1], (4.2.4)

sendo
Jog(0) =Y E{Vgr [U™(y;,0)s5(ys s 00)' ] } e
i=1
Koq(0) =Y E{U™(y;,0)U™(y;,0) sp(ui's 115 60)' ™} -
i=1

As expressoes para as matrizes Jy,(0) e K3 ,(0) para o modelo de regressao beta linear
sdo apresentadas por Maluf, Ferrari e Queiroz (2025), que também ressaltam que V5 ,(0) é
bem definida para todo @ = 1—¢q € [0,1), e que para a = 0 (¢ = 1) a matriz de covariancias
assintoticas de HNq equivale a matriz de covariancias assintoticas do MLE. Além disso, tem-
se que a IF do LSMLE ¢é sempre limitada, o que implica que évq ¢ B-robusto. Também
nao apresentaremos as matrizes J; ,(0) e K ,(0) referentes aos modelos de regressao beta
nao lineares. Conforme sera detalhado adiante, foi utilizado outro método para obtencao

das estimativas dos erros padrao dos parametros do modelo.
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4.3 Estimativas iniciais

Ressalta-se que nao é possivel explicitar ambos estimadores SMLE e LSMLE de
forma analitica, sendo necessario recorrer a métodos de otimizagao numérica, a exemplo
do BGFS (WRIGHT; NOCEDAL, 1999, p. 136, cap. 6), para maximizar as funcoes £;(0)
e 62*(0), respectivamente. Esses métodos exigem estimativas iniciais para que o processo
iterativo seja realizado. Dessa forma, sugerimos, para os modelos nao lineares aqui propos-
tos, a obtencao desses valores iniciais a partir das estimativas de méxima verossimilhanca
do modelo de regressao beta nao linear detalhado na Subsegao 2.3, utilizando como f, e
fs em (2.3.1) as mesmas funcoes de ligacdo a serem utilizadas nos submodelos da média

e da precisao, respectivamente, dos ajustes sob os estimadores robustos.

Conforme sera detalhado nas experimentacoes efetuadas nos estudos de simulacao
e aplicacoes do Capitulo 5, foram obtidos bons resultados na obtencao dos SMLEs e
LSMLEs ao gerar as estimativas iniciais a partir do modelo de regressao beta nao linear

ajustado com o MLE.

4.4 Estimativas para os erros padrao via método bootstrap

Nao obstante a possibilidade de obter as estimativas dos erros padrao de 0 =
(B7,4T)7, nas estruturas de regressao em (2.3.1) por meio das matrizes de covariancias
assint6ticas do SMLE e LSMLE em (4.1.8) e (4.2.4), respectivamente, para este trabalho

optamos por calcula-las por meio de processo bootstrap.

O bootstrap consiste em uma abordagem computacional baseada em reamostra-
gem, que permite estimar a distribuicao de uma estatistica de interesse e realizar in-
feréncias sobre ela, oferecendo uma alternativa pratica e intuitiva para estimar erros
padrao, construir intervalos de confianca, obter vieses de estimadores, simular distri-
buigoes amostrais de estatisticas, entre outras finalidades (EFRON; TIBSHIRANI, 1994;
LIMA, 2017).

Desde sua proposi¢ao por Efron (1979), o método bootstrap consolidou-se como
uma técnica estatistica versatil e poderosa, amplamente utilizada em diversas areas do co-
nhecimento, se destacando por sua aplicabilidade em situagoes em que métodos estatisticos
tradicionais nao sao totalmente vidveis ou sao dificeis de implementar. Situacoes como
essas podem ocorrer, por exemplo, em cendarios com tamanhos amostrais pequenos ou

quando nao existem maiores informacoes sobre a real distribuicao dos dados de interesse.

O procedimento utilizado para obtencao do erro padrao bootstrap é o descrito
no Algoritmo 1 (EFRON; TIBSHIRANI, 1994), com o o erro padrao de é, denotado por
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Sﬁt(é), dado por

—_ 1 B R —\ 2
SBroot(6) = \| 7 S (9<b> _ 0) ,
b=1

em que B ¢ a quantidade de réplicas de 8 geradas e 6 = (25:11 é(b)> /Bj. Observe que
aqui nao esta sendo feita nenhuma suposicao sobre a distribuicao de 6. Com base em
estudos e simulagoes efetuadas, Efron e Tibshirani (1994) mostram que para a maioria

dos casos uma quantidade B; = 200 réplicas é suficiente para se alcancar bons resultados.

Algoritmo 1 Calculo do erro padrao dos estmadores via bootstrap

Entrada: Vetor y contendo as n realizacoes da variavel resposta, quantidade B; de rea-
mostragens de y, vetores de estimativas 3 e 4 e matrizes de covaridveis X e Z
utilizadas no ajuste do modelo.

para b =1 até B; faga
gere uma réplica y*) da resposta a partir do modelo postulado utilizando as
estimativas originais B e & para os parametros (3, 7, respectivamente.
Estime é(k)~: (B(k),ﬁ/(k)) com base em y®*).
Armazene 8.
fim para
Calcule o erro padrao amostral de 6 = (B, %) com base nas B estimativas o)
por meio da formula

— . 1 B ~ —\ 2
SEoct(0) = | 5—7 D (6% -6)"
k=1

o —

Saida: Vetor SEboot(é) contendo os erros padrao bootstrap dos componentes de 6.

4.5 Teste de hipdoteses robusto

Além das estimagoes pontuais discutidas nas Segoes anteriores, também é impor-
tante avaliar os coeficientes de regressao dos modelos para, considerando a amostra em
estudo, avalair se as covariaveis sao relevantes para explicar o comportamento da variavel
resposta. Para essa finalidade, usualmente sao utilizados testes de hipoteses baseados na
funcao de verossimilhanca e que dependem do processo de estimacao por maxima veros-
similhanca. Entretanto, é esperado que, sob contaminacao nos dados, testes de hipoteses
baseados no MLE também sejam sensiveis observagoes atipicas e, portanto, tenham o seu

desempenho prejudicado.
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Seguindo as ideias do trabalho de Heritier e Ronchetti (1994), Ribeiro e Ferrari
(2023) propuseram um teste de hipdteses robusto baseado na estatistica de Wald para o
modelo de regressao beta em estudo. A nova estatistica de teste, referida por estatistica
tipo-Wald, é obtida a partir da mesma férmula da estatistica de Wald, porém com a
substituigado do MLE e do correspondente erro padrao (standard error; SE) pelo SMLE e

por seu SE assintético obtido a partir da matriz de covariancias em (4.1.8).

Sejam 6 = (0y,...,0,)" o vetor de pardmetros, 674 = (élq, . ,@\pq)T o vetor
das respectivas estimativas, e ) = (9&0) e ,(9,(30))T um vetor de valores dados, segundo

Ribeiro e Ferrari (2023), o teste referente a um dnico parametro considera as hipéteses
Hy: 0, = 0,&0) contra Hy : 6 # 0,20), 1 < k < p, e a correspondente estatistica do teste

tipo-Wald é definida por

(Org = 07
SE @q)z ’

em que 5kq ¢ a estimativa de 0, e SE <§kq) ¢ o erro padrao assintotico obtido a par-

Wog = (4.5.1)

tir da matriz de covariancias assintéticas expressa em (4.1.8). Maluf, Ferrari e Queiroz
(2025) utilizam a mesma estatistica para testar coeficientes da regressao sob o LSMLE,
porém substituindo o MLE e o correspondente SE pelo LSMLE e seu SE assintético
obtido a partir da matriz de covariancias em (4.2.4). Sob Hj e condigoes usuais de regu-
laridade, mostra-se que a estatistica do teste em (4.5.1) possui distribui¢ao aproximada
qui-quadrado com 1 grau de liberdade (W, ~ x?%). Nesse sentido, considerando um nivel
de significancia «, rejeitamos Hy em favor de H; quando a estatistica W, for maior
do que o quantil de ordem (1 — «) da distribuigao x?, ou seja, se Wy, > Xil—a? com
P(xi < X%,l—a) =1-o

Entretanto, a utilizacao do erro padrao bootstrap pode tornar inadequada a uti-
lizagao da distribuicao assintdtica da estatistica original do teste tipo-Wald, expressa em
(4.5.1). Dessa forma, o p-valor do teste de hipdteses robusto tratado na Subsecao 4.5 foi
obtido por meio da distribuicao empirica da citada estatistica, gerada também via boots-
trap a partir do processo detalhado no Algoritmo 2 a seguir. A partir desse processo foi
possivel obter estimativas para os p-valores referentes ao teste tipo-Wald. Observe que,
para esse caso, também nao esta sendo feita qualquer suposicao em relacao a distribuicao
de estatistica Wy ,. Com base em Efron e Tibshirani (1994) e Efron (1992), foram utili-
zados os valores B; = 200 e B, = 500 para as contantes necessarias para inicializacao do

Algoritmo 2.
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Algoritmo 2 Célculo do p-valor via Bootstrap do teste de hipdéteses tipo-Wald

Entrada: Numero de réplicas By da estatistica tipo-Wald, nimero B; de reamostragens
para obtencao do erro padrao, vetores de estimativas 3 e 4 e seus respectivos

—

~ —_—
erros padrao SEpeot(8) € SEpoot(9), vetor y de realizagoes da varidvel resposta
e matrizes de covariaveis X e Z.

