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Resumo

Este trabalho apresenta alguns resultados sobre métodos topológicos e algumas aplicações na

análise da existência e comportamento de soluções perto de singularidades e degenerações de

algumas equações diferenciais parciais elípticas não lineares. Em concreto, aplicaremos nossos

resultados às equações do tipo Schrödinger e do tipo Carrier, assim como à equação logística

com refúgio. Na primeira delas, mostraremos resultados de existência de solução dependendo

de dois parâmetros. Para a segunda, estudaremos o comportamento assintótico das soluções

quando a difusão da espécie é muito grande em uma zona de seu habitat, e quando existe uma

zona de degradação do domínio muito forte.



Resumen

Este trabajo presenta algunos resultados sobre métodos topológicos y algunas aplicaciones

en el análisis de la existencia y comportamiento de soluciones cerca de singularidades y

degeneraciones de algunas ecuaciones parciales elípticas no lineales. En concreto, aplicaremos

nuestros resultados a las ecuaciones del tipo Schrödinger y del tipo Carrier, así como a la

ecuación logística con refugio. En la primera de ellas, mostraremos resultados de existencia de

solución dependiendo de dos parámetros. Para la segunda, estudiaremos el comportamiento

asintótico de las soluciones cuando la difusión de la especie es muy grande en una zona de su

hábitat, y cuando existe una zona de degradación del dominio muy fuerte.
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Introduction

The main aim of this thesis is to study some classical and important classes of multi-parameter

problems involving models of elliptic partial differential equations arising in population dy-

namics, using topological tools that have enabled significant advances in understanding the

existence, non-existence, and behavior of positive solutions with respect to the parameters.

The book [16] provided a foundational stimulus for authors examining mathematical models

of population dynamics, specially reaction-diffusion models. Undoubtedly, problems involving

the logistic model (one of the most paradigmatic models in population dynamics) has been

widely studied in the last decades in partial differential equations. In this work, we present

some results in this line.

When analyzing how variations of parameters in reaction-diffusion models of the logistic

equation affect the problem in existence and behavior of positive solutions, some technical

difficulties arise. By depending on which term of the equation is the varying parameter

associated with, these difficulties may be very significant because it can reflect in singularities

or degeneracies in the equation. Our contributions are principally in this direction. To overcome

this problem, we provided some abstract results on eigenvalue problems and topological

methods in Chapter 1, 2 and 4.

By topological methods, we understand methods that strongly rely on properties that

are invariant under constant perturbations. The term "topological methods" in the literature

of partial differential (or difference) equations is first [37] (Krasnoselskii, 1956), later [50]

(Nirenberg, 1981) then [30] (Du, 2006), [48] (Montreanu, Montreanu and Papageorgiou,

2014) and lastly, in difference equations [10] (Balanov, García-Azpeitia and Krawcewicz,

2018). Nirenberg in [50], quoted [13], [33] and [49] as mathematicians that made important

contributions to the field of topological methods.

The first reference quoted in the above paragraph, Krasnoselskii [37], is certainly a pioneer

in bifurcation theory, a powerful tool for solving a large class of partial differential equations. In

this book, the author mentioned that the concept of bifurcation comes from the stability theory,
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which dates back the works of Lyapunov and Poincaré. Krasnoselskii was the first researcher

to propose a well-known definition of a bifurcation point (in a local sense) and to establish

sufficient conditions for a specific value λ = λ0 to be a bifurcation point for an equation of

the form Φ(λ ,u) = 0, where Φ : R×E → E is a compact operator satisfying certain structure

conditions and E is a Banach space.

In 1971, Crandall and Rabinowitz in [22] established another set of sufficient conditions to

obtain local bifurcation for equations involving a regular operator Φ(λ , ·), with its derivative

being a Fredholm operator satisfying a transversality condition. Also in 1971, Rabinowitz

published the celebrated paper [52], which presented a global version of Krasnosel’skii’s,

now known as Global Bifurcation Alternative of Rabinowitz. Dancer proved in [25] that the

statement of the Global Bifurcation Alternative of Rabinowitz is actually stronger than that one

done in [52] by bringing up more accurate information about the set of bifurcation points.

Most of the above-mentioned results have a common restriction on the structure of the

operator Φ, requiring it to have a part L(λ ) that approximates Φ(λ , ·), up to a rest o(∥u∥) at

u = 0. More specifically, most of the above-mentioned results considered the structure

L(λ ) = I −λL,

where L is a compact linear operator. However, López Gómez in [43] complemented Dancer’s

theorem by allowing L(λ ) to be an Fredholm operator with index 0 at λ = λ0, besides assuming

more general assumptions on the regularity of the operator λ 7→ L(λ ), while Dai in [24] also

proved similar results by weakening the linearity near to u = 0, assuming just a homogeneity

assumption.

Many different related-bifurcation results have been presented in the literature in recent

years allowing for the approach of larger and more sophisticate structure of problems and

their associated operators. Among these, we mention, for instance, the structure of nonlinear

Sturm-Liouville problems in [51], nonlinear eigenvalue problems in [6], quasilinear problems

in [8], k−Hessian equation in [24], and others. An important contribution to these efforts is the

development of results aimed at solving equations whose operators cannot be defined over the

whole space, that is, the space formed by the Cartesian product of R (where the bifurcation

parameter varies) with the underlying Banach space, but it is well-defined just in some open

subset of this product space.

In 1971, a version of the Global Alternative Bifurcation Theorem for operators defined just

in a bounded open subset was presented in [52] (see Corollary 1.12). There is a number of
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works exploring this result in different directions. In our purpose, Dai improved it in [23] (2017)

to closed subsets that are not necessarily bounded (besides other generalizing features), while

Shi and Wang, in [56] (2009), proved a version of this result for regular Fredholm operators

with index 0 defined on an open subset that is not necessarily bounded.

In terms of the arguments to prove versions of global alternatives type for operators defined

on the whole space versus those ones defined on open subset, the main requirement on the

technique is the homotopy property should work for the open subset. In other words, to extend

the proof of global alternatives results to more general types of domain, the differences in the

structure of the operators in the aforementioned results (Fredholm with index zero as in [56],

compact and having a linear part as in [51] or compact and having a homogeneous part as in

[23]) are handled to ensure that their structure still satisfies the homotopy property. Besides,

whether the operator is defined on a closed or an open set, then the corresponding theorems

show that the alternatives are adjusted to each type of domain, as seen, for example, in [23] and

[56].

In [51], Rabinowitz dedicated a section to proving some results on existence of continua

of solutions for nonlinear eigenvalue problems, where bifurcation does not necessarily need

to occur, using the techniques he employed to prove bifurcation theorems. Inspired by [38],

Rabinowitz proved Theorem 3.5 in [51] assuming, among others, a priori boundedness of the

set of solutions of the operator Φ(λ ,u) = 0 at λ = λ0, denoted by B, to conclude that a bilateral

continua of solutions emanates from some point of B. In Theorem 3.2 of [52], a version of this

result was proved by adding a hypothesis on the operator that, in particular, implies that the set

B is a singleton. Arcoya, Coster, Jeanjean and Tanaka stated in [9] a consequence of Theorem

3.5 of [51], which explicitly requires that the set B to be a singleton. As mentioned at the end

of the previous paragraph, the form of the alternatives depends on the geometry nature of the

set B, see, for instance, [9] when B is a singleton, [38] for B being amount finitely, and [51]

for B being a bounded set. Finally, we note that all of the results mentioned in this paragraph

consider the operator’s domain as the whole space.

Although there are global alternative results in the literature for open subsets of the

parameter-working space, they consider in general rather regular operators; see, for example,

[56]. Here, we are interested in addressing operators with lower regularity, with the aim

of restating the main results mentioned in the previous paragraph for open subsets of the

parameter-working space. In this regard, we have inspired principally in Theorem 3.5 of [51],
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which established the existence of a continuum of solutions for the equation

0 = Φ(λ ,u) = u−K(λ ,u)

with K : R×E → E being a compact operator under the additional assumption that B is a

bounded set in E, where E is a Banach space.

For stating our Theorem 0.0.1, let E = (E,∥·∥) be a Banach space and U ⊂ R×E an open

subset. Given θ ∈ R, define the θ -partition of U by

Uν := Uν
θ = Rν

θ ∩U , for ν ∈ {+,−},

which are relative open subsets, Uν the closure of Uν , and ∂Uν the boundary of Uν with the

relative topology inherited from Rν
θ ×E, where

Rν
θ =

[θ ,+∞) if ν =+,

(−∞,θ ] if ν =−.

As in [2], K : U → E will be called a compact operator in the open subset U if K is compact

in every closed and bounded set C ⊂U with dist(∂U ,C)> 0. Moreover, Φ : U → E will denote

the operator

Φ(λ ,u) := u−K(λ ,u),

and

Φλ (u) := Φ(λ ,u), u ∈ Uλ ,

where

Uλ = {u ∈ E; (λ ,u) ∈ U} for each λ ∈ R.

Besides, for each λ ∈ R such that Uλ ̸= /0, the number i(Φλ ,u,0) will denote the Leray-

Schauder index of the isolated solution u ∈ Uλ of Φλ (u) = 0. For more details about the

Leray-Schauder index, we suggest the reference [36].

With these notations, we will look for a connected set C in

S := {(λ ,u) ∈ U ; Φ(λ ,u) = 0} ,
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which will be split in two connect subsets of

Sν := Sν
θ := {(λ ,u) ∈ Uν ; Φ(λ ,u) = 0, λ ∈ intRν

θ
}

that considers the closure of the set of solutions on the left and right sides of λ .

So, we are ready to state the below theorem.

Theorem 0.0.1 (Continuation Theorem). Let K : U ⊂R×E → E be a continuous and compact

operator in the open subset U . Suppose that (λ0,u0) ∈ U is such that u0 ∈ Uλ0 is an isolated

solution of Φλ0(u) = 0 with index i(Φλ0,u0,0) ̸= 0. Then the set S contains a pair of connected

subsets Cν ⊂ Sν = Sν

λ0
, for each ν ∈ {−,+}, emanating from (λ0,u0) and satisfying one of

the following (non-excluding) alternatives:

i) Cν is unbounded,

ii) dist(Cν ,∂U) = 0,

iii) Cν meets (λ0,u1) ∈ U with u1 ̸= u0.

The below result highlights that the stronger compactness on K, the more accurate informa-

tion we obtain on the alternative (ii) above.

Corollary 0.0.1. Assume the assumptions of Theorem 0.0.1 hold with the compactness of the

operator K : U ⊂ R×E → E substituted by K is compact on any closed and bounded C ⊂ U
given. Then the conclusion of Theorem 0.0.1 holds with

ii)′ Cν
E ∩∂U ≠ /0

in the place of the alternative ii).

More precisely, the above result is a corollary of the proof of Theorem 0.0.1 as the reader

can see in (2.1).

We highlight at least two important complements of our Theorem 0.0.1 compared to similar

ones on the literature, particularly to Theorem 3.5 of [51]. First, we allow the domain of the

operator to be an open subset of R×E (not necessarily bounded); second, we permit the set

B to be unbounded with at least an isolated point, rather than requiring B to be a bounded

set as in Theorem 3.5 of [51]. We also note that none of the referenced theorems are directly

applicable to our applications (see (3.1.5) and (3.2.1)), since they do not allow singularities on

their operators, nor does our operator possess sufficient regularity. For the sake of the clearness,

let us summarize below some of the main contributions of the above theorem to the literature:
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i) Theorem 0.0.1 (Continuation Theorem) provides a powerful tool that allows us to obtain

a connected set of solutions to a wide class of problems that classical theorems cannot

handle, due to the restrictions that appear naturally from these problems.

ii) Theorem 0.0.1 complements some previously related results in literature, for instance, by

showing the existence of a continuum of solutions for problems that do not necessarily

have a priori boundedness of solutions at the emanating-parameter point, as required in

Theorem 3.5 of [51]. Also, it complements Theorem 2.2 of [9] by neither requiring that

the solution from which emanates a continuum should be unique, nor assuming that the

operator need to be well-defined on the whole parameter-working space.

The above Theorem can be useful for solving a large class of partial differential equations

that presents some singularity in its structure, preventing the definition of the associated operator

in the whole parameter-working space. This occurs when the associated operator must be

constrained to a subset to be well-defined. In this direction, let us present new results regarding

both the existence of classical positive solutions and qualitative information for the well-studied

class of quasilinear Schrödinger equations


−∆u−λu∆u2 = µu−up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Pλ ,µ )

where λ ,µ ∈ R, p > 1, and Ω ⊂ RN is a smooth bounded domain with N ≥ 1. In particular,

we show that the diagram of solutions of the problem (Pλ ,µ ) presents some similarity with the

one of the problem (Pλ ,µ ) with λ = 0 that is the classical logistic problem


−∆u = µu−up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(P0,µ )

Indeed, from the literature (see [32], for example), it is well known that (P0,µ ) admits a

positive solution u0, which is unique if it exists, if and only if µ > µ1, where µ1 > 0 stands for

the first eigenvalue of (−∆;H1
0 (Ω)). Moreover, ∥u0∥0< µ

1/(p−1), where ∥u∥0:= sup
Ω

|u(x)|, for

each u ∈C(Ω). Then for (Pλ ,µ ), we have
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i) the result of existence of positive solutions, strictly bounded by µ
1/(p−1), for the

problem (P0,µ ), for each µ > µ1, remains true for the problem (Pλ ,µ ) for at least

λ >−1/(2µ
2/(p−1)), ,

ii) the non-existence of positive solutions strictly bounded by µ
1/(p−1) for the problem

(P0,µ ), for 0 ≤ µ ≤ µ1, stays true also for the problem (Pλ ,µ ) for at least

λ ≥ µ −µ1

2µ1µ2/(p−1)
,

In addition, if 1 < p ≤ 3, we proved a more sophisticated estimate for non-existence

given by

λ ≥− 1
2µ2/(p−1)

,

iii) there are no solutions for all λ ∈ R when µ < 0.

See Proposition 3.1.3 for the above conclusions.

From now on, we will denote by

proj∥H∥A := {(λ ,∥u∥H) ∈ R2;(λ ,u) ∈ A},

and

projH A := {(0,∥u∥H) ∈ R2;(λ ,u) ∈ A},

where A ⊂ R×H is a subset, and H is space endowed with the norm ∥ · ∥H , while

projλ A = {(λ ,0) ∈ R×H;(λ ,u) ∈ A}.

To state our next result, let us denote by

U =
{
(λ ,u) ∈ R×C1

0(Ω); 1+2λ∥u∥2
0> 0

}
⊂ R×C1

0(Ω),

and by

∂U =
{
(λ ,u) ∈ R×C1

0(Ω); 1+2λ∥u∥2
0= 0

}
⊂ R×C1

0(Ω),

where ∥·∥0 denotes the norm in C(Ω).

In Section 3.1, we apply the above theorem to obtain positive classic solutions of (Pλ ,µ ).

Precisely, we obtain the following
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Theorem 0.0.2 (Quasilinear-Schrödinger-Logistic problem). Assume that p > 1 and µ > µ1.

Then there exists an unbounded connected set C = C−∪ C+ ⊂U of strongly-positive classical

solutions (λ ,u) of (Pλ ,µ ) crossing the axis λ = 0 at u = u0, where u0 ∈ intPC1
0(Ω) is the unique

positive solution of (P0,µ ), such that(
−1/(2µ

2/(p−1)),+∞

)
⊂ projλ C ⊂

[
−1/[2(µ −µ1)

2/(p−1)],∞
)

(0.0.1)

projC(Ω) C− ⊂
[
(µ −µ1)

1/(p−1),µ1/(p−1)
]
, projC(Ω) C+ ⊂

[
0,µ1/(p−1)

]
, (0.0.2)

dist
(
C−,∂U

)
= dist(C,∂U) = 0 (0.0.3)

and

inf{1+2λ∥u∥2
0; (λ ,u) ∈ C−}= 0, (0.0.4)

where C− = {(λ ,u) ∈ C;λ ≤ 0}, and C+ = {(λ ,u) ∈ C;λ ≥ 0}. In addition, the problem

(Pλ ,µ ) admits:

a) at least one strongly-positive solution u ∈ U for each

λ ∈
(
−1/(2µ

2/(p−1)),+∞

)
,

b) no positive solution (λ ,u) ∈ U for any

λ ∈
(
−∞,−1/[2(µ −µ1)

2/(p−1)]
)
.

Moreover:

i) the problem (Pλ ,µ ) admits at most one positive solution in C1
0(Ω) for λ ≥ 0. In particular,

the set C+ is a continuous curve such that ∥uλ∥0→ 0 as λ → ∞,

ii) there is no λ -bifurcation point of positive solutions from the trivial solution in the

C(Ω)-norm.

The below pictures show the possible behaviors for the proj∥C(Ω)∥0
C. The grey area

represents the non-existence region of positive solutions bounded by µ
1/(p−1) for each µ > µ1

given.
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Fig. 1 Possible behaviors of C

For the sake of completeness, we state the above item i) of Theorem 0.0.2, a part of whose

statements were already proved in [21]. Our results complement those ones by contributing

principally to the existence and qualitative properties of the solutions for the negative λ -range.

Remark 0.0.1. About Theorem 0.0.2:

i) despite the fact that (0.0.3) holds true, we are not able to prove that there exists a solution

(λ ,u) ∈ C−∩ ∂U of the problem (Pλ ,µ ) due to the C1(Ω)-estimate fails; however, we

can infer from (0.0.4) that

proj∥C(Ω)∥ C−∩
{
(λ ,s) ∈ R2; 1+2λ s2 = 0

}
̸= /0,

ii) C is connected in the R×C(Ω)-norm as well, and it will be denoted by proj∥C(Ω)∥0
C.

In fact, this claim follows from the connectedness of C in the R×C1
0(Ω)-norm combined

with the continuous embedding C1
0(Ω) ↪→C(Ω).

There are many different types of real-world phenomena that lead to models with nonlinear

diffusion terms. One very known is that one presented by Carrier in [17], in the unidimensional

case, to model transversal vibrations of elastic membranes. Inspired by this problem, let us

introduce a problem that we will be termed by Carrier-type problem, more specifically,


−(1+λ |u|qr )∆u = µu−up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Qλ ,µ )
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where λ ∈ R is a parameter, q > 0, p > 1, r ≥ 1 and Ω ⊂ RN is a smooth bounded domain

with N ≥ 1 and |u|r is the norm of u in the Lebesgue space Lr(Ω) of the r-integrable functions.

In Section 3.2, we apply Theorem 0.0.1 to obtain positive classic solutions of (Qλ ,µ ). To

state our next Theorem, let us denote by

V := {(λ ,u) ∈ R× (H1
0 (Ω)∩Lr(Ω));1+λ |u|qr> 0} ⊂ R×H1

0 (Ω).

Precisely, we obtain

Theorem 0.0.3 (Carrier-Type-Logistic problem). Assume µ > µ1 and p > 1. Then, there exists

an unbounded connected set C = C−∪ C+ ⊂ V of strongly-positive classical solutions for

the problem (Qλ ,µ ) that crosses the axis λ = 0 at u = u0, where u0 ∈ intPC1
0(Ω) is the unique

positive solution of (Qλ ,µ ) with λ = 0, such that(
−1/(µ

q
p−1 |Ω|

q
r ),+∞

)
⊂ projλ C ⊂

(
−1/((µ −µ1)

q
p−1 |ϕ1|qr ),+∞

)
, (0.0.5)

projLr(Ω) C− ⊂
[
(µ −µ1)

1/(p−1)|ϕ1|r,µ1/(p−1)|Ω|1/r
]
, projLr(Ω) C+ ⊂

[
0,µ1/(p−1)|Ω|1/r

]
,

(0.0.6)

and

inf
{

1+λ |u|qr ; (λ ,u) ∈ C−}= inf{1+λ |u|qr ; (λ ,u) ∈ C}= 0, (0.0.7)

where 0 < ϕ1 ∈C2(Ω)∩C(Ω) is the first eigenfunction for the Laplacian operator under homo-

geneous Dirichlet boundary conditions normalized in C(Ω)-norm, C− = {(λ ,u) ∈ C;λ ≤ 0},

and C+ = {(λ ,u) ∈ C;λ ≥ 0}. In addition:

i) for any (λ ,uλ ) ∈ C such that 1+λ |uλ |qr→ 0, one has

uλ (x)→ µ
1/(p−1) uniformly in each compact set K ⊂ Ω, (0.0.8)

ii) there is no positive solution (λ ,u) ∈ V to the problem (Qλ ,µ ) for any

λ ∈

(
−∞,− 1

(µ −µ1)
q

p−1 |ϕ1|qr

]
,

iii) ∥uλ∥0→ 0 when λ →+∞.
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Fig. 2 Possible behaviors of C

Remark 0.0.2. We claim that C is connected in the R×Lr(Ω))-norm as well, and it will be

denoted by proj∥Lr(Ω)∥0
C. In fact, if r ≤ 2∗, then the claim follows directly from the connected-

ness of C in the R×H1
0 (Ω))-norm combined with the continuous embedding H1

0 (Ω) ↪→ Lr(Ω).

For r > 2∗, let j : (C,R×Lr(Ω))→ Z be any continuous function. Since Lr(Ω) is dense in

L2∗(Ω), then the extension j̃ : (C,R×L2∗(Ω))→ Z of j is also continuous. So, by using the

facts that H1
0 (Ω) is continuous embedded in L2∗(Ω) and C is R×H1

0 (Ω))-norm connected, we

obtain (C,R×L2∗(Ω)) is also connected and, consequently, j̃ is constant. Then j is constant

as well proving the claim.

Remark 0.0.2 allows us to highlight the possible behavior of proj∥Lr(Ω)∥ C in the above

pictures.

Let us summarize the main contributions of the last two theorems to the literature.

i) In both Theorems 0.0.2 and 0.0.3 we have shown that the connected set of solutions

extends up to the boundary (not on) of the maximal subset of the parameter-working

space in which the problem is well-defined. As “maximal”, we mean that the problem

degenerates on the boundary of such subset.

ii) Both Theorems 0.0.2 and 0.0.3 bring up to literature new and fine estimates on the

parameter for existence or non-existence of solutions.

iii) As far as we know, concerning to problems with nonlinear perturbation of the non-local

operators as in the problem (Qλ ,µ ), Theorem 0.0.3 is the first result in the literature that

provides a connected set of positive solutions, and, in particular, shows the equality
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(0.0.7). The aforementioned references about this type of problem assume the hypothesis

about the existence of a constant a0 > 0 such that a(s)> a0 > 0 for all s, except for [19]

and [18], where the authors consider the case where the function a is not necessarily

bounded away from zero. However, they deal with perturbation of the differential

operator not depending on the solution.

The positiveness of the solutions lying in the connected set of solutions of (Pλ ,µ ) and

of (Qλ ,µ ) were obtained as a consequence of an abstract result that we call Positiveness-

continuity-principle (see Proposition 2.2.1). Proposition 2.2.1 provides a sufficient condition

for positiveness of solutions on a connected of solutions, without requiring that the associated

operator to be strongly positive, as it is assumed in Lemma 6.5.4 of [43]. Indeed, Proposition

3.1.2 provides positiveness of fixed points of the operator K introduced 3.1.5, but K is not

positive.

Problems (Pλ ,µ ) and (Qλ ,µ ) feature nonlinear differential operators, which presented a

significant challenge in establishing the existence of positive solutions. This challenge was

addressed using Theorem 0.0.1. In Chapter 5, we investigate two further perturbations of the

classical diffusive logistic model with refuge (see (Rλ ,µ ) and (Sλ ,µ )), where existence was

proven via Theorem 0.0.4, a synthesis of techniques from the literature. The primary challenge

for problems (Pλ ,µ ) and (Qλ ,µ ), however, lies in determining the behavior of positive solutions

under parameter variations.

To introduce the results of Chapters 4 and 5, let us present the diffusive logistic problem

with refuge


−d∆u = µu−b(x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(0.0.9)

where d > 0, p > 1, Ω be a domain of the euclidean space of dimension N, RN , and b ∈ C(Ω),

b non-negative. We denote

B0 := int{x ∈ Ω;b(x) = 0}.

The scalar d > 0 is the diffusion coefficient that measures the diffusion velocity, µ is a real

parameter denoting the growth rate of the species, and b measures (inversely) the carrying

capacity of the habitat. The refuge B0 is a concept that derive from the competition between

species. That is, it originally represents a region where there is no competition between species
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(see page 302 of [16], where the author cite this concept as a novelty, in the competition model,

introduced by [42], see also [14]). When studying a single species u, B0 can be interpreted

as the limit of large carrying capacity, in this sense, B0 represents a region of the habitat Ω

where the species u has unlimited resources. The Dirichlet condition means that the species is

surrounded by a lethal zone.

The existence and uniqueness of positive solution to the problem (0.0.9) was studied by

several authors assuming different types of hypotheses. Among them, we quote [44], [1], [39]

and [32]. In this work, we state Theorem 0.0.4, which allows the intersection of B̄0 with ∂Ω to

be non empty. For homogeneous Dirichlet boundary condition, this detail was already covered

in [32] (see (A3) and Theorem 3.5 in [32]). But, in order to apply the subsupersolution method

(among other technical reasons) they assumed that the term that multiplies b(x)u in the (RHS)

of (0.0.9) must have a certain degree of regularity (see (A2) in [32]). In our case, this term

corresponds to the function s 7→ sp−1, which not have such regularity for p < 2. The regularity

hypothesis required by [32] was relaxed in [1], which would cover the case p < 2. However,

the authors imposed the condition B̄0 ⊂ Ω (see Theorem 4.1 of [1]), which clearly prohibits the

set B̄0 to intercepts ∂Ω. Fortunately, Theorem 6.1 of [1], or alternatively [3], allows us apply

the subsupersolution method to (0.0.9). By combining these two ideas, that is, Theorem 6.1 of

[1] and Theorem 3.5 of [32], we provide a necessary and sufficient condition to the existence

of positive solution of a more general version of (0.0.9) (see Theorem 0.0.4). In particular, we

have that (0.0.9) possesses a unique positive solution uµ if and only if

dσ
Ω
1 [−∆]< µ < dσ

B0
1 [−∆], (0.0.10)

where σ
Ω
1 [−∆] (σB0

1 [−∆]) denotes the principal eigenvalue of the operator −∆ in Ω (B0,

respectively) under homogeneous Dirichlet boundary conditions, formulated in the introduction

of Chapter 1.

The introduction of the region B0 in the classical logistic equation (P0,µ ), brought in [32],

a new phenomenon in the literature (see (0.0.12)). Precisely, if we restrict the hypotheses

about p and b, namely, requiring p large and b regular, then the problem (0.0.9) would fits the

conditions in [32], where it was proved that

lim
d↑µ/σΩ

1 [−∆]
∥ud∥C1

0(Ω̄)= 0 (0.0.11)

and
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lim
d↓µ/σ

B0
1 [−∆]

∥ud∥0=+∞. (0.0.12)

Further advancements, providing substantial refinements to these initial findings, were

presented in [46] and [39]. For a more fluid presentation, we will integrate the discussion of

these refinements with the presentation of our own results, rather than detailing them upfront.

We focus on the behavior of the positive solutions of two problems that extend the formula-

tion of (0.0.9). In Section 5.1, we study the problem


−(1+λa(x))∆u = µu−b(x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Rλ ,µ )

where 0 ≤ a ∈C(Ω) and 0 � b ∈C(Ω). In Section 5.2, we study the problem


−∆u+λV (x)u = µm(x)u−b(x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Sλ ,µ )

0 �V (x) ∈ L∞(Ω), 0 � b ∈C(Ω), 0 ̸= m ∈C(Ω) possibly changing sign.

Due to the similarity in the proof techniques for the behavior of positive solutions to

problems (Rλ ,µ ) and (Sλ ,µ ), we investigated in Chapter 4 the generalized logistic equation


−∆u+λV (x) = µm(λ ,x)u−b(λ ,x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(0.0.13)

that encompasses both as special cases. Indeed, (Rλ ,µ ) is a particular case of (0.0.13) with

V ≡ 0, m(λ ,x) = 1/(1+λa(x)) (for λ >−1/∥a∥0) and b(λ ,x) = b(x)/(1+λa(x)). On the

other hand, (0.0.13) is reduced to (Sλ ,µ ) by making m(λ ,x) = m(x) and b(λ ,x) = b(x).

We studied (0.0.13) assuming 0≤V (x)∈ L∞(Ω), 0� b(λ , · )∈C(Ω), 0 ̸=m(λ , · )∈C(Ω)

possibly changing sign and /0 ̸= M+
λ

:= {x ∈ Ω; m(λ ,x)> 0}, B0,λ := int{x ∈ Ω;b(λ ,x) = 0}.
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Let us denote

S = {(λ ,µ) ∈ R2;σ
Ω
1 [−∆+λV −µm(λ ,x)]< 0 < σ

B0,λ
1 [−∆+λV (x)−µm(λ ,x)]},

(0.0.14)

where σ
Ω
1 [−∆+λV −m(λ , · )] (respectively σ

B0,λ
1 [−∆+λV −m(λ , · )]) are the eigenval-

ues of the operator −∆+λV −m(λ , · ) in Ω (respectively B0,λ ) with zero Dirichlet condition.

For this problem we have the following existence theorem.

Theorem 0.0.4. Let λ ≥ 0. Then there exists a unique positive solution uλ ,µ of (0.0.13) if and

only if (λ ,µ) ∈ S .

Once explained the strategy that we adopted on the text for studying (Rλ ,µ ) and (Sλ ,µ ), we

will present our results about the positive solutions of


−(1+λa(x))∆u = µu−b(x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(0.0.15)

The main goal is to analyze what happens if the diffusion velocity depends on space, that is,

a ∈Cα(Ω), α ∈ (0,1), is a non-negative function with

A0 := inta−1({0}), and A+ := Ω\A0

are smooth subsets, and λ is a real parameter representing the velocity diffusion acting only

in A+. Hence, there exists a subregion, A0, where the species diffuses in a random way, and

another, A+, where the species is affected by a diffusion and a parameter λ . Since we assume

that 1+λa(x)> 0 for all x ∈ Ω, we suppose through the work that

λ >− 1
∥a∥0

.

Let us introduce a motivation of this problem. In [57] (see also [12] and [11]), the authors

studied a Fisher-KPP problem in a two-dimensional strip, considered as a field where the

species lives. This living space of the species also contains one road, that is assumed to be

unidimensional, where potentially fast diffusion occurs. They showed that the survival in

large time of the population depends on the rate of diffusion in the road. Later in [54], the

problem was studied in an infinite cylindrical domain in RN+1, that when N = 1 is reduced to
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a strip between two straight lines, modelling the effects of two roads with fast diffusion on a

strip-shaped field bounded by them. The authors analysed the existence of an asymptotic speed

of propagation for solutions, as well as the dependence of this speed on the diffusivity at the

boundary and the amplitude of the cylinder. The authors in [20] dealt with the existence in the

case of bounded domain and they also made a wide overview including biological context and

motivations around this subject, namely, the variation of diffusion rate in some region of the

habitat and its influence on the behaviour of the population.

In this context, our diffusion coefficient contains a region where the species diffuses in a

random way, A0, and another region where the species can diffuse very fast, a road, A+ when λ

is large, or even very slow, λ small or even negative.

Hence, our main goal in this paper is to study the influence of this new diffusion coefficient

in the logistic equation with refuge.

