== Universidade de Brasilia

Automorfismos Involutivos Quase
Regulares de Grupos Unicamente
2-Divisiveis

Samuel Terto de Sousa Rodrigues

Orientador: Prof. Dr. Pavel Shumyatsky

Departamento de Matemaética

Universidade de Brasilia

Dissertacdo apresentada como requisito parcial para obtengao do grau de

Mestre em Matemdtica

Brasilia, 28 de Marc¢o de 2025



A minha familia.



Agradecimentos

Agradeco primeiramente a Deus pelo Seu cuidado!

A minha familia, 2 minha mae Edilene, a0 meu pai Antonio e a minha irma Jaciara, pelo
apoio incondicional em todas as circunstancias enfrentadas.

Ao meu orientador Prof. Dr. Pavel Shumyatsky pela paciéncia, disponibilidade e aten¢do
dedicada neste periodo.

Aos professores Emerson de Melo, Jhone Caldeira e Igor Lima pelo aceite em integrar a
banca de avaliacao desta dissertagao.

Aos professores do Programa de Pos-graduagdo em Matematica da UnB, em especial
Manuela Resende, Luciana Avila, Sheila Chagas, Mauricio Ayala, Raimundo Bastos, Norai
Rocco e Ma To Fu, pela contribui¢do na minha formagao.

A todos os meus professores da graduacao na Universidade Federal do Acre, especial-
mente os professores Ivan Ramos, Sérgio Brazil, Sandro Ricardo, Marcos Aurélio, Lidermir
Arruda, Simone Chalub, Salete Chalub, Altemir Braga, Daiana Viana e José Ronaldo, pelos
ensinamentos e incentivos para ingresso em um curso de mestrado.

Aos funciondrios do Departamento de Matematica da UnB, que de muitas formas me
ajudaram a chegar neste momento.

Aos meus amigos e colegas do MAT-UnB: Angelo Machado, Fabiane Soares, Thafne
Sirqueira, Paul Vilca, Ronaldo Murakami, Thais Marcal, Daniel Abreu, Débora Senise, Vitor
Machado, Pako, Guilherme, Valdemir, Josy, Tharles Araidjo, Mateus Figueiredo, Jonatas
Peralta, Talita Matias, Vitéria Henryla, Emanuelle Ortega, Gabriela Ferreira, Gabriella
Cristina, Alexandre Oliveira, Santiago Benites, Juan Suasnanbar e Eduardo Freire, pelo apoio
e a amizade construida durante o curso.

Aos meus amigos e colegas de graduacgdo: Iglesson Menezes, Henrique Oliveira, Gustavo
Mapeano, Andréia Freitas, Bruno Rodrigues, Wesley Bezerra, Weslley Rodrigues, Francisco
Sampaio, Francisco Nunes e Paula Vitoria, pelos incentivos.

Ao CNPq pelo apoio financeiro durante a elaboracdo deste trabalho, sem o qual ndo seria

possivel a realizacao deste curso de mestrado.



Resumo

Este trabalho fornece uma demonstracdo detalhada de um teorema devido a Yoav Segev,
onde se consideram grupos G nos quais, para todo elemento x € G, existe um dnico elemento
y € G tal que y2 = x. Supondo que G admita um automorfismo involutivo quase regular,
Segev prova que G € soluvel. Este resultado complementa, de certa forma, o teorema de
Shunkov, que afirma que um grupo periédico G admitindo um automorfismo involutivo quase
regular é virtualmente soldvel.

Palavras chave: Automorfismos involutivos quase regulares, grupos unicamente 2-
divisiveis, grupos soluveis.



Abstract

This work provides a detailed proof of a theorem due to Yoav Segev, which considers
groups G where, for every element x € G, there exists a unique element y € G such that
y2 = x. Assuming that G admits an almost regular involutory automorphism, Segev proves
that G is solvable. This result complements, in a certain sense, Shunkov’s theorem saying
that a periodic group G admitting an almost regular involutory automorphism is virtually
solvable.

Keywords: Almost regular involutory automorphisms, uniquely 2-divisible groups,
solvable groups.
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Lista de Simbolos

Co(X)

Co(9)

G=EH

HJG

Centralizador do conjunto X no grupo G;

Centralizador do automorfismo ¢ em G;

Subgrupo derivado de G;

G é isomorfo a H;

H € subgrupo normal em G;
Centro do grupo G;

Uniao disjunta;

Imagem da aplicagdo ¢;

Nucleo da aplicagdo ¢;

Produto dos elementos x; comi=1,2,...

Conjugacdo de g por 4, isto €, h_lgh;
Classe lateral a esquerda de H;;
Imagem de x pela aplicacdo f;

Indica o fim de uma demonstragao.
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Introducao

Seja @ um automorfismo de um grupo G. Dizemos que ¢ é um automorfismo involutivo
sep#Ide (p2 = 1Id, ou seja, se ¢ € um elemento de ordem dois no grupo de automorfismos
de G. Chamamos de centralizador do automorfismo ¢ em G o subgrupo dos pontos fixos de
¢ dado por

Co(p) ={gcG|lo(g) =g}

Se Cg (@) for finito, dizemos que ¢ é um automorfismo quase regular. Quando Cg (@) = {1},
dizemos que ¢ € um automorfismo regular ou livre de pontos fixos.

Ao longo do século passado, alguns matematicos como W. Burnside, B. H. Neumann,
J. G. Thompson, G. Higman e outros perceberam que o subgrupo Cg(¢) tem forte relagdo
com a estrutura do grupo G. Veja, por exemplo, os seguintes teoremas de W. Burnside [1] de
1911:

Teorema. Sejam G um grupo finito e @ um automorfismo de G que possui ordem m. Entdo,

a ordem do centralizador de ¢ em G é congruente a ordem de G médulo m. Em simbolos,
ICo(@)| =G| (mod m).

Teorema. Se G é um grupo finito que admite um automorfismo de ordem 2 livre de pontos

fixos, entdo G é abeliano.

O trabalho de Burnside nesse campo contribuiu para dar inicio a uma abordagem sis-
temdtica que consiste em compreender grupos através do estudo de seus automorfismos e
simetrias. A partir daf, muitos avangos foram possiveis em Teoria de Grupos. Em 1956, B. H.
Neumann [5] provou que, se um grupo finito admite um automorfismo de ordem 3 livre de
pontos fixos, entdo o grupo € nilpotente de classe no mdximo 2. Nesse sentido, um teorema

mais geral é obtido a partir da juncdo dos teoremas de Higman [4] e Thompson [11]:

Teorema. Se G é um grupo finito que admite um automorfismo livre de pontos fixos, cuja
ordem é um primo p, entdo, G é um grupo nilpotente e sua classe de nilpoténcia é limitada

por uma fungdo h(p), que depende apenas de p.



Introdugio 2

Em 1974, V. P. Shunkov [10] provou que em um grupo periodico G, que admite um
automorfismo de ordem 2 com o centralizador finito, todo subgrupo finitamente gerado de G
¢ finito, e mais, G possui um subgrupo solivel de indice finito. Em outras palavras, temos o

seguinte teorema:

Teorema. Se um grupo periodico G possui um automorfismo involutivo quase regular, entdo

G é localmente finito e virtualmente soliivel.

Inspirado pelas técnicas introduzidas por Shunkov no artigo [10], Y. Segev [9] provou o
Teorema A, abaixo, que € o assunto central desta dissertacdo. Antes de enuncid-lo, precisamos
esclarecer o que é um grupo unicamente 2-divisivel: denominamos dessa forma os grupos G

nos quais para cada x € G existe um tnico elemento y € G tal que ¥ =x.

Teorema A. Seja U um grupo unicamente 2-divisivel. Se U admite um automorfismo

involutivo quase regular, entdo U é soliivel.

Observe que tanto este teorema como aquele provado por Shunkov também ressaltam
uma relagdo entre o centralizador do automorfismo do grupo e a estrutura desse grupo e, neste
caso, a propriedade em questdo € a solubilidade. Em seu artigo, Segev escreveu que a sua
maior motivacao para este teorema vem de questdes sobre os grupos radicais de conjuntos
especiais de Moufang que, segundo ele, tendem a ser grupos unicamente 2-divisiveis; este
assunto nao serd abordado neste trabalho, porém pode ser encontrado em [8].

Nesta dissertag@o, objetivamos apresentar a prova do Teorema A, obtido em 2011 por
Segev em [9]. Faremos isto buscando usar apenas conceitos elementares da Teoria de Grupos.

O texto estd organizado da seguinte maneira: no primeiro capitulo, intitulado "No¢des
Preliminares" discorremos sobre alguns conceitos fundamentais da Teoria de Grupos, como
automorfismos, acdes de grupos, produto semidireto e grupos soluveis. Estes assuntos sdo
necessarios para atingir a compreensao dos resultados e demonstragdes que estdo ao longo
do texto. O segundo capitulo trata dos grupos unicamente 2-divisiveis; vamos defini-los e
apresentar algumas de suas propriedades, como a sua caracteriza¢dao no contexto de grupos
finitos e quando essa propriedade € herdada por subgrupos. O terceiro e tltimo capitulo, que
foi chamado de "A prova do Teorema A" enuncia e demonstra todos os resultados auxiliares

e fundamentais para a prova do teorema de Segev.



Capitulo 1

Nocoes Preliminares

Vamos assumir que o leitor possui dominio sobre os conceitos mais basicos da Teoria de
Grupos. Sendo assim, no que se segue, iremos percorrer um caminho que objetiva somente
alcancar a compreensao dos resultados aos quais se dedica esta dissertagdo. As principais
referéncias bibliogréficas utilizadas para a construcao deste capitulo foram os livros de A.
Garcia e Y. Lequain [3] e de D. J. Robinson [7].

1.1 Grupos e Subgrupos

Nesta secdao abordaremos alguns conceitos importantes, tais como grupos quocientes,
subgrupos gerados por subconjuntos, grupos finitamente gerados, centralizadores, subgrupos
derivados, etc. Em seguida, também trataremos a respeito de alguns teoremas que sdao
fundamentais para os resultados dos préximos capitulos.

Comecamos definindo grupo quociente. Considere G um grupo e H um subgrupo fixado
de G. Podemos definir a seguinte relacao de equivaléncia sobre G: dados x,y € G, y ~p x
se, € somente se, y = xh para algum h € H. A classe de equivaléncia que contém x é o

subconjunto de G denotado por xH e definido por
xH ={xh| h€ H}.

Este serd chamado de classe lateral a esquerda de H em G. Analogamente, podemos definir
a classe lateral a direita de H em G. Note que dizer que x € H € equivalente a dizer que
xH = H. Pelas propriedades de relacdes de equivaléncia, para x,y € G vale que:

(1) se xH # yH, entao xH NyH =

(2) xH = yH se, e somente se, x_ly € H;
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3 JxH =0

xeG

Chamamos de indice de H em G, e denotamos por |G : H|, o nimero de classes laterais a

esquerda (ou a direita) de H em G.
Se tomamos um representante para cada classe lateral a esquerda de H em G, pelo
Axioma da Escolha, obtemos um conjunto 7" formado por esses representantes. Podemos

entdo escrever G como a seguinte unido disjunta:

G= U[eTtH .

