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Resumo

Neste trabalho, estudamos o problema de estimacdo de parametros em modelos Weibull
de trés parametros, para os quais estimativas ndo finitas podem ser obtidas para a funcdo de
verossimilhanca em algumas regides do espago paramétrico. Baseados na penalizacdo do loga-
ritmo da fun¢do verossimilhan¢a modificada, propomos uma nova classe de estimadores para
tal modelo de distribuicdes. Além de obter estimativas finitas para os parametros do modelo,
tal procedimento possibilita uma redugdo no viés dos estimadores modificados. O novo método
foi comparado a outros métodos encontrados na literatura através de estudos de simulagdes de
Monte Carlo. Os resultados dos estudos das simulacdes mostraram que o método de penaliza-
¢do do vetor escore modificado apresentou melhor desempenho que o método do logaritmo da
fun¢ado de verossimilhanca modificada. Foram apresentadas duas aplicacdes em dados reais, a
primeira relativa a resisténcia de fibras de carbono, bastante estudadas na literatura, e a segunda
referente a investimentos estrangeiros que geram emprego ou renda no pais para concessao de

autorizacdo de residéncia ao imigrante, analisada nesse contexto pela primeira vez.

Palavras-chave: Méxima Verossimilhanca Modificada, Penaliza¢do, Simula¢des de Monte

Carlo, Viés, Modelos Irregulares.
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Abstract

In this work, we investigate the parameter estimation problem based on the three-parameter
Weibull models, for which non-finite estimates may be obtained for the log-likelihood function
in some regions of the parametric space. Based on a penalization of the modified log-likelihood
function, we propose a new class of estimators for this distribution. In addition to providing
finite estimates for the model parameters, this procedure reduces the bias of the modified esti-
mator. The new method is compared to others in the literature through a Monte Carlo simulation
study. The simulation results showed that the modified score vector penalty method outperforms
the modified log-likelihood function method. We present two applications using real data. The
first relates to the resistance of carbon fibers, which has been extensively studied in the litera-
ture, and the second refers to foreign investments that generate employment or income in the

country to grant a residence permit to immigrants, analyzed in this context for the first time.

Keywords: Modified Maximum Likelihood, Penalization, Monte Carlo simulations, Bias, Irre-

gular Models.
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Capitulo 1

Introducao

Na inferéncia paramétrica os modelos nao-regulares (veja Resnick (2008) e Smith (1985))
tém recebido ampla atencao na literatura. Tais modelos sdo aqueles cujas derivadas da fungao
de verossimilhanga, para determinados parametros, ndo existem ou ndo sdo continuas, que a
informacao de Fisher € infinita ou ndo existe, ou ainda, que a fun¢@o de verossimilhanga apre-
senta singularidades. Este comportamento pode ocorrer em varias situacdes praticas como, por
exemplo, nas distribui¢des cujo suporte depende de parametros desconhecidos.

Nos casos em que o suporte da fun¢do densidade de probabilidade (FDP) depende de pa-
rametros desconhecidos, os métodos convencionais de obtencao de estimativas dos parametros
se tornam invidveis. Isso se deve ao fato de que a fungdo de verossimilhanga pode exibir uma
tendéncia monétona, fazendo com que o estimador de méxima verossimilhanga nao assuma va-
lores finitos. Distribui¢cdes como a Railegh, Weibull e Weibull inversa sdo tipicos modelos de
probabilidade nao-regulares, pois o suporte da distribuicao pode depender de um parametro de
locacao.

Para este estudo foi escolhido o conhecido modelo Weibull de trés parametros, que é um
exemplo tipico de modelo probabilistico nao-regular. Neste cendrio, quando o parametro de
locacdo se aproxima do menor valor na amostra pode-se observar funcdes de verossimilhanca

ilimitadas, dependendo do valor do parametro de forma. Para situacdes como esta, em que
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a estimativa de maxima verossimilhanca nao existe, Smith (1985) e Cheng e Iles (1987) pro-
puseram uma modificacdo na funcio de verossimilhanca de modo a obter estimativas finitas e
consistentes para os parametros. Além destes autores, outros propuseram métodos de estima-
¢do para os parametros do modelo Weibull. Por exemplo, Kundu e Ragab (2009) propuseram
um método de estimacdo maximizando uma modificagdo da func@o de verossimilhanca. Estes
autores aplicaram o modelo Weibul para estimar a probabilidade de resisténcia-tensao.

Nagatsuka et al. (2013) introduziram um método de estimacdo consistente para a distribui-
cdo Weibull de trés parametros baseada em uma transformacgdo de dados que evita o problema
da fun¢do verossimilhanca ilimitada. A estimacdo de parametros baseada em uma amostra pro-
gressivamente censurada a direita do Tipo II foi estudada por Ng et al. (2012). Montoya et al.
(2019) abordou o problema de estimag¢do dos parametros de uma distribuicdo Weibull baseado
na defini¢do original de verossimilhanga proposta por Fisher.

O método sugerido por Kundu e Ragab (2009) (veja também Ali et al. (2012), Kundu e
Ragab (2013) e Kohansal e Rezakhah (2019)) consiste na exclus@do da menor observacdo da
amostra e € uma estratégia eficaz para garantir a estimacao finita dos parametros da distribuicdo
Weibull, assegurando a finitude da fungao de verossimilhanga (modificada) e a existéncia dos
estimadores. J4 o método sugerido por Cheng e Iles (1987) propde a correcao da fungdo de
verossimilhan¢a numa vizinhanga da menor observagdo da amostra com base em um parametro
de perturbacdo adicional.

Uma solucdo existente na literatura para evitar o problema da funcio de verossimilhanca
monotona € baseada na correcdo de Firth (1993), que envolve a introduc¢do de uma penalizagao
na fungdo escore para garantir estimativas finitas. A abordagem de Firth (1993) foi original-
mente proposta para reduzir o viés dos estimadores de mdxima verossimilhangca (EMVs), por
meio de uma modificacdo adequada da funcdo escore dos modelos lineares generalizados. Para
distribui¢des regulares, a correcao de Firth tem sido extensivamente empregada para abordar a
inexisténcia de valores finitos para o EMV.

Virios autores empregaram o método de Firth em problemas envolvendo distribui¢cdes regu-

2
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lares para resolver problemas de ndo existéncia de valores finitos para os EMV e, também, para
reducdo do viés dos EMV para distribui¢des pertencentes a familia exponencial. Por exemplo,
Arrué et al. (2016) mostrou que o EMV modificado para o parametro de forma do modelo de
distribui¢do skew-normal modificado permanece finito, mesmo quando o EMV ndo modificado
seja infinito. Além disso, Almeida et al. (2022) investigou uma fun¢ao score modificada para
verossimilhan¢ca mondtona no modelo semiparamétrico de cura por mistura. Com base no mé-
todo de Firth, Arrué et al. (2023) desenvolveu uma inferéncia baseada na correcio de viés da
verossimilhanga para a distribuicao skew-t-normal modificada. Heinze e Schemper (2001) e Al-
meida et al. (2018) estudaram a ocorréncia da fun¢do de verossimilhan¢a mondétona na presenca
de observagdes censuradas, e Almeida et al. (2021, 2022) propuseram uma extensao para con-
tabilizar os sobreviventes de longa duracao utilizando a fungdo score modificada para a fungao
de verossimilhan¢ca mondtona.

O problema da fun¢do de verossimilhanga ilimitada, conhecido como problema da funcao
de verossimilhan¢ca mondtona, também foi estudado em regressdo logistica bindria e multino-
mial por Bull et al. (2002) e Heinze e Ploner (2003), na distribui¢do Weibull estendida regular
modificada por Lima e Cribari-Neto (2019), em distribui¢des skew-normal e skew-t-normal
modificadas por Arrué et al. (2016, 2023), dentre outros estudos.

O objetivo central do nosso trabalho é propor um novo procedimento de estimacdo dos
estimadores da distribuicio Weibull de trés parametros baseado na penalizacdo da funcdo de
verossimilhan¢a modificada, proposto por Firth (1993), e comparar os resultados da estimagao
dos parametros com os valores obtidos pelos métodos da mdxima verossimilhanga corrigida e
da maxima verossimilhanga modificada propostos por Cheng e Iles (1987) e Kundu e Raqab
(2009), respectivamente. Para validacdo dos novos estimadores, um estudo de simulagdes de
Monte Carlo foi conduzido Os novos estimadores foram aplicados na modelagem de dados
reais. A primeira base de dados foi analisada por Kundu e Raqab (2009), dentre outros autores
e a segunda base de dados refere-se a investimentos estrangeiros que geram emprego ou renda

no pais para concessdo de autorizagcdo de residéncia ao imigrante, pela primeira vez analisada
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nesse contexto.