Precisely, we are interested in the behavior of the positive solution at the extremes of the

interval of existence, i. e., λ∗(µ) and λ
∗(µ). That is, for each fixed µ , there exists a unique

positive solution of (Rλ ,µ ) if and only if λ ∈ (λ∗(µ),λ
∗(µ)), where λ∗(µ) is defined by

µ = σ
B0
1

[
−∆;

1
1+λ∗(µ)a(x)

]
, if µ := lim

λ↓−1/∥a∥0
h(λ )< µ < σ

B0
1 [−∆; χA0 ]

and λ
∗(µ) is defined by

µ = σ
Ω
1

[
−∆;

1
1+λ ∗(µ)a(x)

]
, if µ := lim

λ↓−1/∥a∥0
σ

B0
1

[
−∆;

1
1+λa(x)

]
< µ < σ

B0
1 [−∆; χA0]

and

λ
∗(µ) = ∞, if σ

Ω
1 [−∆; χA0]≤ µ < σ

B0
1 [−∆; χA0]

(see Proposition 5.1.2). For that we will assume that B0 ( Ω and A+∪B0 is constituted by a

finite number of connected components. Specifically, we suppose that

A+∪B0 =
d⋃

i=1

Di

m⋃
i=1

Ci

where m,d ∈ N, d,m ≥ 0, Di ⊂ A+ and Ci ̸⊂ A+ are regular connected subsets. That is, we

have separated the connected components into those that are fully contained in A+, and those

that are not fully contained in A+, but intersect to B0 (see Figure 5.1 where we have described
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a possible configuration of A+∪B0). Hence,

σ
A+∪B0
1 [−∆; χA0] = min

1≤i≤m
{σ

Ci
1 [−∆; χA0]},

where σ
A+∪B0
1 [−∆; χA0] (respectively, σ

Ci
1 [−∆; χA0]}) denotes the first eigenvalue of the operator

−∆ with weight χA0 in A+∪B0 (respectively, Ci) with zero Dirichlet boundary condition. We

can order the sets Ci such that

σ
A+∪B0
1 [−∆; χA0] = σ

C1
1 [−∆; χA0]< ... < σ

Cm
1 [−∆; χA0].

On the other hand, we will also write

A+∪B0 =
m+d⋃
i=1

Ci,

where Ci are regular connected components, and as above we can order them as

σ
A+∪B0
1 [−∆] = σ

C1
1 [−∆]< σ

C2
1 [−∆]< · · ·< σ

Cm+d
1 [−∆].

In the following result, we show the behavior of the positive solution of (Rλ ,µ ) at the extremes

of the existence interval.

Theorem 0.0.5. Assume that A0 ̸= /0, B0 ( Ω and let µ ≤ µ < σ
B0
1 [−∆; χA0]. Then we have

the following behavior of the positive solutions uλ by depending on the range of µ .

1) (about the λ -extreme superior interval of existence). Let µ>µ , one has:

1.1) If µ < µ < σ
Ω
1 [−∆; χA0 ], then λ

∗(µ)< ∞, and

lim
λ→λ ∗(µ)

∥uλ∥C1(Ω)= 0.

1.2) If σ
Ω
1 [−∆; χA0 ]≤ µ < σ

A+∪B0
1 [−∆; χA0], then λ

∗(µ) = ∞, and

lim
λ→∞

∥uλ∥C1,γ (Ω)<+∞, for some 0 < γ < 1

and uλ → u∞ in C1(Ω), where u∞ ≡ 0 in the case µ = σ
Ω
1 [−∆; χA0] and u∞ is the

unique positive solution of the problem
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
−∆u = χA0 (µu−b(x)up) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(0.0.16)

for µ > σ1[−∆; χA0].

1.3) If σ
Ω
1 [−∆; χA0 ]< σ

A+∪B0
1 [−∆; χA0] = µ , then

lim
λ→∞

∥uλ∥2=+∞.

1.4) If µ > σ
Ci0
1 [−∆; χA0 ], for some 1 ≤ i0 ≤ m and for each 1 ≤ i ≤ i0 we assume that Ci

is isolated from any other component of A+∪B0, and a(x)r ≥ M dist(x,∂Ci) for all

x ∈ A+ \B0 in a neighbourhood of ∂Ci for all x ∈Ci for some M > 0 and 0 < r < 1,

then

lim
λ→∞

uλ (x) = +∞ for all x ∈Ci and 1 ≤ i ≤ i0.

1.5) If µ < µ < σ
C j0
1 [−∆], for some 1 ≤ j0 ≤ m+d, then

sup
Λ<λ<λ ∗(µ)

∥uλ∥L∞(D)< ∞, for all D ⊂⊂ Ω\
(
∪ j0−1

i=1 Ci

)
,

where Λ is any number such that λ∗(µ)< Λ < λ
∗(µ). Moreover, for any µ > µ ,

then

sup
Λ<λ<λ ∗(µ)

∥uλ∥L∞(D)< ∞, for all D ⊂⊂ Ω\
(
∪m+d

i=1 Ci

)
.

2) (about the λ -extreme inferior interval of existence). If µ > µ , one has

lim
λ→λ∗(µ)

uλ (x) = +∞ for all x ∈ B0,

and there exists M > 0 such that

uλ (x)≤ M in any D ⊂ Ω\B0 for all λ∗(µ)< λ < Λ,

where Λ is any number such that λ∗(µ)< Λ < λ
∗(µ).

(see [53]).
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Remark 0.0.3. We point out that:

a) Theorem 0.0.5 can be restated by assuming A0 = /0 with the conclusions understood in

according to the conventions that σ
Ω
1 [−∆; χA0] = σ

B0
1 [−∆; χA0] = σ

A+∪B0
1 [−∆; χA0 ] =

+∞.

b) The conclusion of item 1.4) of Theorem 0.0.5 follows without any additional hypothesis

if A+ \B0 = /0.

c) We have not analyzed the behaviour in the inferior extreme in the case µ ∈ (µ,µ].

Observe that this would lead us to the study of the solution as λ →−1/∥a∥0, and as

consequence the study of the logistic equation with unbounded coefficient. This study will

be carried out in forthcoming work (see [28] for similar results for the logistic equation

without refuge.)

In Figures 3, 4 and 5, we have represented different possible shapes of the graphics of the

µ = h(λ ) and µ = H(λ ) (see the definitions in (5.1.2)) as well as the existence regions, that is

the region defined by (5.1.3).

Fig. 3 Existence regions: the case B0 = /0, A0 ̸= /0 and µ = 0 (left) and the case A0,B0 ̸= /0, and
A0 ∩B0 = /0 and 0 < µ < µ. (right)
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Fig. 4 Existence regions in the case B0 ̸= /0: on the left the case 0 = µ < µ . On the right, the
case 0 < µ < µ <+∞.

Fig. 5 Existence region in the case B0 ̸= /0 and 0 = µ = µ .

As a consequence of Theorems 0.0.5, we can observe the drastic change that occurs between

the problem with homogeneous diffusion coefficient (0.0.9) and the heterogeneous case (Rλ ,µ ).

Indeed, in the first case there is no solution when the diffusion coefficient is large, however, in

the heterogeneous case, when A0 ̸= /0 and for birth rates with intermediate values, the population

persists for very large values of the diffusion coefficient, and even grows uncontrollably in the

refuge and in the fast diffusion zone. Also, we have studied the behavior at the inferior extreme,

showing that the solution blows up in the refuge and remains bounded in the rest of the habitat.

We will delve deeper into these biological consequences in the last section of the paper.

In Section 5.2, we study the problem
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
−∆u+λV (x)u = µm(x)u−b(x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Sλ ,µ )

The term λV (x) measures the degradation of the harsh patches of the territory, where V > 0,

whereas the non-degraded patches of Ω are the regions where V = 0.

With regard to the literature on the behavior of the positive solutions of (Sλ ,µ ) in the case

where µ is fixed in λ varies, we quote [15] and [55]. The authors in [15] study the case which is

similar to our analysis with λ →+∞ but with different boundary conditions so that their result

can be interpreted as closely related to item 3) of Theorem 0.0.5. The analysis of Theorem

0.0.5 is related to problem (1.3) of [55], by making m(x) = χG, V (x) = χB, b(x) = χG, where

G (non degraded area) and B (degraded area) constitute a partition of Ω, p = 2 and substituting

the Dirichlet boundary condition for Neumann. Our result with respect to the behavior of

the positive solution uλ ,µ when λ →+∞ compliments their result in the case of the Dirichlet

boundary condition. See also [41] and its references.

The next theorem we will present includes the phenomenon of blow-up in the boundary of

certain regions of Ω. This is a very fine qualitative information and because of that, Theorems

5.2.2 and 5.2.3 were required. Theorem 5.2.3 was inspired by Theorem 4.8 of [45]. Theorem

5.2.2 is inspired on the pioneer work [46], where the authors proved the following refinement

of (0.0.12) for the solution u0,µ of (Sλ ,µ ) with λ = 0 and m ≡ 1.

lim
µ↑σ

B0
1 [−∆]

u0,µ =+∞ uniformly in compact subsets of B0 (0.0.17)

and

lim
µ↑σ

B0
1 [−∆]

u0,µ(x) = +∞ ∀ x ∈ ∂B0 (0.0.18)

by assuming B̄0 ⊂ Ω.

For the case m ̸≡ 1, it was proved in [39] a generalization of (0.0.17) to m possibly changing

sign, that is,

lim
µ↑σ

B0
1 [−∆;m]

uλ ,µ =+∞ uniformly in compact subsets of B0, (0.0.19)
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by assuming B̄0 ⊂ Ω and

m ≥ 0 in a neighborhood of B0. (0.0.20)

According to the authors, it was necessary to impose this condition in order to deal with the loss

of monotonicity of the positive solutions that occurs if m changes sign. As clearly explained

in [39], the analysis of positive solutions of the problem (Sλ ,µ ) is harder in the case where m

changes sign. Also in [39], the authors generalized (0.0.18) proving

lim
µ↑σ

B0
1 [−∆;m]

u0,µ(x) = +∞ ∀ x ∈ ∂B0 (0.0.21)

requiring (0.0.20) and B̄0 ⊂ Ω.

In [47], the condition (0.0.20) of [39] was relaxed and it was shown that (0.0.19) still holds

by imposing m(x0)> 0 for some x0 ∈ B0 and more regularity under m. Moreover, we do not

require B̄0 ⊂ Ω. With techniques similar to [47], we proved Theorem 5.2.2.

In order to enunciate the results about (Sλ ,µ ), we will introduce some notations.

Let us denote

C0 := {µ ∈C([0,Λ]), 0 < Λ < ∞;(λ ,µ(λ )) ∈ S ∀ λ ∈ [0,Λ)}

and

C∞ :=
{

µ ∈C([0,+∞)); ∃µ(∞) := lim
λ→+∞

µ(λ )< ∞ and (λ ,µ(λ )) ∈ S ∀ λ ∈ [0,+∞)

}
.

Note that since (Sλ ,µ ) is a particular case of (0.0.13) with m(λ ,x) =m(x) and b(λ ,x) = b(x),

then the above definitions of C0 and C∞ consider as S the family

S := {(λ ,µ) ∈ R2;σ
Ω
1 [−∆+λV −µm]< 0 < σ

B0
1 [−∆+λV −µm]},

where B0 = int{x ∈ Ω;b(x) = 0}.

We will denote uλ := uλ ,µ(λ ) for each µ ∈ C0 ∪C∞ and D0 :=V0 ∩B0.

Once we have settled these notation, we get the following theorem.

Theorem 0.0.6. One has:

1) Let µ0 ∈ C0 and consider the family uλ of positive solutions associated to µ0.
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1i) If lim
λ↑Λ

µ0(λ ) = σ
Ω
1 [−∆+ΛV ;m], then

lim
λ↑Λ

∥uλ∥C1
0(Ω)= 0.

1ii) If lim
λ↑Λ

µ0(λ ) = σ
B0
1 [−∆+ΛV ;m], then

lim
λ↑Λ

uλ (x) = ∞ ∀ x ∈ B0. (0.0.22)

If m ∈ Cr for some r = r(N)≥ 0, then the above convergence holds uniformly on

compact subsets of B0. Additionally, if

µ
′(Λ) ̸= d

dλ

∣∣∣∣
λ=Λ

σ
B0
1 [−∆+λV ;m], (0.0.23)

∇b = 0 in ∂B0, B̄0 ⊂ Ω, the functions m and V are holomorphic in a neighborhood

of B0 and µ0 can be extended to a holomophic function defined in an open interval

containing Λ, then

lim
λ↑Λ

uλ (x) = ∞ ∀ x ∈ ∂B0, (0.0.24)

by whence

lim
λ↑Λ

uλ =

 +∞ x ∈ B̄0,

Lmin(x) x ∈ Ω̄\ B̄0,
(0.0.25)

where Lmin stands for the minimal large positive solution of the singular problem

−∆u+λV (x)u = σ
B0
1 [−∆+ΛV ;m]m(x)u−b(x)up in Ω\ B̄0,

u =+∞ on ∂B0,

u = 0 on ∂Ω,

u > 0 in Ω\ B̄0,

2) Assume that V0 ̸= /0, m(x)> 0 for some x ∈V0 and V0 * B0. Then σ
V0
1 [−∆;m] is positive,

finite and σ
V0
1 [−∆;m]< σ

D0
1 [−∆;m]≤+∞. Let µ∞ ∈ C∞ and consider the family uλ of

positive solutions associated to µ∞.
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2i) If lim
λ→∞

µ∞(λ ) = σ
V0
1 [−∆;m], then

lim
λ→∞

∥uλ∥C1
0(Ω)= 0.

2ii) If σ
V0
1 [−∆;m]< lim

λ→∞

µ∞(λ )< σ
D0
1 [−∆;m], then lim

λ→∞

∥uλ −u∞∥∞= 0 where u∞ is

the null extension of the unique positive solution of−∆u = lim
λ→∞

µ∞(λ )mu−bup in V0

u = 0 on ∂V0.

2iii) If /0 ̸= D0 ∈ C2, m(x)> 0 for some x ∈ D0 and lim
λ→∞

µ∞(λ ) = σ
D0
1 [−∆;m], then

lim
λ→∞

uλ (x) = ∞ ∀ x ∈ D0. (0.0.26)

If m ∈ Cr for some r = r(N)≥ 0, then the above convergence holds uniformly on

compact subsets of D0.

Additionally, assume that there exists a component Γ of ∂D0 such that Γ∩∂Ω = /0,

Γ ⊂ M+ = {x ∈ Ω;m(x)> 0} and Γ ⊂V0 (see Figure 10). Then

lim
λ→∞

uλ (x) = ∞ ∀ x ∈ Γ. (0.0.27)

In particular, if B0 ⊂V0 ⊂V0 ⊂ Ω and ∂B0 ⊂ M+, then

lim
λ→+∞

uλ (x) =

 +∞ x ∈ B̄0,

Lmin(x) x ∈ Ω̄\ B̄0,
(0.0.28)

where Lmin stands for the minimal large positive solution of the singular problem
−∆u = σ

D0
1 [−∆;m]m(x)u−b(x)upin V0 \ B̄0,

u =+∞ on ∂B0,

u > 0 on V0 \ B̄0
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3) Assume that /0 ̸=V0 ⊂ B0, M+∩V0 ̸= /0 and let 0 ≤ λn → ∞. Then there exist sequences

µ(λn) and µ(λn) such that (λn,µ(λn)),(λn,µ(λn)) ∈ S and xn ∈ B0 such that

lim
n→+∞

µ(λn) = lim
n→+∞

µ(λn) = σ
D0
1 [−∆;m],

lim
n→+∞

un(xn) = ∞ and lim
n→+∞

∥un∥∞= 0,

where un (respectively, un) is the sequence of positive solutions associated to (λn,µ(λn))

(respectively, (λn,µ(λn))).

The convergence (0.0.27) and (0.0.24) are very fine qualitative information about the

behavior of the positive solutions of the problems. The proof of them required ingenious

techniques presented in Theorems 5.2.2 and 5.2.3, respectively.

For the sake of clarity, we would like to highlight the contributions of Theorem 0.0.6 to the

literature.

1) The blow up result given in (0.0.22) complements (0.0.21) proved by [47], showing that

the blow up in the boundary of B0 remains true even if another parameter besides the birth

rate, namely the degradation rate, vary simultaneously with the birth rate approximating

to a finite value Λ.

2) Item 2iii) of Theorem 0.0.6 shows that the well known phenomenon of blow up in the

refugee with λ = 0 when the birth rate µ approximates to its maximum (see (0.0.17))

keeps happening to the positive solutions of (Sλ ,µ ) (at least in the subregion V0 of the

refugee) even when the approximation of the birth rate µ(λ ) occurs asymptotically as λ

grows indefinitely.

3) (0.0.27) extends the result of blow up in the boundary of the refuge given by (0.0.21) to a

blow up in a component Γ of ∂D0 in the case λ =+∞ at least for when Γ and m satisfies

appropriated conditions.

4) Lemma 2.3.1 extends the a priori bound (4.3) of [32] to the case λ =+∞.

In the following figures, we illustrate examples of µ0, µ∞ and Γ satisfying the hypotheses

of the above theorem.
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Fig. 6 Existence region

Fig. 7 On the left: an example of µ0 satisfying item 1i) of Theorem 0.0.6. On the right: an
example of µ0 satisfying item 1ii) of Theorem 0.0.6.

Fig. 8 On the left: an example of µ∞ satisfying item 2i) of Theorem 0.0.6. On the right: an
example of µ∞ of item 2ii) of Theorem 0.0.6.
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Fig. 9 On the left: an example of µ∞ satisfying item 2iii) of Theorem 0.0.6. On the right:
example of sequences (λn,µn

(λn)) (represented by dots) and (λn,µn(λn)) (represented by x’s)
satisfying item 3) of Theorem 0.0.6.

Fig. 10 ∂B0 is an example of Γ satisfying the hypothesis of item 2iii) of Theorem 0.0.6.
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Now let us present an overview on the structure of the text.

The content of Chapter 1 is about the behavior of the first eigenvalue and its associated

eigenfunction with respect to variations of the potential, domain and weight of the eigenvalue

problem operator. The introduction of the chapter provides some basic properties that can be

found in [44] and [26]. In Section 1.1, we prove Lemma 1.1.1, that estimates the H1
0 (Ω)-norm

of a certain power of the principal eigenfunction from above by the integral of a power of the

principal eigenfunction multiplied be the weight. Lemma 1.1.1 also provides an estimate of the

L∞-norm of the principal eigenfunction from above by its L2-norm. This estimate, will play an

important role in the proof of Theorem 4.2.1. In Section 1.2, we prove Theorem 1.2.1 that will

play a crucial role in Item 1.4) of Theorem 0.0.5. Section 1.3 is dedicated to provide a fine data

of the variation of first eigenvalue with respect to the domain. This information is crucial in the

proof of (0.0.24), as the reader can attest in the proof of Theorem 5.2.2. Having explained the

role of Sections 1.1, 1.2 and 1.3, which primarily impact Chapters 4 and 5, readers who focus

solely on Chapter 2 and are familiar with the basic properties of the principal eigenvalue can

safely skip Chapter 1.

Chapter 2 provides the proof of Theorem 0.0.1, an abstract result on topological methods

that will be used in the proofs of Theorems 0.0.2 and 0.0.3, which in turn are presented in

Sections 3.1 and 3.2, respectively.

Chapters 1 and 4 provide together the abstract results that are used in the proofs of Theorems

0.0.5 and 0.0.6, which in turn are presented in Sections 5.1 and 5.2, respectively.

In conclusion, this work presents some results on topological methods and some applications

in analyzing the existence and behavior of solutions near singularities and degeneracies of some

nonlinear elliptic partial equations.



Chapter 1

Refined results on weighted eigenvalue
problems

Theorems 0.0.5 and 0.0.6 provide qualitative information of the positive solutions of (Sλ ,µ )

and (0.0.13), respectively. By depending on the variation of the parameters λ and µ in these

problems, the associated family of positive solutions uλ ,µ may be uniformly bounded or blows-

up. Both phenomena strongly rely on the behavior of the positive eigenfunctions and the

associated eigenvalues with respect to the potential, the weight and the domain. This chapter

focuses on establishing and proving results concerning these behaviors.

Let us give a brief overview on the content of this chapter. Before Section 1.1, we present

some basic properties of the first eigenvalue that can be implied or deduced from [44] and

it will be used frequently in this text. In Section 1.1, we proof a L∞(Ω)-estimate of Moser’s

type that will play a crucial rule in the proof of Theorem 4.2.1 which, in turn, pavements

the case of uniformly boundedness mentioned in the previous paragraph. In Section 1.2, we

prove Theorem 1.2.1 that explicit the limit of the first eigenvalue with respect to exploding

potentials. In a particular case, we can also determine the limit of the associated family of

positive eigenfunctions (see Remark 1.2.1). By relaxing hypothesis (2.7) of Theorem 2.4 in

[32], Theorem 1.2.1 provides a complementary result. This weakened condition is crucial for

Corollary 5.1.1 (as noted in Remark 5.1.1). Finally, in Section 2.3, we prove a result about fine

qualitative information about the first eigenvalue with respect to the perturbation of the domain.

This result will play a key role in proving (0.0.24).
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Before enunciating some properties of the first eigenvalue, we will establish the following

notations and conventions. Given open subset U of Ω and m ∈ L∞(Ω), we will denote by

σ
U
1 [−∆;m] the principal eigenvalue, in the sense of [26] or [44], of the problem


−∆u = µm(x)u in U,

u = 0 on ∂U,

u > 0 on U

(1.0.1)

whenever the set {m > 0}∩U has positive Lebesgue’s measure. On the contrary, we will

adopt the convention that σ
U
1 [−∆;m] = +∞ as U is the empty set and σ1[−∆] = σ1[−∆;1].

We recall some well-known properties of the first eigenvalue σ
U
1 [−∆+ c], c ∈ L∞(Ω), of

the problem 
−∆u+ c(x)u = µu in U,

u = 0 on ∂U,

u > 0 on U,

see for instance [44].

Proposition 1.0.1. One has:

1. The map c ∈ L∞(Ω) 7→ σ
U
1 [−∆+ c] is continuous and increasing.

2. Assume c ≥ 0 in U, c ̸= 0 in U, then

lim
r→−∞

σ
U
1 [−∆+ rc] =−∞, lim

r→+∞
σ

U
1 [−∆+ rc] = σ

U∩C0
1 [−∆],

where

C0 := intc−1({0}).

Take now m ∈ L∞(Ω), m ≥ 0, m ̸= 0 in U and consider the eigenvalue problem−∆u+ c(x)u = µm(x)u in U,

u = 0 on ∂U.
(1.0.2)

Observe that the study of principal eigenvalue of (1.0.2) is equivalent to study of the zeros of

the map

r(µ) := σ
U
1 [−∆+ c−µm]. (1.0.3)
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Thanks to Proposition 1.0.1, the map µ 7→ r(µ) is continuous, decreasing, and

lim
µ→−∞

r(µ) = σ
U∩M0
1 [−∆+ c], lim

µ→+∞
r(µ) =−∞,

where M0 := intm−1({0}), and we are using the convention σ
U∩M0
1 [−∆+c] = +∞ if U ∩M0 =

/0.

Hence, we get:

Proposition 1.0.2. Assume that m ≥ 0, m ̸= 0 in U. Then, there exists the principal eigenvalue

of (1.0.2), denoted by σ
U
1 [−∆+ c;m], if and only if σ

U∩M0
1 [−∆+ c] > 0. Moreover, the map

(1.0.3) verifies that

r(µ)> 0 if µ < σ
U
1 [−∆+ c;m] and r(µ)< 0 if µ > σ

U
1 [−∆+ c;m].

Finally,

σ
U
1 [−∆+ c;m]> 0 if and only if σ

U
1 [−∆+ c]> 0.

Let us note that, according to our notation,

σ
U
1 [−∆+ c] = σ

U
1 [−∆+ c;1].

The following properties of σ
U
1 [−∆+ c;m] will be used along the paper (see [44] and [26]).

Proposition 1.0.3. Assume that m ≥ 0, m ̸= 0 in Ω and σ
U∩M0
1 [−∆+ c]> 0.

1. The map c ∈ L∞(Ω) 7→ σ
U
1 [−∆+ c;m] is continuous and increasing.

2. The map m ∈ L∞
+(Ω) 7→ σ

U
1 [−∆+ c;m] is continuous and decreasing.

3. Assume that U1 ⊆U2 ⊂ Ω, then σ
U2
1 [−∆+c;m]≤ σ

U1
1 [−∆+c;m]. If moreover, U1 (U2,

then σ
U2
1 [−∆+ c;m]< σ

U1
1 [−∆+ c;m].

1.1 L∞(Ω) -estimates of Moser’s type

In this section we will prove a L∞(Ω)- estimate of Moser’s type that will be very useful in the

proofs of the Section 4.2.
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Lemma 1.1.1. Let {mλ}λ∈Λ and {hλ}λ∈Λ be families of functions L∞(Ω) such that hλ ,mλ ≥ 0

for all λ ∈ Λ. Suppose that ϕλ is the positive eigenfunction in H1
0 (Ω) associated to σ

Ω
1 [−∆+

hλ ;mλ ]> 0. If

sup
λ∈Λ

σ
Ω
1 [−∆+hλ ;mλ ]<+∞ and ϕλ ∈ Lq+1(Ω) for some q ≥ 0,

then there is a constant D > 0 such that

∥ψ
r
λ
∥2

H1
0 (Ω)

≤ D
∫

Ω

mλ ϕ
q+1
λ

∀ λ ∈ Λ,

where ϕλ = kψλ , k = r1/r/
(

q1/(2r)
)

and r = (q+1)/2.

Additionally, if sup
λ∈Λ

∥mλ∥L∞(Ω)<+∞, then there is a C > 0 such that

∥ϕλ∥L∞(Ω)≤C(1+∥ϕλ∥L2(Ω)). (1.1.1)

Proof. By the definition of ϕλ , we have that∫
Ω

∇ϕλ ∇φ +
∫

Ω

hλ ϕλ φ = σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ ϕλ φ ∀ φ ∈ H1
0 (Ω).

By making φ = ϕ
q
λ

, we deduce that

q
r2

∫
Ω

|∇(ψr
λ
)|2 =

∫
Ω

qϕ
q−1
λ

|∇ϕλ |2

=
∫

Ω

∇ϕλ ∇(ϕ
q
λ
)

= σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ ϕ
q+1
λ

−
∫

Ω

hλ ϕ
q+1
λ

≤ C sup
λ∈Λ

σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ ϕ
q+1
λ

,

where uλ = kvλ , k = r1/r
0 /

(
q1/(2r)

0

)
, r = (q+1)/2.

Now let us prove the second statement of the lemma. Let β ≥ 1 and define z = ϕλ + 1,

ϕ = zβ −1 ≥ 0. Note that ∇ϕ = β zβ−1
∇z and ∇z = ∇ϕλ . So by taking ϕ as a test function in
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the definition of ϕλ , we obtain

β

∫
Ω

zβ−1|∇z|2 ≤ β

∫
Ω

zβ−1|∇z|2+
∫

Ω

hλ ϕ

= σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ ϕλ ϕ

= σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ (z−1)(zβ −1)

= σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ (z
β+1 − z− zβ +1)

= σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ (z
β+1 − zβ −ϕλ )

≤ σ
Ω
1 [−∆+hλ ;mλ ]

∫
Ω

mλ zβ+1

≤ sup
λ∈Λ

σ
Ω
1 [−∆+hλ ;mλ ] sup

λ∈Λ

∥mλ∥L∞(Ω)

∫
Ω

zβ+1,

so

β

∫
Ω

zβ−1|∇z|2≤ sup
λ∈Λ

σ
Ω
1 [−∆+hλ ;mλ ] sup

λ∈Λ

∥mλ∥L∞(Ω)

∫
Ω

zβ+1.

Therefore, by argueeing as in Lemma 6.7 of [27], we deduce that

∥ϕλn∥∞≤C(∥ϕλn∥2+1).

1.2 On eigenfunction and eigenvalue limits of unbounded

potentials

This section complements Theorem 2.4 in [32]. Specifically, we relax hypothesis (2.7) of that

theorem, a modification crucial for Corollary 5.1.1.

Theorem 1.2.1. Let {mλ}λ≥0 and {qλ}λ≥0 be families of funtions such that 0 � mλ ∈ L∞(Ω),

mλ → m∞ in L∞(Ω), 0 ≤ qλ ∈ L∞(Ω) and ΩV a connected open subset of Ω. Suppose that

there is some δ > 0 such that

|{x ∈Uδ ; m∞(x)> 0}|> 0, (1.2.1)
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where Uδ = {x ∈ ΩV ; dist(x,∂ΩV )≥ δ},

qλ (x)→+∞ ∀ x ∈ K,

where K is a compact subset of Ω\ΩV . Moreover, assume that there exists some constant M

and some V ∈ L∞ (ΩV ) such that

qλ (x)→V (x) for a.e. x ∈ ΩV

and

qλ (x)≤
M

d(x)
for a.e. x ∈ ΩV , (1.2.2)

where d(x) := dist(x,∂ΩV )

Let ϕλ be the positive eigenfunction associated to

σ
Ω
1 [−∆+qλ ; mλ ]

with ∥ϕλ∥L2(Ω)= 1. Also, let ϕ∞ be the positive eigenfunction associated to σ
ΩV
1 [−∆,m∞].

Then the following convergences hold.

σ
Ω
1 [−∆+qλ ;mλ ]→ σ

ΩV
1 [−∆+V,m∞]

and

lim
λ→+∞

(
∥ϕλ −ϕ∞∥2

H1
0 (Ω)

+
∫

Ω

qλ ϕ
2
λ

)
=
∫

Ω

V (x)ϕ2
∞

Proof. Note that by using (1.2.2) and the convergence mλ → m∞ in L∞(Ω), we get that

0 < σ
Ω
1 [−∆+qλ ;mλ ]

≤ σ
Uδ

1 [−∆+qλ ;mλ ]

≤ σ
Uδ

1

[
−∆+

M
infUδ

d(x)
;mλ

]
≤ σ

Uδ

1

[
−∆+

M
infUδ

d(x)
;m∞

]
+1 (1.2.3)

< +∞
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for all λ ≥ λ0, for some large λ0. So

0 ≤ sup
λ≥0

σ
Ω
1 [−∆+qλ ;mλ ]<+∞. (1.2.4)

By the definition of ϕλ , we have


−∆ϕλ +qλ ϕλ = σ

Ω
1 [−∆+qλ ;mλ ]mλ ϕλ in Ω,

ϕλ = 0 on ∂Ω,

ϕλ > 0 on Ω

(1.2.5)

Take λn →+∞. Note that by testing (1.2.5) against ϕλn , we deduce that ϕλn is bounded in

H1
0 (Ω). So there is a ϕ∞ ∈ H1

0 (Ω) such that (up to a subsequence) ϕλn ⇀ ϕ∞ in H1
0 (Ω) and

ϕλn → ϕ∞ in L2(Ω). Note that ϕ∞ ∈ H1
0 (Ω) is non-negative and satisfies ∥ϕ∞∥L2(Ω)= 1 and so

ϕ∞ ̸= 0.

We claim that ϕ∞ = 0 in Ω\ΩV . Indeed, let D ⊂⊂ Ω\ΩV , consider a positive ϕ ∈C∞
0 (D)

and let us abuse the notation by denoting ϕ as the null extension of ϕ to Ω. So

∫
Ω

∇ϕ∞∇ϕ + liminf
(∫

Ωc
V

qλnϕλnϕ

)
≤ liminf

(∫
Ω

∇ϕλn∇ϕ +
∫

Ωc
V

qλnϕλnϕ

)
≤ liminf

(∫
Ω

∇ϕλn∇ϕ +
∫

Ω

qλnϕλnϕ

)
= liminf

(
σ

Ω
1 [−∆+qλ ;mλ ]

∫
Ω

mλ ϕλnϕ

)
< +∞,

that is,

liminf
(∫

Ωc
V

qλnϕλnϕ

)
<+∞.

