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Resumo

Este trabalho apresenta alguns resultados sobre métodos topoldgicos e algumas aplica¢des na
andlise da existéncia e comportamento de solucdes perto de singularidades e degeneracdes de
algumas equagdes diferenciais parciais elipticas ndo lineares. Em concreto, aplicaremos nossos
resultados as equacdes do tipo Schrodinger e do tipo Carrier, assim como a equagao logistica
com refiigio. Na primeira delas, mostraremos resultados de existéncia de solu¢do dependendo
de dois parametros. Para a segunda, estudaremos o comportamento assintético das solucdes
quando a difusdo da espécie € muito grande em uma zona de seu habitat, e quando existe uma

zona de degradacdo do dominio muito forte.



Resumen

Este trabajo presenta algunos resultados sobre métodos topoldgicos y algunas aplicaciones
en el andlisis de la existencia y comportamiento de soluciones cerca de singularidades y
degeneraciones de algunas ecuaciones parciales elipticas no lineales. En concreto, aplicaremos
nuestros resultados a las ecuaciones del tipo Schrodinger y del tipo Carrier, asi como a la
ecuacion logistica con refugio. En la primera de ellas, mostraremos resultados de existencia de
solucion dependiendo de dos parametros. Para la segunda, estudiaremos el comportamiento
asint6tico de las soluciones cuando la difusion de la especie es muy grande en una zona de su

hébitat, y cuando existe una zona de degradacion del dominio muy fuerte.
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Introduction

The main aim of this thesis is to study some classical and important classes of multi-parameter
problems involving models of elliptic partial differential equations arising in population dy-
namics, using topological tools that have enabled significant advances in understanding the
existence, non-existence, and behavior of positive solutions with respect to the parameters.

The book [16] provided a foundational stimulus for authors examining mathematical models
of population dynamics, specially reaction-diffusion models. Undoubtedly, problems involving
the logistic model (one of the most paradigmatic models in population dynamics) has been
widely studied in the last decades in partial differential equations. In this work, we present
some results in this line.

When analyzing how variations of parameters in reaction-diffusion models of the logistic
equation affect the problem in existence and behavior of positive solutions, some technical
difficulties arise. By depending on which term of the equation is the varying parameter
associated with, these difficulties may be very significant because it can reflect in singularities
or degeneracies in the equation. Our contributions are principally in this direction. To overcome
this problem, we provided some abstract results on eigenvalue problems and topological
methods in Chapter 1, 2 and 4.

By topological methods, we understand methods that strongly rely on properties that
are invariant under constant perturbations. The term "topological methods" in the literature
of partial differential (or difference) equations is first [37] (Krasnoselskii, 1956), later [50]
(Nirenberg, 1981) then [30] (Du, 2006), [48] (Montreanu, Montreanu and Papageorgiou,
2014) and lastly, in difference equations [10] (Balanov, Garcia-Azpeitia and Krawcewicz,
2018). Nirenberg in [50], quoted [13], [33] and [49] as mathematicians that made important
contributions to the field of topological methods.

The first reference quoted in the above paragraph, Krasnoselskii [37], is certainly a pioneer
in bifurcation theory, a powerful tool for solving a large class of partial differential equations. In

this book, the author mentioned that the concept of bifurcation comes from the stability theory,
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which dates back the works of Lyapunov and Poincaré. Krasnoselskii was the first researcher
to propose a well-known definition of a bifurcation point (in a local sense) and to establish
sufficient conditions for a specific value A = A to be a bifurcation point for an equation of
the form ®(A,u) =0, where @ : R x E — E is a compact operator satisfying certain structure
conditions and E is a Banach space.

In 1971, Crandall and Rabinowitz in [22] established another set of sufficient conditions to
obtain local bifurcation for equations involving a regular operator ®(A, -), with its derivative
being a Fredholm operator satisfying a transversality condition. Also in 1971, Rabinowitz
published the celebrated paper [52], which presented a global version of Krasnosel’skii’s,
now known as Global Bifurcation Alternative of Rabinowitz. Dancer proved in [25] that the
statement of the Global Bifurcation Alternative of Rabinowitz is actually stronger than that one
done in [52] by bringing up more accurate information about the set of bifurcation points.

Most of the above-mentioned results have a common restriction on the structure of the
operator P, requiring it to have a part £(A) that approximates ®(A,-), up to a rest o(||u||) at

u = 0. More specifically, most of the above-mentioned results considered the structure
LA)=1-AL,

where L is a compact linear operator. However, Lopez Gémez in [43] complemented Dancer’s
theorem by allowing £(A ) to be an Fredholm operator with index 0 at L = A, besides assuming
more general assumptions on the regularity of the operator A — L£(A), while Dai in [24] also
proved similar results by weakening the linearity near to u = 0, assuming just a homogeneity
assumption.

Many different related-bifurcation results have been presented in the literature in recent
years allowing for the approach of larger and more sophisticate structure of problems and
their associated operators. Among these, we mention, for instance, the structure of nonlinear
Sturm-Liouville problems in [51], nonlinear eigenvalue problems in [6], quasilinear problems
in [8], k—Hessian equation in [24], and others. An important contribution to these efforts is the
development of results aimed at solving equations whose operators cannot be defined over the
whole space, that is, the space formed by the Cartesian product of R (where the bifurcation
parameter varies) with the underlying Banach space, but it is well-defined just in some open
subset of this product space.

In 1971, a version of the Global Alternative Bifurcation Theorem for operators defined just

in a bounded open subset was presented in [52] (see Corollary 1.12). There is a number of
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works exploring this result in different directions. In our purpose, Dai improved it in [23] (2017)
to closed subsets that are not necessarily bounded (besides other generalizing features), while
Shi and Wang, in [56] (2009), proved a version of this result for regular Fredholm operators
with index 0 defined on an open subset that is not necessarily bounded.

In terms of the arguments to prove versions of global alternatives type for operators defined
on the whole space versus those ones defined on open subset, the main requirement on the
technique is the homotopy property should work for the open subset. In other words, to extend
the proof of global alternatives results to more general types of domain, the differences in the
structure of the operators in the aforementioned results (Fredholm with index zero as in [56],
compact and having a linear part as in [51] or compact and having a homogeneous part as in
[23]) are handled to ensure that their structure still satisfies the homotopy property. Besides,
whether the operator is defined on a closed or an open set, then the corresponding theorems
show that the alternatives are adjusted to each type of domain, as seen, for example, in [23] and
[56].

In [51], Rabinowitz dedicated a section to proving some results on existence of continua
of solutions for nonlinear eigenvalue problems, where bifurcation does not necessarily need
to occur, using the techniques he employed to prove bifurcation theorems. Inspired by [38],
Rabinowitz proved Theorem 3.5 in [51] assuming, among others, a priori boundedness of the
set of solutions of the operator ®(A,u) =0 at A = A, denoted by B, to conclude that a bilateral
continua of solutions emanates from some point of B. In Theorem 3.2 of [52], a version of this
result was proved by adding a hypothesis on the operator that, in particular, implies that the set
B is a singleton. Arcoya, Coster, Jeanjean and Tanaka stated in [9] a consequence of Theorem
3.5 of [51], which explicitly requires that the set B to be a singleton. As mentioned at the end
of the previous paragraph, the form of the alternatives depends on the geometry nature of the
set B, see, for instance, [9] when B is a singleton, [38] for B being amount finitely, and [51]
for B being a bounded set. Finally, we note that all of the results mentioned in this paragraph
consider the operator’s domain as the whole space.

Although there are global alternative results in the literature for open subsets of the
parameter-working space, they consider in general rather regular operators; see, for example,
[56]. Here, we are interested in addressing operators with lower regularity, with the aim
of restating the main results mentioned in the previous paragraph for open subsets of the

parameter-working space. In this regard, we have inspired principally in Theorem 3.5 of [51],
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which established the existence of a continuum of solutions for the equation
0=®A,u)=u—K(A,u)

with K : R x E — E being a compact operator under the additional assumption that B is a
bounded set in E, where E is a Banach space.

For stating our Theorem 0.0.1, let E = (E, ||-||) be a Banach space and &/ C R x E an open
subset. Given 0 € R, define the @-partition of U by

U :=Uy =RynU, forv e {+,-},

which are relative open subsets, 2" the closure of ", and dU" the boundary of ¢/ with the

relative topology inherited from Ry x E, where

[0,400) ifv=+
(—o0,0] ifv=-—.

Ry =

Asin [2], K : U — E will be called a compact operator in the open subset I/ if K is compact
in every closed and bounded set C C U with dist(di/,C) > 0. Moreover, ® : I/ — E will denote
the operator

D(A,u):=u—K(A,u),

and
D) (u) :=DP(A,u), u €Uy,

where
U,={ucE; (A,u) eU} foreach A € R.

Besides, for each A € R such that U, # 0, the number i(®D,,u,0) will denote the Leray-
Schauder index of the isolated solution u € U, of @, (u) = 0. For more details about the
Leray-Schauder index, we suggest the reference [36].

With these notations, we will look for a connected set 6 in

P = {(A,u) € U; D(A,u) =0},
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which will be split in two connect subsets of

PV i=Sg ={(A,u) eUV; ®(A,u) =0, A € intR}}

that considers the closure of the set of solutions on the left and right sides of A.

So, we are ready to state the below theorem.

Theorem 0.0.1 (Continuation Theorem). Let K : Ud C R x E — E be a continuous and compact
operator in the open subset U. Suppose that (Ay,ug) € U is such that ug € Uy, is an isolated
solution of @, (u) = 0 with index i(®,,uo,0) # 0. Then the set ¥ contains a pair of connected
subsets €Y C SV = yz‘;),for each v € {—,+}, emanating from (Xy,ug) and satisfying one of

the following (non-excluding) alternatives:

i) 6" is unbounded,
ii) dist(€",aU) =0,
iii) 6 meets (Ag,u1) € U with uy # uy.

The below result highlights that the stronger compactness on K, the more accurate informa-

tion we obtain on the alternative (ii) above.

Corollary 0.0.1. Assume the assumptions of Theorem 0.0.1 hold with the compactness of the
operator K : U4 C R x E — E substituted by K is compact on any closed and bounded C C U

given. Then the conclusion of Theorem 0.0.1 holds with
ity €V nou #0
in the place of the alternative ii).

More precisely, the above result is a corollary of the proof of Theorem 0.0.1 as the reader
can see in (2.1).

We highlight at least two important complements of our Theorem 0.0.1 compared to similar
ones on the literature, particularly to Theorem 3.5 of [51]. First, we allow the domain of the
operator to be an open subset of R x E (not necessarily bounded); second, we permit the set
B to be unbounded with at least an isolated point, rather than requiring B to be a bounded
set as in Theorem 3.5 of [51]. We also note that none of the referenced theorems are directly
applicable to our applications (see (3.1.5) and (3.2.1)), since they do not allow singularities on
their operators, nor does our operator possess sufficient regularity. For the sake of the clearness,

let us summarize below some of the main contributions of the above theorem to the literature:
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i) Theorem 0.0.1 (Continuation Theorem) provides a powerful tool that allows us to obtain
a connected set of solutions to a wide class of problems that classical theorems cannot

handle, due to the restrictions that appear naturally from these problems.

ii) Theorem 0.0.1 complements some previously related results in literature, for instance, by
showing the existence of a continuum of solutions for problems that do not necessarily
have a priori boundedness of solutions at the emanating-parameter point, as required in
Theorem 3.5 of [51]. Also, it complements Theorem 2.2 of [9] by neither requiring that
the solution from which emanates a continuum should be unique, nor assuming that the

operator need to be well-defined on the whole parameter-working space.

The above Theorem can be useful for solving a large class of partial differential equations
that presents some singularity in its structure, preventing the definition of the associated operator
in the whole parameter-working space. This occurs when the associated operator must be
constrained to a subset to be well-defined. In this direction, let us present new results regarding
both the existence of classical positive solutions and qualitative information for the well-studied

class of quasilinear Schrodinger equations

—Au— AuAu® = pu—u” in Q,
u=0 on 0Q, (Pru)

u>0 in Q,

where A, u € R, p>1,and Q C RY is a smooth bounded domain with N > 1. In particular,
we show that the diagram of solutions of the problem (P, ;) presents some similarity with the

one of the problem (P, ;) with A = 0 that is the classical logistic problem

—Au= pu—uf in Q,
u=0 on dQ, (Po,u)
u>0 inQ,

Indeed, from the literature (see [32], for example), it is well known that (P ;) admits a
positive solution ug, which is unique if it exists, if and only if 4 > u;, where y; > 0 stands for

the first eigenvalue of (—A; Hj (). Moreover, |[ug o< p'/P~", where ||ul|o:= sup|u(x)], for
Q
each u € C(Q). Then for (P ), we have



Introduction 7

i) the result of existence of positive solutions, strictly bounded by “1/ (P=1) for the

problem (R ), for each pu > u;, remains true for the problem (P, ,) for at least
A>—1/u =1y,

ii) the non-existence of positive solutions strictly bounded by “1/ (P=1) for the problem

(Po,u), for 0 < p < 1y, stays true also for the problem (P, ;) for at least

H—H
> = 2
A= 2‘111“2/(17—1)’

In addition, if 1 < p < 3, we proved a more sophisticated estimate for non-existence

given by .

>__ -
Az 2u2/(p=1)’
iii) there are no solutions for all A € R when u < 0.

See Proposition 3.1.3 for the above conclusions.

From now on, we will denote by
projy A == {(4, |lulla) € R* (A,u) € A},

and
projy A :={(0, |lulln) € R*:(A,u) € A},

where A C R x H is a subset, and H is space endowed with the norm || - ||z, while
proj, A ={(1,0) e Rx H;(A,u) € A}.
To state our next result, let us denote by
U={(A,u) e RxCHQ); 1+22||ul|§>0} C Rx C}(Q),

and by
U = {(l,u) e R xC{(Q); 1+2),HuH%: 0} CRxC{(Q),

where ||-||o denotes the norm in C(Q).
In Section 3.1, we apply the above theorem to obtain positive classic solutions of (P, ;).

Precisely, we obtain the following
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Theorem 0.0.2 (Quasilinear-Schrodinger-Logistic problem). Assume that p > 1 and p > L.
Then there exists an unbounded connected set ‘€ =€~ UC " C U of strongly-positive classical
solutions (A,u) of (P, ;) crossing the axis A = 0 at u = ug, where ugy € intPC(l) @) Is the unique

positive solution of (Py ), such that

(= 1/u¥?79),400)  proj, 6 < [~1/[2(1 — 1) ] 0) 0.0.1)
Projc(g) 6~ C [(ﬂ—ﬂl)l/(p_l)yﬂl/(p_l)} ; PYOJ'C(Q)cngr - [Oa.ul/(P_])} ; 0.0.2)
dist (6 ~,0U) = dist (6,0U) =0 (0.0.3)

and
inf{1+2A|ul3; (A,u) €67} =0, (0.0.4)

where ‘€~ = {(A,u) € 6;1 <0}, and €+ = {(A,u) € 6;A > 0}. In addition, the problem
(Py, 1) admits:

a) at least one strongly-positive solution u € U for each
de (=1/@u ), +o0).
b) no positive solution (A,u) € U for any

A€ (=oo,—1/R(u— )Y V]).

Moreover:

i) the problem (Py ) admits at most one positive solution in CY(Q) for A > 0. In particular,

the set 6™ is a continuous curve such that ||uy ||o— 0 as A — oo,

ii) there is no A-bifurcation point of positive solutions from the trivial solution in the

C(Q)-norm.

The below pictures show the possible behaviors for the pr0j||C(§)| 6. The grey area

lo
represents the non-existence region of positive solutions bounded by ,ul/ (=1 for each u > g

given.
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For the sake of completeness, we state the above item 7) of Theorem 0.0.2, a part of whose
statements were already proved in [21]. Our results complement those ones by contributing

principally to the existence and qualitative properties of the solutions for the negative A-range.

Remark 0.0.1. About Theorem 0.0.2:

i) despite the fact that (0.0.3) holds true, we are not able to prove that there exists a solution
(A,u) € €~ NOU of the problem (P),_,,) due to the C(Q)-estimate fails; however, we

can infer from (0.0.4) that
PIOj ey 6~ N{(A.5) €R% 142457 =0} #0,

ii) 6 is connected in the R x C(Q)-norm as well, and it will be denoted by Proj o), €
In fact, this claim follows from the connectedness of 6 in the R x C(l) (Q)-norm combined

with the continuous embedding C}(Q) — C(Q)
There are many different types of real-world phenomena that lead to models with nonlinear

diffusion terms. One very known is that one presented by Carrier in [17], in the unidimensional
case, to model transversal vibrations of elastic membranes. Inspired by this problem, let us

introduce a problem that we will be termed by Carrier-type problem, more specifically,
(9)) M )

—(1+A|u|?)Au= pu—u” in Q,
on dQ,

u=20
u>0 in Q,
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where A € R is a parameter, g >0, p>1,r>1and Q C RY is a smooth bounded domain
with N > 1 and |u|, is the norm of u in the Lebesgue space L"(Q) of the r-integrable functions.
In Section 3.2, we apply Theorem 0.0.1 to obtain positive classic solutions of (0, ;). To

state our next Theorem, let us denote by
Vi={(A,u) e Rx (H}(Q)NL(Q));1+A|u[?> 0} C R x H} (Q).

Precisely, we obtain

Theorem 0.0.3 (Carrier-Type-Logistic problem). Assume 1 > iy and p > 1. Then, there exists
an unbounded connected set 6 = 6~ U6 C V of strongly-positive classical solutions for
the problem (Q; ) that crosses the axis A =0 at u = uy, where ugy € intPC(l) @) is the unique

positive solution of (Qy, ) with A =0, such that
4 4 . 4
(= 1/(u7T1Q7), +o0) € projy € © (= 1/((1 — ) PT]@i]2), +22) 0.0.5)

proizs(ey 6~ C (1 — )/ Vil 1/ PVIQIT] L projy g 6T € [o,u/ Q)]
(0.0.6)

and
inf {1+ A[ul?; (A,u) €6~} =inf{1+Aul?; (A,u) €6} =0, (0.0.7)

where 0 < @1 € C2(Q)NC(Q) is the first eigenfunction for the Laplacian operator under homo-

geneous Dirichlet boundary conditions normalized in C(Q)-norm, 6~ = {(A,u) € €;A <0},
and €+ = {(A,u) € 6;1 > 0}. In addition:

i) forany (A,uy) € € such that 1+ A|uy|2— 0, one has

uy (x) — [,Ll/(p_l) uniformly in each compact set K C Q, (0.0.8)

ii) there is no positive solution (A,u) € V to the problem (Q;, ) for any

1
7L€ <_°°7_ q )
(u—p)7 e [f

iii) ||uy|lo— O when A — H-oo.
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i
Vol Aui=0 e pT|Q

- C— U [
(n=p1)P=T ||} uP—1|Q|7

@ non existence region @ non existence region

Fig. 2 Possible behaviors of 6

Remark 0.0.2. We claim that € is connected in the R x L' (Q))-norm as well, and it will be
denoted by projH (@o 6. In fact, if r <27, then the claim follows directly from the connected-
ness of 6 in the R x H} (Q))-norm combined with the continuous embedding H} (Q) — L' (Q).
Forr>2" let j:(6,RxL(Q)) — Z be any continuous function. Since L' (Q) is dense in
L% (Q), then the extension J : (6,R x L* (Q)) — Z of j is also continuous. So, by using the
facts that H} () is continuous embedded in L* (Q) and € is R x H} (Q))-norm connected, we
obtain (€,R x L> (Q)) is also connected and, consequently, ] is constant. Then j is constant

as well proving the claim.

Remark 0.0.2 allows us to highlight the possible behavior of projj;(q)| % in the above

pictures.

Let us summarize the main contributions of the last two theorems to the literature.

i) In both Theorems 0.0.2 and 0.0.3 we have shown that the connected set of solutions
extends up to the boundary (not on) of the maximal subset of the parameter-working
space in which the problem is well-defined. As “maximal”, we mean that the problem

degenerates on the boundary of such subset.

ii) Both Theorems 0.0.2 and 0.0.3 bring up to literature new and fine estimates on the

parameter for existence or non-existence of solutions.

iii) As far as we know, concerning to problems with nonlinear perturbation of the non-local
operators as in the problem (Q, ,), Theorem 0.0.3 is the first result in the literature that

provides a connected set of positive solutions, and, in particular, shows the equality
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(0.0.7). The aforementioned references about this type of problem assume the hypothesis
about the existence of a constant ag > 0 such that a(s) > ag > 0 for all s, except for [19]
and [18], where the authors consider the case where the function a is not necessarily
bounded away from zero. However, they deal with perturbation of the differential

operator not depending on the solution.

The positiveness of the solutions lying in the connected set of solutions of (P, ;) and
of (Qy ) were obtained as a consequence of an abstract result that we call Positiveness-
continuity-principle (see Proposition 2.2.1). Proposition 2.2.1 provides a sufficient condition
for positiveness of solutions on a connected of solutions, without requiring that the associated
operator to be strongly positive, as it is assumed in Lemma 6.5.4 of [43]. Indeed, Proposition
3.1.2 provides positiveness of fixed points of the operator K introduced 3.1.5, but K is not
positive.

Problems (P, ;,) and (Q, ,) feature nonlinear differential operators, which presented a
significant challenge in establishing the existence of positive solutions. This challenge was
addressed using Theorem 0.0.1. In Chapter 5, we investigate two further perturbations of the
classical diffusive logistic model with refuge (see (R, ;) and (S} ;,)), where existence was
proven via Theorem 0.0.4, a synthesis of techniques from the literature. The primary challenge
for problems (P, ;,) and (Qy ,,), however, lies in determining the behavior of positive solutions
under parameter variations.

To introduce the results of Chapters 4 and 5, let us present the diffusive logistic problem

with refuge

—dAu = pu—b(x)u” in Q,
u=0 on 9, 0.0.9)

u>0 in Q,

where d > 0, p > 1, Q be a domain of the euclidean space of dimension N, RN and b e C(ﬁ),

b non-negative. We denote
By := int{x € Q;b(x) = 0}.

The scalar d > 0 is the diffusion coefficient that measures the diffusion velocity, u is a real
parameter denoting the growth rate of the species, and b measures (inversely) the carrying
capacity of the habitat. The refuge By is a concept that derive from the competition between

species. That is, it originally represents a region where there is no competition between species
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(see page 302 of [16], where the author cite this concept as a novelty, in the competition model,
introduced by [42], see also [14]). When studying a single species u, By can be interpreted
as the limit of large carrying capacity, in this sense, By represents a region of the habitat Q
where the species u has unlimited resources. The Dirichlet condition means that the species is
surrounded by a lethal zone.

The existence and uniqueness of positive solution to the problem (0.0.9) was studied by
several authors assuming different types of hypotheses. Among them, we quote [44], [1], [39]
and [32]. In this work, we state Theorem 0.0.4, which allows the intersection of By with 0Q to
be non empty. For homogeneous Dirichlet boundary condition, this detail was already covered
in [32] (see (A3) and Theorem 3.5 in [32]). But, in order to apply the subsupersolution method
(among other technical reasons) they assumed that the term that multiplies »(x)u in the (RHS)
of (0.0.9) must have a certain degree of regularity (see (A,) in [32]). In our case, this term
corresponds to the function s — s” ~!, which not have such regularity for p < 2. The regularity
hypothesis required by [32] was relaxed in [1], which would cover the case p < 2. However,
the authors imposed the condition By C Q (see Theorem 4.1 of [1]), which clearly prohibits the
set By to intercepts dQ. Fortunately, Theorem 6.1 of [1], or alternatively [3], allows us apply
the subsupersolution method to (0.0.9). By combining these two ideas, that is, Theorem 6.1 of
[1] and Theorem 3.5 of [32], we provide a necessary and sufficient condition to the existence
of positive solution of a more general version of (0.0.9) (see Theorem 0.0.4). In particular, we

have that (0.0.9) possesses a unique positive solution u,, if and only if

doft|—A] < p < dol[—A], (0.0.10)

where o}[—A] (Gf °[—A]) denotes the principal eigenvalue of the operator —A in Q (B,

respectively) under homogeneous Dirichlet boundary conditions, formulated in the introduction
of Chapter 1.

The introduction of the region By in the classical logistic equation (F ), brought in [32],
a new phenomenon in the literature (see (0.0.12)). Precisely, if we restrict the hypotheses
about p and b, namely, requiring p large and b regular, then the problem (0.0.9) would fits the

conditions in [32], where it was proved that

lim  |Jugllc1g=0 (0.0.11)
aru/op-a) O

and
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Hm  flugllo= —+oo. (0.0.12)
dip/o,0[-A]

Further advancements, providing substantial refinements to these initial findings, were
presented in [46] and [39]. For a more fluid presentation, we will integrate the discussion of
these refinements with the presentation of our own results, rather than detailing them upfront.

We focus on the behavior of the positive solutions of two problems that extend the formula-

tion of (0.0.9). In Section 5.1, we study the problem

—(1+Aa(x))Au = pu—b(x)u” in Q,
u=0 on 0Q, Ry )

u>0 in Q,

where 0 < a € C(Q) and 0 < b € C(Q). In Section 5.2, we study the problem

—Au~+ AV (x)u = um(x)u — b(x)u? in Q,
u=0 on 0Q, (Sap)

u>0 in Q,

0<V(x)eL*(Q),0<beC(Q),0#me C(Q) possibly changing sign.
Due to the similarity in the proof techniques for the behavior of positive solutions to

problems (R; ,) and (S ,), we investigated in Chapter 4 the generalized logistic equation

—Au+ AV (x) = um(A,x)u—b(A,x)u” in Q,
u=20 on dQ, (0.0.13)

u>0 inQ,
that encompasses both as special cases. Indeed, (R ;) is a particular case of (0.0.13) with
V=0,m(A,x)=1/(14+Aa(x)) (for A > —1/||a||lp) and b(A,x) = b(x)/(1 + Aa(x)). On the

other hand, (0.0.13) is reduced to (S ,) by making m(2,x) = m(x) and b(A,x) = b(x).