Dessa forma, a presente dissertacao estd organizada em trés capitulos. No Capitulo 2 apre-
sentamos em detalhes a distribuicio Weibull estudada e apresentamos o contexto histérico de
sua construgdo e aplicagdes. Em seguida, apresentamos a constru¢do matemadtica da distribui-
c¢do, via convergéncia de minimos parciais de varidveis aleatdrias independentes e identicamente
distribuidas. Em sequéncia, as principais propriedades probabilisticas foram obtidas. Entdo, os
estimadores de mixima verossimilhan¢a modificada de Kundu e Ragab (2009) e os estimadores
de maxima verossimilhancga corrigidos de Cheng e Iles (1987) sdo apresentados. No Capitulo
3, estudamos a constru¢do dos chamados estimadores de méxima verossimilhanca duplamente
modificado (EMVDM), tema central desse trabalho. O capitulo estd dividido em trés secoes.
Na Secdo 3.2, apresentamos a obtencdo analitica dos EMVDMs. No Capitulo 4 apresentamos
os resultados dos estudos de simulacdo, cujo intuito € de avaliar o desempenho do novo es-
timador. O Capitulo 5 apresenta as aplicacdes da distribuigdo Weibull de trés parametros na
modelagem de dados reais de duas bases de dados. Por fim, as consideracdes finais do trabalho

sao apresentadas no Capitulo 6.




Capitulo 2

Distribuicao Weibull

2.1 Introducao

Neste capitulo, apresentamos conceitos que serdo utilizados ao longo desta dissertagdo. Ini-
ciamos a Secao 2.2 apresentando o contexto histdrico da distribuigcdo Weibull e suas aplicacdes
propostas ao longo do tempo. A Secdo 2.3 é dedicada a apresentacdo da constru¢do matematica
da distribui¢do, via convergéncia de minimos parciais de varidveis aleatorias independentes e
identicamente distribuidas. A Sec¢do 2.4 apresenta as principais propriedades probabilisticas da
distribuicdo Weibull de trés parametros. Finalmente, destacamos que os conceitos abordados
nesse capitulo servem como base para eventuais consultas durante a leitura do Capitulo 3. As
principais referéncias utilizadas para a escrita deste capitulo foram os livros de Johnson e Kotz
(1970), Galambos (1978) e Resnick (2008), e os artigos de Cheng e Iles (1987) e Kundu e
Ragab (2009).

2.2 Contexto Historico

Em 1951, o fisico, engenheiro e mateméatico Waloddi Weibull, descreveu a distribui¢ao
Weibull detalhadamente, para representar a distribuicdo da resisténcia a ruptura de materiais

e para uma ampla variedade de outras aplicacdes Johnson e Kotz (1970). E uma distribuicio
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continua amplamente utilizada em andlises de confiabilidade, estudo de vida util de produtos,
e modelagem de dados que envolvam falhas e duracdo de eventos. As aplicagdes do modelo
Weibull podem ser verificadas em diversas areas da ciéncia como: medicina (MATSUSHITA
et al., 1992), engenharia (KUNDU; RAQAB, 2009), risco em seguros (GEBIZLIOGLU et
al., 2011), hidrologia (CLARKE, 2002), climatologia (PAPALEXIOU et al., 2018), e finangas
(MITTNIK; RACHEYV, 1993), dentre outras.

Na area de saude, a distribuicdo Weibull pode ser utilizada na anélise de dados de sobre-
vivéncia em ensaios clinicos e em incidéncia de doengas. Na drea ambiental, Johnson e Kotz
(1970), utilizou a distribui¢do Weibull para andlise do didmetro de drvores e momento adequado
para coleta e para andlise da velocidade do vento.

No artigo publicado por Matsushita et al. (1992), a distribuicao Weibull foi aplicada a tdbua
de vida e aos padrdes de idade das doengas no Japao. O objetivo era analisar a epidemiologia do
envelhecimento humano e das doencgas pela distribuicao Weibull. A longevidade dos pacientes
analisados, durante o século passado, manifestou-se com aumento nos parametros de escala em
trés periodos analisados e nos parametros de forma em um dos periodos com predominancia
feminina.

Em um estudo sobre retorno de ativos financeiros, Mittnik e Rachev (1993) comprovaram
que a distribuicao Weibull superou as outras distribuicdes estaveis consideradas pelos autores. A
distribuicdo Weibull também vem sendo utilizada para detectar tendéncias ao longo do tempo
de varidveis hidroldgicas e climaticas. Clarke (2002) tratou das mudancas na frequéncia e
intensidade de alguns fendmenos climaticos, particularmente as vazdes minimas anuais do Rio
Paraguai por um periodo de 19 anos devido as preciptacdes, no qual o modelo Weibull mostrou
tendéncias temporais nesses dados.

Na engenharia, a distribui¢do Weibull € utilizada para avaliar a vida ttil de maquinas, pro-
dutos ou pecas. O estudo de Kundu e Raqgab (2009), estimou o parametro de tensdo-resisténcia
usando a distribuicdo Weibull de trés parametros quando todos os parametros sdo desconhe-

cidos, ou seja, se X € a resisténcia de um sistema que € submetido a uma tensao Y, entdo
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R = P(X < Y) é uma medida do desempenho do sistema. O sistema falha, se e somente se,
a qualquer momento a tensao aplicada for maior que sua resisténcia. Supondo que as duas po-
pulacdes t€ém os mesmos parametros de forma e locacdo, mas pardmetros de escala diferentes,
os autores obtiveram os estimadores de maxima verossimilhanca modificados dos parametros
desconhecidos excluindo a menor observacdo do conjunto de dados, para evitar problemas de

func¢do de verossimilhanga monétona.

A distribuicdo Weibull € uma das mais utilizadas como modelo de probabilidade para ge-
renciamento de risco atuarial e financeiro. No estudo de Gebizlioglu et al. (2011) a distribui¢ao
Weibull e seus quantis foram considerados no contexto da estimativa de uma medida de risco,

e através de simulagdes investigaram a eficiéncia de diversos estimadores.

Em climatologia, o estudo de Papalexiou et al. (2018) indicou a distribui¢do Weibull como
um modelo mais robusto para mapeamento dos extremos de precipitagdo nos Estados Unidos.
Este estudo destaca a importancia de estudar intensidades de precipitacio e suas probabilidades
para melhoria de proje¢des de modelos climéticos que servem de apoio a decisdo e operagdo na

prevencdo de inundagdes.

2.3 Construcao da Distribuicio Weibull via Minimos Parciais

As defini¢Oes e notacOes utilizadas nesta sec¢do estdo de acordo com as apresentadas por
Galambos (1978). Sejam X1, X5, - -+ , X, varidveis aleatdrias (v.a.’s) independentes e identica-

mente distribuidas (i.i.d.) com fung¢@o de distribui¢do acumulada (FDA) comum F'(x).

Defina o minimo da amostra como

m, = min{ Xy, -+, X, }.

Tem-se que, se a FDA F' de X, € conhecida, entdo, para cada valor de n € N, a FDA do

7



cap. 2. Distribuicao Weibull ~ §2.3. Construcdo da Distribuicao Weibull via Minimos Parciais

minimo m,, pode ser obtida da seguinte forma:

De fato,
P(m, >z) = Pmin{Xy,---,X,}>x)
= PXi>x,-,X,>x).
Como X1, -, X, sdo v.a.’s 1.i.d., obtemos

Pim,>z) = P(Xy>z)---P(X,>x)
= (1-F(z)---(1-F(x))

= (1=F(z))"

Logo, a FDA de m,, é dada por

P(m, <z)=1-(1- F(x))".

Observe que

lim P(m, <z)=1- lim (1 — F(z))".

n—oo n—oo

Se z € R é tal que F(z) = 0, entdo

P(m, <x)=0, Vn €N,

Por outro lado, se z € R é tal que 0 < F'(z) < 1,entdo 0 < 1 — F(x) < 1. Consequentemente,

lim P(m, <z)=1-0=1.

n—oo
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Segue que

0, =z </l(F),
lim P(m, <z)=
e 1, o> {(F),

em que o ponto extremo inferior é denotado por ((F') = inf{z € R; F(z) > 0}. Logo,

M, ((F), quando n — oo.