By the arbitrariness of the positive ϕ , we deduce that

ϕ∞(x) = 0 ∀ x ∈ Ω\ΩV .
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Now, let us prove that ϕ∞ is the positive eigenfunction associated to σ
ΩV
1 [−∆+V,m∞]. Take

ϕ ∈ H1
0 (ΩV ). Observe that ϕ ∈ H1

0 (ΩV )⊂ H1
0 (Ω), so we can test (1.2.5) against ϕ as follows.∫

ΩV

∇ϕλn∇ϕ +
∫

ΩV

qλnϕλnϕ =
∫

Ω

∇ϕλn∇ϕ +
∫

Ω

qλnϕλnϕ

= σ
Ω
1
[
−∆+qλn;mλn

]∫
Ω

mλ ϕλnϕ

= σ
Ω
1
[
−∆+qλn;mλn

]∫
ΩV

mλ ϕλnϕ. (1.2.6)

Note that

lim
n→+∞

qλnϕ =V ϕ ∀ x ∈ ΩV .

Moreover,

qλn(x)ϕ ≤ M
ϕ

d(x)
∀ x ∈ ΩV .

But |ϕ|/d ∈ L2(ΩV ) by the Hardy Inequallity. Consequently, by passing to the limit in (1.2.6),

we deduce that ϕ∞ is a nontrivial non negative solution of
−∆v+V (x)v = lim

n
σ1

Ω
[
−∆+qλn ;mλn

]
m∞v in ΩV ,

ϕλ = 0 on ∂ΩV ,

ϕλ > 0 on ΩV

By the Strong Maximum Principle, it follows that ϕ∞ is the positive eigenfunction associated

to σ
ΩV
1 [−∆,m∞] and

lim
n

σ
Ω
1
[
−∆+qλn;mλn

]
= σ

ΩV
1 [−∆+V ;m∞] (1.2.7)
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up to a subsequence.

Now, by testing (1.2.5) against ϕλn −ϕ∞, we deduce that

∫
Ω

|∇(ϕλn −ϕ∞)|2 =
∫

Ω

∇ϕλn∇(ϕλn −ϕ∞)−
∫

Ω

∇ϕ∞∇(ϕλn −ϕ∞)

=
∫

Ω

∇ϕλn∇(ϕλn −ϕ∞)−on(1)

= σ
Ω
1
[
−∆+qλn;mλn

]∫
Ω

mλnϕλn(ϕλn −ϕ∞)−

−
∫

Ω

qλn(ϕλn −ϕ∞)−on(1)

= õn(1)−
∫

Ω

qλnϕλn(ϕλn −ϕ∞)−on(1).

That is, ∫
Ω

|∇(ϕλn −ϕ∞)|2+
∫

Ω

qλnϕ
2
λn

= õn(1)−on(1)+
∫

Ω

qλnϕλnϕ∞. (1.2.8)

Now, observe that

qλn(x)ϕ∞(x)≤ M
ϕ∞(x)
d(x)

∀ x ∈ Ω.

But

qλn(x)ϕ∞(x)→V (x)ϕ∞(x) for almost every x ∈ Ω.

So ∫
Ω

qλnϕλnϕ∞ →
∫

Ω

V (x)ϕ2
∞.

Finally, by passing to the limit in (1.2.8), we deduce that∫
Ω

|∇(ϕλn −ϕ∞)|2+
∫

Ω

qλnϕ
2
λn

→
∫

Ω

V (x)ϕ2
∞.

Remark 1.2.1. Observe that in the particular case V ≡ 0, we have that ϕλ → ϕ∞ in H1
0 (Ω).
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1.3 First variations of the first eigenvalues due to domain

perturbations

The results of this section sharpens [47] by refining the condition of the function R (see

condition iii) of Theorem 1.3.1). This refinement is necessary to prove (5.2.22).

Let us set for sufficiently small δ ∼ 0,

Bδ :=

{x ∈ Ω : dist(x,B0)< δ}, if δ > 0

{x ∈ B0 : dist(x,∂B0)>−δ}, if δ < 0.

Theorem 1.3.1. There exists a bijection Tδ ∈ C2(B̄0;RN), Tδ : B̄0 → B̄δ and ε0 > 0 satisfying

the following properties:

i) The family Tδ is real holomorphic in δ for δ ∼ 0, i.e., every Tδ is a C2-diffeomorphism

that can be expressed in the form

Tδ (x) = x+δR(x), x ∈ B̄0, (1.3.1)

with R ∈ C2(B̄0;RN) and

∥Dk
xR∥∞,B0:= sup

x∈B̄0

∥Dk
xR(x)∥, 0 ≤ k ≤ 2.

ii) For each x ∈ B̄0 such that dist(x,∂B0)< ε0, it is well defined the normal projection of x

onto ∂B0, π(x) ∈ ∂B0,

iii) R(x) = n(π(x)) for all x ∈ B̄0 such that dist(x,∂B0)< ε0/4, where n is the outward unit

normal vector in ∂B0.

Proof. Since ∂B0 ∈ C2, then there exists ε0 > 0 such that the set

A = {x ∈ RN ;dist(x,∂B0)< ε0}

is a tubular neighborhood of ∂B0 due to [29], in the sense that, for each x ∈ A, there exist

unique z ∈ ∂B0 and −ε0 < τ < ε0 such that

x = z− τn(z), (1.3.2)



1.3 First variations of the first eigenvalues due to domain perturbations 39

where n(z) is the outward normal vector in z. By reducing ε0 > 0 if necessary, we have functions

τ ∈C2(A,R) and π ∈C2(A,∂B0) such that

x = π(x)− τ(x)n(π(x)), ∀ x ∈ A. (1.3.3)

By the definition of τ , we have

τ(x) = dist(x,∂B0) ∀ x ∈ A. (1.3.4)

Let τ̂ ∈ C2(B̄0;R) be the extension of τ to B̄0 defined by τ̂(x) = ε0 if dist(x,∂B0) ≥ ε0. Let

n̂ ∈ C2(B̄0;RN) be any smooth extension of the field n to B̄0 and consider any function ζ ∈
C3([0,∞); [0,∞)) satisfying

ζ (τ) = 1, τ ∈ [0,ε0/4), ζ (τ)ζ ′(τ)< 0, τ ∈ (ε0/4,ε0/2), ζ (τ) = 0, τ ≥ ε0/2.

Define the mapping

R(x) := ζ (τ̂(x))n̂(x) ∀ x ∈ Ω.

By using (1.3.4), it is easy to check that

R(x) =


0 if dist(x,∂B0)≥ ε0/2,

ζ (τ(x))n(π(x)) if dist(x,∂B0)< ε0/2,

n(π(x)) if dist(x,∂B0)< ε0/4.

(1.3.5)

(1.3.6)

(1.3.7)

Let us define

Tδ (x) = x+δR(x), ∀ x ∈ B̄0.

Let us prove that Tδ is a bijection. Observe that by (1.3.5), the restriction of Tδ to V :=

{x ∈ B0;dist(x,∂B0) ≥ ε0/2} is the identity map. On the other hand, if x ∈ U := {x ∈
B̄0;dist(x,∂B0)≤ ε0/2}, then Tδ (x) = x or

Tδ (x) = x+δζ (τ(x))n(π(x)).

Then using (1.3.3), it can be easily verified that Tδ is a bijection from U to U ∪{x ∈ RN \
B0; dist(x,∂B0)≤ δ} (U ∪{x ∈ B0; dist(x,∂B0)≤−δ}, respectively), if δ > 0 (δ < 0, respec-

tively). The function Tδ satisfies all the requirements of the theorem.
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Consider the principal eigenvalue, σ
Bδ

1 [−∆−µ(λ )m(x)+λV (x)], of the linear eigenvalue

problem 
−∆ϕ −µ(λ )m(x)ϕ +λV (x)ϕ = σϕ in Bδ ,

ϕ = 0 on ∂Bδ ,

ϕ > 0 in Bδ

is well defined, as well as its associated principal eigenfunction, ϕλ , normalized so that

∥ϕλ∥2= 1. Moreover, as a direct consequence of the strong maximum principle, ϕλ ≫ 0 for

every λ ≥ 0 and sufficiently small δ ≥ 0.

Take now a real function µ analytic in (Λ−η ,Λ+η), η > 0 and such that

µ(Λ) = σ
B0
1 [−∆+ΛV (x);m(x)].

On the other hand, consider the principal eigenvalue, σ
Bδ

1 [−∆− µ(λ )m(x)+λV (x)] and its

principal eigenfunction, ϕλ , normalized so that ∥ϕλ∥2= 1.

The next result is the main theorem of this section. It is a substantial extension of Theorem

2.1 of López-Gómez and Sabina de Lis [46].

Theorem 1.3.2. Let η > 0 and assume that µ is an analytic function defined in (Λ−η ,Λ+η).

Also assume that m and V are analytic in a neighborhood of B0 and

µ(Λ) = σ
B0
1 [−∆+ΛV (x);m(x)]. (1.3.8)

Then, so is the family
(

σ
Bδ

1 [−∆−µ(λ )m(x)+λV (x)],ψλ ,δ

)
, where ψλ ,δ (x) = ϕλ ,δ (Tδ (x))

for all x ∈ B̄0. In particular,

 ψλ ,δ = ψΛ,0 +δψ
(0,1)
1 +(λ −Λ)ψ

(1,0)
1 + r(λ ,δ ),

σ
Bδ

1 [−∆+λV (x)−µ(λ )m(x)] = δλ
(0,1)
1 +(λ −Λ)λ

(1,0)
1 +g(λ ,δ ),

(1.3.9)

where r and g are functions that satisfy

lim
δ→0

r(Λ,δ )
δ

= lim
δ→0

g(Λ,δ )
δ

= 0.
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Moreover,

λ
(0,1)
1 =−

∫
∂B0

(
∂ψΛ,0

∂n

)2

dS < 0, λ
(1,0)
1 =−

∫
B0

(µ ′(Λ)m(x)−V (x))ϕ2
Λ,0. (1.3.10)

Proof. To simplify the notation, we denote by

f (λ ,δ ) := σ
Bδ

1 [−∆+λV (x)−µ(λ )m(x)]

To find out λ
(1,0)
1 , we can proceed as follows. By setting and differentiating with respect to λ

the problem


−∆ϕλ ,0 +λV (x)ϕλ ,0 −µ(λ )m(x)ϕλ ,0 = f (λ ,0)ϕλ ,0 in B0,

ϕλ ,0 = 0 on ∂B0,

ϕλ ,0 > 0 in B0

(1.3.11)

we obtain that

(−∆+λV (x)−µ(λ )m(x)− f (λ ,0))ϕ ′
λ ,0 = (µ ′(λ )m(x)−V (x)+ f ′(λ ,0))ϕλ ,0 in B0,

ϕ
′
λ ,0 = 0 on ∂B0,

Thus, multiplying by ϕλ ,0 and integrating by parts in B0, we find that

f ′(λ ,0) =−
∫

B0
(µ ′(λ )m(x)−V (x))ϕ2

λ ,0∫
B0

ϕ2
λ ,0

. (1.3.12)

Consequently, particularizing at λ = Λ yields

λ
(1,0)
1 =−

∫
B0

(µ ′(Λ)m(x)−V (x))ϕ2
Λ,0.

The calculation of λ
(0,1)
1 is much more complicated and involved. Let us set

y := Tδ (x), T−1
δ

(y) := (h1(y,δ ), . . . ,hN(y,δ )).
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A calculation leads us to

L (x,Dx,λ ,δ )ψλ ,δ = f (λ ,δ )ψλ ,δ in B0,ψλ ,δ = 0 on ∂B0, (1.3.13)

where we have denoted

L (x,Dx,λ ,δ ) :=−
N

∑
k,ℓ=1

⟨Dyhk,Dyhℓ⟩
∂ 2

∂xk∂xℓ
−

N

∑
ℓ=1

∆yhℓ
∂

∂xℓ
−µ(λ )m(Tδ ( · ))+λV (Tδ ( · )).

Now, arguing as in [46] it is easily seen that the coefficients ⟨Dyhk,Dyhℓ⟩ and ∆yhℓ are real

analytic in δ for δ ∼ 0, and that they are given by

⟨Dyhk,Dyhℓ⟩= δkℓ−δ

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)
+o(δ 2), (1.3.14)

∆yhℓ(Tδ (x)) =−δ∆xRℓ(x)+o(δ 2). (1.3.15)

Moreover, for x ∈ B0 and δ sufficiently close to zero, we have

m(Tδ (x)) = m(x+δR(x)) = m(x)+
∞

∑
k=1

δ
kM(k)(x)

and

V (Tδ (x)) =V (x)+
∞

∑
k=1

δ
kG(k)(x). (1.3.16)

By combining (1.3.14), (1.3.15), (1.3.16) and (1.3.16), we deduce that for each given ϕ ∈H1
0 (Ω)

and ψ ∈ L2(Ω), there exists ai j ∈ R such that

∫
B0

ϕL (x,Dx,λ ,δ )ψ =
∞

∑
i, j=0

ai jδ
i(λ −Λ) j for (λ ,δ )∼ (Λ,0).

According to Kato [35] (see [46]), the above equation implies that the family

(
f (λ ,δ ),ϕλ ,δ

)
is real analytic at (Λ,0), for t ∼ Λ and δ ≥ 0.
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By substituting (1.3.14) and (1.3.15) in (1.3.13) with λ = Λ, it follows that

−
N

∑
k,ℓ=1

[
δkℓ−δ

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)]

∂ 2ψΛ,δ

∂xk∂xℓ
(x)+δ

N

∑
ℓ=1

∆xRℓ
∂ψΛ,δ

∂xℓ
(x) (1.3.17)

−µ(Λ)m(Tδ (x))ψΛ,δ (x)+ΛV (Tδ (x)) = (1.3.18)

f (λ ,δ )ψΛ,δ (x)+o(δ 2). (1.3.19)

On the other hand,

µ(Λ)m(Tδ (x))−ΛV (Tδ (x)) = w(x)+δw(1)(x)+o(δ 2), (1.3.20)

where, owing to (1.3.1),

w(1)(x) =
d

dδ

∣∣∣∣
δ=0

[µ(Λ)m(Tδ (x))−ΛV (Tδ (x))] =

⟨µ(Λ)∇m(x)−Λ∇V (x),
d

dδ

∣∣∣∣
δ=0

Tδ ⟩=

⟨µ(Λ)∇m(x)−Λ∇V (x),R⟩. (1.3.21)

Thus, by substituting (1.3.20) into (1.3.17), we get

−
N

∑
k,ℓ=1

[
δkℓ−δ

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)]

∂ 2ψΛ,δ

∂xk∂xℓ
(x)+δ

N

∑
ℓ=1

∆xRℓ
∂ψΛ,δ

∂xℓ
(x) (1.3.22)

−µ(Λ)m(x)ψΛ,δ (x)+ΛV (x)ψΛ,δ (x) = δw(1)(x)ψΛ,δ (x) (1.3.23)

+σ
Bδ

1 [−∆−µ(Λ)m(x)+ΛV (x)]ψΛ,δ (x)+o(δ 2). (1.3.24)
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Moreover, since (1.3.9) holds and substituting it in (1.3.22) with λ = Λ yields to

−
N

∑
k,ℓ=1

[
δkℓ−δ

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)]

∂ 2ψΛ,0

∂xk∂xℓ

−δ

N

∑
k,ℓ=1

[
δkℓ−δ

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)]

∂ 2ψ
(0,1)
1

∂xk∂xℓ

+δ

N

∑
ℓ=1

∆xRℓ
∂ψΛ,0

∂xℓ
+δ

2
N

∑
ℓ=1

∆xRℓ
∂ψ

(0,1)
1

∂xℓ
−µ(Λ)m(x)ψΛ,0(x)

+ΛV (x)ψΛ,0(x)−δ (µ(Λ)m(x)−ΛV (x))ψ(0,1)
1

= δw(1)(x)ψΛ,0(x)+δ
2w(1)(x)ψ(0,1)

1 (x)+δλ
(0,1)
1 ψΛ,0 +o(δ 2).

But, since

−
N

∑
k,ℓ=1

δkℓ
∂ 2ψΛ,0

∂xk∂xℓ
=−∆xψΛ,0 = µ(Λ)m(x)ψΛ,0 −ΛV (x)ψΛ,0,

substituting this identity into the previous one, we find that

N

∑
k,ℓ=1

δ

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)

∂ 2ψΛ,0

∂xk∂xℓ
−δ

N

∑
k,ℓ=1

[
δkℓ−δ

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)]

∂ 2ψ
(0,1)
1

∂xk∂xℓ

+δ

N

∑
ℓ=1

∆xRℓ
∂ψΛ,0

∂xℓ
+δ

2
N

∑
ℓ=1

∆xRℓ
∂ψ

(0,1)
1

∂xℓ
−δ (µ(Λ)m(x)−ΛV (x))ψ(0,1)

1

= δw(1)(x)ψΛ,0(x)+δ
2w(1)(x)ψ(0,1)

1 (x)+δλ
(0,1)
1 ψΛ,0 +O(δ 2).

Consequently, dividing by δ and letting δ → 0, it becomes apparent that

N

∑
k,ℓ=1

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)

∂ 2ψΛ,0

∂xk∂xℓ
−∆xψ

(0,1)
1 +

N

∑
ℓ=1

∆xRℓ
∂ψΛ,0

∂xℓ
−µ(Λ)m(x)ψ(0,1)

1 +

ΛV (x)ψ(0,1)
1 = w(1)(x)ψΛ,0(x)+λ

(0,1)
1 ψΛ,0.

On the other hand, by applying the Fredholm Alternative and using that

ψΛ,0(x) = ϕΛ,0(x), ∥ψΛ,0∥L2(B0)
= ∥ϕΛ,0∥L2(B0)

= 1,
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we deduce that

λ
(0,1)
1 =

∫
B0

N

∑
k,ℓ=1

(
∂Rk

∂xℓ
(x)+

∂Rℓ

∂xk
(x)
)

∂ 2ψΛ,0

∂xk∂xℓ
ψΛ,0

+
N

∑
ℓ=1

∫
B0

∆xRℓ
∂ψΛ,0

∂xℓ
ψΛ,0 −

∫
B0

w(1)
ψ

2
Λ,0.

(1.3.25)

By arguing as in [47], that is, by integrating by parts, divergence theorem and using the

definition of ψΛ,0, we have that

λ
(0,1)
1 =−2

∫
∂B0

⟨R,∇ψΛ,0⟩⟨∇ψΛ,0,n⟩dS+
∫

∂B0

|∇ψΛ,0|2⟨R,n⟩dS

+
∫

B0

⟨∇(µ(Λ)m(x)−ΛV (x)),R⟩ψ2
Λ,0 −

∫
B0

w(1)
ψ

2
Λ,0.

Therefore, owing to (1.3.21), we find that

λ
(0,1)
1 =−2

∫
∂B0

⟨R,∇ψΛ,0⟩⟨∇ψΛ,0,n⟩dS+
∫

∂B0

|∇ψΛ,0|2⟨R,n⟩dS. (1.3.26)

Finally, taking into account that

∇ψΛ,0(x) =
∂ψΛ,0

∂n
(x)n(x) for all x ∈ ∂B0,

it becomes apparent that (1.3.26) provides us with the identity

λ
(0,1)
1 =−

∫
∂B0

⟨R,n⟩
(

∂ψΛ,0

∂n

)2

dS.

On the other hand, one can assume that R|∂B0= n, where n stands for the unit outward normal

field of ∂B0 (see Section 3 of [46]). Therefore.

λ
(0,1)
1 =−

∫
∂B0

(
∂ψΛ,0

∂n

)2

dS < 0. (1.3.27)

This ends the proof.

Conclusion of Chapter 1
The H1

0 (Ω)-estimate in Lemma 1.1.1 complements Lemma 6.7 of [27] by incorporating the

weight mλ . Notably, this estimate does not require uniform boundedness of mλ with respect
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to λ . While this aspect was not explored here due to the uniform boundedness of mλ in our

applications, it presents an avenue for future research. Another potential direction for future

work is to investigate the case where the limit V of the potentials qλ in Theorem 1.2.1 is

non-zero. Theorem 1.3.2 demonstrates that the foundational ideas of [46], later refined in [47],

remain effective even with the inclusion of an additional parameter. We emphasize that its

application in Theorem 5.2.2 to prove blow-up on ∂B0 necessitates the transversality condition

(0.0.23). This technical necessity naturally raises the question of whether blow-up on ∂B0 still

occurs without this additional condition.



Chapter 2

Connected set of solutions from a
continuation theorem on open sets

This chapter is focused in providing the abstract results on topological methods that will be

applied in the following chapter in order to obtain existence and qualitative information about

positive solutions of the problems (Pλ ,µ ) and (Qλ ,µ ), noted in the Introduction.

Section 2.1 is dedicated to a continuation theorem. In Section 2.2 we prove a positiveness-

continuity-principle based on connectedness properties. This principle we guarantee the strong

positiveness of the solutions lying in the connected sets of solutions of (Pλ ,µ ) and (Qλ ,µ ).

Finally, in Section 2.3, we prove an equivalence between two concepts from distinct contexts:

the abstract formulation of compact operators K and the realm of PDEs. Specifically, we

connect the proximity of a set of positive solutions for the equation u = K(λ ,u) (in the sense

defined in this chapter) with a region in the parameter space of a PDE that corresponds to

singularities.

2.1 A Continuation Theorem for operators defined on open

subsets

The main goal of this section is to prove Theorem 0.0.1.

After this motivation, let us fix additional notations as those done in the Introduction. For

each open subset A (Aν ) of U (Uν ) and λ ∈ R, the λ -slice of A (Aν ) is defined by

Aλ = {u ∈ E; (λ ,u) ∈ A} (Aν

λ
= {u ∈ E; (λ ,u) ∈ Aν})
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and the λ -projection of A is given by

projλ A = {λ ∈ R; (λ ,u) ∈ A for some u ∈ E}.

Let us denote by Br(λ ,u) (Bν
r (λ ,u)) the open ball of U (Uν ) centered at (λ ,u) with radius

r > 0, Br(u) is the open ball of E centered at u with radius r > 0, and remind that a subset S of

U is considered a maximal connected subset if it is connected and not properly contained in

any other connected subset of S.

Before starting, let us give a briefing on our strategy for the proof of our theorem. First,

we show that S+ ∩S− ̸= /0. So, we can take, for each side, the component of solutions

with λ ̸= λ0. In the sequel, we assume by absurd that Sν (for ν ∈ {−,+}) does not satisfy

neither of the alternatives i), ii) nor iii). As a consequence of this assumption, we can use

a topological result due to Whyburn (see Lemma 2.1.3) in order to construct an admissible

open neighbourhood of this component (see Lemma 2.1.4). Finally, by using a generalized

homotopy property (see Lemma 2.1.1), we get to a contradiction with the fact that the index of

Φ at λ = λ0 relative to 0 be different from zero.

Now we will enunciate some auxiliary lemmas. The first one guarantees that the λ -degree

function λ 7→ deg(Φλ ,Oλ ,0) is locally constant.

Lemma 2.1.1. Let ν ∈ {−,+} and Oν be a bounded and open subset of Uν such that 0 ̸∈
Φ(∂Oν) and dist(Oν ,∂Uν)> 0. Then

deg(Φλ ,Oλ ,0) is constant for every λ ∈ projλ (Uν) .

Proof. This lemma is a slightly generalization of Theorem 4.1 of [7], where the set [a,b]×U

is substituted by the open subset Uν of Rν

λ0
. The proof is essentially the same.

The next result shows that S−∩S+ contains certain isolated solutions.

Lemma 2.1.2. Let (λ0,u0) ∈ U . Suppose that u0 ∈ E is an isolated solution of the equation

Φλ0(u) = 0 and that the index i(Φλ0,u0,0) ̸= 0. Then (λ0,u0) ∈ S−∩S+.

Proof. Take a ν ∈ {−,+} and assume that (λ0,u0) ̸∈ Sν . Therefore, there is r > 0 such that

(λ0,u0) is the only solution of Φ(λ ,u) = 0 in Br
ν
(λ0,u0) so that

deg(Φλ0,(B
ν
r (λ0,u0))λ0

,0) = i(Φλ0 ,u0,0) ̸= 0.
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Now, by applying Lemma 2.1.1, we deduce that

deg(Φλ0,(B
ν
r (λ0,u0))λ0

,0) = deg(Φr,(B
ν
r (λ0,u0))r ,0)

= deg(Φλ ,(B
ν
r (λ0,u0))λ

,0)

= deg(Φr,(B
ν
r (λ0,u0))r ,0)

= deg(Φr, /0,0) = 0.

for |λ −λ0|≥ r. This contradiction ends the proof.

Also we will use the following classical result by [58].

Lemma 2.1.3 (Ch. I, Item (9.3), [58]). Let Z be a compact metric space and A and B be

disjoint closed subsets of Z. Then either there exists a continuum of Z intersecting both A and

B or

Z = ZA ∪ZB,

where ZA and ZB are two disjoint compact subsets of Z containing A and B, respectively.

Finally, we are in a position to establish the following crucial result:

Lemma 2.1.4. Let (λ0,u0) ∈ U , u0 ∈ E be an isolated solution of Φλ0(u) = 0, and Cν be the

component of Sν containing (λ0,u0) for any ν ∈ {−,+} given. If Cν does not satisfy neither

of the alternatives i), ii) nor iii) of Theorem 0.0.1, then there exists a bounded open subset Oν

of Uν containing Cν such that the set

∂ (Oν)∩S = /0 (2.1.1)

and

u = u0 if (λ ,u) ∈ S and u ∈ Oν

λ0
. (2.1.2)

Proof. By the assumption that the alternative i) does not occur, we have that Cν is a bounded

and closed subset of E. Moreover, since the alternative ii) does not occur, that is,

dist(Cν ,∂U)> 0, (2.1.3)

we have from the compactness of the operator K in the open subset U that K is compact in Cν .

Since

dist(Cν ,∂Uν)≥ dist(Cν ,∂U)> 0,
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because ∂Uν ⊂ ∂U , we have that

Uν

δ
:= {(λ ,u) ∈ Uν ; dist((λ ,u), Cν)< δ}

is an open bounded subset of Uν satisfying

∂ Uν

δ
∩ Cν = /0 (2.1.4)

for each 0 < δ < dist(Cν ,∂Uν).

By using (2.1.3) again, we can shorten δ > 0, if necessary, to still obtain dist(Uν

δ
,∂U)> 0.

So, it follows from the compactness of the operator K in the open subset U that K is compact

in Uν

δ
as well. Combining the compactness of K in Uν

δ
with the fact that u0 ∈ E is an isolated

solution of Φλ0(u) = 0, and the assumption that Cν does not satisfy iii), we are able to take

δ > 0 small enough such that

u = u0 if (λ0,u) ∈ S and u ∈
(
Uν

δ

)
λ0
. (2.1.5)

Since S is a relative-closed set in U , and dist(Uν

δ
∩S,∂U)≥ dist(Uν

δ
,∂U)> 0, we are in

conditions to apply Lemma 2.1.3 to the sets

Z := Uν

δ
∩S, A := Cν , and B := ∂ (Uν

δ
)∩S.

Let us consider the two alternatives given by Lemma 2.1.3. If there were a continuum Fν

of S connecting A and B, then there would exists a p ∈ Fν ∩B so that p ∈ ∂ Uν

δ
whence

follows together with (2.1.4) that p ̸∈ A ⊇ Cν and so Cν would be a proper subset of the

continuum Fν ∪ Cν of S, that leads to the contradiction of the maximality of Cν . So, the

second possibility of Lemma 2.1.3 must occur, that is, there exist two compact sets ZA and ZB

containing A and B, respectively, such that

Z = ZA ∪ZB and ZA ∩ZB = /0. (2.1.6)

Since ZA ⊂ Z = Uν

δ
∩S, we have from (2.1.6), that

ZA ∩∂ (Uν

δ
) = /0
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whence follows together with ZA ⊂ Uν

δ
∩S again that

ZA ⊂ Uν

δ
. (2.1.7)

As a consequence of (2.1.7), (2.1.6), the compactness of ZA, and ZA and ZB to be disjoint

compact sets, we are able to take an open bounded neighbourhood Oν ⊂ Uν of ZA such that

a) Oν ∩ZB = /0,

b) Oν ⊂ Uν

δ
,

that leads to

∂ (Oν)∩S = /0.

On the contrary, there would exist

q ∈ ∂ (Oν)∩S, (2.1.8)

leading to

q ∈ ∂ (Oν)⊂Oν ⊂ Uν

δ
⊂ Uν

δ
,

that would imply by (2.1.8) again that

q ∈ Uν

δ
∩S = Z. (2.1.9)

On the other hand, one follows from a) and q ∈ ∂ (Oν) that q ̸∈ ZB. Besides this, q ̸∈ ZA

because ZA ⊂ Oν and q ∈ ∂ (Oν) so that q ̸∈ Z = ZA ∪ZB, which contradicts (2.1.9). This

proves (2.1.1). To complete the proof of the Lemma, we just note that (2.1.2) is a consequence

of (2.1.5) and b). This finishes the proof.

Proof of Theorem 0.0.1-Completed. Take ν ∈ {−,+}. Since i(Φλ0 ,u0,0) ̸= 0, we have from

Lemma 2.1.2 that (λ0,u0) ∈ Sν showing that the component Cν of Sν containing (λ0,u0) is

not empty. At least one of the alternatives i), ii) or iii) must be true. On the contrary, we would

obtain from Lemma 2.1.4 the existence of an admissible bounded open subset Oν of Uν such

that the only solution of Φ(λ0,u) = 0 would be u0 in Oν

λ0
(see (2.1.2)).

From this conclusion, and the fact that Oν

λ
is an open subset of E for each λ ∈Rν

λ0
, because

Oν is an open subset of Uν , we can apply Lemma 2.1.1 and excision properties, to infer that

0 = deg(Φ
λ
, /0,0) = deg(Φ

λ
,Oν

λ
,0) = deg(Φλ0,O

ν

λ0
,0) = i(Φλ0,u0,0) ̸= 0,
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for any fixed λ > 0 larger then the diameter of Oν . This is impossible. This ends the proof.

Proof of Corollary 0.0.1. The proof follows by the fact that the inequality (2.1.3), in the proof

of Lemma 2.1.4, remains true under the compactness assumption required on K in the Corollary

0.0.1.

2.2 Positiveness-continuity-principle

The below result, inspired in Lemma 6.5.4 of [43], is a positiveness-continuity-principle because

it brings up necessary and sufficient conditions for positiveness of all elements belonging to a

connected subset when we know that at least one element of this connected subset is positive.

In particular, it can be used to give positiveness of solutions belonging to the connected set

given by Theorem 0.0.1.

Proposition 2.2.1 (Positiveness-continuity-principle). Assume that (E,P) is an ordered Banach

space with intP ̸= /0, and let C be any connected subset of R×E such that C∩ [R× intP] ̸= /0

and

C∩ [R× (P\{0})]⊂ R× intP. (2.2.1)

Then

C∩ (R×{0}) = /0 if and only if C ⊂ R× intP.

In particular,

if there is no λ ∈ R such that (λ ,0) ∈ C∩R× (P\{0}), (2.2.2)

then

C∩ (R×{0}) = /0, (2.2.3)

and consequently, C ⊂ R× intP.

Proof. Suppose that C∩ (R×{0}) = /0. By (2.2.1), it is sufficient to prove that

C ⊂ [R× (P\{0})] .
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Suppose by absurd that the above inclusion does not hold, that is, there would exist a q ∈ C

such that q ̸∈ [R× (P\{0})]. Since C∩ (R×{0}) = /0, one has that q ̸∈ R×P, that is,

C∩ [(R×E)\ (R×P)] ̸= /0.

On the other hand, we have by assumption that C∩ [R× intP] ̸= /0, which implies that

C∩ [R×P]⊇ C∩ [R× intP] ̸= /0

so that there exists a

q0 ∈ C∩ [R×∂P] , (2.2.4)

after applying the Customs Theorem.

