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Abstract

We propose and analyze new mixed finite element methods for a regularized p([)-
rheology model of granular flows with an equivalent viscosity depending nonlinearly
on the pressure and the norm of the strain rate tensor. To this end, and besides the
velocity, the pressure and the strain rate, we introduce a modified stress tensor, and
the skew-symmetric vorticity, as auxiliary tensor unknowns, thus yielding a mixed
variational formulation within a Banach spaces framework. The pressure is obtained
through an postprocess suggested by the incompressibility condition of the fluid. A
fixed-point strategy combined with a solvability result for a class of nonlinear twofold
saddle point operator equations in Banach spaces, are employed to show, along with the
classical Banach fixed-point theorem, the well-posedness of the continuous and discrete
formulations. In particular, PEERS and AFW elements of order ¢ > 0 for the stress,
the velocity, and the skew-symmetric vorticity, and piecewise polynomials of degree
< l+mn (resp. < {+1) for the strain rate with PEERS (resp. with AFW), yield stable
Galerkin schemes. Optimal a priori error estimates are derived and associated rates of
convergence are established. Numerical results confirming the latter and illustrating
the good performance of the methods, are reported. Additionally, we develop the first
reliable and efficient residual-based a posteriori error estimator for its associated mixed
finite element scheme in both 2D and 3D. For the reliability analysis, we employ the
first-order Gateaux derivative of the global operator involved in the problem, a stable
Helmholtz decomposition in Banach spaces, and local approximation properties of the
Raviart—-Thomas and Clément interpolants. In turn, the localization technique based
on bubble functions in local LP-spaces, and results from previous works are the main
tools yielding the efficiency estimate. Numerical examples illustrating the performance
of the associated adaptive algorithms are reported.

Keywords: granular flows, nonlinear viscosity, mixed finite elements, twofold saddle
point, fixed-point theory, a priori error analysis, a posteriori error analysis, reliability,
efficiency.

Mathematics Subject Classifications (2020): 65N30, 65N12, 65N15, 47TH10, 47J26,
76D05, 76125, 76R05, 35Q79.






Resumo

Propomos e analisamos um novo método de elementos finitos mistos para um modelo
regularizado de reologia u(I) de escoamentos granulares, com viscosidade equivalente
dependendo nao linearmente da pressao e do tensor taxa de deformacao. Para isso,
além da velocidade, da pressao e da taxa de deformacao, introduzimos um tensor de
tensao modificado e a vorticidade como incégnitas auxiliares, obtendo uma formulacao
variacional mista no contexto de espagos de Banach. A pressao é calculada através de
um poés-processamento sugerido pela condigdo de incompressibilidade do fluido. Uma
estratégia de ponto fixo, combinada com um resultado de solubilidade para uma classe
de equagoes de operadores nao lineares de ponto de sela duplo em espagos de Banach,
é empregada para demonstrar a boa colocagao das formulacoes continua e discreta.
Em particular, os elementos PEERS e AFW de ordem ¢ > 0 para tensao, velocidade
e vorticidade antissimétrica, e polinémios por partes de grau < ¢+ n (resp. <+ 1)
para a taxa de deformagao com PEERS (resp. AFW), produzem esquemas de Galerkin
estaveis. Estimativas de erro a priori 6timas e taxas de convergéncia associadas sao
estabelecidas, com resultados numéricos confirmando sua validade e ilustrando o bom
desempenho dos métodos. Adicionalmente, desenvolvemos o primeiro estimador de
erro residual a posteriori confiavel e eficiente para o esquema de elementos finitos
mistos associado, em 2D e 3D. Para a anélise de confiabilidade, utilizamos a derivada
de Gateaux de primeira ordem do operador global do problema, uma decomposi¢ao
de Helmholtz estavel em espacos de Banach e propriedades de aproximacao local dos
interpolantes de Raviart-Thomas e Clément. Por sua vez, a técnica de localizagao
baseada em funcgoes bubble em espagos L locais e resultados de trabalhos anteriores
sao as principais ferramentas para a estimativa de eficiéncia. Exemplos numéricos
ilustram o desempenho dos algoritmos adaptativos associados.

Palavras-chave: fluxos granulares, viscosidade nao linear, elementos finitos mistos,
ponto de sela duplo, teoria do ponto fixo, analise de erro a priori, andlise de erro a
posteriori, confiabilidade, eficiéncia.

Classificagoes de Assunto (2020): 65N30, 65N12, 65N15, 47H10, 47J26, 76D05,
76'T25, 7T6R05, 35Q79.



10

Titulo em portugués: Métodos de Elementos Finitos Mistos para Escoamentos

Granulares Estacionarios: Anélise Numérica e Aplicagoes



Contents

List of Figures
List of Tables

1 Introduction
1.1 Granular Materials . . . . . . .. ... .. ...
1.2 Discrete models . . . . . . . ...
1.3 Continuum models . . . . . . . . ...
1.4 Numerical methods for continuum models . . . . . . .. ... ... ..
1.5 Mixed finite elements . . . . . . . ... .o L
1.6 Thesis objectives . . . . . ...
1.7 Specific objectives . . . . . . . ...

1.8 Thesis organization . . . . . . .. ... L oL

2 Elements of Classical Finite Element Theory
2.1 Chapter Introduction . . . . . . . . ... ... L
2.2 Operator Equation . . . . . .. ...
2.2.1 Abstract Problem . . . . . ... ... ... oL
2.2.2  Approximate Abstract Problem - Galerkin Method . . . . . ..
2.3 Examples of approximation spaces . . . . . . . . ... ...
2.3.1 Local Polynomials . . . . ... ... ... .. ... ... ... .
2.3.2 Interpolation . . . . . .. ... Lo
2.3.3 Local Interpolation Error . . . . . . . . ... ... ... ... ..
2.3.4 Global Interpolation Error . . . . . .. ... ... ... ... ..
2.3.5 Approximability and Order of Convergence . . . . . . . ... ..
2.4 Examples . . . . ..

3 A priori error analysis for ;(/)-rheology
3.1 Chapter Introduction . . . . . . . . ... ...

13

15

10
12
12
14

17
17
20
21
24
27
27
29
35
41
43
47

55



12 Contents
3.2 The mathematical model . . . . . . .. .. ... . o0 o7
3.3 The continuous formulation . . . . .. ... ... ... ... ... ... 61
3.4 The continuous solvability analysis . . . . . .. .. ... .. ... ... 67

3.4.1 The fixed point strategy . . . . . .. ... 67
3.4.2 Well-definedness of the fixed point operator . . . . . .. .. .. 67
3.4.3 Solvability analysis of the fixed point equation . . . . . . .. .. 71
3.5 The Galerkin scheme . . . . . . . . ... ... ... L. 76
3.5.1 Preliminaries . . . . . . . . ... ... ... 76
3.5.2  Discrete solvability analysis . . . . .. .. ... ... .. .... 7
3.5.3 A priori error analysis . . . ... ... oL 81
3.6 Specific finite element subspaces . . . . .. ... 85
3.6.1 Polynomial spaces. . . . . .. ... ... .. 85
3.6.2 Connection with linear elasticity . . . . . . ... .. .. ... .. 86
3.6.3 Examples of stable finite element subspaces . . . . ... .. .. 86
3.6.4 The rates of convergence . . . . . . ... ... L. 88
3.7 Numerical results . . . . . . . . ... 89

4 A posteriori error analysis for ;(/)-rheology 97
4.1 Introduction . . . . . . . . ... 97
4.2 A residual-based a posteriori error estimator . . . . . .. ... ... .. 98

4.2.1 Reliability . . . . .. . 99
4.2.2 Efficiency . . . . .. 106
4.3 Numerical results . . . . . . . . . ... 109

5 Conclusion and Future Work 123
5.1 Conclusion . . . . . . . .. 123
5.2 Future Work . . . . . . .. 124

Bibliography 127

Appendix A The hypotheses on the viscosity 135
A.1 The hypotheses on the viscosity . . . . . .. ... ... ... .. .... 135
A.2 Preliminaries for reliability . . . . . . . .. ... 000 138
A.3 Preliminaries for efficiency . . . . .. ... 141
A.4 A posteriori error analysis: the 3D case . . . . .. ... ... ... ... 142



List of Figures

1.1

1.2

2.1

2.2

3.1

3.2

3.3

3.4

4.1

4.2

Examples of granular materials. (a) Image of grains from agricultural
production: corn, barley, rice, wheat, millet, beans, lentils; (b) a silo is
a closed storage structure for granular material such as grains, cement,
etc.; (c) loading of a bulk carrier ship; (d) sand production by the
Brazilian company Vale S.A.; (e) production of medication capsules; (f)
landslide in 2022 in the state of Santa Catarina, Brazil. . . . . .. ..
(a) Interactions between particles implemented in the method of Cundall
and Strack [1]. (b) Normal and tangential forces as functions of the

relative normal and tangential displacements (Andreotti et al. [2]).

[Example 2.1] Convergence rates of the errors for each unknown u and
o and the total error, for (=0and (=1.. . ... ... ... .. ....
[Example 2.1] Potential v and field 0 =Vu. . .. ... ... ... ...

[Example 3.1] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.
[Example 3.2] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.
[Example 3.3] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.
[Example 3.4] Computed internal friction coefficient, magnitude of the

velocity and symmetric part of the velocity gradient, and pressure field.

[Example 4.2] Log-log plot of e(t) vs. DOF for quasi-uniform /adaptive
refinements for PEERS, and AFW -based discretizations with ¢ = {0, 1}
(top and bottom plots, respectively). . . . . . ... ... L.
[Example 4.2] Initial mesh, computed magnitude of the velocity and

symmetric part of the velocity gradient, and pressure field. . . . . . . .

91

93

95

95

116



14 List of Figures
4.3 [Example 4.2] Three snapshots of adapted meshes according to the
indicator © for PEERS; and AFW;-based discretizations (top and
bottom plots, respectively). . . . ... ... Lo 117
4.4 [Example 4.3] Log-log plot of e(t) vs. DOF for quasi-uniform/adaptive
refinements for PEERS, and AFW-based discretizations (left and right
plots, respectively). . . . . . . ... 119
4.5 [Example 4.3] Initial mesh, computed magnitude of the velocity and
symmetric part of the velocity gradient, and pressure field. . . . . . . . 119
4.6 [Example 4.3] Three snapshots of adapted meshes according to the
indicator © for the AFWy-based discretization. . . . . . ... ... .. 120
4.7 [Example 4.4] Initial mesh, computed magnitude of the velocity and
symmetric part of the velocity gradient, and pressure field. . . . . . . . 120
4.8 [Example 4.4] Three snapshots of adapted meshes according to the
indicator © for PEERS, and AFWy-based discretizations (top and
bottom plots, respectively). . . . ... ... oL 121
A.1 Graphic representation of the modified version of the viscosity function 7.136



List of Tables

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

[Example 3.1, ¢ = 0] Number of degrees of freedom, meshsizes, New-
ton iteration count, errors, and rates of convergence for the mixed
approximations. . . . . . . . ... L.
[Example 3.1, ¢ = 1] Number of degrees of freedom, meshsizes, New-
ton iteration count, errors, and rates of convergence for the mixed
approximations. . . . . . . . ... .o e e
[Example 3.2, £ = 0] Number of degrees of freedom, meshsizes, New-
ton iteration count, errors, and rates of convergence for the mixed

approximations. . . . . . ... ..o

[Example 4.1, ¢ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and
effectivity index for the mixed approximations. . . . . . . . . . ... ..
[Example 4.1, ¢ = 1] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and
effectivity index for the mixed approximations. . . . . . . . . .. .. ..
[Example 4.2, ¢ = 0] Comparison of the mixed approximations with
quasi-uniform and adaptive refinements for the p(7)-rheology model. . .
[Example 4.2, ¢ = 1] Comparison of the mixed approximations with
quasi-uniform and adaptive refinements for the p(I)-rheology model. . .
[Example 4.3, ¢ = 0] Comparison of the mixed approximations with

quasi-uniform and adaptive refinements for the p(7)-rheology model. . .

115

118






Chapter 1

Introduction

1.1 Granular Materials

Granular materials consist of macroscopic particles, visible to the naked eye, ranging
in size from a few micrometers to several millimeters or more.

As a first example of granular materials, we highlight the production of grains
and cereals. The origins of cereal cultivation date back approximately 10,000 years, a
process involving transportation, storage, and currently, industrialization. According
to reports by the Food and Agriculture Organization (FAO) [3], cereals — corn, rice,
wheat, barley, and sorghum — lead global agricultural production with 3.1 billion
tons. In comparison, other crops show smaller volumes: 2.3 billion for sugar, 1.2
billion for vegetables, 1.2 billion for oilseeds, 1 billion for fruits, and 900 million for
roots and tubers. It is further clarified that improving cereal production techniques
will be essential to meet the increasing demand by 2033. The report emphasizes that
around 70% of the projected increase will come from grains productivity, not territorial
expansion. This highlights the need to refine agricultural techniques to reduce losses
and enhance efficiency (Food and Agriculture Organization of the United Nations [3]).

Another significant example is sand mining. Sand, considered the second most
extracted resource in the world, is widely used from construction to the manufacture
of silicon chips. Global sand consumption reaches between 40 and 50 billion tons per
year, with demand tripling in recent decades due to urbanization and infrastructure
growth. Most of this resource is extracted from rivers, beaches, and seabeds (Gallagher
and Peduzzi [4]).

Numerous other examples of granular materials are found in industrial processes,

such as in pharmaceutical, agricultural inputs industries, in construction, in coastal



2 Introduction

sediment management through the addition or removal of sand on beaches, in geological
phenomena like landslides, desert dynamics, and hail (Fig. 1.1).

Considering the importance and abundance of these materials, it is essential to study
the mechanics involved in their flows, allowing for the optimization of the treatment,
management, and processing of granular materials, contributing to greater efficiency;,
cost reduction, and sustainability in their industrial applications.

However, the physics of granular materials is challenging due to their hybrid
behavior between solid, liquid, and gas, to their disordered nature, and to the nonlinear
interactions between particles. Factors such as friction, cohesion, and energy dissipation
complicate their modeling. Moreover, the absence of a unified theory and the variation
in behavior at different scales require specific and interdisciplinary approaches for their
study (Andreotti et al. [2]).

Figure 1.1 Examples of granular materials. (a) Image of grains from agricultural
production: corn, barley, rice, wheat, millet, beans, lentils; (b) a silo is a closed storage
structure for granular material such as grains, cement, etc.; (¢) loading of a bulk
carrier ship; (d) sand production by the Brazilian company Vale S.A.; (e) production
of medication capsules; (f) landslide in 2022 in the state of Santa Catarina, Brazil.

1.2 Discrete models

There are two types of mathematical models widely used to study granular materials:

discrete models and continuous models (studied in this work). Discrete Element Method



1.2 Discrete models 3

(DEM) are essential tools for studying the behavior of granular media. In this context,
the work of Cundall and Strack [1] is considered one of the first revolutionary studies
on the mathematical and computational modeling of granular flows. They proposed a
method to model the movement of individual granular particles, where each particle is
deformable and interacts with others primarily by contact, including friction, collisions,
and cohesive effects, for example. In this model, interactions between particles are
explicitly represented, considering each contact individually. Particles only interact
when there is an overlap, treated as a small deformation at the contact point (Figure
1.2 (a)).

Contact forces are divided into normal forces, Fiy, and tangential forces, Fr. The
normal force is proportional to the normal overlap, dy, and is modeled by a spring
and a viscous damper, while the tangential force is proportional to the tangential
displacement, ér, and is represented by a spring coupled with a sliding block to capture
Coulomb friction, which depends on the friction coefficient and cohesion between
particles (Figure 1.2 (a) and (b)). The movement of the particles is calculated using
Newton’s Second Law, where acceleration is determined by the sum of contact forces and
gravitational force. Position and velocity are updated numerically Cundall and Strack
[1]. Furthermore, the model considers interactions with rigid boundaries, calculating

contact forces similarly to particle-particle interactions.

Fy
(a) (b)
N
Fr
1 N
or
—uFx |

Figure 1.2 (a) Interactions between particles implemented in the method of Cundall
and Strack [1]. (b) Normal and tangential forces as functions of the relative normal
and tangential displacements (Andreotti et al. [2]).

With this model, various flows of granular materials have been studied, yielding
remarkable results, as highlighted by Andreotti et al. [2]. These advancements have

allowed a deeper understanding of the dynamics of granular materials, including
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phenomena such as the formation of force chains, the transition between flow regimes,
and behavior under different loading conditions. However, the simulation of large-scale
granular flows still represents a significant computational challenge. The processing
power required to model a sufficient number of particles to capture all relevant features
of these flows is not yet widely available. This limitation restricts the application of
DEM in large-scale problems, such as flows in silos, landslides, or large-scale industrial
processes. Thus, while DEM has revolutionized the study of granular materials, the

search for more efficient and scalable methods remains an active area of research.

1.3 Continuum models

The idea of proposing continuous equations, similar to the Navier-Stokes equations
for Newtonian fluids, has always attracted researchers of granular materials. One of
the first significant contributions was made by Savage and Hutter [5], who proposed
conservation equations for mass and momentum. In this model, it is considered
that the pressure within the granular layer depends only on depth, due to the small
aspect ratio (height much smaller than horizontal extent). The model assumes that
the dissipative nature is determined by basal friction, which follows Coulomb’s law,
associating the shear force with the normal weight on the inclined plane, based on
the friction coefficient and inclination. The layer of granular material is considered
thin relative to the horizontal extent, which allows simplifying the equations using the
shallow water hypothesis and ignoring less relevant terms. Finally, it is assumed that
the velocity along the depth is uniformly distributed, except in regions close to the
base.

But it was the study conducted by GDR-MiDi-Group [6] that established consistent
rheological measurements of dense granular flow properties, unifying experimental and
numerical data obtained in six distinct geometric configurations: plane shear, annular
shear, vertical channel flow, inclined plane flow, heap flow, and rotating drum. The goal
was to identify general patterns, even amidst differences in experimental or simulation
conditions.

Granular flows were characterized into three main regimes, based on the relationship
between inertial and confinement effects, using the inertial number I, defined as

. V2dD|

p/p
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where d is the particle diameter, D is the shear rate, p is the confining pressure, and p
the material density. This dimensionless number allows distinguishing the following
regimes: quasi-static regime, dominated by stable contact networks between particles,
where inertia is negligible; dense inertial regime, where there is balance between inertial
and contact forces; gaseous regime, dominated by binary collisions at high agitation
rates.

It was proposed by Jop et al. [7] that the dissipative nature of granular flows is
intrinsically associated with the frictional behavior between particles. In granular flows,
mechanical energy is continuously dissipated mainly through friction and inelastic
collisions, which makes these systems highly dissipative, especially in dense flow regimes.
To describe this behavior, a constitutive relation for the friction coefficient based on

the inertial number [ is defined as:

w(I) = p + (H) I,
where pg is a critical parameter that defines the static friction coefficient, setting the
critical threshold for dense granular flow to initiate. The parameter i, is the upper
limit value of the friction coefficient when flow occurs at high shear rates, reflecting
the dynamic equilibrium in the high shear regime. The parameter [ is an adjustment
parameter that controls the transition between low and high shear regimes. Analogous
to viscoplastic fluids, the shear stress 7 is a generalization of Coulomb’s law, written

as:
D

T = :u(‘[>pﬁ7

thus, the effective viscosity n of the granular continuum is defined by:

V2u(I)p
n(p, D)) := :
D]
In the complete formulation of the continuum mechanics, the Cauchy momentum

conservation equation is:

Ju
p <8t + (Vu)u) = div(e) + pg,
where p is the material density, g is gravity, and with the stress tensor o decomposed
as:
o= np/D)D —  pl
D — ~~

deviatoric term isotropic term
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where the deviatoric term captures viscous effects due to friction. In this model,
friction plays a crucial role in the formation of static zones, where the material exhibits
solid behavior, and in defining the effective viscosity, which increases with applied
pressure. Although other mechanisms, such as inelastic collisions and drag caused
by interstitial fluids, also contribute to energy dissipation, friction is dominant in the
dense flow regime. This frictional model, besides describing energy dissipation, governs
transitions between solid and liquid states, being essential for modeling granular flows
in geophysical and industrial contexts.

The approach proposed by Jop et al. [7] provides a robust quantitative basis and is
validated by experiments in complex three-dimensional configurations, demonstrating

its applicability in a wide range of scenarios, as we will see next.

1.4 Numerical methods for continuum models

In the study presented by Jop et al. [7], the Finite Difference Method was employed,
validated through experimental data obtained from flows on inclined planes and in
an inclined channel with rough walls. The experiments measured surface inclination,
velocity profiles, and flow layer thickness. The simulations demonstrated high accuracy
in reproducing experimental results, confirming the effectiveness of the method and
the constitutive law used to describe dense granular flows in complex configurations.

Since the publication of Jop et al. [7], numerous studies have explored numerical
solutions for the p(7) rheology equations in different physical scenarios, for example
Lagrée et al. [8], Staron et al. [9], Chauchat and Médale [10], Franci and Cremonesi
[11], Yang et al. [12, 13], whose main characteristics we highlight below.

In the work of Lagrée et al. [8], the problem of granular column collapse was
investigated. For this, the Volume of Fluid (VOF) method was used, an effective
technique for tracking and modeling interfaces between different phases, as in this
case, the interaction between grains and air. The VOF method is based on the
concept of volume fraction ¢, which indicates the proportion of each phase within the
computational mesh element, that is, ¢ = 1 for the granular fluid, and ¢ = 0 for air, and
when 0 < ¢ < 1, the element comprises the grain-air interface. The volume fraction is

transported by the velocity field u through the advection equation,

(;§+V-(cu):0.
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Additionally, the density pyor and viscosity nyor of the grain-air mixture are calculated

as weighted and harmonic averages, respectively, of the properties of each phase:

PVOF = Cpgrains + (1 - C)paira

1
C/T/grains + (1 - C)/nair '

Note that if ¢ = 1, then pyor = pgrains a0d Ny oF = Ngrains, and if ¢ = 0 then pyor = pair

Nvor =

and nyor = N.r allowing for an accurate representation of the fluid behavior in each
region. Note that 7gains > 7air, this means that at the interface between the two
fluids, the mixture flow is governed by air, which has less resistance to movement.
The harmonic average captures this behavior, as it gives more weight to the fluid
with lower viscosity. This is important to ensure that the average viscosity at the
interface is consistent with the physics of the problem. Two configurations were used
to validate simulations: a stationary and incompressible granular layer on an inclined
plane, with analytical solutions for velocity u and pressure p; and a granular layer
under a Newtonian fluid on an inclined plane, simulating a free surface and tracking
the interface via the VOF method. Comparisons were made with analytical and semi-
analytical solutions, the latter obtained by solving the momentum equations for each
layer, considering the boundary conditions at the interface, validating the approach
and preparing the model for more complex problems, such as granular column collapse.

The method was applied to the collapse of granular columns in two dimensions,
with different aspect ratios, and compared with discrete simulations. The results
showed good agreement in the temporal evolution of the column shape and internal
deformations, although the model systematically underestimated the final flow runout,
especially for taller columns.

In the work of Staron et al. [9], models of confined flows in silos were analyzed.
Instead of regularizing the effective viscosity of the granular material, to avoid physically
unrealistic and numerically problematic situations, a limitation of 7gins by a parameter

Nmax Was considered,
_ L fep
Tgrain = IILLIL Wa Tmax ( -
The VOF method’s density and viscosity equations, in this case, are given by,

g;+v-(cu):0,

PVOF = CPgrains + (1 - C)pair s



8 Introduction

NvoFr = Clgrains + (1 - C)nair .

The validation compares the p(/) model with discrete models for granular flow in silos.
The continuum model qualitatively captures the discharge rate, velocity, and pressure.
However, discrepancies may occur in areas of slow deformation.

In turn, Chauchat and Médale [10] proposed a three-dimensional model based on
w(I) rheology, using the Finite Element Method (FEM) with primal formulation. They
used d as the length scale, \/m as the time scale, and p|g|d as the stress scale. Four
different regularization methods were studied:

Simple Regularization

s [P (tha — ps)p

T Dt Typ+ D +e€

where € is a small regularization parameter.

Mixed Bercovier-Engelman Regularization

b HsD (fta — ps)p

U] + :
P D2 +e  loy/P+[D|+e

Mixed Papanastasiou Regularization

—|Dl/e
PP = ,uspl — e PV + (Md - Us)p .
p |D| Io\/l_?—i- ID| + ¢

Chauchat-Médale Regularization (based on Bercovier-Engelman)

mc /’Ld_MS D p
e = [ G0

Ioy/p+ Dl | /D)2 + e

The numerical model was validated against analytical solutions for vertical chute and
inclined plane flows, showing excellent agreement with theoretical velocity profiles.
Applied to granular heap flows and cylinder interactions, it accurately predicted flow
behavior and drag forces while demonstrating 30-50% faster convergence than non-
regularized approaches. Though limited to moderate deformations by its fixed mesh,
the method’s stability and efficiency make it particularly suitable for industrial granular
transport and geophysical flow simulations.

In the work of Franci and Cremonesi [11] two regularizations are considered and

applied only to the first term of 7, since this is responsible for the divergent behavior:
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Exponential Regularization

s(1 —e7IPI/e d(peag — fis
nE:pu( ) _pdlpa — i)

D Io\/p/p+ D]

Penalty Regularization

o Pt pd(pa =)
VPP +e Ioy/p/p+ (D

The problem was implemented in the Particle Finite Element Method (PFEM), suitable

for handling large deformations and free surfaces, which operates in iterative cycles:

first, the domain is discretized into particles carrying material information; then, a
finite element mesh is generated from these particles using algorithms. The governing
equations are solved on the mesh, and the particles are moved and updated based
on the results. The mesh is reconstructed at each time step, allowing the method to
handle large deformations, enabling the simulation of complex granular flows with free
surfaces. For validation, the authors simulated the collapse of granular columns in 2D
and 3D, comparing the results with experimental data and methods such as DEM.
The results showed good agreement with experiments, confirming the accuracy of the
models and the effectiveness of the regularizations, which improved the conditioning of
the linear system and allowed the use of iterative solvers even on refined meshes.

In the study by Yang et al. [12], the authors developed the LBGrain model,
combining the Lattice Boltzmann Method (LBM) with () rheology to efficiently
simulate granular flows with free surfaces. The LBM, which models fluid dynamics
through the evolution of distribution functions on a structured mesh, proved significantly
faster (up to 23x) than traditional Navier-Stokes-based methods. The treatment of
the grain-air interface was simplified through dynamic cell classification (fluid, empty,
or interface), avoiding the need to explicitly resolve the gas phase. Granular collapse
simulations showed excellent agreement with DEM results, outperforming models with
Bingham rheology. The approach demonstrated potential for large-scale applications,
such as geophysical landslide simulations, with prospects for extension to 3D and
inclusion of non-local effects.

In the work of Yang et al. [13], the problem of granular column collapse was
investigated using the LBM with a new friction boundary condition. To model dense
granular flow, the (/) rheology was implemented, which describes the material behavior

as a viscoplastic fluid, where shear stress is limited by the Coulomb criterion. The
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proposed friction boundary condition calculates the wall slip velocity based on the
Coulomb criterion, which states that slip occurs when the wall shear stress exceeds the
wall friction coefficient. For validation, a planar Couette flow was simulated, where
a fluid is sheared between two parallel plates, with the upper plate moving and the
lower plate stationary and frictional. In this study, the lower plate was modeled with
the new friction condition, reproducing analytical velocity profiles and capturing the
transition between no-slip and partial slip regimes. The model was then applied to
2D granular column collapse, comparing with DEM simulations. The extended LBM
model (LBGrain) accurately predicted the temporal evolution of the column shape
and internal flow structures for different initial aspect ratios and inclination angles.
The approach proved computationally efficient and generalizable to complex problems,
such as avalanches.

All the analyzed studies were fundamental for the development and consolidation
of the p(I) rheology. In particular, the use of classical numerical methods played a
crucial role, as it allowed consolidating the proposed mathematical model, validating
its ability to predict complex behaviors in granular flows in the examples considered in
each work. These methods provided precise tools to simulate and analyze phenomena
such as phase transitions, flow regimes, and particle interactions, demonstrating the
robustness and versatility of the p(7) model in the studied scenarios. Thus, numerical
methods not only reinforced the theoretical foundation of the model but also expanded

its applicability in practical and complex contexts.

1.5 Mixed finite elements

The p(1)-rheology model presents significant numerical challenges due to its pressure-
dependent dissipative terms, which complicate the application of classical pressure-
correction schemes Hinch [14] and the classical primal finite element methods designed
for linear problems. Recent advances in Banach spaces-based mixed formulations have
proven particularly effective for analyzing nonlinear continuum mechanics problems, as
demonstrated by applications to Brinkman-Forchheimer, Darcy-Forchheimer, Navier-
Stokes, Boussinesq, and coupled flow-transport, and fluidized beds are some of the
respective models addressed, and a non-exhaustive list of the corresponding references
includes Benavides et al. [15], Camano et al. [16], Caucao et al. [17], Caucao and
Yotov [18], Colmenares et al. [19, 20], Colmenares and Neilan [21], Gatica et al. [22].
The most distinctive feature of a mixed formulation is the incorporation of additional

unknowns, usually depending on the original ones of the model, for either physical or
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analytical reasons, obtaining a saddle-point problem where the associated operator

have the form

A B!
B 0

These mixed approaches offer several advantages: they eliminate the need for artifi-
cial augmentation techniques required in classical formulations, provide more physi-
cally consistent frameworks through natural function spaces, and enable momentum-
conservative schemes with direct approximation of physically relevant variables. For
the p(1)-rheology model specifically, this mixed Banach framework could allow direct
computation of key quantities like strain rate tensor, shear rate, inertia number, and
vorticity without the accuracy loss associated with numerical differentiation.

It is well known that adaptive algorithms based on a posteriori error estimates
are particularly effective in recovering the loss of convergence orders often observed in
standard Galerkin procedures, such as finite element and mixed finite element methods.
This is especially true when these methods are applied to nonlinear problems, where
singularities or high gradients in the exact solutions are present. In this context,
the study of a posteriori error estimators for saddle-point problems has been widely
developed in the literature by various authors (see, e.g., Ainsworth and Oden [23],
Alonso [24], Carstensen [25], Carstensen and Dolzmann [26], Lonsing and Verfiirth
[27], Repin et al. [28], and references therein). In particular, this powerful approach
has been successfully applied to the Navier—Stokes equations, both with constant and
nonlinear viscosity, as well as to related models. We refer to pioneering works such as
Oden et al. [29], Verfiirth [30], and Verfiirth [31], as well as to [32, Section 9.3], where
the first contributions to derive an a posteriori error analysis for the incompressible
Navier—Stokes problem in its classical velocity-pressure formulation were introduced.
Later, the a priori and a posteriori error analysis for the dual mixed finite element
method of the Navier—Stokes problem were proposed and developed in Farhloul et al.
[33]. Additionally, we mention Allendes et al. [34], where the authors extend these
contributions to the case of Dirac measures, and Kanschat and Schétzau [35], which
provides an a posteriori error analysis for a Discontinuous Galerkin scheme that offers
exactly divergence-free approximations of the velocity. Meanwhile, adaptive methods
for augmented-mixed formulations for the Navier—Stokes problem with constant and
variable viscosity were developed in Gatica et al. [36] and Camarfio et al. [37], respectively.
We also refer to Caucao et al. [38], where the authors developed an a posteriori error
analysis for a fully-mixed formulation of the Navier—Stokes/Darcy coupled problem with

nonlinear viscosity. In this work, a suitable first-order Gateaux derivative of the global
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operator involved is employed to derive the corresponding reliability of the estimator.
Furthermore, Camario et al. [39] is particularly notable for its a posteriori error analysis
of a momentum-conservative Banach space-based mixed finite element method for the
Navier—Stokes problem. In this work, standard duality-based arguments, a suitable
Helmholtz decomposition within Banach frameworks, and classical approximation
properties are combined with small data assumptions to establish the reliability of the
estimators. Similar techniques have been employed in Caucao et al. [40] and Gatica
et al. [41] to develop reliable and efficient residual-based a posteriori error estimators
in both 2D and 3D for Banach space-based mixed finite element methods applied
to the stationary Boussinesq and Oberbeck-Boussinesq systems. Lastly, we refer to
Caucao et al. [42] for a recent a posteriori error analysis of a Banach space-based mixed

formulation for the coupled Brinkman—Forchheimer and double-diffusion equations.

1.6 Thesis objectives

The general objective of this thesis is the development and analysis of mixed finite
element methods for the numerical resolution of u(I) rheology equations applied to
stationary granular flows. The main focus of this work is creating stable methods
with optimal convergence and proven robustness, capable of handling the inherent

complexities of the p(/) model.