Como /(F') é constante,

m, 2 ((F), quando n — oo.

£ . . . d p

Em outras palavras, m,, é um estimador fracamente consistente para /(F'). Aqui — e —
indicam convergéncia em distribuicdo e em probabilidade, respectivamente. Nesse caso, se
desejarmos obter uma distribuicdo limite ndo-degenerada para o minimo parcial, deveremos

considerar uma normalizagdo, ou seja, estudar o possivel limite L(z) tal que

lim P (m’"‘a—_b” < x) = L(2), 2.1)

n—oo

para sequéncias de nimeros reais {a, } e {b,} escolhidas apropriadamente e sendo z ponto de

continuidade de L(-).

Observacao 2.3.1. A notacdo de minimos parciais m,, adotada nesse capitulo segue as nota-
¢oes estabelecidas em Galambos (1978), onde foram apresentados em detalhes as provas dos
teoremas limites envolvendo m,,. Além dessas provas, estabeleceu regras para a construc¢io das
sequéncias de constantes a,, b, > 0, além de critérios para F'(x) em que (2.1) é vdlida. Essa

definicdo também foi descrita por Resnick (2008).

O resultado a seguir € uma adaptacdo do Teorema de Fisher e Tippett (1928), verificado

também por Resnick (2008), para o caso de maximos parciais.
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Proposicao 2.3.1 (Adaptacao do Teorema de Fisher e Tippett). Suponha que existam sequéncias
reais {a,} e {b,} com a,, > 0 tais que,

lim P <@ < x) = lim [1 — (1 — F (a, + by2))"] = L(x), (2.2)

n—0o0 n—o0

para todo x € C(L), ponto de continuidade de L(-), em que L é assumida ndo-degenerada.

Entdo L é do mesmo tipo de uma das trés classes a seguir:

1 — exp(—(—2)™), 0,
Ly(zsa) = exp(—(—x)~%), sex < 23)

1, sex > 0,

para algum o > Q.

1 —exp(—z%), sex >0,
Ly(z; o) = (2.4)

0, sex <0,

para algum o > 0.

Li(z) =1 —exp(—€®), v €R. (2.5)

A Figura 2.1 é a representagdo grafica da funcgdo de distribuicdo L(x), considerando as trés

classes definidas na Proposicao 2.3.1, considerando a=2 para (i) e (7i):

Neste trabalho, focaremos nossos estudos em distribui¢des do mesmo tipo de Ly(z; @), ou
seja, as fungdes de distribuicdo G(+) para as quais existem constantes ;1 € Re § € (0, 00) tais

que

G(z) = Ly (x _H, a) . (2.6)
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Figura 2.1: Grifico das classes de L(x) para a=2

2.4 Definicoes e Propriedades Probabilisticas

Com base na distribuicdo em (2.6), dizemos que uma v.a. X tem distribuicao Weibull,

denotada por X ~ WB(0), com 8 = (u1, o, 3) " se a FDA ¢ definida da seguinte forma:

0, r < p,
F(z;0) = 2.7)
—exp (< —ur) . 53
A funcdo densidade de probabilidade correspondente é dada por
o (z—p\*! r—p\"
f(x;0) = — ( ) exp (——) 1000 (), (2.8)

em que 1,4 denota a fun¢do indicadora do conjunto A.

Observagdo 2.4.1. Podemos reparametrizar a FDP da distribuicio Weibull considerando os

parimetros @ = (u,, )", onde 3% = o. Nesse caso, a fungdo densidade de probabilidade

11
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do modelo Weibull reparametrizada € apresentada em (2.9), notagdo que usaremos daqui em

diante:

(6] 1 —L(p—p)
f(@;0) = —(z = )" e T L0 (2), (2.9)

Observagao 2.4.2. Além da construcdo da distribuicio Weibull reparametrizada (2.9) apresen-
tada na observacdo anterior, esta também poderia ser construida via distribui¢do exponencial,

da seguinte forma: Seja X uma v.a. com distribui¢do W B(6) se

_ (X =m)®
Y_(5>’

onde Y tem distribui¢do exponencial padrao.

As Figuras 2.3-2.5 mostram o comportamento de f(x; 0) e F'(x; 0) considerando diferentes

valores para os parametros de interesse.

o=4,u=0 o=4,u=0
< o
d - [0} H * o
0.05 0.05
! — 0.2 — 02
N 0.4 © | ----- 0.4
™ | 0.6 © 0.6
o | 08 08
i 1 1
¢ ©
1 ©
= o <
= o || o
i <
\ o
{
|
1
o N
{ o
o | o |
o o
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8

Figura 2.2: Grifico da FDP f (esquerda) e FDA F' (direita) com variacdo do pardmetro de
forma 0 < a < 1.
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Figura 2.3: Grafico da FDP f (esquerda) e FDA F' (direita) com variacdo do pardmetro de
forma a.

a=2,u=0
o o
- g — -
— 2
o | ] 4 o |
o 6 o
8
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—
< <
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— 2
IV L T Y L 4
o | o 6
8
o | = ) o | 10
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0 2 4 6 8 0 2 4 6 8

Figura 2.4: Grifico da FDP f (esquerda) e FDA F' (direita) com variacdo do pardmetro de
escala o.

Conforme apresentado em Johnson e Kotz (1970) e ilustrado nas Figuras 2.3-2.5 os para-

metros « (forma), o (escala) e i (locagdo) alteram a distribuicao do seguinte modo:

13
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a=2,0=4
o o
- H —
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Figura 2.5: Grafico da FDP f (esquerda) e FDA F' (direita) com varia¢do do pardmetro de
locagdo .

* Forma («): define a forma da distribuicao.

— « < 1: torna a distribuigdo mais assimétrica e concentrada em valores pequenos,
com uma cauda pesada a direita, indicando uma taxa de falha decrescente, muito

usada para modelar sobrevivéncia.

— « = 1: reduz-se a distribui¢do exponencial, indicando um decaimento exponencial

da densidade com uma taxa de falha constante.

— « > 1: a func@do de densidade tem um pico e depois decresce rapidamente, carac-
terizando cauda leve, o que significa que hd um valor mais provavel ao invés de
apenas um decaimento exponencial, indicando uma taxa de falha crescente, muito

usada para modelar "desgaste"de produtos.

* Escala (0): ajusta a dispersdo dos dados ao longo do eixo x, quanto menor valor de o
maior assimetria e vice-versa. A unidade de medida da escala é a mesma da variavel

aleatéria z.

14
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* Locacao (1) define a posicao da distribuicdo, ou seja, desloca a distribui¢do ao longo do

€ixo .

Observagdo 2.4.3. Essas caracteristicas também podem ser observadas por meio da fungao de

risco.

A seguir apresentamos, nesta secdo, as propriedades probabilisticas mais relevantes relacio-
nadas a distribui¢cdo Weibull. As expressdes encontradas para a esperancga, variancia, momentos,
dentre outros, sao detalhados em diversas referéncias. Para este estudo utilizamos como base o

conteddo exposto em Johnson e Kotz (1970).

2.4.1 Esperanca

A esperanga E(X) de uma varidvel aleatéria X com distribuicio W B(0), 07 = (u, a, o),

¢ dada por:

[e.9]

E(X)Z/ xf(x;@)dx:/ & (:L._M>chle_é(x_u)a .
p o

I

Fazendo a substituicdo u = (% (x — u)“, podemos reescrever a integral como:

E(X) = /0 (b + oaus)e ™ du

= ,u/ e_“du+mlv/ ure ™ du
0 0

1
= u+oal (—+1), (2.10)
(0

onde I'(t) := [” u'"'e™" du denota a fungdo Gama,

Observagdo 2.4.4. Note que o parametro de locacdo y é diferente da média da distribuic¢do, ou

seja, E(X) # p.

