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Resumo

Este trabalho fornece uma demonstração detalhada de um teorema devido a Yoav Segev,
onde se consideram grupos G nos quais, para todo elemento x ∈ G, existe um único elemento
y ∈ G tal que y2 = x. Supondo que G admita um automorfismo involutivo quase regular,
Segev prova que G é solúvel. Este resultado complementa, de certa forma, o teorema de
Shunkov, que afirma que um grupo periódico G admitindo um automorfismo involutivo quase
regular é virtualmente solúvel.

Palavras chave: Automorfismos involutivos quase regulares, grupos unicamente 2-
divisíveis, grupos solúveis.



Abstract

This work provides a detailed proof of a theorem due to Yoav Segev, which considers
groups G where, for every element x ∈ G, there exists a unique element y ∈ G such that
y2 = x. Assuming that G admits an almost regular involutory automorphism, Segev proves
that G is solvable. This result complements, in a certain sense, Shunkov’s theorem saying
that a periodic group G admitting an almost regular involutory automorphism is virtually
solvable.

Keywords: Almost regular involutory automorphisms, uniquely 2-divisible groups,
solvable groups.
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Lista de Símbolos

CG(X) Centralizador do conjunto X no grupo G;

CG(ϕ) Centralizador do automorfismo ϕ em G;

G′ Subgrupo derivado de G;

G ∼= H G é isomorfo a H;

H ⊴ G H é subgrupo normal em G;

Z(G) Centro do grupo G;⋃̇
União disjunta;

Imϕ Imagem da aplicação ϕ;

kerϕ Núcleo da aplicação ϕ;

n

∏
i=1

xi Produto dos elementos xi com i = 1,2, . . . ,n;

gh Conjugação de g por h, isto é, h−1gh;

xH Classe lateral à esquerda de H;

x f Imagem de x pela aplicação f ;

Indica o fim de uma demonstração.



Introdução

Seja ϕ um automorfismo de um grupo G. Dizemos que ϕ é um automorfismo involutivo
se ϕ ̸= Id e ϕ

2 = Id, ou seja, se ϕ é um elemento de ordem dois no grupo de automorfismos
de G. Chamamos de centralizador do automorfismo ϕ em G o subgrupo dos pontos fixos de
ϕ dado por

CG(ϕ) := {g ∈ G | ϕ(g) = g}.

Se CG(ϕ) for finito, dizemos que ϕ é um automorfismo quase regular. Quando CG(ϕ) = {1},
dizemos que ϕ é um automorfismo regular ou livre de pontos fixos.

Ao longo do século passado, alguns matemáticos como W. Burnside, B. H. Neumann,
J. G. Thompson, G. Higman e outros perceberam que o subgrupo CG(ϕ) tem forte relação
com a estrutura do grupo G. Veja, por exemplo, os seguintes teoremas de W. Burnside [1] de
1911:

Teorema. Sejam G um grupo finito e ϕ um automorfismo de G que possui ordem m. Então,
a ordem do centralizador de ϕ em G é congruente à ordem de G módulo m. Em símbolos,

|CG(ϕ)| ≡ |G| (mod m).

Teorema. Se G é um grupo finito que admite um automorfismo de ordem 2 livre de pontos
fixos, então G é abeliano.

O trabalho de Burnside nesse campo contribuiu para dar início a uma abordagem sis-
temática que consiste em compreender grupos através do estudo de seus automorfismos e
simetrias. A partir daí, muitos avanços foram possíveis em Teoria de Grupos. Em 1956, B. H.
Neumann [5] provou que, se um grupo finito admite um automorfismo de ordem 3 livre de
pontos fixos, então o grupo é nilpotente de classe no máximo 2. Nesse sentido, um teorema
mais geral é obtido a partir da junção dos teoremas de Higman [4] e Thompson [11]:

Teorema. Se G é um grupo finito que admite um automorfismo livre de pontos fixos, cuja
ordem é um primo p, então, G é um grupo nilpotente e sua classe de nilpotência é limitada
por uma função h(p), que depende apenas de p.