We studied (0.0.13) assuming 0 <V (x) € L™(Q),0< b(A, - ) €C(Q),0#£m(A, - ) € C(Q)
possibly changing sign and 0 # M := {x € &; m(A,x) > 0}, By ; := int{x € Q;b(A,x) = 0}.
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Let us denote

S={(A, 1) ER%:GE[—A+AV — um(A,x)] <0< &, **[~A+ AV (x) — um(A,x)]},
(0.0.14)
where 612 [~A+ AV —m(A, - )] (respectively Gfo”l [-A4+AV —m(A, - )]) are the eigenval-
ues of the operator —A-+AV —m(A, - ) in Q (respectively By 3 ) with zero Dirichlet condition.

For this problem we have the following existence theorem.

Theorem 0.0.4. Let A > 0. Then there exists a unique positive solution uy ,, of (0.0.13) if and
only if (A,u) € S.

Once explained the strategy that we adopted on the text for studying (R ;) and (S, ), we

will present our results about the positive solutions of

—(1+Aa(x))Au = pu— b(x)u” in Q,
u=20 on dQ, (0.0.15)
u>0 inQ,

The main goal is to analyze what happens if the diffusion velocity depends on space, that is,

a € C*(Q), a € (0,1), is a non-negative function with
Ap:=inta”1({0}), and A, :=Q\A

are smooth subsets, and A is a real parameter representing the velocity diffusion acting only
in A;. Hence, there exists a subregion, Ay, where the species diffuses in a random way, and
another, A, where the species is affected by a diffusion and a parameter A. Since we assume

that 1+ Aa(x) > 0 for all x € Q, we suppose through the work that

1

lallo

A >

Let us introduce a motivation of this problem. In [57] (see also [12] and [11]), the authors
studied a Fisher-KPP problem in a two-dimensional strip, considered as a field where the
species lives. This living space of the species also contains one road, that is assumed to be
unidimensional, where potentially fast diffusion occurs. They showed that the survival in
large time of the population depends on the rate of diffusion in the road. Later in [54], the

problem was studied in an infinite cylindrical domain in R¥ ™!, that when N = 1 is reduced to
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a strip between two straight lines, modelling the effects of two roads with fast diffusion on a
strip-shaped field bounded by them. The authors analysed the existence of an asymptotic speed
of propagation for solutions, as well as the dependence of this speed on the diffusivity at the
boundary and the amplitude of the cylinder. The authors in [20] dealt with the existence in the
case of bounded domain and they also made a wide overview including biological context and
motivations around this subject, namely, the variation of diffusion rate in some region of the
habitat and its influence on the behaviour of the population.

In this context, our diffusion coefficient contains a region where the species diffuses in a
random way, Ao, and another region where the species can diffuse very fast, a road, A when A
is large, or even very slow, A small or even negative.

Hence, our main goal in this paper is to study the influence of this new diffusion coefficient
in the logistic equation with refuge.

Precisely, we are interested in the behavior of the positive solution at the extremes of the
interval of existence, i. e., A,(¢) and A" (). That is, for each fixed u, there exists a unique

positive solution of (R, ,,) if and only if A € (A.(u),A*(u)), where A, (1) is defined by

1
7o ; if i i By .
=0, |-A————F———— |, ifg:=_ lim h(d)<u<o’[—A;
S [ 1+)~*(H)a(x)} A= o (A) < <0[=4 2

and A*(u) is defined by

1 1
Q . . . . By . By .
=0y | -Ai——————|,ifu:= 1 o A, —— | < u<o ’|—A;
H=or [ 1+x*<u>a<x>} ifp:=, tim O [ 1+xa<x>] i< oA ]
and

A% (1) = oo, if O [—A; xay) < 1 < 010 [—A; 2, ]

(see Proposition 5.1.2). For that we will assume that By C Q and A4 U B is constituted by a

finite number of connected components. Specifically, we suppose that

d m
AL UBy = UD,’UC,‘
=1 i=l
where m,d € N, d,m >0, D; C A, and C; ¢ A, are regular connected subsets. That is, we
have separated the connected components into those that are fully contained in A, and those

that are not fully contained in A, but intersect to By (see Figure 5.1 where we have described
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a possible configuration of A U By). Hence,

AyUB . Gt a.
oy [~ xa,) = min {07 [~Ai7a,]},
where Gf*UBO [—A; Xa,] (respectively, O'IC [=A; xa,) }) denotes the first eigenvalue of the operator

—A with weight x4, in A U By (respectively, C;) with zero Dirichlet boundary condition. We

can order the sets C; such that

AL UB " ;
o - 0[—A;XA()] = cylcl [_A§XA0] <...< GIC [_A’XAO]‘

On the other hand, we will also write
m—+d
ALUBy= ]G,
i=1

where C; are regular connected components, and as above we can order them as

614+UBO[_A] _ Gfl [—A] < 6162[_A] < & Glclm-d[_A].

In the following result, we show the behavior of the positive solution of (R), ,,) at the extremes

of the existence interval.

Theorem 0.0.5. Assume that Ao # 0, By C Q and let p < 1 < GIB O[—=A; xa,)- Then we have
the following behavior of the positive solutions uy, by depending on the range of |L.

1) (about the A-extreme superior interval of existence). Ler 11> W, one has:

L1) Ifp < jt < 612 [—A;s ), then A*(11) < oo, and

li ov=0.
il

1.2) If 6 [—As xa) < 1 < 0P 1= Ay xa, ], then A¥ (1) = oo, and
lim ||u;L||C1,y(§)< +oo, for some 0 <y < 1
A—so0

and uy — Ue in C'(Q), where u.. = 0 in the case L = 61*[—A; xa,] and u.. is the

unique positive solution of the problem
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—Au = Ya, (Hu—b(x)u) in Q,
u=>0 on dQ, (0.0.16)

u>0 inQ,

for > o1[—A; xa,)-
1.3) If o[~ As gay) < 07 P01 —A; ya] = W, then

lim [|uy [|2= —oo.
A—o0

G . ..
1.4) If u > o, °[=A; xa,), for some 1 <io < mand for each 1 <i < iy we assume that C;
is isolated from any other component of A+ U By, and a(x)" > M dist(x, dC;) for all
x € Ay \ By in a neighbourhood of dC; for all x € C; for some M >0 and 0 < r < 1,
then

)}im uy (x) =+oo  forallx € Ciand 1 <i<iy.
—»00

C4
1.5) Ifu<u< 0, [—A], for some 1 < jo < m+d, then

sup [y [|p=(p) < e, forall D CC Q\ (u{gla) ,
A<A<A* (1)

where A is any number such that (1) < A < A*(u). Moreover, for any i > U,
then

sup  lup || =(p) < e, forall D CC Q\ (U?'Sda') :
A<A<A (1)

2) (about the A-extreme inferior interval of existence). If L > I, one has
lim uy(x) =+ forallx € By,
i 2 (x) fe 0
and there exists M > 0 such that

uy (x) <M inany D C Q\ By for all 1.(1) <A <A,

where A is any number such that A, (1) < A < A*(u).

(see [53]).
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Remark 0.0.3. We point out that:

a) Theorem 0.0.5 can be restated by assuming Ay = O with the conclusions understood in
according to the conventions that Gy*[—A; xa,] = Gfo[—A;xAO] = Gf*UBO[—A;)(AO] =
oo,

b) The conclusion of item 1.4) of Theorem 0.0.5 follows without any additional hypothesis
l:fA+ \B() =0.

c) We have not analyzed the behaviour in the inferior extreme in the case | € (E, .

Observe that this would lead us to the study of the solution as A — —1/||a||o, and as

consequence the study of the logistic equation with unbounded coefficient. This study will
be carried out in forthcoming work (see [28] for similar results for the logistic equation

without refuge.)

In Figures 3, 4 and 5, we have represented different possible shapes of the graphics of the
w=nh(A) and u = H(A) (see the definitions in (5.1.2)) as well as the existence regions, that is
the region defined by (5.1.3).

! A ()

B existence region | existence region

" Tall

Fig. 3 Existence regions: the case By =0, Ay # 0 and u= 0 (left) and the case Ag, By # 0, and
ApNBy=0and 0 < H<u. (right)
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R G I B e T

01(—A; X Ag) === mmmmmmmmmma

llallo

B existence region @ existence region

Fig. 4 Existence regions in the case By # 0: on the left the case 0 = u < . On the right, the
case 0 < U < < oo

o R —
o P (—Aixa,) -
01(—A; X ay) T e mm e e

- ||a\1\c,° Ax ()

existence region

Fig. 5 Existence region in the case Bo # 0 and 0 = u = 1.

As a consequence of Theorems 0.0.5, we can observe the drastic change that occurs between
the problem with homogeneous diffusion coefficient (0.0.9) and the heterogeneous case (R ;).
Indeed, in the first case there is no solution when the diffusion coefficient is large, however, in
the heterogeneous case, when Ay # 0 and for birth rates with intermediate values, the population
persists for very large values of the diffusion coefficient, and even grows uncontrollably in the
refuge and in the fast diffusion zone. Also, we have studied the behavior at the inferior extreme,
showing that the solution blows up in the refuge and remains bounded in the rest of the habitat.
We will delve deeper into these biological consequences in the last section of the paper.

In Section 5.2, we study the problem
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—Au+ AV (x)u = um(x)u—b(x)u” in Q,
u=0 on dQ, S
u>0 in Q,

The term AV (x) measures the degradation of the harsh patches of the territory, where V > 0,
whereas the non-degraded patches of € are the regions where V = 0.

With regard to the literature on the behavior of the positive solutions of (S ;) in the case
where  is fixed in A varies, we quote [15] and [55]. The authors in [15] study the case which is
similar to our analysis with A — 4o but with different boundary conditions so that their result
can be interpreted as closely related to item 3) of Theorem 0.0.5. The analysis of Theorem
0.0.5 is related to problem (1.3) of [55], by making m(x) = x¢, V(x) = xB, b(x) = X, where
G (non degraded area) and B (degraded area) constitute a partition of Q, p = 2 and substituting
the Dirichlet boundary condition for Neumann. Our result with respect to the behavior of
the positive solution u, , when A — +eo compliments their result in the case of the Dirichlet
boundary condition. See also [41] and its references.

The next theorem we will present includes the phenomenon of blow-up in the boundary of
certain regions of Q. This is a very fine qualitative information and because of that, Theorems
5.2.2 and 5.2.3 were required. Theorem 5.2.3 was inspired by Theorem 4.8 of [45]. Theorem
5.2.2 is inspired on the pioneer work [46], where the authors proved the following refinement
of (0.0.12) for the solution ug y of (S ;) with A =0and m = 1.

l%m ug,y = oo uniformly in compact subsets of By (0.0.17)
uto, O[-A]

and
lim  upy(x) =+ VxedBy (0.0.18)
uto, -]
by assuming By C Q.
For the case m # 1, it was proved in [39] a generalization of (0.0.17) to m possibly changing

sign, that is,

lim  uy , = oo uniformly in compact subsets of By, (0.0.19)
utoyO[—Am]
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by assuming By C Q and
m > 0 in a neighborhood of By. (0.0.20)

According to the authors, it was necessary to impose this condition in order to deal with the loss
of monotonicity of the positive solutions that occurs if m changes sign. As clearly explained
in [39], the analysis of positive solutions of the problem (S ,) is harder in the case where m

changes sign. Also in [39], the authors generalized (0.0.18) proving

gim uo.u(x) = +ooVx € dBy (0.0.21)
uto, O[—Am]

requiring (0.0.20) and By C Q.

In [47], the condition (0.0.20) of [39] was relaxed and it was shown that (0.0.19) still holds
by imposing m(xg) > 0 for some xy € By and more regularity under m. Moreover, we do not
require By C Q. With techniques similar to [47], we proved Theorem 5.2.2.

In order to enunciate the results about (S, ), we will introduce some notations.

Let us denote

Co:={ueC([0,A]), 0<A<oo;(A,u(A)) €eSVAE0,A)}

and

Coo i= {u € C([0,+00)); 3p(o0) := lim w(A) <ooand (A, u(A)) €SV A€ [o,+oo)}.

A—>+oo

Note that since (S} ;) is a particular case of (0.0.13) with m(4,x) =m(x) and b(A,x) = b(x),

then the above definitions of Cy and C. consider as S the family
S:={(A, 1) € R OP[-A+AV —um] <0 < Gfo[—A+)LV —um]},

where By = int{x € Q;b(x) = 0}.
We will denote u, :=uy, (3 for each p € CoUCw and Dy := VoM Bo.

Once we have settled these notation, we get the following theorem.
Theorem 0.0.6. One has:

1) Let Uy € Cy and consider the family u) of positive solutions associated to L.



Introduction 23

1i) If}Li%n/,Lo()L) = 61 [—~A+ AV;m], then
A
}Ligl\ﬂuﬂlcg(ﬁ)za
1ii) Ifmuo()t) = O [—A+ AV;m], then
li — o0V x € By. 0.0.22
)ngl\ul(x) x € By ( )

If m € C" for some r =r(N) > 0, then the above convergence holds uniformly on

compact subsets of By. Additionally, if
d
WA #—|  oP[-A+AV;m], (0.0.23)

Vb =0in dBy, By C Q, the functions m and V are holomorphic in a neighborhood
of By and Ly can be extended to a holomophic function defined in an open interval

containing A, then

lim =00V x € dBy, 0.0.24
i (x) x 0 ( )
by whence
oo X € BO,
limu) = L (0.0.25)
ATA Lmin(x) x € Q\ By,

where Ly, stands for the minimal large positive solution of the singular problem

( —_
—Au+AV(x)u= Gfo[—A+AV;m]m(x)u —b(x)uf in Q\ By,
U= —oo on dBy,
u=>0 on dQ,
u>0 in Q\ By,

\
2) Assume that Vo # 0, m(x) > 0 for some x € Vo and Voy € Bo. Then leo [—A;m] is positive,
finite and GIV" [—A;m] < GlDo [—A;m] < o0, Let Uo € Coo and consider the family u, of

positive solutions associated t0 .
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2i) If lim fe(A) = 6)°[—A;m], then
A —o0
Jim [lu [| ¢y @)= O-

2ii) If 6\°[—A;m] < Jim p(2) < o0 [—A;m), then Jim (|, — thel|oo= 0 where ue is
—300 —>0
the null extension of the unique positive solution of

—Au = lim Yoo (A )mu —bu® in 'V

A—oo

u=>0 on dV.

2iii) If 0 # Dy € C?, m(x) > 0 for some x € Dy and /1lim Ueo(A) = GIDO[—A; m)|, then
—»00

lim uy (x) = oo V x € Dy. (0.0.26)

A—re0
Ifm € C" for some r =r(N) > 0, then the above convergence holds uniformly on

compact subsets of Dy.

Additionally, assume that there exists a component I of dDg such that T NJQ = 0,
IrcMy ={xeQ;m(x) >0} andT CVy (see Figure 10). Then

lim 1y (x) =0V x €T (0.0.27)

A—ro0

In particular, if By C Vo C Vo C Q and 0By C M, then

o0 X e Bo,
lim uy (x) = o (0.0.28)
A—rpeo Lmin(x) X € Q\Bo,

where Ly, stands for the minimal large positive solution of the singular problem

—Au= 6" [~ A;m]m(x)u— b(x)uPin Vo \ By,
U= —+oo on dBy,
u>0 on Vo \ By
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3) Assume that 0 # Vy C Bo, M NVy # 0 and let 0 < A, — oo. Then there exist sequences
&(An) and p(Ay) such that (A, IL(An)), (An, 4(An)) € S and x,, € By such that

lim u(A,) = lim @A) = ol °[—A;m),

n—y—too— n—y+oo

Jim 7, (x,) = = and lim | =0,

where U, (respectively, u,) is the sequence of positive solutions associated to (A, [(Ay))

(respectively, (An, 1(An)))-

The convergence (0.0.27) and (0.0.24) are very fine qualitative information about the
behavior of the positive solutions of the problems. The proof of them required ingenious
techniques presented in Theorems 5.2.2 and 5.2.3, respectively.

For the sake of clarity, we would like to highlight the contributions of Theorem 0.0.6 to the

literature.

1) The blow up result given in (0.0.22) complements (0.0.21) proved by [47], showing that
the blow up in the boundary of B remains true even if another parameter besides the birth
rate, namely the degradation rate, vary simultaneously with the birth rate approximating

to a finite value A.

2) Item 2iii) of Theorem 0.0.6 shows that the well known phenomenon of blow up in the
refugee with A = 0 when the birth rate y approximates to its maximum (see (0.0.17))
keeps happening to the positive solutions of (S ,,) (at least in the subregion V) of the
refugee) even when the approximation of the birth rate pt(A) occurs asymptotically as A

grows indefinitely.

3) (0.0.27) extends the result of blow up in the boundary of the refuge given by (0.0.21) to a
blow up in a component I of dDy in the case A = +oo at least for when I and m satisfies

appropriated conditions.

4) Lemma 2.3.1 extends the a priori bound (4.3) of [32] to the case A = +o.

In the following figures, we illustrate examples of Uy, U and I satisfying the hypotheses

of the above theorem.
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Fig. 6 Existence region
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Fig. 7 On the left: an example of g satisfying item 1i) of Theorem 0.0.6. On the right:
example of Ly satisfying item 1ii) of Theorem 0.0.6.

© o
) o [-A 4+ AV;m]
oYoBo[_A;m) A oVoMBo_Aym) - e
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o [~A;m] 1 o [-Asm]

A A

Fig. 8 On the left: an example of ., satisfying item 2i) of Theorem 0.0.6. On the right:
example of L. of item 2ii) of Theorem 0.0.6.
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Fig. 9 On the left: an example of . satisfying item 2iii) of Theorem 0.0.6. On the right:
example of sequences (A, i (4,)) (represented by dots) and (A, f,,(4,)) (represented by x’s)
satisfying item 3) of Theorem 0.0.6.
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5

Fig. 10 dBy is an example of I satisfying the hypothesis of item 2iii) of Theorem 0.0.6.
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Now let us present an overview on the structure of the text.

The content of Chapter 1 is about the behavior of the first eigenvalue and its associated
eigenfunction with respect to variations of the potential, domain and weight of the eigenvalue
problem operator. The introduction of the chapter provides some basic properties that can be
found in [44] and [26]. In Section 1.1, we prove Lemma 1.1.1, that estimates the H(% (Q)-norm
of a certain power of the principal eigenfunction from above by the integral of a power of the
principal eigenfunction multiplied be the weight. Lemma 1.1.1 also provides an estimate of the
L=-norm of the principal eigenfunction from above by its L>-norm. This estimate, will play an
important role in the proof of Theorem 4.2.1. In Section 1.2, we prove Theorem 1.2.1 that will
play a crucial role in Item 1.4) of Theorem 0.0.5. Section 1.3 is dedicated to provide a fine data
of the variation of first eigenvalue with respect to the domain. This information is crucial in the
proof of (0.0.24), as the reader can attest in the proof of Theorem 5.2.2. Having explained the
role of Sections 1.1, 1.2 and 1.3, which primarily impact Chapters 4 and 5, readers who focus
solely on Chapter 2 and are familiar with the basic properties of the principal eigenvalue can
safely skip Chapter 1.

Chapter 2 provides the proof of Theorem 0.0.1, an abstract result on topological methods
that will be used in the proofs of Theorems 0.0.2 and 0.0.3, which in turn are presented in
Sections 3.1 and 3.2, respectively.

Chapters 1 and 4 provide together the abstract results that are used in the proofs of Theorems
0.0.5 and 0.0.6, which in turn are presented in Sections 5.1 and 5.2, respectively.

In conclusion, this work presents some results on topological methods and some applications
in analyzing the existence and behavior of solutions near singularities and degeneracies of some

nonlinear elliptic partial equations.



Chapter 1

Refined results on weighted eigenvalue

problems

Theorems 0.0.5 and 0.0.6 provide qualitative information of the positive solutions of (S, ,)
and (0.0.13), respectively. By depending on the variation of the parameters A and u in these
problems, the associated family of positive solutions u, , may be uniformly bounded or blows-
up. Both phenomena strongly rely on the behavior of the positive eigenfunctions and the
associated eigenvalues with respect to the potential, the weight and the domain. This chapter
focuses on establishing and proving results concerning these behaviors.

Let us give a brief overview on the content of this chapter. Before Section 1.1, we present
some basic properties of the first eigenvalue that can be implied or deduced from [44] and
it will be used frequently in this text. In Section 1.1, we proof a L (Q)-estimate of Moser’s
type that will play a crucial rule in the proof of Theorem 4.2.1 which, in turn, pavements
the case of uniformly boundedness mentioned in the previous paragraph. In Section 1.2, we
prove Theorem 1.2.1 that explicit the limit of the first eigenvalue with respect to exploding
potentials. In a particular case, we can also determine the limit of the associated family of
positive eigenfunctions (see Remark 1.2.1). By relaxing hypothesis (2.7) of Theorem 2.4 in
[32], Theorem 1.2.1 provides a complementary result. This weakened condition is crucial for
Corollary 5.1.1 (as noted in Remark 5.1.1). Finally, in Section 2.3, we prove a result about fine
qualitative information about the first eigenvalue with respect to the perturbation of the domain.

This result will play a key role in proving (0.0.24).
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Before enunciating some properties of the first eigenvalue, we will establish the following
notations and conventions. Given open subset U of Q and m € L™(Q2), we will denote by

GIU [—A;m] the principal eigenvalue, in the sense of [26] or [44], of the problem

—Au = pm(x)u inU,
u=>0 on dU, (1.0.1)
u>0 on U
whenever the set {m > 0} NU has positive Lebesgue’s measure. On the contrary, we will
adopt the convention that 6 [—A;m] = +eo as U is the empty set and o1[—A] = o1[—A; 1].

We recall some well-known properties of the first eigenvalue o¥[~A +c|, ¢ € L7(Q), of

the problem
—Au+c(x)u=pu inU,
u=0 ondU,
u>0 on U,

see for instance [44].
Proposition 1.0.1. One has:
1. The map ¢ € L”(Q) +— o [~A+c] is continuous and increasing.

2. Assume c > 0inU, ¢ #0in U, then

lim oY [~A+rc] = —oo, lim o [-A+rc]= GlUmCO[—A]a
F—>—o0 r——o0

where
Co :=intc™1({0}).

Take now m € L™(Q), m >0, m # 0 in U and consider the eigenvalue problem

—Au+c(x)u=um(x)u inU,
u+c(x)u= pwm(x) (10.2)
u=20 on dU.

Observe that the study of principal eigenvalue of (1.0.2) is equivalent to study of the zeros of
the map
r(u) := ol [-A+c— um). (1.0.3)
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Thanks to Proposition 1.0.1, the map u — r(u) is continuous, decreasing, and

Jim_r(u) =0 M0[-Atd], lim (i) = —e,
where My :=intm ™1 ({0}), and we are using the convention GllmMO [—A+c] =+ if UNMy =

0.

Hence, we get:

Proposition 1.0.2. Assume that m > 0, m # 0 in U. Then, there exists the principal eigenvalue
of (1.0.2), denoted by ¥ [—A+ c;m], if and only ifGlUmMO[—A—i— c] > 0. Moreover, the map
(1.0.3) verifies that

r()>0ifu < ol[-A+c;m]and r(n) <0 if u > oV [~A+c;m].

Finally,
ol [~A+c;m] > 0 ifand only if ¥ [-A+c] > 0.

Let us note that, according to our notation,
oV[—A+c] =V [-A+ci1].
The following properties of GIU [—A+ c¢;m] will be used along the paper (see [44] and [26]).
Proposition 1.0.3. Assume that m >0, m # 0 in Q and 67 "M [—A+¢] > 0.
1. The map ¢ € L™(Q) — oV [~A+c;m] is continuous and increasing.

2. The map m € LT (Q) — o [~A+c;m] is continuous and decreasing.

3. Assume that Uy C U, C Q, then Gle[—A+c;m] < GIU1 [—A+c;m]. If moreover, Uy C U,
then Gle[—A—f—c;m] < crlU1 [—A+c;m).
1.1 L7(Q) -estimates of Moser’s type

In this section we will prove a L™(Q)- estimate of Moser’s type that will be very useful in the

proofs of the Section 4.2.
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Lemma 1.1.1. Let {m) }; cp and {hy } ; ca be families of functions L™ (Q) such that hy ,m; >0
forall A € A. Suppose that @), is the positive eigenfunction in H(; (Q) associated to 612 [—A+
h;L;m,l] > 0. If

sup 61 [—A+hy;my] < +eo and @ € LITH(Q) for some g > 0,
AeA

then there is a constant D > 0 such that
2 +1
1V 10y < D [ mag ™ v A e,

where @; = kv, k=r'/"/ (ql/(zr)) andr=(q+1)/2.
Additionally, if sup||my || =(q)< +oo, then there is a C > 0 such that
AeA

1921 (@) < C(L+ |92 12(0))- (L.L.1)

Proof. By the definition of ¢, , we have that
/QV<P;LV¢+/QhMP/1¢ = sz[—AJrhx;ma]/QmMPMP V€ Hy(Q).

