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Resumo

Regressão beta não linear robusta

A regressão beta é frequentemente utilizada para modelar dados restritos ao intervalo

cont́ınuo unitário, a exemplo de taxas, frações e proporções. O método inferencial padrão

utilizado para estimação dos parâmetros da regressão beta é o método da máxima ve-

rossimilhança. Entretanto, este método é senśıvel a observações discrepantes nos dados,

podendo, em muitos casos, conduzir a resultados errôneos sobre a relação entre a resposta

e as covariáveis de interesse. Nesse sentido, Ribeiro e Ferrari (2023) e, mais recentemente,

Maluf, Ferrari e Queiroz (2025) propuseram métodos de estimação robustos alternativos

ao método da máxima verossimilhança, objetivando reduzir a influência de observações

at́ıpicas no processo de estimação. Os referidos métodos de estimação robustos foram

desenvolvidos sob modelos de regressão beta que consideram em suas estruturas de re-

gressão preditores que são funções lineares de seus parâmetros. Assim, o presente trabalho

se propõe a adaptar os métodos de estimação robustos aqui mencionados, estendendo-os

a modelos de regressão beta não lineares.

O processo teórico de obtenção dos estimadores robustos sob estruturas não lineares

de regressão beta foi desenvolvido e estudado por meio de suas propriedades teóricas.

Também foi mostrada uma adaptação do teste de Wald como alternativa robusta para

avaliação da significância dos parâmetros da regressão. Para seleção do valor ótimo da

constante de afinação necessária nos procedimentos robustos, propusemos uma adaptação

ao método orientado a dados desenvolvido por Ribeiro e Ferrari (2023), com o objetivo de

deixar o processo de seleção mais estável e computacionalmente mais eficiente em cenários

onde se utiliza o erro padrão estimado por meio de método bootstrap.

Foram realizados estudos de simulações de Monte Carlo e aplicação com dados simula-

dos, por meio dos quais foi verificado que os modelos de regressão beta não lineares sob os

estimadores robustos proporcionam menores viéses na presença de contaminação quando

comparados aos modelos sob os estimadores tradicionais. Por fim, apresentamos outros

resultados relacionados ao processo de estimação robusta e efetuamos discussões a partir

de uma aplicação com dados reais.

Palavras-chave: Constante de afinação; Distribuição beta; Inferência robusta;

Lq-verossimilhança; Regressão beta não linear robusta; Robustez.
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Abstract

Robust nonlinear beta regression

Beta regression models are frequently employed for modeling data restricted to the

unit interval, such as rates, fractions, and proportions. Parameter estimation in beta

regression is typically performed using maximum likelihood estimation. However, this

method is known to be sensitive to outliers, which can lead to biased or misleading

inferences regarding the relationship between the response variable and the covariates of

interest. To address this issue, Ribeiro and Ferrari (2023), and more recently, Maluf,

Ferrari and Queiroz (2024), have proposed robust estimation methods as alternatives

to the maximum likelihood approach. These methods aim to mitigate the influence of

atypical observations on the estimation process. Their techniques were developed under

beta regression models in which predictors are incorporated linearly into the regression

structures. This study aims to extend these robust estimation methods to nonlinear beta

regression models, thereby broadening their applicability.

To this end, we develop a theoretical framework for obtaining robust estimators under

nonlinear regression structures and investigate the theoretical properties of the resulting

models. In addition, it is shown a robust adaptation of the Wald test for assessing the

statistical significance of regression parameters. To select the optimal value of the tuning

constant, we propose a modification of the data-driven procedure introduced by Ribeiro

and Ferrari (2023), designed to improve stability and computational efficiency, particularly

in settings where standard errors are estimated via bootstrap methods.

A comprehensive Monte Carlo simulation study and an application using simulated

data are conducted to evaluate the performance of the proposed methods. The results

demonstrate that nonlinear beta regression models estimated via robust methods yield

reduced bias in the presence of contamination when compared to models fitted with

conventional estimators. Finally, we present additional findings regarding the robust

estimation process and discuss their implications through an application to real-world

data.

Palavras-chave: Beta distribution; Lq-likelihood; Nonlinear robust beta regression mo-

del; Robust inference; Robustness; Tuning constant.
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12 Gráficos de probabilidade normal e envelope simulado dos reśıduos dos
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estimadores para os dados completos (à esquerda) e os dados após exclusão
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Introdução 1

1 Introdução

A modelagem adequada de dados cont́ınuos limitados ao intervalo unitário surge

naturalmente como um obstáculo a ser superado em diversas áreas do conhecimento.

Tais tipos de dados são geralmente utilizados para representar fenômenos e situações que

envolvem, por exemplo, taxas, proporções, porcentagens e frações. Dentre os diversos

casos práticos, pode-se citar a fração da renda familiar gasta com alimentação, escores de

qualidade de vida e taxas espećıficas de mortalidade. Para lidar com dados que possuem

tal caracteŕıstica dentro do contexto de regressão, pode-se modelar a média µt de uma

variável yt denominada de resposta que assume valores no intervalo (0,1) em função de

outras variáveis que são conhecidas e fixadas. Estas últimas são comumente chamadas de

covariáveis ou variáveis explicativas.

Para dados desta natureza, se torna apropriado supor uma distribuição de pro-

babilidades para yt que tenha suporte no intervalo cont́ınuo (0,1) e acomode diversas

formas. Considerando um contexto de regressão, na literatura existem algumas propostas

baseadas em distribuições de probabilidades com suporte no intervalo (0,1), a exemplo

dos trabalhos de Kieschnick e McCullough (2003), Ferrari e Cribari-Neto (2004), Gómez-

Déniz, Sordo e Caldeŕın-Ojeda (2014), Lemonte e Bazán (2016), Smithson e Shou (2017)

e Queiroz e Ferrari (2024). Para o desenvolvimento deste trabalho, focaremos em abor-

dagens nas quais a distribuição de probabilidades da variável resposta, condicionada aos

valores das covariáveis, segue uma distribuição beta.

O modelo probabiĺıstico beta é uma distribuição de probabilidades associada a

uma variável aleatória cont́ınua que assume valores no intervalo (0,1). A função den-

sidade de probabilidade (probability density function; PDF) da distribuição beta possui

dois parâmetros e, a depender da combinação entre estes, pode assumir diversas formas,

incluindo formas assimétricas. Considerando uma reparametrização desta distribuição,

Ferrari e Cribari-Neto (2004) propuseram uma classe de modelos de regressão em que yt

segue uma distribuição beta indexada pela média µt e por um parâmetro de precisão ϕ.

Nesta abordagem, a média µt é modelada através de uma estrutura de regressão linear

gµ(µt) = X⊤
t β com gµ(·) : (0,1) → R denominada de função de ligação. Sendo assim,

obtém-se que µt = g−1
µ (X⊤

t β) ∈ (0, 1). Assim, ao estimar µt por µ̂t, sempre será obtido

um valor ajustado dentro do intervalo (0,1). Também, este modelo é heteroscedástico

pois a variância de yt varia com as covariáveis através de sua média µt. Uma extensão

natural desta abordagem é supor que a precisão dos dados também varie de acordo com as

covariáveis. Tal proposta foi introduzida por Smithson e Verkuilen (2006) onde supõe-se

que yt segue uma distribuição beta indexada pela média µt e precisão ϕt. Nesse sentido,

atribui-se uma estrutura de regressão linear também para a precisão ϕt.



2 Introdução

O método mais utilizado para estimar os parâmetros do modelo de regressão

beta é o método da máxima verossimilhança, por meio do qual é obtido um estimador

de máxima verossimilhança (maximum likelihood estimator ; MLE) para cada parâmetro.

Entretanto, os MLEs não são considerados robustos, ou seja, podem ser fortemente in-

fluenciados pela presença de observações discrepantes nos dados de interesse. Ribeiro e

Ferrari (2023) ilustraram esse comportamento do MLE ao analisar um conjunto de dados

sobre práticas de gestão de risco de algumas firmas a partir de um conjunto de dados

disponibilizados por Schmit e Roth (1990). No trabalho, verificou-se que a presença de

observações at́ıpicas conduziu a efeitos desproporcionais na curva de regressão beta ajus-

tada, quando comparada às curvas obtidas com os dados sem as observações tidas como

at́ıpicas. Ribeiro e Ferrari (2023) demonstraram matematicamente que o procedimento de

estimação de máxima verossimilhança não é robusto para os parâmetros dos modelos de

regressão beta e, portanto, podem ser desproporcionalmente influenciados pela presença

de observações at́ıpicas.

Ao longo do tempo foram propostas diversas abordagens para lidar com ob-

servações discrepantes em problemas que envolvem a modelagem de dados onde a variável

resposta assume valores no intervalo (0, 1) ou ao menos em um intervalo cont́ınuo limi-

tado. Nos trabalhos de Bayes, Bazán e Garcıa (2012), Migliorati, Brisco e Ongaro (2018) e

Brisco, Migliorati e Ongaro (2020), por exemplo, foram introduzidas abordagens que não

envolvem procedimentos robustos de estimação dos parâmetros, mas a utilização de dife-

rentes tipos de misturas de distribuições beta. Contudo, conforme pontuado por Ribeiro e

Ferrari (2023), tais abordagens garantiram uma maior flexibilidade para acomodar dados

com observações at́ıpicas, porém, ao custo de trazer maior quantidade de parâmetros e

complexidades adicionais aos respectivos modelos.

Recentemente foram publicados trabalhos que, de fato, consideram métodos ro-

bustos para estimação de parâmetros nos quais é mantida a distribuição beta repara-

metrizada por Ferrari e Cribari-Neto (2004) como base para construção dos modelos de

regressão. Ghosh (2019) propôs o estimador de mı́nima divergência potência entre den-

sidades (minimum density power divergence estimator ; MDPDE), um estimador robusto

baseado na minimização da divergência potência entre densidades. Tal método envolve

uma constante de afinação, denotada por α (α ≥ 0), que, conforme demonstrado por

Basu et al. (1998), controla o balanceamento entre eficiência assintótica e robustez do

referido estimador. A escolha de um valor ideal para α constitui um problema adicional

no processo de estimação, uma vez que valores mais altos para α privilegiam a robustez

do estimador em detrimento da eficiência.

Ribeiro e Ferrari (2023) propuseram um estimador robusto, denominado estimador

de máxima verossimilhança substituto (surrogate maximum likelihood estimator ; SMLE),

baseado na maximização da Lq-verossimilhança reparametrizada introduzida por Ferrari
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e La Vecchia (2012). Este procedimento de estimação também depende de uma constante

de afinação similar à do MDPDE. Além disso, o processo desenvolvido contempla um

método para seleção de um valor ótimo para a constante de afinação, que se baseia nos

dados de interesse e assegura eficiência assintótica máxima na ausência de observações

at́ıpicas. Ribeiro e Ferrari (2023) demonstraram, ainda, que tanto o MDPDE quanto o

SMLE são estimadores bem definidos, robustos e possuem boas propriedades assintóticas

para distribuições beta que sejam limitadas. Portanto, não há garantias desses resultados

caso o método de estimação seja aplicado sob distribuições beta que sejam ilimitadas.

Mais recentemente, Maluf, Ferrari e Queiroz (2025) efetuaram simulações com cenários

envolvendo distribuições beta ilimitadas nas quais o MDPDE e o SMLE apresentaram con-

sideráveis ı́ndices de falhas no processo de estimação, seja por não alcançar convergência

para as estimativas dos parâmetros ou seja por não ser posśıvel calcular seus erros padrão

assintóticos.

Maluf, Ferrari e Queiroz (2025) propõem duas novas abordagens para obtenção

de estimadores robustos sob modelos de regressão beta, usando a PDF da variável res-

posta transformada pela função logito. O primeiro deles, chamado de estimador logit de

mı́nima divergência potência entre densidades (logit minimum density power divergence

estimator ; LMDPDE), é baseado no método de Ghosh (2019), enquanto o segundo, deno-

minado estimador logit de máxima verossimilhança substituto (logit surrogate maximum

likelihood estimator ; LSMLE), é uma adaptação do método introduzido por Ribeiro e

Ferrari (2023). Para ambos os estimadores propostos foi implementado o método ori-

entado aos dados de interesse desenvolvido por Ribeiro e Ferrari (2023) para seleção da

constante de afinação α. Maluf, Ferrari e Queiroz (2025) demostraram matematicamente

e ilustraram por meio de simulações que ambos estimadores propostos são bem definidos,

robustos e mantém boas propriedades assintóticas sem a necessidade de exigir restrições

em relação à distribuição beta para a qual os parâmetros de regressão estão sendo esti-

mados. Portanto, o LMDPDE e o LSMLE representaram uma evolução dos estimadores

anteriores, uma vez que funcionam bem mesmo sob distribuições beta não limitadas.

Considerando a capacidade da distribuição beta em assumir uma grande quanti-

dade de formas, o modelo heteroscedástico introduzido por Ferrari e Cribari-Neto (2004)

se mostrou bastante flex́ıvel e adequado para modelar dados oriundos de uma grande

quantidade de fenômenos. A modelagem simultânea do parâmetro de precisão introdu-

zida por Smithson e Verkuilen (2006), trouxe mais flexibilidade ao ajuste de modelos de

regressão beta. No entanto, em ambos os casos foram consideradas estruturas de regressão

lineares nos parâmetros. Posteriormente, Simas, Barreto-Souza e Rocha (2010) apresen-

taram uma forma mais geral para o modelo de regressão beta com precisão variável, na

qual as estruturas de regressão são descritas por relações não necessariamente lineares nos

parâmetros, e da qual os modelos anteriores representam casos particulares. Essa última
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abordagem tem o potencial de flexibilizar ainda mais a classe de modelos de regressão

beta com precisão variável.

Todos os métodos de estimação robustos aqui mencionados foram desenvolvidos

e aplicados a modelos de regressão beta que consideram em suas estruturas de regressão

preditores que representam funções lineares de seus parâmetros. Segundo a definição

de robustez de estimadores que utilizaremos ao longo desse trabalho, e de acordo com

nosso conhecimento, não existe trabalho publicado recentemente que tenha se proposto a

desenvolver métodos de estimação robustos para modelos de regressão beta nos quais a

estrutura de regressão é flexibilizada para contemplar formas não lineares. É importante

ressaltar que o conceito de linearidade que será considerado neste trabalho diz respeito

à estrutura de regressão vinculada aos parâmetros dos modelos e não à relação entre a

média da variável resposta e as variáveis preditoras. Nesse sentido, o presente trabalho

se propõe a replicar os métodos de estimação robustos referentes ao SMLE e LSMLE,

estendendo-os a modelos de regressão beta não lineares, e possibilitando a utilização

dos referidos métodos sob modelos nos quais uma estrutura linear de regressão não seja

adequada. Além disso, pretende-se estudar o comportamento de tais modelos por meio

de suas propriedades teóricas e aplicações a dados reais e simulados.

O presente texto está organizado em 6 caṕıtulos. Nesse primeiro caṕıtulo foi feita

uma introdução ao tema e apresentado um breve histórico com os trabalhos mais recen-

tes relacionados à regressão beta robusta, incluindo a delimitação do escopo do estudo

desenvolvido na dissertação. No Caṕıtulo 2 é descrito o modelo probabiĺıstico beta e as

suas principais caracteŕısticas. Adicionalmente, no mesmo caṕıtulo são introduzidos os

modelos de regressão lineares e não lineares baseados na distribuição beta, e o processo de

estimação dos parâmetros do modelo não linear por meio do método da máxima verossi-

milhança. No Caṕıtulo 3 são revisados alguns conceitos e medidas referentes à inferência

robusta que serão usadas na sequência do trabalho. No quarto caṕıtulo é desenvolvido o

processo de estimação por meio do SMLE e LSMLE sob modelos de regressão beta não

lineares, e é proposta uma adaptação ao método orientado a dados para seleção da cons-

tante de afinação. Neste Caṕıtulo também é apresentado um teste de hipóteses robusto

para avaliação da significância dos coeficientes de regressão sob o modelo de regressão

beta robusto. Ainda, no Caṕıtulo 4 é feita uma breve introdução sobre bootstrap e o

detalhamento dos processos de reamostragem utilizados no trabalho e, na sequência, uma

explanação referente à implementação computacional efetuada para viabilizar a realização

dos estudos e aplicações práticas. No Caṕıtulo 5 são apresentados os resultados obtidos

nos estudos de simulação e nas aplicações a dados reais e simulados, objetivando ilustrar

caracteŕısticas da regressão beta não linear robusta, suas vantagens e situações nas quais

é recomendada a sua utilização. Por fim, no Caṕıtulo 6 é feita uma recapitulação dos

resultados obtidos no trabalho, incluindo limitações observadas na pesquisa, além de su-
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gestões de tópicos decorrentes desta dissertação que podem ser melhor aprofundados em

trabalhos futuros.



6 Modelos de regressão baseados na distribuição beta

2 Modelos de regressão baseados na distribuição beta

2.1 A distribuição beta

A distribuição beta é uma famı́lia de distribuições de probabilidade cont́ınuas

definida com suporte em um intervalo limitado e parametrizada por dois elementos, ambos

positivos, aqui denotados por a e b, que aparecem como expoentes na função densidade

da variável aleatória e controlam a forma da distribuição. Conforme apresentada por

Johnson, Kotz e Balakrishnan (1995), a distribuição beta constitui um caso particular da

distribuição de Pearson Tipo I, quando variável resposta é transformada para restringir

o suporte ao intervalo (0,1).

A PDF de uma variável aleatória y que segue uma distribuição beta de parâmetros

a > 0 e b > 0 é definida por

f(y; a,b) =
ya−1(1− y)b−1

B(a,b)
, 0 < y < 1, (2.1.1)

em que B(a,b) é a função beta dada por

B(a,b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
,

e Γ(·) é a função gama definida por

Γ(z) =

∫ ∞

0

uz−1e−udu,

sendo z um número complexo cuja parte real é estritamente positiva. Assim, a expressão

(2.1.1) pode ser reescrita como

f(y; a,b) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1, (2.1.2)

A função de distribuição acumulada (cumulative distribution function; CDF) da

distribuição beta é definida por

F (y; a,b) =

∫ y

−∞
f(t; a,b)dt =

Γ(a+ b)

Γ(a)Γ(b)

∫ y

0

ta−1(1− t)b−1dt

=
1

B(a,b)

∫ y

0

ta−1(1− t)b−1dt =
By(a,b)

B(a,b)
,

em que 0 < y < 1 e By(a,b) =
∫ y

0
ta−1(1−t)b−1dt é, segundo Johnson, Kotz e Balakrishnan
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(1995), conhecida por função beta incompleta.