Introdução 2

Em 1974, V. P. Shunkov [10] provou que em um grupo periódico G, que admite um
automorfismo de ordem 2 com o centralizador finito, todo subgrupo finitamente gerado de G
é finito, e mais, G possui um subgrupo solúvel de índice finito. Em outras palavras, temos o
seguinte teorema:

Teorema. Se um grupo periódico G possui um automorfismo involutivo quase regular, então
G é localmente finito e virtualmente solúvel.

Inspirado pelas técnicas introduzidas por Shunkov no artigo [10], Y. Segev [9] provou o
Teorema A, abaixo, que é o assunto central desta dissertação. Antes de enunciá-lo, precisamos
esclarecer o que é um grupo unicamente 2-divisível: denominamos dessa forma os grupos G
nos quais para cada x ∈ G existe um único elemento y ∈ G tal que y2 = x.

Teorema A. Seja U um grupo unicamente 2-divisível. Se U admite um automorfismo
involutivo quase regular, então U é solúvel.

Observe que tanto este teorema como aquele provado por Shunkov também ressaltam
uma relação entre o centralizador do automorfismo do grupo e a estrutura desse grupo e, neste
caso, a propriedade em questão é a solubilidade. Em seu artigo, Segev escreveu que a sua
maior motivação para este teorema vem de questões sobre os grupos radicais de conjuntos
especiais de Moufang que, segundo ele, tendem a ser grupos unicamente 2-divisíveis; este
assunto não será abordado neste trabalho, porém pode ser encontrado em [8].

Nesta dissertação, objetivamos apresentar a prova do Teorema A, obtido em 2011 por
Segev em [9]. Faremos isto buscando usar apenas conceitos elementares da Teoria de Grupos.

O texto está organizado da seguinte maneira: no primeiro capítulo, intitulado "Noções
Preliminares" discorremos sobre alguns conceitos fundamentais da Teoria de Grupos, como
automorfismos, ações de grupos, produto semidireto e grupos solúveis. Estes assuntos são
necessários para atingir a compreensão dos resultados e demonstrações que estão ao longo
do texto. O segundo capítulo trata dos grupos unicamente 2-divisíveis; vamos defini-los e
apresentar algumas de suas propriedades, como a sua caracterização no contexto de grupos
finitos e quando essa propriedade é herdada por subgrupos. O terceiro e último capítulo, que
foi chamado de "A prova do Teorema A" enuncia e demonstra todos os resultados auxiliares
e fundamentais para a prova do teorema de Segev.



Capítulo 1

Noções Preliminares

Vamos assumir que o leitor possui domínio sobre os conceitos mais básicos da Teoria de
Grupos. Sendo assim, no que se segue, iremos percorrer um caminho que objetiva somente
alcançar a compreensão dos resultados aos quais se dedica esta dissertação. As principais
referências bibliográficas utilizadas para a construção deste capítulo foram os livros de A.
Garcia e Y. Lequain [3] e de D. J. Robinson [7].

1.1 Grupos e Subgrupos

Nesta seção abordaremos alguns conceitos importantes, tais como grupos quocientes,
subgrupos gerados por subconjuntos, grupos finitamente gerados, centralizadores, subgrupos
derivados, etc. Em seguida, também trataremos a respeito de alguns teoremas que são
fundamentais para os resultados dos próximos capítulos.

Começamos definindo grupo quociente. Considere G um grupo e H um subgrupo fixado
de G. Podemos definir a seguinte relação de equivalência sobre G: dados x,y ∈ G, y ∼H x
se, e somente se, y = xh para algum h ∈ H. A classe de equivalência que contém x é o
subconjunto de G denotado por xH e definido por

xH = {xh | h ∈ H}.

Este será chamado de classe lateral à esquerda de H em G. Analogamente, podemos definir
a classe lateral à direita de H em G. Note que dizer que x ∈ H é equivalente a dizer que
xH = H. Pelas propriedades de relações de equivalência, para x,y ∈ G vale que:

(1) se xH ̸= yH, então xH ∩ yH =∅;

(2) xH = yH se, e somente se, x−1y ∈ H;
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(3)
⋃

x∈G

xH = G.