1.7 Specific objectives

1. Presentation of the Physical Problem and Mathematical Model For-

mulation

o Discuss the most important models for granular material flow.

o Present the physical problem of stationary granular flows and its regularized
mathematical formulation, highlighting its main characteristics such as
nonlinearities, singularities, and the dependence of the effective friction

coefficient on the inertial number 1.
2. Mixed Variational Formulation and Choice of Functional Spaces

e Develop a mixed variational formulation for the problem, where the consid-

ered derivatives are in the weak sense.
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e Select appropriate functional spaces for the involved variables, such as
Lebesgue and Sobolev spaces, ensuring that the mathematical properties of

the continuous problem are preserved.
3. Solvability Analysis of the Associated Variational Problem

o Use classical theorems of functional analysis, such as the Lax-Milgram The-
orem, Babuska-Brezzi Theorem, Holder, Schwarz, and Poincaré inequalities,
to demonstrate the existence and uniqueness of the dual solution associated

with the mixed variational problem.
4. Discretization of the Variational Problem

o Perform the discretization of the variational problem using Lagrange and
Raviart-Thomas interpolants, ensuring compatibility between the discrete

spaces.
o Ensure that the discretization preserves the stability and convergence prop-

erties of the method.

5. Solvability Analysis of the Discretized Problem, Stability and A Priori

Error
« Demonstrate the existence and uniqueness of the solution to the discretized
problem using appropriate functional analysis theorems.

o Perform the stability analysis of the numerical method, ensuring its robust-

ness against variations in the problem parameters.

« Estimate the a priori error, establishing optimal convergence rates for the

proposed method, independent of the problem parameters.
6. Numerical Implementation and Validation

o Implement computationally the developed mixed finite element methods.

» Validate the methods using manufactured analytical solutions that repro-
duce the main characteristics of the u(7) model, such as nonlinearities,

singularities, and high pressure gradients.
7. A Posteriori Error Analysis

o Define local and global estimators based on the problem residuals.
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o Demonstrate the efficiency and reliability of the residual estimators, ensuring

they provide accurate indicators for mesh refinement.

o Implement an adaptive mesh refinement method, based on residual estima-

tors, to improve solution accuracy in critical regions.

o Compare the adaptive method with the uniform method, showing the

recovery of lost precision in regions determined by the estimators.
8. Numerical Implementation in Practical Applications

o Apply the developed methods to practical problems of granular flows, such

as flow regime transitions and shear zone formation.

o Evaluate the robustness of the methods in complex situations, verifying

their ability to reproduce physically observed phenomena.

1.8 Thesis organization

In Chapter 2 we begin with a brief introduction to the classical theory of mixed
finite elements, considering a model variational problem originating from a problem of
dissipative nature, and applying the Babuska-Brezzi Theory to show the well-posedness
of the problem, both in its continuous version and in its discretized version. We propose
discretized spaces based on Lagrange and Raviart-Thomas interpolations, then we
perform the a priori error analysis. Finally, we implement the numerical method to
an example showing the results predicted by the theory, such as stability and optimal
convergence.

In Chapter 3, we propose and analyze new mixed finite element methods for
a regularized p(I) rheology model of granular flows, with an equivalent viscosity
depending nonlinearly on the pressure and the Euclidean norm of the symmetric part of
the velocity gradient. For this, in addition to the velocity, pressure, and aforementioned
deformation rate, we introduce a modified stress tensor that includes the convective
term and the antisymmetric vorticity as auxiliary tensor unknowns, resulting in a
mixed variational formulation in the context of Banach spaces. Then, the pressure is
obtained through an iterative post-processing suggested by the fluid incompressibility
condition, which allows us to express this unknown in terms of the aforementioned
stress tensor and velocity. A fixed-point strategy, combined with a solvability result
for a class of nonlinear double saddle-point operator equations in Banach spaces, is

employed to demonstrate, along with the classical Banach fixed-point theorem, the
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well-posedness of the continuous and discrete formulations. In particular, PEERS and
AFW elements of order ¢ greater than or equal to 0 for the stress tensor, velocity,
and antisymmetric vorticity, and piecewise polynomials of degree less than or equal to
¢+ n (resp. £+ 1) for the deformation rate with PEERS (resp. with AFW), provide
stable Galerkin schemes. Optimal a priori error estimates are derived, and associated
convergence rates are established. Finally, numerical results confirming these estimates
and illustrating the good performance of the methods are reported.

The contents of this chapter resulted in the following published article:

o [43] S. Caucao, G.N. GATICA, S.R. MEDRADO, AND Y.D. SOBRAL, Nonlinear
twofold saddle point-based mized finite element methods for a regularized p(I)-

rheology model of granular materials. Journal of Computational Physics 520
(2025) 113462.

In Chapter 4, we develop the first reliable and efficient residual a posteriori error
estimator for the 2D and 3D versions of the mixed finite element scheme applied to p(7)
rheology. This estimator, denoted by ©, was determined for the 2D and 3D versions
of the mixed finite element methods introduced in Chapter 3. Specifically, we derive
the global estimator © formulated in terms of computable local indicators O, each
associated with an element K of a triangulation 7;,. This allows the identification of
error sources and the design of an adaptive mesh algorithm to improve computational
efficiency. In this context, the estimator © is considered efficient and reliable if there

exist positive constants Cees and Che1, independent of the mesh sizes, such that
Cets © + hoot. < Jlerror|| < Cre1© + hoo.t.,

where h.o.t. represents one or more higher-order terms. For the reliability analysis,
and due to the nonlinear nature of the problem, we employ the first-order Gateaux
derivative of the involved global operator, combined with small data assumptions, a sta-
ble Helmholtz decomposition in non-standard Banach spaces, and local approximation
properties of Raviart-Thomas and Clément interpolants. In turn, inverse inequalities,
the localization technique based on "bubble" functions in local L? spaces, and known
results from previous works are the main tools to obtain the efficiency estimate. Finally,
several numerical examples confirm the theoretical properties of the estimator and
illustrate the performance of the associated adaptive algorithms.

To the best of our knowledge, this work presents the first a posteriori error analysis
of Banach space-based mixed finite element methods for the stationary p(7) rheology

equations governing granular materials.






Chapter 2

Elements of Classical Finite

Element Theory

2.1 Chapter Introduction

Before addressing the main problem of this work, we will introduce the classical Finite
Element Theory for an abstract problem associated with a Partial Differential Equation
(PDE). The main objective is to ensure that the equivalent abstract problem can be
solved approximately, guaranteeing that this solution is sufficiently accurate and that,
under certain conditions, the approximate solution converges to the exact solution.
The mathematical tools employed in this context are commonly explored in master’s
level PDE courses in Mathematics, with an emphasis on Analysis.

For readers unfamiliar with PDE-related methods, it is relevant to emphasize that
in this work, the presented mathematical objects do not necessarily have a direct
physical interpretation. The associated abstract problem may lack natural or intuitive
justification, as sometimes occurs, for example, with concepts of vector spaces and
linear transformations, frequently addressed in undergraduate Linear Algebra courses.

We emphasize that the mathematical formalism used will be explored without
restriction, following the traditional approach found in the works that form the basis of
this area. The idea is to direct the reader to these sources for more detailed information,
as complete proofs of the theorems employed here will not be presented, except in some
specific cases, such as in convergence error theorems. Among the classical references for
this chapter, we highlight the works in: Raviart and Thomas [44], Ern and Guermond
[45], Gatica [46], Ciarlet [47].

We will introduce some notations and definitions used in the classical theory of

mixed finite elements in Section (2.1). Subsequently, in Section (2.2), we will present a
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variational problem associated with a PDE, highlighting its well-posedness (existence
and uniqueness of the solution, as well as continuous dependence on the data). The
discretization of the problem by the Galerkin method will also be performed. In
Section (2.3), we will construct discretized spaces using the Lagrange and Raviart-
Thomas interpolation theory, emphasizing the approximation errors of the interpolation
operators. Finally, in Section (2.4), we will apply the results to a Poisson problem,

implementing the method and demonstrating its effectiveness.

Preliminary notations

In what follows, €2 is a bounded domain of R", n € {2, 3}, with Lipschitz-continuous
boundary I', and corresponding outward normal denoted v. Then, we adopt the usual
notation for Lebesgue spaces L'(Q) and Sobolev spaces W () and W5'(Q), with I > 0
and t € [1,+00), whose corresponding norms, either for the scalar and vectorial case, are
denoted by ||+ ||lo..0 and ||+ ||...0, respectively. In particular, W*(Q2) = L(Q), and when
t = 2 we write H/(Q) instead of W“?(Q2), with the corresponding norm and seminorm
denoted by || - || and |- |, q, respectively. In addition, given any generic scalar function

space M, we let M and M be its vectorial and tensorial counterparts, respectively,

|/ ()]
oveM [[v]lm
Also, T stands for the identity tensor in R™*", and, besides denoting the absolute

whereas M’ represents its dual space, whose norm is defined by || f|jm :=

value in R, | - | stands for the norms in R" to R™™". In turn, for any vector fields
v = (v;)ic1n and W = (w;); =1, we set the gradient, divergence, and tensor product

operators, respectively, as

Vv := (81}1-) ;o div(v) = )0 1 and vOW 1= (0;w;)ij—1n-
Ox; ij=1n j

On the other hand, for any tensor fields 7 = (7;)ij=1,, and ¢ = ((jj)ij=1n, We
let div(7) be the divergence operator div acting along the rows of 7, and define the
transpose, the trace, the tensor inner product operators, and the deviatoric tensor,

respectively, as

n

n 1
Tt = (Tji)l‘,jzl’n, tI‘(T) = Z Tiiy, T . C L= Z TijCij? and Td =T — *tl‘(T) ]I
i=1 ij=1 n
(2.1)
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Furthermore, given t € (1,400), we introduce the Banach space
H(div;: Q) = {T €12(Q): div(r) e Lt(Q)}, (2.2)
which is endowed with the natural norm defined by
|7 aivi:o == [IT]oq + ||[div(T) o0 V1 € H(divy; Q).

Then, proceeding as in [46, (1.43), Section 1.3.4], one can easily verify that the following
(1, 400) if n =2

holds for each t € ,
[6/5,+00) if n =3

(tTv,v) = / {7‘ Vv + v diV(T)} Y (1,v) € H(div; Q) x H(Q), (2.3)
Q
where (-, -) stands for the duality pairing between H™Y/?(T") and HY?(T").

Fundamental Concepts in Functional Analysis

Let us list some fundamental notations and definitions for this section. Consider a
vector space X with a norm ||.||x.

Basic Spaces and Linear Operators

In functional analysis, a normed vector space (X ||-||x) is called a Banach space when
it is complete - meaning every Cauchy sequence converges in X. This completeness
can be characterized through the convergence of iterative processes: a sequence {z,}
in X converges to some limit x € X if and only if the distance between consecutive

elements tends to zero. Formally, this is expressed as:
lim ||z, — =0 < limzx,=u=x.
i e = i,

An important subclass of Banach spaces are Hilbert spaces, where the norm is

induced by an inner product. Specifically, a Banach space (H, (-,-)y) is Hilbert if its

[l =/ (z, x)m

norm satisfies:
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When considering linear mappings between these spaces, we say a linear form
T : X — R is bounded if there exists a constant C' > 0 such that:

|T(x)| < Cllz||x forall z € X.

The collection of all such linear and bounded forms constitutes the dual space of X,
denoted by X"
X':={f:X — R/ f is linear and bounded}.

This construction can be iterated to obtain the bidual space X" := (X')’, which

consists of all linear and bounded functionals on X':
X" :={g: X' = R g is linear and bounded}.

The duality pairing between x € X and f € X' is often denoted by (f,z)xs x. There

is a canonical injection .J : X — X” that satisfies: given z € X,
J(x) = (J(z), f)xvx = (f,x)xx, V€X', and |J(@)|x = [lz]x.

When J: X — X" is a bijection, we say that the space X is reflexive, then we can
indeed considerer X = X”. For linear operators between Banach spaces, the transpose
operator of T': X — Y is defined as the mapping:T"* : Y' — X’ such that

(T*g,x) = (g, Tx), VgeY', VrxeY.

Regarding order structure, for any subset Y C X, the infimum inf(Y’) represents
the greatest lower bound of Y in X, while the supremum sup(Y’) is the least upper
bound. When these bounds belong to Y itself, they coincide with the minimum and

maximum of Y respectively.

2.2 Operator Equation

Operators in infinite-dimensional spaces generalize fundamental concepts of linear
algebra, such as matrices and eigenvalues, to broader contexts, such as Hilbert spaces
and Banach spaces. We will define a variational problem, which involves bounded
bilinear forms, and obtain the associated operator problem. Then, we will establish the
main theorems that guarantee the solvability of the operator problem. Finally, we will

apply the Galerkin Method, which is based on the idea of approximating the solution
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of a variational problem using finite-dimensional subspaces of the original problem

spaces.

2.2.1 Abstract Problem

Let H and @ be two Banach spaces. Consider the bounded bilinear formsa : HxH — R
and b: H x (Q — R and the linear and bounded forms f: H — R and g: ) — R. We

want to solve the following variational problem:

Find 0 € H and u € @) such that
a(o,7)+b(t,u) = f(r), Vre€H, (2.4)
b(o,v) = g(v), YveQ.

We say the variational problem (2.4) is well-posed when its solution exists, is unique,
and depends continuously on the data f and ¢. If this problem can be solved, then it
makes sense to continue the procedure. To verify if the problem (2.4) is well-posed,
we need to consider an abstract problem associated with (2.4), which is obtained by
defining the operators A: H — H' and B : H — @', such that

A:H — H
o — Alo): H—R

7= (Ao, ) m = a(o,7),

and
B:H — @
o — B(o): @—R
V= <BU, U)QIQ = b(CT,U).

If Q is reflexive, i.e., Q" = @, we can define the transpose operator of B, B* : Q" =

Q — H' where:

B*:Q — H
u — B*(u): Q@ —R
U — <T,Btu>H7H/ :b(T,U).
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Then the problem (2.4) can be written as:

Find ¢ € H and u € @) such that
(Ao, TV oy + (B*u,mVomw = f(r), Vr€H
(Bo,v)u o = g(v) Yvedq.

and the abstract problem associated with (2.4) becomes:

Find 0 € H and u € () such that
Ao+ B*uw = f, inH' (2.5)
Bo, = g, inQ.

The equivalence between (2.4) and (2.5) is in the sense that ¢ € H and u € @ are
a solution of the first if and only they are is a solution of the second. Therefore, to
verify if the problem (2.4) is well-posed, we will study the associated abstract problem
(2.5). For this, consider the kernel of the operator B, denoted by Ker(B) and defined
by
Ker(B):={r € H; Br=0} = {r € H; b(1,v) =0,V1 € Q}.

Also consider the projection operator I1 : H — Ker(B) such that the composition
IIA : Ker(B) C H — Ker(B)' is given by (ITAo, 7) g/ g := a(Ilo, 7) with o € Ker(B),
7 € Ker(B). Note that we could have defined ITA : H — H', but we prefer to be more
objective. Thus:

<HAO',T>H/7H: <AO’,T>H/,H, Vo, 7 € Ker(B)
We are now in a position to state the theorem of existence and uniqueness of solutions
to the problem (2.4):

Theorem 2.2.1. The problem (2.4) is well-posed if and only if:

1. IA : Ker(B) — Ker(B)' is injective and norm-preserving (Isomorphism);

2. B: H — (@ is surjective.

The proof that (2.2.1) derives from the Gauss technique for systems of linear
equations, where the upper triangular matrix is solved by back substitution followed
by the application of the Closed Range Theorem for Banach spaces that relates the
image of the operator B* with the kernel of B, Ker(B) (cf. [45, Theorem A.34]). See
details in [45, Theorem A.56].
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Note that for the particular case where a is a continuous and coercive (or H-elliptic)

bilinear form, i.e., there exists a > 0 such that
a(o,0) > allo||%, Vo € H,

it is easy to see that IIA is injective. Indeed, given o,5 € Ker(B) that have the same

image in Ker(B)' by A, choosing 7 = ¢ — ¢ we obtain

0=alc—5,7)=a(loc —6,0—35)>alec—3d|%
which means that ¢ = & and A is injective.

Inf-sup conditions

To verify the surjectivity hypotheses of Theorem (2.2.1), we use equivalent hypotheses
known as inf-sup conditions. The equivalence is a consequence of two classical theorems
of Functional Analysis: the Closed Range Theorem (cf. [45, Theorem A.34], [48,
Theorem 2.19]) and the Open Mapping Theorem (cf. [45, Theorem A.35], [48, Theorem
2.6]), which allow characterizing surjective operators. With these new hypotheses,
Theorem (2.2.1) is known as the Babuska-Brezzi Theorem (cf. [45, Theorem 2.34],[49,

Theorem 4.1]). These inf-sup conditions are given by:

1.
da >0, inf sup M >,
o€Ker(B) rcKer(B) ozl &
V1 € Ker(B), (Vo € Ker(B),a(o,7)=0)= (17 =0),
2.

36 >0, inf supM >
1€Qren || 7]l llv]lq
Note that the second statement in 1. only provides an injectivity condition for the
abstract operator I1A.
Now, with the above inf-sup conditions, we can obtain the continuous dependence
on the data according to Theorem (2.2.1), showing that there exists a constant C' > 0,
C :=C(||A]l, @, ) such that

lolla < el fllar + eallgller
lulle < esll fllar + callgller
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1 1 A 1 A A A
Withclz,@:(l—i-””),c;;:<1+H”>,andc4:|| | (1—|—” H)
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Remark 2.1. (Nonlinear case). For the nonlinear operator A, results on existence,
uniqueness, and approximation for dual-dual mixed variational formulations can be
found in [50]. In these formulations, the nonlinear operator A is characterized by being

strongly monotone and Lipschitz-continuous in the appropriate spaces.

2.2.2 Approximate Abstract Problem - Galerkin Method

Now consider two families of finite-dimensional subspaces { Hy }r~o C H and {Qp }r>0 C
@, say Ni and Ny, respectively. Then, for each h > 0 we can write the variational
problem:

Find o4, € Hy, and uy, € Q) such that

a(O'h,Th) + b(Th,uh) = f(Th>, V1, € Hy, (26)
b(O’h,Uh) = g(Uh), Yy, € Qh-

If for each h > 0 the problem (2.6) is well-posed, and if the families of spaces
{Hp}n>0 C H and {Qp}n>0 C @ satisfy the following approximability condition

VreH, lim ( inf |7 — ThHH) —0, lim ( inf fw— whHQ> —0, (27)

h—0 \ Th€Hp, h—0 \ wrLEQH

then the solution (o, us) of (2.6) is an approximate solution to the problem (2.4).

Remark 2.2. First, recall that given a subset Y C X where X is a normed space, the
distance between x and the subset Y is defined by

dist(z,Y) := ylg}f/ llr — vl x-

Therefore, the approximation conditions (2.7) mean that for A > 0 increasingly smaller,
the subspaces Hj, and (), become increasingly larger. We also emphasize that A > 0 only
characterizes a family of indices related to the dimensions N; and Ny of the considered
finite-dimensional spaces, H;, and @), such that h — 0 results in Ny, Ny — co. We

will provide a geometric interpretation for h later in our discussion.

The verification of the well-posedness of the approximate problem (2.6) is analogous
to that of the problem (2.4), that is, by writing the equivalent abstract problem and
then using Theorem (2.2.1) (cf. [46, Theorem 2.4]). Thus, for each h > 0, we can find
constants «y, and (), depending on h > 0.
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The linear system

The approximate problem (2.6) is simply a linear system. To illustrate, let us consider
the particular case where b = 0 and a is coercive (or H-elliptic). Let {¢1,...¢n} be
a basis of the finite-dimensional space Hj,. Then there exist unique real numbers

{U1, ...Ux} such that the solution wu; can be written as:
N
u, =Y Uit
i=1
Let A € R™" be the stiffness matrix such that

Aij = a((bia(bj)a 1< Za] < N

and F' € R" the vector with components

It is easy to see that
up, is a solution of (2.6) if and only if AU = F.

Due to the approximability condition (2.7), we must have N — 0o, and the existence
and uniqueness of a solution to this linear system may not be guaranteed for every
h > 0 (equivalently for every N). This is why PDE Theory is important - it ensures
that by appropriately selecting the finite-dimensional subspaces, the existence of a

solution to the linear system is guaranteed for any N.

A priori error

In this section, we will obtain a priori estimates for the approximation error ||(o, u) —
(o, un)||Hxg, where (o,u) solves the exact problem (2.4) and (o, up) solves the
approximate problem (2.6). Using 7 =7, € H and v = v, € Q) in (2.4) and (2.6), we
have the following equality:

CL(Uh,Th)+b(Th,uh) :f(Th) G(U,Th)+b(Th,U> \V/Th € Hh,
b(on, vp) g(m) = blo,v) Y, € Q.
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This induces the definition of a Galerkin operator G, : H x () — Hj, X ), such that for
each (¢, w) € H x @, G,(¢,w) is the solution of the approximate variational problem

a(Ch, ) + 0(h, wr) = few(m) = a(l, ) +b(mh,w) V1, € Hy,

(2.8)
b(Cn, vn) = gew(n) == b(C,vn) Yy, € Qh.
Remark 2.3. Rewriting the expression (2.8) as
a(C = Cn, ) + 0(Th,w —wy) =0 V71, € Hy, (2.9)

b(¢ — Ch, ) =0 Vi, € Q,

the left-hand side is a duality in H x @, that is:
<(C,w) — (Cny wn), (Th7vh)> =(0,0) V7, € Hy, Yy, € Qp,

where ((p,, wy,) = Gi({,w). Thus, the operator GG, defines a projection.

Due to Theorem (2.2.1) for approximate problems, G}, is well-defined and bounded
with |G| depending on | Al I1(TL4) ], . ]l and [|B]. Taking (¢,w) = (o),
the solution of (2.4), and ((,, wp) = (o, up), the solution of (2.6), we have Gy (o, u) =
(on,up). Tt is also easy to see that Gy (Cn, wp) = ((h, wy). Consequently, we have the
equality:

(o,u) = (op,up) = (I — Gh)((@ u) — (Ch,wh)> V(Chywn) € Hy X Qn

Finally, using that ||I — G|l = |Gyl (cf. [46, Theorem 2.5]), we obtain Cea’s Estimate
(see [46]):
I(0,0) = (s i) 1 < Gl dist (), Xi x Q- (2.10)

Certainly, to confirm the convergence of the Galerkin scheme, i.e.,
lim (0, ) — (o3, 1) s = 0. (211)

||Gp|| must be independent of h, which means requiring that all the involved constants,
including the norms of the operators ||Al[, [|[(ILAL) Y|, Bu, || A|l, and || B||, and the
discrete inf-sup conditions, «y and fSj, be independent of the subspace Hy, x Q. In
fact, the need for h-independence is better perceived when, instead of deriving Cea’s
estimate through the Galerkin projector GGy, it is obtained by individually analyzing
each of the errors |0 — 0|/ and ||u — up|lg. More precisely, with the conditions and

notations of Theorems (2.2.1) and its version for the approximate problem, we obtain
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o —onllu < (1 + H(i”) (1 + H;”) Chigfgh o — Cullar + Hth“ wirelgh lu —wpllg (2.12)
and
ol < LA (14 BA0) (4 BB) e o,
(2.13)
P L AP

Remark 2.4. Tt is important to emphasize that the subspaces Hj, and (), which define
the Galerkin scheme (2.4), cannot be chosen arbitrarily, as they must satisfy the
hypotheses of the approximate version of Theorem (2.2.1) in addition to satisfying the
approximation condition (2.7). In the next section, we will define some spaces with

such properties for the problems we will study in this work.

2.3 Examples of approximation spaces

The spaces H, Q) considered in problem (2.4) are function spaces defined on a subset
Q of R", n € {2,3}. The finite-dimensional subspaces Hj, ), considered in problem
(2.6) are obtained by decomposing €2 into small parts and using some approximation
(for example, polynomial interpolation) on each part of the decomposition of 2. The
finite-dimensional spaces obtained in this way are the Finite Element Spaces. There is
a good variety of finite element spaces in the literature, both in terms of the geometric
shapes that decompose () and in terms of the approximation method, for example
polynomial interpolation (cf. [45-47, 51]). However, we will focus on some classical
examples of finite element spaces: the Raviart-Thomas space that approximates vector
fields with normal continuity, and the Lagrange space that approximates continuous
functions. We will consider €2 decomposed into triangles or tetrahedra. After studying
this chapter, readers will be able to analyze similar finite element subspaces from the

literature.

2.3.1 Local Polynomials

In what follows, 2 is a bounded and connected domain of R", n € {2,3}, with
polyhedral boundary I, and for each h > 0, 7j is a triangulation of . More precisely,
Ty, is a finite family of triangles (in R?) or tetrahedra (in R?), such that
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0 o= U K
KeTy,
(ii) for every K € Tp, the interior of K, denoted by K, is non-empty (K + );
(iii) K; N f(j = () for every K;, K; € Tp, K; # Kj;

(iv) If F = K;NK;, K;,K; € T, K; # Kj, then F is a common face, a common

edge, or a common vertex of K; and Kj;
(v) diam(K) =: hx < h for every K € Tj.

Additionally, to each 75, we associate a fixed reference polyhedron &', which may or

may not belong to 7, and a family of affine mappings {7k } ke7;, such that

(a) Tk : R" = R", Tk(Z) = Bg + b for every & € R", with Bx € R™" invertible,
and bx € R™;

(b) K = Tx(K) for every K € Tj.
Given a triangle K in R", where n € {2,3}, and a non-negative integer k, we define

the spaces
Py(K) :={p: K — R : pis a polynomial of degree = k},

and
Pi(K):={p: K — R : pis a polynomial of degree < k}.

Equivalently, denoting Ny := NU {0} and using multi-index notation, we have that
p € Py(K) if and only if there exist scalars a, € R for every o := (v, g, ..., a,) € N§
with || < k such that
p(x) = Y a,z® VrekK.
|| <k
Similarly, p € Py(K) if and only if there exist scalars a, € R for every a :=
(aq,aa,...,q,) € N[ with || = k such that

p(z) = > anz® Ve K.
la|=k

It is easy to see that the spaces Py(K) and Py(K) have finite dimension, with:

n+k

), and dimpk(K):<n+k_1>.

k



2.3 Examples of approximation spaces 29

The Raviart-Thomas polynomials are defined by:

RT(K) = Py(K) & Pp(K)x

and are also finite-dimensional spaces with (see Gatica [46], Lemma 3.5)

m+k+1D(n+k—1)
(n— 1)K

dim RT;(K) =

2.3.2 Interpolation

Interpolation theory is fundamental for understanding the order of approximation error
in numerical methods, especially in finite element methods. We will detail the concepts
and logic behind the interpolation error estimate.

An interpolation operator II is a linear operator that acts on functions in an infinite-
dimensional space (such as C'(K) or L*(K)) and preserves polynomials of degree up to

k. This means that, for any polynomial p € P,(K), we have:

I(p) =p.

Here, P,(K) is the space of polynomials of degree up to k defined on the element K.
In order to construct the interpolation operator, we choose a basis for P,(K) that is
determined by the geometry of the element K. For example, in finite elements, this
basis can be associated with the vertices, edges, or faces of K.

The canonical dual basis of P,(K) consists of linear functionals that evaluate the
coefficients of the polynomials in the chosen basis. These functionals are the coordinate
functions that allow representing any function v in the space X in terms of the basis
of Py(K).

Interpolation theory provides estimates for the interpolation error ||v — I1(v)||x.
These estimates depend on the regularity of the function v and the geometry of the
element K. We will introduce the Lagrange interpolants and the Raviart-Thomas

interpolant next, and calculate the interpolation errors of these interpolants.

Lagrange interpolant

Given K € T, with vertices aq, ay ... an41. The barycentric coordinates ¢; = Aj(x), 1 <
Jj < n+1, of any point = € R", relative to the (n + 1) points a;;, are the (unique)
solutions of the linear system
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n+1
Zaij)\j:xi, 1§z§n,
=1
n+1

DA =1,
i=1

where A = (a;;) with a;; for 1 < i < n are the coordinates of the vertex a; for
1 <j<n+1landa; =1if ¢ = n+1is an invertible matrix. Then we can define
Aj:R" = R as:

)\j(l') = Zbijxj+bi,n+17 1 SZS?’L—Fl,
j=1

where B = (b;;) = A~ is the inverse of the matrix A.

Remark 2.5. For n = 2, geometrically we have

_ |triangle(z, az, as)|

A —
(@) [triangle(ay, as, az)|’
No(2) [triangle(ay, x, as)|
Q: =
2 [triangle(ay, as, az)|’
triangl
N(z) = [triangle(ay, ag, x)|

 |triangle(ay, as, as)|’

where |triangle(.,.,.)| denotes the area of the triangle. For n = 3, we simply use the
volume of the tetrahedron. Note that \;(a;) = d;; is the Kronecker delta.

Based on [47], Section 2.2, we can state the following unisolvence theorem:

Theorem 2.3.2 (Unisolvence). Let K € T, and p € P;(K). Then p is uniquely

determined by its values at the (n + 1) vertices a; of K.

Proof. We need to show that for all real p;, 1 < j < n+ 1, the linear system

plaj) = > Yala)® =y,

lal<1
has a unique solution 7,, || < 1. The dimension of the space P; is n + 1, which
coincides with the number of vertices a;. Since the matrix of this linear system is

square, it suffices to prove the existence of the solution. The barycentric coordinates
A; satisfy \;(a;) = d;; for 1 <i4,5 <n+ 1. Consider the polynomial defined as:

n+1

p(z) = ; i ().
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This polynomial satisfies p(a;) = p; for all 1 < j < n + 1, as required. Therefore, the

polynomial p is uniquely determined by

n+1

Vp € Pi(K), p(z)= Z:p(ai))\i(x) 5 (2.14)

this completes the proof. ]

Note that {\;}1<i<n+1 is a basis of P;(K). We denote the Lagrange interpolation
operator I1E"(v) : C(K) — Pi(K) by

n+1
MM (0) = Y v(a)Xi(z), Vv e C(K).
i=1
The Lagrange interpolation in P, is obtained by also using the midpoints of the
1
edges of the triangles, a;; = §(ai +aj), 1 <i<j<n+1, (cf. [47, Section 2.2]), and

the Lagrange interpolation becomes:

n+1

Vp € By(K), plz)= Z Ai(@)(27i(z) — 1)p(a;) + 24)\2‘(33))‘3‘(@29(%3‘)‘
i=1 i<j
There exists Lagrange interpolation Py, with £ > 2, but it is not commonly used in
applications. For other interpolations, see [47, Section 2.2].
The idea is to combine the locally defined polynomials to obtain a finite-dimensional
function space X ,’f such that X ,’f C C(Q). This property will allow us to calculate the

approximation error estimate using the norm of the function space C'(€2). Then, given

a triangulation 75, of 2 and an integer k > 0, we define the global Lagrange space as
Xp = {C@Q); vk € P(K) VK € Tp}.

Then, if X is a sufficiently regular function space, the global Lagrange interpolation

H’Z’ X — XJ is naturally defined by combining the local interpolations such that

VK € Tn, T, (0)|x = TE"(v]k), (2.15)
or, equivalently,
n+1
thv = Z ZU(CL,’7K)>\Z',K.
KeT, i=1

where for each K € 7T, a; x are the n + 1 vertices of K and \; x are the n 4 1 basis
functions of P;(K).
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Theorem 2.3.3. Suppose that 2 is a bounded open subset of R" with piecewise
C' boundary T'. Then, if m > g, the space H™ () is a subspace of C(f2) and the

canonical injection of H™(£2) into C'(2) is continuous.

Proof. See [44, Theorem 1.6-4]. O

Raviart-Thomas interpolant

The Raviart-Thomas space is also defined locally so that its assembly produces a
function space where the normal component across each piece is continuous. The
continuity of the normal component is crucial for the consistency of the method,
as it allows the principle of flux conservation to be approximately satisfied in the
discretization. For this, we need the domain of the RT interpolation operator to be

appropriate. In this sense, we have the following theorem:

Theorem 2.3.4. Consider the function space:

7= {r e [LXQ)": 7|k € [H'(K)]" VK € Tp} .

Then
H(div;Q)NZ = {TE Z:7-ng, +7-ng, =0in L*(F)
VK;, K; € T, that are adjacent with common face/edge F}
Proof. See [46, Theorem 3.2]. O

Remark 2.6. The expression 7 - ng, + 7 - ng, = 0 in L*(F) implies that

/F(T-nKi—l—T-nKj)szV@/) € L*(Q)

since ng, = —ng,;, we can write ng, = ng, = —ng, and obtain

|7

Before defining the RT space, let us first state a theorem that will show the

Ki-nKsz/FﬂKj ngp Vo€ L2(Q) (2.16)

unisolvence of the polynomials RT;(K), i.e., that 7 € RT;(K) is uniquely determined by
the vertices of the triangle K. Recall that given a vector space X of finite dimension N,
aset {fi,..., fy} € X’ is linearly independent if and only if N Ker(f;) = {0}. Indeed,
consider the linear transformation ® : X — R" defined by ®(z) := (fi(x), ..., fn(2)).
Note that ® is injective, since Ker(®) = NY Ker(f;) = {0}. Consequently, the matrix
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A such that ®(x) = Az for every x in X in some basis of X is invertible. Let ¢, ...,cxn

be real numbers such that

N
0=> ¢fi(x) =cAz, VzeX,

=1

where ¢ is the column vector of ¢;. It is easy to see that ¢ = 0, therefore {f1,..., fx} is

linearly independent.