A PDF em (2.1.2) pode ser reescrita como

f(y; a,b) = exp {log [f(y; a,b)]} I[y∈(0,1)]

= exp

{
log

[
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1

]}
I[y∈(0,1)]

= exp

{
log

[
Γ(a+ b)

Γ(a)Γ(b)

]
+ log

[
ya−1

]
+ log

(
(1− y)b−1

)}
I[y∈(0,1)]

= exp {(a− 1) log (y) + (b− 1) log (1− y)− log (B(a,b))} I[y∈(0,1)], (2.1.3)

em que I[y∈(0,1)] é uma função indicadora que assume valor 1 quando y ∈ (0,1) e 0, caso

contrário. Considerando θ = (a b)⊤ e fazendo ω1(θ) = a−1, ω2(θ) = b−1, T1(y) = log(y),

T2(y) = log(1− y), c(θ) = B(a,b) e h(y) = I[y∈(0,1)], obtemos que a expressão em (2.1.3)

se reduz à

f(y; a,b) = exp {ω1(θ)T1(y) + ω2(θ)T2(y)− c(θ)}h(y)

= exp

{
s∑

i=1

ωi(θ)Ti(y)− c(θ)

}
h(y),

(2.1.4)

em que s = 2 é a quantidade de parâmetros envolvidos. Observa-se que ωi(θ), i =1, 2,

e c(θ) ≥ 0 são funções que dependem somente dos parâmetros a e b, e Ti(y), i =1, 2, e

h(y), funções que dependem somente de y. Famı́lias de distribuições cujas PDFs possam

ser reescritas na forma da expressão em (2.1.4) são ditas pertencer à famı́lia exponencial

s-dimensional. Portanto, a distribuição beta faz parte da famı́lia exponencial bidimen-

sional. Famı́lias exponenciais são de particular interesse na Estat́ıstica pois apresentam

propriedades matemáticas úteis, além de estarem ligadas a conceitos importantes tais

como suficiência e redução de dados (CASELLA; BERGER, 2011).

A distribuição beta é bastante flex́ıvel a depender dos valores assumidos pelos

parâmetros a e b. Esta pode exibir uma infinidade de formas, sendo amplamente uti-

lizada pra modelar o comportamento de diversos tipos de fenômenos aleatórios, desde

que a variável de interesse assuma valores limitados ao intervalo cont́ınuo (0,1). Não

obstante, a distribuição beta é também aplicável a fenômenos que produzem valores no

intervalo cont́ınuo (c, d), com c e d constantes reais. Para tanto, aplica-se a transformação

(y − c)/(d− c) para representar esse intervalo cont́ınuo dentro do suporte exigido para a

distribuição beta.

Adotando a PDF em (2.1.2), os momentos de ordem n centrados em zero, com

n = 1,2,3, . . ., podem ser obtidos diretamente pela definição

E(yn) =

∫ 1

0

ynf(y; a,b)dy.
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Assim, temos que

E(yn) =
1

B(a,b)

∫ 1

0

y(a+n)−1(1− y)b−1dy

=
B(a+ n,b)

B(a,b)

∫ 1

0

1

B(a+ n,b)
y(a+n)−1(1− y)b−1dy

=
B(a+ n,b)

B(a,b)

=
Γ(a+ n)Γ(b)

Γ(a+ n+ b)

Γ(a+ b)

Γ(a)Γ(b)

=
Γ(a+ n)

Γ(a+ b+ n)

Γ(a+ b)

Γ(a)
.

Utilizando as propriedades da função gama, podemos reescrever a expressão anterior como

E(yn) =
(a+ n− 1)(a+ n− 2) · · · (a+ 1)aΓ(a)

(a+ b+ n− 1)(a+ b+ n− 2) · · · (a+ b+ 1)(a+ b)Γ(a+ b)

Γ(a+ b)

Γ(a)

=
(a+ n− 1)(a+ n− 2) · · · (a+ 1)a

(a+ b+ n− 1)(a+ b+ n− 2) · · · (a+ b+ 1)(a+ b)

=
n−1∏
r=0

a+ r

a+ b+ r
. (2.1.5)

Tomando n = 1,2, obtemos os dois primeiros momentos de y, por meio dos quais chegamos

a expressões fechadas para, respectivamente, a média e a variância da variável aleatória

y. Portanto, obtemos que

E(y) =
0∏

r=0

a+ r

a+ b+ r
=

a

a+ b
,

Var(y) = E(y2)− [E(y)]2

=

(
a+ 0

a+ b+ 0

)(
a+ 1

a+ b+ 1

)
−
(

a

a+ b

)2

=

[
a(a+ 1)

(a+ b)(a+ b+ 1)

]
−
(

a

a+ b

)2

=
ab

(a+ b)2(a+ b+ 1)
.

Também é posśıvel obter a média e a variância por meio da função geradora de

momentos M(t), que é dada por E(ety), t = 1,2,... (ROSS, 2009). Com isso, expandindo
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E(ety) como série de Taylor, temos que

E(ety) = E

(
∞∑
n=0

tnyn

n!

)

=
∞∑
n=0

E (yn)
tn

n!

= E
(
y0
) t0
0!

+
∞∑
n=1

E (yn)
tn

n!

= 1 +
∞∑
n=1

E (yn)
tn

n!
. (2.1.6)

Substituindo o resultado em (2.1.5) em (2.1.6) obtemos que

M(t) = E(ety) = 1 +
∞∑
n=1

(
n−1∏
r=0

a+ r

a+ b+ r

)
tn

n!
. (2.1.7)

Com o resultado (2.1.7) pode-se chegar a outros momentos úteis para obtenção

de medidas importantes sobre a distribuição. Por exemplo, Johnson, Kotz e Balakrishnan

(1995) apresentam expressões fechadas para a assimetria e curtose que são necessárias

para o terceiro e quarto momentos da distribuição beta.

Ferrari e Cribari-Neto (2004) propuseram uma reparametrização da distribuição

beta reescrevendo a PDF (2.1.2) por meio de novos parâmetros que representam a média e

a precisão de y. Tal alteração objetivou definir uma estrutura de regressão para modelar

a média µt de uma variável resposta yt que seja distribúıda segundo uma distribuição

beta. Além disso, para viabilizar a modelagem da média µt foi necessário estabelecer um

parâmetro ϕ que representasse a precisão da distribuição beta.

Nesse sentido, toma-se µ = E(y) = a/(a + b) e ϕ = a + b, resultando em a = µϕ

e b = ϕ − µϕ = (1 − µ)ϕ e, consequentemente, na seguinte expressão para a PDF da

distribuição beta reparametrizada:

f(y;µ,ϕ) =
Γ(ϕ)

Γ(µϕ)Γ((1− µ)ϕ)
yµϕ−1(1− y)(1−µ)ϕ−1, 0 < y < 1. (2.1.8)

A CDF da distribuição beta reparametrizada é da forma

F (y;µ,ϕ) =

∫ y

−∞
f(t;µ,ϕ)dt =

BY (µϕ,(1− µ)ϕ)

B(µϕ,(1− µ)ϕ)
.

Denotaremos por y ∼ B(µ,ϕ) uma variável aleatória y que possui distribuição beta com

PDF na forma (2.1.8). Conforme mencionado anteriormente, a distribuição beta é bas-
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tante flex́ıvel, resultando em grande potencial para modelar dados limitados ao intervalo

(0,1). Na Figura 1 são apresentadas curvas da PDF da distribuição beta, considerando

diferentes valores para os parâmetros µ e ϕ. Percebe-se que as curvas podem apresentar

diferentes formas a depender dos valores assumidos pelos parâmetros. Quando µ = 0,5

e ϕ ̸= 2, as curvas apresentam formas simétricas e unimodais. Para µ ̸= 0,5 as formas

apresentadas são assimétricas podendo ser unimodais, em formas de J ou J invertido.

Para µ = 0,5 e ϕ < 2, a curva assume a forma de U. Quando µ = 0,5 e ϕ = 2, a função

densidade da distribuição beta se reduz à da distribuição uniforme padrão.

Figura 1 Curvas para a PDF da distribuição beta reparametrizada para diferentes valores de (µ, ϕ).

Sob a nova parametrização, a variância da variável aleatória y passa a ser

Var(y) =
ab

(a+ b)2(a+ b+ 1)

=
µϕ(1− µ)ϕ

(µϕ+ (1− µ)ϕ)2(µϕ+ (1− µ)ϕ+ 1)

=
µ(1− µ)

ϕ+ 1

=
V (µ)

ϕ+ 1
,

em que V (µ) = µ(1 − µ). Nota-se que, para média µ fixa, a variância de y diminui à

medida que o valor de ϕ aumenta. Em contrapartida, valores baixos de ϕ resultam em

valores altos para a variância de y. Por esta razão, ϕ é tido como parâmetro de precisão

da distribuição beta reparametrizada. Esse resultado também pode ser visualizado por
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meio da Figura 2 em que estão representadas algumas curvas para a PDF (2.1.8), com µ

fixado em 0,5 e diferentes valores do parâmetro de precisão ϕ.

Figura 2 Curvas para a PDF da distribuição beta reparametrizada para
µ fixo e diferentes valores de ϕ.

2.2 Regressão linear

A reparametrização da distribuição beta introduzida por Ferrari e Cribari-Neto

(2004) viabilizou a sua utilização em modelos de regressão. Dada a expressão (2.1.8),

segundo Ferrari e Cribari-Neto (2004) o modelo de regressão beta é obtido assumindo

que, para n realizações independentes de uma variável aleatória y com distribuição beta,

a média µt de cada observação yt pode ser escrita como

gµ(µt) =

p1∑
i=1

xtiβi = X⊤
t β, (2.2.1)

em que β = (β1, β2, . . . ,βp1)
⊤ ∈ Rp1 é um vetor de parâmetros desconhecidos associados

à média, Xt = (xt1, xt2, . . . ,xtp1)
⊤ ∈ Rp1 é o vetor de valores conhecidos das p1 variáveis

explicativas (covariáveis) para a t-ésima observação (t = 1,2, . . . ,n), e gµ(·) é uma função

de ligação cont́ınua, estritamente monótona e duas vezes diferenciável. O principal ob-

jetivo associado a gµ(·) é restringir µt ao suporte da distribuição beta que é o intervalo

cont́ınuo (0,1).
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Existem diversas opções para a função de ligação gµ(·) que atendem aos requi-

sitos mencionados. A rigor, a inversa da CDF de qualquer distribuição cont́ınua pode-

ria ser utilizada, entretanto, as funções de ligação mais citadas e utilizadas (FERRARI;

CRIBARI-NETO, 2004; OSPINA, 2004; PEREIRA, 2010) estão a seguir:

• função logito: g(µ) = log
(

µ
1−µ

)
, cuja inversa corresponde à CDF da distribuição

loǵıstica padrão;

• função probit: g(µ) = Φ−1(µ), em que Φ(·) é a CDF da distribuição normal padrão;

• função log-log: g(µ) = − log[− log(µ)], em que g−1(µ) é a CDF da distribuição

Gumbel padrão (máximo), correspondente a uma das duas formas da distribuição

do valor extremo padrão, tipo I (GUMBEL, 1954);

• função complementar log-log: g(µ) = log[− log(1 − µ)], em que g−1(µ) é a CDF

da distribuição Gumbel padrão (mı́nimo), correspondente a uma segunda forma da

distribuição do valor extremo padrão, tipo I (GUMBEL, 1954);

• função Cauchit: g(µ) = tan[π(µ− 0,5)], cuja inversa corresponde à CDF da distri-

buição Cauchy padrão.

Apesar de heteroscedástico, o modelo proposto por Ferrari e Cribari-Neto (2004)

considera que a precisão é constante para todas as observações, o que nem sempre será

apropriado supor. Além disso, no contexto dos modelos lineares generalizados (generali-

zed linear models ; GLM) introduzidos por Nelder e Wedderburn (1972), existem trabalhos

onde são considerados os GLMs duplos, nos quais a média e a precisão são modeladas

simultaneamente (NELDER; LEE, 1991; SMYTH; VERBYLA, 1999). Nesse sentido,

Smithson e Verkuilen (2006) propuseram uma extensão ao modelo de regressão beta pro-

posto por Ferrari e Cribari-Neto (2004). Sob essa nova abordagem, adicionou-se uma

estrutura de regressão para modelar, simultaneamente à média, também o parâmetro de

precisão ϕ, por meio da estrutura de regressão

gϕ(ϕt) =

p2∑
j=1

ztjγj = Z⊤
t γ, (2.2.2)

em que γ = (γ1, γ2, . . . ,γp2)
⊤ ∈ Rp2 é um vetor de parâmetros desconhecidos associados à

precisão, Zt = (zt1, zt2, . . . ,ztp2)
⊤ ∈ Rp2 é o vetor de valores conhecidos das p2 covariáveis

da precisão para a t-ésima observação, e gϕ(·) é uma função de ligação cont́ınua, estri-

tamente monótona e duas vezes diferenciável. Observa-se que, diferentemente do que

ocorre com a média, que deve ser mapeada no domı́nio da variável resposta, o parâmetro

de precisão deve assumir valores estritamente positivos, uma vez que Var(y) não pode
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ser negativa. Dentre as funções de ligação que atendem a esses critérios, são citadas por

Smithson e Verkuilen (2006) as funções de ligação abaixo:

• função logaritmo: gϕ(ϕ) = log(ϕ).

• função raiz-quadrada: gϕ(ϕ) =
√
ϕ.

O requisito de que as funções de ligação gµ(·) e gϕ(·) sejam duas vezes dife-

renciáveis viabiliza o processo de estimação, em particular, a obtenção da matriz de

informação de Fisher (Fisher information matrix ; FIM). Tal matriz é necessária para

dimensionar a variabilidade assintótica das estimativas dos parâmetros de regressão, con-

forme será visto mais adiante.

2.3 Regressão não linear

Os modelos propostos por Ferrari e Cribari-Neto (2004) e Smithson e Verkuilen

(2006) consideram nas respectivas estruturas de regressão os preditores X⊤
t β e Z⊤

t γ,

que representam funções lineares de seus parâmetros β e γ. No entanto, ainda que

a estrutura de regressão seja linear nos parâmetros, ao aplicar as funções de ligação

mais utilizadas, obtém-se uma relação não linear entre a média da variável resposta y

(E(y)) e as variáveis explicativas. É importante ressaltar que o conceito de linearidade

que será considerado neste trabalho diz respeito à estrutura de regressão vinculada aos

parâmetros dos modelos, independentemente dessa relação não linear entre a média da

variável resposta y e as covariáveis. Nesse sentido, chamaremos os modelos introduzidos

por Ferrari e Cribari-Neto (2004) e Smithson e Verkuilen (2006) de regressão beta linear

com precisão constante e regressão beta linear com precisão variável, respectivamente.

Simas, Barreto-Souza e Rocha (2010), apresentaram uma forma mais geral para

o modelo de regressão beta com precisão variável, na qual as estruturas de regressão são

descritas por relações não necessariamente lineares de seus parâmetros. Dessa forma, seja

yt, t = 1, . . . , n, uma amostra aleatória tal que yt ∼ B(µt,ϕt), a média µt e a precisão ϕt

podem ser escritas, respectivamente, como

gµ(µt) = fµ(Xt;β) = ηµt,

gϕ(ϕt) = fϕ(Zt;γ) = ηϕt,
(2.3.1)

em que fµ(·; ·) e fϕ(·; ·) são funções que relacionam os parâmetros e as covariáveis e que

podem ser lineares ou não lineares. Observe que as estruturas lineares de regressão em

(2.2.1) e (2.2.2) representam um caso particular da forma geral apresentada em (2.3.1),

quando fµ(Xt;β) = X⊤
t β e fϕ(Zt;γ) = Z⊤

t γ.
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Os vetores de parâmetros β e γ são desconhecidos e, portanto, devem ser esti-

mados. Para este caso, Simas, Barreto-Souza e Rocha (2010) utilizaram o método da

máxima verossimilhança, por meio do qual são estimados os valores dos parâmetros que

maximizam a função densidade de probabilidade conjunta da amostra, obtendo-se os

MLEs. Tomando y1, y2, . . . ,yn variáveis aleatórias independentes tal que yt ∼ B(µt,ϕt), a

função de verossimilhança para θ = (β⊤,γ⊤)⊤ é dada por (SIMAS; BARRETO-SOUZA;

ROCHA, 2010)

L(θ) =
n∏

t=1

f(yt;µt,ϕt)

=
n∏

t=1

[
Γ(ϕt)

Γ(µtϕt)Γ((1− µt)ϕt)
yµtϕt−1
t (1− yt)

(1−µt)ϕt−1

]
,

e o respectivo logaritmo da função de verossimilhança para θ é

ℓ(θ) = log(L(θ))

=
n∑

t=1

log(f(yt;µt,ϕt))

=
n∑

t=1

log

[
Γ(ϕt)

Γ(µtϕt)Γ((1− µt)ϕt)
yµtϕt−1
t (1− yt)

(1−µt)ϕt−1

]
=

n∑
t=1

ℓt(µt,ϕt), (2.3.2)

em que

ℓt(µt,ϕt) = log Γ(ϕt)− log Γ(µtϕt)− log Γ((1− µt)ϕt)

+ (µtϕt − 1) log(yt) + [(1− µt)ϕt − 1] log(1− yt),

com µt = g−1
µ (ηµt), uma função de β e Xt, e ϕt = g−1

ϕ (ηϕt), uma função de γ e Zt.

Para obter o valor de θ = (β⊤,γ⊤)⊤ que maximiza a expressão em (2.3.2) podem-

se calcular as derivadas parciais de ℓt(µt,ϕt) com relação a cada um dos parâmetros em β

e γ obtendo os vetores escore, aqui representados por Uβ(θ) e Uγ(θ), respectivamente,

e igualar a zero. Ressalta-se que, nesse caso, a média µt e a precisão ϕt são estimadas

indiretamente através de β e γ por meio das estruturas de regressão associadas a µt e ϕt,

conforme definido em (2.3.1).

