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Abstract

We propose and analyze new mixed finite element methods for a regularized µ(I)-
rheology model of granular flows with an equivalent viscosity depending nonlinearly
on the pressure and the norm of the strain rate tensor. To this end, and besides the
velocity, the pressure and the strain rate, we introduce a modified stress tensor, and
the skew-symmetric vorticity, as auxiliary tensor unknowns, thus yielding a mixed
variational formulation within a Banach spaces framework. The pressure is obtained
through an postprocess suggested by the incompressibility condition of the fluid. A
fixed-point strategy combined with a solvability result for a class of nonlinear twofold
saddle point operator equations in Banach spaces, are employed to show, along with the
classical Banach fixed-point theorem, the well-posedness of the continuous and discrete
formulations. In particular, PEERS and AFW elements of order ℓ ≥ 0 for the stress,
the velocity, and the skew-symmetric vorticity, and piecewise polynomials of degree
≤ ℓ+ n (resp. ≤ ℓ+ 1) for the strain rate with PEERS (resp. with AFW), yield stable
Galerkin schemes. Optimal a priori error estimates are derived and associated rates of
convergence are established. Numerical results confirming the latter and illustrating
the good performance of the methods, are reported. Additionally, we develop the first
reliable and efficient residual-based a posteriori error estimator for its associated mixed
finite element scheme in both 2D and 3D. For the reliability analysis, we employ the
first-order Gâteaux derivative of the global operator involved in the problem, a stable
Helmholtz decomposition in Banach spaces, and local approximation properties of the
Raviart–Thomas and Clément interpolants. In turn, the localization technique based
on bubble functions in local Lp-spaces, and results from previous works are the main
tools yielding the efficiency estimate. Numerical examples illustrating the performance
of the associated adaptive algorithms are reported.
Keywords: granular flows, nonlinear viscosity, mixed finite elements, twofold saddle
point, fixed-point theory, a priori error analysis, a posteriori error analysis, reliability,
efficiency.
Mathematics Subject Classifications (2020): 65N30, 65N12, 65N15, 47H10, 47J26,
76D05, 76T25, 76R05, 35Q79.





Resumo

Propomos e analisamos um novo método de elementos finitos mistos para um modelo
regularizado de reologia µ(I) de escoamentos granulares, com viscosidade equivalente
dependendo não linearmente da pressão e do tensor taxa de deformação. Para isso,
além da velocidade, da pressão e da taxa de deformação, introduzimos um tensor de
tensão modificado e a vorticidade como incógnitas auxiliares, obtendo uma formulação
variacional mista no contexto de espaços de Banach. A pressão é calculada através de
um pós-processamento sugerido pela condição de incompressibilidade do fluido. Uma
estratégia de ponto fixo, combinada com um resultado de solubilidade para uma classe
de equações de operadores não lineares de ponto de sela duplo em espaços de Banach,
é empregada para demonstrar a boa colocação das formulações contínua e discreta.
Em particular, os elementos PEERS e AFW de ordem ℓ ≥ 0 para tensão, velocidade
e vorticidade antissimétrica, e polinômios por partes de grau ≤ ℓ+ n (resp. ≤ ℓ+ 1)
para a taxa de deformação com PEERS (resp. AFW), produzem esquemas de Galerkin
estáveis. Estimativas de erro a priori ótimas e taxas de convergência associadas são
estabelecidas, com resultados numéricos confirmando sua validade e ilustrando o bom
desempenho dos métodos. Adicionalmente, desenvolvemos o primeiro estimador de
erro residual a posteriori confiável e eficiente para o esquema de elementos finitos
mistos associado, em 2D e 3D. Para a análise de confiabilidade, utilizamos a derivada
de Gâteaux de primeira ordem do operador global do problema, uma decomposição
de Helmholtz estável em espaços de Banach e propriedades de aproximação local dos
interpolantes de Raviart-Thomas e Clément. Por sua vez, a técnica de localização
baseada em funções bubble em espaços Lp locais e resultados de trabalhos anteriores
são as principais ferramentas para a estimativa de eficiência. Exemplos numéricos
ilustram o desempenho dos algoritmos adaptativos associados.
Palavras-chave: fluxos granulares, viscosidade não linear, elementos finitos mistos,
ponto de sela duplo, teoria do ponto fixo, análise de erro a priori, análise de erro a
posteriori, confiabilidade, eficiência.
Classificações de Assunto (2020): 65N30, 65N12, 65N15, 47H10, 47J26, 76D05,
76T25, 76R05, 35Q79.



10

Título em português: Métodos de Elementos Finitos Mistos para Escoamentos
Granulares Estacionários: Análise Numérica e Aplicações



Contents

List of Figures 13

List of Tables 15

1 Introduction 1
1.1 Granular Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Continuum models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Numerical methods for continuum models . . . . . . . . . . . . . . . . 6
1.5 Mixed finite elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Elements of Classical Finite Element Theory 17
2.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Operator Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Abstract Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Approximate Abstract Problem - Galerkin Method . . . . . . . 24

2.3 Examples of approximation spaces . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Local Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Local Interpolation Error . . . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Global Interpolation Error . . . . . . . . . . . . . . . . . . . . . 41
2.3.5 Approximability and Order of Convergence . . . . . . . . . . . . 43

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 A priori error analysis for µ(I)-rheology 55
3.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



12 Contents

3.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 The continuous formulation . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 The continuous solvability analysis . . . . . . . . . . . . . . . . . . . . 67

3.4.1 The fixed point strategy . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Well-definedness of the fixed point operator . . . . . . . . . . . 67
3.4.3 Solvability analysis of the fixed point equation . . . . . . . . . . 71

3.5 The Galerkin scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.2 Discrete solvability analysis . . . . . . . . . . . . . . . . . . . . 77
3.5.3 A priori error analysis . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Specific finite element subspaces . . . . . . . . . . . . . . . . . . . . . . 85
3.6.1 Polynomial spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.2 Connection with linear elasticity . . . . . . . . . . . . . . . . . . 86
3.6.3 Examples of stable finite element subspaces . . . . . . . . . . . 86
3.6.4 The rates of convergence . . . . . . . . . . . . . . . . . . . . . . 88

3.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 A posteriori error analysis for µ(I)-rheology 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 A residual-based a posteriori error estimator . . . . . . . . . . . . . . . 98

4.2.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Conclusion and Future Work 123
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 127

Appendix A The hypotheses on the viscosity 135
A.1 The hypotheses on the viscosity . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Preliminaries for reliability . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3 Preliminaries for efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4 A posteriori error analysis: the 3D case . . . . . . . . . . . . . . . . . . 142



List of Figures

1.1 Examples of granular materials. (a) Image of grains from agricultural
production: corn, barley, rice, wheat, millet, beans, lentils; (b) a silo is
a closed storage structure for granular material such as grains, cement,
etc.; (c) loading of a bulk carrier ship; (d) sand production by the
Brazilian company Vale S.A.; (e) production of medication capsules; (f)
landslide in 2022 in the state of Santa Catarina, Brazil. . . . . . . . . 2

1.2 (a) Interactions between particles implemented in the method of Cundall
and Strack [1]. (b) Normal and tangential forces as functions of the
relative normal and tangential displacements (Andreotti et al. [2]). . . 3

2.1 [Example 2.1] Convergence rates of the errors for each unknown u and
σ and the total error, for l = 0 and l = 1. . . . . . . . . . . . . . . . . . 51

2.2 [Example 2.1] Potential u and field σ = ∇u. . . . . . . . . . . . . . . . 51

3.1 [Example 3.1] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field. 91

3.2 [Example 3.2] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field. 93

3.3 [Example 3.3] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field. 95

3.4 [Example 3.4] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field. 95

4.1 [Example 4.2] Log-log plot of e(⃗t) vs. DOF for quasi-uniform/adaptive
refinements for PEERSℓ and AFWℓ-based discretizations with ℓ = {0, 1}
(top and bottom plots, respectively). . . . . . . . . . . . . . . . . . . . 113

4.2 [Example 4.2] Initial mesh, computed magnitude of the velocity and
symmetric part of the velocity gradient, and pressure field. . . . . . . . 116



14 List of Figures

4.3 [Example 4.2] Three snapshots of adapted meshes according to the
indicator Θ for PEERS1 and AFW1-based discretizations (top and
bottom plots, respectively). . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 [Example 4.3] Log-log plot of e(⃗t) vs. DOF for quasi-uniform/adaptive
refinements for PEERS0 and AFW0-based discretizations (left and right
plots, respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 [Example 4.3] Initial mesh, computed magnitude of the velocity and
symmetric part of the velocity gradient, and pressure field. . . . . . . . 119

4.6 [Example 4.3] Three snapshots of adapted meshes according to the
indicator Θ for the AFW0-based discretization. . . . . . . . . . . . . . 120

4.7 [Example 4.4] Initial mesh, computed magnitude of the velocity and
symmetric part of the velocity gradient, and pressure field. . . . . . . . 120

4.8 [Example 4.4] Three snapshots of adapted meshes according to the
indicator Θ for PEERS0 and AFW0-based discretizations (top and
bottom plots, respectively). . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 Graphic representation of the modified version of the viscosity function η.136



List of Tables

3.1 [Example 3.1, ℓ = 0] Number of degrees of freedom, meshsizes, New-
ton iteration count, errors, and rates of convergence for the mixed
approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 [Example 3.1, ℓ = 1] Number of degrees of freedom, meshsizes, New-
ton iteration count, errors, and rates of convergence for the mixed
approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 [Example 3.2, ℓ = 0] Number of degrees of freedom, meshsizes, New-
ton iteration count, errors, and rates of convergence for the mixed
approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 [Example 4.1, ℓ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and
effectivity index for the mixed approximations. . . . . . . . . . . . . . . 111

4.2 [Example 4.1, ℓ = 1] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and
effectivity index for the mixed approximations. . . . . . . . . . . . . . . 112

4.3 [Example 4.2, ℓ = 0] Comparison of the mixed approximations with
quasi-uniform and adaptive refinements for the µ(I)-rheology model. . . 114

4.4 [Example 4.2, ℓ = 1] Comparison of the mixed approximations with
quasi-uniform and adaptive refinements for the µ(I)-rheology model. . . 115

4.5 [Example 4.3, ℓ = 0] Comparison of the mixed approximations with
quasi-uniform and adaptive refinements for the µ(I)-rheology model. . . 118





Chapter 1

Introduction

1.1 Granular Materials

Granular materials consist of macroscopic particles, visible to the naked eye, ranging
in size from a few micrometers to several millimeters or more.

As a first example of granular materials, we highlight the production of grains
and cereals. The origins of cereal cultivation date back approximately 10,000 years, a
process involving transportation, storage, and currently, industrialization. According
to reports by the Food and Agriculture Organization (FAO) [3], cereals — corn, rice,
wheat, barley, and sorghum — lead global agricultural production with 3.1 billion
tons. In comparison, other crops show smaller volumes: 2.3 billion for sugar, 1.2
billion for vegetables, 1.2 billion for oilseeds, 1 billion for fruits, and 900 million for
roots and tubers. It is further clarified that improving cereal production techniques
will be essential to meet the increasing demand by 2033. The report emphasizes that
around 70% of the projected increase will come from grains productivity, not territorial
expansion. This highlights the need to refine agricultural techniques to reduce losses
and enhance efficiency (Food and Agriculture Organization of the United Nations [3]).

Another significant example is sand mining. Sand, considered the second most
extracted resource in the world, is widely used from construction to the manufacture
of silicon chips. Global sand consumption reaches between 40 and 50 billion tons per
year, with demand tripling in recent decades due to urbanization and infrastructure
growth. Most of this resource is extracted from rivers, beaches, and seabeds (Gallagher
and Peduzzi [4]).

Numerous other examples of granular materials are found in industrial processes,
such as in pharmaceutical, agricultural inputs industries, in construction, in coastal
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sediment management through the addition or removal of sand on beaches, in geological
phenomena like landslides, desert dynamics, and hail (Fig. 1.1).

Considering the importance and abundance of these materials, it is essential to study
the mechanics involved in their flows, allowing for the optimization of the treatment,
management, and processing of granular materials, contributing to greater efficiency,
cost reduction, and sustainability in their industrial applications.

However, the physics of granular materials is challenging due to their hybrid
behavior between solid, liquid, and gas, to their disordered nature, and to the nonlinear
interactions between particles. Factors such as friction, cohesion, and energy dissipation
complicate their modeling. Moreover, the absence of a unified theory and the variation
in behavior at different scales require specific and interdisciplinary approaches for their
study (Andreotti et al. [2]).

(a) (b) (c)

(d) (e) (f)

Figure 1.1 Examples of granular materials. (a) Image of grains from agricultural
production: corn, barley, rice, wheat, millet, beans, lentils; (b) a silo is a closed storage
structure for granular material such as grains, cement, etc.; (c) loading of a bulk
carrier ship; (d) sand production by the Brazilian company Vale S.A.; (e) production
of medication capsules; (f) landslide in 2022 in the state of Santa Catarina, Brazil.

1.2 Discrete models

There are two types of mathematical models widely used to study granular materials:
discrete models and continuous models (studied in this work). Discrete Element Method
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(DEM) are essential tools for studying the behavior of granular media. In this context,
the work of Cundall and Strack [1] is considered one of the first revolutionary studies
on the mathematical and computational modeling of granular flows. They proposed a
method to model the movement of individual granular particles, where each particle is
deformable and interacts with others primarily by contact, including friction, collisions,
and cohesive effects, for example. In this model, interactions between particles are
explicitly represented, considering each contact individually. Particles only interact
when there is an overlap, treated as a small deformation at the contact point (Figure
1.2 (a)).

Contact forces are divided into normal forces, FN , and tangential forces, FT . The
normal force is proportional to the normal overlap, δN , and is modeled by a spring
and a viscous damper, while the tangential force is proportional to the tangential
displacement, δT , and is represented by a spring coupled with a sliding block to capture
Coulomb friction, which depends on the friction coefficient and cohesion between
particles (Figure 1.2 (a) and (b)). The movement of the particles is calculated using
Newton’s Second Law, where acceleration is determined by the sum of contact forces and
gravitational force. Position and velocity are updated numerically Cundall and Strack
[1]. Furthermore, the model considers interactions with rigid boundaries, calculating
contact forces similarly to particle-particle interactions.

Figure 1.2 (a) Interactions between particles implemented in the method of Cundall
and Strack [1]. (b) Normal and tangential forces as functions of the relative normal
and tangential displacements (Andreotti et al. [2]).

With this model, various flows of granular materials have been studied, yielding
remarkable results, as highlighted by Andreotti et al. [2]. These advancements have
allowed a deeper understanding of the dynamics of granular materials, including
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phenomena such as the formation of force chains, the transition between flow regimes,
and behavior under different loading conditions. However, the simulation of large-scale
granular flows still represents a significant computational challenge. The processing
power required to model a sufficient number of particles to capture all relevant features
of these flows is not yet widely available. This limitation restricts the application of
DEM in large-scale problems, such as flows in silos, landslides, or large-scale industrial
processes. Thus, while DEM has revolutionized the study of granular materials, the
search for more efficient and scalable methods remains an active area of research.

1.3 Continuum models

The idea of proposing continuous equations, similar to the Navier-Stokes equations
for Newtonian fluids, has always attracted researchers of granular materials. One of
the first significant contributions was made by Savage and Hutter [5], who proposed
conservation equations for mass and momentum. In this model, it is considered
that the pressure within the granular layer depends only on depth, due to the small
aspect ratio (height much smaller than horizontal extent). The model assumes that
the dissipative nature is determined by basal friction, which follows Coulomb’s law,
associating the shear force with the normal weight on the inclined plane, based on
the friction coefficient and inclination. The layer of granular material is considered
thin relative to the horizontal extent, which allows simplifying the equations using the
shallow water hypothesis and ignoring less relevant terms. Finally, it is assumed that
the velocity along the depth is uniformly distributed, except in regions close to the
base.

But it was the study conducted by GDR-MiDi-Group [6] that established consistent
rheological measurements of dense granular flow properties, unifying experimental and
numerical data obtained in six distinct geometric configurations: plane shear, annular
shear, vertical channel flow, inclined plane flow, heap flow, and rotating drum. The goal
was to identify general patterns, even amidst differences in experimental or simulation
conditions.

Granular flows were characterized into three main regimes, based on the relationship
between inertial and confinement effects, using the inertial number I, defined as

I =
√

2 d |D|√
p/ρ

,
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where d is the particle diameter, D is the shear rate, p is the confining pressure, and ρ
the material density. This dimensionless number allows distinguishing the following
regimes: quasi-static regime, dominated by stable contact networks between particles,
where inertia is negligible; dense inertial regime, where there is balance between inertial
and contact forces; gaseous regime, dominated by binary collisions at high agitation
rates.

It was proposed by Jop et al. [7] that the dissipative nature of granular flows is
intrinsically associated with the frictional behavior between particles. In granular flows,
mechanical energy is continuously dissipated mainly through friction and inelastic
collisions, which makes these systems highly dissipative, especially in dense flow regimes.
To describe this behavior, a constitutive relation for the friction coefficient based on
the inertial number I is defined as:

µ(I) := µs +
(
µd − µs

I + I0

)
I ,

where µs is a critical parameter that defines the static friction coefficient, setting the
critical threshold for dense granular flow to initiate. The parameter µd is the upper
limit value of the friction coefficient when flow occurs at high shear rates, reflecting
the dynamic equilibrium in the high shear regime. The parameter I0 is an adjustment
parameter that controls the transition between low and high shear regimes. Analogous
to viscoplastic fluids, the shear stress τ is a generalization of Coulomb’s law, written
as:

τ = µ(I)p D
|D|

,

thus, the effective viscosity η of the granular continuum is defined by:

η(p, |D|) :=
√

2µ(I)p
|D|

.

In the complete formulation of the continuum mechanics, the Cauchy momentum
conservation equation is:

ρ

(
∂u
∂t

+ (∇u)u
)

= div(σ) + ρg ,

where ρ is the material density, g is gravity, and with the stress tensor σ decomposed
as:

σ = η(p, |D|) D︸ ︷︷ ︸
deviatoric term

− p I︸︷︷︸
isotropic term

,
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where the deviatoric term captures viscous effects due to friction. In this model,
friction plays a crucial role in the formation of static zones, where the material exhibits
solid behavior, and in defining the effective viscosity, which increases with applied
pressure. Although other mechanisms, such as inelastic collisions and drag caused
by interstitial fluids, also contribute to energy dissipation, friction is dominant in the
dense flow regime. This frictional model, besides describing energy dissipation, governs
transitions between solid and liquid states, being essential for modeling granular flows
in geophysical and industrial contexts.

The approach proposed by Jop et al. [7] provides a robust quantitative basis and is
validated by experiments in complex three-dimensional configurations, demonstrating
its applicability in a wide range of scenarios, as we will see next.

1.4 Numerical methods for continuum models

In the study presented by Jop et al. [7], the Finite Difference Method was employed,
validated through experimental data obtained from flows on inclined planes and in
an inclined channel with rough walls. The experiments measured surface inclination,
velocity profiles, and flow layer thickness. The simulations demonstrated high accuracy
in reproducing experimental results, confirming the effectiveness of the method and
the constitutive law used to describe dense granular flows in complex configurations.

Since the publication of Jop et al. [7], numerous studies have explored numerical
solutions for the µ(I) rheology equations in different physical scenarios, for example
Lagrée et al. [8], Staron et al. [9], Chauchat and Médale [10], Franci and Cremonesi
[11], Yang et al. [12, 13], whose main characteristics we highlight below.

In the work of Lagrée et al. [8], the problem of granular column collapse was
investigated. For this, the Volume of Fluid (VOF) method was used, an effective
technique for tracking and modeling interfaces between different phases, as in this
case, the interaction between grains and air. The VOF method is based on the
concept of volume fraction c, which indicates the proportion of each phase within the
computational mesh element, that is, c = 1 for the granular fluid, and c = 0 for air, and
when 0 < c < 1, the element comprises the grain-air interface. The volume fraction is
transported by the velocity field u through the advection equation,

∂c

∂t
+ ∇ · (cu) = 0 .
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Additionally, the density ρV OF and viscosity ηV OF of the grain-air mixture are calculated
as weighted and harmonic averages, respectively, of the properties of each phase:

ρV OF = cρgrains + (1 − c)ρair,

ηV OF = 1
c/ηgrains + (1 − c)/ηair

.

Note that if c = 1, then ρV OF = ρgrains and ηV OF = ηgrains, and if c = 0 then ρV OF = ρair

and ηV OF = ηair allowing for an accurate representation of the fluid behavior in each
region. Note that ηgrains ≫ ηair, this means that at the interface between the two
fluids, the mixture flow is governed by air, which has less resistance to movement.
The harmonic average captures this behavior, as it gives more weight to the fluid
with lower viscosity. This is important to ensure that the average viscosity at the
interface is consistent with the physics of the problem. Two configurations were used
to validate simulations: a stationary and incompressible granular layer on an inclined
plane, with analytical solutions for velocity u and pressure p; and a granular layer
under a Newtonian fluid on an inclined plane, simulating a free surface and tracking
the interface via the VOF method. Comparisons were made with analytical and semi-
analytical solutions, the latter obtained by solving the momentum equations for each
layer, considering the boundary conditions at the interface, validating the approach
and preparing the model for more complex problems, such as granular column collapse.

The method was applied to the collapse of granular columns in two dimensions,
with different aspect ratios, and compared with discrete simulations. The results
showed good agreement in the temporal evolution of the column shape and internal
deformations, although the model systematically underestimated the final flow runout,
especially for taller columns.

In the work of Staron et al. [9], models of confined flows in silos were analyzed.
Instead of regularizing the effective viscosity of the granular material, to avoid physically
unrealistic and numerically problematic situations, a limitation of ηgrains by a parameter
ηmax was considered,

ηgrain = min
{
µ(I)p
|D|

, ηmax

}
.

The VOF method’s density and viscosity equations, in this case, are given by,

∂c

∂t
+ ∇ · (cu) = 0 ,

ρV OF = cρgrains + (1 − c)ρair ,
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ηV OF = cηgrains + (1 − c)ηair .

The validation compares the µ(I) model with discrete models for granular flow in silos.
The continuum model qualitatively captures the discharge rate, velocity, and pressure.
However, discrepancies may occur in areas of slow deformation.

In turn, Chauchat and Médale [10] proposed a three-dimensional model based on
µ(I) rheology, using the Finite Element Method (FEM) with primal formulation. They
used d as the length scale,

√
d/|g| as the time scale, and ρ|g|d as the stress scale. Four

different regularization methods were studied:
Simple Regularization

ηs
p = µsp

|D| + ϵ
+ (µd − µs)p
I0

√
p+ |D| + ϵ

,

where ϵ is a small regularization parameter.
Mixed Bercovier-Engelman Regularization

ηbe
p = µsp√

|D|2 + ϵ2
+ (µd − µs)p
I0

√
p+ |D| + ϵ

.

Mixed Papanastasiou Regularization

ηpapa
p = µsp

1 − e−|D|/ϵ

|D|
+ (µd − µs)p
I0

√
p+ |D| + ϵ

.

Chauchat-Médale Regularization (based on Bercovier-Engelman)

ηmc
p =

[
µs + (µd − µs)|D|

I0
√
p+ |D|

]
p√

|D|2 + ϵ2
.

The numerical model was validated against analytical solutions for vertical chute and
inclined plane flows, showing excellent agreement with theoretical velocity profiles.
Applied to granular heap flows and cylinder interactions, it accurately predicted flow
behavior and drag forces while demonstrating 30-50% faster convergence than non-
regularized approaches. Though limited to moderate deformations by its fixed mesh,
the method’s stability and efficiency make it particularly suitable for industrial granular
transport and geophysical flow simulations.

In the work of Franci and Cremonesi [11] two regularizations are considered and
applied only to the first term of η, since this is responsible for the divergent behavior:
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Exponential Regularization

ηE = pµs(1 − e−|D|/ϵ)
|D|

+ pd(µd − µs)
I0

√
p/ρ+ |D|

.

Penalty Regularization

ηp = pµs√
|D|2 + ϵ2

+ pd(µd − µs)
I0

√
p/ρ+ |D|

.

The problem was implemented in the Particle Finite Element Method (PFEM), suitable
for handling large deformations and free surfaces, which operates in iterative cycles:
first, the domain is discretized into particles carrying material information; then, a
finite element mesh is generated from these particles using algorithms. The governing
equations are solved on the mesh, and the particles are moved and updated based
on the results. The mesh is reconstructed at each time step, allowing the method to
handle large deformations, enabling the simulation of complex granular flows with free
surfaces. For validation, the authors simulated the collapse of granular columns in 2D
and 3D, comparing the results with experimental data and methods such as DEM.
The results showed good agreement with experiments, confirming the accuracy of the
models and the effectiveness of the regularizations, which improved the conditioning of
the linear system and allowed the use of iterative solvers even on refined meshes.

In the study by Yang et al. [12], the authors developed the LBGrain model,
combining the Lattice Boltzmann Method (LBM) with µ(I) rheology to efficiently
simulate granular flows with free surfaces. The LBM, which models fluid dynamics
through the evolution of distribution functions on a structured mesh, proved significantly
faster (up to 23×) than traditional Navier-Stokes-based methods. The treatment of
the grain-air interface was simplified through dynamic cell classification (fluid, empty,
or interface), avoiding the need to explicitly resolve the gas phase. Granular collapse
simulations showed excellent agreement with DEM results, outperforming models with
Bingham rheology. The approach demonstrated potential for large-scale applications,
such as geophysical landslide simulations, with prospects for extension to 3D and
inclusion of non-local effects.

In the work of Yang et al. [13], the problem of granular column collapse was
investigated using the LBM with a new friction boundary condition. To model dense
granular flow, the µ(I) rheology was implemented, which describes the material behavior
as a viscoplastic fluid, where shear stress is limited by the Coulomb criterion. The
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proposed friction boundary condition calculates the wall slip velocity based on the
Coulomb criterion, which states that slip occurs when the wall shear stress exceeds the
wall friction coefficient. For validation, a planar Couette flow was simulated, where
a fluid is sheared between two parallel plates, with the upper plate moving and the
lower plate stationary and frictional. In this study, the lower plate was modeled with
the new friction condition, reproducing analytical velocity profiles and capturing the
transition between no-slip and partial slip regimes. The model was then applied to
2D granular column collapse, comparing with DEM simulations. The extended LBM
model (LBGrain) accurately predicted the temporal evolution of the column shape
and internal flow structures for different initial aspect ratios and inclination angles.
The approach proved computationally efficient and generalizable to complex problems,
such as avalanches.

All the analyzed studies were fundamental for the development and consolidation
of the µ(I) rheology. In particular, the use of classical numerical methods played a
crucial role, as it allowed consolidating the proposed mathematical model, validating
its ability to predict complex behaviors in granular flows in the examples considered in
each work. These methods provided precise tools to simulate and analyze phenomena
such as phase transitions, flow regimes, and particle interactions, demonstrating the
robustness and versatility of the µ(I) model in the studied scenarios. Thus, numerical
methods not only reinforced the theoretical foundation of the model but also expanded
its applicability in practical and complex contexts.

1.5 Mixed finite elements

The µ(I)-rheology model presents significant numerical challenges due to its pressure-
dependent dissipative terms, which complicate the application of classical pressure-
correction schemes Hinch [14] and the classical primal finite element methods designed
for linear problems. Recent advances in Banach spaces-based mixed formulations have
proven particularly effective for analyzing nonlinear continuum mechanics problems, as
demonstrated by applications to Brinkman-Forchheimer, Darcy-Forchheimer, Navier-
Stokes, Boussinesq, and coupled flow-transport, and fluidized beds are some of the
respective models addressed, and a non-exhaustive list of the corresponding references
includes Benavides et al. [15], Camaño et al. [16], Caucao et al. [17], Caucao and
Yotov [18], Colmenares et al. [19, 20], Colmenares and Neilan [21], Gatica et al. [22].
The most distinctive feature of a mixed formulation is the incorporation of additional
unknowns, usually depending on the original ones of the model, for either physical or
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analytical reasons, obtaining a saddle-point problem where the associated operator
have the form A Bt

B 0

 .
These mixed approaches offer several advantages: they eliminate the need for artifi-
cial augmentation techniques required in classical formulations, provide more physi-
cally consistent frameworks through natural function spaces, and enable momentum-
conservative schemes with direct approximation of physically relevant variables. For
the µ(I)-rheology model specifically, this mixed Banach framework could allow direct
computation of key quantities like strain rate tensor, shear rate, inertia number, and
vorticity without the accuracy loss associated with numerical differentiation.

It is well known that adaptive algorithms based on a posteriori error estimates
are particularly effective in recovering the loss of convergence orders often observed in
standard Galerkin procedures, such as finite element and mixed finite element methods.
This is especially true when these methods are applied to nonlinear problems, where
singularities or high gradients in the exact solutions are present. In this context,
the study of a posteriori error estimators for saddle-point problems has been widely
developed in the literature by various authors (see, e.g., Ainsworth and Oden [23],
Alonso [24], Carstensen [25], Carstensen and Dolzmann [26], Lonsing and Verfürth
[27], Repin et al. [28], and references therein). In particular, this powerful approach
has been successfully applied to the Navier–Stokes equations, both with constant and
nonlinear viscosity, as well as to related models. We refer to pioneering works such as
Oden et al. [29], Verfürth [30], and Verfürth [31], as well as to [32, Section 9.3], where
the first contributions to derive an a posteriori error analysis for the incompressible
Navier–Stokes problem in its classical velocity-pressure formulation were introduced.
Later, the a priori and a posteriori error analysis for the dual mixed finite element
method of the Navier–Stokes problem were proposed and developed in Farhloul et al.
[33]. Additionally, we mention Allendes et al. [34], where the authors extend these
contributions to the case of Dirac measures, and Kanschat and Schötzau [35], which
provides an a posteriori error analysis for a Discontinuous Galerkin scheme that offers
exactly divergence-free approximations of the velocity. Meanwhile, adaptive methods
for augmented-mixed formulations for the Navier–Stokes problem with constant and
variable viscosity were developed in Gatica et al. [36] and Camaño et al. [37], respectively.
We also refer to Caucao et al. [38], where the authors developed an a posteriori error
analysis for a fully-mixed formulation of the Navier–Stokes/Darcy coupled problem with
nonlinear viscosity. In this work, a suitable first-order Gâteaux derivative of the global
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operator involved is employed to derive the corresponding reliability of the estimator.
Furthermore, Camaño et al. [39] is particularly notable for its a posteriori error analysis
of a momentum-conservative Banach space-based mixed finite element method for the
Navier–Stokes problem. In this work, standard duality-based arguments, a suitable
Helmholtz decomposition within Banach frameworks, and classical approximation
properties are combined with small data assumptions to establish the reliability of the
estimators. Similar techniques have been employed in Caucao et al. [40] and Gatica
et al. [41] to develop reliable and efficient residual-based a posteriori error estimators
in both 2D and 3D for Banach space-based mixed finite element methods applied
to the stationary Boussinesq and Oberbeck-Boussinesq systems. Lastly, we refer to
Caucao et al. [42] for a recent a posteriori error analysis of a Banach space-based mixed
formulation for the coupled Brinkman–Forchheimer and double-diffusion equations.

1.6 Thesis objectives

The general objective of this thesis is the development and analysis of mixed finite
element methods for the numerical resolution of µ(I) rheology equations applied to
stationary granular flows. The main focus of this work is creating stable methods
with optimal convergence and proven robustness, capable of handling the inherent
complexities of the µ(I) model.

1.7 Specific objectives

1. Presentation of the Physical Problem and Mathematical Model For-
mulation

• Discuss the most important models for granular material flow.

• Present the physical problem of stationary granular flows and its regularized
mathematical formulation, highlighting its main characteristics such as
nonlinearities, singularities, and the dependence of the effective friction
coefficient on the inertial number I.

2. Mixed Variational Formulation and Choice of Functional Spaces

• Develop a mixed variational formulation for the problem, where the consid-
ered derivatives are in the weak sense.
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• Select appropriate functional spaces for the involved variables, such as
Lebesgue and Sobolev spaces, ensuring that the mathematical properties of
the continuous problem are preserved.

3. Solvability Analysis of the Associated Variational Problem

• Use classical theorems of functional analysis, such as the Lax-Milgram The-
orem, Babuška-Brezzi Theorem, Hölder, Schwarz, and Poincaré inequalities,
to demonstrate the existence and uniqueness of the dual solution associated
with the mixed variational problem.

4. Discretization of the Variational Problem

• Perform the discretization of the variational problem using Lagrange and
Raviart-Thomas interpolants, ensuring compatibility between the discrete
spaces.

• Ensure that the discretization preserves the stability and convergence prop-
erties of the method.

5. Solvability Analysis of the Discretized Problem, Stability and A Priori
Error

• Demonstrate the existence and uniqueness of the solution to the discretized
problem using appropriate functional analysis theorems.

• Perform the stability analysis of the numerical method, ensuring its robust-
ness against variations in the problem parameters.

• Estimate the a priori error, establishing optimal convergence rates for the
proposed method, independent of the problem parameters.

6. Numerical Implementation and Validation

• Implement computationally the developed mixed finite element methods.

• Validate the methods using manufactured analytical solutions that repro-
duce the main characteristics of the µ(I) model, such as nonlinearities,
singularities, and high pressure gradients.

7. A Posteriori Error Analysis

• Define local and global estimators based on the problem residuals.
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• Demonstrate the efficiency and reliability of the residual estimators, ensuring
they provide accurate indicators for mesh refinement.

• Implement an adaptive mesh refinement method, based on residual estima-
tors, to improve solution accuracy in critical regions.

• Compare the adaptive method with the uniform method, showing the
recovery of lost precision in regions determined by the estimators.

8. Numerical Implementation in Practical Applications

• Apply the developed methods to practical problems of granular flows, such
as flow regime transitions and shear zone formation.

• Evaluate the robustness of the methods in complex situations, verifying
their ability to reproduce physically observed phenomena.

1.8 Thesis organization

In Chapter 2 we begin with a brief introduction to the classical theory of mixed
finite elements, considering a model variational problem originating from a problem of
dissipative nature, and applying the Babuška-Brezzi Theory to show the well-posedness
of the problem, both in its continuous version and in its discretized version. We propose
discretized spaces based on Lagrange and Raviart-Thomas interpolations, then we
perform the a priori error analysis. Finally, we implement the numerical method to
an example showing the results predicted by the theory, such as stability and optimal
convergence.

In Chapter 3, we propose and analyze new mixed finite element methods for
a regularized µ(I) rheology model of granular flows, with an equivalent viscosity
depending nonlinearly on the pressure and the Euclidean norm of the symmetric part of
the velocity gradient. For this, in addition to the velocity, pressure, and aforementioned
deformation rate, we introduce a modified stress tensor that includes the convective
term and the antisymmetric vorticity as auxiliary tensor unknowns, resulting in a
mixed variational formulation in the context of Banach spaces. Then, the pressure is
obtained through an iterative post-processing suggested by the fluid incompressibility
condition, which allows us to express this unknown in terms of the aforementioned
stress tensor and velocity. A fixed-point strategy, combined with a solvability result
for a class of nonlinear double saddle-point operator equations in Banach spaces, is
employed to demonstrate, along with the classical Banach fixed-point theorem, the
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well-posedness of the continuous and discrete formulations. In particular, PEERS and
AFW elements of order ℓ greater than or equal to 0 for the stress tensor, velocity,
and antisymmetric vorticity, and piecewise polynomials of degree less than or equal to
ℓ+ n (resp. ℓ+ 1) for the deformation rate with PEERS (resp. with AFW), provide
stable Galerkin schemes. Optimal a priori error estimates are derived, and associated
convergence rates are established. Finally, numerical results confirming these estimates
and illustrating the good performance of the methods are reported.

The contents of this chapter resulted in the following published article:

• [43] S. Caucao, G.N. Gatica, S.R. Medrado, and Y.D. Sobral, Nonlinear
twofold saddle point-based mixed finite element methods for a regularized µ(I)-
rheology model of granular materials. Journal of Computational Physics 520
(2025) 113462.

In Chapter 4, we develop the first reliable and efficient residual a posteriori error
estimator for the 2D and 3D versions of the mixed finite element scheme applied to µ(I)
rheology. This estimator, denoted by Θ, was determined for the 2D and 3D versions
of the mixed finite element methods introduced in Chapter 3. Specifically, we derive
the global estimator Θ formulated in terms of computable local indicators ΘK , each
associated with an element K of a triangulation Th. This allows the identification of
error sources and the design of an adaptive mesh algorithm to improve computational
efficiency. In this context, the estimator Θ is considered efficient and reliable if there
exist positive constants Ceff and Crel, independent of the mesh sizes, such that

Ceff Θ + h.o.t. ≤ ∥error∥ ≤ Crel Θ + h.o.t. ,

where h.o.t. represents one or more higher-order terms. For the reliability analysis,
and due to the nonlinear nature of the problem, we employ the first-order Gâteaux
derivative of the involved global operator, combined with small data assumptions, a sta-
ble Helmholtz decomposition in non-standard Banach spaces, and local approximation
properties of Raviart-Thomas and Clément interpolants. In turn, inverse inequalities,
the localization technique based on "bubble" functions in local Lp spaces, and known
results from previous works are the main tools to obtain the efficiency estimate. Finally,
several numerical examples confirm the theoretical properties of the estimator and
illustrate the performance of the associated adaptive algorithms.