Calcule as estatisticas tipo-Wald observadas:

2

~ 2
obs /6—/8(0) obs :)\/_7(0)
Wﬁb = TA 5 W,Yb - TA .
SEboot (ﬁ) SEbOOt (’7)

para j = 1 até B, faca
Gere uma réplica y9) da varidvel resposta a partir do modelo postulado, porém
sob a hipétese nula, ou seja, utilizando 8(°) = (B(O)T,')/(O)T)T, BO" — 0,...,0)"
eRM e~ =(0,...,0)7 € R,
Estime 89 = (89, 41)) com base em y@).
Armazene 6.
para k =1 até B faga
Gere nova réplica y* da resposta a partir do modelo postulado, porém utili-
zando os vetores 3@, 4U) para os parametros B3, 7, respectivamente.
Estime 0% = (305 4G9 com base em yUh).
Armazene U
fim para
Obtenha o erro padrao amostral de 80 = (8U), 41)) com base nas B estima-
tivas 0U%) por meio da formula

By

N 1 A -\ 2
SEpoot(0)0) = (9(]7’9) — 9(3)) .
Calcule as réplicas das estatisticas tipo-Wald observadas:
30) i () ?
Wﬁ(j) = /BT]A ) Wfsj) = <%> .
SEboot (/6(])> SEbOOt(’?(]))

fim para
Para cada 3 e =, calcular o p-valor bootstrap:

1 & 1 &
pﬁ:EZI(Wﬁ>W§bS)= pv:EZI(W'V>W'$bS)v
=1 =1

em que Z ¢ a funcao indicadora, e Wz e W, sao os vetores contendo as B,

réplicas das estatisticas tipo-Wald correspondentes a 3 e v respectivamente.
Saida: Vetores pg € RP' e p, € R com os p-valores bootstrap referentes aos compo-

nentes dos parametros 3 e -y, respectivamente.
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4.6 Constante de afinagao

Vimos nas se¢oes anteriores que as equagoes de estimagao associadas ao SMLE e
LSMLE, dadas por (4.1.6) e (4.2.3), respectivamente, dependem diretamente da definigdo
de um valor para a constante de afinagao, denotada nessas equacgoes pela letra ¢, tal que
q € (0,1]. Tal constante é de suma importancia para o processo de estimacao, pois seu
valor controla o balanceamento entre eficiéncia assintdtica e robustez dos estimadores.
Desse modo, valores menores para ¢ privilegiam a robustez do estimador em detrimento

da eficiéncia.

A escolha de um valor étimo para ¢ constitui um problema adicional no processo
de estimacao, considerando a sua importancia e o fato de que este deve ser fixado a priori.
LA VECCHIA, Camponovo e Ferrari (2015) sugerem utilizar um valor para g que seja mais
proximo de 1, ou seja, de modo que o estimador obtido fique préximo ao MLE convencional
para que as estimativas dos parametros sejam suficientemente estaveis na presenca de
contaminagao e proporcionem eficiéncia completa na auséncia de contaminagao nos dados.
Nos trabalhos de Ghosh e Basu (2016) e Ghosh (2019), por exemplo, a escolha de um
valor para ¢ ¢ sugerida com base em estudos de simulacao e comparacoes dos valores
das estimativas dos parametros de regressao para diferentes valores da constante, todos

proximos de 1.

Ribeiro e Ferrari (2023) propuseram um método orientado a dados baseado na
proposta de LA VECCHIA, Camponovo e Ferrari (2015), porém utilizando uma padro-
nizacao das estimativas, objetivando remover o efeito do tamanho amostral e da magnitude
das estimativas de parametros distintos. Esse método tem se mostrado bastante eficaz e
foi utilizado com sucesso para selecao da constante de afinagao em outros trabalhos que

envolvem regressao robusta, tais como Queiroz (2022) e Maluf, Ferrari e Queiroz (2025).

Neste trabalho, propomos uma adaptacao ao método de selecao introduzido por
Ribeiro e Ferrari (2023), objetivando dar estabilidade ao processo de selecao da constante
de afinacao. No algoritmo original, a medida utilizada para defini¢ao do critério de parada
do procedimento, o vetor de variagbes quadraticas padronizadas (standardized quadratric
variations; SQV), é padronizada pela variabilidade das estimativas dos parametros, sendo
utilizado o erro padrao assintético para tanto. Conforme detalhado na Subsecgao 4.4, para
este trabalho o erro padrao sera obtido por meio do processo de bootstrap detalhado no
Algoritmo 1, e a sua utilizacao no método de selecao original poderia resultar na obtencao
de diferentes valores de ¢ para um mesmo conjunto de dados caso nao seja utilizada uma
semente para a reprodutibilidade do processo computacional, o que nao é desejavel. Além
disso, a mudanca tornou o processo computacional mais rapido e eficiente, reduzindo
consideravelmente a quantidade de céalculos necessarios e, consequentemente, o tempo

total de execugao.
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A adaptacao proposta consiste em substituir a medida SQV pela norma euclidiana
dos vetores das estimativas dos parametros (euclidian norm of the parameter estimate
vectors; ENPEV), dada por

o~

0y — 0q .||+ (4.6.1)

qk+1

ENPEV,, |

em que é\qk = (é\‘}k’ e ,ggk), e qr ¢ 0 k-ésimo valor testado para a constante de afinacao
q. A k-ésima estimativa do vetor de parametros sera considerada suficientemente estavel
se o valor da ENPEV for menor do que o produto entre uma constante B pré-fixada e a
mediana dos valores da medida ENPEV obtidos no passo inicial do algoritmo. Observe
que, dessa forma, sempre obteremos um critério de parada relativo a magnitude das
estimativas dos parametros, tornando desnecessario utilizar o erro padrao para padronizar
essas estimativas. Portanto, seja @ = (61,0,,...,0,)", p = p1 + pa, 0 vetor dos parametros
a serem estimados e ¢, k = 1,--- ,m, os m valores a serem atribuidos para a constante

de afinacao ¢, entao o método proposto segue os passos descritos no Algoritmo 3, a seguir.

Observa-se que o Algoritmo 3, recomendado para selecao da constante de afinacao
para ambos os estimadores robustos tratados neste trabalho, escolhe um valor étimo para
q que seja o mais proximo possivel de 1 ou, caso a estabilidade nao seja alcancada,
escolhe ¢ = 1 e o estimador resultante sera o MLE. Quanto as contantes necessarias como
entrada para o Algoritmo 3, foram utilizadas as sugestoes de Ribeiro e Ferrari (2023) para
considerar o tamanho das grades em m = 3 (exceto na primeira execugao do algoritmo),
valor minimo de ¢ em ¢uin = 0,5 e 0 espacamento da grade em 0,02. Observe que essa
configuragao, em especial o valor sugerido para o ¢,i,, garante a escolha de um valor
otimo para ¢ que seja mais proximo de 1 do que de 0, o que privilegia a estabilidade
e a AE do estimador. Em relacao a constante B a ser utilizada para calculo do valor
limitante da condicao de estabilidade, a partir de experimentos com amostras simuladas
sugerimos utilizar o valor B = 2,1. Observe que a adaptacao aqui proposta manteve uma
das principais caracteristicas do método, que é a selecao da constante ¢ com base nos

proprios dados a serem utilizados no ajuste do modelo de regressao.

4.7 Implementacao computacional

Todos os calculos e avaliacoes numéricas relacionadas as estimacgoes dos parametros
dos modelos, bem como os gréaficos gerados ao longo desse trabalho, foram realizados
com suporte computacional utilizando a linguagem de programacao R e o software es-
tatistico de mesmo nome, em sua versao 4.4.0. O software R (R Core Team, 2024) é de
dominio publico e estd disponivel gratuitamente para download no endereco eletronico

http://www.r-project.org/.
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Algoritmo 3 Selecao do valor 6timo para a constante de afinacao ¢

Entrada: Conjunto de dados para o qual se pretende ajustar o modelo, multiplicador
B = 2,1 para condicao de estabilidade, tamanho m = 3 das grades a partir da segunda
grade, valor minimo ¢,,;, = 0,5 da constante de afinacao e espacamento s = 0,02 dos
valores da grade

Defina uma grade ordenada de forma decrescente de valores para ¢ que sejam igualmente
espagados com distancia s entre si, ou seja, go > ¢1 > g2 > -+ > @m,, tal que gp =1, e

qm; = 0,8
repita
para cada ¢, na grade faga R R R
Calcule as estimativas dos parametros obtendo 8, = (H;k, e, 00 )
Calcule o vetor das medidas ENPEV, conforme definido em (4.6.1)
fim para

se grade inicial entao
Obtenha a mediana dos valores do vetor de medidas ENPEV obtido no passo

anterior, aqui denotada por med(ENPEV)
fim se

se todas as ENPEV,, < B * med(ENPEV) entao

Defina ¢* = max (q)
Gm <qk<qo

Pare
senao
Identifique o menor ¢ tal que ENPEV,, > B * med(ENPEV)
Defina ¢g.¢ como o préximo ponto na grade apods o g definido no passo anterior
Construa nova grade decrescente com m novos valores para ¢ com espacamento

s entre si a partir de gsgart
fim se

até a estabilidade ser alcancada, ou seja, todas as ENPEV, < B xmed(ENPEV) ou

Gstart = QGmin

S€ (start = Jmin, Significa que a estabilidade nao foi alcancada entao
Defina ¢* =1

fim se

Saida: Valor 6timo da constante de afinacao ¢: ¢*

Estudos de simulacao com diferentes cenarios, e aplicacoes a dados simulados
e reais foram realizadas para ilustrar a aplicabilidade da metodologia que esta sendo
proposta neste trabalho. Para tanto, os processos de obtencao dos estimadores SMLE e
LSMLE foram implementados computacionalmente por meio de adaptacoes efetuadas nas
fungoes e métodos disponibilizados na biblioteca robustbetareg (QUEIROZ; MALUF,
2022) do software R. A biblioteca robustbetareg permite obter diretamente os referidos
estimadores para a regressao beta linear, sendo que as adaptacgoes visaram adequar os
calculos para contemplar as estruturas de regressao com as formas nao lineares utilizadas

neste trabalho para o modelo de regressao beta.