By making ¢ = (p;‘f, we deduce that

49 2o =11y 0, |2
L[IvuP = [ a0l Vel

1 1
= sz[—AJrh;L;mx]/ my )" —/ hyof"
Q Q
< Csqu?[—A%—h;L;ml]/ m;Lq))qLH,
AEA Q
where uy =kvy, k= r(])/r/ (q(l)/(zr)>, r=(g+1)/2.
Now let us prove the second statement of the lemma. Let f > 1 and define z = ¢ + 1,

o= 2 —1> 0. Note that Vo = ﬁzﬁ*IVz and Vz = V¢, . So by taking ¢ as a test function in
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the definition of ¢, , we obtain

BV < B[ PV [ g
Q Q Q
= G?[—AJrh/m;mx]/QmMPMP
= G?[—A—th;mx]/gm,l(z—1)(Zﬁ—1)
= G?[—AJrhx;mx]/me(ZﬁH—Z—ZB+1)
= G?[—AJrh/l;mx]/sz(ZﬁH—Zﬁ—w)

o}’ [—A+h/1;mx]/mxzﬁ+l

IN

IN

sup of [~A-t s suplma - |2
AeA

SO

B [, 1VP< sup o [t iy suplma - [
Q AEA

Therefore, by argueeing as in Lemma 6.7 of [27], we deduce that

192, [l < C(l[ @, [241)-

1.2 On eigenfunction and eigenvalue limits of unbounded

potentials

This section complements Theorem 2.4 in [32]. Specifically, we relax hypothesis (2.7) of that

theorem, a modification crucial for Corollary 5.1.1.

Theorem 1.2.1. Let {my } >0 and {qy } >0 be families of funtions such that 0 < my € L (L),
my, — Me in L7 (Q), 0 < g, € L7(Q) and Qy a connected open subset of Q. Suppose that
there is some & > 0 such that

{x € Us; mo(x) >0}| >0, (1.2.1)
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where Us = {x € Qy; dist(x,dQy) > 6},
gr(x) > 4o VxeKk,

where K is a compact subset of Q\ Qy. Moreover, assume that there exists some constant M

and some V € L™ (Qy ) such that
qy(x) = V(x) for a.e. x € Qy

and

g (x) < %for a.e.x € Qy, (1.2.2)

where d(x) := dist (x,dQy)

Let @) be the positive eigenfunction associated to
Q .
o1 [—A+qp; my]

with || @a[l;2q)= 1. Also, let @u be the positive eigenfunction associated to GIQV[—A,moo].

Then the following convergences hold.
o [—A+gpimy] — o) [A+V,m.]

and
lim ( |l@r — @2, +/%<P,% =/ V(x)e2
A— oo Hy(Q) " g Q

Proof. Note that by using (1.2.2) and the convergence m; — m. in L”(Q), we get that

o1 [~ A+qy3m;)

o
A

U,
) P [—A+qpimy]

M
o |-t i)

IN

infy,d(x)’
Us M .
< A+ ————— Mo 1 1.2.3
= { +infuaal@c)’"]+ (129
< oo
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for all A > Ay, for some large Ay. So

0 < sup 612 [~A—+qyimy] < 4oo. (1.2.4)
A>0

By the definition of ¢;, we have

—AQ; + 43¢5 = 01> [—A+qy3my | m) @y in Q,
@, =0 on 9Q, (1.2.5)
0, >0 on Q

Take A, — +oo. Note that by testing (1.2.5) against ¢, , we deduce that ¢, is bounded in
Hy(Q). So there is a ¢w € Hy () such that (up to a subsequence) ¢ — @ in Hy () and
@3, — P in L*(Q). Note that .. € Hy (Q) is non-negative and satisfies || @u|| 12()= 1 and so
¢e 7 0.

We claim that @, = 0 in Q\ Qy. Indeed, let D CC Q\ Qy, consider a positive ¢ € Cy (D)

and let us abuse the notation by denoting ¢ as the null extension of ¢ to Q. So

/V(pwV(p—i—liminf (/ (I)LH‘PAn(P) < 1iminf(/ Vq),an(p—k/ qln(p;tn(p)
Q Qf Q Qf

< liminf(/ VQDMV([)-I—/CM”(P}L”QD)
Q Q

= liminf(GlQ [—A+qg;m1]/ma§%€0)
Q
< oo,

that is,

liminf (/ qln(p/ln(p) < oo,
Qy

By the arbitrariness of the positive ¢, we deduce that

Pulx) =0V x € Q\ Qy.
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Now, let us prove that ¢.. is the positive eigenfunction associated to Glg V[—A+V,me|. Take

@ € H} (Qy). Observe that ¢ € H} (Qy) C H} (Q), so we can test (1.2.5) against ¢ as follows.

/Q Vo, Vo + /Q q3,01,9 = /Q Vo, Vo + /Q a2, 0,9
Vv 174
= o} [—A+q/1n;mxn}/gmx%,¢

= of [—Aﬂlan;”%}/g my. ¢, Q- (1.2.6)
14

Note that
lim q95,9 = VoVxeQy.

n——+oo
Moreover,

¢
<M—— .
q,ln(x)(p _Md(x) VxeQy

But |@|/d € L*(Qy) by the Hardy Inequallity. Consequently, by passing to the limit in (1.2.6),

we deduce that @ is a nontrivial non negative solution of

—Av+V (x)v =lim o @ [—A+q),;my, | mev in Qy,
n

(0} =0 on aQ\/,
Q>0 on Qy

By the Strong Maximum Principle, it follows that @., is the positive eigenfunction associated

to O'IQV[—A,mw] and

limof [~A+qy,imy,] = 67 [~A+V;me) (1.2.7)
n
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up to a subsequence.
Now, by testing (1.2.5) against ¢ — @, we deduce that
/ V(ps, — ) = / Vo V(91— 9) / VoLV (P2, — ¢-)
Q Q Q
= /vanv(fm — @) —0n(1)
— Q .
= of [-A+qp,im,] /Qm;tn%(m — Qo) —
~ | 42,92, = 0=)—0u(1)
= (1)~ | 42,92,(92,— 0) —ou(D)
That is,
LIV, = 0P+ [ a0 =D =0s(D)+ [ ar a0 128
Now, observe that
P (¥)
oo (X) < M VxeQ.
03,()9(0) < M7 S x e
But
gy, (X) @Poo(x) — V(x) o (x) for almost every x € Q.
So
/ 3, P2, P — / V().
Q Q
Finally, by passing to the limit in (1.2.8), we deduce that
/ IV (92, — qooo)|2+/ 4,95 — / V(x)@2.
Q Q Q
]

Remark 1.2.1. Observe that in the particular case V = 0, we have that @;, — Q. in Hj (Q).
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1.3 First variations of the first eigenvalues due to domain

perturbations

The results of this section sharpens [47] by refining the condition of the function R (see
condition iii) of Theorem 1.3.1). This refinement is necessary to prove (5.2.22).

Let us set for sufficiently small § ~ 0,

(xeQ : dist(x,By) < 8}, if § >0
{x€By : dist(x,dB) > — 8}, if 8 < 0.

Bg =

Theorem 1.3.1. There exists a bijection Ts € C*(Bo;RY), Ts : By — Bs and gy > 0 satisfying
the following properties:

i) The family Ty is real holomorphic in 6 for 8 ~ 0, i.e., every Ty is a Cz—diﬁ‘eomorphism

that can be expressed in the form
T5(X)=)C+ 5R(x), XGB(), (L.3.1)
with R € C*(Bo;RY) and

|DXR||ee 5y:= sup | DER(x)[|, 0<k<2.
x€By

ii) For each x € By such that dist(x,dBy) < &y, it is well defined the normal projection of x
onto dBy, m(x) € dBy,

iii) R(x) = n(m(x)) for all x € By such that dist(x,dBy) < € /4, where n is the outward unit

normal vector in dBy.

Proof. Since dBj € C?, then there exists &y > 0 such that the set
A = {x € R¥;dist(x,dBp) < &}

is a tubular neighborhood of dB due to [29], in the sense that, for each x € A, there exist
unique z € dBy and —&y < T < &) such that

x=z—1n(z), (1.3.2)
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where n(z) is the outward normal vector in z. By reducing &y > 0 if necessary, we have functions
T € C*(A,R) and 7 € C*(A, dBy) such that

x=mn(x)—1(x)n(x(x)), Vx€A. (1.3.3)
By the definition of 7, we have
7(x) = dist(x,dBy) V x € A. (1.3.4)

Let 2 € C(By;R) be the extension of 7 to By defined by #(x) = & if dist(x,dBy) > €. Let
A € C*(By;RY) be any smooth extension of the field n to By and consider any function { €
C3([0,0);[0,00)) satisfying

C(t)=1,1€[0,8/4), {(1)L'(1) <0, T€ (g/4,8/2), {(T) =0, T>g)/2.

Define the mapping

By using (1.3.4), it is easy to check that

0if dist(x,dBg) > &/2, (1.3.5)
R(x) = 4 C(t(x))n(m(x)) if dist(x,dBo) < €0/2, (1.3.6)
n(m(x)) if dist(x, dBo) < &/4. (1.3.7)

Let us define
Ts(x) = x+ O6R(x), V x € By.

Let us prove that Ty is a bijection. Observe that by (1.3.5), the restriction of 75 to V :=
{x € By;dist(x,dBy) > &/2} is the identity map. On the other hand, if x € U := {x €
By;dist(x,dBy) < &/2}, then Ts(x) = x or

Ts(x) = x+ 68 (t(x))n(m(x)).

Then using (1.3.3), it can be easily verified that Ty is a bijection from U to U U {x € RN \
Bo; dist(x,dBg) < 8} (UU{x € By; dist(x,dBy) < —0}, respectively), if § > 0 (8 < 0, respec-

tively). The function Tj satisfies all the requirements of the theorem. ]
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Consider the principal eigenvalue, G]B 3[—A— u(A)m(x) + AV (x)], of the linear eigenvalue

problem

—AQ — u(R)m(x)p+AV(x)p = 0@ in Bj,

©=0 ondByg,
¢>0 1inB;j
is well defined, as well as its associated principal eigenfunction, ¢, , normalized so that
|®1||2= 1. Moreover, as a direct consequence of the strong maximum principle, ¢, > 0 for

every A > 0 and sufficiently small 6 > 0.
Take now a real function p analytic in (A—n,A+1n), n > 0 and such that

1(A) = 6L [—A+ AV (x);m(x)].

On the other hand, consider the principal eigenvalue, GIB 8[—A—pu(A)m(x)+ AV (x)] and its
principal eigenfunction, ¢, , normalized so that || @y |[2= 1.

The next result is the main theorem of this section. It is a substantial extension of Theorem
2.1 of Lopez-Gomez and Sabina de Lis [46].

Theorem 1.3.2. Let 1 > 0 and assume that L is an analytic function defined in (A—1n,A+1).

Also assume that m and V are analytic in a neighborhood of By and
H(A) = 07 [~A+ AV (x);m(x))]. (1.3.8)

Then, so is the family (Gf‘s[—A— w(A)m(x)+ AV (x)], I/I;L75>, where W) 5(x) = @3 5(T5(x))
for all x € By. In particular,

ws=Wao+ v + A Ay +1(2,6),

5 1) (1.0) (1.3.9)
o0 [A+ AV (x) — (A)m(x)] = 84" + (A~ A +g(2.5).

where r and g are functions that satisfy

=0.
6—0 o 6—0 1)
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Moreover,

Pl 2
200 = —/ ( "”A’O) as<o, A= —/ (W (Aym(x) — V(X)) 92, (1.3.10)
dBy 311 By ’
Proof. To simplify the notation, we denote by
f(R,8):= 0{°[~A+ AV (x) — t(A)m(x)]

To find out 11(1’0), we can proceed as follows. By setting and differentiating with respect to A

the problem

=A@y 0+ AV(x)P10— H(A)m(x)Pr 0 = f(4,0)@3 0 in By,
Pr0="0 on dBy, (1.3.11)
(Pl.,O >0 in By

we obtain that

(=A+AV(x) = u(A)m(x) = £(2,0))93 o = (1'(A)m(x) = V(x) + ' (2,0)) 20 in B,

I

¢30=0 on dBy,

Thus, multiplying by ¢, ( and integrating by parts in By, we find that

iy (W M )m(x) =V ()97
fBo (pﬂzt,o ‘

f1(A,0) = (1.3.12)

Consequently, particularizing at A = A yields

A = [ W Wm@ —v)ede

The calculation of ll(o’l) is much more complicated and involved. Let us set

yi=Ts(x),  T5'():=(3.6),....hn(»8)).
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A calculation leads us to
L (x,Dx,A,8)y3 5= f(A,8)y s inBo,yps5=0 ondBy, (1.3.13)

where we have denoted

2 N

Dyl 52 = Y. Aoy — (AT )+ AV(T3( ).

N
L (x,Dy,1,8) :=— Y (Dyhy,
(= /=1

k=1

Now, arguing as in [46] it is easily seen that the coefficients (Dy/y, Dyhy) and Ayhy are real
analytic in 0 for 6 ~ 0, and that they are given by

OR OR
(Dyhy,Dyhy) = 8y — S (a—x;(x) + 8_x:(x>> +0(8%), (1.3.14)
Ayhy(T5(x)) = — AR (x) +0(8%). (1.3.15)

Moreover, for x € By and 6 sufficiently close to zero, we have
k=1

and
V(T5(x) x)+ Z §*G! (1.3.16)

By combining (1.3.14), (1.3.15), (1.3.16) and (1.3.16), we deduce that for each given ¢ € H(% (Q)
and y € L*(Q), there exists a;; € R such that

/q)gxpx,xé = Y a8 (A —AY for (1,8) ~ (A,0).
i,j=0

According to Kato [35] (see [46]), the above equation implies that the family

(f(l, 6)7 (PL(S)

is real analytic at (A,0), fort ~ A and 6 > 0.
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By substituting (1.3.14) and (1.3.15) in (1.3.13) with A = A, it follows that
N IR IR, *Yp 5 il AN
_k’zz_l |:6kg ) (a—xz(X) + a—x]((X)):| anaxg (X) + (Sg_ZIAng a)Cg (.X) (1317)
—1(A)m(Ts(x))Wa 5 (x) + AV (T5(x)) = (1.3.18)
F(A,8)wp.5(x)+0(8%). (1.3.19)
On the other hand,
w(A)m(Ts(x)) — AV (T (x)) = w(x) + 6w (x) + 0(8?), (1.3.20)
where, owing to (1.3.1),
W= 4 _
W) = sl o [r(A)m(Ts(x) = AV(T5(x))] =
6=0
d
(L(A)Vm(x) —AVV(x), —<|  T5)=
dd 5
(UW(A)Vm(x) — AVV(x),R). (1.3.21)
Thus, by substituting (1.3.20) into (1.3.17), we get
ul IRy IR, )} *Yps Al IV 5
— O —0 | =—(x)+=— ——((x)+0) AR ’ 1.3.22
k,KZ:I { ke ( dxy (x) oxy (x) dx;dxy () é:z"l ¢ oxy (x) ( )
(A yip 50) + AV () yip 5() = 8w () () (13.23)
075 [~ A — p(A)m(x) + AV (x)]yp s (x) + 0(82). (1.3.24)
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Moreover, since (1.3.9) holds and substituting it in (1.3.22) with A = A yields to
Ry
dxy OC)”
JRy
)

1)

+6 i AxRﬁWA’O +§8° i ARy A H(A)m(x)ya o(x)
= oxy =1 oxy '

_y [(M 5 (aRk(

k=1

0
5y {M 5(‘9Rk( )+

k,f=1 dx

Xk 0xp

8xk8xg

321/’1\,0
0
} 8211/1(071)
0

+ AV (X)Wa0(x) — (1 (A)m(x) — AV (x)) %V
- SW(])(X)II/A,o(x) +52W(1)(x)1//1(0’1)(x) +5/11(0’1)1//A,o+o(52),

But, since

Al ) ZV’A 0
- HZI K i —AWp 0 = W(A)m(x) Y0 — AV (X)Wa 0,

substituting this identity into the previous one, we find that

N JdRy, JdRy 821//,\ 0 ORy oRy 821[/1(0’ )
MZ_I(S < dxy () + X (x)> Ix0xy -0 Z {6]{( 0 (8Xg () + Ixy, (x))] dxxIxy

k=1
N p) b (0,1)
15 Y AR, (;”A°+522ARK P s(u(Amx) — AV () "
=1 X X

= 5w () ya () + 82w (1) y*! (x) + 82"V ya 0 + 0(8?).

Consequently, dividing by 6 and letting 6 — 0, it becomes apparent that

N [ ORy IRy 9%y 0 ( WA p 0,1)
3 (G Gw) S Al LAk T ummn* s
AV(X)%(O’I) :W(l)(x)‘lfA,o(x)Jr/ll( " )II/A,O'

On the other hand, by applying the Fredholm Alternative and using that

VA 0(®) = @a0(x),  [[waollzs)= lleaollzsy)=1,
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we deduce that

N /OR OR 92
A](O,l) — / Z ( k (x) + ( (X)) lV/\,O II/A7()
Bo ji=1

oxy dxy, 0xxdxy
N 3 (1.3.25)
Y0 1),,2
f [ sy, [ g,
Z_Z:I By ‘ dxy Va0 Bow Yao

By arguing as in [47], that is, by integrating by parts, divergence theorem and using the

definition of Yy o, we have that

/’L](O,l) :_2/ <RJVWA,O><VWA,O>”>dS+/ Vol (R.n)dS
3B, dBy

+ [ Vm@me) - AVE@) R [ ¥R

Therefore, owing to (1.3.21), we find that
200 = 5 /a RV 0) (VY. mdS + /a _[V¥nol(R.m)ds. (1.3.26)
0 0

Finally, taking into account that

Vi o(x) = 9?}/1\,0 (x)n(x) forall x € dBy,

it becomes apparent that (1.3.26) provides us with the identity

2
o1 _ YA
A0 = /830<R,n>( ’ ) ds.

On the other hand, one can assume that R|,p = n, where n stands for the unit outward normal
field of dB (see Section 3 of [46]). Therefore.

2
200 = _/ (a%") ds <0, (1.3.27)
9B,

on
This ends the proof. [

Conclusion of Chapter 1
The H& (Q)-estimate in Lemma 1.1.1 complements Lemma 6.7 of [27] by incorporating the

weight m; . Notably, this estimate does not require uniform boundedness of m; with respect
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to A. While this aspect was not explored here due to the uniform boundedness of m; in our
applications, it presents an avenue for future research. Another potential direction for future
work is to investigate the case where the limit V of the potentials g; in Theorem 1.2.1 is
non-zero. Theorem 1.3.2 demonstrates that the foundational ideas of [46], later refined in [47],
remain effective even with the inclusion of an additional parameter. We emphasize that its
application in Theorem 5.2.2 to prove blow-up on d By necessitates the transversality condition
(0.0.23). This technical necessity naturally raises the question of whether blow-up on d B still

occurs without this additional condition.



Chapter 2

Connected set of solutions from a

continuation theorem on open sets

This chapter is focused in providing the abstract results on topological methods that will be
applied in the following chapter in order to obtain existence and qualitative information about
positive solutions of the problems (P, ,) and (O, ,), noted in the Introduction.

Section 2.1 is dedicated to a continuation theorem. In Section 2.2 we prove a positiveness-
continuity-principle based on connectedness properties. This principle we guarantee the strong
positiveness of the solutions lying in the connected sets of solutions of (P, ;) and (Q; ).
Finally, in Section 2.3, we prove an equivalence between two concepts from distinct contexts:
the abstract formulation of compact operators K and the realm of PDEs. Specifically, we
connect the proximity of a set of positive solutions for the equation u = K(A,u) (in the sense
defined in this chapter) with a region in the parameter space of a PDE that corresponds to

singularities.

2.1 A Continuation Theorem for operators defined on open

subsets

The main goal of this section is to prove Theorem 0.0.1.
After this motivation, let us fix additional notations as those done in the Introduction. For
each open subset A (AY) of i (") and A € R, the A-slice of A (A") is defined by

Ay ={ucE; (A,u)cA} (A) ={ucE; (A,u)cA"})
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and the A-projection of A is given by
proj; A={A €R; (A,u) € A forsome u € E'}.

Let us denote by %,(A,u) (%8, (A,u)) the open ball of U (") centered at (A,u) with radius
r >0, B,(u) is the open ball of E centered at u with radius r > 0, and remind that a subset S of
U is considered a maximal connected subset if it is connected and not properly contained in
any other connected subset of S.

Before starting, let us give a briefing on our strategy for the proof of our theorem. First,
we show that T NS~ # (. So, we can take, for each side, the component of solutions
with A # Ag. In the sequel, we assume by absurd that &V (for v € {—,+}) does not satisfy
neither of the alternatives i),ii) nor iii). As a consequence of this assumption, we can use
a topological result due to Whyburn (see Lemma 2.1.3) in order to construct an admissible
open neighbourhood of this component (see Lemma 2.1.4). Finally, by using a generalized
homotopy property (see Lemma 2.1.1), we get to a contradiction with the fact that the index of
® at A = A relative to 0 be different from zero.

Now we will enunciate some auxiliary lemmas. The first one guarantees that the A-degree

function A — deg(®,,0;,0) is locally constant.

Lemma 2.1.1. Let v € {—,+} and OV be a bounded and open subset of U such that 0 ¢
®(J0") and dist(O0Y,0U") > 0. Then

deg(®;,0,,0) is constant for every A € proj; (U").

Proof. This lemma is a slightly generalization of Theorem 4.1 of [7], where the set [a,b] x U
is substituted by the open subset /¥ of R}{O. The proof is essentially the same. ]

The next result shows that ¥~ NS contains certain isolated solutions.

Lemma 2.1.2. Let (Ag,ug) € U. Suppose that uy € E is an isolated solution of the equation
@, (u) = 0 and that the index i(®;,,uo,0) # 0. Then (Ao,up) € S~ NS ™.

Proof. Take a v € {—,+} and assume that (Ao,uq) & #". Therefore, there is r > 0 such that
(Ao, up) is the only solution of ®(A,u) =0 in B, (Ao, up) so that

deg(®y,, (B} (Ao, u0));,,0) = i(Py,, U0, 0) # 0.
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Now, by applying Lemma 2.1.1, we deduce that

deg(®y,, (B, (Ao, u0)),,,0) = deg(Pr, (%, (Ao, u0)),,0)
= deg(®y, (B, (A,u0)); ,0)
= deg(®,, (% (% uO))r’ 0)
= deg(®,,0,0) =

for |A — Ag|> r. This contradiction ends the proof. O

Also we will use the following classical result by [58].

Lemma 2.1.3 (Ch. I, Item (9.3), [58]). Let Z be a compact metric space and A and B be
disjoint closed subsets of Z. Then either there exists a continuum of Z intersecting both A and
B or

Z=27Z,UZp,

where Zx and Zg are two disjoint compact subsets of Z containing A and B, respectively.

Finally, we are in a position to establish the following crucial result:

Lemma 2.1.4. Let (Ao,u0) € U, ug € E be an isolated solution of ®, (u) =0, and €" be the
component of &V containing (Ao, uq) for any v € {—,+} given. If 6" does not satisfy neither
of the alternatives i), ii) nor iii) of Theorem 0.0.1, then there exists a bounded open subset O

of U” containing 6" such that the set
2(0")NF =0 @.1.1)

and
U= ug if(),,u)eyandueOXO. (2.1.2)

Proof. By the assumption that the alternative i) does not occur, we have that 6V is a bounded

and closed subset of E. Moreover, since the alternative ii) does not occur, that is,
dist(€V,oU) > 0, (2.1.3)

we have from the compactness of the operator K in the open subset ¢/ that K is compact in 6.
Since
dist(€Y,oU") > dist(6V,oU) > 0



2.1 A Continuation Theorem for operators defined on open subsets 50

because dU" C U, we have that
Wy :={(A,u) eUu"; dist((A,u),6") < 8}
is an open bounded subset of /" satisfying
IULNECY =0 (2.1.4)

for each 0 < § < dist(6V,9U").

By using (2.1.3) again, we can shorten § > 0, if necessary, to still obtain dist(%_g, ou) > 0.
So, it follows from the compactness of the operator K in the open subset {/ that K is compact
in Ull_(‘s’ as well. Combining the compactness of K in Gll_g with the fact that uy € E is an isolated
solution of ®; (1) = 0, and the assumption that 6" does not satisfy iii), we are able to take

0 > 0 small enough such that

u=up if (Ag,u) € ¥ andu € (UY) (2.1.5)

o
Since & is a relative-closed set in U, and dist(%_gﬂ S, 0U) > dist(oll_g, oU) > 0, we are in
conditions to apply Lemma 2.1.3 to the sets

Z:=UINS, A:=%6", and B:=9(UJ)N.

Let us consider the two alternatives given by Lemma 2.1.3. If there were a continuum %"
of & connecting A and B, then there would exists a p € FY N B so that p € U5 whence
follows together with (2.1.4) that p € A 2 6" and so 6" would be a proper subset of the
continuum F " U6" of ¥, that leads to the contradiction of the maximality of 6". So, the
second possibility of Lemma 2.1.3 must occur, that is, there exist two compact sets Z4 and Zp

containing A and B, respectively, such that
Z=7,UZp and Z,NZp = 0. (2.1.6)
Since Zy C Z = Gll_(‘s’ﬁy, we have from (2.1.6), that

Zynd(UY) =0
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whence follows together with Z4 C O?T(‘S’ NS again that
Zy CUS. (2.1.7)

As a consequence of (2.1.7), (2.1.6), the compactness of Z4, and Z4 and Zp to be disjoint

compact sets, we are able to take an open bounded neighbourhood OV C U" of Z, such that

a) OVNZp =0,
b) OV Cuj,
that leads to
2(0V)NY =0.
On the contrary, there would exist
gel(0¥)N, (2.1.8)

leading to
g€ I(0Y)C OV CU§Cuy,

that would imply by (2.1.8) again that
geEUsNS =Z. (2.1.9)

On the other hand, one follows from a) and g € d(O") that ¢ & Zg. Besides this, g & Z4
because Z4, C OV and g € d(O") so that ¢ ¢ Z = Z4 U Zp, which contradicts (2.1.9). This

proves (2.1.1). To complete the proof of the Lemma, we just note that (2.1.2) is a consequence
of (2.1.5) and b). This finishes the proof. ]

Proof of Theorem 0.0.1-Completed. Take v € {—,+}. Since i(®y,,uo,0) # 0, we have from
Lemma 2.1.2 that (Ag,up) € & showing that the component 6" of &V containing (Ao, ug) is
not empty. At least one of the alternatives ), if) or iii) must be true. On the contrary, we would
obtain from Lemma 2.1.4 the existence of an admissible bounded open subset OV of ¢/" such
that the only solution of ®(Ag,u) = 0 would be ug in OXO (see (2.1.2)).