Chamamos de índice de H em G, e denotamos por |G : H|, o número de classes laterais à
esquerda (ou à direita) de H em G.

Se tomamos um representante para cada classe lateral à esquerda de H em G, pelo
Axioma da Escolha, obtemos um conjunto T formado por esses representantes. Podemos
então escrever G como a seguinte união disjunta:

G =
⋃̇

t∈T
tH.

Assim, todos os elementos de G poderão ser escritos de forma única como o produto th, com
t ∈ T e h ∈ H. Chamaremos o conjunto T de transversal à esquerda de H em G. De maneira
análoga, definimos transversal à direita. A cardinalidade de T é igual ao índice de H em G.
Vejamos agora alguns resultados sobre índices.

Teorema 1.1.1. Sejam G um grupo, H um subgrupo de G e K um subgrupo de H. Sejam
T um transversal à esquerda de H em G e U um transversal à esquerda de K em H,
então TU = {tu | t ∈ T, u ∈ U} é um transversal à esquerda de K em G. Além disso,
|G : K|= |G : H| · |H : K|.

Demonstração. Temos que G =
⋃̇

t∈T
tH e H =

⋃̇
u∈U

uK. Substituindo H obtemos que

G =
⋃̇

t∈T,u∈U
tuK. Agora, resta mostrar que todas as classes laterais tuK são distintas.

Suponha que t1u1K = t2u2K com t1, t2 ∈ T e u1,u2 ∈ U . Então, t1u1 ∈ t2u2K e podemos
escrever t1u1 = t2u2k, com k ∈ K, assim, temos t−1

2 t1 = u2ku−1
1 ∈ H. Logo, t1H = t2H, como

T é um transversal, segue que t1 = t2. Portanto, u1K = u2K, donde u1 = u2 pois U é um
transversal. Concluímos então que TU é um transversal à esquerda de H em G. Veja ainda
que, como a cardinalidade de TU é igual ao produto das cardinalidades de T e U , temos que
|G : K|= |G : H| · |H : K|.

Teorema 1.1.2. (Poincaré) A interseção de um conjunto finito de subgrupos, cada um dos
quais com índice finito, também tem índice finito.

Demonstração. Sejam G um grupo e H1,H2, ...,Hn subgrupos de G. Defina H =
n⋂

i=1

Hi.

Basta demonstrar que |G : H| ≤ |G : H1| · |G : H2| · ... · |G : Hn|.
Para cada x ∈ G associamos a n-úpla de classes laterais à esquerda (xH1,xH2, ...,xHn).

Veja que para x,y∈G temos (xH1,xH2, ...,xHn) = (yH1,yH2, ...,yHn) se, e somente se, xHi =

yHi, para i = 1,2, ...,n, e isso equivale a x−1y ∈ Hi para i = 1,2, ...,n, de onde obtemos que
x−1y ∈ H. Sendo assim, temos que xH = yH. Portanto, a aplicação xH 7→ (xH1,xH2, ...,xHn)
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é injetiva, e por isso, vale a desigualdade acima. Então, como |G : Hi| é finito para i =
1,2, ...,n, segue que |G : H| é finito.

O conjunto das classe laterais à esquerda G/∼H= {xH | x ∈ G} possui uma operação
induzida pela operação de G, dada por

(xH,yH) 7→ xyH.

Tal operação está bem definida quando H é um subgrupo normal em G, pois independe dos
representantes das classes. Isto, nos leva a seguinte

Definição 1.1.3. Sejam G um grupo e H um subgrupo normal em G. O grupo de suas classes
laterais, com a operação induzida de G, é chamado de grupo quociente de G por H. Ele será
denotado por G/H.

Agora, vamos definir alguns subgrupos importantes.

Definição 1.1.4. Seja X subconjunto não vazio de um grupo G. Definimos o subgrupo gerado
por X como a interseção de todos os subgrupos de G que contém X , e o denotamos por
⟨X⟩. Também podemos entendê-lo como o menor subgrupo de G que contém X , isto é, se
X ⊆ S ≤ G, então ⟨X⟩ ⊆ S.