Theorem 2.3.5 (Unisolvence). Let K € T, and 7 € RT(K) and {¢1 g, Yo, ..., Ya, 7 }
be a basis of P,(F) and {¢1 k, Vo i, ..., ¥r, ik } be a basis of P,_1(F') Assume that
(i) / T-ngrp=0, 1<i<d, VF face/edge of K, when k > 0;
F

(ii) / Tongdig =0, 1<i<ry, whenk> 1.
K
Then 7 =0 in K.
Proof. See [46, Theorem 3.3]. O

Remark 2.7. Theorem (2.3.5) defines N linear and bounded functionals of RT,(K)',
which for now we will denote by f;, 1 <4 < N such that N\ Ker(f;) = {0}. As a

consequence, we have that {fi, ..., fx} is linearly independent. Note also that
N = (n+1)d; +n dim(P,_,(K)) = dim(RTx),

therefore the set of defined functionals is a basis for the dual space of RTj(K). From
the definition of the dual basis, there must exist unique {p,...,p5} C RT(K) such
that f;(p;) = 0;j, and therefore, given 7 € RT},(K), we have

T(r) = Z fi(T)pi(z).

i=1
That is, 7 € RT,(K) is uniquely determined by the functionals f;, defined in Theorem
(2.3.5), which in turn are uniquely determined by the vertices of K.

We define the global Raviart-Thomas space as
H .= {T € H(div;Q) : 7|x € RTR(K) VK € 7;5’}

Given 7 € H(div;2) N Z, the linear forms defined in Theorem (2.3.5) i and ii

are called F-moments and K-moments, respectively. All F-moments of 7 are m;(7),
i €41,2,3,.., N1} where Ny = dj x number of faces of 7, and all K-moments of 7
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are m;(7), 1 € {N1+ 1, Ny +2,.., N} where N — N; = r;, x number of triangles of Ty,.
Therefore, the total number of moments of 7 is V.
The interpolation operator IIFF : H(div;Q) N Z — HF is defined as

N
() o= Y my(r) ey,
j=1

where ¢y, ¢s, ..., ¢ are the unique functions in H} such that mi(¢;) = ;. Equivalently,

1177 (7) is the unique function in HF such that
my(I5 (7)) = mi(1), Vi€ {1,2,..,N}.

Then, for each K € T}, we define m; x(7), i € {1,2,---, Nk}, as the corresponding
local moments, i.e., the F-moments of the faces/edges F' of K and the K-moments of
K. Since the number of faces/edges of K is n + 1, we have that N = (n + 1)dj + 7.
Then we define the local interpolation operator IIf * : [HY(K)]" — RT(K) as

Nk
(7)== Y mi(T)pjx V7 € [H' (K",
=1
where, given j € {1,---, Nk}, ¢; k is the unique function in RT}(K') such that

miyK(gpr) = 52']' Vi € {172, s ,NK} .

Note that I (7)|x = I *(r) V7 € H(div; Q) N Z holds. The following lemma
relates the divergences of the local and global interpolation operators in terms of the

orthogonal projectors and will be used to calculate the local interpolation error:
Pr: LK) — Pp(K) and Py :L*(Q) — PF,

where

Yi={ve LQ) :v[x e Pu(K) VK €T}
Lemma 2.3.1. The following holds:
div(II7"F (1)) = PE(divr)  Vr e [HY(K)]" (2.17)

and
div(ITF5F (7)) = PE(divr) V7 € H(div; Q) N Z. (2.18)



2.3 Examples of approximation spaces 35

Proof. See [46, Lemma 3.7]. O

2.3.3 Local Interpolation Error

We will now obtain the local interpolation error for Lagrange and Raviart-Thomas
interpolants. This will allow us to calculate the convergence order of finite element
methods that use these spaces. But first, we need some preliminary results from the

general theory of interpolation.

Preliminary Results

An important result in interpolation theory is the Bramble-Hilbert Lemma, which
provides an estimate for the error of linear and bounded operators defined on function
spaces with two characteristics: they preserve polynomials and do not increase the

regularity of the function.

Theorem 2.3.6 (Bramble-Hilbert Lemma). Let m and k be non-negative integers
such that 0 < m < k + 1, and let II : Hk“(K) — H™(K) be a linear and bounded
operator such that II(p) =p Vp € Py(K). Then there exists C':= C(II, K') > 0 such
that

v —T1(0) || < Clvlpsre Yo € HH(K). (2.19)

Proof. See [46, Theorem 3.5, [44, Theorem 4.4-2]. O

Piola Transformation

Let K € T, 7 € [H*(K)]" and the affine transformation Tk : R™ — R™ defined by

with Brx € R™" invertible and bx € R", such that K = TK(K), where K is the

reference polyhedron. We introduce the Piola transformation:
7= |d€‘t BK|B[_(17— o TK

The affine transformation is important because it is the basis of most convergence
theorems. Also, in computational practice, the calculation of coefficients is performed

on a reference finite element [47, Section 4.1]. In this sense, we present two lemmas
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that provide estimates relating an element K with the reference element K via the

Piola transformation.

Lemma 2.3.2. Let K, K € Tn, and let F': R — R" be the affine transformation
given by F(Z) = B + b V% € R", with B € R™" invertible and b € R", such
that K = F(K). Let m be a non-negative integer, and let v € H™(K). Then
b :=voF e H"(K), and there exists C' := C(m,n) > 0 such that

(0], < ClIBI™ | det Bl ™2 [v] k. (2.20)

Conversely, if & € H™(K) and we define v = 9 o F~!, then v € H™(K), and there
exists C' := C'(m,n) > 0 such that

V| < C’HB’leldetB[l/Q\ﬁ]mj(. (2.21)

Proof. See [46, Lemma 3.12] (see also [47, Theorem 3.1.2]). O

Remark 2.8. If 7 € [H™(K)]". Then 7 := |det B|B™'r o F € [H™(K)]", and there
exists C':= C(m,n) > 0 such that

i < CIBTHIBI™ [ det BIY| 7] (2.22)

Conversely, if 7 € [H™(K)]" and we define 7 := | det B|"'Bf o F ™!, then 7 € [H™(K)]",

A

and there exists C' := C'(m,n) > 0 such that
[l < CIBIIBH|™ | det BI7/?7],, 4- (2.23)

(cf. [46, Lemma 3.13]).

The following lemma establishes geometric properties of the Piola Transformation
under the elements K and K of T

Lemma 2.3.3. Let K, K e Tn, and let F' : R" — R" be the affine transformation
given by F(Z) = BZ +b V% € R", with B € R™™" invertible and b € R", such that
K = F(K). Let

hk := diameter of K = max ||z — y||,
z,yeK

pi = diameter of the largest sphere contained in K,
h := diameter of K , and

p = diameter of the largest sphere contained in K.
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Then

hx (2.24)

K h
|det B| = | - |, | Bl < and HBle < —.
| K| PK

Proof. See [46, Lemma 3.14] (see [47, Theorem 3.1.3] and see [44, Lemma 4.4.1]). O

Remark 2.9. The following relation between the local interpolation on K € 7, and the
reference element K , for both Lagrange and RT interpolants, is easily verified using
variable substitution (cf. [46, Lemma 3.11]):

—

I, 2 (7) = T (7) = | det Bie| B I () o T (2.25)

for all 7 in domain of HﬁT’k.

Error Estimates for Polynomial-Preserving Operators

We present the Error Estimate Theorem for more general interpolation operators than
Lagrange and Raviart-Thomas, which are linear, bounded, and polynomial-preserving,
applied to a triangular (or tetrahedral) mesh. Its proof follows from the application
of the Bramble-Hilbert Theorem (cf. Theorem (2.3.6)) and Lemma (2.3.2). Given its
importance, we will present its proof in detail (cf. [44], Theorem 4.4-2 or [47], Theorem
3.1.4).

Theorem 2.3.7. Given K € Tn, and let II be a linear continuous operator from
H*Y(K) to H™(K), 0 <m < k+ 1, such that

—~

Vp e Py(K), TIp=p. (2.26)

If K € T;, such that F(K) = K, and if the operator II is defined by

—

Yo € H*Y(K), Tiv = I(5), (2.27)

then there exists a constant C' := C' (f(\ , ﬁ), independent of F' (and therefore of the
geometric characteristics of K'), such that

k+1
Yo € H"Y(K), |v—Tv|mr < OC-L—|vpp1k- (2.28)

m
K
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Proof. Let 7 € [H*(K)]". Using the estimate (2.21) and (2.27), we obtain

17— T1(7) |m.xc < C||B~Y|™| det B|'?|7 — [I(7)] ~. (2.29)

m,K
Therefore, Theorem (2.3.6) implies that
|7 — H(?’)|mf< < C|7A'|k+17§. (2.30)
Then, applying the estimate (2.20), we obtain

Plpr 2 < ClIB|* det Bi|™?|7|k 1.k (2.31)

Thus, inserting (2.31) into (2.30) and then the resulting bound into (2.28), we deduce
that

|7 = (7 lmsc < ClIBxl* M Bi! ™7 k1. (2.32)
. . —1 /];, hK .
from which, using ||Bg'|| < — and ||Bg|| < — (cf. Eqgs. (2.24)), we arrive at
PK p
(2.28). O

Remark 2.10. If II is a linear continuous operator from vectorial spaces, [H*+!(K)]" to

—

[H™(K)]", using Remark (2.8) instead of Lemma (2.3.2), we obtain

hk+2
vr e [H"HEK)]", |7 = 7| < C’ﬁhhﬁu{. (2.33)
K

Local Error Estimates for Lagrange

The local error of Lagrange interpolation that we will present next will follow as a
particular case of Theorem (2.3.7) (cf. [44], Theorem 4.4-3 or [47], Theorem 3.1.5).

Theorem 2.3.8 (Lagrange Interpolation). Let m, n, and k be non-negative integers
suchthat n <3, k>1,and 0 <m < k+1. If Hf(’k is the Lagrange interpolant, then
there exists C' := C(f(\, H%’k, k,m,n) > 0 such that

hk’-i—l
Yo € H*Y(K), |v—TE ]k < C pK [V|ks1k- (2.34)

m
K
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Proof. Clearly IIZ*(p) = p for all p € P,. Now we will show that H';T[A( - HY(K) —
H™(K) is bounded. Given o € H*'(K), we have

i &= Zlv (@)lll¢i(@)ll,,, %

Since k > 1, then from Theorem (2.3.3), H*"'(K) c C(K), we can use |3(a;)] <
10l e,z < Crllollpy 2

I @), = < COTEE Bl 2
which proves that IT%* is bounded. Finally, it is clear that IT%*(v) = H’Z ~(0) for all
v in domain of II") (cf. (2.25)). Therefore, it suffices to apply Theorem (2.3.7) to
obtain (2.34). O

Local Error Estimates for RT

The local error of Raviart-Thomas interpolation, as in the case of the Lagrange
interpolant, can be obtained based on Theorem (2.3.7). However, the analysis requires
additional care due to the norm of the space H(div,(2), which involves not only the
interpolated function but also its divergence. Based on [46], Lemma 3.16, we can state

the following theorem.

Lemma 2.3.4 (Local Interpolation Error). Let m and k be non-negative integers such
that 0 < m < k + 1. Then there exists C' := C(K, IT* k,m,n) > 0 such that

RT,K’
[IATk o k+1 n
|7 = T ()l < CWITIW,K vr e [H(K)]" (2.35)
K

Moreover, for each 7 € [H'(K)]", with divr € H*™(K), we have

k—i—l

| div T — div ITE* (1) | < C—E—| div 7|pp1 1. (2.36)

K

Proof. Since TIE* ¢ £([H*Y(K)]", [H™(K)]") (cf. Lemma 3.15), H’;TK(A) =5

Vp € RT,(K), and [Py(K)]" C RT(K). It suffices to use Remark (2.10) of Theorem
(2.3.7) to obtain (2.35).
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On the other hand, let 7 € [H'(K)]", with divr € H*™(K). From the chain rule,
we have

V7(Z) = |det Bx| Bg' V7(Tx (%)) B .

Then, using that tr(B~'TB) = tr(T) and div(7) = tr(V7), we can deduce that
div7 = |det Bg|divr o Txx V7 € [H'(K)|", (2.37)
and then, also using Lemma (2.25), we find that

divr — divIIE"*(7) = | det B |™ {div? —div HZTIA((?)} .

Moreover, we know from Lemma (2.3.1) (applied to K) that div HIIC%T, (1) = PE(div7),

where Py : L*(K) — P(K) is the orthogonal projector. Then, employing the estimate
(2.23) (cf. Remark (2.8)) and the preceding identity, we obtain

| divr — divITE " (7) i < C|BE! ™| det By |?[ div s — div Ty, 2(F)],, 2

= C| By ™| det By |'?| div 7 — Py (div 7)|, &-

(2.38)

Now it is easy to see that P € L(H*'(K), H™(K)), for example, by writing
my /\
’Pf((@\) = Z(ﬁa (Pi,k>07}?901',k Vo € LQ(K)7

i=1

where (-, ), 7 is the inner product of L*(K) and {14, 92, * , @mype} 18 an orthonor-

mal basis of Py (K). Moreover, it is clear that P (p) = p  Vp € Py(K). Thus, applying
the Bramble-Hilbert lemma, the identity (2.37), and the estimate (2.22) (cf. Remark
(2.8)), we conclude that

|divF — Pg(divr)], z < Cldive],,, &
= C|det Bgl|div], ., & < C|det Bic|"?||Bx||* " |divr s x,
which, substituted into (2.38), implies
|divr — divITE " (7). < C|| B I™ | B ||F | divr g1, k- (2.39)

Finally, using again the geometric constraints given by Lemma (2.3.3), we obtain (2.36)
directly from (2.39). O
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Remark 2.11. The following result extends Theorem (2.3.8) to all intermediate semi-
norms (cf. [46, Lemma 3.17]). For non-negative integers m, k, and [ with 0 <[ <k
and 0 < m <[+ 1, there exists a constant C := C’(?, HﬁT’k, k,m,n) > 0 such that

I+2

7k /r’ n
‘T - HﬁT (T)‘mK < Cpn11(+1 |T|l+1,K VT € [HZH(K)] .
) K

Moreover, for each 7 € [H'(K)]" with div 7 € H"™(K), the following estimate holds:

I+1
‘div 7 —div HﬁT’k(T)’mK < C% |div T|l+1,K'

2.3.4 Global Interpolation Error

Having estimated the local interpolation error, we are now in a position to estimate the
global interpolation error for the considered examples. For this, we recall that a family

of triangulations {7, }r~0 of €2 is said to be regular if there exists ¢ > 0 such that

h
K <e VKeT, Yh>0.
PK

With this, we will state the two main Theorems that establish the convergence order
of the interpolation errors for Lagrange and Raviart-Thomas interpolations applied to
Sobolev spaces H*™(Q), with & > 1. (cf. [47], Theorem 3.2.1).

Global error estimates for Lagrange interpolation

Theorem 2.3.9. Let {7,}1>0 be a regular family of triangulations of (2, assume that
there exist integers £k > 1 and m > 0 with m < k. Then, there exists a constant C'
independent of h such that, for any function v € H*(Q),

v — I 0 g < CRFH Y010, 0<m <1, (2.40)

1/2
( > llv— Hﬁ”“vufnx) < CHMolyyr0, 2<m <k 41, (2.41)
KeTy

where HfT’kv € Vj, is the X}, interpolant of the function v.

Remark 2.12. We can extend Theorem (2.3.9) to intermediate seminorms. Just consider
an integer [ > 0 such that [ < k and the same estimates remain but with 0 < m <
min 1,/ in equation (2.40) and 2 < m < minl, k + 1 in equation (2.41).
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Proof. (Proof of Theorem (2.3.9)) Applying Theorem (2.3.8), we obtain
||U — HkamK S Chl;(+1_m|1}’k+17[(, 0 S m S k -+ 1.

Using the relations (I} *0)|x = I8 "v, K € Ty, (cf. (2.15)) and the inequalities
hx <h, K €T, (cf. (3.2.2)), we obtain

IN

1/2
Cprtimm ( > ‘U‘z—i-l,K)

KeT,
= Ch""™'"™ulpiiq, 0<m<k+1

1/2
RT,k
( Z v — 1T, U“an)

KeTh

Thus, inequality (2.41) is proven.
From X, C H'(Q) for m = 0 and for m = 1, we have

1/2
RTk RT k
(Z lv =TI, v||2m,K) = [lv =T 0],
KeTy

and therefore we obtain (2.40). O

Global error estimates for RT interpolation

Based on [46], Theorem 3.6, we can state the following theorem.

Theorem 2.3.10 (Global RT Interpolation Error). Let {7} }r~0 be a regular family
of triangulations of €2, and let k£ be a non-negative integer. Then there exists C' > 0,

independent of h, such that
I7 = T (Dlaive < CR™ T {7 ny10 + [ divTlmina) (2.42)

for each 7 € [H™(Q)]", with divr € H™™(Q), 0 <m < k.

Remark 2.13. For intermediate norms, we consider [ such that 0 <[ < kand 0 <m <

[+ 1, and we obtain
I7 = T (D)o < CAF {|7lier0 + | div Tl o) (2.43)

for each 7 € [H™(Q)]", with divr € H™™(Q), 0 <m < k.

Proof. (Proof of Theorem (2.3.10)) Let 0 < m < k and 7 € [H™"(Q)]" such that
divr € H™(Q) (consequently 7 € Hy;,, () N Z). Then, applying (2.35) and (2.36) (cf.
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Lemma (2.3.4)), with m = 0, we obtain

hm+2
|7 — () lox < C 5 Tlms1,x VK €Ty

and
|divr — divITZ (D) [lo.x < CHEYdivr ik VE € T,

from which, using the regularity of the family {7}r~0, we deduce that
17 = T () e = I = TS (D5 + |divy — divITE™ (7)[1§

A (m+1
< C%hy +){| [ +1K+|d1VT|m+1K}

Then, recalling that I} " (7)|x = IIE"*(7|x) and hx < h VK € T, we find that

RTk RTlc
Ir =T (Dllava = D2 17 = e (D) llqiw,x
KeTy

< Z C?hi X {| B +1K+|d1VT|m+1K}
KeTy

< C2p2(m+1) {|T|?n+1,9 + |div7’|$n+17g} ,

which gives (2.42) and completes the proof. ]

2.3.5 Approximability and Order of Convergence

With the interpolation properties of Lagrange and Raviart-Thomas interpolants from
Section (2.3.4), we can now show the approximability conditions (cf. (2.7)), conse-
quently finding the order of convergence of the approximation error for the spaces
of interest. The central idea is that given a normed vector space X and a finite-
dimensional subspace X}, we consider the orthogonal projection P : X — X, and the
interpolation operator II: X — Xj,. For 7 € X we have

l7=P(M)llx = inf |7 —7nllx <7 —I(7)[x.
ThEX;f

where |7 — P(7)||x := dist(7, X;,). Then, we use the interpolation error estimates to

obtain the order of convergence.
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Given a non-negative integer k, we are interested in the following orthogonal

projectors (in each case with respect to the inner products of the projected spaces):

Piws : H(div; Q) — Hy = {7‘ € H(div;Q) : 7| € RTL(K)VK € T k > 0},
Pl HYQ) = Xf o= {0 € C(Q) s vk € P(K)VK € Tok > 1},
PYL2(Q) —» Xf = {v € C(Q) vk € Po(K)VK € Tyk > 1},
Pr:LA(Q) = Vi o= {v € L}(Q) : v|x € P(K)VK € Tpk > 0}

(2) )
2.44
(2) ) 2

Remark 2.14. The finite-dimensional spaces defined above are named as follows:
The X} is the Continuous Finite Element Space of Degree k (See [46, Section 4.1]).
The Hf is the Raviart-Thomas Finite Element Space of Degree k (See [46, Section
4.1]).

The th is the Discontinuous Finite Element Space of Degree k (See [46, Section
4.1]).

Approximability of the Raviart-Thomas Finite Element Space of Degree k
(H}) in H(div; Q)

Lemma 2.3.5. Let I} : H(div; Q) N Z — Hf be the global Raviart-Thomas
interpolation operator, where Z := {7’ € [LZ(Q)T T|k € [Hl(K)}n VK € ﬁ} (cf.
Theorem 3.2). Then for all 7 € [H"™(Q)]" with divr € H(Q), 0 <1 < k, we have

I7 = Phun(llawa < O [rlisra + |div Tlesra ) (2.5
Proof. For 7 € H(div; Q)N Z

17— Phon(Dllave = inf |17 = mllave < |7 = I (1) |aw.o-
ThEH;f

Since {7’ € [HZH(Q)}TL ;divr € H”l(Q)} C H(div; Q)N Z, then, according to Theorem
(2.3.10), it implies (2.42). O



2.3 Examples of approximation spaces 45

Approximability of the Continuous Finite Element Space of Degree k (XF)
in H'(Q)

Lemma 2.3.6. Let II} , : C(Q) — X} denote the global Lagrange interpolation
operator. Then for each v € H'™(Q),0 <[ < k, we have

v — Plk,h(U)Hl,Q < Ch'|v|is10- (2.46)

Proof. For [ > 1 we can use a global version of (2.40). If [ = 0 we apply the Bramble-
Hilbert lemma (cf. Theorem (2.3.6)) to S = Q and Il := Pf; (with m =1 and k = 0),
and observing that II(p) = p Vp € Py(Q2) C X;, we deduce that

lv = Pi(0)he < Clohe,
which proves that (2.46) can be extended to [ = 0. O

Approximability of the Continuous Finite Element Space of Degree k (XF)
in L?(Q)

For this case, we will need a technical lemma that establishes the error estimate for

the projection I — Pf, in the norm |[.[|o0-

Lemma 2.3.7. Let €2 be a convex domain, and let k > 1. Then there exists C' > 0,
independent of h, such that for each v € H*™(Q), 0 <[ < k, we have

lv = Pf(0)[log < Ch™ ol 0. (2.47)

Proof. See [46, Lemma 4.1] O

Therefore, we can establish the approximability of the Continuous Finite Element
Space of Degree k (X}) in L*(9).

Lemma 2.3.8. Then, if IT} , : C(€2) — X} denotes the global Lagrange interpolation
operator, for each v € H™(Q),0 < [ < k, we have

v — P}?(”)”O,Q < Chl+1|v\z+1,ﬂ- (2.48)

Proof. Recall that H'"™(Q) is continuously embedded in C(€2) for I > 1 (cf. Theorem
2.3.3). Thus, we can use a global version of (2.40) to obtain

||U - P}IS(U)HQQ S Chl+1|v|l+1jg, s € Hl+1.
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Now, by definition it is clear that for v € H' we have
lv = P(0)llog < llv = Pf,(0) o,
using (2.47) with { = 0, it follows that
lv = Pf(v)lloe < Chlvlig, Vv e H'(Q),

and therefore we can obtain (2.48). O

Approximability of the Discontinuous Finite Element Space of Degree k
(V) in L2(Q)

Lemma 2.3.9. Finally, consider the projector P : L*(€2) — Y;¥ for k > 0. Then, for
each v € H™(Q), 0< 1<k, we have

lv = Pi(0)og < Ch™ oli,a. (2.49)
Proof. 1t is easy to see that
Pa)lk = Pi(vlx) Vo e L*(Q), VK €T,
Now, applying Lemma (2.3.8) to 2 = K € T, which is obviously convex, we find that
lv = Pi()llo.e < CRE ol Vo € HFHE).

Thus, for each v € H™(Q), 0 <1 < k, we have

o =Pr@50= > llv=Pr®)5x

KeTy,

2(1+1
<) C2hit )|U|l2+1,K < CR Dl o
KeTh

resulting in (2.49) O

Summary

When 7 and v possess sufficient regularity, 7 € [H""(Q)]" and v € H"(Q), 0 <[ <k,
the finite element spaces H, X, and Y;¥ (cf. (2.44) ) deliver the following optimal

approximation estimates:
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dist < Cptt (1731, + |divT]is10)
Ch |U’l+1,ﬂ )
Ch l+1|U|l+1,Q ;

Ch l+1,v|l+179'

IN

(r, Hy) <
dist(v, XF)
dist(v, X}) <
dist(v, YF) <

2.4 Examples

Example 2.1: Poisson Problem in a 2D domain

In this example, we will apply the results we have seen so far. Our starting point is
the mixed formulation to obtain an abstract variational problem in the form of (2.4)
with the respective spaces H and ). Then, we will apply Theorem (2.2.1) to show
the solvability of (2.4). Next, we choose the finite-dimensional subspaces H, C H
and @), C @ to obtain the discretized problem. It is important to emphasize that
the subspaces Hj and (), defining the Galerkin scheme cannot be chosen arbitrarily,
as they obviously need to satisfy the hypotheses of Theorem (2.2.1) for solvability
and the approximation condition (2.7). Regarding solvability, the most demanding of
all is the discrete inf-sup condition for b. In particular, since it is equivalent to the
surjectivity of By, : H, — @, we deduce that a necessary condition for its occurrence
is that dim Hy, > dim @);. Thus, in this example, we will use a technical lemma known
as Fortin’s trick [46, Lemma 2.3], which will provide a sufficient condition for the
surjectivity of the operator Bj,. The approximation will follow from the results of

Subsection (2.3.5), and consequently, we will obtain the convergence rates.

Mathematical Model

Let Q be a bounded domain in R", n > 2, with a Lipschitz-continuous boundary T'.
Then, given f € L*(Q) and g € H*(I"), we consider the Poisson problem

—Au=f in Q wu=g on TI. (2.50)

We will use the mixed formulation by adding the unknown ¢ = Vu, thus obtaining

the equivalent problem,

c=Vu in Q divo=—f in Q wu=g on I.
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Then, multiplying the first equation by 7 € H(div, (), integrating by parts, and using
the Dirichlet boundary conditions for u, and the second equation by v € L*(), we

obtain
/U-T+/ udivr = (ya(7),9) Y71 € H(div; Q).
Q Q

/deivaz—/ﬂfy Vv e L*(9).

Continuous Formulation

The mixed variational formulation of (2.50) reduces to the following: find (o, u) € HxQ

such that
a(o,7) +b(r,u) = F(r) V7€ H,

(2.51)
b(o,v) = G(v) Yve Q.

where

H:= H(div;Q), Q:=L*Q).

Here, a and b are the bilinear forms defined by

a(o, T) ZZ/QU-T V(o,7) € H X H,

b(t,v) = /Q’UdiVT V(r,v) € HxQ,

and the functionals F' € H' and G € Q' are given by

F(r) = ((7),9) VreH, G):= —/va Vv e Q.

Continuous Solvability Analysis

Is the particular case of the Babuska-Brezzi theory (cf. Theorem (2.2.1)) (cf. [46,
Section 4.2]) Therefore, Theorem (2.2.1) implies that there exists a unique pair (o, u) €
H x Q solution of the mixed variational formulation (2.51) satisfying

(o, w)ll1xe < C{llglljar + || flloq} -

Galerkin Scheme

If {7 }ro is a regular family of triangulations of 2 and k is an integer > 0, we introduce

the following finite element spaces:
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Hy, = HF .= {r, € Hdiv;Q) : 74|k € RTR(K) YK €T},
Qn:=YF = {vh € L*(Q): wplk €Pr(K) VK € 771};

so that the associated Galerkin scheme is the following: find (op,up) € Hy X Q) such

that
a(on, ) + 0(th,up) = F(1) V11, € Hy,

b(O’h,Uh) = G(Uh) Yy, € Qh.

Consequently, a direct application of the discrete version of Theorem (2.2.1) implies

(2.52)

that there exists a unique solution (o, up) € Hp, X @, of (2.6) and a constant C' > 0,
independent of h, such that

(o un)lxa < C{IIf o+ lgllj2r } -

A priori error analysis

Using Cea’s estimate (cf. (2.10)), we obtain:
o — onllg + ||Ju—unllg < C{dist(o, Hy) + dist(u, Qp)} ,

where C' depends on ||A|[, |B|| < 1, &, and 8. According to the upper bounds for
projection errors given by (2.45) and (2.49), we have respectively,

dist(o, Hp) = || — Pgiv’h(a)Hdiv,Q < OpHt {lolis1.0+ |dive|itia} (2.53)
if 0 € [H™(Q)]", with dive € H™(Q), 0 <1<k, and

dist(u, Q1) := |lu — PF(u)]loo < CA ™ |uli11.0 (2.54)

if u € H™"(Q), 0 <1 < k. Therefore, under these regularity assumptions on the exact
solution (o,u) € H x @), we deduce that the convergence rate of the Galerkin method

(2.6) is given by the estimate following from (2.53)-(2.54), namely,
o = anllaw + Il = wllon < CH{Iolysa + | divoliaa + lubsaf. (255

On the other hand, if (o,u) is not sufficiently regular, the convergence of the
Galerkin scheme (2.6), but without any convergence rate, can still be proved using

appropriate density arguments. More precisely, we have the following result.
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Lemma 2.4.10. Let (o,u) € H x Q and (o, uy) € H, X @y, be the solutions of the

continuous and discrete formulations, respectively. Then
lim {{lc — onllav.e + [u — usllon} = 0.
h—0

Proof. See [46, Lemma 4.5]. O

Numerical Results

To illustrate the performance of the mixed finite element method on a set of uniform
domain triangulations, we consider a function u such that Au exists, and define the
source term f so that equation (2.50) is satisfied. Then w is called a manufactured
solution. We implement the numerical method for the discretized problem (2.52) with
f defined as above, obtaining u, and oy, and compare the errors u — uj, and o — oy,
We use the open-source finite element library FEniCS [52]. We use a laptop with an
Intel Core i5 10th generation processor and 16 GB of memory. The execution time for
[ =1 and 131,072 elements (1,049,600 degrees of freedom) was 34 seconds. The code
is provided at the end of this section.

The individual errors are denoted by
e(0) = llo = onllaive, e(u) = [lu—unlog,

and, for each x € {o,u} we define r(x) as the experimental convergence rate given by

_ log(e(+)/3(+)
log(h/R)

r(*) ,
where h and h denote two consecutive mesh sizes with errors e and e, respectively. In
this test, we confirm the convergence rates on a two-dimensional domain defined by
the square Q = (0,1)%. We adjust the data f so that

u(z,y) = (?) sin(27r(x + 0.5)) sin(27y) cos(w(w + 0.5)) sin(my)

Figure (2.2) shows the potential function u, and the new unknown o = Vu, which
represents the field associated with the potential function. Meanwhile, Figure (2.1)
confirms that the optimal convergence rates O(h*™!), predicted by Equation (2.55),
are achieved for £ = {0, 1}.
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. 101_
10+
100_ 100<
T 1071 1071
(O] (O]
S 1072 S 1072
5o &
107° sttt @(hZ) 10—3
1074 —— €0
-#- e(u) 104
10-5 —4— e(u, o)
102 10-1 102 101
Mesh size h Mesh size h

Figure 2.1 [Example 2.1] Convergence rates of the errors for each unknown u and o
and the total error, for [ =0 and [ = 1.

.0 0

-1.0 0.0 1.0 0 4.0 8.
s R— o _— ! oo
Figure 2.2 [Example 2.1] Potential v and field o = Vu.