Além disso, para viabilizar a comparacao dos referidos estimadores com métodos
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nao robustos, foi efetuada a implementacao computacional do processo de estimacao via
o MLE descrito na Subsecao 2.3, contemplando as mesmas estruturas nao lineares de

regressao utilizadas para o SMLE e LSMLE sob o modelo beta nao linear.

Conforme ja mencionado nas Subsecoes 4.4 e 4.5, as estimativas dos erros padrao
dos coeficientes e a distribuicao da estatistica do teste tipo-Wald, respectivamente, foram
obtidas por meio de processos bootstrap. Assim, foi efetuada a implementacao computa-

cional dos procedimentos detalhados nos Algoritmos 1 e 2.

Para a realizagao dos estudos de simulacao que serao apresentados na Subsecao
5.1 e para a aplicacao com dados simulados em 5.2.1 foram utilizados processos bootstrap
paramétricos para geracao das réplicas das amostras utilizadas para ajuste dos modelos de
regressao beta nao lineares robustos avaliados. Para esses casos as réplicas de Monte Carlo
foram geradas partindo do pressuposto de que a variavel resposta possui distribuicao beta

na forma espressa em (2.3.1).

Os codigos em R, o conjunto de dados utilizado e os resultados obtidos nesse
trabalho estao disponiveis em repositério Github!. Por meio do material disponibilizado
no repositorio é possivel reproduzir os estudos de simulagao e as aplicacoes aqui efetuadas,

bem como utilizar as implementacoes efetuadas para outros estudos e analises de dados.

!Disponivel em: (https://github.com/eddusousa/nlrobustbetareg).


https://github.com/eddusousa/nlrobustbetareg
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5 Resultados e discussoes

5.1 Estudos de simulacao

Para avaliar o desempenho e comparar os modelos de regressao beta nao lineares
sob os estimadores MLE, SMLE e LSMLE, foram realizados estudos de simulacao de
Monte Carlo baseados em 1000 réplicas e considerando amostras com e sem contaminagao
nos dados. Os tamanhos amostrais considerados sao n = 40, 80, 160, e 320. Os valores
das covariaveis foram obtidos para o tamanho amostral n = 40 e replicados duas, quatro e
oito vezes para obter as matrizes de covariaveis correspondentes aos tamanhos amostrais
n = 80, 160 e 320, respectivamente. Segundo Espinheira, Santos e Cribari-Neto (2017),
esse método garante que o grau de heteroscedasticidade seja constante para todos os
tamanhos amostrais. Em todos os cendrios foram consideradas como ligacao as funcoes
logito nos submodelos da média e logaritmica para os submodelos da precisao sob as
estrutura de regressao apresentadas em (2.3.1). Todos os submodelos contém interceptos
e as covariaveis sao obtidas a partir de varidveis aleatérias com distribuicao uniforme
padrao e mantidas constantes ao longo das amostras simuladas. Para o cendrio com
precisao variavel, a mesma covariavel é utilizadas no submodelo da média e precisao. A
porcentagem de contaminacao na amostra para todos os cendrios foi fixada em 5%. A
selecao da constante de afinagao g para os modelos sob os estimadores SMLE e LSMLE
foi efetuada utilizando o Algoritmo 3 para selecao. Além disso, em todos os cendrios
foi aplicada a fungao exponencial nos termos correspondentes a variavel explicativa dos
submodelos da média para obtencao da estrutura nao linear de regressao, resultando na

forma

gupe) = By + 0,

No cenario de precisao variavel foi considerada uma estrutura de regressao linear para o
submodelo da precisao. Além disso, distintas configuracoes dos valores dos parametros
e diferentes padroes de contaminacao nos dados foram considerados para cada um dos

quatro cenarios.
Para cada cenario simulado, o experimento consistiu nos seguintes passos:

Passo 1. Foram geradas amostras considerando o modelo de regressao beta nao

linear especificado para o cenario.

Passo 2. Os dados foram contaminados conforme padrao descrito em cada cenério,
de modo que para cada uma das réplicas de Monte Carlo foi obtida uma versao

sem contaminacao e outra contaminada.
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Passo 3. Foram ajustados modelos de regressao beta nao lineares sob os treés
estimadores considerados para a amostra contaminada e nao contaminada de

cada uma das réplicas.

Passo 4. Por meio de andlises numéricas e graficas dos erros e dos valores das
estimativas, efetuou-se uma comparacao dos resultados dos modelos descritos no

Passo 3.

Os cenarios considerados estao descritos a seguir.

Cenario 1: Modelo de regressao beta nao linear com precisao variavel e valores da
média da varidvel resposta proximos a 0,85. Os valores dos parametros foram fixados em
B =17, fo =12, 1 = 2,5 e 7 = 3,5, de modo que, para as amostras geradas, as
médias de u e ¢ ficaram préximas a 0,80 e 110, respectivamente. A amostra contaminada
substitui as observagoes geradas com as 5% maiores médias da resposta por observagoes
geradas a partir de um modelo de regressao beta com média p; = (2 —1,54;)/2 e precisao

¢¢. Por exemplo, se p; =~ 0,85, entao u; ~ 0,36.

Cenario 2: Modelo de regressao beta nao linear com precisao constante e valores da
média da varidvel resposta por volta de 0,75. Os valores dos parametros foram fixados
em (3 = —1,0, 5o = 1,0 e 1 = 6,5, de modo que para as amostras geradas as médias de
p ficaram préximas a 0,80 e ¢ ficou igual a 665. A amostra contaminada substitui 5%
das observacoes, sendo 2,5% das observacoes geradas com os maiores valores de u e 2,5%
daquelas com os menores valores de . A contaminacao é gerada por meio de um modelo
) = arci /(1 + ayey) e ) = ascy /(1 + agey),
respectivamente, em que ¢, = /(1 — ), a1 = 0,2 e ag = 2,4. Assim, se se p; ~ 0,75,

entdo iV ~ 0,38 e p!? ~ 0,88,

. . (1
de regressao beta com precisao ¢ e média pg

Cenario 3: Modelo de regressao beta nao linear com precisao constante e valores da
média da variavel resposta proximos a 0,4. Os valores dos parametros foram fixados em
B =—1,0, B = —1,4 e y1 = 6,0, de modo que para as amostras geradas as médias de
p ficaram préximas a 0,39 e ¢ ficou igual a 403. A amostra contaminada substitui as
observacoes geradas com as 5% menores médias da resposta por observagoes geradas a
partir de um modelo de regressao beta com média ) = (2 — 1,7u;)/2 e precisdo ¢. Nesse

caso, se iy ~ 0,4, entao p; ~ 0,66.

Cenario 4: Modelo de regressao beta nao linear com precisao constante e valores da
média da variavel resposta proximos a 0.8. Os valores dos parametros foram fixados
em 0, = —1,7, By = 1,2 e yy = 4,7, de modo que para as amostras geradas as médias
de p ficaram proximas a 0,8 e ¢ ficou igual a 110. A amostra contaminada substitui
as observacoes geradas com as 5% maiores médias da resposta por observacoes geradas a
partir de um modelo de regressao beta com média p;, = (2—2u;)/2 e precisao ¢. Portanto,

se uy ~ 0,8, entao uy ~ 0,2.
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A Figura 3 ilustra as diferentes formas de contaminacao descritas acima para
os 4 cendrios, considerando uma tunica amostra de tamanho 80, em que as observagoes

contaminadas estao destacadas em vermelho.
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Figura 3: Tlustragao dos quatro padroes de contaminacao utilizados para uma amostra de tamanho
n = 80. Os pontos em vermelho correspondem as observagoes contaminadas introduzidas na amostra.