As entradas do vetor escore para β, Uβi
(θ), em que i = 1,2, . . . , p1, são dadas
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pela expressão

Uβi
(θ) =

∂ℓ(θ)

∂βi

=
n∑

t=1

∂ℓt(µt,ϕt)

∂µt

dµt

dηµt

∂ηµt
∂βi

=
n∑

t=1

{
ϕt [log(yt)− log(1− yt)− ψ(µtϕt) + ψ((1− µt)ϕt)]

}
dµt

dηµt

∂ηµt
∂βi

=
n∑

t=1

ϕt(yt
∗ − µt

∗)
1

g′µ(µt)

∂ηµt
∂βi

, (2.3.3)

em que y∗t = logito(yt) = log(yt/(1 − yt)), µ
∗
t = E(y∗t ) = ψ(µtϕt) − ψ((1 − µt)ϕt), e ψ(λ)

denota a função digama, isto é, ψ(λ) = d log Γ(λ)/dλ.

Seja X uma matriz de dimensão n × p1 em que cada coluna de X representa

os valores conhecidos da i-ésima covariável, i = 1, 2, . . . , p1, y
∗ = (y∗1, . . . , y

∗
n)

⊤, µ∗ =

(µ∗
1, . . . , µ

∗
n)

⊤ e T = diag{dµ1/dηµ1, . . . , dµn/dηµn} = diag{1/g′µ(µ1), . . . , 1/g
′
µ(µn)}. Se-

gundo Espinheira, Santos e Cribari-Neto (2017), definindo Jµ = ∂ηµ/∂β, uma matriz de

dimensão n×p1, e Φ = diag{ϕ1, . . . , ϕn}, então o vetor escore Uβ(θ) pode ser representado

por

Uβ(θ) = J⊤
µ ΦT (y

∗ − µ∗).

As entradas do vetor escore para γ, Uγj(θ), com j = 1,2, . . . , p2, são dadas por

Uγj(θ) =
∂ℓ(θ)

∂γj

=
n∑

t=1

∂ℓt(µt,ϕt)

∂ϕt

dϕt

dηϕt

∂ηϕt
∂γj

=
n∑

t=1

{
µt[log(yt)− log(1− yt)− ψ(µtϕt)

+ ψ((1− µt)ϕt)] + log(1− yt) + ψ(ϕt)− ψ[(1− µt)ϕt]

}
dϕt

dηϕt

∂ηϕt
∂γj

=
n∑

t=1

{
µt(y

∗
t − µ∗

t ) + log(1− yt) + ψ(ϕt)− ψ((1− µt)ϕt)

}
dϕt

dηϕt

∂ηϕt
∂γj

=
n∑

t=1

at
1

g′ϕ(ϕt)

∂ηϕt
∂γj

, (2.3.4)

em que at = µt(y
∗
t − µ∗

t ) + log(1− yt) + ψ(ϕt)− ψ((1− µt)ϕt).

Seja Jϕ = ∂ηϕ/∂γ, uma matriz de dimensão n × p2, H = diag{dϕ1/dηϕ1, . . . ,
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dϕn/dηϕn} = diag{1/g′ϕ(ϕ1), . . . , 1/g
′
ϕ(ϕn)} e a = (a1, . . . , an)

⊤, temos que o vetor escore

para γ é

Uγ(θ) = J⊤
ϕ Ha.

O MLE para θ, denotado por θ̂ = (β̂⊤, γ̂⊤)⊤, pode ser obtido resolvendo o

sistema de equações

Uβ(θ) = 0,

Uγ(θ) = 0,

com relação a θ = (β⊤,γ⊤)⊤. Observe que não é possivel explicitar os MLEs dos

parâmetros de regressão β e γ, denotados por β̂ e γ̂, de forma anaĺıtica, sendo necessário

recorrer a métodos iterativos de estimação, tais como o Broyden-Fletcher-Goldfarb-Shanno

(BGFS). Maiores informações sobre métodos de otimização numérica podem sem con-

sultados em Press et al. (1992). Tais métodos de otimização necessitam de estimativas

iniciais para o procedimento iterativo. Simas, Barreto-Souza e Rocha (2010) sugerem

obtê-las a partir do modelo de regressão não linear normal com estruturas de regressão

gµ(µt) = fµ(Xt;β),

gϕ(σ
−2
t ) = fϕ(Zt;γ),

(2.3.5)

para o qual é assumido que yt segue umas distribuição normal com média µt e variância

σ2
t , ou seja, yt ∼ N (µt,σ

2
t ). Os valores estimados de β e γ serão as estimativas iniciais

β̂(0) e γ̂(0). Observe que o modelo em (2.3.5) representa uma regressão não linear normal,

utilizando as funções de ligação gµ e gϕ. O ajuste do modelo (2.3.5) pode ser efetuado por

meio da biblioteca nlme (PINHEIRO et al., 2017) do software R (R Core Team, 2024).

Conforme Espinheira, Santos e Cribari-Neto (2017), a FIM dos parâmetros, aqui

denotada por K, é dada por

K = K(θ) =

[
Kββ Kβγ

Kγβ Kγγ

]
=

−E
(
∂2ℓ(θ)

∂β∂β⊤

)
−E

(
∂2ℓ(θ)

∂β∂γ⊤

)
−E

(
∂2ℓ(θ)

∂γ∂β⊤

)
−E

(
∂2ℓ(θ)

∂γ∂γ⊤

)
 , (2.3.6)

sendoKββ = J⊤
µ ΦWJµ,Kβγ = K⊤

γβ = J⊤
µ CTHJϕ,Kγγ = J⊤

ϕ DJϕ,W = diag{w1, . . . , wn},
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C = diag{c1, . . . , cn}, D = diag{d1, . . . , dn}, e

wt = ϕ2
t [ψ

′(µtϕt) + ψ′((1− µt)ϕt)]

(
1

g′µ(µt)

)2

,

ct = ϕt{ψ′(µtϕt)µt − ψ′((1− µt)ϕt)(1− µt)},

dt = [ψ′(µtϕt)µt
2 + ψ′((1− µt)ϕt)(1− µt)

2 − ψ′(ϕt)]

(
1

g′ϕ(ϕt)

)2

.

Sob algumas condições de regularidade e para n suficientemente grande, Simas,

Barreto-Souza e Rocha (2010) mencionam que a distribuição conjunta aproximada de

θ̂ = (β̂⊤, γ̂⊤)⊤ é normal (k + q)-variada, isto é

θ̂ =

(
β̂

γ̂

)
D−→

n→∞
Np1+p2

((
β

γ

)
;K−1

)
, (2.3.7)

em que K−1 é a inversa da FIM, que é da forma

K−1 = K−1(θ) =

[
Kββ Kβγ

Kγβ Kγγ

]

em que

Kββ =
(
Kββ −KβγK

−1
γγKγβ

)−1
=
(
J⊤
µ ΦWJµ − J⊤

µ CTHJϕ(J
⊤
ϕ DJϕ)

−1J⊤
µ CTHJϕ

)−1

Kβγ = (Kγβ)⊤ = −KββKββK
−1
γγ = −KββJ⊤

µ ΦWJµ(J
⊤
ϕ DJϕ)

−1

Kγβ = (Kβγ)⊤ = −K−1
γγKββK

ββ = −(J⊤
ϕ DJϕ)

−1J⊤
µ ΦWJµK

ββ = Kβγ ,

Kγγ = K−1
γγ +K−1

γγKγβK
ββKβγK

−1
γγ

= (J⊤
ϕ DJϕ)

−1 + (J⊤
ϕ DJϕ)

−1J⊤
µ CTHJϕK

ββJ⊤
µ CTHJϕ(J

⊤
ϕ DJϕ)

−1

= (J⊤
ϕ DJϕ)

−1[Ip2 + (J⊤
µ CTHJϕ)K

ββJ⊤
µ CTHJϕ(J

⊤
ϕ DJϕ)

−1]

com Ip2 denotando uma matriz identidade de ordem p2.

Por meio da propriedade de normalidade assintótica dos MLEs é posśıvel dimen-

sionar, também de forma assintótica, a variabilidade desses estimadores. Com isso, sob

condições usuais de regularidade, pode-se demonstrar que, conforme definido em (2.3.7),

para a s-ésima componente de θ̂, θ̂s, obtemos que(
θ̂s − θs

)
[K(θ)ss]

−1/2 D−→
n→∞

N(0,1),

em que K(θ) é a FIM de θ e K(θ)ss é o (s,s)-ésimo elemento de K(θ)−1. Esse resultado

permite a construção de intervalos de confiança aproximados para diversas grandezas

relacionadas aos modelos, como por exemplo, para cada parâmetro estimado. Dessa
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forma, considerando um ńıvel de confiança de 100(1 − α)%, um intervalo de confiança

aproximado para a s-ésima componente do vetor de parâmetros θ é(
θ̂s − z1−α

2

√
K̂(θ̂)

ss

; θ̂s + z1−α
2

√
K̂(θ̂)

ss
)
,

em que z1−α
2
representa o quantil da distribuição Normal padrão tal que P (Z ≤ z1−α

2
) =

1− α/2, com Z ∼ N(0,1).
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3 Medidas de robustez

Considerando o ajuste por meio do método da máxima verossimilhança, os mo-

delos apresentados no Caṕıtulo 2 se mostram bastante úteis para resolver uma grande

quantidade de problemas e têm sido amplamente utilizados para modelagem de dados

cont́ınuos limitados, especialmente aqueles contidos no intervalo unitário. Não obstante,

conforme já mencionado anteriormente, os MLEs sob alguns modelos probabiĺısticos po-

dem ser desproporcionalmente influenciados pela presença de observações discrepantes

nos dados, situação na qual não são considerados robustos.

Neste caṕıtulo, que é baseado nos trabalhos de Ribeiro (2020) e Queiroz (2022),

serão apresentados alguns conceitos referentes à inferência robusta que serão utilizados

na sequência deste trabalho, objetivando melhor caracterizar o conceito de robustez que

está sendo considerado.

3.1 Conceitos preliminares

Sejam yt, t = 1, . . . , n, variáveis aleatórias independentes e identicamente dis-

tribúıdas (independent and identically distributed ; IID) segundo uma famı́lia de distri-

buições paramétricas FΘ = {Fθ, θ ∈ Θ ⊂ Rp}, p > 1, em que Θ é o espaço paramétrico

de θ e fθ é a PDF de yt. Seja I(·) a função indicadora, consideremos estimadores para

o parâmetro θ que dependam dos dados yt somente por meio da função de distribuição

emṕırica (empirical distribution function; EDF), dada por

Fn(v) =
1

n

n∑
t=1

I(yt < v),

isto é satisfazem a relação

Tn(y1, . . . , yn) = T (Fn). (3.1.1)

Neste caso, chamamos T (Fn) de estimador funcional para θ. Adicionalmente, dizemos

que T (Fn) também é um estimador Fisher-consistente para θ se, além de satisfazer a

relação em (3.1.1), também satisfaz (KALLIANPUR; RAO, 1955)

T (Fθ) = θ, ∀ θ ∈ Θ.

Portanto, a propriedade de Fisher-consistência de um estimador assegura que o mesmo

atingirá o verdadeiro valor do parâmetro estimado, no caso θ, quando este é calculado

sob a distribuição populacional dos dados, ou seja, sob Fθ.
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3.2 Função de influência

A função de influência (influence function; IF) é uma medida muito conhecida

e utilizada para avaliar a robustez de um estimador funcional. Segundo Hampel et al.

(2011), seja Fh,y = (1 − h)Fθ + h∆y a CDF contaminada após a introdução de uma

perturbação infinitesimal h no ponto y, então a IF do estimador T em Fθ é dada por

IF(y;T ,Fθ) =
∂

∂h
[T (Fh,y)] |h=0

= lim
h→0

T (Fh,y)− T (Fθ)

h

= lim
h→0

T ((1− h)Fθ + h∆y)− T (Fθ)

h
,

(3.2.1)

em que T (F ) é o estimador para θ avaliado sob a CDF F e ∆y é a medida de probabilidade

que coloca toda a massa em y.

Considerando a expressão em (3.2.1), pode-se interpretar a IF como sendo o efeito

causado ao estimador T após uma contaminação infinitesimal h no ponto y. Desse modo,

se mesmo uma perturbação mı́nima, tendendo a zero, for suficiente para afetar despro-

porcionalmente o estimador T , então poderá ser um indicativo de que este estimador é

senśıvel a pequenas variações no ponto y e, portanto, não robusto a observações at́ıpicas.

Conforme Hampel et al. (2011), a IF quantifica o viés assintótico no estimador T causado

pela perturbação nos dados, e este será considerado qualitativamente robusto se possui

IF limitada para todo y pertencente ao suporte da distribuição.

Uma medida de robustez desenvolvida a partir da IF é a sensibilidade a erro

grosseiro não padronizada (unstandardized gross-error sensitivity ; UGES). Tal medida é

dada por

γ∗u = sup
y

∥ IF(y;T , Fθ) ∥,

em que ∥ · ∥ denota a norma euclidiana. A medida γ∗u representa o viés máximo causado

no estimador T em decorrência da contaminação infinitesimal introduzida. Assim, a

medida de UGES pode ser interpretada como um limite superior para o viés do estimador

T sob contaminação, e é desejável que tal medida seja finita. Além disso, observa-se que

se o estimador T contiver ao menos uma entrada cuja respectiva IF divirja, então γ∗u será

infinito e T não será considerado robusto. Estimadores que possuem a UGES finita são

denominados B-Robustos (ROUSSEEUW, 1981).

Conforme pontuado por Ribeiro (2020), a medida em γ∗u não leva em consideração

a escala das covariáveis, podendo gerar confundimento quando utilizada em um contexto
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de modelos de regressão. Sobre isso, Hampel et al. (2011) apresentou duas propostas de

padronização dessa medida, por meios das quais obtém-se valores que são invariantes à es-

cala das covariáveis. A primeira delas é a sensibilidade auto-padronizada (self-standardized

sensitivity ; SSS), que é definida por

γ∗s = sup
y

{
IF(y;T , Fθ)

⊤V(T , Fθ)
−1IF(y;T , Fθ)

} 1
2 , (3.2.2)

em que V(T , Fθ) é a matriz de covariâncias assintótica de T . Observa-se que, de fato,

a expressão em (3.2.2) conduz a uma padronização da medida γ∗u, efetuada por meio de

V(T , Fθ). Caso o estimador T possua baixa eficiência assintótica (asymptotic efficiency ;

AE), então serão obtidos baixos valores para γ∗s .

A segunda proposta de Hampel et al. (2011) introduz a medida de sensibilidade

padronizada pela informação (information-standardized sensitivity ; ISS), que é expressa

por

γ∗is = sup
y

{
IF(y;T , Fθ)

⊤K(T (Fθ), Fθ)
−1IF(y;T , Fθ)

} 1
2 , (3.2.3)

em que K(T (Fθ), Fθ) é a matriz de covariâncias assintótica do MLE para θ, avaliada sob

o estimador T . Ressalta-se que se T for o MLE para θ, então as medidas em (3.2.2) e

(3.2.3) serão iguais.

3.3 M-Estimadores

Com o objetivo de obter um estimador que fosse robusto à presença de observações

at́ıpicas, Huber (1964) desenvolveu um método de estimação que se baseou na genera-

lização do procedimento de estimação por máxima verossimilhança. Segundo o método

de máxima verossmilhança, dada y1, . . . , yn uma amostra aleatória tal que yt, t = 1, . . . , n,

possua densidade fθ(yt), θ ∈ Θ, o logaritmo da função de verossimilhança é expresso por

ℓ(θ) =
n∑

t=1

log(fθ(yt)),

em que o MLE denotado por θ̂ é equivalente ao valor que maximiza ℓ(θ). Portanto,

θ̂ = arg max
θ∈Θ

[ℓ(θ)] ou, equivalentemente, θ̂ = arg min
θ∈Θ

[−ℓ(θ)]. Tal método consiste em

substituir a contribuição individual − log(fθ(yt)) da t-ésima observação por uma função

ρ(yt,θ), de modo que o estimador proposto seja obtido por meio da relação

θ̂M = T (Fn) = arg min
θ∈Θ

n∑
t=1

ρ(yt,θ). (3.3.1)
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em que ρ(·,θ) é uma função diferenciável tal que ρ : X × Θ −→ R, com X denotando o

conjunto suporte. Maiores informações sobre as condições adicionais que a função ρ(·,θ)
referente a um M-estimador de localização ou escala deve satisfazer podem ser obtidas

em Maronna et al. (2019).

A classe de estimadores resultantes desse método e que, portanto, satisfazem

(3.3.1), foi denominada de M-estimadores. A equação de estimação associada ao M-

estimador θ̂M é dada por

n∑
t=1

ψ(yt,T (Fn)) =
n∑

t=1

∂

∂θ
ρ(yt,θ)|θ=T (Fn) = 0.

Observe que ao considerar ρ(yt,θ) = − log(fθ(yt)), então ψ(yt,θ) será o negativo da

função escore e, portanto, teremos o caso particular referente ao MLE. Conforme Ribeiro

(2020), a IF para θ̂M é dada por

IF(y;T ,Fθ) =

[
−
∫

∂

∂θ
[ψ(y,θ)]|θ=T (Fθ)dFθ(y)

]−1

ψ(y,T (Fθ))

= M(ψ, Fθ)
−1ψ(y,T (Fθ)),

em que

M(ψ, Fθ) =
∂

∂θ
[ψ(y,θ)|θ=T (Fθ)dFθ(y).

Nota-se que se algum componente de ψ(y,θ) não for limitado, então a sua IF também não

será limitada e, consequentemente, a sua UGES não será finita. Portanto, o estimador

relacionado não será considerado B-Robusto. Tomando T = θ̂, tal que θ̂ seja o MLE

para θ, a IF fica expressa por

IF(y; θ̂,Fθ) = K(θ, Fθ)
−1U(y,θ), (3.3.2)

em que K(θ, Fθ) é a FIM de θ sob Fθ e U (·,θ) é o vetor escore para θ. Da mesma forma,

se algum componente do vetor escore não for limitado, então a IF não será limitada e,

portanto, o estimador θ̂ não será B-Robusto.