15
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2.4.2 Variancia

A variancia pode ser calculada por:

Var(X) = E(X?) — [E(X)]. (2.11)

Como E(X) foi obtida em (2.10), resta calcular E(X?). Fazendo uma mudanga de variavel

semelhante a usada para calcular E(X ), obtem-se:
2 2 1 1 2 2
E(X®) =p*+2uocel' |1+ — | +0oal' [1+—|.
o) Q

Substituindo E(X) e E(X?) na Equagdo (2.11):

) = st (1 ) ot (1)) - (o 2)]
F(H%) - (F(1+é))2

2
= g«

2.4.3 Momentos

Note que, para todo m € N,
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Usando o bindmio de Newton, obtemos:

E(X™) = 2(7;:)/0 um’kaguge’“du

k=0

- Zm: (TZ)Mm_kJZ /OO watlem gy
k=0 0

— Z (7:) pdm_kaﬁl—‘ (— + 1)
k=0

2.4.4 Funcao Quantil

A fungdo quantil, Q(p), é a inversa da FDA (2.7). Dado um percentil p € [0, 1), ou seja,

F(x,) = p, a fungdo quantil nos dé o valor de z, correspondente a esse percentil. Temos:

p=1-ox (-2 - 7).

Ajustando a equacdo e aplicando logaritimo em ambos os lados, obtemos

log(1 —p) = (—l(wp - u)“) :

g

Multiplicando por -1 e elevando ambos os lados a é:

(—olog(1—p)"* = a, — .

Finalmente, isolando z,, temos:

Q=

Q(p) =z, = p+ o= (—log(1 — )=, (2.13)

com(0<p<l.

17
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2.4.5 Funcao Geradora de Momentos

Vamos obter a fungdo geradora de momentos de X ~ WB(8). Temos que, parat € R,

M(t) = B(et) = /ﬂ h (o) exp (-%(;@ _ M)a) da.

(z—p)

Fazendo a substituigdo u = ~— %, obtemos:

1 1

[e%¢) 1 8} 1. 1
M(t) = / et low) e o=u gy = et“/ elto@)ue o=t gy,
0 0

k
Usando o fato de que e =} 7 | 4+, obtemos

M) = et“/ooo [Z (w;#] e “du

2.4.6 Funcao Caracteristica

Considerando as respectivas alteracdes necessdrias no dominio e no contradominio da fun-
¢do geradora de momentos (2.14), obtemos que a fungo caracteristica da distribui¢cao W B(8)

é

em que i = —1.

18
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2.5 Métodos de Estimacao dos Parametros

Muitos autores vem discutindo o problema da maximizagdo da func¢do de verossimilhanga
comumente observada em distribu¢des com parametros de locagao e estatisticas de ordem, como
a Exponencial, Weibull, Gamma (e suas generalizagcdes), dentre outras. Os estudos propostos
por Kundu e Raqgab (2009), Ali et al. (2012), Kundu e Raqgab (2013) e Kohansal e Rezakhah
(2019), por exemplo, excluem a menor observaciao do conjunto de dados como alternativa para
garantir que a fung@o de verossimilhanga seja maximizada (finitude dos EMVs).

No entanto, a exclusao de observacdes pode, em parte, significar perda de informacao. Neste
ponto de vista, a abordagem proposta por Cheng e Iles (1987) e Cheng e Traylor (1995) pode,
efetivamente, contornar as duas questdes discutidas anteriormente.

Suponha que { X, ..., X,,} sdo v.a’s i.i.d. com distribui¢io WB(8), cujo vetor de parime-
tros € 6. Sua funcdo de verossimilhanga correspondente € o produto das fun¢des densidade de

probabilidade (2.8) para todos os n valores observados da amostra:

n )(Z o a—1 )(Z . «
L£(0; X1, X,...,X,) = H 2 < M) exp [_ ( M) } T, 400) (X3)

! o o
=1

- () e (L)

(Xi — :u)ail l(u,-&-OO)(Xi)-

(2.14)

—= O

1=

i=1
Pela funcdo de verossimilhanca dada em (2.14), obtemos que o EMV do parametro de loca-
¢do p pode ser representado por
fr=min{X,, X, ..., X,} "= Xp).

Dessa forma, o parametro de localizacdo p pode ser considerado um estimador natural e con-
sistente do valor minimo da amostra porque representa o ponto a partir do qual as observagdes

comecam na distribuicio Weibull. O valor minimo observado da amostra é uma estimativa
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intuitiva para p e converge para o verdadeiro valor de 1 a medida que o tamanho da amostra
aumenta.

Note que, se o < 1, conforme p se aproxima de X(;), a fungdo de verossimilhanga em
(2.14) aumenta gradualmente até o infinito. Consequentemente, os EMVs de 8 nao existem.

Uma abordagem comum na literatura para se modelar dados com suporte positivo € consi-
derar 4 = 0. Assim, a distribuicdo Weibull se torna um modelo regular e os EMVs de («, f3)
podem ser obtidos por métodos usuais.

Com o objetivo de modelagem de dados com o suporte (possivelmente) real, nas subse¢des
a seguir apresentamos, respectivamente, os métodos de corre¢do da fungdo de verossimilhanca
propostos por Kundu e Ragab (2009) e Cheng e Iles (1987), sem a suposicao de que o parametro

de locacdo p seja nulo.

2.5.1 EMYVs Modificados

Considerando ;1 < X(3), € aplicando o logaritmo a fun¢do de verossimilhanca apresentada

em (2.14) e que o produto das funcdes indicadoras sdo iguais a 1, temos que:

00) = logL(6;Xy,...,X,)

(125 [ (52)])
- o (3 () e[ (251 )

= nlogg—EZ(XZ'—M)O‘+(a—l)Zlog(xi—p). (2.15)
; i=1

Por simplicidade de notacdes futuras, reescrevemos o vetor de parametros da seguinte forma:
GT = (M7 ¢T)7 onde ¢T = (Oé, J)'

Vamos obter o logaritmo da funcdo de verossimilhanca modificada usando os mesmos pas-
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sos de Kundu e Raqgab (2009). Para garantir a existéncia e a finitude dos EMVs para o vetor 6,
o logaritmo da fungéo de verossimilhanga modificada é baseado em (n — 1) observacdes apés
ignorar a menor observacdo e substituir x4 pelo seu estimador natural g = X(;). Fazendo as

substituicdes em (2.15) temos:

(i, @) = (n—1)loga—(n—1) logo—é Z (X; — )"+ (a—1) ;log (X; — ). (2.16)

=2

ApOs a exclusdo de X, as expressdes que apresentamos a seguir para o vetor escore € a
matriz de informacgdo, dependem apenas da soma das v.a.’s restantes. Dessa forma, por simpli-

cidade de notagdo, em (2.16) consideramos que X; = X).

Por conseguinte, o vetor escore modificado é

SM(¢) = (aagM (ﬂa d)) ,ang ([Lv ¢)))T ) (217)

onde 0,0xs (f1, @) € Oxlps (f1, @) denotam as derivadas parciais de ¢y (fi, ¢) em relagdo a a e o,

respectivamente. Note que,

n

R (n—1) 1 R 1 R R
3a€ 5 I — - 1 Xz_ *—— Xz_ al Xz_ 218
mlf @) = ——=+ a; og(X; — 1) U;( A)*log (X; — ) (2.18)
e
R —(n—1 1 « e
0, 9) = "D LS (e =0 2.19)
=2
Segue de (2.19) que
1 & n—1
) Xz — )" = ’
72 2 (Xi — 1) .
logo
n X _ AN\ QY
& = 6(a) = (Xi — )
P n—1

Por outro lado, o EMV para « ndo tem forma fechada. Dessa forma, métodos numéricos po-
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dem ser usados para encontrar &. Por exemplo, o Método do Ponto Fixo € uma das possiveis
alternativas, veja em Burden et al. (2015).
Matriz de Informacao Modificada

Uma vez concluidas as etapas iniciais, podemos obter a matriz de informagao esperada
para ¢, representada por Z (¢). Isso € possivel calculando as derivadas de segunda ordem (ou

cumulantes). Representaremos por ks a entrada genérica (r, s) da matriz Z (¢), de modo que,

omo{ e {5 () o o

Temos o seguinte resultado:

Proposicdo 2.5.1. Seja X, -, X,, uma amostra aleatoria da distribuicdo W B(0). Suponha
que o pardmetro de locagdo |1 é conhecido. Entdo, a matriz de informagdo de Fisher associada

a fungdo de verossimilhanca modificada (2.16) é dada por

kaa kao‘
T(¢) = ; (2.20)

koa kao‘

em que
koo = ”O;l {(1+T17(2)) + 2log(o)T"(2) +log?(0) }, (2.21)
1 )

by = koo = —J(n—l)F (2) log (o), (2.22)
o "0_21. (2.23)

Prova: Queremos provar (2.21)-(2.23). Primeiramente, considere Z uma v.a. com distribui¢ao

Gamma(a, 1). Afirmamos que se a = 2, entdo

E(log Z) =T"(2), (2.24)
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E(log* Z) =T"(2). (2.25)

P 1 _

De fato, lembre que 2 2%"1log 2. Entio,

o 1
E(logZ) = / log z——2""te *dz
0

I'(a)
_ ﬁ /O %z“lezdz
_ ﬁ% /O 2o 3
_ FF/((Z)) (2.26)

Em particular, se a = 2, entdo I'(2) = 1, dessa forma (2.24) estd provado. De maneira andloga,

€ possivel mostrar a validade de (2.25). Agora, derivando (2.18) em relag@o a o, obtemos

o - 5] P)

Oa?
- E { (”O; DI % Z(Xi — p1)*[log(X; — u)]Q}
_ n_1+§ZE{ ) [log(X; — w)]?} - (2.27)

Temos que

E [(X; — p)*log*(X; — p)] = )" log?(x — p) f (x; 6) dz

=
8

_ /oo 1 log?(z— ,u)—exp( i(x—,m) () da
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Substituindo t = @, obtemos

E [(Xi — p)*log®(X; — )]

Ap6s simplificagdes, pode-se mostrar que

E [(Xz — 1) log?(X; — M)] =

< 1
/0 tag log(to)] e~tdt.