Assim, todos os elementos de G poderdo ser escritos de forma tinica como o produto t4, com
t € T e h € H. Chamaremos o conjunto 7" de transversal a esquerda de H em G. De maneira
andloga, definimos transversal a direita. A cardinalidade de T € igual ao indice de H em G.

Vejamos agora alguns resultados sobre indices.

Teorema 1.1.1. Sejam G um grupo, H um subgrupo de G e K um subgrupo de H. Sejam
T um transversal a esquerda de H em G e U um transversal a esquerda de K em H,
entdo TU = {tu |t € T,u € U} é um transversal a esquerda de K em G. Além disso,
|G:K|=|G:H|-|H:K|

Demonstragdo. Temos que G = UteTtH e H= UueUuK . Substituindo H obtemos que

G = UleT’ueUtuK . Agora, resta mostrar que todas as classes laterais tuK sao distintas.
Suponha que tju; K = thupK com t,t € T e uj,up € U. Entdo, tju; € uyK e podemos
escrever tju; = trupk, com k € K, assim, temos tz_ltl = uzkul_l € H. Logo, 1H =t H, como
T é um transversal, segue que t; = t,. Portanto, u1 K = upK, donde u; = up pois U é um
transversal. Concluimos entdo que TU € um transversal a esquerda de H em G. Veja ainda
que, como a cardinalidade de TU € igual ao produto das cardinalidades de T e U, temos que
|G:K|=|G:H|-|H :K|. O

Teorema 1.1.2. (Poincaré) A intersecdo de um conjunto finito de subgrupos, cada um dos

quais com indice finito, também tem indice finito.

n
Demonstragdo. Sejam G um grupo e Hj,H,,...,H, subgrupos de G. Defina H = ﬂHi.

i=1
Basta demonstrar que |G : H| < |G : Hy|-|G: Hy|-...- |G : H,

Para cada x € G associamos a n-tipla de classes laterais a esquerda (xHy,xHy, ...,xH,).

Veja que para x,y € G temos (xH},xH>, ...,xH,) = (yHy,yH,,...,yH,) se, e somente se, xH; =
yH;, parai=1,2,...,n, e isso equivale axfly € H; parai=1,2,...,n, de onde obtemos que
x~ !y e H. Sendo assim, temos que xH = yH. Portanto, a aplicagdo xH — (xH\,xH,,...,xH,)
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¢ injetiva, e por isso, vale a desigualdade acima. Entdo, como |G : H;| é finito para i =

1,2,...,n, segue que |G : H| é finito. O

O conjunto das classe laterais a esquerda G/ ~y= {xH | x € G} possui uma operagdo

induzida pela operacdo de G, dada por
(xH,yH) — xyH.

Tal operagao estd bem definida quando H € um subgrupo normal em G, pois independe dos
representantes das classes. Isto, nos leva a seguinte

Defini¢ao 1.1.3. Sejam G um grupo e H um subgrupo normal em G. O grupo de suas classes
laterais, com a operac¢do induzida de G, é chamado de grupo quociente de G por H. Ele sera
denotado por G/H.

Agora, vamos definir alguns subgrupos importantes.

Definicao 1.1.4. Seja X subconjunto ndo vazio de um grupo G. Definimos o subgrupo gerado
por X como a interse¢do de todos os subgrupos de G que contém X, e o denotamos por
(X). Também podemos entendé-lo como o menor subgrupo de G que contém X, isto é, se
X CS<G,entio (X) CS.

Para descrever os elementos de um subgrupo gerado por um subconjunto temos a seguinte

Proposicio 1.1.5. Se X é um subconjunto ndo vazio de um grupo G, entdo (X) € o conjunto
de todos os elementos da forma )c(f”)cg‘2 - -xg", onde o; = +1,x; € X ek > 0 ( quando k =0,

este produto é interpretado como 1).

Dizemos que G € um grupo finitamente gerado se G pode ser gerado por um subconjunto
com um numero finito de elementos.

Definicao 1.1.6. Sejam G um grupo e X um subconjunto ndo vazio de G. Chamamos de
centralizador de X em G, e denotamos por C;(X), o conjunto de todos os elementos g € G
tais que gx = xg, para todo elemento x € X. Quando X = G o centralizador Cg(X) serd

chamado de centro de G e denotado por Z(G).

Naturalmente, C(X) é um subgrupo de G, pois 1g € C5(X) e para quaisquer a,b €
Cs(X) temos que ab™ ' € Cs(X).
Outra observacao interessante € que, se H € um subgrupo finitamente gerado de G, isto &,

se H=1{(g1,82,.-.,8n) onde cada g; € Gcomi=1,2,...,n, entdo

ColH) = () Colsg).
i=1
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Para verificar isto, perceba que Cg(H) esta contido em ﬂ Cc(gi), pois dado x € Cg(H)

i=1
n

temos que x centraliza qualquer elemento de H, inclusive seus geradores, entdo x € ﬂ Cs(gi)-
i=1

n
Por outro lado, se x € ﬂ Cs(gi), temos que x centraliza cada g; e, consequentemente, x

i=1
centraliza qualquer produto entre g1,g2,...,8,; Ou seja, x centraliza os elementos de H.

Logo, x € Cg(H) e, portanto, a inclusdo contréria é vélida. Dali, verifica-se a igualdade.
Antes de expor o proximo subgrupo, precisamos definir o comutador de dois elementos

de um grupo.

Definicao 1.1.7. Sejam x e y elementos de um grupo G. O comutador de x e y, nesta ordem,

é o elemento de G dado por x~ 'y~ lxy e denotado por [x,y].

Proposicao 1.1.8. Sejam x,y e z elementos quaisquer em G. Os comutadores desses elemen-

tos possuem as seguintes propriedades:
(1) [x,y] = 1 se, e somente se, xy = yx;
(2) ey =Dy
(3) eyl =[xy
(4) [x,yz] = [x,2][x, y]%
(5) [xy,z] =[x, 2] [y, 2l
(6) bry 1= (b )7
(7) ) = (y* )7

Demonstracdo. (1) A equacio [x,y] = 1 é equivalente a x 'y~

1

1

1xy =1, 0 que acontece se,

€ somente se, xy = yx;

2)

1 1

eyl =xy Ty = 07 ) T = a7
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(3)
ey = (7 ay)?
=z x 1yilxyz
=z N zz Dy ez Dx(zz Yz
= ' )y ) ) (2 y2)
= (z ) Nz lyz) e e yz
= ()19 I = s
4)
e, y2) = x " (y2) vz
g
=x 1z N azz Iy g
—x g ! (x_ly_lxy)z
= XﬁlZile(xilyilxy)Z = [x,Z] [x7y]z;
(5)
by, 2l = () 'z o)z
= y_lx_lz_lxyz
=y e x(y e vz
=y ' )y e e
= (v x)y ey = [ 2P 2l
(6)
by =2y ™!
=yy x !
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(7)

Agora, podemos fazer a

Definicao 1.1.9. Sejam X e Y subconjuntos ndo vazios de um grupo G. Definimos

X, Y]={([x,y]| xeXey€eY).

Quando X =Y = G, chamamos |G, G| de subgrupo derivado ou subgrupo comutador de G e
o denotamos por G'.

Agora, veremos alguns resultados importantes sobre grupos.
Proposicio 1.1.10. Seja G um grupo. O subgrupo derivado G' é normal em G.
Demonstracdo. Considere g € G e o = [x1,y1][x2,y3]...[xn,yn] € G. Tendo em vista a

propriedade (3) da Proposicao 1.1.8, obtemos que

af = ([x17y1][x2a)’3] e [xmyn])g
= [x1,y1)8[x2,y3)% . . - [xn, yn)®
= [}, 5105, 051 xS, vl € G

Sendo assim, qualquer que seja o € G, temos que o8 € G, para todo g € G. Logo, G’ é

normal em G. ]

Proposicao 1.1.11. Seja N um subgrupo normal de um grupo G. Entdo o grupo quociente

G/N é abeliano se, e somente se, G < N. Em particular, G/G' é abeliano.

Demonstracdo. Sejam xN e yN elementos de G/N. Suponha que G/N ¢é abeliano. Entdo,
temos
xyN = xNyN = yNxN = yxN.

E isto implica que x 'y~ lxyN = N, isto &, x 'y~ !xy = [x,y] € N. Da arbitrariedade de x e y
segue que G’ < N.
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Agora, por outro lado, suponha que G’ < N. Entio,
xNyN = xyN = yx|x,y]N = yxN = yNxN.

Logo, G/N é abeliano. O

Por fim, enunciamos um resultado atribuido a Issai Schur, que relaciona o centro de um

grupo com o subgrupo derivado. Sua demonstracio pode ser encontrada em [7].

Teorema 1.1.12. (Schur). Seja G um grupo. Se |G : Z(G)| é finito, entdo o subgrupo derivado
G’ é finito.

1.2 Automorfismos

A partir desta se¢c@o, usaremos a notacdo exponencial para aplicacdes. Isto significa que,
se temos uma aplicacdo f: X — Y e x € X, denotaremos por xa imagem x pela aplicacdo f.

Definicao 1.2.1. Dados dois grupos (G,-) e (H,*) um homomorfismo ¢ : G — H é uma
aplicacdo que satisfaz
(a-b)? =a?«b?,

para quaisquer a,b € G. Além disso, chamamos de niicleo e imagem de @, respectivamente,

0s conjuntos
kerop={g€G|g? =1y}

Img = {¢? | g € G}.
Decorre desta definicao a

Proposicao 1.2.2. Seja ¢: G — H um homomorfismo de grupos. Para quaisquer n € 7. e
g € G temos que

(&M% = (g%)".

Quando n =0 e n = —1, vemos que ¢ preserva elemento neutro e inverso:

(16)°=1u e (g )P =(g")"".

Dado um homomorfismo de grupos ¢ : G — H, pode-se verificar que Im¢ € subgrupo de
H, que ker ¢ € subgrupo de G e mais, ker ¢ € normal em G. Veja: se x € G e g € ker ¢ temos
que g* € kerg, pois (g9) = (x 'g)? = (x )?(8)?(x)? = (%) "1 (x)® = 1.
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Um homomorfismo injetivo é chamado de monomorfismo e um homomorfismo sobre-
jetivo € chamado de epimorfismo. Quando o homomorfismo € simultaneamente injetivo e
sobrejetivo, ou seja, bijetivo, o chamamos de isomorfismo. O resultado a seguir estabelece
critérios para verificarmos essas propriedades.