Segundo Ribeiro (2020, p. 16, cap. 2), a matriz de variâncias e covariâncias as-
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sintóticas de um M-estimador T é dada por

V(T ;Fθ) =

∫
IF(y,T , Fθ)IF(y,T , Fθ)

⊤dFθ(y)

=

∫
M(ψ, Fθ)

−1ψ(y,T (Fθ))
[
M(ψ, Fθ)

−1ψ(y,T (Fθ))
]⊤
dFθ(y)

=

∫
M(ψ, Fθ)

−1ψ(y,T (Fθ)) [ψ(y,T (Fθ))]
⊤ [M(ψ, Fθ)

−1
]⊤
dFθ(y)

= M(ψ, Fθ)
−1

[∫
ψ(y,T (Fθ)) [ψ(y,T (Fθ))]

⊤ dFθ(y)

] [
M(ψ, Fθ)

−1
]⊤

= M(ψ, Fθ)
−1Q(ψ, Fθ)

[
M(ψ, Fθ)

−1
]⊤
,

em que

Q(ψ, Fθ) =

∫
ψ(y,T (Fθ)) [ψ(y,T (Fθ))]

⊤ dFθ(y).

Hampel et al. (2011) demonstra que os M-estimadores gozam da propriedades

análogas aos MLEs no que se refere à sua distribuição assintótica. Assim, sob condições

de regularidade e para uma amostra n suficientemente grande, vale que

√
n(T (Fn)− θ)

D−→
n→∞

N(0,V(T , Fθ)).

Esse resultado permite a obtenção de erros-padrão assintóticos e estimativas intervalares

para o M-estimador T .
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4 Inferência robusta

Ribeiro e Ferrari (2023) demonstraram que o procedimento de estimação por

máxima verossimilhança não é robusto para os parâmetros do modelo de regressão beta

especificado na Seção 2.2. Tomando o modelo definido na Seção 2.3, temos que a sua IF

sob o método de estimação por máxima verossimilhança é dada pela expressão em (3.3.2),

ou seja, o produto entre a inversa da FIM, definida em (2.3.6), e o vetor escore para θ,

obtido a partir das expressões em (2.3.3) e (2.3.4). Logo, sob a regressão beta não linear,

o vetor escore para θ correspondente a uma única observação yt é

U(yt,θ) =

(
ϕt(yt

∗ − µt
∗)

1

g′µ(µt)

∂ηµt
∂β⊤ , at

1

g′ϕ(ϕt)

∂ηϕt
∂γ⊤

)⊤

. (4.0.1)

Para que o MLE sob o modelo de regressão beta não seja robusto, basta que um

dos componentes da sua IF não seja limitado. Para a regressão beta linear, os limites

dos componentes do vetor escore divergem quando yt tende para os limites do suporte

da distribuição beta, ou seja, quando yt → 0 ou yt → 1 (RIBEIRO; FERRARI, 2023).

Observa-se que esse mesmo resultado também é válido para o caso não linear. Portanto,

isto é suficiente para a conclusão de que a respectiva IF não é limitada e, consequente-

mente, a medida UGES y∗u não é finita. Portanto, sob o modelo de regressão beta não

linear, o MLE não é considerado B-Robusto.

Desse modo, pode-se afirmar que na presença de observações at́ıpicas, não há ga-

rantia de que a inferência via máxima verossimilhança produza estimativas robustas para

os parâmetros do modelo de regressão beta não linear. Como alternativa à estimação via

máxima verossimilhança sob a regressão beta linear, Ribeiro e Ferrari (2023) propuse-

ram o SMLE, obtido com base na maximização de uma reparametrização da função de

Lq-verossimilhança introduzida por Ferrari e Yang (2010). Posteriormente, objetivando

superar limitações do SMLE, Maluf, Ferrari e Queiroz (2025) propuseram o LSMLE, que

consiste em uma adaptação do método introduzido por Ribeiro e Ferrari (2023), porém

aplicando a transformação logito na variável resposta.

Neste caṕıtulo, que tem como base os trabalhos de Ribeiro e Ferrari (2023) e Ma-

luf, Ferrari e Queiroz (2025), será apresentado o desenvolvimento do SMLE e do LSMLE

para os modelos de regressão beta com precisão variável considerando a generalização das

estruturas de regressão para o caso não linear.
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4.1 Estimação via Lq-verossimilhança reparametrizada

Sejam yt, t = 1, . . . , n, observações independentes obtidas a partir do modelo de

regressão beta com precisão variável definido na Seção 2.3, indexado por um parâmetro

desconhecido θ ∈ Θ ⊂ Rp1+p2 . Segundo Ferrari e Yang (2010), a função de Lq-verossimilhança,

aqui denotada por ℓq(θ), é definida por

ℓq(θ) =
n∑

t=1

Lq(fθ(yt;µt;ϕt)),

em que fθ(yt;µt;ϕt) é a PDF assumida para yt, e

Lq(u) =

{
(u1−q − 1)/(1− q) se q ̸= 1,

log(u), se q = 1,
(4.1.1)

é a transformação de Box-Cox (BOX; COX, 1964), com q ∈ (0,1] sendo uma constante

denominada de constante de afinação, que será melhor discutida nas seções seguintes.

Observe que o parâmetro da transformação de Box-Cox em (4.1.1), representado por α,

é α = 1 − q. Dessa forma, o estimador de máxima Lq-verossimilhança (maximum Lq-

likelihood estimator ; MLqE), aqui denotado por θq, é obtido a partir da maximização

de ℓq(θ), ou seja, θq = arg max
θ∈Θ

[ℓq(θ)] ou, de forma análoga, θq = arg min
θ∈Θ

[−ℓq(θ)].

Ressalta-se que o MLE é um caso particular do MLqE, uma vez que para q = 1, obtém-se

ℓq(θ) =
n∑

t=1

log(fθ(yt;µt;ϕt)),

e, portanto, θq será igual ao MLE θ̂ usual.

Considerando que

fθ(yt;µt;ϕt)
1−q = exp {(1− q)log(fθ(yt;µt;ϕt))} ,

segue que a equação de estimação associada ao MLqE fica dada por

Uq(y,θ) =
n∑

t=1

U(yt,θ)fθ(yt;µt;ϕt)
1−q = 0, (4.1.2)

em que U(yt,θ) é o vetor escore referente à t-ésima observação definido em (4.0.1). Ob-

serve que a expressão em (4.1.2) corresponde a um processo de M-estimação tal qual o

descrito na Seção 3.3, pois a contribuição individual de cada observação está sendo subs-

titúıda pela função U(yt,θ)fθ(yt;µt;ϕt)
1−q, que corresponde à contribuição individual no

MLE, porém ponderada por fθ(yt;µt;ϕt)
1−q. Assim, a escolha do valor para contante q
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controla a ponderação atribúıda para cada observação. Nesse sentido, temos que quanto

mais distante de um for o valor escolhido para q, mais robusto será o procedimento de

estimação, uma vez que as observações tidas como at́ıpicas receberão uma menor pon-

deração e, consequentemente, contribuirão menos para o processo de estimação.

Observa-se que, exceto para q = 1, a função de estimação em (4.1.2) é enviesada,

ou seja, E[Uq(y,θ)] ̸= 0. Desse modo, o estimador não será Fisher-consistente. Para

contornar esse problema e construir um estimador que seja Fisher-consistente, Ribeiro e

Ferrari (2023) utilizaram uma reparametrização da função de Lq-verossimilhança intro-

duzida por Ferrari e La Vecchia (2012), que se baseou em uma função de calibração para

reescalonar as estimativas de θ. Assim, se a famı́lia de distribuições postulada aos dados

for fechada sob a transformação potência, então temos garantida a Fisher-consistência do

estimador. Dada uma PDF h e uma constante ω > 0, a transformação potência é definida

como

h(ω)(y) =
h(y)ω∫
h(y)ωdy

∝ h(y)ω,∀ y no suporte, (4.1.3)

desde que
∫
h(y)ωdy < ∞. Para a famı́lia de densidades {hθ(·),θ ∈ Θ}, que é fechada

sob a transformação potência em (4.1.3), considere uma função cont́ınua inverśıvel τω(θ) :

Θ → Θ que satisfaz

hτω(θ)(y) = h
(ω)
θ (y),

para todo y no suporte da distribuição postulada, sendo que este não depende de θ.

Assim, a aplicação da transformação potência à densidade hθ tem como resultado uma

densidade h
(ω)
θ pertencente à mesma famı́lia de distribuições da qual hθ pertence, porém,

sob uma parametrização diferente, no caso τω(θ). Ribeiro e Ferrari (2023) mostraram que

a PDF da distribuição beta é fechada sob a transformação potência, desde que µtϕt > 1

e (1− µt)ϕt > 1. Em outras palavras, a distribuição beta é fechada sob a transformação

potência para todo ω > 0 se a densidade beta fθ(yt;µt;ϕt) for limitada.

Ferrari e La Vecchia (2012) demonstraram que apesar de θq não ser Fisher-

consistente para θ, é posśıvel obter um outro estimador por meio do mesmo processo,

porém sob a parametrização τ−1
q (θ) = τ1/q(θ) que atende à propriedade de Fisher-

consistência. Desse modo, o novo estimador θ̂q é obtido a partir da maximização da

função Lq-verossimilhança sob a parametrização τ1/q(θ), aqui denotada por ℓ∗q(θ), que,

sob o modelo de regressão beta não linear, é definida por

ℓ∗q(θ) =
n∑

t=1

Lq(fτ1/q(θ)(yt;µt;ϕt)) =
n∑

t=1

Lq(f
(1/q)
θ (yt;µt;ϕt)), (4.1.4)
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em que f
(1/q)
θ (yt;µt;ϕt) = fθ(yt;µt,q−1 ;ϕt,q−1), para q ∈ (0,1), com

µt,q = ϕ−1
t,q [q(µtϕt − 1) + 1] e

ϕt,q = q(ϕt − 2) + 2,

desde que µt,q−1 ∈ (0,1) e ϕt,q−1 > 0, ou, equivalentemente, µtϕt > 1 − q e (1 − µt)ϕt >

1− q. Logo, fθ(yt;µt;ϕt) satisfaz a transformação potência definida em (4.1.3) para todo

ω = 1/q > 0, se µtϕt ≥ 1 e (1−µt)ϕt ≥ 1, ou seja, se a densidade fθ(yt;µt;ϕt) for limitada.

A expressão equivalente à densidade f
(1/q)
θ (yt;µt;ϕt) para o caso linear corres-

ponde ao modelo de regressão beta modificado definido por meio da densidade especifi-

cada em (2.1.8), com as estruturas de regressão associadas aos parâmetros µt e ϕt obtidas

a partir de (2.2.1) e (2.2.2), respectivamente. Considerando o caso não linear especificado

em (2.3.1), os submodelos da média e da precisão associados ao modelo de regressão beta

modificado, que aqui será denotado por f ∗
θ(yt;µt;ϕt), são dados por

g∗µ(µt) = gµ(µt,q) = fµ(Xt;β) = ηµt,

g∗ϕ(ϕt) = gϕ(ϕt,q) = fϕ(Zt;γ) = ηϕt.
(4.1.5)

O estimador proposto por Ribeiro e Ferrari (2023) é obtido por meio da ma-

ximação da função Lq-verossimilhança reparametrizada definida em (4.1.4). Neste traba-

lho, também maximizaremos a expressão em (4.1.4) mas considerando a flexibilização das

estruturas de regressão associadas a µt e ϕt, obtendo a equação de estimação

n∑
t=1

U ∗(yt,θ)f
∗
θ(yt;µt;ϕt)

1−q = 0, (4.1.6)

em que U ∗(yt,θ) = ∇θlog [f
∗
θ(yt;µt;ϕt)], com ∇θ denotando o gradiente relativo a θ, é o

vetor escore modificado para θ referente à t-ésima observação, dado por

U ∗(yt,θ) =

(
q−1ϕt,q(yt

∗ − µt
∗)

g′µ(µt,q)

∂ηµt
∂β⊤ , q−1µt,q(y

∗
t − µ∗

t ) + (y†t − µ†
t)

g′ϕ(ϕt,q)

∂ηϕt
∂γ⊤

)⊤

, (4.1.7)

em que y†t = log(1 − yt) e µ†
t = E(y†t ) = ψ((1 − µt)ϕt) − ψ(ϕt). Observa-se que o fator

f ∗
θ(yt;µt;ϕt)

1−q em (4.1.6) funciona como uma ponderação no processo de estimação. Se

q = 1, o mesmo peso é aplicado a todas as observações e, então, teremos como resultado

o MLE usual. Por outro lado, quando q < 1, então as observações tidas como at́ıpicas em

relação ao esperado para o modelo de regressão beta postulado receberão pesos menores

e terão menor influência no estimador final θ̂q.

O estimador θ̂q, denominado SMLE, goza de propriedades úteis para o processo

inferencial, a exemplo da Fisher-consistente para θ e normalidade assintótica. Nesse
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sentido, por se tratar de um M-estimador, então a sua distribuição é assintoticamente

normal, com θ̂q
a∼ N(θ, V1,q(θ)), em que

V1,q(θ) = J1,q(θ)
−1K1,q(θ)

[
J1,q(θ)

−1
]⊤
, (4.1.8)

em que

J1,q(θ) =
n∑

i=1

E
{
∇θ⊤

[
U ∗(yt,θ)f

∗
θ(yt;µt;ϕt)

1−q
]}
,

K1,q(θ) =
n∑

i=1

E
{
U ∗(yt,θ)U

∗(yt,θ)
⊤f ∗

θ(yt;µt;ϕt)
2(1−q)

}
.

Ribeiro e Ferrari (2023) apresentaram as matrizes J1,q(θ) e K1,q(θ) para o modelo

de regressão beta linear e demonstraram, ainda, que, para distribuições beta limitadas,

o vetor escore modificado expresso em (4.1.7) é limitado para todo y no suporte da dis-

tribuição e que a sua derivada também é limitada. Isto implica que, sob a condição

mencionada, o SMLE é B-robusto e que eventuais observações at́ıpicas possuem pouca

influência sobre o valor estimado de sua matriz de covariâncias assintótica. Neste trabalho

não apresentaremos as matrizes J1,q(θ) eK1,q(θ) correspondentes aos modelos de regressão

beta não lineares, uma vez que, conforme será abordado mais adiante, foi utilizado outro

método para obtenção das estimativas dos erros padrão dos parâmetros.

4.2 Estimação via transformação da variável resposta

Modelos de regressão beta ajustados por meio do SMLE podem ser úteis para

modelar dados provenientes de diversos fenômenos e situações. Entretanto, conforme

pontuado da Seção 4.1, não existe garantia de que este estimador seja bem definido para

distribuições beta que sejam não limitadas. Distribuições beta ilimitadas, que são aquelas

cujas curvas para a densidade apresentam formas de J, J invertido ou U, são raras de

serem observadas na prática, entretanto podem ocorrer para alguns conjuntos de dados

limitados ao intervalo (0,1). Diante disso, Maluf, Ferrari e Queiroz (2025) introduziram

novos estimadores que são bem definidos e preservam propriedades de robustez mesmo

para distribuições beta cujas densidades não sejam limitadas, ou seja, que tendem ao

infinito em um ou ambos os extremos do suporte da distribuição.

O processo de obtenção desses novos estimadores se baseou nos trabalhos de

Ghosh (2019) e Ribeiro e Ferrari (2023), e consiste em replicar os métodos empregados nos

trabalhos citados, porém, considerando a distribuição de uma transformação na variável

resposta, aqui referida por y∗. Aqui nos limitaremos ao estimador decorrente do SMLE.

Assim, seja y ∼ B(µ,ϕ), considere y∗ como a transformação logito de y, ou seja, y∗ =
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logito(y) = log[y/(1− y)]. A PDF de y∗ é dada por

sθ(y
∗;µ,ϕ) =

1

B(µϕ, (1− µ)ϕ)

e−y∗(1−µ)ϕ

(1 + e−y∗)ϕ
,

=
Γ(ϕ)

Γ(µϕ)Γ((1− µ)ϕ)

e−y∗(1−µ)ϕ

(1 + e−y∗)ϕ
, y ∈ R.

A distribuição de y∗ é chamada de beta exponencial generalizada do segundo tipo (expo-

nential generalized beta of the second type; EGB) e escrevemos y∗ ∼ EGB(µ,ϕ) (MCDO-

NALD; XU, 1995). Ao contrário da distribuição beta convencional, a distribuição EGB é

fechada sob a transformação potência para todo y∗ no suporte da distribuição, pois

sθ(y
∗, µ, ϕ)ξ ∝ sθ(y

∗, µ, ϕξ),

para todo y∗ ∈ R, µ ∈ (0,1), ϕ > 0 e ξ > 0.

Sejam y∗t = log[yt/(1 − yt)], t = 1, . . . , n, onde cada yt é uma observação inde-

pendente obtida a partir do modelo de regressão beta com precisão variável definido em

(2.3.1), e sθ(y
∗, µt, ϕt) a PDF de y∗. A função Lq-verossimilhança referente à densidade

sθ(·, µt, ϕt), é dada por

ℓ†q(θ) =
n∑

t=1

Lq(sθ(y
∗
t ;µt;ϕt)), (4.2.1)

em que Lq(·) é a transformação definida em (4.1.1). Como já mencionado, a maximação da

função em (4.2.1) conduz a estimadores que não são Fisher-consistentes. Assim, conside-

rando que a famı́lia de distribuições EGB é fechada sob a transformação potência, estima-

dores Fisher-consistentes podem ser obtidos a partir da reparametrização τ−1
q (θ) = τ1/q(θ)

de ℓ†q(θ) . O LSMLE é obtido a partir da maximização da reparametrização da função

Lq-verossimilhança definida em (4.2.1), dada por

ℓ†∗q (θ) =
n∑

t=1

Lq(sτ1/q(θ)(y
∗
t ;µt;ϕt)) =

n∑
t=1

Lq(s
(1/q)
θ (y∗t ;µt;ϕt)).

em que s
1/q
θ (y∗t ;µt;ϕt) = sθ(y

∗
t ;µt;ϕt,q−1), para q ∈ (0,1), e µt e ϕt satisfazendo (2.2.1) e

(2.2.2), respectivamente. Para o caso não linear expresso em (2.3.1), os submodelos da

média e da precisão associados a um modelo de regressão beta modificado, que aqui será

denotado por s∗θ(y
∗
t ;µt;ϕt), são dados por

g∗µ(µt) = gµ(µt) = fµ(Xt;β) = ηµt,

g∗ϕ(ϕt) = gϕ(ϕt,q) = fϕ(Zt;γ) = ηϕt.
(4.2.2)
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e o LSMLE, que aqui será denotado por θ̃q, é obtido a partir da maximização da função

ℓ†∗q (θ) =
n∑

t=1

Lq(s
∗
θ(y

∗
t ;µt;ϕt)).

