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Resumo

Neste trabalho, estudamos o problema de estimação de parâmetros em modelos Weibull

de três parâmetros, para os quais estimativas não finitas podem ser obtidas para a função de

verossimilhança em algumas regiões do espaço paramétrico. Baseados na penalização do loga-

ritmo da função verossimilhança modificada, propomos uma nova classe de estimadores para

tal modelo de distribuições. Além de obter estimativas finitas para os parâmetros do modelo,

tal procedimento possibilita uma redução no viés dos estimadores modificados. O novo método

foi comparado a outros métodos encontrados na literatura através de estudos de simulações de

Monte Carlo. Os resultados dos estudos das simulações mostraram que o método de penaliza-

ção do vetor escore modificado apresentou melhor desempenho que o método do logaritmo da

função de verossimilhança modificada. Foram apresentadas duas aplicações em dados reais, a

primeira relativa a resistência de fibras de carbono, bastante estudadas na literatura, e a segunda

referente a investimentos estrangeiros que geram emprego ou renda no país para concessão de

autorização de residência ao imigrante, analisada nesse contexto pela primeira vez.

Palavras-chave: Máxima Verossimilhança Modificada, Penalização, Simulações de Monte

Carlo, Viés, Modelos Irregulares.
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Abstract

In this work, we investigate the parameter estimation problem based on the three-parameter

Weibull models, for which non-finite estimates may be obtained for the log-likelihood function

in some regions of the parametric space. Based on a penalization of the modified log-likelihood

function, we propose a new class of estimators for this distribution. In addition to providing

finite estimates for the model parameters, this procedure reduces the bias of the modified esti-

mator. The new method is compared to others in the literature through a Monte Carlo simulation

study. The simulation results showed that the modified score vector penalty method outperforms

the modified log-likelihood function method. We present two applications using real data. The

first relates to the resistance of carbon fibers, which has been extensively studied in the litera-

ture, and the second refers to foreign investments that generate employment or income in the

country to grant a residence permit to immigrants, analyzed in this context for the first time.

Keywords: Modified Maximum Likelihood, Penalization, Monte Carlo simulations, Bias, Irre-

gular Models.
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Capítulo 1

Introdução

Na inferência paramétrica os modelos não-regulares (veja Resnick (2008) e Smith (1985))

têm recebido ampla atenção na literatura. Tais modelos são aqueles cujas derivadas da função

de verossimilhança, para determinados parâmetros, não existem ou não são contínuas, que a

informação de Fisher é infinita ou não existe, ou ainda, que a função de verossimilhança apre-

senta singularidades. Este comportamento pode ocorrer em várias situações práticas como, por

exemplo, nas distribuições cujo suporte depende de parâmetros desconhecidos.

Nos casos em que o suporte da função densidade de probabilidade (FDP) depende de pa-

râmetros desconhecidos, os métodos convencionais de obtenção de estimativas dos parâmetros

se tornam inviáveis. Isso se deve ao fato de que a função de verossimilhança pode exibir uma

tendência monótona, fazendo com que o estimador de máxima verossimilhança não assuma va-

lores finitos. Distribuições como a Railegh, Weibull e Weibull inversa são típicos modelos de

probabilidade não-regulares, pois o suporte da distribuição pode depender de um parâmetro de

locação.

Para este estudo foi escolhido o conhecido modelo Weibull de três parâmetros, que é um

exemplo típico de modelo probabilístico não-regular. Neste cenário, quando o parâmetro de

locação se aproxima do menor valor na amostra pode-se observar funções de verossimilhança

ilimitadas, dependendo do valor do parâmetro de forma. Para situações como esta, em que

1



cap. 1. Introdução §1.0.

a estimativa de máxima verossimilhança não existe, Smith (1985) e Cheng e Iles (1987) pro-

puseram uma modificação na função de verossimilhança de modo a obter estimativas finitas e

consistentes para os parâmetros. Além destes autores, outros propuseram métodos de estima-

ção para os parâmetros do modelo Weibull. Por exemplo, Kundu e Raqab (2009) propuseram

um método de estimação maximizando uma modificação da função de verossimilhança. Estes

autores aplicaram o modelo Weibul para estimar a probabilidade de resistência-tensão.

Nagatsuka et al. (2013) introduziram um método de estimação consistente para a distribui-

ção Weibull de três parâmetros baseada em uma transformação de dados que evita o problema

da função verossimilhança ilimitada. A estimação de parâmetros baseada em uma amostra pro-

gressivamente censurada à direita do Tipo II foi estudada por Ng et al. (2012). Montoya et al.

(2019) abordou o problema de estimação dos parâmetros de uma distribuição Weibull baseado

na definição original de verossimilhança proposta por Fisher.

O método sugerido por Kundu e Raqab (2009) (veja também Ali et al. (2012), Kundu e

Raqab (2013) e Kohansal e Rezakhah (2019)) consiste na exclusão da menor observação da

amostra e é uma estratégia eficaz para garantir a estimação finita dos parâmetros da distribuição

Weibull, assegurando a finitude da função de verossimilhança (modificada) e a existência dos

estimadores. Já o método sugerido por Cheng e Iles (1987) propõe a correção da função de

verossimilhança numa vizinhança da menor observação da amostra com base em um parâmetro

de perturbação adicional.

Uma solução existente na literatura para evitar o problema da função de verossimilhança

monótona é baseada na correção de Firth (1993), que envolve a introdução de uma penalização

na função escore para garantir estimativas finitas. A abordagem de Firth (1993) foi original-

mente proposta para reduzir o viés dos estimadores de máxima verossimilhança (EMVs), por

meio de uma modificação adequada da função escore dos modelos lineares generalizados. Para

distribuições regulares, a correção de Firth tem sido extensivamente empregada para abordar a

inexistência de valores finitos para o EMV.

Vários autores empregaram o método de Firth em problemas envolvendo distribuições regu-

2



§1.0.

lares para resolver problemas de não existência de valores finitos para os EMV e, também, para

redução do viés dos EMV para distribuições pertencentes a família exponencial. Por exemplo,

Arrué et al. (2016) mostrou que o EMV modificado para o parâmetro de forma do modelo de

distribuição skew-normal modificado permanece finito, mesmo quando o EMV não modificado

seja infinito. Além disso, Almeida et al. (2022) investigou uma função score modificada para

verossimilhança monótona no modelo semiparamétrico de cura por mistura. Com base no mé-

todo de Firth, Arrué et al. (2023) desenvolveu uma inferência baseada na correção de viés da

verossimilhança para a distribuição skew-t-normal modificada. Heinze e Schemper (2001) e Al-

meida et al. (2018) estudaram a ocorrência da função de verossimilhança monótona na presença

de observações censuradas, e Almeida et al. (2021, 2022) propuseram uma extensão para con-

tabilizar os sobreviventes de longa duração utilizando a função score modificada para a função

de verossimilhança monótona.

O problema da função de verossimilhança ilimitada, conhecido como problema da função

de verossimilhança monótona, também foi estudado em regressão logística binária e multino-

mial por Bull et al. (2002) e Heinze e Ploner (2003), na distribuição Weibull estendida regular

modificada por Lima e Cribari-Neto (2019), em distribuições skew-normal e skew-t-normal

modificadas por Arrué et al. (2016, 2023), dentre outros estudos.

O objetivo central do nosso trabalho é propor um novo procedimento de estimação dos

estimadores da distribuição Weibull de três parâmetros baseado na penalização da função de

verossimilhança modificada, proposto por Firth (1993), e comparar os resultados da estimação

dos parâmetros com os valores obtidos pelos métodos da máxima verossimilhança corrigida e

da máxima verossimilhança modificada propostos por Cheng e Iles (1987) e Kundu e Raqab

(2009), respectivamente. Para validação dos novos estimadores, um estudo de simulações de

Monte Carlo foi conduzido Os novos estimadores foram aplicados na modelagem de dados

reais. A primeira base de dados foi analisada por Kundu e Raqab (2009), dentre outros autores

e a segunda base de dados refere-se à investimentos estrangeiros que geram emprego ou renda

no país para concessão de autorização de residência ao imigrante, pela primeira vez analisada

3
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nesse contexto.

Dessa forma, a presente dissertação está organizada em três capítulos. No Capítulo 2 apre-

sentamos em detalhes a distribuição Weibull estudada e apresentamos o contexto histórico de

sua construção e aplicações. Em seguida, apresentamos a construção matemática da distribui-

ção, via convergência de mínimos parciais de variáveis aleatórias independentes e identicamente

distribuídas. Em sequência, as principais propriedades probabilísticas foram obtidas. Então, os

estimadores de máxima verossimilhança modificada de Kundu e Raqab (2009) e os estimadores

de máxima verossimilhança corrigidos de Cheng e Iles (1987) são apresentados. No Capítulo

3, estudamos a construção dos chamados estimadores de máxima verossimilhança duplamente

modificado (EMVDM), tema central desse trabalho. O capítulo está dividido em três seções.