To the best of our knowledge, this work presents the first a posteriori error analysis
of Banach space-based mixed finite element methods for the stationary µ(I) rheology
equations governing granular materials.





Chapter 2

Elements of Classical Finite
Element Theory

2.1 Chapter Introduction

Before addressing the main problem of this work, we will introduce the classical Finite
Element Theory for an abstract problem associated with a Partial Differential Equation
(PDE). The main objective is to ensure that the equivalent abstract problem can be
solved approximately, guaranteeing that this solution is sufficiently accurate and that,
under certain conditions, the approximate solution converges to the exact solution.
The mathematical tools employed in this context are commonly explored in master’s
level PDE courses in Mathematics, with an emphasis on Analysis.

For readers unfamiliar with PDE-related methods, it is relevant to emphasize that
in this work, the presented mathematical objects do not necessarily have a direct
physical interpretation. The associated abstract problem may lack natural or intuitive
justification, as sometimes occurs, for example, with concepts of vector spaces and
linear transformations, frequently addressed in undergraduate Linear Algebra courses.

We emphasize that the mathematical formalism used will be explored without
restriction, following the traditional approach found in the works that form the basis of
this area. The idea is to direct the reader to these sources for more detailed information,
as complete proofs of the theorems employed here will not be presented, except in some
specific cases, such as in convergence error theorems. Among the classical references for
this chapter, we highlight the works in: Raviart and Thomas [44], Ern and Guermond
[45], Gatica [46], Ciarlet [47].

We will introduce some notations and definitions used in the classical theory of
mixed finite elements in Section (2.1). Subsequently, in Section (2.2), we will present a
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variational problem associated with a PDE, highlighting its well-posedness (existence
and uniqueness of the solution, as well as continuous dependence on the data). The
discretization of the problem by the Galerkin method will also be performed. In
Section (2.3), we will construct discretized spaces using the Lagrange and Raviart-
Thomas interpolation theory, emphasizing the approximation errors of the interpolation
operators. Finally, in Section (2.4), we will apply the results to a Poisson problem,
implementing the method and demonstrating its effectiveness.

Preliminary notations

In what follows, Ω is a bounded domain of Rn, n ∈
{
2, 3

}
, with Lipschitz-continuous

boundary Γ, and corresponding outward normal denoted ν. Then, we adopt the usual
notation for Lebesgue spaces Lt(Ω) and Sobolev spaces Wl,t(Ω) and Wl,t

0 (Ω), with l ≥ 0
and t ∈ [1,+∞), whose corresponding norms, either for the scalar and vectorial case, are
denoted by ∥·∥0,t;Ω and ∥·∥l,t;Ω, respectively. In particular, W0,t(Ω) = Lt(Ω), and when
t = 2 we write Hl(Ω) instead of Wl,2(Ω), with the corresponding norm and seminorm
denoted by ∥ · ∥l,Ω and | · |l,Ω, respectively. In addition, given any generic scalar function
space M, we let M and M be its vectorial and tensorial counterparts, respectively,
whereas M′ represents its dual space, whose norm is defined by ∥f∥M′ := sup

0̸=v∈M

|f(v)|
∥v∥M

.

Also, I stands for the identity tensor in Rn×n, and, besides denoting the absolute
value in R, | · | stands for the norms in Rn to Rn×n. In turn, for any vector fields
v = (vi)i = 1,n and w = (wi)i = 1,n, we set the gradient, divergence, and tensor product
operators, respectively, as

∇v : =
(
∂vi

∂xj

)
i,j = 1,n

, div(v) : =
n∑

j = 1

∂vj

∂xj

, and v ⊗ w : = (viwj)i,j = 1,n .

On the other hand, for any tensor fields τ = (τij)i,j = 1,n and ζ = (ζij)i,j = 1,n, we
let div(τ ) be the divergence operator div acting along the rows of τ , and define the
transpose, the trace, the tensor inner product operators, and the deviatoric tensor,
respectively, as

τ t = (τji)i,j = 1,n, tr(τ ) =
n∑

i = 1
τii, τ : ζ : =

n∑
i,j = 1

τijζij , and τ d : = τ − 1
n

tr(τ ) I .

(2.1)
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Furthermore, given t ∈ (1,+∞), we introduce the Banach space

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
, (2.2)

which is endowed with the natural norm defined by

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) .

Then, proceeding as in [46, (1.43), Section 1.3.4], one can easily verify that the following

holds for each t ∈

 (1,+∞) if n = 2
[6/5,+∞) if n = 3

,

⟨τ ν,v⟩ =
∫

Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω) × H1(Ω) , (2.3)

where ⟨·, ·⟩ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ).

Fundamental Concepts in Functional Analysis

Let us list some fundamental notations and definitions for this section. Consider a
vector space X with a norm ∥.∥X .

Basic Spaces and Linear Operators

In functional analysis, a normed vector space (X, ∥·∥X) is called a Banach space when
it is complete - meaning every Cauchy sequence converges in X. This completeness
can be characterized through the convergence of iterative processes: a sequence {xn}
in X converges to some limit x ∈ X if and only if the distance between consecutive
elements tends to zero. Formally, this is expressed as:

lim
n→∞

∥xn − xn+1∥X = 0 ⇔ lim
n→∞

xn = x.

An important subclass of Banach spaces are Hilbert spaces, where the norm is
induced by an inner product. Specifically, a Banach space (H, ⟨·, ·⟩H) is Hilbert if its
norm satisfies:

∥x∥H =
√

⟨x, x⟩H .
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When considering linear mappings between these spaces, we say a linear form
T : X → R is bounded if there exists a constant C > 0 such that:

|T (x)| ≤ C∥x∥X for all x ∈ X.

The collection of all such linear and bounded forms constitutes the dual space of X,
denoted by X ′:

X ′ := {f : X → R | f is linear and bounded}.

This construction can be iterated to obtain the bidual space X ′′ := (X ′)′, which
consists of all linear and bounded functionals on X ′:

X ′′ := {g : X ′ → R | g is linear and bounded}.

The duality pairing between x ∈ X and f ∈ X ′ is often denoted by ⟨f, x⟩X′,X . There
is a canonical injection J : X → X ′′ that satisfies: given x ∈ X,

J(x) = ⟨J(x), f⟩X′′,X = ⟨f, x⟩X′,X , ∀f ∈ X ′ , and ∥J(x)∥X′′ = ∥x∥X .

When J : X → X ′′ is a bijection, we say that the space X is reflexive, then we can
indeed considerer X = X ′′. For linear operators between Banach spaces, the transpose
operator of T : X → Y is defined as the mapping:T t : Y ′ → X ′ such that

⟨T tg, x⟩ = ⟨g, Tx⟩ , ∀g ∈ Y ′, ∀x ∈ Y.

Regarding order structure, for any subset Y ⊆ X, the infimum inf(Y ) represents
the greatest lower bound of Y in X, while the supremum sup(Y ) is the least upper
bound. When these bounds belong to Y itself, they coincide with the minimum and
maximum of Y respectively.

2.2 Operator Equation

Operators in infinite-dimensional spaces generalize fundamental concepts of linear
algebra, such as matrices and eigenvalues, to broader contexts, such as Hilbert spaces
and Banach spaces. We will define a variational problem, which involves bounded
bilinear forms, and obtain the associated operator problem. Then, we will establish the
main theorems that guarantee the solvability of the operator problem. Finally, we will
apply the Galerkin Method, which is based on the idea of approximating the solution
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of a variational problem using finite-dimensional subspaces of the original problem
spaces.

2.2.1 Abstract Problem

LetH andQ be two Banach spaces. Consider the bounded bilinear forms a : H×H → R
and b : H ×Q → R and the linear and bounded forms f : H → R and g : Q → R. We
want to solve the following variational problem:


Find σ ∈ H and u ∈ Q such that
a(σ, τ) + b(τ, u) = f(τ), ∀τ ∈ H,

b(σ, v) = g(v), ∀v ∈ Q.

(2.4)

We say the variational problem (2.4) is well-posed when its solution exists, is unique,
and depends continuously on the data f and g. If this problem can be solved, then it
makes sense to continue the procedure. To verify if the problem (2.4) is well-posed,
we need to consider an abstract problem associated with (2.4), which is obtained by
defining the operators A : H → H ′ and B : H → Q′, such that

A : H → H ′

σ 7→ A(σ) : H → R
τ 7→ ⟨Aσ, τ⟩H′,H = a(σ, τ) ,

and
B : H → Q′

σ 7→ B(σ) : Q → R
v 7→ ⟨Bσ, v⟩Q′,Q = b(σ, v).

If Q is reflexive, i.e., Q′′ = Q, we can define the transpose operator of B, Bt : Q′′ =
Q → H ′ where:

Bt : Q → H ′

u 7→ Bt(u) : Q → R
u 7→ ⟨τ, Btu⟩H,H′ = b(τ, u).
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Then the problem (2.4) can be written as:


Find σ ∈ H and u ∈ Q such that
⟨Aσ, τ⟩H′,H + ⟨Btu, τ⟩Q′,H = f(τ), ∀τ ∈ H

⟨Bσ, v⟩H′,Q = g(v) ∀v ∈ Q.

and the abstract problem associated with (2.4) becomes:


Find σ ∈ H and u ∈ Q such that
Aσ +Btu = f, in H ′

Bσ, = g, in Q′.

(2.5)

The equivalence between (2.4) and (2.5) is in the sense that σ ∈ H and u ∈ Q are
a solution of the first if and only they are is a solution of the second. Therefore, to
verify if the problem (2.4) is well-posed, we will study the associated abstract problem
(2.5). For this, consider the kernel of the operator B, denoted by Ker(B) and defined
by

Ker(B) := {τ ∈ H; Bτ = 0} = {τ ∈ H; b(τ, v) = 0, ∀ τ ∈ Q}.

Also consider the projection operator Π : H → Ker(B) such that the composition
ΠA : Ker(B) ⊂ H → Ker(B)′ is given by ⟨ΠAσ, τ⟩H′,H := a(Πσ, τ) with σ ∈ Ker(B),
τ ∈ Ker(B). Note that we could have defined ΠA : H → H ′, but we prefer to be more
objective. Thus:

⟨ΠAσ, τ⟩H′,H = ⟨Aσ, τ⟩H′,H , ∀σ, τ ∈ Ker(B).

We are now in a position to state the theorem of existence and uniqueness of solutions
to the problem (2.4):

Theorem 2.2.1. The problem (2.4) is well-posed if and only if:

1. ΠA : Ker(B) → Ker(B)′ is injective and norm-preserving (Isomorphism);

2. B : H → Q is surjective.

The proof that (2.2.1) derives from the Gauss technique for systems of linear
equations, where the upper triangular matrix is solved by back substitution followed
by the application of the Closed Range Theorem for Banach spaces that relates the
image of the operator Bt with the kernel of B, Ker(B) (cf. [45, Theorem A.34]). See
details in [45, Theorem A.56].
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Note that for the particular case where a is a continuous and coercive (or H-elliptic)
bilinear form, i.e., there exists α > 0 such that

a(σ, σ) ≥ α∥σ∥2
H , ∀σ ∈ H,

it is easy to see that ΠA is injective. Indeed, given σ, σ̃ ∈ Ker(B) that have the same
image in Ker(B)′ by A, choosing τ = σ − σ̃ we obtain

0 = a(σ − σ̃, τ) = a(σ − σ̃, σ − σ̃) ≥ α∥σ − σ̃∥2
H

which means that σ = σ̃ and A is injective.

Inf-sup conditions

To verify the surjectivity hypotheses of Theorem (2.2.1), we use equivalent hypotheses
known as inf-sup conditions. The equivalence is a consequence of two classical theorems
of Functional Analysis: the Closed Range Theorem (cf. [45, Theorem A.34], [48,
Theorem 2.19]) and the Open Mapping Theorem (cf. [45, Theorem A.35], [48, Theorem
2.6]), which allow characterizing surjective operators. With these new hypotheses,
Theorem (2.2.1) is known as the Babuška-Brezzi Theorem (cf. [45, Theorem 2.34],[49,
Theorem 4.1]). These inf-sup conditions are given by:

1. 
∃α > 0, inf

σ∈Ker(B)
sup

τ∈Ker(B)

a(σ, τ)
∥σ∥H∥τ∥H

≥ α,

∀τ ∈ Ker(B), (∀σ ∈ Ker(B), a(σ, τ) = 0) ⇒ (τ = 0),

2.
∃β > 0, inf

q∈Q
sup
τ∈H

b(τ, v)
∥τ∥H∥v∥Q

≥ β.

Note that the second statement in 1. only provides an injectivity condition for the
abstract operator ΠA.

Now, with the above inf-sup conditions, we can obtain the continuous dependence
on the data according to Theorem (2.2.1), showing that there exists a constant C > 0,
C := C(∥A∥, α, β) such that∥σ∥H ≤ c1∥f∥H′ + c2∥g∥Q′ ,

∥u∥Q ≤ c3∥f∥H′ + c4∥g∥Q′ ,
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with c1 = 1
α
, c2 = 1

β

(
1 + ∥A∥

α

)
, c3 = 1

β

(
1 + ∥A∥

α

)
, and c4 = ∥A∥

β2

(
1 + ∥A∥

α

)
.

Remark 2.1. (Nonlinear case). For the nonlinear operator A, results on existence,
uniqueness, and approximation for dual-dual mixed variational formulations can be
found in [50]. In these formulations, the nonlinear operator A is characterized by being
strongly monotone and Lipschitz-continuous in the appropriate spaces.

2.2.2 Approximate Abstract Problem - Galerkin Method

Now consider two families of finite-dimensional subspaces {Hh}h>0 ⊂ H and {Qh}h>0 ⊂
Q, say N1 and N2, respectively. Then, for each h > 0 we can write the variational
problem: 

Find σh ∈ Hh and uh ∈ Qh such that
a(σh, τh) + b(τh, uh) = f(τh), ∀τh ∈ Hh,

b(σh, vh) = g(vh), ∀vh ∈ Qh.

(2.6)

If for each h > 0 the problem (2.6) is well-posed, and if the families of spaces
{Hh}h>0 ⊂ H and {Qh}h>0 ⊂ Q satisfy the following approximability condition

∀τ ∈ H, lim
h→0

(
inf

τh∈Hh

∥τ − τh∥H

)
= 0, lim

h→0

(
inf

wh∈Qh

∥w − wh∥Q

)
= 0 , (2.7)

then the solution (σh, uh) of (2.6) is an approximate solution to the problem (2.4).

Remark 2.2. First, recall that given a subset Y ⊂ X where X is a normed space, the
distance between x and the subset Y is defined by

dist(x, Y ) := inf
y∈Y

∥x− y∥X .

Therefore, the approximation conditions (2.7) mean that for h > 0 increasingly smaller,
the subspaces Hh and Qh become increasingly larger. We also emphasize that h > 0 only
characterizes a family of indices related to the dimensions N1 and N2 of the considered
finite-dimensional spaces, Hh and Qh, such that h → 0 results in N1, N2 → ∞. We
will provide a geometric interpretation for h later in our discussion.

The verification of the well-posedness of the approximate problem (2.6) is analogous
to that of the problem (2.4), that is, by writing the equivalent abstract problem and
then using Theorem (2.2.1) (cf. [46, Theorem 2.4]). Thus, for each h > 0, we can find
constants αh and βh depending on h > 0.
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The linear system

The approximate problem (2.6) is simply a linear system. To illustrate, let us consider
the particular case where b = 0 and a is coercive (or H-elliptic). Let {ϕ1, ...ϕN} be
a basis of the finite-dimensional space Hh. Then there exist unique real numbers
{U1, ...UN} such that the solution uh can be written as:

uh =
N∑

i=1
Uiϕi

Let A ∈ Rn×n be the stiffness matrix such that

Aij = a(ϕi, ϕj), 1 ≤ i, j ≤ N

and F ∈ Rn the vector with components

Fi = f(ϕi), 1 ≤ i ≤ N.

It is easy to see that

uh is a solution of (2.6) if and only if AU = F .

Due to the approximability condition (2.7), we must have N → ∞, and the existence
and uniqueness of a solution to this linear system may not be guaranteed for every
h > 0 (equivalently for every N). This is why PDE Theory is important - it ensures
that by appropriately selecting the finite-dimensional subspaces, the existence of a
solution to the linear system is guaranteed for any N .

A priori error

In this section, we will obtain a priori estimates for the approximation error ∥(σ, u) −
(σh, uh)∥H×Q, where (σ, u) solves the exact problem (2.4) and (σh, uh) solves the
approximate problem (2.6). Using τ = τh ∈ H and v = vh ∈ Q in (2.4) and (2.6), we
have the following equality:

a(σh, τh) + b(τh, uh) = f(τh) = a(σ, τh) + b(τh, v) ∀τh ∈ Hh,

b(σh, νh) = g(τh) = b(σ, νh) ∀νh ∈ Qh.
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This induces the definition of a Galerkin operator Gh : H×Q → Hh ×Qh such that for
each (ζ, w) ∈ H ×Q, Gh(ζ, w) is the solution of the approximate variational problem

a(ζh, τh) + b(τh, wh) = fζ,w(τh) := a(ζ, τh) + b(τh, w) ∀τh ∈ Hh,

b(ζh, νh) = gζ,w(τh) := b(ζ, νh) ∀νh ∈ Qh.
(2.8)

Remark 2.3. Rewriting the expression (2.8) as

a(ζ − ζh, τh) + b(τh, w − wh) = 0 ∀τh ∈ Hh,

b(ζ − ζh, νh) = 0 ∀νh ∈ Qh,
(2.9)

the left-hand side is a duality in H ×Q, that is:〈
(ζ, w) − (ζh, wh), (τh, vh)

〉
= (0, 0) ∀τh ∈ Hh, ∀νh ∈ Qh,

where (ζh, wh) = Gh(ζ, w). Thus, the operator Gh defines a projection.
Due to Theorem (2.2.1) for approximate problems, Gh is well-defined and bounded

with ∥Gh∥ depending on ∥Ah∥, ∥(ΠAh)−1∥, βh, ∥A∥, and ∥B∥. Taking (ζ, w) = (σ, u),
the solution of (2.4), and (ζh, wh) = (σh, uh), the solution of (2.6), we have Gh(σ, u) =
(σh, uh). It is also easy to see that Gh(ζh, wh) = (ζh, wh). Consequently, we have the
equality:

(σ, u) − (σh, uh) = (I −Gh)
(

(σ, u) − (ζh, wh)
)

∀(ζh, wh) ∈ Hh ×Qh

Finally, using that ∥I −Gh∥ = ∥Gh∥ (cf. [46, Theorem 2.5]), we obtain Cea’s Estimate
(see [46]):

∥(σ, u) − (σh, uh)∥H×Q ≤ ∥Gh∥ dist
(

(σ, u), Xh ×Qh

)
. (2.10)

Certainly, to confirm the convergence of the Galerkin scheme, i.e.,

lim
h→0

∥(σ, u) − (σh, uh)∥H×Q = 0, (2.11)

∥Gh∥ must be independent of h, which means requiring that all the involved constants,
including the norms of the operators ∥Ah∥, ∥(ΠAh)−1∥, βh, ∥A∥, and ∥B∥, and the
discrete inf-sup conditions, αh and βh, be independent of the subspace Hh ×Qh. In
fact, the need for h-independence is better perceived when, instead of deriving Cea’s
estimate through the Galerkin projector Gh, it is obtained by individually analyzing
each of the errors ∥σ − σh∥H and ∥u− uh∥Q. More precisely, with the conditions and
notations of Theorems (2.2.1) and its version for the approximate problem, we obtain
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∥σ − σh∥H ≤
(

1 + ∥A∥
αh

)(
1 + ∥B∥

βh

)
inf

ζh∈Hh

∥σ − ζh∥H + ∥B∥
αh

inf
wh∈Qh

∥u− wh∥Q (2.12)

and
∥u− uh∥Q ≤ ∥A∥

βh

(
1 + ∥A∥

αh

)(
1 + ∥B∥

βh

)
inf

ζh∈Hh

∥σ − ζh∥H

+
(

1 + ∥B∥
βh

+ ∥A∥∥B∥
αhβh

)
inf

wh∈Qh

∥u− wh∥Q.

(2.13)

Remark 2.4. It is important to emphasize that the subspaces Hh and Qh, which define
the Galerkin scheme (2.4), cannot be chosen arbitrarily, as they must satisfy the
hypotheses of the approximate version of Theorem (2.2.1) in addition to satisfying the
approximation condition (2.7). In the next section, we will define some spaces with
such properties for the problems we will study in this work.

2.3 Examples of approximation spaces

The spaces H,Q considered in problem (2.4) are function spaces defined on a subset
Ω of Rn, n ∈ {2, 3}. The finite-dimensional subspaces Hh, Qh considered in problem
(2.6) are obtained by decomposing Ω into small parts and using some approximation
(for example, polynomial interpolation) on each part of the decomposition of Ω. The
finite-dimensional spaces obtained in this way are the Finite Element Spaces. There is
a good variety of finite element spaces in the literature, both in terms of the geometric
shapes that decompose Ω and in terms of the approximation method, for example
polynomial interpolation (cf. [45–47, 51]). However, we will focus on some classical
examples of finite element spaces: the Raviart-Thomas space that approximates vector
fields with normal continuity, and the Lagrange space that approximates continuous
functions. We will consider Ω decomposed into triangles or tetrahedra. After studying
this chapter, readers will be able to analyze similar finite element subspaces from the
literature.

2.3.1 Local Polynomials

In what follows, Ω is a bounded and connected domain of Rn, n ∈ {2, 3}, with
polyhedral boundary Γ, and for each h > 0, Th is a triangulation of Ω. More precisely,
Th is a finite family of triangles (in R2) or tetrahedra (in R3), such that
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(i) Ω =
⋃

K∈Th

K;

(ii) for every K ∈ Th, the interior of K, denoted by K̊, is non-empty (K̊ ̸= ∅);

(iii) K̊i ∩ K̊j = ∅ for every Ki, Kj ∈ Th, Ki ̸= Kj;

(iv) If F = Ki ∩ Kj, Ki, Kj ∈ Th, Ki ̸= Kj, then F is a common face, a common
edge, or a common vertex of Ki and Kj;

(v) diam(K) =: hK ≤ h for every K ∈ Th.

Additionally, to each Th we associate a fixed reference polyhedron K̂, which may or
may not belong to Th, and a family of affine mappings {TK}K∈Th

such that

(a) TK : Rn → Rn, TK(x̂) = BK x̂+ bK for every x̂ ∈ Rn, with BK ∈ Rn×n invertible,
and bK ∈ Rn;

(b) K = TK(K̂) for every K ∈ Th.

Given a triangle K in Rn, where n ∈ {2, 3}, and a non-negative integer k, we define
the spaces

P̃k(K) := {p : K → R : p is a polynomial of degree = k},

and
Pk(K) := {p : K → R : p is a polynomial of degree ≤ k}.

Equivalently, denoting N0 := N ∪ {0} and using multi-index notation, we have that
p ∈ Pk(K) if and only if there exist scalars aα ∈ R for every α := (α1, α2, . . . , αn) ∈ Nn

0

with |α| ≤ k such that
p(x) =

∑
|α|≤k

aαx
α ∀x ∈ K.

Similarly, p ∈ P̃k(K) if and only if there exist scalars aα ∈ R for every α :=
(α1, α2, . . . , αn) ∈ Nn

0 with |α| = k such that

p(x) =
∑

|α|=k

aαx
α ∀x ∈ K.

It is easy to see that the spaces Pk(K) and P̃k(K) have finite dimension, with:

dimPk(K) =
(
n+ k

k

)
, and dim P̃k(K) =

(
n+ k − 1

k

)
.
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The Raviart-Thomas polynomials are defined by:

RTk(K) = Pk(K) ⊕ P̃k(K)x

and are also finite-dimensional spaces with (see Gatica [46], Lemma 3.5)

dimRTk(K) = (n+ k + 1)(n+ k − 1)!
(n− 1)! k! .

2.3.2 Interpolation

Interpolation theory is fundamental for understanding the order of approximation error
in numerical methods, especially in finite element methods. We will detail the concepts
and logic behind the interpolation error estimate.

An interpolation operator Π is a linear operator that acts on functions in an infinite-
dimensional space (such as C(K) or L2(K)) and preserves polynomials of degree up to
k. This means that, for any polynomial p ∈ Pk(K), we have:

Π(p) = p .

Here, Pk(K) is the space of polynomials of degree up to k defined on the element K.
In order to construct the interpolation operator, we choose a basis for Pk(K) that is
determined by the geometry of the element K. For example, in finite elements, this
basis can be associated with the vertices, edges, or faces of K.

The canonical dual basis of Pk(K) consists of linear functionals that evaluate the
coefficients of the polynomials in the chosen basis. These functionals are the coordinate
functions that allow representing any function v in the space X in terms of the basis
of Pk(K).

Interpolation theory provides estimates for the interpolation error ∥v − Π(v)∥X .
These estimates depend on the regularity of the function v and the geometry of the
element K. We will introduce the Lagrange interpolants and the Raviart-Thomas
interpolant next, and calculate the interpolation errors of these interpolants.

Lagrange interpolant

Given K ∈ Th with vertices a1, a2 ... an+1. The barycentric coordinates ϕj = λj(x), 1 ≤
j ≤ n + 1, of any point x ∈ Rn, relative to the (n + 1) points aij, are the (unique)
solutions of the linear system
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

n+1∑
j=1

aijλj = xi, 1 ≤ i ≤ n,

n+1∑
j=1

λj = 1 ,

where A = (aij) with aij for 1 ≤ i ≤ n are the coordinates of the vertex aj for
1 ≤ j ≤ n + 1 and aij = 1 if i = n + 1 is an invertible matrix. Then we can define
λj : Rn → R as:

λj(x) =
n∑

j=1
bijxj + bi,n+1, 1 ≤ i ≤ n+ 1 ,

where B = (bij) = A−1 is the inverse of the matrix A.

Remark 2.5. For n = 2, geometrically we have

λ1(x) = |triangle(x, a2, a3)|
|triangle(a1, a2, a3)|

,

λ2(x) = |triangle(a1, x, a3)|
|triangle(a1, a2, a3)|

,

λ3(x) = |triangle(a1, a2, x)|
|triangle(a1, a2, a3)|

,

where |triangle(., ., .)| denotes the area of the triangle. For n = 3, we simply use the
volume of the tetrahedron. Note that λi(aj) = δij is the Kronecker delta.

Based on [47], Section 2.2, we can state the following unisolvence theorem:

Theorem 2.3.2 (Unisolvence). Let K ∈ Th and p ∈ P1(K). Then p is uniquely
determined by its values at the (n+ 1) vertices ai of K.

Proof. We need to show that for all real µj, 1 ≤ j ≤ n+ 1, the linear system

p(aj) =
∑

|α|≤1
γα(aj)α = µj,

has a unique solution γα, |α| ≤ 1. The dimension of the space P1 is n + 1, which
coincides with the number of vertices aj. Since the matrix of this linear system is
square, it suffices to prove the existence of the solution. The barycentric coordinates
λi satisfy λi(aj) = δij for 1 ≤ i, j ≤ n+ 1. Consider the polynomial defined as:

p(x) =
n+1∑
i=1

µiλi(x).



2.3 Examples of approximation spaces 31

This polynomial satisfies p(aj) = µj for all 1 ≤ j ≤ n+ 1, as required. Therefore, the
polynomial p is uniquely determined by

∀p ∈ P1(K), p(x) =
n+1∑
i=1

p(ai)λi(x) , (2.14)

this completes the proof.

Note that {λi}1≤i≤n+1 is a basis of P1(K). We denote the Lagrange interpolation
operator ΠL,k

K (v) : C(K) → P1(K) by

ΠL,k
K (v) :=

n+1∑
i=1

v(ai)λi(x), ∀ v ∈ C(K).

The Lagrange interpolation in P2 is obtained by also using the midpoints of the
edges of the triangles, aij = 1

2(ai + aj), 1 ≤ i < j ≤ n+ 1, (cf. [47, Section 2.2]), and
the Lagrange interpolation becomes:

∀p ∈ P2(K), p(x) =
n+1∑
i=1

λi(x)(2λi(x) − 1)p(ai) +
∑
i<j

4λi(x)λj(x)p(aij).

There exists Lagrange interpolation Pk, with k > 2, but it is not commonly used in
applications. For other interpolations, see [47, Section 2.2].

The idea is to combine the locally defined polynomials to obtain a finite-dimensional
function space Xk

h such that Xk
h ⊂ C(Ω). This property will allow us to calculate the

approximation error estimate using the norm of the function space C(Ω). Then, given
a triangulation Th of Ω and an integer k ≥ 0, we define the global Lagrange space as

Xk
h :=

{
C(Ω); vK ∈ Pk(K) ∀K ∈ Th

}
.

Then, if X is a sufficiently regular function space, the global Lagrange interpolation
Πk

L,h : X → Xk
h is naturally defined by combining the local interpolations such that

∀K ∈ Th, Πk
L,h(v)|K := ΠL,k

K (v|K) , (2.15)

or, equivalently,

Πk
L,hv =

∑
K∈Th

n+1∑
i=1

v(ai,K)λi,K .

where for each K ∈ Th, ai,K are the n+ 1 vertices of K and λi,K are the n+ 1 basis
functions of P1(K).
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Theorem 2.3.3. Suppose that Ω is a bounded open subset of Rn with piecewise
C1 boundary Γ. Then, if m ≥ n

2 , the space Hm(Ω) is a subspace of C(Ω) and the
canonical injection of Hm(Ω) into C(Ω) is continuous.

Proof. See [44, Theorem 1.6-4].

Raviart-Thomas interpolant

The Raviart-Thomas space is also defined locally so that its assembly produces a
function space where the normal component across each piece is continuous. The
continuity of the normal component is crucial for the consistency of the method,
as it allows the principle of flux conservation to be approximately satisfied in the
discretization. For this, we need the domain of the RT interpolation operator to be
appropriate. In this sense, we have the following theorem:

Theorem 2.3.4. Consider the function space:

Z :=
{
τ ∈ [L2(Ω)]n : τ |K ∈ [H1(K)]n ∀K ∈ Th

}
.

Then
H(div; Ω) ∩ Z =

{
τ ∈ Z : τ · nKi

+ τ · nKj
= 0 in L2(F )

∀Ki, Kj ∈ Th that are adjacent with common face/edge F
}
.

Proof. See [46, Theorem 3.2].

Remark 2.6. The expression τ · nKi
+ τ · nKj

= 0 in L2(F ) implies that
∫

F
(τ · nKi

+ τ · nKj
)ψ = 0 ∀ψ ∈ L2(Ω)

since nKi
= −nKj

, we can write nKF
= nKi

= −nKj
and obtain

∫
F
τ |Ki

· nKF
ψ =

∫
F
τ |Kj

· nKF
ψ ∀ψ ∈ L2(Ω) (2.16)

Before defining the RT space, let us first state a theorem that will show the
unisolvence of the polynomials RTk(K), i.e., that τ ∈ RTk(K) is uniquely determined by
the vertices of the triangle K. Recall that given a vector space X of finite dimension N ,
a set {f1, ..., fN} ∈ X ′ is linearly independent if and only if ∩N

i=1Ker(fi) = {0}. Indeed,
consider the linear transformation Φ : X → Rn defined by Φ(x) := (f1(x), ..., fN(x)).
Note that Φ is injective, since Ker(Φ) = ∩N

i=1Ker(fi) = {0}. Consequently, the matrix
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A such that Φ(x) = Ax for every x in X in some basis of X is invertible. Let c1, ..., cN

be real numbers such that

0 =
N∑

i=1
cifi(x) = ctAx, ∀x ∈ X ,

where c is the column vector of ci. It is easy to see that c = 0, therefore {f1, ..., fN} is
linearly independent.

Theorem 2.3.5 (Unisolvence). Let K ∈ Th and τ ∈ RTk(K) and {ψ1,F , ψ2,F , ..., ψdk,F }
be a basis of Pk(F ) and {ψ1,K , ψ2,K , ..., ψrk,K} be a basis of Pk−1(F ) Assume that

(i)
∫

F
τ · nK ψi,F = 0, 1 ≤ i ≤ dk ∀F face/edge of K, when k ≥ 0;

(ii)
∫

K
τ · nK ψi,K = 0, 1 ≤ i ≤ rk, when k ≥ 1.

Then τ ≡ 0 in K.

Proof. See [46, Theorem 3.3].

Remark 2.7. Theorem (2.3.5) defines Ñ linear and bounded functionals of RTk(K)′,
which for now we will denote by fi, 1 ≤ i ≤ Ñ such that ∩Ñ

i=1Ker(fi) = {0}. As a
consequence, we have that {f1, ..., fÑ} is linearly independent. Note also that

Ñ = (n+ 1) dk + n dim(Pk−1(K)) = dim(RTK) ,

therefore the set of defined functionals is a basis for the dual space of RTk(K). From
the definition of the dual basis, there must exist unique {p1, ..., pÑ} ⊂ RTk(K) such
that fi(pj) = δij, and therefore, given τ ∈ RTk(K), we have

τ(x) =
Ñ∑

i=1
fi(τ)pi(x).

That is, τ ∈ RTk(K) is uniquely determined by the functionals fi, defined in Theorem
(2.3.5), which in turn are uniquely determined by the vertices of K.

We define the global Raviart-Thomas space as

Hh
k :=

{
τ ∈ H(div; Ω) : τ |K ∈ RTk(K) ∀K ∈ T b

h

}
.

Given τ ∈ H(div; Ω) ∩ Z, the linear forms defined in Theorem (2.3.5) i and ii
are called F-moments and K-moments, respectively. All F-moments of τ are mi(τ),
i ∈ {1, 2, 3, .., N1} where N1 = dk × number of faces of Th and all K-moments of τ
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are mi(τ), i ∈ {N1 + 1, N1 + 2, .., N} where N −N1 = rk × number of triangles of Th.
Therefore, the total number of moments of τ is N .

The interpolation operator ΠRT,k
h : H(div; Ω) ∩ Z → Hk

h is defined as

ΠRT,k
h (τ) :=

N∑
j=1

mj(τ)ϕj,

where ϕ1, ϕ2, ..., ϕN are the unique functions in Hk
h such that mi(ϕj) = δij . Equivalently,

ΠRT,k
h (τ) is the unique function in Hk

h such that

mi(ΠRT,k
h (τ)) = mi(τ), ∀i ∈ {1, 2, ..., N}.

Then, for each K ∈ Th we define mi,K(τ), i ∈ {1, 2, · · · , NK}, as the corresponding
local moments, i.e., the F-moments of the faces/edges F of K and the K-moments of
K. Since the number of faces/edges of K is n+ 1, we have that NK = (n+ 1)dk + rk.
Then we define the local interpolation operator ΠRT,k

K : [H1(K)]n → RTk(K) as

ΠRT,k
K (τ) :=

NK∑
j=1

mj,K(τ)φj,K ∀τ ∈ [H1(K)]n,

where, given j ∈ {1, · · · , NK}, φj,K is the unique function in RTk(K) such that

mi,K(φj,K) = δij ∀i ∈ {1, 2, · · · , NK} .

Note that ΠRT,k
h (τ)|K = ΠRT,k

K (τ) ∀τ ∈ H(div; Ω) ∩ Z holds. The following lemma
relates the divergences of the local and global interpolation operators in terms of the
orthogonal projectors and will be used to calculate the local interpolation error:

Pk
K : L2(K) → Pk(K) and Pk

h : L2(Ω) → Pk
h ,

where
Y k

h :=
{
v ∈ L2(Ω) : v|K ∈ Pk(K) ∀K ∈ Th

}
.

Lemma 2.3.1. The following holds:

div(ΠRT,k
h (τ)) = Pk

K(divτ) ∀τ ∈ [H1(K)]n (2.17)

and
div(ΠRT,k

h (τ)) = Pk
h(divτ) ∀τ ∈ H(div; Ω) ∩ Z. (2.18)
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Proof. See [46, Lemma 3.7].

2.3.3 Local Interpolation Error

We will now obtain the local interpolation error for Lagrange and Raviart-Thomas
interpolants. This will allow us to calculate the convergence order of finite element
methods that use these spaces. But first, we need some preliminary results from the
general theory of interpolation.