A equação de estimação associada ao processo de obtenção do LSMLE é

n∑
t=1

U †∗(y∗t ,θ)s
∗
θ(y

∗
t ;µt;ϕt)

1−q = 0, (4.2.3)

em que U †∗(y∗t ,θ) = ∇θlog [s
∗
θ(y

∗
t ;µt;ϕt)] é o vetor escore modificado para θ referente à

t-ésima observação, que para o caso não linear é dado por

U †∗(y∗t ,θ) =

(
ϕt
(yt

∗ − µt
∗)

g′µ(µt)

∂ηµt
∂β⊤ , q−1µt(y

∗
t − µ∗

t ) + (y†t − µ†
t)

g′ϕ(ϕt,q)

∂ηϕt
∂γ⊤

)⊤

,

Maluf, Ferrari e Queiroz (2025) demonstraram que o estimador θ̃q também é

Fisher-consistente para θ. Além disso, considerando que o LSMLE pertence à classe dos

M-estimadores, temos que θ̃q
a∼ N(θ, V2,q(θ)), em que

V2,q(θ)) = J2,q(θ)
−1K2,q(θ)

[
J2,q(θ)

−1
]⊤
, (4.2.4)

sendo

J2,q(θ) =
n∑

i=1

E
{
∇θ⊤

[
U †∗(y∗t ,θ)s

∗
θ(y

∗
t ;µt;ϕt)

1−q
]}

e

K2,q(θ) =
n∑

i=1

E
{
U †∗(y∗t ,θ)U

†∗(y∗t ,θ)
⊤s∗θ(y

∗
t ;µt;ϕt)

1−q
}
.

As expressões para as matrizes J2,q(θ) e K2,q(θ) para o modelo de regressão beta linear

são apresentadas por Maluf, Ferrari e Queiroz (2025), que também ressaltam que V2,q(θ) é

bem definida para todo α = 1−q ∈ [0,1), e que para α = 0 (q = 1) a matriz de covariâncias

assintóticas de θ̃q equivale à matriz de covariãncias assintóticas do MLE. Além disso, tem-

se que a IF do LSMLE é sempre limitada, o que implica que θ̃q é B-robusto. Também

não apresentaremos as matrizes J2,q(θ) e K2,q(θ) referentes aos modelos de regressão beta

não lineares. Conforme será detalhado adiante, foi utilizado outro método para obtenção

das estimativas dos erros padrão dos parâmetros do modelo.
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4.3 Estimativas iniciais

Ressalta-se que não é posśıvel explicitar ambos estimadores SMLE e LSMLE de

forma anaĺıtica, sendo necessário recorrer a métodos de otimização numérica, a exemplo

do BGFS (WRIGHT; NOCEDAL, 1999, p. 136, cap. 6), para maximizar as funções ℓ∗q(θ)

e ℓ†∗q (θ), respectivamente. Esses métodos exigem estimativas iniciais para que o processo

iterativo seja realizado. Dessa forma, sugerimos, para os modelos não lineares aqui propos-

tos, a obtenção desses valores iniciais a partir das estimativas de máxima verossimilhança

do modelo de regressão beta não linear detalhado na Subseção 2.3, utilizando como fµ e

fϕ em (2.3.1) as mesmas funções de ligação a serem utilizadas nos submodelos da média

e da precisão, respectivamente, dos ajustes sob os estimadores robustos.

Conforme será detalhado nas experimentações efetuadas nos estudos de simulação

e aplicações do Caṕıtulo 5, foram obtidos bons resultados na obtenção dos SMLEs e

LSMLEs ao gerar as estimativas iniciais a partir do modelo de regressão beta não linear

ajustado com o MLE.

4.4 Estimativas para os erros padrão via método bootstrap

Não obstante a possibilidade de obter as estimativas dos erros padrão de θ̂ =

(β̂⊤, γ̂⊤)⊤, nas estruturas de regressão em (2.3.1) por meio das matrizes de covariâncias

assintóticas do SMLE e LSMLE em (4.1.8) e (4.2.4), respectivamente, para este trabalho

optamos por calculá-las por meio de processo bootstrap.

O bootstrap consiste em uma abordagem computacional baseada em reamostra-

gem, que permite estimar a distribuição de uma estat́ıstica de interesse e realizar in-

ferências sobre ela, oferecendo uma alternativa prática e intuitiva para estimar erros

padrão, construir intervalos de confiança, obter vieses de estimadores, simular distri-

buições amostrais de estat́ısticas, entre outras finalidades (EFRON; TIBSHIRANI, 1994;

LIMA, 2017).

Desde sua proposição por Efron (1979), o método bootstrap consolidou-se como

uma técnica estat́ıstica versátil e poderosa, amplamente utilizada em diversas áreas do co-

nhecimento, se destacando por sua aplicabilidade em situações em que métodos estat́ısticos

tradicionais não são totalmente viáveis ou são dif́ıceis de implementar. Situações como

essas podem ocorrer, por exemplo, em cenários com tamanhos amostrais pequenos ou

quando não existem maiores informações sobre a real distribuição dos dados de interesse.

O procedimento utilizado para obtenção do erro padrão bootstrap é o descrito

no Algoritmo 1 (EFRON; TIBSHIRANI, 1994), com o o erro padrão de θ̂, denotado por
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ŜEboot(θ̂), dado por

̂SEboot(θ̂) =

√√√√ 1

B1 − 1

B1∑
b=1

(
θ̂(b) − θ̂

)2
,

em que B1 é a quantidade de réplicas de θ̂ geradas e θ̂ =
(∑B1

b=1 θ̂
(b)
)
/B1. Observe que

aqui não está sendo feita nenhuma suposição sobre a distribuição de θ̂. Com base em

estudos e simulações efetuadas, Efron e Tibshirani (1994) mostram que para a maioria

dos casos uma quantidade B1 = 200 réplicas é suficiente para se alcançar bons resultados.

Algoritmo 1 Cálculo do erro padrão dos estmadores via bootstrap

Entrada: Vetor y contendo as n realizações da variável resposta, quantidade B1 de rea-
mostragens de y, vetores de estimativas β̂ e γ̂ e matrizes de covariáveis X e Z
utilizadas no ajuste do modelo.

para b = 1 até B1 faça
gere uma réplica y(k) da resposta a partir do modelo postulado utilizando as
estimativas originais β̂ e γ̂ para os parâmetros β, γ, respectivamente.
Estime θ̃(k) = (β̃(k), γ̃(k)) com base em y(k).
Armazene θ̃(k).

fim para
Calcule o erro padrão amostral de θ̂ = (β̂, γ̂) com base nas B1 estimativas θ̃(k)

por meio da formula

̂SEboot(θ̂) =

√√√√ 1

B1 − 1

B1∑
k=1

(
θ̃(k) − θ̃

)2
.

Sáıda: Vetor ̂SEboot(θ̂) contendo os erros padrão bootstrap dos componentes de θ.

4.5 Teste de hipóteses robusto

Além das estimações pontuais discutidas nas Seções anteriores, também é impor-

tante avaliar os coeficientes de regressão dos modelos para, considerando a amostra em

estudo, avalair se as covariáveis são relevantes para explicar o comportamento da variável

resposta. Para essa finalidade, usualmente são utilizados testes de hipóteses baseados na

função de verossimilhança e que dependem do processo de estimação por máxima veros-

similhança. Entretanto, é esperado que, sob contaminação nos dados, testes de hipóteses

baseados no MLE também sejam senśıveis observações at́ıpicas e, portanto, tenham o seu

desempenho prejudicado.
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Seguindo as ideias do trabalho de Heritier e Ronchetti (1994), Ribeiro e Ferrari

(2023) propuseram um teste de hipóteses robusto baseado na estat́ıstica de Wald para o

modelo de regressão beta em estudo. A nova estat́ıstica de teste, referida por estat́ıstica

tipo-Wald, é obtida a partir da mesma fórmula da estat́ıstica de Wald, porém com a

substituição do MLE e do correspondente erro padrão (standard error ; SE) pelo SMLE e

por seu SE assintótico obtido a partir da matriz de covariâncias em (4.1.8).

Sejam θ = (θ1, . . . , θp)
⊤ o vetor de parâmetros, θ̂q = (θ̂1q, . . . , θ̂pq)

⊤ o vetor

das respectivas estimativas, e θ(0) = (θ
(0)
1 · · · , θ(0)p )⊤ um vetor de valores dados, segundo

Ribeiro e Ferrari (2023), o teste referente a um único parâmetro considera as hipóteses

H0 : θk = θ
(0)
k contra H1 : θk ̸= θ

(0)
k , 1 ≤ k ≤ p, e a correspondente estat́ıstica do teste

tipo-Wald é definida por

W0,q =
(θ̂kq − θ

(0)
k )2

SE
(
θ̂kq

)2 , (4.5.1)

em que θ̂kq é a estimativa de θk e SE
(
θ̂kq

)
é o erro padrão assintótico obtido a par-

tir da matriz de covariâncias assintóticas expressa em (4.1.8). Maluf, Ferrari e Queiroz

(2025) utilizam a mesma estat́ıstica para testar coeficientes da regressão sob o LSMLE,

porém substituindo o MLE e o correspondente SE pelo LSMLE e seu SE assintótico

obtido a partir da matriz de covariâncias em (4.2.4). Sob H0 e condições usuais de regu-

laridade, mostra-se que a estat́ıstica do teste em (4.5.1) possui distribuição aproximada

qui-quadrado com 1 grau de liberdade (W0,q
a∼ χ2

1). Nesse sentido, considerando um ńıvel

de significância α, rejeitamos H0 em favor de H1 quando a estat́ıstica W0,q for maior

do que o quantil de ordem (1 − α) da distribuição χ2
1, ou seja, se W0,q ≥ χ2

1,1−α, com

P(χ2
1 ≤ χ2

1,1−α) = 1− α.

Entretanto, a utilização do erro padrão bootstrap pode tornar inadequada a uti-

lização da distribuição assintótica da estat́ıstica original do teste tipo-Wald, expressa em

(4.5.1). Dessa forma, o p-valor do teste de hipóteses robusto tratado na Subseção 4.5 foi

obtido por meio da distribuição emṕırica da citada estat́ıstica, gerada também via boots-

trap a partir do processo detalhado no Algoritmo 2 a seguir. A partir desse processo foi

posśıvel obter estimativas para os p-valores referentes ao teste tipo-Wald. Observe que,

para esse caso, também não está sendo feita qualquer suposição em relação a distribuição

de estat́ıstica W0,q. Com base em Efron e Tibshirani (1994) e Efron (1992), foram utili-

zados os valores B1 = 200 e B2 = 500 para as contantes necessárias para inicialização do

Algoritmo 2.
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Algoritmo 2 Cálculo do p-valor via Bootstrap do teste de hipóteses tipo-Wald

Entrada: Número de réplicas B2 da estat́ıstica tipo-Wald, número B1 de reamostragens
para obtenção do erro padrão, vetores de estimativas β̂ e γ̂ e seus respectivos

erros padrão ̂SEboot(β̂) e ̂SEboot(γ̂), vetor y de realizações da variável resposta
e matrizes de covariáveis X e Z.

Calcule as estat́ısticas tipo-Wald observadas:

W obs
β =

 β̂ − β(0)

̂SEboot(β̂)

2

, W obs
γ =

(
γ̂ − γ(0)

̂SEboot(γ̂)

)2

.

para j = 1 até B2 faça
Gere uma réplica y(j) da variável resposta a partir do modelo postulado, porém
sob a hipótese nula, ou seja, utilizando θ(0) = (β(0)⊤ ,γ(0)⊤)⊤, β(0)⊤ = (0, . . . , 0)⊤

∈ Rp1 e γ(0)⊤ = (0, . . . , 0)⊤ ∈ Rp2 .

Estime θ̂(j) = (β̂(j), γ̂(j)) com base em y(j).
Armazene θ̂(j).
para k = 1 até B1 faça

Gere nova réplica y(j,k) da resposta a partir do modelo postulado, porém utili-
zando os vetores β̂(j), γ̂(j) para os parâmetros β, γ, respectivamente.
Estime θ̂(j,k) = (β̂(j,k), γ̂(j,k)) com base em y(j,k).
Armazene θ̂(j,k).

fim para
Obtenha o erro padrão amostral de θ̂(j) = (β̂(j), γ̂(j)) com base nas B1 estima-
tivas θ̂(j,k) por meio da formula

̂SEboot(θ̂)(j) =

√√√√ 1

B1 − 1

B1∑
k=1

(
θ̂(j,k) − θ̂(j)

)2
.

Calcule as réplicas das estat́ısticas tipo-Wald observadas:

W
(j)
β =

 β̂(j)

̂SEboot(β̂(j))

2

, W (j)
γ =

(
γ̂(j)

̂SEboot(γ̂(j))

)2

.

fim para
Para cada β e γ, calcular o p-valor bootstrap:

pβ =
1

B2

B2∑
j=1

I
(
Wβ >W obs

β

)
, pγ =

1

B2

B2∑
j=1

I
(
Wγ >W obs

γ

)
,

em que I é a função indicadora, e Wβ e Wγ são os vetores contendo as B2

réplicas das estat́ısticas tipo-Wald correspondentes a β e γ respectivamente.
Sáıda: Vetores pβ ∈ Rp1 e pγ ∈ Rp2 com os p-valores bootstrap referentes aos compo-

nentes dos parâmetros β e γ, respectivamente.
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4.6 Constante de afinação

Vimos nas seções anteriores que as equações de estimação associadas ao SMLE e

LSMLE, dadas por (4.1.6) e (4.2.3), respectivamente, dependem diretamente da definição

de um valor para a constante de afinação, denotada nessas equações pela letra q, tal que

q ∈ (0,1]. Tal constante é de suma importância para o processo de estimação, pois seu

valor controla o balanceamento entre eficiência assintótica e robustez dos estimadores.

Desse modo, valores menores para q privilegiam a robustez do estimador em detrimento

da eficiência.

A escolha de um valor ótimo para q constitui um problema adicional no processo

de estimação, considerando a sua importância e o fato de que este deve ser fixado a priori.

LA VECCHIA, Camponovo e Ferrari (2015) sugerem utilizar um valor para q que seja mais

próximo de 1, ou seja, de modo que o estimador obtido fique próximo ao MLE convencional

para que as estimativas dos parâmetros sejam suficientemente estáveis na presença de

contaminação e proporcionem eficiência completa na ausência de contaminação nos dados.

Nos trabalhos de Ghosh e Basu (2016) e Ghosh (2019), por exemplo, a escolha de um

valor para q é sugerida com base em estudos de simulação e comparações dos valores

das estimativas dos parâmetros de regressão para diferentes valores da constante, todos

próximos de 1.

Ribeiro e Ferrari (2023) propuseram um método orientado a dados baseado na

proposta de LA VECCHIA, Camponovo e Ferrari (2015), porém utilizando uma padro-

nização das estimativas, objetivando remover o efeito do tamanho amostral e da magnitude

das estimativas de parâmetros distintos. Esse método tem se mostrado bastante eficaz e

foi utilizado com sucesso para seleção da constante de afinação em outros trabalhos que

envolvem regressão robusta, tais como Queiroz (2022) e Maluf, Ferrari e Queiroz (2025).

Neste trabalho, propomos uma adaptação ao método de seleção introduzido por

Ribeiro e Ferrari (2023), objetivando dar estabilidade ao processo de seleção da constante

de afinação. No algoritmo original, a medida utilizada para definição do critério de parada

do procedimento, o vetor de variações quadráticas padronizadas (standardized quadratric

variations ; SQV), é padronizada pela variabilidade das estimativas dos parâmetros, sendo

utilizado o erro padrão assintótico para tanto. Conforme detalhado na Subseção 4.4, para

este trabalho o erro padrão será obtido por meio do processo de bootstrap detalhado no

Algoritmo 1, e a sua utilização no método de seleção original poderia resultar na obtenção

de diferentes valores de q para um mesmo conjunto de dados caso não seja utilizada uma

semente para a reprodutibilidade do processo computacional, o que não é desejável. Além

disso, a mudança tornou o processo computacional mais rápido e eficiente, reduzindo

consideravelmente a quantidade de cálculos necessários e, consequentemente, o tempo

total de execução.
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A adaptação proposta consiste em substituir a medida SQV pela norma euclidiana

dos vetores das estimativas dos parâmetros (euclidian norm of the parameter estimate

vectors ; ENPEV), dada por

ENPEVqk =
∥∥∥θ̂qk − θ̂qk+1

∥∥∥ , (4.6.1)

em que θ̂qk = (θ̂1qk , . . . , θ̂
p
qk
), e qk é o k-ésimo valor testado para a constante de afinação

q. A k-ésima estimativa do vetor de parâmetros será considerada suficientemente estável

se o valor da ENPEV for menor do que o produto entre uma constante B pré-fixada e a

mediana dos valores da medida ENPEV obtidos no passo inicial do algoritmo. Observe

que, dessa forma, sempre obteremos um critério de parada relativo à magnitude das

estimativas dos parâmetros, tornando desnecessário utilizar o erro padrão para padronizar

essas estimativas. Portanto, seja θ = (θ1, θ2, . . . ,θp)
⊤, p = p1+ p2, o vetor dos parâmetros

a serem estimados e qk, k = 1, · · · ,m, os m valores a serem atribúıdos para a constante

de afinação q, então o método proposto segue os passos descritos no Algoritmo 3, a seguir.

Observa-se que o Algoritmo 3, recomendado para seleção da constante de afinação

para ambos os estimadores robustos tratados neste trabalho, escolhe um valor ótimo para

q que seja o mais próximo posśıvel de 1 ou, caso a estabilidade não seja alcançada,

escolhe q = 1 e o estimador resultante será o MLE. Quanto às contantes necessárias como

entrada para o Algoritmo 3, foram utilizadas as sugestões de Ribeiro e Ferrari (2023) para

considerar o tamanho das grades em m = 3 (exceto na primeira execução do algoritmo),

valor mı́nimo de q em qmin = 0,5 e o espaçamento da grade em 0,02. Observe que essa

configuração, em especial o valor sugerido para o qmin, garante a escolha de um valor

ótimo para q que seja mais próximo de 1 do que de 0, o que privilegia a estabilidade

e a AE do estimador. Em relação à constante B a ser utilizada para cálculo do valor

limitante da condição de estabilidade, a partir de experimentos com amostras simuladas

sugerimos utilizar o valor B = 2,1. Observe que a adaptação aqui proposta manteve uma

das principais caracteŕısticas do método, que é a seleção da constante q com base nos

próprios dados a serem utilizados no ajuste do modelo de regressão.