Na Seção 3.2, apresentamos a obtenção analítica dos EMVDMs. No Capítulo 4 apresentamos

os resultados dos estudos de simulação, cujo intuito é de avaliar o desempenho do novo es-

timador. O Capítulo 5 apresenta as aplicações da distribuição Weibull de três parâmetros na

modelagem de dados reais de duas bases de dados. Por fim, as considerações finais do trabalho

são apresentadas no Capítulo 6.
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Capítulo 2

Distribuição Weibull

2.1 Introdução

Neste capítulo, apresentamos conceitos que serão utilizados ao longo desta dissertação. Ini-

ciamos a Seção 2.2 apresentando o contexto histórico da distribuição Weibull e suas aplicações

propostas ao longo do tempo. A Seção 2.3 é dedicada a apresentação da construção matemática

da distribuição, via convergência de mínimos parciais de variáveis aleatórias independentes e

identicamente distribuídas. A Seção 2.4 apresenta as principais propriedades probabilísticas da

distribuição Weibull de três parâmetros. Finalmente, destacamos que os conceitos abordados

nesse capítulo servem como base para eventuais consultas durante a leitura do Capítulo 3. As

principais referências utilizadas para a escrita deste capítulo foram os livros de Johnson e Kotz

(1970), Galambos (1978) e Resnick (2008), e os artigos de Cheng e Iles (1987) e Kundu e

Raqab (2009).

2.2 Contexto Histórico

Em 1951, o físico, engenheiro e matemático Waloddi Weibull, descreveu a distribuição

Weibull detalhadamente, para representar a distribuição da resistência à ruptura de materiais

e para uma ampla variedade de outras aplicações Johnson e Kotz (1970). É uma distribuição
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contínua amplamente utilizada em análises de confiabilidade, estudo de vida útil de produtos,

e modelagem de dados que envolvam falhas e duração de eventos. As aplicações do modelo

Weibull podem ser verificadas em diversas áreas da ciência como: medicina (MATSUSHITA

et al., 1992), engenharia (KUNDU; RAQAB, 2009), risco em seguros (GEBIZLIOGLU et

al., 2011), hidrologia (CLARKE, 2002), climatologia (PAPALEXIOU et al., 2018), e finanças

(MITTNIK; RACHEV, 1993), dentre outras.

Na área de saúde, a distribuição Weibull pode ser utilizada na análise de dados de sobre-

vivência em ensaios clínicos e em incidência de doenças. Na área ambiental, Johnson e Kotz

(1970), utilizou a distribuição Weibull para análise do diâmetro de árvores e momento adequado

para coleta e para análise da velocidade do vento.

No artigo publicado por Matsushita et al. (1992), a distribuição Weibull foi aplicada à tábua

de vida e aos padrões de idade das doenças no Japão. O objetivo era analisar a epidemiologia do

envelhecimento humano e das doenças pela distribuição Weibull. A longevidade dos pacientes

analisados, durante o século passado, manifestou-se com aumento nos parâmetros de escala em

três períodos analisados e nos parâmetros de forma em um dos períodos com predominância

feminina.

Em um estudo sobre retorno de ativos financeiros, Mittnik e Rachev (1993) comprovaram

que a distribuição Weibull superou as outras distribuições estáveis consideradas pelos autores. A

distribuição Weibull também vem sendo utilizada para detectar tendências ao longo do tempo

de variáveis hidrológicas e climáticas. Clarke (2002) tratou das mudanças na frequência e

intensidade de alguns fenômenos climáticos, particularmente as vazões mínimas anuais do Rio

Paraguai por um período de 19 anos devido às preciptações, no qual o modelo Weibull mostrou

tendências temporais nesses dados.

Na engenharia, a distribuição Weibull é utilizada para avaliar a vida útil de máquinas, pro-

dutos ou peças. O estudo de Kundu e Raqab (2009), estimou o parâmetro de tensão-resistência

usando a distribuição Weibull de três parâmetros quando todos os parâmetros são desconhe-

cidos, ou seja, se X é a resistência de um sistema que é submetido a uma tensão Y , então

6



§2.3. Construção da Distribuição Weibull via Mínimos Parciais

R = P (X < Y ) é uma medida do desempenho do sistema. O sistema falha, se e somente se,

a qualquer momento a tensão aplicada for maior que sua resistência. Supondo que as duas po-

pulações têm os mesmos parâmetros de forma e locação, mas parâmetros de escala diferentes,

os autores obtiveram os estimadores de máxima verossimilhança modificados dos parâmetros

desconhecidos excluindo a menor observação do conjunto de dados, para evitar problemas de

função de verossimilhança monótona.

A distribuição Weibull é uma das mais utilizadas como modelo de probabilidade para ge-

renciamento de risco atuarial e financeiro. No estudo de Gebizlioglu et al. (2011) a distribuição

Weibull e seus quantis foram considerados no contexto da estimativa de uma medida de risco,

e através de simulações investigaram a eficiência de diversos estimadores.

Em climatologia, o estudo de Papalexiou et al. (2018) indicou a distribuição Weibull como

um modelo mais robusto para mapeamento dos extremos de precipitação nos Estados Unidos.

Este estudo destaca a importância de estudar intensidades de precipitação e suas probabilidades

para melhoria de projeções de modelos climáticos que servem de apoio à decisão e operação na

prevenção de inundações.

2.3 Construção da Distribuição Weibull via Mínimos Parciais

As definições e notações utilizadas nesta seção estão de acordo com as apresentadas por

Galambos (1978). Sejam X1, X2, · · · , Xn variáveis aleatórias (v.a.’s) independentes e identica-

mente distribuídas (i.i.d.) com função de distribuição acumulada (FDA) comum F (x).

Defina o mínimo da amostra como

mn = min{X1, · · · , Xn}.

Tem-se que, se a FDA F de Xi é conhecida, então, para cada valor de n ∈ N, a FDA do
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mínimo mn pode ser obtida da seguinte forma:

Fmn(x) := P (mn ≤ x) = 1− (1− F (x))n.

De fato,

P (mn > x) = P (min{X1, · · · , Xn} > x)

= P (X1 > x, · · · , Xn > x).

Como X1, · · · , Xn são v.a.’s i.i.d., obtemos

P (mn > x) = P (X1 > x) · · ·P (Xn > x)

= (1− F (x)) · · · (1− F (x))

= (1− F (x))n.

Logo, a FDA de mn é dada por

P (mn ≤ x) = 1− (1− F (x))n.

Observe que

lim
n→∞

P (mn ≤ x) = 1− lim
n→∞

(1− F (x))n.

Se x ∈ R é tal que F (x) = 0, então

P (mn ≤ x) = 0, ∀n ∈ N.

Por outro lado, se x ∈ R é tal que 0 < F (x) ≤ 1, então 0 ≤ 1−F (x) < 1. Consequentemente,

lim
n→∞

P (mn ≤ x) = 1− 0 = 1.

8
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Segue que

lim
n→∞

P (mn ≤ x) =

 0, x < ℓ(F ),

1, x ≥ ℓ(F ),

em que o ponto extremo inferior é denotado por ℓ(F ) = inf{x ∈ R;F (x) > 0}. Logo,

mn
d→ ℓ(F ), quando n → ∞.

Como ℓ(F ) é constante,

mn
p→ ℓ(F ), quando n → ∞.

Em outras palavras, mn é um estimador fracamente consistente para ℓ(F ). Aqui d→ e
p→

indicam convergência em distribuição e em probabilidade, respectivamente. Nesse caso, se

desejarmos obter uma distribuição limite não-degenerada para o mínimo parcial, deveremos

considerar uma normalização, ou seja, estudar o possível limite L(x) tal que

lim
n→∞

P

(
mn − bn

an
≤ x

)
= L(x), (2.1)

para sequências de números reais {an} e {bn} escolhidas apropriadamente e sendo x ponto de

continuidade de L(·).

Observação 2.3.1. A notação de mínimos parciais mn adotada nesse capítulo segue as nota-

ções estabelecidas em Galambos (1978), onde foram apresentados em detalhes as provas dos

teoremas limites envolvendo mn. Além dessas provas, estabeleceu regras para a construção das

sequências de constantes an, bn > 0, além de critérios para F (x) em que (2.1) é válida. Essa

definição também foi descrita por Resnick (2008).

O resultado a seguir é uma adaptação do Teorema de Fisher e Tippett (1928), verificado

também por Resnick (2008), para o caso de máximos parciais.
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Proposição 2.3.1 (Adaptação do Teorema de Fisher e Tippett). Suponha que existam sequências

reais {an} e {bn} com an > 0 tais que,

lim
n→∞

P

(
mn − an

bn
≤ x

)
= lim

n→∞
[1− (1− F (an + bnx))

n] = L(x), (2.2)

para todo x ∈ C(L), ponto de continuidade de L(·), em que L é assumida não-degenerada.