Na Tabela 1 sao feitas comparacoes da eficiéncia dos estimadores por meio das
razoes entre os erros quadraticos médios totais (total mean squared errors; TMSE) do
MLE, SMLE e LSMLE sob os cenarios considerados. Observa-se que para os dados nao
contaminados, a eficiéncia dos trés estimadores € igual a 1 na maioria dos casos e proximas
desse valor nos demais, indicando similaridade nos ajustes, conforme esperado. Isto indica
que a escolha 6tima da constante ¢ na auséncia de contaminacao esta funcionando. Ja
nos casos onde ha contaminacao, constata-se que os estimadores robustos sao muito mais
eficientes do que o MLE, uma vez que seus TMSEs sao consideravelmente menores. Em
em todos os cenarios essa discrepancia tende a aumentar conforme se aumenta o tamanho
amostral. Por exemplo, considerando o Cenério 2, o TMSE é cerca de de 79 vezes maior do
que os TMSEs do SMLE e do LSMLE para as amostras com 40 observacoes. Nesse mesmo

cenario, essa razao aumenta para aproximadamente 162, 326 e 612 para os tamanhos
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amostrais 80, 160 e 320, respectivamente. Além disso, observa-se que apenas sob o Cenario

1 tivemos diferenca de desempenho entre o SMLE e LSMLE, ainda que pequena.

Tabela 1: Razao entre os TMSEs das estimativas sob os Cenérios 1, 2, 3 e 4.

Cenario 1 Cenério 2
Sem contaminacgao Com contaminagao Sem contaminacgao Com contaminacao
N SNLE  TSMLE LSMLE  SMLE  TSMLE LSMLE  SMLE  TSMLE LSMLE  SMLE  ESVLE  LeMim
40 0,92 0,91 0,99 9,20 8,17 0,89 0,98 0,98 1,00 78,83 78,77 1,00
80 0,99 0,99 1,00 23,76 22,73 0,96 0,99 0,99 0,99 161,58 161,78 1,00
160 1,00 1,00 1,00 56,80 56,01 0,99 0,98 1,00 1,00 325,70 325,25 1,00
320 1,00 1,00 1,00 117,78 116,37 0,99 1,00 1,00 1,00 612,75 612,39 1,00
Cenéario 3 Cenério 4
Sem contaminacgao Com contaminacgao Sem contaminagao Com contaminagao
MLE MLE  SMLE MLE MLE SMLE MLE MLE  SMLE MLE MLE SMLE
" SMLE _LSMLE LSMLE SMLE _LSMLE LSMLE SMLE _LSMLE LSMLE SMLE __ LSMLE _LSMLE
40 0,99 0,99 1,00 65,92 65,93 1,00 0,97 0,97 1,00 54,72 54,75 1,00
80 1,00 1,00 1,00 134,08 134,01 1,00 1,00 1,00 1,00 111,73 112,17 1,00
160 1,00 1,00 1,00 295,81 295,99 1,00 1,00 1,00 1,00 246,64 247,63 1,00
320 1,00 1,00 1,00 592,24 592,91 1,00 1,00 1,00 1,00 512,43 513,67 1,00

Nas Figuras 4, 5, 6 e 7 sao apresentados os boxplots das estimativas dos parametros
utilizando o MLE, SMLE e LSMLE sob os Cenérios 1, 2, 3 e 4, respectivamente, para os
dados na presenca e auséncia de contaminagao. Na auséncia de contaminacao os estima-
dores possuem desempenho praticamente idéntico, e isto se deve ao método de escolha da
constante selecionar ¢ = 1 na grande maioria das vezes. Para todos os cenarios observa-se
que as estimativas dos parametros sob o MLE foram fortemente influenciadas pela con-
taminacao introduzida nas amostras, gerando estimativas bastante divergentes dos ver-
dadeiros valores desses parametros. Entretanto, nota-se que os estimadores robustos tem
desempenhos nas amostras contaminadas bastante préoximos aos do MLE nas amostras
sem contaminacao, indicando que os processos robustos de estimacao funcionaram bem
em todos os cendrios simulados. Inclusive, percebe-se que as medianas das estimativas
robustas nas amostras contaminadas ficaram todas centradas em torno dos verdadeiros
valores dos parametros, porém, essa robustez ¢ alcancada as custas de uma maior variabili-
dade das estimativas, situagao que se acentua para os menores tamanhos amostrais. Além
disso, verifica-se que, de uma forma geral, o SMLE e o LSMLE apresentam desempenhos

muito proximos em todas as situacoes, conforme ja era esperado.

Na Figura 8 sao utilizados bozplots para ilustrar a distribuicao dos valores esco-
lhidos, via algoritmo de selecao, para a constante de afinagao g para o SMLE e LSMLE
em todos os cendrios. E possivel verificar que o processo de selecao das constantes de
afinacao funcionou de forma adequada, uma vez que os valores 6timos de ¢ ficaram iguais
a 1 para a grande maioria das amostras sem contaminagao, resultando no préoprio MLE e
garantindo eficiéncia assintotica total. Em contrapartida, nas amostras contaminadas fo-
ram selecionados, quase na totalidade das réplicas, valores diferentes de 1 para a constante

q, resultando em estimadores robustos. Nesses casos os valores de ¢ ficaram centrados em
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Figura 4: Bozplots das estimativas dos parametros (31, B2, 71 € Y2 sob o Cendrio 1: MLE (esquerda),
SMLE (centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do

parametro.

0,84, 0,94 nos Cenarios 1 e 3, respectivamente, e em 0,92 nos Cendrios 2 e 4.
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Figura 5: Boxplots das estimativas dos parametros 31, 82 e v1 sob o Cendrio 2: MLE (esquerda), SMLE
(centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do pardmetro.

5.2 Aplicacoes

Para complementar a avaliacao efetuada nos estudos de simulacao e melhor ilus-

trar a aplicabilidade dos modelos de regressao beta nao lineares robustos propostos neste

trabalho, foram realizadas, ainda, duas aplicacoes, sendo uma com dados simulados e ou-

tra com dados reais. Para todos os modelos ajustados sob os estimadores SMLE e LSMLE,

a selecao da constante de afinagao ¢ foi efetuada utilizando o Algoritmo 3, e foram con-

sideradas como ligacao as fungoes logito nos submodelos da média e logaritmica para os

submodelos precisao nas estruturas em (2.3.1). Além disso, para fins de diagndstico dos

modelos foram utilizados, também em todos os casos, os residuos quantis aleatorizados

introduzidos por Dunn e Smyth (1996). Para os testes de hipéteses aplicados, a me-

nos que expressamente indicado o contrario, estd sendo considerado um nivel de 5% de

significancia.
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Figura 6: Boxplots das estimativas dos parametros 1, 82 e 71 sob o Cenério 3: MLE (esquerda), SMLE
(centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do parametro.

5.2.1 Aplicacao com dados simulados

Para esta aplicagao foram geradas 4 amostras de tamanhos n = 40, 80, 160, e

320, considerando o modelo de regressao beta nao linear com precisao constante

gu(,ut)

Bl +mt17

9o(®) = M,

(5.2.1)

em que z;; é valor da covariavel associada ao submodelo da média para a t-ésima ob-

servacao. Os valores dos parametros foram fixados em 1 =

_076) /82 = 078 €N = 3797

de modo que para as amostras geradas as médias de p ficaram préximas a 0,50 e ¢ é

igual a 49,4. A forma ndao linear para o submodelo da média em (5.2.1) foi utilizada

anteriormente por Espinheira, Santos e Cribari-Neto (2017).

Os dados foram gerados de forma que para cada uma das amostras foi obtida uma
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Figura 7: Boxplots das estimativas dos parametros 31, 82 e v1 sob o Cendrio 4: MLE (esquerda), SMLE
(centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do pardmetro.

versao sem contaminacao e outra contaminada. As amostras contaminadas substituem 5%
das observacoes, sendo 2,5% das observagoes geradas com os maiores valores de u e 2,5%
daquelas com os menores valores de p. A contaminagao é gerada por meio de um modelo
de regressao beta com precisao ¢ e média ,ugl) =ac/(1+aic) e ,u?) = asc/ (1 + agcy),
respectivamente, em que ¢; = uy/(1 — ), a1 = 0,1 e ag = 15. Assim, se se u; ~ 0,50,
entao ,ugl) ~ 0,09 e p?) ~ 0,94. Observe que esta configuragao é similar a do Cenério 2 da
simulagao, onde a contaminacao ocorre em ambos os extremos do intervalo considerado

para a variavel resposta.

A exemplo do procedimento adotado nos estudo de simulacao, para garantir esta-
bilidade no grau de heteroscedasticidade, os valores das covariaveis foram obtidos para o
tamanho amostral n = 40 e replicados duas, quatro e oito vezes para obter as matrizes de
covariaveis correspondentes aos demais tamanhos amostrais. A Figura 9 ilustra as amos-
tras utilizadas para os 4 tamanhos amostrais destacando as observagoes contaminadas,

que estao em vermelho.
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LSMLE (direita), sob os cendrios 1 (primeira linha), 2 (segunda linha), 3 (terceira linha) e 4 (quarta

linha)).