Using again C∩ (R×{0}) = /0, we have that q0 ̸∈ R×{0}, which follows that q0 ∈
C∩ [R× (P\{0})] so that we have that q0 ∈ R× intP after using (2.2.1), but this contradicts

(2.2.4). The reverse inclusion is immediate once that 0 ̸∈ intP.

Now let us prove (2.2.3). Suppose by contradiction that (2.2.2) holds true, but (2.2.3) not.

Since 0 ∈ E \ intP, then

C∩ [(R×E)\ (R× intP)] ̸= /0.

On the other hand, by using the assumption C∩ [R× intP] ̸= /0, we obtain from the Customs

Theorem that there exists

(λ ,u) ∈ C∩∂
C(R× intP),

where ∂
C denotes the boundary of (R× intP) relative to the topology in C. Thus

(λ ,u) ∈ R× intP
C
, (2.2.5)

and so u ∈ P. Moreover,

(λ ,u) ∈ R× (intP)c C
(2.2.6)

By combining (2.2.5) and (2.2.6), we deduce that u ∈ ∂ (intP), which implies that u = 0,

because if the contrary were true, we would have u ∈ intP (due to the hypothesis (2.2.1)), but

this is impossible due to u ∈ ∂ (intP). After this, we have from intP ⊂ P\{0} and (2.2.5) that

(λ ,u) = (λ ,0) ∈ C∩R× (P\{0}),
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which contradicts (2.2.2). This ends the proof.

Remark 2.2.1. We point out that the condition (2.2.1) can be showed by classical Strong

Maximum Principles in the context of partial differential equations.

2.3 Connecting singularities in PDEs with dist(C,∂U) = 0

Let us state a lemma that will be essential in many proofs of Sections 3.1 and 3.2.

Let α,s > 0, F be a normed vector space with norm ∥·∥F , E be a subspace of F and

Y : E → F be a continuous function. Set

UF = {(λ ,u) ∈ R−
0 ×E;1+λα∥Y (u)∥s

F> 0}.

Lemma 2.3.1. Let C be a subset of UF such that projλ C is bounded and IC > 0. Then there

exists a positive constant L > 0, depending only on the size of projλ C, such that

min
{

1
2
,Ldist(C,∂UF)

}
≤ IC, (2.3.1)

where

IC = inf{1+αλ∥Y (u)∥s
F ;(λ ,u) ∈C}.

In addition, if Y : E → F is a uniformly continuous function such that Y (C) is bounded, then

IC = 0 ⇔ dist(C,∂UF) = 0.

Proof. First let us prove (2.3.1). Since Y is continuous, then

∂UF = {(λ ,u) ∈ R−
0 ×E;1+λα∥Y (u)∥s

F= 0}.

Let (λ ,u) ∈C. If Y (u) = 0, then

1+λα∥Y (u)∥s
F= 1,

and the claim follows trivially. If Y (u) ̸= 0, then(
− 1

α∥Y (u)∥s
r
,u
)
∈ ∂UF
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and so

dist(C,∂UF)≤
∥∥∥∥(λ ,u)−(− 1

α∥Y (u)∥s
F
,u
)∥∥∥∥

R×E
=

1+λα∥Y (u)∥s
F

α∥Y (u)∥s
F

. (2.3.2)

Let Λ < infprojλ C. Note that since C ⊂ UF ⊂ R−
0 ×E, then infprojλ C ≤ 0 and consequently

Λ < 0. So it is well defined the set

CΛ =

{
(λ ,u) ∈C;λ ∈ R and α∥Y (u)∥s

F<− 1
2Λ

}
which is possible empty.

So, we obtain from (2.3.2), that

1+λα∥Y (u)∥s
F≥−dist(C,∂UF)

2Λ
∀ (λ ,u) ∈C \CΛ

whence follows

1+λ∥Y (u)∥s
F≥−dist(C,∂UF)

2Λ
∀ (λ ,u) ∈C (2.3.3)

if CΛ = /0 so that

On the other hand, if CΛ ̸= /0, then

1+λα∥Y (u)∥s
F≥ 1+Λα∥Y (u)∥s

F> 1−Λ

(
1

2Λ

)
=

1
2
, ∀ (λ ,u) ∈CΛ.

Since C = (C \CΛ)∪CΛ, then the inequality that includes both cases (CΛ = /0 or CΛ ̸= /0) is

IC ≥ min
{

1
2
,Ldist(C,∂UF)

}
,

where L =−1/(2Λ)> 0 and the first part of Lemma 2.3.1 is proved.

Now let us prove the second part of Lemma 2.3.1. Assume that dist(C,∂UF) = 0. So there

exist sequences (λn,un) ∈C and (ℓn,vn) ∈ ∂UF such that

∥(λn,un)− (ℓn,vn)∥R×E→ 0 (2.3.4)

Since Y (C) is bounded, then (λn,∥Y (un)∥s
F) is bounded and so

(λn,∥Y (un)∥s
F)→ (λ ,ξ ).
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Moreover, ∥Y (un)−Y (vn)∥F→ 0 because P is uniformly continuous ∥un − vn∥E→ 0. So

|∥Y (un)∥F−∥Y (vn)∥F |≤ ∥Y (un)−Y (vn)∥F→ 0.

Consequently,

(ℓn,∥Y (vn)∥s
F)→ (λ ,ξ )

due to (2.3.4). So

lim
n
(1+λn∥Y (un)∥s

F) = 1+λξ = lim
n
(1+ ℓn∥Y (vn)∥s

F) = lim
n

0 = 0.

Which implies that IC = 0.

Conclusion of Chapter 2
Theorem 0.0.1 presents a continuation theorem for perturbations of the identity that satisfy

a compactness condition within an open subset. Furthermore, its formulation aligns with the

definition of a global alternative theorem, as introduced by [52].

It should be noted that the assertions of Theorem 0.0.1 are confined on a unique real Banach

space E. When dealing with PDEs, the space where we search for solutions, however, may

stratify in subspaces. For example, if we are searching for solutions in C(Ω), then C1(Ω) is

a subspace of C(Ω). In this case, Theorem 0.0.1 may alienate some information about the

norm of the solutions with respect to subspaces of E, as can be observed in the conclusion of

Chapter 3. This technical issue naturally leads to the open problem of finding an alternative

formulation of Theorem 0.0.1 that incorporates layers of the space E. Note that Lemma 2.3.1

already addresses aspects of this question.



Chapter 3

Two parameters quasilinear Schrodinger
and Carrier logistic problem

Theorem 0.0.1 can be useful for solving a large class of partial differential equations that

presents some singularity in its structure, preventing the definition of the associated operator

in the whole parameter-working space. This occurs when the associated operator must be

constrained to a subset to be well-defined. In this direction, we will present new results in this

chapter regarding both the existence of classical positive solutions and qualitative information

for the well-studied class of quasilinear Schrödinger equations (Pλ ,µ ) and a Carrier type problem

(Qλ ,µ )

3.1 Quasilinear Schrödinger Operator with logistic pertur-

bation

This section is devoted to study existence and qualitative information about the positive solutions

of


−∆u−λu∆u2 = µu−up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Pλ ,µ )

where λ ,µ ∈ R, p > 1, and Ω ⊂ RN is a smooth bounded domain with N ≥ 1.
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To do so, we will present some notations, auxiliary results that and finally to prove Theorem

0.0.2.

3.1.1 Connected set of positive solutions

Let us begin by noting that we are interested in classical solutions for the problem (Pλ ,µ ) so

that is enough to find classical solutions to the problem−(1+2λu2)∆u = µu−up +2λu|∇u|2 in Ω,

u = 0, on ∂Ω,
(3.1.1)

because ∆(u2) = 2u∆u+2|∇u|2 for all u ∈C2(Ω).

It is well known that the problem (3.1.1) with λ = 0 admits a unique positive solution

u = u0 ∈ C2(Ω)∩C(Ω) if, and only if, µ > µ1, where µ1 > 0 is the first eigenvalue of the

Laplacian Dirichlet problem. In addition, this unique solution satisfies 0 < u0(x)< µ
1/(p−1)

in Ω. As the problem (3.1.1) is a perturbation of the pure logistic problem, we are concerned

in understanding how the diagram of solutions of the problem (3.1.1) is affected by the term

λu∆u2 for λ ∈ R.

Now we will show that the positivity and the boundedness from above by µ
1/(p−1) for the

solutions of the problem (3.1.1) are linked with the sign of 1+2λu2 in Ω that is the same as

1+2λ∥u∥2
0 due to the regularity of u. To do so, let us define the positive cone of C1

0(Ω) by

PC1
0(Ω) := {u ∈C1

0(Ω);u ≥ 0} whose interior is

intPC1
0(Ω) =

{
u ∈C1

0(Ω);u(x)> 0 ∀ x ∈ Ω,
∂u
∂η

(x)< 0 ∀ x ∈ ∂Ω

}
,

where η is the unit outward normal vector in Ω.

Lemma 3.1.1 (Boundeness-positivity continuation). For any µ > 0 given, let u∈C2(Ω)×C(Ω)

be a non-negative and non-trivial solution of the problem (3.1.1):

i) if ∥u∥0< µ
1/(p−1), then 1+2λ∥u∥2

0> 0,

ii) if 1+2λ∥u∥2
0≥ 0, then ∥u∥0≤ µ

1/(p−1),

iii) if 1+2λ∥u∥2
0> 0, then u ∈ intPC1

0(Ω),

iv) if p ≥ 2, λ ≤ 0 and 1+2λ∥u∥2
0> 0, then ∥u∥0< µ

1/(p−1).
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Proof. of i). Let (λ ,u) ∈ R× [C2(Ω)∩C(Ω)] be a solution of (3.1.1), and x0 ∈ Ω be a

maximum point of u so that u(x0) = ∥u∥0, and ∆u(x0)≤ 0. So, by the non-negativity of u, we

have

(
1+2λ∥u∥2

0
)
(−∆u(x0)) =

(
1+2λu(x0)

2)(−∆u(x0))

= u(x0)(µ −u(x0)
p−1)

= ∥u∥0(µ −∥u∥p−1
0 ), (3.1.2)

which implies by the assumption ∥u∥0< µ
1/(p−1) that in fact −∆u(x0)> 0. So, 1+2λ∥u∥2

0> 0.

Proof of ii). It follows from the non-negativity of u and (3.1.2), that 1+2λ∥u∥2
0≥ 0 implies

∥u∥0≤ µ
1/(p−1).

Proof of iii). We will consider two cases. First, we assume that λ ≥ 0. Then (λ ,u) satisfies−∆u+
up−1

1+2λu2 u =
u

1+2λu2 (µ +2λ |∇u|2)≥ 0 in Ω,

u ≥ 0 on ∂Ω,

whence follows that u is a supersolution (in the sense of [44]) of

L1 :=−∆+
up−1

1+2λu2

in Ω under homogeneous Dirichlet boundary conditions on ∂Ω. Since u≥ 0 and 1+2λ∥u∥2
0> 0,

we conclude that up−1/(1+2λu2) ∈ L∞(Ω) and up−1/(1+2λu2)≥ 0 in Ω, which imply, by

Theorem 7.5.2 of [44], that L1 satisfies the Strong Maximum Principle so that u ∈ intPC1
0(Ω).

Now, if λ < 0. Then (λ ,u) satisfies
(
−∆− 2λ |∇u|2

1+2λu2 +
up−1

1+2λu2

)
u = u

(
µ

1+2λu2

)
≥ 0 in Ω,

u ≥ 0 on ∂Ω.

Therefore, u is a supersolution of

L2 :=−∆− 2λ |∇u|2

1+2λu2 +
up−1

1+2λu2
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in Ω under the boundary condition u = 0 on ∂Ω. Since u is a non-negative C2(Ω)-function

and 1+ 2λ∥u∥2
0> 0, we get (−2λ |∇u|2+up−1)/(1+ 2λu2) ∈ L∞(Ω). Moreover, in view of

the assumption λ < 0, we have (−2λ |∇u|2+up−1)/(1+2λu2)≥ 0. Again by Theorem 7.5.2

of [44], the operator L2 satisfies the Strong Maximum Principle and, hence, u ∈ intPC1
0(Ω).

Proof of iv). Define w = µ −up−1. Since p ≥ 2, we obtain

∆w = −div((p−1)up−2
∇u)≤ (p−1)up−2(−∆u)

= (p−1)up−1
(
(µ −up−1)

1+2λu2 +
2λ |∇u|2

1+2λu2

)
,

which implies, together with λ ≤ 0, that w satisfies−∆w+
(p−1)up−1

1+2λu2 w =− 2λ |∇u|2

1+2λu2 (p−1)up−1 ≥ 0 in Ω,

w > 0 on ∂Ω,

whence follows that µ > u(x)p−1 for all x∈Ω by the Strong Maximum Principle. Consequently,

∥u∥0< µ
1/(p−1). This ends the proof.

After Lemma 3.1.1, it is natural to look for positive solutions to the problem (3.1.1) in the

open set

U =
{
(λ ,u) ∈ R×C1

0(Ω); 1+2λ∥u∥2
0> 0

}
, (3.1.3)

where the searching of classical solutions for the problem (3.1.1) is equivalent to do the same

for the problem −∆u =
µu−up +2λu|∇u|2

1+2λu2 in Ω,

u = 0 on ∂Ω.

(3.1.4)

Clearly, if (λ ,u) ∈ U , then

µu−up +2λu|∇u|2

1+2λu2 ∈C(Ω).

Thus, we can consider the operator K : U →C1
0(Ω) defined by

K(λ ,u) = (−∆)−1
[

µu−up +2λu|∇u|2

1+2λu2

]
, (3.1.5)
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where (−∆)−1 : C0(Ω)→C1
0(Ω) is the resolvent operator of the linear boundary value problem

associated with −∆ in Ω.

The lemma below will guarantee that K is compact in the open subset U .

Lemma 3.1.2 (Compactness of K). If C is a bounded closed subset of U such that dist(C,∂U)>
0, then the operator K : C ⊂ U →C1

0(Ω) is compact.

Proof. Since C is bounded, then projλ C is bounded. Once that dist(C,∂U)> 0, it follows from

Lemma 2.3.1 that there exists a ρ > 0 such that

1+2λ∥u∥2
0> ρ ∀ (λ ,u) ∈C (3.1.6)

due to Lemma 2.3.1 applied to E = C1
0(Ω), F = C(Ω) and α = q = 2. Consequently, the

application
z : U → C(Ω)

(λ ,u) 7→ z(λ ,u) =
µu−up +2λu|∇u|2

1+2λu2

Moreover, the boundedness of C combined with (3.1.6), implies that z(C) is bounded subset of

C(Ω), in particular, bounded in Lp(Ω) for any p > 1. By elliptic regularity, (−∆)−1(z(C)) is

bounded in W 2,p(Ω) for any p > 1. By the compact embedding W 2,p
0 (Ω)

c
↪→C1

0(Ω), for large p,

it follows that compactness of K. This ends the proof of Lemma 3.1.2.

The below result is crucial in order to apply Theorem 0.0.1.

Lemma 3.1.3. If µ > µ1, then i(Φ0,u0,0) ̸= 0, where Φ0(u) = Φ(0,u) with Φ0(λ ,u) = u−
K(λ ,u) for (λ ,u) ∈ U .

Proof. Define the operator T : C1
0(Ω)→C1

0(Ω) by T (u) := K(0,u). It is immediate to check

that T is differentiable at u = u0 with

T ′(u0)h = (−∆)−1((µ − pup−1
0 )h).

We claim that 1 is not a characteristic value of T ′(u0). On the contrary, the problem−∆ϕ = (µ − pup−1
0 )ϕ in Ω,

ϕ = 0 on ∂Ω,



3.1 Quasilinear Schrödinger Operator with logistic perturbation 62

would admit a non-trivial solution, which implies that

σ
Ω
j [−∆+ pup−1

0 −µ] = 0

where σ j[L] stands for the eigenvalue of operator L := −∆+M(x) (M ∈ L∞) in Ω under

homogeneous Dirichlet boundary conditions on ∂Ω. By the dominance of the principal

eigenvalue, we obtain that

σ
Ω
1 [−∆+ pup−1

0 −µ]≤ 0. (3.1.7)

On the other hand,

−∆u0 + pup
0 −µu0 = (p−1)up

0 > 0 in Ω

showing that u0 is a strictly supersolution of the problem
−∆u+ pup−1

0 −µu = 0 in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

that would lead to

σ
Ω
1 [−∆+ pup−1

0 −µ]> 0,

which contradicts (3.1.7). As a consequence, we have that

i(Φ0,u0,0) ̸= 0

due to the Leray-Schauder Formula (see, for instance, [7, Theorem 3.20]). This completes the

proof.

Now, we are ready to state and apply Theorem 0.0.1 to obtain a connected set of positive

solutions to the problem (Pλ ,µ ) contained in U . Before doing this, let us denote Uν = U ∩Rν
0 ,

ν ∈ {−,+}.

As a consequence of the previous results, we deduce the following existence result.

Proposition 3.1.1 (Continuation Theorem for (Pλ ,µ )). Assume that µ > µ1, p > 1 and consider

the 0-partition of U . Then there exists a pair of connected sets Cν ⊂ Uν ∩Sν of solutions for

the problem (Pλ ,µ ) such that C−∩ C+ = {(0,u0)}. In addition, Cν satisfies at least one of the

following alternatives:
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i) Cν is unbounded in Rν
0 ×C1

0(Ω).

ii) dist(Cν ,∂U) = 0

iii) Cν ∩{(0, ũ0)} ̸= /0 for some u0 ̸= ũ0

for each ν ∈ {−,+}.

Proof. By Lemma 3.1.2, K is a compact operator in the open subset U , and Lemma 3.1.3

shows that (0,u0) ∈ U is such that u0 ∈ U0 is an isolated solution of Φ0(u) = 0 with index

i(Φ0,u0,0) ̸= 0. So, we are in position to apply the Theorem 0.0.1 to obtain the existence of a

pair of connected sets Cν ⊂ Uν ∩Sν of solutions for the problem (Pλ ,µ ) satisfying the at least

one of the alternatives i), ii) or iii). This ends the proof.

Remark 3.1.1. It is worth to mention at this point that by using the qualitative information

about C, which will be provided in the next subsection, we will be able to prove that the

alternative ii) of Proposition 3.1.1 must occur (see the proof of Theorem 0.0.2).

Let us denote by

C = C−∪ C+

the connected set of solutions for the problem (Pλ ,µ ) crossing R×C1(Ω) at (λ ,u) = (0,u0).

At this moment, we do not have any information about the sign of the solutions (Pλ ,µ ) belongs

to C.

3.1.2 Qualitative information about the connected of positive solutions

We already know that C is a connected set of solutions of (Pλ ,µ ) that contains the point (0,u0).

We begin this section showing estimates of the solutions for the problem (Pλ ,µ ) related to

parameter λ < 0 and on its C(Ω)-norm. These estimates will be useful in completing the proof

of Theorem 0.0.2. To do so, we will need the following properties of the first eigenvalue that

can be deduced by its variational characterization (see [26]). Given A(x) ∈W 1,q(Ω), such that

A(x)≥ A0 > 0 for all x ∈ Ω and B(x) ∈ Lq(Ω), q > N/2, the first eigenvalue of −div[A∇]+B

is well defined and it is increasing with respect to A and B.

Lemma 3.1.4. Assume that µ > µ1 and p > 1. Let (λ ,u) ∈ U− be a classical positive solution

of the problem (Pλ ,µ ). Then

∥u∥0≥ (µ −µ1)
1/(p−1) and λ ≥− 1

2(µ −µ1)2/(p−1)
.
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Proof. Since (λ ,u) satisfies

−div[(1+2λu2)∇u]+2λu|∇u|2 = −4λu|∇u|2+(1+2λu2)(−∆u)+2λu|∇u|2

= −2λu|∇u|2+(1+2λu2)(−∆u)

= µu−up,

we obtain [
−div[(1+2λu2)∇( · )]+2λ |∇u|2+up−1]u = µu

whence follows that

σ1
[
−div[(1+2λu2)∇( · )]+2λ |∇u|2+up−1]= µ.

By using the monotonicity properties of the first eigenvalue and λ ≤ 0, we deduce

µ ≤ σ1
[
−div[∇( · )]+2λ |∇u|2+up−1]

≤ σ1

[
−div[∇( · )]+∥u∥p−1

0

]
= µ1 +∥u∥p−1

0 ,

from which follows that ∥u∥0≥ (µ −µ1)
1/(p−1).

To obtain the estimate on λ , we just note that (λ ,u) ∈ U− and ∥u∥0≥ (µ −µ1)
1/(p−1) to

lead us to

0 < 1+2λ∥u∥2
0≤ 1+2λ (µ −µ1)

2/(p−1)

so that

λ ≥− 1
2(µ −µ1)2/(p−1)

.

This ends the proof.

The next result will allow us to conclude that the connect C is far from trivial solutions.

Lemma 3.1.5. Assume that p > 1 and 0 < µ ̸= µ1. Then there is no bifurcation point of

non-negative and non-trivial solutions in U of (Pλ ,µ ) from its trivial curve of solutions, in the

C(Ω)−norm.
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Proof. Suppose by contradiction that there exists a bifurcation point (λ0,0) of non-negative

and non-trivial solutions in U of (Pλ ,µ ). So, there would exist a sequence (λn,un) ∈ U of

non-negative and non-trivial solutions of (Pλ ,µ ) converging to (λ0,0) in R×C(Ω). Since

{(λn,un)} is a convergent sequence, it follows that {(λn,un)} is bounded in R×C(Ω). So we

can apply Lemma 2.3.1 with Y = id and C := {(λn,un);n ∈ N}. Moreover, since ∥un∥0→ 0

and (λn) is bounded, it follows that IC > 0. Consequently, dist(C,∂U)> 0 due to Lemma 2.3.1.

Thus, K is compact in C by Lemma 3.1.2, which implies that there exists some u0 ∈ C1
0(Ω)

such that un → u0, in C1
0(Ω), up to a subsequence. Since ∥un∥0→ 0, then u0 = 0.

Now, observe that (λn,un) satisfies

un = K(λn,un) = (−∆)−1
(

µun −up
n +2λnun|∇u|2

1+2λnu2
n

)
∀ n

whence follows that

un

∥un∥1
= (−∆)−1

[
1

1+2λnu2
n

(
µ

un

∥un∥1
− up

n

∥un∥1
+

2λnun|∇un|2

∥un∥1

)]
∀ n.

So, by passing to the limit in the above equality and using the compact embedding

C1,α
0 (Ω)→C(Ω), for some 0 < α < 1, we obtain that−∆u = µu in Ω,

u = 0 on ∂Ω,

in weak sense, for some non-trivial and non-negative function u ∈C1
0(Ω), implying that µ = µ1,

which is impossible by assumption.

The previous results can be combined with Proposition 2.2.1 to prove that C is composed

by strong positive solutions.

Proposition 3.1.2. C := C−∪ C+ ⊂ R× intPC1
0(Ω).

Proof. First, we note that (0,u0) ∈ C∩ [R× intP]. Second, since C ⊂ U , we obtain from the

item iii) of Lemma 3.1.1 that C satisfies the condition (2.2.1) of Proposition 2.2.1. Furthermore,

we have from Lemma 3.1.5 that there is no λ ∈R such that (λ ,0)∈ C∩R× (P\{0}), whence

follows by Proposition 2.2.1 that C ⊂ R× intP. This ends the proof.
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Now, we will apply Theorem A.2.3 in order to obtain additional information about the

C1
0(Ω)-norm of the solutions of the problem (Pλ ,µ ) belonging to C. To do this, we will need to

define two smooth extensions of the nonlinear perturbation given in the problem (3.1.4).

For each 0 < ρ < 1, define the function fρ,λ by

fρ,λ (s,ξ ) :=
µs− sp +2λ s|ξ |2

1+2λ s2 , s ≤
√

ρ −1
2λ

and ξ ∈ RN , (3.1.8)

extended in a smooth way to R×RN so that there exists an increasing continuous function

c1 : R+
0 → R+

0 such that

| fρ,λ (s,ξ )|≤ c1(|s|)(1+ |ξ |2), ∀ (s,ξ ) ∈ R×RN , ∀ λ ∈ Λ1

for any compact interval Λ1 ⊂ (−∞,0) given, where the function c1 depends only on ρ , the

length of µ1.

To include the end point 0 in (−∞,0], we proceed in a similar way. Given

Λ2 ⊂
(
−1/

(
2µ

2/(p−1)
)
,0
]

being a compact interval, we define the function

hλ (s,ξ ) =
µs− sp +2λ s|ξ |2

1+2λ s2 , ∀ s ≤ µ
1/(p−1), ξ ∈ RN , and λ ∈ Λ2,

extended in a smooth way to R×RN , to infer that there exists an increasing continuous function

c2 : R+
0 → R+

0 , depending only on the length of Λ2, such that

|hλ (s,ξ )|≤ c2(|s|)(1+ |ξ |2), ∀ (s,ξ ) ∈ R×RN , ∀ λ ∈ Λ2

holds.

Based on these facts, we are able to prove the next lemma. Before doing this, let us denote

U+
ρ = Uρ ∩R+

0 .

Lemma 3.1.6. Let C ⊂ U− be a set of positive solutions of (Pλ ,µ ) such that dist(C,∂U−)> 0.

Then

∥u∥1≤ M, ∀ (λ ,u) in C,

where M depends on dist(C,∂U−) and the size of projλ C.
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Proof. By Lemma 3.1.4, it follows that projλ C is bounded. Since dist(C,∂U) > 0, we can

apply Lemma 2.3.1 with Y = Id, E =C1
0(Ω), F =C(Ω) and α = s = 2 to infer that there exists

a ρ > 0 such that and

1+2λ∥u∥2
0> ρ ∀ (λ ,u) ∈C. (3.1.9)

Let

ϒ < min

{
− sup

λ∈projλ C
|λ |,−1/

(
4µ

2/(p−1)
)}

.

By using the definition of ϒ, we have that

ϒ <− sup
λ∈projλ C

|λ | (3.1.10)

and

ϒ <−1/
(

4µ
2/(p−1)

)
. (3.1.11)

As a consequence of (3.1.10), we have that projλ C ⊂ [ϒ,0]. By (3.1.11), the interval[
ϒ,−1/

(
4µ

2/(p−1)
)]

(3.1.12)

is well defined. So

projλ C ⊂ [ϒ,0]

=
[
ϒ,−1/

(
4µ

2/(p−1)
)]

∪
[
−1/

(
4µ

2/(p−1)
)
,0
]
. (3.1.13)

Let us denote

Λ1 =
[
ϒ,−1/

(
4µ

2/(p−1)
)]

and Λ2 =
[
−1/

(
4µ

2/(p−1)
)
,0
]
.

So rewriting (3.1.13) with these notations, we have

projλ C ⊂ Λ1 ∪Λ2. (3.1.14)

Observe that Λ1 is a compact interval contained in (−∞,0) and Λ2 is a compact interval

contained in
(
−1/

(
2µ

2/(p−1)
)
,0
]
. According to the text introducing Lemma 3.1.6, it follows

that there exists a function fρ,λ associated to ρ and defined for each λ ∈ Λ1 and a function hλ

defined for each λ ∈ Λ2, both satisfying the conditions of Theorem A.2.3.
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Since (3.1.9), for even greater reason we have 1+2λ∥u∥2
0≥ 0. Then

∥u∥0≤ µ
1

p−1 ∀ (λ ,u) ∈C (3.1.15)

due to Lemma 3.1.1.

Moreover,

λ ∈ Λ1 ∪Λ2 ∀ (λ ,u) ∈C (3.1.16)

due to (3.1.14).

Note that, regardless of whether λ belongs to Λ1 or Λ2, we have (3.1.9) and (3.1.15) for

each (λ ,u). But, in order to use the extensions fρ,λ and hλ , it will be convenient to state the

facts (3.1.9) and (3.1.15) by dividing in the following two cases. Let (λ ,u) ∈C. Then eitherλ ∈ Λ1

and 1+2λ∥u∥2
0> ρ

(3.1.17)

or λ ∈ Λ2

and ∥u∥0≤ µ
1

p−1 .
(3.1.18)

If the case is (3.1.17), then (λ ,u) satisfies−∆u = fρ,λ (u,∇u) in Ω,

u = 0 on ∂Ω.
(3.1.19)

On the other hand, if the case is (3.1.18), then−∆u = hλ (u,∇u) in Ω,

u = 0 on ∂Ω.
(3.1.20)

By Theorem A.2.3,

∥u∥W 2,s(Ω)≤ γ1(∥u∥0)≤ γ1(µ
1/(p−1)), ∀ (λ ,u) ∈C, λ ∈ Λ1 (3.1.21)

and

∥u∥W 2,s(Ω)≤ γ2(∥u∥0)≤ γ2(µ
1/(p−1)), ∀ (λ ,u) ∈C, λ ∈ Λ2 (3.1.22)
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where we used in the last inequalities of (3.1.21) and (3.1.22) a consequence of Lemma 3.1.1

together with the fact that γi : R+
0 →R+

0 is an increasing function, for each i = 1,2, that depend

only on Ω, p and the function ci. So, for s > 1 large enough, we obtain the claim due to the

embedding W 2,s(Ω) ↪→C1(Ω). So by combining this embedding with (3.1.21) we deduce that

there exists a constant M1 > 0 such that

∥u∥1≤ M1, for all solution (λ ,u) ∈C, λ ∈ Λ1

and a constant M2 > 0 such that

∥u∥1≤ M2, for all solution (λ ,u) ∈C, λ ∈ Λ2

due to (3.1.22), whence follows the claim with M = M1 +M2.

About the connected set C+, we have the following result.

Lemma 3.1.7. Let 0 < Γ < +∞. Then there exists a constant M > 0 (depending on Γ) such

that

∥u∥1≤ M, for all positive solution (λ ,u) in U+∩
(
[0,Γ]×C1

0(Ω)
)
.

Proof. Let us define for each 0 ≤ λ ≤ Γ the function

fλ ,Γ(s,ξ ) :=
µs− sp +2λ s|ξ |2

1+2λ s2 , ∀(s,ξ ) ∈ R×RN .

Clearly, there exists an increasing continuous function c : R+
0 → R+

0 such that

| fλ ,Γ(s,ξ )|≤ c(|s|)(1+ |ξ |2), ∀ (s,ξ ) ∈ R×RN , ∀ λ ∈ [0,Γ].

So the proof follows by using the W 2,p(Ω)-estimate given in Theorem A.2.3 and the embedding

W 2,s(Ω) ↪→C1(Ω).

Below, let us provide more qualitative information about global behavior of C+.

Lemma 3.1.8. Assume that p > 1 and µ > µ1. Then:

i) projλ C+ = R+
0 ,

ii) there is a unique positive solution uλ ∈C1
0(Ω) of (Pλ ,µ ) for each λ ≥ 0. Moreover the

set of these solutions coincides with C+,
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iii) the curve R+
0 ∋ λ 7→ (λ ,uλ ) ∈ R+

0 ×C1
0(Ω) is continuous,

iv) ∥uλ∥0→ 0 as λ → ∞.

Proof. Let us begin proving the item i). Assume, by contradiction, that projλ C+ were bounded.

Then, by Lemma 3.1.7, projC1
0(Ω) C+ would be bounded in R implying that C+ would also

be bounded in R×C1
0(Ω). However, since C+ neither satisfies the alternatives ii) nor iii) of

Theorem 3.1.1, it must be unbounded, which is a contradiction. The claim of items ii) and iv)

follows from the uniqueness and the behaviour of the solutions uλ of (Pλ ,µ ) proved in [21].

Finally, the claim of the item iii) follows from the fact that the operator K is compact in the

open set U (see Lemma 3.1.2). This ends the proof.

Now, we are ready to complete the proof of the Theorem 0.0.2.