16

- W

W oW oW NN NN NN N
N R O © O WD w

34

36
37
38
39
40
41
42
43
44
45

46

~

IS
= o ©

IS BN U )

[ =< BN BN RS BN S B S TS, S RS
= O © 9 O O &

52

Elements of Classical Finite Element Theory

Code

from fenics import *

imp
imp
imp

ort matplotlib.pyplot as plt
ort sympy as sp
ort numpy as np

from math import log

imp

# G
gra
gra

# E
sig
sig

# D
div

ue
sig

div

def

vec
vec
vec
vec
vec
vec
vec

ort time

————— Model parameters and auxiliary symbolic expressions ----->

= Identity(2) # 2x2 identity matrix

y = sp.symbols(’x[0] x[1]’) # Symbolic variables for x and y coordinates
= sp.pi # Define pi in SymPy

————— Manufactured solution (known exact solution) ----->
= (10/6)*sp.sin(2*pi*x(x+0.5) ) *sp.sin(2*pi*y)*sp.cos (1*pi*(x+0.5))*sp.sin(1*pixy)

radient of exact solution (x and y components)

d_ue_1 = ue.diff(x, 1) # Partial derivative of ue with respect to x
d_ue_2 = ue.diff(y, 1) # Partial derivative of ue with respect to y
xact flux (sigma = grad(ue))

mae_1 = grad_ue_1 # x-component of flux

mae_2 = grad_ue_2 # y-component of flux

ivergence of exact flux (div(sigmae))
_sigmae = sigmae_1.diff(x, 1) + sigmae_2.diff(y, 1)

————— Manufactured source term (fe = -div(sigmae)) ----->
= -div_sigmae

————— Converting symbolic expressions to FEniCS mathematical functions ----->
Expression(sp.printing.ccode(fe), degree=5) # Source term
= Expression(sp.printing.ccode(ue), degree=5) # Exact solution

mae = Expression((sp.printing.ccode(sigmae_1), sp.printing.ccode(sigmae_2)),
degree=5) # Exact flux
_sigmae = Expression(sp.printing.ccode(div_sigmae), degree=5) # Divergence of

exact flux

————— Variational Poisson solver (mixed formulation) ----->
PoissonSolver (W, f):

# Define test and trial functions

(sigma, u) = TrialFunctions(W) # Trial functions (unknowns)
(tau, v) = TestFunctions(W) # Test functions

# Variational form
a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v) * dx # Bilinear form
L =-f x v x dx # Linear form

# Solve the system
w = Function(W) # Function to store the solution
solve(a == L, w) # Solve the linear system

# Extract sigma and u from solution
sigma, u = w.split ()
return sigma, u

————— Initialization of vectors to store results ----->
_nelem = [] # Number of elements

_hh = [] # Mesh size (h)

_dofs = [] # Degrees of freedom

_time = [] # Processing time

_err_sig = [] # Flux error

_err_u = [] # Solution error

_err_tot = [] # Total error
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# <----- Mesh refinement ----- >
NN = [4, 8, 16, 32, 64, 96, 128, 256] # Number of divisions per mesh side

for i in NN:

# <----- Create regular mesh ----- >
mesh = UnitSquareMesh(i, i) # Unit square mesh
h = mesh.hmax() # Maximum mesh size
nelem = mesh.num_cells() # Number of elements in mesh
B Qomooo Define function spaces ----- >
order = 1 # Finite element order
RT = FiniteElement ("RT", mesh.ufl_cell (), order + 1) # Space for sigma (flux)
DG = FiniteElement ("DG", mesh.ufl_cell(), order) # Space for u (potential)
W = FunctionSpace(mesh, RT * DG) # Mixed space
S Mesh information ----- >
h = mesh.hmax ()
nelem = mesh.num_cells ()
print (’Number of elements: ’, nelem)
dim = W.dim() # Degrees of freedom
# <----- Measure processing time ----- >
start_time = time.perf_counter() # Start time counting
sigma, u = PoissonSolver (W, f) # Solve the problem
end_time = time.perf_counter() # End time counting
elapsed_time = end_time - start_time # Elapsed time
# <---- Calculate errors ---->
err_u = pow(assemble((u - ue)**2 *x dx), 1./2.) # Solution error (L2 norm)
err_sig_L2 = pow(assemble(inner(sigma - sigmae, sigma - sigmae) * dx), 1./2.) #
Flux error (L2 norm)
err_sig_div = pow(assemble(dot(div_sigmae - div(sigma), div_sigmae - div(sigma))
* dx), 1./2.) # Divergence error
err_sig = err_sig_L2 + err_sig_div # Total flux error
err_tot = err_u + err_sig # Total error
S SEere rEEULEE —coc==o >
vec_hh.append (h)
vec_nelem.append(nelem)
vec_dofs.append(dim)
vec_time.append(elapsed_time)
vec_err_sig.append(err_sig)
vec_err_u.append(err_u)
vec_err_tot.append(err_tot)
B Rem=== Display/export data ----- >
mytable = [["#elements", "h", "dofs", "time", "e_sig", "r_sig", "e_u", "r_u", "e_tot"
Ue_{eET 17
i=20
while i < len(vec_err_u):
if i == 0:
# First row (no convergence rate)
mytable.append ([
"%6.0f" % vec_nelem[i], # Number of elements
"h2.4f" % vec_hh[i]l, # Mesh size
"%6.0f" % vec_dofs[i], # Degrees of freedom
"%2.4f" 9, vec_time[i], # Processing time
"%2.2e" % vec_err_sigl[i], O, # Flux error and convergence rate
"%2.2e" % vec_err_ulil, O, # Solution error and convergence rate
"%2.2e" % vec_err_tot[i], O # Total error and convergence rate
iD)
else:
# Calculate convergence rates
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rate_sig = log(vec_err_sigl[i] / vec_err_sigl[i-1]) / log(vec_hh[i] / vec_hh[i
-11)

rate_u = log(vec_err_uli] / vec_err_ul[i-1]) / log(vec_hh[i] / vec_hh[i-1])

rate_tot = log(vec_err_tot[i] / vec_err_tot[i-1]) / log(vec_hh[i] / vec_hh[i
-11)

# Add row to table
mytable.append ([
"%6.0f" % vec_nelem[i], # Number of elements
"%2.4f" 9 vec_hh[i]l, # Mesh size
"%6.0f" % vec_dofs[i], # Degrees of freedom
"%2.4f" Y vec_time[i], # Processing time
"%2.2e" % vec_err_sigl[i], "%2.3f" ) rate_sig, # Flux error and
convergence rate
"%2.2e" % vec_err_ul[il, "%2.3f" 9 rate_u, # Solution error and
convergence rate
"%2.2e" % vec_err_totl[il, "%2.3f" % rate_tot # Total error and
convergence rate
iD)

i=1i+1

# Display table
for row in mytable:
print ("{:<10} {:<8} {:<8} {:<8} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10}".format

(*row))
 Qemooe Export graphics for visualization in Paraview ----- >
sig_file = File("Data_Paraview_2D/approx_sig.pvd") << sigma # Approximate flux
u_file = File("Data_Paraview_2D/approx_u.pvd") << u # Approximate solution
# <----- Interpolate exact solutions for visualization in Paraview ----- >
Vi = FunctionSpace(mesh, "CG", 2) # Continuous space for u
V2 = VectorFunctionSpace(mesh, "CG", 2) # Continuous vector space for sigma
SIGMA = interpolate(sigmae, V2) # Interpolate exact flux
U = interpolate(ue, V1) # Interpolate exact solution
# <----- Export exact solutions ----- >

SIG_file = File("Data_Paraview_2D/exact_sig.pvd") << SIGMA # Exact flux
U_file = File("Data_Paraview_2D/exact_u.pvd") << U # Exact solution



Chapter 3

A priori error analysis for

u(I)-rheology

3.1 Chapter Introduction

The major difficulty imposed by the u(I)-rheology model is the dependence of the
dissipative terms on the pressure of the flow. This will be presented in more detail in
the following section. However, it is clear that this poses an extra complication to the
numerical algorithms that are normally based on pressure-correction projection schemes
[14]. In other words, the strong non-linearity of the u(I)-rheology model prevents us
from guaranteeing in advance successful applications of classical numerical methods,
such as primal finite elements and related techniques, which are known to be usually
more suitable for linear problems, particularly if they are posed within a Hilbertian
framework. In this regard, we find it important to stress that the suitability of Banach
spaces-based approaches to analyze the continuous and discrete solvabilities of diverse
nonlinear problems in continuum mechanics, including several coupled models, and
employing mainly mixed formulations, has been confirmed by a significant amount
of contributions in recent years. Brinkman-Forchheimer, Darcy-Forchheimer, Navier-
Stokes, Boussinesq, coupled flow-transport, and fluidized beds are some of the respective
models addressed, and a non-exhaustive list of the corresponding references includes
[15-22]. Needless to say, the most distinctive feature of a mixed formulation is the
incorporation of additional unknowns, usually depending on the original ones of the
model, for either analytical or physical reasons.

Furthermore, one of the main advantages of employing a Banach framework is
the fact that no augmentation is required, a common “trick" of Hilbert spaces-based

formulations to force them to become, for instance, elliptic or strongly monotone, and
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hence the spaces to which the unknowns belong are the natural ones arising simply from
the testing of the equations of the model along with the use of the Cauchy-Schwarz
and Holder inequalities. In this way, simpler and closer to the original physical model
formulations are derived. In turn, the main benefits of employing a mixed approach
include the derivation of momentum-conservative numerical schemes, and the possibility
of obtaining direct approximations of further variables of physical interest, either by
incorporating them into the formulation, or by employing a postprocessing formula in
terms of the remaining unknowns. In the particular case of our model of interest, to
be described below in Section 3.2, the above might certainly mean to be able to obtain
direct calculations of strain rate tensor, shear rate, inertia number, and vorticity, among
other variables of interest, thus avoiding numerical differentiation and its consequent
loss of accuracy, to approximate them.

According to the previous discussion in the Introduction of this thesis, the goal
of the present Chapter is to introduce and analyze mixed finite element methods for
numerically solving the steady-state p(I)-rheology equations for granular flows. The
Chapter is organized as follows. In the rest of this section we collect some notations
to be employed throughout the chapter. In Section 3.2 we describe the mathematical
model, which includes the setting of a regularized sity, and introduce, besides the
velocity and the pressure, the further unknowns to be considered. Next, in Section
3.3 we develop the mixed variational formulation, which is shown to have a twofold
saddle point-type structure. The corresponding solvability analysis is carried out in
Section 3.4 by adopting a fixed-point strategy in terms of the velocity and the pressure,
and by employing an abstract result on the well-posedness of Banach spaces-based
twofold saddle point operator equations, along with the classical Banach theorem.
Lipschitz-continuity and motononicity properties of the viscosity function are also
required for the analysis. In turn, in Section 3.5 we define the associated Galerkin
scheme, and assume suitable hypotheses on the finite element subspaces in order to
prove the corresponding well-posedness by means of a discrete fixed-point approach. A
priori error estimates are also obtained here. Then, specific finite element subspaces
satisfying the aforementioned assumptions, are derived in Section 3.6 by applying a
useful connection with the discrete stability of the usual Hilbertian mixed formulation
for linear elasticity, and optimal rates of convergence are established as well. Finally,
numerical experiments illustrating the theoretical findings are reported in Section 3.7,

whereas the fulfillment of the hypotheses on the viscosity is discussed in Appendix A.1.
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3.2 The mathematical model

We recall the p(I)-rheology equations introduced in Introduction. We are interested in
the flows of granular materials based on the u(7)-rheology approach introduced in [7].
This rheological model arose from the fundamental hypothesis that the corresponding
stresses can be described by a viscoplastic constitutive equation in which the internal
friction p of the material, which governs the yield stress, is not constant and depends on
a flow parameter called the inertial number 7. In order to introduce the corresponding
mathematical model, we consider the flow of particles of constant density p, and
diameter d in €2, denote by u the velocity of the flow, and assume that the latter is
incompressible, that is, the volume fraction ¢ of particles is constant throughout the

flow, so that the overall density is p = ¢p,. The governing equations are then given by:

ou

p (é?t + (Vu)u) = div(o) + pg in Q, (3.1)

and

div(u) =0 in Q. (3.2)

In turn, the stress tensor o is composed of two terms, a deviatoric one associated to
dissipation due to the internal friction of the medium, which is inspired by a Coulomb
friction-like law, and an isotropic one related to the pressure p on the medium. More

precisely, there holds

D
a:\/iupﬁ—p]l in Q, (3.3)

where p is the internal friction coefficient of the granular continuum, D is the symmetric

part of the velocity gradient, namely
1 t
D = 2<Vu+ (Vu) >, (3.4)
which is also known as the rate of strain tensor, and
ID| = vD:D. (3.5)
Note, thanks to the incompressibility condition (3.2), that there holds

tr(D) = div(u) = 0. (3.6)



58 A priori error analysis for p(I)-rheology

Now, if the friction coefficient is constant, we have the traditional Coulomb model for
granular materials [53]. However, there is strong evidence [6] that p actually depends

on the local properties of the flow through the inertial number 7, in the form

_ 5d|D
Hd “s>1 with ]:m

7 (3.7)
I+ 1 p/p

pl1) =+

where the coefficients us and pg correspond, respectively, to the static and dynamic
friction limits, and Iy is a reference (experimental) constant. It is easy to see from

the above expression for u(I) that
min {us,ud} < u(f) < max {us,ud},
so that, assuming from now on, for simplicity, that us, < ug4, there holds
ps < p(l) < pg.
Then, substituting (3.7) in the constitutive relation (3.3), we arrive at
o =1, D))D —pl in Q, (3.8)

where 7: RT x RT — R7 is defined as

CL1Q+ ag 0

V(o,w) €ERT xRT, 3.9
w ag\/§+a4w (0,w) % (3.9)

n(o,w) =

with positive coefficients a;, i € {1, 2,3, 4}, given by
ar = V2, as = 2d(pg — ps), az = p Y21y, and a4 = V2d. (3.10)

It is important to stress here that, due to the fact that p is defined in terms of
I, which, in turn, depends on p and |D| (cf. (3.7)), the function 7, and thus its
V2pp

D]
(which multiplies D in (3.3)) depends only on those unknowns, and that this dependence

evaluation 7(p, |D|), have been introduced to emphasize that the expression

can be explicitly stated, as (3.9) shows. Hence, being (3.8) just a rewriting of (3.3),
working with one or the other is basically the same, but the former is much more
suitable for identifying later on the assumptions needed for the analysis.

We now notice that the term 7(p, |D|) in (3.8), which can be understood as an

equivalent viscosity, is singular when |D| = 0. Indeed, it is expected that some regions
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of the granular flows are static, as granular materials can exhibit a solid-like behavior
[2], just as in a sand pile. In this particular case, the flow of grains only happens near
the surface of the dunes, while in the inner core of flow, the material remains static
(and resist stresses). In these static regions, the p(7)-rheology model, which is valid
for fluid-like flows of granular materials [7], breaks drown. Similar problems are also
observed in flows of different visco-plastic materials [54]. In addition to the theoretical
constitutive problem, the singularity of 7n(p, |D|) also poses technical computational
difficulties, as the very large values it can assume in the domain of the flow can lead
to ill-posed linear systems that undermine the performance of standard solvers [10].
Therefore, a regularization technique has to be used in order to avoid the presence
of the afore-mentioned singularity. This can be done in different ways [10, 11, 54],
although the underlying assumption in all cases is that the unyielded regions should
be treated as practically unyielded, i.e. creeping, regions [54] with a limited maximum
value of n(p, |D|). For instance, one way is to add a small parameter 0 < ¢ < 1 to

the denominators in (3.9), thus yielding

a; 0 az 0

\ Rt xR*. 3.11
whe  azotawte (o,w) € X (3-11)

n(o,w) =

Finally, regarding boundary conditions, and knowing that recent evidence [55] suggests
that there can be some slip between the grains and the boundaries, we proceed
accordingly and assume this condition for the steady-state regime that we consider
below.

In virtue of the above discussion, the governing equations of the stationary model

arising from (3.1), (3.2), and (3.8), are given by

p(Vuju = div(n(p,|D))D) — Vp + pg in Q,
(3.12)
diviu) =0 in Q, u=up on I,

where up € HY?(I') constitutes a non-necessarily null Dirichlet boundary condition
for u. In addition, since our main interest is to develop a fully-mixed finite element
method for (3.12), we now introduce a modified stress tensor, still denoted o, as the

further unknown defined by

o :=1n(p,|D)D — pl — p(u®u). (3.13)
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In this way, recalling that the overall density is constant, and noting that the incom-
pressibility condition allows us to show that div (u ® u) = (Vu)u, we deduce that

the momentum equation can be rewritten as
div(e) + pg =0 in Q. (3.14)

Moreover, applying deviatoric operator (cf. (2.1)) to (3.13), and using (3.6), which
obviously yields D* = D, we find that

o® == n(p,D|)D — p(u®@u)® in Q. (3.15)

In turn, applying now matrix trace to (3.13), we obtain an explicit formula for the

pressure p in terms of o and u, namely

p = —Tlltr(a + p(u®u)). (3.16)

We remark here that (3.13) and the incompressibility condition (3.2) are jointly
equivalent to (3.15) - (3.16). On the other hand, in order to perform the usual

integration by parts procedure required by a mixed formulation, which reduces to be

able to test Vu, we now decompose D as
D = Vu — ~, (3.17)

where -y is the auxiliary known given by

v o= ;(Vu - (Vu)t) : (3.18)

Note that the diagonal entries of « are all null, and that the off diagonal ones include
the components of the vorticity V x u. Summarizing, (3.12) can be equivalently
reformulated as: Find D, o, u, p, and - in suitable spaces, to be defined later on, such

that
D-Vu+~vy =0 in €,

np,D))D — 6% — p(u®u)® = 0 in Q,

(3.19)
divie) + f = 0 in Q,

1
p:——tr<0'+p(u®u)) in &, u = up on [,
n
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where, for sake of generality as well as for convenience of the numerical experiments
to be reported later on, we have replaced pg by a source term f, which belongs to a
space to be precised in due course. We end this section by remarking that, because of

(3.2), the datum up must satisfy the compatibility condition

/FuD-l/ ~ 0. (3.20)

3.3 The continuous formulation

In this section we derive a variational formulation for the system (3.19). To this
end, we first proceed analogously to [56, Section 3] and look originally for u in
H'(Q). In this way, multiplying the first equation of (3.19) by 7 € H(div; ), where
(1,+00) if n =2
6/5,+00) if n =3
(2.3) along with the Dirichlet boundary condition for u, we obtain

, and then applying the integration by parts formula

/m:D + /Qu-diV(T) + /QTI’Y = (tv,up) V7 eH(div;Q). (3.21)

We notice that the first and third terms make sense for D, v € L?(€2), which, due to
the free trace property of D (cf. (3.6)) and the skew symmetry of v (cf. (3.18)), leads
to look for D € L2 () and ~ € L2 (Q), where

Leo(Q) = {E €L2(Q): tr(E) = o}, (3.22)
and
Lae(Q) = {g €L2(Q): & = —5}. (3.23)

In turn, since div(7) € L' (), we realize by Hélder’s inequality that the second term
from (3.21) is actually well defined for u € LY (Q), where ¢’ € (1, +00) is the conjugate
of t. On the other hand, in order to continue the present derivation, we need to

introduce the following hypothesis:

(H.1) there exist constants 7, 72 such that
0<m <nlow) <m  VY(ow) e R" xR, (3.24)

Certainly, the above assumption might imply the need to suitably redefine n in (3.11).
Next, testing the second equation of (3.19) against E € LZ.(€), and using that
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¢:E = ¢:Eforall ¢ € L*(Q), we formally obtain

An@ﬂmﬂLE—iéaﬁE—pAm®u%E::m (3.25)

which says, thanks to (3.24), that the first term is well defined, whereas the second one
makes sense if o is sought in L*(Q2). Regarding the last term, we first notice, thanks
to Cauchy-Schwarz’s inequality in L?(Q2) and R", that there holds

Iw@ vibe < n'?[Wloag Vibae — ¥w, veL{(Q). (3.26)

It follows that

[wew B < @ wlalElos < 02 ulfse [Bla. (327

from which we deduce that it suffices to consider ¢ = 4, thus looking for u in L*(Q)
(equivalently (u® u) € L*(€)), and then t = 4/3, whence the test space of (3.21)
becomes H(divy/3; ). The above suggests to seek o in this same space, which requires
f to belong to L*3(0), so that the third equation of (3.19) is tested as

/Qv-div(a') = —/Qf-v Vv e LY(Q). (3.28)

Now, having identified the spaces to which o and u belong, we realize from the
first equation in the last row of (3.19) that the pressure p must be sought in L*(€2).
Furthermore, the symmetry of o (cf. (3.13)) is weakly imposed by

/ch E=0 VEeLi(Q). (3.29)

Finally, we resort to the decomposition

where
Ho(divys; Q) = {‘r € H(divy/s; Q) : /QtI‘(T) = 0}. (3.31)
In this way, the unknown o can be decomposed as ¢ = oy + ¢y, where oy €

Hy(divy/s;€2) and, according to the expression for p in (3.19), there holds

1 1 P
= — t = —— — = t . 2
0 n|Q|/Q (o) |Q|/Qp n ] Jo T@E W, (3:32)
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which means that, given p, the constant c¢q can be computed once the velocity is known.
Thus, it only remains to find o, which can be placed instead of o in (3.25), (3.28),
and (3.29) without altering the validity of these equations. Moreover, it is easy to see
that for each 7 € R1I both sides of (3.21) vanish, in particular the right one because of
the compatibility condition (3.20), and hence testing (3.21) against 7 € H(divy/3; )
is equivalent to doing it against 7 € Hy(divy/s;€2). Consequently, redenoting from
now on oy as simply o € Hy(divys;€2), and suitably gathering (3.21), (3.25), (3.28),
and (3.29), we deduce the following mixed variational formulation of (3.19): Given
p € L*(Q), find (D, o, u,v) € LZ,(Q) x Hy(divys; Q) x LY(Q) x L2, (Q) such that

/Qn(p,|D|)D:E —/QO':E—,O/Q(u®u):E _ 0,
—/Q’T:D —/Qu-div(r)—/QT:'y = —(tv,up), (3.33)

—/Qv-div(cr)—/gazﬁ = /Qf~v,

for all (E,7,v,€) € LZ(Q) x Hy(divys; Q) x LY (Q) x LZ(Q). Next, in order to

emphasize the particular structure of (3.33), we set the spaces
Hy = L2.(Q), Ha := Ho(divys;Q), and Q := LY(Q) x L2(Q), (3.34)
which are endowed with the norms
1Bl = Elloa, 7l = [Tlavyge, and [[(v,€)lle = [Vloaa + [1€loe
respectively, and introduce the notations
= (wy), V= (v € Q.

Then, denoting from now on by [-,-] the duality pairing between X’ and X for
any Banach space X, the system (3.33) can be rewritten as: Given p € L*(Q2), find
(D, o, u) € Hy x Ha x Q such that

[A,(D),E] +Bi(E,0) = FuE) VEeH,,
Bl(D’T) +B(T7ﬁ) = g(T) VT e H,, (335)

B(o, V) - F(V¥) Vveo,
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where the nonlinear operator A, : H; — H, the bilinear forms By : H; x Ha — R and
B:H,; x @ — R, and the functionals F, : H; — R, for each z € L*(Q), G : H, — R,
and F : @ — R, are defined by

4,(D),E] := /Qn(p,\D\)D;E VD, E € H,, (3.36)
Bi(E,T) = _/QT:E V(E,7) € Hy x M, (3.37)
B(r,¥) = —/Qv-diV(T)—/QT:E (1, ¥) € Hyx Q, (3.38)
Fo(E) = p/Q(z@az) 'E  VYEecH,, (3.39)
G(r) = —(tv,up) VT eH,, (3.40)
and
F¥) = /Qf~v ¥V € Q. (3.41)

Note that the upper bound of n (cf. (3.24)) guarantees that A, is well-defined in the
sense that A,(D) € H] for all D € H;. In turn, regarding the boundedness properties
of the above bilinear forms and linear functionals, we employ the Cauchy-Schwarz and
Holder inequalities, along with (3.27), and the continuity of both the normal trace
operator in H(div,/3;2) and the injection i, : H'(Q2) — L*(Q), to deduce the existence

of positive constants, denoted and given as

IBill =1, Bl =1, |l = pn"?|2l .0, 2
IGI| == max {1, [isll} lupllijer. and [|IF| = [[flloasse '
such that
BUE, )| < (Bl Bl 7l ¥ (B.7) € Hi x Ha,
Br, 9| < Bl ¥l V(r.¥) € Hax Q,
F(B) < Bl 1Bl VE € H,, (3.43)
G(T) < NIGH 17, VreH,, and
FOI < IF19le Vi e Q.

We stress here that (3.35) can be seen as a twofold saddle point-type formulation
with a nonlinear operator A,. Furthermore, once this system is solved, and because of

its dependence on the given p, we propose to update the pressure unknown according
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to the expression provided in the last row of (3.19). More precisely, bearing in mind
that the stress tensor appearing there is actually o + ¢ I, with o € Ho(divys;€2) being
part of the solution of (3.35), and ¢ given by (3.32), we find that the new pressure,
say pn, becomes

trlu®@u).

pN:—iLtr(0'+p(u®u)) P+

1
Q] Ja \Q\
Note from the foregoing equation that py, and hence all the subsequent updates of it,
keep the same mean value of p, that is / PN = / p, so that from now on we assume

Q

a given positive value, say x, and define
2(Q) = {q e1Q): [q= K;}.
Q

In this way, after solving (3.35) with a given p € L2(Q), we simply define

PN = —itr(a’—l—p(u@ )) + @ + ‘pQ‘ trlu®u). (3.44)
We will go back to the above when introducing below in Section 3.4 a suitable fixed-point
approach to analyze the solvability of (3.35).

We end this section by remarking that the variational formulations resulting from
other boundary conditions, say, for instance, mixed ones, instead of the no-slip condition
for the velocity, are just minor modifications of (3.33) (or (3.35)). Mixed boundary
conditions, often called frictional boundary conditions, are fairly frequent in flows of
granular materials in frictional walls, where some slip velocity and shear limited by
Coulomb friction can occur simultaneously [13, 57]. In fact, letting I'p and I'y be
disjoint parts of I', both with non-null measures, such that I' = T'p U I'y, we consider
first:

u=up on I'p, eov =0 on Iy, (3.45)

with datum up € HY?(I'p). Then, given 7 € H(div,; Q) such that 7 v is null on T'y,
it follows that 7v|p, € H™Y3(T'p) (cf. [58, Lemma 2.4, Remark 2.5] or [59, Section
3.1]), and hence, instead of (3.21), the integration by parts formula (2.3), for which

the Dirichlet boundary condition on I'p is still natural, yields

/Q’TID + /QU'le(T) + /QTI‘Y = (rv,up)p V7€ Hpn(div;Q), (3.46)
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where (-,-)p stands for the duality pairing between H™Y?(I'p) and HY*(I'p), and
Hy (divy; Q) = {7’ € H(div;;Q2): T7r =0 on FN}.

In this way, the changes of (3.33) are basically the right hand side of its second
row, and the space where the unknown o is sought, which, because of the Neumann
boundary condition on I'y, becomes the same of its associated test function 7, that is

Hy (dive; 2). Secondly, and exchanging the null condition in (3.45), we can also look

at:
u=0 on I'p, ov =gy on Iy, (3.47)
with datum gy € Hgol/ 2(I“N). Proceeding similarly as above, but introducing the
. ) 1/2 .
auxiliary unknown ¢ := —u|r, € Hy; (I'y), we now arrive at

/Q’TZD +/Qu-div(7') +/Q‘r:'y+ (tv,o)y =0 V7 e H(div; ), (3.48)

where (-,-)y stands for the duality pairing between Hoy/*(T'y) and Hg) (T'y). In
addition, being the Neumann boundary condition on I'y essential, we impose it weakly

as
(v, )y = (gv, )y Vo € Hi) (Ty). (3.49)

Consequently, the extra terms given by (7 v, @)y (cf. (3.48)) and those from (3.49),
are incorporated into the second and third rows, respectively, of (3.33) (equivalently,
(3.35)), thus yielding the space Q, the bilinear form B, and the functional F to be
slightly modified. Finally, we could also deal with the more general case of mixed

boundary conditions, namely:
u=up on I'p, ov =gy on Iy, (3.50)

with data up € HY*(T'p) and gy € Haol/Z(FN), for which the direct sum decompo-
sitions of HY?(T") and its dual H™Y2(T") provided in [58, Lemma 2.2] (see, also [59,
Section 3.1]), should be employed when applying the integration by parts formula.
Alternatively, one could also resort to suitable trace liftings to reduce (3.50) to either
(3.45) or (3.47). We omit further details and just stress that, for any of the above
described situations, the corresponding continuous and discrete analyses will follow

very closely the ones to be developed in what follows.
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3.4 The continuous solvability analysis

In this section we employ a fixed-point approach along with an abstract result on the
well-posedness of the aforementioned type of nonlinear operator equations in Banach

spaces, to analyze the solvability of the mixed variational formulation (3.35).

3.4.1 The fixed point strategy

We begin by introducing the operator T : L*(Q) x L2(2) — L*(Q) x L2(Q) defined as
T(z,7) := (u,p) Y (z,r) € LYQ) x L3(Q), (3.51)

where (D, o, u) = (D,a, (u,'y)) € Hi X Hy x Q is the unique solution (to be
confirmed later on) of the problem arising from (3.35) when A, and the functional F,

are replaced by A, and F,, respectively, that is

[A.(D),E| +Bi(E, o) = F(E) VEecH,,
Bi(D,T) +B(r,u) = G(7) VT eH,, (3.52)
B(o, V) = F(V) VveQ,

and p is computed according to (3.44), that is

p = —Etr(a—l—p(u@u)) + @ + m Qtr(u®u). (353)

Then, it is readily seen that solving (3.35) is equivalent to finding a fixed point of T,
that is (u, p) € L*(Q) x L2(Q) such that

T(u,p) = (u,p). (3.54)

3.4.2 Well-definedness of the fixed point operator

In this section we prove that the operator T (cf. (3.51) - (3.52)) is well-defined, for
which we make use of the following abstract result establishing sufficient conditions for

the well-posedness of a class of twofold saddle point operator equations.

Theorem 3.4.1. Let Xy, X5, and Y be reflexive and separable Banach spaces, and let
A : X; — X/ be a nonlinear operator, and B; : X; x Xy -+ R and B: Xy xY — R be
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bounded bilinear forms. In addition, let V be the null space of the operator induced

by B, and assume that

i) A is Lipschitz-continuous, that is there exists a positive constant L such that

|A(r) = A(s)llx; < Lalr=slx, Vr,seX,

ii) the family of operators {A(t + .)}tex is uniformly strongly monotone, that is
1

there exists a positive constant aa such that

[A(t+1) — A(t+s),r—s] > aa[lr —s|k, Vt, r, s e Xy,

iii there exists a positive constant [ such that

B(r,v
sup (.v) > B |vlly YVveyY,
0 T,

iv) and there exists a positive constant 3; such that

Bi(r
sup Bi(r,7) > B |7lx, VYreEV.
rex;  ||T[x,
r#0

Then, for each (F1,Fs, G) € X| x X5, x Y’ there exists a unique (t,0,u) € X; x Xy xY
such that

[A(t)> S] + Bl(S, U) == Fl(S) \V/S - X1 ,
Bi(t,7) + B(r,u) = Fuo(r) V7eXy, (3.55)
B(o,v) = Gv) VYveY.

Moreover, there exists a positive constant C', depending only on La, aa, 3, (1, and

the boundedness constant of By, say ||B1]|, such that

(6.0 wlx ey < C{IFullx; + [Fallx, + [Glvr + [AO)x | (350
Proof. 1t is a particular case of [60, Theorem 3.4]. O

As already announced, we plan to apply Theorem 3.4.1 to conclude the well-

posedness of (3.52), for which we proceed next to show that the respective hypotheses
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are satisfied. In particular, for those involving A,, we need to incorporate additional

assumptions on the function 7, namely

(H.2) with the same positive constants 1; and 7y from (H.1), there holds

0
0 <m < nlow)+wo—nlow) <m  V(ew) eRTXRT, and  (357)

(H.3) there exists a positive constant L, such that

n(o,w) = n(x,w)|w < Lyle—x| VYo, x,weR", (3.58)

In the Appendix A.1 we prove that 7, as defined by (3.11), satisfies (H.3) and that,
under a suitable modification of its domain, it accomplishes (H.1) and (H.2) as well.
Then, we can prove the following lemma establishing continuity and strong-

monotonicity properties of the nonlinear operator A,..

Lemma 3.4.1. Let L4 := 21, —n; and a4 := n;. Then, there holds
[AD) — A (E)|ly; < La|D—El, Vrel?Q), VD, Ee€H;, (3.59)
[A,(D)— A.(E),D—E| > a4|D-E[j, VreLl?(Q), VD,Eec%H;, (3.60)
and

[4:(D) — A,(D).E|| < L, |r — o Bl  Vr.qelQ), VD, EeH,.
(3.61)

Proof. For the proofs of (3.59) and (3.60) we refer to [61, Theorem 3.8]. In turn, given
r, ¢ € L*(Q), and D, E € H,, bearing in mind the definition of A, (cf. (3.36)), and
using (3.58) with o = r, x = ¢, and w = |D|, we deduce that

A4D) - A,D).E| = | [ {uID) - n(q. D) }D B
< [ [ne:1D1) = n(a. IDD| IDI[E] < L, [ I~ al B,

from which, applying Cauchy-Schwarz’s inequality, we obtain (3.61) and end the
proof. O]

We now observe from (3.59) and (3.60) that, for each r € L*(Q), A, verifies the
hypotheses i) and ii) of Theorem 3.4.1 with the constants L4 and a4 (cf. Lemma
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3.4.1), respectively. In particular, for ii) we simply notice that there holds
A,J+D)-AJ+E),D-E] = [4(J+D)-AJ+E),(D+J)— (E+J)]
> ax|[D+3) = (E+I)5, = aaD-E[}, VI D EecH,.