From this conclusion, and the fact that (’)X is an open subset of E for each A € R}’O, because

OV is an open subset of /¥, we can apply Lemma 2.1.1 and excision properties, to infer that

0 = deg(®7,0,0) = deg(Py, (9%, 0) = deg(®,,, (’)XO,O) =1i(Py,,u0,0) #0,
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for any fixed A>0 larger then the diameter of OV This is impossible. This ends the proof. [

Proof of Corollary 0.0.1. The proof follows by the fact that the inequality (2.1.3), in the proof
of Lemma 2.1.4, remains true under the compactness assumption required on K in the Corollary
0.0.1. O

2.2 Positiveness-continuity-principle

The below result, inspired in Lemma 6.5.4 of [43], is a positiveness-continuity-principle because
it brings up necessary and sufficient conditions for positiveness of all elements belonging to a
connected subset when we know that at least one element of this connected subset is positive.
In particular, it can be used to give positiveness of solutions belonging to the connected set

given by Theorem 0.0.1.

Proposition 2.2.1 (Positiveness-continuity-principle). Assume that (E, P) is an ordered Banach
space with intP # 0, and let 6 be any connected subset of R x E such that € N[R X intP| # 0

and
€¢N[Rx(P\{0})] CR xintP. (2.2.1)
Then
€N (Rx{0})=0ifand only if € C R x intP.
In particular,
if there is no A € R such that (A,0) € ‘€ NR x (P\ {0}), (2.2.2)
then
6N (R x {0}) =0, (2.2.3)

and consequently, ¢ C R x intP.

Proof. Suppose that 6 N (R x {0}) = 0. By (2.2.1), it is sufficient to prove that

‘¢ C [Rx (P\{0})].
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Suppose by absurd that the above inclusion does not hold, that is, there would exist a g € 6
such that ¢ ¢ [R x (P \ {0})]. Since 6 N (R x {0}) = 0, one has that g ¢ R x P, that s,

EN[(RxE)\(RxP)|#0.
On the other hand, we have by assumption that 6 N [R x int P] # @, which implies that
CENRXP|DEN[RxintP] #0
so that there exists a

go € 6 N[R x P, (2.2.4)

after applying the Customs Theorem.

Using again 6 N (R x {0}) = 0, we have that go ¢ R x {0}, which follows that ¢y €
€ N[Rx (P\{0})] so that we have that go € R x int P after using (2.2.1), but this contradicts
(2.2.4). The reverse inclusion is immediate once that O & int P.

Now let us prove (2.2.3). Suppose by contradiction that (2.2.2) holds true, but (2.2.3) not.
Since 0 € E \ int P, then

CEN[RXxE)\(RxintP)] # 0.

On the other hand, by using the assumption 6 N [R X int P] # @, we obtain from the Customs

Theorem that there exists
(Au) € 6nd¢RxintP),
where 9 denotes the boundary of (R x int P) relative to the topology in 6. Thus
(A,u) e RxintP ", (2.2.5)

and so u € P. Moreover,
(A,u) € Rx (intP) " (2.2.6)

By combining (2.2.5) and (2.2.6), we deduce that u € d(intP), which implies that u = 0,
because if the contrary were true, we would have u € int P (due to the hypothesis (2.2.1)), but
this is impossible due to u € d(intP). After this, we have from intP C P\ {0} and (2.2.5) that

(A1) = (1,0) € 6 NR x (P\{0}),
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which contradicts (2.2.2). This ends the proof. L]

Remark 2.2.1. We point out that the condition (2.2.1) can be showed by classical Strong

Maximum Principles in the context of partial differential equations.

2.3 Connecting singularities in PDEs with dist(6,dU/) =0

Let us state a lemma that will be essential in many proofs of Sections 3.1 and 3.2.
Let ot,s > 0, F be a normed vector space with norm ||-||r, E be a subspace of F and

Y : E — F be a continuous function. Set
Ur ={(A,u) € Ry X E;1+AallY (u)||F> 0}.

Lemma 2.3.1. Let C be a subset of Ur such that proj, C is bounded and Ic > 0. Then there

exists a positive constant L > 0, depending only on the size of proj, C, such that
N
mln{E,Ldlst(C,aup)} <I, (2.3.1)

where
Ic = inf{l1+ aA||Y(u)||F;(A,u) € C}.

In addition, if Y : E — F is a uniformly continuous function such that Y (C) is bounded, then
Ic = 0 < dist(C,dUr) = 0.
Proof. First let us prove (2.3.1). Since Y is continuous, then
oUr ={(A,u) e Ry X E;14+Acx|Y(u)||z=0}.
Let (A,u) € C. If Y (u) = 0, then
I+AallY (u)z=1,

and the claim follows trivially. If Y (u) # 0, then

1
- u ) €U
( al|Y (u)[s ) d
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and so

_ I+ Ay (u)ly

= 232
e AW (232

dist<c,auF)§H<W>—( ||Yz)|| )

Let A <infproj, C. Note that since C C Ur C R, X E, then infproj, C < 0 and consequently
A < 0. So it is well defined the set

Cr= {(A,M) eCiAeRand ofY (u)|p< _21/\}

which is possible empty.
So, we obtain from (2.3.2), that

diSt(C, 8Llp)

1+Aa|lY 5>
+Aa|Y ()= — ==

V(l,u) GC\CA

whence follows
dist(C, UF)

1+A]|Y S>>
MY W)llF= ———5%

Y (A,u) €C (2.3.3)

if Co = 0 so that
On the other hand, if Cp # 0, then

1 1
l+AallY (u)||p> 1+Ac|Y (u)||z>1—-A (ﬂ) =5 V (A, u) € Cp.
Since C = (C\ Cp) UC\y, then the inequality that includes both cases (Cp = @ or C # 0) is
(1
Ic > min {i,LdlSt<C, 8L{F)} ,

where L = —1/(2A) > 0 and the first part of Lemma 2.3.1 is proved.
Now let us prove the second part of Lemma 2.3.1. Assume that dist(C, dUr) = 0. So there
exist sequences (A, u,) € C and (¢,,v,) € dUF such that

| (Any ) — (€ny Vi) |RcE— O (2.3.4)

Since Y (C) is bounded, then (A, ||Y (u,)||%) is bounded and so

(A 1Y (un)[[7) = (4, 8)-
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Moreover, ||Y (u,) —Y (v,)||r— 0 because P is uniformly continuous ||u, — v,||g— 0. So

Y () [[E=11Y ) [ F[< Y () =Y (va) [ F= O

Consequently,

(n, Y () [F) = (A,6)

due to (2.3.4). So
1i’£n(l + A ||Y (un)||p) = 14+ AE = lirrln(l + 0¥ (vi)||F) = lirgno =0.

Which implies that Ic = 0.

Conclusion of Chapter 2

Theorem 0.0.1 presents a continuation theorem for perturbations of the identity that satisfy
a compactness condition within an open subset. Furthermore, its formulation aligns with the
definition of a global alternative theorem, as introduced by [52].

It should be noted that the assertions of Theorem 0.0.1 are confined on a unique real Banach
space E. When dealing with PDEs, the space where we search for solutions, however, may
stratify in subspaces. For example, if we are searching for solutions in C(Q), then C ! Q) is
a subspace of C(Q). In this case, Theorem 0.0.1 may alienate some information about the
norm of the solutions with respect to subspaces of E, as can be observed in the conclusion of
Chapter 3. This technical issue naturally leads to the open problem of finding an alternative
formulation of Theorem 0.0.1 that incorporates layers of the space E. Note that Lemma 2.3.1

already addresses aspects of this question.



Chapter 3

Two parameters quasilinear Schrodinger

and Carrier logistic problem

Theorem 0.0.1 can be useful for solving a large class of partial differential equations that
presents some singularity in its structure, preventing the definition of the associated operator
in the whole parameter-working space. This occurs when the associated operator must be
constrained to a subset to be well-defined. In this direction, we will present new results in this
chapter regarding both the existence of classical positive solutions and qualitative information

for the well-studied class of quasilinear Schrodinger equations (P, ;) and a Carrier type problem

(Qh.u)

3.1 Quasilinear Schrodinger Operator with logistic pertur-

bation

This section is devoted to study existence and qualitative information about the positive solutions
of

—Au—Aulu® = pu—u” in Q,
u=0 on dQ, (Py.u)

u>0 in Q,

where A, it € R, p > 1, and Q@  RY is a smooth bounded domain with N > 1.



3.1 Quasilinear Schrodinger Operator with logistic perturbation 58

To do so, we will present some notations, auxiliary results that and finally to prove Theorem
0.0.2.

3.1.1 Connected set of positive solutions

Let us begin by noting that we are interested in classical solutions for the problem (P, ;) so

that is enough to find classical solutions to the problem

— (14211 Au = pu—uP +2Au|Vu> in Q,
(3.1.1)
u=20, on dQ,
because A(u?) = 2uAu+2|Vul?* for all u € C*(Q).

It is well known that the problem (3.1.1) with A = 0 admits a unique positive solution
u=ug € C*(Q)NC(Q) if, and only if, 4 > u;, where u; > 0 is the first eigenvalue of the
Laplacian Dirichlet problem. In addition, this unique solution satisfies 0 < ug(x) < ,ul/ (p=1)
in Q. As the problem (3.1.1) is a perturbation of the pure logistic problem, we are concerned
in understanding how the diagram of solutions of the problem (3.1.1) is affected by the term
Aulu? for A € R.

Now we will show that the positivity and the boundedness from above by /(=1 for the
solutions of the problem (3.1.1) are linked with the sign of 1+ 24 u” in Q that is the same as
14 2A||u||3 due to the regularity of u. To do so, let us define the positive cone of C}(Q) by
Foi@) = {u € C}(Q);u> 0} whose interior is

intPC(l)(ﬁ) = {u €CH(Q)iu(x) >0VxeQ, g—Z(x) <0Vxe 89},

where 1) is the unit outward normal vector in Q.

Lemma 3.1.1 (Boundeness-positivity continuation). For any j > 0 given, let u € C?(Q) x C(Q)

be a non-negative and non-trivial solution of the problem (3.1.1):
i) if |ullo< '/ PV, then 1422 ||ul3> 0,
ii) if 1422||ul|3> 0, then ||ulo< p'/P=1),
cery s 2 . -
iit) if 14+2A||ul|g> O, then u € intFei g

w) ifp>2,A<0and1 —|—27LHu||%> 0, then |jul|o< ‘ul/(P*I)_
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Proof. of i). Let (A,u) € R x [C*(Q) NC(Q)] be a solution of (3.1.1), and xy € Q be a
maximum point of u so that u(xp) = ||u||o, and Au(xp) < 0. So, by the non-negativity of u, we

have

(1+2),HuH(2)) (—Au(xg)) = (I—I—Z)uu(xo)z) (—Au(xp))
= u(xo) (1 —u(x)"")
= Mlaloet —llullg ™) (3.12)

which implies by the assumption [|u|o< p'/"~1) that in fact —Au(x) > 0. So, 1422 ||u]|3> 0.
Proof of ii). It follows from the non-negativity of u# and (3.1.2), that 1 + 24
lullo< g/ P71,

|u||3> 0 implies

Proof of iii). We will consider two cases. First, we assume that A > 0. Then (A, u) satisfies

uP~1 u
1222 1202
u>0 on dQ,

—Au+ (L+21|Vu) >0 inQ,

whence follows that u is a supersolution (in the sense of [44]) of

ub=1

Lii=—A+——-—
! +1—#27Luz

in Q under homogeneous Dirichlet boundary conditions on Q. Since u > 0 and 1422 ]u|[3> 0,

we conclude that u”~!/(142Au?) € L™(Q) and u”~' /(14 2Au?) > 0 in Q, which imply, by

Theorem 7.5.2 of [44], that £ satisfies the Strong Maximum Principle so that u € intPC(l) @)
Now, if A < 0. Then (A, u) satisfies

24| Vul? up~! u ,
—A— =u|l——>—1]>0 Q
( 1ol 112ae2 ) " T2 ) =0

u>0 on dQ.

Therefore, u is a supersolution of

22| Vul? uP~!

Ly:=—-A—
2 22 1o
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in Q under the boundary condition u = 0 on dQ. Since u is a non-negative C* (Q)-function
and 1 +2A|ul|3> 0, we get (—2A4|Vu|>+uP~1) /(1 +2Au?) € L*(Q). Moreover, in view of
the assumption A < 0, we have (—2A|Vu|>+u”~') /(1 +2Au?) > 0. Again by Theorem 7.5.2
of [44], the operator L, satisfies the Strong Maximum Principle and, hence, u € intPC(l) @)

Proof of iv). Definew = p — uP~'. Since p > 2, we obtain

Aw = —div((p—1DuP>Vu) < (p— DuP"2(—Au)

-1 2
(=) 2A)Va
(p=1)u <1+27Lu2 Tl )

which implies, together with A < 0, that w satisfies

(p—1Dur! 22| Vul?
- < W= ——
1+2Au? 1+2Au?
w>0 on dQ,

—Aw + (p—DuP"1>0 inQ,

whence follows that 1 > u(x)?~! for all x € Q by the Strong Maximum Principle. Consequently,
lullo< 1'/P~1). This ends the proof. O

After Lemma 3.1.1, it is natural to look for positive solutions to the problem (3.1.1) in the

open set
U={(A,u) e RxCH(Q); 1+2A]ul5>0}, (3.1.3)
where the searching of classical solutions for the problem (3.1.1) is equivalent to do the same
for the problem
—uP +22u|Vul|?
py o Mu—u + ll;t| ul ino.
1+2Au (3.1.4)
u=20 on dQ.
Clearly, if (A,u) € U, then
—uP +20u|Vu)*
pu — uP +2Au|Vul cC@).

14 2Au?
Thus, we can consider the operator K : U — Cé (Q) defined by

1 [u—uwP +20u|Vul?

K(;L,Lt):<—A) 1—|—27le£2 )

(3.1.5)
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where (—A)_1 1 Co(Q) — C(l) (Q) is the resolvent operator of the linear boundary value problem
associated with —A in Q.

The lemma below will guarantee that K is compact in the open subset /.

Lemma 3.1.2 (Compactness of K). If C is a bounded closed subset of U such that dist(C, U ) >
0, then the operator K : C C U — CY(Q) is compact.

Proof. Since C is bounded, then proj, C is bounded. Once that dist(C, dU) > 0, it follows from
Lemma 2.3.1 that there exists a p > 0 such that

14 2A |ull3>p ¥V (A,u) € C (3.1.6)

due to Lemma 2.3.1 applied to E = CA(Q), F = C(Q) and o = ¢ = 2. Consequently, the
application
z: U - Cc(Q)
u—uP +2Au|Vul?

Au) — z(Au) =" 1+27m2‘ |

Moreover, the boundedness of C combined with (3.1.6), implies that z(C) is bounded subset of
C(Q), in particular, bounded in L”(Q) for any p > 1. By elliptic regularity, (—A) ™! (z(C)) is
bounded in W2 (Q) for any p > 1. By the compact embedding WO2 P (Q)éC(l) (Q), for large p,

it follows that compactness of K. This ends the proof of Lemma 3.1.2. O]
The below result is crucial in order to apply Theorem 0.0.1.

Lemma 3.1.3. If u > uy, then i(®g,uo,0) # 0, where ®g(u) = ®(0,u) with Py(A,u) = u—
K(A,u) for (A,u) € U.

Proof. Define the operator T : C}(Q) — CL(Q) by T'(u) := K(0,u). It is immediate to check
that T is differentiable at u = ug with

T'(uo)h = (=)' (1~ pufy "))
We claim that 1 is not a characteristic value of T’(ug). On the contrary, the problem

—Ap=(u—pu) o inQ,
0=0 on dQ,
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would admit a non-trivial solution, which implies that
—1
G?[—A—I—pug —ul=0

where o;[L] stands for the eigenvalue of operator L := —A+ M(x) (M € L™) in Q under
homogeneous Dirichlet boundary conditions on dQ. By the dominance of the principal
eigenvalue, we obtain that

R [—A+pul ' — ] <o. (3.1.7)

On the other hand,
—Aug + puby — pug = (p— )uf) > 0in Q
showing that i is a strictly supersolution of the problem

—Au-l—pug_l —Hu=0 in Q,
u=0 ondQ,

u>0 in Q,
that would lead to

1

o [—A+pul ' — ] >0,

which contradicts (3.1.7). As a consequence, we have that
i(®o,up,0) # 0

due to the Leray-Schauder Formula (see, for instance, [7, Theorem 3.20]). This completes the

proof. [

Now, we are ready to state and apply Theorem 0.0.1 to obtain a connected set of positive
solutions to the problem (P, ,,) contained in U{. Before doing this, let us denote U V=UNRY,
ve{—,+}.

As a consequence of the previous results, we deduce the following existence result.

Proposition 3.1.1 (Continuation Theorem for (P} ). Assume that L > Wy, p > 1 and consider
the O-partition of U. Then there exists a pair of connected sets 6€° CUY NS of solutions for
the problem (Py, ;) such that €~ N€" = {(0,u0)}. In addition, €" satisfies at least one of the

following alternatives:
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i) 6" is unbounded in RY x C}(Q).
ii) dist(€¥,0U) =0
iii) 6V N{(0,up)} # 0 for some ug # iy
foreachv e {—,+}.

Proof. By Lemma 3.1.2, K is a compact operator in the open subset /, and Lemma 3.1.3
shows that (0,up) € U is such that ug € Uy is an isolated solution of ®y(u) = 0 with index
i(Po,up,0) # 0. So, we are in position to apply the Theorem 0.0.1 to obtain the existence of a
pair of connected sets ‘6" C U NF" of solutions for the problem (P ,) satisfying the at least

one of the alternatives i), ii) or iii). This ends the proof. O

Remark 3.1.1. It is worth to mention at this point that by using the qualitative information
about 6, which will be provided in the next subsection, we will be able to prove that the

alternative ii) of Proposition 3.1.1 must occur (see the proof of Theorem 0.0.2).

Let us denote by
C=6" U6

the connected set of solutions for the problem (P, ) crossing R x Cl(Q) at (A,u) = (0,up).
At this moment, we do not have any information about the sign of the solutions (7, ,,) belongs
to 6.

3.1.2 Qualitative information about the connected of positive solutions

We already know that 6 is a connected set of solutions of (P, ) that contains the point (0, up).
We begin this section showing estimates of the solutions for the problem (P, ,) related to
parameter A < 0 and on its C(Q)-norm. These estimates will be useful in completing the proof
of Theorem 0.0.2. To do so, we will need the following properties of the first eigenvalue that
can be deduced by its variational characterization (see [26]). Given A(x) € wla (), such that
A(x) > Ag > 0 for all x € Q and B(x) € L1(Q), g > N/2, the first eigenvalue of —div[AV]+ B

is well defined and it is increasing with respect to A and B.

Lemma 3.1.4. Assume that i > [ and p > 1. Let (A,u) € U™ be a classical positive solution
of the problem (P, ;). Then

1
20— )21

ullo> (1 — )P~V and A > —
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Proof. Since (A,u) satisfies

—div[(1424u?>)Vu] + 22u|Vu|® = —42u|Vu|*+(1 4 2Au?) (—Au) 4+ 2Au|Vu|?
= —2u|Vu|*+(1 +2Au?)(—Au)

= ,uu—up,

we obtain
[—div[(1+22u*)V( )] +2A | Vu*+ul " u = pu

whence follows that
(o] [—div[(l +2;Lu2)V( ] +27L|Vu|2+up_l} = L.

By using the monotonicity properties of the first eigenvalue and A < 0, we deduce

IN

o1 [—div[V( )]+ 2A|Vu*+ul ']
< o [~ div[V( )]+ ]

u

~1
pr flullg

from which follows that ||u|lo> (1 — “1)1/(19—1)_
To obtain the estimate on A, we just note that (A,u) € U~ and ||ul[o> (1 — ul)l/(p—]) o

lead us to
0 < 1+2A)uf3< 1+ 24 (n—py)? 7Y
so that
1
> - .
A o 2(”—“1)2/(17_])
This ends the proof. u

The next result will allow us to conclude that the connect 6 is far from trivial solutions.

Lemma 3.1.5. Assume that p > 1 and 0 <  # py. Then there is no bifurcation point of
non-negative and non-trivial solutions in U of (P ;) from its trivial curve of solutions, in the
C(Q)—norm.
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Proof. Suppose by contradiction that there exists a bifurcation point (19,0) of non-negative
and non-trivial solutions in U of (P ;). So, there would exist a sequence (A,,u,) € U of
non-negative and non-trivial solutions of (P, ;) converging to (49,0) in R x C(Q). Since
{(An,u,)} is a convergent sequence, it follows that {(A,,u,)} is bounded in R x C(Q). So we
can apply Lemma 2.3.1 with ¥ = id and C := {(A,,u,);n € N}. Moreover, since ||u,|/o— 0
and (A,) is bounded, it follows that I > 0. Consequently, dist(C, dU) > 0 due to Lemma 2.3.1.
Thus, K is compact in C by Lemma 3.1.2, which implies that there exists some ug € Cé (Q)
such that u, — ug, in C}(Q), up to a subsequence. Since ||u,||o— 0, then 1y = 0.

Now, observe that (A,,,u,) satisfies

_ P 2
e = K(myun) = (—A)! (““n uh + 2t | Vit ) .

1+ 2A,u2

whence follows that

Uy, _q 1 ( Uy, ul) ZAnun\VunP)}
= (—A — + v n.
T =~ O [1+2znu,% Ml Tl T Tl

So, by passing to the limit in the above equality and using the compact embedding

Cy*(Q) — C(Q), for some 0 < o < 1, we obtain that

—Au=pfu inQ,
u=0 ondQ,

in weak sense, for some non-trivial and non-negative function u € C(l) (Q), implying that u = y;,

which is impossible by assumption. O]

The previous results can be combined with Proposition 2.2.1 to prove that € is composed

by strong positive solutions.
oge R — + . -
Proposition 3.1.2. 6 :=€6 U6 C R x 1ntPCé @)

Proof. First, we note that (0,u) € 6 N[R x intP]. Second, since 6 C U, we obtain from the
item iii) of Lemma 3.1.1 that 6 satisfies the condition (2.2.1) of Proposition 2.2.1. Furthermore,
we have from Lemma 3.1.5 that there is no A € R such that (A,0) € € NR x (P\ {0}), whence
follows by Proposition 2.2.1 that ‘6 C R x intP. This ends the proof. U




3.1 Quasilinear Schrodinger Operator with logistic perturbation 66

Now, we will apply Theorem A.2.3 in order to obtain additional information about the
C(]) (Q)-norm of the solutions of the problem (P, ) belonging to 6. To do this, we will need to
define two smooth extensions of the nonlinear perturbation given in the problem (3.1.4).

For each 0 < p < 1, define the function f, ; by

_ us—sP+2As|E [p—1 N
fpj),(s,é) = 1—}—2},5‘2 , 8 < 7 andé eR , (318)

extended in a smooth way to R x RY so that there exists an increasing continuous function

c1 : Ry — Ry such that

o (s, E)< cr(s)(1+E7), ¥ (5,€) e RxRY, VA € A

for any compact interval A| C (—e0,0) given, where the function ¢; depends only on p, the
length of ;.

To include the end point 0 in (—eo, 0], we proceed in a similar way. Given

Ay C (—1/<2u2/<P*1>> ,0]
being a compact interval, we define the function

_ pus—sP+2As|E

ha(s,8) == opz - Ve <u/l, R, and € Ao,

extended in a smooth way to R x RN , to infer that there exists an increasing continuous function

¢z : Ry — Ry, depending only on the length of A,, such that
13 (5,8) 1< ca(ls)(1+1E1%), ¥ (5,6) e RxRY, VA e Ay

holds.
Based on these facts, we are able to prove the next lemma. Before doing this, let us denote
+ _ +

Lemma 3.1.6. Let C CU™ be a set of positive solutions of (P, ;) such that dist(C,dU ™) > 0.
Then
|ulh <M,V (A,u)inC,

where M depends on dist(C,0U ™) and the size of proj; C.
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Proof. By Lemma 3.1.4, it follows that proj, C is bounded. Since dist(C,dU) > 0, we can
apply Lemma 2.3.1 with Y =1d, E = C}(Q), F = C(Q) and o = s = 2 to infer that there exists
a p > 0 such that and

14 2A|ul|§> p ¥ (A,u) € C. (3.1.9)

Let

Y < min{— sup \M,—l/(4uz/(”’1)) }

Aeproj, C

By using the definition of Y, we have that

Y<— sup |A] (3.1.10)
A€proj, C
and
T<—1/<4u2/(P_1)). (3.1.11)

As a consequence of (3.1.10), we have that proj, C C [Y,0]. By (3.1.11), the interval
[Y,—l/(4u2/<l’*1>>] (3.1.12)
is well defined. So

proj;LC - [Y,O]
_ [T,—1/<4,u2/(”_])ﬂ U [_1/<4,J2/<P—'>> ,0] . (3.1.13)

Let us denote
A= [T, —1/<4u2/(”‘”ﬂ and Ay = [—1/(4u2/(”‘”> ,0] .
So rewriting (3.1.13) with these notations, we have
proj, C C A UA;. (3.1.14)

Observe that A is a compact interval contained in (—e,0) and A; is a compact interval
contained in (—1 / <2u2/ (p *1)) ,O}. According to the text introducing Lemma 3.1.6, it follows
that there exists a function f}, ; associated to p and defined for each A € A; and a function &,

defined for each A € A, both satisfying the conditions of Theorem A.2.3.
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Since (3.1.9), for even greater reason we have 1 + 24 ||u||3> 0. Then
1
[ullo< u7= TV (A,u) €C (3.1.15)

due to Lemma 3.1.1.
Moreover,
AeANUAY (Au)eC (3.1.16)

due to (3.1.14).