Proof of Theorem 0.0.2: First note that Proposition 3.1.1 implies that there exists a

connected set C = C−∪ C+ ⊂ U of solutions for the problem (Pλ ,µ ) crossing R×C1(Ω) at

(λ ,u) = (0,u0) with C− ⊂ U− and C+ ⊂ U+ satisfying, each one, at least one alternative of

Theorem 0.0.1. Furthermore, Proposition 3.1.2 implies that C ⊂ R× intPC1
0(Ω), that is, C is a

connected set of strong-positive solutions of the problem (Pλ ,µ ). This finishes the proof of the

first part of Theorem.

First, we will prove item (0.0.3). We claim that

dist
(
C−,∂U

)
= 0. (3.1.23)

The proof will be by using contradiction. So assume that (3.1.23) is false. By Lemma 3.1.6,

C− would be bounded in R×C1
0(Ω) implying that C− does not satisfy either alternatives i) or

ii) of Proposition 3.1.1. Note that C− does not satisfy the alternative iii) of Proposition 3.1.1

due to the uniqueness of positive solutions for the problem (P0,µ) with µ > µ1. So we have

just concluded that C− does not satisfy any of the alternatives i), ii) or iii) of Proposition 3.1.1,

but this contradicts the proposition and we just proved (3.1.23). Noting that

∂U =
{
(λ ,u) ∈ R×C1

0(Ω);1+2λ∥u∥2
0= 0

}
,

we just proved (0.0.3).

Let us prove (0.0.4). Since C− ⊂ U , then we can apply Lemma 3.1.1 to obtain that

∥u∥0≤ µ
1

p−1 for all (λ ,u) ∈ C−. Then the continuous inclusion i : C1
0(Ω)→C0(Ω) is such that

i(C−) is bounded. So we can apply Lemma 2.3.1 with E =C1
0(Ω), F =C(Ω), α = q = 2 and
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Y = i : C1
0(Ω)→C0(Ω), we deduce that

IC− = inf{1+2λ∥u∥2
0; (λ ,u) ∈ C−}= 0 (3.1.24)

and we just proved (0.0.4).

Let us prove (0.0.1). Due to (3.1.24), there exists a sequence (λn,un) ∈ C− such that

ρn := 1+2λn∥un∥2
0→ 0. (3.1.25)

From Lemma 3.1.1, we know that ∥un∥0≤ µ
1/(p−1). This estimate together with λ ≤ 0 imply

that

λn ≤
ρn −1

2µ2/(p−1)
.

Since ρn → 0, then

lim
n→+∞

λn ≤− 1
2µ2/(p−1)

.

Being C− connected and (0,u0) ∈ C−, we infer that C− satisfies

(
− 1

2µ2/(p−1)
,0
]
⊂ projλ C−.

To complete the proof of (0.0.1), we just note Lemma 3.1.4 implies that

projλ C− ⊂
(
− 1

2(µ −µ1)2/(p−1)
,0
]
,

completing the proof of the item (0.0.1).

The inclusions (0.0.2) follow by Lemma 3.1.1-ii) and Lemma 3.1.4.

Item a) is a direct consequence of (0.0.1) combined with the connectedness of C−. Item

b) follows from Lemma 3.1.4. Item i) follows from Lemma 3.1.8 and item ii) follows from

Lemma 3.1.5. This ends the proof. �

3.1.3 Non-existence results for the case µ < µ1

For the sake of completeness, we collect here some non-existence results for the problem (Pλ ,µ )

when µ ≤ µ1.
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Proposition 3.1.3. Assume that p > 1, µ ≤ µ1, and (λ ,u) ∈ U be a positive solution for the

problem (Pλ ,µ ). Then:

(i) λ < 0, that is, the problem (Pλ ,µ ) does not admit positive solutions for any λ ≥ 0 and

µ ≤ µ1,

(ii) µ > 0. In particular, the problem (Pλ ,µ ) has no positive solutions for any µ ≤ 0 and

λ ∈ R,

(iii) one has

λ <
µ −µ1

2µ1µ2/(p−1)

so that the problem (Pλ ,µ ) does not admit any positive solution for any

λ ≥ µ −µ1

2µ1µ2/(p−1)
and 0 ≤ µ ≤ µ1.

In particular,

λ ≤−1/2µ
2/(p−1) if 1 < p ≤ 3,

showing that the problem (Pλ ,µ ) does not admit any positive solution for any

λ ≥−1/2µ
2/(p−1) and 0 ≤ µ ≤ µ1.

Proof. Let (λ ,u) ∈ U be a positive solution of (Pλ ,µ ).

Let us prove (i). Assume that λ ≥ 0. Then, we would obtain from the monotonicity

properties of the principal eigenvalue, that

µ1 ≥ µ = σ
Ω
1 [−div[(1+2λu2)∇]+2λ |∇u|2+up−1]

> σ
Ω
1 [−div(∇)] = µ1,

showing that we must have λ < 0.

Proof of (ii). It follows from (i) that (λ ,u) ∈ U being a positive solution of (Pλ ,µ ), we have−∆u− µ

1+2λu2 u =− up

1+2λu2 +
2λu|∇u|2

1+2λu2 ≤ 0 in Ω,

u = 0 on ∂Ω.
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If were µ ≤ 0, then we could apply the Maximum Principle to obtain u ≤ 0, leading to a

contradiction with the positivity of u. This ends the proof of the item (ii).

Proof of (iii). We already know from (i) that λ < 0. Then the pair (λ ,u) should satisfy

µ1

∫
Ω

u2 ≤
∫

Ω

|∇u|2<
∫

Ω

|∇u|2

1+2λu2=
∫

Ω

u2 µ −up−1

1+2λu2 ,

that is, ∫
Ω

[
µ1 −

µ −up−1

1+2λu2

]
u2 < 0. (3.1.26)

So

µ1 <
µ −u(x0)

p−1

1+2λu(x0)2 for some x0 ∈ Ω,

leading us to

2λ µ1µ
2/(p−1) ≤ 2λ µ1∥u∥2

0≤ 2λ µ1u(x0)
2 < µ −u(x0)

p−1 −µ1 < µ −µ1 ≤ 0,

after using Lemma 3.1.1-ii). This proves the first part of the item (iii). To complete the proof,

assume, by contradiction, that were

λ >− 1
2µ2/(p−1)

. (3.1.27)

After the inequality (3.1.27), we have well-defined the function

g(s) =
µ − sp−1

1+2λ s2 ∀ s ∈
[
0,µ

1
p−1

]
. (3.1.28)

Let us consider two cases: First case p = 3. Here, we obtain from (3.1.27), and (3.1.28)

that g′(s)< 0 for all 0 < s < µ
1

p−1 . Since 0 < u ≤ µ
1/(p−1) (see Lemma 3.1.1), we obtain from

the monotonicity of g, that

µ = g(0)> g(u(x0))

whence follows, together with (3.1.26) and µ ≤ µ1, that

0 ≤
∫

Ω

(µ1 −µ)u2 =
∫

Ω

(µ1 −g(0))u2 <
∫

Ω

(µ1 −g(u(x0)))u2 < 0,

which is impossible.
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Second case, 1 < p < 3. So, it is straightforward from from (3.1.28) that g′(s) = 0 if and

only if h(s) = 4λ µ , where

h(s) = 2λ (3− p)sp−1 − (p−1)sp−3 for all 0 < s < µ
1

p−1

so that

h′(s) = (p−1)(3− p)sp−4 [1+2λ s2]> 0 for all 0 < s <
(
− 1

2λ

)1/2
.

Since λ >−1/(2µ
2/(p−1)), we have that

µ
1

p−1 ≤
(
− 1

2λ

)1/2

,

showing that

h′(s)> 0 for all 0 < s < µ
1

p−1

that leads to

max
0≤s≤µ

1
p−1

h = h
(

µ
1

p−1

)
= µ

[
2λ (3− p)− (p−1)µ− 2

p−1

]
< µ [2λ (3− p)+(p−1)2λ ] = 4λ µ,

where the last inequality follows from (3.1.27). That is, g′(s)< 0 for all s ∈ [0,µ1/(p−1)]. As

done in the case p = 3, we obtain a contradiction again. This ends the proof.

3.2 Carrier-Type problem with logistic perturbation

In this section, we will be inspired by the arguments used in the previous section to apply

Theorem (0.0.1) again to study existence and qualitative information about the positive solutions

of


−(1+λ |u|qr )∆u = µu−up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Qλ ,µ )
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where λ ∈ R is a parameter, q > 0, p > 1, r ≥ 1 and Ω ⊂ RN is a smooth bounded domain

with N ≥ 1. At Section 3.2.2, we will prove Theorem 0.0.3.

3.2.1 Establishing the sufficient conditions for continuation

To do this, first we note that, depending on the size of p > 1 and r ≥ 1, we are not able to set a

compact operator on any open subset of H1
0 (Ω). Motivated by this technical challenging, let us

define a truncation T : H1
0 (Ω)→ Lκ(Ω) by

(T (u))(x) =

u(x) if u(x)≤ µ
1

p−1 ,

µ
1

p−1 if u(x)> µ
1

p−1 ,

for any κ > max{pN,r} given, that is, T (u) is the truncation of u at the level µ
1

p−1 .

From this, and motivated by the case T (u) = u for ∥u∥0≤ µ
1

p−1 , let us consider the open set

V̂ = V̂−∪V̂+,

where

V̂ν := {(λ ,u) ∈ Rν
0 ×H1

0 (Ω);1+λ∥T (u)∥q
r> 0},

for each ν ∈ {−,+}, and define the operators K,Φ : V̂ → H1
0 (Ω) by

K(λ ,u) = (−∆)−1
(

µT (u)− (T (u))p

1+λ∥T (u)∥q
r

)
, (3.2.1)

and Φ(λ ,u) := u−K(λ ,u), taking advantage of the results and notations in Section 2.

The next lemma will guarantee us that the zeros of Φ are actually classical positive solutions

of (Qλ ,µ ).

Lemma 3.2.1. Let (λ ,u) ∈ V̂ , with u being non negative and non zero, such that K(λ ,u) = u.

Then (λ ,u) is a classical positive solution of (Qλ ,µ ), that is, 0 < u ∈C2(Ω)∩C(Ω).
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Proof. By using (u−µ
1

p−1 )+ as a test function in K(λ ,u) = u, we have∫
Ω

|∇(u−µ
1

p−1 )+|2 =
∫

Ω

∇(u−µ
1

p−1 )∇((u−µ
1

p−1 )+)

=
∫

Ω

∇u∇((u−µ
1

p−1 )+)

=
∫

Ω

µT (u)− (T (u))p

1+λ |u|qr
(u−µ

1
p−1 )+

=
∫
{u(x)>µ

1
p−1 }

µT (u)− (T (u))p

1+λ |u|qr
(u−µ

1
p−1 )+

=
∫
{u(x)>µ

1
p−1 }

µµ −µ p

1+λ |u|qr
(u−µ

1
p−1 )+ = 0.

That is, u(x) ≤ µ
1

p−1 for a.e. in Ω and consequently T (u) = u. This just proves that u is a

solution of (Qλ ,µ ). Since u(x) ≤ µ
1

p−1 , then u ∈ Lt(Ω) for any t ≥ 1 and consequently u is

classical by Theorem A.2.1 combined with Sobolev embedding. The positiveness of u follows

by applying Theorem A.1.2.

Now we are ready to state the lemma below, whose proof follows the same steps as those

used to prove Lemma 3.1.1.

Lemma 3.2.2. Let (λ ,u) ∈ R× (C2(Ω)×C(Ω)) be a non-negative and non-trivial solution of

(Qλ ,µ ):

i) if ∥u∥0< µ
1/(p−1), then 1+λ |u|qr> 0,

ii) if 1+λ∥u∥q
r≥ 0, then ∥u∥0≤ µ

1/(p−1),

iii) if 1+λ∥u∥q
r> 0, then u ∈ intPC1

0(Ω),

iv) if p ≥ 2 and 1+2λ∥u∥q
r> 0, then ∥u∥0< µ

1/(p−1).

The proof of the Lemma below follows the same arguments as those used to prove the

Lemma 3.1.3.

Lemma 3.2.3. Assume that µ > µ1 and p > 1. Then i(Φ0,u0,0) ̸= 0.

The following result can be proved similarly to the proof of the Lemma 3.1.5:

Lemma 3.2.4. Assume that p > 1 and 0 < µ ̸= µ1. Then there is no bifurcation point of

non-negative and non-trivial solutions in U of (Qλ ,µ ) from its trivial curve of solutions.
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Before proving Theorem 0.0.3, we will prove the next proposition that shows, in particular,

that there is no bifurcation point λ ≤ 0 from the trivial solutions in the C(Ω)-norm.

Proposition 3.2.1. Suppose that (λ ,u) and (λ ,v) are classical positive solutions of (Qλ ,µ ) in

U(F) with λ ≤ 0 ≤ λ . Then:

v ≤ u0 ≤ u. (3.2.2)

and

(µ −µ1(1+λ |u|qr ))1/(p−1)
ϕ1 ≤ u (3.2.3)

In particular, if (λ ,u) is a positive solution of (Qλ ,µ ) satisfying 1+λ |u|qr> 0, then

|u|r≥ (µ −µ1)
1

p−1 |ϕ1|r and λ >− 1

(µ −µ1)
q

p−1 |ϕ1|qr
.

Proof. We start proving the first inequality of (3.2.2). Since λ ≥ 0 and v ≤ µ
1/(p−1) (Lemma

3.2.2-ii)), it is apparent that

−∆v =
v

1+λ |v|qr
(µ − vp−1)≤ v(µ − vp−1) in Ω,

whence follows that v is a subsolution of (PF
0,µ). Moreover, it is straightforward to verify that

positive constants large enough are supersolutions of (PF
0,µ). Thus, by sub and supersolution

methods, there exists a positive solution of (PF
0,µ) between v and K > 0 large. Since u0 is the

unique positive solution of (PF
0,µ), we obtain that v ≤ u0.

To prove that u0 ≤ u, we observe that εϕ1 and u are a pair of sub and supersolution of (PF
0,µ)

such that εϕ1 ≤ u for ε > 0 small enough. Again, by using sub and supersolution methods,

combined with the uniqueness of positive solutions for the problem (PF
0,µ), we get the claimed

inequality.

To prove (3.2.3), consider the problem, in w, given by
−∆w =

w
1+λ |u|qr

(µ −wp−1) in Ω,

w = 0 on ∂Ω.

(3.2.4)

This problem has a unique positive solution. But, by the definition of u, we know that u is a

positive solution of (3.2.4) and consequently the unique positive solution of (3.2.4).
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On the other hand, given ε > 0, εϕ1 will be a subsolution of (3.2.4) if

−∆(εϕ1) ≤ εϕ1

1+λ |u|qr
(µ − (εϕ1)

p−1) in Ω,

εϕ1 ≤ (µ −µ1(1+λ |u|qr ))1/(p−1) in Ω.

Taking into account that ∥ϕ1∥0= 1, the above inequality holds for ε =(µ−µ1(1+λ |u|qr ))1/(p−1)>

0. Furthermore, large constants are supersolution for (3.2.4), which implies by the sub and

supersolution methods that there exists a (positive) solution of (3.2.4) between (µ − µ1(1+

λ |v|qr ))1/(p−1)
ϕ1 and K > 0 large enough. Once that u is the unique solution of (3.2.4), we

obtain (3.2.3).

Let us prove the second part of the theorem. First note that by applying (3.2.3) for λ = 0,

we have

(µ −µ1)
1/(p−1)

ϕ1 ≤ u0 ≤ u. (3.2.5)

Powering the above inequality by r, integrating and then powering again by q, we deduce that

|u|qr≥ (µ −µ1)
q

p−1 |ϕ1|qr . (3.2.6)

Since 1+λ |u|qr≥ 0, then ∥u∥0≤ µ
1

p−1 due to item ii) of Lemma 3.2.2. By using this a priori

bound of u, in (3.2.3), we obtain

µ
1

p−1 ≥ (µ −µ1(1+λ |u|qr ))1/(p−1)
ϕ1, (3.2.7)

which implies

µ ≥ (µ −µ1(1+λ |u|qr ))ϕ
p−1
1 . (3.2.8)

By using (3.2.6) in (3.2.8), and ∥ϕ1∥∞= 1, we obtain

(µ −µ1)−λ µ1(µ −µ1)
q

p−1 |ϕ1|qr≤ (µ −µ1)+µ1, (3.2.9)

which implies by µ −µ1 > 0, and (3.2.9), that

−λ µ1(µ −µ1)
q

p−1 |ϕ1|qr< µ1. (3.2.10)
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That is,

λ >− 1

(µ −µ1)
q

p−1 |ϕ1|qr
.

This ends the proof of the Proposition.

Before starting the proof of Theorem 0.0.3, we will need the above notations and lemmas.

3.2.2 Connected set of positive solutions

In this section we will use the above results and apply Theorem 0.0.1 to the operator K

introduced in (3.2.1) to obtain a connected of positive solutions of (Qλ ,µ ).

Proof of Theorem 0.0.3-Conclusion. Consider the operator K introduced in (3.2.1).

Let us show that K is compact in the open subset U . The idea is to apply Lemma 2.3.1.

First, we claim that T is uniformly continuous. Indeed, let u,v ∈ H1
0 (Ω). We claim that

|T (u)(x)−T (v)(x)|= |u(x)− v(x)| for a.e. x ∈ Ω. (3.2.11)

Divide in two cases. If x is such that u(x)≤ µ
1

p−1 and v(x)≤ µ
1

p−1 , then T (u)(x) = u(x) and

T (v)(x) = v(x) and so whence |T (u)(x)−T (v)(x)|= |u(x)−v(x)|. If x is such that u(x)≤ µ
1

p−1

and v(x) > µ
1

p−1 , then T (u)(x) = u(x) and T (v)(x) = µ
1

p−1 . Note that u(x) ≤ v(x) and so

|u(x)− v(x)|= v(x)−u(x) = µ
1

p−1 −u(x). Then

|T (u)(x)−T (v)(x)|= |u(x)−µ
1

p−1 |= µ
1

p−1 −u(x) = |u(x)− v(x)|

and we just proved (3.2.11).

Let (un) and (vn) be sequences in H1
0 (Ω) such that un − vn → 0 in H1

0 (Ω). Observe that

|T (un)(x)−T (vn)(x)|≤ 2µ
1

p−1 ∀ n for a.e. x ∈ Ω. (3.2.12)

Moreover, since un − vn → 0 in H1
0 (Ω) then un(x)− vn(x)→ 0 a.e. in Ω. By combining this

with (3.2.11), we deduce that

T (un)(x)−T (vn)(x)→ 0 a.e. in Ω.
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By Dominated Convergence Lebesgue Theorem, T (un)−T (vn) converges to 0 in Lκ(Ω) up to

a subsequence and the uniformly continuity of T : H1
0 (Ω)→ Ls(Ω) is proved. Now, let C be

a closed and bounded subset of U such that dist(C,∂U)> 0. Let us apply Lemma 2.3.1 with

E =H1
0 (Ω), F = Lr(Ω), α = 1, s= q and Y = i◦T : H1

0 (Ω)→ Lr(Ω), where i : Lκ(Ω)→ Lr(Ω)

is the inclusion which is continuous since κ > r. So Y is continuous we deduce that there exists

a ρ > 0 such that

1+λ |u|qr> ρ ∀ (λ ,u) ∈C. (3.2.13)

Moreover, if u ∈ H1
0 (Ω), then T (u) ∈ Lκ(Ω) and consequently (T (u))p ∈ Lκ/p(Ω). By elliptic

regularity theory, we obtain that

∥K(λ ,u)∥W 2,κ/p(Ω) ≤ M
∣∣∣∣µT (u)− (T (u))p

1+αλ |u|qr

∣∣∣∣
κ/p

≤ M
ρ
|µT (u)− (T (u))p|

κ/p

≤ M
ρ

(
µ |T (u)|

κ/p + |T (u)|p
κ

)
≤ M̃

ρ
(µ |T (u)|1 + |T (u)|p

κ
) ∀ (λ ,u) ∈C, (3.2.14)

where in the second inequality we used (3.2.13). Let (λn,un) be a bounded sequence in C. So

|T (un)|1 + |T (un)|pκ

is a bounded sequence. Then the sequence K(λn,un) is bounded in W 2,p/κ(Ω) due to (3.2.14).

Since k > N p, then W 2,p/κ(Ω) is compactly embedded in C1
0(Ω), in particular, in H1

0 (Ω) and

consequently K(λn,un) converges up to a subsequence in H1
0 (Ω). We just proved that K is

compact in C and consequently, is compact in the the open subset V̂ .

Afterward, we will apply Theorem 0.0.1 to K : U → H1
0 (Ω), considering the 0-partition of

U , to deduce that there exists a pair of connected sets Cν , (ν ∈ {−,+}) such that

u = K(λ ,u) ∀ (λ ,u) ∈ C−∪ C−

and satisfying at least one of the alternatives

i) dist
(
Cν ,∂ V̂ν

)
= 0.
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ii) Cν is unbounded in R×H1
0 (Ω).

iii) Cν meets (λ0,u1) ∈ V̂ with u1 ̸= u0.

Now, observe that the alternative iii) does not occurs both for C− and C+ due to the

uniqueness of strongly positive solutions for the problem (Q0,µ).

Taking into account ∂ V̂+ = /0, then i) cannot occurs for C+. Consequently, C+ is

unbounded. Moreover, by Lemma 3.2.2 combined with elliptic regularity, we obtain that

projH1
0 (Ω) C+ is bounded and so projλ C+ must be unbounded. The strong positiveness of the

solutions is guaranteed by Lemmas 3.2.2 and 3.2.4. So, gathering these information, we have

that

C := C−∪ C+

is an unbounded connected set of positive solutions for the problem (Qλ ,µ ) containing (0,u0).

Below, let us prove more qualitative information about C. First, let us prove (0.0.7). To

do so, we claim that alternative i) must occur. Indeed, suppose that i) were not true, that

is, dist
(
C−,∂ V̂−) > 0. By Proposition 3.2.1, we know that projλ C− is bounded. So we

can apply Lemma 2.3.1 with C− in order to deduce that there exists some ρ1 > 0 such that

1+λ |u|qr> ρ1 for all (λ ,u) ∈ C−. Consequently, given t > 1, the elliptic regularity theory

gives

∥u∥W 2,t(Ω)≤
M̃1

ρ1
∥µu−up∥t ∀ (λ ,u) ∈ C−

for some positive constant M̃1. Since C− ⊂ V̂ , we can apply Lemma 3.2.2 to imply that

∥u∥0≤ µ
1

p−1 , whence follows that (∥u∥W 2,t(Ω)) is bounded. By the Sobolev embedding of

W 2,t(Ω) into H1
0 (Ω), for sufficiently large t > 1, we obtain that projH1

0 (Ω) C− is bounded.

As we already know that projλ C− is bounded, the last conclusion leads C− be bounded.

That is, C− does not satisfy alternative ii). We already had that C− does not satisfy either

alternative i) or iii) so C− does not satisfy any of the alternatives i), ii) or iii) and this

contradicts Theorem 0.0.1. We just proved that the alternative i) must occurs, that is,

dist
(
Cν ,∂ V̂ν

)
= 0.

Now we are in position to complete the proof (0.0.7). Let us split the proof in two cases. First,

assume that projH1
0 (Ω) C− is unbounded. Let (λ ,u) ∈ C−. By taking u as a test function and

using ∥u∥0≤ µ
1/(p−1) (see Lemma 3.2.2), we obtain that (1+λ |u|qr )∥u∥2 is bounded. Since
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we are assuming that projH1
0 (Ω) C− is unbounded, we obtain that

IC− := inf{1+λ |u|qr ;(λ ,u) ∈ C−}= 0.

For the second case, we assume that projH1
0 (Ω) C− be bounded. So, we can apply Lemma

2.3.1 with C− to deduce that IC− = 0 and the second case is proved. This completes the proof

of (0.0.7). In particular, we obtain from projλ C− be bounded and Lemma 2.3.1, that

distR×H1
0 (Ω)

(
C,{(λ ,u) ∈ R×H1

0 (Ω);1+λ |T (u)|qr= 0}
)
= 0. (3.2.15)

As a consequence of IC− = 0, we will prove below the first inclusion of (0.0.5), that is,(
− 1

µ
q

p−1 |Ω|
q
r

,+∞

)
⊂ projλ C. (3.2.16)

Since IC− = 0, then there exists a sequence (λn,un) ∈ C− such that ρn := 1+λn|un|qr→ 0,

whence follows that

λn =
ρn −1
|un|qr

≤ ρn −1

µ
q

p−1 |Ω|
q
r

,

where the last inequality follows from ∥un∥0≤ µ
1

p−1 . By passing to the limit, we get that

lim
n→+∞

λn ≤− 1

µ
q

p−1 |Ω|
q
r

. (3.2.17)

So (3.2.16) follows from the connectedness of C combined with (3.2.17). The other inclusion in

(0.0.5) follows directly from Proposition 3.2.1. The inclusions in (0.0.6) follow from Lemmas

3.2.2 and 3.2.1.

Let us prove item i). Consider (λ ,uλ ) ∈ C and define ρλ = 1+ λ |uλ |qr . Note that uλ

satisfies, in the classical sense, the problem
−ρλ

µ
∆uλ = uλ

(
1−

up−1
λ

µ

)
in Ω,

uλ = 0 on ∂Ω,
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for each λ ∈ projλ C. So, we are able to apply Proposition 6.6 of [31] to infer that

uλ (x)→ µ
1/(p−1) uniformly in K as ρλ → 0,

for any compact subset K ⊂ Ω given. This ends the proof of item i).

Item ii) follows immediately from Proposition 3.2.1. Let us prove item iii). By using

Sobolev embeddings and elliptic regularity combined with the fact that ∥un∥0≤ µ
1

p−1 (see item

ii) of Lemma 3.2.1), we deduce that there exists constants R,D,M > 0 such that

∥uλ∥0 ≤ D∥uλ∥W 2,t(Ω)

≤ R

∣∣∣∣∣ µuλ −up
λ

1+λ |uλ |
q
r

∣∣∣∣∣
t

≤ R

∣∣∣∣∣ µuλ −up
λ

1+λn|uλ |
q
r

∣∣∣∣∣
t

≤ RM
1+λ |uλ |

q
r

≤ RM

1+λ (µ −µ1)
q

p−1 |ϕ1|qr
,

holds for sufficiently large t > 1, where in the last inequality, we used Proposition 3.2.1. So

∥uλ∥0→ 0 as λ →+∞.

3.2.3 Two special cases

We begin this subsection noting that we were not able to prove that

distR×H1
0 (Ω)

(
C,{(λ ,u) ∈ R×H1

0 (Ω);1+λ |u|qr= 0}
)
= 0

holds in Theorem 0.0.3. In fact, we just prove

distR×H1
0 (Ω)

(
C,{(λ ,u) ∈ R×H1

0 (Ω);1+λ |T (u)|qr= 0}
)
= 0

holds, see (3.2.15). The reason of the adoption of the truncation T is due to the technical

problem of the well definition and the compactness of the operator K for p and r large.

However, if we impose some additional restrictions on p, r and N, we are able to prove a

version of Theorem 0.0.3 without the need of the truncation T . This will give us Corollary
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3.2.1. Another alternative is to choose a different ambient space for the operator K and then

obtain Corollary 3.2.2. In the following, we have the aforementioned corollaries.

Corollary 3.2.1 (of the proof of Theorem 0.0.3). Additionally to the hypotheses of Theorem

0.0.3, assume that r ≤ 2∗, 1 < p < 2∗ and one of the following arrangements of p and N hold:

1) p(N −2)> 2 and p < 2∗−1,

2) p(N −2)≤ 2,

3) 1+N/2 < p = 2∗−1.

Then there exists an unbounded connected set of strongly positive classical solutions C1 ⊂
R×H1

0 (Ω) of (Qλ ,µ ) satisfying, additionally to all the stated in Theorem 0.0.3, the property

distR×H1
0 (Ω)

(
C1,{(λ ,u) ∈ R×H1

0 (Ω); 1+λ |u|qr= 0}
)
= 0.

Proof. Let us follow the same strategy as in last subsection. Define the operator K1 : V1 →
H1

0 (Ω) by

K1(λ ,u) = (−∆)−1
(

µu−up

1+λ |u|qr

)
,

where

V1 := {(λ ,u) ∈ R×H1
0 (Ω);1+λ |u|qr> 0}.

So, under the additional assumptions of Corollary 3.2.1, we are able to prove that K1 is compact

in the open subset V1. In this case, instead of (3.2.15), we have

distR×H1
0 (Ω)

(
C1,{(λ ,u) ∈ R×H1

0 (Ω)1+λ |u|qr= 0}
)
= 0.

So let us prove the compactness of K1 in V1. Let C be a bounded subset of V1 such that

dist(C,∂V1) > 0. By Lemma 2.3.1 with E = H1
0 (Ω), F = Lr(Ω), α = 1, s = q and Y = Id,

there exists some ρ > 0 such that 1+λ |u|qr> ρ for all (λ ,u) ∈C.
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Set β := 2∗/p < 2∗, and take u ∈ H1
0 (Ω). So up ∈ Lβ (Ω). Since β > 1, then K1(λ ,u) ∈

W 2,β
0 (Ω) is well defined due to the classic elliptic regularity theory. Moreover,

∥K1(λ ,u)∥W 2,β
0 (Ω)

≤ M
ρ
|µu−up|β

≤ M
ρ
(µ|u|β+|up|β )

=
M
ρ

(
µ|u|β+|u|2

∗/β

2∗

)
≤ M1

ρ

(
∥u∥+∥u∥2∗/β

)
,

that is,

∥K1(λ ,u)∥W 2,β
0 (Ω)

≤ M1

ρ

(
∥u∥+∥u∥2∗/β

)
∀ (λ ,u) ∈C (3.2.18)

for some M1 > 0.

After (3.2.18), let us consider the cases 1) and 2) and 3). First assume that p and N

satisfy 1). Note that p(N − 2) > 2 is equivalent to β < N. Consequently, the embedding

W 2,β
0 (Ω) ↪→ W 1,t

0 (Ω) is compact for any 1 ≤ t < β
∗. Moreover, p < 2∗− 1 is equivalent to

β
∗ > 2. So we can take t = 2 to obtain that the embedding

W 2,β
0 (Ω) ↪→ H1

0 (Ω) (3.2.19)

is compact as well. Let (λn,un) be a bounded sequence in H1
0 (Ω). By (3.2.18), we have that

K1(λn,un) is bounded in W 2,β
0 (Ω). Using (3.2.19), we deduce that K1(λn,un) converges in

H1
0 (Ω) up to a subsequence.

Now assume that p and N satisfy 2). Note that p(N −2)≤ 2 is equivalent to β ≥ N and

so W 2,β
0 (Ω) ↪→W 1,t

0 (Ω) is a compact embedding for any 1 ≤ t <+∞. In particular, by taking

t = 2, we deduce that

W 2,β
0 (Ω) ↪→ H1

0 (Ω)

is a compact embedding. Similarly as in case 1), the compactness of K1 is a consequence of

(3.2.18).