Next, we recall from [22] the following lemma establishing the continuous inf-sup

condition for B.

Lemma 3.4.2. There exists a positive constant B such that

B(T,v ~ ~ .
sup £ 2 G190 = 3 {Vlasa +€lon} V9= (O EQ. (02
7'7602 2

Proof. See [22, Lemma 3.5] for details. O

Regarding the continuous inf-sup condition for By, we first observe from the defini-

tion of B (cf. (3.38)) that the null space of its induced operator is given by
Vo= {TEHQ: div(t) =0 and 7=7" in Q}

Then, we recall from [62] the following result.

Lemma 3.4.3. There exists a positive constant 31 such that

B (E ~
sup BuE T) > 61|73, VreV. (3.63)
Eety “E”?'h
E+0
Proof. See [62, Lemma 3.3] for details. O

We remark here that the proof of Lemma 3.4.3 makes use of the inequality estab-

lishing the existence of a positive constant ¢; such that
C1 HTHO,Q S HTdHQQ + HdiV(T)HO,4/3;Q VT e H0<diV4/3; Q) . (364)

The well-posedness of (3.52), equivalently the well-definedness of T, is stated now

as follows.

Theorem 3.4.2. For each (z,7) € L*(Q) x L2(Q2) there exists a unique tuple (D, o, ii)
= (D,a, (u,'y)) € Hi X He x Q solution to (3.52), and hence one can
define T(z,7) := (u,p) € L*) x L2(Q), where p is computed according to (3.53).
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Moreover, there exists a positive constant C, depending only on L 4, a4, B, Bl, n,
and ||i4]|, such that

[ullose < D0, @) lrexe < Cr{pllallsn + Nullyar + [Eloysal - (.65

Proof. Having already checked that (3.52) verifies the assumptions i) and ii) of Theorem
3.4.1, and noting that Lemmas 3.4.2 and 3.4.3 confirm that ii) and iv) also hold, the
proof is a straightforward application of that abstract result. In particular, the a
priori estimate (3.65) follows from (3.56), the boundedness properties of the functionals
involved (cf. (3.42), (3.43)), and the fact that A,(0) = 0 € H]. Regarding Cr, note
that we omit its dependence on ||B;| since this latter value equals 1 (cf. (3.42)). O

3.4.3 Solvability analysis of the fixed point equation

Knowing that T is well-defined, we now address the solvability of the fixed-point
equation (3.54). We begin the analysis deriving sufficient conditions on T to map a

complete metric subspace of L*(€2 x L?(Q) into itself. Indeed, given d > 0, we set
W(5) = {z ELYQ):  |lzllose < 5} and  S(3) = W(3) x L2(Q).  (3.66)

Then, proceeding as in [56, Lemma 4.7], we are able to prove the following result.

Lemma 3.4.4. Assume that

L
2Cp

>,
N S,

pd < and Cr {[upllyar + [losn} < (3.67)

Then, T(S(6)) C S(9).

Proof. Given (z,r) € S(0), we know from Theorem 3.4.2 that T(z,r) := (u,p) is
well-defined and that, in virtue of (3.65) and the assumptions from (3.67), there holds

)
lalloso < Cr{plialiun + lupliar + IEloysaf < Crps*+5 < 4,
whereas (3.53) guarantees that p € L2(€2), and hence (u, p) € S(6). O

The continuity property of T is established next.

Lemma 3.4.5. Under the same assumption of Lemma 3.4.4, that is (3.67), there exist
positive constants L;(T), j € {1,2}, depending only on L4, a4, 83, 51, n, and ||ial],
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such that
|T(z,7) — T(z,7)|| < Li(T)pé |z —2zlosa + Lo(T) Ly 7 — 2o (3.68)

for all (z,7), (z,1) € S(9).

Proof. Given (z,r), (z,1) € S(0), we let
T(z,r) :== (u,p) and T(zr) = (u,p), (3.69)

where (D, o, 1) = (D,a, (u,'y)) € Hy x Hy x Q is the unique solution of (3.52) and
p is defined by (3.53), and, analogously, (D, g, 1) = (Q,g, (u, Z)) € Hi X Hy x Qis
the unique solution of (3.52) with A, and J, instead of A, and F,, respectively, and,
following (3.53),

p

1 K
p = —EtF(QJFP(Ll@Q)) + 1 + o] Qtr(g@g). (3.70)

Then, subtracting from each other the aforementioned systems (3.52) whose solutions

are (D, o, d) and (D, g, 1), we obtain

[A.(D) = A,(D),E] +Bi(E,0 —q) = (F.-F)E) VYEeH,
Bi(D-D,T) +B(r,u—u) = 0 VT eH,,
B(o —a,V) = 0 VveQ.

(3.71)

Next, taking 7 = ¢ — o, we get from the second and third rows of the foregoing
equation that
BI<D_,DJO-_Q-) = _B(G_Q7ﬁ_ﬁ) = 07

which, along with the first row applied to E = D — D, yields
[A,(D) - A4,(D),D-D] = (F, - F,)(D-D).
Thus, subtracting and adding A,(D) , we see that

[A:(D) = A:(D),D - D] = [4,(D) - A,(D),D — D] - [A,(D) - A,(D),D — D]

= (7o~ 7,)(D-D) — [4,(D) - 4,(D),D - DJ,



3.4 The continuous solvability analysis 73

so that, using (3.60) and (3.61), we find that

as|D-DlGo < [A/(D) - A.(D),D - D]

(3.72)
< |(F,— F)D -D)| + L, Ir - o ID - Dlloa.
In turn, it is clear from (3.39) that
»—Jz)(D-D) = - :(D-D , 3.73
(F.~F)D-D) = p [ (z02) - (292): (D-D) (3.73)

from which, subtracting and adding z to one of the factors of (z ® z), and using
Cauchy-Schwarz’s inequality, (3.26), and the fact that z, z € W(J), we readily deduce
that

(72— F) (D =D)| < n'?p([2osa + 2losa) 12— 2llosa D —Dlloq

(3.74)
< 2n'2pé||z — zlloso [D — Dljoo-
In this way, employing (3.74) in (3.72), we arrive at
ID~Diso < oz {20951z glluso + Lyllr oo} (379

On the other hand, using the continuous inf-sup condition for B (cf. (3.62)) and the

second row of (3.71), we get

o B(r i — @ _B(D-D,r

Fli—illo < sup 2088 _ g, BB iy gy
TEH, ||T||H2 TEH HTH'H2
T#0 T#0

which, along with (3.75), implies
i~ glle < ax' 7 {202 ps o zlose + Lyllr —tloa} . (376)

Next, noting from the third row of (3.71) that & — g belongs to V := N(B), we have
from the continuous inf-sup condition for B; (cf. (3.63)) and the first row of (3.71),
that

Bi(E.0 - g) (72 — F2)(E) — [A4,(D) — A, (D), E]

Billo —aln, < sup =~ = sup
2 EcH, HEHHI EcH, HEHH1
E+#0 E+#0

(3.77)
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Then, exactly as for the derivation of (3.74), we deduce that
(Fo= F)®)] < 2072 p5 |12 = 2lo.0 [Elloo. (3.78)
In turn, similarly as previously done in the present proof, it is easily seen that
[A,(D) — A,(D),E] = [A,(D) - A,(D),E] + [4,(D) - A4,(D),E],
from which, employing (3.59) and (3.61), it follows that
(4.(D) = A(D). Bl| < {LaID = Dlloq + Ly I = zlloa} [Eloe. (379

In this way, replacing the estimates (3.78) and (3.79) back into (3.77), we conclude
that

o=l < {202 012 = Zlose + LalD = Dlos + Ly Ir = rlos} . (3:80)

which, combined with the estimate for |D — D||oq (cf. (3.75)), leads to

lo =l < (1+ Laad) B {20 932 = zloe + Ly Ir = zloo} . (3:51)

Furthermore, invoking (3.69), (3.53), and (3.70), and performing some simple algebraic
computations, which include the use of Cauchy-Schwarz’s inequality and the fact that

[tr(T)]Jo.o < n?||7]j0.q, we easily deduce that

IT(z,7)=T(z.0)| < [u—ulose+n""*[o—aloo+2n""p|(u@u)-(uu)loq,
(3.82)
from which, subtracting and adding u to one of the factors of u ® u, employing (3.26),

recalling that u, u € W(9), and using from (3.67) that pd < , we arrive at

1

2Cr

IT(zr) = T(z,0)| < (14 4p0) [u—uloso + n " |lo - allog
< (14205 [u—ulosa + n ]l — oo

Finally, replacing the estimates for ||u —ul|o 4.0 (cf. (3.76)) and | — a||oo (cf. (3.81))
into the foregoing inequality, and recalling from Theorem 3.4.2 that C'tv depends on L 4,
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o, B, Bi, n, and ||li4]|, we conclude the required inequality (3.68) with the constants
Ly(T) == 2(1+2Cg" ) ax' 570" + 2 (1 + Lual!) B!

and
Ly(T) = (1 + 20{1) al 7+ (1 + Ly a;‘l) Brin~Y?,

m
We are now in a position to state the first main result of this section.
Theorem 3.4.3. Assume that pd, L,, and the data are sufficiently small so that
1 1 1
AP ST T !
P min | o’ I, (T " an
(3.83)

Ly(T) "

)
Cr {||11DH1/2,F + HfHO,4/3;Q} < 7
Then, the operator T has a unique fixed point (u,p) € S(9). Equivalently, given this
p € L2(Q), the system (3.35) has a unique solution (D, o, d) = <D,o‘7 (u,'y)) €
H1 X Hay x Q with u € W(J) and p satisfying (3.53). Moreover, there holds

(D0, @) srane < 2C2 {upllar + [Elosn} (3:84)

Proof. According to the assumptions stipulated in (3.83), we deduce from Lemmas 3.4.4
and 3.4.5 that T is a contraction mapping S(9) into itself. Hence, a straightforward
application of the classical Banach theorem implies the existence of a unique fixed
point (u,p) € S() of this operator, thus yielding the indicated consequences regarding
the system (3.35). In turn, thanks to (3.65) (cf. Theorem 3.4.2) we have

(Do @)l xrxo < Cr{plulun + luplier + Iyl

whereas the fact that u € W(J) and the first assumption in (3.83) lead to

1

plullise < pdlullose < 50 |P: 0 Dllscrz

so that from these two inequalities we readily obtain (3.84) and conclude the proof. [

Regarding the smallness data assumptions specified in (3.83), we notice that the fact

that Cp, Li(T), and Ly(T) depend on other constants and parameters, some of which
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might not be known explicitly, makes hard, for not saying impossible, to actually verify
those constraints in practice. Certainly, there do exist radius d, constant L,, and data
lup|l1/2,r and ||f]jo.4/3,0 satisfying them, but, unless all the aforementioned constants
are explicitly known, we ignore how small they need to be in order to accomplish (3.83).
The same comments apply to similar constraints along the paper, in particular those
ensuring later on the unique solvability of the Galerkin scheme (cf. Theorem 3.5.5)

and the corresponding a priori error estimates (cf. Theorem 3.5.6).

3.5 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully-mixed variational formu-
lation (3.35), analyze its solvability by means of a discrete version of the fixed-point

approach employed in Section 3.4, and derive the corresponding a priori error estimate.

3.5.1 Preliminaries

We begin by letting H; 5, ﬁQ,h; Q1., and Oy, be arbitrary finite dimensional subspaces

of L2, (), H(divy/s; ©2), L*(2), and L2, (), respectively, and let Py, := P ® {|g},

where P, is a finite dimensional subspace of L2(Q) := {q € L*(Q) : / q = 0}.
Q
Hereafter, h stands for both the sub-index of each subspace and the size of each member

of a regular family {’7}1}}»0 of triangulations of © made up of triangles K (when n = 2)

or tetrahedra K (when n = 3) of diameters hg, so that h := max {hK . Ke E}.
Now, defining

Hop := Ho(divyys; ) N ﬁZ,h and Q= Qs X Qo

and letting p, € Py, be a given discrete approximation of the pressure p, the Galerkin
scheme associated with (3.35) reads: Find (Dy, o, U) = (Dh7 Oh, (uh,’yh)> € Hip X
Hap X Qp such that

[‘Aph (Dh>7 Eh] +81(Eh7 ah) = fuh(Eh) v:Eh S Hl,h;
Bi(Dy, ) +B(mp,un) = G(m) V1, € Hopo  (3.85)

B(O’h, \_f'h) = ]:(\_;h) \V/‘_’)h € Q.
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Next, we consider the discrete analogue of the fixed-point strategy employed in
Section 3.4. Indeed, we introduce the discrete operator T}, : Q15 X Pp, — Q15 X Py,
defined by

Th(zn, ) = (s, pp) Y (zn, ) € Q1p X P, (3.86)

where (Dy,, o, Uy) = (Dh, o, (uh,’yh)> € Hip X Hap x Qp is the unique solution (to
be confirmed later on) of the problem arising from (3.85) when A, and the functional

Fu, are replaced by A,, and F,, , respectively, that is

[A,, (Dn),Ep] + Bi(Ep, o) = F,,(Ep) VE, € Hip,
Bi(Dp, 1) +B(mp,un) = G(m) V1, € Hop, (3.87)
B(Uh,vh) = f(\_”h) v\_’:h € Qh7

whereas pj, is computed as suggested by the discrete version of (3.44), that is

1 K p
ph o= —ﬁtr(ah +p(wy @u,)) + IR (@ ). (3.88)
Note from (3.88) that the specific subspaces to which o, and u;, belong determine the
choice of P,. Then, it is readily seen that solving (3.85) is equivalent to finding a fixed

point of Ty, that is (up, pr) € Q1 X Py such that

Th(un, pn) = (s, pn)- (3.89)

3.5.2 Discrete solvability analysis

In what follows we proceed analogously to Sections 3.4.2 and 3.4.3, and establish
the well-posedness of the Galerkin scheme (3.85) by means of the solvability study of
the equivalent fixed-point equation (3.89). In this regard, we announce in advance
that, being the respective discussion similar to the one developed for the continuous
formulation, here we simply collect the main results and provide selected details of
their proofs. To this end, suitable hypotheses regarding the arbitrary subspaces H s,
ﬁg,h, and 9y, need to be introduced throughout the analysis. Explicit finite element
subspaces satisfying them will be specified later on in Section 3.6.
We begin by letting V), be the discrete kernel of the bilinear form B, that is

Vh = {Th - H2,h . B(Th,\_’)h) =0 V‘_;h S Qh}7 (390)
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and by assuming that

(H.4) ﬁ;h contains multiples of the identity tensor I,
(H.5) div(Has) € Qi

(H.6) V; = {T,f: Th € Vh} C Hiyp, and

(H.7) there exists a positive constant Bd, independent of h, such that

B(m,, v - ~ .
sup BT 5 B9l = B {Ivlbose + lealla} 99 = (vi, &) € Q1
Th€7;20,h HThH?-lz
Th

(3.91)

Then, as a consequence of (H.4), there holds the discrete version of the decomposi-

tion (3.30), namely ﬁg’h = Hop @ RI, which confirms the validity of using Hs, as

the subspace where oy, is sought. Now, according to the definition of B (cf. (3.38)),

and noting that (H.5) can be equivalently rephrased as div(Ha,) € Q, it readily
follows from (3.90) that

V= {Th € Hap: div(m,) =0 and /Q’Th €, =0 V& € QQ,h}, (3.92)

which yields the discrete analogue of (3.63). Indeed, given 75, € V}, such that 7 # 0,
we have thanks to (H.6) that —75 € H; 5, and thus

sup Bi(Ep, ) S Bi(—T5, 1)

eeny, (Enl = 17l
Ej,#0

= lIiloa,

from which, employing the inequality (3.64), we arrive at

B (E ~
sup BUERT 5 5 (399
EpeHyp HEh||7'l1
Ej#0

with Bm = ¢;. Now, if 75, € V}, is such that 77 = 0, then it follows from (3.64) that
7, = 0, whence (3.93) holds trivially in this case.

Furthermore, it is not difficult to see that the Lipschitz-continuity and monotoniticity
properties of A, provided in Lemma 3.4.1 (cf. (3.59), (3.60), and (3.61)), are also valid

in the present discrete case, and with the same constants L 4, a4, and L,, that is

[ A, (Dn) = Ar, (En) I3, , [2e2]

(3.94)
< LAHDh_EhHHl VTh Epha VDha E, 6/71'[1,h7
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[A;, (D) — A, (Ep), Dy — Ep][2ez]

2 (3.95)
> ay ||Dy — Epll3, Vrn € Pn, VD, Ey € Hip,

and

[A,,(Dy) — Ay, (D), Ey]|[2e2]

(3.96)
< Lyllrn — anlloq [En %, Vi, qn € Pny VDp, Ep € Hyp

Consequently, we are now in a position to establish the discrete analogue of Theorem
3.4.2.

Theorem 3.5.4. For each (zp,,7,) € Q1 x Pj, there exists a unique tuple (Dy, o, Uj,)

= (Dh,ah, (uh,'yh)) € Hip X Hap x Qp which is the solution to (3.87), and
hence one can define T(zp,,75) = (up,pn) € Q1. X Ph, where py, is computed according
to (3.88). Moreover, there exists a positive constant Cr 4, depending only on L 4, oy,
B, BLd, n, and ||iy||, such that

[unlloe < [[(Dh, o4, Un) [l x12x0 < Cra {P||Zh||g,4;9 + |lupllijor + ||f||0,4/3;9}-
(3.97)

Proof. Thanks to the discrete inf-sup conditions for B (cf. (H.7)) and B; (cf. (3.93)),
and the properties (3.94), (3.95) and (3.96), the proof follows from a direct application
of Theorem 3.4.1. We omit further details. O

Knowing that the discrete operator T, is well defined, we now address the solvability

of the fixed point equation (3.89). In fact, letting d4 be an arbitrary radius, we now set

W(5a) = {zh €0in: lznllosn < 5d} and  S(8s) = W(da) x Pr.  (3.98)

In this way, proceeding analogously to the deduction of Lemma 3.4.4, we find that,
under the discrete analogue of (3.67), that is

0,
and Cra{luplior + [flbase) < 5. (3.99)

by <
P04 = 2 Crra
T}, maps S(d4) into itself. Note that the above is the same as for the continuous case
(cf. (3.67)), except that the constant Cp and the radius ¢ are replaced by Cr 4 and dq,

respectively.
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In addition, employing similar arguments to those from the proof of Lemma 3.4.5,

we can prove the discrete version of (3.68) with the constants
Lia(T) == 2(1+2Cgy) ax' B n'? + 2 (14 Laay') B
and
Lyo(T) = (142C5k) o' 8" + (14 Laay!) Bran 2,
that is
T (zn, 7n) — Th(zn, o)l < L1a(T) poallze — 2zalloae + L2a(T) Ly lra — ralloe
(3.100)
for all (zp,74), (2Zn,7h) € S(0a)-

The main result of this section, which constitutes the discrete analogue of Theorem
3.4.3, is then established as follows.

Theorem 3.5.5. Assume that pdq, L,, and the data are sufficiently small so that

1 1 1
dg < min{ , }, L, < , and
P 2Cra’ Lia(T) TS La(T)
s (3.101)
d

Cra{llupliyar + [Eloysa} < 5.

Then, the operator T}, has a unique fixed point (uy, pr) € S(dq). Equivalently, given this
pr € Py, the system (3.85) has a unique solution (Dy, op, Uy) = (Dh, o, (uh,'yh)) €
Hip X Hap X Qp with u, € W(dg) and py, satisfying (3.88). Moreover, there holds

I(Dns o, @)l rano < 2Craf{llunler + Eloasaf.  (3102)

Proof. 1t is clear from the previous discussion and the assumptions in (3.101), that
T}, is a contraction mapping S(dq) into itself. Thus, a straightforward application
of the classical Banach Theorem implies the existence of a unique solution to (3.89),
and hence, equivalently, to the system (3.85). In turn, thanks to (3.97) (cf. Theorem
3.5.4), and performing similar algebraic manipulations to those utilized in the proof of
Theorem 3.4.3, we deduce the a priori estimate (3.102). O
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3.5.3 A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the assumptions

specified in Section 3.5.2, and derive the Céa estimate for the Galerkin error given by

ID—=Dulls+p—prlloe = ID=Dullog + o= nllaiv, g0 + [G—1nlle + [p—palloo

where D := (D,o,u) = (D,cr, (u,*y)) € H = Hi x Hy x Q is the unique solution
of (3.35), with u € S(9), and D, = (Dp, o, 1) = (Dh,ah,(uh,'yh)) e Hy =
Hip X Hap x Qp is the unique solution of (3.85), with u, € S(d4), whereas p and py,
are computed according to (3.53) and (3.88), respectively.

We begin by defining for each r € L?(Q) the operator E, : H — H' that arises from
the left-hand side of the variational formulation (3.35) after adding all its rows, that is

£,(C),E] := [4,(C),E] + Bi(E,¢) + Bi(C,7) + B(r,w) + B(,¥), (3.103)

for all C := (C,¢,w), E = (E, 7,V) € H, so that (3.35) and (3.85) can be rewritten,

respectively, as

[E,(D),E] = Fu(E) +G(T) + F(¥) VE:=(E,7,V)cH, (3.104)

2y, (D1). En] = Fu,(Ba) + G(m) + F(¥)  VEp = (Ep, 7, V1) € M. (3.105)

It readily follows from (3.104) and (3.105) that

— —

Z,(D), Ey] — [E,,(Dn), En] = (Fu— Fu,)(Br)  VEj = (Ep, 7, %4) € Ha.
(3.106)
Now, the smoothness of the regularized n (cf. (3.11)) allows to show that for each
r € L2(9), the operator A,, and hence E, as well, have first order Gateaux derivatives
D(A,) € £(H1,E(’H1,H’1)) and D(E,) € ﬁ(H,E(’H,’H’)), respectively, as well as
their corresponding discrete versions denoted by Dp(A,) € L’(’Hm, L(Hq p, H/lh)) and
DL(E,) € E(?—I,h,ﬁ(?-l,h,’;‘-[ﬁl)). Moreover, using (3.59) and (3.60) (cf. Lemma 3.4.1),
one is able to prove (see, e.g. [63, Lemma 3.1]) that for each Cj, € H;, the operator
Dy(A:)(Ch) € L(H1n,H) ) can be identified as a bounded and Hi-elliptic bilinear
form with constants L4 and a4, respectively. It follows that for each r € L?(€), and
for each C, € Hy, the operator Dy, (2,)(Ch) € L(Hn, H)) satisfies the hypotheses of
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the discrete linear version of Theorem 3.4.1, and hence the corresponding global inf-sup
condition as well with a positive constant az 4, depending only on L4, a4, Bd, and
BLd. In this way, proceeding analogously to the proof of [63, Theorem 3.3], which
includes, in particular, applying the mean value theorem to E,, we deduce that for
each r € L2(Q) there holds

VCp CheHy.  (3.107)

Then, we begin our derivation by employing the triangle inequality, which gives
ID = Dullx < |D = Cullx + |Dn— Calle  ¥Ch € Ha, (3.108)

whereas, applying (3.107) with » = p, we obtain

e =2,(D,) - E,(Cp), E
azalDn — Call < sup [Ep(D1) — E,(Ch), En]

. (3.109)
Ep ey, ||EhH7-{,

Next, subtracting and adding [Ep(ﬁ), n], we find that

— — — —

[E,(Ds) — Ep(Ch), Es] = [E,(Dy) — E,(D), Es] + [E,(D) — E,(Ca), Es], (3.110)
so that, employing the Lipschitz-continuity of A, (cf. (3.59), Lemma 3.4.1), we deduce

from (3.103) the existence of a positive constant Lz, depending on L 4, ||B||, and ||B:]|,
such that the second term on the right-hand side of (3.110) is bounded as

[E,(D) — Z,(C), Bn]| < Lz |D = Cullse [Enll - (3.111)

In turn, subtracting and adding [Eph(ﬁh), Eh], applying the Lipschitz-continuity of A
with respect to the pressure (cf. (3.61), Lemma 3.4.1), and employing (3.106), we find
that

— — — —

[E,(D1) — E,(D), )| = |[E,(Ds) — E,,(Dn), Es] + [E,, (Dn) — 5,(D), By

< {LoIp=pullos + 1= Furllng, } 1Bl
(3.112)
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In this way, using (3.111) and (3.112) to bound the expression in (3.110), and then

replacing the resulting estimate in (3.109), we arrive at
aza|Dh = Chlln < Lz |D = Culla + Ly Ip — palloo + 1Fa — Fun g, (3.113)
which, along with (3.108), implies

ID = Dylly < (1+ag} Le) dist(D, M) + azly {Ln 1P = pallog + [[Fu— ]:uhHHg’h} :
(3.114)

where, as usual,

dist(D,#y,) = _inf [|D— Caly.

CreHy,

Furthermore, according to the expressions provided by (3.53) and (3.88), and proceeding

similarly to the derivation of the last two terms in (3.82), we get

Ip=mlloa < 0 {llo = auloo + 20 (@EW ~ (W w)loaf.  (3.115)
In addition, invoking now the definition of F, (cf. (3.39)) as in (3.73), we obtain
(]—"u - ]—"uh)(Eh) = p/Q ((u @u)— (u, ® uh)) ‘E,  VE, € Hyy,

which gives
[Fu = Fullag, < pll(w@u) = (u, @un)loq- (3.116)

Then, replacing the bounds from (3.115) and (3.116) back into (3.114), and denoting

the constants

=t

Ciz == 1+agyLlz, Ciz = agy n V2 and Csg = az4p (2 n V2L, + 1) ,

we conclude that

ID — Dyl < Cizdist(D, Hh) + Coz Ly [lo — onlloe

(3.117)
+Cszl(a@u) = (up @)oo
Finally, similarly to the derivation of (3.74), there holds
H(u ® 11) - (uh ® 11h>||0,§2 < n1/2 (||11||074;Q + ||uh||074;9) ||u — uh||074;9
(3.118)

< 0?6+ 8g) lu = wyfloso,
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and hence the inequalities (3.115) and (3.117) become, respectively,
lp = prllon < n72lo = aullon + 2p (5 + 5d) la —upllosa, (3.119)

and
ID =Dl < Cizdist(D, M) + Coz Ly o — onllog
(3.120)
+ Cyzn'? (5 + 5d) [u —uplfog0-

We are now in position to establish the main result of this section.

Theorem 3.5.6. In addition to the notations and hypotheses of Theorems 3.4.3 and
3.5.5, assume that L,, and the radii 6 and 04 are sufficiently small so that

1 1
Cozly < 5 and Che n'?(5+0,) < 5 (3.121)
Then, there exists a positive constant C', independent of h, such that
ID = Dulls + llp — pallog < Cdist(D, Hy) . (3.122)

Proof. By employing (3.121) in (3.120), we readily deduce that
ID — Dl < 2C1=dist(D, Hy),

whereas the corresponding estimate for ||p—pp||o.q follows from (3.119) and the foregoing

inequality. [

As announced at the end of Section 3.4, and similarly as for those required by
Theorems 3.4.3 and 3.5.5, the assumptions in (3.121) are, in general, not verifiable in
practice, but certainly there do exist constants L,, 6, and dq satisfying them. When
the latter occurs, the present Theorem 3.5.6 ensures that there holds the a priori error
estimate (3.122), and hence also the rates of convergence that are provided later on in
Theorem 3.6.7. We do not know for certain whether the lack of satisfaction of any of
the constraints (3.83), (3.101), or (3.121), would affect the accurateness of the method.
In other words, the small data conditions are sufficient for the well-posedness of the
continuous and discrete formulations, and for the expected convergence behaviour of
the numerical scheme, but they might not be necessary. Indeed, this seems to be the
case for the numerical results that are presented in Section 3.7, for which the eventual
accomplishment of the aforementioned assumptions is not available either, and yet

optimal rates of convergence are obtained.



3.6 Specific finite element subspaces 85

3.6 Specific finite element subspaces

In this section we proceed as in [62, Section 4.4], where, in turn, the analysis from [22,
Section 4.4] is employed, to describe two examples of finite element subspaces H; p,
Hopn, Qin, and Qy, satisfying the hypotheses (H.4), (H.5), (H.6), and (H.7) that

were introduced in Section 3.5.2. The associated rates of convergence are also provided.

3.6.1 Polynomial spaces

We first collect some definitions regarding local and global polynomial spaces, for
which we make use of the regular family of triangulations {77‘}}»0 of Q introduced in
Section 3.5.1. Indeed, given an integer ¢ > 0 and K € T, we let P,(K) be the space
of polynomials of degree < ¢ defined on K, and denote its vector and tensor versions
by Py(K) = [P,(K)]" and Py(K) = [P,(K)]"*", respectively. In addition, we let
RTy(K) := Py(K) @& P,(K)x be the local Raviart-Thomas space of order ¢ defined
on K, where x stands for a generic vector in R := R". Also, we let bx be the bubble
function on K, which is defined as the product of its n + 1 barycentric coordinates.

Then, we define the local bubble spaces of order ¢ as

By(K) := curl (bK Pg(K)) it n=2,

(3.123)
and By(K) := curl (bK Pg(K)) it n=3,
v  Ov\ . .
where curl (v) := (a—, —a—) ifn=2andv: K — R, and curl (v) :=V xvifn=3
i) T1

and v : K — R®. The following global spaces are also needed

P,(Q) := {vh eL?(Q): wilk € PyK) VK¢ ﬁ},

Py(Q) = {gh E12(Q): &k € PK) VK e n},

RT,(Q) = {Th EH(iv;Q): Tyl € RT(K) Vie{l,..n}, erTh},

and
By(Q) = {Th €H(iviQ): e € BUK) Vie{l,..n}, VK efrh},

where 7,; stands for the ith-row of 7,. While P,(2) and P,(2) are defined here
as subspaces of L*(Q) and L?(2), we stress that they are also subspaces of L*(Q)
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and LL*(Q), respectively. Similarly, it is easy to see that RT,(£2) and B,(Q2) are both
subspaces of H(divy/s;2) as well. Actually, recalling that H(div;(2) stands for the
Hilbertian version of (2.2), that is with ¢ = 2, it is clear that H(div;2) is contained
in H(divy/s; 2), and hence any subspace of the former is also subspace of the latter.
Certainly, the same observation is valid for Ho(div;2) and Hy(divy/s; 2), where the
former is defined analogously to (3.31).

3.6.2 Connection with linear elasticity

Here we describe a useful connection between (H.7) and the stability of a usual mixed
finite element method for the linear elasticity model. We begin by recalling that a triplet
of subspaces 7727;1, Q11, and Qy, of H(div; ), L*(Q), and L2, (1), respectively, is said
to yield a stable Galerkin scheme for the Hilbertian mixed formulation of linear elasticity
if it satisfies the corresponding hypotheses of the discrete Babuska-Brezzi theory (see,
e.g., [46, Theorem 2.4]). In particular, the above includes the discrete inf-sup condition
for the bilinear form B (cf. (3.38)), which, setting Hap = Hap N Hy(div; Q), reduces
to the existence of a positive constant Be, independent of h, such that

sup B(7n, ) > B, {HV}Z”QQ + ||£h||(m} Vv = (v, &) € Qn. (3.124)

ThEHD ||Th||diV;Q

THh#0
Note that, though similar, (3.124) and (3.91) differ because of the different norms in
which 7, and v, are measured. However, the following result (cf. [22, Lemma 4.8])
establishes that (3.124), along with suitable further assumptions on the subspaces,

constitute a sufficient condition for (3.91).

Lemma 3.6.6. Let 7727}” Q11, and Qyj be subspaces of H(div;Q), L*(€), and
L2, (€2), respectively, such that they accomplish (3.124). In addition, assume that
there exists an integer ¢ > 0 such that RT,(Q2) C ﬁQ’h and Q15 C Py(2). Then
Hop = ﬁ-[vgﬁ N Ho(divy/s; ), Qi p, and Qy, satisfy (3.91) with a positive constant Ba,
independent of h.