Para descrever os elementos de um subgrupo gerado por um subconjunto temos a seguinte

Proposição 1.1.5. Se X é um subconjunto não vazio de um grupo G, então ⟨X⟩ é o conjunto
de todos os elementos da forma xα1

1 xα2
2 · · ·xαk

k , onde αi =±1, xi ∈ X e k ≥ 0 ( quando k = 0,
este produto é interpretado como 1).

Dizemos que G é um grupo finitamente gerado se G pode ser gerado por um subconjunto
com um número finito de elementos.

Definição 1.1.6. Sejam G um grupo e X um subconjunto não vazio de G. Chamamos de
centralizador de X em G, e denotamos por CG(X), o conjunto de todos os elementos g ∈ G
tais que gx = xg, para todo elemento x ∈ X . Quando X = G o centralizador CG(X) será
chamado de centro de G e denotado por Z(G).

Naturalmente, CG(X) é um subgrupo de G, pois 1G ∈ CG(X) e para quaisquer a,b ∈
CG(X) temos que ab−1 ∈CG(X).

Outra observação interessante é que, se H é um subgrupo finitamente gerado de G, isto é,
se H = ⟨g1,g2, . . . ,gn⟩ onde cada gi ∈ G com i = 1,2, . . . ,n, então

CG(H) =
n⋂

i=1

CG(gi).
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Para verificar isto, perceba que CG(H) está contido em
n⋂

i=1

CG(gi), pois dado x ∈ CG(H)

temos que x centraliza qualquer elemento de H, inclusive seus geradores, então x ∈
n⋂

i=1

CG(gi).

Por outro lado, se x ∈
n⋂

i=1

CG(gi), temos que x centraliza cada gi e, consequentemente, x

centraliza qualquer produto entre g1,g2, . . . ,gn; ou seja, x centraliza os elementos de H.
Logo, x ∈CG(H) e, portanto, a inclusão contrária é válida. Daí, verifica-se a igualdade.

Antes de expor o próximo subgrupo, precisamos definir o comutador de dois elementos
de um grupo.

Definição 1.1.7. Sejam x e y elementos de um grupo G. O comutador de x e y, nesta ordem,
é o elemento de G dado por x−1y−1xy e denotado por [x,y].

Proposição 1.1.8. Sejam x,y e z elementos quaisquer em G. Os comutadores desses elemen-
tos possuem as seguintes propriedades:

(1) [x,y] = 1 se, e somente se, xy = yx;

(2) [x,y] = [y,x]−1;

(3) [x,y]z = [xz,yz];

(4) [x,yz] = [x,z][x,y]z;

(5) [xy,z] = [x,z]y[y,z];

(6) [x,y−1] = ([x,y]y
−1
)−1;

(7) [x−1,y] = ([x,y]x
−1
)−1.

Demonstração. (1) A equação [x,y] = 1 é equivalente a x−1y−1xy = 1, o que acontece se,
e somente se, xy = yx;

(2)

[x,y] = x−1y−1xy = (y−1x−1yx)−1 = [y,x]−1;
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(3)

[x,y]z = (x−1y−1xy)z

= z−1x−1y−1xyz

= z−1x−1(zz−1)y−1(zz−1)x(zz−1)yz

= (z−1x−1z)(z−1y−1z)(z−1xz)(z−1yz)

= (z−1xz)−1(z−1yz)−1z−1xzz−1yz

= (xz)−1(yz)−1xzyz = [xz,yz];

(4)

[x,yz] = x−1(yz)−1xyz

= x−1z−1y−1xyz

= x−1z−1(xzz−1x−1)y−1xyz

= x−1z−1xzz−1(x−1y−1xy)z

= x−1z−1xz(x−1y−1xy)z = [x,z][x,y]z;

(5)

[xy,z] = (xy)−1z−1(xy)z

= y−1x−1z−1xyz

= y−1x−1z−1x(zyy−1z−1)yz

= y−1(x−1z−1xz)yy−1z−1yz

= (x−1z−1xz)yy−1z−1yz = [x,z]y[y,z];

(6)

[x,y−1] = x−1yxy−1

= yy−1x−1yxy−1

= (yx−1y−1xyy−1)−1

= ((x−1y−1xy)y−1
)−1 = ([x,y]y

−1
)−1;
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(7)

[x−1,y] = xy−1x−1y

= xy−1x−1yxx−1

= (xx−1y−1xyx−1)−1

= ((x−1y−1xy)x−1
)−1 = ([x,y]x

−1
)−1.