Proposicao 1.2.3. Seja ¢: G — H um homomorfismo.
(1) @ é um monomorfismo se, e somente se, ker@ = {15},
(2) @ é um epimorfismo se, e somente se, Im@p = H;
(3) @ é um isomorfismo se, e somente se, ker@ = {1} e Im¢p = H.

Demonstragdo. (1) Se ¢ é um monomorfismo e x € ker @, temos que x? = 15 = (15)?, mas
como ¢ € injetiva obtemos x = 1. Entdo, ker¢p = {15}.
Por outro lado, se ker¢ = {15} e x,y € G temos que x? = y?, donde x?(y?) ! =1y e

ainda (xy = 1y. Sendo assim, xy -~ € ker¢. Logo, xy
inda (xy~')? = 1. Sendo assi ~! ekerg. Logo, xy ™!

= ly e, portanto, x = y. Entdo,
concluimos que @ € injetiva, isto €, um monomorfismo.
(2) Segue diretamente da defini¢do de aplicac@o sobrejetiva.

(3) Segue de dos itens anteriores. ]

Os teoremas a seguir estabelecem relacdes interessantes entre grupos quocientes € homo-

morfismos.
Teorema 1.2.4. (Primeiro Teorema do Isomorfismo)

(1) Se a: G— H é um homomorfismo de grupos, a aplica¢do

0 : — Ima

ker o
x(keror) — x*

é um isomorfismo.

(2) Se N é um subgrupo normal de um grupo G, a aplicagdo

€ um epimorfismo, com ker ¢ = N.
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Demonstracdo. (1) Sabemos que ker o é normal em G. Note que se xk € x(ker @) temos que
(xk)* = x%k* = x*1 = x%, isto é, a imagem de xk ndo depende de k, entdo a aplica¢do 0
estd bem definida. Claramente 6 € um epimorfismo, pois Im6@ = Imo. Agora, observe que
x(kera) € ker 0 se, e somente se, x € ker @, ou seja, ker§ = {kera} = {15/kerq }- LOgO, 0
€ um isomorfismo.

(2) A aplicagdo ¢ é um isomorfismo, pois (xy)? = xyN = xNyN = x?y? para quaisquer
x,y € G. E como Im¢ = G/N, concluimos que ¢ é um epimorfismo. [

Teorema 1.2.5. (Segundo Teorema do Isomorfismo) Sejam G um grupo, N e H subgrupos de
G, com N normal em G. Entdo, NNH <H e

H NH

P
HNN N
x(HNN) — xN

é um isomorfismo.

Demonstragdo. A aplicagdo a : H — NH /N, que x — xN, é claramente um epimorfismo.
Observe quekera ={x e H [x* =N} ={xeH|xN=N}={x€eH|xeN}=HNNe,
por isso, HNN < H. Agora, usando o Primeiro Teorema do Isomorfismo item (/), temos

que o epimorfismo & induz o seguinte isomorfismo:

H NH
0: — -~
HNN N

x(HNN) > x* = xN. O

Teorema 1.2.6. (Terceiro Teorema do Isomorfismo) Sejam M e N subgrupos normais de um

G/N
grupo G e seja N < M. Entdo, M/N<G/N e ((MéN)) é isomorfo a G/M.

Demonstracdo. Defina a aplicacdo a : G/N — G/M, que xN — xM. Observe que Ima =
G/M, entdo o é um epimorfismo. Agora, note que (xN)* = M se, e somente se, x € M.
Sendo assim, kerao = M/N e, consequentemente, M /N <G /N. Por fim, segue do item (/)

do Primeiro Teorema do Isomorfismo que o epimorfismo & induz o isomorfismo
G/N G

_ % JR—

M/N "M

xN(M/N) — (xN)* = xM.

0 :
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Para finalizar esta secdo, apresentaremos a seguir o conceito de automorfismos de grupos

e algumas de suas propriedades que sdo pecas centrais desta dissertacao.

Definicdo 1.2.7. Seja G um grupo. Um automorfismo de G € um isomorfismo ¢ : G — G. O

conjunto de todos os automorfismos de G é denotado por Aut(G) .

Observe que Aut(G) é um grupo com a operagdo de composi¢io de aplicagdes.

Um automorfismo @ € Aut(G) é dito involutivo se ¢ # Id e ¢* = Id, isto &, se ¢ é uma
involugdo no grupo Aut(G). A saber, em um grupo qualquer, um elemento diferente da
identidade que possui ordem 2 é chamado de involucdo.

Podemos pensar em um automorfismo de um grupo G como uma permutacdo dos elemen-
tos G que mantém a estrutura de grupo inalterada. Alguns automorfismos fixam elementos
do grupo. Chamamos estes elementos de pontos fixos do automorfismo, e denotamos por
Ci(@) o conjunto de pontos fixos de um automorfismo ¢. Em simbolos,

Co(p)={gcG|g? =g}

Quando Cg(¢) é finito, dizemos que ¢ é um automorfismo quase regular. E quando
Cs(p) = {1}, dizemos que ¢ é um automorfismo livre de pontos fixos.

Note que C(¢) € um subgrupo de G, pois 1 € fixado por ¢, o produto de dois elementos
fixados por @ € fixado por ¢ e se um elemento € fixado por @, o seu inverso também é.

Como exemplo do que acabamos de definir, consideremos o grupo (R\ {0},-) e a
aplicacdo @ : R\ {0} — R\ {0} definida por x? = x~! para todo x € R\ {0}. Observe que

¢ € um automorfismo involutivo quase regular, uma vez que satisfaz o seguinte:

(1) ¢ € Aut(R\ {0});
(2) ¢ #£Ide ¢* =1d;

(3) o centralizador de ¢, dado por Cg\ (o (@) = {—1,1}, € finito.

1.3 Acoes de Grupos

Grupos podem "agir" sobre um conjunto de elementos. Por exemplo, os elementos do
grupo simétrico agem sobre os elementos de um conjunto qualquer, permutando-os; os
elementos do grupo diedral agem sobre os vértices de um poligono regular, refletindo-o e
rotacionando-o. Grupos abstratos também podem agir sobre um conjunto, como veremos a

seguir.



1.3 Acdes de Grupos 13

Defini¢ao 1.3.1. Sejam G um grupo e X um conjunto ndo vazio. Dizemos que G age sobre
X quando existe uma aplica¢do 6 : G x X — X definida por (g,x)° = x%, que parax € X e
g,h € G satisfaz o seguinte:

(D) xl=x;
(2) x8" = (x8)".

Se um grupo G age sobre um conjunto X, a aplica¢do ¢, que associa cada x € X a
x% € X é uma bije¢do, que induz o homomorfismo ¢ : G — Sym(X) que associa cada g € G
a permutagdo @, de X. Por outro lado, se temos um homomorfismo ¢ de G em Sym(X),
entdo x¢* := x¢ define uma acao de G sobre X. Sendo assim, podemos dizer que uma agao
do grupo G sobre o conjunto X determina e é determinada por um homomorfismo de G em
Sym(X).

Sabemos que se X é um grupo, Aut(X) < Sym(X). Quando Im(¢) C Aut(X) dizemos
que G age sobre X por automorfismos.

Usando a defini¢do de acdo de um grupo G sobre um conjunto X, podemos definir, e

denotar por Oy, a drbita de um elemento x € X como sendo o conjunto

O, ={x*|ge G} CX.

Observe que duas 6rbitas O, e Oy, com x,y € X, sdo disjuntas ou coincidem: supondo
que OxN Oy, # @, tome s € O, N Oy. Sabemos que s = x° = y" para g,h € G. Dai, vem que
h -1
x=(")*
pode ser escrito como elemento de Oy. Logo, O, C Oy. Analogamente, podemos concluir

-1 - .
=y eisto significa que x € Oy. Sendo assim, qualquer elemento em Oy

que vale a inclusdo contrdria e, consequentemente, a igualdade. Portanto, se duas drbitas nao
sdo disjuntas, elas coincidem. Além disso, o conjunto X pode ser dado como a unido das
Orbitas de seus elementos, ja que x € Oy. Entdo, as 6rbitas dos elementos de X formam uma
particdo de X.

Definimos como estabilizador do elemento x € X o subconjunto dos elementos de G que

fixam x. Em simbolos,

G, ={geG|x*=x}.

Observe que G, € um subgrupo de G, pois produtos e inversos de elementos de G,
também fixam x.

Dizemos que G age transitivamente sobre X quando, para quaisquer x,y € X, existe g € G
tal que x* = y ou, equivalentemente, quando O, = X para algum x € X.
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Agora, vamos deduzir a equagdo das orbitas. Considere que G € um grupo finito agindo
sobre um conjunto finito X. Note que quando qualquer elemento da classe lateral G,g age
em x obtemos o elemento x* da 6rbita de x. Isto motiva uma funcéo o definida por G,g — x%.
Tal fungdo € injetiva. Veja: se G,g e Gh sdo duas classes laterais do estabilizador de x
tais que (G,g)* = (Gyh)%, temos que x5 = +"; de onde concluimos que X = x, isto é,
gh_1 € G, entdo podemos escrever que Gxgh_1 = G, e dai obtemos que G,g = G h. Como
o dominio e o contradominio de & sdo finitos, a funcdo €, na realidade, uma bijecdo. Sendo
assim, podemos afirmar que o conjunto das classes laterais a direita de G, em G tem a mesma
cardinalidade que Oy, ou seja, |G : Gx| = |Oy|. Como sabemos X € a unido disjunta das

orbitas da agdo de G sobre X, entdo se Oy, ,Oy,, ..., Oy, sdo suas Orbitas, temos que

t t
‘X‘ = ’Oxl UOX2U"'UOxn| = Z ‘Oxi| = Z ’G : Gxi‘-
i=1 i=1
Esta equacgdo é chamada de equacdo das orbitas. Vamos usé-la para o que pretendemos a
seguir.
A partir de agora, aproveitaremos este contexto de acdes de grupos para abordar um lema
atribuido a Cauchy que sera essencial para o estudo dos grupos finitos que sao unicamente

2-divisiveis.

Lema 1.3.2. (Cauchy) Se um primo p divide a ordem de um grupo finito, entdo esse grupo

contém um elemento de ordem p.

Demonstragdo. Seja G um grupo finito e seja G¥ = G x --- x G (p vezes). Considere o

conjunto

X:{(g17g27"'7gp) € Gp|g1g2...gp: 1}

Para encontrar |X| podemos usar o seguinte raciocinio: seja (g1,£2,...,8p) uma p-upla
qualquer em X. Se g;...8,-18p = 1, devemos ter que g, = (g1 .. .gp,l)_l. Sendo assim,
na contagem dos elementos de X temos que considerar um total de |G| possibilidades de
elementos de G para cada entrada de uma p-upla, exceto para a dltima entrada que possui um
elemento fixo associado a cada uma das entradas anteriores. Logo, |X| = |G|P~!. Observe
que nio houve perda de generalidade, pois 0 mesmo raciocinio pode ser feito com qualquer
entrada de uma p-upla.