Preliminary Results

An important result in interpolation theory is the Bramble-Hilbert Lemma, which
provides an estimate for the error of linear and bounded operators defined on function
spaces with two characteristics: they preserve polynomials and do not increase the
regularity of the function.

Theorem 2.3.6 (Bramble-Hilbert Lemma). Let m and k be non-negative integers
such that 0 ≤ m ≤ k + 1, and let Π : Hk+1(K) → Hm(K) be a linear and bounded
operator such that Π(p) = p ∀p ∈ Pk(K). Then there exists C := C(Π, K) > 0 such
that

∥v − Π(v)∥m,K ≤ C|v|k+1,K ∀v ∈ Hk+1(K). (2.19)

Proof. See [46, Theorem 3.5], [44, Theorem 4.4-2].

Piola Transformation

Let K ∈ Th, τ ∈ [H1(K)]n and the affine transformation TK : Rn → Rn defined by

TK(x̂) := BK x̂+ bK ∀x̂ ∈ Rn ,

with BK ∈ Rn×n invertible and bK ∈ Rn, such that K = TK(K̂), where K̂ is the
reference polyhedron. We introduce the Piola transformation:

τ̂ := | detBK |B−1
K τ ◦ TK .

The affine transformation is important because it is the basis of most convergence
theorems. Also, in computational practice, the calculation of coefficients is performed
on a reference finite element [47, Section 4.1]. In this sense, we present two lemmas
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that provide estimates relating an element K with the reference element K̂ via the
Piola transformation.

Lemma 2.3.2. Let K, K̂ ∈ Th, and let F : Rn −→ Rn be the affine transformation
given by F (x̂) = Bx̂ + b ∀x̂ ∈ Rn, with B ∈ Rn×n invertible and b ∈ Rn, such
that K = F (K̂). Let m be a non-negative integer, and let v ∈ Hm(K). Then
v̂ := v ◦ F ∈ Hm(K̂), and there exists C := C(m,n) > 0 such that

|v̂|m,K̂ ≤ C∥B∥m| detB|−1/2|v|m,K . (2.20)

Conversely, if v̂ ∈ Hm(K̂) and we define v = v̂ ◦ F−1, then v ∈ Hm(K), and there
exists Ĉ := Ĉ(m,n) > 0 such that

|v|m,K ≤ Ĉ∥B−1∥m| detB|1/2|v̂|m,K̂ . (2.21)

Proof. See [46, Lemma 3.12] (see also [47, Theorem 3.1.2]).

Remark 2.8. If τ ∈ [Hm(K)]n. Then τ̂ := | detB|B−1τ ◦ F ∈ [Hm(K̂)]n, and there
exists C := C(m,n) > 0 such that

|τ̂ |m,K̂ ≤ C∥B−1∥∥B∥m| detB|1/2|τ |m,K . (2.22)

Conversely, if τ̂ ∈ [Hm(K̂)]n and we define τ := | detB|−1Bτ̂ ◦F−1, then τ ∈ [Hm(K)]n,
and there exists Ĉ := Ĉ(m,n) > 0 such that

|τ |m,K ≤ Ĉ∥B∥∥B−1∥m| detB|−1/2|τ̂ |m,K̂ . (2.23)

(cf. [46, Lemma 3.13]).
The following lemma establishes geometric properties of the Piola Transformation

under the elements K and K̂ of Th.

Lemma 2.3.3. Let K, K̂ ∈ Th, and let F : Rn → Rn be the affine transformation
given by F (x̂) = Bx̂ + b ∀x̂ ∈ Rn, with B ∈ Rn×n invertible and b ∈ Rn, such that
K = F (K̂). Let

hK := diameter of K = max
x,y∈K

∥x− y∥,

ρK := diameter of the largest sphere contained in K,

ĥ := diameter of K̂, and
ρ̂ := diameter of the largest sphere contained in K̂.
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Then

| detB| = |K|
|K̂|

, ∥B∥ ≤ hK

ρ̂
and ∥B−1∥ ≤ ĥ

ρK

. (2.24)

Proof. See [46, Lemma 3.14] (see [47, Theorem 3.1.3] and see [44, Lemma 4.4.1]).

Remark 2.9. The following relation between the local interpolation on K ∈ Th and the
reference element K̂, for both Lagrange and RT interpolants, is easily verified using
variable substitution (cf. [46, Lemma 3.11]):

Πk
RT,K̂

(τ̂) = ̂ΠRT,k
K (τ) := | detBK |B−1

K ΠRT,k
K (τ) ◦ TK , (2.25)

for all τ in domain of ΠRT,k
K .

Error Estimates for Polynomial-Preserving Operators

We present the Error Estimate Theorem for more general interpolation operators than
Lagrange and Raviart-Thomas, which are linear, bounded, and polynomial-preserving,
applied to a triangular (or tetrahedral) mesh. Its proof follows from the application
of the Bramble-Hilbert Theorem (cf. Theorem (2.3.6)) and Lemma (2.3.2). Given its
importance, we will present its proof in detail (cf. [44], Theorem 4.4-2 or [47], Theorem
3.1.4).

Theorem 2.3.7. Given K̂ ∈ Th, and let Π̂ be a linear continuous operator from
Hk+1(K̂) to Hm(K̂), 0 ≤ m ≤ k + 1, such that

∀p̂ ∈ Pk(K̂), Π̂p̂ = p̂. (2.26)

If K ∈ Th such that F (K) = K̂, and if the operator Π is defined by

∀v ∈ Hk+1(K), Π̂v = Π̂(v̂), (2.27)

then there exists a constant C := C(K̂, Π̂), independent of F (and therefore of the
geometric characteristics of K), such that

∀v ∈ Hk+1(K), |v − Πv|m,K ≤ C
hk+1

K

ρm
K

|v|k+1,K . (2.28)
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Proof. Let τ ∈ [Hk+1(K)]n. Using the estimate (2.21) and (2.27), we obtain

|τ − Π(τ)|m,K ≤ C∥B−1∥m| detB|1/2|τ̂ − Π̂(τ̂)|
m,K̂

. (2.29)

Therefore, Theorem (2.3.6) implies that

|τ̂ − Π̂(τ̂)|
m,K̂

≤ C|τ̂ |
k+1,K̂

. (2.30)

Then, applying the estimate (2.20), we obtain

|τ̂ |
k+1,K̂

≤ C∥BK∥k+1| detBK |−1/2|τ |k+1,K . (2.31)

Thus, inserting (2.31) into (2.30) and then the resulting bound into (2.28), we deduce
that

|τ − Π(τ)|m,K ≤ C∥BK∥k+1∥B−1
K ∥m|τ |k+1,K , (2.32)

from which, using ∥B−1
K ∥ ≤ ĥ

ρK

and ∥BK∥ ≤ hK

ρ̂
(cf. Eqs. (2.24)), we arrive at

(2.28).

Remark 2.10. If Π̂ is a linear continuous operator from vectorial spaces, [Hk+1(K̂)]n to
[Hm(K̂)]n, using Remark (2.8) instead of Lemma (2.3.2), we obtain

∀τ ∈ [Hk+1(K)]n, |τ − Πτ |m,K ≤ C
hk+2

K

ρm+1
K

|τ |k+1,K . (2.33)

Local Error Estimates for Lagrange

The local error of Lagrange interpolation that we will present next will follow as a
particular case of Theorem (2.3.7) (cf. [44], Theorem 4.4-3 or [47], Theorem 3.1.5).

Theorem 2.3.8 (Lagrange Interpolation). Let m, n, and k be non-negative integers
such that n ≤ 3, k > 1, and 0 ≤ m ≤ k + 1. If ΠL,k

K is the Lagrange interpolant, then
there exists C := C(K̂,ΠL,k

K̂
, k,m, n) > 0 such that

∀v ∈ Hk+1(K), |v − ΠL,k
K v|m,K ≤ C

hk+1
K

ρm
K

|v|k+1,K . (2.34)
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Proof. Clearly Π̂L,k
K (p̂) = p̂ for all p̂ ∈ Pk. Now we will show that Πk

RT,K̂
: Hk+1(K̂) →

Hm(K̂) is bounded. Given v̂ ∈ Hk+1(K̂), we have

∥Π̂L,k
K (v̂)∥

m,K̃
≤

N∑
i=1

|v̂(ai)|∥ϕi(x)∥
m,K̂

.

Since k ≥ 1, then from Theorem (2.3.3), Hk+1(K̂) ⊂ C(K̂), we can use |v̂(ai)| ≤
∥v̂∥∞,K̂

≤ C1∥v̂∥
k+1,K̂

∥Π̂L,k
K (v̂)∥

m,K̃
≤ C(ΠL,k

K , K̂)∥v̂∥
k+1,K̂

,

which proves that ΠL,k
K is bounded. Finally, it is clear that Π̂L,k

K (v) = Πk
L,K̂

(v̂) for all
v in domain of ΠL,k

K ) (cf. (2.25)). Therefore, it suffices to apply Theorem (2.3.7) to
obtain (2.34).

Local Error Estimates for RT

The local error of Raviart-Thomas interpolation, as in the case of the Lagrange
interpolant, can be obtained based on Theorem (2.3.7). However, the analysis requires
additional care due to the norm of the space H(div,Ω), which involves not only the
interpolated function but also its divergence. Based on [46], Lemma 3.16, we can state
the following theorem.

Lemma 2.3.4 (Local Interpolation Error). Let m and k be non-negative integers such
that 0 ≤ m ≤ k + 1. Then there exists C := C(K̂,Πk

RT,K̂
, k,m, n) > 0 such that

|τ − ΠRT,k
K (τ)|m,K ≤ C

hk+2
K

ρm+1
K

|τ |k+1,K ∀τ ∈ [Hk+1(K)]n. (2.35)

Moreover, for each τ ∈ [H1(K)]n, with div τ ∈ Hk+1(K), we have

| div τ − div ΠRT,k
K (τ)|m,K ≤ C

hk+1
K

ρm
K

| div τ |k+1,K . (2.36)

Proof. Since ΠRT,k
K ∈ L([Hk+1(K̂)]n, [Hm(K̂)]n) (cf. Lemma 3.15), Πk

RT,K̂
(p̂) = p̂

∀ p̂ ∈ RTk(K̂), and [Pk(K̂)]n ⊆ RTk(K̂). It suffices to use Remark (2.10) of Theorem
(2.3.7) to obtain (2.35).
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On the other hand, let τ ∈ [H1(K)]n, with div τ ∈ Hk+1(K). From the chain rule,
we have

∇τ̂(x̂) = |detBK |B−1
K ∇τ(TK(x̂))BK .

Then, using that tr(B−1TB) = tr(T ) and div(τ̂) = tr(∇τ̂), we can deduce that

div τ̂ = | detBK | div τ ◦ TK ∀τ ∈ [H1(K)]n, (2.37)

and then, also using Lemma (2.25), we find that

̂div τ − div ΠRT,k
K (τ) = | detBK |−1

{
div τ̂ − div Πk

RT,K̂
(τ̂)
}
.

Moreover, we know from Lemma (2.3.1) (applied to K̂) that div Πk
RT,K̂

(τ) = Pk
k (div τ̂),

where Pk
k : L2(K̂) → Pk(K̂) is the orthogonal projector. Then, employing the estimate

(2.23) (cf. Remark (2.8)) and the preceding identity, we obtain

| div τ − div ΠRT,k
K (τ)|m,K ≤ Ĉ|B̂−1

K |m| detBK |1/2| div τ̂ − div Πk
RT,K̂

(τ̂)|
m,K̂

= Ĉ|B̂−1
K |m| detBK |1/2| div τ̂ − Pk

k (div τ̂)|
m,K̂

.
(2.38)

Now it is easy to see that Pk
K ∈ L(Hk+1(K̂), Hm(K̂)), for example, by writing

Pk
K(v̂) :=

mk∑
i=1

⟨v̂, φi,k⟩0,K̂
φi,k ∀v̂ ∈ L2(K̂),

where ⟨·, ·⟩0,K̂
is the inner product of L2(K̂) and {φ1,k, φ2,k, · · · , φmk,k} is an orthonor-

mal basis of Pk(K̂). Moreover, it is clear that Pk
K(p̂) = p̂ ∀p̂ ∈ Pk(K̂). Thus, applying

the Bramble-Hilbert lemma, the identity (2.37), and the estimate (2.22) (cf. Remark
(2.8)), we conclude that

|divτ̂ − Pk
K(divτ̂)|

m,K̂
≤ C|divτ̂ |

k+1,K̂

= C| detBK ||d̂ivτ |
k+1,K̂

≤ C| detBK |1/2∥BK∥k+1|divτ |k+1,K ,

which, substituted into (2.38), implies

|divτ − divΠRT,k
K (τ)|m,K ≤ C∥B−1

K ∥m∥BK∥k+1|divτ |k+1,K . (2.39)

Finally, using again the geometric constraints given by Lemma (2.3.3), we obtain (2.36)
directly from (2.39).
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Remark 2.11. The following result extends Theorem (2.3.8) to all intermediate semi-
norms (cf. [46, Lemma 3.17]). For non-negative integers m, k, and l with 0 ≤ l ≤ k

and 0 ≤ m ≤ l + 1, there exists a constant C := C(K̂,ΠRT,k
K , k,m, n) > 0 such that

∣∣∣τ − ΠRT,k
K (τ)

∣∣∣
m,K

≤ C
ηl+2

K

ρm+1
K

|τ |l+1,K ∀ τ ∈ [H l+1(K)]n.

Moreover, for each τ ∈ [H l(K)]n with div τ ∈ H l+1(K), the following estimate holds:

∣∣∣div τ − div ΠRT,k
K (τ)

∣∣∣
m,K

≤ C
ηl+1

K

ρm
K

|div τ |l+1,K .

2.3.4 Global Interpolation Error

Having estimated the local interpolation error, we are now in a position to estimate the
global interpolation error for the considered examples. For this, we recall that a family
of triangulations {Th}h>0 of Ω is said to be regular if there exists c > 0 such that

hK

ρK

≤ c ∀K ∈ Th, ∀h > 0.

With this, we will state the two main Theorems that establish the convergence order
of the interpolation errors for Lagrange and Raviart-Thomas interpolations applied to
Sobolev spaces Hk+1(Ω), with k > 1. (cf. [47], Theorem 3.2.1).

Global error estimates for Lagrange interpolation

Theorem 2.3.9. Let {Th}h>0 be a regular family of triangulations of Ω, assume that
there exist integers k ≥ 1 and m ≥ 0 with m ≤ k. Then, there exists a constant C
independent of h such that, for any function v ∈ Hk+1(Ω),

∥v − ΠRT,k
h v∥m,Ω ≤ Chk+1−m|v|k+1,Ω, 0 ≤ m ≤ 1, (2.40)

 ∑
K∈Th

∥v − ΠRT,k
h v∥2

m,K

1/2

≤ Chk+1−m|v|k+1,Ω, 2 ≤ m ≤ k + 1, (2.41)

where ΠRT,k
h v ∈ Vh is the Xh interpolant of the function v.

Remark 2.12. We can extend Theorem (2.3.9) to intermediate seminorms. Just consider
an integer l > 0 such that l ≤ k and the same estimates remain but with 0 ≤ m ≤
min 1, l in equation (2.40) and 2 ≤ m ≤ min l, k + 1 in equation (2.41).
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Proof. (Proof of Theorem (2.3.9)) Applying Theorem (2.3.8), we obtain

∥v − Πkv∥m,K ≤ Chk+1−m
K |v|k+1,K , 0 ≤ m ≤ k + 1.

Using the relations (ΠRT,k
h v)|K = ΠRT,k

K v, K ∈ Th (cf. (2.15)) and the inequalities
hK ≤ h, K ∈ Th (cf. (3.2.2)), we obtain

 ∑
K∈Th

∥v − ΠRT,k
h v∥2

m,K

1/2

≤ Chk+1−m

 ∑
K∈Th

|v|2k+1,K

1/2

= Chk+1−m|v|k+1,Ω, 0 ≤ m ≤ k + 1.

Thus, inequality (2.41) is proven.
From Xh ⊂ H1(Ω) for m = 0 and for m = 1, we have

 ∑
K∈Th

∥v − ΠRT,k
h v∥2

m,K

1/2

= ∥v − ΠRT,k
h v∥m,Ω,

and therefore we obtain (2.40).

Global error estimates for RT interpolation

Based on [46], Theorem 3.6, we can state the following theorem.

Theorem 2.3.10 (Global RT Interpolation Error). Let {Th}h>0 be a regular family
of triangulations of Ω, and let k be a non-negative integer. Then there exists C > 0,
independent of h, such that

∥τ − ΠRT,k
h (τ)|div,Ω ≤ Chm+1 {|τ |m+1,Ω + | div τ |m+1,Ω} (2.42)

for each τ ∈ [Hm+1(Ω)]n, with div τ ∈ Hm+1(Ω), 0 ≤ m ≤ k.

Remark 2.13. For intermediate norms, we consider l such that 0 ≤ l ≤ k and 0 ≤ m ≤
l + 1, and we obtain

∥τ − ΠRT,k
h (τ)|div,Ω ≤ Chl+1 {|τ |l+1,Ω + | div τ |l+1,Ω} (2.43)

for each τ ∈ [Hm+1(Ω)]n, with div τ ∈ Hm+1(Ω), 0 ≤ m ≤ k.

Proof. (Proof of Theorem (2.3.10)) Let 0 ≤ m ≤ k and τ ∈ [Hm+1(Ω)]n such that
divτ ∈ Hm+1(Ω) (consequently τ ∈ Hdiv(Ω) ∩Z). Then, applying (2.35) and (2.36) (cf.
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Lemma (2.3.4)), with m = 0, we obtain

∥τ − ΠRT,k
K (τ)∥0,K ≤ C

hm+2
K

ρK

|τ |m+1,K ∀K ∈ Th

and
∥divτ − divΠRT,k

K (τ)∥0,K ≤ Chm+1
K |divτ |m+1,K ∀K ∈ Th,

from which, using the regularity of the family {Th}h>0, we deduce that

∥τ − ΠRT,k
K (τ)∥2

div,K = ∥τ − ΠRT,k
K (τ)∥2

0,K + ∥divτ − divΠRT,k
K (τ)∥2

0,K

≤ C̃2h
2(m+1)
K

{
|τ |2m+1,K + |divτ |2m+1,K

}
,

Then, recalling that ΠRT,k
h (τ)|K = ΠRT,k

K (τ |K) and hK ≤ h ∀K ∈ Th, we find that

∥τ − ΠRT,k
h (τ)∥2

div,Ω =
∑

K∈Th

∥τ − ΠRT,k
K (τ)∥2

div,K

≤
∑

K∈Th

C̃2h
2(m+1)
K

{
|τ |2m+1,K + |divτ |2m+1,K

}

≤ C̃2h2(m+1)
{
|τ |2m+1,Ω + |divτ |2m+1,Ω

}
,

which gives (2.42) and completes the proof.

2.3.5 Approximability and Order of Convergence

With the interpolation properties of Lagrange and Raviart-Thomas interpolants from
Section (2.3.4), we can now show the approximability conditions (cf. (2.7)), conse-
quently finding the order of convergence of the approximation error for the spaces
of interest. The central idea is that given a normed vector space X and a finite-
dimensional subspace Xh, we consider the orthogonal projection P : X → Xh, and the
interpolation operator Π : X → Xh. For τ ∈ X we have

∥τ − P(τ)∥X := inf
τh∈Xk

h

∥τ − τh∥X ≤ ∥τ − Π(τ)∥X .

where ∥τ − P(τ)∥X := dist(τ,Xh). Then, we use the interpolation error estimates to
obtain the order of convergence.
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Given a non-negative integer k, we are interested in the following orthogonal
projectors (in each case with respect to the inner products of the projected spaces):

Pk
div,h : H(div; Ω) → Hk

h :=
{
τ ∈ H(div; Ω) : τ |K ∈ RTk(K) ∀K ∈ T b

h k ≥ 0
}
,

P k
1,h : H1(Ω) → Xk

h :=
{
v ∈ C(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th k ≥ 1

}
,

P k
h : L2(Ω) → Xk

h :=
{
v ∈ C(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th k ≥ 1

}
,

Pk
h : L2(Ω) → Y k

h :=
{
v ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th k ≥ 0

}
(2.44)

Remark 2.14. The finite-dimensional spaces defined above are named as follows:
The Xk

h is the Continuous Finite Element Space of Degree k (See [46, Section 4.1]).
The Hk

h is the Raviart-Thomas Finite Element Space of Degree k (See [46, Section
4.1]).

The Y k
h is the Discontinuous Finite Element Space of Degree k (See [46, Section

4.1]).

Approximability of the Raviart-Thomas Finite Element Space of Degree k
(Hk

h) in H(div; Ω)

Lemma 2.3.5. Let ΠRT,k
h : H(div; Ω) ∩ Z → Hk

h be the global Raviart-Thomas
interpolation operator, where Z :=

{
τ ∈

[
L2(Ω)

]n
: τ |K ∈

[
H1(K)

]n
∀K ∈ Th

}
(cf.

Theorem 3.2). Then for all τ ∈ [H l+1(Ω)]n with divτ ∈ H l+1(Ω), 0 ≤ l ≤ k, we have

∥τ − Pk
div,h(τ)∥div,Ω ≤ Chl+1

{
|τ |l+1,Ω + |div τ |l+1,Ω

}
. (2.45)

Proof. For τ ∈ H(div; Ω) ∩ Z

∥τ − Pk
div,h(τ)∥div,Ω := inf

τh∈Hk
h

∥τ − τh∥div,Ω ≤ ∥τ − ΠRT,k
h (τ)∥div,Ω.

Since
{
τ ∈

[
H l+1(Ω)

]n
; divτ ∈ H l+1(Ω)

}
⊂ H(div; Ω)∩Z, then, according to Theorem

(2.3.10), it implies (2.42).
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Approximability of the Continuous Finite Element Space of Degree k (Xk
h)

in H1(Ω)

Lemma 2.3.6. Let Πk
L,h : C(Ω) → Xk

h denote the global Lagrange interpolation
operator. Then for each v ∈ H l+1(Ω), 0 ≤ l ≤ k, we have

∥v − P k
1,h(v)∥1,Ω ≤ Chl|v|l+1,Ω. (2.46)

Proof. For l > 1 we can use a global version of (2.40). If l = 0 we apply the Bramble-
Hilbert lemma (cf. Theorem (2.3.6)) to S = Ω and Π := P k

1,h (with m = 1 and k = 0),
and observing that Π(p) = p ∀p ∈ P0(Ω) ⊂ Xh, we deduce that

∥v − P k
1,h(v)∥1,Ω ≤ C|v|1,Ω,

which proves that (2.46) can be extended to l = 0.

Approximability of the Continuous Finite Element Space of Degree k (Xk
h)

in L2(Ω)

For this case, we will need a technical lemma that establishes the error estimate for
the projection I − P k

1,h in the norm ∥.∥0,Ω.

Lemma 2.3.7. Let Ω be a convex domain, and let k ≥ 1. Then there exists C > 0,
independent of h, such that for each v ∈ Hk+1(Ω), 0 ≤ l ≤ k, we have

∥v − P k
1,h(v)∥0,Ω ≤ Chl+1|v|l+1,Ω. (2.47)

Proof. See [46, Lemma 4.1]

Therefore, we can establish the approximability of the Continuous Finite Element
Space of Degree k (Xk

h) in L2(Ω).

Lemma 2.3.8. Then, if Πk
L,h : C(Ω) → Xk

h denotes the global Lagrange interpolation
operator, for each v ∈ H l+1(Ω), 0 ≤ l ≤ k, we have

∥v − P k
h (v)∥0,Ω ≤ Chl+1|v|l+1,Ω. (2.48)

Proof. Recall that H l+1(Ω) is continuously embedded in C(Ω) for l > 1 (cf. Theorem
2.3.3). Thus, we can use a global version of (2.40) to obtain

∥v − P k
h (v)∥0,Ω ≤ Chl+1|v|l+1,Ω, ∀τ ∈ H l+1.
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Now, by definition it is clear that for v ∈ H1 we have

∥v − P k
h (v)∥0,Ω ≤ ∥v − P k

1,h(v)∥0,Ω,

using (2.47) with l = 0, it follows that

∥v − P k
1,h(v)∥0,Ω ≤ Ch|v|1,Ω, ∀v ∈ H1(Ω),

and therefore we can obtain (2.48).

Approximability of the Discontinuous Finite Element Space of Degree k
(Y k

h ) in L2(Ω)

Lemma 2.3.9. Finally, consider the projector Pk
h : L2(Ω) → Y k

h for k ≥ 0. Then, for
each v ∈ H l+1(Ω), 0 ≤ l ≤ k, we have

∥v − Pk
h(v)∥0,Ω ≤ Chl+1|v|l+1,Ω. (2.49)

Proof. It is easy to see that

Pk
h(v)|K = Pk

K(v|K) ∀v ∈ L2(Ω), ∀K ∈ Th,

Now, applying Lemma (2.3.8) to Ω = K ∈ Th, which is obviously convex, we find that

∥v − Pk
K(v)∥0,K ≤ Chl+1

K |v|l+1,K ∀v ∈ H l+1(K).

Thus, for each v ∈ H l+1(Ω), 0 ≤ l ≤ k, we have

∥v − Pk
h(v)∥2

0,Ω =
∑

K∈Th

∥v − Pk
K(v)∥2

0,K

≤
∑

K∈Th

C2h
2(l+1)
K |v|2l+1,K ≤ Ch2(l+1)|v|2l+1,Ω,

resulting in (2.49)

Summary

When τ and v possess sufficient regularity, τ ∈ [H l+1(Ω)]n and v ∈ H l+1(Ω), 0 ≤ l ≤ k,
the finite element spaces Hk

h , Xk
h , and Y k

h (cf. (2.44) ) deliver the following optimal
approximation estimates:
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dist(τ,Hk
h) ≤ Chl+1 (|τ |l+1,Ω + |divτ |l+1,Ω) ,

dist(v,Xk
h) ≤ Chl|v|l+1,Ω ,

dist(v,Xk
h) ≤ Chl+1|v|l+1,Ω ,

dist(v, Y k
h ) ≤ Chl+1|v|l+1,Ω .

2.4 Examples

Example 2.1: Poisson Problem in a 2D domain

In this example, we will apply the results we have seen so far. Our starting point is
the mixed formulation to obtain an abstract variational problem in the form of (2.4)
with the respective spaces H and Q. Then, we will apply Theorem (2.2.1) to show
the solvability of (2.4). Next, we choose the finite-dimensional subspaces Hh ⊂ H

and Qh ⊂ Q to obtain the discretized problem. It is important to emphasize that
the subspaces Hh and Qh defining the Galerkin scheme cannot be chosen arbitrarily,
as they obviously need to satisfy the hypotheses of Theorem (2.2.1) for solvability
and the approximation condition (2.7). Regarding solvability, the most demanding of
all is the discrete inf-sup condition for b. In particular, since it is equivalent to the
surjectivity of Bh : Hh → Qh, we deduce that a necessary condition for its occurrence
is that dimHh ≥ dimQh. Thus, in this example, we will use a technical lemma known
as Fortin’s trick [46, Lemma 2.3], which will provide a sufficient condition for the
surjectivity of the operator Bh. The approximation will follow from the results of
Subsection (2.3.5), and consequently, we will obtain the convergence rates.

Mathematical Model

Let Ω be a bounded domain in Rn, n ≥ 2, with a Lipschitz-continuous boundary Γ.
Then, given f ∈ L2(Ω) and g ∈ H1/2(Γ), we consider the Poisson problem

−∆u = f in Ω, u = g on Γ. (2.50)

We will use the mixed formulation by adding the unknown σ = ∇u, thus obtaining
the equivalent problem,

σ = ∇u in Ω, divσ = −f in Ω, u = g on Γ.
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Then, multiplying the first equation by τ ∈ H(div,Ω), integrating by parts, and using
the Dirichlet boundary conditions for u, and the second equation by v ∈ L2(Ω), we
obtain ∫

Ω
σ · τ +

∫
Ω
u div τ = ⟨γn(τ), g⟩ ∀ τ ∈ H(div; Ω).∫

Ω
ν divσ = −

∫
Ω
f ν ∀ ν ∈ L2(Ω).

Continuous Formulation

The mixed variational formulation of (2.50) reduces to the following: find (σ, u) ∈ H×Q
such that

a(σ, τ) + b(τ, u) = F (τ) ∀τ ∈ H,

b(σ, v) = G(v) ∀v ∈ Q.
(2.51)

where
H := H(div; Ω), Q := L2(Ω) .

Here, a and b are the bilinear forms defined by

a(σ, τ) :=
∫

Ω
σ · τ ∀(σ, τ) ∈ H ×H,

b(τ, v) :=
∫

Ω
v div τ ∀(τ, v) ∈ H ×Q,

and the functionals F ∈ H ′ and G ∈ Q′ are given by

F (τ) := ⟨γn(τ), g⟩ ∀τ ∈ H, G(v) := −
∫

Ω
fv ∀v ∈ Q.

Continuous Solvability Analysis

Is the particular case of the Babuška-Brezzi theory (cf. Theorem (2.2.1)) (cf. [46,
Section 4.2]) Therefore, Theorem (2.2.1) implies that there exists a unique pair (σ, u) ∈
H × Q solution of the mixed variational formulation (2.51) satisfying

||(σ, u)||H×Q ≤ C
{
||g||1/2,Γ + ||f ||0,Ω

}
.

Galerkin Scheme

If {Th}h>0 is a regular family of triangulations of Ω and k is an integer ≥ 0, we introduce
the following finite element spaces:
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Hh := Hk
h := {τh ∈ H(div; Ω) : τh|K ∈ RTk(K) ∀K ∈ Th} ,

Qh := Y k
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

so that the associated Galerkin scheme is the following: find (σh, uh) ∈ Hh ×Qh such
that

a(σh, τh) + b(τh, uh) = F (τh) ∀τh ∈ Hh,

b(σh, vh) = G(vh) ∀vh ∈ Qh.
(2.52)

Consequently, a direct application of the discrete version of Theorem (2.2.1) implies
that there exists a unique solution (σh, uh) ∈ Hh ×Qh of (2.6) and a constant C > 0,
independent of h, such that

∥(σh, uh)∥H×Q ≤ C
{
∥f∥0,Ω + ∥g∥1/2,Γ

}
.

A priori error analysis

Using Cea’s estimate (cf. (2.10)), we obtain:

∥σ − σh∥H + ∥u− uh∥Q ≤ C {dist(σ,Hh) + dist(u,Qh)} ,

where C depends on ∥A∥, ∥B∥ ≤ 1, α̃, and β̃. According to the upper bounds for
projection errors given by (2.45) and (2.49), we have respectively,

dist(σ,Hh) := ∥σ − Pk
div,h(σ)∥div,Ω ≤ Chl+1 {|σ|l+1,Ω + | div σ|l+1,Ω} (2.53)

if σ ∈ [H l+1(Ω)]n, with div σ ∈ H l+1(Ω), 0 ≤ l ≤ k, and

dist(u,Qh) := ∥u− Pk
h(u)∥0,Ω ≤ Chl+1|u|l+1,Ω (2.54)

if u ∈ H l+1(Ω), 0 ≤ l ≤ k. Therefore, under these regularity assumptions on the exact
solution (σ, u) ∈ H ×Q, we deduce that the convergence rate of the Galerkin method
(2.6) is given by the estimate following from (2.53)-(2.54), namely,

∥σ − σh∥div,Ω + ∥u− uh∥0,Ω ≤ Chl+1
{

|σ|l+1,Ω + | div σ|l+1,Ω + |u|l+1,Ω

}
. (2.55)

On the other hand, if (σ, u) is not sufficiently regular, the convergence of the
Galerkin scheme (2.6), but without any convergence rate, can still be proved using
appropriate density arguments. More precisely, we have the following result.
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Lemma 2.4.10. Let (σ, u) ∈ H ×Q and (σh, uh) ∈ Hh ×Qh be the solutions of the
continuous and discrete formulations, respectively. Then

lim
h→0

{∥σ − σh∥div,Ω + ∥u− uh∥0,Ω} = 0 .

Proof. See [46, Lemma 4.5].

Numerical Results

To illustrate the performance of the mixed finite element method on a set of uniform
domain triangulations, we consider a function u such that ∆u exists, and define the
source term f so that equation (2.50) is satisfied. Then u is called a manufactured
solution. We implement the numerical method for the discretized problem (2.52) with
f defined as above, obtaining uh and σh, and compare the errors u− uh and σ − σh.
We use the open-source finite element library FEniCS [52]. We use a laptop with an
Intel Core i5 10th generation processor and 16 GB of memory. The execution time for
l = 1 and 131, 072 elements (1, 049, 600 degrees of freedom) was 34 seconds. The code
is provided at the end of this section.

The individual errors are denoted by

e(σ) := ∥σ − σh∥div,Ω, e(u) := ∥u− uh∥0,Ω,

and, for each ⋆ ∈ {σ, u} we define r(⋆) as the experimental convergence rate given by

r(⋆) := log(e(⋆)/ê(⋆))
log(h/ĥ)

,

where h and ĥ denote two consecutive mesh sizes with errors e and ê, respectively. In
this test, we confirm the convergence rates on a two-dimensional domain defined by
the square Ω = (0, 1)2. We adjust the data f so that

u(x, y) =
(10

6

)
sin
(
2π(x+ 0.5)

)
sin(2πy) cos

(
π(x+ 0.5)

)
sin(πy)

Figure (2.2) shows the potential function u, and the new unknown σ = ∇u, which
represents the field associated with the potential function. Meanwhile, Figure (2.1)
confirms that the optimal convergence rates O(hℓ+1), predicted by Equation (2.55),
are achieved for ℓ = {0, 1}.
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Figure 2.1 [Example 2.1] Convergence rates of the errors for each unknown u and σ
and the total error, for l = 0 and l = 1.