Finally, assume that p and N satisfy 3). Let (un) be a bounded sequence in H1
0 (Ω) and

yn = K1(λn,un). Observe that p > 1 + N/2 implies that H1
0 (Ω) ↪→ L2τ ′(Ω) is a compact

embedding, where τ = p− 1. By testing yn = K1(λn,un) against un, and applying Hölder
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Inequality twice, we deduce that

∥yn∥2 ≤ 1
ρ

(∫
Ω

µ|un||yn|+
∫

Ω

|un|p−1|un||yn|
)

≤ M
ρ
(|un∥2|yn|2+|un|τ/(t(2τ ′)′)

τ |un|2τ ′/(t ′(2τ ′)′)
2τ ′ |yn|2τ ′)

for some constant M > 0. So (yn) is bounded in H1
0 (Ω), which implies that there exists some

y ∈ H1
0 (Ω) such that

yn ⇀ y in H1
0 (Ω)

and

yn → y in L2τ ′(Ω). (3.2.20)

Now, by testing yn = K1(λn,un) against yn − y, subtracting∫
Ω

∇y∇(yn − y),

and applying Hölder inequality twice, we get that

∥yn − y∥2 =
∫

Ω

µun −up
n

1+λ |un|qr
(yn − y)−

∫
Ω

∇y∇(yn − y)

≤ M
ρ

∫
Ω

(µ|un|+|un|p)|yn − y|+o(1)

=
M
ρ

∫
Ω

(
|un||yn − y|+|un|p−1|un||yn − y|

)
+o(1)

≤ M
ρ

(
|un|2|yn − y|2+|un|τ/(t(2τ ′)′)

τ |un|2τ ′/(t ′(2τ ′)′)
2τ ′ |yn − y|2τ ′

)
+o(1),

for some constant M > 0, where the term o(1) comes from using the convergences (3.2.20) and

yn ⇀ y in H1
0 (Ω) weakly. Consequently, yn → y strongly in H1

0 (Ω) and the compactness of K1

is proved for the case 3). This ends the proof.

Corollary 3.2.2 (of the proof of Theorem 0.0.3). Assume all the hypotheses of Theorem

0.0.3. Then there exist an unbounded connected set of strongly positive classical solutions

C2 ⊂R×C(Ω) of (Qλ ,µ ) satisfying, additionally to all the stated in Theorem 0.0.3, the property

distR×C(Ω) (C2,{(λ ,u) ∈ R×C(Ω); 1+λ |u|qr= 0}) = 0.
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Proof. It suffices to follow the same steps as in the proof of Theorem 0.0.3 for the the operator

K2 : V2 ⊂ R×C(Ω)→C(Ω) defined by

K2(λ ,u) = (−∆)−1
(

µu−up

1+λ |u|qr

)
,

where

V2 = {(λ ,u) ∈ R×C(Ω); 1+λ |u|qr> 0},

and apply Theorem 0.0.1 to K2.

Conclusion of Chapter 3 Applying Theorem 0.0.1, we prove Theorems 0.0.2 and

0.0.3, which provide qualitative information about the positive solutions (λ ,u) of (Pλ ,µ ) and

(Qλ ,µ ), respectively. Specifically, for Theorem 0.0.2, we obtained precise information regarding

the range of λ and the C(Ω)-norm of the solutions (λ ,u). Similarly, for Theorem 0.0.3, we

determined precise information about the range of λ and the pointwise behavior of the solutions.

However, due to the focus of the assertions of Theorem 0.0.1 on a single Banach space E, as

noted in the conclusion of Chapter 2, the boundedness of ∥∇uλ∥0 for problem (Pλ ,µ ) (and,

respectively, ∥uλ∥H1
0 (Ω) for problem (Qλ ,µ )) remains an open question.



Chapter 4

Two parameters logistic problem with
degradation and refuge zone

This chapter is dedicated to provide result on existence and behavior of positive solutions of


−∆u+λV (x) = µm(λ ,x)u−b(λ ,x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(4.0.1)

0 ≤V (x) ∈ L∞(Ω), 0 � b(λ , · ) ∈C(Ω), 0 ̸= m(λ , · ) ∈C(Ω) possibly changing sign and

/0 ̸= M+
λ

:= {x ∈ Ω; m(λ ,x)> 0}, B0,λ := int{x ∈ Ω;b(λ ,x) = 0}.

In Section 4.1, we will prove the existence result. In Section 4.2, we provide a condition for

uniform boundedness of the positive solutions of (4.0.1). Finally, in Section 4.3, we exhibit a

subsolution of (4.0.1) that will drive to blow-up behaviors of positive solutions of (Rλ ,µ ) and

(Sλ ,µ ).

In this chapter we will denote

S = {(λ ,µ) ∈ R2;σ
Ω
1 [−∆+λV −µm(λ ,x)]< 0 < σ

B0,λ
1 [−∆+λV (x)−µm(λ ,x)]},

C0 := {µ ∈C([0,Λ]), 0 < Λ < ∞;(λ ,µ(λ )) ∈ S ∀ λ ∈ [0,Λ)}
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and

C∞ :=
{

µ ∈C([0,+∞)); ∃µ(∞) := lim
λ→+∞

µ(λ )< ∞ and (λ ,µ(λ )) ∈ S ∀ λ ∈ [0,+∞)

}
.

4.1 Existence theorem of positive solutions

Let us denote

b(∞,x) := liminf
λ→∞

b(λ ,x), B0,∞ := int{x ∈ Ω;b(∞,x) = 0},

We will assume that

B0,λ ( Ω ∀ λ ≥ 0

and B0,∞ ( Ω.

Proof of Theorem 0.0.4. Since (λ ,µ) ∈ S , then

σ
Ω
1 [−∆+λV −µm(λ ,x)]< 0 < σ

B0,λ
1 [−∆+λV −µm(λ ,x)]. (4.1.1)

First, prove that (4.1.1) is a necessary condition for the existence of a positive solution of

(0.0.13). Assume that there exists a positive solution u of (0.0.13). By using the monotonicity

of the principal eigenvalue we deduce that

0 = σ
Ω
1 [−∆+λV (x)−µm(λ ,x)+b(λ ,x)up−1]> σ

Ω
1 [−∆+λV (x)−µm(λ ,x)].

On the other hand, by the monotonicity of the principal eigenvalue with respect to the domain,

we deduce that

0 = σ
Ω
1 [−∆+λV (x)−µm(λ ,x)+b(λ ,x)up−1]< σ

B0,λ
1 [−∆+λV (x)−µm(λ ,x)].

We just proved that (4.1.1) is a necessary condition.

In order to prove the existence, we use the sub-supersolution method, see [3] for instance.

Let ϕ be the positive eigenfunction associated with σ
Ω
1 [−∆+λV (x)−µm(λ ,x)] normalized

such that ∥ϕ∥∞= 1. It is not difficult to verify that u := εϕ is a subsolution of (0.0.13) if

ε ≤ (−σ
Ω
1 [−∆+λV (x)−µm(λ ,x)]/∥b∥∞)

1/(p−1).
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Now, we build the supersolution. Let us define

Kδ := {x ∈ Ω\B0,λ ;dist(x,∂ (Ω\B0,λ ))≥ δ}.

Observe that Kδ is a compact subset of Ω\B0,λ . Consider vδ ∈ intC1
0(Ω) such that vδ (x)≥ δ

−1

for all x ∈ Kδ . Given any compact subset K ⊂ Ω\B0,λ , there exists δ = δ (K) such that K ⊂ Kδ

and consequently

lim
δ 7→0

min
K

b(λ ,x)vδ (x) = +∞

for each compact subset K ⊂ Ω\B0,λ . By Corollary 2.5 of [32], we obtain that

lim
δ↓0

σ
Ω
1 [−∆+λV (x)+b(λ ,x)vδ (x)

p−1 −µm(λ ,x)] = σ
B0,λ
1 [−∆+λV (x)−µm(λ ,x)]> 0.

Let δ0 > 0 sufficiently small such that σ
Ω
1 [−∆+λV (x)+ b(λ ,x)vδ0(x)

p−1 − µm(λ ,x)] ≥ 0.

Consider the positive eigenfunction ϕ associated with σ
Ω
1 [−∆+λV (x)+b(λ ,x)vδ0(x)

p−1 −
µm(λ ,x)]. It is easy to check that if kϕ ≥ vδ0 in Ω, then

u := kϕ

is a supersolution of (0.0.13). Observe that the conditions in ε and k allow us to take ε arbitrarily

small and k arbitrarily large. So we can assume that

u = εϕ ≤ kϕ = u. (4.1.2)

Thus, we deduce that there exists a positive solution of (0.0.13) which is minimal in the interval

[u,u].

Now, let us prove the uniqueness. So assume that there exist two distinct positive solutions

u1 and u2 of (0.0.13). If necessary, we can assume that ε is even smaller and k is even larger

so that εϕ ≤ min[u1,u2]≤ max[u1,u2]≤ kϕ . Again, by applying Theorem 6.1 of [1], we can

deduce that there exists a positive solution u0 of (0.0.13) which is minimal in the interval [u,u].

Since u0 is minimal in this interval, it follows that u0 ≤ u1 and u0 ≤ u2. Thus, we can suppose,

without loss of generality, that u0 ≤ u1. Let us prove that u0 < u1. Observe that

(−∆+bυ(u0,u1)+λV −µ(λ )m(λ ,x))(u1 −u0) = 0,
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where

υ(u0,u1)(x) = (u1(x)−u0(x))pv(x)p−1

for some u0(x)≤ v(x)≤ u1(x). Since u0 ̸= u1, then

0 = σ
Ω
1 [−∆+bυ(u0,u1)+λV −µ(λ )m]≥ σ

Ω
1 [−∆+bup−1

0 +λV −µ(λ )m(λ ,x)]> 0,

which is an absurd and we just proved that u0 < u1.

Finally, since u0 and u1 are positive, then

0 = σ
Ω
1 [−∆+b(λ ,x)up−1

1 +λV (x)−µm(λ ,x)]

> σ
Ω
1 [−∆+b(λ ,x)up−1

0 +λV (x)−µm(λ ,x)] = 0,

which is an absurd and we just proved the uniqueness. The proof of Theorem 0.0.4 is concluded.

We point out that the condition of existence of the limit of µ∞ is adopted to simplify the

statements of Theorem 0.0.6. However, an alternative statement in terms of superior and

inferior limits of µ∞ and dismissing this condition also suit. For each given µ ∈ C0∪C∞, we can

associate a family of positive solutions {uλ}, where uλ = uλ ,µ(λ ) is the unique positive solution

of (0.0.13) with µ = µ(λ ), for λ ∈ [0,Λ) (respectively λ ∈ [0,+∞)) if µ ∈ C0 (respectively

µ ∈ C∞). It should be noted that the union C0 ∪C∞ covers all the existence and uniqueness

region S of positive solution uλ ,µ .

4.2 Results on uniform boundedness of positive solutions

The following theorem has several implications as we can see in Sections 4.1, 5.1 and 5.2.

Theorem 4.2.1. Let µ ∈C0∪C∞. Assume that there exists some L≥ 0 such that m∈C(Dom µ×
Ω;R)

M1 := sup
λ≥L

µ(λ )<+∞, M2 := sup
λ≥L

∥m(λ , · )∥∞<+∞.

If

inf
λ≥L

∣∣∣σB0,∞
1 [−∆+λV (x);m(λ ,x)]−µ(λ )

∣∣∣> 0, (4.2.1)
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then

sup
λ≥0

∥uλ∥∞<+∞. (4.2.2)

Proof. First we will prove that there exists some L̃ > 0 such that

sup
λ≥L̃

∥uλ∥2<+∞ (4.2.3)

and then we will use Lemma 1.1.1 to infer (4.2.2). Assume by absurd that there is a sequence

(λn)⊂ Dom µ such that ∥uλn∥2→+∞. By the definition of uλn , we have that

∫
Ω

∇uλn∇ϕ =
∫

Ω

(µ(λn)m(λn,x)−λnV (x))uλnϕ −
∫

Ω

b(λn,x)u
p
λn

ϕ ∀ ϕ ∈ H1
0 (Ω). (4.2.4)

Dividing (4.2.4) by ∥uλn∥2, testing against ϕ = vλn = uλn/∥uλn∥2 and using that µ is bounded,

we deduce that ∫
Ω

|∇vλn|
2 ≤

∫
Ω

|∇vλn|
2+
∫

Ω

b(λn,x)v
p+1
λn

∥uλn∥
p−1
2 (4.2.5)

=
∫

Ω

(µ(λn)m(λn,x)−λnV (x))v2
λn

≤ M1M2|Ω|, (4.2.6)

that is, vλn is bounded in the reflexive space H1
0 (Ω). So there exists 0 � v∞ ∈ H1

0 (Ω), ∥v∞∥2= 1,

such that vλn ⇀ v∞ ∈ H1
0 (Ω). Moreover,

∥uλn∥
p−1
2

∫
Ω

b(λn,x)v
p+1
λn

+
∫

Ω

λnV (x)v2
λn

≤
∫

Ω

|∇vλn |
2+
∫

Ω

b(λn,x)v
p+1
λn

∥uλn∥
p−1
2 + (4.2.7)∫

Ω

λnV (x)v2
λn

=
∫

Ω

µ(λn)m(λ ,x)v2
λn

≤ M1M2|Ω|. (4.2.8)

Consequently,

liminf
n→+∞

∥uλn∥
p−1
2

∫
Ω

b(λn,x)v
p+1
λn

<+∞ (4.2.9)

liminf
n→+∞

∫
Ω

λnV (x)v2
λn

<+∞. (4.2.10)

Applying Lemma 1.1.1 with D = {λn}, ϕλn = vλn , hλn = ∥uλn∥
p−1
2 b(λn, · )up−1

λn
+ λnV +

µ(λn)m−(λn, · ) and m+(λn, · ) = µ(λn)m+(λn, · ), we would obtain that vλn is the eigenfunc-
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tion associated with σ
Ω
1 [−∆+hλn;m+(λn,x)) = 1 and so

∥vλn∥∞≤C(∥vλn∥2+1) = 2C.

Hence

liminf
n→+∞

∫
Ω

b(λn,x)v
p+1
λn

≥
∫

Ω

b(∞,x)vp+1
∞ ,

but by combining the assumption ∥uλn∥2→+∞ with (4.2.9), we deduce that

∫
Ω

b(∞,x)vp+1
∞ = 0,

whence we imply

v∞ = 0 in Ω\B0,∞ (4.2.11)

and so v∞ ∈ H1
0 (B0,∞). Now we will analyze two cases separately, that is,

limsup
n→+∞

λn < ∞ or limsup
n→+∞

λn = ∞. (4.2.12)

1. Assume that limsup
n→+∞

λn < ∞. Let ψ ∈ H1
0 (B0,∞)⊂ H1

0 (Ω). If we take ϕ = ψ/∥uλn∥2 in

(4.2.4) and pass to the limit, we deduce that v∞ satisfies


−∆v∞ +λ∗V (x)v∞ = µ(λ∗)m(λ∗,x)v∞ in B0,∞

v∞ = 0 on ∂B0,∞,

v∞ > 0 in B0,∞,

where λ∗ = lim
k→+∞

λnk < ∞ for some subsequence λnk of λn. Since v∞ ̸= 0, by the

strong maximum principle we deduce that v∞ is positive in B0,∞, and then µ(λ∗) =

σ
B0,∞
1 [−∆+λ∗V (x);m(λ∗,x)]. Hence,

lim
k→+∞

µ (λnk) = lim
k→+∞

σ
B0,∞
1 [−∆+λnkV (x);m(λnk ,x)] ,

but this contradicts (4.2.1).

2. Assume now that limsup
n→+∞

λn =+∞. Observe that

liminf
n→+∞

∫
Ω

V (x)v2
n ≥

∫
Ω

V (x)v2
∞,
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but since (4.2.10) and limsup
n→+∞

λn =+∞, then it follows that

∫
Ω

V (x)v2
∞ = 0.

So v∞ = 0 in Ω \V0. Combining this with (4.2.11) and noting that v∞ ̸= 0 (because

∥v∞∥2= 1), we deduce that V0 ∩B0,∞ ̸= /0 and v∞ ∈ H1
0 (V0 ∩B0,∞). Consider

ψ ∈ H1
0 (V0 ∩B0,∞)⊂ H1

0 (Ω).

If we make ϕ = ψ/∥uλn∥2 in (4.2.4) and pass to the limit, we deduce that v∞ satisfies


−∆v∞ = µ∗m(∞,x)v∞ in V0 ∩B0,∞,

v∞ = 0 on ∂ (V0 ∩B0,∞),

v∞ > 0 in V0 ∩B0,∞,

where 0 ≤ µ∗ = lim
k→+∞

µ(λnk)< ∞, for some subsequence λnk of λn. Again by the strong

maximum principle, we deduce that v∞ > 0, by whence σ
V0∩B0,∞
1 [−∆;m(∞,x)] would be

finite and

lim
k→+∞

µ(λnk) = σ
V0∩B0,∞
1 [−∆;m(∞,x)] = lim

k→+∞
σ

B0,∞
1 [−∆+λnkV (x);m(λnk ,x)],

but this contradicts (4.2.1).

Hence in both cases stated in (4.2.12), we have obtained a contradiction, by whence we just

proved (4.2.3). Applying Lemma 1.1.1 with D = {λn}, ϕλn = uλn ,

hλn = b(λn, · )up−1
λn

+λnV +µ(λn)m−(λn,x),

m+(λn,x) = µ(λn)m+(λn,x), we would obtain σ
Ω
1 [−∆+hλn;m+(λn,x)] = 1 and so

∥uλn∥∞≤C(∥uλn∥2+1)<+∞

and the proof of (4.2.3) is concluded.
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Using similar arguments, one can prove that

sup
λ∈[0,L̃]

∥uλ∥2< ∞

and the proof Theorem 4.2.1 is concluded.

The benefit of Theorem 4.2.1 is that it gives a priori boundedness of positive solutions of a

problem that admits terms that can possibly be not monotone with respect to µ or λ and even

terms that changes sign with respect to x, as m(λ ,x).

Theorem 4.2.2. Let µ ∈ C0 ∩C([0,Λ]). Assume that

lim
λ→Λ

µ(λ ) = σ
Ω
1 [−∆+ΛV ;m(Λ, · )]. (4.2.13)

Then

lim
λ↑Λ

∥uλ∥C1
0(Ω)= 0.

Proof. Combining (4.2.13) and the monotonicity of the principal eigenvalue with respect to

the domain, we get

0 = σ
Ω
1 [−∆+ΛV −µ(Λ)m(Λ, · )]< σ

B0,∞
1 [−∆+ΛV −µ0(Λ)m(Λ, · )].

Consequently,

inf
λ∈[Λ−ε,Λ]

∣∣∣σB0,∞
1 [−∆+λV ;m(λ , · )]−µ(λ )

∣∣∣> 0,

for some ε > 0 due to the continuity of the first eigenvalue with respect to the potential. Then

we can apply Theorem 4.2.1 to deduce that

sup
λ∈[Λ−ε,Λ]

∥uλ∥∞<+∞. (4.2.14)

By elliptic regularity, it follows that uλ is bounded in W 2,s
0 (Ω) for arbitrarily large s > 1. So let

λn ↑ Λ. Consider s > 1 sufficiently large such that W 2,s
0 (Ω) is compactly embedded in C1

0(Ω).

So ∥uλn −uΛ∥C1
0(Ω)→ 0, up to a subsequence, where uΛ satisfies

−∆uΛ +ΛV (x)uΛ = σ
Ω
1 [−∆+ΛV ;m]m(Λ,x)uΛ −b(Λ,x)up

Λ
in Ω,

uΛ = 0 on ∂Ω,

uΛ > 0 in Ω,



4.2 Results on uniform boundedness of positive solutions 96

So it must be uΛ = 0, on the contrary, we would contradict the condition of existence of

positive solution stated in Theorem 0.0.4. We just proved that uλn converges to 0 in C1
0(Ω). By

the arbitrariness of the sequence λn converging to Λ, we imply that

lim
λ→Λ

∥uλ∥C1
0(Ω)= 0.

This ends the proof.

Theorem 4.2.3. Let µ ∈ C∞. Assume that

σ
V0
1 [−∆;m(∞, · )]< σ

V0∩B0,∞
1 [−∆;m(∞, · )]

and σ
V0
1 [−∆;m(∞, · )]≤ µ(∞) := lim

λ→∞

µ(λ )< σ
V0∩B0,∞
1 [−∆;m(∞, · )].

Then

lim
λ→∞

∥uλ∥C1,γ (Ω)<+∞, for some 0 < γ < 1

and uλ → u∞ in C1(Ω), where u∞ ≡ 0 in the case µ(∞) = σ
Ω
1 [−∆;m(∞, · )] and u∞ is the null

extension to Ω of the unique positive solution of the problem


−∆u = µ(∞)m(∞,x)u−b(∞,x)up in V0,

u = 0 on ∂V0,

u > 0 in V0,

(4.2.15)

for µ(∞)> σ
Ω
1 [−∆;m(∞,x)].

Proof. Since µ(∞)< σ
V0∩B0,∞
1 [−∆;m(∞, · )], then

inf
λ≥L

∣∣∣σB0,∞
1 [−∆+λV (x);m(λ ,x)]−µ∞(λ )

∣∣∣> 0,

for some large L > 0. Therefore

sup
λ≥L

∥uλ∥∞< ∞

due to Theorem 4.2.1. Then the boundedness in C1,γ(Ω) follows by classic elliptic regularity.

Now we will divide the proof in the cases µ(∞)=σ
Ω
1 [−∆;m(∞,x)] and µ(∞)>σ

Ω
1 [−∆;m(∞,x)].
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1. Assume that µ(∞) = σ
V0
1 [−∆;m(∞,x)]. By arguing as we done in Theorem 4.2.1, we

can prove that

lim
λ→∞

uλ (x) = 0 for all x ∈ Ω\V̄0.

Testing against ϕ ∈ H1
0 (V0) in the definition of uλ and passing to the limit when λ →+∞,

we can deduce that there exists a non negative u∞ ∈ H1
0 (V0) such that lim

λ→+∞

∥uλ −

ũ∞∥C1
0(Ω)= 0, where ũ∞ is the null extension (to Ω̄) of u∞ and u∞ satisfies


−∆u∞ = σ

V0
1 [−∆;m(∞,x)]m(∞,x)u∞ −b(∞,x)up

∞ in V0,

u∞ = 0 on ∂V0,

u∞ > 0 in V0.

Suppose by absurd that u∞ ̸= 0. By summing a sufficiently large C > 0 in both sides of the

above equation, we would be able to able to apply the strong maximum principle in order

to conclude that u∞ > 0. Since V0 ̸⊂ B0,∞, then 0 � up−1
∞ b(∞,x) in V0 and consequently

0 = σ
V0
1

[
−∆+up−1

∞ b(∞,x)−
(

lim
λ→+∞

µ∞(λ )

)
m(∞,x)

]
> σ

V0
1

[
−∆− lim

λ→+∞

µ∞(λ )m(∞,x)
]
= 0

which is an absurd and so u∞ = 0.

2. Assume that µ(∞)>σ
V0
1 [−∆;m(∞,x)]. By arguing similar as we done in the first case, we

deduce that there exists a non negative u∞ ∈ H1
0 (V0) such that lim

λ→+∞

∥uλ − ũ∞∥C1
0(Ω)= 0,

where ũ∞ is the null extension (to Ω̄) of u∞ and u∞ satisfies


−∆u∞ = µ(∞)m(∞,x)u∞ −b(∞,x)up

∞ in V0,

u∞ = 0 on ∂V0,

u∞ > 0 in V0.

We claim that u∞ is non null. In fact, assume by absurd that u∞ = 0. Let vλ = uλ/∥uλ∥∞,

take any ϕ ∈ H1
0 (Ω) and test against ϕ/∥uλ∥2 in the definition of uλ . By passing to the

limit as λ →+∞, we deduce that there exists 0 � vλ ∈ H1
0 (Ω) satisfying
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
−∆v∞ = µ(∞)m(∞,x)v∞ in V0,

u∞ = 0 on ∂V0,

u∞ > 0 in V0.

By summing a sufficiently large C > 0 in both sides, we can apply the strong maximum

principle to conclude that v∞ > 0 is positive and consequently

µ(∞) = σ
V0
1 [−∆;m(∞,x)].

But µ(∞)> σ
V0
1 [−∆;m(∞,x)] by hypothesis.

This ends the proof.

4.3 Subsolution driving blow-up

In the previous sections, we established conditions for uniform boundedness of positive so-

lutions and presented their limits. In this section, we will study the complementary case.

Precisely, the next theorem provides a subsolution that will lead to the blow-up phenomenum

for two special cases of the problem (0.0.13) in the next chapter.

Theorem 4.3.1. Let (λ ,σ(λ ))∈S , b(λ , · )∈ C(Ω) be such that b(λ ,x)≥ b(λ ,x) for all (λ ,x)

and let σ(λ ) ∈ R such that

(µ −σ(λ ))m(λ ,x)≥ 0 ∀ x ∈ Ω.

Then there exists a unique β (λ )> 0 such that

σ(λ ) = σ
Ω
1 [−∆+λV (x)+β (λ )b(λ ,x);m(λ ,x)].

Moreover,

β (λ )1/(p−1) ϕλ

∥ϕλ∥∞

≤ uλ ,

where ϕλ is the positive eigenfunction associated to σ(λ ).

Proof. Let (λ ,σ(λ )) ∈ S and define

g(β ) := σ
Ω
1 [−∆+λV (x)+βb(λ ,x)−σ(λ )m(λ ,x)]. (4.3.1)
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By using the definition of S and the fact that (λ ,σ(λ )) ∈ S, we deduce that g(0)< 0. Again

by using the definition of S and Theorem 0.0.4, we imply that there exists a unique positive

solution uλ ,µ of (0.0.13). Let β > sup
Ω

up−1
λ ,µ and observe that

[−∆+λV (x)+βb(λ ,x)−σ(λ )m(x)]uλ ,µ ≥

[−∆+λV (x)+βb(λ ,x)+(µ −σ(λ ))m(x)−µm(x)]uλ ,µ

≥ [−∆+λV (x)+βb(λ ,x)−µm(x)]uλ ,µ

= βb(λ ,x)uλ ,µ −b(λ ,x)up
λ ,µ = (β −up−1

λ ,µ )uλ ,µb(λ ,x).

So uλ is a strict positive super-solution of the operator

Lβ :=−∆+λV (x)+βb(λ ,x)−σ(λ )m(λ ,x)

and consequently g(β ) > 0 by the characterization of the strong maximum principle (see

Theorem 7.5.2 of [44]). Since g is continuous and increasing, the existence and uniqueness of

β (λ )> 0 is proved.

Let us prove the second part of the theorem. Observe that ϕλ is a subsolution of (0.0.13) if

and only if

β (λ )

[(
ϕλ

∥ϕλ∥∞

)p−1

b(λ ,x)−b(λ ,x)

]
≤ (µ −σ(λ ))m(λ ,x). (4.3.2)

By combining the hypotheses (4.3.2) and b(λ , · ) ≥ b(λ , · ), we deduce that the above

inequality holds and the theorem is proved.

Conclusion of Chapter 4
Theorem 4.2.1 is an a priori boundedness result that extends to positive solutions of problem

(0.0.13), the well-known behavior.

sup
µ∈M

∥uµ∥∞< ∞ ⇔ inf
µ∈M

(dσ
B0
1 (−∆)−µ)> 0

of the positive solutions uµ of (0.0.9), where M is any subset of (dσ1(−∆),dσ
B0
1 (−∆)). We

point out that the case λ →+∞ is included and is the most interesting aspect of this extension.

The a priori boundedness provided by Theorem 4.2.1 naturally leads to the question of the

limit of these solutions, which is addressed by Theorems 4.2.2 and 4.2.3.
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Theorem 4.3.1 does not directly provide information about positive solutions of (0.0.13).

This technical theorem’s benefit will become apparent in the Corollaries 5.1.1 and 5.2.1, that

present a blow-up phenomena to (Rλ ,µ ) and (Sλ ,µ ), respectively.



Chapter 5

Fast diffusion and strong degradation for
logistic problem with refuge zone

In this chapter, we will apply the results of Sections 1.2, 1.3 and Chapter 4 to determine fine

qualitative information about the positive solutions of (Rλ ,µ ) and (Sλ ,µ ).

5.1 Fast diffusion

In this section, we will study the positive solutions of the problem


−(1+λa(x))∆u = µu−b(x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Rλ ,µ )

where 0 ≤ a ∈C(Ω) and 0 � b ∈C(Ω).

Clearly, (Rλ ,µ ) is a special case of (0.0.13) by making

V ≡ 0, b(λ ,x) = b(x)/(1+λa(x)) and m(λ ,x) = (1+λa(x))−1.

Consequently, we can apply Theorem 0.0.4 to imply that there exists a unique positive solution

uλ ,µ of (Rλ ,µ ) if and only if

σ
Ω
1

(
−∆;

1
1+λa(x)

)
< µ < σ

B0
1

(
−∆;

1
1+λa(x)

)
. (5.1.1)
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As said in the introduction of this work, we are interested in the behavior of the positive

solutions at the extremes of the interval of existence. In order to properly determine which are

these extremes, will state the next two propositions. To do so, we will analyze two essential

maps. Consider λ >−1/∥a∥0. Observe that

1+λa(x)> 0 for all x ∈ Ω,

and then the following maps are well defined

h,H : (−1/∥a∥0,+∞) → R

λ 7→ h(λ ) := σ
Ω
1

(
−∆;

1
1+λa(x)

)
,

λ 7→ H(λ ) := σ
B0
1

(
−∆;

1
1+λa(x)

)
.

(5.1.2)

With these notations, we can equivalently write the existence condition in (5.1.1) as

h(λ )< µ < H(λ ). (5.1.3)

In the following result we prove the main properties of both maps.

Proposition 5.1.1. One has:

1. The maps λ 7→ h(λ ),H(λ ) are continuous, increasing and

0 < h(λ )< H(λ ) for all λ >−1/∥a∥0.

2. It holds

0 ≤ µ := lim
λ↓−1/∥a∥0

h(λ )≤ lim
λ↓−1/∥a∥0

H(λ ) := µ < ∞.

3. It holds

lim
λ→+∞

h(λ ) =

{
σ

Ω
1 [−∆; χA0] if A0 ̸= /0,

+∞ if A0 = /0.

and

lim
λ→+∞

H(λ ) =

{
σ

B0
1 [−∆; χA0 ] if B0 ∩A0 ̸= /0,

+∞ if B0 ∩A0 = /0.
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Proof. The maps λ 7→ h(λ ),H(λ ) are continuous and increasing by Proposition 1.0.3. More-

over, h(λ )< H(λ ) by Proposition 1.0.3. The existence of µ and µ is also a consequence of

the monotony and continuity of the maps and because h(λ ),H(λ )> 0.

Now suppose that A0 ̸= /0. Note that

h(λ )≤ σ
A0
1

(
−∆;

1
1+λa

)
= σ

A0
1 (−∆). (5.1.4)

Consequently,

lim
λ→+∞

h(λ ) = sup
λ≥0

h(λ ) = h∞ < ∞. (5.1.5)

Let λn →+∞, ϕλn be the positive eigenfunction associated to h(λn) such that ∥ϕλn∥2= 1.

Then ∥ϕλn∥H1
0 (Ω) is a bounded sequence. Indeed, note that

∫
Ω

|∇ϕλn|
2= h(λn)

∫
Ω

ϕ2
λn

1+λna(x)
≤ h(λn)

∫
Ω

ϕ
2
λn

(5.1.4)
≤ σ

A0
1 (−∆).

Hence, ∥ϕλn∥H1
0 (Ω) is bounded and so there exists ϕ∞ ∈ H1

0 (Ω) such that ϕλn ⇀ ϕ∞ in H1
0 (Ω)

and ϕλn → ϕ∞ in L2(Ω) with ϕ∞ ≥ 0 and ϕ∞ ̸= 0 in Ω.

Moreover,
1

1+λna(x)
→ χA0 in L2(Ω) (5.1.6)

due to Lebesgue’s Dominated Convergence Theorem. Consequently, if ϕ ∈C∞
c (Ω), then by

passing to the limit (up to a subsequence) in the equality∫
Ω

∇ϕλn ·∇ϕ = h(λn)
∫

Ω

ϕλnϕ

1+λna(x)
, (5.1.7)

we deduce that ∫
Ω

∇ϕ∞ ·∇ϕ = h∞

∫
Ω

χA0ϕ∞ϕ.