3.6.3 Examples of stable finite element subspaces

We now apply Lemma 3.6.6 to each one of the stable triplets for linear elasticity
proposed in [22, Section 4.4], thus deriving two examples of finite element subspaces
Hin, Hon, Qip, and Qu, satisfying (H.4), (H.5), (H.6), and (H.7).
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Our first example is based on the plane elasticity element with reduced symmetry

(PEERS) of order ¢ > 0, which, denoting C(Q2) := [C(Q)]"*", is given by

Hop = RTH(Q)OB(Q), Quip = Py(Q), and Qup = C(Q)NP.(Q)NL2(Q).
(3.125)
The discrete stability of these subspaces was originally proved in [64] for ¢ = 0 and
n =2, and later on for £ > 0 and n € {2, 3} in [65]. It is easily seen from (3.125), in
particular using due to (3.123) that div(Ha,) = diV(RTg(Q)) C P,(), that Hy,
and Q, satisfy (H.4) and (H.5), and that the assumptions on them required by
Lemma 3.6.6 are accomplished as well, whence (H.7) holds true. It remains to check
(H.6), for which we first recall that the divergence free tensors of RT,({2) are contained
in P,(§2) (ctf. [46, proof of Theorem 3.3]). Thus, noting again that the tensors of B,(2)
are divergence free, and that this space is contained in Py, (€2), we deduce from (3.92)
that
Vi C Pp(Q) ©B(Q2) C Prys(Q),

so that, in order to guarantee (H.6), it suffices to take
Hl,h = Pg+n(Q) N L%I(Q)

Finally, it follows from (3.88) and the above definitions of Hsj, and Qi j,, that Py, :=
Pn @ {‘g}, where P, := P;(Q) N L3(Q), with ¢ := max {€+n,2€}. Our second
example is the Arnold-Falk-Winther (AFW) element of order ¢ > 0, whose stability
for the Hilbertian mixed formulation of linear elasticity is proved in [66], and which is

defined as

Hop = Pry(Q) NH(div;Q), Qip = Py(Q), and Quy = Py(Q) NLE(Q).

(3.126)

According to the above, it is also simple to realize that (H.4) and (H.5) are satisfied,

and that, thanks to the inclusion RT,(Q2) C P,,1(Q2), the corresponding hypotheses

of Lemma 3.6.6 are fulfilled, thus establishing (H.7). In turn, being in this case V,

(cf. (3.92)) not further simplifiable, we deduce that (H.6) is accomplished if we simply

choose

Hip = P (Q) NL2(Q).

~ K ~
Furthermore, it is readily seen in this case that Py, := P, & {}, where P, =

|2
Ps(2) N LS(Q).
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3.6.4 The rates of convergence

We now provide the rates of convergence of (3.85) for both specific examples of finite
element subspaces introduced in Section 3.6.3. To this end, we first collect next the
corresponding approximation properties of Hi 5, Hap, Q14, and Qs j, which, taken
mainly from [67], [68], [19, egs. (5.37) and (5.40)], and [45, Proposition 1.135], are
derived by employing the error estimates of suitable interpolation and projection
operators, along with associated commuting diagram properties and interpolation

estimates of Sobolev spaces.

] y {4+n for PEERS-based )
Denoting ¢* := , the respective statements are as
(+1 for AFW-based

follows:

AP (Hl,h) there exists a positive constant C', independent of h, such that for each
r € [0,£* + 1], and for each E € H"(Q) N1L2(Q2), there holds

dist(B, H1p) = _inf [[E—Eplloo < CW|E|.a,

EneHin

AP (7—[27;1) there exists a positive constant C', independent of h, such that for each
r € (0,£+ 1], and for each 7 € H'(Q) N Hy(divyys; Q) with div(T) € W™*/3(Q), there
holds

diSt(T,HQ’}J = inf HT — Tthiv4/3;Q < Ch" {”THT@ + HdiV<T>HT’4/3;Q},

ThEH2 1

AP(QUL) there exists a positive constant C', independent of h, such that for each
r € [0,£+ 1], and for each v.€ W"*(Q), there holds

diSt<V, Ql,h) = Vhieﬂgf ) v —=villoae < Ch||[V]rao,
1,h

AP(Q27h> there exists a positive constant C', independent of h, such that for each
r € 10,¢+ 1], and for each & € H"(2) N1L2,(Q2), there holds

dist (€, Qap) =, f [I€~&nloa < CHIIE]a-

As a consequence of the Céa estimate (3.122) (cf. Theorem 3.5.6), along with
AP(H1s), AP(Hy,), AP(Q1,), and AP(Q,,), we are now able to provide the

main result of this section.
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Theorem 3.6.7. In addition to the notations and hypotheses of Theorem 3.5.6, assume
that there exists 7 € (0, (41], such that D € H'"(Q)NLZ,(2), o € H"(Q)NHo(div/s; ),
div(o) € W™3(Q), u € W™ (Q), and v € H"(Q) N L2, (Q). Then, there exists a

positive constant C, independent of h, such that

[B=Bullwtlp=palloa < € " {IDlla+Iola+Idiv(@)laso+ullso o}

3.7 Numerical results

In this section we consider the two pairs of finite element subspaces detailed in
Section 3.6 to present three examples illustrating the performance of the mixed finite
element method (3.85) on a set of quasi-uniform triangulations of the respective
domains. In what follows, we refer to the corresponding sets of finite element subspaces
generated by ¢ = {0,1} as simply PEERS, and AFW, based discretizations. The
numerical methods have been implemented using the open source finite element library
FEniCS [52]. We solve approximately the nonlinear problem (3.85) by means of a
strategy combining a Picard iteration with the Newton method. More precisely, the

corresponding computations are described as follows: [a),leftmargin="*]

(1) Start solving the Stokes problem arising from (3.85) by choosing n = 1 and the

overall density p=0 to obtain the initial solution (D, o}, G})) := (D%, o), (uf, '72))

€ Hip X Hap X Qp, compute p) as in (3.88), that is

1
0 0 0 0 0 0
= t + + + t
Dh - r(ah p(u, ® uh)) | ’ ’ [ Ja r(u, ®uy),

and let m = 1.

(2) Set (zn,3) == (up~', ") and let (D, o, ) = (D}, of, (ufl,4y)) €
Hip X Hap x Qp be the output of a single Newton iteration applied to (3.87).

(3) Update the pressure p;' by employing the formula (3.88), namely

m 1 m m m m m
ph = —gtr(o'h +p<uh ®uh))+ | | +W tr(uh ®uh),

let m =m + 1, and go to step (2).

The iterative procedure given by (2) and (3) is finished when the relative error

between two consecutive iterations of the complete coefficient vector, namely coeff™
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and coeff" !, is sufficiently small, that is,

|coeff™ ! — coeff™ ||por
ﬁ'm—i-l < tOI’
|coe [[oor

where || - ||por stands for the usual Euclidean norm in RP* with DOF denoting the total
number of degrees of freedom defining the finite element subspaces H; j, ﬁzh, Qi n,
and Qg (cf. (3.125)-(3.126)), and tol is a fixed tolerance chosen as tol = 1E — 06.

We now introduce some additional notation. The individual errors are denoted by

e(D) = D - Dilloa. €)= o~ oullawy e eu) = Ju—wiloso.

e(v) = |v— ’Yh||0,s2, e(p) :==|lp —ph”o,ﬂ,

and, as usual, for each x € {D,a,u,'y,p} we let r(%) be the experimental rate of
convergence given by r(x) := log(e(x)/é(x))/log(h/h), where h and h denote two
consecutive meshsizes with errors e and €, respectively.

The examples to be considered in this section are described next, for which we
consider the regularized viscosity 7(p,w) defined by (3.11), but without needing to
make use of the modification described by Figure A.1. In the first two examples, for
the sake of simplicity, we take pus = 0.1, ug =1, Iy =1, d =1 and p = 1. In addition,

the null mean value of tr(eoy,) over (2 is fixed via a real Lagrange multiplier strategy.

Example 3.1: Convergence against smooth exact solutions in a

2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain set
by the square Q = (0,1)%. We choose the regularization factor £ = 1E — 08, and adjust
the datum f in (3.19) such that the exact solution is given by

sin(xy) cos(xz)

u(xy, zg) = ( ) and p(x1,2) = exp(zy + x9), (3.127)

— cos(z1) sin(xz)

where p € L2(Q2), with k = (exp(1) — 1)*>. The model problem is then complemented
with the appropriate Dirichlet boundary condition. Tables 3.1 and 3.2 show the
convergence history for a sequence of quasi-uniform mesh refinements, including the
number of Newton iterations. As already announced, we stress that we are able not
only to approximate the original unknowns but also the pressure field through the

formula (3.88). The results confirm that the optimal rates of convergence O(h‘*?)
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predicted by Theorem 3.6.7 are attained for ¢ = {0, 1} for both PEERS, and AFW,
based schemes. The Newton method exhibits a behavior dependent on the mesh size,
converging faster for finer meshes in both discrete schemes. The latter is justified by
the fact that for finer mesh a better initial data (D}, u)) and p) are provided for the
iterative method. In Figure 3.1 we display the discrete internal friction coefficient
(1) recovered from (3.7), with I, = v/2d |Dy|/ W , and some solutions obtained
with the mixed PEERS; approximation with meshsize h = 0.014 and 20, 000 triangle
elements (actually representing 1,081, 202 DOF).

PEERS,based discretization with ¢ =0
boF [ & [it] e®d) (D) | elo) [ro) | ew | ru) | e) | rv) | ) | )
842 | 0.354 | 16 || 3.15e-01 - 1.14e+400 — 7.84e-02 - 1.08e-01 - 4.27e-01 -
3314 | 0.177 | 14 || 1.87¢-01 | 0.750 | 5.53e-01 | 1.044 | 3.70e-02 | 1.085 | 4.58¢-02 | 1.236 | 1.95¢-01 | 1.131
13154 | 0.088 | 13 || 1.00e-01 | 0.905 | 2.67e-01 | 1.051 | 1.78¢-02 | 1.057 | 1.74e-02 | 1.393 | 8.91e-02 | 1.130
46082 | 0.047 | 11 || 5.44e-02 | 0.969 | 1.40e-01 | 1.026 | 9.35e-03 | 1.021 | 6.83e-03 | 1.491 | 4.55e-02 | 1.069
183962 | 0.024 | 9 || 2.74e-02 | 0.991 | 6.95e-02 | 1.011 | 4.65e-03 | 1.006 | 2.38e-03 | 1.521 | 2.23e-02 | 1.029
510602 | 0.014 | 8 || 1.65e-02 | 0.997 | 4.16e-02 | 1.004 | 2.79e-03 | 1.002 | 1.09¢-03 | 1.526 | 1.33e-02 | 1.012

AFW —based discretization with £ =0
b0F| h [it] eD) [rD) [ o) [rlo) | ew [rw) | ev) [ ) [ el [ @)
609 | 0.354 | 15 || 5.62e-02 - 5.63e-01 - 6.94e-02 - 6.76e-02 - 3.27e-01 -
2369 | 0.177 | 14 || 2.65e-02 | 1.086 | 2.80e-01 | 1.005 | 3.48e-02 | 0.995 | 3.34e-02 | 1.018 | 1.63e-01 | 1.000
9345 | 0.088 | 12 || 1.30e-02 | 1.027 | 1.40e-01 | 1.002 | 1.74e-02 | 0.999 | 1.66e-02 | 1.006 | 8.17e-02 | 1.000
32641 | 0.047 | 10 || 6.89¢-03 | 1.008 | 7.46e-02 | 1.001 | 9.29¢-03 | 1.000 | 8.85e-03 | 1.002 | 4.36e-02 | 1.000
130081 | 0.024 | 7 | 3.44e-03 | 1.002 | 3.73e-02 | 1.001 | 4.65e-03 | 1.000 | 4.42¢-03 | 1.001 | 2.18e-02 | 1.000
360801 | 0.014 | 6 | 2.06e-03 | 1.001 | 2.24e-02 | 1.001 | 2.79e-03 | 1.000 | 2.65e-03 | 1.000 | 1.31e-02 | 1.000

Table 3.1 [Example 3.1, ¢ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, and rates of convergence for the mixed approximations.
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Figure 3.1 [Example 3.1] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.
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PEERS,—based discretization with ¢ =1
DOF[ h [it] eD) [rD)] el@) [rlo) | em) [rw) | e(r) [r(v) [ el | rp
1778 1 0.354 | 12 || 1.80e-02 - 4.59e-02 - 4.59e-03 - 7.45e-03 - 1.84e-02 -
7010 | 0.177 | 10 || 5.36e-03 | 1.750 | 1.17e-02 | 1.970 | 1.15e-03 | 1.999 | 3.12¢-03 | 1.257 | 4.51e-03 | 2.031
27842 | 0.088 | 8 || 1.48¢-03 | 1.858 | 2.98e-03 | 1.977 | 2.87e-04 | 2.001 | 9.81e-04 | 1.668 | 1.12¢-03 | 2.006
97562 | 0.047 | 6 || 4.42e-04 | 1.922 | 8.56e-04 | 1.983 | 8.15e-05 | 2.000 | 3.09e-04 | 1.840 | 3.19e-04 | 1.998
389522 | 0.024 | 4 || 1.14e-04 | 1.958 | 2.16e-04 | 1.990 | 2.04e-05 | 2.000 | 8.16e-05 | 1.919 | 8.00e-05 | 1.997
1081202 | 0.014 | 4 || 4.14e-05 | 1.977 | 7.78e-05 | 1.993 | 7.34e-06 | 2.000 | 3.00e-05 | 1.957 | 2.88e-05 | 1.998

AFW ,based discretization with £ =1
b0F[ /i [it] eD) [fD) [ elo) [rlo) | e(w) |r(w) | ey) [rv) [ e) | o)
1393 | 0.354 | 10 || 2.21e-03 2.49e-02 4.57e-03 2.84e-03 1.73e-02
5473 | 0.177 | 7 | 5.35e-04 | 2.046 | 6.12¢-03 | 2.027 | 1.15e-03 | 1.997 | 7.29¢-04 | 1.963 | 4.33¢-03 | 1.996

21697 | 0.088 | 5 | 1.32e-04 | 2.020 | 1.52e-03 | 2.013 | 2.87e-04 | 1.999 | 1.84e-04 | 1.983 | 1.08e-03 | 1.999
75961 | 0.047 | 4 | 3.73e-05 | 2.009 | 4.29e-04 | 2.008 | 8.15e-05 | 2.000 | 5.27e-05 | 1.992 | 3.08e-04 | 2.000
303121 | 0.024 | 3 || 9.29e-06 | 2.007 | 1.07e-04 | 2.008 | 2.04e-05 | 2.000 | 1.32e-05 | 1.997 | 7.70e-05 | 2.000

841201 | 0.014 | 3 || 3.34e-06 | 2.002 | 3.84e-05 | 2.002 | 7.34e-06 | 2.000 | 4.76e-06 | 1.998 | 2.77e-05 | 2.000
Table 3.2 [Example 3.1, £ = 1] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, and rates of convergence for the mixed approximations.

Example 3.2: Convergence against smooth exact solutions in a

3D domain

In the second example we consider the cube domain Q = (0, 1), and the regularization

factor ¢ = 1 — 06. The manufactured solution is given by

sin(zy ) cos(xs) cos(z3)
u(zy, z2, 23) = | —2cos(xq) sin(xzy) cos(z3) and  p(xq, z9, x3) =10 exp(z1+xo+23),

cos(xy) cos(xz) sin(xs)

where p € L2(Q), with x = 10 (exp(1) — 1)*. Similarly to the first example, the data f
and up is computed from (3.19) using the above solution. The convergence history for
a set of quasi-uniform mesh refinements using ¢ = 0 is shown in Table 3.3. Again, the
mixed finite element method converges optimally with order O(h), as it was proved
by Theorem 3.6.7. We observe a considerable increasing of degrees of freedom in the
PEERSy-based scheme compared to the AFWq one. This is justified mainly by the
fact that the symmetric part of the velocity gradient is approximated with P3(£2) and
P, (92), respectively. In addition, the discrete internal friction coefficient and some
components of the numerical solution are displayed in Figure 3.2, which were built
using the mixed AFW, approximation with meshsize h = 0.108 and 24,576 tetrahedral
elements (actually representing 1,390, 081 DOF).
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PEERS,-based discretization with £ =0
DOF| h Jit] e®) [r(D)[ elo) [rlo) | ew [rw) [ ey [ry) [ e [ rp
8698 | 0.866 | 20 || 9.95e-01 - 5.05e+01 - 2.41e-01 - 6.04e-01 - 1.66e+01 -
69016 | 0.433 | 20 || 5.85e-01 | 0.766 | 2.73e+01 | 0.885 | 1.10e-01 | 1.135 | 2.28e-01 | 1.406 | 9.01e+00 | 0.884
550156 | 0.217 | 19 || 3.24e-01 | 0.852 | 1.36e+01 | 1.008 | 4.96e-02 | 1.143 | 7.95e-02 | 1.520 | 4.32e+00 | 1.061
1854688 | 0.144 | 18 || 2.23e-01 | 0.926 | 8.89e+00 | 1.046 | 3.19¢-02 | 1.091 | 4.17e-02 | 1.590 | 2.74e+00 | 1.122
4393876 | 0.108 | 18 || 1.69e-01 | 0.957 | 6.59e+00 | 1.045 | 2.35¢-02 | 1.056 | 2.62¢-02 | 1.625 | 1.99¢+00 | 1.113

AFW,-based discretization with ¢ =0
b0F[ /i [it] eD) [AD) [ elo) [ro) | e(w) [rw) | ey) [ ) [ e [ )
2905 | 0.866 | 12 || 2.09e-01 - 2.59e+01 - 1.78e-01 - 2.01e-01 - 1.43e+01 -
22369 | 0.433 | 11 || 8.24e-02 | 1.344 | 1.21e+01 | 1.104 | 9.12e-02 | 0.969 | 9.34e-02 | 1.103 | 7.15e+00 | 1.005
175489 | 0.217 | 9 || 3.56e-02 | 1.212 | 5.82e+00 | 1.050 | 4.59¢-02 | 0.992 | 4.55e-02 | 1.037 | 3.57e+00 | 1.002
588385 | 0.144 | 8 | 2.28e-02 | 1.097 | 3.85e-+00 | 1.023 | 3.06e-02 | 0.997 | 3.02¢-02 | 1.014 | 2.38e+00 | 1.001
1390081 | 0.108 | 7 | 1.68e-02 | 1.054 | 2.87e-+00 | 1.013 | 2.30e-02 | 0.999 | 2.26e-02 | 1.007 | 1.78e+00 | 1.000

Table 3.3 [Example 3.2, ¢ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, and rates of convergence for the mixed approximations.
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Figure 3.2 [Example 3.2] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.

Example 3.3: Fluid flow through a cavity 2D with two circular

obstacles

In the last example, motivated by [69, Section 2.1], we study the behavior of the
regularized pu(1)-rheology model of granular materials for fluid flow through a cavity

2D with two circular obstacles without manufactured solution. More precisely, we
consider the domain Q = (0,1)% \ (Q; U Qy), where

Q) = {(xl,xg) D (my = 1/2)% 4 (22— 1/3)* < 0.12}, and

0y = {(xl,@) (= 1/2)2 + (29 — 2/3)? < 0.12},
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with boundary I', whose part around the circles is given by I'. = 9€).. The model
parameters are chosen as ps = 0.36, ug = 0.91, Iy = 0.73,d = 0.05, p = 2500, and the
regularization factor is € = 1E — 03. Notice that the relation between the diameter of
the particles d and the width of the cavity is 1 : 20, whereas the radius of both circular
obstacles is double that of d. The mean value of p is fixed as k = 100, no presence of

gravity is assumed, that is, f = 0, and the boundaries conditions are
u=(022,—-0.1,0" on '\ . and u=0 on T.,.

In particular, we impose that flows cannot go in nor out through I'., whereas at the
top and bottom of the domain flows are faster in opposite direction. In Figure 3.3,
we display the computed internal friction coefficient, magnitude of the velocity and
symmetric part of the velocity gradient, and pressure field, which were built using the
mixed AFWj-based scheme on a mesh with meshsize h = 0.016 and 18,423 triangle
elements (actually representing 332, 573D0F). We observe higher velocities at the top
and bottom of the boundary going to the right and left of the domain, respectively,
as we expected, but also a circulation phenomenom on the left and right boundaries
since the flows cannot in nor out through the circle obstacles. In addition, most of the
variations in both the magnitude of the symmetric part of the velocity gradient tensor
and pressure field occur around the circular obstacles. This observation aligns with the
results obtained for the discrete internal friction coefficient. Notice also that between
the circle obstacles and in some parts of the middle of the domain the magnitude of
the symmetric part of the velocity gradient is zero or close to it describing a region
where the original viscosity 1 (3.9) is singular and hence the granular flows are static.
The latter is in agreement with the velocity of the fluid and it is overcome by the
mixed approximation considering the regularized viscosity (3.11) as it was described in
Section 3.2.

Example 3.4: Fluid flow in a cubic lid-driven cavity

Finally, we conduct a simulation of the 3D lid-driven cavity flow within a unit cube
Q = (0,1)%. On the top lid 23 = 1, the tangential velocity is set as u = (1,0,0)", while
the rest of the boundary has no-slip conditions. The model parameters are chosen as
s = 0.1, ug = 1,Ig = 1,d = 1,p = 1, and the regularization factor is ¢ = 1E — 03.
The mean value of p is fixed at k = 1000, and the right-hand side is set as f = 0.
The numerical results, displayed in Figure 3.4, show the computed internal friction

coefficient, the magnitude of the velocity, the symmetric part of the velocity gradient,
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Figure 3.3 [Example 3.3] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.

and the pressure field. These were obtained using the mixed AFWj-based scheme on
a mesh with a mesh size of h = 0.108 and 24, 576 tetrahedral elements (representing
1,390,081,D0OF). A large-scale recirculation, influenced by the momentum transfer
from the top surface to the rest of the fluid, is observed. Most variations in both the
magnitude of the symmetric part of the velocity gradient tensor and the pressure field
occur near the top of the cube, which aligns with the results obtained for the discrete
internal friction coefficient. Additionally, below the top of the domain, the magnitude
of the symmetric part of the velocity gradient is zero or close to it, indicating a large
region where the original viscosity 7 (3.9) becomes singular, rendering the granular
flows static. Similarly to Example 3, this issue is addressed by the mixed approximation

through the incorporation of the regularized viscosity (3.11).
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Figure 3.4 [Example 3.4] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.






Chapter 4

A posteriori error analysis for

u(I)-rheology

4.1 Introduction

Building upon the previous discussion in Introduction and extending the study initiated
in [43] on a regularized pu(I)-rheology model for granular materials described by a
Navier—Stokes-like equation, this chapter employs and adapts the a posteriori error
analysis techniques developed in [38], [39], [41], and [42] for mixed formulations in
Hilbert and Banach spaces to the current p(I)-rheology model. We construct a reliable
and efficient residual-based a posteriori error estimator for the 2D and 3D versions
of the mixed finite element methods introduced in [43]. Specifically, we derive a
global quantity © that is formulated in terms of computable local indicators O,
each associated with an element K of a given triangulation 7. This allows for the
identification of error sources and the design of an adaptive meshing algorithm to
enhance computational efficiency. In this setting, the estimator © is considered efficient
(resp. reliable) if there exist positive constants Cess (resp. Crey), independent of the

mesh sizes, such that
Cet: © + hoot. < Jlerror|| < Cre1© + hoo.t.,

where h.o.t. represents one or more higher-order terms. To the best of the authors’
knowledge, this work presents the first a posteriori error analysis of Banach space-based
mixed finite element methods for the stationary p(I)-rheology equations governing

granular materials.
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This chapter is organized as follows. In Section 4.2, we provide a detailed derivation
of a reliable and efficient residual-based a posteriori error estimator for the 2D version
of the problem from [43]. In particular, the reliability analysis considers a suitable
Helmholtz decomposition in a Banach space setting, with its discrete version employing
PEERS and AFW-based elements. Several numerical results illustrating the reliability
and efficiency of the estimator, the effectiveness of the associated adaptive algorithm,
and the recovery of optimal convergence rates are reported in Section 4.3. Finally,
additional properties required for the derivation of the reliability and efficiency estimates
are provided in Appendices A.2 and A.3, respectively. In turn, the 3D version of the a
posteriori error estimator, building upon the results in Section 4.2, is established in
Appendix A 4.

4.2 A residual-based a posteriori error estimator

In this section, we derive a reliable and efficient residual-based a posteriori error
estimator for the two-dimensional version of the Galerkin scheme (3.85). The corre-
sponding a posteriori error analysis for the three-dimensional case, which follows from
minor modifications of the analysis presented here, will be addressed in Appendix A.4.
Throughout this section, we employ the notations and results from Appendix A.2.
Recalling that (Dh, o, (up, 'yh)) € Hip X Hap X Qp is the unique solution of the
discrete problem (3.85), and that p, is computed from (3.88), we define the global a

posteriori error estimator © as
3/4 1/2 1/4
4/3
0=1> @1,/1{ +1 > Ok +9 > O3k ; (4.1)
KeTy, KeTy KeTh

where, for each K € Tj, the local error indicators @i/ ]3(, 937 x and @gj i are defined as

@117/5} = Hf—i— div(ah)“é,/j/3;x’ (4.2)
Ok = Hn(ph, |Dh|)Dh — o, —p(u, ® uh)de,K + Hah — UZH(?K
ot @t + 3 fI@urw)sl],, s

c€ER(K)NE(Q)

+ > he

e€&h (K)NE(T)

Vs (D, -l
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and

O3 i = hi [V, - (Dh+7h)H4 + Y heup—wlll,. (44)

0,4; K
ee&(K)NE)

Notice that the last term defining ©3 ;- (cf. (4.3)) requires that (Vups)l. € L*(e) for
all e € &,(T'), which is guaranteed by simply assuming that up € H'(I'). Nevertheless,
to be more precise, it suffices to assume that Vup|r € L*(I"), which holds if Vup|r
coincides with the trace of the gradient of a function in H*(Q2) for some ¢ > 4/3. In
any case, the Dirichlet data used in the numerical results reported below in Section 4.3
satisfy the first-mentioned assumptions on up.

From now on, we define
D = Dull3 = D =Dyllg, + loo—onllr, + ([0 —dale,

where D = (D,a,ﬁ) € H :=Hy x Hy x Q and D), := (Dh,ah,ﬁh) € Hy =
Hip X Hap x Qp denote the unique solutions of (3.35) and (3.85), respectively. The
main goal of this section is to establish, under suitable assumptions, the existence of
positive constants Cees and Cre1, independent of the mesh sizes and the continuous

and discrete solutions, such that
C’eff(a + h.o.t S ||]:_j - ﬁh”'H + ||p_ph||0,Q S Cre1@7 (45)

where h.o.t is a generic expression denoting one or several terms of higher order,
whereas p and pj, are computed according to (3.44) and (3.88), respectively. The upper
and lower bounds in (4.5), which are known as the reliability and efficiency of O, are

derived below in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Reliability

The main result of this section is stated in the following theorem. To this end, and as
done in [43, eq. (5.19)], given r € L2(Q), we first note that we can define the operator
E, : H — H', which arises from the left-hand side of the variational formulation (3.35)
after summing all its rows, that is,

[2,(C),E] := [4,(C),E] + Bi(E,¢) + Bi(C,7) + B(T,w) + B, V), (4.6)



100 A posteriori error analysis for p(I)-rheology

for all C := (C, ¢, W), E := (E, 7,¥) € H, so that (3.35) can be rewritten as
[2,(D),E] = Fu(E)+G(r) + F(¥) VEeH. (4.7)

Thus, the smoothness of the regularized function 1 (cf. (3.11)) allows to show that
for each r € L2(Q2), the operator A, (cf. (3.36)), and hence E, as well, have first
order Gateaux derivatives D(A,) € E(Hl,ﬁ(Hl,H’l)> and D(E,) € L'(’H, ﬁ(?—l,?—[’)),
respectively. Moreover, using [43, eqs. (4.9) and (4.10) in Lemma 4.2], one is able to
prove (see, e.g. [63, Lemma 3.1]) that for each C € H;, the operator D(A,)(C) €
L(H1,H7) can be identified as a bounded and H;-elliptic bilinear form with constants
L4 and a4, respectively. It follows that for each r € L2(Q), and for each C € H, the
operator D(E,)(C) € L(H,H') satisfies the hypotheses of the linear version of [43,
Theorem 4.1], and hence, there exists a positive constant oz, depending only on L 4,
a4, and the inf-sup constants of B and B;, namely 8 and §; (cf. [43, eqs. (4.12),
(4.13)]), such that the following global inf-sup condition holds:

az |[Flly < sup DEJOWEE)  gey. (4.8)

0£EeH 1B

In addition, we let
CI,E = aél n_1/2 and 0275 = aél 1% (2 n_1/2 [/77 + 1) 5 (49)

where ag satisfies (4.8), and L,  denotes the Lipschitz continuity constant of n (cf. [43,

eq. (4.8)]).
The aforementioned result is stated now.

Theorem 4.2.1. Assume that L, and the radii / and d4 are sufficiently small so that

1 1
Cizly <5 and Cozn'?(0+0,) < 5. (4.10)
’ 2 ’ 2
Then, there exists a constant Cpe; > 0, such that
ID = Dulls + P = prllog < Craa ©. (4.11)

We begin the proof of Theorem 4.2.1 with a preliminary lemma. Specifically,

proceeding analogously to [42, Section 3.1] (see also [70, Section 1]), we first introduce
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the residual functional R : H — R, given by
R(E) := Ry (E) + Ro(7) + R3(¥V) VE = (E,7,V) € H, (4.12)

where Ry : H1 — R, Ro: Ho — R, and R3 : @ — R are given by

Rl(E> = ]:uh<E) — [Aph(Dh),E] — Bl(E, O'h) VE € Hl, (413)
Rao(T) == G(1) — Bi(Dy,7) — B(T,u)) V7€ Hs, (4.14)

and
R3(V) := F(V) — B(op, V) VVeEQ, (4.15)

respectively, which according to the discrete problem (3.85) satisfy

Rl(Eh> = 0 VEh € HLh? RQ(Th) = 0 V’Th c H27h,
(4.16)
Rg(\_”h) =0 \V/\_;h S Qh.

We are now in a position to establish the following aforementioned preliminary a

posteriort error estimate.

Lemma 4.2.1. Assume that L, and the radii § and d4 satisfy (4.10). Then, there

exists a positive constant C', independent of h, such that
IB = Bul + lp = pulloss < C{IRullag + IRally + IRsllof (@17

Proof. We begin by proceeding analogously to the proof of [63, Theorem 3.3]. In fact,
given p € L2(Q) satisfying (3.44) and since D and D), belong to H, a straightforward
application of the mean value theorem yields the existence of a convex combination of
D and f)h, say éh € H, such that

—

D(E,)(Cy)(D - Dy, E) = [E,(D),E] - [E,(Ds),E] VE€H.  (4.18)
Then, by adding and subtracting [Z,, (D,), E] and Fu, (E) on the right-hand side

of (4.18), using (4.7), and the definitions of B, and R (cf. (4.6), (4.12)), along with

straightforward algebraic manipulations, we deduce that

—

D(5,)(Ci)(D — Dy, E) = R(E) + (Fu— Fu, ) (E) — [Ay(Dy) — A, (D)), E] VE € H.
(4.19)
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In turn, applying (4.8) with r = p, C =Cy, and F = D — D, using (4.19) and the
continuity of the operator A, (cf. [43, eq. (4.11) in Lemma 4.2]), with the positive

continuity constant L,, we get
az [D = Dullx < Rl + 1Fu = Fuullrg + Lyllp = pallog- (4.20)

Next, we focus on bounding the last two terms on the right-hand side of (4.20). First,
using the definition of F, (cf. (3.39)) and applying the Cauchy—Schwarz inequality, we
obtain

[Fa = Fulln, < pllu@u—u,@uloa, (4.21)

whereas, according to the expressions provided by (3.44) and (3.88), and proceeding
similarly to [43, eq. (5.31)], the last term in (4.20) can be bounded by

lp — prlloa < n=1/? {Ha’ —onllog + 2plu@u—u,® U.hHO’Q} ) (4.22)

Furthermore, subtracting and adding the term (u ® uy), using Cauchy—Schwarz’s
inequality and the fact that u € W(d) and uj, € W(dy), there holds

lwou-weuwloe < 0 (Juflose + [unlose) [ —ulloso
(4.23)
< nt/? <5+5d) lu—upllosa,

whence, combining (4.20) with (4.21), (4.22), and (4.23), and using the definition of
the constants Cy g, Caz (cf. (4.9)), we obtain

I 1
ID=Dallx = —lIR[w+CreLyllo—oulloa+Czz n'2(0+6q) [u—upflosn. (4.24)
Thus, by employing (4.10) in (4.24) and the definition of the residual R (cf. (4.12)) in

terms of Ry, Ro, and R3 (cf. (4.13), (4.14), (4.15)), we find that

2

o=
=

B~ Bul < — {IRillg + [Rallry + I Rsllor} (125

so that the corresponding estimate for ||[p — ppljoq follows from (4.22), (4.23), and
(4.25), thus yielding (4.17), which concludes the proof. O
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Throughout the rest of this section, we provide suitable upper bounds for each one of
the terms on the right-hand side of (4.17). We begin by establishing the corresponding
estimates for ||R|lz and [|Rsllor (cf. (4.13) and (4.15)).