Figure 2.2 [Example 2.1] Potential u and field σ = ∇u.
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Code

1 from fenics import *
2 import matplotlib . pyplot as plt
3 import sympy as sp
4 import numpy as np
5 from math import log
6 import time
7
8 # <----- Model parameters and auxiliary symbolic expressions ----->
9 Id = Identity (2) # 2x2 identity matrix

10 x, y = sp. symbols (’x[0] x[1] ’) # Symbolic variables for x and y coordinates
11 pi = sp.pi # Define pi in SymPy
12
13 # <----- Manufactured solution ( known exact solution ) ----->
14 ue = (10/6) *sp.sin (2* pi *(x +0.5) )*sp.sin (2* pi*y)*sp.cos (1* pi *(x +0.5) )*sp.sin (1* pi*y)
15
16 # Gradient of exact solution (x and y components )
17 grad_ue_1 = ue.diff(x, 1) # Partial derivative of ue with respect to x
18 grad_ue_2 = ue.diff(y, 1) # Partial derivative of ue with respect to y
19
20 # Exact flux ( sigma = grad(ue))
21 sigmae_1 = grad_ue_1 # x- component of flux
22 sigmae_2 = grad_ue_2 # y- component of flux
23
24 # Divergence of exact flux (div( sigmae ))
25 div_sigmae = sigmae_1 .diff(x, 1) + sigmae_2 .diff(y, 1)
26
27 # <----- Manufactured source term (fe = -div( sigmae )) ----->
28 fe = -div_sigmae
29
30 # <----- Converting symbolic expressions to FEniCS mathematical functions ----->
31 f = Expression (sp. printing . ccode (fe), degree =5) # Source term
32 ue = Expression (sp. printing . ccode (ue), degree =5) # Exact solution
33 sigmae = Expression (( sp. printing . ccode ( sigmae_1 ), sp. printing . ccode ( sigmae_2 )),

degree =5) # Exact flux
34 div_sigmae = Expression (sp. printing . ccode ( div_sigmae ), degree =5) # Divergence of

exact flux
35
36 # <----- Variational Poisson solver ( mixed formulation ) ----->
37 def PoissonSolver (W, f):
38 # Define test and trial functions
39 (sigma , u) = TrialFunctions (W) # Trial functions ( unknowns )
40 (tau , v) = TestFunctions (W) # Test functions
41
42 # Variational form
43 a = (dot(sigma , tau) + div(tau)*u + div( sigma )*v) * dx # Bilinear form
44 L = -f * v * dx # Linear form
45
46 # Solve the system
47 w = Function (W) # Function to store the solution
48 solve (a == L, w) # Solve the linear system
49
50 # Extract sigma and u from solution
51 sigma , u = w. split ()
52 return sigma , u
53
54 # <----- Initialization of vectors to store results ----->
55 vec_nelem = [] # Number of elements
56 vec_hh = [] # Mesh size (h)
57 vec_dofs = [] # Degrees of freedom
58 vec_time = [] # Processing time
59 vec_err_sig = [] # Flux error
60 vec_err_u = [] # Solution error
61 vec_err_tot = [] # Total error
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62
63 # <----- Mesh refinement ----->
64 NN = [4, 8, 16, 32, 64, 96, 128 , 256] # Number of divisions per mesh side
65
66 for i in NN:
67 # <----- Create regular mesh ----->
68 mesh = UnitSquareMesh (i, i) # Unit square mesh
69 h = mesh.hmax () # Maximum mesh size
70 nelem = mesh. num_cells () # Number of elements in mesh
71
72 # <----- Define function spaces ----->
73 order = 1 # Finite element order
74 RT = FiniteElement ("RT", mesh. ufl_cell () , order + 1) # Space for sigma (flux)
75 DG = FiniteElement ("DG", mesh. ufl_cell () , order ) # Space for u ( potential )
76 W = FunctionSpace (mesh , RT * DG) # Mixed space
77
78 # <----- Mesh information ----->
79 h = mesh.hmax ()
80 nelem = mesh. num_cells ()
81 print (’Number of elements : ’, nelem )
82 dim = W.dim () # Degrees of freedom
83
84 # <----- Measure processing time ----->
85 start_time = time. perf_counter () # Start time counting
86 sigma , u = PoissonSolver (W, f) # Solve the problem
87 end_time = time. perf_counter () # End time counting
88 elapsed_time = end_time - start_time # Elapsed time
89
90 # <---- Calculate errors ---->
91 err_u = pow( assemble ((u - ue)**2 * dx), 1./2.) # Solution error (L2 norm)
92 err_sig_L2 = pow( assemble ( inner ( sigma - sigmae , sigma - sigmae ) * dx), 1./2.) #

Flux error (L2 norm)
93 err_sig_div = pow( assemble (dot( div_sigmae - div( sigma ), div_sigmae - div( sigma ))

* dx), 1./2.) # Divergence error
94 err_sig = err_sig_L2 + err_sig_div # Total flux error
95 err_tot = err_u + err_sig # Total error
96
97 # <------ Store results ------->
98 vec_hh . append (h)
99 vec_nelem . append ( nelem )

100 vec_dofs . append (dim)
101 vec_time . append ( elapsed_time )
102 vec_err_sig . append ( err_sig )
103 vec_err_u . append ( err_u )
104 vec_err_tot . append ( err_tot )
105
106 # <----- Display / export data ----->
107 mytable = [["# elements ", "h", "dofs", "time", " e_sig ", " r_sig ", "e_u", "r_u", " e_tot "

, " r_tot " ]]
108
109 i = 0
110 while i < len( vec_err_u ):
111 if i == 0:
112 # First row (no convergence rate)
113 mytable . append ([
114 "%6.0f" % vec_nelem [i], # Number of elements
115 "%2.4f" % vec_hh [i], # Mesh size
116 "%6.0f" % vec_dofs [i], # Degrees of freedom
117 "%2.4f" % vec_time [i], # Processing time
118 "%2.2e" % vec_err_sig [i], 0, # Flux error and convergence rate
119 "%2.2e" % vec_err_u [i], 0, # Solution error and convergence rate
120 "%2.2e" % vec_err_tot [i], 0 # Total error and convergence rate
121 ])
122 else:
123 # Calculate convergence rates
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124 rate_sig = log( vec_err_sig [i] / vec_err_sig [i -1]) / log( vec_hh [i] / vec_hh [i
-1])

125 rate_u = log( vec_err_u [i] / vec_err_u [i -1]) / log( vec_hh [i] / vec_hh [i -1])
126 rate_tot = log( vec_err_tot [i] / vec_err_tot [i -1]) / log( vec_hh [i] / vec_hh [i

-1])
127
128 # Add row to table
129 mytable . append ([
130 "%6.0f" % vec_nelem [i], # Number of elements
131 "%2.4f" % vec_hh [i], # Mesh size
132 "%6.0f" % vec_dofs [i], # Degrees of freedom
133 "%2.4f" % vec_time [i], # Processing time
134 "%2.2e" % vec_err_sig [i], "%2.3f" % rate_sig , # Flux error and

convergence rate
135 "%2.2e" % vec_err_u [i], "%2.3f" % rate_u , # Solution error and

convergence rate
136 "%2.2e" % vec_err_tot [i], "%2.3f" % rate_tot # Total error and

convergence rate
137 ])
138 i = i + 1
139
140 # Display table
141 for row in mytable :
142 print ("{: <10} {: <8} {: <8} {: <8} {: <10} {: <10} {: <10} {: <10} {: <10} {: <10}". format

(* row))
143
144 # <----- Export graphics for visualization in Paraview ----->
145 sig_file = File(" Data_Paraview_2D / approx_sig .pvd") << sigma # Approximate flux
146 u_file = File(" Data_Paraview_2D / approx_u .pvd") << u # Approximate solution
147
148 # <----- Interpolate exact solutions for visualization in Paraview ----->
149 V1 = FunctionSpace (mesh , "CG", 2) # Continuous space for u
150 V2 = VectorFunctionSpace (mesh , "CG", 2) # Continuous vector space for sigma
151 SIGMA = interpolate (sigmae , V2) # Interpolate exact flux
152 U = interpolate (ue , V1) # Interpolate exact solution
153
154 # <----- Export exact solutions ----->
155 SIG_file = File(" Data_Paraview_2D / exact_sig .pvd") << SIGMA # Exact flux
156 U_file = File(" Data_Paraview_2D / exact_u .pvd") << U # Exact solution



Chapter 3

A priori error analysis for
µ(I)-rheology

3.1 Chapter Introduction

The major difficulty imposed by the µ(I)-rheology model is the dependence of the
dissipative terms on the pressure of the flow. This will be presented in more detail in
the following section. However, it is clear that this poses an extra complication to the
numerical algorithms that are normally based on pressure-correction projection schemes
[14]. In other words, the strong non-linearity of the µ(I)-rheology model prevents us
from guaranteeing in advance successful applications of classical numerical methods,
such as primal finite elements and related techniques, which are known to be usually
more suitable for linear problems, particularly if they are posed within a Hilbertian
framework. In this regard, we find it important to stress that the suitability of Banach
spaces-based approaches to analyze the continuous and discrete solvabilities of diverse
nonlinear problems in continuum mechanics, including several coupled models, and
employing mainly mixed formulations, has been confirmed by a significant amount
of contributions in recent years. Brinkman-Forchheimer, Darcy-Forchheimer, Navier-
Stokes, Boussinesq, coupled flow-transport, and fluidized beds are some of the respective
models addressed, and a non-exhaustive list of the corresponding references includes
[15–22]. Needless to say, the most distinctive feature of a mixed formulation is the
incorporation of additional unknowns, usually depending on the original ones of the
model, for either analytical or physical reasons.

Furthermore, one of the main advantages of employing a Banach framework is
the fact that no augmentation is required, a common “trick" of Hilbert spaces-based
formulations to force them to become, for instance, elliptic or strongly monotone, and
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hence the spaces to which the unknowns belong are the natural ones arising simply from
the testing of the equations of the model along with the use of the Cauchy-Schwarz
and Hölder inequalities. In this way, simpler and closer to the original physical model
formulations are derived. In turn, the main benefits of employing a mixed approach
include the derivation of momentum-conservative numerical schemes, and the possibility
of obtaining direct approximations of further variables of physical interest, either by
incorporating them into the formulation, or by employing a postprocessing formula in
terms of the remaining unknowns. In the particular case of our model of interest, to
be described below in Section 3.2, the above might certainly mean to be able to obtain
direct calculations of strain rate tensor, shear rate, inertia number, and vorticity, among
other variables of interest, thus avoiding numerical differentiation and its consequent
loss of accuracy, to approximate them.

According to the previous discussion in the Introduction of this thesis, the goal
of the present Chapter is to introduce and analyze mixed finite element methods for
numerically solving the steady-state µ(I)-rheology equations for granular flows. The
Chapter is organized as follows. In the rest of this section we collect some notations
to be employed throughout the chapter. In Section 3.2 we describe the mathematical
model, which includes the setting of a regularized sity, and introduce, besides the
velocity and the pressure, the further unknowns to be considered. Next, in Section
3.3 we develop the mixed variational formulation, which is shown to have a twofold
saddle point-type structure. The corresponding solvability analysis is carried out in
Section 3.4 by adopting a fixed-point strategy in terms of the velocity and the pressure,
and by employing an abstract result on the well-posedness of Banach spaces-based
twofold saddle point operator equations, along with the classical Banach theorem.
Lipschitz-continuity and motononicity properties of the viscosity function are also
required for the analysis. In turn, in Section 3.5 we define the associated Galerkin
scheme, and assume suitable hypotheses on the finite element subspaces in order to
prove the corresponding well-posedness by means of a discrete fixed-point approach. A
priori error estimates are also obtained here. Then, specific finite element subspaces
satisfying the aforementioned assumptions, are derived in Section 3.6 by applying a
useful connection with the discrete stability of the usual Hilbertian mixed formulation
for linear elasticity, and optimal rates of convergence are established as well. Finally,
numerical experiments illustrating the theoretical findings are reported in Section 3.7,
whereas the fulfillment of the hypotheses on the viscosity is discussed in Appendix A.1.
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3.2 The mathematical model

We recall the µ(I)-rheology equations introduced in Introduction. We are interested in
the flows of granular materials based on the µ(I)-rheology approach introduced in [7].
This rheological model arose from the fundamental hypothesis that the corresponding
stresses can be described by a viscoplastic constitutive equation in which the internal
friction µ of the material, which governs the yield stress, is not constant and depends on
a flow parameter called the inertial number I. In order to introduce the corresponding
mathematical model, we consider the flow of particles of constant density ρp and
diameter d in Ω, denote by u the velocity of the flow, and assume that the latter is
incompressible, that is, the volume fraction ϕ of particles is constant throughout the
flow, so that the overall density is ρ = ϕρp. The governing equations are then given by:

ρ

(
∂u
∂t

+ (∇u)u
)

= div(σ) + ρg in Ω , (3.1)

and
div(u) = 0 in Ω . (3.2)

In turn, the stress tensor σ is composed of two terms, a deviatoric one associated to
dissipation due to the internal friction of the medium, which is inspired by a Coulomb
friction-like law, and an isotropic one related to the pressure p on the medium. More
precisely, there holds

σ =
√

2µ p D
|D|

− p I in Ω , (3.3)

where µ is the internal friction coefficient of the granular continuum, D is the symmetric
part of the velocity gradient, namely

D := 1
2

(
∇u + (∇u)t

)
, (3.4)

which is also known as the rate of strain tensor, and

|D| =
√

D : D . (3.5)

Note, thanks to the incompressibility condition (3.2), that there holds

tr(D) = div(u) = 0 . (3.6)
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Now, if the friction coefficient is constant, we have the traditional Coulomb model for
granular materials [53]. However, there is strong evidence [6] that µ actually depends
on the local properties of the flow through the inertial number I, in the form

µ(I) := µs +
(
µd − µs

I + I0

)
I with I =

√
2 d |D|√
p/ρ

, (3.7)

where the coefficients µs and µd correspond, respectively, to the static and dynamic
friction limits, and I0 is a reference (experimental) constant. It is easy to see from
the above expression for µ(I) that

min
{
µs, µd

}
≤ µ(I) ≤ max

{
µs, µd

}
,

so that, assuming from now on, for simplicity, that µs ≤ µd, there holds

µs ≤ µ(I) ≤ µd .

Then, substituting (3.7) in the constitutive relation (3.3), we arrive at

σ = η(p, |D|) D − p I in Ω , (3.8)

where η : R+ × R+ −→ R+ is defined as

η(ϱ, ω) := a1 ϱ

ω
+ a2 ϱ

a3
√
ϱ+ a4 ω

∀ (ϱ, ω) ∈ R+ × R+ , (3.9)

with positive coefficients ai, i ∈
{
1, 2, 3, 4

}
, given by

a1 :=
√

2µs , a2 := 2 d(µd − µs) , a3 := ρ−1/2 I0 , and a4 :=
√

2 d . (3.10)

It is important to stress here that, due to the fact that µ is defined in terms of
I, which, in turn, depends on p and |D| (cf. (3.7)), the function η, and thus its

evaluation η(p, |D|), have been introduced to emphasize that the expression
√

2µ p
|D|

(which multiplies D in (3.3)) depends only on those unknowns, and that this dependence
can be explicitly stated, as (3.9) shows. Hence, being (3.8) just a rewriting of (3.3),
working with one or the other is basically the same, but the former is much more
suitable for identifying later on the assumptions needed for the analysis.

We now notice that the term η(p, |D|) in (3.8), which can be understood as an
equivalent viscosity, is singular when |D| = 0. Indeed, it is expected that some regions
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of the granular flows are static, as granular materials can exhibit a solid-like behavior
[2], just as in a sand pile. In this particular case, the flow of grains only happens near
the surface of the dunes, while in the inner core of flow, the material remains static
(and resist stresses). In these static regions, the µ(I)-rheology model, which is valid
for fluid-like flows of granular materials [7], breaks drown. Similar problems are also
observed in flows of different visco-plastic materials [54]. In addition to the theoretical
constitutive problem, the singularity of η(p, |D|) also poses technical computational
difficulties, as the very large values it can assume in the domain of the flow can lead
to ill-posed linear systems that undermine the performance of standard solvers [10].
Therefore, a regularization technique has to be used in order to avoid the presence
of the afore-mentioned singularity. This can be done in different ways [10, 11, 54],
although the underlying assumption in all cases is that the unyielded regions should
be treated as practically unyielded, i.e. creeping, regions [54] with a limited maximum
value of η(p, |D|). For instance, one way is to add a small parameter 0 < ε ≪ 1 to
the denominators in (3.9), thus yielding

η(ϱ, ω) := a1 ϱ

ω + ε
+ a2 ϱ

a3
√
ϱ+ a4 ω + ε

∀ (ϱ, ω) ∈ R+ × R+ . (3.11)

Finally, regarding boundary conditions, and knowing that recent evidence [55] suggests
that there can be some slip between the grains and the boundaries, we proceed
accordingly and assume this condition for the steady-state regime that we consider
below.

In virtue of the above discussion, the governing equations of the stationary model
arising from (3.1), (3.2), and (3.8), are given by

ρ (∇u)u = div
(
η(p, |D|) D

)
− ∇p + ρg in Ω ,

div(u) = 0 in Ω , u = uD on Γ ,
(3.12)

where uD ∈ H1/2(Γ) constitutes a non-necessarily null Dirichlet boundary condition
for u. In addition, since our main interest is to develop a fully-mixed finite element
method for (3.12), we now introduce a modified stress tensor, still denoted σ, as the
further unknown defined by

σ := η(p, |D|) D − p I − ρ (u ⊗ u) . (3.13)
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In this way, recalling that the overall density is constant, and noting that the incom-
pressibility condition allows us to show that div

(
u ⊗ u

)
= (∇u)u, we deduce that

the momentum equation can be rewritten as

div(σ) + ρg = 0 in Ω . (3.14)

Moreover, applying deviatoric operator (cf. (2.1)) to (3.13), and using (3.6), which
obviously yields Dd = D, we find that

σd := η(p, |D|) D − ρ (u ⊗ u)d in Ω . (3.15)

In turn, applying now matrix trace to (3.13), we obtain an explicit formula for the
pressure p in terms of σ and u, namely

p = − 1
n

tr
(
σ + ρ (u ⊗ u)

)
. (3.16)

We remark here that (3.13) and the incompressibility condition (3.2) are jointly
equivalent to (3.15) - (3.16). On the other hand, in order to perform the usual
integration by parts procedure required by a mixed formulation, which reduces to be
able to test ∇u, we now decompose D as

D = ∇u − γ , (3.17)

where γ is the auxiliary known given by

γ := 1
2

(
∇u − (∇u)t

)
. (3.18)

Note that the diagonal entries of γ are all null, and that the off diagonal ones include
the components of the vorticity ∇ × u. Summarizing, (3.12) can be equivalently
reformulated as: Find D, σ, u, p, and γ in suitable spaces, to be defined later on, such
that

D − ∇u + γ = 0 in Ω ,

η(p, |D|) D − σd − ρ (u ⊗ u)d = 0 in Ω ,

div(σ) + f = 0 in Ω ,

p = − 1
n

tr
(
σ + ρ (u ⊗ u)

)
in Ω , u = uD on Γ ,

(3.19)
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where, for sake of generality as well as for convenience of the numerical experiments
to be reported later on, we have replaced ρg by a source term f , which belongs to a
space to be precised in due course. We end this section by remarking that, because of
(3.2), the datum uD must satisfy the compatibility condition∫

Γ
uD · ν = 0 . (3.20)

3.3 The continuous formulation

In this section we derive a variational formulation for the system (3.19). To this
end, we first proceed analogously to [56, Section 3] and look originally for u in
H1(Ω). In this way, multiplying the first equation of (3.19) by τ ∈ H(divt; Ω), where

t ∈

 (1,+∞) if n = 2
[6/5,+∞) if n = 3

, and then applying the integration by parts formula

(2.3) along with the Dirichlet boundary condition for u, we obtain∫
Ω
τ : D +

∫
Ω

u · div(τ ) +
∫

Ω
τ : γ = ⟨τ ν,uD⟩ ∀ τ ∈ H(divt; Ω) . (3.21)

We notice that the first and third terms make sense for D, γ ∈ L2(Ω), which, due to
the free trace property of D (cf. (3.6)) and the skew symmetry of γ (cf. (3.18)), leads
to look for D ∈ L2

tr(Ω) and γ ∈ L2
sk(Ω), where

Ltr(Ω) :=
{

E ∈ L2(Ω) : tr(E) = 0
}
, (3.22)

and
Lsk(Ω) :=

{
ξ ∈ L2(Ω) : ξt = −ξ

}
. (3.23)

In turn, since div(τ ) ∈ Lt(Ω), we realize by Hölder’s inequality that the second term
from (3.21) is actually well defined for u ∈ Lt′(Ω), where t′ ∈ (1,+∞) is the conjugate
of t. On the other hand, in order to continue the present derivation, we need to
introduce the following hypothesis:

(H.1) there exist constants η1, η2 such that

0 < η1 ≤ η(ϱ, ω) ≤ η2 ∀ (ϱ, ω) ∈ R+ × R+ . (3.24)

Certainly, the above assumption might imply the need to suitably redefine η in (3.11).
Next, testing the second equation of (3.19) against E ∈ L2

tr(Ω), and using that
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ζd : E = ζ : E for all ζ ∈ L2(Ω), we formally obtain∫
Ω
η(p, |D|) D : E −

∫
Ω
σ : E − ρ

∫
Ω
(u ⊗ u) : E = 0 , (3.25)

which says, thanks to (3.24), that the first term is well defined, whereas the second one
makes sense if σ is sought in L2(Ω). Regarding the last term, we first notice, thanks
to Cauchy-Schwarz’s inequality in L2(Ω) and Rn, that there holds

∥w ⊗ v∥0,Ω ≤ n1/2 ∥w∥0,4;Ω ∥v∥0,4;Ω ∀ w, v ∈ L4(Ω) . (3.26)

It follows that∣∣∣∣∫
Ω
(u ⊗ u) : E

∣∣∣∣ ≤ ∥(u ⊗ u)∥0,Ω ∥E∥0,Ω ≤ n1/2 ∥u∥2
0,4;Ω ∥E∥0,Ω , (3.27)

from which we deduce that it suffices to consider t′ = 4, thus looking for u in L4(Ω)
(equivalently (u ⊗ u) ∈ L2(Ω)), and then t = 4/3, whence the test space of (3.21)
becomes H(div4/3; Ω). The above suggests to seek σ in this same space, which requires
f to belong to L4/3(Ω), so that the third equation of (3.19) is tested as∫

Ω
v · div(σ) = −

∫
Ω

f · v ∀ v ∈ L4(Ω) . (3.28)

Now, having identified the spaces to which σ and u belong, we realize from the
first equation in the last row of (3.19) that the pressure p must be sought in L2(Ω).
Furthermore, the symmetry of σ (cf. (3.13)) is weakly imposed by∫

Ω
σ : ξ = 0 ∀ ξ ∈ L2

sk(Ω) . (3.29)

Finally, we resort to the decomposition

H(div4/3; Ω) = H0(div4/3; Ω) ⊕ R I , (3.30)

where
H0(div4/3; Ω) :=

{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr(τ ) = 0
}
. (3.31)

In this way, the unknown σ can be decomposed as σ = σ0 + c0 I, where σ0 ∈
H0(div4/3; Ω) and, according to the expression for p in (3.19), there holds

c0 := 1
n |Ω|

∫
Ω

tr(σ) = − 1
|Ω|

∫
Ω
p − ρ

n |Ω|

∫
Ω

tr(u ⊗ u) , (3.32)
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which means that, given p, the constant c0 can be computed once the velocity is known.
Thus, it only remains to find σ0, which can be placed instead of σ in (3.25), (3.28),
and (3.29) without altering the validity of these equations. Moreover, it is easy to see
that for each τ ∈ R I both sides of (3.21) vanish, in particular the right one because of
the compatibility condition (3.20), and hence testing (3.21) against τ ∈ H(div4/3; Ω)
is equivalent to doing it against τ ∈ H0(div4/3; Ω). Consequently, redenoting from
now on σ0 as simply σ ∈ H0(div4/3; Ω), and suitably gathering (3.21), (3.25), (3.28),
and (3.29), we deduce the following mixed variational formulation of (3.19): Given
p ∈ L2(Ω), find (D,σ,u,γ) ∈ L2

tr(Ω) × H0(div4/3; Ω) × L4(Ω) × L2
sk(Ω) such that

∫
Ω
η(p, |D|) D : E −

∫
Ω
σ : E − ρ

∫
Ω
(u ⊗ u) : E = 0 ,

−
∫

Ω
τ : D −

∫
Ω

u · div(τ ) −
∫

Ω
τ : γ = −⟨τ ν,uD⟩ ,

−
∫

Ω
v · div(σ) −

∫
Ω
σ : ξ =

∫
Ω

f · v ,

(3.33)

for all (E, τ ,v, ξ) ∈ L2
tr(Ω) × H0(div4/3; Ω) × L4(Ω) × L2

sk(Ω). Next, in order to
emphasize the particular structure of (3.33), we set the spaces

H1 := L2
tr(Ω) , H2 := H0(div4/3; Ω) , and Q := L4(Ω) × L2

sk(Ω) , (3.34)

which are endowed with the norms

∥E∥H1 := ∥E∥0,Ω , ∥τ∥H2 := ∥τ∥div4/3;Ω , and ∥(v, ξ)∥Q := ∥v∥0,4;Ω + ∥ξ∥0,Ω ,

respectively, and introduce the notations

u⃗ := (u,γ) , v⃗ := (v, ξ) ∈ Q .

Then, denoting from now on by [ ·, · ] the duality pairing between X ′ and X for
any Banach space X, the system (3.33) can be rewritten as: Given p ∈ L2(Ω), find
(D,σ, u⃗) ∈ H1 × H2 × Q such that

[Ap(D),E] +B1(E,σ) = Fu(E) ∀ E ∈ H1 ,

B1(D, τ ) +B(τ , u⃗) = G(τ ) ∀ τ ∈ H2 ,

B(σ, v⃗) = F(v⃗) ∀ v⃗ ∈ Q ,

(3.35)
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where the nonlinear operator Ap : H1 → H′
1, the bilinear forms B1 : H1 ×H2 → R and

B : H2 × Q → R, and the functionals Fz : H1 → R, for each z ∈ L4(Ω), G : H2 → R,
and F : Q → R, are defined by

[Ap(D),E] :=
∫

Ω
η(p, |D|) D : E ∀ D, E ∈ H1 , (3.36)

B1(E, τ ) := −
∫

Ω
τ : E ∀ (E, τ ) ∈ H1 × H2 , (3.37)

B(τ , v⃗) := −
∫

Ω
v · div(τ ) −

∫
Ω
τ : ξ ∀ (τ , v⃗) ∈ H2 × Q , (3.38)

Fz(E) := ρ
∫

Ω
(z ⊗ z) : E ∀ E ∈ H1 , (3.39)

G(τ ) := −⟨τ ν,uD⟩ ∀ τ ∈ H2 , (3.40)

and
F(v⃗) :=

∫
Ω

f · v ∀ v⃗ ∈ Q . (3.41)

Note that the upper bound of η (cf. (3.24)) guarantees that Ap is well-defined in the
sense that Ap(D) ∈ H′

1 for all D ∈ H1. In turn, regarding the boundedness properties
of the above bilinear forms and linear functionals, we employ the Cauchy-Schwarz and
Hölder inequalities, along with (3.27), and the continuity of both the normal trace
operator in H(div4/3; Ω) and the injection i4 : H1(Ω) → L4(Ω), to deduce the existence
of positive constants, denoted and given as

∥B1∥ := 1 , ∥B∥ := 1 , ∥Fz∥ := ρ n1/2 ∥z∥2
0,4;Ω ,

∥G∥ := max
{
1, ∥i4∥

}
∥uD∥1/2,Γ , and ∥F∥ := ∥f∥0,4/3;Ω ,

(3.42)

such that

|B1(E, τ )| ≤ ∥B1∥ ∥E∥H1 ∥τ∥H2 ∀ (E, τ ) ∈ H1 × H2 ,

|B(τ , v⃗)| ≤ ∥B∥ ∥τ∥H2 ∥v⃗∥Q ∀ (τ , v⃗) ∈ H2 × Q ,

|Fz(E)| ≤ ∥Fz∥ ∥E∥H1 ∀ E ∈ H1 ,

|G(τ )| ≤ ∥G∥ ∥τ∥H2 ∀ τ ∈ H2 , and

|F(v⃗)| ≤ ∥F∥ ∥v⃗∥Q ∀ v⃗ ∈ Q .

(3.43)

We stress here that (3.35) can be seen as a twofold saddle point-type formulation
with a nonlinear operator Ap. Furthermore, once this system is solved, and because of
its dependence on the given p, we propose to update the pressure unknown according
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to the expression provided in the last row of (3.19). More precisely, bearing in mind
that the stress tensor appearing there is actually σ+ c0 I, with σ ∈ H0(div4/3; Ω) being
part of the solution of (3.35), and c0 given by (3.32), we find that the new pressure,
say pN , becomes

pN = − 1
n

tr
(
σ + ρ (u ⊗ u)

)
+ 1

|Ω|

∫
Ω
p + ρ

n |Ω|

∫
Ω

tr(u ⊗ u) .

Note from the foregoing equation that pN , and hence all the subsequent updates of it,
keep the same mean value of p, that is

∫
Ω
pN =

∫
Ω
p, so that from now on we assume

a given positive value, say κ, and define

L2
κ(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = κ

}
.

In this way, after solving (3.35) with a given p ∈ L2
κ(Ω), we simply define

pN = − 1
n

tr
(
σ + ρ (u ⊗ u)

)
+ κ

|Ω|
+ ρ

n |Ω|

∫
Ω

tr(u ⊗ u) . (3.44)

We will go back to the above when introducing below in Section 3.4 a suitable fixed-point
approach to analyze the solvability of (3.35).

We end this section by remarking that the variational formulations resulting from
other boundary conditions, say, for instance, mixed ones, instead of the no-slip condition
for the velocity, are just minor modifications of (3.33) (or (3.35)). Mixed boundary
conditions, often called frictional boundary conditions, are fairly frequent in flows of
granular materials in frictional walls, where some slip velocity and shear limited by
Coulomb friction can occur simultaneously [13, 57]. In fact, letting ΓD and ΓN be
disjoint parts of Γ, both with non-null measures, such that Γ = ΓD ∪ ΓN , we consider
first:

u = uD on ΓD , σ ν = 0 on ΓN , (3.45)

with datum uD ∈ H1/2(ΓD). Then, given τ ∈ H(divt; Ω) such that τ ν is null on ΓN ,
it follows that τ ν|ΓD

∈ H−1/2(ΓD) (cf. [58, Lemma 2.4, Remark 2.5] or [59, Section
3.1]), and hence, instead of (3.21), the integration by parts formula (2.3), for which
the Dirichlet boundary condition on ΓD is still natural, yields∫

Ω
τ : D +

∫
Ω

u · div(τ ) +
∫

Ω
τ : γ = ⟨τ ν,uD⟩D ∀ τ ∈ HN(divt; Ω) , (3.46)
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where ⟨·, ·⟩D stands for the duality pairing between H−1/2(ΓD) and H1/2(ΓD), and

HN(divt; Ω) :=
{
τ ∈ H(divt; Ω) : τ ν = 0 on ΓN

}
.

In this way, the changes of (3.33) are basically the right hand side of its second
row, and the space where the unknown σ is sought, which, because of the Neumann
boundary condition on ΓN , becomes the same of its associated test function τ , that is
HN(divt; Ω). Secondly, and exchanging the null condition in (3.45), we can also look
at:

u = 0 on ΓD , σ ν = gN on ΓN , (3.47)

with datum gN ∈ H−1/2
00 (ΓN). Proceeding similarly as above, but introducing the

auxiliary unknown φ := −u|ΓN
∈ H1/2

00 (ΓN), we now arrive at∫
Ω
τ : D +

∫
Ω

u · div(τ ) +
∫

Ω
τ : γ + ⟨τ ν,φ⟩N = 0 ∀ τ ∈ H(divt; Ω) , (3.48)

where ⟨·, ·⟩N stands for the duality pairing between H−1/2
00 (ΓN) and H1/2

00 (ΓN). In
addition, being the Neumann boundary condition on ΓN essential, we impose it weakly
as

⟨σ ν,ψ⟩N = ⟨gN ,ψ⟩N ∀ψ ∈ H1/2
00 (ΓN) . (3.49)

Consequently, the extra terms given by ⟨τ ν,φ⟩N (cf. (3.48)) and those from (3.49),
are incorporated into the second and third rows, respectively, of (3.33) (equivalently,
(3.35)), thus yielding the space Q, the bilinear form B, and the functional F to be
slightly modified. Finally, we could also deal with the more general case of mixed
boundary conditions, namely:

u = uD on ΓD , σ ν = gN on ΓN , (3.50)

with data uD ∈ H1/2(ΓD) and gN ∈ H−1/2
00 (ΓN), for which the direct sum decompo-

sitions of H1/2(Γ) and its dual H−1/2(Γ) provided in [58, Lemma 2.2] (see, also [59,
Section 3.1]), should be employed when applying the integration by parts formula.
Alternatively, one could also resort to suitable trace liftings to reduce (3.50) to either
(3.45) or (3.47). We omit further details and just stress that, for any of the above
described situations, the corresponding continuous and discrete analyses will follow
very closely the ones to be developed in what follows.
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3.4 The continuous solvability analysis

In this section we employ a fixed-point approach along with an abstract result on the
well-posedness of the aforementioned type of nonlinear operator equations in Banach
spaces, to analyze the solvability of the mixed variational formulation (3.35).

3.4.1 The fixed point strategy

We begin by introducing the operator T : L4(Ω) × L2
κ(Ω) −→ L4(Ω) × L2

κ(Ω) defined as

T(z, r) := (u, p) ∀ (z, r) ∈ L4(Ω) × L2
κ(Ω) , (3.51)

where (D,σ, u⃗) :=
(
D,σ, (u,γ)

)
∈ H1 × H2 × Q is the unique solution (to be

confirmed later on) of the problem arising from (3.35) when Ap and the functional Fu

are replaced by Ar and Fz, respectively, that is

[Ar(D),E] +B1(E,σ) = Fz(E) ∀ E ∈ H1 ,

B1(D, τ ) +B(τ , u⃗) = G(τ ) ∀ τ ∈ H2 ,

B(σ, v⃗) = F(v⃗) ∀ v⃗ ∈ Q ,

(3.52)

and p is computed according to (3.44), that is

p := − 1
n

tr
(
σ + ρ (u ⊗ u)

)
+ κ

|Ω|
+ ρ

n |Ω|

∫
Ω

tr(u ⊗ u) . (3.53)

Then, it is readily seen that solving (3.35) is equivalent to finding a fixed point of T,
that is (u, p) ∈ L4(Ω) × L2

κ(Ω) such that

T(u, p) = (u, p) . (3.54)

3.4.2 Well-definedness of the fixed point operator

In this section we prove that the operator T (cf. (3.51) - (3.52)) is well-defined, for
which we make use of the following abstract result establishing sufficient conditions for
the well-posedness of a class of twofold saddle point operator equations.

Theorem 3.4.1. Let X1, X2, and Y be reflexive and separable Banach spaces, and let
A : X1 → X′

1 be a nonlinear operator, and B1 : X1 × X2 → R and B : X2 × Y → R be
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bounded bilinear forms. In addition, let V be the null space of the operator induced
by B, and assume that

i) A is Lipschitz-continuous, that is there exists a positive constant LA such that

∥A(r) − A(s)∥X′
1

≤ LA ∥r − s∥X1 ∀ r, s ∈ X1 ,

ii) the family of operators
{
A(t + ·)

}
t∈X1

is uniformly strongly monotone, that is
there exists a positive constant αA such that

[A(t + r) − A(t + s), r − s] ≥ αA ∥r − s∥2
X1 ∀ t, r, s ∈ X1 ,

iii there exists a positive constant β such that

sup
τ∈X2
τ ̸=0

B(τ, v)
∥τ∥X2

≥ β ∥v∥Y ∀ v ∈ Y ,

iv) and there exists a positive constant β1 such that

sup
r∈X1
r̸=0

B1(r, τ)
∥r∥X1

≥ β1 ∥τ∥X2 ∀ τ ∈ V .

Then, for each (F1,F2,G) ∈ X′
1 ×X′

2 ×Y′ there exists a unique (t, σ, u) ∈ X1 ×X2 ×Y
such that

[A(t), s] + B1(s, σ) = F1(s) ∀ s ∈ X1 ,

B1(t, τ) + B(τ, u) = F2(τ) ∀ τ ∈ X2 ,

B(σ, v) = G(v) ∀ v ∈ Y .

(3.55)

Moreover, there exists a positive constant C, depending only on LA, αA, β, β1, and
the boundedness constant of B1, say ∥B1∥, such that

∥(t,σ,u)∥X1×X2×Y ≤ C
{

∥F1∥X′
1

+ ∥F2∥X′
2

+ ∥G∥Y′ + ∥A(0)∥X′
1

}
. (3.56)

Proof. It is a particular case of [60, Theorem 3.4].

As already announced, we plan to apply Theorem 3.4.1 to conclude the well-
posedness of (3.52), for which we proceed next to show that the respective hypotheses
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are satisfied. In particular, for those involving Ar, we need to incorporate additional
assumptions on the function η, namely

(H.2) with the same positive constants η1 and η2 from (H.1), there holds

0 < η1 ≤ η(ϱ, ω) + ω
∂

∂ω
η(ϱ, ω) ≤ η2 ∀ (ϱ, ω) ∈ R+ × R+ , and (3.57)

(H.3) there exists a positive constant Lη such that
∣∣∣η(ϱ, ω) − η(χ, ω)

∣∣∣ω ≤ Lη |ϱ− χ| ∀ ϱ, χ, ω ∈ R+. (3.58)

In the Appendix A.1 we prove that η, as defined by (3.11), satisfies (H.3) and that,
under a suitable modification of its domain, it accomplishes (H.1) and (H.2) as well.

Then, we can prove the following lemma establishing continuity and strong-
monotonicity properties of the nonlinear operator Ar.

Lemma 3.4.1. Let LA := 2η2 − η1 and αA := η1. Then, there holds

∥Ar(D) − Ar(E)∥H′
1

≤ LA ∥D − E∥H1 ∀ r ∈ L2(Ω) , ∀ D, E ∈ H1 , (3.59)

[Ar(D) − Ar(E),D − E] ≥ αA ∥D − E∥2
H1 ∀ r ∈ L2(Ω) , ∀ D, E ∈ H1 , (3.60)

and
∣∣∣[Ar(D) − Aq(D),E]

∣∣∣ ≤ Lη ∥r − q∥0,Ω ∥E∥H1 ∀ r, q ∈ L2(Ω) , ∀ D, E ∈ H1 .

(3.61)

Proof. For the proofs of (3.59) and (3.60) we refer to [61, Theorem 3.8]. In turn, given
r, q ∈ L2(Ω), and D, E ∈ H1, bearing in mind the definition of Ar (cf. (3.36)), and
using (3.58) with ϱ = r, χ = q, and ω = |D|, we deduce that

∣∣∣[Ar(D) − Aq(D),E]
∣∣∣ =

∣∣∣∣∫
Ω

{
η(r, |D|) − η(q, |D|)

}
D : E

∣∣∣∣
≤
∫

Ω

∣∣∣η(r, |D|) − η(q, |D|)
∣∣∣ |D| |E| ≤ Lη

∫
Ω

|r − q| |E| ,

from which, applying Cauchy-Schwarz’s inequality, we obtain (3.61) and end the
proof.