% {log2 o+ 2 log(a)/ log(t)te "dt —|—/ log?(t)te 'dt
o 0

0

7 {log? o + 21og(0)E lox(2)] + E [l0z*(2)] }.

em que Z tem distribuicdo Gama(2, 1). Dessa forma, segue de (2.24)-(2.28) que,

n—1

a?

1 2
hoo = o+ @ 3 (e + 200 )+ 172)

n—1

= {(1+1"(2)) +log*(0) + 2(log o)I"(2) },

a?

o que prova (2.21).

Para calcular £,, seguimos o mesmo raciocinio anterior

ko(f

Temos que

B - %) = | T S e e (<

4 {_ 0l (@)

Oo?

%ZE{(& —
=2

)t —

n —

1
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|

(2.28)
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onde na segunda igualdade utilizamos novamente a mudanga de varidveis ¢t = @ Logo,

(n—1) 20n-1) (n—-1) n-—1

2 — w
D e P U U S USRS
=2

o que prova (2.23).

de modo que

o2 o3 o2 o2

Por fim, segue de (2.18) e (2.19) que

801 {aagM (¢)}

kaa

= kaa

= aa {aong(¢)}
1 n
= ; 2 (‘XrZ — M)a 10g<Xz - M)7

(22ie)

1 ZE {(X; — ) log(X; — u)}

=2

——(n—1)I"(2)log(0),

onde a terceira igualdade foi obtida seguindo os mesmos passos anteriores, com isso concluindo

a proposi¢ao.

2.5.2 EMYVs Corrigidos

Ainda visando os problemas das distribui¢des nao-regulares, serd apresentada mais uma téc-

nica de correcao da funcdo de verossimilhanga proposta por Cheng e Iles (1987). Essa correcdo

ajusta a contribui¢cdo da menor observagdo, que pode ser particularmente problematica em dis-

tribui¢des com suporte dependente de parametros ou outras caracteristicas ndo-regulares, como

j4 discutido na Sego 2.5.1. A fungdo de verossimilhanga corrigida £(6, 1) é definida como:
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. Xayth "
0(6,h) = log / f(a:0)dz + ) log f(X;; 6), (2.29)

X =2
em que X (1) é amenor observacdo no conjunto de dados, i é um parametro de corregdo, f(z; )
¢ a func¢io densidade de probabilidade, e 6 € o vetor de parametros.

A correcao proposta em 2.29 pode ser interpretada da seguinte forma:

¢ O primeiro termo, log | ;((( (11))+h f(z;0)dx, integra a densidade de probabilidade f(x;8)

no intervalo [X 1), X(1) + h], ajustando a contribui¢do da menor observagdo X (1)-

* O segundo termo, ", log f(X;;0), é a soma dos logaritmos da fungdo de verossimi-

lhanca individuais das demais observacdes X; parat = 2,...,n.

Ao integrar a densidade de probabilidade sobre um pequeno intervalo [ X (), X(1)+h/], a corregao
reduz o impacto de qualquer singularidade ou anomalia associada a menor observagao.

Alguns dos beneficios desta abordagem, destacados por Cheng e Iles (1987), sdo:
* Reducdo do viés dos EMVs;
* Maior robustez dos estimadores em problemas nao-regulares;

* Melhor consisténcia dos estimadores em situacdes onde a funcdo de verossimilhanca pa-

drdo pode falhar.

Além disso, esta correcdo ajusta a fungdo de verossimilhanca de modo a obter estimadores
mais robustos e menos viesados. Cheng e Iles (1987) descreveram que a técnica de corre¢dao do
log da funcdo de verossimilhanca pode ser estendida para outras distribui¢cdes como a Gama,
a Beta e a Log-normal, mantendo as propriedades assintGticas esperadas e estimativas de ma-
xima verossimilhanca consistentes. Este método também foi apresentado nos estudos de Smith

(1990), Jones e Smith (1991) e Brown e Zhao (1996).
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Capitulo 3

Reducao de Viés nos EMVMs

3.1 Introducao

Neste capitulo, propomos um novo procedimento de estimagdo para os parametros de forma
e de escala, baseados em uma amostra extraida de um distribuicdo Weibull. No Capitulo 2,
apresentamos os EMVs modificados (EMVMs) propostos por Kundu e Raqab (2009). Para
isso, foram apresentados o logaritmo da func@o de verossimilhang¢a modificada ¢,;(¢) (2.16),
o vetor escore modificado Sy/(¢) (2.17) e a matriz de informagéo de Fisher (modificada) Z(¢)
(2.20). Na Secido 3.2, apresentamos o método de penalizacido da fun¢do de verossimilhanca
proposto por Firth (1993). Tal método € a base para a constru¢do da nova classe de estimadores
proposta. No Capitulo 4, um estudo de simulacdes é apresentado para avaliar a qualidade dos
novos estimadores. Os resultados obtidos via simulagdes de Monte Carlo sdo comparados com

estimagdes feitas via EMVMs (Se¢do 2.5.1) e EMVCs (Secdo 2.5.2).

3.2 EMYVs Duplamente Modificados

O propdsito dessa secdo € propor um estimador baseado na penalizacdo do vetor escore
modificado dado em (2.17). Para isso, usaremos o método de Firth (1993) que remove o viés de

primeira ordem dos EMVs por uma adequada penaliza¢io da fungdo escore.
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Seja X1, -+, X,, uma amostra aleatéria da distribuigio WB(0), 87 = (u,¢") com ¢' =
(o, 0). Tome o estimador natural de /+ como sendo o menor valor da amostra i = Xy).

Considere o vetor escore modificado Sy;(¢) (2.17). Definimos o vetor escore duplamente

modificado da seguinte forma:

Su(9;) == Su(d;) + A(¢;) para ¢; € {a,0}, j =12, 3.1

onde A (¢;) é a penalidade de ¢, e serd apresentada adiante. Entdo, os EMVs duplamente

modificados (EMVDMs), ngﬁ* podem ser obtidos resolvendo a seguinte equacao:
Sule;) =0, j=12 (3.2)

Observagdo 3.2.1. S},(¢;) representa a j-ésima entrada de S}, (¢), e A (¢) € o vetor das pena-

lidades, sendo da ordem O(1) quando n — oc.

Na proposta de Firth (1993), os elementos de A (¢;) sdo obtidos derivando as entradas

genéricas da matriz de informacao de Fisher do seguinte modo:

A(g)) = %Z > Kk = %tr {I‘l (¢) (%(?) } : (3.3)

r,s€{a,0}

onde k"* representa as entradas genéricas (r,s) de Z7' (@), kys; = Oy, ks, para k., represen-
tando a entrada (r, s) da matriz Z (¢) e tr(M) denotando o tragco da matriz M.
Observe que no caso da distribuicdo Weibull modificada, utilizaremos o logaritmo da fun-

cdo de verossimilhanga modificada (2.16) ao invés do logaritmo da fun¢ao de verossimilhanca

(2.15).

Observagdo 3.2.2. Os EMVDMs tém as mesmas propriedades tedricas que os EMVs modifica-

dos ¢. Além disso, a matriz de covariancia de primeira ordem para ¢* € a mesma obtida para
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QAS, com qﬁ* substituindo g?) Consequentemente, qS* ~ N (qb,I*l (q@*)) quando n — oo.