Considere o grupo C = C, = (o), onde ¢ é uma aplicacdo que leva (g1,82,...,8p) em
(£2,---,8p,&1)- Podemos definir uma agdo de C sobre X através da posigdo X = (x%)%-1,

x € X. Note que esta ¢ uma agdo bem definida, pois se x = (g1,£2,...,8p) € X entdo
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xa = (g27'~-7gp7gl) GX,Jé que

Agora, observe que o elemento o € C fixa o elemento (g1,82,...,8p—1,8p) € X se, e
somente se, g1 = g2 = --- = §p—1 = §&p = &, € Neste caso temos que g = 1, isto &, a ordem
de g € p. Sendo assim, para concluir a demonstracdo basta verificar que existe pelo menos
um elemento x € X, diferente da identidade, tal que x° = x. Entdo, considere o subconjunto
Y ={(g1,82,-.-,8p) €X | g1 =g =--- = gp}. Queremos mostrar que |Y| > 1.

Observe que a cardinalidade da 6rbita de um elemento que ndo € fixado pela a aplicacdo &
¢ |C: Cy| = p, ja que p é primo. Considerando que k é o nimero de érbitas com p elementos,
G|P~!' = |Y|+kp e como p divide
|G| segue que p divide |G|P~!, e portanto, p divide |Y |+ kp, donde concluimos que p divide
|Y|. Logo,
existe um elemento (g1,82,...,8p) €X,comg =g =--=g,=g# l,talqueg’ =1. O

pela equacdo das 6Orbitas temos que |X | = |Y|+ kp, dai

Y| > 1 e aidentidade de G” ndo € o unico elemento de Y. Consequentemente,

1.4 Produto Semidireto

Nesta secao trataremos sobre produtos semidiretos. Esta € uma ferramenta importante
para o estudo de um grupo a partir de seus automorfismos. Comegaremos com a seguinte
definicdo.

Definicao 1.4.1. Sejam H e N subgrupos de um grupo G, com N normal em G. Dizemos
que G é um produto semidireto (interno) de N por H, quando G=HN e HNN = {1}. Em
simbolos, G =N x H.

Cada elemento g € G pode ser escrito de maneira tinica na forma g = hn,onde h € H e
n € N. De fato, se g € o produto hn e se também pode ser escrito como o produto 4y, com
n,n; € N e h,hy € H, teremos hn = hin; e, consequentemente, hl_lh —mn 'eNNH = {1}.
Logo, hl_lh —mn '=1e segue que iy = h e n; = n. Portanto, temos a unicidade anunciada.

A operacdo de G, funciona da seguinte forma: dados os elementos g = hn e g; = hin
em G temos que

hnhiny = hiynn™'hy 'nhy = hhyinng € G,

pois hhy eHenh‘nl €N.
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Observe que, a conjugacdo em N por h € H produz, para cada i, um automorfismo o, de

N, dado por n% = n" = h~'nh. Sendo assim, podemos escrever
hnhin| = hhlna”lnl.

A aplicag¢do h — a; é um homomorfismo o : H — Aut(N). Veja: dados h,h) € H e
neN,

(hhl)a :nOChhl — hl—lh—lnhhl _ (hl—lnh)ahl — (nOCh)OChl — nOChOChl — hOCh(IZ

E isto determina uma a¢do de H sobre N por automorfismos.

Com isto em vista, vamos definir agora uma maneira de construir um novo grupo a partir
de dois grupos dados e uma acao por automorfismos.

Sejam H e N grupos, ndo necessariamente subgrupos de um grupo dado. Suponha que
H aja sobre N por automorfismos, isto €, existe um homomorfismo ¢ : H — Aut(N) dado
por n* = n". O conjunto G = {(h,n) | h € H,n € N} forma um grupo quando munido da

seguinte operagdo : para (h,n) e (h,n;) em G,
(h,n) % (hy,n1) = (hhy,n" ) = (hhy, 1M ny) € G

A operagdo x estd bem definida. A associatividade vale, pois para quaisquer (h,n),

(hi,n1) e (hp,ny) em G, temos

((hyn) = (hy,n1))* (ha,np) = (hhl,nhlnl)(hz,nz)
= ((hhy)hy, ("™ ny)"2n5)
= (h(hiha),n""2n"2ny)
= (h,n)(hih,n\*ny)
= (h,n)* ((h1,n1) * (ha,m2)).

O elemento neutro de G é o par ordenado (1, 1y) e o elemento inverso do par (h,n) é
-1
(R ().

Definicao 1.4.2. Sejam H e N grupos e suponha que H aja sobre N com a¢ao ¢. O grupo
G definido acima é chamado de produto semidireto (externo) de N por H com ac¢do o, e
denotado por G =N x5 H.

Sejam H* := {(h,1y) |h€ H} e N* := {(1g,n) | n € N}. Ao considerarmos a aplicagdo
fi:H — H* que h+— (h, ly), podemos perceber que H* é um subgrupo de G isomorfo a H,
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e ao considerarmos f» : N — N* que n +— (1g,n), podemos perceber que N* é um subgrupo
normal de G isomorfo a N. Para verificar que N* é normal em G, basta conjugar (15,n) € N*

por um elemento arbitrdrio (h,n1) € G e constatar que o conjugado estd em N™:

Além disso, observe que H*NK* = {(1y,1x)} e que G=H*N*, pois (h,1x)(1g,n) =
(h,n). Estes resultados nos permitem identificar G como o produto semidireto interno
de N* por H*. Para simplificar as notagdes dos elementos de G usaremos justaposi¢io e
escreveremos hn no lugar do par ordenado (h,n). Assim, o produto (h,n) * (hy,n;) serd
escrito como hnhin;.

Uma observagao importante é que quando consideramos um grupo H € o homomorfismo
identidade Z : Aut(H) — Aut(H), o produto semidireto G = Aut(H) x7 H é chamado de
produto holomorfo de H. No ultimo capitulo, estudaremos um subgrupo de um produto

holomorfo.

1.5 Grupos Soluveis

Nesta secdo definiremos grupos soliveis e apresentaremos alguns resultados sobre solu-
bilidade que contribuirdo para a demonstragdo do Teorema A.

Definicao 1.5.1. Um grupo G ¢€ dito soliivel se existe uma cadeia de subgrupos
{1}'=Gy<G1 4G, <--- 4G, =G

onde cada termo G; é normal em G, e cada fator G, /G; é abeliano. Uma cadeia com tal
descricdo é chamada de cadeia abeliana ou série abeliana.

Decorre naturalmente desta definicdo que todo grupo abeliano € soluvel.
Proposicao 1.5.2. Seja G um grupo e N,H < G, com N normal em G. Vale que:

(1) Se G ¢ soliivel, entdo H ¢ soliivel;
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(2) Se G é soliivel, entdo G/N ¢é soliivel.
(3) Se N e G/N sdo soliveis, entdo G é solivel;

(4) Se N e H sdo soliiveis, entdo NH é soliivel.

Demonstragdo. (1) Como G € soluvel, considere a seguinte cadeia de subgrupos de G:
{1}=Gy<G1 <G, <--- 4G, =G,

onde G; < Giy1 e Giy1/G; é abeliano.

Seja K; .= G;NH, comi=0,1,...,n, uma cadeia finita de subgrupos de H. Primeiro,
vamos mostrar que K; < K;1: sejam g € K;1 € k € K, temos que g kg eH, pois g,k € H.
Como G; < Gj11, k€ Gje g € Gjyp segue que g_]kg € G;. Portanto, g_lkg €K;.

Agora vamos mostrar que K;1/K; é abeliano. Observe que K;11/K; = Ki+1/(Ki+1 N Gi).
Pelo segundo Teorema do Isomorfismo 1.2.5, este dltimo quociente é isomorfo a K;11G;/G;,
que é subgrupo de G;;1/G; e, portanto, abeliano. Isso prova que H é solivel.

(2) Vamos mostrar que G/N possui uma cadeia abeliana. Como G ¢é soldvel, considere a
mesma cadeia de subgrupos de G dada no item anterior. Seja {NG;/N}_, uma cadeia de
subgrupos de G/N. Pelo Terceiro Teorema do Isomorfismo

NG 1/N  NGiy
NGi/N ~ NG:

Sendo assim, temos que NG; < NG, 1. Agora, observe que

Git1
NGiy1 _ (NGit1)Gi _ (NGi)Giy1 o, Git1 Gi
NG; NG; NG; _NGiﬂNGi_NGiﬂNGi.
G;

Como, por hipétese, % ¢ abeliano, o tltimo quociente da equagdo acima também €. Logo,
os fatores da cadeia {N (l}i /N} sdo abelianos, e portanto, G/N é soluivel.

(3) Suponhamos que N e G/N sido soliiveis. Vamos mostrar que existe uma cadeia finita
de subgrupos de G que satisfaz as propriedades da definicdo. Para N e G/N considere as

cadeias de subgrupos {N;}i_ e {Hi/N}i_, respectivamente. Como N e G/N sdo soluiveis,
Hii1/N

temos que N; < N1 e que N; /N € abeliano, também, H;/N < H; 1 /N e o fator /N
i

abeliano. Pelo Terceiro Teorema do Isomorfismo,

Hip1 /N  Hiy
H;/N  H; '
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Logo, H;1/H; é abeliano. Agora, note que Hy = N. Entdo, temos a cadeia
{1}=No <IN, <---<IN,=N=Hy<H, <...H;=G

satisfazendo as propriedades. Portanto, G € soluvel.
(4) Sem nenhuma perda de generalidade, podemos considerar G = NH. Note que, pelo

Segundo Teorema do Isomorfismo,

G HN_, H

N N NNH
Usando o item (2) concluimos que este ultimo grupo quociente é solivel. Logo, G/N é
solivel. Por fim, usando o item (3), obtemos que G = NH ¢ solivel. O]

Um famoso e importante resultado, obtido por W. Feit e J. G. Thompson em [2], € o

seguinte
Teorema 1.5.3. Todos os grupos finitos de ordem impar sdo soliiveis.

Este teorema tem fundamental importancia na demonstra¢ao do Teorema A.

Antes do préximo resultado, vamos definir o que chamamos de grupo periddico ou grupo
de torcao. Para tanto, relembramos a defini¢cdo de ordem de um elemento: dado um grupo G
e g € G, a ordem do elemento g é o menor inteiro positivo n tal que g”" = 1. Se tal inteiro ndo

existir, dizemos que a ordem do elemento g € infinita.

Definicao 1.5.4. Seja G um grupo. Quando todos os elementos de G tém ordem finita,

dizemos que G € um grupo periodico.