Foram ajustados modelos de regressao beta nao lineares com precisao constante

sob os trés estimadores considerados para os dados com e sem contaminacao em todos
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Figura 9: Grafico de dispersao das amostras geradas para a aplicagao. Os pontos em vermelho
correspondem as observagoes contaminadas introduzidas na amostra.

os tamanhos amostrais. A Figura 10 apresenta o diagrama de dispersao da variavel ex-

plicativa usada no submodelo da média versus a variavel resposta contaminada para as

4 amostras geradas, juntamente com as respectivas curvas ajustadas sob o MLE para os

dados contaminados e nao contaminados e sob o SMLE e LSMLE para os dados contami-

nados. A partir destes grafiicos é perceptivel o quanto as observacoes atipicas introduzidas

conduzem a mudangas significativas nas curvas de regressao ajustadas, ocasionando, nesse

caso, uma inversao de sentido na relacao entre as variaveis. No entanto, os ajustes sob

o SMLE e LSMLE produzem curvas de regressao bem ajustadas e praticamente indis-

tinguiveis entre si e também quando comparadas a curva ajustada sob o MLE para as

amostras nao contaminadas. Além disso, todos os ajustes sob os estimadores robustos

nas amostras sem contaminagao conduziram ao valor ¢ = 1 para a constante de afinacao,

resultando no MLE.

A Tabela 2 elenca os valores das estimativas dos parametros, erros padrao, es-

tatisticas tipo-Wald e respectivos p-valores obtidos via bootstrap para os modelos ajustados

sob o MLE. Observa-se que, a exemplo do que ja havia sido identificado na analise gréfica
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Figura 10: Grafico de dispersao das amostras contaminadas geradas para a aplicacao e as curvas
ajustadas para cada cendrio considerado.

anterior, as estimativas sob o MLE ficaram desproporcionalmente influenciadas pela con-
taminagao introduzida nos dados, resultando em estimativas relativamente distantes dos
valores reais dos parametros em todos os casos. Nota-se, inclusive, estimativas com si-
nal invertido para o coeficiente associado a covaridavel do submodelo da média. Além
disso, os p-valores referentes aos testes tipo-Wald efetuados para avaliar a significancia do
parametro associado a covariavel ficaram mais altos nos tamanhos amostrais de 40, 80 e
160 dos dados contaminados. No caso das amostras de 40 e 160 observagoes, caso seja
considerado um nivel de significancia de 5%, por exemplo, a conclusao do teste seria de
nao significancia desse coeficiente de regressao. Diante desses achados e considerando os
valores reais dos parametros e as estimativas para os dados nao contaminados, percebe-se

uma inadequacao do ajuste sob o MLE quando existe contaminacao nas amostras.

Na Tabela 3 sao relacionados valores obtidos para as estimativas dos parametros,
erros padrao, estatisticas tipo-Wald e respectivos p-valores obtidos via bootstrap para os
modelos ajustados sob o SMLE e LSMLE nas amostras contaminadas. Comparando os

valores das estimativas dos coeficientes de regressao com os obtidos para o MLE nas
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Tabela 2: Estimativas, erros-padrao bootstrap, estatisticas w e valores-p bootstrap para regressao beta
nao linear com precisao constante ajustada com o MLE nas amostras com e sem contaminagao.

Amostra de 40 obs Sem contaminacao Com contaminagao
" Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,587 0,110 28,490 - —1,087 0,251 18,726 -
Covaridvel 0,831 0,395 4,437 0,036 —0,027 25,831 0,000 0,860
submodelo da precisdo
Intercepto 4,157 0,267 242,439 - 2,353 0,218 117,012 -
Sem contaminacao Com contaminagao
Amostra de 80 obs. Estimativa SE estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,585 0,087 45,033 - —1,236 0,092 179,084 -
Covaridvel 0,911 0,310 8,635 < 0,002 —0,098 0,051 3,716 0,012
submodelo da precisdo
Intercepto 4,166 0,158 695,766 - 2,520 0,158 256,956 -
Sem contaminagao Com contaminagao
Amostra de 160 obs. Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,558 0,054 106,142 - —1,083 0,067 260,321 -
Covaridvel 0,929 0,190 23,910 < 0,002 —0,067 0,045 2,202 0,068
submodelo da precisdo
Intercepto 3,929 0,114 1189,219 - 2,414 0,104 537,649 -
Sem contaminacao Com contaminagao
Amostra de 320 obs. Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,546 0,048 129,317 - —1,147 0,037 944,503 -
Covariavel 1,065 0,194 30,221 < 0,002 —0,086 0,023 14,155 < 0,002
submodelo da precisdo
Intercepto 3,839 0,075 2641,484 - 2,532 0,078  1058,767 -

amostras nao contaminadas constantes da Tabela 2, verifica-se uma boa adequacao do
SMLE e LSMLE aos dados apds contaminacao. Inclusive os valores das estimativas fica-
ram proximos dos valores reais dos parametros usados na geracao das amostras, mesmo
para os menores tamanhos amostrais, e apresentam tendéncia de se aproximar ainda mais
desses valores quanto maior for a amostra utilizada. Os valores obtidos para a constante
de afinagao ¢ nas amostras contaminadas sob o SMLE foram 0,92 para o tamanho amos-
tral 40, 0,90 para os tamanhos 80 e 160, e 0,88 para a amostra de 320 observacoes. Sob o
LSMLE os valores selecionados para ¢ foram 0,92 para as amostras de 40 e 80 observacoes
e 0,90 para as amostras de tamanho 160 e 320. No caso das amostras sem contaminacao,
os ajustes dos modelos sob os métodos de estimacao robustos retornaram ¢ = 1 em to-
dos os casos, evidenciando o funcionamento satisfatorio do método de selecao da referida
constante. Quanto aos p-valores, apesar de ficarem um pouco mais altos na amostra de
40 observacoes para ambos estimadores, ainda sim indicam significancia do parametro
relacionado a covariavel no submodelo da média em todos os tamanhos amostrais quando
consideramos um nivel de 5% para o teste tipo-Wald. Entao, ao contrario da conclusao
obtida sob os modelos ajustados com o MLE, os ajustes sob o SMLE e LSMLE se mos-
traram adequados tanto para os cendrios onde existe contaminagao na amostra quanto

em situagoes onde nao ha contaminacao.

Um método grafico muito 1util para avaliacao da qualidade do ajuste em relacao
a distribuicao de probabilidade assumida para a varidvel resposta é o grafico normal de

probabilidades com envelope simulado, introduzido por Atkinson (1985). Este método
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Tabela 3: Estimativas, erros-padrao bootstrap, estatisticas w e valores-p bootstrap para regressao beta
robusta com precisao constante ajustada com SMLE e LSMLE nas amostras com contaminagao.

Amostra de 40 obs. - - SMLE - - LSMLE
Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,612 0,109 31,276 - —0,610 0,111 30,010 -
Covaridvel 0,760 0,352 4,665 0,006 0,764 0,356 4,612 0,018
submodelo da precisdo
Intercepto 4,023 0,232 300,350 - 4,036 0,226 318,189 -
Amostra de 80 obs. - - SMLE - - LSMLE
Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,578 0,090 41,415 - —0,579 0,086 44,995 -
Covariavel 0,921 0,314 8,597 0,002 0,918 0,316 8,446 0,010
submodelo da precisdo
Intercepto 4,144 0,159 682,140 - 4,070 0,166 602,532 -
SMLE LSMLE
Amostra de 160 obs. Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,554 0,058 91,043 - —0,553 0,062 78,762 -
Covariavel 0,923 0,196 22,082 < 0,002 0,927 0,238 15,210 < 0,002
submodelo da precisdo
Intercepto 3,798 0,113 1126,014 - 3,809 0,105 1307,397 -
SMLE LSMLE
Amostra de 320 obs. Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —0,593 0,048 155,100 - —0,603 0,048 157,092 -
Covariavel 0,914 0,156 34,344 < 0,002 0,882 0,165 28,623 < 0,002
submodelo da precisdo
Intercepto 3,712 0,076  2385,736 - 3,616 0,077 2181,941 -

consiste na inclusao, em um grafico normal de probabilidades, de bandas obtidas por
meio de amostras geradas pelo método de Monte Carlo a partir do modelo ajustado.
Assim, com o auxilio de tais bandas pode-se identificar possiveis afastamentos entre va-
lores realizados da variavel resposta e a distribuicao de probabilidades tedrica assumida.
Para modelos de regressao beta, tém sido comum a utilizagao de graficos de probabili-
dade normal dos residuos com envelope simulado para avaliacao da qualidade dos ajustes
(ESPINHEIRA; FERRARI; CRIBARI-NETO, 2008; OSPINA; FERRARI, 2012; ESPI-
NHEIRA; SANTOS; CRIBARI-NETO, 2017), além de demonstrar o funcionamento dos
estimadores robustos em relacao as observagoes atipicas (RIBEIRO; FERRARI, 2023;
MALUF; FERRARI; QUEIROZ, 2025).