Note that, regardless of whether A belongs to Aj or Ay, we have (3.1.9) and (3.1.15) for
each (A,u). But, in order to use the extensions f, ; and &, it will be convenient to state the
facts (3.1.9) and (3.1.15) by dividing in the following two cases. Let (A,u) € C. Then either

A€ Aq
(3.1.17)
and 1+ 24 ||ul2> p
or
A€ Ao
. (3.1.18)
and [Julo< pr=T.
If the case is (3.1.17), then (A, u) satisfies
—Au = u,Vu) in Q,
Foalu; V) (3.1.19)
u=0 on dQ.
On the other hand, if the case is (3.1.18), then
—Au=hy(u,Vu) inQ,
A, V) (3.1.20)
u=20 on dQ.
By Theorem A.2.3,
leellw2s(o) < Mllullo) < M(u'/PV), ¥ (Au) eC, A e (3.1.21)
and

[eellys () < Bollullo) < (u'/P7V), ¥ (Au) €C, A € Ay (3.1.22)
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where we used in the last inequalities of (3.1.21) and (3.1.22) a consequence of Lemma 3.1.1
together with the fact that ; : R(‘; — RE)L is an increasing function, for each i = 1,2, that depend
only on Q, p and the function ¢;. So, for s > 1 large enough, we obtain the claim due to the
embedding W>*(Q) < C!(Q). So by combining this embedding with (3.1.21) we deduce that

there exists a constant M > 0 such that

||u||1 < My, for all solution (A,u) € C, L € A}
and a constant M, > 0 such that

||u||1 < M>, for all solution (A,u) € C, L € Ay

due to (3.1.22), whence follows the claim with M = M; + M,. L]
About the connected set 6™, we have the following result.

Lemma 3.1.7. Let 0 < I' < 4-oo. Then there exists a constant M > 0 (depending on I') such
that
lulli< M, for all positive solution (A,u) in U N ([0,T] x C) (Q)).

Proof. Let us define for each 0 < A < T the function

s —sP +2As|E)?
14 2As?

frr(s, &) = ,V(s,E) e RxRY,

Clearly, there exists an increasing continuous function c : Rg — Rg such that
fr(s,8)I< cIsh(L+1E1), ¥ (5,6) e RxRY, VA € [0,T7.

So the proof follows by using the w2Pp (Q)-estimate given in Theorem A.2.3 and the embedding

W (Q) — Cl(Q). O
Below, let us provide more qualitative information about global behavior of €.

Lemma 3.1.8. Assume that p > 1 and i > u;. Then:

i) proj, 6" =R{,

ii) there is a unique positive solution u; € C}(Q) of (P u) for each & > 0. Moreover the

set of these solutions coincides with €7,
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iii) the curve R§ > A (A,uy) € Ry x Cy(Q) is continuous,
) |uy|lo— 0 as A — oo.

Proof. Let us begin proving the item ). Assume, by contradiction, that proj, 6 were bounded.
Then, by Lemma 3.1.7, projci ) ‘¢ would be bounded in R implying that ‘6 would also
be bounded in R x Cé (Q). However, since ‘6 neither satisfies the alternatives ii) nor iii) of
Theorem 3.1.1, it must be unbounded, which is a contradiction. The claim of items ii) and iv)
follows from the uniqueness and the behaviour of the solutions uy of (P ;) proved in [21].
Finally, the claim of the item iii) follows from the fact that the operator K is compact in the

open set U (see Lemma 3.1.2). This ends the proof. [

Now, we are ready to complete the proof of the Theorem 0.0.2.

Proof of Theorem 0.0.2: First note that Proposition 3.1.1 implies that there exists a
connected set ‘6 =6~ U™ C U of solutions for the problem (P, w) crossing R x C H(Q) at
(A,u) = (0,up) with 6~ CU~ and 6T C U™ satisfying, each one, at least one alternative of
Theorem 0.0.1. Furthermore, Proposition 3.1.2 implies that 6 C R x intPC(l) @) that is, € is a
connected set of strong-positive solutions of the problem (P, ;). This finishes the proof of the
first part of Theorem.

First, we will prove item (0.0.3). We claim that

dist (67,0U) = 0. (3.1.23)

The proof will be by using contradiction. So assume that (3.1.23) is false. By Lemma 3.1.6,
6~ would be bounded in R x C}(Q) implying that 6~ does not satisfy either alternatives i) or
ii) of Proposition 3.1.1. Note that 6~ does not satisfy the alternative iii) of Proposition 3.1.1
due to the uniqueness of positive solutions for the problem (R ;) with u > p;. So we have
just concluded that 6~ does not satisfy any of the alternatives i), i) or iii) of Proposition 3.1.1,

but this contradicts the proposition and we just proved (3.1.23). Noting that
oU = {(A,u) € Rx CH(Q); 1+ 2A|jul|j= 0},

we just proved (0.0.3).

Let us prove (0.0.4). Since 6~ C U, then we can apply Lemma 3.1.1 to obtain that
|ullo< ,uﬁ for all (A,u) € 6. Then the continuous inclusion i : C} (Q) — Co(Q) is such that
i(6 ™) is bounded. So we can apply Lemma 2.3.1 with E = C}(Q), F = C(Q), o = ¢ = 2 and
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Y =i:C}(Q) — Co(Q), we deduce that

Ly = inf{1+2A|ul|3; (A,u) €6} =0 (3.1.24)

and we just proved (0.0.4).
Let us prove (0.0.1). Due to (3.1.24), there exists a sequence (A,,u,) € 6~ such that

P i= 142, |u,||3— 0. (3.1.25)

From Lemma 3.1.1, we know that ||u, [ o< t'/(P~"). This estimate together with A < 0 imply

that .
Pt
M S SRl

Since p, — 0, then

e T =

Being 6~ connected and (0,up) € 6, we infer that €~ satisfies

<— W,O] C proj, 6.

To complete the proof of (0.0.1), we just note Lemma 3.1.4 implies that

completing the proof of the item (0.0.1).

The inclusions (0.0.2) follow by Lemma 3.1.1-ii) and Lemma 3.1.4.

Item a) is a direct consequence of (0.0.1) combined with the connectedness of 6. Item
b) follows from Lemma 3.1.4. Item i) follows from Lemma 3.1.8 and item i) follows from
Lemma 3.1.5. This ends the proof. U

3.1.3 Non-existence results for the case u < u;

For the sake of completeness, we collect here some non-existence results for the problem (P, ;)

when u < u;.
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Proposition 3.1.3. Assume that p > 1, i < W, and (A,u) € U be a positive solution for the
problem (P), ;). Then:

(i) A <O, that is, the problem (P, ;) does not admit positive solutions for any A > 0 and
< Uy,

(ii) u > 0. In particular, the problem (Py, i) has no positive solutions for any u < 0 and
A eR,

(iii) one has
H—H
A< 2‘u1‘uz/(l)—1)

so that the problem (P), ;) does not admit any positive solution for any

)’> u—

_—— <u<
= 2“1#2/(1771) and 0 < pu < uy.

In particular,
A< —1/2p%P=0ir1 < p <3,

showing that the problem (P), ;) does not admit any positive solution for any

A>—1/2u%P" and 0 < pu < .

Proof. Let (A,u) € U be a positive solution of (P, ,,).
Let us prove (i). Assume that A > 0. Then, we would obtain from the monotonicity

properties of the principal eigenvalue, that

W > p=op[—div[(142Au?)V] + 24 |Vu|*+uP )
> o[- div(V)] = w,

showing that we must have A < 0.

Proof of (ii). It follows from (i) that (A,u) € U being a positive solution of (P, ), we have

u uP 2Au|Vul|? _
Au— —" = <0 Q
STy P WYy ey P

u=20 on dQ.
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If were u <0, then we could apply the Maximum Principle to obtain u < 0, leading to a
contradiction with the positivity of u. This ends the proof of the item (if).

Proof of (iii). We already know from (i) that A < 0. Then the pair (A4, u) should satisfy

Vul|? u—ub!
2</ v 2</ | :/ 2
“1/9” < SV T S T2

that is,
w—ul~']
—_ 0. 3.1.26
/Q{ul 1+27Lu2}u < (3.1.26)
So 1
u1<mf0rsomexoeﬂ,

14 2Au(xp)?

leading us to
22 P <22 [Jull5< 2Amu(x0)® < = u(xo)” ' = < - <0,

after using Lemma 3.1.1-ii). This proves the first part of the item (iii). To complete the proof,

assume, by contradiction, that were

1
After the inequality (3.1.27), we have well-defined the function
B e fo,urt 3.1.28
— =1, .
89) = o0 s [o.ur] (5-128)

Let us consider two cases: First case p = 3. Here, we obtain from (3.1.27), and (3.1.28)
that g'(s) <O forall 0 < s < uﬁ. Since 0 < u < /P~ 1 (see Lemma 3.1.1), we obtain from

the monotonicity of g, that
= 8(0) > g(ulxo))
whence follows, together with (3.1.26) and u < uy, that

0< [ (m—pn = [ (m—g(O)u < [ (= glulo)))e <0,

which is impossible.
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Second case, 1 < p < 3. So, it is straightforward from from (3.1.28) that g’ (s) =0if and
only if h(s) =4Au, where

h(s) = 27L(3—p)sp_1 —(p— 1)sp_3 forall0 < s < [.Lﬁ
so that
1 \1/2
H(s) = (p=1)3=p)s"™* [1+2257] > Oforall 0<s< (= 5-) .

Since 2 > —1/(2u* P, we have that
1 L\ 12
< [ —
e ()"

H(s) >0 forall 0 < s < it

showing that

that leads to

ogsn;it'lh - h<uﬁ> :“[2)“(3—17)—(17—1)“*%]

< U2A(B—p)+(p—1)24] =4Au,

where the last inequality follows from (3.1.27). That is, g'(s) < 0 for all s € [0, u"/(P=1]. As

done in the case p = 3, we obtain a contradiction again. This ends the proof. ]

3.2 Carrier-Type problem with logistic perturbation

In this section, we will be inspired by the arguments used in the previous section to apply
Theorem (0.0.1) again to study existence and qualitative information about the positive solutions
of

—(1+Au|?)Au= pu—u? in Q,
u=>0 on dQ, ()

u>0 in Q,
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where A € R is a parameter, g >0, p>1,r>1and Q C RY is a smooth bounded domain
with N > 1. At Section 3.2.2, we will prove Theorem 0.0.3.

3.2.1 Establishing the sufficient conditions for continuation

To do this, first we note that, depending on the size of p > 1 and r > 1, we are not able to set a
compact operator on any open subset of Hé (Q). Motivated by this technical challenging, let us
define a truncation T : H} (Q) — L¥(Q) by

u(x) if u(x 7117
() = ) TR
prt i u(x) > pret,

1
for any x > max{pN,r} given, that is, T'(u) is the truncation of u at the level p»-T.

1 .
From this, and motivated by the case T'(u) = u for ||u||o< pr-T, let us consider the open set

where
VY= {(A,u) € Ry x Hy(Q); 1+ A[|T (u)[|2> 0},

for each v € {—,+}, and define the operators K,® : V — Hl(Q) by

L (UT(W) — (T
K(du)=(=4) 1( AT () ) G20

and ©(A,u) :=u— K(A,u), taking advantage of the results and notations in Section 2.

The next lemma will guarantee us that the zeros of ® are actually classical positive solutions

of (Qx u)-

Lemma 3.2.1. Let (A,u) € V, with u being non negative and non zero, such that K(A,u) = u.
Then (A,u) is a classical positive solution of (Q; ), that is, 0 < u € C2(Q)NC(Q).
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1
Proof. By using (u—ur1)"

[Iva—uryte /Vu—” V((u—p7T))
:/vuv 1))

uT(u <T@»P n
/Q 1—i—l|u|? (u—pr )+

as a test function in K(A,u) = u, we have

._.‘

) T - (TW)?, i
B /u() wirty L4 Aful? (=)
pu—pP N
= = (u—ur- =0.
Juouty T T R

That is, u(x) < ,uplf1 for a.e. in Q and consequently 7 (u#) = u. This just proves that u is a
1

solution of (Q; ;). Since u(x) < ur-T, then u € L'(Q) for any ¢ > 1 and consequently u is

classical by Theorem A.2.1 combined with Sobolev embedding. The positiveness of u follows

by applying Theorem A.1.2. [

Now we are ready to state the lemma below, whose proof follows the same steps as those

used to prove Lemma 3.1.1.

Lemma 3.2.2. Let (A,u) € R x (C*(Q) x C(Q)) be a non-negative and non-trivial solution of
(O )

i) if ullo< /=Y, then 14 Au?> 0,
ii) if 14 Alul|9> 0, then ||ullo< u'/P=1),
i) if 14+ Al|u||?> 0, then u € intPC(l)(ﬁ),
iv) if p>2and 1+ 2A||ul|9> 0, then ||uljo< u'/ P~

The proof of the Lemma below follows the same arguments as those used to prove the
Lemma 3.1.3.

Lemma 3.2.3. Assume that i > W and p > 1. Then i(®g,up,0) # 0.
The following result can be proved similarly to the proof of the Lemma 3.1.5:

Lemma 3.2.4. Assume that p > 1 and 0 < it # Wy. Then there is no bifurcation point of

non-negative and non-trivial solutions in U of (Q), ) from its trivial curve of solutions.
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Before proving Theorem 0.0.3, we will prove the next proposition that shows, in particular,

that there is no bifurcation point A < 0 from the trivial solutions in the C(€)-norm.

Proposition 3.2.1. Suppose that (A,u) and (I, v) are classical positive solutions of (Qy, ) in
U(F) with A <0 < A. Then:
v<ug<u. (3.2.2)

and

(= (14 Afuf?) /0Dy <u (32.3)

In particular, if (A,u) is a positive solution of (Q;, ;) satisfying 1+ Alu[l> 0, then

1
ufr= (14— )7 T@1| and A > — E—
(=) 7=ty |7
Proof. We start proving the first inequality of (3.2.2). Since A > 0 and v < “1/ (p=1) (Lemma
3.2.2-ii)), it is apparent that

(=) <v(u—"") inQ,

v
B + A|v|f
whence follows that v is a subsolution of (P(f “). Moreover, it is straightforward to verify that
positive constants large enough are supersolutions of (P(f u)‘ Thus, by sub and supersolution
methods, there exists a positive solution of (P(f: u) between v and K > 0 large. Since uy is the
unique positive solution of (P(f u)» we obtain that v < uo.

To prove that uy < u, we observe that € and u are a pair of sub and supersolution of (P(f H)
such that €| < u for € > 0 small enough. Again, by using sub and supersolution methods,
combined with the uniqueness of positive solutions for the problem (P(f u), we get the claimed
inequality.

To prove (3.2.3), consider the problem, in w, given by

—Aw (L—wP™!) inQ,

1+ Au)! (3.2.4)
w=0 on dQ.

This problem has a unique positive solution. But, by the definition of u#, we know that u is a

positive solution of (3.2.4) and consequently the unique positive solution of (3.2.4).
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On the other hand, given € > 0, £¢; will be a subsolution of (3.2.4) if

£Q; ~1 .
_ L . p
Aep) < aimE- (o)) ine

epr < (—m(1+2AJu|?)/P"D inQ.
Taking into account that ||@; ||o= 1, the above inequality holds for & = (1t — 1 (1+A]u|?))/ (P~ >
0. Furthermore, large constants are supersolution for (3.2.4), which implies by the sub and
supersolution methods that there exists a (positive) solution of (3.2.4) between (u — (1 +
Av|9)/?=De, and K > 0 large enough. Once that « is the unique solution of (3.2.4), we
obtain (3.2.3).
Let us prove the second part of the theorem. First note that by applying (3.2.3) for A =0,

we have
(u—pn) P Ve <up<u. (3.2.5)

Powering the above inequality by r, integrating and then powering again by g, we deduce that

_9q
Wl (= )7 i1 (3.2.6)

1
Since 1+ A|u|?> 0, then ||u||o< uw?-T due to item ii) of Lemma 3.2.2. By using this a priori

bound of u, in (3.2.3), we obtain
1
wrT > (= (14 Afulf)/ PV, (3.2.7)

which implies
w> (= (14 Afu0)pf ™ (3.2.8)

By using (3.2.6) in (3.2.8), and ||@; ||.= 1, we obtain
_4q_
(=) = A (u— )P [< (1 — ) + (3.2.9)
which implies by 4 — y; > 0, and (3.2.9), that

— A (e — ) 7T < . (3.2.10)
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That is,
1

— .
(1 — )7 ||}

A>—

This ends the proof of the Proposition.
]

Before starting the proof of Theorem 0.0.3, we will need the above notations and lemmas.

3.2.2 Connected set of positive solutions

In this section we will use the above results and apply Theorem 0.0.1 to the operator K
introduced in (3.2.1) to obtain a connected of positive solutions of (Q; ).
Proof of Theorem 0.0.3-Conclusion. Consider the operator K introduced in (3.2.1).

Let us show that K is compact in the open subset ¢/. The idea is to apply Lemma 2.3.1.

First, we claim that 7" is uniformly continuous. Indeed, let u,v € H& (Q). We claim that
IT(u)(x) —T(v)(x)|= |u(x) —v(x)| for a.e. x € Q. (3.2.11)

Divide in two cases. If x is such that u(x) < uﬁ and v(x) < ur- = , then T'(u)(x) = u(x) and
l

T(v)(x) =v(x) 1and so whence | T (u)(x) — T (v)(x)|= |u(x) — 1 v(x)|. If x is such that u(x) < pr-1
and v(x) > ur-T, then T (u)(x) = u(x) and T(v)(x) = ur-T. Note that u(x) < v(x) and SO
lu(x) —v(x)|=v(x) —u(x) = u»T —u(x). Then

1T (1) (1) — T () (0)|= Ju(x) — 77 | = T — ) = () = v()|

and we just proved (3.2.11).
Let (u,) and (v,) be sequences in H} (Q) such that u, — v, — 0 in H} (Q). Observe that

1T (1) (x) — T (v) (x)| < 27T ¥ 1 for ae. x € Q. (3.2.12)

Moreover, since u, — v, — 0 in H} (Q) then u,(x) — v,(x) — 0 a.e. in Q. By combining this
with (3.2.11), we deduce that

T (up)(x) — T (vy)(x) — 0 a.e. in Q.



3.2 Carrier-Type problem with logistic perturbation 80

By Dominated Convergence Lebesgue Theorem, T (u,) — T (v,) converges to 0 in L*(Q) up to
a subsequence and the uniformly continuity of T : H} (Q) — L*(Q) is proved. Now, let C be
a closed and bounded subset of U/ such that dist(C,dU) > 0. Let us apply Lemma 2.3.1 with
E=H}(Q),F=L"(Q),a=1,s=gand¥Y =ioT : H} (Q) — L' (Q), where i : L*(Q) — L"(Q)
is the inclusion which is continuous since k¥ > r. So Y is continuous we deduce that there exists
a p > 0 such that

1+ Auli>pV (A,u) €C. (3.2.13)

Moreover, if u € H} (Q), then T (1) € L*(€) and consequently (T (x))? € L*/?(Q). By elliptic

regularity theory, we obtain that

KA 10) lyonini) < M'uT(u)—(T(u))p

1+ oA |ulf

K/p

IN

M
) T () = (T (u))"] s,

M (1@, IT@R)

IN

< —WITWh +ITWl) ¥ (4,u) €C, (3.2.14)

"Dlilb

where in the second inequality we used (3.2.13). Let (A,,u,) be a bounded sequence in C. So
’T(”n)h + |T(”n)|£

is a bounded sequence. Then the sequence K (A,, u,) is bounded in W>P/¥(Q) due to (3.2.14).
Since k > Np, then W>P/¥(Q) is compactly embedded in C}(Q), in particular, in H}(Q) and
consequently K(A,,u,) converges up to a subsequence in Hy (). We just proved that K is
compact in C and consequently, is compact in the the open subset V.

Afterward, we will apply Theorem 0.0.1 to K : U/ — H(% (Q), considering the O-partition of
U, to deduce that there exists a pair of connected sets 67, (v € {—,+}) such that

u=KA,u) Vv (Au)e€ U6

and satisfying at least one of the alternatives

i) dist(6¥,9V") =0.
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ii) 6" is unbounded in R x Hj (Q).
iii) 6" meets (M,ul) € 9 with u; # uy.

Now, observe that the alternative iii) does not occurs both for 6~ and 6T due to the
uniqueness of strongly positive solutions for the problem (Qo 4 ).

Taking into account VT =0, then i) cannot occurs for € 7. Consequently, 67 is
unbounded. Moreover, by Lemma 3.2.2 combined with elliptic regularity, we obtain that
proj (@) ‘6" is bounded and so proj; ‘6 must be unbounded. The strong positiveness of the
solutions is guaranteed by Lemmas 3.2.2 and 3.2.4. So, gathering these information, we have
that

€:=6 U6C"

is an unbounded connected set of positive solutions for the problem (Q, ;) containing (0, up).

Below, let us prove more qualitative information about 6. First, let us prove (0.0.7). To
do so, we claim that alternative /) must occur. Indeed, suppose that i) were not true, that
is, dist (67,0V") > 0. By Proposition 3.2.1, we know that proj, 6~ is bounded. So we
can apply Lemma 2.3.1 with 6~ in order to deduce that there exists some p; > 0 such that
1+ Alul?> p; for all (A,u) € 6. Consequently, given ¢ > 1, the elliptic regularity theory
gives

M _
leellw2e ()< p—fnuu—uput YV (A,u) €€

for some positive constant M;. Since €~ C Y, we can apply Lemma 3.2.2 to imply that
||ullo< uﬁ, whence follows that ({[u[/y2:(q)) is bounded. By the Sobolev embedding of
W24 (Q) into H} (Q), for sufficiently large 7 > 1, we obtain that proj H(Q) ‘6~ is bounded.

As we already know that proj, 6~ is bounded, the last conclusion leads 6~ be bounded.
That is, 6~ does not satisfy alternative ii). We already had that €~ does not satisfy either
alternative i) or iii) so 6~ does not satisfy any of the alternatives i), ii) or iii) and this

contradicts Theorem 0.0.1. We just proved that the alternative /) must occurs, that is,
dist (6¥,9V") = 0.

Now we are in position to complete the proof (0.0.7). Let us split the proof in two cases. First,
assume that proj H(Q) 6~ is unbounded. Let (A,u) € 6. By taking u as a test function and
using [|uljo< u'/P~Y (see Lemma 3.2.2), we obtain that (1 + A|u|?)||u||? is bounded. Since
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we are assuming that proj HL(Q) ‘6~ is unbounded, we obtain that

lg- = inf{1+4+A|u

9 (A,u) €€} =0.

For the second case, we assume that proj HL(Q) ‘6~ be bounded. So, we can apply Lemma
2.3.1 with €~ to deduce that I;- = 0 and the second case is proved. This completes the proof
of (0.0.7). In particular, we obtain from proj, 6~ be bounded and Lemma 2.3.1, that

disty, 1 () (6, {(A,u) € R x Hy(Q);1+A|T (u)|4=0}) =0. (3.2.15)

As a consequence of ;- = 0, we will prove below the first inclusion of (0.0.5), that is,

1
———5—— T | Cproj, 6. (3.2.16)
prTQlfr

Since I¢- = 0, then there exists a sequence (A,,u,) € 6~ such that p, := 1 + A, |u,|?— 0,

whence follows that

= Pl

IN

where the last inequality follows from |[|u,||o< ,ul’%l. By passing to the limit, we get that

1
lim A, <—

—_—. 3.2.17
T et o

So (3.2.16) follows from the connectedness of 6 combined with (3.2.17). The other inclusion in
(0.0.5) follows directly from Proposition 3.2.1. The inclusions in (0.0.6) follow from Lemmas
3.2.2and 3.2.1.

Let us prove item i). Consider (A,u)) € 6 and define py = 1+ A|uy|?. Note that u;

satisfies, in the classical sense, the problem

p—1
u
—%Auxzu,l(l— 2 ) in Q,

u
uy =0 on dQ,
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for each A € proj; 6. So, we are able to apply Proposition 6.6 of [31] to infer that
uy, (x) — w/?=1 uniformly in K as p; — 0,

for any compact subset K C Q given. This ends the proof of item i).
Item ii) follows immediately from Proposition 3.2.1. Let us prove item iii). By using
1
Sobolev embeddings and elliptic regularity combined with the fact that ||u,|o< u?-T (see item

ii) of Lemma 3.2.1), we deduce that there exists constants R, D,M > 0 such that

luzllo < Dlluallwe(q)

,letl—l/tl;L
1+ 2Auy |?

IN

R

t

Huy —uﬁ

1—|—7Ln|u,1\§1

RM

1+ Auy !
RM

T+ A (L — )7 T[4

IN
=

t

IN

holds for sufficiently large ¢ > 1, where in the last inequality, we used Proposition 3.2.1. So

|luzllo— 0 as A — +oo.
3.2.3 Two special cases
We begin this subsection noting that we were not able to prove that
disty, 1 o) (6, {(A,u) € R HY(Q); 1+ Alu[?=0}) =0
holds in Theorem 0.0.3. In fact, we just prove
disty, ) (6, {(2.u) € Rx HY(Q): 1+ A|T(w)]{=0}) =0

holds, see (3.2.15). The reason of the adoption of the truncation 7 is due to the technical
problem of the well definition and the compactness of the operator K for p and r large.
However, if we impose some additional restrictions on p, r and N, we are able to prove a

version of Theorem 0.0.3 without the need of the truncation 7. This will give us Corollary
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3.2.1. Another alternative is to choose a different ambient space for the operator K and then

obtain Corollary 3.2.2. In the following, we have the aforementioned corollaries.