Ademais, outros conceitos que precisaremos sdo os de grupo virtualmente e localmente
solivel: dizemos que um grupo G ¢é virtualmente soliivel quando G possui um subgrupo
de indice finito que € soluvel. E dizemos que G € localmente soliivel quando todos os seus
subgrupos finitamente gerados sdo soliveis. De modo geral usamos essa terminologia para
qualquer propriedade de um grupo, por exemplo, finitude; como veremos a seguir. Antes, é
necessario comentar que, dado um elemento de um grupo, o chamamos de involucdo quase
regular quando esse elemento possui ordem dois e seu centralizador € finito.

Em 1974, V. P. Shunkov provou o

Teorema 1.5.5. Se um grupo G é periodico e possui uma involugdo quase regular, entdo G é

localmente finito e virtualmente soliivel.

A demonstragdo deste teorema se encontra em [10]. Como sua consequéncia, temos o
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Corolario 1.5.6. Se um grupo periodico G possui um automorfismo involutivo quase regular,

entdo G é localmente finito e virtualmente soliivel.

Demonstragdo. Seja G um grupo periddico que possui um automorfismo & que € involutivo
e quase regular. Dentro do produto holomorfo de G tome o subgrupo L := (o) X7 G. Observe
que L é periddico e possui a involugdo quase regular o, entdo ao aplicar o Teorema 1.5.5 de
Shunkov obtemos que L é localmente finito e virtualmente soltvel.

Como L é localmente finito, todos os subgrupos finitamente gerados de L sdo finitos.
Sendo assim, os subgrupos finitamente gerados da cépia de G em L também sdo. Logo,
podemos afirmar que G € localmente finito.

Agora vamos mostrar que G € virtualmente solivel. Como L € virtualmente soltivel,
existe K < L de indice finito e solivel. Sendo G normal em L podemos tomar o subgrupo

GK e, usando o Teorema 1.1.1, escrever
|GK : GNK|=|GK : G||G: GNK|=|GK : K||K : GNK]|.

Ademais, sabemos, pelo Segundo Teorema do Isomorfismo, que |GK : G| = |[K : GNK]|.
Entdo, segue que |G : GNK| = |GK : K| < 0. Além disso, GNK ¢é solivel, pois K € solivel.
Portanto, G € virtualmente soluvel. O

Agora, vamos introduzir um conceito necessario para a demonstracdo da préxima pro-

posi¢do. Sejam G um grupo e H um subgrupo de G, defina Hg = ﬂ ¢ 'Hg. Este é um
geiG
subgrupo normal de G que esta contido em H. Observe que H € normal em G se, € somente

se, H = Hg. Vamos chamar Hg de niicleo normal de H em G.

Proposicao 1.5.7. Se G é um grupo localmente soliivel e virtualmente soliivel, entdo G é

solivel.

Demonstragdo. Como G € virtualmente solivel, existe H < G de indice finito que € soluvel.
Tome o nticleo normal Hg. Sabemos que Hg € soldvel, pois € subgrupo de H, e também que
|G : Hg| é finito, considere-o igual a n. Agora, seja T = {11,12,...,t,} C G um transversal de

Hg em G. Assim, temos que

G= tngUtzHGU...OthG
= <l‘1,t2,...,l‘n,H(;>

= (t1,t2,...,tn)Hg.

Ja que G é localmente solivel, o subgrupo (t1,f,...,1,) € solivel. Portanto, usando a

Proposi¢do 1.5.2 item (2), concluimos que G € solivel. [



Capitulo 2

Grupos Unicamente 2-divisiveis

2.1 Caracterizacao e Propriedades

Neste capitulo estudaremos os grupos 2-divisiveis na dire¢ao de obter resultados para a
demonstracdo do Teorema A. Veremos quando essa propriedade é herdada por subgrupos e

também quando grupos finitos sdo 2-divisiveis. Vamos comecar com a seguinte

Definicao 2.1.1. Um grupo G é 2-divisivel se para cada elemento x € G existe um elemento
y € G tal que y> = x. Se o elemento y é tnico, dizemos que G é um grupo unicamente

2-divisivel.

Uma observacdo importante € que um grupo G unicamente 2-divisivel ndo possui involu-
coes, isto €, elementos de ordem 2. Caso contrdrio, se existisse g € G tal que a ordem g € 2,
teriamos que g2 =1le (1)2 = 1. Mas, isto contradiz a unicidade.

Em geral, ndo podemos dizer que grupos 2-divisiveis ndo possuem involucdes. Por
exemplo, o grupo multiplicativo dos nimeros complexos (C\ {0}, ) é 2-divisivel, pois todos
os seus elementos t€ém duas raizes quadradas, mas este grupo possui a involugdo -1.

A afirmagdo € valida, porém, para grupos finitos 2-divisiveis. Antes de verificar isso,

vejamos a

Proposicao 2.1.2. Seja G um grupo finito. G é 2-divisivel se, e somente se, a ordem de G é

impar.

Demonstragdo. Primeiro, vamos mostrar que se G é 2-divisivel, entdo a ordem de G € impar.

Suponha, por contradicio, que a ordem de G seja par. Pelo Lema 1.3.2 para p = 2, existe
g1 € G tal que a ordem de g1 € 2. Entdo, a aplicacdo ¢ : G — G, dada por g? = gz, nao é
injetiva pois gﬁp =1 =1%. Como uma aplica¢do com dominio e contradominio finitos e de

mesma cardinalidade € injetiva se, e somente se, € sobrejetiva, segue que ¢ ndo € sobrejetiva.
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Isto significa que existe g € G para o qual ndo existe 4 € G tal que h? = g. Mas, isto contradiz
a hipotese de que G € 2-divisivel. Logo, a ordem de G deve ser impar.

Resta mostrar que se |G

¢ impar, entdao G é 2-divisivel.
Seja |G| = n, com n impar, e considere a mesma aplicagdo @ : G — G, dada por g% = g

+1 )
Observe que para todo g € G, o elemento gnT € G satisfaz

n+1 n+1
2

(g2)0=(g2)=g""=g"¢=¢

Portanto, ¢ € sobrejetiva. Assim, para cada g € G existe h € G tal que h? =g. Logo, G é
2-divisivel. 0

Agora, sabemos que um grupo G finito e 2-divisivel possui ordem impar. Sendo assim, 2
ndo divide a ordem de G. Logo, pelo Teorema 1.3.2 segue que G ndo possui elemento de
ordem 2.

Em relacdo aos subgrupos, temos o seguinte: para grupos infinitos 2-divisiveis, em geral,
ndo vale que seus subgrupos sdo 2-divisiveis. Veja o exemplo: o grupo (R4 \ {0},) é
2-divisivel, porém, o subgrupo (Q \ {0}, -) ndo é, pois ndo existe elemento neste subgrupo

cujo quadrado € 2. Todavia, para grupos finitos vale a seguinte:

Proposicao 2.1.3. Seja G um grupo finito 2-divisivel. Se H é subgrupo de G, entdo H

também ¢ 2-divisivel.

Demonstracdo. Sabemos que |G| é impar. Do Teorema de Lagrange sabemos que |H| divide

|G|. Logo, |H| é impar. Portanto, segue do resultado anterior que H é 2-divisivel. O
Tanto para grupos finitos como para grupos infinitos, vale a

Proposicao 2.1.4. Em um grupo unicamente 2-divisivel, a intersecdo finita de subgrupos

2-divisiveis é um subgrupo 2-divisivel.

Demonstragdo. Seja G o referido grupo e sejam Hy,H, ..., H, subgrupos 2-divisiveis de G.
n

Tome o subgrupo H := ﬂ H;. Veja que se x € H, entdo x estd em cada H;. Sabemos que
i=1

existe um dnico elemento y € G tal que y* = x. Note que esse elemento y também pertence a

cada H;, pois estes sdao subgrupos 2-divisiveis. Entdo, y € H e, portanto, H é 2-divisivel. [

A propriedade de um grupo ser unicamente 2-divisivel é herdada por centralizadores.
Veja:

Proposicao 2.1.5. Seja G um grupo unicamente 2-divisivel. Se T é um subconjunto ndo

vazio de G, entdo Cg(T) é um subgrupo unicamente 2-divisivel de G.
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Demonstragdo. Ja sabemos que centralizadores sdo sempre subgrupos. Por isso, precisamos
apenas mostrar que C(7') é unicamente 2-divisivel.

Tomando x € Cg(T), temos que xt = tx para todo ¢ € T. Sabemos que existe um tnico
y € G tal que y* = x. Entdo, para verificar o fato acima, precisamos mostrar que y € Co(T),
isto €, que yr =ty paratodo ¢t € T. Veja que

1 1

)=ty =YY=t =1r"tx=x
Dai, pela unicidade do elemento cujo quadrado € igual a x, segue que Flyt =y, assim,
obtemos que yr = ty para todo ¢ € T. Logo, y € Cg(T) e, portanto, C;(7') € unicamente

2-divisivel. L
O resultado abaixo serd muito ttil na conclusdo da demonstracdo do Teorema A.

Proposicao 2.1.6. Seja G um grupo unicamente 2-divisivel. Se ¢ é um automorfismo de G,

entdo Cg(@) € um subgrupo unicamente 2-divisivel de G.

Demonstragdo. Ja sabemos que C(¢) é um subgrupo de G. Temos apenas que mostrar que
para todo x € Cg(¢) existe um tinico y € Cg(@) tal que y* = x.

Tome x € C(¢). Pela hipétese, existe um tnico y € G tal que y* = x. Veja que (y*)? =
x? = x =y Dai, (y®)? = y*>. Como G é unicamente 2-divisivel, segue da dltima igualdade
que y? = y. Portanto, y € Cs(9). O



Capitulo 3
A prova do Teorema A

Os esforcos realizados neste capitulo tém como objetivo fornecer a demonstracao do
Teorema A.
Agora, vamos obter alguns resultados. Comecaremos estabelecendo notagdes fixas para

as proximas segoes:

(1) salvo meng¢do em contrério, U denotard um grupo infinito unicamente 2-divisivel. O

elemento v € Aut(U) serd um automorfismo involutivo quase regular;

(2) G denotard o produto semidireto de U pelo (v), identificando U e (v) com as suas
imagens em G. A notagdo Inv(G) se referird ao conjunto das involugdes do grupo G;

(3) definimos § == {x e U|x¥ =x"'};

(4) aletra A simbolizard um subgrupo fixado de U, que € infinito, maximal (com respeito
a inclusdo) abeliano e € invertido por Vv (i.e. todos os seus elementos sdo invertidos por
V). A existéncia de A serd demonstrada na secdo 3.2, através do Lema de Zorn e do
item (2) do Lema 3.2.2;

(5) para cada u € U denotaremos por A, 0 maior subgrupo de A invertido pelo elemento
-1
uvu  de G.

3.1 Resultados Auxiliares

Primeiro, vamos verificar que os subgrupos A e A, sdo unicamente 2-divisiveis.