Então L é do mesmo tipo de uma das três classes a seguir:

L1(x;α) =


1− exp(−(−x)−α), se x < 0,

1, se x ≥ 0,

(2.3)

para algum α > 0.

L2(x;α) =


1− exp(−xα), se x ≥ 0,

0, se x < 0,

(2.4)

para algum α > 0.

L3(x) = 1− exp(−ex), x ∈ R. (2.5)

A Figura 2.1 é a representação gráfica da função de distribuição L(x), considerando as três

classes definidas na Proposição 2.3.1, considerando α=2 para (i) e (ii):

Neste trabalho, focaremos nossos estudos em distribuições do mesmo tipo de L2(x;α), ou

seja, as funções de distribuição G(·) para as quais existem constantes µ ∈ R e β ∈ (0,∞) tais

que

G(x) = L2

(
x− µ

β
;α

)
. (2.6)
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Figura 2.1: Gráfico das classes de L(x) para α=2

2.4 Definições e Propriedades Probabilísticas

Com base na distribuição em (2.6), dizemos que uma v.a. X tem distribuiçao Weibull,

denotada por X ∼ WB(θ), com θ = (µ, α, β)⊤ se a FDA é definida da seguinte forma:

F (x;θ) =

 0, x < µ,

1− exp
(
− 1

β
(x− µ)α

)
, x ≥ µ.

(2.7)

A função densidade de probabilidade correspondente é dada por

f(x;θ) =
α

β

(
x− µ

β

)α−1

exp

(
−x− µ

β

)α

1(µ,∞)(x), (2.8)

em que 1A denota a função indicadora do conjunto A.

Observação 2.4.1. Podemos reparametrizar a FDP da distribuição Weibull considerando os

parâmetros θ = (µ, α, β)⊤, onde βα = σ. Nesse caso, a função densidade de probabilidade
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do modelo Weibull reparametrizada é apresentada em (2.9), notação que usaremos daqui em

diante:

f(x;θ) =
α

σ
(x− µ)α−1e−

1
σ
(x−µ)α

1(µ,∞)(x), (2.9)

Observação 2.4.2. Além da construção da distribuição Weibull reparametrizada (2.9) apresen-

tada na observação anterior, esta também poderia ser construida via distribuição exponencial,

da seguinte forma: Seja X uma v.a. com distribuição WB(θ) se

Y =

(
X − µ

β

)α

,

onde Y tem distribuição exponencial padrão.

As Figuras 2.3-2.5 mostram o comportamento de f(x;θ) e F (x;θ) considerando diferentes

valores para os parâmetros de interesse.
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Figura 2.2: Gráfico da FDP f (esquerda) e FDA F (direita) com variação do parâmetro de
forma 0 < α < 1.
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Figura 2.3: Gráfico da FDP f (esquerda) e FDA F (direita) com variação do parâmetro de
forma α.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 2, µ = 0

x

f(x
)

σ
2
4
6
8
10

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α = 2, µ = 0

x

F
(x

)

σ
2
4
6
8
10

Figura 2.4: Gráfico da FDP f (esquerda) e FDA F (direita) com variação do parâmetro de
escala σ.

Conforme apresentado em Johnson e Kotz (1970) e ilustrado nas Figuras 2.3-2.5 os parâ-

metros α (forma), σ (escala) e µ (locação) alteram a distribuição do seguinte modo:
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Figura 2.5: Gráfico da FDP f (esquerda) e FDA F (direita) com variação do parâmetro de
locação µ.

• Forma (α): define a forma da distribuição.

– α < 1: torna a distribuição mais assimétrica e concentrada em valores pequenos,

com uma cauda pesada à direita, indicando uma taxa de falha decrescente, muito

usada para modelar sobrevivência.

– α = 1: reduz-se à distribuição exponencial, indicando um decaimento exponencial

da densidade com uma taxa de falha constante.

– α > 1: a função de densidade tem um pico e depois decresce rapidamente, carac-

terizando cauda leve, o que significa que há um valor mais provável ao invés de

apenas um decaimento exponencial, indicando uma taxa de falha crescente, muito

usada para modelar "desgaste"de produtos.

• Escala (σ): ajusta a dispersão dos dados ao longo do eixo x, quanto menor valor de σ

maior assimetria e vice-versa. A unidade de medida da escala é a mesma da variável

aleatória x.
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• Locação (µ): define a posição da distribuição, ou seja, desloca a distribuição ao longo do

eixo x.

Observação 2.4.3. Essas características também podem ser observadas por meio da função de

risco.

A seguir apresentamos, nesta seção, as propriedades probabilísticas mais relevantes relacio-

nadas à distribuição Weibull. As expressões encontradas para a esperança, variância, momentos,

dentre outros, são detalhados em diversas referências. Para este estudo utilizamos como base o

conteúdo exposto em Johnson e Kotz (1970).

2.4.1 Esperança

A esperança E(X) de uma variável aleatória X com distribuição WB(θ), θ⊤ = (µ, α, σ),

é dada por:

E(X) =

∫ ∞

µ

xf(x;θ) dx =

∫ ∞

µ

x
α

σ
(x− µ)α−1 e−

1
σ
(x−µ)α dx.

Fazendo a substituição u = 1
σ
(x− µ)α, podemos reescrever a integral como:

E(X) =

∫ ∞

0

(µ+ σ
1
αu

1
α )e−u du

= µ

∫ ∞

0

e−u du+ σ
1
α

∫ ∞

0

u
1
α e−u du

= µ+ σ
1
αΓ

(
1

α
+ 1

)
, (2.10)

onde Γ(t) :=
∫∞
0

ut−1e−u du denota a função Gama.

Observação 2.4.4. Note que o parâmetro de locação µ é diferente da média da distribuição, ou

seja, E(X) ̸= µ.
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2.4.2 Variância

A variância pode ser calculada por:

Var(X) = E(X2)− [E(X)]2. (2.11)

Como E(X) foi obtida em (2.10), resta calcular E(X2). Fazendo uma mudança de variável

semelhante à usada para calcular E(X), obtem-se:

E(X2) = µ2 + 2µσ
1
αΓ

(
1 +

1

α

)
+ σ

2
αΓ

(
1 +

2

α

)
.

Substituindo E(X) e E(X2) na Equação (2.11):

Var(X) =

[
µ2 + 2µσ

1
αΓ

(
1 +

1

α

)
+ σ

2
αΓ

(
1 +

2

α

)]
−
[
µ+ σ

1
αΓ

(
1 +

1

α

)]2
= σ

2
α

[
Γ

(
1 +

2

α

)
−
(
Γ

(
1 +

1

α

))2
]
. (2.12)

2.4.3 Momentos

Note que, para todo m ∈ N,

E(Xm) =

∫ ∞

µ

xmα

σ
(x− µ)α−1 e−

1
σ
(x−µ)α dx.

Ao substituir u = 1
σ
(x− µ)α, obtemos:

E(X) =

∫ ∞

0

(µ+ σ
1
αu

1
α )me−u du.
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Usando o binômio de Newton, obtemos:

E(Xm) =
m∑
k=0

(
m

k

)∫ ∞

0

µm−kσ
k
αu

k
α e−u du

=
m∑
k=0

(
m

k

)
µm−kσ

k
α

∫ ∞

0

u
k
α
+1−1e−u du

=
m∑
k=0

(
m

k

)
µm−kσ

k
αΓ

(
k

α
+ 1

)
.

2.4.4 Função Quantil

A função quantil, Q(p), é a inversa da FDA (2.7). Dado um percentil p ∈ [0, 1), ou seja,

F (xp) = p, a função quantil nos dá o valor de xp correspondente a esse percentil. Temos:

p = 1− exp

(
− 1

σ
(xp − µ)α

)
.

Ajustando a equação e aplicando logarítimo em ambos os lados, obtemos

log(1− p) =

(
− 1

σ
(xp − µ)α

)
.

Multiplicando por -1 e elevando ambos os lados à 1
α

:

(−σ log(1− p))1/α = xp − µ.

Finalmente, isolando xp, temos:

Q(p) = xp = µ+ σ
1
α (− log(1− p))

1
α , (2.13)

com 0 ≤ p < 1.
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2.4.5 Função Geradora de Momentos

Vamos obter a função geradora de momentos de X ∼ WB(θ). Temos que, para t ∈ R,

M(t) = E(etX) =
∫ ∞

µ

etx
α

σ
(x− µ)α−1 exp

(
− 1

σ
(x− µ)α

)
dx.