Agora, podemos fazer a

Definição 1.1.9. Sejam X e Y subconjuntos não vazios de um grupo G. Definimos

[X ,Y ] = ⟨[x,y] | x ∈ X e y ∈ Y ⟩.

Quando X =Y = G, chamamos [G,G] de subgrupo derivado ou subgrupo comutador de G e
o denotamos por G′.

Agora, veremos alguns resultados importantes sobre grupos.

Proposição 1.1.10. Seja G um grupo. O subgrupo derivado G′ é normal em G.

Demonstração. Considere g ∈ G e α = [x1,y1][x2,y3] . . . [xn,yn] ∈ G′. Tendo em vista a
propriedade (3) da Proposição 1.1.8, obtemos que

α
g = ([x1,y1][x2,y3] . . . [xn,yn])

g

= [x1,y1]
g[x2,y3]

g . . . [xn,yn]
g

= [xg
1,y

g
1][x

g
2,y

g
3] . . . [x

g
n,y

g
n] ∈ G′.

Sendo assim, qualquer que seja α ∈ G′, temos que α
g ∈ G′, para todo g ∈ G. Logo, G′ é

normal em G.

Proposição 1.1.11. Seja N um subgrupo normal de um grupo G. Então o grupo quociente
G/N é abeliano se, e somente se, G′ ≤ N. Em particular, G/G′ é abeliano.

Demonstração. Sejam xN e yN elementos de G/N. Suponha que G/N é abeliano. Então,
temos

xyN = xNyN = yNxN = yxN.

E isto implica que x−1y−1xyN = N, isto é, x−1y−1xy = [x,y] ∈ N. Da arbitrariedade de x e y
segue que G′ ≤ N.
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Agora, por outro lado, suponha que G′ ≤ N. Então,

xNyN = xyN = yx[x,y]N = yxN = yNxN.

Logo, G/N é abeliano.

Por fim, enunciamos um resultado atribuído a Issai Schur, que relaciona o centro de um
grupo com o subgrupo derivado. Sua demonstração pode ser encontrada em [7].

Teorema 1.1.12. (Schur). Seja G um grupo. Se |G : Z(G)| é finito, então o subgrupo derivado
G′ é finito.

1.2 Automorfismos

A partir desta seção, usaremos a notação exponencial para aplicações. Isto significa que,
se temos uma aplicação f : X → Y e x ∈ X , denotaremos por x f a imagem x pela aplicação f .

Definição 1.2.1. Dados dois grupos (G, ·) e (H,∗) um homomorfismo ϕ : G → H é uma
aplicação que satisfaz

(a ·b)ϕ = aϕ ∗bϕ ,

para quaisquer a,b ∈ G. Além disso, chamamos de núcleo e imagem de ϕ , respectivamente,
os conjuntos

kerϕ = {g ∈ G | gϕ = 1H}

e
Imϕ = {gϕ | g ∈ G}.

Decorre desta definição a

Proposição 1.2.2. Seja ϕ : G → H um homomorfismo de grupos. Para quaisquer n ∈ Z e
g ∈ G temos que

(gn)ϕ = (gϕ)n.

Quando n = 0 e n =−1, vemos que ϕ preserva elemento neutro e inverso:

(1G)
ϕ = 1H e (g−1)ϕ = (gϕ)−1.