Corollary 3.2.1 (of the proof of Theorem 0.0.3). Additionally to the hypotheses of Theorem
0.0.3, assume that r < 2%, 1 < p < 2" and one of the following arrangements of p and N hold:

1) p(N=2)>2and p <2*—1,
2) p(N=2) <2,
3) 14N/2<p=2°—1.

Then there exists an unbounded connected set of strongly positive classical solutions 61 C

R x Hé (Q) of ( Q). u) satisfying, additionally to all the stated in Theorem 0.0.3, the property
disty, 1 ) (61, {(A,u) € R x Hy(Q); 1+A[ulf=0}) =0.

Proof. Let us follow the same strategy as in last subsection. Define the operator K; : V| —

H, (Q) by ,
B u—u
Ki(A,u) = (—A) : (I‘U—F—Mulq) ;

where

Vi:={(A,u) e Rx Hé(Q); 1+ Alu|?>0}.
So, under the additional assumptions of Corollary 3.2.1, we are able to prove that K| is compact
in the open subset V. In this case, instead of (3.2.15), we have

disty, 1 () (61,{(A,u) € R x Hy(Q)1+ Alu|?=0}) = 0.

So let us prove the compactness of K| in V;. Let C be a bounded subset of V; such that
dist(C,dV)) > 0. By Lemma 2.3.1 with E = H}(Q), F=L"(Q), a =1, s =g and Y =1Id,
there exists some p > 0 such that 1 + A|u|?> p for all (A,u) € C.
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Set B :=2"/p < 2%, and take u € H} (Q). So u” € LP(Q). Since B > 1, then K (A,u) €
W02,13 (Q) is well defined due to the classic elliptic regularity theory. Moreover,

M
1K1 (4, u)| < ;\uu—u”\ﬁ

|W02’B Q) =

IN

M
;(“|”’ﬁ+|”p|ﬁ)
_ M 2°/B
= (g +1us?)

=L (el ).

IN

that 1s,

M X
1K1 (A, u) < 71 (el + el 78 ) v (2,u) € € (3.2.18)

lzs @)

for some M; > 0.

After (3.2.18), let us consider the cases 1) and 2) and 3). First assume that p and N
satisfy 1). Note that p(N —2) > 2 is equivalent to f < N. Consequently, the embedding
WO2 P (Q) — WO1 '(Q) is compact for any 1 <t < B*. Moreover, p < 2* — 1 is equivalent to
B* > 2. So we can take ¢ = 2 to obtain that the embedding

WP (Q) < HY(Q) (3.2.19)

is compact as well. Let (A,,u,) be a bounded sequence in Hj (Q). By (3.2.18), we have that
Ki(An,uy) is bounded in WOZ’B(Q). Using (3.2.19), we deduce that K (A,,u,) converges in
H; (Q) up to a subsequence.
Now assume that p and N satisfy 2). Note that p(N —2) < 2 is equivalent to § > N and
SO WO2 P (Q) — WO1 1(Q) is a compact embedding for any 1 < ¢ < 4o, In particular, by taking
t = 2, we deduce that
Wy (Q) = HY(Q)

is a compact embedding. Similarly as in case 1), the compactness of K is a consequence of
(3.2.18).

Finally, assume that p and N satisfy 3). Let (u,) be a bounded sequence in H}(Q) and
Yu = K1(An,u,). Observe that p > 1+ N/2 implies that H3(Q) — LzT/(Q) is a compact
embedding, where T = p — 1. By testing y, = K| (A,,u,) against u,, and applying Holder
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Inequality twice, we deduce that

1 _
Ny A

M ]
< ;<|unHz\yn|z+\un|i/<’<“’>| 25 Py )

for some constant M > 0. So (y,) is bounded in H} (Q), which implies that there exists some
y € H}(Q) such that
Yo =y in Hy(Q)

and
Yo — y in L2 (Q). (3.2.20)

Now, by testing y, = K (A,,u,) against y, — y, subtracting

/ VyV(yn—
Q
and applying Holder inequality twice, we get that
) = [ Mt / VyV(y
[yn = /szl+7t\un!q y

< M (o)~ i-o(1)
p Jo

M —
- _/ (|”n’|yn_}’|+|”n|p 1|”n||)’n_)’|)+0(1)
p Ja
M 2// 2
< 2 (bl =yt l 2 2y =yl ) o),

for some constant M > 0, where the term o(1) comes from using the convergences (3.2.20) and
Yp — yin H& (Q) weakly. Consequently, y, — y strongly in H(} (Q) and the compactness of K
is proved for the case 3). This ends the proof. ]

Corollary 3.2.2 (of the proof of Theorem 0.0.3). Assume all the hypotheses of Theorem
0.0.3. Then there exist an unbounded connected set of strongly positive classical solutions

6, CRxC(Q) of (03 ) satisfying, additionally to all the stated in Theorem 0.0.3, the property

disty () (62, { (A1) € R x C(Q); 1+ Alulf=0}) = 0
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Proof. It suffices to follow the same steps as in the proof of Theorem 0.0.3 for the the operator

Ky : V) CRXxC(Q) — C(Q) defined by

-~ u—up
K (A,u) = (—A)"! (IL:——W) ;

where

Vo ={(A,u) € RxC(Q); 1+ A[ulf> 0},
and apply Theorem 0.0.1 to K>. O

Conclusion of Chapter 3 Applying Theorem 0.0.1, we prove Theorems 0.0.2 and
0.0.3, which provide qualitative information about the positive solutions (A,u) of (P, ,) and
(Oy u)- respectively. Specifically, for Theorem 0.0.2, we obtained precise information regarding
the range of A and the C(Q)-norm of the solutions (A,u). Similarly, for Theorem 0.0.3, we
determined precise information about the range of A and the pointwise behavior of the solutions.
However, due to the focus of the assertions of Theorem 0.0.1 on a single Banach space E, as
noted in the conclusion of Chapter 2, the boundedness of |[Vuy ||o for problem (P, ,) (and,

respectively, ||uy || Hi(Q) for problem (Q,, ,;)) remains an open question.



Chapter 4

Two parameters logistic problem with

degradation and refuge zone

This chapter is dedicated to provide result on existence and behavior of positive solutions of

—Au+AV(x) = um(A,x)u—b(A,x)u” in Q,
=0 on 99, 4.0.1)

u>0 in Q,

0<V(x) eL®(Q),0<b(A, -)€C(Q),0#m(A, -) € C(Q) possibly changing sign and
0 # M; = {x € Q; m(A,x) >0}, By ; := int{x € Q;b(A,x) =0}.

In Section 4.1, we will prove the existence result. In Section 4.2, we provide a condition for
uniform boundedness of the positive solutions of (4.0.1). Finally, in Section 4.3, we exhibit a

subsolution of (4.0.1) that will drive to blow-up behaviors of positive solutions of (R; ;) and

(Sa.p)-
In this chapter we will denote

S={(A, 1) ER%:OL[—A+AV — um(A,x)] <0< & **[~A+ AV (x) — um(A,x)]},

Co:={ueC([0,A]), 0<A<oo;(A,u(A)) €SV AE0,A)}
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and

Coo := {[J € C([0,400)); Fp(oo) := )LET«,“(M <ooand (A,u(A))eSVAE [0,+°°)}.

4.1 Existence theorem of positive solutions

Let us denote

b(e0,x) := liminfb(A,x), B e := int{x € Q;b(c0,x) = 0},

A—o0

We will assume that
B(), 2CQVA>0

and By .. C Q.

Proof of Theorem 0.0.4. Since (A, 1) € S, then
OP[—A+AV —um(A,x)] <0< Gfo”l [—A+ AV — um(A,x)]. 4.1.1)

First, prove that (4.1.1) is a necessary condition for the existence of a positive solution of
(0.0.13). Assume that there exists a positive solution u of (0.0.13). By using the monotonicity

of the principal eigenvalue we deduce that
0= 0 [—A+AV(x) —um(A,x) +b(A,x)uP"'] > oP[~A+ AV (x) — um(A,x)).

On the other hand, by the monotonicity of the principal eigenvalue with respect to the domain,

we deduce that
0= 02[—A+ AV (x) — um(A,x) + b(A,x)u? ] < 6, [~A+ AV (x) — um(A,x)].

We just proved that (4.1.1) is a necessary condition.

In order to prove the existence, we use the sub-supersolution method, see [3] for instance.
Let ¢ be the positive eigenfunction associated with O [—~A+ AV (x) — um(A,x)] normalized
such that [|@[|»= 1. It is not difficult to verify that u := €@ is a subsolution of (0.0.13) if

£ < (o7 [~A+ AV (x) — um(A,x)]/ b)) /P
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Now, we build the supersolution. Let us define

Ks = {x € Q\ By :dist(x,d(Q\ By 1)) > 5}.

Observe that K5 is a compact subset of Q \ By ;. Consider vs € intc1 ) such that vs (x)>81
for all x € K. Given any compact subset K C Q\ B 3, there exists § = 6(K) such that K C K
and consequently

lim minb (A = oo
lim min (A, x)vs(x) =+

for each compact subset K C Q \1_307 2- By Corollary 2.5 of [32], we obtain that

limoP-A+ AV (3) + (2035 (0! — um(R2)] = o[-+ AV (3) — m(2,)] > 0
Let & > 0 sufficiently small such that 61> [—A+ AV (x) +b(7L,x)v50(x)P_1 —um(A,x)] > 0.
Consider the positive eigenfunction @ associated with &{*[—A+ AV (x) + b(A ,X)vs, (x)P -1
um(A,x)]. It is easy to check that if k¢ > v, in Q, then

is a supersolution of (0.0.13). Observe that the conditions in € and k allow us to take € arbitrarily

small and k arbitrarily large. So we can assume that
u=¢eQ <kp=u. (4.1.2)

Thus, we deduce that there exists a positive solution of (0.0.13) which is minimal in the interval
[u, 7).

Now, let us prove the uniqueness. So assume that there exist two distinct positive solutions
u1 and uy of (0.0.13). If necessary, we can assume that € is even smaller and & is even larger
so that € < min[u,uy] < max[uy,us] < k@. Again, by applying Theorem 6.1 of [1], we can
deduce that there exists a positive solution ug of (0.0.13) which is minimal in the interval [u, u].
Since ug is minimal in this interval, it follows that uy < u; and ug < u;. Thus, we can suppose,

without loss of generality, that uy < u;. Let us prove that uy < u;. Observe that

(—A+bv(ug,uy) + AV — w(A)m(A,x))(u —ug) = 0,
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where
0 (a0, 1) (x) = (11 (x) = 2o (x)) p(x)””!
for some up(x) < v(x) <wuj(x). Since ug # uy, then

0= 62[—A+ b (ug,ur) + AV — w(A)m] > 62[—A+bul "'+ AV — u(A)m(A,x)] > 0,

which is an absurd and we just proved that uy < u;.

Finally, since uy and u; are positive, then

0= 02 [—A+b(A,x)ul " + AV (x) — um(A,x)
PR [—A+b(A,x)ul "+ AV (x) — um(A,x)] =0,

—

V

which is an absurd and we just proved the uniqueness. The proof of Theorem 0.0.4 is concluded.
]

We point out that the condition of existence of the limit of L. is adopted to simplify the
statements of Theorem 0.0.6. However, an alternative statement in terms of superior and
inferior limits of U and dismissing this condition also suit. For each given u € CyUC., we can
associate a family of positive solutions {u; }, where u; = u;_ 1(2) 1s the unique positive solution
of (0.0.13) with u = u(A), for A € [0,A) (respectively A € [0,+4)) if u € Cy (respectively
U € C). It should be noted that the union CyU C. covers all the existence and uniqueness

region S of positive solution u;, ;.

4.2 Results on uniform boundedness of positive solutions

The following theorem has several implications as we can see in Sections 4.1, 5.1 and 5.2.

Theorem 4.2.1. Let 1t € CoUCo. Assume that there exists some L > 0 such that m € C(Dom u x

Q;R)
M :=sup U(A) < 400, My := sup||m(A, - )||ce< +o0.
A>L A>L
If
inf 01" [~A+AV (x);m(A,x)] - (A)] >0, (42.1)

A>L
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then

sup|[uy, ||ee< +o0. (4.2.2)
A>0

Proof. First we will prove that there exists some L > 0 such that

sup ||uy ||2< 4-oo (4.2.3)
A>L

and then we will use Lemma 1.1.1 to infer (4.2.2). Assume by absurd that there is a sequence

(A4) C Dom u such that ||uy, ||o— +oe. By the definition of u; , we have that

/vu;L Vo — / (A %) — AV (X)) 111, @ — / ()il 9V 9 € HY(Q).  (42.4)

Dividing (4.2.4) by ||uy, |2, testing against ¢ = v, = uy, /||uy, ||> and using that u is bounded,

we deduce that

/Q|Vv;tn|2§/|Vv,1 ]2+/b(ln,x W g, 157! 4.2.5)

= / m(An,x) = AV (x))vi < MiM,|Q], (4.2.6)

that is, v, is bounded in the reflexive space Hy (). So there exists 0 < veo € Hy (Q), [|Veo2= 1,
such that v;, — v.. € H (). Moreover,

i 57" [ b0 4 [ V@93, < [ [0, P [ bR h g 1574 @227

//anxv

—/ w(A)m(A,x V/L < MM |Q|. (4.2.8)
Consequently,
.. p—1 p+1
légir;fHu;LnHz /b(?tn,x) < oo (4.2.9)
2 o o]
1,1?53; AV (x)vy < oo (4.2.10)
Applying Lemma 1.1.1 with D = {A,}, @, = vy, hy, = [luy, ||5~ 'b( A, - )ufL + A,V +

w(A)m—_(A,, - ) and my (A, - ) = w(A,)my(A,, - ), we would obtain that v, is the eigenfunc-
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tion associated with o2 [—A + hy,;my(Aq,x)) =1 and so
V2, lle< C(llva, la+1) = 2C.
Hence
liminf bﬂﬂx p+1 /booxvp+]
n—r+oo
but by combining the assumption Hu A, |[2— oo with (4.2.9), we deduce that
[ bl =0,
Q
whence we imply
Voo =010 Q\ By o (4.2.11)
and SO Ve € Hé (Bo.«). Now we will analyze two cases separately, that is,
limsup A, < e or limsup A, = oo. (4.2.12)

n—4-o0 n——+oo

1. Assume that limsup A, < oo. Let y € Hy (Bo ) C Hy (Q). If we take ¢ = y/||uy_||2 in

n—y+oo
(4.2.4) and pass to the limit, we deduce that v.. satisfies

—Aveo + AV (X) Voo = (A)m(As,X)Veo in By oo
Voo =0 on 0B e,

Voo >0 in By co,

where A, = lim 4, < o for some subsequence A, of A,. Since v.. # 0, by the

k—>—+oo

strong maximum principle we deduce that ve, is positive in By, and then p(A,) =

67 [—A+ AV (x);m(As,x)]. Hence,

lim u(A,) = hm Gl T [=A+ AV (x);m(Ap,, X)),

but this contradicts (4.2.1).

2. Assume now that limsup A,, = 4-0. Observe that
n——-o0

>
lgg}rrolof QV(X)VH_/QV(X)VOO,
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but since (4.2.10) and limsup A,, = +oo, then it follows that
n— oo

/QV()C)VZO =0.

S0 Ve = 0 in Q\ V. Combining this with (4.2.11) and noting that v., # 0 (because
[Veo|[2= 1), we deduce that Vo N By . # 0 and v, € Hy (Vo N Bo,.). Consider

v € Hj (VoNBoe) C HY (Q).
If we make ¢ = y/||uy,_||2 in (4.2.4) and pass to the limit, we deduce that v., satisfies

—AVes = U (00,X)Veo i Vo N By co,
Voo =0 on 8(V0 ﬂBO’M),
Voo > 0 in Vy N B0 co,
where 0 < u, = klim U (A, ) < oo, for some subsequence A,, of A,. Again by the strong
——foo

maximum principle, we deduce that v., > 0, by whence le 0o _ A;m(c0, x)] would be

finite and
) VoNBg . By co _
kgrfmu(lnk) =0," " [=Aym(0,x)] = kl_lﬂlooal “I=A+ AV (x);m(A,,, %)),

but this contradicts (4.2.1).

Hence in both cases stated in (4.2.12), we have obtained a contradiction, by whence we just

proved (4.2.3). Applying Lemma 1.1.1 with D = {A,}, @3 = uy,,
ha, = by - Yt 2V + i (An)m (A, ),
my (Ap,x) = w(A,)my (A, x), we would obtain GIQ[—A—f—h,ln;er(ln,x)] =1 and so
[, [l < C(llup, [l2+1) < oo

and the proof of (4.2.3) is concluded.
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Using similar arguments, one can prove that

sup |[uz [l2< e
A€[0.]]

and the proof Theorem 4.2.1 is concluded. [

The benefit of Theorem 4.2.1 is that it gives a priori boundedness of positive solutions of a
problem that admits terms that can possibly be not monotone with respect to  or A and even

terms that changes sign with respect to x, as m(A,x).

Theorem 4.2.2. Let u € CoNC([0,A]). Assume that

gin}\u(k) = 0P [-A+AV;m(A, - ). (4.2.13)

Then

mHché@: 0.

Proof. Combining (4.2.13) and the monotonicity of the principal eigenvalue with respect to

the domain, we get

Boo

0= 0 [~A+AV —pu(A)m(A, - )] < 6, " [=A+AV — to(A)m(A, - ).

Consequently,

st ol A AVim(@, )] - ()] >0

for some € > 0 due to the continuity of the first eigenvalue with respect to the potential. Then

we can apply Theorem 4.2.1 to deduce that

sup  ||uy [[ee<< Foo. (4.2.14)
A€[A—g,A]

By elliptic regularity, it follows that u;, is bounded in WO2 *(Q) for arbitrarily large s > 1. So let
A, T A. Consider s > 1 sufficiently large such that WO2 *(Q) is compactly embedded in C}(Q).

So [luy, —ual| @ 0, up to a subsequence, where u, satisfies

—Aup + AV (x)up = R [—A+ AV;m)m(A, x)up —b(A,x)uly inQ,
up =0 on dQ,

upy >0 in Q,
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So it must be up = 0, on the contrary, we would contradict the condition of existence of
positive solution stated in Theorem 0.0.4. We just proved that u; converges to 0 in Cé (Q). By

the arbitrariness of the sequence A,, converging to A, we imply that

Jim fJuz [|cy @)= 0-
This ends the proof. [

Theorem 4.2.3. Let i € Ce.. Assume that

oy [—Asm(ee, - )] < 0" [=Asm(eo, )]
and 6" [~Aim(ee, - )] < p(e=) := lim p(A) < 6,""P= [~ Asm(oo, - ).

Then
%i_I&H”kHCW@)< +oo, for some 0 <y <1

and uy — e in C'(Q), where u.. = 0 in the case [i(o0) = 61 [—A;m(co, - )] and e is the null

extension to Q of the unique positive solution of the problem

—Au = p(o0)m(oo,x)u — b(oo,x)u” in Vp,
u=>0 on dVj, (4.2.15)

u>0 in Vy,
for w(=) > o{*[~Asm(e0,x)].
Proof. Since () < GIVOOBO"”[—A;m(OO, -], then

inf 67" [~ A+ AV (x):m(A,x)] — tee(A)| > 0,
>L
for some large L > 0. Therefore

sup|uy [|oo < 00
A>L

due to Theorem 4.2.1. Then the boundedness in C l’7’(5) follows by classic elliptic regularity.
Now we will divide the proof in the cases i (o) = G7[—A;m(o0, x)] and (o) > G2 [—A;m(o0,x)].
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1. Assume that p(o0) = GYO[—A;m(oo,x)]. By arguing as we done in Theorem 4.2.1, we
can prove that
lim uy (x) =0 forall x € Q\Vj.

A—ro0

Testing against ¢ € H& (Vo) in the definition of u, and passing to the limit when A — oo,

we can deduce that there exists a non negative o € Hé(Vo) such that )Llim ||uy —
—>foo

oo | ci(@= 0» where i is the null extension (to Q) of ue. and u.. satisfies

—Atoo = GIV‘)[—A;m(oo,x)]m(m,x)uoo — b(eo,x)ul, in Vj,
Uoo =0 on dVjp,
Uso >0 in Vj.
Suppose by absurd that u., # 0. By summing a sufficiently large C > 0 in both sides of the

above equation, we would be able to able to apply the strong maximum principle in order

to conclude that u., > 0. Since Vy ¢ By e, then 0 < ufo_lb(oo,x) in V; and consequently

0=0," [—A+ufolb(oo,x) - ( lim NM(A)) m(oo,x)]

A—r+oo

> leo {—A— /ll_i)rilmuw(/l)m(oo,x)} =0

which is an absurd and so u.. = 0.

2. Assume that pt(eo) > GIV O[—A;m(e0,x)]. By arguing similar as we done in the first case, we

deduce that there exists a non negative u.. € Hl (Vy) such that Alim ||ty — oo HC(]) @=0
—fo0

where .. is the null extension (to Q) of u.. and u.. satisfies

—Altoo = U (00)m(o0, X)tteo — b0, x)ul, in Vp,
Uoo =0 on dVj,
Uoo >0 in Vj.
We claim that u., is non null. In fact, assume by absurd that u. = 0. Let vy = uy /||u} ||w»

take any @ € Hj(Q) and test against ¢ /||uy || in the definition of u, . By passing to the
limit as A — oo, we deduce that there exists 0 < v; € Hj(Q) satisfying
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—AVeo = U (0)m(o0,X) Ve in Vp,
Uoo =0 on dVj,

By summing a sufficiently large C > 0 in both sides, we can apply the strong maximum
principle to conclude that v., > 0 is positive and consequently

p(e0) = 6,°[~Aim(eo,x)].

But pt(e0) > GIVO[—A;m(oo,x)] by hypothesis.

This ends the proof. [

4.3 Subsolution driving blow-up

In the previous sections, we established conditions for uniform boundedness of positive so-
lutions and presented their limits. In this section, we will study the complementary case.
Precisely, the next theorem provides a subsolution that will lead to the blow-up phenomenum

for two special cases of the problem (0.0.13) in the next chapter.

Theorem 4.3.1. Let (1,06(1)) €S, b(A, - ) € C(Q) be such that b(A,x) > b(A,x) for all (A, x)
and let 6(A) € R such that

(u—0o(A))m(A,x) >0VxeQ.
Then there exists a unique B(A) > 0 such that
(L) = 6P [-A+ AV (x) + B(A)b(A,x);m(A,x))].

Moreover,
B Ph_ <y,
[P ]e

where @ is the positive eigenfunction associated to o (A).

Proof. Let (A,0(A)) € S and define

g(B) := 62[~A+ AV (x) + Bb(A,x) — 6(A)m(A,x)]. 4.3.1)



4.3 Subsolution driving blow-up 99

By using the definition of S and the fact that (A,0(1)) € S, we deduce that g(0) < 0. Again
by using the definition of S and Theorem 0.0.4, we imply that there exists a unique positive

solution u; ,, of (0.0.13). Let § > sup ub )L ! and observe that

[~A+AV (x) + Bb(A,x) — o(A)m(x)]uj y >
[~A+AV(x) +Bb(A,x) + (1 — & (A))m(x) — m(x)]uy
> [=A+AV(x) + Bb(A,x) — wm(x)]uy,
= Bb(A,x)uy , —b(A, )c)u/l " =(B —uij)ul,ub(l,x).

So uy is a strict positive super-solution of the operator
Lg:=—A+AV(x)+ Bb(A,x) — o(A)m(A,x)

and consequently g(f8) > 0 by the characterization of the strong maximum principle (see
Theorem 7.5.2 of [44]). Since g is continuous and increasing, the existence and uniqueness of
B(A) > 0 is proved.

Let us prove the second part of the theorem. Observe that ¢, is a subsolution of (0.0.13) if

and only if
o\
B(A) ( ) b(A,x) —b(A,x) o(A))m(A,x). (4.3.2)
192 ]]<o
By combining the hypotheses (4.3.2) and b(A, - ) > b(A, - ), we deduce that the above

inequality holds and the theorem is proved. ]

Conclusion of Chapter 4
Theorem 4.2.1 is an a priori boundedness result that extends to positive solutions of problem
(0.0.13), the well-known behavior.

sup [|luplle< o0 < inf (dG1 (—=A)—u)>0
UEM pe

of the positive solutions u of (0.0.9), where M is any subset of (doj (—A),dGlBO(—A)). We
point out that the case A — o0 is included and is the most interesting aspect of this extension.

The a priori boundedness provided by Theorem 4.2.1 naturally leads to the question of the
limit of these solutions, which is addressed by Theorems 4.2.2 and 4.2.3.
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Theorem 4.3.1 does not directly provide information about positive solutions of (0.0.13).
This technical theorem’s benefit will become apparent in the Corollaries 5.1.1 and 5.2.1, that

present a blow-up phenomena to (R, ,) and (S, ,), respectively.



Chapter 5

Fast diffusion and strong degradation for

logistic problem with refuge zone

In this chapter, we will apply the results of Sections 1.2, 1.3 and Chapter 4 to determine fine

qualitative information about the positive solutions of (R ) and (S, ;).

5.1 Fast diffusion

In this section, we will study the positive solutions of the problem

—(1+Aa(x))Au = pu—b(x)u” in Q,
u=0 on 0Q, Ry )

u>0 in Q,

where 0 <a € C(Q)and 0 < b € C(Q).
Clearly, (R;, ,,) is a special case of (0.0.13) by making

V=0, b(A,x) =b(x)/(1+Aa(x)) and m(A,x) = (14 Aa(x)) "'

Consequently, we can apply Theorem 0.0.4 to imply that there exists a unique positive solution

uy y of (Ry ) if and only if

Qf . 1 By [ A. 1
Lo ( A,—H_)ba(x)><u<c1 ( A’H—/la(x))' (5.1.1)
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As said in the introduction of this work, we are interested in the behavior of the positive
solutions at the extremes of the interval of existence. In order to properly determine which are
these extremes, will state the next two propositions. To do so, we will analyze two essential

maps. Consider A > —1/||al|o. Observe that
1+ 2Aa(x) >0 forall x € Q,

and then the following maps are well defined

h,H: (—1/||allo,+) — R

1
A — hA):= GIQ <—A;m) ’ (5.1.2)
1
A — H(A):=0o (—A;m) :

With these notations, we can equivalently write the existence condition in (5.1.1) as

h(A) <u <H(L). (5.1.3)
In the following result we prove the main properties of both maps.
Proposition 5.1.1. One has:

1. The maps A — h(A),H(A) are continuous, increasing and

0<h(A)<H(A) forallA > —1/|allo.