Observagdo 3.2.3. Computacionalmente, podemos obter os EMVDMs via resolugdo do sistema
de equacdes (3.2) ou via maximizagao do logaritmo da funcdo de verossimilhanca duplamente
modificada

1

0s(@®) = Car (i, @) + 5 log det Z(g).

em que Z(¢), definida em (2.20), é a matriz de informacéo, cujo determinante € igual a
det Z(@) = kankoo — kackoa-

A seguir, para estimar os parametros que resolvem (3.2), sdo apresentadas as derivadas
parciais de terceira ordem da matriz de informac@o Z(¢) com base nos cumulantes apresentados
na Subsecdo 2.5.1. Para isso os elementos k, ; ;, que compde (3.3), sdo obtidos via derivagio
parcial (com respeito a « e o) dos termos da matriz de informagdo Z(¢) (2.20). Os célculos sdo

apresentados a seguir:

kooo = Onkae = Oa {";21 [(1+T7(2)) + 21log(o)I(2) + log*(o)] }
— _% {(1+1"(2)) + 2log(o)I"(2) + log*(0) } -

ko = koo = Oakga = Oa {_ (n=1) (z((f) 1og(0))}

(n — 1) (I"(2) log(0))

o?o
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koo = Opkoa = { [(1 +I"(2)) + 2log(o)I'(2) + log*(0)] }
n—1 <2F’(2) 210g(0))

o? o

= 20070 (v9) 4 log(o))

= 20~ (1(9) 4 10g(0)).

kowo = kouo = Oukoe = O, {_ (n—1)(I"(2) 10g(0))}

— (na;;) (I'(2) + log(o)) + {— (na—al) %}
- D e oo - {1

-1
= (T"(2) +log(o) — 1).
Finalmente,

koaa - acrk:crcr = - - -

Nas proximas secOes, avaliaremos a aplicabilidade dos novos estimadores em dados simu-

lados e em dados reais.
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Capitulo 4

Estudos de Simulacao

Os estudos de simulacido apresentados nesse capitulo, foram programados no software R
Core Team (2024). Avaliamos a estimacao dos parametros da distribuicdo Weibull, via simu-
lagdes de Monte Carlo. As EMVMs, EMVCs e EMVDMs, foram obtidas considerando os

seguintes passos no processo de geracao dos dados:

* Fixamos um vetor de trés parAmetros 0" = (u, o, 0) € {(1,1,1),(1,0.5,2), (1,1.5,2)},

onde cada vetor representa um cendrio.
* Fixamos o tamanho de amostra n € {50, 100, 500, 1000}.

* Para cada configuragdo de 6 e n escolhidos, foram geradas M = 1000 replicacdes de
Monte Carlo. Em outras palavras, para j = 1,---, M, geramos uma amostra X /) =
{X fj ), e ,Xflj )} da distribuicdo WB(0). Assim, a j-ésima estimativa do pardmetro 6 é

obtida com base na amostra X /), digamos éj = éj (X)),

* O desempenho do modelo em termos de estimacao foi avaliado usando as seguintes me-
didas: Viés Relativo (RB), Raiz do Erro Quadratico Médio (RMSE) e a Probabilidade de
Cobertura (CP), que mede a propor¢do de vezes em que os intervalos de confianga vao
conter o verdadeiro valor do parametro que estd sendo estimado, veja Casella e Berger

(2002). Para cada cendrio, foi considerado o nivel de significancia de 5%.
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O primeiro cendrio 8" = (u,a, o) = (1,1, 1), a Weibull se reduz a uma distribuigio expo-
nencial, indicando um decaimento exponencial da densidade, devido a & < 1, com alta frequén-
cia de valores pequenos e uma cauda pesada. O segundo cendrio 8" = (u,,0) = (1,0.5,2),
em que a = 0.5, gera valores ainda mais concentrados préximos ao minimo permitido () e
com uma cauda mais longa (pesada). Tomamos por base os valores estimados na andlise dos
dados de investimento (ver Tabela 5.4). O terceiro cendrio 87 = (u,a,0) = (1,1.5,2), em
que o = 1.5, tem um pico na densidade, indicando um valor modal mais definido, e uma cauda
mais leve atingindo o zero de forma mais rdpida que nos outros cendrios.

Os resultados obtidos foram utilizados para comparar os métodos de estimacdo EMVDM,
EMVM e EMVC, propostos por Firth (1993), Kundu e Ragab (2009) e Cheng e Iles (1987),
respectivamente.

Desta forma, nas nas Figuras 4.1-4.3 apresentamos os resultados de RB e RMSE. Observe
que a medida que o tamanho n da amostra aumenta, tanto o RB quanto o RMSE se aproxi-
mam de zero, indicando que os pardmetros estimados estdo mais proximos do real valor dos
parametros.

Podemos verificar diferengas entre os métodos de estimagao para tamanhos de amostra me-
nores. Para amostras maiores que 500, essa diferenca no RB e no RMSE € quase nula. Os
valores RMSE dos trés estimadores sdo semelhantes.

O EMVDM tende a reduzir o viés em comparagdo ao EMVM para a configuracdo de pa-
rametros apresentada na Figura 4.2, segundo cendrio, demonstrando que para distribuicdes de
cauda pesada (o« < 1, o EMVDM se mostra melhor que os demais indicando influéncia da
cauda na estimacgdo dos pardmetros. J4, a comparacdo do RB dos EMVDMs contra EVMCs,
mostrou que, em geral, os estimadores corrigidos apresentaram um viés menor. Nesse caso,
pode-se pensar em fazer uma penalizagcdo da fungdo log-verossimilhanga corrigida (2.29) utili-
zando novamente o método de Firth, tentando assim, melhorar os resultados na simulagao.

Os valores de CP estdo apresentados na Figura 4.4 para o cendrio « = 1,5 e ¢ = 2, indicam

que o EMVDM teve melhor desempenho quando comparado com o desempenho dos demais
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estimadores. Porém, para o = 0,5 e o = 2, teve o pior desempenho em relacdo aos demais
métodos. No cendrio « = 1 e 0 = 1, para os trés métodos, a probabiliadade de cobertura fica
em torno de 95%, principalmente quando o tamanho da amostra estd acima de 500. Em todos
os cendrios, o CP tende a ser maior que 90%, para todos os métodos de estimacdo, a medida

que o tamanho da amostra n aumenta.
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Figura 4.1: Viés (esquerda) e RMSE (direita) para as estimativas de a = 1.0 (acima), 0 = 1.0
(centro), and ;4 = 1.0 (abaixo).
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Figura 4.2: Viés (esquerda) e RMSE (direita) para as estimativas de a = 0.5 (acima), 0 = 2.0
(centro), and ;4 = 1.0 (abaixo).
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Figura 4.3: Viés (esquerda) e RMSE (direita) para as estimativas de a = 1.5 (acima), 0 = 2.0
(centro), and ;4 = 1.0 (abaixo).
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Figura 4.4: Probabilidade de cobertura das estimativas de « (esquerda) e o (direita).




Capitulo 5

Aplicacoes a Dados Reais

O presente capitulo foi reservado para apresentar resultados das aplicagdes em dados reais.
A primeira base de dados foi analisada por Kundu e Raqgab (2009), dentre outros autores que
serdo detalhados a seguir. A segunda base de dados refere-se a investimentos estrangeiros que
geram emprego ou renda no pais para concessao de autorizacao de residéncia ao imigrante. Essa

¢ a primeira vez na literatura que tais dados s@o modelados via distribui¢cdes de probabilidade.

5.1 Resisténcia de Fibras de Carbono

A primeira base de dados estudada foi a utilizada por Kundu e Raqgab (2009) relativa a
resisténcia de fibras de carbono, que sdo utilizadas na indudstria aerondutica e ndutica por ser
um material com boa resisténcia elétrica e térmica, mais leve e mais duravel. Os dados de
resisténcia das fibras de carbono sao originais da pesquisa de Bader e Priest (1982).

Os dados representam a resisténcia, medida em GPa (gigapascal), para fibras de carbono
simples e fios com 1000 fibras de carbono. As fibras simples foram testadas sob tensdo em
comprimentos de calibre de 1, 10, 20 e 50 mm. Fios de 1000 fibras foram testados em com-
primentos de calibre de 20, 50, 150 e 300 mm. ltextcolorredEsses dados foram utilizados nos

estudos de Montoya et al. (2019) para estimacao dos parametros da distribuicao Weibull de trés

38



§5.1. Resisténcia de Fibras de Carbono

parametros pelo método EMVC utilizando varias configuragdes de parametros. Kundu e Ragab
(2013) utilizaram esses mesmos dados para estimacdo dos parametros da distribuicio Rayleg
generalizada de trés parametros pelo método EMVM, dentre outros.