As Figuras 11 e 12 apresentam os graficos de probabilidade normal dos residuos
quantilicos dos modelos com envelope simulado considerando um nivel de 90% de con-
fianca, para os tamanhos amostrais 40, 80, 160 e 320. Esses gréficos revelam que, enquanto
o ajuste sob o MLE nos dados sem contaminagao apresentaram resultado satisfatorio,
ocorreu uma certa falta de ajuste do MLE nas amostras contaminadas, evidenciada pela
quantidade consideravel de pontos localizados ligeiramente fora das bandas dos envelopes
em todos os tamanhos amostrais. Quanto a isso, observa-se que mesmo os residuos refe-
rentes as observacoes atipicas decorrentes da contaminagao introduzida nao apresentam
grande distancia em relacao as bandas do envelope, indicando que esses pontos realmente
tiveram peso no processo de estimagao dos parametros. Em outras palavras, pelo fato das

observagoes atipicas terem peso igual no processo de estimacao, entao o modelo tentou se
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ajustar também a estas observacoes, produzindo residuos nao tao aberrantes, apesar de
influentes. Diferentemente disso, os ajustes efetuados sob os estimadores robustos apre-
sentaram residuos dentro dos limites da banda em sua maioria e aqueles correspondentes
aos outliers bem distantes, indicando que tiveram pouco peso no processo. Ressalta-se
que, conforme pondera Ribeiro (2020), esse é o comportamento esperado para estimadores
robustos, ou seja, o método tem por objetivo ajustar bem a maioria dos dados, mas nao

necessariamente as observacoes atipicas.

Na Figura 13 sao apresentados os graficos correspondentes a todas os tamannhos
amostrais das ponderagoes estimadas versus os residuos dos ajustes sob o MLE para os
dados com e sem contaminacao e sob o SMLE e LSMLE somente para as amostras con-
taminadas. Nas imagens observa-se que, para o MLE o0s pesos sao constantes e iguais a 1
para todas as observagoes, além disto o ajuste na amostra contaminada produz residuos
ligeiramente discrepante dos demais para as observagoes atipicas. Para os estimadores ro-
bustos, verifica-se que o peso atribuido varia conforme a observacao, sendo mais proximos
de zero para os outliers e proximos a 1 para as demais observacgoes. Portanto, conside-
rando esse comportamento, que se repetiu em todos tamanhos amostrais considerados,

constata-se que os ajustes produziram resultados adequados e dentro do esperado.
5.2.2 Aplicacao com dados reais

Para esta aplicagao, estao sendo utilizados dados disponibilizados por Monllor-
Hurtado, Pennino e Sanchez-Lizaso (2017), que foram obtidos a partir de um estudo
que teve por objetivo avaliar o impacto do aquecimento dos oceanos na pesca global. A
partir da verificacao de que nos tltimos anos houve um aumento nas capturas de espécies
de peixes de aguas mais quentes em latitudes mais altas, e de que houve reducao nas
capturas de espécies tropicais e subtropicais em areas delimitadas pelos trépicos, os autores
levantaram e analisaram a hipdtese de que o aquecimento dos oceanos estd afetando a
pesca no mundo, e que isso pode ser um indicativo de que populagoes de peixes estao
se movimentando em direcao aos polos em resposta a elevacao das temperaturas dos
oceanos. Segundo os autores da pesquisa, o estudo se concentrou no atum tropical uma
vez que a sua distribuicao ao longo dos oceanos ¢é fortemente condicionada a temperatura
da supericie do mar, o que torna a distribuicao dessa espécie um bom indicador do efeito

da mudancga climatica.

Os dados originais contém observacoes referentes a 19.019 tentativas individuais
de capturas de peixes com um palangre entre 1967 e 2011 nos Oceanos fndico, Pacifico
e Atlantico. O palangre é uma estrutura constituida por uma linha principal, forte e
comprida, de onde partem outras linhas secundarias mais curtas, em grande nimero e

em intervalos regulares, com um anzol ao final de cada uma delas (WIKIPEDIA, 2025).
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Figura 11: Gréficos de probabilidade normal e envelope simulado dos residuos dos modelos ajustados
para as amostras de tamanhos 40 (coluna & esquerda) e 80 (coluna a direita).

Entretanto, aqui esta sendo considerado um subconjunto dos dados disponiveis preparado

e ja analisado por Ribeiro e Ferrari (2023), contendo 77 observagoes referentes a pescas
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Figura 12: Gréficos de probabilidade normal e envelope simulado dos residuos dos modelos ajustados
para as amostras de tamanhos 160 (coluna & esquerda) e 320 (coluna a direita).

efetuadas em diversos pontos do oceano indico no ano de 2000. A variavel resposta é a

porcentagem de atum tropical (tropical tuna percentage; TTP) e a varidvel explicativa
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Figura 13: Gréficos das ponderagoes estimadas correspondentes aos ajustes efetuados para as amostras
de tamanhos 40 (primeira coluna), 80 (segunda coluna), 160 (terceira coluna) e 320 (quarta coluna).

utilizada é a temperatura da superficie do mar (sea surface temperature; SST). Uma das
observagoes da TTP no subconjunto de dados ¢ igual a 1, indicando que a totalidade dos
peixes fisgados na respectiva tentativa é atum tropical. Assim, considerando que o modelo
de regressao beta aqui tratado é inadequado para tratar observacoes cuja resposta esta
nos limites do intervalo unitario, entao, para deixar essa observacao dentro do suporte
admitido para a distribuigao, o valor 1 foi substituido por 0,999. Com isso, essa observagao
passa a ser um outlier em relacao as demais presentes no subconjunto de dados, podendo
influenciar desproporcionalmente o ajuste do modelo se utilizado um método de estimagcao

nao robusto, a exemplo do MLE.

Admitindo-se que as realizagoes da resposta (TTP) s@o varidveis aleatérias in-
dependentes tal que cada y;, t = 1,...,77, tem distribuicao beta na forma expressa em

(2.1.8), com parametros pu; e ¢, considere o modelo de regressao beta com precisao cons-
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tante dados por

gulpe) = B + 22,

5.2.2
9¢(¢) =1, ( )

em que j; € ¢ sao a média e a precisao de TTP e x4 ¢ o valor de SST para a t-ésima
observagao. Além disso foram utilizadas como ligacao a fungao logit para g,(-) e a funcao
logaritmica para gg(-). Observe que a especificagdo do modelo é andloga a utilizada para
a aplicagao com dados simulados, a qual foi inspirada no trabalho de Espinheira, Santos e
Cribari-Neto (2017). Foram ajustados modelos de regressao beta nao lineares com a espe-
cificagdo em (5.2.2) sob o MLE, SMLE e LSMLE com os dados completos. Na sequéncia
os mesmos ajustes foram efetuados no conjunto de dados apds exclusao da observacao
citada como discrepante (46% observacao), uma vez que, por meio do ajuste sob o MLE
nos dados completos, foi possivel identificar que essa observacao apresentou um residuo
muito superior aos demais, indicando se tratar de uma observagao atipica. A Figura
14 apresenta, em ambos os gréaficos, o diagrama de dispersao entre a covariavel SST e
a resposta TTP, juntamente com as curvas obtidas nos dados completos (& esquerda) e
nos dados sem a observagao 46 (a direita). Nos dados completos sob SMLE e o LSMLE,
foi selecionado o valor de 0,96 para a constante ¢, e nos dados sem o outlier o procedi-
mento de sele¢ao retornou ¢ = 1 em ambos os casos, resultando no préprio MLE. No
grafico a esquerda verifica-se que enquanto os ajustes sob os estimadores robustos, cujas
curvas estao quase indistinguiveis entre si, parecem se ajustar melhor a maior parte dos
dados, o ajuste sob o MLE aparenta estar deslocado em direcao a observacao 46, identi-
ficada na imagem. Os ajustes efetuados considerando os dados reduzidos, incluindo o do
MLE, apresentam posicionamentos quase idénticos aos dos ajustes do SMLE e LSMLE
nos dados completos. Assim, percebe-se que, de fato, a observacao 46 esta afetando des-
proporcionalmente o ajuste do modelo sob o MLE e que, aparentemente, os modelos sob

os estimadores robustos foram pouco afetados por ela.

Na Tabela 4 constam os valores obtidos para as estimativas dos parametros, erros
padrao, estatisticas tipo-Wald e respectivos p-valores obtidos via bootstrap para os modelos
sob o MLE, SMLE e LSMLE para os dados completos, além do modelo sob o MLE para
os dados em a observagao 46. Os valores das estimativas dos coeficientes de regressao e
dos erros padrao bootstrap obtidos para os dois estimadores robustos nos dados completos
ficaram muito proximos entre si e também em relagao aos valores do ajuste do MLE nos
dados reduzidos. Isso confirma que os estimadores robustos cumpriram muito bem o seu
papel de melhor se ajustarem as observagoes nao discrepantes e de atribuir pouco peso
aquelas atipicas. Quanto aos p-valores, os testes tipo-Wald indicaram, em todos os casos,

significancia do parametro relacionado a covariavel no submodelo da média.

A Figura 15 mostra os graficos de probabilidade normal dos residuos dos mo-



Resultados e discussoes 57

1.0
1.0

— MLE —— MLE s/ 46

| -~ SMLE @ | --= SMLE s/ 46
sl | LSMLE o I LSMLE s/ 46
©_| o

o ° o °

[ —

(o < = <]
o o

0.2
i

0.0

Figura 14: Gréficos de dispersao entre a resposta TTP e a covaridvel SST juntamente com as curvas
ajustadas com os modelos com precisdo constante sob os trés estimadores para os dados completos (a
esquerda) e os dados apés exclusdo da observagio discrepante (& direita).