Lema 3.1.1. O subgrupo A é unicamente 2-divisivel. E também, para qualquer u € U, o

subgrupo A, é unicamente 2-divisivel.
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Demonstragdo. Seja a € A um elemento qualquer. Sabemos que existe um unico elemento

2

x € U tal que x° = a. Queremos mostrar que x € A.

Como A é invertido por v, temos a” = a~!. Entdo, (x*)" = (x*)"!, e dai (x")? = (x 1)

J4 que U é unicamente 2-divisivel, vale que x¥ = x~!

, ou seja, v inverte x. Além disso, x
comuta com qualquer elemento de A. De fato, ao tomarmos um elemento arbitrario b € A,
temos que

b 'xb)? =b"'*b=b"lab=b"'ba=a.

Assim, pela unicidade do elemento cujo quadrado € igual a a, vale que b~ 'xb=x, ou seja,
x comuta com b. Consequentemente, como A € abeliano, segue que o subgrupo (x,A) é

abeliano. Agora, veja que para qualquer b € A,
(xb)Y =x"b’ =x"p ' =p"Ix7 = (xp) 7. (3.1.1)

Com isto, concluimos que qualquer elemento do subgrupo (x,A) € invertido por v. Sendo
assim, como (x,A) contém A, que por hipétese é maximal, temos que (x,A) = A, e portanto,
x € A. Logo, A € unicamente 2-divisivel.

Para mostrar que o subgrupo A, é unicamente 2-divisivel, procedemos analogamente.
Para qualquer elemento a € A,,, sabemos que existe um tnico elemento x € A tal que x> = a,
€ queremos mostrar que x € A,,.

) ) _ 1 _
De fato, como A, € invertido por uvu ! temos que V" =a I

(XZ)MVu*I

Entdo, vale que
= (x3)7!, e dai (x”v’fl)2 = (x~1)2. J4 que A é unicamente 2-divisivel, segue que
XV = x~1. Como A é abeliano, o subgrupo (x,A,) é abeliano. Para verificar que os
elementos de (x,A,) sdo invertidos por uvu~ ! basta repetir a equagdo (3.1.1) trocando v por
uvu~! e considerando que b é um elemento qualquer de A,. Agora, temos que 0 subgrupo
(x,A,) contém A,, mas A, é o maior subgrupo de A invertido por uvu~ !, entdo segue que

(x,A,) =A,. Logo, x € A, e portanto, A, é¢ unicamente 2-divisivel. O

No préximo lema vamos ver o conjunto S, definido acima, como um subconjunto do

grupo G.

Lema 3.1.2. Seja S = {x € U|x¥ =x"'}. Podemos reescrevé-lo como S = {vv*|x € U}.

Demonstracdo. Sejay € S. Existe um tinico elemento xg € U tal que x(z) =y. Comoy’ = y_l,

temos que (x3)" = x, % e daf (x)* = (x; ')?. Sendo U um grupo unicamente 2-divisivel, vale
que xy = Xo ' ou seja, VxopV = x; I Multiplicando esta dltima equag@o a esquerda por x;, !
temos x; Yvxov = Xo 20 que é equivalente a Vv = x;’ 2. Ao inverter ambos os lados desta,

obtemos que Vv = xj = y. Logo, y € {vV*|x € U} e, consequentemente, S C {vv¥|x € U}.
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Por outro lado, tomando z € {vv*|x € U}, temos que z = vv* para algum xop € U e

2V = vzv = vyyOy = y¥oy — 1

Logo, z € S; assim, {vv*|x € U} C §. Portanto, S = {vv*|x € U}. O
A demonstracdo do préximo lema se encontra em [6].

Lema 3.1.3. Seja H um grupo formado pela unido finita de n classes laterais dos subgrupos
Cl,Cz, ...,Cn de H:
n
H = U C,'gi.
i=1

Entdo o indice (de pelo menos) um desses subgrupos em H ndo excede n.
Consequéncia deste lema € o

Corolario 3.1.4. Seja H um grupo formado pela unido finita de n subconjuntos Sy, S, ..., S,
de H:

Para cada i definimos C; .= <ab_1\a,b € S;). Entdo, o indice (de pelo menos) um dos

subgrupos C1,C,,...,C, em H ndo excede n.

Demonstragcdo. Paracadai=1,2,...,n, tome g; € S;. Vamos mostrar que S; C C;g; para todo
i=1,2,...,n,onde Cjg; = (abilla,b S S,‘>gi.
Note que em C;g; hda um elemento da forma abflg,-. E podemos escrever qualquer
elemento x € S, inclusive g;, como x = xgi_lgi, ao considerarmos a = x e b = g;. Logo
n n
x € C,gi, e portanto, S; C C;g;. Agora, temos que H = U S; C U C;gi. E por outro lado,
i=1 i=1

n n
temos que C;g; C H e U Cigi C H. Assim, concluimos que H = U Cig;. Por fim, aplicando
i=1 i=1
o Lema 3.1.3, segue que o indice de (pelo menos) um dos C; em H ndo excede n. [

No préximo lema, mostraremos que as involu¢des do grupo G sdo conjugadas. E, em
seguida, usaremos esse resultado para expressar os elementos de S em termos das involugdes
de G.

Lema 3.1.5. (1) Todas as involucoes em G sdo conjugados;

(2) S={vr|Tt€Inv(G)}.
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Demonstracdo. (1) Como G é um produto semidireto de U por (Vv), qualquer elemento g € G
¢ um produto da forma g = xy, com x € U e y € (v). Mas, necessariamente, y = v ou y = id,
entdo g = xv ou g = x € U. Sendo assim, se g € Inv(G), isto é, se g é uma involugdo em G,
entdo g possui a forma g = xv, pois U ndo admite involugdes.

Seja 7 € Inv(G). Entdo, T = xv para algum x € U. Como 7 é uma involugdo, x € S. De
fato, 2= 1 e isto implica que (xv)2 = 1, assim, xvxV = 15 e reescrevendo isto temos
que xx¥ = 1g, o que nos dd x¥ =x~'. Logo, x € S.

Agora, seja y € U o tinico elemento tal que y? = x. Entdo, temos que (y*)" = (y*) ' e,
equivalentemente, (y”)? = (y~1)?. Como U é unicamente 2-divisivel, vale que y¥ =y~ !.
Logo,y € S. Dai, como vyv = y_1 tem-se que yv = Vy_l. Multiplicando esta tltima equagdo

a esquerda por y, temos y2v = yVy_1 e, como y2 = x, obtemos xvV = yVy_l, istoé, T=yvy" L
Portanto, a involucdo 7 € um conjugado de v.

(2) Segue do Lema 3.1.2. [

A seguir, vamos obter alguns resultados que envolvem um subgrupo abeliano 2-divisivel
de U.

Lema 3.1.6. Seja D um subgrupo abeliano 2-divisivel de U. Entdo, vale o seguinte:
(1) Cy(D)/D é um grupo unicamente 2-divisivel.

(2) se D é invertido por v, entdo VD é um automorfismo involutivo quase regular de
Cu(D)/D.

(3) assuma que D é invertido por v e seja E /D um subgrupo de Cy(D)/D que é invertido

por vD. Entdo, E é invertido por v, e em particular, E é abeliano.

Demonstragdo. (1) Primeiro, observamos que como D é abeliano, D < Cy (D). E mais, se
¢ € Cy(D), temos cx = xc, para todo x € D, dai ¢cD = Dc. Logo, D < Cy (D). Portanto,
Cy(D)/D é um grupo.

Agora, defina C := Cy (D). Assuma para a,b € C que a>D = b*>D. Sejam x,y € D com

a’x = bzy, e como D é unicamente 2-divisivel considere u,w € D tais que Ww=xew’ = y.

Sendo assim, temos que a’u® = b*>w?, e como a e b comutam com qualquer elemento de
D, obtemos que (au)? = (bw)?. Portanto, como C é unicamente 2-divisivel pela Proposicio
2.1.5, segue que au = bw. Consequentemente, auD = bwD, o que nos permite concluir que
aD = bD.

Além disso, mostremos também que para todo aD € C/D existe bD € C/D tal que

(bD)? = aD. Seja aD um elemento qualquer em C/D e seja b € U tal que b> = a € C. Entio,
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como C é unicamente 2-divisivel, b € C, e portanto, bD € C/D. Agora, veja que
(bD)? = bDbD = b*D = aD.

Assim, concluimos que Cyy(D)/D é um grupo unicamente 2-divisivel.

(2) Seja a aplica¢do vD : C/D — C/D, definida por (xD)"? = x"D. A bijetividade de
vD segue da bijetividade de v, assim como o fato de vD ser um automorfismo: dados
aD,bD € C/D, temos

(aDbD)"P = (abD)"P
= (ab)"D
=a'b'D
=a"Db"D
= (aD)*P(bD)'P.

E também,
(vD)? = vDvD = v>D = 1dD.

Portanto, vD é um automorfismo involutivo.

Agora, tome aD € C¢/p(vD), isto €, suponha que aD centraliza vD. Assim, temos
vD = a*IDvDaD, donde vem que vD = a! vaD, reescrevendo, obtemos vD = v¢D. Logo,
v?® = vd para algum d € D. Tome x € D com x? =d. Como v inverte x, temos que vx = x v,

Entao,

2 1

Vi=vx"=vxx=x Vvx=V"

Dai, a~'va = x"'vx, e isto implica que ax~'v = vax~!. Logo, ax~! € Cc(v) C Cy(v).
Podemos escrever, a = ax_]x, assim, aD = ax"'xD e, equivalentemente, aD = ax”'D.
Entdo, vale a igualdade:

CC/D(VD) =Cc(v)D/D,

onde C¢(v)D/D = {adD |ad € C¢(v), d € D}. Logo, como v é quase regular, o Co(V) é
finito e 0 C¢c(v)D/D também o é. Portanto, vD € quase regular.

(3) Para provar este item, basta mostrar que qualquer elemento y € E € invertido por vV e
também que os elementos de E comutam entre si.

Seja xD € C/D um elemento invertido por vD. Entdo, aplicando vD em xD, temos
x'D=x"'D, dai x¥ = x4, para algum d € D. Conjugando esta ultima igualdade por v
obtemos que x = x Vd !, assim, também temos que x¥ = x 'd~!. Comparando as duas

expressoes de xV, concluimos que d = 1.
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Agora, seja y um elemento qualquer em E. Por hipétese, yD € E /D é invertido por vD.
Dai, sabendo que d = 1 para um elemento qualquer x € C, inclusive para x =y, obtemos
que y¥ = yld =yl Logo, E ¢ invertido por v. E para concluir que E € abeliano, tome
elementos quaisquer yy,y, € E e veja que

=010 =07y DY = ()™)Y =y [

3.2 Resultados Principais

No inicio deste capitulo, fixamos a notagdo A para um subgrupo maximal de U, que é
infinito, abeliano e invertido por v. Nesta secao, iniciaremos demonstrando o resultado que
assegura a existéncia de tal subgrupo. Porém, antes disso, precisamos relembrar o Lema de

Zorn.