We now observe from (3.59) and (3.60) that, for each r ∈ L2(Ω), Ar verifies the
hypotheses i) and ii) of Theorem 3.4.1 with the constants LA and αA (cf. Lemma
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3.4.1), respectively. In particular, for ii) we simply notice that there holds

[Ar(J + D) − Ar(J + E),D − E] = [Ar(J + D) − Ar(J + E), (D + J) − (E + J)]

≥ αA ∥(D + J) − (E + J)∥2
H1 = αA ∥D − E∥2

H1 ∀ J, D, E ∈ H1 .

Next, we recall from [22] the following lemma establishing the continuous inf-sup
condition for B.

Lemma 3.4.2. There exists a positive constant β̃ such that

sup
τ∈H2
τ ̸=0

B(τ , v⃗)
∥τ∥H2

≥ β̃ ∥v⃗∥Q = β̃
{

∥v∥0,4;Ω + ∥ξ∥0,Ω

}
∀ v⃗ := (v, ξ) ∈ Q . (3.62)

Proof. See [22, Lemma 3.5] for details.

Regarding the continuous inf-sup condition for B1, we first observe from the defini-
tion of B (cf. (3.38)) that the null space of its induced operator is given by

V :=
{
τ ∈ H2 : div(τ ) = 0 and τ = τ t in Ω

}
.

Then, we recall from [62] the following result.

Lemma 3.4.3. There exists a positive constant β̃1 such that

sup
E∈H1
E ̸=0

B1(E, τ )
∥E∥H1

≥ β̃1 ∥τ∥H2 ∀ τ ∈ V . (3.63)

Proof. See [62, Lemma 3.3] for details.

We remark here that the proof of Lemma 3.4.3 makes use of the inequality estab-
lishing the existence of a positive constant c1 such that

c1 ∥τ∥0,Ω ≤ ∥τ d∥0,Ω + ∥div(τ )∥0,4/3;Ω ∀ τ ∈ H0(div4/3; Ω) . (3.64)

The well-posedness of (3.52), equivalently the well-definedness of T, is stated now
as follows.

Theorem 3.4.2. For each (z, r) ∈ L4(Ω) × L2
κ(Ω) there exists a unique tuple (D,σ, u⃗)

:=
(
D,σ, (u,γ)

)
∈ H1 × H2 × Q solution to (3.52), and hence one can

define T(z, r) := (u, p) ∈ L4(Ω) × L2
κ(Ω), where p is computed according to (3.53).
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Moreover, there exists a positive constant CT, depending only on LA, αA, β̃, β̃1, n,
and ∥i4∥, such that

∥u∥0,4;Ω ≤ ∥(D,σ, u⃗)∥H1×H2×Q ≤ CT

{
ρ ∥z∥2

0,4;Ω + ∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (3.65)

Proof. Having already checked that (3.52) verifies the assumptions i) and ii) of Theorem
3.4.1, and noting that Lemmas 3.4.2 and 3.4.3 confirm that ii) and iv) also hold, the
proof is a straightforward application of that abstract result. In particular, the a
priori estimate (3.65) follows from (3.56), the boundedness properties of the functionals
involved (cf. (3.42), (3.43)), and the fact that Ap(0) = 0 ∈ H′

1. Regarding CT, note
that we omit its dependence on ∥B1∥ since this latter value equals 1 (cf. (3.42)).

3.4.3 Solvability analysis of the fixed point equation

Knowing that T is well-defined, we now address the solvability of the fixed-point
equation (3.54). We begin the analysis deriving sufficient conditions on T to map a
complete metric subspace of L4(Ω × L2

κ(Ω) into itself. Indeed, given δ > 0, we set

W(δ) :=
{

z ∈ L4(Ω) : ∥z∥0,4;Ω ≤ δ
}

and S(δ) := W(δ) × L2
κ(Ω) . (3.66)

Then, proceeding as in [56, Lemma 4.7], we are able to prove the following result.

Lemma 3.4.4. Assume that

ρ δ ≤ 1
2CT

and CT

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ δ

2 . (3.67)

Then, T
(
S(δ)

)
⊆ S(δ).

Proof. Given (z, r) ∈ S(δ), we know from Theorem 3.4.2 that T(z, r) := (u, p) is
well-defined and that, in virtue of (3.65) and the assumptions from (3.67), there holds

∥u∥0,4;Ω ≤ CT

{
ρ ∥z∥2

0,4;Ω + ∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ CT ρ δ

2 + δ

2 ≤ δ ,

whereas (3.53) guarantees that p ∈ L2
κ(Ω), and hence (u, p) ∈ S(δ).

The continuity property of T is established next.

Lemma 3.4.5. Under the same assumption of Lemma 3.4.4, that is (3.67), there exist
positive constants Lj(T), j ∈

{
1, 2

}
, depending only on LA, αA, β̃, β̃1, n, and ∥i4∥,
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such that

∥T(z, r) − T(z˜, r˜)∥ ≤ L1(T) ρ δ ∥z − z˜∥0,4;Ω + L2(T)Lη ∥r − r˜∥0,Ω (3.68)

for all (z, r), (z˜, r˜) ∈ S(δ).

Proof. Given (z, r), (z˜, r˜) ∈ S(δ), we let

T(z, r) := (u, p) and T(z˜, r˜) := (u˜ , p˜) , (3.69)

where (D,σ, u⃗) =
(
D,σ, (u,γ)

)
∈ H1 × H2 × Q is the unique solution of (3.52) and

p is defined by (3.53), and, analogously, (D˜,σ˜ , u⃗˜) =
(
D˜,σ˜ , (u˜ ,γ˜)

)
∈ H1 × H2 × Q is

the unique solution of (3.52) with Ar˜ and Fz˜ instead of Ar and Fz, respectively, and,
following (3.53),

p˜ := − 1
n

tr
(
σ˜ + ρ (u˜ ⊗ u˜)

)
+ κ

|Ω|
+ ρ

n |Ω|

∫
Ω

tr(u˜ ⊗ u˜) . (3.70)

Then, subtracting from each other the aforementioned systems (3.52) whose solutions
are (D,σ, u⃗) and (D˜,σ˜ , u⃗˜), we obtain

[Ar(D) − Ar˜(D˜),E] +B1(E,σ − σ˜ ) =
(
Fz − Fz˜

)
(E) ∀ E ∈ H1 ,

B1(D − D˜, τ ) +B(τ , u⃗ − u⃗˜) = 0 ∀ τ ∈ H2 ,

B(σ − σ˜ , v⃗) = 0 ∀ v⃗ ∈ Q .

(3.71)
Next, taking τ = σ − σ˜ , we get from the second and third rows of the foregoing
equation that

B1(D − D˜,σ − σ˜ ) = −B(σ − σ˜ , u⃗ − u⃗˜) = 0 ,

which, along with the first row applied to E = D − D˜, yields

[Ar(D) − Ar˜(D˜),D − D˜] =
(
Fz − Fz˜

)
(D − D˜) .

Thus, subtracting and adding Ar˜(D˜) , we see that

[Ar(D) − Ar(D˜),D − D˜] = [Ar(D) − Ar˜(D˜),D − D˜] − [Ar(D˜) − Ar˜(D˜),D − D˜]

=
(
Fz − Fz˜

)
(D − D˜) − [Ar(D˜) − Ar˜(D˜),D − D˜] ,
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so that, using (3.60) and (3.61), we find that

αA ∥D − D˜∥2
0,Ω ≤ [Ar(D) − Ar(D˜),D − D˜]

≤ |
(
Fz − Fz˜

)
(D − D˜)| + Lη ∥r − r˜∥0,Ω ∥D − D˜∥0,Ω .

(3.72)

In turn, it is clear from (3.39) that
(
Fz − Fz˜

)
(D − D˜) = ρ

∫
Ω

(
(z ⊗ z) − (z˜ ⊗ z˜)

)
: (D − D˜) , (3.73)

from which, subtracting and adding z˜ to one of the factors of (z ⊗ z), and using
Cauchy-Schwarz’s inequality, (3.26), and the fact that z, z˜ ∈ W(δ), we readily deduce
that

|
(
Fz − Fz˜

)
(D − D˜)| ≤ n1/2 ρ

(
∥z∥0,4;Ω + ∥z˜∥0,4;Ω

)
∥z − z˜∥0,4;Ω ∥D − D˜∥0,Ω

≤ 2n1/2 ρ δ ∥z − z˜∥0,4;Ω ∥D − D˜∥0,Ω .
(3.74)

In this way, employing (3.74) in (3.72), we arrive at

∥D − D˜∥0,Ω ≤ α−1
A

{
2n1/2 ρ δ ∥z − z˜∥0,4;Ω + Lη ∥r − r˜∥0,Ω

}
. (3.75)

On the other hand, using the continuous inf-sup condition for B (cf. (3.62)) and the
second row of (3.71), we get

β̃ ∥u⃗ − u⃗˜∥Q ≤ sup
τ∈H2
τ ̸=0

B(τ , u⃗ − u⃗˜)
∥τ∥H2

= sup
τ∈H2
τ ̸=0

−B1(D − D˜, τ )
∥τ∥H2

≤ ∥D − D˜∥0,Ω ,

which, along with (3.75), implies

∥u⃗ − u⃗˜∥Q ≤ α−1
A β̃−1

{
2n1/2 ρ δ ∥z − z˜∥0,4;Ω + Lη ∥r − r˜∥0,Ω

}
. (3.76)

Next, noting from the third row of (3.71) that σ − σ˜ belongs to V := N(B), we have
from the continuous inf-sup condition for B1 (cf. (3.63)) and the first row of (3.71),
that

β̃1 ∥σ − σ˜∥H2 ≤ sup
E∈H1
E ̸=0

B1(E,σ − σ˜ )
∥E∥H1

= sup
E∈H1
E ̸=0

(
Fz − Fz˜

)
(E) − [Ar(D) − Ar˜(D˜),E]

∥E∥H1

.

(3.77)
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Then, exactly as for the derivation of (3.74), we deduce that

|
(
Fz − Fz˜

)
(E)| ≤ 2n1/2 ρ δ ∥z − z˜∥0,4;Ω ∥E∥0,Ω . (3.78)

In turn, similarly as previously done in the present proof, it is easily seen that

[Ar(D) − Ar˜(D˜),E] = [Ar(D) − Ar(D˜),E] + [Ar(D˜) − Ar˜(D˜),E] ,

from which, employing (3.59) and (3.61), it follows that

∣∣∣[Ar(D) − Ar˜(D˜),E]
∣∣∣ ≤

{
LA ∥D − D˜∥0,Ω + Lη ∥r − r˜∥0,Ω

}
∥E∥0,Ω . (3.79)

In this way, replacing the estimates (3.78) and (3.79) back into (3.77), we conclude
that

∥σ − σ˜∥H2 ≤ β̃−1
1

{
2n1/2 ρ δ ∥z − z˜∥0,4;Ω + LA ∥D − D˜∥0,Ω + Lη ∥r − r˜∥0,Ω

}
, (3.80)

which, combined with the estimate for ∥D − D˜∥0,Ω (cf. (3.75)), leads to

∥σ − σ˜∥H2 ≤
(
1 + LA α

−1
A

)
β̃−1

1

{
2n1/2 ρ δ ∥z − z˜∥0,4;Ω + Lη ∥r − r˜∥0,Ω

}
. (3.81)

Furthermore, invoking (3.69), (3.53), and (3.70), and performing some simple algebraic
computations, which include the use of Cauchy-Schwarz’s inequality and the fact that
∥tr(τ )∥0,Ω ≤ n1/2 ∥τ∥0,Ω, we easily deduce that

∥T(z, r)−T(z˜, r˜)∥ ≤ ∥u−u˜∥0,4;Ω + n−1/2 ∥σ−σ˜∥0,Ω + 2n−1/2 ρ ∥(u⊗u)−(u˜⊗u˜)∥0,Ω ,

(3.82)
from which, subtracting and adding u to one of the factors of u ⊗ u, employing (3.26),
recalling that u, u˜ ∈ W(δ), and using from (3.67) that ρ δ ≤ 1

2CT
, we arrive at

∥T(z, r) − T(z˜, r˜)∥ ≤
(
1 + 4 ρ δ

)
∥u − u˜∥0,4;Ω + n−1/2 ∥σ − σ˜∥0,Ω

≤
(
1 + 2C−1

T

)
∥u − u˜∥0,4;Ω + n−1/2 ∥σ − σ˜∥0,Ω .

Finally, replacing the estimates for ∥u − u˜∥0,4;Ω (cf. (3.76)) and ∥σ−σ˜∥0,Ω (cf. (3.81))
into the foregoing inequality, and recalling from Theorem 3.4.2 that CT depends on LA,
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αA, β̃, β̃1, n, and ∥i4∥, we conclude the required inequality (3.68) with the constants

L1(T) := 2
(
1 + 2C−1

T

)
α−1
A β̃−1 n1/2 + 2

(
1 + LA α

−1
A

)
β̃−1

1

and
L2(T) :=

(
1 + 2C−1

T

)
α−1
A β̃−1 +

(
1 + LA α

−1
A

)
β̃−1

1 n−1/2 .

We are now in a position to state the first main result of this section.

Theorem 3.4.3. Assume that ρ δ, Lη, and the data are sufficiently small so that

ρ δ < min
{ 1

2CT
,

1
L1(T)

}
, Lη <

1
L2(T) , and

CT

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ δ

2 .
(3.83)

Then, the operator T has a unique fixed point (u, p) ∈ S(δ). Equivalently, given this
p ∈ L2

κ(Ω), the system (3.35) has a unique solution (D,σ, u⃗) :=
(
D,σ, (u,γ)

)
∈

H1 × H2 × Q with u ∈ W(δ) and p satisfying (3.53). Moreover, there holds

∥(D,σ, u⃗)∥H1×H2×Q ≤ 2CT

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (3.84)

Proof. According to the assumptions stipulated in (3.83), we deduce from Lemmas 3.4.4
and 3.4.5 that T is a contraction mapping S(δ) into itself. Hence, a straightforward
application of the classical Banach theorem implies the existence of a unique fixed
point (u, p) ∈ S(δ) of this operator, thus yielding the indicated consequences regarding
the system (3.35). In turn, thanks to (3.65) (cf. Theorem 3.4.2) we have

∥(D,σ, u⃗)∥H1×H2×Q ≤ CT

{
ρ ∥u∥2

0,4;Ω + ∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
,

whereas the fact that u ∈ W(δ) and the first assumption in (3.83) lead to

ρ ∥u∥2
0,4;Ω ≤ ρ δ ∥u∥0,4;Ω ≤ 1

2CT
∥(D,σ, u⃗)∥H1×H2×Q ,

so that from these two inequalities we readily obtain (3.84) and conclude the proof.

Regarding the smallness data assumptions specified in (3.83), we notice that the fact
that CT, L1(T), and L2(T) depend on other constants and parameters, some of which
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might not be known explicitly, makes hard, for not saying impossible, to actually verify
those constraints in practice. Certainly, there do exist radius δ, constant Lη, and data
∥uD∥1/2,Γ and ∥f∥0,4/3;Ω satisfying them, but, unless all the aforementioned constants
are explicitly known, we ignore how small they need to be in order to accomplish (3.83).
The same comments apply to similar constraints along the paper, in particular those
ensuring later on the unique solvability of the Galerkin scheme (cf. Theorem 3.5.5)
and the corresponding a priori error estimates (cf. Theorem 3.5.6).

3.5 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully-mixed variational formu-
lation (3.35), analyze its solvability by means of a discrete version of the fixed-point
approach employed in Section 3.4, and derive the corresponding a priori error estimate.

3.5.1 Preliminaries

We begin by letting H1,h, H̃2,h, Q1,h, and Q2,h be arbitrary finite dimensional subspaces
of L2

tr(Ω), H(div4/3; Ω), L4(Ω), and L2
sk(Ω), respectively, and let Ph := P̃h ⊕

{
κ

|Ω|

}
,

where P̃h is a finite dimensional subspace of L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Hereafter, h stands for both the sub-index of each subspace and the size of each member
of a regular family

{
Th

}
h>0

of triangulations of Ω made up of triangles K (when n = 2)
or tetrahedra K (when n = 3) of diameters hK , so that h := max

{
hK : K ∈ Th

}
.

Now, defining

H2,h := H0(div4/3; Ω) ∩ H̃2,h and Qh := Q1,h × Q2,h ,

and letting ph ∈ Ph be a given discrete approximation of the pressure p, the Galerkin
scheme associated with (3.35) reads: Find (Dh,σh, u⃗h) :=

(
Dh,σh, (uh,γh)

)
∈ H1,h ×

H2,h × Qh such that

[Aph
(Dh),Eh] +B1(Eh,σh) = Fuh

(Eh) ∀ Eh ∈ H1,h ,

B1(Dh, τh) +B(τh, u⃗h) = G(τh) ∀ τh ∈ H2,h ,

B(σh, v⃗h) = F(v⃗h) ∀ v⃗h ∈ Qh .

(3.85)
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Next, we consider the discrete analogue of the fixed-point strategy employed in
Section 3.4. Indeed, we introduce the discrete operator Th : Q1,h × Ph → Q1,h × Ph

defined by
Th(zh, rh) := (uh, ph) ∀ (zh, rh) ∈ Q1,h × Ph , (3.86)

where (Dh,σh, u⃗h) :=
(
Dh,σh, (uh,γh)

)
∈ H1,h ×H2,h ×Qh is the unique solution (to

be confirmed later on) of the problem arising from (3.85) when Aph
and the functional

Fuh
are replaced by Arh

and Fzh
, respectively, that is

[Arh
(Dh),Eh] +B1(Eh,σh) = Fzh

(Eh) ∀ Eh ∈ H1,h ,

B1(Dh, τh) +B(τh, u⃗h) = G(τh) ∀ τh ∈ H2,h ,

B(σh, v⃗h) = F(v⃗h) ∀ v⃗h ∈ Qh ,

(3.87)

whereas ph is computed as suggested by the discrete version of (3.44), that is

ph := − 1
n

tr
(
σh + ρ (uh ⊗ uh)

)
+ κ

|Ω|
+ ρ

n |Ω|

∫
Ω

tr(uh ⊗ uh) . (3.88)

Note from (3.88) that the specific subspaces to which σh and uh belong determine the
choice of P̃h. Then, it is readily seen that solving (3.85) is equivalent to finding a fixed
point of Th, that is (uh, ph) ∈ Q1,h × Ph such that

Th(uh, ph) = (uh, ph) . (3.89)

3.5.2 Discrete solvability analysis

In what follows we proceed analogously to Sections 3.4.2 and 3.4.3, and establish
the well-posedness of the Galerkin scheme (3.85) by means of the solvability study of
the equivalent fixed-point equation (3.89). In this regard, we announce in advance
that, being the respective discussion similar to the one developed for the continuous
formulation, here we simply collect the main results and provide selected details of
their proofs. To this end, suitable hypotheses regarding the arbitrary subspaces H1,h,
H̃2,h, and Qh, need to be introduced throughout the analysis. Explicit finite element
subspaces satisfying them will be specified later on in Section 3.6.

We begin by letting Vh be the discrete kernel of the bilinear form B, that is

Vh :=
{
τh ∈ H2,h : B(τh, v⃗h) = 0 ∀ v⃗h ∈ Qh

}
, (3.90)
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and by assuming that

(H.4) H̃2,h contains multiples of the identity tensor I,

(H.5) div(H̃2,h) ⊆ Q1,h,

(H.6) Vd
h :=

{
τ d

h : τh ∈ Vh

}
⊆ H1,h, and

(H.7) there exists a positive constant β̃d, independent of h, such that

sup
τh∈H2,h

τh ̸=0

B(τh, v⃗h)
∥τh∥H2

≥ β̃d ∥v⃗h∥Q = β̃d

{
∥vh∥0,4;Ω + ∥ξh∥0,Ω

}
∀ v⃗h := (vh, ξh) ∈ Qh .

(3.91)
Then, as a consequence of (H.4), there holds the discrete version of the decomposi-

tion (3.30), namely H̃2,h = H2,h ⊕ RI, which confirms the validity of using H2,h as
the subspace where σh is sought. Now, according to the definition of B (cf. (3.38)),
and noting that (H.5) can be equivalently rephrased as div(H2,h) ⊆ Q1,h, it readily
follows from (3.90) that

Vh :=
{
τh ∈ H2,h : div(τh) = 0 and

∫
Ω
τh : ξh = 0 ∀ ξh ∈ Q2,h

}
, (3.92)

which yields the discrete analogue of (3.63). Indeed, given τh ∈ Vh such that τ d
h ≠ 0,

we have thanks to (H.6) that −τ d
h ∈ H1,h, and thus

sup
Eh∈H1,h

Eh ̸=0

B1(Eh, τh)
∥Eh∥H1

≥ B1(−τ d
h , τh)

∥τ d
h ∥H1

= ∥τ d
h ∥0,Ω ,

from which, employing the inequality (3.64), we arrive at

sup
Eh∈H1,h

Eh ̸=0

B1(Eh, τh)
∥Eh∥H1

≥ β̃1,d ∥τh∥H1 , (3.93)

with β̃1,d = c1. Now, if τh ∈ Vh is such that τ d
h = 0, then it follows from (3.64) that

τh = 0, whence (3.93) holds trivially in this case.
Furthermore, it is not difficult to see that the Lipschitz-continuity and monotoniticity

properties of Ar provided in Lemma 3.4.1 (cf. (3.59), (3.60), and (3.61)), are also valid
in the present discrete case, and with the same constants LA, αA, and Lη, that is

∥Arh
(Dh) − Arh

(Eh)∥H′
1,h

[2ex]
≤ LA ∥Dh − Eh∥H1 ∀ rh ∈ Ph , ∀ Dh, Eh ∈ H1,h ,

(3.94)
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[Arh
(Dh) − Arh

(Eh),Dh − Eh][2ex]
≥ αA ∥Dh − Eh∥2

H1 ∀ rh ∈ Ph , ∀ Dh, Eh ∈ H1,h ,
(3.95)

and ∣∣∣[Arh
(Dh) − Aqh

(Dh),Eh]
∣∣∣[2ex]

≤ Lη ∥rh − qh∥0,Ω ∥Eh∥H1 ∀ rh, qh ∈ Ph , ∀ Dh, Eh ∈ H1,h .
(3.96)

Consequently, we are now in a position to establish the discrete analogue of Theorem
3.4.2.

Theorem 3.5.4. For each (zh, rh) ∈ Q1,h ×Ph there exists a unique tuple (Dh,σh, u⃗h)
:=

(
Dh,σh, (uh,γh)

)
∈ H1,h × H2,h × Qh which is the solution to (3.87), and

hence one can define T(zh, rh) := (uh, ph) ∈ Q1,h×Ph, where ph is computed according
to (3.88). Moreover, there exists a positive constant CT,d, depending only on LA, αA,
β̃d, β̃1,d, n, and ∥i4∥, such that

∥uh∥0,4;Ω ≤ ∥(Dh,σh, u⃗h)∥H1×H2×Q ≤ CT,d

{
ρ ∥zh∥2

0,4;Ω + ∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
.

(3.97)

Proof. Thanks to the discrete inf-sup conditions for B (cf. (H.7)) and B1 (cf. (3.93)),
and the properties (3.94), (3.95) and (3.96), the proof follows from a direct application
of Theorem 3.4.1. We omit further details.

Knowing that the discrete operator Th is well defined, we now address the solvability
of the fixed point equation (3.89). In fact, letting δd be an arbitrary radius, we now set

W(δd) :=
{

zh ∈ Q1,h : ∥zh∥0,4;Ω ≤ δd

}
and S(δd) := W(δd) × Ph . (3.98)

In this way, proceeding analogously to the deduction of Lemma 3.4.4, we find that,
under the discrete analogue of (3.67), that is

ρ δd ≤ 1
2CT,d

and CT,d

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ δd

2 , (3.99)

Th maps S(δd) into itself. Note that the above is the same as for the continuous case
(cf. (3.67)), except that the constant CT and the radius δ are replaced by CT,d and δd,
respectively.
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In addition, employing similar arguments to those from the proof of Lemma 3.4.5,
we can prove the discrete version of (3.68) with the constants

L1,d(T) := 2
(
1 + 2C−1

T,d

)
α−1
A β̃−1

d n1/2 + 2
(
1 + LA α

−1
A

)
β̃−1

1,d

and
L2,d(T) :=

(
1 + 2C−1

T,d

)
α−1
A β̃−1

d +
(
1 + LA α

−1
A

)
β̃−1

1,d n
−1/2 ,

that is

∥Th(zh, rh) − Th(z˜h, r˜h)∥ ≤ L1,d(T) ρ δd ∥zh − z˜h∥0,4;Ω + L2,d(T)Lη ∥rh − r˜h∥0,Ω

(3.100)
for all (zh, rh), (z˜h, r˜h) ∈ S(δd).

The main result of this section, which constitutes the discrete analogue of Theorem
3.4.3, is then established as follows.

Theorem 3.5.5. Assume that ρ δd, Lη, and the data are sufficiently small so that

ρ δd < min
{ 1

2CT,d
,

1
L1,d(T)

}
, Lη <

1
L2,d(T) , and

CT,d

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ δd

2 .

(3.101)

Then, the operator Th has a unique fixed point (uh, ph) ∈ S(δd). Equivalently, given this
ph ∈ Ph, the system (3.85) has a unique solution (Dh,σh, u⃗h) :=

(
Dh,σh, (uh,γh)

)
∈

H1,h × H2,h × Qh with uh ∈ W(δd) and ph satisfying (3.88). Moreover, there holds

∥(Dh,σh, u⃗h)∥H1×H2×Q ≤ 2CT,d

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (3.102)

Proof. It is clear from the previous discussion and the assumptions in (3.101), that
Th is a contraction mapping S(δd) into itself. Thus, a straightforward application
of the classical Banach Theorem implies the existence of a unique solution to (3.89),
and hence, equivalently, to the system (3.85). In turn, thanks to (3.97) (cf. Theorem
3.5.4), and performing similar algebraic manipulations to those utilized in the proof of
Theorem 3.4.3, we deduce the a priori estimate (3.102).
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3.5.3 A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the assumptions
specified in Section 3.5.2, and derive the Céa estimate for the Galerkin error given by

∥D⃗−D⃗h∥H+∥p−ph∥0,Ω := ∥D−Dh∥0,Ω + ∥σ−σh∥div4/3;Ω + ∥u⃗−u⃗h∥Q + ∥p−ph∥0,Ω ,

where D⃗ := (D,σ, u⃗) =
(
D,σ, (u,γ)

)
∈ H := H1 × H2 × Q is the unique solution

of (3.35), with u ∈ S(δ), and D⃗h := (Dh,σh, u⃗h) =
(
Dh,σh, (uh,γh)

)
∈ Hh :=

H1,h × H2,h × Qh is the unique solution of (3.85), with uh ∈ S(δd), whereas p and ph

are computed according to (3.53) and (3.88), respectively.
We begin by defining for each r ∈ L2

κ(Ω) the operator Ξr : H → H′ that arises from
the left-hand side of the variational formulation (3.35) after adding all its rows, that is

[Ξr(C⃗), E⃗] := [Ar(C),E] + B1(E, ζ) + B1(C, τ ) + B(τ , w⃗) + B(ζ, v⃗) , (3.103)

for all C⃗ := (C, ζ, w⃗), E⃗ := (E, τ , v⃗) ∈ H, so that (3.35) and (3.85) can be rewritten,
respectively, as

[Ξp(D⃗), E⃗] = Fu(E) + G(τ ) + F(v⃗) ∀ E⃗ := (E, τ , v⃗) ∈ H , (3.104)

and

[Ξph
(D⃗h), E⃗h] = Fuh

(Eh) + G(τh) + F(v⃗h) ∀ E⃗h := (Eh, τh, v⃗h) ∈ Hh . (3.105)

It readily follows from (3.104) and (3.105) that

[Ξp(D⃗), E⃗h] − [Ξph
(D⃗h), E⃗h] =

(
Fu − Fuh

)
(Eh) ∀ E⃗h := (Eh, τh, v⃗h) ∈ Hh .

(3.106)
Now, the smoothness of the regularized η (cf. (3.11)) allows to show that for each

r ∈ L2
κ(Ω), the operator Ar, and hence Ξr as well, have first order Gâteaux derivatives

D(Ar) ∈ L
(
H1,L(H1,H′

1)
)

and D(Ξr) ∈ L
(
H,L(H,H′)

)
, respectively, as well as

their corresponding discrete versions denoted by Dh(Ar) ∈ L
(
H1,h,L(H1,h,H′

1,h)
)

and
Dh(Ξr) ∈ L

(
Hh,L(Hh,H′

h)
)
. Moreover, using (3.59) and (3.60) (cf. Lemma 3.4.1),

one is able to prove (see, e.g. [63, Lemma 3.1]) that for each Ch ∈ H1,h, the operator
Dh(Ar)(Ch) ∈ L(H1,h,H′

1,h) can be identified as a bounded and H1-elliptic bilinear
form with constants LA and αA, respectively. It follows that for each r ∈ L2

κ(Ω), and
for each C⃗h ∈ Hh, the operator Dh(Ξr)(C⃗h) ∈ L(Hh,H′

h) satisfies the hypotheses of



82 A priori error analysis for µ(I)-rheology

the discrete linear version of Theorem 3.4.1, and hence the corresponding global inf-sup
condition as well with a positive constant αΞ,d, depending only on LA, αA, β̃d, and
β̃1,d. In this way, proceeding analogously to the proof of [63, Theorem 3.3], which
includes, in particular, applying the mean value theorem to Ξr, we deduce that for
each r ∈ L2

κ(Ω) there holds

αΞ,d ∥C⃗˜ h
− C⃗h∥H ≤ sup

E⃗h∈Hh

E⃗h ̸=0

[Ξr(C⃗˜ h) − Ξr(C⃗h), E⃗h]
∥E⃗h∥H

∀ C⃗˜ h, C⃗h ∈ Hh . (3.107)

Then, we begin our derivation by employing the triangle inequality, which gives

∥D⃗ − D⃗h∥H ≤ ∥D⃗ − C⃗h∥H + ∥D⃗h − C⃗h∥H ∀ C⃗h ∈ Hh , (3.108)

whereas, applying (3.107) with r = p, we obtain

αΞ,d ∥D⃗h − C⃗h∥H ≤ sup
E⃗h∈Hh

E⃗h ̸=0

[Ξp(D⃗h) − Ξp(C⃗h), E⃗h]
∥E⃗h∥H

. (3.109)

Next, subtracting and adding [Ξp(D⃗), E⃗h], we find that

[Ξp(D⃗h) − Ξp(C⃗h), E⃗h] = [Ξp(D⃗h) − Ξp(D⃗), E⃗h] + [Ξp(D⃗) − Ξp(C⃗h), E⃗h] , (3.110)

so that, employing the Lipschitz-continuity of Ap (cf. (3.59), Lemma 3.4.1), we deduce
from (3.103) the existence of a positive constant LΞ, depending on LA, ∥B∥, and ∥B1∥,
such that the second term on the right-hand side of (3.110) is bounded as

∣∣∣[Ξp(D⃗) − Ξp(C⃗h), E⃗h]
∣∣∣ ≤ LΞ ∥D⃗ − C⃗h∥H ∥E⃗h∥H . (3.111)

In turn, subtracting and adding [Ξph
(D⃗h), E⃗h], applying the Lipschitz-continuity of A

with respect to the pressure (cf. (3.61), Lemma 3.4.1), and employing (3.106), we find
that∣∣∣[Ξp(D⃗h) − Ξp(D⃗), E⃗h]

∣∣∣ =
∣∣∣[Ξp(D⃗h) − Ξph

(D⃗h), E⃗h] + [Ξph
(D⃗h) − Ξp(D⃗), E⃗h]

∣∣∣
≤

{
Lη ∥p− ph∥0,Ω + ∥Fu − Fuh

∥H′
1,h

}
∥E⃗h∥H .

(3.112)
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In this way, using (3.111) and (3.112) to bound the expression in (3.110), and then
replacing the resulting estimate in (3.109), we arrive at

αΞ,d ∥D⃗h − C⃗h∥H ≤ LΞ ∥D⃗ − C⃗h∥H + Lη ∥p− ph∥0,Ω + ∥Fu − Fuh
∥H′

1,h
, (3.113)

which, along with (3.108), implies

∥D⃗ − D⃗h∥H ≤
(
1 + α−1

Ξ,d LΞ
)

dist(D⃗,Hh

)
+ α−1

Ξ,d

{
Lη ∥p− ph∥0,Ω + ∥Fu − Fuh

∥H′
1,h

}
,

(3.114)
where, as usual,

dist(D⃗,Hh

)
:= inf

C⃗h∈Hh

∥D⃗ − C⃗h∥H .

Furthermore, according to the expressions provided by (3.53) and (3.88), and proceeding
similarly to the derivation of the last two terms in (3.82), we get

∥p− ph∥0,Ω ≤ n−1/2
{

∥σ − σh∥0,Ω + 2 ρ ∥(u ⊗ u) − (uh ⊗ uh)∥0,Ω

}
. (3.115)

In addition, invoking now the definition of Fz (cf. (3.39)) as in (3.73), we obtain
(
Fu − Fuh

)
(Eh) = ρ

∫
Ω

(
(u ⊗ u) − (uh ⊗ uh)

)
: Eh ∀ Eh ∈ H1,h ,

which gives
∥Fu − Fuh

∥H′
1,h

≤ ρ ∥(u ⊗ u) − (uh ⊗ uh)∥0,Ω . (3.116)

Then, replacing the bounds from (3.115) and (3.116) back into (3.114), and denoting
the constants

C1,Ξ := 1 + α−1
Ξ,d LΞ , C2,Ξ := α−1

Ξ,d n
−1/2 , and C3,Ξ := α−1

Ξ,d ρ
(
2n−1/2 Lη + 1

)
,

we conclude that

∥D⃗ − D⃗h∥H ≤ C1,Ξ dist(D⃗,Hh

)
+ C2,Ξ Lη ∥σ − σh∥0,Ω

+C3,Ξ ∥(u ⊗ u) − (uh ⊗ uh)∥0,Ω .
(3.117)

Finally, similarly to the derivation of (3.74), there holds

∥(u ⊗ u) − (uh ⊗ uh)∥0,Ω ≤ n1/2
(
∥u∥0,4;Ω + ∥uh∥0,4;Ω

)
∥u − uh∥0,4;Ω

≤ n1/2
(
δ + δd

)
∥u − uh∥0,4;Ω ,

(3.118)
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and hence the inequalities (3.115) and (3.117) become, respectively,

∥p− ph∥0,Ω ≤ n−1/2 ∥σ − σh∥0,Ω + 2 ρ
(
δ + δd

)
∥u − uh∥0,4;Ω , (3.119)

and
∥D⃗ − D⃗h∥H ≤ C1,Ξ dist(D⃗,Hh

)
+ C2,Ξ Lη ∥σ − σh∥0,Ω

+C3,Ξ n
1/2
(
δ + δd

)
∥u − uh∥0,4;Ω .

(3.120)

We are now in position to establish the main result of this section.

Theorem 3.5.6. In addition to the notations and hypotheses of Theorems 3.4.3 and
3.5.5, assume that Lη, and the radii δ and δd are sufficiently small so that

C2,Ξ Lη ≤ 1
2 and C3,Ξ n

1/2
(
δ + δd

)
≤ 1

2 . (3.121)

Then, there exists a positive constant C, independent of h, such that

∥D⃗ − D⃗h∥H + ∥p− ph∥0,Ω ≤ C dist(D⃗,Hh

)
. (3.122)

Proof. By employing (3.121) in (3.120), we readily deduce that

∥D⃗ − D⃗h∥H ≤ 2C1,Ξ dist(D⃗,Hh

)
,

whereas the corresponding estimate for ∥p−ph∥0,Ω follows from (3.119) and the foregoing
inequality.

As announced at the end of Section 3.4, and similarly as for those required by
Theorems 3.4.3 and 3.5.5, the assumptions in (3.121) are, in general, not verifiable in
practice, but certainly there do exist constants Lη, δ, and δd satisfying them. When
the latter occurs, the present Theorem 3.5.6 ensures that there holds the a priori error
estimate (3.122), and hence also the rates of convergence that are provided later on in
Theorem 3.6.7. We do not know for certain whether the lack of satisfaction of any of
the constraints (3.83), (3.101), or (3.121), would affect the accurateness of the method.
In other words, the small data conditions are sufficient for the well-posedness of the
continuous and discrete formulations, and for the expected convergence behaviour of
the numerical scheme, but they might not be necessary. Indeed, this seems to be the
case for the numerical results that are presented in Section 3.7, for which the eventual
accomplishment of the aforementioned assumptions is not available either, and yet
optimal rates of convergence are obtained.
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3.6 Specific finite element subspaces

In this section we proceed as in [62, Section 4.4], where, in turn, the analysis from [22,
Section 4.4] is employed, to describe two examples of finite element subspaces H1,h,
H̃2,h, Q1,h, and Q2,h, satisfying the hypotheses (H.4), (H.5), (H.6), and (H.7) that
were introduced in Section 3.5.2. The associated rates of convergence are also provided.