Dado um homomorfismo de grupos ϕ : G → H, pode-se verificar que Imϕ é subgrupo de
H, que kerϕ é subgrupo de G e mais, kerϕ é normal em G. Veja: se x ∈ G e g ∈ kerϕ temos
que gx ∈ kerϕ , pois (gx)ϕ = (x−1gx)ϕ = (x−1)ϕ(g)ϕ(x)ϕ = (xϕ)−11H(x)ϕ = 1H .
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Um homomorfismo injetivo é chamado de monomorfismo e um homomorfismo sobre-
jetivo é chamado de epimorfismo. Quando o homomorfismo é simultaneamente injetivo e
sobrejetivo, ou seja, bijetivo, o chamamos de isomorfismo. O resultado a seguir estabelece
critérios para verificarmos essas propriedades.

Proposição 1.2.3. Seja ϕ : G → H um homomorfismo.

(1) ϕ é um monomorfismo se, e somente se, kerϕ = {1G};

(2) ϕ é um epimorfismo se, e somente se, Imϕ = H;

(3) ϕ é um isomorfismo se, e somente se, kerϕ = {1G} e Imϕ = H.

Demonstração. (1) Se ϕ é um monomorfismo e x ∈ kerϕ , temos que xϕ = 1H = (1G)
ϕ , mas

como ϕ é injetiva obtemos x = 1G. Então, kerϕ = {1G}.
Por outro lado, se kerϕ = {1G} e x,y ∈ G temos que xϕ = yϕ , donde xϕ(yϕ)−1 = 1H e

ainda (xy−1)ϕ = 1H . Sendo assim, xy−1 ∈ kerϕ . Logo, xy−1 = 1H e, portanto, x = y. Então,
concluímos que ϕ é injetiva, isto é, um monomorfismo.

(2) Segue diretamente da definição de aplicação sobrejetiva.
(3) Segue de dos itens anteriores.

Os teoremas a seguir estabelecem relações interessantes entre grupos quocientes e homo-
morfismos.

Teorema 1.2.4. (Primeiro Teorema do Isomorfismo)

(1) Se α : G → H é um homomorfismo de grupos, a aplicação

θ :
G

kerα
→ Imα

x(kerα) 7→ xα

é um isomorfismo.

(2) Se N é um subgrupo normal de um grupo G, a aplicação

ϕ : G → G
N

x 7→ xN

é um epimorfismo, com kerϕ = N.
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Demonstração. (1) Sabemos que kerα é normal em G. Note que se xk ∈ x(kerα) temos que
(xk)α = xαkα = xα1H = xα , isto é, a imagem de xk não depende de k, então a aplicação θ

está bem definida. Claramente θ é um epimorfismo, pois Imθ = Imα . Agora, observe que
x(kerα) ∈ kerθ se, e somente se, x ∈ kerα , ou seja, kerθ = {kerα}= {1G/kerα}. Logo, θ

é um isomorfismo.
(2) A aplicação ϕ é um isomorfismo, pois (xy)ϕ = xyN = xNyN = xϕyϕ para quaisquer

x,y ∈ G. E como Imϕ = G/N, concluímos que ϕ é um epimorfismo.

Teorema 1.2.5. (Segundo Teorema do Isomorfismo) Sejam G um grupo, N e H subgrupos de
G, com N normal em G. Então, N ∩H ⊴ H e

θ :
H

H ∩N
→ NH

N
x(H ∩N) 7→ xN

é um isomorfismo.

Demonstração. A aplicação α : H → NH/N, que x 7→ xN, é claramente um epimorfismo.
Observe que kerα = {x ∈ H | xα = N}= {x ∈ H | xN = N}= {x ∈ H | x ∈ N}= H ∩N e,
por isso, H ∩N ⊴ H. Agora, usando o Primeiro Teorema do Isomorfismo item (1), temos
que o epimorfismo α induz o seguinte isomorfismo:

θ :
H

H ∩N
→ NH

N
x(H ∩N) 7→ xα = xN.

Teorema 1.2.6. (Terceiro Teorema do Isomorfismo) Sejam M e N subgrupos normais de um

grupo G e seja N ≤ M. Então, M/N ▹G/N e
(G/N)

(M/N)
é isomorfo a G/M.