Lema 3.2.1. (Zorn) Se, em um conjunto ndo vazio e parcialmente ordenado, todo subconjunto
totalmente ordenado possui uma cota superior, entdo esse conjunto possui um elemento

maximal.

No nosso contexto, a relacdo de ordem considerada € a inclusdo e o conjunto em questdo é
o conjunto de subgrupos de U com alguma propriedade. Observe que a familia dos subgrupos
de U que sao abelianos possui uma cota superior, pois qualquer cadeia de subgrupos abelianos
tem como cota superior a unido dos subgrupos da cadeia. Logo, pelo Lema de Zorn, existe
um subgrupo abeliano maximal em U. Analogamente, podemos argumentar para a familia
dos subgrupos de U que sdo invertidos por v. Portanto, U possui um subgrupo maximal

abeliano que € invertido por v. No préximo lema, provaremos a infinitude desse subgrupo.

Lema 3.2.2. Seja D um subgrupo abeliano de U (admitimos D = {1}) tal que D é invertido
por v e Cy(D) € infinito. Assuma que

(SNCy(D))\D # 2.

Entdo, vale o seguinte:
(1) Existe um elementow € Cy (D) \ D que é invertido por v e tal que Cy ({D,w)) € infinito.
(2) Existe um subgrupo de U infinito e abeliano que é invertido por v.

Demonstracdo. (1) Seja V := Cy (D). Da Proposigdo 2.1.5, sabemos que V é um grupo

infinito unicamente 2-divisivel. Observe que v também € um automorfismo para V. Com
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efeito, dado u € V, temos que u ev, pois, se d € D ocorre que u" centraliza d. Veja:
wWd=u"(d ") =@wud") =@ u) =d"u =du.

Sendo assim, como V € um grupo infinito unicamente 2-divisivel e v € um automorfismo
involutivo quase regular para V, sem perda de generalidade, podemos assumir que U =V, e
ainda, que D < Z(U), pois D < Z(V).

Do fato de que a (SNCy (D)) C S, decorre que (SNCy (D)) \ D C S\ D. Logo, pelo que
assumimos como hipétese, segue que S\ D # &. Sendo assim, tome b € S\ D, e escreva
b=vtcom 7t € Inv(G). Seja

u € U tal que Ul =vr.

Veja que ao conjugar por T ambos os lados desta ultima equacdo obtemos que TV = (u_z)r,

mas TV = u?, entdo u> = (u~2)®. Conjugando por T novamente, temos que (u?)* = u2,

reescrevendo obtemos (%)% = (1~ !)?. Como U é unicamente 2-divisivel, concluimos que
u® = u~'. Usando um argumento andlogo, também constatamos que u’ = u~'. Sendo assim,

da igualdade vt = u~ 2 vem que

-1 -1

V=u u Tzu_l

1 -1 u

ot =u () = uu = T

Agora, afirmamos que existe & € Cy(7) tal que hu é invertido por um ndmero infinito de
involugdes de G. Suponha por um momento que essa afirmagao vale.

Observagdo: Para todo i € Cy(7), temos que hu ¢ D.

De fato, se 4 = 1 obtemos hu = u, € como b = u_ > ¢ D, decorre que u ¢ D. Caso

contrério, se hu € D e h # 1, entdo como a involucdo T inverte hu temos que
w ' h = (hu)" = h"u" = hu L

Isso significa que u inverte 4. Mas, isto ndo € possivel em U. Se fosse possivel, da equagao

acima, teriamos que uhu~" = h~", donde decorre que
uhu'h=1, (3.2.1)

mas, como D < Z(U), temos que huu = uhu, e isso implica que hu = uh. Dai, comutando u
com £ na equacdo (3.2.1), temos huu~'h =1, o que leva a h? = 1. Mas, isto ndo ocorre em
um grupo unicamente 2-divisivel quando & # 1. Portanto, a observagao vale.
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Como todas as involu¢des em G sdo conjugadas, ao conjugar hu por um elemento

apropriado de Cy (hu), podemos assumir que v inverte hu. Veja: se xle Cy (hu), vale que
hu = (hu)xfl.

Como a involugdo T inverte s, temos (hu)® = (hu) !, substituindo Au do lado esquerdo desta
equagdo por (hu)* ', vem que ((hu)* )% = (hu)* * = (hu)~'. Como v = x~'7, obtemos
que (hu)¥ = (hu)~'. Agora, perceba que como hu é invertido por um niimero infinito de
involugdes, podemos concluir que Cy (hu) € infinito.

Portanto, tomando w = hu, e sabendo que Cyy(w) C U = Cy(D), podemos deduzir que
Cu((D,w)) = Cy(D)NCy(w) = Cy(w) é infinito. Entdo, de fato, existe w € Cyy(D) \ D que
¢ invertido por v e tal que o Cy ({(D,w)) € infinito.

Porém, resta demonstrar a existéncia de 4. Facamos isso.

Para cada a € S, seja

sq = v1e.

Como 7“ é uma involugdo de G, temos que s, € S. Entdo, seja I, € U tal que

172

L =Sa.
Veja que

(172 = (50)" = (vi9) = vvtiv =tv = (vi?) L =5, 1 = 2.
Conjugando por v ambos os lados da equagao (I, 2)" = li, decorre que (li)v =1, 2, equiva-
lentemente, (1¥)? = (I;1)%. Logo, IY =1,!.
Por célculos andlogos, podemos concluir também que l;a =1, ! Partindo do fato de que
l, € invertido por v, temos
Ml =102 =5, =v1,

dai vi,vi, I yre e, pela lei do cancelamento a esquerda, temos [,VI, 1 - 74, ou seja,

ala _ it Logo, obtemos

v = 7% Dai, como v também ¢ igual a 7", segue que T
1. _ ~1
alu” " T="1talu

isto &, al,u! € Cy(7).
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Defina h, = alau_l, assim, [, = a_lhau. Como [, e a sdo invertidos por Vv, ao conjugar a

ultima igualdade por v, obtemos
athqu)” =1V =17 e a = (aly) 'a= (alju'u)'a = (hau) ™ 'a,

donde, a(hqu)’a™! = (hau)™", e ainda, avhuva™" = avhau(av)™" = (hqu)~!. Observe

2

que av é uma involucdo de G, pois (av)? = avav = aa” = aa~' = 1¢. Entdo, podemos

escrever
(hau)® = (hqu) L.

Agora, observe que Cy(7) € finito pois T € um conjugado de v e, por hipétese, Cy (V)
¢ finito. Sendo assim, o conjunto {A,| a € S} € finito, pois estd contido em Cy (7). Além
disso, o conjunto S € infinito, pois existem infinitas involu¢des em G. Isto significa que o

conjunto das involugdes {aV | a € S} € infinito. Portanto, existe 2 = h, € Cy(7) para o qual

existem infinitas involucdes av € G, com a € S, que invertem hu. E assim, terminamos a
demonstracdo de (7).

(2) Pelo Lema de Zorn, existe um subgrupo Dy de U que é maximal, abeliano e que é
invertido por v. Suponha que Cy (D) € infinito. Note que se Dy ¢ infinito, o resultado vale.

Vamos supor, por contradi¢do, que Dy seja finito. Sabemos que v age sobre Cy(Dy).
Observe que se x € Cy(Dy), entdo vv* € Se vv* = vx lvax = (x !)Vx € Cy(Dy). Como
podemos tomar infinitos x em Cy (D), segue que SNCy (D) € infinito. Entdo, (SNCy(Dy))\
Dy # @. Peloitem (1) existe w € Cy(Dy) \ Do que é invertido por v. Sendo assim, o subgrupo
(Dg,w) € abeliano e invertido por v (observe que, como este subgrupo é abeliano, o produto
de dois elementos que sdo invertidos por v também € invertido por v). Mas, como Dg é
maximal segue que Dy = (Dg,w), e isto implica que w € Dy, uma contradi¢ao. O

Agora, vamos provar o seguinte lema técnico.

2

Lema 3.2.3. Seja x € U, e seja s € U o iinico elemento tal que s> = vx~'vx. Entdo,

xs € Cy(v).

Demonstragcdo. Afirmamos que Vv inverte s. De fato, ao conjugar por v ambos os lados da

1%

equacio s> = vV, temos que (s )" = v*v. Mas, Vv = s%. Entio, (s 2)" = s*. Conju-

gando por v novamente, obtemos (s*)” = s~2. E reescrevendo, (s')?> = (s~!)2. Portanto,
como U é unicamente 2-divisivel vale que s¥ = s~ .
De maneira inteiramente andloga, também concluimos que v* inverte s. Usando estes

dois fatos, temos

1

1 =s2vv* = vvs?vv' = vs 2v = vs vV v = ve vSs = vis T v,
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e isto implica que xsv = vxs. Portanto, xs € Cy(V). O

Lembramos que fixamos a nota¢cdo A,, com u € U, para denotar o maior subgrupo de A

que é invertido por uvu~'. Tal subgrupo possui indice finito em A. Veja:
Proposicdo 3.2.4. O indice |A : A,| € finito.

Demonstragdo. Para cada elemento a € A e considere o elemento
vvau

Como vv® = v(au) 'vau = ((au) ") au, podemos ver que vv® € U. Sendo assim,

2

seja s, € U tal que s, - = vv®. Pelo Lema 3.2.3 obtemos que

W = ausy € Cy(V). (3.2.2)

Agora, defina
My ={beA|wp,=wg}.

Para cada w, € Cy(Vv), podemos construir um conjunto M., e como Cy (V) é finito,
o conjunto { M, | ¢ € A} também é finito. (3.2.3)

Além disso, observe que se x € A, entdo x estd em algum M, em que wy = w., € cCOmo
consequéncia, x € U M. Logo, A C U M. Por outro lado, se x € U M, entdo x esta

cEA cEA cEA
em algum M, que por sua vez estd contido em A, assim, x € A. Logo, U M.CA, e
cEA
portanto,
A=|JM.. (3.2.4)
cEA

Agora, com raciocinio andlogo ao que usamos na demonstragcdo do lema anterior conclui-

mos que V inverte s,. Além disso, V inverte a € A e v centraliza w,.

De (3.2.2) temos que s(jl = w;]

1 1

au. Conjugando por v ambos os lados desta equagao,

obtemos Vs, ! !

1

vV =vw, auv. Dai, s, auvv. Comutando v com w;l, temos

1

=Vvw,
L la™, vem que s; ' = (s, 'uta™")Yau. Ja que
2

-1 __ 1 -1 _ -
que s, = vw, vau. Comow, =3¢,

V inverte a e s,, reescrevemos s;1 = s,u~ Y aau, donde segue que s, = uVaau. Portanto,

-1

Sa

=u Yaaus, =u Yaw,.
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1

Entdo, obtemos a igualdade w,, 'au = u~"aw,. Tendo em vista que bus;, = aus,, para

todo b € M,, temos w(;lbu = wflvbwa, entdo VWa_lbu S vbw,, assim
vw, b =u"tvbwau ! (3.2.5)

Seja ¢ € M,. Da equacdo (3.2.5), também temos que VW(;lc = u 'vewau'. Como
1 1

¢ =uw, c_lvuvw;1 e b=wevu 'vbw,u!, segue que

1 1 1

c b= uw, e tvuvw tweve vbwu ! = uw;lc_lbwau_ ,

para todo b,c € M,.