Fazendo a substituição u = (x−µ)α

σ
, obtemos:

M(t) =

∫ ∞

0

etµ+(σu)
1
α e−u du = etµ

∫ ∞

0

e(tσ
1
α )u

1
α e−u du.

Usando o fato de que ey =
∑∞

k=0
yk

k!
, obtemos

M(t) = etµ
∫ ∞

0

[
∞∑
k=0

(tσ
1
α )ku

k
α

k!

]
e−u du

= etµ
∞∑
k=0

tkσ
k
α

k!

∫ ∞

0

u( k
α
+1)−1e−u du

= etµ
∞∑
k=0

tkσ
k
α

k!
Γ

(
k

α
+ 1

)
.

2.4.6 Função Característica

Considerando as respectivas alterações necessárias no domínio e no contradomínio da fun-

ção geradora de momentos (2.14), obtemos que a função característica da distribuição WB(θ)

é

φ(t) = E(eitX) = eitµ
∞∑
k=0

itkσ
k
α

k!
Γ

(
k

α
+ 1

)
,

em que i2 = −1.
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2.5 Métodos de Estimação dos Parâmetros

Muitos autores vem discutindo o problema da maximização da função de verossimilhança

comumente observada em distribuções com parâmetros de locação e estatísticas de ordem, como

a Exponencial, Weibull, Gamma (e suas generalizações), dentre outras. Os estudos propostos

por Kundu e Raqab (2009), Ali et al. (2012), Kundu e Raqab (2013) e Kohansal e Rezakhah

(2019), por exemplo, excluem a menor observação do conjunto de dados como alternativa para

garantir que a função de verossimilhança seja maximizada (finitude dos EMVs).

No entanto, a exclusão de observações pode, em parte, significar perda de informação. Neste

ponto de vista, a abordagem proposta por Cheng e Iles (1987) e Cheng e Traylor (1995) pode,

efetivamente, contornar as duas questões discutidas anteriormente.

Suponha que {X1, . . . , Xn} são v.a.’s i.i.d. com distribuição WB(θ), cujo vetor de parâme-

tros é θ. Sua função de verossimilhança correspondente é o produto das funções densidade de

probabilidade (2.8) para todos os n valores observados da amostra:

L(θ;X1, X2, . . . , Xn) =
n∏

i=1

α

σ

(
Xi − µ

σ

)α−1

exp

[
−
(
Xi − µ

σ

)α]
1(µ,+∞)(Xi)

=
(α
σ

)n
exp

(
− 1

σ

n∑
i=1

(Xi − µ)α
)

n∏
i=1

(Xi − µ)α−1
1(µ,+∞)(Xi).

(2.14)

Pela função de verossimilhança dada em (2.14), obtemos que o EMV do parâmetro de loca-

ção µ pode ser representado por

µ̂ = min {X1, X2, . . . , Xn}
not.
= X(1).

Dessa forma, o parâmetro de localização µ pode ser considerado um estimador natural e con-

sistente do valor mínimo da amostra porque representa o ponto a partir do qual as observações

começam na distribuição Weibull. O valor mínimo observado da amostra é uma estimativa
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intuitiva para µ e converge para o verdadeiro valor de µ à medida que o tamanho da amostra

aumenta.

Note que, se α < 1, conforme µ se aproxima de X(1), a função de verossimilhança em

(2.14) aumenta gradualmente até o infinito. Consequentemente, os EMVs de θ não existem.

Uma abordagem comum na literatura para se modelar dados com suporte positivo é consi-

derar µ = 0. Assim, a distribuição Weibull se torna um modelo regular e os EMVs de (α, β)

podem ser obtidos por métodos usuais.

Com o objetivo de modelagem de dados com o suporte (possivelmente) real, nas subseções

a seguir apresentamos, respectivamente, os métodos de correção da função de verossimilhança

propostos por Kundu e Raqab (2009) e Cheng e Iles (1987), sem a suposição de que o parâmetro

de locação µ seja nulo.

2.5.1 EMVs Modificados

Considerando µ < X(1), e aplicando o logarítmo à função de verossimilhança apresentada

em (2.14) e que o produto das funções indicadoras são iguais a 1, temos que:

ℓ(θ) = logL(θ;X1, . . . , Xn)

= log

(
n∏

i=1

α

σ

(
Xi − µ

σ

)α−1

exp

[
−
(
Xi − µ

σ

)α])

=
n∑

i=1

log

(
α

σ

(
Xi − µ

σ

)α−1

exp

[
−
(
Xi − µ

σ

)α])

= n log
α

σ
− 1

σ

n∑
i=1

(Xi − µ)α + (α− 1)
n∑

i=1

log (xi − µ) . (2.15)

Por simplicidade de notações futuras, reescrevemos o vetor de parâmetros da seguinte forma:

θ⊤ =
(
µ,ϕ⊤), onde ϕ⊤ = (α, σ).

Vamos obter o logaritmo da função de verossimilhança modificada usando os mesmos pas-
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sos de Kundu e Raqab (2009). Para garantir a existência e a finitude dos EMVs para o vetor θ,

o logaritmo da função de verossimilhança modificada é baseado em (n − 1) observações após

ignorar a menor observação e substituir µ pelo seu estimador natural µ̂ = X(1). Fazendo as

substituições em (2.15) temos:

ℓM(µ̂,ϕ) = (n−1) logα−(n−1) log σ− 1

σ

n∑
i=2

(Xi − µ̂)α+(α−1)
n∑

i=2

log (Xi − µ̂) . (2.16)

Após a exclusão de X1, as expressões que apresentamos a seguir para o vetor escore e a

matriz de informação, dependem apenas da soma das v.a.’s restantes. Dessa forma, por simpli-

cidade de notação, em (2.16) consideramos que X1 = X(1).

Por conseguinte, o vetor escore modificado é

SM(ϕ) = (∂αℓM (µ̂,ϕ) , ∂σℓM (µ̂,ϕ))⊤ , (2.17)

onde ∂αℓM (µ̂,ϕ) e ∂σℓM (µ̂,ϕ) denotam as derivadas parciais de ℓM(µ̂,ϕ) em relação a α e σ,

respectivamente. Note que,

∂αℓM(µ̂,ϕ) =
(n− 1)

α
+

1

α

n∑
i=2

log(Xi − µ̂)α − 1

σ

n∑
i=2

(Xi − µ̂)α log (Xi − µ̂) (2.18)

e

∂σℓM(µ̂,ϕ) =
−(n− 1)

σ
+

1

σ2

n∑
i=2

(Xi − µ̂)α = 0. (2.19)

Segue de (2.19) que
1

σ2

n∑
i=2

(Xi − µ̂)α =
n− 1

σ
,

logo

σ̂ = σ̂(α) =
n∑

i=2

(Xi − µ̂)α

n− 1
.

Por outro lado, o EMV para α não tem forma fechada. Dessa forma, métodos numéricos po-
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dem ser usados para encontrar α̂. Por exemplo, o Método do Ponto Fixo é uma das possíveis

alternativas, veja em Burden et al. (2015).

Matriz de Informação Modificada

Uma vez concluídas as etapas iniciais, podemos obter a matriz de informação esperada

para ϕ, representada por I (ϕ). Isso é possível calculando as derivadas de segunda ordem (ou

cumulantes). Representaremos por krs a entrada genérica (r, s) da matriz I (ϕ), de modo que,

krs = E
{
−∂2ℓM(ϕ)

∂ϕr∂ϕs

}
= E

{(
∂ℓM(ϕ)

∂ϕr

)(
∂ℓM(ϕ)

∂ϕs

)}
, onde r, s ∈ {α, σ}.

Temos o seguinte resultado:

Proposição 2.5.1. Seja X1, · · · , Xn uma amostra aleatória da distribuição WB(θ). Suponha

que o parâmetro de locação µ é conhecido. Então, a matriz de informação de Fisher associada

à função de verossimilhança modificada (2.16) é dada por

I (ϕ) =

 kαα kασ

kσα kσσ

 , (2.20)

em que

kαα =
n− 1

α2

{
(1 + Γ′′(2)) + 2 log(σ)Γ′(2) + log2(σ)

}
, (2.21)

kασ = kσα = − 1

ασ
(n− 1)Γ′(2) log(σ), (2.22)

kσσ =
n− 1

σ2
. (2.23)

Prova: Queremos provar (2.21)-(2.23). Primeiramente, considere Z uma v.a. com distribuição

Gamma(a, 1). Afirmamos que se a = 2, então

E(logZ) = Γ′(2), (2.24)
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e

E(log2 Z) = Γ′′(2). (2.25)

De fato, lembre que ∂
∂a
za−1 = za−1 log z. Então,

E(logZ) =

∫ ∞

0

log z
1

Γ(a)
za−1e−zdz

=
1

Γ(a)

∫ ∞

0

∂

∂a
za−1e−zdz

=
1

Γ(a)

∂

∂a

∫ ∞

0

za−1e−zdz

=
Γ′(a)

Γ(a)
. (2.26)

Em particular, se a = 2, então Γ(2) = 1, dessa forma (2.24) está provado. De maneira análoga,

é possível mostrar a validade de (2.25). Agora, derivando (2.18) em relação à α, obtemos

kαα = E
{
−∂2ℓM(ϕ)

∂α2

}
= E

{
(n− 1)

α2
+

1

σ

n∑
i=2

(Xi − µ)α[log(Xi − µ)]2

}

=
n− 1

α2
+

1

σ

n∑
i=2

E
{
(Xi − µ)α[log(Xi − µ)]2

}
. (2.27)

Temos que

E
[
(Xi − µ)α log2(Xi − µ)

]
=

∫ ∞

µ

(x− µ)α log2(x− µ)f(x;θ) dx

=

∫ ∞

µ

(x−µ)α log2(x−µ)
α

σ
exp

(
− 1

σ
(x− µ)α

)
(x−µ)α−1dx.
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Substituindo t = (x−µ)α

σ
, obtemos

E
[
(Xi − µ)α log2(Xi − µ)

]
=

∫ ∞

0

tσ
1

α2
[log(tσ)]2 e−tdt.