Lemma 4.2.2. There hold

IRl < [[nn, D) D1 = o = p (an @ wa)?| (4.26)

and

IRsllor < £+ div(en)| o — a’,ﬁ”o’ﬂ. (4.27)

1
0,4/3:Q + 5‘

Proof. First, using the definition of the functionals and operators Ry, Fy,, A,,, and
By (cf. (4.13), (3.39), (3.36), (3.37)), along with the fact that 7% : E = 7 : E, for all
E € H, (cf. (3.34)), and Cauchy-Schwarz’s inequality, we deduce that

Ri(E)| = ‘—/Q (ﬁ(ph,thDDh — oy — p(uh®uh)d) :E‘
< 0w, D) Di = o = p (W @ W) Efo0,

which yields (4.26). On the other hand, employing the definition of the functionals
and bilinear form Rs, F, and B (cf. (4.15), (3.41), (3.38)), in conjunction with the
decomposition of the tensor o}, into

(Gh—i-dth)—'—;(ﬂh—dth),

N | —

gy =

the fact that (ah +o' h) € =0, for all £ € L2,(Q), and the Cauchy-Schwarz and
Holder inequalities, we obtain

Ra(¥)] = ‘/Q(Hdiv(ah)) v+ ;/Q(O'h—a'th) :g‘

< [ +divion)],, .o I¥losn + 5 o — ot , €],

which implies (4.27) and ends the proof. O

We now turn to the derivation of the corresponding estimate for [[Rz|[4;. To that
end, we first recall from (4.16) that Ro(7,) = 0 for all 7, € Hap, whence in the

computation of

Ro(T
IRz2ll7, == sup 2(7)

, 4.28
o2 Tl (4.28)
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we can replace each term Ro(7) by Ro(T — 71,), with a suitable 7, € Hap, (cf. (3.125),
(3.126)) depending on the given 7 € H,. Indeed, we first consider the Helmholtz
decomposition (A.19) provided by Lemma A.2.2, with p = 4/3, which says that for
each T € H, there exist ¢ € W3(Q) and & € HY(Q), such that

T = ¢ +eurl(§) in Q and [|Clliase+l€le < CuslTla, o, (4.29)

with a positive constant C,/3 independent of 7. Next, for simplicity of presentation,
we focus on the discrete approach (3.125), which relies on PEERS-based elements of
order ¢ > 0. The AFW-based discretization (3.126) can be handled analogously, using

the BDM interpolation operator instead of the Raviart—-Thomas one. In fact, setting
T, = II5(¢) + curl (Z,(€)) + eI, (4.30)

where TI} and Z, denote the tensor and vector versions of the Raviart-Thomas (or
BDM, in the case of the AFW-based approach) and Clément interpolation operators,
respectively (cf. Appendix A.2). The constant ¢ is chosen so that tr(7;,) has zero
mean value, and hence 75, belongs to Hs,,. Note that TTF(¢) lies in RTy(Q) C Hay (cf.
(3.125)). Also observe that 73, can be interpreted as a discrete Helmholtz decomposition
of 7. In this way, using the second equation of the Galerkin scheme (3.85), together
with the compatibility condition (3.20), we deduce that Ro(cI) = 0, so that denoting

{i=¢ —M}¢) and € =€ —Tu(€),

it follows from (4.29) and (4.30), that

-~ -~

Ra(T) = Ra(T — 1) = Ra(C) + Ra(curl (£)), (4.31)
where, bearing in mind the definition of Ry (cf. (4.14), (3.40)), we find that
Ro(C) = /Q (D +): ¢ + /Q w, - div(®) — (Cv,up) (4.32)

and

-~

Ryfcurl €)) := [ (Dy+):curl(€) - (curl(voup). (439

The following lemma establishes the residual upper bound for |[Ra||%; .
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Lemma 4.2.3. Assume that up € H*(I'). Then, there exists a positive constant C,
independent of A, such that

1/2 1/4
[Ralls < C (z é%() N (z @;K) | (430

KeTy KeTy

where O3 f is defined in (4.4), and
- 2
@%( = h%( HI‘Ot (Dh + ")/h)HO P + Z he

6€8h(K)
+ Z he ||Vups — (Dh+'yh)sH§e.
6€€h(K)ﬂgh(F) ’

(D1 + )l

Proof. We proceed as in [42, Lemma 3.6]. In fact, according to (4.31), we begin by
estimating Ro(C). Let us first observe that, for cach e € &,, the identity (A.12) and
the fact that u,|. € Py(e), yield /CAV -1y, = 0. Hence, locally integrating by parts the

second term in (4.32), we readily obtain

RQ(E):_Z/{Vuh_<Dh+'7h)}:E_ >, /(UD—uh)'CV-

KeT, 'K ecEn (1) 7€

Thus, applying the Holder inequality along with the approximation properties of TIf
(cf. (A.17)—(A.18) in Lemma A.2.1) with p = 4/3 and [ = 0, and the stability estimate
from (4.29), we get

4
0,4, K

Ri@] <64 { 5 k- (21 )|
ReTn (4.35)

1/4
+ > h€||uD_uhHé,4;e} 17 Il diva 50 -
ec&,(T)

-~

Next, we estimate Ro(curl (§)) (cf. (4.33)). In fact, regarding its second term, a
suitable boundary integration by parts formula (cf. [71, eq. (3.35) in Lemma 3.5])
yields

-~ -~

(curl (§)v,up)r = —(Vups,&)r. (4.36)
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~

In turn, locally integrating by parts the first term of Ry(curl (€)), we get

/Q(Dh+7h>  curl (€) = > / rot (D, +75,) - €

KeTy,
- (D + = (Dh+)s- €,
eeszh: /[[ h ’Yh ]] eeszh: / h ’Yh

which together with (4.36), the Cauchy—Schwarz inequality, the approximation proper-
ties of Z,, (cf. Lemma A.2.3), and again the stability estimate from (4.29), implies

o

i@+ )l

‘Rg curl (§) ’ { > hi Hrot (Dp, + 1)
KeT, e€&L ()

1/2
+ Y he|Vups — (Dy+n)s H } 17 laiv, 550

e€&R(T)
(4.37)
Finally, it is easy to see that (4.28), (4.29), (4.35), and (4.37) give (4.34), which ends
the proof. O

We end this section by stressing that the reliability estimate (4.11) (cf. Theorem
4.2.1) follows by bounding each one of the terms ||R||3, [|[Ra2|l#,, and [[Rs]o/, in
Lemma 4.2.1 by the corresponding upper bounds derived in Lemmas 4.2.2 and 4.2.3,
and considering the definition of the global estimator © (cf. (4.1)).

4.2.2 Efficiency

We now aim to establish the efficiency estimate of © (cf. (4.1)). For this purpose,
we will make extensive use of the notations and results from Appendix A.3, and
the original system of equations given by (3.19), which is recovered from the mixed
continuous formulation (3.35) by choosing suitable test functions and integrating by
parts backwardly the corresponding equations. The following theorem is the main

result of this section.

Theorem 4.2.2. There exists a positive constant Ceee, independent of h, such that
Cote © + hoo.t < [D—Dully + lIp = pulloc, (4.38)

where h.o.t stands eventually for one or several terms of higher order.

Throughout this section we assume, without loss of generality, that up is piecewise

polynomial. Otherwise, if it is not, but it is sufficiently smooth, one proceeds similarly
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to [72, Section 6.2], so that higher order terms given by the error arising from a suitable
polynomial approximation of this function appear in (4.38). This possibility explains

the expression h.o.t. in (4.38).

We begin deriving the efficiency estimate (4.38) by first addressing ©; x and the
first two terms of Oq i (cf. (4.2), (4.3)).

Lemma 4.2.4. For each K € 7T}, there hold
If + div(en)|loassx < [[div(e —on)lloassx (4.39)

and |oy — o} lox < 2|0 —onllox - (4.40)

In addition, there exists a positive constant C, independent of h, such that

[ IDw1) Dy = o = plan @ w)?

(4.41)
< C{HD —Dillox + llo = anllox + [u—upllosrx + ||p_ph||O,K}~

Proof. First, in order to show (4.39) and (4.40), it suffices to recall that f = — div(o)
and o = o' in Q (cf. (3.19)). In turn, for the proof of (4.41), we first use the identity
n(p,ID)D — o —p(u®@u)®=0in Q (cf. (3.19)) and triangle inequality, to deduce

) e

< [n(p.IDI)D = 1(pn,[D4I)Da | + o = Tullo.ic + 0 @ 1 = W © waoe
(4.42)
where, adding and subtracting 77<p, ]Dh\)Dh in the first term on the right-hand side of
(4.42), and using the Lipschitz continuity estimates [43, egs. (4.8) and (4.11)], we find

that there exists positive constants L4, L,, such that

[n(p. DI)D —n(pn, DAl D4
< |n(p.IDI)D = n(p, |Dh‘>DhH07K + [{n(p. Dxl) = n(pn, ‘Dh|)}DhH07K

< L |ID = Dallo,x + Ly [lp — pallo.s -
(4.43)

In turn, proceeding as in (4.23) in combination with the fact that ||ul|p 4.x and |Jup|o.4:x

are bounded by |[ul|o 4.0 and [[up|/o4.0, respectively, with u € W(9) and u, € W(éq),
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there holds
lu@u—w, @ ullox <n' (J[ullosx + lnlloax) [n—unlosx
<0 (Jlulloae + l[unllose) ln = wnllosx (4.44)

<02 (64 0a) [0 — upllo.sx

Finally, replacing back (4.43) and (4.44) into (4.42) we obtain (4.41) and conclude the
proof. O

We remark that the local efficiency estimates for the remaining terms in the
definition of © (cf. (4.1)) have already been established in the literature. These
estimates are derived using the localization technique based on triangle-bubble and
edge-bubble functions (cf. (A.22) and Lemma A.3.4), together with the local inverse
inequality (cf. (A.23)) and the discrete trace inequality (cf. (A.24)). For completeness,

we state the following result.

Lemma 4.2.5. There exist positive constants C;, i € {1,...,5}, all independent of h,
such that

) | T = (D)

< Oy {[[u = wllg g + Pl = Dulli e + Piclly = mlls i} VE € T

0,4, K

b) he ”uD - uh”é,él;e

< C {lu = wplf§ g, + i,

D — Dyllo k. + i,

Y= lox} Vee&nD),
2
¢) hic||rot Dy +m)|, . < Cs {ID=Dulli s + Iy =l VK €T,

d) he

2
[(Dn+)sl|| < Ca {ID =Dl + v —wllia.} Vee&n(®),

e) he

Vups—(Dy+t)s|, < G {ID=Dul . + v —mlds} Ve e &ull),

where K, is the triangle of 7, having e as an edge, whereas w, denotes the union of

the two elements of T, sharing the edge e.

Proof. The estimate a) follows directly from the proof of [41, Lemma 3.15], replacing
t;, therein with Dy, 4 7y, while b) is given in [41, Lemma 3.16]. For ¢) and d), we refer
to [73, Lemmas 4.3 and 4.4]. Finally, the proof of e) follows the same arguments as
those in [74, Lemma 4.15]. O
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We conclude this section by noting that the proof of (4.38) (cf. Theorem 4.2.2)
follows directly from Lemmas 4.2.4 and 4.2.5 and summing the local efficiency estimates
over all K € T7;,. Further details are omitted.

4.3 Numerical results

This section serves to illustrate the performance and accurancy of the proposed mixed
finite element scheme (3.85) along with the reliability and efficiency properties of the
a posteriori error estimator © (cf. (4.1)) derived in Section 4.2. In what follows, we
refer to the corresponding sets of finite element subspaces generated by ¢ = {0,1} as
simply PEERS, and AFW), based discretizations (cf. (3.125), (3.126)). The numerical
methods have been implemented using the open source finite element library FEniCS
[52]. Regarding the implementation of the Newton-type iterative method associated
with (3.85) (see [43, steps (1)-(3) in Section 7] for details), the iterations are terminated
once the relative error of the entire coefficient vectors between two consecutive iterates,

namely coeff” and coeff”"! is sufficiently small, that is,

|coeff™ ! — coeff™ ||por
< tol
ﬂ-m—i-l > tol,
|coe [[oor

where || - ||por stands for the usual Euclidean norm in RP* with DOF denoting the total
number of degrees of freedom defining the finite element subspaces H 4, ﬁg’h, Q1 n,
and Qg (cf. (3.125), (3.126)), and tol is a fixed tolerance chosen as tol = 1E — 06.

The global error and the effectivity index associated to the global estimator © (cf.
(4.1)) are denoted, respectively, by

g t
off) 1= e(D) + ¢(o) + e(w) +e(7) +efp) and ez£(6) =
where
e(D) == D= Dillpa, (@) = o = la,g0, eu) = [u— oo,

e(7) = v = mlloa, and e(p) := [p—pallog-

Moreover, using the fact that DOF~Y/" = h, the respective experimental rates of

convergence are Computed as

_, log(e(<)/2(0))

log(DOF /DOF)

r(o) = for each ¢ € {D, o,u,7,p, E} ,
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where DOF and DOF denote the total degrees of freedom associated to two consecutive
triangulations with errors e(¢) and €(¢), respectively. We stress that, for the sake of
simplicity and clarity of presentation, in the examples considered below we only report
errors and rates of convergence for the most physically relevant unknowns, namely
o, u,p and t = (f),p). We recall that the reliability and efficiency of the global
estimator © (cf. (4.11), (4.38)) are with respect to the full error in t, and therefore we
are particularly interested in the behavior of this error.

The examples to be considered in this section are described next, for which we
consider the regularized viscosity 7(o,w) defined by (3.11). In the first three examples,
for the sake of simplicity, we take pus = 0.1, ug =1, [y =1, d =1 and p = 1. In
addition, it is easy to see for these examples that the boundary data up := u|r satisfy
the required regularity up € H'(I') since the given exact solutions u are sufficiently
regular. In turn, the null mean value of tr(oy,) over Q is fixed via a real Lagrange
multiplier strategy.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error
estimator ©, whereas Examples 2, 3 and 4 are utilized to illustrate the behavior of the
associated adaptive algorithm in 2D and 3D domains with and without manufactured

solution, respectively, which applies the following procedure from [75]:
(1) Start with a coarse mesh 7y, of Q.
(2) Solve the Newton iterative method associated with (3.85) on the current mesh.

(3) Compute the local indicator O for each K € Ty, where
Ok =01k +02x +03x (cf (4.2), (4.3), (4.4)).

(4) Check the stopping criterion and decide whether to finish or go to the next step.

(5) Use Plaza and Carey’s algorithm [76] to refine each K’ € T}, satisfying
O > Cp max{@K . Ke 771} for some Cpe € (0,1).

(6) Define the resulting mesh as the current mesh, and go to step (2).

In particular, in the 2D Examples 2 and 4 below, we set Cpe = {0.25,0.1} for
¢ = {0, 1}, respectively, while in the 3D Example 3, we set Cpc = 0.5.
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Example 4.1: Accuracy assessment with a smooth solution in a

square domain

We first focus on the accuracy of the mixed methods and the properties of the a posteriori
error estimator through the effectivity index eff(©) under a quasi-uniform refinement
strategy. We consider the square domain Q := (0,1)* and set the regularization
parameter to ¢ = 1E — 08. The data f and up are adjusted so that a manufactured

solution of (3.19) is given by the following smooth functions

sin(z1) cos(xs)

u(x) = and  p(x) = exp(z1 + x2),

— cos(z1) sin(xz)

where p € L2(Q), with x = (exp(1) — 1)?. Tables 4.1 and 4.2 shows the convergence
history for a sequence of quasi-uniform mesh refinements for both PEERS, and AFW -
based discretizations, corresponding to ¢ = 0 and ¢ = 1, respectively. The results are
consistent with the theoretical bounds established in [43, Theorem 6.2]. In addition,
we compute the global a posteriori error indicator © (cf. (4.1)) and assess its reliability
and efficiency through the effectivity index. We observe that the estimator remains

uniformly bounded throughout the refinement process.

PEERS-based discretization with ¢ = 0 and quasi-uniform refinement
DOF ‘ h ‘ it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ O ‘ eff(0)
3314 | 0.177 | 14 | 5.5e-01 | — |3.7e-02| — |2.0e01| — |1.0e-00| — | 1.1e-00 | 0.911
16634 | 0.079 | 12 | 2.4e-01 | 1.05 | 1.6e-02 | 1.06 | 7.8e-02 | 1.13 | 4.3e-01 | 1.06 | 5.3e-01 | 0.827
29522 1 0.059 | 12 | 1.8e-01 | 1.03 | 1.2e-02 | 1.03 | 5.8e-02 | 1.08 | 3.2e-01 | 1.04 | 4.0e-01 | 0.812
73874 | 0.037 | 11 | 1.1e-01 | 1.02 | 7.4e-03 | 1.01 | 3.6e-02 | 1.05 | 2.0e-01 | 1.03 | 2.5e-01 | 0.797
209282 1 0.022 | 9 | 6.5e-02 | 1.01 | 4.4e-03 | 1.01 | 2.1e-02 | 1.02 | 1.2e-01 | 1.02 | 1.5e-01 | 0.787
510602 | 0.014 | 8 | 4.2e-02 | 1.01 | 2.8¢-03 | 1.00 | 1.3e-02 | 1.01 | 7.5e-02 | 1.01 | 9.6e-02 | 0.782

AFW,-based discretization with ¢ = 0 and quasi-uniform refinement
DOF ‘ h ‘ it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ () ‘ eff(O)
2369 | 0.177 | 14 | 2.8¢-01 | — | 3.5e-02 | — | 1.6e-01 | — |5.4e-01| — | 5.4e-01| 0.995
11809 | 0.079 | 11 | 1.2e-01 | 1.01 | 1.6e-02 | 1.01 | 7.3e-02 | 1.01 | 2.4e-01 | 1.01 | 2.4e-01 | 1.003
20929 | 0.059 | 10 | 9.3e-02 | 1.01 | 1.2e-02 | 1.01 | 5.5e-02 | 1.01 | 1.8e-01 | 1.01 | 1.8e-01 | 1.004
52289 | 0.037 | 9 | 5.9e-02 | 1.00 | 7.3e-03 | 1.00 | 3.4e-02 | 1.00 | 1.1e-01 | 1.00 | 1.1e-01 | 1.005
147969 | 0.022 | 7 | 3.5e-02 | 1.00 | 4.4e-03 | 1.00 | 2.0e-02 | 1.00 | 6.7e-02 | 1.00 | 6.7e-02 | 1.005
360801 | 0.014 | 6 | 2.2e-02 | 1.00 | 2.8e-03 | 1.00 | 1.3e-02 | 1.00 | 4.3e-02 | 1.00 | 4.3e-02 | 1.005

Table 4.1 [Example 4.1, ¢ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and effectivity index for
the mixed approximations.
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PEERS-based discretization with ¢ = 1 and quasi-uniform refinement

DOF ‘ h ‘ it | e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ O] ‘ eff(0)
7010 | 0.177 | 10 | 1.2e-02 | — | 1.2e-03 | - |4.5e-03| — |[2.6e-02| — |4.6e-02]| 0.559
35210 | 0.079 | 7 | 2.4e-03 | 1.99 | 2.3e-04 | 2.01 | 8.9¢-04 | 2.02 | 5.5¢-03 | 1.93 | 9.5e-03 | 0.572
62498 | 0.059 | 7 | 1.3e-03 | 1.99 | 1.3e-04 | 2.01 | 5.0e-04 | 2.00 | 3.1e-03 | 1.96 | 5.4e-03 | 0.575
156410 | 0.037 | 6 | 5.4e-04 | 1.99 | 5.1e-05 | 2.00 | 2.0e-05 | 2.00 | 1.3e-03 | 1.97 | 2.2¢-03 | 0.579
443138 | 0.022 | 4 | 1.9e-04 | 1.99 | 1.8e-05 | 2.00 | 7.0e-05 | 2.00 | 4.5e-04 | 1.98 | 7.7e-04 | 0.581
1081202 | 0.014 | 4 | 7.8e-05 | 2.00 | 7.3e-06 | 2.00 | 2.9¢-05 | 2.00 | 1.9e-04 | 1.99 | 3.2¢-04 | 0.583

AFW,-based discretization with ¢ = 1 and quasi-uniform refinement

DOF ‘ h ‘ it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(ﬁ) ‘ r(‘E) ‘ C) ‘ eff(0)

5473 1 0.177 | 7 | 6.1e-03 | — | 1.2e-03| — |4.3e-03| — |1.3e-02| - |2.1e-02| 0.600
27433 |1 0.079 | 5 | 1.2e-03 | 2.02 | 2.3e-04 | 2.01 | 8.6e-04 | 2.01 | 2.5e-03 | 2.02 | 4.3e-03 | 0.591
48673 | 0.059 | 5 | 6.7e-04 | 2.01 | 1.3e-04 | 2.01 | 4.8¢-04 | 2.01 | 1.4e-03 | 2.01 | 2.4e-03 | 0.590
121753 | 0.037 | 4 | 2.7e-04 | 2.01 | 5.1e-05 | 2.01 | 1.9e-04 | 2.01 | 5.7e-04 | 2.01 | 9.6e-04 | 0.587
344833 | 0.022 | 3 | 9.4e-05 | 2.01 | 1.8e-05 | 2.00 | 6.8¢-05 | 2.00 | 2.0e-04 | 2.01 | 3.4e-04 | 0.585
841201 | 0.014 | 3 | 3.8¢-05 | 2.00 | 7.3e-06 | 2.00 | 2.8¢-05 | 2.00 | 8.2e-05 | 2.00 | 1.4e-04 | 0.585

Table 4.2 [Example 4.1, ¢ = 1] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and effectivity index for
the mixed approximations.

Example 4.2: Adaptivity in a 2D L-shaped domain

The second example is aimed at testing the features of adaptive mesh refinement after
the a posteriori error estimator © (cf. (4.1)). We consider a 2D L-shaped domain
Q := (0,1)*\ (0.5,1)? and the regularization parameter as ¢ = 1E — 08. The data f

and up are chosen so that the exact solution is given by

sin(m 1) cos(mxs) + o

u(x) =

—0.001
and p(x) = 18 — 10exp () ,

r(x)

—cos(mxy) sin(mza) + 21

with r(x) := (1 — 0.51)* + (22 — 0.51)%. Notice that the pressure field exhibits high
gradients near the vertex (0.5,0.5). Tables 4.3 and 4.4, together with Figure 4.1,
summarize the convergence behavior of the mixed methods applied to a sequence
of quasi-uniform and adaptively refined triangulations of the domain. Suboptimal
convergence rates are observed in the quasi-uniform case. In contrast, adaptive
refinement guided by the a posteriori error indicator © leads to optimal rates and stable
effectivity indices for both PEERS, and AFW,-based discretizations with ¢ = {0, 1}.
The adaptive strategy significantly enhances the efficiency of the method, enabling
high-quality approximations at reduced computational cost. For ¢ = 0, solutions with
improved accuracy in terms of e(f) are obtained using approximately 60% of the degrees

of freedom required by the final quasi-uniform mesh. This reduction is significant,
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especially considering the challenges posed by the nonlinearities involved in the model.
This efficiency is further enhanced for ¢ = 1, where accurate solutions are obtained
using only approximately 10% of the degrees of freedom, highlighting the substantial
advantage of the adaptive approach in this case. Figure 4.2 displays the initial mesh
and some approximate solutions computed with the adaptive PEERS;-based method,
using ©, on a mesh with 706,301 degrees of freedom and 13,061 triangles. These
results confirm that the pressure exhibits strong variations in the contraction region.
Additionally, Figure 4.3 shows examples of adapted meshes for the mixed methods
when ¢ = 1. As expected, the refinement is concentrated near the reentrant corner of

the 2D L-shaped domain, revealing the indicator’s ability to effectively localize the

singularity.
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Figure 4.1 [Example 4.2] Log-log plot of e(t) vs. DOF for quasi-uniform/adaptive
refinements for PEERS, and AFW,-based discretizations with ¢ = {0,1} (top and
bottom plots, respectively).
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PEERS,-based discretization with ¢ = 0 and quasi-uniform refinement
DOF ‘ h ‘ it | e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ C) ‘ eff(O)
1028 | 0.280 | 15 | 8.0e-00 - 1.9e-01 - 7.0e-01 - 19.9e-00 - 9.8e-00 | 1.009
4601 | 0.141 | 18 | 4.9e-00 | 0.64 | 9.0e-02 | 0.97 | 3.4e-01 | 0.97 | 5.8¢-00 | 0.72 | 5.7e-00 | 1.016
18491 | 0.071 | 15 | 2.7e-00 | 0.86 | 4.4e-02 | 1.04 | 1.8e-01 | 0.94 | 3.1e-00 | 0.89 | 3.1e-00 | 1.022
67811 | 0.038 | 13 | 1.7e-00 | 0.71 | 2.3e-02 | 0.99 | 9.8e-02 | 0.91 | 1.9e-00 | 0.74 | 1.9e-00 | 1.023
267785 | 0.019 | 12 | 9.2¢-01 | 0.91 | 1.1e-02 | 1.01 | 5.0e-02 | 0.96 | 1.0e-00 | 0.92 | 1.0e-00 | 1.020
752408 | 0.011 | 11 | 5.2e-01 | 1.12 | 6.8e-03 | 1.00 | 2.9¢-02 | 1.06 | 5.8e-01 | 1.11 | 5.7e-01 | 1.018

PEERS,-based discretization with ¢ = 0 and adaptive refinement via ©

DOF | it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(?) ‘ r(E) ‘ €] ‘ eff(O)
1028 | 15 | 8.0e-00 1.9e-01 7.0e-01 9.9¢-00 9.8e-00 | 1.009
3857 | 17 | 5.1e-00 | 0.68 | 1.0e-01 | 0.90 | 3.6e-01 | 1.02 | 6.0e-00 | 0.77 | 6.0e-00 | 0.999
5189 | 17 | 3.7e-00 | 2.11 | 8.9e-02 | 0.92 | 2.7e-01 | 1.92 | 4.5e-00 | 1.98 | 4.5e-00 | 0.979
16997 | 14 | 2.2e-00 | 0.90 | 5.0e-02 | 0.98 | 1.4e-01 | 1.15 | 2.6e-00 | 0.94 | 2.6e-00 | 0.967
47183 | 14 | 1.3e-00 | 1.03 | 3.3e-02 | 0.82 | 8.6e-02 | 0.91 | 1.5e-00 | 1.00 | 1.6e-00 | 0.967
184580 | 13 | 6.6e-01 | 0.98 | 1.6e-02 | 1.03 | 4.2e-02 | 1.05 | 7.8e-01 | 1.00 | 8.1e-01 | 0.962
710489 | 12 | 3.5e-01 | 0.94 | 8.1e-03 | 1.03 | 2.2¢-02 | 0.96 | 4.1e-01 | 0.95 | 4.2e-01 | 0.966

AFW,-based discretization with £ = 0 and quasi-uniform refinement
DOF ‘ h ‘ it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ O ‘ eff(0)
7451 0.280 | 19 | 7.9¢-00 | — | 1.8¢-01 | — |8.0e-01 | — ]9.6e-00| — |8.7e00| 1.106
3285 | 0.141 | 19 | 4.7¢-00 | 0.69 | 9.0e-02 | 0.96 | 3.3e-01 | 1.18 | 5.5e-00 | 0.75 | 5.2e-00 | 1.061
13117 1 0.071 | 18 | 2.5e-00 | 0.90 | 4.4e-02 | 1.04 | 1.5e-01 | 1.16 | 2.9e-00 | 0.93 | 2.8e-00 | 1.039
47997 | 0.038 | 17 | 1.6e-00 | 0.70 | 2.3e-02 | 0.99 | 8.1e-02 | 0.93 | 1.8e-00 | 0.73 | 1.8e-00 | 1.032
189285 | 0.019 | 17 | 8.7e-01 | 0.91 | 1.1e-02 | 1.01 | 4.2e-02 | 0.94 | 9.7e-01 | 0.92 | 9.4e-01 | 1.030
531593 | 0.011 | 16 | 4.9¢-01 | 1.12 | 6.8e-03 | 1.00 | 2.4e-02 | 1.09 | 5.4e-01 | 1.11 | 5.3e-01 | 1.028

AFW,-based discretization with ¢ = 0 and adaptive refinement via ©

DOF ‘ it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ ) ‘ eff(O)
745 119 | 7.9e-00 | — | 1.8¢e-01 | — |8.0e01| — ]9.6e-00| — |8&87e00]| 1.106
2685 | 19 | 4.9¢-00 | 0.74 | 9.9e-02 | 0.95 | 3.6e-01 | 1.25 | 5.8¢-00 | 0.80 | 5.4e-00 | 1.064
3517 | 19 | 3.6e-00 | 2.32 | 9.1e-02 | 0.63 | 2.4e-01 | 2.83 | 4.3e-00 | 2.16 | 4.1e-00 | 1.052
11729 | 18 | 2.1e-00 | 0.91 | 4.8e-02 | 1.07 | 1.0e-01 | 1.46 | 2.4e-00 | 0.96 | 2.4e-00 | 1.026
30457 | 18 | 1.3e-00 | 0.98 | 3.3e-02 | 0.76 | 5.7e-02 | 1.20 | 1.5e-00 | 0.96 | 1.5e-00 | 1.015
118453 | 17 | 6.8e-01 | 0.96 | 1.7e-02 | 1.03 | 2.9e-02 | 1.02 | 7.9¢-01 | 0.97 | 7.8e-01 | 1.016
462749 | 15 | 3.5e-01 | 0.96 | 8.3e-03 | 1.02 | 1.5e-02 | 0.98 | 4.1e-01 | 0.97 | 4.0e-01 | 1.017

Table 4.3 [Example 4.2, ¢ = 0] Comparison of the mixed approximations with quasi-
uniform and adaptive refinements for the u(7)-rheology model.