3.6.1 Polynomial spaces

We first collect some definitions regarding local and global polynomial spaces, for
which we make use of the regular family of triangulations

{
Th

}
h>0

of Ω introduced in
Section 3.5.1. Indeed, given an integer ℓ ≥ 0 and K ∈ Th, we let Pℓ(K) be the space
of polynomials of degree ≤ ℓ defined on K, and denote its vector and tensor versions
by Pℓ(K) := [Pℓ(K)]n and Pℓ(K) = [Pℓ(K)]n×n, respectively. In addition, we let
RTℓ(K) := Pℓ(K) ⊕ Pℓ(K) x be the local Raviart–Thomas space of order ℓ defined
on K, where x stands for a generic vector in R := Rn. Also, we let bK be the bubble
function on K, which is defined as the product of its n + 1 barycentric coordinates.
Then, we define the local bubble spaces of order ℓ as

Bℓ(K) := curl
(
bK Pℓ(K)

)
if n = 2 ,

and Bℓ(K) := curl
(
bK Pℓ(K)

)
if n = 3 ,

(3.123)

where curl (v) :=
( ∂v
∂x2

,− ∂v

∂x1

)
if n = 2 and v : K → R, and curl (v) := ∇ × v if n = 3

and v : K → R3. The following global spaces are also needed

Pℓ(Ω) :=
{

vh ∈ L2(Ω) : vh|K ∈ Pℓ(K) ∀K ∈ Th

}
,

Pℓ(Ω) :=
{
ξh ∈ L2(Ω) : ξh|K ∈ Pℓ(K) ∀K ∈ Th

}
,

RTℓ(Ω) :=
{
τh ∈ H(div; Ω) : τh,i|K ∈ RTℓ(K) ∀ i ∈

{
1, ..., n

}
, ∀K ∈ Th

}
,

and

Bℓ(Ω) :=
{
τh ∈ H(div; Ω) : τh,i|K ∈ Bℓ(K) ∀ i ∈

{
1, ..., n

}
, ∀K ∈ Th

}
,

where τh,i stands for the ith-row of τh. While Pℓ(Ω) and Pℓ(Ω) are defined here
as subspaces of L2(Ω) and L2(Ω), we stress that they are also subspaces of L4(Ω)
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and L4(Ω), respectively. Similarly, it is easy to see that RTℓ(Ω) and Bℓ(Ω) are both
subspaces of H(div4/3; Ω) as well. Actually, recalling that H(div; Ω) stands for the
Hilbertian version of (2.2), that is with t = 2, it is clear that H(div; Ω) is contained
in H(div4/3; Ω), and hence any subspace of the former is also subspace of the latter.
Certainly, the same observation is valid for H0(div; Ω) and H0(div4/3; Ω), where the
former is defined analogously to (3.31).

3.6.2 Connection with linear elasticity

Here we describe a useful connection between (H.7) and the stability of a usual mixed
finite element method for the linear elasticity model. We begin by recalling that a triplet
of subspaces H̃2,h, Q1,h, and Q2,h of H(div; Ω), L2(Ω), and L2

sk(Ω), respectively, is said
to yield a stable Galerkin scheme for the Hilbertian mixed formulation of linear elasticity
if it satisfies the corresponding hypotheses of the discrete Babuška-Brezzi theory (see,
e.g., [46, Theorem 2.4]). In particular, the above includes the discrete inf-sup condition
for the bilinear form B (cf. (3.38)), which, setting H2,h := H̃2,h ∩ H0(div; Ω), reduces
to the existence of a positive constant β̃e, independent of h, such that

sup
τh∈H2,h

τh ̸=0

B(τh, v⃗h)
∥τh∥div;Ω

≥ β̃e

{
∥vh∥0,Ω + ∥ξh∥0,Ω

}
∀ v⃗h := (vh, ξh) ∈ Qh . (3.124)

Note that, though similar, (3.124) and (3.91) differ because of the different norms in
which τh and vh are measured. However, the following result (cf. [22, Lemma 4.8])
establishes that (3.124), along with suitable further assumptions on the subspaces,
constitute a sufficient condition for (3.91).

Lemma 3.6.6. Let H̃2,h, Q1,h, and Q2,h be subspaces of H(div; Ω), L2(Ω), and
L2

sk(Ω), respectively, such that they accomplish (3.124). In addition, assume that
there exists an integer ℓ ≥ 0 such that RTℓ(Ω) ⊆ H̃2,h and Q1,h ⊆ Pℓ(Ω). Then
H2,h := H̃2,h ∩ H0(div4/3; Ω), Q1,h, and Q2,h satisfy (3.91) with a positive constant β̃d,
independent of h.

3.6.3 Examples of stable finite element subspaces

We now apply Lemma 3.6.6 to each one of the stable triplets for linear elasticity
proposed in [22, Section 4.4], thus deriving two examples of finite element subspaces
H1,h, H̃2,h, Q1,h, and Q2,h satisfying (H.4), (H.5), (H.6), and (H.7).
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Our first example is based on the plane elasticity element with reduced symmetry
(PEERS) of order ℓ ≥ 0, which, denoting C(Ω̄) := [C(Ω̄)]n×n, is given by

H̃2,h := RTℓ(Ω)⊕Bℓ(Ω) , Q1,h := Pℓ(Ω) , and Q2,h := C(Ω̄)∩Pℓ+1(Ω)∩L2
sk(Ω) .
(3.125)

The discrete stability of these subspaces was originally proved in [64] for ℓ = 0 and
n = 2, and later on for ℓ ≥ 0 and n ∈

{
2, 3

}
in [65]. It is easily seen from (3.125), in

particular using due to (3.123) that div(H̃2,h) = div
(
RTℓ(Ω)

)
⊆ Pℓ(Ω), that H̃2,h

and Q1,h satisfy (H.4) and (H.5), and that the assumptions on them required by
Lemma 3.6.6 are accomplished as well, whence (H.7) holds true. It remains to check
(H.6), for which we first recall that the divergence free tensors of RTℓ(Ω) are contained
in Pℓ(Ω) (cf. [46, proof of Theorem 3.3]). Thus, noting again that the tensors of Bℓ(Ω)
are divergence free, and that this space is contained in Pℓ+n(Ω), we deduce from (3.92)
that

Vh ⊆ Pℓ(Ω) ⊕ Bℓ(Ω) ⊆ Pℓ+n(Ω) ,

so that, in order to guarantee (H.6), it suffices to take

H1,h := Pℓ+n(Ω) ∩ L2
tr(Ω) .

Finally, it follows from (3.88) and the above definitions of H2,h and Q1,h, that Ph :=
P̃h ⊕

{
κ

|Ω|

}
, where P̃h := Pℓ̄(Ω) ∩ L2

0(Ω), with ℓ̄ := max
{
ℓ + n, 2 ℓ

}
. Our second

example is the Arnold-Falk-Winther (AFW) element of order ℓ ≥ 0, whose stability
for the Hilbertian mixed formulation of linear elasticity is proved in [66], and which is
defined as

H̃2,h := Pℓ+1(Ω) ∩ H(div; Ω) , Q1,h := Pℓ(Ω) , and Q2,h := Pℓ(Ω) ∩ L2
sk(Ω) .
(3.126)

According to the above, it is also simple to realize that (H.4) and (H.5) are satisfied,
and that, thanks to the inclusion RTℓ(Ω) ⊆ Pℓ+1(Ω), the corresponding hypotheses
of Lemma 3.6.6 are fulfilled, thus establishing (H.7). In turn, being in this case Vh

(cf. (3.92)) not further simplifiable, we deduce that (H.6) is accomplished if we simply
choose

H1,h := Pℓ+1(Ω) ∩ L2
tr(Ω) .

Furthermore, it is readily seen in this case that Ph := P̃h ⊕
{
κ

|Ω|

}
, where P̃h :=

P2ℓ(Ω) ∩ L2
0(Ω).
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3.6.4 The rates of convergence

We now provide the rates of convergence of (3.85) for both specific examples of finite
element subspaces introduced in Section 3.6.3. To this end, we first collect next the
corresponding approximation properties of H1,h, H2,h, Q1,h, and Q2,h, which, taken
mainly from [67], [68], [19, eqs. (5.37) and (5.40)], and [45, Proposition 1.135], are
derived by employing the error estimates of suitable interpolation and projection
operators, along with associated commuting diagram properties and interpolation
estimates of Sobolev spaces.

Denoting ℓ∗ :=
 ℓ+ n for PEERS-based
ℓ+ 1 for AFW-based

, the respective statements are as

follows:

AP
(
H1,h

)
there exists a positive constant C, independent of h, such that for each

r ∈ [0, ℓ∗ + 1], and for each E ∈ Hr(Ω) ∩ L2
tr(Ω), there holds

dist
(
E,H1,h

)
:= inf

Eh∈H1,h

∥E − Eh∥0,Ω ≤ C hr∥E∥r,Ω ,

AP
(
H2,h

)
there exists a positive constant C, independent of h, such that for each

r ∈ (0, ℓ+ 1], and for each τ ∈ Hr(Ω) ∩ H0(div4/3; Ω) with div(τ ) ∈ Wr,4/3(Ω), there
holds

dist
(
τ ,H2,h

)
:= inf

τh∈H2,h

∥τ − τh∥div4/3;Ω ≤ C hr
{

∥τ∥r,Ω + ∥div(τ )∥r,4/3;Ω

}
,

AP
(
Q1,h

)
there exists a positive constant C, independent of h, such that for each

r ∈ [0, ℓ+ 1], and for each v ∈ Wr,4(Ω), there holds

dist
(
v,Q1,h

)
:= inf

vh∈Q1,h

∥v − vh∥0,4;Ω ≤ C hr∥v∥r,4;Ω ,

AP
(
Q2,h

)
there exists a positive constant C, independent of h, such that for each

r ∈ [0, ℓ+ 1], and for each ξ ∈ Hr(Ω) ∩ L2
sk(Ω), there holds

dist
(
ξ,Q2,h

)
:= inf

ξh∈Q2,h

∥ξ − ξh∥0,Ω ≤ C hr∥ξ∥r,Ω .

As a consequence of the Céa estimate (3.122) (cf. Theorem 3.5.6), along with
AP

(
H1,h

)
, AP

(
H2,h

)
, AP

(
Q1,h

)
, and AP

(
Q2,h

)
, we are now able to provide the

main result of this section.
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Theorem 3.6.7. In addition to the notations and hypotheses of Theorem 3.5.6, assume
that there exists r ∈ (0, ℓ+1], such that D ∈ Hr(Ω)∩L2

tr(Ω), σ ∈ Hr(Ω)∩H0(div4/3; Ω),
div(σ) ∈ Wr,4/3(Ω), u ∈ Wr,4(Ω), and γ ∈ Hr(Ω) ∩ L2

sk(Ω). Then, there exists a
positive constant C, independent of h, such that

∥D⃗−D⃗h∥H+∥p−ph∥0,Ω ≤ C hr
{

∥D∥r,Ω+∥σ∥r,Ω+∥div(σ)∥r,4/3;Ω+∥u∥r,4;Ω+∥γ∥r,Ω

}
.

3.7 Numerical results

In this section we consider the two pairs of finite element subspaces detailed in
Section 3.6 to present three examples illustrating the performance of the mixed finite
element method (3.85) on a set of quasi-uniform triangulations of the respective
domains. In what follows, we refer to the corresponding sets of finite element subspaces
generated by ℓ = {0, 1} as simply PEERSℓ and AFWℓ based discretizations. The
numerical methods have been implemented using the open source finite element library
FEniCS [52]. We solve approximately the nonlinear problem (3.85) by means of a
strategy combining a Picard iteration with the Newton method. More precisely, the
corresponding computations are described as follows: [a),leftmargin=*]

(1) Start solving the Stokes problem arising from (3.85) by choosing η = 1 and the
overall density ρ=0 to obtain the initial solution (D0

h,σ
0
h, u⃗0

h) :=
(
D0

h,σ
0
h, (u0

h,γ
0
h)
)

∈ H1,h × H2,h × Qh, compute p0
h as in (3.88), that is

p0
h := − 1

n
tr
(
σ0

h + ρ (u0
h ⊗ u0

h)
)

+ κ

|Ω|
+ ρ

n |Ω|

∫
Ω

tr(u0
h ⊗ u0

h) ,

and let m = 1.

(2) Set (zh, rh) := (um−1
h , pm−1

h ) and let (Dm
h ,σ

m
h , u⃗m

h ) :=
(
Dm

h ,σ
m
h , (um

h ,γ
m
h )
)

∈
H1,h × H2,h × Qh be the output of a single Newton iteration applied to (3.87).

(3) Update the pressure pm
h by employing the formula (3.88), namely

pm
h := − 1

n
tr
(
σm

h + ρ (um
h ⊗ um

h )
)

+ κ

|Ω|
+ ρ

n |Ω|

∫
Ω

tr(um
h ⊗ um

h ) ,

let m = m+ 1, and go to step (2).

The iterative procedure given by (2) and (3) is finished when the relative error
between two consecutive iterations of the complete coefficient vector, namely coeffm
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and coeffm+1, is sufficiently small, that is,

∥coeffm+1 − coeffm∥DOF

∥coeffm+1∥DOF
≤ tol ,

where ∥ · ∥DOF stands for the usual Euclidean norm in RDOF with DOF denoting the total
number of degrees of freedom defining the finite element subspaces H1,h, H̃2,h, Q1,h,
and Q2,h (cf. (3.125)–(3.126)), and tol is a fixed tolerance chosen as tol = 1E − 06.

We now introduce some additional notation. The individual errors are denoted by

e(D) := ∥D − Dh∥0,Ω , e(σ) := ∥σ − σh∥div4/3;Ω , e(u) := ∥u − uh∥0,4;Ω ,

e(γ) := ∥γ − γh∥0,Ω , e(p) := ∥p− ph∥0,Ω ,

and, as usual, for each ⋆ ∈
{
D,σ,u,γ, p

}
we let r(⋆) be the experimental rate of

convergence given by r(⋆) := log(e(⋆)/ê(⋆))/ log(h/ĥ), where h and ĥ denote two
consecutive meshsizes with errors e and ê, respectively.

The examples to be considered in this section are described next, for which we
consider the regularized viscosity η(ϱ, ω) defined by (3.11), but without needing to
make use of the modification described by Figure A.1. In the first two examples, for
the sake of simplicity, we take µs = 0.1, µd = 1, I0 = 1, d = 1 and ρ = 1. In addition,
the null mean value of tr(σh) over Ω is fixed via a real Lagrange multiplier strategy.

Example 3.1: Convergence against smooth exact solutions in a
2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain set
by the square Ω = (0, 1)2. We choose the regularization factor ε = 1E − 08, and adjust
the datum f in (3.19) such that the exact solution is given by

u(x1, x2) =
 sin(x1) cos(x2)

− cos(x1) sin(x2)

 and p(x1, x2) = exp(x1 + x2), (3.127)

where p ∈ L2
κ(Ω), with κ = (exp(1) − 1)2. The model problem is then complemented

with the appropriate Dirichlet boundary condition. Tables 3.1 and 3.2 show the
convergence history for a sequence of quasi-uniform mesh refinements, including the
number of Newton iterations. As already announced, we stress that we are able not
only to approximate the original unknowns but also the pressure field through the
formula (3.88). The results confirm that the optimal rates of convergence O(hℓ+1)
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predicted by Theorem 3.6.7 are attained for ℓ = {0, 1} for both PEERSℓ and AFWℓ

based schemes. The Newton method exhibits a behavior dependent on the mesh size,
converging faster for finer meshes in both discrete schemes. The latter is justified by
the fact that for finer mesh a better initial data (D0

h,u0
h) and p0

h are provided for the
iterative method. In Figure 3.1 we display the discrete internal friction coefficient
µ(Ih) recovered from (3.7), with Ih =

√
2 d |Dh|/

√
ph/ρ, and some solutions obtained

with the mixed PEERS1 approximation with meshsize h = 0.014 and 20, 000 triangle
elements (actually representing 1, 081, 202 DOF).

PEERSℓ–based discretization with ℓ = 0
DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)
842 0.354 16 3.15e-01 – 1.14e+00 – 7.84e-02 – 1.08e-01 – 4.27e-01 –

3314 0.177 14 1.87e-01 0.750 5.53e-01 1.044 3.70e-02 1.085 4.58e-02 1.236 1.95e-01 1.131
13154 0.088 13 1.00e-01 0.905 2.67e-01 1.051 1.78e-02 1.057 1.74e-02 1.393 8.91e-02 1.130
46082 0.047 11 5.44e-02 0.969 1.40e-01 1.026 9.35e-03 1.021 6.83e-03 1.491 4.55e-02 1.069

183962 0.024 9 2.74e-02 0.991 6.95e-02 1.011 4.65e-03 1.006 2.38e-03 1.521 2.23e-02 1.029
510602 0.014 8 1.65e-02 0.997 4.16e-02 1.004 2.79e-03 1.002 1.09e-03 1.526 1.33e-02 1.012

AFWℓ–based discretization with ℓ = 0
DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)
609 0.354 15 5.62e-02 – 5.63e-01 – 6.94e-02 – 6.76e-02 – 3.27e-01 –

2369 0.177 14 2.65e-02 1.086 2.80e-01 1.005 3.48e-02 0.995 3.34e-02 1.018 1.63e-01 1.000
9345 0.088 12 1.30e-02 1.027 1.40e-01 1.002 1.74e-02 0.999 1.66e-02 1.006 8.17e-02 1.000

32641 0.047 10 6.89e-03 1.008 7.46e-02 1.001 9.29e-03 1.000 8.85e-03 1.002 4.36e-02 1.000
130081 0.024 7 3.44e-03 1.002 3.73e-02 1.001 4.65e-03 1.000 4.42e-03 1.001 2.18e-02 1.000
360801 0.014 6 2.06e-03 1.001 2.24e-02 1.001 2.79e-03 1.000 2.65e-03 1.000 1.31e-02 1.000

Table 3.1 [Example 3.1, ℓ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, and rates of convergence for the mixed approximations.

Figure 3.1 [Example 3.1] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.
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PEERSℓ–based discretization with ℓ = 1
DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)

1778 0.354 12 1.80e-02 – 4.59e-02 – 4.59e-03 – 7.45e-03 – 1.84e-02 –
7010 0.177 10 5.36e-03 1.750 1.17e-02 1.970 1.15e-03 1.999 3.12e-03 1.257 4.51e-03 2.031

27842 0.088 8 1.48e-03 1.858 2.98e-03 1.977 2.87e-04 2.001 9.81e-04 1.668 1.12e-03 2.006
97562 0.047 6 4.42e-04 1.922 8.56e-04 1.983 8.15e-05 2.000 3.09e-04 1.840 3.19e-04 1.998

389522 0.024 4 1.14e-04 1.958 2.16e-04 1.990 2.04e-05 2.000 8.16e-05 1.919 8.00e-05 1.997
1081202 0.014 4 4.14e-05 1.977 7.78e-05 1.993 7.34e-06 2.000 3.00e-05 1.957 2.88e-05 1.998

AFWℓ–based discretization with ℓ = 1
DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)

1393 0.354 10 2.21e-03 – 2.49e-02 – 4.57e-03 – 2.84e-03 – 1.73e-02 –
5473 0.177 7 5.35e-04 2.046 6.12e-03 2.027 1.15e-03 1.997 7.29e-04 1.963 4.33e-03 1.996

21697 0.088 5 1.32e-04 2.020 1.52e-03 2.013 2.87e-04 1.999 1.84e-04 1.983 1.08e-03 1.999
75961 0.047 4 3.73e-05 2.009 4.29e-04 2.008 8.15e-05 2.000 5.27e-05 1.992 3.08e-04 2.000

303121 0.024 3 9.29e-06 2.007 1.07e-04 2.008 2.04e-05 2.000 1.32e-05 1.997 7.70e-05 2.000
841201 0.014 3 3.34e-06 2.002 3.84e-05 2.002 7.34e-06 2.000 4.76e-06 1.998 2.77e-05 2.000

Table 3.2 [Example 3.1, ℓ = 1] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, and rates of convergence for the mixed approximations.

Example 3.2: Convergence against smooth exact solutions in a
3D domain

In the second example we consider the cube domain Ω = (0, 1)3, and the regularization
factor ε = 1E − 06. The manufactured solution is given by

u(x1, x2, x3)=


sin(x1) cos(x2) cos(x3)

−2 cos(x1) sin(x2) cos(x3)
cos(x1) cos(x2) sin(x3)

 and p(x1, x2, x3)=10 exp(x1+x2+x3) ,

where p ∈ L2
κ(Ω), with κ = 10 (exp(1) − 1)3. Similarly to the first example, the data f

and uD is computed from (3.19) using the above solution. The convergence history for
a set of quasi-uniform mesh refinements using ℓ = 0 is shown in Table 3.3. Again, the
mixed finite element method converges optimally with order O(h), as it was proved
by Theorem 3.6.7. We observe a considerable increasing of degrees of freedom in the
PEERS0-based scheme compared to the AFW0 one. This is justified mainly by the
fact that the symmetric part of the velocity gradient is approximated with P3(Ω) and
P1(Ω), respectively. In addition, the discrete internal friction coefficient and some
components of the numerical solution are displayed in Figure 3.2, which were built
using the mixed AFW0 approximation with meshsize h = 0.108 and 24, 576 tetrahedral
elements (actually representing 1, 390, 081 DOF).
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PEERSℓ-based discretization with ℓ = 0
DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)

8698 0.866 20 9.95e-01 – 5.05e+01 – 2.41e-01 – 6.04e-01 – 1.66e+01 –
69016 0.433 20 5.85e-01 0.766 2.73e+01 0.885 1.10e-01 1.135 2.28e-01 1.406 9.01e+00 0.884

550156 0.217 19 3.24e-01 0.852 1.36e+01 1.008 4.96e-02 1.143 7.95e-02 1.520 4.32e+00 1.061
1854688 0.144 18 2.23e-01 0.926 8.89e+00 1.046 3.19e-02 1.091 4.17e-02 1.590 2.74e+00 1.122
4393876 0.108 18 1.69e-01 0.957 6.59e+00 1.045 2.35e-02 1.056 2.62e-02 1.625 1.99e+00 1.113

AFWℓ–based discretization with ℓ = 0
DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)

2905 0.866 12 2.09e-01 – 2.59e+01 – 1.78e-01 – 2.01e-01 – 1.43e+01 –
22369 0.433 11 8.24e-02 1.344 1.21e+01 1.104 9.12e-02 0.969 9.34e-02 1.103 7.15e+00 1.005

175489 0.217 9 3.56e-02 1.212 5.82e+00 1.050 4.59e-02 0.992 4.55e-02 1.037 3.57e+00 1.002
588385 0.144 8 2.28e-02 1.097 3.85e+00 1.023 3.06e-02 0.997 3.02e-02 1.014 2.38e+00 1.001

1390081 0.108 7 1.68e-02 1.054 2.87e+00 1.013 2.30e-02 0.999 2.26e-02 1.007 1.78e+00 1.000
Table 3.3 [Example 3.2, ℓ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, and rates of convergence for the mixed approximations.

Figure 3.2 [Example 3.2] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.

Example 3.3: Fluid flow through a cavity 2D with two circular
obstacles

In the last example, motivated by [69, Section 2.1], we study the behavior of the
regularized µ(I)-rheology model of granular materials for fluid flow through a cavity
2D with two circular obstacles without manufactured solution. More precisely, we
consider the domain Ω = (0, 1)2 \ (Ω1 ∪ Ω2), where

Ω1 =
{

(x1, x2) : (x1 − 1/2)2 + (x2 − 1/3)2 < 0.12
}
, and

Ω2 =
{

(x1, x2) : (x1 − 1/2)2 + (x2 − 2/3)2 < 0.12
}
,
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with boundary Γ, whose part around the circles is given by Γc = ∂Ωc. The model
parameters are chosen as µs = 0.36, µd = 0.91, I0 = 0.73, d = 0.05, ρ = 2500, and the
regularization factor is ε = 1E − 03. Notice that the relation between the diameter of
the particles d and the width of the cavity is 1 : 20, whereas the radius of both circular
obstacles is double that of d. The mean value of p is fixed as κ = 100, no presence of
gravity is assumed, that is, f = 0, and the boundaries conditions are

u = (0.2x2 − 0.1, 0)t on Γ \ Γc and u = 0 on Γc .

In particular, we impose that flows cannot go in nor out through Γc, whereas at the
top and bottom of the domain flows are faster in opposite direction. In Figure 3.3,
we display the computed internal friction coefficient, magnitude of the velocity and
symmetric part of the velocity gradient, and pressure field, which were built using the
mixed AFW0-based scheme on a mesh with meshsize h = 0.016 and 18, 423 triangle
elements (actually representing 332, 573 DOF). We observe higher velocities at the top
and bottom of the boundary going to the right and left of the domain, respectively,
as we expected, but also a circulation phenomenom on the left and right boundaries
since the flows cannot in nor out through the circle obstacles. In addition, most of the
variations in both the magnitude of the symmetric part of the velocity gradient tensor
and pressure field occur around the circular obstacles. This observation aligns with the
results obtained for the discrete internal friction coefficient. Notice also that between
the circle obstacles and in some parts of the middle of the domain the magnitude of
the symmetric part of the velocity gradient is zero or close to it describing a region
where the original viscosity η (3.9) is singular and hence the granular flows are static.
The latter is in agreement with the velocity of the fluid and it is overcome by the
mixed approximation considering the regularized viscosity (3.11) as it was described in
Section 3.2.

Example 3.4: Fluid flow in a cubic lid-driven cavity

Finally, we conduct a simulation of the 3D lid-driven cavity flow within a unit cube
Ω = (0, 1)3. On the top lid x3 = 1, the tangential velocity is set as u = (1, 0, 0)t , while
the rest of the boundary has no-slip conditions. The model parameters are chosen as
µs = 0.1, µd = 1, I0 = 1, d = 1, ρ = 1, and the regularization factor is ε = 1E − 03.
The mean value of p is fixed at κ = 1000, and the right-hand side is set as f = 0.
The numerical results, displayed in Figure 3.4, show the computed internal friction
coefficient, the magnitude of the velocity, the symmetric part of the velocity gradient,
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Figure 3.3 [Example 3.3] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.

and the pressure field. These were obtained using the mixed AFW0-based scheme on
a mesh with a mesh size of h = 0.108 and 24, 576 tetrahedral elements (representing
1, 390, 081, DOF). A large-scale recirculation, influenced by the momentum transfer
from the top surface to the rest of the fluid, is observed. Most variations in both the
magnitude of the symmetric part of the velocity gradient tensor and the pressure field
occur near the top of the cube, which aligns with the results obtained for the discrete
internal friction coefficient. Additionally, below the top of the domain, the magnitude
of the symmetric part of the velocity gradient is zero or close to it, indicating a large
region where the original viscosity η (3.9) becomes singular, rendering the granular
flows static. Similarly to Example 3, this issue is addressed by the mixed approximation
through the incorporation of the regularized viscosity (3.11).

Figure 3.4 [Example 3.4] Computed internal friction coefficient, magnitude of the
velocity and symmetric part of the velocity gradient, and pressure field.





Chapter 4

A posteriori error analysis for
µ(I)-rheology

4.1 Introduction

Building upon the previous discussion in Introduction and extending the study initiated
in [43] on a regularized µ(I)-rheology model for granular materials described by a
Navier–Stokes-like equation, this chapter employs and adapts the a posteriori error
analysis techniques developed in [38], [39], [41], and [42] for mixed formulations in
Hilbert and Banach spaces to the current µ(I)-rheology model. We construct a reliable
and efficient residual-based a posteriori error estimator for the 2D and 3D versions
of the mixed finite element methods introduced in [43]. Specifically, we derive a
global quantity Θ that is formulated in terms of computable local indicators ΘK ,
each associated with an element K of a given triangulation T . This allows for the
identification of error sources and the design of an adaptive meshing algorithm to
enhance computational efficiency. In this setting, the estimator Θ is considered efficient
(resp. reliable) if there exist positive constants Ceff (resp. Crel), independent of the
mesh sizes, such that

Ceff Θ + h.o.t. ≤ ∥error∥ ≤ Crel Θ + h.o.t. ,

where h.o.t. represents one or more higher-order terms. To the best of the authors’
knowledge, this work presents the first a posteriori error analysis of Banach space-based
mixed finite element methods for the stationary µ(I)-rheology equations governing
granular materials.
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This chapter is organized as follows. In Section 4.2, we provide a detailed derivation
of a reliable and efficient residual-based a posteriori error estimator for the 2D version
of the problem from [43]. In particular, the reliability analysis considers a suitable
Helmholtz decomposition in a Banach space setting, with its discrete version employing
PEERS and AFW-based elements. Several numerical results illustrating the reliability
and efficiency of the estimator, the effectiveness of the associated adaptive algorithm,
and the recovery of optimal convergence rates are reported in Section 4.3. Finally,
additional properties required for the derivation of the reliability and efficiency estimates
are provided in Appendices A.2 and A.3, respectively. In turn, the 3D version of the a
posteriori error estimator, building upon the results in Section 4.2, is established in
Appendix A.4.

4.2 A residual-based a posteriori error estimator

In this section, we derive a reliable and efficient residual-based a posteriori error
estimator for the two-dimensional version of the Galerkin scheme (3.85). The corre-
sponding a posteriori error analysis for the three-dimensional case, which follows from
minor modifications of the analysis presented here, will be addressed in Appendix A.4.
Throughout this section, we employ the notations and results from Appendix A.2.

Recalling that
(
Dh,σh, (uh,γh)

)
∈ H1,h × H2,h × Qh is the unique solution of the

discrete problem (3.85), and that ph is computed from (3.88), we define the global a
posteriori error estimator Θ as

Θ =
 ∑

K∈Th

Θ4/3
1,K


3/4

+
 ∑

K∈Th

Θ2
2,K


1/2

+
 ∑

K∈Th

Θ4
3,K


1/4

, (4.1)

where, for each K ∈ Th, the local error indicators Θ4/3
1,K , Θ2

2,K and Θ4
3,K are defined as

Θ4/3
1,K :=

∥∥∥f + div(σh)
∥∥∥4/3

0,4/3;K
, (4.2)

Θ2
2,K :=

∥∥∥η(ph, |Dh|
)
Dh − σd

h − ρ(uh ⊗ uh)d
∥∥∥2

0,K
+
∥∥∥σh − σt

h

∥∥∥2

0,K

+ h2
K

∥∥∥rot (Dh + γh)
∥∥∥2

0,K
+

∑
e∈Eh(K)∩E(Ω)

he

∥∥∥[[(Dh + γh

)
s]]
∥∥∥2

0,e

+
∑

e∈Eh(K)∩E(Γ)
he

∥∥∥∇uD s −
(
Dh + γh

)
s
∥∥∥2

0,e
,

(4.3)
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and

Θ4
3,K := h4

K

∥∥∥∇uh −
(
Dh + γh

)∥∥∥4

0,4;K
+

∑
e∈Eh(K)∩E(Γ)

he ∥uD − uh∥4
0,4;e . (4.4)

Notice that the last term defining Θ2
2,K (cf. (4.3)) requires that (∇uD s)|e ∈ L2(e) for

all e ∈ Eh(Γ), which is guaranteed by simply assuming that uD ∈ H1(Γ). Nevertheless,
to be more precise, it suffices to assume that ∇uD|Γ ∈ L2(Γ), which holds if ∇uD|Γ
coincides with the trace of the gradient of a function in Ht(Ω) for some t > 4/3. In
any case, the Dirichlet data used in the numerical results reported below in Section 4.3
satisfy the first-mentioned assumptions on uD.

From now on, we define

∥D⃗ − D⃗h∥H := ∥D − Dh∥H1 + ∥σ − σh∥H2 + ∥u⃗ − u⃗h∥Q ,

where D⃗ :=
(
D,σ, u⃗

)
∈ H := H1 × H2 × Q and D⃗h :=

(
Dh,σh, u⃗h

)
∈ Hh :=

H1,h × H2,h × Qh denote the unique solutions of (3.35) and (3.85), respectively. The
main goal of this section is to establish, under suitable assumptions, the existence of
positive constants Ceff and Crel, independent of the mesh sizes and the continuous
and discrete solutions, such that

Ceff Θ + h.o.t ≤ ∥D⃗ − D⃗h∥H + ∥p− ph∥0,Ω ≤ Crel Θ , (4.5)

where h.o.t is a generic expression denoting one or several terms of higher order,
whereas p and ph are computed according to (3.44) and (3.88), respectively. The upper
and lower bounds in (4.5), which are known as the reliability and efficiency of Θ, are
derived below in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Reliability

The main result of this section is stated in the following theorem. To this end, and as
done in [43, eq. (5.19)], given r ∈ L2

κ(Ω), we first note that we can define the operator
Ξr : H → H′, which arises from the left-hand side of the variational formulation (3.35)
after summing all its rows, that is,

[Ξr(C⃗), E⃗] := [Ar(C),E] + B1(E, ζ) + B1(C, τ ) + B(τ , w⃗) + B(ζ, v⃗) , (4.6)
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for all C⃗ := (C, ζ, w⃗), E⃗ := (E, τ , v⃗) ∈ H, so that (3.35) can be rewritten as

[Ξp(D⃗), E⃗] = Fu(E) + G(τ ) + F(v⃗) ∀ E⃗ ∈ H . (4.7)

Thus, the smoothness of the regularized function η (cf. (3.11)) allows to show that
for each r ∈ L2

κ(Ω), the operator Ar (cf. (3.36)), and hence Ξr as well, have first
order Gâteaux derivatives D(Ar) ∈ L

(
H1,L(H1,H′

1)
)

and D(Ξr) ∈ L
(
H,L(H,H′)

)
,

respectively. Moreover, using [43, eqs. (4.9) and (4.10) in Lemma 4.2], one is able to
prove (see, e.g. [63, Lemma 3.1]) that for each C ∈ H1, the operator D(Ar)(C) ∈
L(H1,H′

1) can be identified as a bounded and H1-elliptic bilinear form with constants
LA and αA, respectively. It follows that for each r ∈ L2

κ(Ω), and for each C⃗ ∈ H, the
operator D(Ξr)(C⃗) ∈ L(H,H′) satisfies the hypotheses of the linear version of [43,
Theorem 4.1], and hence, there exists a positive constant αΞ, depending only on LA,
αA, and the inf-sup constants of B and B1, namely β̃ and β̃1 (cf. [43, eqs. (4.12),
(4.13)]), such that the following global inf-sup condition holds:

αΞ ∥F⃗∥H ≤ sup
0 ̸=E⃗∈H

D(Ξr)(C⃗)(F⃗, E⃗)
∥E⃗∥H

∀ F⃗ ∈ H . (4.8)

In addition, we let

C1,Ξ := α−1
Ξ n−1/2 and C2,Ξ := α−1

Ξ ρ
(
2n−1/2 Lη + 1

)
, (4.9)

where αΞ satisfies (4.8), and Lη denotes the Lipschitz continuity constant of η (cf. [43,
eq. (4.8)]).

The aforementioned result is stated now.

Theorem 4.2.1. Assume that Lη and the radii δ and δd are sufficiently small so that

C1,Ξ Lη ≤ 1
2 and C2,Ξ n

1/2
(
δ + δd

)
≤ 1

2 . (4.10)

Then, there exists a constant Crel > 0, such that

∥D⃗ − D⃗h∥H + ∥p− ph∥0,Ω ≤ Crel Θ . (4.11)

We begin the proof of Theorem 4.2.1 with a preliminary lemma. Specifically,
proceeding analogously to [42, Section 3.1] (see also [70, Section 1]), we first introduce
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the residual functional R : H → R, given by

R(E⃗) := R1(E) + R2(τ ) + R3(v⃗) ∀ E⃗ = (E, τ , v⃗) ∈ H , (4.12)

where R1 : H1 → R, R2 : H2 → R, and R3 : Q → R are given by

R1(E) := Fuh
(E) − [Aph

(Dh),E] − B1(E,σh) ∀ E ∈ H1 , (4.13)

R2(τ ) := G(τ ) − B1(Dh, τ ) − B(τ , u⃗h) ∀ τ ∈ H2 , (4.14)

and
R3(v⃗) := F(v⃗) − B(σh, v⃗) ∀ v⃗ ∈ Q , (4.15)

respectively, which according to the discrete problem (3.85) satisfy

R1(Eh) = 0 ∀ Eh ∈ H1,h , R2(τh) = 0 ∀ τh ∈ H2,h ,

R3(v⃗h) = 0 ∀ v⃗h ∈ Qh .

(4.16)

We are now in a position to establish the following aforementioned preliminary a
posteriori error estimate.