Demonstração. Defina a aplicação α : G/N → G/M, que xN 7→ xM. Observe que Imα =

G/M, então α é um epimorfismo. Agora, note que (xN)α = M se, e somente se, x ∈ M.
Sendo assim, kerα = M/N e, consequentemente, M/N ▹G/N. Por fim, segue do item (1)
do Primeiro Teorema do Isomorfismo que o epimorfismo α induz o isomorfismo

θ :
G/N
M/N

→ G
M

xN(M/N) 7→ (xN)α = xM.
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Para finalizar esta seção, apresentaremos a seguir o conceito de automorfismos de grupos
e algumas de suas propriedades que são peças centrais desta dissertação.

Definição 1.2.7. Seja G um grupo. Um automorfismo de G é um isomorfismo ϕ : G → G. O
conjunto de todos os automorfismos de G é denotado por Aut(G) .

Observe que Aut(G) é um grupo com a operação de composição de aplicações.
Um automorfismo ϕ ∈ Aut(G) é dito involutivo se ϕ ̸= Id e ϕ

2 = Id, isto é, se ϕ é uma
involução no grupo Aut(G). A saber, em um grupo qualquer, um elemento diferente da
identidade que possui ordem 2 é chamado de involução.

Podemos pensar em um automorfismo de um grupo G como uma permutação dos elemen-
tos G que mantém a estrutura de grupo inalterada. Alguns automorfismos fixam elementos
do grupo. Chamamos estes elementos de pontos fixos do automorfismo, e denotamos por
CG(ϕ) o conjunto de pontos fixos de um automorfismo ϕ . Em símbolos,

CG(ϕ) = {g ∈ G | gϕ = g}.

Quando CG(ϕ) é finito, dizemos que ϕ é um automorfismo quase regular. E quando
CG(ϕ) = {1}, dizemos que ϕ é um automorfismo livre de pontos fixos.

Note que CG(ϕ) é um subgrupo de G, pois 1G é fixado por ϕ , o produto de dois elementos
fixados por ϕ é fixado por ϕ e se um elemento é fixado por ϕ , o seu inverso também é.

Como exemplo do que acabamos de definir, consideremos o grupo (R \ {0}, ·) e a
aplicação ϕ : R\{0}→ R\{0} definida por xϕ = x−1 para todo x ∈ R\{0}. Observe que
ϕ é um automorfismo involutivo quase regular, uma vez que satisfaz o seguinte:

(1) ϕ ∈ Aut(R\{0});

(2) ϕ ̸= Id e ϕ
2 = Id;

(3) o centralizador de ϕ , dado por CR\{0}(ϕ) = {−1,1}, é finito.

1.3 Ações de Grupos

Grupos podem "agir" sobre um conjunto de elementos. Por exemplo, os elementos do
grupo simétrico agem sobre os elementos de um conjunto qualquer, permutando-os; os
elementos do grupo diedral agem sobre os vértices de um polígono regular, refletindo-o e
rotacionando-o. Grupos abstratos também podem agir sobre um conjunto, como veremos a
seguir.
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Definição 1.3.1. Sejam G um grupo e X um conjunto não vazio. Dizemos que G age sobre
X quando existe uma aplicação σ : G×X → X definida por (g,x)σ = xg, que para x ∈ X e
g,h ∈ G satisfaz o seguinte:

(1) x1 = x;

(2) xgh = (xg)h.

Se um grupo G age sobre um conjunto X , a aplicação ϕg que associa cada x ∈ X a
xg ∈ X é uma bijeção, que induz o homomorfismo ϕ : G → Sym(X) que associa cada g ∈ G
à permutação ϕg de X . Por outro lado, se temos um homomorfismo ϕ de G em Sym(X),
então xgϕ

:= xg define uma ação de G sobre X . Sendo assim, podemos dizer que uma ação
do grupo G sobre o conjunto X determina e é determinada por um homomorfismo de G em
Sym(X).

Sabemos que se X é um grupo, Aut(X)≤ Sym(X). Quando Im(ϕ)⊆ Aut(X) dizemos
que G age sobre X por automorfismos.