Após simplificações, pode-se mostrar que

E
[
(Xi − µ)α log2(Xi − µ)

]
=

σ

α2

{
log2 σ + 2 log(σ)

∫ ∞

0

log(t)te−tdt+

∫ ∞

0

log2(t)te−tdt

}
=

σ

α2

{
log2 σ + 2 log(σ)E [log(Z)] + E

[
log2(Z)

]}
,

em que Z tem distribuição Gama(2, 1). Dessa forma, segue de (2.24)-(2.28) que,

kαα =
n− 1

α2
+

1

α2

n∑
i=2

{
log2 σ + 2(log σ)Γ′(2) + Γ′′(2)

}
=

n− 1

α2

{
(1 + Γ′′(2)) + log2(σ) + 2(log σ)Γ′(2)

}
, (2.28)

o que prova (2.21).

Para calcular kσσ seguimos o mesmo raciocínio anterior

kσσ = E
{
−∂2ℓM(ϕ)

∂σ2

}
=

2

σ3

n∑
i=2

E {(Xi − µ)α} − n− 1

σ2
.

Temos que

E {(Xi − µ)α} =

∫ ∞

µ

(x− µ)α
α

σ
(x− µ)α−1 exp

(
−(x− µ)α

σ

)
dx = σ

∫ ∞

0

te−tdt = σ,
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onde na segunda igualdade utilizamos novamente a mudança de variáveis t = (x−µ)α

σ
. Logo,

kσσ =
2

σ3

n∑
i=2

(X(i) − µ̂)α − (n− 1)

σ2
=

2σ(n− 1)

σ3
− (n− 1)

σ2
=

n− 1

σ2
,

o que prova (2.23). Por fim, segue de (2.18) e (2.19) que

∂α {∂σℓM(ϕ)} = ∂σ {∂αℓM(ϕ)}

=
1

σ2

n∑
i=2

(Xi − µ)α log(Xi − µ),

de modo que

kασ = kσα = E
{
−∂2ℓM(ϕ)

∂σ∂α

}
= − 1

σ2

n∑
i=2

E {(Xi − µ)α log(Xi − µ)}

= − 1

ασ
(n− 1)Γ′(2) log(σ),

onde a terceira igualdade foi obtida seguindo os mesmos passos anteriores, com isso concluindo

a proposição.

■

2.5.2 EMVs Corrigidos

Ainda visando os problemas das distribuições não-regulares, será apresentada mais uma téc-

nica de correção da função de verossimilhança proposta por Cheng e Iles (1987). Essa correção

ajusta a contribuição da menor observação, que pode ser particularmente problemática em dis-

tribuições com suporte dependente de parâmetros ou outras características não-regulares, como

já discutido na Seção 2.5.1. A função de verossimilhança corrigida ℓ̃(θ, h) é definida como:
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ℓ̃(θ, h) = log

∫ X(1)+h

X(1)

f(x;θ) dx+
n∑

i=2

log f(Xi;θ), (2.29)

em que X(1) é a menor observação no conjunto de dados, h é um parâmetro de correção, f(x;θ)

é a função densidade de probabilidade, e θ é o vetor de parâmetros.

A correção proposta em 2.29 pode ser interpretada da seguinte forma:

• O primeiro termo, log
∫ X(1)+h

X(1)
f(x;θ) dx, integra a densidade de probabilidade f(x;θ)

no intervalo [X(1), X(1) + h], ajustando a contribuição da menor observação X(1).

• O segundo termo,
∑n

i=2 log f(Xi;θ), é a soma dos logaritmos da função de verossimi-

lhança individuais das demais observações Xi para i = 2, . . . , n.

Ao integrar a densidade de probabilidade sobre um pequeno intervalo [X(1), X(1)+h], a correção

reduz o impacto de qualquer singularidade ou anomalia associada à menor observação.

Alguns dos benefícios desta abordagem, destacados por Cheng e Iles (1987), são:

• Redução do viés dos EMVs;

• Maior robustez dos estimadores em problemas não-regulares;

• Melhor consistência dos estimadores em situações onde a função de verossimilhança pa-

drão pode falhar.

Além disso, esta correção ajusta a função de verossimilhança de modo a obter estimadores

mais robustos e menos viesados. Cheng e Iles (1987) descreveram que a técnica de correção do

log da função de verossimilhança pode ser estendida para outras distribuições como a Gama,

a Beta e a Log-normal, mantendo as propriedades assintóticas esperadas e estimativas de má-

xima verossimilhança consistentes. Este método também foi apresentado nos estudos de Smith

(1990), Jones e Smith (1991) e Brown e Zhao (1996).
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Capítulo 3

Redução de Viés nos EMVMs

3.1 Introdução

Neste capítulo, propomos um novo procedimento de estimação para os parâmetros de forma

e de escala, baseados em uma amostra extraída de um distribuição Weibull. No Capítulo 2,

apresentamos os EMVs modificados (EMVMs) propostos por Kundu e Raqab (2009). Para

isso, foram apresentados o logaritmo da função de verossimilhança modificada ℓM(ϕ) (2.16),

o vetor escore modificado SM(ϕ) (2.17) e a matriz de informação de Fisher (modificada) I(ϕ)

(2.20). Na Seção 3.2, apresentamos o método de penalização da função de verossimilhança

proposto por Firth (1993). Tal método é a base para a construção da nova classe de estimadores

proposta. No Capítulo 4, um estudo de simulações é apresentado para avaliar a qualidade dos

novos estimadores. Os resultados obtidos via simulações de Monte Carlo são comparados com

estimações feitas via EMVMs (Seção 2.5.1) e EMVCs (Seção 2.5.2).

3.2 EMVs Duplamente Modificados

O propósito dessa seção é propor um estimador baseado na penalização do vetor escore

modificado dado em (2.17). Para isso, usaremos o método de Firth (1993) que remove o viés de

primeira ordem dos EMVs por uma adequada penalização da função escore.
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Seja X1, · · · , Xn uma amostra aleatória da distribuição WB(θ), θ⊤ = (µ,ϕ⊤) com ϕ⊤ =

(α, σ). Tome o estimador natural de µ como sendo o menor valor da amostra µ̂ = X(1).

Considere o vetor escore modificado SM(ϕ) (2.17). Definimos o vetor escore duplamente

modificado da seguinte forma:

S∗
M(ϕj) := SM(ϕj) + A (ϕj) para ϕj ∈ {α, σ}, j = 1, 2, (3.1)

onde A (ϕj) é a penalidade de ϕj e será apresentada adiante. Então, os EMVs duplamente

modificados (EMVDMs), ϕ̂∗
j , podem ser obtidos resolvendo a seguinte equação:

S∗
M(ϕj) = 0, j = 1, 2. (3.2)

Observação 3.2.1. S∗
M(ϕj) representa a j-ésima entrada de S∗

M(ϕ), e A (ϕ) é o vetor das pena-

lidades, sendo da ordem O(1) quando n → ∞.

Na proposta de Firth (1993), os elementos de A (ϕj) são obtidos derivando as entradas

genéricas da matriz de informação de Fisher do seguinte modo:

A (ϕj) =
1

2

∑∑
r,s∈{α,σ}

krskr,s,j =
1

2
tr

{
I−1 (ϕ)

(
∂I (ϕ)

∂ϕj

)}
, (3.3)

onde krs representa as entradas genéricas (r, s) de I−1 (ϕ), kr,s,j = ∂ϕj
krs, para krs represen-

tando a entrada (r, s) da matriz I (ϕ) e tr(M) denotando o traço da matriz M .