Lemma 4.2.1. Assume that Lη and the radii δ and δd satisfy (4.10). Then, there
exists a positive constant C, independent of h, such that

∥D⃗ − D⃗h∥H + ∥p− ph∥0,Ω ≤ C
{

∥R1∥H′
1

+ ∥R2∥H′
2

+ ∥R3∥Q′

}
. (4.17)

Proof. We begin by proceeding analogously to the proof of [63, Theorem 3.3]. In fact,
given p ∈ L2

κ(Ω) satisfying (3.44) and since D⃗ and D⃗h belong to H, a straightforward
application of the mean value theorem yields the existence of a convex combination of
D⃗ and D⃗h, say C⃗h ∈ H, such that

D(Ξp)(C⃗h)(D⃗ − D⃗h, E⃗) = [Ξp(D⃗), E⃗] − [Ξp(D⃗h), E⃗] ∀ E⃗ ∈ H . (4.18)

Then, by adding and subtracting [Ξph
(D⃗h), E⃗] and Fuh

(E) on the right-hand side
of (4.18), using (4.7), and the definitions of Ξp and R (cf. (4.6), (4.12)), along with
straightforward algebraic manipulations, we deduce that

D(Ξp)(C⃗h)(D⃗−D⃗h, E⃗) = R(E⃗)+
(
Fu −Fuh

)
(E)− [Ap(Dh)−Aph

(Dh),E] ∀ E⃗ ∈ H .

(4.19)
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In turn, applying (4.8) with r = p, C⃗ = C⃗h, and F⃗ = D⃗ − D⃗h, using (4.19) and the
continuity of the operator Ap (cf. [43, eq. (4.11) in Lemma 4.2]), with the positive
continuity constant Lη, we get

αΞ ∥D⃗ − D⃗h∥H ≤ ∥R∥H′ + ∥Fu − Fuh
∥H′

1
+ Lη∥p− ph∥0,Ω . (4.20)

Next, we focus on bounding the last two terms on the right-hand side of (4.20). First,
using the definition of Fz (cf. (3.39)) and applying the Cauchy–Schwarz inequality, we
obtain

∥Fu − Fuh
∥H′

1
≤ ρ ∥u ⊗ u − uh ⊗ uh∥0,Ω , (4.21)

whereas, according to the expressions provided by (3.44) and (3.88), and proceeding
similarly to [43, eq. (5.31)], the last term in (4.20) can be bounded by

∥p− ph∥0,Ω ≤ n−1/2
{

∥σ − σh∥0,Ω + 2 ρ ∥u ⊗ u − uh ⊗ uh∥0,Ω

}
. (4.22)

Furthermore, subtracting and adding the term (u ⊗ uh), using Cauchy–Schwarz’s
inequality and the fact that u ∈ W(δ) and uh ∈ W(δd), there holds

∥u ⊗ u − uh ⊗ uh∥0,Ω ≤ n1/2
(
∥u∥0,4;Ω + ∥uh∥0,4;Ω

)
∥u − uh∥0,4;Ω

≤ n1/2
(
δ + δd

)
∥u − uh∥0,4;Ω ,

(4.23)

whence, combining (4.20) with (4.21), (4.22), and (4.23), and using the definition of
the constants C1,Ξ, C2,Ξ (cf. (4.9)), we obtain

∥D⃗−D⃗h∥H ≤ 1
αΞ

∥R∥H′ +C1,Ξ Lη ∥σ−σh∥0,Ω+C2,Ξ n
1/2(δ+δd) ∥u−uh∥0,4;Ω . (4.24)

Thus, by employing (4.10) in (4.24) and the definition of the residual R (cf. (4.12)) in
terms of R1, R2, and R3 (cf. (4.13), (4.14), (4.15)), we find that

∥D⃗ − D⃗h∥H ≤ 2
αΞ

{
∥R1∥H′

1
+ ∥R2∥H′

2
+ ∥R3∥Q′

}
, (4.25)

so that the corresponding estimate for ∥p − ph∥0,Ω follows from (4.22), (4.23), and
(4.25), thus yielding (4.17), which concludes the proof.
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Throughout the rest of this section, we provide suitable upper bounds for each one of
the terms on the right-hand side of (4.17). We begin by establishing the corresponding
estimates for ∥R1∥H′

1
and ∥R3∥Q′ (cf. (4.13) and (4.15)).

Lemma 4.2.2. There hold

∥R1∥H′
1

≤
∥∥∥η(ph, |Dh|) Dh − σd

h − ρ (uh ⊗ uh)d
∥∥∥

0;Ω
(4.26)

and
∥R3∥Q′ ≤

∥∥∥f + div(σh)
∥∥∥

0,4/3;Ω
+ 1

2
∥∥∥σh − σt

h

∥∥∥
0,Ω
. (4.27)

Proof. First, using the definition of the functionals and operators R1, Fuh
, Aph

, and
B1 (cf. (4.13), (3.39), (3.36), (3.37)), along with the fact that τ d : E = τ : E, for all
E ∈ H1 (cf. (3.34)), and Cauchy–Schwarz’s inequality, we deduce that

|R1(E)| =
∣∣∣∣− ∫

Ω

(
η(ph, |Dh|) Dh − σd

h − ρ (uh ⊗ uh)d
)

: E
∣∣∣∣

≤
∥∥∥η(ph, |Dh|) Dh − σd

h − ρ (uh ⊗ uh)d
∥∥∥

0,Ω
∥E∥0,Ω ,

which yields (4.26). On the other hand, employing the definition of the functionals
and bilinear form R3, F , and B (cf. (4.15), (3.41), (3.38)), in conjunction with the
decomposition of the tensor σh into

σh = 1
2
(
σh + σt

h

)
+ 1

2
(
σh − σt

h

)
,

the fact that
(
σh + σt

h

)
: ξ = 0, for all ξ ∈ L2

sk(Ω), and the Cauchy–Schwarz and
Hölder inequalities, we obtain

|R3(v⃗)| =
∣∣∣∣∫

Ω

(
f + div(σh)

)
· v + 1

2

∫
Ω

(
σh − σt

h

)
: ξ
∣∣∣∣

≤
∥∥∥f + div(σh)

∥∥∥
0,4/3;Ω

∥v∥0,4;Ω + 1
2
∥∥∥σh − σt

h

∥∥∥
0,Ω

∥ξ∥0,Ω ,

which implies (4.27) and ends the proof.

We now turn to the derivation of the corresponding estimate for ∥R2∥H′
2
. To that

end, we first recall from (4.16) that R2(τh) = 0 for all τh ∈ H2,h, whence in the
computation of

∥R2∥H′
2

:= sup
0 ̸=τ∈H2

R2(τ )
∥τ∥H2

, (4.28)



104 A posteriori error analysis for µ(I)-rheology

we can replace each term R2(τ ) by R2(τ − τh), with a suitable τh ∈ H2,h (cf. (3.125),
(3.126)) depending on the given τ ∈ H2. Indeed, we first consider the Helmholtz
decomposition (A.19) provided by Lemma A.2.2, with p = 4/3, which says that for
each τ ∈ H2 there exist ζ ∈ W1,4/3(Ω) and ξ ∈ H1(Ω), such that

τ = ζ + curl (ξ) in Ω and ∥ζ∥1,4/3;Ω + ∥ξ∥1,Ω ≤ C4/3∥τ∥div4/3;Ω , (4.29)

with a positive constant C4/3 independent of τ . Next, for simplicity of presentation,
we focus on the discrete approach (3.125), which relies on PEERS-based elements of
order ℓ ≥ 0. The AFW-based discretization (3.126) can be handled analogously, using
the BDM interpolation operator instead of the Raviart–Thomas one. In fact, setting

τh := Πk
h(ζ) + curl (Ih(ξ)) + c I , (4.30)

where Πk
h and Ih denote the tensor and vector versions of the Raviart–Thomas (or

BDM, in the case of the AFW-based approach) and Clément interpolation operators,
respectively (cf. Appendix A.2). The constant c is chosen so that tr(τh) has zero
mean value, and hence τh belongs to H2,h. Note that Πk

h(ζ) lies in RTℓ(Ω) ⊆ H̃2,h (cf.
(3.125)). Also observe that τh can be interpreted as a discrete Helmholtz decomposition
of τ . In this way, using the second equation of the Galerkin scheme (3.85), together
with the compatibility condition (3.20), we deduce that R2(c I) = 0, so that denoting

ζ̂ := ζ − Πk
h(ζ) and ξ̂ := ξ − Ih(ξ) ,

it follows from (4.29) and (4.30), that

R2(τ ) = R2(τ − τh) = R2(ζ̂) + R2(curl (ξ̂)) , (4.31)

where, bearing in mind the definition of R2 (cf. (4.14), (3.40)), we find that

R2(ζ̂) :=
∫

Ω

(
Dh + γh

)
: ζ̂ +

∫
Ω

uh · div(ζ̂) − ⟨ζ̂ ν,uD⟩ (4.32)

and
R2(curl (ξ̂)) :=

∫
Ω

(
Dh + γh

)
: curl (ξ̂) − ⟨curl (ξ̂)ν,uD⟩ . (4.33)

The following lemma establishes the residual upper bound for ∥R2∥H′
2
.
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Lemma 4.2.3. Assume that uD ∈ H1(Γ). Then, there exists a positive constant C,
independent of h, such that

∥R2∥H′
2

≤ C


 ∑

K∈Th

Θ̃2
K

1/2

+
 ∑

K∈Th

Θ4
3,K

1/4
 . (4.34)

where Θ3,K is defined in (4.4), and

Θ̃2
K := h2

K

∥∥∥rot (Dh + γh)
∥∥∥2

0,K
+

∑
e∈Eh(K)

he

∥∥∥[[(Dh + γh

)
s]]
∥∥∥2

0,e

+
∑

e∈Eh(K)∩Eh(Γ)
he

∥∥∥∇uD s −
(
Dh + γh

)
s
∥∥∥2

0,e
.

Proof. We proceed as in [42, Lemma 3.6]. In fact, according to (4.31), we begin by
estimating R2(ζ̂). Let us first observe that, for each e ∈ Eh, the identity (A.12) and
the fact that uh|e ∈ Pk(e), yield

∫
e
ζ̂ν · uh = 0. Hence, locally integrating by parts the

second term in (4.32), we readily obtain

R2(ζ̂) = −
∑

K∈Th

∫
K

{
∇uh −

(
Dh + γh

)}
: ζ̂ −

∑
e∈Eh(Γ)

∫
e

(
uD − uh

)
· ζ̂ν .

Thus, applying the Hölder inequality along with the approximation properties of Πk
h

(cf. (A.17)–(A.18) in Lemma A.2.1) with p = 4/3 and l = 0, and the stability estimate
from (4.29), we get

∣∣∣R2(ζ̂)
∣∣∣ ≤ Ĉ1

 ∑
K∈Th

h4
K

∥∥∥∇uh −
(
Dh + γh

)∥∥∥4

0,4;K

+
∑

e∈Eh(Γ)
he ∥uD − uh∥4

0,4;e


1/4

∥τ∥div4/3;Ω .

(4.35)

Next, we estimate R2(curl (ξ̂)) (cf. (4.33)). In fact, regarding its second term, a
suitable boundary integration by parts formula (cf. [71, eq. (3.35) in Lemma 3.5])
yields

⟨curl (ξ̂)ν,uD⟩Γ = − ⟨∇uD s, ξ̂⟩Γ . (4.36)
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In turn, locally integrating by parts the first term of R2(curl (ξ̂)), we get∫
Ω

(
Dh + γh

)
: curl (ξ̂) =

∑
K∈Th

∫
K

rot (Dh + γh) · ξ̂

−
∑

e∈Eh(Ω)

∫
e
[[
(
Dh + γh

)
s]] · ξ̂ −

∑
e∈Eh(Γ)

∫
e

(
Dh + γh

)
s · ξ̂ ,

which together with (4.36), the Cauchy–Schwarz inequality, the approximation proper-
ties of Ih (cf. Lemma A.2.3), and again the stability estimate from (4.29), implies

∣∣∣R2(curl (ξ̂))
∣∣∣ ≤ Ĉ2

 ∑
K∈Th

h2
K

∥∥∥rot (Dh + γh)
∥∥∥2

0,K
+

∑
e∈Eh(Ω)

he

∥∥∥[[(Dh + γh

)
s]]
∥∥∥2

0,e

+
∑

e∈Eh(Γ)
he

∥∥∥∇uD s −
(
Dh + γh

)
s
∥∥∥2

0,e


1/2

∥τ∥div4/3;Ω .

(4.37)
Finally, it is easy to see that (4.28), (4.29), (4.35), and (4.37) give (4.34), which ends
the proof.

We end this section by stressing that the reliability estimate (4.11) (cf. Theorem
4.2.1) follows by bounding each one of the terms ∥R1∥H′

1
, ∥R2∥H′

2
, and ∥R3∥Q′ , in

Lemma 4.2.1 by the corresponding upper bounds derived in Lemmas 4.2.2 and 4.2.3,
and considering the definition of the global estimator Θ (cf. (4.1)).

4.2.2 Efficiency

We now aim to establish the efficiency estimate of Θ (cf. (4.1)). For this purpose,
we will make extensive use of the notations and results from Appendix A.3, and
the original system of equations given by (3.19), which is recovered from the mixed
continuous formulation (3.35) by choosing suitable test functions and integrating by
parts backwardly the corresponding equations. The following theorem is the main
result of this section.

Theorem 4.2.2. There exists a positive constant Ceff, independent of h, such that

Ceff Θ + h.o.t ≤ ∥D⃗ − D⃗h∥H + ∥p− ph∥0,Ω , (4.38)

where h.o.t stands eventually for one or several terms of higher order.

Throughout this section we assume, without loss of generality, that uD is piecewise
polynomial. Otherwise, if it is not, but it is sufficiently smooth, one proceeds similarly
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to [72, Section 6.2], so that higher order terms given by the error arising from a suitable
polynomial approximation of this function appear in (4.38). This possibility explains
the expression h.o.t. in (4.38).

We begin deriving the efficiency estimate (4.38) by first addressing Θ1,K and the
first two terms of Θ2,K (cf. (4.2), (4.3)).

Lemma 4.2.4. For each K ∈ Th there hold

∥f + div(σh)∥0,4/3;K ≤ ∥div(σ − σh)∥0,4/3;K (4.39)

and ∥σh − σt
h ∥0,K ≤ 2 ∥σ − σh∥0,K . (4.40)

In addition, there exists a positive constant C, independent of h, such that∥∥∥η(ph, |Dh|
)
Dh − σd

h − ρ(uh ⊗ uh)d
∥∥∥

0,K

≤ C
{

∥D − Dh∥0,K + ∥σ − σh∥0,K + ∥u − uh∥0,4;K + ∥p− ph∥0,K

}
.

(4.41)

Proof. First, in order to show (4.39) and (4.40), it suffices to recall that f = − div(σ)
and σ = σt in Ω (cf. (3.19)). In turn, for the proof of (4.41), we first use the identity
η(p, |D|) D − σd − ρ (u ⊗ u)d = 0 in Ω (cf. (3.19)) and triangle inequality, to deduce∥∥∥η(ph, |Dh|

)
Dh − σd

h − ρ(uh ⊗ uh)d
∥∥∥

0,K

≤
∥∥∥η(p, |D|

)
D − η

(
ph, |Dh|

)
Dh

∥∥∥
0,K

+ ∥σ − σh∥0,K + ρ ∥u ⊗ u − uh ⊗ uh∥0,K ,

(4.42)
where, adding and subtracting η

(
p, |Dh|

)
Dh in the first term on the right-hand side of

(4.42), and using the Lipschitz continuity estimates [43, eqs. (4.8) and (4.11)], we find
that there exists positive constants LA, Lη, such that

∥∥∥η(p, |D|
)
D − η

(
ph, |Dh|

)
Dh

∥∥∥
0,K

≤
∥∥∥η(p, |D|

)
D − η

(
p, |Dh|

)
Dh

∥∥∥
0,K

+
∥∥∥{η(p, |Dh|

)
− η

(
ph, |Dh|

)}
Dh

∥∥∥
0,K

≤ LA ∥D − Dh∥0,K + Lη ∥p− ph∥0,K .

(4.43)
In turn, proceeding as in (4.23) in combination with the fact that ∥u∥0,4;K and ∥uh∥0,4;K

are bounded by ∥u∥0,4;Ω and ∥uh∥0,4;Ω, respectively, with u ∈ W(δ) and uh ∈ W(δd),
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there holds

∥u ⊗ u − uh ⊗ uh∥0,K ≤ n1/2
(
∥u∥0,4;K + ∥uh∥0,4;K

)
∥u − uh∥0,4;K

≤ n1/2
(
∥u∥0,4;Ω + ∥uh∥0,4;Ω

)
∥u − uh∥0,4;K

≤ n1/2
(
δ + δd

)
∥u − uh∥0,4;K .

(4.44)

Finally, replacing back (4.43) and (4.44) into (4.42) we obtain (4.41) and conclude the
proof.

We remark that the local efficiency estimates for the remaining terms in the
definition of Θ (cf. (4.1)) have already been established in the literature. These
estimates are derived using the localization technique based on triangle-bubble and
edge-bubble functions (cf. (A.22) and Lemma A.3.4), together with the local inverse
inequality (cf. (A.23)) and the discrete trace inequality (cf. (A.24)). For completeness,
we state the following result.

Lemma 4.2.5. There exist positive constants Ci, i ∈ {1, . . . , 5}, all independent of h,
such that

a) h4
K

∥∥∥∇uh −
(
Dh + γh

)∥∥∥4

0,4;K

≤ C1
{
∥u − uh∥4

0,4;K + h2
K∥D − Dh∥4

0,K + h2
K∥γ − γh∥4

0,K

}
∀K ∈ Th ,

b) he ∥uD − uh∥4
0,4;e

≤ C2
{
∥u − uh∥4

0,4;Ke
+ h2

Ke
∥D − Dh∥4

0,Ke
+ h2

Ke
∥γ − γh∥4

0,Ke

}
∀ e ∈ Eh(Γ) ,

c) h2
K

∥∥∥rot (Dh + γh)
∥∥∥2

0,K
≤ C3

{
∥D − Dh∥2

0,K + ∥γ − γh∥2
0,K

}
∀K ∈ Th ,

d) he

∥∥∥[[(Dh + γh)s]]
∥∥∥2

0,e
≤ C4

{
∥D − Dh∥2

0,ωe
+ ∥γ − γh∥2

0,ωe

}
∀ e ∈ Eh(Ω) ,

e) he

∥∥∥∇uD s−
(
Dh+γh

)
s
∥∥∥2

0,e
≤ C5

{
∥D − Dh∥2

0,Ke
+ ∥γ − γh∥2

0,Ke

}
∀ e ∈ Eh(Γ) ,

where Ke is the triangle of Th having e as an edge, whereas ωe denotes the union of
the two elements of Th sharing the edge e .

Proof. The estimate a) follows directly from the proof of [41, Lemma 3.15], replacing
th therein with Dh + γh, while b) is given in [41, Lemma 3.16]. For c) and d), we refer
to [73, Lemmas 4.3 and 4.4]. Finally, the proof of e) follows the same arguments as
those in [74, Lemma 4.15].
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We conclude this section by noting that the proof of (4.38) (cf. Theorem 4.2.2)
follows directly from Lemmas 4.2.4 and 4.2.5 and summing the local efficiency estimates
over all K ∈ Th. Further details are omitted.

4.3 Numerical results

This section serves to illustrate the performance and accurancy of the proposed mixed
finite element scheme (3.85) along with the reliability and efficiency properties of the
a posteriori error estimator Θ (cf. (4.1)) derived in Section 4.2. In what follows, we
refer to the corresponding sets of finite element subspaces generated by ℓ = {0, 1} as
simply PEERSℓ and AFWℓ based discretizations (cf. (3.125), (3.126)). The numerical
methods have been implemented using the open source finite element library FEniCS
[52]. Regarding the implementation of the Newton-type iterative method associated
with (3.85) (see [43, steps (1)-(3) in Section 7] for details), the iterations are terminated
once the relative error of the entire coefficient vectors between two consecutive iterates,
namely coeffm and coeffm+1, is sufficiently small, that is,

∥coeffm+1 − coeffm∥DOF

∥coeffm+1∥DOF
≤ tol ,

where ∥ · ∥DOF stands for the usual Euclidean norm in RDOF with DOF denoting the total
number of degrees of freedom defining the finite element subspaces H1,h, H̃2,h, Q1,h,
and Q2,h (cf. (3.125), (3.126)), and tol is a fixed tolerance chosen as tol = 1E − 06.

The global error and the effectivity index associated to the global estimator Θ (cf.
(4.1)) are denoted, respectively, by

e(⃗t) := e(D) + e(σ) + e(u) + e(γ) + e(p) and eff(Θ) := e(⃗t)
Θ ,

where

e(D) := ∥D − Dh∥0,Ω , e(σ) := ∥σ − σh∥div4/3;Ω , e(u) := ∥u − uh∥0,4;Ω ,

e(γ) := ∥γ − γh∥0,Ω , and e(p) := ∥p− ph∥0,Ω .

Moreover, using the fact that DOF−1/n ∼= h, the respective experimental rates of
convergence are computed as

r(⋄) := −n log(e(⋄)/ê(⋄))
log(DOF/D̂OF)

for each ⋄ ∈
{
D,σ,u,γ, p, t⃗

}
,
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where DOF and D̂OF denote the total degrees of freedom associated to two consecutive
triangulations with errors e(⋄) and ê(⋄), respectively. We stress that, for the sake of
simplicity and clarity of presentation, in the examples considered below we only report
errors and rates of convergence for the most physically relevant unknowns, namely
σ, u, p, and t⃗ = (D⃗, p). We recall that the reliability and efficiency of the global
estimator Θ (cf. (4.11), (4.38)) are with respect to the full error in t⃗, and therefore we
are particularly interested in the behavior of this error.

The examples to be considered in this section are described next, for which we
consider the regularized viscosity η(ϱ, ω) defined by (3.11). In the first three examples,
for the sake of simplicity, we take µs = 0.1, µd = 1, I0 = 1, d = 1 and ρ = 1. In
addition, it is easy to see for these examples that the boundary data uD := u|Γ satisfy
the required regularity uD ∈ H1(Γ) since the given exact solutions u are sufficiently
regular. In turn, the null mean value of tr(σh) over Ω is fixed via a real Lagrange
multiplier strategy.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error
estimator Θ, whereas Examples 2, 3 and 4 are utilized to illustrate the behavior of the
associated adaptive algorithm in 2D and 3D domains with and without manufactured
solution, respectively, which applies the following procedure from [75]:

(1) Start with a coarse mesh Th of Ω.

(2) Solve the Newton iterative method associated with (3.85) on the current mesh.

(3) Compute the local indicator ΘK for each K ∈ Th, where

ΘK := Θ1,K + Θ2,K + Θ3,K (cf. (4.2), (4.3), (4.4)) .

(4) Check the stopping criterion and decide whether to finish or go to the next step.

(5) Use Plaza and Carey’s algorithm [76] to refine each K ′ ∈ Th satisfying

ΘK′ ≥ CPC max
{

ΘK : K ∈ Th

}
for some CPC ∈ (0, 1) .

(6) Define the resulting mesh as the current mesh, and go to step (2).

In particular, in the 2D Examples 2 and 4 below, we set CPC = {0.25, 0.1} for
ℓ = {0, 1}, respectively, while in the 3D Example 3, we set CPC = 0.5.
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Example 4.1: Accuracy assessment with a smooth solution in a
square domain

We first focus on the accuracy of the mixed methods and the properties of the a posteriori
error estimator through the effectivity index eff(Θ) under a quasi-uniform refinement
strategy. We consider the square domain Ω := (0, 1)2 and set the regularization
parameter to ε = 1E − 08. The data f and uD are adjusted so that a manufactured
solution of (3.19) is given by the following smooth functions

u(x) =
 sin(x1) cos(x2)

− cos(x1) sin(x2)

 and p(x) = exp(x1 + x2),

where p ∈ L2
κ(Ω), with κ = (exp(1) − 1)2. Tables 4.1 and 4.2 shows the convergence

history for a sequence of quasi-uniform mesh refinements for both PEERSℓ and AFWℓ-
based discretizations, corresponding to ℓ = 0 and ℓ = 1, respectively. The results are
consistent with the theoretical bounds established in [43, Theorem 6.2]. In addition,
we compute the global a posteriori error indicator Θ (cf. (4.1)) and assess its reliability
and efficiency through the effectivity index. We observe that the estimator remains
uniformly bounded throughout the refinement process.

PEERSℓ-based discretization with ℓ = 0 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

3314 0.177 14 5.5e-01 – 3.7e-02 – 2.0e-01 – 1.0e-00 – 1.1e-00 0.911
16634 0.079 12 2.4e-01 1.05 1.6e-02 1.06 7.8e-02 1.13 4.3e-01 1.06 5.3e-01 0.827
29522 0.059 12 1.8e-01 1.03 1.2e-02 1.03 5.8e-02 1.08 3.2e-01 1.04 4.0e-01 0.812
73874 0.037 11 1.1e-01 1.02 7.4e-03 1.01 3.6e-02 1.05 2.0e-01 1.03 2.5e-01 0.797

209282 0.022 9 6.5e-02 1.01 4.4e-03 1.01 2.1e-02 1.02 1.2e-01 1.02 1.5e-01 0.787
510602 0.014 8 4.2e-02 1.01 2.8e-03 1.00 1.3e-02 1.01 7.5e-02 1.01 9.6e-02 0.782

AFWℓ-based discretization with ℓ = 0 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

2369 0.177 14 2.8e-01 – 3.5e-02 – 1.6e-01 – 5.4e-01 – 5.4e-01 0.995
11809 0.079 11 1.2e-01 1.01 1.6e-02 1.01 7.3e-02 1.01 2.4e-01 1.01 2.4e-01 1.003
20929 0.059 10 9.3e-02 1.01 1.2e-02 1.01 5.5e-02 1.01 1.8e-01 1.01 1.8e-01 1.004
52289 0.037 9 5.9e-02 1.00 7.3e-03 1.00 3.4e-02 1.00 1.1e-01 1.00 1.1e-01 1.005

147969 0.022 7 3.5e-02 1.00 4.4e-03 1.00 2.0e-02 1.00 6.7e-02 1.00 6.7e-02 1.005
360801 0.014 6 2.2e-02 1.00 2.8e-03 1.00 1.3e-02 1.00 4.3e-02 1.00 4.3e-02 1.005

Table 4.1 [Example 4.1, ℓ = 0] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and effectivity index for
the mixed approximations.
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PEERSℓ-based discretization with ℓ = 1 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

7010 0.177 10 1.2e-02 – 1.2e-03 – 4.5e-03 – 2.6e-02 – 4.6e-02 0.559
35210 0.079 7 2.4e-03 1.99 2.3e-04 2.01 8.9e-04 2.02 5.5e-03 1.93 9.5e-03 0.572
62498 0.059 7 1.3e-03 1.99 1.3e-04 2.01 5.0e-04 2.00 3.1e-03 1.96 5.4e-03 0.575

156410 0.037 6 5.4e-04 1.99 5.1e-05 2.00 2.0e-05 2.00 1.3e-03 1.97 2.2e-03 0.579
443138 0.022 4 1.9e-04 1.99 1.8e-05 2.00 7.0e-05 2.00 4.5e-04 1.98 7.7e-04 0.581

1081202 0.014 4 7.8e-05 2.00 7.3e-06 2.00 2.9e-05 2.00 1.9e-04 1.99 3.2e-04 0.583

AFWℓ-based discretization with ℓ = 1 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

5473 0.177 7 6.1e-03 – 1.2e-03 – 4.3e-03 – 1.3e-02 – 2.1e-02 0.600
27433 0.079 5 1.2e-03 2.02 2.3e-04 2.01 8.6e-04 2.01 2.5e-03 2.02 4.3e-03 0.591
48673 0.059 5 6.7e-04 2.01 1.3e-04 2.01 4.8e-04 2.01 1.4e-03 2.01 2.4e-03 0.590

121753 0.037 4 2.7e-04 2.01 5.1e-05 2.01 1.9e-04 2.01 5.7e-04 2.01 9.6e-04 0.587
344833 0.022 3 9.4e-05 2.01 1.8e-05 2.00 6.8e-05 2.00 2.0e-04 2.01 3.4e-04 0.585
841201 0.014 3 3.8e-05 2.00 7.3e-06 2.00 2.8e-05 2.00 8.2e-05 2.00 1.4e-04 0.585

Table 4.2 [Example 4.1, ℓ = 1] Number of degrees of freedom, meshsizes, Newton
iteration count, errors, rates of convergence, global estimator, and effectivity index for
the mixed approximations.

Example 4.2: Adaptivity in a 2D L-shaped domain

The second example is aimed at testing the features of adaptive mesh refinement after
the a posteriori error estimator Θ (cf. (4.1)). We consider a 2D L-shaped domain
Ω := (0, 1)2 \ (0.5, 1)2 and the regularization parameter as ε = 1E − 08. The data f
and uD are chosen so that the exact solution is given by

u(x) =
 sin(π x1) cos(π x2) + x2

− cos(π x1) sin(π x2) + x1

 and p(x) = 18 − 10 exp
(

−0.001
r(x)

)
,

with r(x) := (x1 − 0.51)2 + (x2 − 0.51)2. Notice that the pressure field exhibits high
gradients near the vertex (0.5, 0.5). Tables 4.3 and 4.4, together with Figure 4.1,
summarize the convergence behavior of the mixed methods applied to a sequence
of quasi-uniform and adaptively refined triangulations of the domain. Suboptimal
convergence rates are observed in the quasi-uniform case. In contrast, adaptive
refinement guided by the a posteriori error indicator Θ leads to optimal rates and stable
effectivity indices for both PEERSℓ and AFWℓ-based discretizations with ℓ = {0, 1}.
The adaptive strategy significantly enhances the efficiency of the method, enabling
high-quality approximations at reduced computational cost. For ℓ = 0, solutions with
improved accuracy in terms of e(⃗t) are obtained using approximately 60% of the degrees
of freedom required by the final quasi-uniform mesh. This reduction is significant,
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especially considering the challenges posed by the nonlinearities involved in the model.
This efficiency is further enhanced for ℓ = 1, where accurate solutions are obtained
using only approximately 10% of the degrees of freedom, highlighting the substantial
advantage of the adaptive approach in this case. Figure 4.2 displays the initial mesh
and some approximate solutions computed with the adaptive PEERS1-based method,
using Θ, on a mesh with 706, 301 degrees of freedom and 13, 061 triangles. These
results confirm that the pressure exhibits strong variations in the contraction region.
Additionally, Figure 4.3 shows examples of adapted meshes for the mixed methods
when ℓ = 1. As expected, the refinement is concentrated near the reentrant corner of
the 2D L-shaped domain, revealing the indicator’s ability to effectively localize the
singularity.

Figure 4.1 [Example 4.2] Log-log plot of e(⃗t) vs. DOF for quasi-uniform/adaptive
refinements for PEERSℓ and AFWℓ-based discretizations with ℓ = {0, 1} (top and
bottom plots, respectively).
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PEERSℓ-based discretization with ℓ = 0 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

1028 0.280 15 8.0e-00 – 1.9e-01 – 7.0e-01 – 9.9e-00 – 9.8e-00 1.009
4601 0.141 18 4.9e-00 0.64 9.0e-02 0.97 3.4e-01 0.97 5.8e-00 0.72 5.7e-00 1.016

18491 0.071 15 2.7e-00 0.86 4.4e-02 1.04 1.8e-01 0.94 3.1e-00 0.89 3.1e-00 1.022
67811 0.038 13 1.7e-00 0.71 2.3e-02 0.99 9.8e-02 0.91 1.9e-00 0.74 1.9e-00 1.023

267785 0.019 12 9.2e-01 0.91 1.1e-02 1.01 5.0e-02 0.96 1.0e-00 0.92 1.0e-00 1.020
752408 0.011 11 5.2e-01 1.12 6.8e-03 1.00 2.9e-02 1.06 5.8e-01 1.11 5.7e-01 1.018

PEERSℓ-based discretization with ℓ = 0 and adaptive refinement via Θ
DOF it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

1028 15 8.0e-00 – 1.9e-01 – 7.0e-01 – 9.9e-00 – 9.8e-00 1.009
3857 17 5.1e-00 0.68 1.0e-01 0.90 3.6e-01 1.02 6.0e-00 0.77 6.0e-00 0.999
5189 17 3.7e-00 2.11 8.9e-02 0.92 2.7e-01 1.92 4.5e-00 1.98 4.5e-00 0.979

16997 14 2.2e-00 0.90 5.0e-02 0.98 1.4e-01 1.15 2.6e-00 0.94 2.6e-00 0.967
47183 14 1.3e-00 1.03 3.3e-02 0.82 8.6e-02 0.91 1.5e-00 1.00 1.6e-00 0.967

184580 13 6.6e-01 0.98 1.6e-02 1.03 4.2e-02 1.05 7.8e-01 1.00 8.1e-01 0.962
710489 12 3.5e-01 0.94 8.1e-03 1.03 2.2e-02 0.96 4.1e-01 0.95 4.2e-01 0.966

AFWℓ-based discretization with ℓ = 0 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)
745 0.280 19 7.9e-00 – 1.8e-01 – 8.0e-01 – 9.6e-00 – 8.7e-00 1.106

3285 0.141 19 4.7e-00 0.69 9.0e-02 0.96 3.3e-01 1.18 5.5e-00 0.75 5.2e-00 1.061
13117 0.071 18 2.5e-00 0.90 4.4e-02 1.04 1.5e-01 1.16 2.9e-00 0.93 2.8e-00 1.039
47997 0.038 17 1.6e-00 0.70 2.3e-02 0.99 8.1e-02 0.93 1.8e-00 0.73 1.8e-00 1.032

189285 0.019 17 8.7e-01 0.91 1.1e-02 1.01 4.2e-02 0.94 9.7e-01 0.92 9.4e-01 1.030
531593 0.011 16 4.9e-01 1.12 6.8e-03 1.00 2.4e-02 1.09 5.4e-01 1.11 5.3e-01 1.028

AFWℓ-based discretization with ℓ = 0 and adaptive refinement via Θ
DOF it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)
745 19 7.9e-00 – 1.8e-01 – 8.0e-01 – 9.6e-00 – 8.7e-00 1.106

2685 19 4.9e-00 0.74 9.9e-02 0.95 3.6e-01 1.25 5.8e-00 0.80 5.4e-00 1.064
3517 19 3.6e-00 2.32 9.1e-02 0.63 2.4e-01 2.83 4.3e-00 2.16 4.1e-00 1.052

11729 18 2.1e-00 0.91 4.8e-02 1.07 1.0e-01 1.46 2.4e-00 0.96 2.4e-00 1.026
30457 18 1.3e-00 0.98 3.3e-02 0.76 5.7e-02 1.20 1.5e-00 0.96 1.5e-00 1.015

118453 17 6.8e-01 0.96 1.7e-02 1.03 2.9e-02 1.02 7.9e-01 0.97 7.8e-01 1.016
462749 15 3.5e-01 0.96 8.3e-03 1.02 1.5e-02 0.98 4.1e-01 0.97 4.0e-01 1.017

Table 4.3 [Example 4.2, ℓ = 0] Comparison of the mixed approximations with quasi-
uniform and adaptive refinements for the µ(I)-rheology model.