Tabela 4: Estimativas, erros-padrao bootstrap, estatisticas w e valores-p bootstrap para os modelos
ajustados nos dados completos e nos dados sem a observagao 46.

MLE - Dados completos MLE - Dados sem a obs. 46
Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —7,185 0,861 69,634 - —8,888 0,527 283,927 -
SST 0,551 0,046 142,193 < 0,002 0,613 0,022 802,236 < 0,002
submodelo da precisdo
Intercepto 1,725 0,164 110,429 - 3,304 0,157 440,795 -
SMLE - Dados completos LSMLE - Dados completos
Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —8,861 0,488 329,475 - —8,871 0,545 264,732 -
SST 0,612 0,021 877,787 < 0,002 0,612 0,023 710,366 < 0,002
submodelo da precisdo
Intercepto 3,318 0,148 500,577 - 3,327 0,155 460,275 -

delos com envelope simulado a uma nivel de 90% de confianca para os dados completos
(MLE, SMLE e LSMLE), e para os dados apds exclusao da observagao 46 (somente MLE).
Inicialmente verifica-se que o ajuste do MLE para os dados completos se mostrou inade-
quado, uma vez que os residuos estao, em sua maioria, fora dos limites das bandas do
envelope. Diferentemente disso, nos dados reduzidos, apesar de alguns poucos desvios que
nao comprometem a conclusao sobre a adequabilidade do modelo, o ajuste sob o mesmo
MLE passa a apresentar um comportamento mais proximo do esperado para um bom
ajuste, com poucos pontos extrapolando o envelope. Quanto aos modelos nos quais foram
usados métodos robustos de estimacao, percebe-se também uma boa adequacao dos ajus-
tes. Nesses casos, observa-se que o residuo correspondente a observagao 46 permaneceu
consideravelmente mais alto que os demais, entretanto, os modelos se ajustaram melhor
a maioria dos dados, atribuindo pouca importancia a contribuicao dessa observacao em

especifico para o processo de estimacao.
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Figura 15: Graficos de probabilidade normal e envelope simulado dos residuos dos modelos com
precisao constante ajustados para os dados completos e para os dados apds a exclusao da observagao
atipica.

Na Figura 16 sao apresentados os gréaficos de dispersao das ponderagoes estima-
das versus os residuos dos ajustes sob o MLE para os dados completos e reduzidos, e sob
o SMLE e LSMLE somente para os dados completos. Nota-se, no caso do MLE para os
dados completos, a evidente discrepancia entre o residuo da observacao 46 e os demais.
Além disso, constata-se que esse método nao robusto considera igualmente a contribuicao
de todas as observagoes, atribuindo o peso igual a 1 no processo de obtencao das es-
timativas. Nos casos do SMLE e LSMLE, os pesos atribuidos sao diferentes para cada
observacao e ficaram muito proximos de zero para a observacao atipica e mais proximos de
1 para as demais observagoes. Portanto, isso corrobora com as analises anteriores no que
se refere a conclusao de que os estimadores robustos produziram bons ajustes, a despeito

da observacao atipica que influenciou fortemente o ajuste sob o estimador nao robusto.

Também é importante avaliar se essa influéncia causada pela observacgao atipica é
melhor tratada quando utilizamos uma estrutura de regressao com covariavel para modelar

também a precisao. Portanto, agora sera considerado o modelo de regressao beta nao
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Figura 16: Graficos das ponderagoes estimadas versus residuos correspondentes aos modelos com
precisao constante ajustados para os dados completos e para os dados apds a exclusao da observagao
atipica.

linear com precisao variavel definido por

gulpie) = By + 22,

(5.2.3)
96(0) = 1 + 2w,

mantendo as mesmas especificagoes do modelo em (5.2.2), exceto quanto ao submodelo
da precisao, no qual foi incluida uma estrutura linear de regressao associada a precisao ¢

que também utiliza como covariavel a SST.

O modelo em (5.2.3) foi aplicado aos dados completos e aos dados sem a 46
observacao, contemplando o MLE, o SMLE e o LSMLE. A Figura 17 exibe o gréafico de
dispersao entre a SST e a TTP conjuntamente com as curvas geradas a partir dos ajustes
nos dados completos e reduzidos. O resultado é muito semelhante ao observado para
o modelo com precisao constante, onde, para os dados completos, a curva referente ao
modelo sob o MLE aparenta ter sido fortemente influenciada pela observacao discrepante,

enquanto os demais ajustes sob os estimadores robustos parecem mais adequados para a
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maioria dos dados. Ao retirar esse outlier do conjunto de dados (grafico a direita), a curva
do MLE fica muito préxima das curvas do SMLE e LSMLE para os dados completos. Em
contrapartida, as curvas para os estimadores robustos nos dados sem a observacao 46 sao
equivalentes a do MLE, uma vez que o processo de estimacao retornou ¢ = 1, resultando
no proprio MLE. A constante ¢ selecionada para o modelo sob o LSMLE foi de 0,96,
ou seja, a mesma selecionada para o modelo de precisao constante, enquanto que para o
SMLE, o ¢ 6timo foi de 0,76. Ressalta-se que o valor baixo para a constante de afinagao
no modelo sob o SMLE pode significar instabilidade das estimativas, o que indica uma

provavel inadequacao do modelo especificado sob esse estimador.
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Figura 17: Graficos de dispersao entre a resposta TTP e a covariavel SST juntamente com as curvas
ajustadas com os modelos com precisao varidvel sob os trés estimadores para os dados completos (&
esquerda) e os dados ap6s exclusdo da observagao discrepante (& direita).

Na Tabela 5 sao elencadas as estimativas dos parametros, erros padrao, es-
tatisticas tipo-Wald e respectivos p-valores bootstrap para os modelos com precisao variavel
sob o MLE, SMLE e LSMLE para os dados completos, e também para o mesmo modelo
sob o MLE para os dados reduzidos. Para esse caso também se observa uma influéncia
desproporcional da observacao atipica no modelo sob o MLE, resultando em estimativas
distantes das obtidas sob os estimadores robustos, e tambem em relacao as verificadas
sob o MLE nos dados reduzidos, causando mudancas relevantes na conclusao inferencial.
Em relacao aos testes de hipéteses, os p-valores calculados indicaram significancia dos
parametros associados a covariavel no submodelo da média em todos os casos. Para os
submodelos da precisao, a excecao do MLE nos dados completos, todos os demais modelos
apresentaram p-valores altos que conduziram a nao rejeicao da hipoétese nula, de nao sig-
nificancia dos respectivos parametros. Comparando esses resultados com os dos modelos
com precisao contante mostrados na Tabela 4, observa-se que as estimativas referentes aos
submodelos da média ficaram bastante préoximas nos casos dos estimadores robustos e do

MLE nos dados reduzidos, e muito diferentes no caso do MLE para os dados completos,
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indicando que a observacao de ntumero 46, apesar de ter influéncia desproporcional em

ambos os casos, afetou de forma diferente os ajustes com e sem precisao variavel.

Tabela 5: Estimativas, erros-padrao bootstrap, estatisticas w e valores-p bootstrap para os modelos com
precisao variavel ajustados nos dados completos e nos dados sem a observacao 46.

MLE - Dados completos MLE - Dados sem a obs. 46
Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —9,945 0,668 221,906 - —8,775 0,554 251,039 -
SST 0,669 0,026 652,913 < 0,002 0,608 0,024 626,329 < 0,002

submodelo da precisdo
Intercepto 19,909 3,247 37,601 - 1,667 3,448 0,234 -
SST —5,671 1,018 31,020 < 0,002 0,516 1,085 0,227 0.620

SMLE - Dados completos LSMLE - Dados completos
Estimativa SE  estat w valor-p Estimativa SE  estat w valor-p
submodelo da média
Intercepto —8,962 0,553 262,510 - —8,773 0,593 219,228 -
SST 0,615 0,023 721,825 < 0,002 0,608 0,025 594,706 < 0,002
submodelo da precisdo
Intercepto 4,924 3,699 1,772 - 1,865 3,253 0,329 -
SST —0,456 1,173 0,151 0,632 0,461 1,026 0,202 0,660

A Figura 18 ilustra o nivel de qualidade do ajuste dos modelos por meio dos
graficos de probabilidade normal dos seus residuos juntamente com envelope simulado
a um nivel de 90% de confianga, para os dados completos (MLE, SMLE e LSMLE), e
para os dados apds exclusao da observagao 46 (somente MLE). Os resultados sao muito
parecidos com os observados para os modelos com precisao constante, onde se verifica
uma inadequacao muito evidente do ajuste sob o MLE para os dados completos e ajustes
mais adequados dos estimadores robustos para esses mesmos dados, exceto em relagao
a observacao discrepante, cujo residuo ficou muito acima dos demais, o que é esperado.
Além disso, conclui-se que o ajuste para o modelo com MLE nos dados reduzidos também

produziu um resultado que pode-se considerar adequado.