Observe que no caso da distribuição Weibull modificada, utilizaremos o logarítmo da fun-

ção de verossimilhança modificada (2.16) ao invés do logarítmo da função de verossimilhança

(2.15).

Observação 3.2.2. Os EMVDMs têm as mesmas propriedades teóricas que os EMVs modifica-

dos ϕ̂. Além disso, a matriz de covariância de primeira ordem para ϕ̂∗ é a mesma obtida para
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ϕ̂, com ϕ̂∗ substituindo ϕ̂. Consequentemente, ϕ̂∗ ∼ N
(
ϕ, I−1

(
ϕ̂∗
))

quando n → ∞.

Observação 3.2.3. Computacionalmente, podemos obter os EMVDMs via resolução do sistema

de equações (3.2) ou via maximização do logarítmo da função de verossimilhança duplamente

modificada

ℓ∗M(ϕ) := ℓM(µ̂,ϕ) +
1

2
log det I(ϕ),

em que I(ϕ), definida em (2.20), é a matriz de informação, cujo determinante é igual a

det I(ϕ) = kααkσσ − kασkσα.

A seguir, para estimar os parâmetros que resolvem (3.2), são apresentadas as derivadas

parciais de terceira ordem da matriz de informação I(ϕ) com base nos cumulantes apresentados

na Subseção 2.5.1. Para isso os elementos kr,s,j , que compõe (3.3), são obtidos via derivação

parcial (com respeito à α e σ) dos termos da matriz de informação I(ϕ) (2.20). Os cálculos são

apresentados a seguir:

kααα = ∂αkαα = ∂α

{
n− 1

α2

[
(1 + Γ′′(2)) + 2 log(σ)Γ′(2) + log2(σ)

]}
= −2(n− 1)

α3

{
(1 + Γ′′(2)) + 2 log(σ)Γ′(2) + log2(σ)

}
.

kασα = kσαα = ∂αkσα = ∂α

{
−(n− 1) (Γ′(2) log(σ))

ασ

}
=

(n− 1) (Γ′(2) log(σ))

α2σ
.

kσσα = ∂αkσσ = ∂α

{
(n− 1)

σ2

}
= 0.

29



cap. 3. Redução de Viés nos EMVMs §3.2. EMVs Duplamente Modificados

kαασ = ∂σkαα = ∂σ

{
n− 1

α2

[
(1 + Γ′′(2)) + 2 log(σ)Γ′(2) + log2(σ)

]}
=

n− 1

α2

(
2Γ′(2)

σ
+

2 log(σ)

σ

)
=

2(n− 1)

α2σ
(Γ′(2) + log(σ))

=
2(n− 1)

α2σ
(Γ′(2) + log(σ)) .

kασσ = kσασ = ∂σkσα = ∂σ

{
−(n− 1) (Γ′(2) log(σ))

ασ

}
=

(n− 1)

ασ2
(Γ′(2) + log(σ)) +

{
−(n− 1)

ασ

1

σ

}
=

(n− 1)

ασ2
(Γ′(2) + log(σ))−

{
(n− 1)

ασ2

}
=

n− 1

ασ2
(Γ′(2) + log(σ)− 1) .

Finalmente,

kσσσ = ∂σkσσ = −2(n− 1)σ

σ4
= −2(n− 1)

σ3
.

Nas próximas seções, avaliaremos a aplicabilidade dos novos estimadores em dados simu-

lados e em dados reais.
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Capítulo 4

Estudos de Simulação

Os estudos de simulação apresentados nesse capítulo, foram programados no software R

Core Team (2024). Avaliamos a estimação dos parâmetros da distribuição Weibull, via simu-

lações de Monte Carlo. As EMVMs, EMVCs e EMVDMs, foram obtidas considerando os

seguintes passos no processo de geração dos dados:

• Fixamos um vetor de três parâmetros θ⊤ = (µ, α, σ) ∈ {(1, 1, 1), (1, 0.5, 2), (1, 1.5, 2)},

onde cada vetor representa um cenário.

• Fixamos o tamanho de amostra n ∈ {50, 100, 500, 1000}.

• Para cada configuração de θ e n escolhidos, foram geradas M = 1000 replicações de

Monte Carlo. Em outras palavras, para j = 1, · · · ,M , geramos uma amostra X(j) ={
X

(j)
1 , · · · , X(j)

n

}
da distribuição WB(θ). Assim, a j-ésima estimativa do parâmetro θ é

obtida com base na amostra X(j), digamos θ̂j = θ̂j(X
(j));

• O desempenho do modelo em termos de estimação foi avaliado usando as seguintes me-

didas: Viés Relativo (RB), Raiz do Erro Quadrático Médio (RMSE) e a Probabilidade de

Cobertura (CP), que mede a proporção de vezes em que os intervalos de confiança vão

conter o verdadeiro valor do parâmetro que está sendo estimado, veja Casella e Berger

(2002). Para cada cenário, foi considerado o nível de significância de 5%.
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O primeiro cenário θ⊤ = (µ, α, σ) = (1, 1, 1), a Weibull se reduz a uma distribuição expo-

nencial, indicando um decaimento exponencial da densidade, devido a α < 1, com alta frequên-

cia de valores pequenos e uma cauda pesada. O segundo cenário θ⊤ = (µ, α, σ) = (1, 0.5, 2),

em que α = 0.5, gera valores ainda mais concentrados próximos ao mínimo permitido (µ) e

com uma cauda mais longa (pesada). Tomamos por base os valores estimados na análise dos

dados de investimento (ver Tabela 5.4). O terceiro cenário θ⊤ = (µ, α, σ) = (1, 1.5, 2), em

que α = 1.5, tem um pico na densidade, indicando um valor modal mais definido, e uma cauda

mais leve atingindo o zero de forma mais rápida que nos outros cenários.

Os resultados obtidos foram utilizados para comparar os métodos de estimação EMVDM,

EMVM e EMVC, propostos por Firth (1993), Kundu e Raqab (2009) e Cheng e Iles (1987),

respectivamente.

Desta forma, nas nas Figuras 4.1-4.3 apresentamos os resultados de RB e RMSE. Observe

que à medida que o tamanho n da amostra aumenta, tanto o RB quanto o RMSE se aproxi-

mam de zero, indicando que os parâmetros estimados estão mais próximos do real valor dos

parâmetros.

Podemos verificar diferenças entre os métodos de estimação para tamanhos de amostra me-

nores. Para amostras maiores que 500, essa diferença no RB e no RMSE é quase nula. Os

valores RMSE dos três estimadores são semelhantes.

O EMVDM tende a reduzir o viés em comparação ao EMVM para a configuração de pa-

râmetros apresentada na Figura 4.2, segundo cenário, demonstrando que para distribuições de

cauda pesada (α < 1, o EMVDM se mostra melhor que os demais indicando influência da

cauda na estimação dos parâmetros. Já, a comparação do RB dos EMVDMs contra EVMCs,

mostrou que, em geral, os estimadores corrigidos apresentaram um viés menor. Nesse caso,

pode-se pensar em fazer uma penalização da função log-verossimilhança corrigida (2.29) utili-

zando novamente o método de Firth, tentando assim, melhorar os resultados na simulação.

Os valores de CP estão apresentados na Figura 4.4 para o cenário α = 1, 5 e σ = 2, indicam

que o EMVDM teve melhor desempenho quando comparado com o desempenho dos demais
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estimadores. Porém, para α = 0, 5 e σ = 2, teve o pior desempenho em relação aos demais

métodos. No cenário α = 1 e σ = 1, para os três métodos, a probabiliadade de cobertura fica

em torno de 95%, principalmente quando o tamanho da amostra está acima de 500. Em todos

os cenários, o CP tende a ser maior que 90%, para todos os métodos de estimação, à medida

que o tamanho da amostra n aumenta.
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Figura 4.1: Viés (esquerda) e RMSE (direita) para as estimativas de α = 1.0 (acima), σ = 1.0
(centro), and µ = 1.0 (abaixo).
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Figura 4.2: Viés (esquerda) e RMSE (direita) para as estimativas de α = 0.5 (acima), σ = 2.0
(centro), and µ = 1.0 (abaixo).
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Figura 4.3: Viés (esquerda) e RMSE (direita) para as estimativas de α = 1.5 (acima), σ = 2.0
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Capítulo 5

Aplicações a Dados Reais

O presente capítulo foi reservado para apresentar resultados das aplicações em dados reais.

A primeira base de dados foi analisada por Kundu e Raqab (2009), dentre outros autores que

serão detalhados a seguir. A segunda base de dados refere-se à investimentos estrangeiros que

geram emprego ou renda no país para concessão de autorização de residência ao imigrante. Essa

é a primeira vez na literatura que tais dados são modelados via distribuições de probabilidade.