A andlise neste estudo refere-se aos dados de resisténcia das fibras de carbono simples
sob tensdo, em comprimento de calibre de 20mm, cuja amostra tem tamanho n = 69. Para
conveniéncia do leitor, apresentamos os dados no Apéndice.

Os dados contém 69 observagdes e variam de 1,312 a 3,585, com valor médio igual a 2,451.
As estimativas de confiabilidade dos valores da resisténcia de carbono com intervalo de confi-
anca de Bootstrap com 95% € (2.330; 2.568), podemos afirmar que em 95% dos casos o valor
médio da resisténcia das fibras de carbono de 20 mm estard nesse intervalo.

A Figura 5.1 apresenta a distribuicao dos dados de resisténcia no Boxplot e no histograma

que contém a curva de ajuste para a distribui¢ao tedrica Weibull de 2 parametros.

Q
| : —
™ ,
@ |
o o
S A
g © |
) O o
L o
5 a7 g
S g < |
L o
o |
N
! N
3 o
0 i
— '
i = ,J; 1]
I T T T T T 1
1.0 1.5 2.0 25 30 35 40
Resisténcia Resisténcia

Figura 5.1: Boxplot e histograma da resisténcia das fibras de carbono com calibre de 20mm
com fit da distribuicdo Weibull de 2 parametros

Pelos resultados apresentados na Tabela 5.1 o logaritimo da fun¢do de verossimilhanca

(Ilmax) é melhor utilizando os métodos EMVM e EMVDM. Foram obtidas as medidas AIC
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(Akaike Information Criterion) e BIC (Bayesian Information Criterion) para comparacio dos

modelos ajustados.

Tabela 5.1: Parametros estimados, Maxima verossimilhanca, AIC e BIC para os dados de
resisténcia

Método de estimacio a o fu 0(6) AIC BIC

EMVM 23804 1.8015 1.3120 -51.6745 106.3490 116.0514
EMVC 22752 177046 1.3120 -55.9871 114.9743 124.6766
EMVDM 2.3423 1.7145 1.3120 -51.7290 106.4580 116.1604
EMV2p 5.2615 2.6909 — -50.0386  98.0773  91.6091

Os erros padrdo (EPs) para os parametros de forma « e escala o foram calculados com
base nas estimativas (&, &) e na informagdo de Fisher. A Tabela 5.1 mostra seus valores para
cada método de estimacdo. Com base no EMVDM, os intervalos de confianca de 95% sdo
(1,9082;2,7763) e (1,2051;2,2238), respectivamente para « € o.

Analisando os dados da Tabela 5.1, podemos verificar que a inclusdo do parametro de lo-
ca¢do nao melhora a estimagdo dos parametros de forma e escala, sendo o modelo Weibull de
2 parametros o que melhor ajusta os dados. Foram realizados os testes de Cramér-von Mises
(CVM) e Kolmogorov-Smirnov (KS) para verificar o ajuste dos dados a distribui¢ao Weibull.
O teste de CVM naio rejeita a hipétese de que os dados ajustam-se a uma distribuicdo Weibull,

assim como o teste de KS (Tabela 5.2).

Tabela 5.2: P-valor dos testes Kolmogorov-Smirnov (KS) e Cramér-von Mises (CVM) para os
dados de resisténcia

Método de estimaciao  KS CVM

EMVM 0.8895 0.7829
EMVC 0.6493 0.5009
EMVDM 0.6985 0.5369
EMV2p 0.6436 0.5665

Na Figura 5.2, a esquerda, observa-se as FDAs tedricas ajustam a fungdo de distribuicao

acumulada empirica (ECDF) dos dados de forma similar. A direita, o ajuste das densidades
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obtidas via estimacdo dos trés métodos é semelhante, porém um pouco diferente da densidade
Weibull de dois parametros ajustada. Uma anélise de residuos € apresentada a seguir para ajudar

na escolha do melhor modelo para os dados.
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Figura 5.2: Ajuste do modelo Weibull pelos métodos de estimagdo via ECDF e Histograma da
resisténcia das fibras de carbono com calibre de 20mm

Para uma visdo mais completa do ajuste da distribuicdo usamos residuos de Quantil Ran-
domizado (RQ), conforme definido por (DUNN; SMYTH, 1996). Os RQs sdo calculados por
meio da formula R; = ®~1(G(y;; 8)), onde 8 & o vetor dos parAmetros estimados, G (y;; 0) é a
FDA do modelo ajustado para cada observagio 1;, e @' representa os quantis da distribuiciio
normal padrdo N(0,1). Quando a distribui¢do F' é continua, os residuos RQ tem distribui¢do
normal padrdo, excluindo o impacto da variabilidade amostral nos parametros estimados.

Nas Figuras 5.3-5.6 sdo apresentados os QQ-plot dos residuos para os 4 métodos estuda-
dos. Esses graficos ajudam a visualizar se os dados seguem a distribui¢ao desejada ou se duas
amostras tém distribui¢cdo semelhante. A linha de referéncia indica a posi¢ao ideal onde os
pontos estariam seguindo a distribui¢ao especificada. Pela andlise grafica, os dados se ajustam

a distribuicao Weibull.
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Figura 5.6: QQ-plot residuos - EMV2p

5.2 Investimentos Estrangeiros

A concessao de autorizacdo de residéncia para realizacdo de investimento de pessoa fisica

em pessoa juridica no Pais € de responsabilidade do Conselho Nacional de Imigracdo (CNIg),
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que € um 6rgdo do Ministério da Justica e Seguranca Publica que tem caréter deliberativo,
normativo e consultivo. Este tema foi disciplinado na Resolu¢do Normativa n° 13 (RN 13),
de 12 de dezembro de 2017. O valor estabelecido na RN 13, deve ser igual ou superior a R$
500.000,00 (quinhentos mil reais) para concessdo de vistos permanentes e entre R$ 150.000,00
e R$ 500.000,00 para concessdo de vistos temporarios.

Os dados analisados neste trabalho, correspondem ao valor autorizado para investimento
pelo imigrante no Brasil!, para investimentos acima de R$ 500.000,00 e compreendem o periodo
de janeiro a setembro de 2024. Foram desconsiderados da andlise os valores de investimento
iguais a zero ou ndo informados. Os dados contém 132 observacdes e 4 varidveis, sejam elas,
o més de concessdo da autorizacdo, a unidade da federacdo de residéncia do estrangeiro, o pais
de origem e o valor do investimento em Reais (R$), que por simplicidade da modelagem, foram
divididos por 10°. Apresentamos os dados do valor do investimento no Apéndice.

De janeiro a setembro de 2024 os imigrantes interessados na autorizacdo de residéncia,
investiram um total de R$ 114,8 milhdes de reais no Brasil. O valor minimo observado foi de
R$ 501.200,00, enquanto o maximo corresponde a R$ 6,8 milhdes. O valor médio foi de R$
869.473,00, pouco mais que o valor do 3° quartil, que foi de R$ 791.347,00, com desvio padriao
de R$ 801.829,50s. Considerando que a média do conjunto de dados foi de R$ 869.473,00,
as estimativas de confiabilidade dos valores de investimento com intervalo de confianca de
Bootstrap com 95% é (R$ 746.200,00;R$ 1.020.200,00), podemos afirmar que em 95% dos
casos o valor médio de investimentos estara nesse intervalo.

O Ceara foi o estado que recebeu maior investimento (R$ 31,5 milhdes), seguido por Sdo
Paulo (R$ 22,4 milhdes) e Rio Grande do Norte (R$ 17,4 milhdes) como observado na Fi-

gura 5.7:

'Obtidos no  site: https://portaldeimigracao.mj.gov.br/pt/base-de-dados/
datamigra?id=401202:cgil-cnig&catid=1733:microdados (acesso em 07/10/2024)
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Figura 5.7: Valor do Investimento (x R$ 100.000,00) por UF

A Figura 5.8 apresenta a distribuicao dos dados de resisténcia no Boxplot e no histograma

que contém a curva de ajuste para a distribui¢ao tedrica Weibull de 2 parametros.
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A Tabela 5.3 apresenta os 10 maiores valores investidos por pais de origem, cujo montante
equivale a 80,5% do valor total de investimentos. O coeficiente de assimetria € 4,5, indicando
assimetria positiva para a distribuicdo dos dados, que tem uma cauda mais longa a direita (para
valores maiores). Esse fato é confirmado pelo valor da curtose, 25,6, indicando a presenca de

valores extremos.