Na Figura 19 sao mostrados os gréaficos de dispersao das ponderagoes estimadas
versus os residuos dos ajustes sob o MLE para os dados completos e reduzidos, e sob o
SMLE e LSMLE somente para os dados completos. Inicialmente percebe-se uma diferenca
significativa no grafico referente ao SMLE quando comparado a este mesmo gréafico gerado
para o modelo com precisao constante mostrado na Figura 16. Nesse caso do modelo
com precisao variavel sob o SMLE, nota-se que foram atribuidos pesos relativamente
baixos a diversas outras observacoes que nao foram apontadas como discrepantes nos
demais ajustes. Isso corrobora a percepcao de inadequagao do modelo sob o MLE com
a especificagdo em (5.2.3) para os dados completos utilizados. Nos demais casos, o0s
residuos apresentaram comportamento analogo ao observado para o modelo com precisao
constante. Portanto, para o modelo sob o LSMLE os pesos atribuidos foram préximos a
1 e diferentes para cada observacao, exceto quanto a observacao 46, que teve atribuicao

de peso proximo a zero, e pesos constantes e iguais a 1 para o MLE.
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Figura 18: Graficos de probabilidade normal e envelope simulado dos residuos dos modelos com
precisao variavel ajustados para os dados completos e para os dados apds a exclusao da observagao
atipica.

Finalizada a analise, pode-se concluir que, apesar do ajuste sob o MLE com os
dados completos indicar a necessidade de modelar também a precisao, verificou-se que
a modelagem da precisao com a covariavel SST nao melhorou o ajuste do MLE e nem
os ajustes com o SMLE e LSMLE. Portanto, dentre os modelos experimentados nesta
aplicacdo, a regressao beta nao linear com precisdo constante especificada em (5.2.2)
utilizando os estimadores robustos aqui estudados conduziram a ajustes robustos e mais

adequados aos dados utilizados.
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Figura 19: Graficos das ponderagoes estimadas versus residuos correspondentes aos modelos com
precisao variavel ajustados para os dados completos e para os dados apds a exclusao da observagao
atipica.
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6 Consideracoes finais

Neste trabalho, foi efetuada uma revisao de literatura contemplando alguns dos
principais métodos de estimacgao robustos desenvolvidos recentemente para modelos de
regressao beta lineares, com foco nos estimadores SMLE e LSMLE, que sao casos parti-
culares do procedimento geral de M-estimacao. Este processo é conhecido por produzir
estimadores robustos, além de garantir que estes possuam boas propriedades, a exemplo

da normalidade assintética.

A partir da revisao de literatura, foi proposta a regressao beta nao linear robusta
como uma generalizacao dos métodos de estimagao robustos estudados, mais precisamente
o SMLE e o LSMLE, para modelos de regressao beta nos quais a estrutura de regressao é
flexibilizada para contemplar formas nao lineares. Ao longo do texto foram apresentadas
propriedades e também expressoes de algumas medidas robustez para essa classe nao
linear de modelos. Por meio das propriedades tedricas apresentadas e dos resultados
observados nas aplicacoes e estudos de simulacao, foi evidenciado que, sob a regressao
beta nao linear, o procedimento de estimacao por maxima verossimilhanca é sensivel a
observagoes atipicas na variavel resposta, podendo ser demasiadamente influenciado por

estas e conduzir a conclusoes inferenciais erroneas sobre os dados de interesse.

Os métodos robustos citados dependem de uma constante de afinacao que tem
a importante funcao de controlar o balanceamento entre robustez e eficiéncia assintética
do estimador. Neste trabalho foi proposta uma adaptacgao ao processo de selecao da
contante de afina¢do desenvolvido por Ribeiro e Ferrari (2023). Ao longo dos estudos
foi identificada uma instabilidade do processo original em situagoes onde eram utilizados
modelos de regressao beta robustos nao lineares cujas estimativas para o erro padrao
dos estimadores eram obtidas via bootstrap. Além disso, a adaptacao deixou o processo
computacionalmente mais eficiente para esses casos. Referido algoritmo para selegao
da constante foi utilizado em todos as simulagoes e aplicagoes efetuadas neste trabalho,
obtendo, em todos os casos, bons resultados. Tal conclusao é evidenciada pela escolha
de valores que se mostraram adequados para a constante, inclusive quando os modelos
foram ajustados a amostras e dados sem a presenca de contaminacgao, situagao na qual

foi retornado o valor de 1 para a constante, o que resulta no proprio MLE.

Foi mostrado por meio de estudos de simulagao de Monte Carlo e de aplicacoes a
dados simulados que a utilizagao do método de maxima verossimilhanca para os modelos
de regressao beta nao lineares robustos em dados sob contaminagao conduziram a estima-
tivas enviesadas e, consequentemente, a conclusoes inferenciais incorretas sobre os dados.
Nesse mesmo sentido, verificou-se que a utilizagao dos métodos de estimagao robustos para

estes mesmos dados resultaram em estimativas muito proximas dos verdadeiros valores dos
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parametros. Por outro lado, os ajustes efetuados em dados nao contaminados resultaram,
para todos os casos, em igualdade entre os estimadores robustos e o nao robusto, o que
reforca o bom funcionamento do algoritmo de selecao da contante de afinacao. Também
foi mostrado que a falta de robustez do procedimento sob méaxima verossimilhanga, di-
ferentemente do que foi observado para os estimadores robustos, conduziu a conclusao
de nao significancia dos parametros associados as covariaveis, especialmente em amostras

menores.

Nas aplicagoes com dados reais foi mostrado que os modelos de regressao beta nao
lineares robustos também se ajustaram melhor aos dados quando comparados ao modelo
sob o MLE. Também foi evidenciado que uma tinica observacao discrepante na variavel
resposta foi suficiente para causar distor¢oes consideraveis nos valores das estimativas do
modelo sob o MLE, e que ao retirar essa observacao atipica os modelos sob o SMLE e
LSMLE se igualam ao modelo sob o MLE.

Adicionalmente, cabe salientar que os métodos de estimacao robustos discutidos
nesta dissertacao sao particularmente recomendados para cenarios em que se deseja re-
duzir a influéncia de observagoes atipicas sobre os resultados inferenciais. Entretanto, em
situagoes nas quais o interesse reside precisamente na identificacao de ocorréncias raras
ou incomuns, tais métodos nao sao apropriados, uma vez que sua natureza ¢ atenuar o

impacto dessas observacoes em vez de evidencia-las.

Por fim, é importante ressaltar que os resultados apresentados nesta pesquisa
possuem algumas limitagoes, sendo a maioria delas decorrentes da restricao de tempo
para o desenvolvimento da dissertacao. A primeira delas se refere a utilizacao de estima-
tivas para os erros padrao obtidas somente por meio de bootstrap, nao sendo calculadas e
utilizadas essas estimativas a partir da distribuicao assintética dos estimadores robustos
sob os modelos nao lineares. Nao obstante os bons resultados alcangados com o erro
padrao bootstrap, a utilizacao dessa medida calculada a partir do método analitico seria
importante como complemento para a pesquisa. Outra limitacao esta relacionada ao nao
aprofundamento da avaliagao do desempenho do teste tipo-Wald. Como o erro padrao de
cada réplica ou conjunto de dados foi obtido por meio de bootstrap, ficou inviabilizada a
realizacao de simulagoes de Monte Carlo para quantificar os niveis empiricos do tamanho e
poder do teste, uma vez que levaria um longo tempo para a realizagao de todo o processa-
mento computacional necessario. Por fim, as simulagoes e aplicacoes efetuadas utilizaram
modelos com um numero limitados de formas para o preditor nao linear. Desse modo,
os resultados aqui discutidos podem variar a depender da forma nao linear utilizada nas

estruturas de regressao.

A partir das citadas limitacoes e considerando outros achados observados du-
rante o desenvolvimento deste trabalho, listamos alguns pontos que podem ser melhor

explorados em trabalhos futuros:
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Estudar de forma mais aprofundada o desempenho do teste de hipdteses tipo-
Wald avaliando os niveis empiricos do tamanho e poder dos testes sob a hipotese

nula Hy ao se obter o p-valor via bootstrap.

Desenvolver e obter as expressoes analiticas referentes aos erros padrao assintoticos
para o SMLE e LSMLE sob a regressao beta nao linear robusta conforme (4.1.8)
e (4.2.4), respectivamente, e utilizar esses valores em estudos de simulagao e
aplicacoes, a exemplo dos aqui efetuados. Além disso, efetuar uma comparacao
dos desempenhos do método original de selecao da contante de afinagao com a

adaptacgao proposta neste trabalho.

Estudar o desempenho dos modelos de regressao beta nao lineares robustos con-
templando formas diferentes das utilizadas neste trabalho para as as estruturas
de regressao, além de outras opgoes para as fungoes de ligacao associadas aos

submodelos da média e da precisao.

Avaliar o desempenho dos modelos de regressao beta nao lineares robustos em
relacao aos resultados obtidos por modelos de regressao beta lineares robustos,

para identificar situacoes e cendrios onde a forma nao linear melhor se adequa.

Avaliar o desempenho dos modelos de regressao beta nao lineares robustos utili-

zando outros métodos inferenciais para obtencao das estimativas dos parametros,
a exemplo do MDPDE e LMDPDE.

Desenvolver os modelos de regressao beta inflacionados nao lineares robustos, in-
cluindo o processo de estimacgao robusta para os submodelos correspondentes aos
componentes discretos das distribuigoes beta inflacionadas (OSPINA; FERRARI,
2010).
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