2. It holds
O0<pu:= 1lim hA)< 1lim HA):=U<oo.
£ Ad—1/allo (*) Ad—=1/llallo (A):=Hn
3. It holds
A— oo too ifAg = 0.
and 5
lim H(A)= 0" [=AiXao] ¥ BoNA¢#0,
A—+oo +oo if BpNAg = 0.
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Proof. The maps A — h(A),H(A) are continuous and increasing by Proposition 1.0.3. More-
over, h(A1) < H(A) by Proposition 1.0.3. The existence of I and y is also a consequence of
the monotony and continuity of the maps and because h(A),H(A) > 0.

Now suppose that Ay # 0. Note that

1
< 0 B | — 0(_ . ..
h(?L)_Gf\(A,lJr)La) c0(—A) (5.1.4)
Consequently,
lim A(A) =suph(A) = he < oo. (5.1.5)
A—r+too A>0

Let A, — +oo, ¢ be the positive eigenfunction associated to i(A,) such that |[@, |2= 1.

Then ||¢,, || H}(«) 18 @ bounded sequence. Indeed, note that

(5.1.4)
2_ < 0
L1v93, = )/ana <hn) [ 93 o)

Hence, ||¢,, || Hi(e) 1s bounded and so there exists @.. € Hy (Q) such that @; — @w in Hy (Q)
and @3 — @ in L*(Q) with @ > 0 and @., # 0 in Q.

Moreover,
1

1+ Aqa(x)
due to Lebesgue’s Dominated Convergence Theorem. Consequently, if ¢ € C.'(Q), then by

— X4, in L2(Q) (5.1.6)

passing to the limit (up to a subsequence) in the equality

0y,
Vo, Vo =h(A, /— 517
/Q @, - Vo =h( )QHM(X) (5.1.7)

we deduce that

| v0--Vo =t [ 11,0-0.
Q Q

Consequently, since ¢, > 0 in Q, we deduce that /., = GIQ[—A; X4,) and @ is the positive
eigenfunction associated to G2 [—A; xa,].

Now, assume that Ag = 0 and (5.1.5). We can argue exactly as in the previous case, using
(5.1.6), and conclude that

/ Vo..-Vo =0, Vo cHj(Q),
Q
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and then, @, = 0 in Q, a contradiction due to ||@w||2= 1. Thus, Alim h(A) = .
—> o0
Analogously, we can study the function H(A) and the Alim H(A). This concludes the
— oo
proof. ]
Proposition 5.1.2. Let [T < f1 < 6,°(—A; xa, ). Then there exists a unique —1/||aljo< A (@) <

~+oo such that
—H(A) for =),

e <H(A) for A > A(u),
>H(A) for A < A(p).

The map W — A (W) is continuous, increasing and

1
lim A, (1) = ———, lim  A,(u) = +oo.
ulm lallo”™  profor-aiz,)

Analogously, given L < p < G2 [~ A; xa,), there exists a unique —1/||allo< A* (i) < +oo such

that
=h(A) for A =2A"(u),

e <h(A) fordA>A"(u),
> h(A) for A < A*(w).

Moreover, the map W — A* (W) is continuous, increasing and

1
imA*(u) = ——, lim A* (1) = +oo.
Hip lallo ptof—Asxa,)
Furthermore,
A(p) < A*(u). (5.1.8)

Proof. Take I < u < Gf [—A; xa,]. Thanks to the properties of H(A), see Proposition 5.1.1,
the existence, uniqueness of A.(u), as well as its increasing character, follow.

On the other hand, assume that

Jim Ac() =1 < oo.
I'LTG] 0 [7AaxA0]

By definition
H=H(A (1)), (5.1.9)
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then we get by Proposition 5.1.1 that

B B
ol (i) = H(r) = of* (i

> < cy]BO (_A;XA()) < oo,

a contradiction if ByNAg # 0. If ByNAg = 0, then 67° (—A; xa,) = o, and taking limit in
(5.1.9) as u — oo, we have by Proposition 5.1.1, that

1
oo — 1 H A* = BO —A, o]
tim H( (1) cl( 1+m)<,

a contradiction again.

On the other hand, suppose that
lim A, (p) > !
1m % =r — T
ulg lallo
so taking limit in (5.1.9) we get

n=H(r)> 1lim H(A)=0u,
H (r) Ad—=1/llallo (A)=#

a contradiction.
Finally, since 2(A) < H(A), we deduce (5.1.8). This ends the proof. O

Before enunciating the next result, let us remember the following notation given in the

Introduction. Define
d

m ki )
A+UB(): DiU UCzj’
1 i=1j=1

i=
where m,d, ki € N, m,d , k; > 1, Cl.j , Dj are the connected components of A U By such that
Hl) DigA-i-? C1J¢A+7

H>) Cij 1s isolated from any other component of A U By

and

. Cj )
ol =AM xa) = 0, A xap)s i =1, ki
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Cl
C By
(4 (A)e D
/ (é 07)74‘ <
\ D2 1 (Bo) (A)
A (Bo)s

Fig. 5.1 A possible distribution of the set Ay UBg withm =3,d =2 and k) =k, = k3 = 1.

That is, by H} ), we have separated the connected components only of A, denoted D;, and Cl.j

that are not contained in A. Then,
D; .
9 [_A’XAO] = oo,
because D; C A.. Hence, since

Gf‘*UBO[—A;xAO] = min{ min {GlDi[—A;xAO]} , lrgiélm{cf[—A;on]}} = min Gf[—A;xAO],

1<i<d 1<i<m

we can order the sets Cij according to

ALUBy

0, (=25 o) = 1[4 Xag] < oo < O[5 2.

In Figure 5.1 we have represented a possible distribution of A U By. In such case, there exist

two connected components included in A, D, D; and three different connected components
J

Cl‘ .

Observe that as a consequence of H;), we can take 6 > 0 such that the set
cl(8) = {xe Qudist (x.¢]) <5}

be isolated from any other component of A, UBjy. Hence, we can define b;; be a smooth

extension of b| ., satisfying

bij>b inQ, b;j=0inC/NBy,
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and

bij(x) >bo >0 ‘v’xGQ\Cij(5), for some by > 0.

Besides this, let us denote by g;; the continuous function defined by a;;(x) =0 forx € Q'\ (CLJ N
Ay), and a;j(x) = a(x) for x € C/ A so that a;; < a in Q and a;; = 0 in Q if C/ NA, = 0.

In order to prove a blow up result for u, , we will need the following corollary.

j
Corollary 5.1.1 (of Theorem 4.3.1). IfGICi [—As x4, <1 < Gfgo[—A;on], then

lim u (x) :w‘v’xECl-j.
A—voo

Proof. Let @, ; be the positive eigenfunction associated to the eigenvalue

Abi(x) 1

Q —
o | A T e 14 Aaly)

normalized in L2(€).

By hypothesis, there exists some M > 0 such that
a(x)" > Mdist(x,dC})

for all x € A \ By in a neighborhood of 8Cij . Consequently,

A'b; b; b;
supA =r(1- r)l_r i) <Cr(1- r)l_r l(x). (5.1.10)
a>0 1 +Aai(x) a;(x)" d(x)
Moreover, since 0 < r < 1, we deduce by either x € Cl.j NBporx e Cl.j NA., that
lim DO WP g yeecl. (5.1.11)
An—r+oo 1 + lna,-j(x) Ap—>—+oo An—r —+ ln _ral'j(x)
Due to (5.1.10) and (5.1.11), we can apply Theorem 1.2.1 with
lrb,’(x)
ql(x) - 1—|—la,~(x)
and V = 0 to deduce that
A"b; 1 ]
lim o2 | A+ i) =0l [<A; ya] (5.1.12)

A—seo 14+ Aa;(x)” 1+ Aa(x)
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and

1im 01— @53 )= 0, (5.1.13)

. . . . . . c!
where @.. is the null extension to  of the positive eigenfunction associated to 6, (—A; xa,)-

J
Combining the hypothesis u > GIC "[=As xa,] with (5.1.12), we deduce that there exists
some large L > 0 such that

A"b;;(x) 1
> o | —A Y ; VA>L.
H=0a { + 1+ Aa;j(x) l—l—la(x)} -
So A
e I ij(x) . 1
H— 0] [ A+ 1+Aa;(x)° 1+/la(x)] SOVASLYxeO (5.1.14)
1+ Aa(x) - - ’ o
Moreover, since b;; > b and a;; < a, then
b;; b
g o bWy, >0,VxeQ. (5.1.15)

1+ Aa;j(x) — 1+ Aa(x)

Since (5.1.14) and (5.1.15), then the hypothesis of Theorem 4.3.1 is satisfied by making V = 0,
m(A,x) = (1+Aa(x))~" and b(A,x) = b;j(x)/(1 + Aa;j(x)) and

o(A) := o} [—A+ A'bi) ! ] :

1+2Aa;j(x)" 1+ Aa(x)

Theorem 4.3.1 then states that there exists a unique (A) > 0 such that

B B(A)bij(x) 1
o(1) = of [-“ 1+M,§<x>’ 1+M<XJ |

Since B(A) is unique, it follows that B(A) = A". then

=) _PA_ (5.1.16)
192l
Note that b .
ry.. j
op | —A+ y) <61C’ﬂB° [—A; Xa,) -

1+Aa;ij(x)" 1+ Aa(x)
So we can apply Lemma 1.1.1 to deduce that || ¢, || is bounded. Since (5.1.13), then the (LHS)
of (5.1.16) explodes in Cl.j when A — oo and the proof is concluded. O]
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Remark 5.1.1. Observe that since
A"bi(x)
1+ Aa;(x)

is not identically null in Cij , we can not apply Theorem 2.4 of [32] to deduce (5.1.12). This

technical issue was overcame with Theorem 1.2.1.

Corollary 5.1.2 (of Theorem 4.3.1). Let i < 1 < 6°[~A; xa,). Then

li = +oo Il x € By.
lﬁl}gl(“)ul(x) for all x € By

Proof. By the definition of A, (1), we imply that there exists some € > 0 such that

1
Bo | _A.
U < o [ A’—l—k?ta(x)} VA(u) <A <A(u)+e.

Fix A (1) <A < A.(u)+ €. Since

1 1
By | . _ 1 By | .
H<o [ A; 1+7La(x)] ﬁhgz}oal [ A+ Bb(); 1—|—7La(x)} ’

Then there exists a unique 3(A) > 0 such that

i =o {—A+ﬁ(x)b(x);l++a(x)} , (5.1.17)

due to the continuity of the function

B s b {—A+ Bhb(x): 1++a(x)] |

Define
o(A):= o} {—A+B(/l)b(x);l++a(x)] VA € (A1), A (1) +8).
Then
p—o(d)
T i) OVAE (A ()5 Ae (1) +€), (5.1.18)

due to (5.1.17).
Again, by the definition of A, (1),

(A, u)eSVA € (A(u), (1) +e). (5.1.19)



5.1 Fast diffusion 110

Since (5.1.18) and (5.1.19), then the hypotheses of Theorem 4.3.1 are satisfied with b(1,x) =
b(x)/(1+ Aa(x)),V =0and m(A,x) = (1 + Aa(x))~'. Then Theorem 4.3.1 states that

B(A)/ (P Hq;le <upV A € (u(pt), M) +€), (5.1.20)

yRIES]
where @, is the positive eigenfunction associated with o(A) and u; is the unique positive
solution of (R, ;). Assume without loss of generality that ¢, is normalized in L*(Q). Since
(Ae(u), Ae() +€) — o(A) is constant, in particular, (A (1), A (1) + €) — o(A) is bounded,

so we can apply the Lemma 1.1.1 to deduce that

|@a || is bounded. (5.1.21)

We claim that
li A) = oo, 5.1.22
/'L—>17Lril(u)ﬁ( ) ( )

Indeed, let us suppose by contradiction that there exists a sequence A, | A.(1) and 0 < By < oo
such that such that

. An)b u
0 = 1 Q1A BAn)b
LJLIR/J) 1 { + 1+Aa 1+ lna]
Q Bob U
= o7 |—-A —
1 [ T 2 (wa 1+/1*([.L)a}
By . 1
ot | -4 et
Bo | _A_ H _ B | A 1 [ > 1+ (u)a(x) —0
= [ 1+awm} o [ A (w)a ’
which is an absurd, and we just proved (5.1.22).
By applying Theorem 1.2.1 with
q.(x) = B(A)b(x),
we have that
A_lgl(mﬂw — ()l @)= 0, (5.1.23)

where @, () is the extension to € of the positive eigenfunction associated with

1
By | A
% [AW+xam}
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]

Finally, using (5.1.21), (5.1.22) and (5.1.23) in (5.1.20), we conclude the proof of the
corollary.

Below we list in ascendant order the proofs of the items of Theorem 0.0.5.

Proof of item 1.1) of Theorem 0.0.5: It follows directly by applying Theorem 4.2.2 and
the definition of 1™ (u).

Proof of item 1.2) of Theorem 0.0.5: Since V =0 and b(A,x) = b(x)/(1 + Aa(x)) in
(Ry, “), then

Vo = Q, b(o0,x) = xa,b(x), m(eo,x) = x4,(x) and By .. = A UB,.

So the statement of 1.2 of Theorem 0.0.5 follows directly by Theorem 4.2.3.

Proof of item 1.3) of Theorem 0.0.5:

We will argue by contradiction. So, let us assume that y = Gf TUBy (—A; xa,) and that there
is a sequence A, — -0 such that ||u, || is a bounded sequence.

By testing against u; in the definition of u; , we deduce that uy  is bounded in Hé (Q). So,
there is 0 < v € H} (Q) such that

up, —v in Hj(Q) and uy, —v in L%(Q) up to a subsequence.

Using Lemma 1.1.1 with ) = ui_lb(x) and my (x) = (14 Aa(x)) ! we deduce that uy, is
bounded in L7 (Q), and by elliptic regularity we obtain that

u, —»v inCY(Q)

being v a solution of (0.0.16).

Assume that v = 0. Then by dividing by ||uy, || in the definition of u, and passing to the
limit, we get that it = 01[—A; Xa,] which is an absurd since 61[—A; x4,] < G‘IﬁUBo[—A; Xay) =
u by hypothesis. On the other hand, if v # 0, since (0.0.16) possesses a positive solution if
and only if o7 [—A; x4,] < U < waBO[—A;xAO], then we get 1 < GmeO[—A;xAO], which is
an absurd.

Proof of item 1.4) of Theorem 0.0.5: Follows directly by Corollary 5.1.1.

Proof of item 1.5) of Theorem 0.0.5:
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First, assume that A < 0 and let us prove that

sup ||uy ||ee< F-oo.
A<A<0

Observe that

[ 1 1
By By
= A, ——— —A 5.1.24
‘Ll, G] I 71+l*(“)a:|<61 |: 71+Aa:|7 ( )
and ) .
Q Q
= A, ——— —A . 5.1.25
H=or| ’1+7L*(u)a} Z o [ ’1+Aa} o123

By (5.1.24) and (5.1.25), we deduce that there exists the positive solution u of

—Au= lanu—bup inQ,
u=~0 on dQ.
Now, observe that
! < ! d ! > 1 VA< A<O0
an .
1+Aa ~ 1+Aa 1+Aa — -

Hence, u, is a subsolution of the above problem and consequently,
uy <u VA<A<O0.

Now assume that A > 0. Using

1 1

<1 d <
14+Aa — and - Zao = 14+ Aa’

we obtain that since u, is a positive solution of (R; ), then
_Aul S Wuy, _XA()b(x)uip
and then u, is subsolution of

—Au = pu— ya,bu’ inDj_y,
u=20 on dDj,_1NIQ, (5.1.26)

U= —+oo ondDj i,
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where
. k b A

C .
Since i < 0, (—A), it follows by Theorem 4.7 of [45] that there exists the large solution L,
of (5.1.26), and then

Analogously, u is subsolution of

[ Au= pu — xa,buP  in Dy, g,
u=0 on dD,, ,NIQ,
< md (5.1.27)
U= +oo on dD,,. 4,
u>0 on Dy, 4

\

Equation (5.1.27) possesses a large solution L; for any p and u) < L, in D,, 4. This completes
the proof.

Proof of item 2) of Theorem 0.0.5:

The first part follows directly from Corollary 5.1.2.

Now, consider D CC D; CC Q\ By an open subset and A be a number such that A, (¢t) <
A < A*(u). Then, for A € [A.(u),A] we have that

b(x) - bo
1+ Aa(x) — 1+Aay’

where ay; = maxa(x), bg = min b(x) > 0, and then u is a subsolution of the equation
xeDy xeD

by , .
u” 1n Dy,
1+ Aay (5.1.28)

U= +oo on dD;.

—Au = Uu—

By [45] there exists a large solution of (5.1.28). This implies that u; is bounded in D. We just
concluded the proof of item 2) of Theorem 0.0.5.

5.2 Strong degradation

In this section, we will study the problem
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—Au+ AV (x)u = um(x)u—b(x)u” in Q,
u=0 on dQ, (Sau)

u>0 in Q,

0<V(x)eL™(Q),0<beC(Q),0+#me C(Q) possibly changing sign.
We can see that (S, ;) is a special case of (0.0.13) by making b(4,x) = b(x) and m(A,x) =
m(x). Consequently, we can apply Theorem 0.0.4 to imply that there exists a unique positive

solution u, ,, of (R, ,) if and only if
OP[—A+AVim] < u < Gf" [—A+AV;m].

Corollary 5.2.1 (of Theorem 4.3.1). Let it € (CoUCw)NC([0,A)), A < oo, If

lim (ofO[—A+ AV (x);m(x)] — u(z)) —0, (5.2.1)
AA
then
lim uy (x) = +ooVx € By if u € Cp, A < (5.2.2)
A—A
Ahm Uy, (x) = +ooVx€Dgyif u € Coo, A =00, Vy ¢ By. (5.2.3)
—oo

Additionally, if m € C"(By) (m € C"(Dy), respectively), then the convergence in (5.2.2) (in
(5.2.3), respectively) holds uniformly in compact subsets of By (Vo, respectively).

Proof. Let i € CyUCw. Define 6(A) := u(A). Then
(W(A)—0o(A))m(x) =0V A € Domp. (5.2.4)
Moreover, since i € CoUCe C S, then
(A1) €S. (5.2.5)

Since (5.2.4) and (5.2.5), then the hypotheses of Theorem 4.3.1 are satisfied with m(A,x) =
m(x), b(A,x) = b(x). Thus, Theorem 4.3.1 state that there exists a $(4) > 0 such that

L) = OP[~A+AV + B(A)b;m] (5.2.6)
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and

B _PA_ ), (52.7)
1921

where @, is the positive eigenfunction associated to (5.2.6).
Since i € CyUCw, then 1 is bounded. By (5.2.6), it follows that 61*[—A+ AV + B(A)b;m]
is bounded and so we can apply Theorem (1.1.1) to deduce that

@2 | is bounded. (5.2.8)
Now we claim that
lim B(A) = oo. (5.2.9)
A—A

We will argue by absurd assuming (5.2.11) and lim 3(A4) < +oo. Then, there exist a sequence
1A
A. T A and a positive number B« > 0 such that

lim B(A,) =B, < co.

n—r—oo

By combining Theorem 1.2.1 with the hypothesis (5.2.1), we deduce that

lim pu(A) = lim 6 0[—A+ A,V (x);m(x)]

n—r+oo n—r+-oo

- o (5.2.10)

On the other hand, by using the definition of $(A,) and Theorem 1.2.1, we obtain

R[—A+ B.b(x) + AV (x); ,if A < oo,
lim () = o' B:b(x) (x);m(x)], i A 5211
e 0/ [~ A+ B.b(x);m(x)], if A= oo
By combining (5.2.10) and (5.2.10), we have that
P [—A+AV (x);m(x)] = O [—A+ Bub(x) + AV (x);m(x)], if A < oo 5212

o0 [—A;m(x)] = 6 [~ A+ Bub(x);m(x)] if A = oo,
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Both equalities lead to a contradiction; in the second one, we used that Vy ¢ By. We just proved
that lim B(A) = co. Then Theorem 1.2.1 implies that
A=A

lim 192 — 95150y = 0. (5.2.13)

where @5 is the extension to Q of the positive eigenfunction associated with Gf O[—A+
AV (x);m(x)] (if A < oo, respectively) or with 67°[—A;m(x)] (if A = oo, respectively). Fi-
nally, using (5.2.8), (5.2.9) and (5.2.13) in (5.2.7), we conclude the proof. [l

Theorem 5.2.1. Let A > 0. Then

lim u 5 =0 (5.2.14)
plo[—A+AV m] 471 HC(%(Q)
and
lim ul#(x) =40V x € By (5.2.15)
Ut O [—A+AVim]
Proof. (5.2.14) (respectively, (5.2.15)) can be obtained by following similar arguments as done
in Theorem 4.2.2 (respectively, Corollary 5.2.1). U

The next lemma will be useful in order to prove Theorem 5.2.2.

Lemma 5.2.1. Let u € CoNC([0,A]). Let f and Bg as defined in Section 2.3. Assume that
W is analytic for A < A in a neighborhood of A and consider any analytic extension of | to
[0,A+n). Assume all the hypotheses of Theorem 1.3.2. Then there exists 1 > 1, > 0 and a
function 8(L) > 0, defined for each A € (A — 1y, A), such that

li = 2.1
)3%51\5(1) 0, (5.2.16)
o W[ A+ AV (x) — (A)m(x)] < 0 (5.2.17)
and
Bs(2) ALOD 2 0 — g
O A AV () —pm() R AT =0 5o
i 5(1) I -

=it #o.

In particular, the limit above is negative by Theorem 1.3.2.
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Proof. By Theorem 1.3.2,

af
55(8,0) = A% <o

and so we can apply the theorem of the implicit function to imply that there exist € > 0,
0 < 11 < 1 and a derivable function 8 : (A—n;,A+11) — (—&, &) such that f(1,86(1)) =0
forall A € (A—n;,A+ 1) and

W

/ = ——_— = —

W ==5 =~
90 1

Note that since i € Cy, then (A, 1t(1)) € S. By using this fact and the definition of §, we get
B~
Gfo[—A— U(A)m+AV]>0= o, "P—A—pu(M)ym+AV]V A e (A—n1,A)

and so 6(A) > 0 for all A € (A—m;,A). Let us define the function § = 28 and note that &

satisfies

0=£(2,8(2))
= 0, WP [~ A+ AV (x) — (A)m()
> 67 P [—A+ AV (x) — (A)m(x)] VA € (A— 11, A).

We claim that (1) — 0 as A 1 A. Indeed, assume by absurd that there exists a sequence
A, T A such that lgn 0(A,) = 8, > 0. By passing to the limit in
n—yoo

o1 [ A AV (x) — p(A)m(x)] = O,

using the monotonicity of the principal eigenvalue with respect to the domain and the hypothesis
(1.3.8), we obtain

0= G{}O[—A—FAV()C) — u(A)m(x)] > Gfﬁ*/z[—A—l—AV(x) —u(A)m(x)] =0,

which is an absurd. So §(A) satisfies (5.2.16) and (5.2.17). To prove (5.2.18) we will analyze

two cases:
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1. Assume that JLI(I’O) = 0. By using (1.3.9), we get

Bs)
0 T[FAHAV () —pu(A)m(x)] o1 , 8(4,8(4))
oy (1) BN G T7Y
_ 11(0,1),
2. Assume that 11(1’0) = 0. That is,
af
Observe that
A—A 1
lim5 = = (8'(A
imsay = (04)
3 -1
- @&m»
WA SR

— | —9r

a5

1200

~ 750

2)“1( )

and so
Bsa)
.0 [FAHAV () —p(A)m(x)] o1, A=A, a0  8A,6(4))
ey 5(0) S AT ST T ;)
0,1
o M)
1 (1,01
22
l](ovl)
2

and we just proved the lemma.

Lemma 5.2.2. Suppose that m(xg) > 0 for some xo € By. Then, the curve

E(A) =0 [-A+AV;m], 1 >0,
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is well defined and it is real analytic as a function of the parameter A. Moreover, if U is

derivable in A, then the condition (0.0.23) is equivalent to

w(A) mrpi—/B V3 #0.
0

By

Proof. According to Theorem 9.1 of [44], the principal eigenvalue
S(A,u) =0 [~A+AV —pum],  (A,u)€R?

is real analytic in both parameters, A and u. Let ¢ , denote the principal eigenfunction

associated to X(A, i) normalized so that ||[@; , ||;2(5,)= 1. Then, ¢, ;, =0 on By, and

_A(pl,‘u —{-AV(P)L# — /.Lm(p,l’u = Z(/’L,u)(p,l,u in By. (5219)
Thus, differentiating with respect to u yields to

a‘PA,u %

(—A+AV —pum—X(A,p)) o Mt g, (A ) P2 -

Hence, multiplying this identity by ¢, ,, and integrating by parts in By, we find from the
definition of @, , that

R — — 2
I (A,u) e me;j - (5.2.20)

On the other hand, multiplying (5.2.19) by ¢, ,, and integrating in By shows that

/IV%“IZM/ V%%,u—u/ me; |, = E(A, ).
By By By
So, thanks to (5.2.20), it becomes apparent that
/|v \Zm/v 2 9% ) = (A )
B, Pr.u 5, P 'u8/,t yUu) = YU

Therefore, since X(A, (1)) =0 for all A > 0, we find that

X
N A/v 2 LT ZE (AL TE(A)) = 0.
/BO| ora P+ [ VO )+ B G (L)
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o)
In particular, — (A, t(A)) # 0 for all L > 0. Consequently, by the implicit function theorem,

u
1(A) must be analytic in A.
Next, for every A > 0, we denote by ¢, the principal eigenfunction, normalized by

192 1l12(3,)= 1, of the equation
—A@) + AV, =T(A)me; in By

under Dirichlet boundary conditions on dBy. Then, differentiating with respect to A, multiply-

ing by ¢, , and integrating in By, yields to

[ gu(-a+Av—E(Wm)g; =T () [ moi— [ voi.
0 0

By

Therefore, for every A > 0,

H’(M/BOWP% —/BOqui =0.