Example 4.3: Adaptivity in a 3D L-shaped domain

Here, we replicate the Example 4.2 in a three-dimensional setting but now considering
the 3D L-shaped domain Ω = (0, 1) × (0, 0.5) × (0, 1) \ (0.5, 1) × (0, 0.5) × (0.5, 1), the
regularization parameter as ε = 1E − 06, and the manufactured exact solutions given
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PEERSℓ-based discretization with ℓ = 1 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

2171 0.280 16 3.4e-00 – 2.4e-02 – 2.4e-01 – 3.8e-00 – 3.9e-00 0.979
9734 0.141 14 1.9e-00 0.75 5.6e-03 1.95 9.1e-02 1.28 2.1e-00 0.80 2.1e-00 1.021

39143 0.071 12 1.1e-00 0.77 1.3e-03 2.13 3.2e-02 1.50 1.2e-00 0.82 1.2e-00 1.028
143573 0.038 9 3.5e-01 1.80 3.5e-04 1.99 1.3e-02 1.39 3.7e-01 1.78 3.6e-01 1.032
567023 0.019 7 1.2e-01 1.53 8.8e-05 2.00 4.1e-03 1.66 1.3e-01 1.54 1.3e-01 1.034

1593242 0.011 5 3.9e-02 2.22 3.1e-05 2.00 1.3e-03 2.28 4.1e-02 2.22 4.0e-02 1.029
PEERSℓ-based discretization with ℓ = 1 and adaptive refinement via Θ

DOF it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)
2171 16 3.4e-00 – 2.4e-02 – 2.4e-01 – 3.8e-00 – 3.9e-00 0.979
8267 14 1.9e-00 0.90 6.3e-03 2.00 9.7e-02 1.32 2.0e-00 0.95 2.0e-00 1.024

10547 14 1.2e-00 4.04 6.2e-03 0.08 3.9e-02 7.56 1.2e-00 4.17 1.3e-00 0.965
14948 13 4.6e-01 5.25 5.4e-03 0.83 1.9e-02 4.17 5.1e-01 4.98 5.8e-01 0.880
57371 11 1.3e-01 1.87 1.4e-03 2.05 5.4e-03 1.85 1.5e-01 1.87 1.6e-01 0.891

179354 9 4.7e-02 1.80 3.6e-04 2.33 1.9e-03 1.87 5.2e-02 1.82 5.6e-02 0.918
706301 7 1.2e-02 2.00 9.1e-05 2.02 4.7e-04 2.01 1.3e-02 2.00 1.4e-02 0.916

AFWℓ-based discretization with ℓ = 1 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

1702 0.280 15 3.3e-00 – 2.4e-02 – 2.3e-01 – 3.6e-00 – 3.5e-00 1.027
7597 0.141 13 1.9e-00 0.76 5.5e-03 1.95 9.0e-02 1.27 2.0e-00 0.81 1.9e-00 1.035

30490 0.071 11 1.1e-00 0.73 1.3e-03 2.12 3.1e-02 1.56 1.2e-00 0.77 1.1e-00 1.033
111760 0.038 8 3.5e-01 1.82 3.5e-04 1.99 1.3e-02 1.37 3.6e-01 1.80 3.5e-01 1.033
441202 0.019 6 1.2e-01 1.54 8.8e-05 2.01 4.0e-03 1.66 1.3e-01 1.54 1.2e-01 1.028

1239529 0.011 5 3.8e-02 2.23 3.1e-05 2.00 1.2e-03 2.30 3.9e-02 2.24 3.9e-02 1.020

AFWℓ-based discretization with ℓ = 1 and adaptive refinement via Θ
DOF it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

1702 15 3.3e-00 – 2.4e-02 – 2.3e-01 – 3.6e-00 – 3.5e-00 1.027
5893 14 1.8e-00 0.96 7.4e-03 1.88 9.5e-02 1.45 1.9e-00 1.01 1.9e-00 1.020
7456 13 1.1e-00 3.98 7.3e-03 0.04 3.4e-02 8.73 1.2e-00 4.10 1.2e-00 0.967

12022 13 4.7e-01 3.72 5.6e-03 1.19 1.3e-02 4.06 5.0e-01 3.65 5.4e-01 0.931
43087 11 1.4e-01 1.91 1.5e-03 2.09 4.1e-03 1.81 1.5e-01 1.91 1.6e-01 0.934

137791 9 4.7e-02 1.84 3.9e-04 2.28 1.5e-03 1.69 5.1e-02 1.84 5.3e-02 0.951
534541 6 1.2e-02 1.98 9.7e-05 2.04 4.1e-04 1.96 1.3e-02 1.98 1.4e-02 0.954

Table 4.4 [Example 4.2, ℓ = 1] Comparison of the mixed approximations with quasi-
uniform and adaptive refinements for the µ(I)-rheology model.

by

u(x) =


sin(x1) cos(x2) cos(x3)

−2 cos(x1) sin(x2) cos(x3)
cos(x1) cos(x2) sin(x3)

 and p(x) = 80 − 40 exp
(

−0.0001
r(x)

)
,
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Figure 4.2 [Example 4.2] Initial mesh, computed magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.

with r(x) := (x1 − 0.505)2 + (x3 − 0.505)2. The convergence history for a set of
quasi-uniform and adaptive mesh refinements using both PEERS0 and AFW0-based
discretizations is shown in Table 4.5, along with Figure 4.4. We observe a considerable
increase in the number of degrees of freedom in the PEERS0-based scheme compared
to the AFW0 one. For this reason, and due to computational limitations, we report
results for only four meshes in the case of the PEERS0-based discretization. This
is mainly explained by the fact that the symmetric part of the velocity gradient is
approximated using P3(Ω) and P1(Ω), respectively. Nevertheless, in both cases we
observe disturbed convergence under quasi-uniform refinement and optimal convergence
rates when using adaptive refinement guided by the a posteriori error estimator Θ
(cf. (4.1)). The initial mesh and some approximate solutions computed using the
adaptive AFW0-based scheme (driven by Θ), with 775, 808 degrees of freedom and
13, 724 tetrahedra, are displayed in Figure 4.5. Snapshots of three meshes generated
via Θ are shown in Figure 4.6, where an incipient clustering of elements around the
contraction region can be observed.

Example 4.4: Fluid flow through a 2D cavity with two circular
obstacles

Inspired by Example 3.7, we finally focus on studying the behavior of the regularized
µ(I)-rheology model for granular materials in fluid flow through a 2D cavity with two
circular obstacles, without employing a manufactured solution. More precisely, we
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Figure 4.3 [Example 4.2] Three snapshots of adapted meshes according to the indicator
Θ for PEERS1 and AFW1-based discretizations (top and bottom plots, respectively).

consider the domain Ω = (0, 1)2 \ Ωc, where

Ωc =
{

(x1, x2) : (x1 − 1/2)2 + (x2 − 1/3)2 < 0.12
}

∪
{

(x1, x2) : (x1 − 1/2)2 + (x2 − 2/3)2 < 0.12
}
,

with boundary Γ, whose part around the circles is given by Γc = ∂Ωc. The model
parameters are chosen as µs = 0.36, µd = 0.91, I0 = 0.73, d = 0.05, ρ = 2500, and the
regularization factor is ε = 1E − 03. Notice that the relation between the diameter of
the particles d and the width of the cavity is 1 : 20, whereas the radius of both circular
obstacles is double that of d. The mean value of p is fixed as κ = 100, no presence of
gravity is assumed, that is, f = 0, and the boundaries conditions are

u = (0.2x2 − 0.1, 0)t on Γ \ Γc and u = 0 on Γc .

In particular, we impose that flows cannot go in nor out through Γc, whereas at the
top and bottom of the domain flows are faster in opposite direction. In Figure 4.7,
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PEERSℓ-based discretization with ℓ = 0 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

32744 0.522 18 1.3e+01 – 9.8e-02 – 2.1e-00 – 1.6e+01 – 1.2e+01 1.271
296142 0.207 16 6.5e-00 0.97 4.1e-02 1.18 8.7e-01 1.19 7.5e-00 1.00 6.4e-00 1.181
605245 0.164 16 5.8e-00 0.49 3.2e-02 1.03 6.9e-01 0.98 6.6e-00 0.55 5.6e-00 1.168

1651385 0.114 16 5.2e-00 0.31 2.3e-02 1.03 4.9e-01 1.03 5.8e-00 0.39 5.0e-00 1.149

PEERSℓ-based discretization with ℓ = 0 and adaptive refinement via Θ
DOF it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

32744 18 1.3e+01 – 9.8e-02 – 2.1e-00 – 1.6e+01 – 1.2e+01 1.271
106606 17 7.2e-00 1.55 7.4e-02 0.70 9.8e-01 1.90 8.4e-00 1.59 7.2e-00 1.157
374390 17 5.2e-00 0.78 6.2e-02 0.43 4.7e-01 1.78 5.8e-00 0.88 5.3e-00 1.084
935833 17 3.8e-00 1.05 4.1e-02 1.36 2.5e-01 2.08 4.1e-00 1.12 3.9e-00 1.061

AFWℓ-based discretization with ℓ = 0 and quasi-uniform refinement
DOF h it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

10911 0.522 11 1.3e+01 – 9.8e-02 – 2.0e-00 – 1.5e+01 – 1.2e+01 1.267
94997 0.207 10 6.4e-00 1.00 4.1e-02 1.20 8.6e-01 1.20 7.3e-00 1.03 6.3e-00 1.173

193678 0.164 10 5.7e-00 0.51 3.2e-02 1.04 6.8e-01 1.00 6.4e-00 0.57 5.5e-00 1.154
525096 0.114 10 5.1e-00 0.34 2.3e-02 1.04 4.8e-01 1.03 5.6e-00 0.41 5.0e-00 1.126

1595337 0.079 10 4.4e-00 0.39 1.6e-02 1.04 3.3e-01 1.05 4.7e-00 0.44 4.3e-00 1.105

AFWℓ-based discretization with ℓ = 0 and adaptive refinement via Θ
DOF it e(σ) r(σ) e(u) r(u) e(p) r(p) e(⃗t) r(⃗t) Θ eff(Θ)

10911 11 1.3e+01 – 9.8e-02 – 2.0e-00 – 1.5e+01 – 1.2e+01 1.267
34300 11 7.0e-00 1.64 7.4e-02 0.72 9.7e-01 1.93 8.2e-00 1.66 7.2e-00 1.140

114721 11 5.0e-00 0.86 6.2e-02 0.44 4.6e-01 1.88 5.6e-00 0.96 5.3e-00 1.043
314569 10 3.6e-00 1.01 3.9e-02 1.41 2.3e-01 2.02 3.9e-00 1.09 3.8e-00 1.013
775808 10 2.6e-00 1.08 2.8e-02 1.14 1.5e-01 1.40 2.8e-00 1.10 2.8e-00 1.002

Table 4.5 [Example 4.3, ℓ = 0] Comparison of the mixed approximations with quasi-
uniform and adaptive refinements for the µ(I)-rheology model.

we display the initial mesh, the computed magnitude of the velocity and symmetric
part of the velocity gradient, and pressure field, which were built using the mixed
PEERS0-based scheme on a mesh with 23, 390 triangle elements (actually representing
597, 375 DOF) obtained via Θ (cf. (4.1)). Similarly to [43, Example 3 in Section 7], we
observe higher velocities along the top and bottom boundaries, moving rightward and
leftward, respectively, as anticipated. Additionally, a circulation phenomenon emerges
near the lateral boundaries, driven by the fact that the fluid cannot enter or exit
through the circular obstacles. Most of the variations in both the pressure field and
the magnitude of the symmetric part of the velocity gradient tensor are concentrated
around the circular obstacles. Notably, between the obstacles and in some central
regions of the domain, the magnitude of the symmetric part of the velocity gradient
is either zero or nearly so, indicating zones where the original viscosity η (cf. [43,
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Figure 4.4 [Example 4.3] Log-log plot of e(⃗t) vs. DOF for quasi-uniform/adaptive refine-
ments for PEERS0 and AFW0-based discretizations (left and right plots, respectively).

Figure 4.5 [Example 4.3] Initial mesh, computed magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.

eq. (2.9)]) becomes singular and the granular flow remains static. This behavior is
consistent with the velocity field and is properly handled by the mixed formulations
using the regularized viscosity (3.11). The results align with those reported in [43],
now incorporating an adaptive mesh refinement strategy driven by the a posteriori
error indicator Θ. Snapshots of some of the adapted meshes are shown in Figure 4.8,
where we can clearly observe refinement concentrated around the obstacles and in
regions where the velocity gradient vanishes or is nearly zero. This confirms that the
indicator Θ successfully identifies both the singular zones and the areas with large
solution variations, as intended.
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Figure 4.6 [Example 4.3] Three snapshots of adapted meshes according to the indicator
Θ for the AFW0-based discretization.

Figure 4.7 [Example 4.4] Initial mesh, computed magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.
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Figure 4.8 [Example 4.4] Three snapshots of adapted meshes according to the indicator
Θ for PEERS0 and AFW0-based discretizations (top and bottom plots, respectively).





Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a mixed finite element method was developed and implemented for
analyzing the rheological behavior of granular materials under the µ(I) model. The
proposed method proved effective in capturing the inherent complexities of granular
flow, particularly in regimes where transitions between solid and fluid behaviors are
critical. The mixed approach allowed for the simultaneous incorporation of primary
and secondary variables, such as pressure and velocity, ensuring greater accuracy and
numerical stability in large deformation simulations.

One of the main challenges in working with the µ(I) model is its intrinsic nonlinearity.
Unlike Newtonian fluids where viscosity is constant, in granular materials the friction
(or effective viscosity) is also strongly influenced by normal pressure (or confining
pressure). This coupling between dissipation and pressure leads to highly nonlinear
equations that are significantly more challenging to solve numerically.

Traditional numerical schemes for incompressible fluids - such as pressure-correction
projection methods, typically separate velocity and pressure calculations into distinct
steps. However, this classical approach becomes inadequate for the µ(I) model, since
dissipation explicitly depends on pressure, requiring more sophisticated techniques to
ensure simulation accuracy and stability.

The solution approach treated the stress tensor as a new unknown in the system.
This enabled formulating an explicit expression for pressure, using a fixed-point operator
to resolve the stress tensor to pressure dependence. This strategy allowed partial
decoupling of variables and made numerical implementation feasible.

The numerical implementation faced significant convergence challenges, particularly
in regions with very low local deformation rates where system singularities caused
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pronounced numerical instabilities. The use of adaptive meshing allowed for more
precise identification of these singularity regions and helped recover the lost convergence
order in these areas. Additionally, the application of regularization techniques proved
effective in addressing fundamental modeling issues. However, in domains with extensive
singular regions, more intensive regularization was required. This behavior suggests
that investigating alternative regularization schemes - potentially involving modified
variational formulations or non-local operators - could not only improve numerical
stability but also positively impact the continuous formulation of the problem itself.

Despite these difficulties, the developed method demonstrated great potential
for practical applications in geotechnics, material processing, and mining industries.
Future work could explore extending the method to include thermal effects and
material heterogeneities. In summary, this thesis contributed to the advancement of
computational modeling of granular materials, offering a robust and versatile tool for
analyzing complex phenomena in granular rheology.

5.2 Future Work

The development of the mixed finite element method for µ(I) rheology presented in
this thesis opens the way for several research directions and improvements. The main
future lines of investigation include:

• Influence of the regularization parameter: Systematic investigation of the
method’s sensitivity to the regularization parameter. Studies could be conducted
to assess how different values of this parameter affect the accuracy and stability of
simulations, especially in highly nonlinear regimes. This would allow establishing
guidelines for the appropriate choice of the parameter in different applied contexts.

• Experimental validation: Comparison of numerical results with experimental
data, such as measurements of velocity profiles, pressure, and deformation in
granular flows. This validation is crucial to consolidate the reliability of the
method and ensure its accuracy in real scenarios.

• Cross-validation with other numerical methods: Comparison of the pro-
posed method with other numerical approaches, such as finite difference methods
or particle-based discretizations (e.g., DEM - Discrete Element Method). This
cross-validation would allow identifying relative advantages and limitations of
the developed method.
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• Temporal evolution of the problem: Extension of the method to time-
dependent problems, enabling the dynamic analysis of granular phenomena, such
as the collapse of material columns or debris spreading in geophysical flows. The
incorporation of transient terms in the model would allow studying the temporal
evolution of these phenomena, capturing aspects such as shock wave propagation
and the formation of complex flow patterns.

• Multiphase flows: Study of flows where granular material interacts with fluids
or other phases. A relevant example is the simulation of the collapse of a
column of particles immersed in a fluid, a classic problem that combines granular
solid mechanics with hydrodynamics. Modeling these scenarios would require
integrating the current method with governing equations for the fluid, such as
the Navier-Stokes equations, and implementing phase-coupling techniques.

• Application to real situations with complex geometry: Adaptation of
the method to handle irregular geometries and realistic boundary conditions,
such as landslides, flows in silos, or industrial granular transport processes. This
application would broaden the scope of the method, contributing to solving
practical problems in engineering and geosciences.

In summary, future work could explore the temporal evolution of the problem,
multiphase flows, the influence of the regularization parameter, experimental and
numerical validations, and application to real-world scenarios. These advances would
consolidate the method as a robust and versatile tool for computational modeling of
granular materials in theoretical and practical contexts.
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Appendix A

The hypotheses on the viscosity

A.1 The hypotheses on the viscosity

In this appendix we refer to the regularized viscosity η and the corresponding fulfillment
of the hypotheses (H.1), (H.2), and (H.3). We begin by recalling from (3.11) that

η(ϱ, ω) := a1 ϱ

ω + ε
+ a2 ϱ

a3
√
ϱ+ a4 ω + ε

∀ (ϱ, ω) ∈ R+ × R+ , (A.1)

so that

∂

∂ω
η(ϱ, ω) = − a1 ϱ

(ω + ε)2 − a2 a4 ϱ

(a3
√
ϱ+ a4 ω + ε)2 ∀ (ϱ, ω) ∈ R+ × R+ , (A.2)

and then

η(ϱ, ω) + ω
∂

∂ω
η(ϱ, ω) = a1 ϱ ε

(ω + ε)2 +
a2 (a3

√
ϱ+ ε) ϱ

(a3
√
ϱ+ a4 ω + ε)2 ∀ (ϱ, ω) ∈ R+ × R+ .

(A.3)
Thus, in order to satisfy (H.1) and (H.2), we restrict the evaluation of η, as defined
by (A.1), to a given rectangle [ϱ1, ϱ2] × [ω1, ω2] ⊆ R+ × R+, so that η is extended by
continuity outside this region, as illustrated in Figure A.1 below.

In this way, it is possible to accomplish the aforementioned hypotheses with positive
constants η1 and η2, depending on ϱ1, ϱ2, ω1, ω2, ε, and the coefficients ai, i ∈

{
1, ..., 4

}
,

defined in (3.10). Note also that, under this modification, one could even get rid of the
parameter ε.

On the other hand, regarding (H.3), we show next that it is satisfied with a positive
constant Lη depending only on the coefficients a1, a2, and a4 (cf. (3.10)). Indeed, given
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Figure A.1 Graphic representation of the modified version of the viscosity function η.

ϱ, χ, and ω in R+, we first deduce from (A.1) and some algebraic manipulations, that
{
η(ϱ, ω) − η(χ, ω)

}
ω

=
{
a1 ω

ω + ε
+

a2 a3
√
ϱ

√
χω

(√ϱ+ √
χ) a(ϱ, ω, ε) a(χ, ω, ε) + a2 ω (a4 ω + ε)

a(ϱ, ω, ε) a(χ, ω, ε)

}
(ϱ− χ) ,

(A.4)
where

a(ϱ, ω, ε) := a3
√
ϱ+ a4 ω + ε ,

and analogously for a(χ, ω, ε). In order to bound the right-hand side of (A.4) we first
observe that

a1 ω

ω + ε
≤ a1 . (A.5)

Then, it is straightforward to show that
√
ϱ

√
ϱ+ √

χ
≤ 1 ,

a3
√
χ

a(χ, ω, ε) =
a3

√
χ

a3
√
χ+ a4 ω + ε

≤ 1 , and

a2 ω

a(ϱ, ω, ε) = a2 a4 ω

a4 (a3
√
ϱ+ a4 ω + ε) ≤ a2

a4
,

(A.6)
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which yield
a2 a3

√
ϱ

√
χω

(√ϱ+ √
χ) a(ϱ, ω, ε) a(χ, ω, ε) ≤ a2

a4
. (A.7)

In turn, it is readily seen that

a4 ω + ε

a(χ, ω, ε) = a4 ω + ε

a3
√
χ+ a4 ω + ε

≤ 1 ,

which, along with the third inequality from (A.6), imply

a2 ω (a4 ω + ε)
a(ϱ, ω, ε) a(χ, ω, ε) ≤ a2

a4
. (A.8)

Finally, employing (A.5), (A.7), and (A.8) in (A.4), we arrive at
∣∣∣η(ϱ, ω) − η(χ, ω)

∣∣∣ω ≤ Lη |ϱ− χ| , (A.9)

where, using (3.10),
Lη := a1 + 2 a2

a4
=
(
2µd − µs)

√
2 ,

thus proving (H.3).
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A.2 Preliminaries for reliability

We begin by introducing useful notations to describe local information on elements
and edges. For each K ∈ Th, let E(K) denote its set of edges, and let Eh be the set
of all edges in Th, with corresponding diameters he. We further decompose Eh as
Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}.
For each e ∈ Eh, we fix unit normal and tangential vectors, denoted by νe := (ν1, ν2)t

and se := (−s2, s1)t , respectively. When no ambiguity arises, we will simply write
ν and s. The usual jump operator [[·]] across an internal edge e ∈ Eh(Ω) is defined
for a piecewise continuous tensor valued function ζ as [[ζ]] := ζ|K − ζ|K′ , where K
and K ′ are the elements of Th sharing e. Finally, for a scalar field ϕ, a vector field
v := (v1, v2)t, and a matrix-valued field τ := (τij)2×2, we define:

curl (ϕ) :=
(
∂ϕ

∂x2
,− ∂ϕ

∂x1

)t

, curl (v) :=
 curl (v1)t

curl (v2)t

 ,

rot (v) := ∂v1

∂x2
− ∂v2

∂x1
, and rot (τ ) :=

 rot (τ11, τ12)
rot (τ21, τ22)

 ,

where the derivatives involved are taken in the distributional sense.
Let us now recall the main properties of the Raviart–Thomas and Clément interpo-

lation operators (cf. [45], [77]). We begin by defining, for each p ≥ 2n/(n + 2), the
spaces

Wp(Ω) :=
{
τ ∈ H(divp; Ω) : τ |K ∈ W1,p(K) , ∀K ∈ Th

}
, (A.10)

and

RTℓ(Ω) :=
{
τ ∈ H(divp; Ω) : τ |K ∈ RTℓ(K) , ∀K ∈ Th

}
. (A.11)

In addition, we let Πℓ
h : Wp(Ω) → RTℓ(Ω) be the Raviart–Thomas interpolation

operator, which is characterized for each τ ∈ Wp(Ω) by the identities (see, e.g. [45,
Section 1.2.7])∫

e

(
Πℓ

h(τ ) · ν
)
ξ =

∫
e
(τ · ν) ξ ∀ ξ ∈ Pk(e) , ∀ edge or face e of Th , (A.12)

when k ≥ 0, and∫
K

Πℓ
h(τ ) ·ψ =

∫
K
τ ·ψ ∀ψ ∈ Pℓ−1(K) , ∀K ∈ Th , (A.13)
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when k ≥ 1. In turn, given q > 1 such that 1/p+ 1/q = 1, we let

Pℓ(Ω) :=
{
v ∈ Lq(Ω) : v|K ∈ Pℓ(K) , ∀K ∈ Th

}
, (A.14)

and recall from [45, Lemma 1.41] that there holds

div(Πℓ
h(τ )) = Pℓ

h(div(τ )) , ∀ τ ∈ Wp(Ω) , (A.15)

where Pℓ
h : L2(Ω) → Pℓ(Ω) denotes the standard orthogonal projector with respect to

the L2(Ω)-inner product. This operator satisfies the following error estimate (see [45,
Proposition 1.135]): there exists a positive constant C0, independent of h, such that
for 0 ≤ l ≤ ℓ+ 1 and 1 ≤ p ≤ ∞, the following holds

∥w − Pℓ
h(w)∥0,p;Ω ≤ C0 h

l ∥w∥l,p;Ω ∀w ∈ Wl,p(Ω) . (A.16)

We stress that Pℓ
h(w)|K = Pℓ

K(w|K) ∀w ∈ Lp(Ω), where Pℓ
K : Lp(K) → Pℓ(K) is

corresponding local orthogonal projector. In addition, denoting by Pℓ(Ω) the vector
version of Pℓ(Ω) (cf. (A.10)), we let Pℓ

h : L2(Ω) → Pℓ(Ω) be the vector version of Pℓ
h.

Next, we collect some approximation proprieties of Πℓ
h.

Lemma A.2.1. Given p > 1, there exist positive constants C1, C2, independent of h,
such that for 0 ≤ l ≤ ℓ, and for each K ∈ Th, there holds

∥τ − Πℓ
h(τ )∥0,p;K ≤ C1 h

l+1
K |τ |l+1,p;K ∀ τ ∈ Wl+1,p(K) (A.17)

and

∥τ ·ν−Πℓ
h(τ ) ·ν∥0,p;e ≤ C2 h

1−1/p
e |τ |1,p;K ∀ τ ∈ W1,p(K) , ∀ e ∈ Eh(K) . (A.18)

Proof. For the estimate (A.17) we refer to [41, Lemma 3.1], whereas the proof of (A.18)
can be found in [39, Lemma 4.2].

Furthermore, denoting by Wp(Ω) and RTℓ(Ω) the tensorial versions of Wp(Ω)
(cf. (A.10)) and RTℓ(Ω) (cf. (A.11)), respectively, we let Πℓ

h : Wp(Ω) → RTℓ(Ω) be
the operator Πℓ

h acting row-wise. Then, acording to decomposition (3.30), for each
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τ ∈ Wp(Ω) there holds

Πℓ
h(τ ) := Πℓ

h,0(τ ) + c0 I, with c0 := 1
n|Ω|

∫
Ω

tr
(
Πℓ

h(τ )
)

∈ R

and Πℓ
h,0(τ ) := Πℓ

h(τ ) − c0 I ∈ RTℓ(Ω) ∩ H0(div4/3; Ω) .

Additional approximation properties of Πℓ
h and Πℓ

h, particularly those involving the
div and div operators, can also be established using (A.15) and (A.16), along with
their tensorial counterparts for Πℓ

h and Pℓ
h.

We now recall from [39, Lemma 4.4] a stable Helmholtz decomposition for the
nonstandard Banach space H(divp; Ω), which will be used in the forthcoming analysis
for the particular case p = 4/3. More precisely, we state the following result:

Lemma A.2.2. Given p ∈ (1, 2), there exists a positive constant Cp such that for each
τ ∈ H(divp; Ω) there exist ζ ∈ W1,p(Ω) and ξ ∈ H1(Ω) satisfying

τ = ζ + curl (ξ) in Ω and ∥ζ∥1,p;Ω + ∥ξ∥1,Ω ≤ Cp ∥τ∥divp;Ω . (A.19)

On the other hand, let us define Xh :=
{
vh ∈ C(Ω) : vh|K ∈ P1(K) ∀K ∈ Th

}
and denote by Xh its vector-valued counterpart. We consider the Clément interpolation
operator Ih : H1(Ω) → Xh and its vector version Ih : H1(Ω) → Xh. Some local
properties of Ih, and consequently of Ih, corresponding to the particular case of [45,
Lemma 1.127] with m = 2, p = 2, and ℓ = 1, are established in the following lemma
(cf. [77]).

Lemma A.2.3. There exist positive constants C1 and C2, such that for each v ∈ H1(Ω)
there hold

∥v − Ih(v)∥0,K ≤ C1 hK ∥v∥1,∆(K) ∀K ∈ Th (A.20)

and
∥v − Ih(v)∥0,e ≤ C2 h

1/2
e ∥v∥1,∆(e) ∀K ∈ Eh , (A.21)

where ∆(K) := ∪
{
K ′ ∈ Th : K ′ ∩K ̸= ∅

}
and ∆(e) := ∪

{
K ′ ∈ Th : K ′ ∩ e ̸= ∅

}
.
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A.3 Preliminaries for efficiency

For the efficiency analysis of Θ (cf. (4.1)), we proceed as in [39, 41, 42, 73, 74, 74, 78, 79],
and apply the localization technique based on bubble functions, along with inverse
and discrete trace inequalities. For the former, given K ∈ Th, we let ψK be the usual
element-bubble function (cf. [75, eq. (1.5)]), satisfying

ψK ∈ P3(K), sup(ψK) ⊆ K, ψK = 0 on ∂K and 0 ≤ ψK ≤ 1 in K .

(A.22)
The specific properties of ψK to be employed in what follows, are collected in the
following lemma, for whose proof we refer to [75, Lemma 3.3].

Lemma A.3.4. Let ℓ be a non-negative integer, and p, q ∈ (1,+∞) conjugate to
each other, that is, such that 1/p+ 1/q = 1, and K ∈ Th. then, there exist positive
constants c1, c2, and c3, independent of h and K, but depending on the shape-regularity
of the triangulations (minimum angle condition) and ℓ, such that for each u ∈ Pℓ(K)
there hold

c1∥u∥0,p,K ≤ sup
0̸=v∈Pℓ(K)

∫
K
uψK v

∥v∥0,q,K

≤ ∥u∥0,p;K

and
c2h

−1
K ∥ψK u∥0,q;K ≤ ∥∇(ψK u)∥0,q;K ≤ c3h

−1
K ∥ψK u∥0,q;K .

In turn, the aforementioned inverse inequality is stated as follows (cf. [45, Lemma
1.138]).

Lemma A.3.5. Let ℓ, l and m be non-negative integers such that m ≤ l, and let
r, s ∈ [1,+∞], and K ∈ Th. Then, there exists c > 0, independent of h, K, r and s,
but depending on ℓ, l, m and the shape of the triangulations, such that

∥v∥l,r;K ≤ ch
m−l+n(1/r−1/s)
K ∥v∥m,s;K ∀ v ∈ Pℓ(K) . (A.23)

Finally, proceeding as in [80, Theorema 3.10], that is employing the usual scaling
estimates with respect to a fixed reference element K̂, and applying the trace inequality
in W1,p(K̂), for a given p ∈ (1,+∞), one is able to establish the following discrete
trace inequality.

Lemma A.3.6. Let p ∈ (1,+∞). Then, there exists c > 0, depending only on the
shape regularity of the triangulations, such that for each K ∈ Th and e ∈ Eh(K), there
holds

∥v∥p
0,p;e ≤ c

{
h−1

K ∥v∥p
0,p;K + hp−1

K |v|p1,p;K

}
∀ v ∈ W1,p(K) . (A.24)
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A.4 A posteriori error analysis: the 3D case

In this appendix, we extend the results from Section 4.2 to the three-dimensional
version of (3.85). Similarly to the previous section, given a tetrahedron K ∈ Th, we
denote by EK the set of its faces and by E the set of all faces in the triangulation
Th. We then define Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and
Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. For each face e ∈ Eh, we fix a unit normal vector
νe. Given τ = (τij)3×3 ∈ L2(Ω) such that τ |K ∈ C(K) for each K ∈ Th, we define
[[τ × νe]] as the corresponding jump of the tangential trace across e. In other words,
[[τ × νe]] := (τ |K − τ |K′) × νe, where K and K ′ are the tetrahedra in Th sharing e as a
common face and

τ × νe :=


(τ11, τ12, τ13) × νe

(τ21, τ22, τ23) × νe

(τ31, τ32, τ33) × νe

 .

From now on, when no confusion arises, we simply write ν instead of νe, In the sequel
we will also make use of the following differential operators

curl (v) = ∇ × v :=
(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)t

,

and

curl (τ ) :=


curl (τ11, τ12, τ13)t

curl (τ21, τ22, τ23)t

curl (τ31, τ32, τ33)t

 .

In turn, we will also use the tensor version of the tangential curl operator curl s,
denoted by curl s, which is defined component-wise by curl s (see [38, Section 3] for
details).

We now set for each K ∈ Th the local estimator

Θ2
2,K :=

∥∥∥η(ph, |Dh|
)
Dh − σd

h − ρ (uh ⊗ uh)d
∥∥∥2

0,K
+
∥∥∥σh − σt

h

∥∥∥2

0,K

+ h2
K

∥∥∥curl (Dh + γh)
∥∥∥2

0,K
+

∑
e∈Eh(K)∩E(Ω)

he

∥∥∥[[(Dh + γh) × ν]]
∥∥∥2

0,e

+
∑

e∈Eh(K)∩E(Γ)
he

∥∥∥curl s(uD) − (Dh + γh) × ν
∥∥∥2

0,e
,

(A.25)
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and the global a posteriori error estimator is defined as

Θ =
 ∑

K∈Th

Θ4/3
1,K


3/4

+
 ∑

K∈Th

Θ2
2,K


1/2

+
 ∑

K∈Th

Θ4
3,K


1/4

, (A.26)

where Θ4/3
1,K and Θ4

3,K are defined in (4.2) and (4.4), respectively. Accordingly, the
corresponding reliability and efficiency estimates, which represent the analogues of
Theorems 4.2.1 and 4.2.2, are stated as follows.

Theorem A.4.1. Assume that Lη and the radii δ and δd satisfy (4.36), and that uD is
a piecewise polynomial. Then, there exist positive onstants Ceff and Crel, independent
of h, such that

Ceff Θ + h.o.t ≤ ∥D⃗ − D⃗h∥H + ∥p− ph∥0,Ω ≤ Crel Θ . (A.27)

The proof of Theorem A.4.1 follows closely the analysis in Section 4.2, except
for a few aspects that will be discussed below. Specifically, we first observe that the
general a posteriori error estimate given in Lemma 4.2.1, as well as the upper bounds
for ∥R1∥H′

1
and ∥R3∥Q′ (cf. (4.26), (4.27)), remain valid in 3D. Next, we follow [81,

Theorem 3.2] to derive a 3D version of the Helmholtz decomposition for arbitrary
polyhedral domains, as provided by Lemma A.2.2, with p ∈ [6/5, 2) (cf. [39, Lemma
3.4]). The corresponding discrete Helmholtz decomposition and the functional R2 are
then established and rewritten exactly as in (4.30) and (4.31). Furthermore, to derive
the new upper bounds for ∥R2∥H′

2
(cf. Lemma 4.2.3), we require the 3D analogue of

the integration by parts formula on the boundary given in (4.36). In fact, using the
identities from [51, Chapter I, 2.17, and Theorem 2.11], we deduce that in this case,
the following holds

⟨curl (ξ)ν,θ⟩Γ = − ⟨curl s(θ), ξ⟩Γ , ∀ ξ ∈ H1(Ω) , ∀θ ∈ H1/2(Γ) . (A.28)

In addition, the integration by parts formula on each tetrahedron K ∈ Th, which is
used in the proof of the 3D analogues of Lemma 4.2.3, becomes (cf. [51, Chapter I,
Theorem 2.11])∫

K
curl (q) : ξ −

∫
K

q : curl (ξ) = ⟨q ×ν, ξ⟩∂K , ∀ q ∈ H(curl ; Ω) , ∀ ξ ∈ H1(Ω) ,

where ⟨·, ·⟩∂K denotes the duality pairing between H−1/2(∂K) and H1/2(∂K). As usual,
H(curl ; Ω) is the space of tensor fields in L2(Ω) whose curl belongs to L2(Ω). We
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observe that, unlike in the 2D case, assuming uD ∈ H1(Γ) is not necessary for the
reliability analysis, since curl s is defined in H1/2(Γ). Nevertheless, for computational
purposes, in Section 4.3, we assume that uD is sufficiently smooth, in which case
curl s(uD) coincides with ∇uD × ν.

Finally, to prove the efficiency of Θ, we first observe that the term defining Θ4/3
1,K (cf.

(4.2)) and the first two terms defining Θ2
2,K (cf. (4.3)) are estimated exactly as in the

2D case, following Lemma 4.2.4. For the remaining terms, we establish the following
lemma.

Lemma A.4.7. Assume that uD is piecewise polynomial. Then, there exist positive
constants Ci for i ∈ {1, . . . , 5}, all independent of h, such that

a) h4
K

∥∥∥∇uh −
(
Dh + γh

)∥∥∥4

0,4;K

≤ C1
{
∥u − uh∥4

0,4;K + h2
K∥D − Dh∥4

0,K + h2
K∥γ − γh∥4

0,K

}
∀K ∈ Th ,

b) he ∥uD − uh∥4
0,4;e

≤ C2
{
∥u − uh∥4

0,4;Ke
+ h2

Ke
∥D − Dh∥4

0,Ke
+ h2

Ke
∥γ − γh∥4

0,Ke

}
∀ e ∈ Eh(Γ) ,

c) h2
K

∥∥∥curl (Dh + γh)
∥∥∥2

0,K
≤ C3

{
∥D − Dh∥2

0,K + ∥γ − γh∥2
0,K

}
∀K ∈ Th ,

d) he

∥∥∥[[(Dh + γh) × ν]]
∥∥∥2

0,e
≤ C4

{
∥D − Dh∥2

0,ωe
+ ∥γ − γh∥2

0,ωe

}
∀ e ∈ Eh(Ω) ,

e) he

∥∥∥curl s(uD) −
(
Dh + γh

)
× ν

∥∥∥2

0,e
≤ C5

{
∥D − Dh∥2

0,Ke
+ ∥γ − γh∥2

0,Ke

}
, ∀ e ∈

Eh(Γ) ,

where Ke is the tetrahedron in Th having e as a face, whereas ωe denotes the union of
the two elements in Th that share the face e.

Proof. For a), we refer again to [41, Lemma 3.15] by using now the local inverse
inequality (A.23) with n = 3, whereas b) follows from [41, Lemma 3.16], (A.24) and
the estimate in a). In addition, for the proof of c), we refer to [73, Lemma 4.3], while
the proof of d) follows from [73, Lemma 4.4]. Finally, e) can be derived after a slight
modification of the proof of [74, Lemma 4.15], along with the definition of curl s.
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