5.1 Resistência de Fibras de Carbono

A primeira base de dados estudada foi a utilizada por Kundu e Raqab (2009) relativa a

resistência de fibras de carbono, que são utilizadas na indústria aeronáutica e náutica por ser

um material com boa resistência elétrica e térmica, mais leve e mais durável. Os dados de

resistência das fibras de carbono são originais da pesquisa de Bader e Priest (1982).

Os dados representam a resistência, medida em GPa (gigapascal), para fibras de carbono

simples e fios com 1000 fibras de carbono. As fibras simples foram testadas sob tensão em

comprimentos de calibre de 1, 10, 20 e 50 mm. Fios de 1000 fibras foram testados em com-

primentos de calibre de 20, 50, 150 e 300 mm. |textcolorredEsses dados foram utilizados nos

estudos de Montoya et al. (2019) para estimação dos parâmetros da distribuição Weibull de três
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§5.1. Resistência de Fibras de Carbono

parâmetros pelo método EMVC utilizando várias configurações de parâmetros. Kundu e Raqab

(2013) utilizaram esses mesmos dados para estimação dos parâmetros da distribuição Rayleg

generalizada de três parâmetros pelo método EMVM, dentre outros.

A análise neste estudo refere-se aos dados de resistência das fibras de carbono simples

sob tensão, em comprimento de calibre de 20mm, cuja amostra tem tamanho n = 69. Para

conveniência do leitor, apresentamos os dados no Apêndice.

Os dados contêm 69 observações e variam de 1,312 a 3,585, com valor médio igual a 2,451.

As estimativas de confiabilidade dos valores da resistência de carbono com intervalo de confi-

ança de Bootstrap com 95% é (2.330; 2.568), podemos afirmar que em 95% dos casos o valor

médio da resistência das fibras de carbono de 20 mm estará nesse intervalo.

A Figura 5.1 apresenta a distribuição dos dados de resistência no Boxplot e no histograma

que contém a curva de ajuste para a distribuição teórica Weibull de 2 parâmetros.

1.
5

2.
0

2.
5

3.
0

3.
5

Resistência

V
al

or
es

Resistência

F
re

qu
ên

ci
a

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fit

Figura 5.1: Boxplot e histograma da resistência das fibras de carbono com calibre de 20mm
com fit da distribuição Weibull de 2 parâmetros

Pelos resultados apresentados na Tabela 5.1 o logarítimo da função de verossimilhança

(llmax) é melhor utilizando os métodos EMVM e EMVDM. Foram obtidas as medidas AIC
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(Akaike Information Criterion) e BIC (Bayesian Information Criterion) para comparação dos

modelos ajustados.

Tabela 5.1: Parâmetros estimados, Máxima verossimilhança, AIC e BIC para os dados de
resistência

Método de estimação α̂ σ̂ µ̂ ℓ(θ̂) AIC BIC

EMVM 2.3804 1.8015 1.3120 -51.6745 106.3490 116.0514
EMVC 2.2752 1.7046 1.3120 -55.9871 114.9743 124.6766
EMVDM 2.3423 1.7145 1.3120 -51.7290 106.4580 116.1604
EMV2p 5.2615 2.6909 – -50.0386 98.0773 91.6091

Os erros padrão (EPs) para os parâmetros de forma α e escala σ foram calculados com

base nas estimativas (α̂, σ̂) e na informação de Fisher. A Tabela 5.1 mostra seus valores para

cada método de estimação. Com base no EMVDM, os intervalos de confiança de 95% são

(1,9082; 2,7763) e (1,2051; 2,2238), respectivamente para α e σ.

Analisando os dados da Tabela 5.1, podemos verificar que a inclusão do parâmetro de lo-

cação não melhora a estimação dos parâmetros de forma e escala, sendo o modelo Weibull de

2 parâmetros o que melhor ajusta os dados. Foram realizados os testes de Cramér-von Mises

(CVM) e Kolmogorov-Smirnov (KS) para verificar o ajuste dos dados à distribuição Weibull.

O teste de CVM não rejeita a hipótese de que os dados ajustam-se à uma distribuição Weibull,

assim como o teste de KS (Tabela 5.2).

Tabela 5.2: P-valor dos testes Kolmogorov-Smirnov (KS) e Cramér-von Mises (CVM) para os
dados de resistência

Método de estimação KS CVM

EMVM 0.8895 0.7829
EMVC 0.6493 0.5009
EMVDM 0.6985 0.5369
EMV2p 0.6436 0.5665

Na Figura 5.2, à esquerda, observa-se as FDAs teóricas ajustam a função de distribuição

acumulada empírica (ECDF) dos dados de forma similar. À direita, o ajuste das densidades
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obtidas via estimação dos três métodos é semelhante, porém um pouco diferente da densidade

Weibull de dois parâmetros ajustada. Uma análise de resíduos é apresentada a seguir para ajudar

na escolha do melhor modelo para os dados.
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Figura 5.2: Ajuste do modelo Weibull pelos métodos de estimação via ECDF e Histograma da
resistência das fibras de carbono com calibre de 20mm

Para uma visão mais completa do ajuste da distribuição usamos resíduos de Quantil Ran-

domizado (RQ), conforme definido por (DUNN; SMYTH, 1996). Os RQs são calculados por

meio da formula Ri = Φ−1(G(yi; θ̂)), onde θ̂ é o vetor dos parâmetros estimados, G(yi; θ̂) é a

FDA do modelo ajustado para cada observação yi, e Φ−1 representa os quantis da distribuição

normal padrão N(0, 1). Quando a distribuição F é contínua, os resíduos RQ tem distribuição

normal padrão, excluindo o impacto da variabilidade amostral nos parâmetros estimados.

Nas Figuras 5.3-5.6 são apresentados os QQ-plot dos resíduos para os 4 métodos estuda-

dos. Esses gráficos ajudam a visualizar se os dados seguem a distribuição desejada ou se duas

amostras têm distribuição semelhante. A linha de referência indica a posição ideal onde os

pontos estariam seguindo a distribuição especificada. Pela análise gráfica, os dados se ajustam

à distribuição Weibull.
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Figura 5.3: QQ-plot resíduos - EMVM
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Figura 5.4: QQ-plot resíduos - EMVC
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Figura 5.5: QQ-plot resíduos - EMVDM
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Figura 5.6: QQ-plot resíduos - EMV2p

5.2 Investimentos Estrangeiros

A concessão de autorização de residência para realização de investimento de pessoa física

em pessoa jurídica no País é de responsabilidade do Conselho Nacional de Imigração (CNIg),
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que é um órgão do Ministério da Justiça e Segurança Pública que tem caráter deliberativo,

normativo e consultivo. Este tema foi disciplinado na Resolução Normativa nº 13 (RN 13),

de 12 de dezembro de 2017. O valor estabelecido na RN 13, deve ser igual ou superior a R$

500.000,00 (quinhentos mil reais) para concessão de vistos permanentes e entre R$ 150.000,00

e R$ 500.000,00 para concessão de vistos temporários.

Os dados analisados neste trabalho, correspondem ao valor autorizado para investimento

pelo imigrante no Brasil1, para investimentos acima de R$ 500.000,00 e compreendem o período

de janeiro a setembro de 2024. Foram desconsiderados da análise os valores de investimento

iguais a zero ou não informados. Os dados contêm 132 observações e 4 variáveis, sejam elas,

o mês de concessão da autorização, a unidade da federação de residência do estrangeiro, o país

de origem e o valor do investimento em Reais (R$), que por simplicidade da modelagem, foram

divididos por 105. Apresentamos os dados do valor do investimento no Apêndice.

De janeiro a setembro de 2024 os imigrantes interessados na autorização de residência,

investiram um total de R$ 114,8 milhões de reais no Brasil. O valor mínimo observado foi de

R$ 501.200,00, enquanto o máximo corresponde a R$ 6,8 milhões. O valor médio foi de R$

869.473,00, pouco mais que o valor do 3º quartil, que foi de R$ 791.347,00, com desvio padrão

de R$ 801.829,50s. Considerando que a média do conjunto de dados foi de R$ 869.473,00,

as estimativas de confiabilidade dos valores de investimento com intervalo de confiança de

Bootstrap com 95% é (R$ 746.200,00;R$ 1.020.200,00), podemos afirmar que em 95% dos

casos o valor médio de investimentos estará nesse intervalo.