Tabela 5.3: 10 maiores valores de investimentos por Pais de origem

Pais de origem Valor (R$)

Franca 209,65
Italia 174,58
China 169,68
Alemanha 133,79
Holanda 73,64
Reino Unido 48,64
Portugal 47,05
Bélgica 42,19
Espanha 38,09
Roménia 33,45

O valor estimado para os parametros da Weibull pelos métodos EMVM, EMVC e EMVDM
sd@0 muito préximos. O ajuste pelos métodos EMVM e EMVDM tém log-verossimilhangas
mais proximas entre si € maiores que o valor de EMVC, sugerindo que esses métodos podem
ajustar melhor a distribuicao aos dados.

Analisando os dados da Tabela 5.4, observamos que a inclusdo do pardmetro de localizagao
melhora o ajuste, sendo o modelo Weibull com dois parametros o que apresenta o pior ajuste
aos dados, conforme indicado pelos critérios AIC e BIC. De acordo com o método EMVDM,
os intervalos de confianga de 95% sdo (0,4606; 0,6702) para « e (1,0747;1,9223) para o, res-
pectivamente.

Por fim, apresentamos o histograma dos dados e as curvas de ajuste (ECDF) dos trés méto-
dos estudados. Como ja evidenciado pelas medidas descritivas, 75% dos dados sdo de até R$

791.347,00, onde se observa grande concentracao de dados. Com relagdo aos ajustes, o método
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Tabela 5.4: Parametros estimados, Maxima verossimilhanca, AIC e BIC para os dados de
investimento

Método de estimacio & o f 0(6) AIC BIC

EMVM 0.5691 1.5350 5.012 -250.8152 504.6303 514.3327
EMVC 0.5653 1.5158 5.012 -252.2789 507.5579 517.2602
EMVDM 0.5654 1.4985 5.012 -250.8422 504.6844 514.3867
EMV2p 1.4847 8.0858 — -409.8814 803.2061 796.7379

EMVDM trouxe bom ajuste dos dados a distribuicao Weibull.

Na Figura 5.9, a esquerda, observa-se a ECDF, que os trés métodos, ajustam os dados de
investimento 3 Weibull de forma similar. A direita, a densidade de probabilidade dos dados
também € similar para os trés métodos, a maioria dos dados se acumulam entre o intervalo O e
10, ja que o valor minimo para investimento é de R$ 500 mil reais, e 75% dos dados tem valor
até R$ 800 mil, verifica-se também a presenca de valores extremos, que podem ser analisados

de forma mais criteriosa em outro momento.
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Figura 5.9: Ajuste do modelo Weibull pelos métodos de estimacdo via ECDF e Histograma
dos dados de investimento

Ja pelo grafico QQ-plot dos residuos comparamos os quantis dos residuos com os quantis
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tedricos da Weibull estimados que parecem se ajustar bem aos dados de investimento, dessa
forma, podemos afirmar que os dados de investimento podem se ajustar a uma distribui¢ao
Weibull.

Pela anélise das Figuras 5.10-5.13 verificamos melhor qualidade do ajuste dos dados a dis-

tribui¢do teérica nos métodos EMVM, EMVC e EMVDM.
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Figura 5.10: QQ-plot residuos - EMVM
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Figura 5.11: QQ-plot residuos - EMVC
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Figura 5.12: QQ-plot residuos - EMVDM
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Capitulo 6

Consideracoes Finais

Nos casos em que o suporte da fungcdo densidade de probabilidade depende de parametros
desconhecidos, os métodos convencionais de obtencdo de estimativas dos parametros se tornam
invidveis, fazendo com que o estimador de méxima verossimilhanca possa ndo assumir valores
finitos. Para situagdes como esta, em que a estimativa de mdxima verossimilhancga ndo existe,
estudamos, nesta dissertacdo, trés métodos de estimacdo para a distribuicdo Weibull de trés
parametros.

O primeiro modelo, EMVM, € o proposto por Kundu e Ragab (2009), onde o logaritmo da
fun¢do de verossimilhanga modificada é baseado em (n — 1) observagdes apds ignorar a menor
observagdo e substituir p pelo seu estimador natural ji = X (1), modificando o vetor escore. O
segundo método, proposto por Cheng e Iles (1987), ¢ o EMVC, que ao integrar a densidade de
probabilidade sobre um pequeno intervalo [X (1), X(1) + /], onde i é um pardmetro de corregio,
ha redugdo no impacto de qualquer singularidade ou anomalia associada a menor observagao.
Por fim, inspirados nas ideias de Firth (1993), introduzimos um terceiro método, EMVDM,
baseado na penalizacdo do vetor escore modificado calculado no primeiro método.

Verificamos o desempenho dos trés métodos na estimacao dos parametros da distribui¢ao
Weibull através de um estudo de simulagdes de Monte Carlo. Em determinados cendrios, o

EMVDM teve melhor desempenho do que os outros estimadores. Os estimadores estudados
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também foram aplicados em dados reais de resisténcia de fibras de carbono e de investimento
estrangeiro no Brasil.

Para trabalhos futuros, sugerimos a utilizagdo das ideias de Firth (1993) em problemas de
estimacao da distribuicao Weibull fazendo a penalizacao da verossimilhanga corrigida de Cheng
e Iles (1987). Outra possibilidade, é propor uma nova distribui¢do para resolver o problema da
exclusdo da menor observacdo e ainda garantir uma melhor estimacdo dos parametros. Por
fim, essa metodologia pode ser utilizada em outras dreas da Teoria de Probabilidade, como em

Processos Estocdsticos, por exemplo.
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Dados 1 - Resisténcia de fibras de carbono 20mm !

X=(1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997,
2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274,
2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554,
2.566, 2.570, 2.586, 2.629, 2.633,2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809,
2.818,2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585,
3.585).

Dados 2 - Investimentos Estrangeiros’

X=(8.958070, 25.150000, 5.015640, 11.006760, 5.279225, 5.013624, 6.435200, 5.835900,
7.000000, 30.801862, 7.266010, 5.019073, 8.000000, 22.000000, 5.514300, 5.302930, 7.968871,
6.000000, 7.058850, 15.000000, 5.155455, 5.243266, 5.219835, 9.950000, 12.041000, 7.300000,
5.743445, 6.272980, 5.070780, 6.529300, 6.000000, 8.697271, 46.067600, 17.171580, 6.098290,
10.166405, 5.445229, 7.281530, 7.757070, 6.413050, 5.331970, 6.225743, 14.399190, 5.850000,
5.653820, 5.484998, 5.257000, 5.841250, 8.265000, 27.373000, 5.412000, 5.099400, 5.145000,
5.344151, 7.064000, 7.608040, 6.346600, 5.052410, 5.623980, 14.615000, 5.358124, 5.210000
68.570220, 5.097540, 5.400696, 5.959290, 5.148630, 7.860000, 5.104935, 22.000000, 8.985627,

'Dados disponiveis, por exemplo, em Kundu e Ragab (2009)
2Obtidos  no  site: https://portaldeimigracao.mj.gov.br/pt/base-de-dados/
datamigra?id=401202:cgil-cnig&catid=1733:microdados (acesso em 07/10/2024)
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$.0.

5.176840, 5.177960, 5.040000, 7.419586, 15.634430, 5.146730, 5.131308, 7.153940, 6.105075,
5.100000, 5.202800, 6.371200, 5.477140, 5.309140, 5.776270, 6.301900, 5.100000, 12.041000,
5.123362,5.133710, 5.225000, 5.030000, 6.508635, 5.012000, 5.064560, 5.500000, 12.041000,
5.115196, 13.318230, 5.147040, 7.895000, 5.050000, 5.400000, 6.441160, 5.090940, 5.369000,
8.607168, 5.455010, 22.230579, 5.376720, 7.275880, 13.920000, 5.225000, 31.122660, 12.4994,
5.342750,5.177051, 7.556150, 5.390042, 6.433160, 7.514053, 10.695323, 8.985627, 5.247600,
6.287972, 16.052030, 5.659609, 5.100000, 6.098817, 6.101590, 5.281640)
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