Example 4.3: Adaptivity in a 3D L-shaped domain

Here, we replicate the Example 4.2 in a three-dimensional setting but now considering
the 3D L-shaped domain © = (0,1) x (0,0.5) x (0,1) \ (0.5,1) x (0,0.5) x (0.5,1), the

regularization parameter as ¢ = 1E — 06, and the manufactured exact solutions given
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PEERS-based discretization with ¢ = 1 and quasi-uniform refinement
DOF ‘ h ‘ it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ O] ‘ eff(0)
2171 | 0.280 | 16 | 3.4e-00 - 2.4e-02 | — |24e01| - |38e-00| — |3.9e00| 0.979
9734 | 0.141 | 14 | 1.9e-00 | 0.75 | 5.6e-03 | 1.95 | 9.1e-02 | 1.28 | 2.1e-00 | 0.80 | 2.1e-00 | 1.021
39143 | 0.071 | 12 | 1.1e-00 | 0.77 | 1.3e-03 | 2.13 | 3.2e-02 | 1.50 | 1.2e-00 | 0.82 | 1.2e-00 | 1.028
143573 1 0.038 | 9 | 3.5e-01 | 1.80 | 3.5e-04 | 1.99 | 1.3e-02 | 1.39 | 3.7e-01 | 1.78 | 3.6e-01 | 1.032
567023 | 0.019 | 7 | 1.2e-01 | 1.53 | 8.8e-05 | 2.00 | 4.1e-03 | 1.66 | 1.3e-01 | 1.54 | 1.3e-01 | 1.034
1593242 | 0.011 | 5 | 3.9e-02 | 2.22 | 3.1e-05 | 2.00 | 1.3e-03 | 2.28 | 4.1e-02 | 2.22 | 4.0e-02 | 1.029
PEERS,-based discretization with ¢ = 1 and adaptive refinement via ©

DOF | it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ C) ‘ eff(O)
2171 1 16 | 3.4e-00 | — | 24e-02| — |24e-01| — |3.800| — |3.9e00| 0.979
8267 | 14 | 1.9e-00 | 0.90 | 6.3e-03 | 2.00 | 9.7e-02 | 1.32 | 2.0e-00 | 0.95 | 2.0e-00 | 1.024
10547 | 14 | 1.2e-00 | 4.04 | 6.2e-03 | 0.08 | 3.9¢-02 | 7.56 | 1.2e-00 | 4.17 | 1.3e-00 | 0.965
14948 | 13 | 4.6e-01 | 5.25 | 5.4e-03 | 0.83 | 1.9e-02 | 4.17 | 5.1e-01 | 4.98 | 5.8¢-01 | 0.880
57371 | 11 | 1.3e-01 | 1.87 | 1.4e-03 | 2.05 | 5.4e-03 | 1.85 | 1.5e-01 | 1.87 | 1.6e-01 | 0.891
179354 | 9 | 4.7¢-02 | 1.80 | 3.6e-04 | 2.33 | 1.9¢-03 | 1.87 | 5.2¢-02 | 1.82 | 5.6e-02 | 0.918
706301 | 7 | 1.2e-02 | 2.00 | 9.1e-05 | 2.02 | 4.7e-04 | 2.01 | 1.3e-02 | 2.00 | 1.4e-02 | 0.916

AFW ,-based discretization with £ = 1 and quasi-uniform refinement

DOF ‘ h ‘ i ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ (C) ‘ eff(O)
1702 | 0.280 | 15 | 3.3e-00 - 2.4e-02 | — | 2.3e-01 — 13.6e-00 | — | 3.5e-00| 1.027
7597 | 0.141 | 13 | 1.9e-00 | 0.76 | 5.5e-03 | 1.95 | 9.0e-02 | 1.27 | 2.0e-00 | 0.81 | 1.9e-00 | 1.035
30490 | 0.071 | 11 | 1.1e-00 | 0.73 | 1.3e-03 | 2.12 | 3.1e-02 | 1.56 | 1.2e-00 | 0.77 | 1.1e-00 | 1.033
111760 | 0.038 | 8 | 3.5e-01 | 1.82 | 3.5e-04 | 1.99 | 1.3e-02 | 1.37 | 3.6e-01 | 1.80 | 3.5e-01 | 1.033
441202 | 0.019 | 6 | 1.2e-01 | 1.54 | 8.8e-05 | 2.01 | 4.0e-03 | 1.66 | 1.3e-01 | 1.54 | 1.2e-01 | 1.028
1239529 | 0.011 | 5 | 3.8e-02 | 2.23 | 3.1e-05 | 2.00 | 1.2e-03 | 2.30 | 3.9e-02 | 2.24 | 3.9e-02 | 1.020

ct

AFW,-based discretization with £ = 1 and adaptive refinement via ©

DOF | it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(‘E) ‘ r(ﬁ) ‘ €] ‘ eff(O)
1702 | 15 | 3.3e-00 2.4e-02 2.3e-01 3.6e-00 3.5e-00 | 1.027
5893 | 14 | 1.8e-00 | 0.96 | 7.4e-03 | 1.88 | 9.5e-02 | 1.45 | 1.9¢-00 | 1.01 | 1.9¢-00 | 1.020
7456 | 13 | 1.1e-00 | 3.98 | 7.3e-03 | 0.04 | 3.4e-02 | 8.73 | 1.2e-00 | 4.10 | 1.2¢-00 | 0.967
12022 | 13 | 4.7e-01 | 3.72 | 5.6e-03 | 1.19 | 1.3e-02 | 4.06 | 5.0e-01 | 3.65 | 5.4e-01 | 0.931
43087 | 11 | 1.4e-01 | 1.91 | 1.5e-03 | 2.09 | 4.1e-03 | 1.81 | 1.5e-01 | 1.91 | 1.6e-01 | 0.934
137791 | 9 | 4.7e-02 | 1.84 | 3.9e-04 | 2.28 | 1.5e-03 | 1.69 | 5.1e-02 | 1.84 | 5.3e-02 | 0.951
534541 | 6 | 1.2e-02 | 1.98 | 9.7e-05 | 2.04 | 4.1e-04 | 1.96 | 1.3e-02 | 1.98 | 1.4e-02 | 0.954

Table 4.4 [Example 4.2, ¢ = 1] Comparison of the mixed approximations with quasi-
uniform and adaptive refinements for the yu(7)-rheology model.

sin(x1) cos(xz) cos(xs)
u(x) = | —2 cos(xy)sin(xy) cos(w3) and p(x) =80 — 40exp (

cos(y) cos(xs) sin(zs)

—0.0001)
r(x) )
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Figure 4.2 [Example 4.2] Initial mesh, computed magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.

with r(x) := (z; — 0.505)* + (23 — 0.505)%>. The convergence history for a set of
quasi-uniform and adaptive mesh refinements using both PEERS; and AFW-based
discretizations is shown in Table 4.5, along with Figure 4.4. We observe a considerable
increase in the number of degrees of freedom in the PEERSy-based scheme compared
to the AFW one. For this reason, and due to computational limitations, we report
results for only four meshes in the case of the PEERSy-based discretization. This
is mainly explained by the fact that the symmetric part of the velocity gradient is
approximated using P3(€2) and P;(£2), respectively. Nevertheless, in both cases we
observe disturbed convergence under quasi-uniform refinement and optimal convergence
rates when using adaptive refinement guided by the a posteriori error estimator ©
(cf. (4.1)). The initial mesh and some approximate solutions computed using the
adaptive AFWy-based scheme (driven by ©), with 775,808 degrees of freedom and
13,724 tetrahedra, are displayed in Figure 4.5. Snapshots of three meshes generated
via © are shown in Figure 4.6, where an incipient clustering of elements around the

contraction region can be observed.

Example 4.4: Fluid flow through a 2D cavity with two circular
obstacles

Inspired by Example 3.7, we finally focus on studying the behavior of the regularized
p(I)-rheology model for granular materials in fluid flow through a 2D cavity with two

circular obstacles, without employing a manufactured solution. More precisely, we
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Figure 4.3 [Example 4.2] Three snapshots of adapted meshes according to the indicator
O for PEERS; and AFWj-based discretizations (top and bottom plots, respectively).

consider the domain = (0,1)% \ €., where

Q, = {(331,:172) (11— 1/2)% + (29— 1/3) < 0.12}
U{(:ﬂl,x2) D () —1/2)% + (20— 2/3)% < 0.12} ,

with boundary I', whose part around the circles is given by I'. = 9€).. The model
parameters are chosen as pu; = 0.36, ug = 0.91, I = 0.73,d = 0.05, p = 2500, and the
regularization factor is ¢ = 1E — 03. Notice that the relation between the diameter of
the particles d and the width of the cavity is 1 : 20, whereas the radius of both circular
obstacles is double that of d. The mean value of p is fixed as k = 100, no presence of

gravity is assumed, that is, f = 0, and the boundaries conditions are
u=(022,—-0.1,0" on I'\I. and u=0 on T.,.

In particular, we impose that flows cannot go in nor out through I'., whereas at the

top and bottom of the domain flows are faster in opposite direction. In Figure 4.7,
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PEERS,-based discretization with £ = 0 and quasi-uniform refinement
DOF | h [it]| e(d) [r(o)] e(m) [rm)] e [rlp) ]| e®) [rE)] © |eff(0)
32744 | 0.522 | 18 | 1.3e+01 — 9.8e-02 — 2.1e-00 - 1.6e+01 — 1.2e4+01 | 1.271
296142 | 0.207 | 16 | 6.5e-00 | 0.97 | 4.1e-02 | 1.18 | 8.7e-01 | 1.19 | 7.5e-00 | 1.00 | 6.4e-00 1.181
605245 | 0.164 | 16 | 5.8¢-00 | 0.49 | 3.2e-02 | 1.03 | 6.9¢-01 | 0.98 | 6.6e-00 | 0.55 | 5.6e-00 | 1.168

1651385 | 0.114 | 16 | 5.2e-00 | 0.31 | 2.3e-02 | 1.03 | 4.9¢-01 | 1.03 | 5.8¢-00 | 0.39 | 5.0e-00 | 1.149

PEERS-based discretization with ¢ = 0 and adaptive refinement via ©
DOF | it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ S) ‘ eff(O)
32744 | 18 | 1.3e+01 | - [9.8¢-02| — |21e-00| — | 1.6e+01| — | 1.2e4+01 | 1.271
106606 | 17 | 7.2e-00 | 1.55 | 7.4e-02 | 0.70 | 9.8e-01 | 1.90 | 8.4e-00 | 1.59 | 7.2e-00 | 1.157
374390 | 17 | 5.2e-00 | 0.78 | 6.2e-02 | 0.43 | 4.7e-01 | 1.78 | 5.8e-00 | 0.88 | 5.3e-00 | 1.084

935833 | 17 | 3.8e-00 | 1.05 | 4.1e-02 | 1.36 | 2.5e-01 | 2.08 | 4.1e-00 | 1.12 | 3.9e-00 | 1.061

AFW,-based discretization with ¢ = 0 and quasi-uniform refinement
DOF ‘ h |it ‘ e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(p) ‘ r(p) ‘ e(t) ‘ r(t) ‘ C] ‘ eff(O)
10911 | 0.522 | 11 | 1.3e+01 | — ]9.8e-02 | — [2.0e00| — |1.5e+01 | — | 1.2e+01 | 1.267
94997 | 0.207 | 10 | 6.4e-00 | 1.00 | 4.1e-02 | 1.20 | 8.6e-01 | 1.20 | 7.3e-00 | 1.03 | 6.3e-00 | 1.173
193678 | 0.164 | 10 | 5.7e-00 | 0.51 | 3.2e-02 | 1.04 | 6.8¢-01 | 1.00 | 6.4e-00 | 0.57 | 5.5e-00 | 1.154
525096 | 0.114 | 10 | 5.1e-00 | 0.34 | 2.3e-02 | 1.04 | 4.8¢-01 | 1.03 | 5.6e-00 | 0.41 | 5.0e-00 | 1.126

1595337 | 0.079 | 10 | 4.4e-00 | 0.39 | 1.6e-02 | 1.04 | 3.3¢-01 | 1.05 | 4.7¢-00 | 0.44 | 4.3e-00 | 1.105

AFWg-based discretization with ¢ = 0 and adaptive refinement via ©
DOF [ it | e(a) [r(o)] e(m) [r(w)] e [rlp) | e®t) [rt)[ © |eff(O)
10911 | 11 | 1.3e4+01 | — | 9.8e-02 | — |2.0e-00| - |1.5e+01 | - |1.2e4+01| 1.267
34300 | 11 | 7.0e-00 | 1.64 | 7.4e-02 | 0.72 | 9.7e-01 | 1.93 | 8.2e-00 | 1.66 | 7.2¢-00 | 1.140
114721 | 11 | 5.0e-00 | 0.86 | 6.2e-02 | 0.44 | 4.6e-01 | 1.88 | 5.6e-00 | 0.96 | 5.3e-00 | 1.043
314569 | 10 | 3.6e-00 | 1.01 | 3.9e-02 | 1.41 | 2.3e-01 | 2.02 | 3.9e-00 | 1.09 | 3.8e-00 | 1.013
775808 | 10 | 2.6e-00 | 1.08 | 2.8e-02 | 1.14 | 1.5e-01 | 1.40 | 2.8e-00 | 1.10 | 2.8e-00 | 1.002

Table 4.5 [Example 4.3, ¢ = 0] Comparison of the mixed approximations with quasi-
uniform and adaptive refinements for the u(7)-rheology model.

we display the initial mesh, the computed magnitude of the velocity and symmetric
part of the velocity gradient, and pressure field, which were built using the mixed
PEERS,-based scheme on a mesh with 23,390 triangle elements (actually representing
597,375D0F) obtained via © (cf. (4.1)). Similarly to [43, Example 3 in Section 7|, we
observe higher velocities along the top and bottom boundaries, moving rightward and
leftward, respectively, as anticipated. Additionally, a circulation phenomenon emerges
near the lateral boundaries, driven by the fact that the fluid cannot enter or exit
through the circular obstacles. Most of the variations in both the pressure field and
the magnitude of the symmetric part of the velocity gradient tensor are concentrated
around the circular obstacles. Notably, between the obstacles and in some central
regions of the domain, the magnitude of the symmetric part of the velocity gradient

is either zero or nearly so, indicating zones where the original viscosity n (cf. [43,
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PEERS, AFW,

-w-quasi-uniform refinement|
—»-adaptive refinement
—Ch

—=-quasi-uniform refinement
—»-adaptive refinement
—Ch

10° DoF 108 10* 101’30]: 10°

Figure 4.4 [Example 4.3] Log-log plot of e(t) vs. DOF for quasi-uniform/adaptive refine-
ments for PEERS) and AFW-based discretizations (left and right plots, respectively).

Figure 4.5 [Example 4.3] Initial mesh, computed magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.

eq. (2.9)]) becomes singular and the granular flow remains static. This behavior is
consistent with the velocity field and is properly handled by the mixed formulations
using the regularized viscosity (3.11). The results align with those reported in [43],
now incorporating an adaptive mesh refinement strategy driven by the a posteriori
error indicator ©. Snapshots of some of the adapted meshes are shown in Figure 4.8,
where we can clearly observe refinement concentrated around the obstacles and in
regions where the velocity gradient vanishes or is nearly zero. This confirms that the
indicator © successfully identifies both the singular zones and the areas with large

solution variations, as intended.
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Figure 4.6 [Example 4.3] Three snapshots of adapted meshes according to the indicator
© for the AFWg-based discretization.

) 03 1 28 2.0 156 220
i Pr. bt i

D, | 0 33 o7

0 0,03 007 0.1
et

[, | it

Figure 4.7 [Example 4.4] Initial mesh, computed magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a mixed finite element method was developed and implemented for
analyzing the rheological behavior of granular materials under the p(I) model. The
proposed method proved effective in capturing the inherent complexities of granular
flow, particularly in regimes where transitions between solid and fluid behaviors are
critical. The mixed approach allowed for the simultaneous incorporation of primary
and secondary variables, such as pressure and velocity, ensuring greater accuracy and
numerical stability in large deformation simulations.

One of the main challenges in working with the (/) model is its intrinsic nonlinearity.
Unlike Newtonian fluids where viscosity is constant, in granular materials the friction
(or effective viscosity) is also strongly influenced by normal pressure (or confining
pressure). This coupling between dissipation and pressure leads to highly nonlinear
equations that are significantly more challenging to solve numerically.

Traditional numerical schemes for incompressible fluids - such as pressure-correction
projection methods, typically separate velocity and pressure calculations into distinct
steps. However, this classical approach becomes inadequate for the p(I) model, since
dissipation explicitly depends on pressure, requiring more sophisticated techniques to
ensure simulation accuracy and stability.

The solution approach treated the stress tensor as a new unknown in the system.
This enabled formulating an explicit expression for pressure, using a fixed-point operator
to resolve the stress tensor to pressure dependence. This strategy allowed partial
decoupling of variables and made numerical implementation feasible.

The numerical implementation faced significant convergence challenges, particularly

in regions with very low local deformation rates where system singularities caused
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pronounced numerical instabilities. The use of adaptive meshing allowed for more
precise identification of these singularity regions and helped recover the lost convergence
order in these areas. Additionally, the application of regularization techniques proved
effective in addressing fundamental modeling issues. However, in domains with extensive
singular regions, more intensive regularization was required. This behavior suggests
that investigating alternative regularization schemes - potentially involving modified
variational formulations or non-local operators - could not only improve numerical
stability but also positively impact the continuous formulation of the problem itself.
Despite these difficulties, the developed method demonstrated great potential
for practical applications in geotechnics, material processing, and mining industries.
Future work could explore extending the method to include thermal effects and
material heterogeneities. In summary, this thesis contributed to the advancement of
computational modeling of granular materials, offering a robust and versatile tool for

analyzing complex phenomena in granular rheology.

5.2 Future Work

The development of the mixed finite element method for p(7) rheology presented in
this thesis opens the way for several research directions and improvements. The main

future lines of investigation include:

o Influence of the regularization parameter: Systematic investigation of the
method’s sensitivity to the regularization parameter. Studies could be conducted
to assess how different values of this parameter affect the accuracy and stability of
simulations, especially in highly nonlinear regimes. This would allow establishing

guidelines for the appropriate choice of the parameter in different applied contexts.

« Experimental validation: Comparison of numerical results with experimental
data, such as measurements of velocity profiles, pressure, and deformation in
granular flows. This validation is crucial to consolidate the reliability of the

method and ensure its accuracy in real scenarios.

¢ Cross-validation with other numerical methods: Comparison of the pro-
posed method with other numerical approaches, such as finite difference methods
or particle-based discretizations (e.g., DEM - Discrete Element Method). This
cross-validation would allow identifying relative advantages and limitations of
the developed method.
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« Temporal evolution of the problem: Extension of the method to time-
dependent problems, enabling the dynamic analysis of granular phenomena, such
as the collapse of material columns or debris spreading in geophysical flows. The
incorporation of transient terms in the model would allow studying the temporal
evolution of these phenomena, capturing aspects such as shock wave propagation

and the formation of complex flow patterns.

o Multiphase flows: Study of flows where granular material interacts with fluids
or other phases. A relevant example is the simulation of the collapse of a
column of particles immersed in a fluid, a classic problem that combines granular
solid mechanics with hydrodynamics. Modeling these scenarios would require
integrating the current method with governing equations for the fluid, such as

the Navier-Stokes equations, and implementing phase-coupling techniques.

o Application to real situations with complex geometry: Adaptation of
the method to handle irregular geometries and realistic boundary conditions,
such as landslides, flows in silos, or industrial granular transport processes. This
application would broaden the scope of the method, contributing to solving

practical problems in engineering and geosciences.

In summary, future work could explore the temporal evolution of the problem,
multiphase flows, the influence of the regularization parameter, experimental and
numerical validations, and application to real-world scenarios. These advances would
consolidate the method as a robust and versatile tool for computational modeling of

granular materials in theoretical and practical contexts.
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Appendix A

The hypotheses on the viscosity

A.1 The hypotheses on the viscosity

In this appendix we refer to the regularized viscosity n and the corresponding fulfillment
of the hypotheses (H.1), (H.2), and (H.3). We begin by recalling from (3.11) that

ay 0 az 0

= v Rt x R Al
n(o,w) ote et awte (0,w) €eRT xR™, (A1)
so that
0 ai o Qg G4 0
= — - v R* x R* A2
5570 w) @+e? (@ votmwre? (o,w) ERT xR™, (A.2)
and then

a, 0¢ N as (az /0 +¢) o
wHe)?  (a3\/0+asw+¢)?

V(o,w) € R* x RT.

(A.3)
Thus, in order to satisfy (H.1) and (H.2), we restrict the evaluation of 7, as defined

o) +wgonles) = ¢

by (A.1), to a given rectangle [p;, 02] X [w1,ws] € RT x R, so that 7 is extended by
continuity outside this region, as illustrated in Figure A.1 below.

In this way, it is possible to accomplish the aforementioned hypotheses with positive
constants n; and 7y, depending on g1, 02, wi, we, €, and the coefficients a;, @ € {1, e 4},
defined in (3.10). Note also that, under this modification, one could even get rid of the

parameter €.

On the other hand, regarding (H.3), we show next that it is satisfied with a positive

constant L, depending only on the coefficients ay, a2, and a4 (cf. (3.10)). Indeed, given
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WA

n(o1, w2) n(0,w2) n(02, w)
)
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>
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Figure A.1 Graphic representation of the modified version of the viscosity function 7.

0, X, and w in R", we first deduce from (A.1) and some algebraic manipulations, that

{nte.) = nixw)} o

_Jaw a2 a3 /0 /X W agw(a4w+e)} B
{w—i—e + (Vo+vX)a(o,w,e)a(x,w,e) + a(o,w,e)a(x,w,e) (e=%),

(A.4)

where
a(o,w,e) == az\/o+asw+e,

and analogously for a(x,w,e). In order to bound the right-hand side of (A.4) we first

observe that
a1 W

< a. A5
wte = (A-5)
Then, it is straightforward to show that
Ve oy GBVX VX o g
VO + X a(y,w,e) az\/X +asw+¢ (A.6)
agw a9 Ay W < ® )

a(o,w,e) as(az/o+asw—+e) = as’
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which yield
CLQGg\/E\/%W S % (A?)
(Vo+vx)alow.e)a(x,w,e) ~ as
In turn, it is readily seen that
asw + € . asw + €
a<X7w75) N a3ﬂ+a4w+6 -
which, along with the third inequality from (A.6), imply
asw (agw+¢) <% (A.8)
a(g7w75> a(X’w7‘€) Qyq
Finally, employing (A.5), (A.7), and (A.8) in (A.4), we arrive at
(o, w) = n(xw)|w < Lyle—xl, (A.9)

where, using (3.10),

2a
L=+ 22 = (24— ) V3,
Q4

thus proving (H.3).
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A.2 Preliminaries for reliability

We begin by introducing useful notations to describe local information on elements
and edges. For each K € Tj, let £(K) denote its set of edges, and let &, be the set
of all edges in T, with corresponding diameters h.. We further decompose &, as
En =En(Q)UEL), where £,(Q) :={e€ &, :e CQ}and E(T') :={e€ & e CT}.
For each e € &,, we fix unit normal and tangential vectors, denoted by v, := (v, 15)"
and s, := (—s9,5;)", respectively. When no ambiguity arises, we will simply write
v and s. The usual jump operator [-] across an internal edge e € &,(Q) is defined
for a piecewise continuous tensor valued function ¢ as [¢] := {|x — {|x/, where K
and K’ are the elements of 7, sharing e. Finally, for a scalar field ¢, a vector field

v = (v1,v2)", and a matrix-valued field 7 := (7;;)ax2, we define:

curl (6) (aqa _a¢>t | ourl(v) = ( curl (v;)" ) |

Oxy’ Oy curl (vy)"

rot (v) := % — % and ot (1) == ( rot (711, Ti2) ) 7

Oz Omy rot (721, T22)

where the derivatives involved are taken in the distributional sense.
Let us now recall the main properties of the Raviart—Thomas and Clément interpo-
lation operators (cf. [45], [77]). We begin by defining, for each p > 2n/(n + 2), the

spaces
W,(Q) = {T € H(div,;Q): 7lx € WP(K), VK e Th}, (A.10)
and
RT,(Q) = {T € H(div,;Q): 7|x € RT(K), VK e Th}. (A11)

In addition, we let IIj : W,(Q2) — RT(Q2) be the Raviart-Thomas interpolation
operator, which is characterized for each 7 € W,(€2) by the identities (see, e.g. [45,
Section 1.2.7])

/(Hi(T) : V)ﬁ = /(T v)€ VE€EPi(e), V edge or face e of Ty, (A.12)

e

when k£ > 0, and

[ ) v = [ g VePoi(K), VKT, (A.13)
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when k£ > 1. In turn, given ¢ > 1 such that 1/p+1/q =1, we let
Py(Q) = {v ELYQ): ok € PuK), VK e 7;}, (A.14)
and recall from [45, Lemma 1.41] that there holds
div(IT5 (7)) = Pr(div(T)), VT € W,(Q), (A.15)

where P : L?(Q) — P¢(Q) denotes the standard orthogonal projector with respect to
the L?(Q)-inner product. This operator satisfies the following error estimate (see [45,
Proposition 1.135]): there exists a positive constant Cy, independent of h, such that
for0 <! </+1and 1< p< oo, the following holds

lw = Pr(w)llope < Coh! [wlipe Ywe W(Q). (A.16)

We stress that Py(w)|x = Pi(w|x)Vw € LP(Q), where Py : LP(K) — Py(K) is
corresponding local orthogonal projector. In addition, denoting by P,(£2) the vector
version of Py(Q) (cf. (A.10)), we let P} : L%(Q) — P4(Q) be the vector version of Pj.

. . .. Y}
Next, we collect some approximation proprieties of II;.

Lemma A.2.1. Given p > 1, there exist positive constants C, (5, independent of A,
such that for 0 <[ < /¢, and for each K € 7}, there holds

7 = I, (T)[logs < CrRE Tl VT € WHHP(K) (A.17)
and
|7 v=TI(7) Vope < Cohl™ VP |71 VT EWH(K), Vec&(K). (A.18)

Proof. For the estimate (A.17) we refer to [41, Lemma 3.1], whereas the proof of (A.18)
can be found in [39, Lemma 4.2]. O

Furthermore, denoting by W,(Q2) and RT,(Q2) the tensorial versions of W,({2)
(cf. (A.10)) and RTy(2) (cf. (A.11)), respectively, we let TI; : W,(Q2) — RTy(f2) be

the operator Hi acting row-wise. Then, acording to decomposition (3.30), for each
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7 € W,(2) there holds
. 1
I,(7) i= MWo(7) + o, with = le|/Qtr (m(r)) e R
and  ITj (1) = IL(7) — ¢ T € RT,(Q) N Ho(divas; Q).

Additional approximation properties of II} and Hfl, particularly those involving the
div and div operators, can also be established using (A.15) and (A.16), along with
their tensorial counterparts for IT§ and Pj.

We now recall from [39, Lemma 4.4] a stable Helmholtz decomposition for the
nonstandard Banach space H(div,;€2), which will be used in the forthcoming analysis

for the particular case p = 4/3. More precisely, we state the following result:

Lemma A.2.2. Given p € (1,2), there exists a positive constant C,, such that for each
T € H(div,; Q) there exist ¢ € W'?(Q2) and & € H'(9) satisfying

T=C+curl(§) in @ and [Cllipe+[€le < GliTllav,o- (A19)

On the other hand, let us define X, := {v, € C(Q) : v|x € Py(K) VK € T}
and denote by X}, its vector-valued counterpart. We consider the Clément interpolation
operator Z, : H'(Q) — X, and its vector version Z, : H'(Q2) — X,. Some local
properties of Zj, and consequently of Z,, corresponding to the particular case of [45,

Lemma 1.127] with m = 2, p = 2, and ¢ = 1, are established in the following lemma
(cf. [77]).

Lemma A.2.3. There exist positive constants C; and Cy, such that for each v € H'(Q)
there hold
v = Zp()|o,x < Cihgl|v]iam VK €T (A.20)

and
v = Zn(v)]loe < Cq hi/z ||v||17A(e) VK eé&,, (A.21)

where A(K) := U{K’ €eTh: K'NK # @} and A(e) := U{K’ €Th: K'Ne# @}.
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A.3 Preliminaries for efficiency

For the efficiency analysis of © (cf. (4.1)), we proceed as in [39, 41, 42, 73, 74, 74, 78, 79,
and apply the localization technique based on bubble functions, along with inverse
and discrete trace inequalities. For the former, given K € 7T},, we let 1 be the usual

element-bubble function (cf. [75, eq. (1.5)]), satisfying

Vg € P3y(K), sup(¥g) CK, g =0 on 0K and 0< ¢y <1 in K.
(A.22)
The specific properties of 1 i to be employed in what follows, are collected in the

following lemma, for whose proof we refer to [75, Lemma 3.3].

Lemma A.3.4. Let ¢ be a non-negative integer, and p,q € (1,+00) conjugate to
each other, that is, such that 1/p+1/¢ =1, and K € T,. then, there exist positive
constants ¢y, ¢o, and c3, independent of h and K, but depending on the shape-regularity

of the triangulations (minimum angle condition) and ¢, such that for each u € Py(K)

there hold
/u¢Kv
allulloprx < sup

0vePy (k) ||V]0,6,5 < lllose
and
eohi [k ullogr < [VWk Wlogr < eshi [ ullogx -
In turn, the aforementioned inverse inequality is stated as follows (cf. [45, Lemma
1.138)]).

Lemma A.3.5. Let ¢, [ and m be non-negative integers such that m < [, and let
r,s € [1,400], and K € T,. Then, there exists ¢ > 0, independent of h, K, r and s,
but depending on ¢, [, m and the shape of the triangulations, such that

[ollire < b Y0l sre Vo € Po(K). (A.23)

Finally, proceeding as in [80, Theorema 3.10], that is employing the usual scaling
estimates with respect to a fixed reference element K , and applying the trace inequality
in Whr (f(\ ), for a given p € (1,+00), one is able to establish the following discrete
trace inequality.

Lemma A.3.6. Let p € (1,400). Then, there exists ¢ > 0, depending only on the
shape regularity of the triangulations, such that for each K € Tj, and e € &,(K), there
holds

Wl e < c{BR VI i + PR} Vo€ WH(K). (A.24)
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A.4 A posteriori error analysis: the 3D case

In this appendix, we extend the results from Section 4.2 to the three-dimensional
version of (3.85). Similarly to the previous section, given a tetrahedron K € 7T, we
denote by £k the set of its faces and by &€ the set of all faces in the triangulation
Tn. We then define &, = &,(Q2) U E,(I"), where &£,(2) = {e € &, : e C Q} and
En(l) :={e € & : e C I'}. For each face e € &,, we fix a unit normal vector
V.. Given T = (7;)3x3 € L*(Q) such that 7|x € C(K) for each K € Ty, we define
[T x v.] as the corresponding jump of the tangential trace across e. In other words,
[m xv.] ;= (7|xk — T|x) X Ve, where K and K’ are the tetrahedra in 7, sharing e as a
common face and
(711, T12, T13) X Ve
T X Ve i= | (791, Tog, Toz) X Ve

(7'31, T32, 7'33) X Ve

From now on, when no confusion arises, we simply write v instead of v,, In the sequel

we will also make use of the following differential operators

t
curl (V) VXY o= <6U3 8112 81}1 81}3 6’02 8@1) 7

8@ B 8x3’ 81‘3 B 31’17 83:1 B 8%2

and
t
curl (7'11, 7'12,7'13)

LI'I(T) = | curl (TQI,TQQ,TQ3)t

curl (7'317 T32, 7'33)t

In turn, we will also use the tensor version of the tangential curl operator curlyg,
denoted by curl i, which is defined component-wise by curl (see [38, Section 3] for
details).

We now set for each K € 7T, the local estimator

64 s = [n(pn DUy — o = p (e @ w)  + [l — ot

[(Dr + ) X V]]Hz’e (A.25)

+ b leurl Dy + )|, 4 X e
2

e€&n (K)NE(D)
+ > he ||curls(up) — (Dy, + ) x v 0o
ec&n (K)NE(T) “
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and the global a posteriori error estimator is defined as

3/4 1/2 1/4
@:{zei/f;} +{z@3,K} +{z@§,K} e

KeTy, KeTy, KeTy

where @11’/ ;’( and @3’ , are defined in (4.2) and (4.4), respectively. Accordingly, the
corresponding reliability and efficiency estimates, which represent the analogues of

Theorems 4.2.1 and 4.2.2, are stated as follows.

Theorem A.4.1. Assume that L, and the radii § and d4 satisfy (4.36), and that up is
a piecewise polynomial. Then, there exist positive onstants Cyss and Cle;, independent
of h, such that

Cots © + hoot < |[D=Dplly + lp—prllog < Crar ©. (A.27)

The proof of Theorem A.4.1 follows closely the analysis in Section 4.2, except
for a few aspects that will be discussed below. Specifically, we first observe that the
general a posteriori error estimate given in Lemma 4.2.1, as well as the upper bounds
for [Ri|#; and [|Rs|o (cf. (4.26), (4.27)), remain valid in 3D. Next, we follow [81,
Theorem 3.2] to derive a 3D version of the Helmholtz decomposition for arbitrary
polyhedral domains, as provided by Lemma A.2.2, with p € [6/5,2) (cf. [39, Lemma
3.4]). The corresponding discrete Helmholtz decomposition and the functional R, are
then established and rewritten exactly as in (4.30) and (4.31). Furthermore, to derive
the new upper bounds for || Ral[4; (cf. Lemma 4.2.3), we require the 3D analogue of
the integration by parts formula on the boundary given in (4.36). In fact, using the
identities from [51, Chapter I, 2.17, and Theorem 2.11], we deduce that in this case,
the following holds

(curl €)v,O)r = —(curly(9).§)r,  VEEH(Q), VOeHYAD). (A.28)

In addition, the integration by parts formula on each tetrahedron K € 7T, which is
used in the proof of the 3D analogues of Lemma 4.2.3, becomes (cf. [51, Chapter I,
Theorem 2.11])

Joewl(@ €~ [ a:eurl() = (axv.ox, VaeHlewl;0), vEeH(Q),

where (-, -)ox denotes the duality pairing between H™Y/?(9K) and H'?(0K). As usual,
H(curl; Q) is the space of tensor fields in L?(2) whose curl belongs to L*(Q2). We
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observe that, unlike in the 2D case, assuming up € H*(T') is not necessary for the
reliability analysis, since curl is defined in HY/ 2(I"). Nevertheless, for computational
purposes, in Section 4.3, we assume that up is sufficiently smooth, in which case
curl ;(up) coincides with Vup X v.

Finally, to prove the efficiency of O, we first observe that the term defining @le’/ o (cf.
(4.2)) and the first two terms defining ©3 ;- (cf. (4.3)) are estimated exactly as in the
2D case, following Lemma 4.2.4. For the remaining terms, we establish the following

lemma.

Lemma A.4.7. Assume that up is piecewise polynomial. Then, there exist positive
constants C; for i € {1,...,5}, all independent of h, such that

4

0 ¥ (0 )

< Cy {lla = wnl§ g + PID = Dllf s + By = wlld i} VK €T,

0,4;K
b) he ||uD - uh”é,ll;e
< Cy {|lu—wi§ g, + b, ID = Dalls e, + b, v — Wl .} Ve € &nll),
2
ohmpmanwmmKs&ﬁm—umﬂ+M—mmx}VKen,

d) he

2
(D1 +3) x v < Co{ID = Dulld,, + v =} Ve € &),

2
e) he |lcurls(up) — (Dh+'7h) X VHOe < Cs {HD _DhHg,Ke + H’Y—’VhH?),Ke}a Ve €
En(l),

where K, is the tetrahedron in 7, having e as a face, whereas w, denotes the union of

the two elements in 7, that share the face e.

Proof. For a), we refer again to [41, Lemma 3.15] by using now the local inverse
inequality (A.23) with n = 3, whereas b) follows from [41, Lemma 3.16], (A.24) and
the estimate in a). In addition, for the proof of ¢), we refer to [73, Lemma 4.3], while
the proof of d) follows from [73, Lemma 4.4]. Finally, e) can be derived after a slight
modification of the proof of [74, Lemma 4.15], along with the definition of curlg. [
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