4.7 Implementação computacional

Todos os cálculos e avaliações numéricas relacionadas às estimações dos parâmetros

dos modelos, bem como os gráficos gerados ao longo desse trabalho, foram realizados

com suporte computacional utilizando a linguagem de programação R e o software es-

tat́ıstico de mesmo nome, em sua versão 4.4.0. O software R (R Core Team, 2024) é de

domı́nio público e está dispońıvel gratuitamente para download no endereço eletrônico

http://www.r-project.org/.
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Algoritmo 3 Seleção do valor ótimo para a constante de afinação q

Entrada: Conjunto de dados para o qual se pretende ajustar o modelo, multiplicador
B = 2,1 para condição de estabilidade, tamanho m = 3 das grades a partir da segunda
grade, valor mı́nimo qmin = 0,5 da constante de afinação e espaçamento s = 0,02 dos
valores da grade

Defina uma grade ordenada de forma decrescente de valores para q que sejam igualmente
espaçados com distância s entre si, ou seja, q0 > q1 > q2 > · · · > qm1 , tal que q0 = 1, e
qm1 = 0,8
repita

para cada qk na grade faça
Calcule as estimativas dos parâmetros obtendo θ̂qk = (θ̂1

qk
, · · · , θ̂p

qk
)

Calcule o vetor das medidas ENPEV, conforme definido em (4.6.1)
fim para
se grade inicial então

Obtenha a mediana dos valores do vetor de medidas ENPEV obtido no passo
anterior, aqui denotada por med(ENPEV)

fim se
se todas as ENPEVqk < B ∗med(ENPEV) então

Defina q∗ = max
qm<qk<q0

(qk)

Pare
senão

Identifique o menor qk tal que ENPEVqk ≥ B ∗med(ENPEV)
Defina qstart como o próximo ponto na grade após o qk definido no passo anterior
Construa nova grade decrescente com m novos valores para q com espaçamento
s entre si a partir de qstart

fim se
até a estabilidade ser alcançada, ou seja, todas as ENPEVqk < B ∗ med(ENPEV) ou
qstart = qmin

se qstart = qmin, significa que a estabilidade não foi alcançada então
Defina q∗ = 1

fim se

Sáıda: Valor ótimo da constante de afinação q: q∗

Estudos de simulação com diferentes cenários, e aplicações a dados simulados

e reais foram realizadas para ilustrar a aplicabilidade da metodologia que está sendo

proposta neste trabalho. Para tanto, os processos de obtenção dos estimadores SMLE e

LSMLE foram implementados computacionalmente por meio de adaptações efetuadas nas

funções e métodos disponibilizados na biblioteca robustbetareg (QUEIROZ; MALUF,

2022) do software R. A biblioteca robustbetareg permite obter diretamente os referidos

estimadores para a regressão beta linear, sendo que as adaptações visaram adequar os

cálculos para contemplar as estruturas de regressão com as formas não lineares utilizadas

neste trabalho para o modelo de regressão beta.

Além disso, para viabilizar a comparação dos referidos estimadores com métodos
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não robustos, foi efetuada a implementação computacional do processo de estimação via

o MLE descrito na Subseção 2.3, contemplando as mesmas estruturas não lineares de

regressão utilizadas para o SMLE e LSMLE sob o modelo beta não linear.

Conforme já mencionado nas Subseções 4.4 e 4.5, as estimativas dos erros padrão

dos coeficientes e a distribuição da estat́ıstica do teste tipo-Wald, respectivamente, foram

obtidas por meio de processos bootstrap. Assim, foi efetuada a implementação computa-

cional dos procedimentos detalhados nos Algoritmos 1 e 2.

Para a realização dos estudos de simulação que serão apresentados na Subseção

5.1 e para a aplicação com dados simulados em 5.2.1 foram utilizados processos bootstrap

paramétricos para geração das réplicas das amostras utilizadas para ajuste dos modelos de

regressão beta não lineares robustos avaliados. Para esses casos as réplicas de Monte Carlo

foram geradas partindo do pressuposto de que a variável resposta possui distribuição beta

na forma espressa em (2.3.1).

Os códigos em R, o conjunto de dados utilizado e os resultados obtidos nesse

trabalho estão dispońıveis em repositório Github1. Por meio do material disponibilizado

no repositório é posśıvel reproduzir os estudos de simulação e as aplicações aqui efetuadas,

bem como utilizar as implementações efetuadas para outros estudos e análises de dados.

1Dispońıvel em: ⟨https://github.com/eddusousa/nlrobustbetareg⟩.

https://github.com/eddusousa/nlrobustbetareg
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5 Resultados e discussões

5.1 Estudos de simulação

Para avaliar o desempenho e comparar os modelos de regressão beta não lineares

sob os estimadores MLE, SMLE e LSMLE, foram realizados estudos de simulação de

Monte Carlo baseados em 1000 réplicas e considerando amostras com e sem contaminação

nos dados. Os tamanhos amostrais considerados são n = 40, 80, 160, e 320. Os valores

das covariáveis foram obtidos para o tamanho amostral n = 40 e replicados duas, quatro e

oito vezes para obter as matrizes de covariáveis correspondentes aos tamanhos amostrais

n = 80, 160 e 320, respectivamente. Segundo Espinheira, Santos e Cribari-Neto (2017),

esse método garante que o grau de heteroscedasticidade seja constante para todos os

tamanhos amostrais. Em todos os cenários foram consideradas como ligação as funções

logito nos submodelos da média e logaŕıtmica para os submodelos da precisão sob as

estrutura de regressão apresentadas em (2.3.1). Todos os submodelos contêm interceptos

e as covariáveis são obtidas a partir de variáveis aleatórias com distribuição uniforme

padrão e mantidas constantes ao longo das amostras simuladas. Para o cenário com

precisão variável, a mesma covariável é utilizadas no submodelo da média e precisão. A

porcentagem de contaminação na amostra para todos os cenários foi fixada em 5%. A

seleção da constante de afinação q para os modelos sob os estimadores SMLE e LSMLE

foi efetuada utilizando o Algoritmo 3 para seleção. Além disso, em todos os cenários

foi aplicada a função exponencial nos termos correspondentes à variável explicativa dos

submodelos da média para obtenção da estrutura não linear de regressão, resultando na

forma

gµ(µt) = β1 + eβ2xt1 .

No cenário de precisão variável foi considerada uma estrutura de regressão linear para o

submodelo da precisão. Além disso, distintas configurações dos valores dos parâmetros

e diferentes padrões de contaminação nos dados foram considerados para cada um dos

quatro cenários.

Para cada cenário simulado, o experimento consistiu nos seguintes passos:

Passo 1. Foram geradas amostras considerando o modelo de regressão beta não

linear especificado para o cenário.

Passo 2. Os dados foram contaminados conforme padrão descrito em cada cenário,

de modo que para cada uma das réplicas de Monte Carlo foi obtida uma versão

sem contaminação e outra contaminada.
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Passo 3. Foram ajustados modelos de regressão beta não lineares sob os três

estimadores considerados para a amostra contaminada e não contaminada de

cada uma das réplicas.

Passo 4. Por meio de análises numéricas e gráficas dos erros e dos valores das

estimativas, efetuou-se uma comparação dos resultados dos modelos descritos no

Passo 3.

Os cenários considerados estão descritos a seguir.

Cenário 1: Modelo de regressão beta não linear com precisão variável e valores da

média da variável resposta próximos a 0,85. Os valores dos parâmetros foram fixados em

β1 = −1,7, β2 = 1,2, γ1 = 2,5 e γ2 = 3,5, de modo que, para as amostras geradas, as

médias de µ e ϕ ficaram próximas a 0,80 e 110, respectivamente. A amostra contaminada

substitui as observações geradas com as 5% maiores médias da resposta por observações

geradas a partir de um modelo de regressão beta com média µ′
t = (2− 1,5µt)/2 e precisão

ϕt. Por exemplo, se µt ≈ 0,85, então µ′
t ≈ 0,36.

Cenário 2: Modelo de regressão beta não linear com precisão constante e valores da

média da variável resposta por volta de 0,75. Os valores dos parâmetros foram fixados

em β1 = −1,0, β2 = 1,0 e γ1 = 6,5, de modo que para as amostras geradas as médias de

µ ficaram próximas a 0,80 e ϕ ficou igual a 665. A amostra contaminada substitui 5%

das observações, sendo 2,5% das observações geradas com os maiores valores de µ e 2,5%

daquelas com os menores valores de µ. A contaminação é gerada por meio de um modelo

de regressão beta com precisão ϕ e média µ
(1)
t = a1ct/(1 + a1ct) e µ

(2)
t = a2ct/(1 + a2ct),

respectivamente, em que ct = µt/(1 − µt), a1 = 0,2 e a2 = 2,4. Assim, se se µt ≈ 0,75,

então µ
(1)
t ≈ 0,38 e µ

(2)
t ≈ 0,88.

Cenário 3: Modelo de regressão beta não linear com precisão constante e valores da

média da variável resposta próximos a 0,4. Os valores dos parâmetros foram fixados em

β1 = −1,0, β2 = −1,4 e γ1 = 6,0, de modo que para as amostras geradas as médias de

µ ficaram próximas a 0,39 e ϕ ficou igual a 403. A amostra contaminada substitui as

observações geradas com as 5% menores médias da resposta por observações geradas a

partir de um modelo de regressão beta com média µ′
t = (2− 1,7µt)/2 e precisão ϕ. Nesse

caso, se µt ≈ 0,4, então µ′
t ≈ 0,66.

Cenário 4: Modelo de regressão beta não linear com precisão constante e valores da

média da variável resposta próximos a 0.8. Os valores dos parâmetros foram fixados

em β1 = −1,7, β2 = 1,2 e γ1 = 4,7, de modo que para as amostras geradas as médias

de µ ficaram próximas a 0,8 e ϕ ficou igual a 110. A amostra contaminada substitui

as observações geradas com as 5% maiores médias da resposta por observações geradas a

partir de um modelo de regressão beta com média µ′
t = (2−2µt)/2 e precisão ϕ. Portanto,

se µt ≈ 0,8, então µ′
t ≈ 0,2.
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A Figura 3 ilustra as diferentes formas de contaminação descritas acima para

os 4 cenários, considerando uma única amostra de tamanho 80, em que as observações

contaminadas estão destacadas em vermelho.

Figura 3: Ilustração dos quatro padrões de contaminação utilizados para uma amostra de tamanho
n = 80. Os pontos em vermelho correspondem às observações contaminadas introduzidas na amostra.

Na Tabela 1 são feitas comparações da eficiência dos estimadores por meio das

razões entre os erros quadráticos médios totais (total mean squared errors ; TMSE) do

MLE, SMLE e LSMLE sob os cenários considerados. Observa-se que para os dados não

contaminados, a eficiência dos três estimadores é igual a 1 na maioria dos casos e próximas

desse valor nos demais, indicando similaridade nos ajustes, conforme esperado. Isto indica

que a escolha ótima da constante q na ausência de contaminação está funcionando. Já

nos casos onde há contaminação, constata-se que os estimadores robustos são muito mais

eficientes do que o MLE, uma vez que seus TMSEs são consideravelmente menores. Em

em todos os cenários essa discrepância tende a aumentar conforme se aumenta o tamanho

amostral. Por exemplo, considerando o Cenário 2, o TMSE é cerca de de 79 vezes maior do

que os TMSEs do SMLE e do LSMLE para as amostras com 40 observações. Nesse mesmo

cenário, essa razão aumenta para aproximadamente 162, 326 e 612 para os tamanhos
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amostrais 80, 160 e 320, respectivamente. Além disso, observa-se que apenas sob o Cenário

1 tivemos diferença de desempenho entre o SMLE e LSMLE, ainda que pequena.

Tabela 1: Razão entre os TMSEs das estimativas sob os Cenários 1, 2, 3 e 4.

Cenário 1 Cenário 2

Sem contaminação Com contaminação Sem contaminação Com contaminação

n
MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

40 0,92 0,91 0,99 9,20 8,17 0,89 0,98 0,98 1,00 78,83 78,77 1,00

80 0,99 0,99 1,00 23,76 22,73 0,96 0,99 0,99 0,99 161,58 161,78 1,00

160 1,00 1,00 1,00 56,80 56,01 0,99 0,98 1,00 1,00 325,70 325,25 1,00

320 1,00 1,00 1,00 117,78 116,37 0,99 1,00 1,00 1,00 612,75 612,39 1,00

Cenário 3 Cenário 4

Sem contaminação Com contaminação Sem contaminação Com contaminação

n
MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

MLE
SMLE

MLE
LSMLE

SMLE
LSMLE

40 0,99 0,99 1,00 65,92 65,93 1,00 0,97 0,97 1,00 54,72 54,75 1,00

80 1,00 1,00 1,00 134,08 134,01 1,00 1,00 1,00 1,00 111,73 112,17 1,00

160 1,00 1,00 1,00 295,81 295,99 1,00 1,00 1,00 1,00 246,64 247,63 1,00

320 1,00 1,00 1,00 592,24 592,91 1,00 1,00 1,00 1,00 512,43 513,67 1,00

Nas Figuras 4, 5, 6 e 7 são apresentados os boxplots das estimativas dos parâmetros

utilizando o MLE, SMLE e LSMLE sob os Cenários 1, 2, 3 e 4, respectivamente, para os

dados na presença e ausência de contaminação. Na ausência de contaminação os estima-

dores possuem desempenho praticamente idêntico, e isto se deve ao método de escolha da

constante selecionar q = 1 na grande maioria das vezes. Para todos os cenários observa-se

que as estimativas dos parâmetros sob o MLE foram fortemente influenciadas pela con-

taminação introduzida nas amostras, gerando estimativas bastante divergentes dos ver-

dadeiros valores desses parâmetros. Entretanto, nota-se que os estimadores robustos tem

desempenhos nas amostras contaminadas bastante próximos aos do MLE nas amostras

sem contaminação, indicando que os processos robustos de estimação funcionaram bem

em todos os cenários simulados. Inclusive, percebe-se que as medianas das estimativas

robustas nas amostras contaminadas ficaram todas centradas em torno dos verdadeiros

valores dos parâmetros, porém, essa robustez é alcançada às custas de uma maior variabili-

dade das estimativas, situação que se acentua para os menores tamanhos amostrais. Além

disso, verifica-se que, de uma forma geral, o SMLE e o LSMLE apresentam desempenhos

muito próximos em todas as situações, conforme já era esperado.

Na Figura 8 são utilizados boxplots para ilustrar a distribuição dos valores esco-

lhidos, via algoritmo de seleção, para a constante de afinação q para o SMLE e LSMLE

em todos os cenários. É posśıvel verificar que o processo de seleção das constantes de

afinação funcionou de forma adequada, uma vez que os valores ótimos de q ficaram iguais

a 1 para a grande maioria das amostras sem contaminação, resultando no próprio MLE e

garantindo eficiência assintótica total. Em contrapartida, nas amostras contaminadas fo-

ram selecionados, quase na totalidade das réplicas, valores diferentes de 1 para a constante

q, resultando em estimadores robustos. Nesses casos os valores de q ficaram centrados em
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Figura 4: Boxplots das estimativas dos parâmetros β1, β2, γ1 e γ2 sob o Cenário 1: MLE (esquerda),
SMLE (centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do

parâmetro.

0,84, 0,94 nos Cenários 1 e 3, respectivamente, e em 0,92 nos Cenários 2 e 4.
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Figura 5: Boxplots das estimativas dos parâmetros β1, β2 e γ1 sob o Cenário 2: MLE (esquerda), SMLE
(centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do parâmetro.

5.2 Aplicações

Para complementar a avaliação efetuada nos estudos de simulação e melhor ilus-

trar a aplicabilidade dos modelos de regressão beta não lineares robustos propostos neste

trabalho, foram realizadas, ainda, duas aplicações, sendo uma com dados simulados e ou-

tra com dados reais. Para todos os modelos ajustados sob os estimadores SMLE e LSMLE,

a seleção da constante de afinação q foi efetuada utilizando o Algoritmo 3, e foram con-

sideradas como ligação as funções logito nos submodelos da média e logaŕıtmica para os

submodelos precisão nas estruturas em (2.3.1). Além disso, para fins de diagnóstico dos

modelos foram utilizados, também em todos os casos, os reśıduos quantis aleatorizados

introduzidos por Dunn e Smyth (1996). Para os testes de hipóteses aplicados, a me-

nos que expressamente indicado o contrário, está sendo considerado um ńıvel de 5% de

significância.
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Figura 6: Boxplots das estimativas dos parâmetros β1, β2 e γ1 sob o Cenário 3: MLE (esquerda), SMLE
(centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do parâmetro.

5.2.1 Aplicação com dados simulados

Para esta aplicação foram geradas 4 amostras de tamanhos n = 40, 80, 160, e

320, considerando o modelo de regressão beta não linear com precisão constante

gµ(µt) = β1 + xβ2

t1 ,

gϕ(ϕ) = γ1,
(5.2.1)

em que xt1 é valor da covariável associada ao submodelo da média para a t-ésima ob-

servação. Os valores dos parâmetros foram fixados em β1 = −0,6, β2 = 0,8 e γ1 = 3,9,

de modo que para as amostras geradas as médias de µ ficaram próximas a 0,50 e ϕ é

igual a 49,4. A forma não linear para o submodelo da média em (5.2.1) foi utilizada

anteriormente por Espinheira, Santos e Cribari-Neto (2017).

Os dados foram gerados de forma que para cada uma das amostras foi obtida uma
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Figura 7: Boxplots das estimativas dos parâmetros β1, β2 e γ1 sob o Cenário 4: MLE (esquerda), SMLE
(centro) e LSMLE (direita). A linha tracejada em vermelho representa o verdadeiro valor do parâmetro.

versão sem contaminação e outra contaminada. As amostras contaminadas substituem 5%

das observações, sendo 2,5% das observações geradas com os maiores valores de µ e 2,5%

daquelas com os menores valores de µ. A contaminação é gerada por meio de um modelo

de regressão beta com precisão ϕ e média µ
(1)
t = a1ct/(1 + a1ct) e µ

(2)
t = a2ct/(1 + a2ct),

respectivamente, em que ct = µt/(1 − µt), a1 = 0,1 e a2 = 15. Assim, se se µt ≈ 0,50,

então µ
(1)
t ≈ 0,09 e µ

(2)
t ≈ 0,94. Observe que esta configuração é similar à do Cenário 2 da

simulação, onde a contaminação ocorre em ambos os extremos do intervalo considerado

para a variável resposta.