Agora,vamos mostrar que uwcjlvwabf1 inverte ¢~ 'b usando esta tltima equacdo e o fato

de que Vv inverte ¢ b

1 1 1

= MWJIVC_leWau_
-1

-1 1 1y 1 -

uw, vwau ¢ buw, Vwuu
—1p-1

=uw, b cwau

= (uw, e bwau 1) !

= (c'p)7.

1 1 1 1

Mas, quIVWau_ = uwglwawf —uvu -, entdo uvu - inverte ¢ 'b e também seu

inverso. Logo, podemos concluir que

uvu~inverte (b~'c| b,c € M,),paratodoa € A.
Por (3.2.3), pela equacdo (3.2.4) e pelo Corolério 3.1.4, um dos subgrupos
(b~ lc|b,ce M,)

tém indice finito em A, entdo |A : A,| < . O

Lema 3.2.5. Seja B um subgrupo abeliano finitamente gerado de U que é invertido por v.

Entdo, A contém um subgrupo A, de indice finito tal que (A1, B) € abeliano.

Demonstragcdo. Lembre-se da defini¢do de A, que fixamos no inicio do capitulo no item

(4), e considere para b € B a defini¢do de A,, com u = b, estabelecida no item (5). Seja
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B ={b1,by,...,b,} o conjunto de geradores de B e seja
n
Ay =) Ay,
i=1

Pela Proposigdo 3.2.4, |A : Aj,| € finito; e pelo Teorema 1.1.2 de Poincaré, temos que
|A : Aq| é finito. Além disso, como A < Ay, € bivbi_1 inverte Ay, vale que bivbl-_1 também
inverte A para todo b; € B; e ainda, como A; é subgrupo de A, sabemos que V inverte

bl — ~ bl .
bivb; Ve @¥ =a~!. Entio, a®'? = 4". Dai,

Aj, assim, para todo a € A| temos a =a
vb,-vb;lab,-vbjlv = a. Lembrando que v inverte b;, obtemos que b;zabiz =a. Logo,
b,-za = ab,-z. Portanto, b,-2 € Cy(A)). Pela Proposi¢do 2.1.5, Cy(A;) é unicamente 2-divisivel,
entdo b; € Cy(Ay). Logo, todos os geradores de B comutam com todos os elementos de Ay, e
isto significa que, todos os elementos de B comutam com todos os elementos de A;; ademais

B ¢é abeliano e A} < A € abeliano, entdo concluimos que (A, B) é abeliano. O]

Lema 3.2.6. Seja D um subgrupo 2-divisivel de A com indice finito. Entdo, Cy (D) /D é finito
e solivel.

Demonstragdo. Seja C := Cy(D) e C := C/D. Suponha por contradi¢io que C ¢ infinito. Do
Lema 3.1.6 item (1), C é unicamente 2-divisivel. E como, por hipétese, |A : D| é finito e
A < C, temos que A := A/D é um subgrupo finito de C.

Observe que, por hipétese, D € unicamente 2-divisivel, € abeliano e € invertido por v.
Entdo, podemos aplicar o Lema 3.1.6, item (2), e concluir que vD € um automorfismo
involutivo quase regular de C. Agora, aplicando o Lema 3.2.2 item (2) (com C no lugar de
U e vD no lugar de v), concluimos que existe um subgrupo de C infinito e abeliano que é
invertido por vD, e € maximal. Vamos denot4-lo por E.

Agora, note que A é abeliano, finitamente gerado e é invertido por vD. Aplicando o Lema
3.2.5 temos que E contém um subgrupo E; de indice finito tal que E := (E;,A) é abeliano.
Sendo assim, E, € invertido por vD pois seus geradores o sdo. Entdo, aplicando o Lema
3.1.6, item (3), obtemos que E; em C € invertido por v e é abeliano. Como E; é gerado por
E| e A, segue que E,> contém A propriamente. Mas, isto contradiz a maximalidade de A e
mostra que C é finito.

Por fim, como C é finito e unicamente 2-divisivel, a Proposicdo 2.1.2 garante que C

possui ordem fmpar. Pelo Teorema 1.5.3 de Feit-Thompson, concluimos que C é soldvel. [

Lema 3.2.7. Seja R := (S). Se H é um subgrupo finitamente gerado de R, entdo H é soliivel
e H/Z(H) é finito.
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Demonstracdo. Seja h um elemento qualquer em R. Como S = {vVv" | u € U}, temos que

n
h= H(Vuivufl)“",
i=1

ondeu;ceUeq;==x1l,comi=1,2,...,n.

n
Seja D := ﬂAu,-, onde A,, € o subgrupo de A estabelecido no inicio do capitulo. Da
i=1
Proposi¢do 3.2.4, temos que o indice |A : A,,| € finito, com isso, segue do Teorema 1.1.2

(Teorema de Poincaré) que o indice |A : D| € finito. Além disso, pelo Lema 3.1.1, temos
que Ay, € 2-divisivel, e como em um grupo unicamente 2-divisivel, a interse¢do finita de
subgrupos 2-divisiveis também € um subgrupo 2-divisivel, segue que D é 2-divisivel. Entao,
podemos aplicar o Lema 3.2.6 e concluir que Cy (D) /D é finito e solivel.

Como A, é o maior subgrupo de A invertido por u,-VM;I, podemos concluir que D também
¢ invertido por Vv e por uﬂul_l,uzwtz_ L u,vu, ! Assim, para qualquer elemento d € D,
temos

uiVMi_lduiVMi_l =d .

Conjugando por v ambos os lados desta equagdo, obtemos
vuvu; ' duvu'v = vd v = d.

Dai, temos que vu;vu; 'd = dvu;vu; . Logo, (vuvu; ')% € Cy(D), com i = 1,2,....n.
Portanto, como / € o produto dos elementos da forma (vu;vu; )%, segue que h € Cyy(D) ou,
equivalentemente, D C Cy (h).

Seja H um subgrupo finitamente gerado de R. Entdo H = (hy,hy,...,hs) para alguns

)
hi,hy,... hs € R. Dessa forma, temos que Cy(H) = m Cy(hi). Como D C Cy(h;), com
i=1

i=1,2,...,s,segue que D C Cy(H) ou, equivalenteme;lte, H C Cy(D). Sendo assim,

HD _ Cy(D)
D~ D

e, portanto, HD/D é finito e solivel. Pelo Segundo Teorema do Isomorfismo, H/H N D
também ¢ finito e solivel. Como D ¢ abeliano, H N D ¢ solavel. Entdo, do item (2) da
Proposicao 1.5.2, segue que H € soluvel.

Por fim, como HND < Z(H) e |H : HND| é finito, temos que |H : Z(H)| também ¢
finito, assim, H /Z(H) é finito. O

Proposicdo 3.2.8. Seja R = (S). Entdo:
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(1) R é um grupo periédico;
(2) R é soluvel.

Demonstragdo. (1) Sejam g € R eay,...,a,,b1,...,b, € R tais que

n
g =] |lai,bi].
i=1
Considere X = {a;,b; |i=1,....,n} e H= (X). Como X C H temos que g € H'. Observe
que H é finitamente gerado, logo, pelo Lema 3.2.7, segue que H/Z(H) é finito. Aplicando o
Teorema 1.1.12, devido a Schur, podemos concluir que H' é finito. Sendo assim, g possui
ordem finita, e portanto, R é periddico.

(2) Observe que S é v-invariante, entdo R também é. Logo, v é um automorfismo
involutivo quase regular para R’ e como, do item anterior, sabemos que R’ é um grupo
periédico, podemos aplicar o Coroldrio 1.5.6 e concluir que R’ é virtualmente soltivel. E
ainda, pelo Lema 3.2.7, R é localmente soltivel, entdo R’ também é localmente soliivel. Logo,
pela Proposi¢io 1.5.7, temos que R’ é soltvel. E como R/R’ é abeliano, segue que R é
soluvel. 0

No lema a seguir, veremos que € possivel escrever o grupo U como um produto dos
subgrupos R = (S) e Cy (V).

Lema 3.2.9. (1) Cada elemento u € U pode ser escrito de forma tinica como um produto
u=cs,comceCy(v)eses;

(2) O subgrupo (S) é normal em U.

1 . .
Demonstragdo. (1) Para x € U vamos denotar por x2 o tnico elemento de U cujo quadrado
é x. Seja u € U. Suponha que u = ¢s, com ¢ € Cy(V) e s € S. Entdo, temos que

1 1

Logo, ¢ é unicamente determinado por u e, consequentemente, como § = ¢ u = (u*vu)f, 0

elemento s também € unicamente determinado por u.
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1
Agora, seja u € U um elemento arbitrario. Veja que v fixa u(bfluv)z e que V inverte

(u_vu)%:

(
= u((u”"u")")?
= uv(u_vu)%
=u’ (uVu)(u Vu)"! (u_vu)%
= u(u_vu)_l(u_vu)%
= u(u_vu)_%
= u((u"u)™)?
= u(u_luv)%

(™ u)?)" = (V)"
= (u'u)?
= ((u™¥u)")>
= ((uvu)?) ",

Portanto, ¢ := u(u_lu")% cCy(v)es=c lu= (u_"u)% €S.

(2) Sejam ¢ € Cy(v) e s € S. Observe que s° € S, pois (s)” = (s¥)¢ = (s 1) = (s°) 1,
Isto significa que Cy(v) normaliza (S). Como de (1) temos que U = (S)Cy(Vv), segue que
(s)y < U. O

Finalmente, estamos em condi¢des de demonstrar o

Teorema A. Seja U um grupo unicamente 2-divisivel. Se U admite um automorfismo

involutivo quase regular, entdo U é soliivel.

Demonstragcdo. Caso em que U € um grupo finito: como U € um grupo finito unicamente
2-divisivel, pela Proposi¢ao 2.1.2, U possui ordem impar. Entdo, segue do Teorema de
Feit-Thompson que U € soltvel.

Caso em que U € um grupo infinito: pela Proposi¢do 3.2.8, (S) é soldvel. Do Lema 3.2.9,
U =Cy(v)(S)e (S) IU. Observe que Cyy(v) é um subgrupo finito unicamente 2-divisivel e,
por isso, possui ordem fmpar. Logo, pelo Teorema 1.5.3 de Feit-Thompson, Cy (V) é soldvel.

Sendo assim, pela Proposi¢ao 1.5.2 item (3), U € soluvel. [l
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