O Ceará foi o estado que recebeu maior investimento (R$ 31,5 milhões), seguido por São

Paulo (R$ 22,4 milhões) e Rio Grande do Norte (R$ 17,4 milhões) como observado na Fi-

gura 5.7:

1Obtidos no site: https://portaldeimigracao.mj.gov.br/pt/base-de-dados/
datamigra?id=401202:cgil-cnig&catid=1733:microdados (acesso em 07/10/2024)
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Figura 5.7: Valor do Investimento (x R$ 100.000,00) por UF

A Figura 5.8 apresenta a distribuição dos dados de resistência no Boxplot e no histograma

que contém a curva de ajuste para a distribuição teórica Weibull de 2 parâmetros.
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Figura 5.8: Boxplot e histograma dos valores do investimento
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A Tabela 5.3 apresenta os 10 maiores valores investidos por país de origem, cujo montante

equivale a 80,5% do valor total de investimentos. O coeficiente de assimetria é 4,5, indicando

assimetria positiva para a distribuição dos dados, que tem uma cauda mais longa à direita (para

valores maiores). Esse fato é confirmado pelo valor da curtose, 25,6, indicando a presença de

valores extremos.

Tabela 5.3: 10 maiores valores de investimentos por País de origem

País de origem Valor (R$)

França 209,65
Itália 174,58
China 169,68
Alemanha 133,79
Holanda 73,64
Reino Unido 48,64
Portugal 47,05
Bélgica 42,19
Espanha 38,09
Romênia 33,45

O valor estimado para os parâmetros da Weibull pelos métodos EMVM, EMVC e EMVDM

são muito próximos. O ajuste pelos métodos EMVM e EMVDM têm log-verossimilhanças

mais próximas entre si e maiores que o valor de EMVC, sugerindo que esses métodos podem

ajustar melhor a distribuição aos dados.

Analisando os dados da Tabela 5.4, observamos que a inclusão do parâmetro de localização

melhora o ajuste, sendo o modelo Weibull com dois parâmetros o que apresenta o pior ajuste

aos dados, conforme indicado pelos critérios AIC e BIC. De acordo com o método EMVDM,

os intervalos de confiança de 95% são (0,4606; 0,6702) para α e (1,0747; 1,9223) para σ, res-

pectivamente.

Por fim, apresentamos o histograma dos dados e as curvas de ajuste (ECDF) dos três méto-

dos estudados. Como já evidenciado pelas medidas descritivas, 75% dos dados são de até R$

791.347,00, onde se observa grande concentração de dados. Com relação aos ajustes, o método
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Tabela 5.4: Parâmetros estimados, Máxima verossimilhança, AIC e BIC para os dados de
investimento

Método de estimação α̂ σ̂ µ̂ ℓ(θ̂) AIC BIC

EMVM 0.5691 1.5350 5.012 -250.8152 504.6303 514.3327
EMVC 0.5653 1.5158 5.012 -252.2789 507.5579 517.2602
EMVDM 0.5654 1.4985 5.012 -250.8422 504.6844 514.3867
EMV2p 1.4847 8.0858 – -409.8814 803.2061 796.7379

EMVDM trouxe bom ajuste dos dados à distribuição Weibull.

Na Figura 5.9, à esquerda, observa-se a ECDF, que os três métodos, ajustam os dados de

investimento à Weibull de forma similar. À direita, a densidade de probabilidade dos dados

também é similar para os três métodos, a maioria dos dados se acumulam entre o intervalo 0 e

10, já que o valor mínimo para investimento é de R$ 500 mil reais, e 75% dos dados tem valor

até R$ 800 mil, verifica-se também a presença de valores extremos, que podem ser analisados

de forma mais criteriosa em outro momento.
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Figura 5.9: Ajuste do modelo Weibull pelos métodos de estimação via ECDF e Histograma
dos dados de investimento

Já pelo gráfico QQ-plot dos resíduos comparamos os quantis dos resíduos com os quantis
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teóricos da Weibull estimados que parecem se ajustar bem aos dados de investimento, dessa

forma, podemos afirmar que os dados de investimento podem se ajustar a uma distribuição

Weibull.

Pela análise das Figuras 5.10-5.13 verificamos melhor qualidade do ajuste dos dados à dis-

tribuição teórica nos métodos EMVM, EMVC e EMVDM.
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Figura 5.10: QQ-plot resíduos - EMVM
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Figura 5.11: QQ-plot resíduos - EMVC
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Figura 5.12: QQ-plot resíduos - EMVDM
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Figura 5.13: QQ-plot resíduos - EMV2p
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Capítulo 6

Considerações Finais

Nos casos em que o suporte da função densidade de probabilidade depende de parâmetros

desconhecidos, os métodos convencionais de obtenção de estimativas dos parâmetros se tornam

inviáveis, fazendo com que o estimador de máxima verossimilhança possa não assumir valores

finitos. Para situações como esta, em que a estimativa de máxima verossimilhança não existe,

estudamos, nesta dissertação, três métodos de estimação para a distribuição Weibull de três

parâmetros.

O primeiro modelo, EMVM, é o proposto por Kundu e Raqab (2009), onde o logaritmo da

função de verossimilhança modificada é baseado em (n− 1) observações após ignorar a menor

observação e substituir µ pelo seu estimador natural µ̂ = X(1), modificando o vetor escore. O

segundo método, proposto por Cheng e Iles (1987), é o EMVC, que ao integrar a densidade de

probabilidade sobre um pequeno intervalo [X(1), X(1)+h], onde h é um parâmetro de correção,

há redução no impacto de qualquer singularidade ou anomalia associada à menor observação.

Por fim, inspirados nas ideias de Firth (1993), introduzimos um terceiro método, EMVDM,

baseado na penalização do vetor escore modificado calculado no primeiro método.

Verificamos o desempenho dos três métodos na estimação dos parâmetros da distribuição

Weibull através de um estudo de simulações de Monte Carlo. Em determinados cenários, o

EMVDM teve melhor desempenho do que os outros estimadores. Os estimadores estudados
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também foram aplicados em dados reais de resistência de fibras de carbono e de investimento

estrangeiro no Brasil.

Para trabalhos futuros, sugerimos a utilização das ideias de Firth (1993) em problemas de

estimação da distribuição Weibull fazendo a penalização da verossimilhança corrigida de Cheng

e Iles (1987). Outra possibilidade, é propor uma nova distribuição para resolver o problema da

exclusão da menor observação e ainda garantir uma melhor estimação dos parâmetros. Por

fim, essa metodologia pode ser utilizada em outras áreas da Teoria de Probabilidade, como em

Processos Estocásticos, por exemplo.
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Apêndice

Dados 1 - Resistência de fibras de carbono 20mm 1

X= (1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997,

2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274,

2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554,

2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809,

2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585,

3.585).

Dados 2 - Investimentos Estrangeiros2

X=(8.958070, 25.150000, 5.015640, 11.006760, 5.279225, 5.013624, 6.435200, 5.835900,

7.000000, 30.801862, 7.266010, 5.019073, 8.000000, 22.000000, 5.514300, 5.302930, 7.968871,

6.000000, 7.058850, 15.000000, 5.155455, 5.243266, 5.219835, 9.950000, 12.041000, 7.300000,

5.743445, 6.272980, 5.070780, 6.529300, 6.000000, 8.697271, 46.067600, 17.171580, 6.098290,

10.166405, 5.445229, 7.281530, 7.757070, 6.413050, 5.331970, 6.225743, 14.399190, 5.850000,

5.653820, 5.484998, 5.257000, 5.841250, 8.265000, 27.373000, 5.412000, 5.099400, 5.145000,

5.344151, 7.064000, 7.608040, 6.346600, 5.052410, 5.623980, 14.615000, 5.358124, 5.210000

68.570220, 5.097540, 5.400696, 5.959290, 5.148630, 7.860000, 5.104935, 22.000000, 8.985627,

1Dados disponíveis, por exemplo, em Kundu e Raqab (2009)
2Obtidos no site: https://portaldeimigracao.mj.gov.br/pt/base-de-dados/

datamigra?id=401202:cgil-cnig&catid=1733:microdados (acesso em 07/10/2024)

52

https://portaldeimigracao.mj.gov.br/pt/base-de-dados/datamigra?id=401202:cgil-cnig&catid=1733:microdados
https://portaldeimigracao.mj.gov.br/pt/base-de-dados/datamigra?id=401202:cgil-cnig&catid=1733:microdados


§.0.

5.176840, 5.177960, 5.040000, 7.419586, 15.634430, 5.146730, 5.131308, 7.153940, 6.105075,

5.100000, 5.202800, 6.371200, 5.477140, 5.309140, 5.776270, 6.301900, 5.100000, 12.041000,

5.123362, 5.133710, 5.225000, 5.030000, 6.508635, 5.012000, 5.064560, 5.500000, 12.041000,

5.115196, 13.318230, 5.147040, 7.895000, 5.050000, 5.400000, 6.441160, 5.090940, 5.369000,

8.607168, 5.455010, 22.230579, 5.376720, 7.275880, 13.920000, 5.225000, 31.122660, 12.4994,

5.342750, 5.177051, 7.556150, 5.390042, 6.433160, 7.514053, 10.695323, 8.985627, 5.247600,

6.287972, 16.052030, 5.659609, 5.100000, 6.098817, 6.101590, 5.281640)
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