A exemplo do procedimento adotado nos estudo de simulação, para garantir esta-

bilidade no grau de heteroscedasticidade, os valores das covariáveis foram obtidos para o

tamanho amostral n = 40 e replicados duas, quatro e oito vezes para obter as matrizes de

covariáveis correspondentes aos demais tamanhos amostrais. A Figura 9 ilustra as amos-

tras utilizadas para os 4 tamanhos amostrais destacando as observações contaminadas,

que estão em vermelho.
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Figura 8: Boxplots dos valores ótimos para a constante de afinação q para o SMLE (esquerda), e
LSMLE (direita), sob os cenários 1 (primeira linha), 2 (segunda linha), 3 (terceira linha) e 4 (quarta

linha)).

Foram ajustados modelos de regressão beta não lineares com precisão constante

sob os três estimadores considerados para os dados com e sem contaminação em todos
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Figura 9: Gráfico de dispersão das amostras geradas para a aplicação. Os pontos em vermelho
correspondem às observações contaminadas introduzidas na amostra.

os tamanhos amostrais. A Figura 10 apresenta o diagrama de dispersão da variável ex-

plicativa usada no submodelo da média versus a variável resposta contaminada para as

4 amostras geradas, juntamente com as respectivas curvas ajustadas sob o MLE para os

dados contaminados e não contaminados e sob o SMLE e LSMLE para os dados contami-

nados. A partir destes gráfiicos é percept́ıvel o quanto as observações at́ıpicas introduzidas

conduzem a mudanças significativas nas curvas de regressão ajustadas, ocasionando, nesse

caso, uma inversão de sentido na relação entre as variáveis. No entanto, os ajustes sob

o SMLE e LSMLE produzem curvas de regressão bem ajustadas e praticamente indis-

tingúıveis entre si e também quando comparadas à curva ajustada sob o MLE para as

amostras não contaminadas. Além disso, todos os ajustes sob os estimadores robustos

nas amostras sem contaminação conduziram ao valor q = 1 para a constante de afinação,

resultando no MLE.

A Tabela 2 elenca os valores das estimativas dos parâmetros, erros padrão, es-

tat́ısticas tipo-Wald e respectivos p-valores obtidos via bootstrap para os modelos ajustados

sob o MLE. Observa-se que, a exemplo do que já havia sido identificado na análise gráfica
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Figura 10: Gráfico de dispersão das amostras contaminadas geradas para a aplicação e as curvas
ajustadas para cada cenário considerado.

anterior, as estimativas sob o MLE ficaram desproporcionalmente influenciadas pela con-

taminação introduzida nos dados, resultando em estimativas relativamente distantes dos

valores reais dos parâmetros em todos os casos. Nota-se, inclusive, estimativas com si-

nal invertido para o coeficiente associado à covariável do submodelo da média. Além

disso, os p-valores referentes aos testes tipo-Wald efetuados para avaliar a significância do

parâmetro associado à covariável ficaram mais altos nos tamanhos amostrais de 40, 80 e

160 dos dados contaminados. No caso das amostras de 40 e 160 observações, caso seja

considerado um ńıvel de significância de 5%, por exemplo, a conclusão do teste seria de

não significância desse coeficiente de regressão. Diante desses achados e considerando os

valores reais dos parâmetros e as estimativas para os dados não contaminados, percebe-se

uma inadequação do ajuste sob o MLE quando existe contaminação nas amostras.

Na Tabela 3 são relacionados valores obtidos para as estimativas dos parâmetros,

erros padrão, estat́ısticas tipo-Wald e respectivos p-valores obtidos via bootstrap para os

modelos ajustados sob o SMLE e LSMLE nas amostras contaminadas. Comparando os

valores das estimativas dos coeficientes de regressão com os obtidos para o MLE nas
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Tabela 2: Estimativas, erros-padrão bootstrap, estat́ısticas w e valores-p bootstrap para regressão beta
não linear com precisão constante ajustada com o MLE nas amostras com e sem contaminação.

Amostra de 40 obs.
Sem contaminação Com contaminação

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,587 0,110 28,490 - −1,087 0,251 18,726 -
Covariável 0,831 0,395 4,437 0,036 −0,027 25,831 0,000 0,860

submodelo da precisão
Intercepto 4,157 0,267 242,439 - 2,353 0,218 117,012 -

Amostra de 80 obs.
Sem contaminação Com contaminação

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,585 0,087 45,033 - −1,236 0,092 179,084 -
Covariável 0,911 0,310 8,635 < 0,002 −0,098 0,051 3,716 0,012

submodelo da precisão
Intercepto 4,166 0,158 695,766 - 2,520 0,158 256,956 -

Amostra de 160 obs.
Sem contaminação Com contaminação

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,558 0,054 106,142 - −1,083 0,067 260,321 -
Covariável 0,929 0,190 23,910 < 0,002 −0,067 0,045 2,202 0,068

submodelo da precisão
Intercepto 3,929 0,114 1189,219 - 2,414 0,104 537,649 -

Amostra de 320 obs.
Sem contaminação Com contaminação

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,546 0,048 129,317 - −1,147 0,037 944,503 -
Covariável 1,065 0,194 30,221 < 0,002 −0,086 0,023 14,155 < 0,002

submodelo da precisão
Intercepto 3,839 0,075 2641,484 - 2,532 0,078 1058,767 -

amostras não contaminadas constantes da Tabela 2, verifica-se uma boa adequação do

SMLE e LSMLE aos dados após contaminação. Inclusive os valores das estimativas fica-

ram próximos dos valores reais dos parâmetros usados na geração das amostras, mesmo

para os menores tamanhos amostrais, e apresentam tendência de se aproximar ainda mais

desses valores quanto maior for a amostra utilizada. Os valores obtidos para a constante

de afinação q nas amostras contaminadas sob o SMLE foram 0,92 para o tamanho amos-

tral 40, 0,90 para os tamanhos 80 e 160, e 0,88 para a amostra de 320 observações. Sob o

LSMLE os valores selecionados para q foram 0,92 para as amostras de 40 e 80 observações

e 0,90 para as amostras de tamanho 160 e 320. No caso das amostras sem contaminação,

os ajustes dos modelos sob os métodos de estimação robustos retornaram q = 1 em to-

dos os casos, evidenciando o funcionamento satisfatório do método de seleção da referida

constante. Quanto aos p-valores, apesar de ficarem um pouco mais altos na amostra de

40 observações para ambos estimadores, ainda sim indicam significância do parâmetro

relacionado à covariável no submodelo da média em todos os tamanhos amostrais quando

consideramos um ńıvel de 5% para o teste tipo-Wald. Então, ao contrário da conclusão

obtida sob os modelos ajustados com o MLE, os ajustes sob o SMLE e LSMLE se mos-

traram adequados tanto para os cenários onde existe contaminação na amostra quanto

em situações onde não há contaminação.

Um método gráfico muito útil para avaliação da qualidade do ajuste em relação

à distribuição de probabilidade assumida para a variável resposta é o gráfico normal de

probabilidades com envelope simulado, introduzido por Atkinson (1985). Este método
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Tabela 3: Estimativas, erros-padrão bootstrap, estat́ısticas w e valores-p bootstrap para regressão beta
robusta com precisão constante ajustada com SMLE e LSMLE nas amostras com contaminação.

Amostra de 40 obs.
SMLE LSMLE

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,612 0,109 31,276 - −0,610 0,111 30,010 -
Covariável 0,760 0,352 4,665 0,006 0,764 0,356 4,612 0,018

submodelo da precisão
Intercepto 4,023 0,232 300,350 - 4,036 0,226 318,189 -

Amostra de 80 obs.
SMLE LSMLE

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,578 0,090 41,415 - −0,579 0,086 44,995 -
Covariável 0,921 0,314 8,597 0,002 0,918 0,316 8,446 0,010

submodelo da precisão
Intercepto 4,144 0,159 682,140 - 4,070 0,166 602,532 -

Amostra de 160 obs.
SMLE LSMLE

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,554 0,058 91,043 - −0,553 0,062 78,762 -
Covariável 0,923 0,196 22,082 < 0,002 0,927 0,238 15,210 < 0,002

submodelo da precisão
Intercepto 3,798 0,113 1126,014 - 3,809 0,105 1307,397 -

Amostra de 320 obs.
SMLE LSMLE

Estimativa SE estat w valor-p Estimativa SE estat w valor-p
submodelo da média

Intercepto −0,593 0,048 155,100 - −0,603 0,048 157,092 -
Covariável 0,914 0,156 34,344 < 0,002 0,882 0,165 28,623 < 0,002

submodelo da precisão
Intercepto 3,712 0,076 2385,736 - 3,616 0,077 2181,941 -

consiste na inclusão, em um gráfico normal de probabilidades, de bandas obtidas por

meio de amostras geradas pelo método de Monte Carlo a partir do modelo ajustado.

Assim, com o aux́ılio de tais bandas pode-se identificar posśıveis afastamentos entre va-

lores realizados da variável resposta e a distribuição de probabilidades teórica assumida.

Para modelos de regressão beta, têm sido comum a utilização de gráficos de probabili-

dade normal dos reśıduos com envelope simulado para avaliação da qualidade dos ajustes

(ESPINHEIRA; FERRARI; CRIBARI-NETO, 2008; OSPINA; FERRARI, 2012; ESPI-

NHEIRA; SANTOS; CRIBARI-NETO, 2017), além de demonstrar o funcionamento dos

estimadores robustos em relação às observações at́ıpicas (RIBEIRO; FERRARI, 2023;

MALUF; FERRARI; QUEIROZ, 2025).

As Figuras 11 e 12 apresentam os gráficos de probabilidade normal dos reśıduos

quant́ılicos dos modelos com envelope simulado considerando um ńıvel de 90% de con-

fiança, para os tamanhos amostrais 40, 80, 160 e 320. Esses gráficos revelam que, enquanto

o ajuste sob o MLE nos dados sem contaminação apresentaram resultado satisfatório,

ocorreu uma certa falta de ajuste do MLE nas amostras contaminadas, evidenciada pela

quantidade considerável de pontos localizados ligeiramente fora das bandas dos envelopes

em todos os tamanhos amostrais. Quanto a isso, observa-se que mesmo os reśıduos refe-

rentes às observações at́ıpicas decorrentes da contaminação introduzida não apresentam

grande distância em relação às bandas do envelope, indicando que esses pontos realmente

tiveram peso no processo de estimação dos parâmetros. Em outras palavras, pelo fato das

observações at́ıpicas terem peso igual no processo de estimação, então o modelo tentou se
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ajustar também a estas observações, produzindo reśıduos não tão aberrantes, apesar de

influentes. Diferentemente disso, os ajustes efetuados sob os estimadores robustos apre-

sentaram reśıduos dentro dos limites da banda em sua maioria e aqueles correspondentes

aos outliers bem distantes, indicando que tiveram pouco peso no processo. Ressalta-se

que, conforme pondera Ribeiro (2020), esse é o comportamento esperado para estimadores

robustos, ou seja, o método tem por objetivo ajustar bem a maioria dos dados, mas não

necessariamente as observações at́ıpicas.

Na Figura 13 são apresentados os gráficos correspondentes a todas os tamannhos

amostrais das ponderações estimadas versus os reśıduos dos ajustes sob o MLE para os

dados com e sem contaminação e sob o SMLE e LSMLE somente para as amostras con-

taminadas. Nas imagens observa-se que, para o MLE os pesos são constantes e iguais a 1

para todas as observações, além disto o ajuste na amostra contaminada produz reśıduos

ligeiramente discrepante dos demais para as observações at́ıpicas. Para os estimadores ro-

bustos, verifica-se que o peso atribúıdo varia conforme a observação, sendo mais próximos

de zero para os outliers e próximos a 1 para as demais observações. Portanto, conside-

rando esse comportamento, que se repetiu em todos tamanhos amostrais considerados,

constata-se que os ajustes produziram resultados adequados e dentro do esperado.

5.2.2 Aplicação com dados reais

Para esta aplicação, estão sendo utilizados dados disponibilizados por Monllor-

Hurtado, Pennino e Sanchez-Lizaso (2017), que foram obtidos a partir de um estudo

que teve por objetivo avaliar o impacto do aquecimento dos oceanos na pesca global. A

partir da verificação de que nos últimos anos houve um aumento nas capturas de espécies

de peixes de águas mais quentes em latitudes mais altas, e de que houve redução nas

capturas de espécies tropicais e subtropicais em áreas delimitadas pelos trópicos, os autores

levantaram e analisaram a hipótese de que o aquecimento dos oceanos está afetando a

pesca no mundo, e que isso pode ser um indicativo de que populações de peixes estão

se movimentando em direção aos polos em resposta à elevação das temperaturas dos

oceanos. Segundo os autores da pesquisa, o estudo se concentrou no atum tropical uma

vez que a sua distribuição ao longo dos oceanos é fortemente condicionada à temperatura

da supeŕıcie do mar, o que torna a distribuição dessa espécie um bom indicador do efeito

da mudança climática.

Os dados originais contém observações referentes a 19.019 tentativas individuais

de capturas de peixes com um palangre entre 1967 e 2011 nos Oceanos Índico, Paćıfico

e Atlântico. O palangre é uma estrutura constitúıda por uma linha principal, forte e

comprida, de onde partem outras linhas secundárias mais curtas, em grande número e

em intervalos regulares, com um anzol ao final de cada uma delas (WIKIPEDIA, 2025).
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Figura 11: Gráficos de probabilidade normal e envelope simulado dos reśıduos dos modelos ajustados
para as amostras de tamanhos 40 (coluna à esquerda) e 80 (coluna à direita).

Entretanto, aqui está sendo considerado um subconjunto dos dados dispońıveis preparado

e já analisado por Ribeiro e Ferrari (2023), contendo 77 observações referentes a pescas
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Figura 12: Gráficos de probabilidade normal e envelope simulado dos reśıduos dos modelos ajustados
para as amostras de tamanhos 160 (coluna à esquerda) e 320 (coluna à direita).

efetuadas em diversos pontos do oceano ı́ndico no ano de 2000. A variável resposta é a

porcentagem de atum tropical (tropical tuna percentage; TTP) e a variável explicativa
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Figura 13: Gráficos das ponderações estimadas correspondentes aos ajustes efetuados para as amostras
de tamanhos 40 (primeira coluna), 80 (segunda coluna), 160 (terceira coluna) e 320 (quarta coluna).

utilizada é a temperatura da superf́ıcie do mar (sea surface temperature; SST). Uma das

observações da TTP no subconjunto de dados é igual a 1, indicando que a totalidade dos

peixes fisgados na respectiva tentativa é atum tropical. Assim, considerando que o modelo

de regressão beta aqui tratado é inadequado para tratar observações cuja resposta está

nos limites do intervalo unitário, então, para deixar essa observação dentro do suporte

admitido para a distribuição, o valor 1 foi substitúıdo por 0,999. Com isso, essa observação

passa a ser um outlier em relação às demais presentes no subconjunto de dados, podendo

influenciar desproporcionalmente o ajuste do modelo se utilizado um método de estimação

não robusto, a exemplo do MLE.

Admitindo-se que as realizações da resposta (TTP) são variáveis aleatórias in-

dependentes tal que cada yt, t = 1, . . . , 77, tem distribuição beta na forma expressa em

(2.1.8), com parâmetros µt e ϕ, considere o modelo de regressão beta com precisão cons-
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tante dados por

gµ(µt) = β1 + xβ2

t1 ,

gϕ(ϕ) = γ1,
(5.2.2)

em que µt e ϕ são a média e a precisão de TTP e xt1 é o valor de SST para a t-ésima

observação. Além disso foram utilizadas como ligação a função logit para gµ(·) e a função

logaŕıtmica para gϕ(·). Observe que a especificação do modelo é análoga à utilizada para

a aplicação com dados simulados, a qual foi inspirada no trabalho de Espinheira, Santos e

Cribari-Neto (2017). Foram ajustados modelos de regressão beta não lineares com a espe-

cificação em (5.2.2) sob o MLE, SMLE e LSMLE com os dados completos. Na sequência

os mesmos ajustes foram efetuados no conjunto de dados após exclusão da observação

citada como discrepante (46ª observação), uma vez que, por meio do ajuste sob o MLE

nos dados completos, foi posśıvel identificar que essa observação apresentou um reśıduo

muito superior aos demais, indicando se tratar de uma observação at́ıpica. A Figura

14 apresenta, em ambos os gráficos, o diagrama de dispersão entre a covariável SST e

a resposta TTP, juntamente com as curvas obtidas nos dados completos (à esquerda) e

nos dados sem a observação 46 (à direita). Nos dados completos sob SMLE e o LSMLE,

foi selecionado o valor de 0,96 para a constante q, e nos dados sem o outlier o procedi-

mento de seleção retornou q = 1 em ambos os casos, resultando no próprio MLE. No

gráfico à esquerda verifica-se que enquanto os ajustes sob os estimadores robustos, cujas

curvas estão quase indistingúıveis entre si, parecem se ajustar melhor à maior parte dos

dados, o ajuste sob o MLE aparenta estar deslocado em direção à observação 46, identi-

ficada na imagem. Os ajustes efetuados considerando os dados reduzidos, incluindo o do

MLE, apresentam posicionamentos quase idênticos aos dos ajustes do SMLE e LSMLE

nos dados completos. Assim, percebe-se que, de fato, a observação 46 está afetando des-

proporcionalmente o ajuste do modelo sob o MLE e que, aparentemente, os modelos sob

os estimadores robustos foram pouco afetados por ela.

Na Tabela 4 constam os valores obtidos para as estimativas dos parâmetros, erros

padrão, estat́ısticas tipo-Wald e respectivos p-valores obtidos via bootstrap para os modelos

sob o MLE, SMLE e LSMLE para os dados completos, além do modelo sob o MLE para

os dados em a observação 46. Os valores das estimativas dos coeficientes de regressão e

dos erros padrão bootstrap obtidos para os dois estimadores robustos nos dados completos

ficaram muito próximos entre si e também em relação aos valores do ajuste do MLE nos

dados reduzidos. Isso confirma que os estimadores robustos cumpriram muito bem o seu

papel de melhor se ajustarem às observações não discrepantes e de atribuir pouco peso

àquelas at́ıpicas. Quanto aos p-valores, os testes tipo-Wald indicaram, em todos os casos,

significância do parâmetro relacionado à covariável no submodelo da média.