Consequently, since ϕ∞ 
 0 in Ω, we deduce that h∞ = σ
Ω
1 [−∆; χA0] and ϕ∞ is the positive

eigenfunction associated to σ
Ω
1 [−∆; χA0].

Now, assume that A0 = /0 and (5.1.5). We can argue exactly as in the previous case, using

(5.1.6), and conclude that ∫
Ω

∇ϕ∞ ·∇ϕ = 0, ∀ϕ ∈ H1
0 (Ω),
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and then, ϕ∞ = 0 in Ω, a contradiction due to ∥ϕ∞∥2= 1. Thus, lim
λ→+∞

h(λ ) = ∞.

Analogously, we can study the function H(λ ) and the lim
λ→+∞

H(λ ). This concludes the

proof.

Proposition 5.1.2. Let µ < µ < σ
B0
1 (−∆; χA0). Then there exists a unique −1/∥a∥0< λ∗(µ)<

+∞ such that

µ


= H(λ ) for λ = λ∗(µ),

< H(λ ) for λ > λ∗(µ),

> H(λ ) for λ < λ∗(µ).

The map µ 7→ λ∗(µ) is continuous, increasing and

lim
µ↓µ

λ∗(µ) =− 1
∥a∥0

, lim
µ↑σ

B0
1 [−∆;χA0 ]

λ∗(µ) = +∞.

Analogously, given µ < µ < σ
Ω
1 [−∆; χA0 ], there exists a unique −1/∥a∥0< λ

∗(µ)<+∞ such

that

µ


= h(λ ) for λ = λ

∗(µ),

< h(λ ) for λ > λ
∗(µ),

> h(λ ) for λ < λ
∗(µ).

Moreover, the map µ 7→ λ
∗(µ) is continuous, increasing and

lim
µ↓µ

λ
∗(µ) =− 1

∥a∥0
, lim

µ↑σΩ
1 [−∆;χA0 ]

λ
∗(µ) = +∞.

Furthermore,

λ∗(µ)< λ
∗(µ). (5.1.8)

Proof. Take µ < µ < σ
B0
1 [−∆; χA0]. Thanks to the properties of H(λ ), see Proposition 5.1.1,

the existence, uniqueness of λ∗(µ), as well as its increasing character, follow.

On the other hand, assume that

lim
µ↑σ

B0
1 [−∆;χA0 ]

λ∗(µ) = r < ∞.

By definition

µ = H(λ∗(µ)), (5.1.9)
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then we get by Proposition 5.1.1 that

σ
B0
1 (−∆; χA0) = H(r) = σ

B0
1

(
−∆;

1
1+ ra

)
< σ

B0
1 (−∆; χA0)< ∞,

a contradiction if B0 ∩A0 ̸= /0. If B0 ∩A0 = /0, then σ
B0
1 (−∆; χA0) = ∞, and taking limit in

(5.1.9) as µ → ∞, we have by Proposition 5.1.1, that

∞ = lim
µ→∞

H(λ∗(µ)) = σ
B0
1

(
−∆;

1
1+ ra

)
< ∞,

a contradiction again.

On the other hand, suppose that

lim
µ↓µ

λ∗(µ) = r >− 1
∥a∥0

,

so taking limit in (5.1.9) we get

µ = H(r)> lim
λ↓−1/∥a∥0

H(λ ) = µ,

a contradiction.

Finally, since h(λ )< H(λ ), we deduce (5.1.8). This ends the proof.

Before enunciating the next result, let us remember the following notation given in the

Introduction. Define

A+∪B0 =
d⋃

i=1

Di

m⋃
i=1

ki⋃
j=1

C j
i ,

where m,d,ki ∈ N, m,d,ki ≥ 1, C j
i , Di are the connected components of A+∪B0 such that

H1) Di ⊆ A+, C j
i ̸⊂ A+,

H2) C j
i is isolated from any other component of A+∪B0

and

σ
i
1[−∆; χA0] = σ

C j
i

1 [−∆; χA0], j = 1, . . . ,ki.
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Fig. 5.1 A possible distribution of the set A+∪B0 with m = 3, d = 2 and k1 = k2 = k3 = 1.

That is, by H1), we have separated the connected components only of A+, denoted Di, and C j
i

that are not contained in A+. Then,

σ
Di
1 [−∆; χA0] = +∞,

because Di ⊆ A+. Hence, since

σ
A+∪B0
1 [−∆; χA0] = min

{
min

1≤i≤d

{
σ

Di
1 [−∆; χA0]

}
, min

1≤i≤m

{
σ

i
1[−∆; χA0]

}}
= min

1≤i≤m
σ

i
1[−∆; χA0],

we can order the sets C j
i according to

σ
A+∪B0
1 [−∆; χA0] = σ

1
1 [−∆; χA0]< ... < σ

m
1 [−∆; χA0].

In Figure 5.1 we have represented a possible distribution of A+∪B0. In such case, there exist

two connected components included in A+, D1, D2 and three different connected components

C j
i .

Observe that as a consequence of H2), we can take δ > 0 such that the set

C j
i (δ ) :=

{
x ∈ Ω;dist

(
x,C j

i

)
≤ δ

}
be isolated from any other component of A+ ∪B0. Hence, we can define bi j be a smooth

extension of b|C j
i

satisfying

bi j ≥ b in Ω, bi j = 0 in C j
i ∩B0,
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and

bi j(x)≥ b0 > 0 ∀x ∈ Ω\C j
i (δ ), for some b0 > 0.

Besides this, let us denote by ai j the continuous function defined by ai j(x) = 0 for x ∈ Ω\(C j
i ∩

A+), and ai j(x) = a(x) for x ∈C j
i ∩A+ so that ai j ≤ a in Ω and ai j ≡ 0 in Ω if C j

i ∩A+ = /0.

In order to prove a blow up result for uλ , we will need the following corollary.

Corollary 5.1.1 (of Theorem 4.3.1). If σ
C j

i
1 [−∆; χA0]< µ < σ

B0
1 [−∆; χA0 ], then

lim
λ→∞

uλ (x) = ∞ ∀ x ∈C j
i .

Proof. Let ϕλ ,i be the positive eigenfunction associated to the eigenvalue

σ
Ω
1

[
−∆+

λ rbi(x)
1+λai(x)

;
1

1+λa(x)

]
normalized in L2(Ω).

By hypothesis, there exists some M > 0 such that

a(x)r ≥ M dist(x,∂C j
i )

for all x ∈ A+ \B0 in a neighborhood of ∂C j
i . Consequently,

sup
λ≥0

λ rbi(x)
1+λai(x)

= rr (1− r)1−r bi(x)
ai(x)r ≤Crr (1− r)1−r bi(x)

d(x)
. (5.1.10)

Moreover, since 0 < r < 1, we deduce by either x ∈C j
i ∩B0 or x ∈C j

i ∩A+, that

lim
λn→+∞

λ r
nbi j(x)ϕ

1+λnai j(x)
= lim

λn→+∞

bi j(x)ϕ

λ
−r
n +λ

1−r
n ai j(x)

= 0 ∀ x ∈C j
i . (5.1.11)

Due to (5.1.10) and (5.1.11), we can apply Theorem 1.2.1 with

qλ (x) =
λ rbi(x)

1+λai(x)

and V ≡ 0 to deduce that

lim
λ→∞

σ
Ω
1

[
−∆+

λ rbi(x)
1+λai(x)

;
1

1+λa(x)

]
= σ

C j
i

1 [−∆; χA0] (5.1.12)
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and

lim
λ→∞

∥ϕλ −ϕ∞∥H1
0 (Ω)= 0, (5.1.13)

where ϕ∞ is the null extension to Ω of the positive eigenfunction associated to σ
C j

i
1 (−∆; χA0).

Combining the hypothesis µ > σ
C j

i
1 [−∆; χA0] with (5.1.12), we deduce that there exists

some large L > 0 such that

µ ≥ σ
Ω
1

[
−∆+

λ rbi j(x)
1+λai j(x)

;
1

1+λa(x)

]
∀ λ ≥ L.

So
µ −σΩ

1

[
−∆+

λ rbi j(x)
1+λai j(x)

; 1
1+λa(x)

]
1+λa(x)

≥ 0 ∀ λ ≥ L ∀ x ∈ Ω. (5.1.14)

Moreover, since bi j ≥ b and ai j ≤ a, then

bi j(x)
1+λai j(x)

≥ b(x)
1+λa(x)

∀ λ ≥ 0, ∀ x ∈ Ω. (5.1.15)

Since (5.1.14) and (5.1.15), then the hypothesis of Theorem 4.3.1 is satisfied by making V ≡ 0,

m(λ ,x) = (1+λa(x))−1 and b(λ ,x) = bi j(x)/(1+λai j(x)) and

σ(λ ) := σ
Ω
1

[
−∆+

λ rbi j(x)
1+λai j(x)

;
1

1+λa(x)

]
.

Theorem 4.3.1 then states that there exists a unique β (λ )> 0 such that

σ(λ ) = σ
Ω
1

[
−∆+

β (λ )bi j(x)
1+λai j(x)

;
1

1+λa(x)

]
.

Since β (λ ) is unique, it follows that β (λ ) = λ
r. then

λ
r/(p−1) ϕλ

∥ϕλ∥∞

≤ uλ . (5.1.16)

Note that

σ
Ω
1

[
−∆+

λ rbi j(x)
1+λai j(x)

;
1

1+λa(x)

]
< σ

C j
i ∩B0

1 [−∆; χA0] .

So we can apply Lemma 1.1.1 to deduce that ∥ϕλ∥∞ is bounded. Since (5.1.13), then the (LHS)

of (5.1.16) explodes in C j
i when λ → ∞ and the proof is concluded.
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Remark 5.1.1. Observe that since
λ rbi(x)

1+λai(x)

is not identically null in C j
i , we can not apply Theorem 2.4 of [32] to deduce (5.1.12). This

technical issue was overcame with Theorem 1.2.1.

Corollary 5.1.2 (of Theorem 4.3.1). Let µ < µ < σ
B0
1 [−∆; χA0]. Then

lim
λ→λ∗(µ)

uλ (x) = +∞ for all x ∈ B0.

Proof. By the definition of λ∗(µ), we imply that there exists some ε > 0 such that

µ < σ
B0
1

[
−∆;

1
1+λa(x)

]
∀ λ∗(µ)< λ < λ∗(µ)+ ε.

Fix λ∗(µ)< λ < λ∗(µ)+ ε . Since

µ < σ
B0
1

[
−∆;

1
1+λa(x)

]
= lim

β→∞

σ
B0
1

[
−∆+βb(x);

1
1+λa(x)

]
,

Then there exists a unique β (λ )> 0 such that

µ = σ
Ω
1

[
−∆+β (λ )b(x);

1
1+λa(x)

]
, (5.1.17)

due to the continuity of the function

β 7→ σ
B0
1

[
−∆+βb(x);

1
1+λa(x)

]
.

Define

σ(λ ) := σ
Ω
1

[
−∆+β (λ )b(x);

1
1+λa(x)

]
, ∀λ ∈ (λ∗(µ),λ∗(µ)+ ε).

Then
µ −σ(λ )

1+λa(x)
= 0 ∀ λ ∈ (λ∗(µ),λ∗(µ)+ ε), (5.1.18)

due to (5.1.17).

Again, by the definition of λ∗(µ),

(λ ,µ) ∈ S ∀ λ ∈ (λ∗(µ),λ∗(µ)+ ε). (5.1.19)



5.1 Fast diffusion 110

Since (5.1.18) and (5.1.19), then the hypotheses of Theorem 4.3.1 are satisfied with b(λ ,x) =

b(x)/(1+λa(x)), V ≡ 0 and m(λ ,x) = (1+λa(x))−1. Then Theorem 4.3.1 states that

β (λ )1/(p−1) ϕλ

∥ϕλ∥∞

≤ uλ∀ λ ∈ (λ∗(µ),λ∗(µ)+ ε), (5.1.20)

where ϕλ is the positive eigenfunction associated with σ(λ ) and uλ is the unique positive

solution of (Rλ ,µ ). Assume without loss of generality that ϕλ is normalized in L2(Ω). Since

(λ∗(µ),λ∗(µ)+ ε) 7→ σ(λ ) is constant, in particular, (λ∗(µ),λ∗(µ)+ ε) 7→ σ(λ ) is bounded,

so we can apply the Lemma 1.1.1 to deduce that

∥ϕλ∥∞ is bounded. (5.1.21)

We claim that

lim
λ→λ∗(µ)

β (λ ) = ∞. (5.1.22)

Indeed, let us suppose by contradiction that there exists a sequence λn ↓ λ∗(µ) and 0 < β0 < ∞

such that such that

0 = lim
λn↓λ∗(µ)

σ
Ω
1

[
−∆+

β (λn)b
1+λna

− µ

1+λna

]
= σ

Ω
1

[
−∆+

β0b
1+λ∗(µ)a

− µ

1+λ∗(µ)a

]

< σ
B0
1

[
−∆− µ

1+λ∗(µ)a

]
= σ

B0
1

−∆−
σ

B0
1

[
−∆; 1

1+λ∗(µ)a(x)

]
1+λ∗(µ)a

= 0,

which is an absurd, and we just proved (5.1.22).

By applying Theorem 1.2.1 with

qλ (x) = β (λ )b(x),

we have that

lim
λ→λ∗(µ)

∥ϕλ −ϕλ∗(µ)∥H1
0 (Ω)= 0, (5.1.23)

where ϕλ∗(µ) is the extension to Ω of the positive eigenfunction associated with

σ
B0
1

[
−∆;

1
1+λa(x)

]
.
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Finally, using (5.1.21), (5.1.22) and (5.1.23) in (5.1.20), we conclude the proof of the

corollary.

Below we list in ascendant order the proofs of the items of Theorem 0.0.5.

Proof of item 1.1) of Theorem 0.0.5: It follows directly by applying Theorem 4.2.2 and

the definition of λ
∗(µ).

Proof of item 1.2) of Theorem 0.0.5: Since V ≡ 0 and b(λ ,x) = b(x)/(1+ λa(x)) in

(Rλ ,µ ), then

V0 = Ω, b(∞,x) = χA0b(x), m(∞,x) = χA0(x) and B0,∞ = A+∪B0.

So the statement of 1.2 of Theorem 0.0.5 follows directly by Theorem 4.2.3.

Proof of item 1.3) of Theorem 0.0.5:
We will argue by contradiction. So, let us assume that µ = σ

A+∪B0
1 (−∆; χA0) and that there

is a sequence λn →+∞ such that ∥uλn∥2 is a bounded sequence.

By testing against uλn in the definition of uλn , we deduce that uλn is bounded in H1
0 (Ω). So,

there is 0 ≤ v ∈ H1
0 (Ω) such that

uλn ⇀ v in H1
0 (Ω) and uλn → v in L2(Ω) up to a subsequence.

Using Lemma 1.1.1 with hλ = up−1
λ

b(x) and mλ (x) = (1+λa(x))−1 we deduce that uλn is

bounded in L∞(Ω), and by elliptic regularity we obtain that

uλn → v in C1(Ω)

being v a solution of (0.0.16).

Assume that v = 0. Then by dividing by ∥uλn∥2 in the definition of uλ and passing to the

limit, we get that µ = σ1[−∆; χA0] which is an absurd since σ1[−∆; χA0]< σ
A+∪B0
1 [−∆; χA0 ] =

µ by hypothesis. On the other hand, if v ̸= 0, since (0.0.16) possesses a positive solution if

and only if σ1[−∆; χA0 ]< µ < σ
A+∪B0
1 [−∆; χA0], then we get µ < σ

A+∪B0
1 [−∆; χA0], which is

an absurd.

Proof of item 1.4) of Theorem 0.0.5: Follows directly by Corollary 5.1.1.

Proof of item 1.5) of Theorem 0.0.5:
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First, assume that Λ < 0 and let us prove that

sup
Λ≤λ≤0

∥uλ∥∞<+∞.

Observe that

µ = σ
B0
1

[
−∆,

1
1+λ∗(µ)a

]
< σ

B0
1

[
−∆,

1
1+Λa

]
, (5.1.24)

and

µ = σ
Ω
1

[
−∆,

1
1+λ ∗(µ)a

]
> σ

Ω
1

[
−∆,

1
1+Λa

]
. (5.1.25)

By (5.1.24) and (5.1.25), we deduce that there exists the positive solution u of−∆u =
µ

1+Λa
u−bup in Ω,

u = 0 on ∂Ω.

Now, observe that

1
1+λa

≤ 1
1+Λa

and
1

1+λa
≥ 1 ∀ Λ ≤ λ ≤ 0.

Hence, uλ is a subsolution of the above problem and consequently,

uλ ≤ u ∀ Λ ≤ λ ≤ 0.

Now assume that λ > 0. Using

1
1+λa

≤ 1 and χA0 ≤
1

1+λa
,

we obtain that since uλ is a positive solution of (Rλ ,µ ), then

−∆uλ ≤ µuλ −χA0b(x)up
λ
,

and then uλ is subsolution of
−∆u = µu−χA0bup in D j0−1,

u = 0 on ∂D j0−1 ∩∂Ω,

u =+∞ on ∂D j0−1,

(5.1.26)
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where

Dk := Ω\∪k
i=1 ∪

ℓi
j=1 Ci j.

Since µ < σ
C j0
1 (−∆), it follows by Theorem 4.7 of [45] that there exists the large solution L1

of (5.1.26), and then

uλ ≤ L1 in D j0−1.

Analogously, uλ is subsolution of

−∆u = µu−χA0bup in Dm+d,

u = 0 on ∂Dm+d ∩∂Ω,

u =+∞ on ∂Dm+d,

u > 0 on Dm+d

(5.1.27)

Equation (5.1.27) possesses a large solution L2 for any µ and uλ ≤ L2 in Dm+d . This completes

the proof.

Proof of item 2) of Theorem 0.0.5:
The first part follows directly from Corollary 5.1.2.

Now, consider D ⊂⊂ D1 ⊂⊂ Ω\B0 an open subset and Λ be a number such that λ∗(µ)<

Λ < λ
∗(µ). Then, for λ ∈ [λ∗(µ),Λ] we have that

b(x)
1+λa(x)

≥ b0

1+ΛaM
,

where aM = max
x∈D1

a(x), b0 = min
x∈D1

b(x)> 0, and then uλ is a subsolution of the equation


−∆u = µu− b0

1+ΛaM
up in D1,

u =+∞ on ∂D1.
(5.1.28)

By [45] there exists a large solution of (5.1.28). This implies that uλ is bounded in D. We just

concluded the proof of item 2) of Theorem 0.0.5.

5.2 Strong degradation

In this section, we will study the problem
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
−∆u+λV (x)u = µm(x)u−b(x)up in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Sλ ,µ )

0 �V (x) ∈ L∞(Ω), 0 � b ∈C(Ω), 0 ̸= m ∈C(Ω) possibly changing sign.

We can see that (Sλ ,µ ) is a special case of (0.0.13) by making b(λ ,x) = b(x) and m(λ ,x) =

m(x). Consequently, we can apply Theorem 0.0.4 to imply that there exists a unique positive

solution uλ ,µ of (Rλ ,µ ) if and only if

σ
Ω
1 [−∆+λV ;m]< µ < σ

B0
1 [−∆+λV ;m] .

Corollary 5.2.1 (of Theorem 4.3.1). Let µ ∈ (C0 ∪C∞)∩C([0,Λ)), Λ ≤ ∞. If

lim
λ↑Λ

(
σ

B0
1 [−∆+λV (x);m(x)]−µ(λ )

)
= 0, (5.2.1)

then


lim

λ→Λ

uλ (x) = +∞ ∀ x ∈ B0 if µ ∈ C0, Λ < ∞

lim
λ→+∞

uλ (x) = +∞ ∀ x ∈ D0 if µ ∈ C∞, Λ = ∞, V0 ̸⊂ B0.

(5.2.2)

(5.2.3)

Additionally, if m ∈ Cr(B0) (m ∈ Cr(D0), respectively), then the convergence in (5.2.2) (in

(5.2.3), respectively) holds uniformly in compact subsets of B0 (V0, respectively).

Proof. Let µ ∈ C0 ∪C∞. Define σ(λ ) := µ(λ ). Then

(µ(λ )−σ(λ ))m(x) = 0 ∀ λ ∈ Dom µ. (5.2.4)

Moreover, since µ ∈ C0 ∪C∞ ⊂ S , then

(λ ,µ(λ )) ∈ S. (5.2.5)

Since (5.2.4) and (5.2.5), then the hypotheses of Theorem 4.3.1 are satisfied with m(λ ,x) =

m(x), b(λ ,x) = b(x). Thus, Theorem 4.3.1 state that there exists a β (λ )> 0 such that

µ(λ ) = σ
Ω
1 [−∆+λV +β (λ )b;m] (5.2.6)
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and

β (λ )1/(p−1) ϕλ

∥ϕλ∥∞

≤ uλ , (5.2.7)

where ϕλ is the positive eigenfunction associated to (5.2.6).

Since µ ∈ C0∪C∞, then µ is bounded. By (5.2.6), it follows that σ
Ω
1 [−∆+λV +β (λ )b;m]

is bounded and so we can apply Theorem (1.1.1) to deduce that

∥ϕλ∥∞ is bounded. (5.2.8)

Now we claim that

lim
λ→Λ

β (λ ) = ∞. (5.2.9)

We will argue by absurd assuming (5.2.11) and lim
λ↑Λ

β (λ )<+∞. Then, there exist a sequence

λn ↑ Λ and a positive number β∗ > 0 such that

lim
n→+∞

β (λn) = β∗ < ∞.

By combining Theorem 1.2.1 with the hypothesis (5.2.1), we deduce that

lim
n→+∞

µ(λn) = lim
n→+∞

σ
B0
1 [−∆+λnV (x);m(x)]

=

σ
B0
1 [−∆+ΛV (x);m(x)], if Λ < ∞,

σ
D0
1 [−∆;m(x)], if Λ = ∞.

(5.2.10)

On the other hand, by using the definition of β (λn) and Theorem 1.2.1, we obtain

lim
n→+∞

µ(λn) =

σ
Ω
1 [−∆+β∗b(x)+ΛV (x);m(x)], if Λ < ∞,

σ
V0
1 [−∆+β∗b(x);m(x)], if Λ = ∞.

(5.2.11)

By combining (5.2.10) and (5.2.10), we have thatσ
B0
1 [−∆+ΛV (x);m(x)] = σ

Ω
1 [−∆+β∗b(x)+ΛV (x);m(x)], if Λ < ∞

σ
D0
1 [−∆;m(x)] = σ

V0
1 [−∆+β∗b(x);m(x)] if Λ = ∞.

(5.2.12)
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Both equalities lead to a contradiction; in the second one, we used that V0 ̸⊂ B0. We just proved

that lim
λ→Λ

β (λ ) = ∞. Then Theorem 1.2.1 implies that

lim
λ→Λ

∥ϕλ −ϕ
Λ
∥H1

0 (Ω)= 0, (5.2.13)

where ϕ
Λ

is the extension to Ω of the positive eigenfunction associated with σ
B0
1 [−∆ +

ΛV (x);m(x)] (if Λ < ∞, respectively) or with σ
D0
1 [−∆;m(x)] (if Λ = ∞, respectively). Fi-

nally, using (5.2.8), (5.2.9) and (5.2.13) in (5.2.7), we conclude the proof.

Theorem 5.2.1. Let λ ≥ 0. Then

lim
µ↓σΩ

1 [−∆+λV ;m]
∥uλ ,µ∥C1

0(Ω̄)= 0 (5.2.14)

and

lim
µ↑σ

B0
1 [−∆+λV ;m]

uλ ,µ(x) = +∞ ∀ x ∈ B0 (5.2.15)

Proof. (5.2.14) (respectively, (5.2.15)) can be obtained by following similar arguments as done

in Theorem 4.2.2 (respectively, Corollary 5.2.1).

The next lemma will be useful in order to prove Theorem 5.2.2.

Lemma 5.2.1. Let µ ∈ C0 ∩C([0,Λ]). Let f and Bδ as defined in Section 2.3. Assume that

µ is analytic for λ < Λ in a neighborhood of Λ and consider any analytic extension of µ to

[0,Λ+η). Assume all the hypotheses of Theorem 1.3.2. Then there exists η ≥ η2 > 0 and a

function δ (λ )> 0, defined for each λ ∈ (Λ−η2,Λ), such that

lim
λ↑Λ

δ (λ ) = 0, (5.2.16)

σ
Bδ (λ )

1 [−∆+λV (x)−µ(λ )m(x)]< 0 (5.2.17)

and

lim
λ↑Λ

σ
Bδ (λ )

1 [−∆+λV (x)−µ(λ )m(x)]
δ (λ )

=


λ
(0,1)
1 if λ

(1,0)
1 = 0,

λ
(0,1)
1
2

if λ
(1,0)
1 ̸= 0.

(5.2.18)

In particular, the limit above is negative by Theorem 1.3.2.
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Proof. By Theorem 1.3.2,
∂ f
∂δ

(Λ,0) = λ
(0,1)
1 < 0

and so we can apply the theorem of the implicit function to imply that there exist ε > 0,

0 < η1 ≤ η and a derivable function δ̃ : (Λ−η1,Λ+η1)→ (−ε,ε) such that f (λ , δ̃ (λ )) = 0

for all λ ∈ (Λ−η1,Λ+η1) and

δ̃
′(Λ) =−

∂ f
∂λ

∂ f
∂δ

=−
λ
(1,0)
1

λ
(0,1)
1

.

Note that since µ ∈ C0, then (λ ,µ(λ )) ∈ S. By using this fact and the definition of δ̃ , we get

σ
B0
1 [−∆−µ(λ )m+λV ]> 0 = σ

B
δ̃ (λ )

1 [−∆−µ(λ )m+λV ] ∀ λ ∈ (Λ−η1,Λ)

and so δ̃ (λ ) > 0 for all λ ∈ (Λ−η1,Λ). Let us define the function δ = 2δ̃ and note that δ

satisfies

0 = f (λ , δ̃ (λ ))

= σ
Bδ (λ )/2
1 [−∆+λV (x)−µ(λ )m(x)]

> σ
Bδ (λ )

1 [−∆+λV (x)−µ(λ )m(x)] ∀λ ∈ (Λ−η1,Λ).

We claim that δ (λ )→ 0 as λ ↑ Λ. Indeed, assume by absurd that there exists a sequence

λn ↑ Λ such that lim
n→∞

δ (λn) = δ∗ > 0. By passing to the limit in

σ
Bδ (λn)/2
1 [−∆+λnV (x)−µ(λn)m(x)] = 0,

using the monotonicity of the principal eigenvalue with respect to the domain and the hypothesis

(1.3.8), we obtain

0 = σ
B0
1 [−∆+ΛV (x)−µ(Λ)m(x)]> σ

Bδ∗/2
1 [−∆+ΛV (x)−µ(Λ)m(x)] = 0,

which is an absurd. So δ (λ ) satisfies (5.2.16) and (5.2.17). To prove (5.2.18) we will analyze

two cases:
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1. Assume that λ
(1,0)
1 = 0. By using (1.3.9), we get

lim
λ↑Λ

σ
Bδ (λ )

1 [−∆+λV (x)−µ(λ )m(x)]
δ (λ )

= lim
λ↑Λ

(
λ
(0,1)
1 +

g(λ ,δ (λ ))
δ (λ )

)
= λ

(0,1)
1 ,

2. Assume that λ
(1,0)
1 ̸= 0. That is,

∂ f
∂λ

(Λ,0) ̸= 0

Observe that

lim
λ↑Λ

λ −Λ

δ (λ )
=

(
δ
′(Λ)

)−1

=
(

2δ̃
′(Λ)

)−1

=
1
2

(
−

∂ f
∂λ

∂ f
∂δ

(Λ)

)−1

= −1
2

λ
(0,1)
1

λ
(1,0)
1

and so

lim
λ↑Λ

σ
Bδ (λ )

1 [−∆+λV (x)−µ(λ )m(x)]
δ (λ )

= lim
λ↑Λ

(
λ
(0,1)
1 +

λ −Λ

δ (λ )
λ
(1,0)
1 +

g(λ ,δ (λ ))
δ (λ )

)
= λ

(0,1)
1 −

λ
(0,1)
1

2λ
(1,0)
1

λ
(1,0)
1

=
λ
(0,1)
1
2

and we just proved the lemma.

Lemma 5.2.2. Suppose that m(x0)> 0 for some x0 ∈ B0. Then, the curve

µ(λ ) := σ
B0
1 [−∆+λV ;m], λ ≥ 0,
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is well defined and it is real analytic as a function of the parameter λ . Moreover, if µ is

derivable in Λ, then the condition (0.0.23) is equivalent to

µ
′(Λ)

∫
B0

mϕ
2
Λ −

∫
B0

V ϕ
2
Λ ̸= 0.

Proof. According to Theorem 9.1 of [44], the principal eigenvalue

Σ(λ ,µ) := σ
B0
1 [−∆+λV −µm], (λ ,µ) ∈ R2

is real analytic in both parameters, λ and µ . Let ϕλ ,µ denote the principal eigenfunction

associated to Σ(λ ,µ) normalized so that ∥ϕλ ,µ∥L2(B0)
= 1. Then, ϕλ ,µ = 0 on B0, and

−∆ϕλ ,µ +λV ϕλ ,µ −µmϕλ ,µ = Σ(λ ,µ)ϕλ ,µ in B0. (5.2.19)

Thus, differentiating with respect to µ yields to

(−∆+λV −µm−Σ(λ ,µ))
∂ϕλ ,µ

∂ µ
= mϕλ ,µ +

∂Σ

∂ µ
(λ ,µ)ϕλ ,µ .

Hence, multiplying this identity by ϕλ ,µ and integrating by parts in B0, we find from the

definition of ϕλ ,µ that
∂Σ

∂ µ
(λ ,µ) =−

∫
B0

mϕ
2
λ ,µ . (5.2.20)

On the other hand, multiplying (5.2.19) by ϕλ ,µ and integrating in B0 shows that

∫
B0

|∇ϕλ ,µ |2+λ

∫
B0

V ϕ
2
λ ,µ −µ

∫
B0

mϕ
2
λ ,µ = Σ(λ ,µ).

So, thanks to (5.2.20), it becomes apparent that

∫
B0

|∇ϕλ ,µ |2+λ

∫
B0

V ϕ
2
λ ,µ +µ

∂Σ

∂ µ
(λ ,µ) = Σ(λ ,µ).

Therefore, since Σ(λ ,µ(λ )) = 0 for all λ ≥ 0, we find that

∫
B0

|∇ϕλ ,µ(λ )|2+λ

∫
B0

V ϕ
2
λ ,µ(λ )+µ(λ )

∂Σ

∂ µ
(λ ,µ(λ )) = 0.
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In particular,
∂Σ

∂ µ
(λ ,µ(λ )) ̸= 0 for all λ ≥ 0. Consequently, by the implicit function theorem,

µ(λ ) must be analytic in λ .

Next, for every λ ≥ 0, we denote by ϕλ the principal eigenfunction, normalized by

∥ϕλ∥L2(B0)
= 1, of the equation

−∆ϕλ +λV ϕλ = µ(λ )mϕλ in B0

under Dirichlet boundary conditions on ∂B0. Then, differentiating with respect to λ , multiply-

ing by ϕλ , and integrating in B0, yields to∫
B0

ϕλ (−∆+λV −µ(λ )m)ϕ ′
λ
= µ

′(λ )
∫

B0

mϕ
2
λ
−
∫

B0

V ϕ
2
λ
.

Therefore, for every λ ≥ 0,

µ
′(λ )

∫
B0

mϕ
2
λ
−
∫

B0

V ϕ
2
λ
= 0.

In particular, condition (0.0.23) can be equivalently expressed as µ
′(Λ) ̸= µ

′(Λ). This ends the

proof.