In particular, condition (0.0.23) can be equivalently expressed as [’ (A) # u'(A). This ends the
proof. U

Theorem 5.2.2. Additionally to the hypotheses of Lemma 5.2.1, assume that Vb = 0 in dB,.
Then

limuy (x) =+ V x € dBy.
im 2(x) 0

Proof. We claim that

is a subsolution of (S ,,) with it = (A ), where

C(A,8(A)) = ! (

a SUPBs ) \By PA,5(2)

—6, "W A+ AV (x) — (A )m(x)] ) a (5.2.21)

SUPB5 1) \Bo b

and 8(A) is the function given by Lemma 5.2.1. Indeed, u is subsolution if

- B
b(x) (CAn,80) 92 5(2)" " < —0, M [~A—p(A)ym+AV] x€Bs,
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which is true if C(A,8(A)) is the one defined in (5.2.21).

‘We claim that there exists a constant Cy > 0 such that
37%5 Pr50) ~0(A)Co A ~A. (5.2.22)
Indeed, since dBy is a compact set, there exists y; € dBy such that
(%%1: .50 = Pr.s()Va)-

Thus, since T3 : Bo — Bs(y) is a bijection, there exists zj € Bo such that y; = T53)(z2). By
(1.3.1),

Ts(a)(a —6(A)n(yn)) = ya —8(A)n(yr) +6(A)R(yx — 6(A)n(yz))- (5.2.23)

Moreover, since §(A) = 0, we have that 6(A) € (0,&y/4) for A sufficiently close to A. So,

dist(yy —8(4)n(ya),dBo) = dist(y2 — 6(A)n(y2),y1) = 6(A) < %,
and, thanks to Theorem 1.3.1 (iii),

R(ya —8(A)n(yx)) =n(m(ys — 6(A)n(y2))) = n(yz)-

Consequently, substituting in (5.2.23) shows that

Ts)(ya —0(A)n(ya)) = ya — 6(A)n(yr) +6(A)n(yr) = ya- (5.2.24)
Therefore, since T3 is a bijection, it becomes apparent that

2 =ya—6(A)n(yz).

On the other hand, by the definition of y; 5, we have that

Vs (@) = 0as)(Tsa)(za)) = 0,50 (a)-
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So, since @y (1) = 0 on dBs(;) and y;, € By entails Tg(3)(yy) € dBs(), we have that

Vs ) = 01.51)(Ts2)(y2)) = 0.

Consequently, by the fundamental theorem of calculus, we find that

Or.50)2) = Pa50) ) —
= @50 2) — On.5)(Ts(a)(x2))

=W.50)(z2) — ¥as1)(x2)
= V3501 (XA—S5( (o)) |~y
s=1
=/, %W 5(2)(xa —s6(A)n(xy))ds

s=1
= —5(1)/ . (Vs (xa —s0n(xy ),n(xy))ds.
s=
By passing to the limit in the above equation we find that

Py 5(1)
inf 92.61) = —6(A)—5 "~ (xa) +o(A —A),

for some x5 € dBy as A T A and we just proved (5.2.22). Similarly, it can obtained a constant

C such that

sup @ 51 ~C16(A), A~A
Bs1)\Bo

Now observe that
C(A,8(2)) Inf @ 52) < C(A,8(1))@a.52) < up (x) V x € IBo.
0
Combining (5.2.26) and the definition of C(1,8(A)), we find

uy (x) > C(4, 5@))?%&,5(1)
By
1
_ infap, ¢r5) —Gfs(l)[—AJr?LV(X)—u(l)m(x)]/(s(?t) a
 SUPBs, sy P.3) (suPsy. 102 /8(2)

(5.2.25)

(5.2.26)

(5.2.27)

(5.2.28)
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for all x € dBy.
We claim that §'(A) # 0. Indeed, since § = 25 (see the proof of Lemma 5.2.1), then it
is sufficient to prove that §'(A) # 0. By the definition of §, we have that f(A,5(1)) = 0.

Differentiating implicitly with respect to A, we deduce that

-1 (1,0)
8'<A>=<— <A>> _ Mo,

where the last inequality follows from Lemma 5.2.2 combined with hypothesis

Q| UV
>—'|\|in\

d By .
a 0, [—A+AV;m|

A=A

w(A) #

and Theorem 1.3.1. We just proved that 6’(A) # 0. Combining this fact with the hypothesis
that Vb = 0 in dBy, we deduce that

1

—oas A TA. (5.2.29)
(supsy,1800) /8 (1)

Finally, combining (5.2.22), (5.2.25), (5.2.18) and (5.2.29) we deduce that the limit of the
(RHS) of (5.2.27), when A — A, is infinity and consequently

limuy (x) = oo V x € dBy.

ATA
[
Assume that Dy € C? and that there exists a component I of dDy) such that I" satisfies:
1. TNdQ =0,
2.TCM, ={xeQ,m(x) >0} and
3. TCVy
Theorem 5.2.3.
lim uy(x) =4eoVxel (5.2.30)
A—+oo
Proof. The idea is to prove that /llim mFin u), = +oo. We will argue by absurd. So assume that
—foo
lim minuy < 4-oo. (5.2.31)

A—+4oo T
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Since I' € M, then there exists 6 > 0 such that

m(x) >0V x € {x € Dy; dist(x,I') < §}.

(5.2.32)

Since Dy € C?, then I satisfies the uniform interior sphere property. Moreover ' dQ = 0. So

there exist a R > 0 and a function Y : I' — D that satisfies

BR(Y(X)> - Do,
Br(Y(x))N9Q =0,
Br(Y (x)) T = {x}.

Without loss of generality, we can assume that
2R < 6.

Define
(D())R = {y € Do; diSt(y, F) < ZR}.

By combining (5.2.36) and (5.2.32), we deduce that

m(x) >0Vxe (D())R.

Let x; € (Dy)g be such that min u; = uy (x; ). Define
(Do)g

I'r = {y € Dy;dist(y,I') = 2R}.

(5.2.33)
(5.2.34)
(5.2.35)

(5.2.36)

(5.2.37)

Due to Corollary 5.2.1, lim u; (x) — oo uniformly in compact subsets of Dy and so

A—r+oo

lim uy (x) = oo uniformly in I'.
A—+oo

(5.2.38)

We claim x; € d(Dy)g. In fact, suppose that xj € (Do)g. By the definition of (Dg)g, we can

deduce that

(DO)R = UxeFER(Y(x))-

(5.2.39)
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Consequently, there exists some xo € I' such that x;, € Br(Y (x0)). By (5.2.34), Br(Y (x)) N
dQ = 0 and consequently uy (x; ) > 0. By (5.2.37), we have that m(x; ) > 0. Now, we have

Vuy (x2) =0, Aup(x) >0
and
0> —Auy (x2) = p(A)m(xz)uz (x2) > 0,

which is an absurd. So x; € d(Do)g. But d(Dg)g has two components, I" and I'z. We claim

xy, € I'. Observe that since I C (Do), then

u (x,l) = ml uj S minu,l. (5240)
Do) r

By combining (5.2.40) and (5.2.31), we deduce that sup min u; < 4o and so by using (5.2.38),

>0 (Do)g
we deduce that there exists a large A such that
infuy > sup minuy VA > A. (5.2.41)
Tx >0 (Do)g
By using (5.2.41), we have
infuy > sup min uy > minuy =uy (x3) VA > A. (5.2.42)
Tx 2>0(Do)g (Do)g

So if x; € I'g for some A > A, then we would have
up (x3) = infup > uz (x2),
R

due (5.2.42), which is an absurd. So x; €T for all A > A. By (5.2.39), we imply that
ER(Y(X;L)) C (DO)R forall A > A. Letx € ER(Y(X;L)). Then

u;L(x) > min u) > min u) = u;L(x;L) VA>A.
Bgr(xy) (DO)R

Since x is arbitrary, we have

u;L(x) ZMA(XA)VXEER(X;L)VA > A. (5.2.43)
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Let us define for each A > A the barrier function y; by
Wy (x) = e Y@ ok e Br(Y(xy)).
Observe that for each x € Bg(Y (xy)), we have
—Ay; (x) = (2aN — 40 ||x— ¥ (xp)[|?) e @Y )P,
Now, observe that
e <Y v x € Ap 1= Br(Y (1)) \ Brya(¥ (1))
and so

(—A—u(R)m(x)yy (x) = (2aN — 402 |x =¥ (x;) |2 = (A)m(x)) e @RV 0P ¢
+(A)m(x)e R =
= 20N —4a?|lx =¥ (x) ) e~ OF o p(A)m(x) (7 — ek <

§(2aN—4a2Hx—Y(x;L)||2) —al-Y@)P? <

R\? )
< 20N — 402 (5) e~ =Y ()" —
2
_ <2N—4oc (%) ) .

Take o > 2N/(R?), whence the constant between the parenthesis is negative and so

(—A—m(A)m(x)y (x) < <2N—4a (§)2) e oYl <

R\ 2
<o <2N—4a <5> ) e eh Y @) <
2
R
o <2N—4(X (5) > e_aRz YV x GARa

(—A—pA)m(x))yy(x) < —0w <0V x € Ag, (5.2.44)

that is,



5.2 Strong degradation 127

R 2 2
®=—0 <2N—4a (5) )e“R.

Since By /2(Y(x3)) is a compact subset of Dy, then

where

lim  min  uy (x) = oo (5.2.45)
A—+e2Bg (Y (x2)))

Let us define
Ny A (¥) —ua (xa)
A= e— QR[4 _ ,—aR?

By combining (5.2.31) and (5.2.40), we deduce that

lim uy (xy) < oo. (5.2.46)
A—>+oo
Since (5.2.45) and (5.2.46), then
lim ¢ = +oo. (5.2.47)
A—r+oo

By the definition of ¢, , we have that
uy (x) > uy(xp) + ¢, (e_aR2/4 — e_aRz) Vx € Bgpa(Y(xp)). (5.2.48)
For every A > A, let us define the auxiliary function
vy i=up —up(x2) —cayy inAg.

By (5.2.48), we have
V) Z 0 on 8BR/2(Y(x;L)).

Since y; =0 on dBg(Y (xy)) and (5.2.43), we have
V) = Uy —Uuy (x;L) Z 0 on aBR(Y(x,l)).

Thus
vy, >0o0ndAgV A > A. (5.2.49)
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Now observe that

(A—puA)mx)vy = wA)m(x)up(xz) —ca(=A—p(d)m(x))yy
> uA)m(x)uy (x))+ ocy, ¥V x € Ag,

where we used the definition of u, and (5.2.44).

Once that p(A)uy (x),) is bounded and Alim c; = oo, it follows that
——+-o0

(—A—u(A)m(x))vy >0Vxe€Ag VA > Ay, (5.2.50)
for some large A; > A. Now, observe that
H(A) < oD~ Aim(x)] < GR [~ Aim(x)],

by whence
—u(A)m(x) > — M [—A;m(x)|m(x) ¥ x € Ag

and so

O R [—A — u(A)m(x)] > oK [—A — R [—Aym(x)]m(x)] = 0. (5.2.51)

So by the Strong Maximum Principle Caracterization, we (5.2.50) and (5.2.51) that
vy >0VxeAg.

By the definition of v;, it follows that

up (x) >uy(xp) v (x) VxeArR VA > Ay (5.2.52)
Now let us define
_Y(xqp)—x,
ny = —>—=.
R
By definition,
duy, uy, (X, +1tny) —uy (xy,)

T (xy) = i .
8n,1 (xl) zi%l+ t
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Since x; +tny € Ag, whenever 0 < ¢t < R/2, then we can use (5.2.52) in order to get
wxaFim) —up () o ayabatim)
t B t
¢ (e—oc(R—t)2 _ e—ocR2>

t

Since CaRr? o aR?
e
we get that
g%(xl) > 20Re %R ¢y,
by whence
AEIEW%(XA) = oo, (5.2.53)

By H,,), it follows that there exists € > 0 such that
0#V:={xeQ\Dydist(x,T) < e} CV

(see Figure 10).
Note that JT' =T'UTI';. Now consider the problem

(

—Aw = u(R) itl}fmw —b(x)w? inV
= r
J vl o (5.2.54)
w=0 only,
w>0 in ).

\

Due to Theorem A.3.1, the problem (5.2.54) admits a unique positive solution w, . Note
that u; is a supersolution of (5.2.54) and, for any 0 < k < 1, kw}, is a subsolution of (5.2.54).
Assuming that k is small enough such that kw, < u;, we deduce that kw; < wj; <u, by the
method of sub and supersolution. Moreover, by combining w), < uy with wy (xy) = uy (x), it
follows that
du 2

aW;L
I, (x2) = M(M) VA=A
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Since (5.2.53), then

(x7) = oo, (5.2.55)

Let w be the positive solution of

(_Aw= sup (A)infmw —b(x)w? inV,
A>0 v
w=supuy (x;) onT,
A>0 (5.2.56)
w=0 onl’,
w>0 in V.

\

Given A > 0, consider 0 < k(A) < 1 such that k(A)w, <w. Thus k(1)w; <w, <w by the

method of sub and supersolution. Consequently,

sup|lwy [lo< +-oe. (5.2.57)
A>0

Now let us apply Theorem A.2.2. Let us define B) (x,w) = u(A) (igfm) w—b(x)w?.
Observe that since Bj does not depend on Vw, it follows that the B; satisfies the conditions of

Theorem A.2.2, where the constants of (A.2.1) does not depend on A. Moreover, there exists
My > 0 such that wy < M for all A > A due to (5.2.57). Then we can conclude that

sup [|wy|[1,6< +oo (5.2.58)
A>A

due to Theorem 1 of [40], which contradicts (5.2.55).

In the following, we will proof the items of Theorem 0.0.6 in ascending order.

Proof of item 1i) of Theorem 0.0.5: It follows directly by applying Theorem 4.2.2.

Proof of item 1ii) of Theorem 0.0.5: The blow-up (0.0.22) follows directly by Corollary
5.2.1.

The convergence (0.0.24) follows from Theorem 5.2.2.
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Now fix A € [0,A), let us denote m = max{0,m} and let U, be the unique positive solution
of the problem

( —
—Au~+ AV (x)u = ||l ||oo]| 4 || ott — b(x)u” in Q\ By,

u= sup u; on dBy,
EABy (5.2.59)
u=0o0ndQ\ JdBy,

u>0in Q.\B_(),

\

whose existence and uniqueness are guaranteed by Corollary 4.4 of [45]. Note thatif K > 1,
then KU, is a supersolution of (5.2.59). Moreover, u; |§\Bo is a subsolution. Take K = K(4)
sufficiently large such that u |§\ 5,< KUy By using the subsupersolution method and the

uniqueness of positive solution of (5.2.59), we deduce that
uy g5, < Un < KUj.

and so the proof of (0.0.25) proceeds by following the same steps of Theorem 1.1 of [39].
Proof of items 2i) and 2ii) of Theorem 0.0.5: It follows directly from Theorem 4.2.3.
Proof of item 2iii) of Theorem 0.0.5: (0.0.26) follows from Corollary 5.2.1. The conver-

gence (0.0.27) follows from Theorem 5.2.3.

Now assume that By C Vy C Vo C Q. Fix A € [0, +0) and consider the unique positive

solution U, of

(—Au—i—/lV(x) = o[~ Asm]||my |eott — b(x)uP  in Q
u= sup uy on dBy,
x€dBy (5.2.60)
u=>0 on dQ\ dBy,
{ u>0 in Q

whose existence and uniqueness is guaranteed by Corollary 4.4 of [45]. Note that if K > 1,
then KU, is a supersolution of (5.2.60). Moreover, u; |§\ B, is a subsolution. Take K = K(A)
sufficiently large such that u; |§\ 5, < KU,. By applying the subsupersolution method and the

uniqueness of positive solution of (5.2.60), we deduce that

ulg\g,< Un < KUy
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and so the proof of (0.0.25) proceeds by following the same steps of Theorem 1.1 of [39].
Consider any compact subset K C Q\ Vy. By testing against a positive ¢ € C5'(K) in the
definition of U, , we deduce that

liminf [ V(x)Uj < o.
A—+oo JK ( ) A
Consequently /llim U, (x) =0 for all x € Q\ V;. So the proof of (0.0.28) proceeds by following
—o0
the same steps of Theorem 1.1 of [39].
Proof of item 3) of Theorem 0.0.5: Let A, be any sequence as in the hypothesis of item
3). Consider a fixed n € N. According to Theorem 5.2.1, the following convergences hold.

lim  fup, pfle=0 (5.2.61)
LR [—A+A,V ;m] 7

and

lim Uy, u = +oo uniformly in compact subsets of By. (5.2.62)
BO . sy
,UTGI [_A"'lnv,m]

Let 0 [—A+ A,V:m] < B (A) < Gfo[—A—i— A.V;m|. By (5.2.61), we imply that we can
assume that 4 _(A,) is sufficiently close to 01} [—A+ A,V;m] such that the positive solution i,
of (S ) associated with (A,, 1 (A,)) satisfy

1
it <

On the other hand, by (5.2.62) we deduce that there exists i, (A,) and a positive solution i, of
(Sy. ) associated to (A, Ir,,(A,)) and x,, € By such that

Ty (xn) > n.
In order to conclude the proof of item 3) of Theorem 0.0.6, we must show that

lim u(A,) = lim m(A,) = ol °[—A;m). (5.2.63)

n——+too— n—r—-oo

Note that since (A, t(A,)), (A, B(A,)) € S, then

Ol [—A+ A, Vim] < () < 070 [~A+ A, Vim]
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and
O —A+AVim] < I,(Ay) < O [—A+A,V:m).

By passing to the limit in the inequalities above, using Lemma 1.2.1 and the fact that BoNVy =
Vo, we deduce (5.2.63).

Conclusion of Chapter 5

As noted in the introduction of the thesis, the information provided by Theorems 0.0.5 and
0.0.6 imply some interesting inferences about the models (R, ;) and (S ,), in the point of
view of population dynamics.

In the case of Theorem 0.0.5, it is worth mention some open problems. The behavior of the
positive solutions u of (R; ,) when A — oo in the case o[~ A; xa,) = Gf*UBO[—A; XAo) = M.
The behavior of ) in the boundary of dC; when A — . Due to the lack of continuity in
the convergence 1/(1+4 Aa(x)) to x4, when A — oo, we were not capable of applying the
ideas of Section 1.3. On the other hand, since the set dC; is not necessarily contained in
{x € Q; xa,(x) > 0}, then dC; does not satisfy the conditions to apply the same arguments used
in the proof of Theorem 5.2.3.

Theorem 0.0.6 also leave some open problems. For example, the behavior of the positive
solutions u,, in the boundary of By when %ngl\ Uo(A) = Gf o[—=A+ AV;m], without requiring the
transversality condition (0.0.23). Also the hypothesis about the analiticity of m, required in

order to obtain the blow-up in the boundary of u, , excludes functions m such that

int{x € Q;m(x) =0} # 0.

Finally the relaxation of the hypothesis I" C Vj in item 2iii), which is is intimately related with
the theory of metasolutions of [45]. Indeed, this hypothesis implies that d) is composed by
two connected components I and I'y. This condition is crucial in the above proof, in order to
guarantee (5.2.58). In fact, the a priori boundedness (5.2.58) is a consequence of the boundary
conditions of the problem (5.2.54) to be C ! bounded uniformly with respect to A, once that
they are constants. Without the aforementioned condition in I', ) would possibly be a unique
component and the technique involved in the proof would force us to define the boundary
conditions of the problem (5.2.54) that would possibly not be C ! bounded uniformly with

respect to A. This technical obstacle is an open problem.



Conclusion

Proposing Theorem 0.0.1 of continuation of solutions for operators satisfying a notion of
compactness in an open subset, we were able to obtain a connected of positive solutions of
(P ) and (@ ). The asset of the operator to be defined on a open subset, allowed us to
find solutions very close to a certain singularity region of the working parameter (see 0.0.4
and 0.0.7). The same asset, also gave us explicit values of the parameter A for what we have
positive solutions of (P, ;) (see 0.0.5). The abstract formulation of Theorem 0.0.1 makes
it possible to applying it for different families of PDEs that include terms that can present
technical difficulties. For example, the nonlinearity uA () in (P), ;) and the nonlocal term |u|,
in (Q;)-

The refinement of properties for positive eigenfunctions and their first eigenvalues with
respect to a varying parameter A (as seen in Lemma 1.1.1, Theorem 1.2.1, and Theorem 1.3.2),
coupled with the a priori boundedness from Theorem 4.2.1 and the subsolution provided by
Theorem 4.3.1, enabled us to prove fine qualitative information about the behavior of positive
solutions for the logistic models (R ;) and (Sy ).

Some questions about the problems (P, ), (Q; ), (Ry ;) and (S ;) remain open as noted
in the conclusions of Chapters 2, 3 and 5. For the sake of completeness of this conclusion,
we will point out three of what we consider the most challenging of them. First, the existence
of solutions of (P, ,,) (respectively, (Q; ,)) outside U/ (respectively, V). Second, whether the
blow-up of the positive solutions u; of (S ), in dBy, when A — A still occurs without the
transversality condition. Lastly, whether the solutions u; of (S, ,) blows-up in a component I'
of (Vo N By) without requiring I' C V.



Appendix A

Some results on strong maximum
principle, regularity and metasolutions

To ensure completeness, we have included in this appendix specific results from the literature
that we considered pertinent to the preceding text.

A.1 Strong Maximum Principle

Let Q be an open subset of RV, N > 1 and ¢ € L™(Q). We will denote L = —A+c. In line
with [44], we define the following.

Definition A.1.1. A function u € W>4(Q), with ¢ > N, is said to be a supersolution of L if

—Au+cu>0in Q,
u>0ondQ.

If one of the above inequalities is strict in some subset of Q with positive measure, then u is
said to be a strict supersolution of L.

Theorem A.1.1 (Krein-Rutman). The operator L admits a real eigenvalue c1[L], called the
first eigenvalue of L, which is simple and is associated with a unique eigenfunction, up to
a multiplicative constant, and it can be assumed to be positive. Moreover, o1[L] is the only
eigenvalue associated with a positive eigenfunction. Any other eigenvalue 6 € R of L must
satisfy o1]L] < ©.

Theorem A.1.2. o;[L] > 0 if and only if L admits a strict supersolution. Moreover, if 61[L] > 0
and u € C*(Q)NC(Q) is a supersolution of L, then u > 0 in Q.

For more details about the above results see [4] and [44].

A.2 Regularity

Theorem A.2.1. Let 0 < ¢ € L*(Q). Then there is a constant C > 0 independent of u such that

[ullw2q() < Cl(—A+c)ulra(q)
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1
forallu € WH1(Q)NW,4(Q), 1 < g < .
See Lemma 9.17 of [34].

Theorem A.2.2. Let o, A, A and M be positive constants with o« < 1 and A > A. Let ¥ and ®

be nonnegative constants, and let Q be a bounded domain in RN with C'** boundary. Assume
that A and B satisfy the following conditions

a’(x,z,p)&i&; > Ak +|p|)"|EI%,
" (x,z,p)|< A+ |p|)™,
A(x,z,p) — A(y,w, p)|< AL+ |p])" H (|x = y|*+]z — w|?),
|B(x,z,p)|< A(1+ |p|)™*? (A.2.1)

for all (x,z,p) € dQ x [~My,Mo) x R, all (y,w) € Q x [~My, M), and all E € RN. If ¢ is in
CH¥(9Q) with |@|14 o< ® and if u is a bounded weak solution of the Dirichlet problem

divA(x,u,Vu) + B(x,u,Vu) =0in Q,u = ¢ on dQ

with |u|< My in Q, then there is a positive constant B = B(o, A/A,m,n) such that u is in
CI’B(Q). Moreover,
|u|l+ﬁ§ C(aaA/A‘amaanaq)aQ)'

The interested reader may see [40].

Theorem A.2.3. Ler f: Q xR xRN — R be a continuous function such that df/0& and

df/0n exist and are continuous where (x,E,1) denotes a generic point of Q x R x RY.
Assume also that there is an increasing function ¢ : Ry — R such that

g mI<c(EN(+P) Y (x,6,n) e @xRxRY.

Then there is an increasing function y: Ry — R such that ifu € w24 (Q), g > N, is a solution
of
—Au = f(x,u,Vu) in Q,
u=0o0ndQ,
then
w20 < ¥l

See [5], for more details.

A.3 Metasolutions

When dealing with diffusive logistic models with refuge, the concept of metasolution arises
from the presence of a subregion of the habitat where the carrying capacity degenerates to
infinity (see [45]). The following result from [45] will be used in this work.

Let 0 < b € C(Q) and denote By = int{x € Q;b(x) = 0}. Assume that d(Q\ By) =I'; UT,
'y NI = 0 and that if T; N By # 0, for some i € {1,2}, then I'; C By.
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Theorem A.3.1. Given A € R, the problem

—Au=Au—b(x)u’ inQ\By

u=M only,
u=~0 only
u>0 in Q\ By

possesses a unique positive solution.

The above result is a particular case of Corollary 4.4 of [45].
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