A Figura 15 mostra os gráficos de probabilidade normal dos reśıduos dos mo-
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Figura 14: Gráficos de dispersão entre a resposta TTP e a covariável SST juntamente com as curvas
ajustadas com os modelos com precisão constante sob os três estimadores para os dados completos (à

esquerda) e os dados após exclusão da observação discrepante (à direita).

Tabela 4: Estimativas, erros-padrão bootstrap, estat́ısticas w e valores-p bootstrap para os modelos
ajustados nos dados completos e nos dados sem a observação 46.

MLE - Dados completos MLE - Dados sem a obs. 46
Estimativa SE estat w valor-p Estimativa SE estat w valor-p

submodelo da média
Intercepto −7,185 0,861 69,634 - −8,888 0,527 283,927 -

SST 0,551 0,046 142,193 < 0,002 0,613 0,022 802,236 < 0,002
submodelo da precisão

Intercepto 1,725 0,164 110,429 - 3,304 0,157 440,795 -

SMLE - Dados completos LSMLE - Dados completos
Estimativa SE estat w valor-p Estimativa SE estat w valor-p

submodelo da média
Intercepto −8,861 0,488 329,475 - −8,871 0,545 264,732 -

SST 0,612 0,021 877,787 < 0,002 0,612 0,023 710,366 < 0,002
submodelo da precisão

Intercepto 3,318 0,148 500,577 - 3,327 0,155 460,275 -

delos com envelope simulado a uma ńıvel de 90% de confiança para os dados completos

(MLE, SMLE e LSMLE), e para os dados após exclusão da observação 46 (somente MLE).

Inicialmente verifica-se que o ajuste do MLE para os dados completos se mostrou inade-

quado, uma vez que os reśıduos estão, em sua maioria, fora dos limites das bandas do

envelope. Diferentemente disso, nos dados reduzidos, apesar de alguns poucos desvios que

não comprometem a conclusão sobre a adequabilidade do modelo, o ajuste sob o mesmo

MLE passa a apresentar um comportamento mais próximo do esperado para um bom

ajuste, com poucos pontos extrapolando o envelope. Quanto aos modelos nos quais foram

usados métodos robustos de estimação, percebe-se também uma boa adequação dos ajus-

tes. Nesses casos, observa-se que o reśıduo correspondente à observação 46 permaneceu

consideravelmente mais alto que os demais, entretanto, os modelos se ajustaram melhor

à maioria dos dados, atribuindo pouca importância à contribuição dessa observação em

espećıfico para o processo de estimação.
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Figura 15: Gráficos de probabilidade normal e envelope simulado dos reśıduos dos modelos com
precisão constante ajustados para os dados completos e para os dados após a exclusão da observação

at́ıpica.

Na Figura 16 são apresentados os gráficos de dispersão das ponderações estima-

das versus os reśıduos dos ajustes sob o MLE para os dados completos e reduzidos, e sob

o SMLE e LSMLE somente para os dados completos. Nota-se, no caso do MLE para os

dados completos, a evidente discrepância entre o reśıduo da observação 46 e os demais.

Além disso, constata-se que esse método não robusto considera igualmente a contribuição

de todas as observações, atribuindo o peso igual a 1 no processo de obtenção das es-

timativas. Nos casos do SMLE e LSMLE, os pesos atribúıdos são diferentes para cada

observação e ficaram muito próximos de zero para a observação at́ıpica e mais próximos de

1 para as demais observações. Portanto, isso corrobora com as análises anteriores no que

se refere à conclusão de que os estimadores robustos produziram bons ajustes, a despeito

da observação at́ıpica que influenciou fortemente o ajuste sob o estimador não robusto.

Também é importante avaliar se essa influência causada pela observação at́ıpica é

melhor tratada quando utilizamos uma estrutura de regressão com covariável para modelar

também a precisão. Portanto, agora será considerado o modelo de regressão beta não
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Figura 16: Gráficos das ponderações estimadas versus reśıduos correspondentes aos modelos com
precisão constante ajustados para os dados completos e para os dados após a exclusão da observação

at́ıpica.

linear com precisão variável definido por

gµ(µt) = β1 + xβ2

t1 ,

gϕ(ϕ) = γ1 + γ2xt1,
(5.2.3)

mantendo as mesmas especificações do modelo em (5.2.2), exceto quanto ao submodelo

da precisão, no qual foi inclúıda uma estrutura linear de regressão associada à precisão ϕ

que também utiliza como covariável a SST.

O modelo em (5.2.3) foi aplicado aos dados completos e aos dados sem a 46ª
observação, contemplando o MLE, o SMLE e o LSMLE. A Figura 17 exibe o gráfico de

dispersão entre a SST e a TTP conjuntamente com as curvas geradas a partir dos ajustes

nos dados completos e reduzidos. O resultado é muito semelhante ao observado para

o modelo com precisão constante, onde, para os dados completos, a curva referente ao

modelo sob o MLE aparenta ter sido fortemente influenciada pela observação discrepante,

enquanto os demais ajustes sob os estimadores robustos parecem mais adequados para a
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maioria dos dados. Ao retirar esse outlier do conjunto de dados (gráfico à direita), a curva

do MLE fica muito próxima das curvas do SMLE e LSMLE para os dados completos. Em

contrapartida, as curvas para os estimadores robustos nos dados sem a observação 46 são

equivalentes à do MLE, uma vez que o processo de estimação retornou q = 1, resultando

no próprio MLE. A constante q selecionada para o modelo sob o LSMLE foi de 0,96,

ou seja, a mesma selecionada para o modelo de precisão constante, enquanto que para o

SMLE, o q ótimo foi de 0,76. Ressalta-se que o valor baixo para a constante de afinação

no modelo sob o SMLE pode significar instabilidade das estimativas, o que indica uma

provável inadequação do modelo especificado sob esse estimador.

Figura 17: Gráficos de dispersão entre a resposta TTP e a covariável SST juntamente com as curvas
ajustadas com os modelos com precisão variável sob os três estimadores para os dados completos (à

esquerda) e os dados após exclusão da observação discrepante (à direita).

Na Tabela 5 são elencadas as estimativas dos parâmetros, erros padrão, es-

tat́ısticas tipo-Wald e respectivos p-valores bootstrap para os modelos com precisão variável

sob o MLE, SMLE e LSMLE para os dados completos, e também para o mesmo modelo

sob o MLE para os dados reduzidos. Para esse caso também se observa uma influência

desproporcional da observação at́ıpica no modelo sob o MLE, resultando em estimativas

distantes das obtidas sob os estimadores robustos, e tambem em relação às verificadas

sob o MLE nos dados reduzidos, causando mudanças relevantes na conclusão inferencial.

Em relação aos testes de hipóteses, os p-valores calculados indicaram significância dos

parâmetros associados à covariável no submodelo da média em todos os casos. Para os

submodelos da precisão, à exceção do MLE nos dados completos, todos os demais modelos

apresentaram p-valores altos que conduziram à não rejeição da hipótese nula, de não sig-

nificância dos respectivos parâmetros. Comparando esses resultados com os dos modelos

com precisão contante mostrados na Tabela 4, observa-se que as estimativas referentes aos

submodelos da média ficaram bastante próximas nos casos dos estimadores robustos e do

MLE nos dados reduzidos, e muito diferentes no caso do MLE para os dados completos,
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indicando que a observação de número 46, apesar de ter influência desproporcional em

ambos os casos, afetou de forma diferente os ajustes com e sem precisão variável.

Tabela 5: Estimativas, erros-padrão bootstrap, estat́ısticas w e valores-p bootstrap para os modelos com
precisão variável ajustados nos dados completos e nos dados sem a observação 46.

MLE - Dados completos MLE - Dados sem a obs. 46
Estimativa SE estat w valor-p Estimativa SE estat w valor-p

submodelo da média
Intercepto −9,945 0,668 221,906 - −8,775 0,554 251,039 -

SST 0,669 0,026 652,913 < 0,002 0,608 0,024 626,329 < 0,002
submodelo da precisão

Intercepto 19,909 3,247 37,601 - 1,667 3,448 0,234 -
SST −5,671 1,018 31,020 < 0,002 0,516 1,085 0,227 0.620

SMLE - Dados completos LSMLE - Dados completos
Estimativa SE estat w valor-p Estimativa SE estat w valor-p

submodelo da média
Intercepto −8,962 0,553 262,510 - −8,773 0,593 219,228 -

SST 0,615 0,023 721,825 < 0,002 0,608 0,025 594,706 < 0,002
submodelo da precisão

Intercepto 4,924 3,699 1,772 - 1,865 3,253 0,329 -
SST −0,456 1,173 0,151 0,632 0,461 1,026 0,202 0,660

A Figura 18 ilustra o ńıvel de qualidade do ajuste dos modelos por meio dos

gráficos de probabilidade normal dos seus reśıduos juntamente com envelope simulado

a um ńıvel de 90% de confiança, para os dados completos (MLE, SMLE e LSMLE), e

para os dados após exclusão da observação 46 (somente MLE). Os resultados são muito

parecidos com os observados para os modelos com precisão constante, onde se verifica

uma inadequação muito evidente do ajuste sob o MLE para os dados completos e ajustes

mais adequados dos estimadores robustos para esses mesmos dados, exceto em relação

à observação discrepante, cujo reśıduo ficou muito acima dos demais, o que é esperado.

Além disso, conclui-se que o ajuste para o modelo com MLE nos dados reduzidos também

produziu um resultado que pode-se considerar adequado.

Na Figura 19 são mostrados os gráficos de dispersão das ponderações estimadas

versus os reśıduos dos ajustes sob o MLE para os dados completos e reduzidos, e sob o

SMLE e LSMLE somente para os dados completos. Inicialmente percebe-se uma diferença

significativa no gráfico referente ao SMLE quando comparado a este mesmo gráfico gerado

para o modelo com precisão constante mostrado na Figura 16. Nesse caso do modelo

com precisão variável sob o SMLE, nota-se que foram atribúıdos pesos relativamente

baixos a diversas outras observações que não foram apontadas como discrepantes nos

demais ajustes. Isso corrobora a percepção de inadequação do modelo sob o MLE com

a especificação em (5.2.3) para os dados completos utilizados. Nos demais casos, os

reśıduos apresentaram comportamento análogo ao observado para o modelo com precisão

constante. Portanto, para o modelo sob o LSMLE os pesos atribúıdos foram próximos a

1 e diferentes para cada observação, exceto quanto à observação 46, que teve atribuição

de peso próximo a zero, e pesos constantes e iguais a 1 para o MLE.
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Figura 18: Gráficos de probabilidade normal e envelope simulado dos reśıduos dos modelos com
precisão variável ajustados para os dados completos e para os dados após a exclusão da observação

at́ıpica.

Finalizada a análise, pode-se concluir que, apesar do ajuste sob o MLE com os

dados completos indicar a necessidade de modelar também a precisão, verificou-se que

a modelagem da precisão com a covariável SST não melhorou o ajuste do MLE e nem

os ajustes com o SMLE e LSMLE. Portanto, dentre os modelos experimentados nesta

aplicação, a regressão beta não linear com precisão constante especificada em (5.2.2)

utilizando os estimadores robustos aqui estudados conduziram a ajustes robustos e mais

adequados aos dados utilizados.
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Figura 19: Gráficos das ponderações estimadas versus reśıduos correspondentes aos modelos com
precisão variável ajustados para os dados completos e para os dados após a exclusão da observação

at́ıpica.
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6 Considerações finais

Neste trabalho, foi efetuada uma revisão de literatura contemplando alguns dos

principais métodos de estimação robustos desenvolvidos recentemente para modelos de

regressão beta lineares, com foco nos estimadores SMLE e LSMLE, que são casos parti-

culares do procedimento geral de M-estimação. Este processo é conhecido por produzir

estimadores robustos, além de garantir que estes possuam boas propriedades, a exemplo

da normalidade assintótica.

A partir da revisão de literatura, foi proposta a regressão beta não linear robusta

como uma generalização dos métodos de estimação robustos estudados, mais precisamente

o SMLE e o LSMLE, para modelos de regressão beta nos quais a estrutura de regressão é

flexibilizada para contemplar formas não lineares. Ao longo do texto foram apresentadas

propriedades e também expressões de algumas medidas robustez para essa classe não

linear de modelos. Por meio das propriedades teóricas apresentadas e dos resultados

observados nas aplicações e estudos de simulação, foi evidenciado que, sob a regressão

beta não linear, o procedimento de estimação por máxima verossimilhança é senśıvel a

observações at́ıpicas na variável resposta, podendo ser demasiadamente influenciado por

estas e conduzir a conclusões inferenciais errôneas sobre os dados de interesse.

Os métodos robustos citados dependem de uma constante de afinação que tem

a importante função de controlar o balanceamento entre robustez e eficiência assintótica

do estimador. Neste trabalho foi proposta uma adaptação ao processo de seleção da

contante de afinação desenvolvido por Ribeiro e Ferrari (2023). Ao longo dos estudos

foi identificada uma instabilidade do processo original em situações onde eram utilizados

modelos de regressão beta robustos não lineares cujas estimativas para o erro padrão

dos estimadores eram obtidas via bootstrap. Além disso, a adaptação deixou o processo

computacionalmente mais eficiente para esses casos. Referido algoritmo para seleção

da constante foi utilizado em todos as simulações e aplicações efetuadas neste trabalho,

obtendo, em todos os casos, bons resultados. Tal conclusão é evidenciada pela escolha

de valores que se mostraram adequados para a constante, inclusive quando os modelos

foram ajustados a amostras e dados sem a presença de contaminação, situação na qual

foi retornado o valor de 1 para a constante, o que resulta no próprio MLE.

Foi mostrado por meio de estudos de simulação de Monte Carlo e de aplicações a

dados simulados que a utilização do método de máxima verossimilhança para os modelos

de regressão beta não lineares robustos em dados sob contaminação conduziram a estima-

tivas enviesadas e, consequentemente, a conclusões inferenciais incorretas sobre os dados.

Nesse mesmo sentido, verificou-se que a utilização dos métodos de estimação robustos para

estes mesmos dados resultaram em estimativas muito próximas dos verdadeiros valores dos
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parâmetros. Por outro lado, os ajustes efetuados em dados não contaminados resultaram,

para todos os casos, em igualdade entre os estimadores robustos e o não robusto, o que

reforça o bom funcionamento do algoritmo de seleção da contante de afinação. Também

foi mostrado que a falta de robustez do procedimento sob máxima verossimilhança, di-

ferentemente do que foi observado para os estimadores robustos, conduziu à conclusão

de não significância dos parâmetros associados às covariáveis, especialmente em amostras

menores.

Nas aplicações com dados reais foi mostrado que os modelos de regressão beta não

lineares robustos também se ajustaram melhor aos dados quando comparados ao modelo

sob o MLE. Também foi evidenciado que uma única observação discrepante na variável

resposta foi suficiente para causar distorções consideráveis nos valores das estimativas do

modelo sob o MLE, e que ao retirar essa observação at́ıpica os modelos sob o SMLE e

LSMLE se igualam ao modelo sob o MLE.

Adicionalmente, cabe salientar que os métodos de estimação robustos discutidos

nesta dissertação são particularmente recomendados para cenários em que se deseja re-

duzir a influência de observações at́ıpicas sobre os resultados inferenciais. Entretanto, em

situações nas quais o interesse reside precisamente na identificação de ocorrências raras

ou incomuns, tais métodos não são apropriados, uma vez que sua natureza é atenuar o

impacto dessas observações em vez de evidenciá-las.

Por fim, é importante ressaltar que os resultados apresentados nesta pesquisa

possuem algumas limitações, sendo a maioria delas decorrentes da restrição de tempo

para o desenvolvimento da dissertação. A primeira delas se refere à utilização de estima-

tivas para os erros padrão obtidas somente por meio de bootstrap, não sendo calculadas e

utilizadas essas estimativas a partir da distribuição assintótica dos estimadores robustos

sob os modelos não lineares. Não obstante os bons resultados alcançados com o erro

padrão bootstrap, a utilização dessa medida calculada a partir do método anaĺıtico seria

importante como complemento para a pesquisa. Outra limitação está relacionada ao não

aprofundamento da avaliação do desempenho do teste tipo-Wald. Como o erro padrão de

cada réplica ou conjunto de dados foi obtido por meio de bootstrap, ficou inviabilizada a

realização de simulações de Monte Carlo para quantificar os ńıveis emṕıricos do tamanho e

poder do teste, uma vez que levaria um longo tempo para a realização de todo o processa-

mento computacional necessário. Por fim, as simulações e aplicações efetuadas utilizaram

modelos com um número limitados de formas para o preditor não linear. Desse modo,

os resultados aqui discutidos podem variar a depender da forma não linear utilizada nas

estruturas de regressão.

A partir das citadas limitações e considerando outros achados observados du-

rante o desenvolvimento deste trabalho, listamos alguns pontos que podem ser melhor

explorados em trabalhos futuros:
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1. Estudar de forma mais aprofundada o desempenho do teste de hipóteses tipo-

Wald avaliando os ńıveis emṕıricos do tamanho e poder dos testes sob a hipótese

nula H0 ao se obter o p-valor via bootstrap.

2. Desenvolver e obter as expressões anaĺıticas referentes aos erros padrão assintóticos

para o SMLE e LSMLE sob a regressão beta não linear robusta conforme (4.1.8)

e (4.2.4), respectivamente, e utilizar esses valores em estudos de simulação e

aplicações, a exemplo dos aqui efetuados. Além disso, efetuar uma comparação

dos desempenhos do método original de seleção da contante de afinação com a

adaptação proposta neste trabalho.

3. Estudar o desempenho dos modelos de regressão beta não lineares robustos con-

templando formas diferentes das utilizadas neste trabalho para as as estruturas

de regressão, além de outras opções para as funções de ligação associadas aos

submodelos da média e da precisão.

4. Avaliar o desempenho dos modelos de regressão beta não lineares robustos em

relação aos resultados obtidos por modelos de regressão beta lineares robustos,

para identificar situações e cenários onde a forma não linear melhor se adequa.

5. Avaliar o desempenho dos modelos de regressão beta não lineares robustos utili-

zando outros métodos inferenciais para obtenção das estimativas dos parâmetros,

a exemplo do MDPDE e LMDPDE.

6. Desenvolver os modelos de regressão beta inflacionados não lineares robustos, in-

cluindo o processo de estimação robusta para os submodelos correspondentes aos

componentes discretos das distribuições beta inflacionadas (OSPINA; FERRARI,

2010).
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