Theorem 5.2.2. Additionally to the hypotheses of Lemma 5.2.1, assume that ∇b = 0 in ∂B0.

Then

lim
λ↑Λ

uλ (x) = +∞ ∀ x ∈ ∂B0.

Proof. We claim that

u(x) :=

{
C(λ ,δ (λ ))ϕλ ,δ (λ )(x) x ∈ Bδ ,

0 x ∈ Ω\Bδ ,

is a subsolution of (Sλ ,µ ) with µ = µ(λ ), where

C(λ ,δ (λ )) :=
1

supBδ (λ )\B0
ϕλ ,δ (λ )

(
−σ

Bδ (λ )

1 [−∆+λV (x)−µ(λ )m(x)]
supBδ (λ )\B0

b

) 1
p−1

(5.2.21)

and δ (λ ) is the function given by Lemma 5.2.1. Indeed, u is subsolution if

b(x)
(
C(λn,δn)ϕλ ,δ (λ )

)p−1 ≤−σ
Bδ (λ )

1 [−∆−µ(λ )m+λV ] x ∈ Bδ ,
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which is true if C(λ ,δ (λ )) is the one defined in (5.2.21).

We claim that there exists a constant C0 > 0 such that

inf
∂B0

ϕλ ,δ (λ ) ∼ δ (λ )C0 λ ∼ Λ. (5.2.22)

Indeed, since ∂B0 is a compact set, there exists yλ ∈ ∂B0 such that

inf
∂B0

ϕλ ,δ (λ ) = ϕλ ,δ (λ )(yλ ).

Thus, since Tδ (λ ) : B̄0 → B̄δ (λ ) is a bijection, there exists zλ ∈ B̄0 such that yλ = Tδ (λ )(zλ ). By

(1.3.1),

Tδ (λ )(yλ −δ (λ )n(yλ )) = yλ −δ (λ )n(yλ )+δ (λ )R(yλ −δ (λ )n(yλ )). (5.2.23)

Moreover, since δ (Λ) = 0, we have that δ (λ ) ∈ (0,ε0/4) for λ sufficiently close to Λ. So,

dist(yλ −δ (λ )n(yλ ),∂B0) = dist(yλ −δ (λ )n(yλ ),yλ ) = δ (λ )<
ε0

4
,

and, thanks to Theorem 1.3.1 (iii),

R(yλ −δ (λ )n(yλ )) = n(π(yλ −δ (λ )n(yλ ))) = n(yλ ).

Consequently, substituting in (5.2.23) shows that

Tδ (λ )(yλ −δ (λ )n(yλ )) = yλ −δ (λ )n(yλ )+δ (λ )n(yλ ) = yλ . (5.2.24)

Therefore, since Tδ (λ ) is a bijection, it becomes apparent that

zλ = yλ −δ (λ )n(yλ ).

On the other hand, by the definition of ψλ ,δ (λ ), we have that

ψλ ,δ (λ )(zλ ) = ϕλ ,δ (λ )(Tδ (λ )(zλ )) = ϕλ ,δ (λ )(yλ ).
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So, since ϕλ ,ϕ(λ ) = 0 on ∂Bδ (λ ) and yλ ∈ ∂B0 entails Tδ (λ )(yλ ) ∈ ∂Bδ (λ ), we have that

ψλ ,δ (λ )(yλ ) = ϕλ ,δ (λ )(Tδ (λ )(yλ )) = 0.

Consequently, by the fundamental theorem of calculus, we find that

ϕλ ,δ (λ )(yλ ) = ϕλ ,δ (λ )(yλ )−0

= ϕλ ,δ (λ )(yλ )−ϕλ ,δ (λ )(Tδ (λ )(xλ ))

= ψλ ,δ (λ )(zλ )−ψλ ,δ (λ )(xλ )

= ψλ ,δ (λ )(xλ − sδ (λ )n(xλ ))
∣∣s=1
s=0

=
∫ s=1

s=0

d
ds

ψλ ,δ (λ )(xλ − sδ (λ )n(xλ ))ds

=−δ (λ )
∫ s=1

s=0
⟨∇ψλ ,δ (λ )(xλ − sδn(xλ ),n(xλ )⟩ds.

By passing to the limit in the above equation we find that

inf
∂B0

ϕλ ,δ (λ ) =−δ (λ )
∂ϕλ ,δ (λ )

∂n
(xΛ)+o(λ −Λ),

for some xΛ ∈ ∂B0 as λ ↑ Λ and we just proved (5.2.22). Similarly, it can obtained a constant

C1 such that

sup
Bδ (λ )\B0

ϕλ ,δ (λ ) ∼C1δ (λ ), λ ∼ Λ. (5.2.25)

Now observe that

C(λ ,δ (λ )) inf
∂B0

ϕλ ,δ (λ ) ≤C(λ ,δ (λ ))ϕλ ,δ (λ ) ≤ uλ (x) ∀ x ∈ ∂B0. (5.2.26)

Combining (5.2.26) and the definition of C(λ ,δ (λ )), we find

uλ (x)≥C(λ ,δ (λ )) inf
∂B0

ϕλ ,δ (λ ) (5.2.27)

=
inf∂B0 ϕλ ,δ (λ )

supBδ (λ )\B0
ϕλ ,δ (λ )

−σ
Bδ (λ )

1 [−∆+λV (x)−µ(λ )m(x)]/δ (λ )(
supBδ (λ )\B0

b
)
/δ (λ )

 1
p−1

(5.2.28)
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for all x ∈ ∂B0.

We claim that δ
′(Λ) ̸= 0. Indeed, since δ = 2δ̃ (see the proof of Lemma 5.2.1), then it

is sufficient to prove that δ̃
′(Λ) ̸= 0. By the definition of δ̃ , we have that f (λ , δ̃ (λ )) = 0.

Differentiating implicitly with respect to λ , we deduce that

δ̃
′(Λ) =

(
−

∂ f
∂δ

∂ f
∂λ

(Λ)

)−1

=−
λ
(1,0)
1

λ
(0,1)
1

̸= 0,

where the last inequality follows from Lemma 5.2.2 combined with hypothesis

µ
′(Λ) ̸= d

dλ

∣∣∣∣
λ=Λ

σ
B0
1 [−∆+λV ;m]

and Theorem 1.3.1. We just proved that δ
′(Λ) ̸= 0. Combining this fact with the hypothesis

that ∇b = 0 in ∂B0, we deduce that

1(
supBδ (λ )\B0

b
)
/δ (λ )

→ ∞ as λ ↑ Λ. (5.2.29)

Finally, combining (5.2.22), (5.2.25), (5.2.18) and (5.2.29) we deduce that the limit of the

(RHS) of (5.2.27), when λ → Λ, is infinity and consequently

lim
λ↑Λ

uλ (x) = ∞ ∀ x ∈ ∂B0.

Assume that D0 ∈ C2 and that there exists a component Γ of ∂D0) such that Γ satisfies:

1. Γ∩∂Ω = /0,

2. Γ ⊂ M+ = {x ∈ Ω,m(x)> 0} and

3. Γ ⊂V0

Theorem 5.2.3.
lim

λ→+∞

uλ (x) = +∞ ∀ x ∈ Γ (5.2.30)

Proof. The idea is to prove that lim
λ→+∞

min
Γ

uλ =+∞. We will argue by absurd. So assume that

lim
λ→+∞

min
Γ

uλ <+∞. (5.2.31)
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Since Γ ⊂ M+, then there exists δ > 0 such that

m(x)> 0 ∀ x ∈ {x ∈ D0; dist(x,Γ)≤ δ}. (5.2.32)

Since D0 ∈ C2, then Γ satisfies the uniform interior sphere property. Moreover Γ∩∂Ω = /0. So

there exist a R > 0 and a function Y : Γ → D0 that satisfies

BR(Y (x))⊂ D0, (5.2.33)

BR(Y (x))∩∂Ω = /0, (5.2.34)

BR(Y (x))∩Γ = {x}. (5.2.35)

Without loss of generality, we can assume that

2R < δ . (5.2.36)

Define

(D0)R = {y ∈ D0; dist(y,Γ)< 2R}.

By combining (5.2.36) and (5.2.32), we deduce that

m(x)> 0 ∀ x ∈ (D0)R. (5.2.37)

Let xλ ∈ (D0)R be such that min
(D0)R

uλ = uλ (xλ ). Define

ΓR = {y ∈ D0;dist(y,Γ) = 2R}.

Due to Corollary 5.2.1, lim
λ→+∞

uλ (x)→+∞ uniformly in compact subsets of D0 and so

lim
λ→+∞

uλ (x) = +∞ uniformly in ΓR. (5.2.38)

We claim xλ ∈ ∂ (D0)R. In fact, suppose that xλ ∈ (D0)R. By the definition of (D0)R, we can

deduce that

(D0)R = ∪x∈ΓBR(Y (x)). (5.2.39)
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Consequently, there exists some x0 ∈ Γ such that xλ ∈ BR(Y (x0)). By (5.2.34), BR(Y (x0))∩
∂Ω = /0 and consequently uλ (xλ )> 0. By (5.2.37), we have that m(xλ )> 0. Now, we have

∇uλ (xλ ) = 0, ∆uλ (xλ )≥ 0

and

0 ≥−∆uλ (xλ ) = µ(λ )m(xλ )uλ (xλ )> 0,

which is an absurd. So xλ ∈ ∂ (D0)R. But ∂ (D0)R has two components, Γ and ΓR. We claim

xλ ∈ Γ. Observe that since Γ ⊂ (D0)R, then

uλ (xλ ) = min
(D0)R

uλ ≤ min
Γ

uλ . (5.2.40)

By combining (5.2.40) and (5.2.31), we deduce that sup
λ≥0

min
(D0)R

uλ <+∞ and so by using (5.2.38),

we deduce that there exists a large Λ such that

inf
ΓR

uλ > sup
λ≥0

min
(D0)R

uλ ∀ λ ≥ Λ. (5.2.41)

By using (5.2.41), we have

inf
ΓR

uλ > sup
λ≥0

min
(D0)R

uλ ≥ min
(D0)R

uλ = uλ (xλ ) ∀ λ ≥ Λ. (5.2.42)

So if xλ ∈ ΓR for some λ ≥ Λ, then we would have

uλ (xλ )≥ inf
ΓR

uλ > uλ (xλ ),

due (5.2.42), which is an absurd. So xλ ∈ Γ for all λ ≥ Λ. By (5.2.39), we imply that

BR(Y (xλ ))⊂ (D0)R for all λ ≥ Λ. Let x ∈ BR(Y (xλ )). Then

uλ (x)≥ min
BR(xλ )

uλ ≥ min
(D0)R

uλ = uλ (xλ ) ∀ λ ≥ Λ.

Since x is arbitrary, we have

uλ (x)≥ uλ (xλ ) ∀ x ∈ BR(xλ ) ∀ λ ≥ Λ. (5.2.43)
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Let us define for each λ ≥ Λ the barrier function ψλ by

ψλ (x) := e−α|x−Y (xλ )|2 − e−αR2
, ∀ x ∈ BR(Y (xλ )).

Observe that for each x ∈ BR(Y (xλ )), we have

−∆ψλ (x) =
(
2αN −4α

2∥x−Y (xλ )∥2)e−α|x−Y (xλ )|2.

Now, observe that

e−αR2
≤ e−α∥x−Y (xλ )∥2

∀ x ∈ AR := BR(Y (xλ ))\BR/2(Y (xλ ))

and so

(−∆−µ(λ )m(x))ψλ (x) =
(
2αN −4α

2∥x−Y (xλ )∥2−µ(λ )m(x)
)

e−α|x−Y (xλ )|2+

+µ(λ )m(x)e−αR2
=

=
(
2αN −4α

2∥x−Y (xλ )∥2)e−α|x−Y (xλ )|2 +µ(λ )m(x)
(

e−αR2
− e−α|x−Y (xλ )|2

)
≤

≤
(
2αN −4α

2∥x−Y (xλ )∥2)e−α|x−Y (xλ )|2 ≤

≤

(
2αN −4α

2
(

R
2

)2
)

e−α|x−Y (xλ )|2 =

= α

(
2N −4α

(
R
2

)2
)

e−α|x−Y (xλ )|2.

Take α > 2N/(R2), whence the constant between the parenthesis is negative and so

(−∆−µ(λ )m(x))ψλ (x)≤ α

(
2N −4α

(
R
2

)2
)

e−α|x−Y (xλ )|2 ≤

≤ α

(
2N −4α

(
R
2

)2
)

e−α|x−Y (xλ )|2 ≤

≤ α

(
2N −4α

(
R
2

)2
)

e−αR2
∀ x ∈ AR,

that is,

(−∆−µ(λ )m(x))ψλ (x)≤−ω < 0 ∀ x ∈ AR, (5.2.44)
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where

ω =−α

(
2N −4α

(
R
2

)2
)

e−αR2
.

Since BR/2(Y (xλ )) is a compact subset of D0, then

lim
λ→+∞

min
BR/2(Y (xλ )))

uλ (x) = +∞. (5.2.45)

Let us define

cλ :=
minBR/2(Y (xλ )))

uλ (x)−uλ (xλ )

e−αR2/4 − e−αR2 .

By combining (5.2.31) and (5.2.40), we deduce that

lim
λ→+∞

uλ (xλ )<+∞. (5.2.46)

Since (5.2.45) and (5.2.46), then

lim
λ→+∞

cλ =+∞. (5.2.47)

By the definition of cλ , we have that

uλ (x)≥ uλ (xλ )+ cλ

(
e−αR2/4 − e−αR2

)
∀ x ∈ BR/2(Y (xλ )). (5.2.48)

For every λ ≥ Λ, let us define the auxiliary function

vλ := uλ −uλ (xλ )− cλ ψλ in AR.

By (5.2.48), we have

vλ ≥ 0 on ∂BR/2(Y (xλ )).

Since ψλ = 0 on ∂BR(Y (xλ )) and (5.2.43), we have

vλ = uλ −uλ (xλ )≥ 0 on ∂BR(Y (xλ )).

Thus

vλ ≥ 0 on ∂AR ∀ λ ≥ Λ. (5.2.49)
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Now observe that

(−∆−µ(λ )m(x))vλ = µ(λ )m(x)uλ (xλ )− cλ (−∆−µ(λ )m(x))ψλ

≥ µ(λ )m(x)uλ (xλ )+ωcλ ∀ x ∈ AR,

where we used the definition of uλ and (5.2.44).

Once that µ(λ )uλ (xλ ) is bounded and lim
λ→+∞

cλ =+∞, it follows that

(−∆−µ(λ )m(x))vλ > 0 ∀ x ∈ AR ∀ λ ≥ Λ1, (5.2.50)

for some large Λ1 ≥ Λ. Now, observe that

µ(λ )< σ
D0
1 [−∆;m(x)]< σ

AR
1 [−∆;m(x)],

by whence

−µ(λ )m(x)>−σ
AR
1 [−∆;m(x)]m(x) ∀ x ∈ AR

and so

σ
AR
1 [−∆−µ(λ )m(x)]> σ

AR
1 [−∆−σ

AR
1 [−∆;m(x)]m(x)] = 0. (5.2.51)

So by the Strong Maximum Principle Caracterization, we (5.2.50) and (5.2.51) that

vλ > 0 ∀ x ∈ AR.

By the definition of vλ , it follows that

uλ (x)≥ uλ (xλ )+ cλ ψλ (xλ ) ∀ x ∈ AR ∀ λ ≥ Λ1. (5.2.52)

Now let us define

nλ :=
Y (xλ )− xλ

R
.

By definition,
∂uλ

∂nλ

(xλ ) = lim
t→0+

uλ (xλ + tnλ )−uλ (xλ )

t
.
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Since xλ + tnλ ∈ AR, whenever 0 < t < R/2, then we can use (5.2.52) in order to get

uλ (xλ + tnλ )−uλ (xλ )

t
≥ cλ ψλ (xλ + tnλ )

t

=
cλ

(
e−α(R−t)2 − e−αR2

)
t

Since

lim
t→0+

e−α(R−t)2 − e−αR2

t
= 2αRe−αR2

,

we get that
∂uλ

∂nλ

(xλ )≥ 2αRe−αR2
cλ ,

by whence

lim
λ→+∞

∂uλ

∂nλ

(xλ ) = ∞. (5.2.53)

By H2d), it follows that there exists ε > 0 such that

/0 ̸= V := {x ∈ Ω\D0;dist(x,Γ)< ε} ⊂V0

(see Figure 10).

Note that ∂Γ = Γ∪Γ1. Now consider the problem

−∆w = µ(λ ) inf
V

mw−b(x)wp in V

w = uλ (xλ ) on Γ

w = 0 on Γ1,

w > 0 in V.

(5.2.54)

Due to Theorem A.3.1, the problem (5.2.54) admits a unique positive solution wλ . Note

that uλ is a supersolution of (5.2.54) and, for any 0 ≤ k ≤ 1, kwλ is a subsolution of (5.2.54).

Assuming that k is small enough such that kwλ ≤ uλ , we deduce that kwλ ≤ wλ ≤ uλ by the

method of sub and supersolution. Moreover, by combining wλ ≤ uλ with wλ (xλ ) = uλ (xλ ), it

follows that
∂wλ

∂nλ

(xλ )≥
∂uλ

∂nλ

(xλ ) ∀ λ ≥ Λ1.



5.2 Strong degradation 130

Since (5.2.53), then

lim
λ→+∞

∂wλ

∂nλ

(xλ ) = ∞. (5.2.55)

Let w be the positive solution of

−∆w = sup
λ≥0

µ(λ ) inf
V

mw−b(x)wp in V,

w = sup
λ≥0

uλ (xλ ) on Γ,

w = 0 on Γ1,

w > 0 in V.

(5.2.56)

Given λ ≥ 0, consider 0 ≤ k(λ ) ≤ 1 such that k(λ )wλ ≤ w. Thus k(λ )wλ ≤ wλ ≤ w by the

method of sub and supersolution. Consequently,

sup
λ≥0

∥wλ∥0<+∞. (5.2.57)

Now let us apply Theorem A.2.2. Let us define Bλ (x,w) = µ(λ )

(
inf
R

m
)

w− b(x)wp.

Observe that since Bλ does not depend on ∇w, it follows that the Bλ satisfies the conditions of

Theorem A.2.2, where the constants of (A.2.1) does not depend on λ . Moreover, there exists

M0 > 0 such that wλ ≤ M0 for all λ ≥ Λ1 due to (5.2.57). Then we can conclude that

sup
λ≥Λ1

∥wλ∥1,α<+∞ (5.2.58)

due to Theorem 1 of [40], which contradicts (5.2.55).

In the following, we will proof the items of Theorem 0.0.6 in ascending order.

Proof of item 1i) of Theorem 0.0.5: It follows directly by applying Theorem 4.2.2.

Proof of item 1ii) of Theorem 0.0.5: The blow-up (0.0.22) follows directly by Corollary

5.2.1.

The convergence (0.0.24) follows from Theorem 5.2.2.
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Now fix λ ∈ [0,Λ), let us denote m+ =max{0,m} and let Uλ be the unique positive solution

of the problem 

−∆u+ΛV (x)u = ∥µ∥∞∥m+∥∞u−b(x)up in Ω\ B̄0,

u = sup
x∈∂B0

uλ on ∂B0,

u = 0 on ∂Ω\∂B0,

u > 0 in Ω\ B̄0,

(5.2.59)

whose existence and uniqueness are guaranteed by Corollary 4.4 of [45]. Note that if K ≥ 1,

then KUλ is a supersolution of (5.2.59). Moreover, uλ |Ω\B0
is a subsolution. Take K = K(λ )

sufficiently large such that uλ |Ω\B0
≤ KUλ . By using the subsupersolution method and the

uniqueness of positive solution of (5.2.59), we deduce that

uλ |Ω\B0
≤Uλ ≤ KUλ .

and so the proof of (0.0.25) proceeds by following the same steps of Theorem 1.1 of [39].

Proof of items 2i) and 2ii) of Theorem 0.0.5: It follows directly from Theorem 4.2.3.

Proof of item 2iii) of Theorem 0.0.5: (0.0.26) follows from Corollary 5.2.1. The conver-

gence (0.0.27) follows from Theorem 5.2.3.

Now assume that B̄0 ⊂ V0 ⊂ V̄0 ⊂ Ω. Fix λ ∈ [0,+∞) and consider the unique positive

solution Uλ of

−∆u+λV (x) = σ
D0
1 [−∆;m]∥m+∥∞u−b(x)up in Ω

u = sup
x∈∂B0

uλ on ∂B0,

u = 0 on ∂Ω\∂B0,

u > 0 in Ω

(5.2.60)

whose existence and uniqueness is guaranteed by Corollary 4.4 of [45]. Note that if K ≥ 1,

then KUλ is a supersolution of (5.2.60). Moreover, uλ |Ω\B0
is a subsolution. Take K = K(λ )

sufficiently large such that uλ |Ω\B0
≤ KUλ . By applying the subsupersolution method and the

uniqueness of positive solution of (5.2.60), we deduce that

uλ |Ω\B0
≤Uλ ≤ KUλ
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and so the proof of (0.0.25) proceeds by following the same steps of Theorem 1.1 of [39].

Consider any compact subset K ⊂ Ω \ V̄0. By testing against a positive ϕ ∈ C∞
0 (K) in the

definition of Uλ , we deduce that

liminf
λ→+∞

∫
K

V (x)U2
λ
< ∞.

Consequently lim
λ→+∞

Uλ (x) = 0 for all x ∈Ω\V̄0. So the proof of (0.0.28) proceeds by following

the same steps of Theorem 1.1 of [39].

Proof of item 3) of Theorem 0.0.5: Let λn be any sequence as in the hypothesis of item

3). Consider a fixed n ∈ N. According to Theorem 5.2.1, the following convergences hold.

lim
µ↓σΩ

1 [−∆+λnV ;m]
∥uλn,µ∥∞= 0 (5.2.61)

and

lim
µ↑σ

B0
1 [−∆+λnV ;m]

uλn,µ =+∞ uniformly in compact subsets of B0. (5.2.62)

Let σ
Ω
1 [−∆+ λnV ;m] < µ

n
(λn) < σ

B0
1 [−∆+ λnV ;m]. By (5.2.61), we imply that we can

assume that µ
n
(λn) is sufficiently close to σ

Ω
1 [−∆+λnV ;m] such that the positive solution un

of (Sλ ,µ ) associated with (λn,µn
(λn)) satisfy

∥un∥∞<
1
n
.

On the other hand, by (5.2.62) we deduce that there exists µn(λn) and a positive solution un of

(Sλ ,µ ) associated to (λn,µn(λn)) and xn ∈ B0 such that

un(xn)> n.

In order to conclude the proof of item 3) of Theorem 0.0.6, we must show that

lim
n→+∞

µ(λn) = lim
n→+∞

µ(λn) = σ
D0
1 [−∆;m]. (5.2.63)

Note that since (λn,µ(λn)),(λn,µ(λn)) ∈ S, then

σ
Ω
1 [−∆+λnV ;m]< µ

n
(λn)< σ

B0
1 [−∆+λnV ;m]
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and

σ
Ω
1 [−∆+λnV ;m]< µn(λn)< σ

B0
1 [−∆+λnV ;m].

By passing to the limit in the inequalities above, using Lemma 1.2.1 and the fact that B0 ∩V0 =

V0, we deduce (5.2.63).

Conclusion of Chapter 5
As noted in the introduction of the thesis, the information provided by Theorems 0.0.5 and

0.0.6 imply some interesting inferences about the models (Rλ ,µ ) and (Sλ ,µ ), in the point of

view of population dynamics.

In the case of Theorem 0.0.5, it is worth mention some open problems. The behavior of the

positive solutions uλ of (Rλ ,µ ) when λ → ∞ in the case σ
Ω
1 [−∆; χA0] = σ

A+∪B0
1 [−∆; χA0] = µ .

The behavior of uλ in the boundary of ∂Ci when λ → ∞. Due to the lack of continuity in

the convergence 1/(1+ λa(x)) to χA0 when λ → ∞, we were not capable of applying the

ideas of Section 1.3. On the other hand, since the set ∂Ci is not necessarily contained in

{x ∈ Ω; χA0(x)> 0}, then ∂Ci does not satisfy the conditions to apply the same arguments used

in the proof of Theorem 5.2.3.

Theorem 0.0.6 also leave some open problems. For example, the behavior of the positive

solutions uλ in the boundary of B0 when lim
λ↑Λ

µ0(λ ) = σ
B0
1 [−∆+ΛV ;m], without requiring the

transversality condition (0.0.23). Also the hypothesis about the analiticity of m, required in

order to obtain the blow-up in the boundary of uλ , excludes functions m such that

int{x ∈ Ω;m(x) = 0} ̸= /0.

Finally the relaxation of the hypothesis Γ ⊂V0 in item 2iii), which is is intimately related with

the theory of metasolutions of [45]. Indeed, this hypothesis implies that ∂V is composed by

two connected components Γ and Γ1. This condition is crucial in the above proof, in order to

guarantee (5.2.58). In fact, the a priori boundedness (5.2.58) is a consequence of the boundary

conditions of the problem (5.2.54) to be C1 bounded uniformly with respect to λ , once that

they are constants. Without the aforementioned condition in Γ, ∂V would possibly be a unique

component and the technique involved in the proof would force us to define the boundary

conditions of the problem (5.2.54) that would possibly not be C1 bounded uniformly with

respect to λ . This technical obstacle is an open problem.



Conclusion

Proposing Theorem 0.0.1 of continuation of solutions for operators satisfying a notion of

compactness in an open subset, we were able to obtain a connected of positive solutions of

(Pλ ,µ ) and (Qλ ,µ ). The asset of the operator to be defined on a open subset, allowed us to

find solutions very close to a certain singularity region of the working parameter (see 0.0.4

and 0.0.7). The same asset, also gave us explicit values of the parameter λ for what we have

positive solutions of (Pλ ,µ ) (see 0.0.5). The abstract formulation of Theorem 0.0.1 makes

it possible to applying it for different families of PDEs that include terms that can present

technical difficulties. For example, the nonlinearity u∆(u2) in (Pλ ,µ ) and the nonlocal term |u|r
in (Qλ ,µ ).

The refinement of properties for positive eigenfunctions and their first eigenvalues with

respect to a varying parameter λ (as seen in Lemma 1.1.1, Theorem 1.2.1, and Theorem 1.3.2),

coupled with the a priori boundedness from Theorem 4.2.1 and the subsolution provided by

Theorem 4.3.1, enabled us to prove fine qualitative information about the behavior of positive

solutions for the logistic models (Rλ ,µ ) and (Sλ ,µ ).

Some questions about the problems (Pλ ,µ ), (Qλ ,µ ), (Rλ ,µ ) and (Sλ ,µ ) remain open as noted

in the conclusions of Chapters 2, 3 and 5. For the sake of completeness of this conclusion,

we will point out three of what we consider the most challenging of them. First, the existence

of solutions of (Pλ ,µ ) (respectively, (Qλ ,µ )) outside U (respectively, V). Second, whether the

blow-up of the positive solutions uλ of (Sλ ,µ ), in ∂B0, when λ → Λ still occurs without the

transversality condition. Lastly, whether the solutions uλ of (Sλ ,µ ) blows-up in a component Γ

of ∂ (V0 ∩B0) without requiring Γ ⊂V0.



Appendix A

Some results on strong maximum
principle, regularity and metasolutions

To ensure completeness, we have included in this appendix specific results from the literature
that we considered pertinent to the preceding text.

A.1 Strong Maximum Principle
Let Ω be an open subset of RN , N ≥ 1 and c ∈ L∞(Ω). We will denote L = −∆+ c. In line
with [44], we define the following.

Definition A.1.1. A function u ∈W 2,q(Ω), with q > N, is said to be a supersolution of L if{
−∆u+ cu ≥ 0 in Ω,

u ≥ 0 on ∂Ω.

If one of the above inequalities is strict in some subset of Ω with positive measure, then u is
said to be a strict supersolution of L.

Theorem A.1.1 (Krein-Rutman). The operator L admits a real eigenvalue σ1[L], called the
first eigenvalue of L, which is simple and is associated with a unique eigenfunction, up to
a multiplicative constant, and it can be assumed to be positive. Moreover, σ1[L] is the only
eigenvalue associated with a positive eigenfunction. Any other eigenvalue σ ∈ R of L must
satisfy σ1[L]≤ σ .

Theorem A.1.2. σ1[L]> 0 if and only if L admits a strict supersolution. Moreover, if σ1[L]> 0
and u ∈C2(Ω)∩C(Ω) is a supersolution of L, then u > 0 in Ω.

For more details about the above results see [4] and [44].

A.2 Regularity
Theorem A.2.1. Let 0 ≤ c ∈ L∞(Ω). Then there is a constant C > 0 independent of u such that

∥u∥W 2,q(Ω)≤C|(−∆+ c)u|Lq(Ω)
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for all u ∈W 2,q(Ω)∩W 1,q
0 (Ω), 1 < q < ∞.

See Lemma 9.17 of [34].

Theorem A.2.2. Let α,λ ,Λ and M0 be positive constants with α ≤ 1 and Λ ≥ λ . Let κ and Φ

be nonnegative constants, and let Ω be a bounded domain in RN with C1,α boundary. Assume
that A and B satisfy the following conditions

ai j(x,z, p)ξiξ j ≥ λ (κ + |p|)m|ξ |2,

|ai j(x,z, p)|≤ Λ(κ + |p|)m,

|A(x,z, p)−A(y,w, p)|≤ Λ(1+ |p|)m+1(|x− y|α+|z−w|α),

|B(x,z, p)|≤ Λ(1+ |p|)m+2 (A.2.1)

for all (x,z, p) ∈ ∂Ω× [−M0,M0]×RN , all (y,w) ∈ Ω× [−M0,M0], and all ξ ∈ RN . If φ is in
C1,α(∂Ω) with |ϕ|1+α≤ Φ and if u is a bounded weak solution of the Dirichlet problem

divA(x,u,∇u)+B(x,u,∇u) = 0 in Ω,u = φ on ∂Ω

with |u|≤ M0 in Ω, then there is a positive constant β = β (α,Λ/λ ,m,n) such that u is in
C1,β (Ω). Moreover,

|u|1+β≤C(α,Λ/λ ,m,M0,n,Φ,Ω).

The interested reader may see [40].

Theorem A.2.3. Let f : Ω×R×RN → R be a continuous function such that ∂ f/∂ξ and
∂ f/∂η exist and are continuous where (x,ξ ,η) denotes a generic point of Ω ×R×RN .
Assume also that there is an increasing function c : R+ → R+ such that

| f (x,ξ ,η)|≤ c(|ξ |)(1+ |η |2) ∀ (x,ξ ,η) ∈ Ω×R×RN .

Then there is an increasing function γ : R+ →R+ such that if u ∈W 2,q(Ω), q > N, is a solution
of {

−∆u = f (x,u,∇u) in Ω,

u = 0 on ∂Ω,

then
∥u∥W 2,q(Ω)≤ γ(∥u∥C(Ω)).

See [5], for more details.

A.3 Metasolutions
When dealing with diffusive logistic models with refuge, the concept of metasolution arises
from the presence of a subregion of the habitat where the carrying capacity degenerates to
infinity (see [45]). The following result from [45] will be used in this work.

Let 0 ≤ b ∈ C(Ω) and denote B0 = int{x ∈ Ω;b(x) = 0}. Assume that ∂ (Ω\B0) = Γ1∪Γ2,
Γ1 ∩Γ2 = /0 and that if Γi ∩B0 ̸= /0, for some i ∈ {1,2}, then Γi ⊂ B0.
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Theorem A.3.1. Given λ ∈ R, the problem
−∆u = λu−b(x)up in Ω\B0

u = M on Γ1,

u = 0 on Γ2

u > 0 in Ω\B0

possesses a unique positive solution.

The above result is a particular case of Corollary 4.4 of [45].
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