Usando a definição de ação de um grupo G sobre um conjunto X , podemos definir, e
denotar por Ox, a órbita de um elemento x ∈ X como sendo o conjunto

Ox := {xg | g ∈ G} ⊆ X .

Observe que duas órbitas Ox e Oy, com x,y ∈ X , são disjuntas ou coincidem: supondo
que Ox ∩Oy ̸=∅, tome s ∈ Ox ∩Oy. Sabemos que s = xg = yh para g,h ∈ G. Daí, vem que
x = (yh)g−1

= yhg−1
, e isto significa que x ∈ Oy. Sendo assim, qualquer elemento em Ox

pode ser escrito como elemento de Oy. Logo, Ox ⊆Oy. Analogamente, podemos concluir
que vale a inclusão contrária e, consequentemente, a igualdade. Portanto, se duas órbitas não
são disjuntas, elas coincidem. Além disso, o conjunto X pode ser dado como a união das
órbitas de seus elementos, já que x ∈ Ox. Então, as órbitas dos elementos de X formam uma
partição de X .

Definimos como estabilizador do elemento x ∈ X o subconjunto dos elementos de G que
fixam x. Em símbolos,

Gx := {g ∈ G | xg = x}.

Observe que Gx é um subgrupo de G, pois produtos e inversos de elementos de Gx

também fixam x.
Dizemos que G age transitivamente sobre X quando, para quaisquer x,y ∈ X , existe g ∈ G

tal que xg = y ou, equivalentemente, quando Ox = X para algum x ∈ X .
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Agora, vamos deduzir a equação das órbitas. Considere que G é um grupo finito agindo
sobre um conjunto finito X . Note que quando qualquer elemento da classe lateral Gxg age
em x obtemos o elemento xg da órbita de x. Isto motiva uma função α definida por Gxg 7→ xg.
Tal função é injetiva. Veja: se Gxg e Gxh são duas classes laterais do estabilizador de x
tais que (Gxg)α = (Gxh)α , temos que xg = xh; de onde concluímos que xgh−1

= x, isto é,
gh−1 ∈ Gx, então podemos escrever que Gxgh−1 = Gx e daí obtemos que Gxg = Gxh. Como
o domínio e o contradomínio de α são finitos, a função é, na realidade, uma bijeção. Sendo
assim, podemos afirmar que o conjunto das classes laterais à direita de Gx em G tem a mesma
cardinalidade que Ox, ou seja, |G : Gx| = |Ox|. Como sabemos X é a união disjunta das
órbitas da ação de G sobre X , então se Ox1,Ox2, . . . ,Oxn são suas órbitas, temos que

|X |= |Ox1 ∪Ox2 ∪·· ·∪Oxn|=
t

∑
i=1

|Oxi|=
t

∑
i=1

|G : Gxi|.

Esta equação é chamada de equação das órbitas. Vamos usá-la para o que pretendemos a
seguir.

A partir de agora, aproveitaremos este contexto de ações de grupos para abordar um lema
atribuído a Cauchy que será essencial para o estudo dos grupos finitos que são unicamente
2-divisíveis.

Lema 1.3.2. (Cauchy) Se um primo p divide a ordem de um grupo finito, então esse grupo
contém um elemento de ordem p.

Demonstração. Seja G um grupo finito e seja GP = G× ·· ·×G (p vezes). Considere o
conjunto

X = {(g1,g2, . . . ,gp) ∈ Gp | g1g2 . . .gp = 1}.

Para encontrar |X | podemos usar o seguinte raciocínio: seja (g1,g2, . . . ,gp) uma p-upla
qualquer em X . Se g1 . . .gp−1gp = 1, devemos ter que gp = (g1 . . .gp−1)

−1. Sendo assim,
na contagem dos elementos de X temos que considerar um total de |G| possibilidades de
elementos de G para cada entrada de uma p-upla, exceto para a última entrada que possui um
elemento fixo associado a cada uma das entradas anteriores. Logo, |X |= |G|p−1. Observe
que não houve perda de generalidade, pois o mesmo raciocínio pode ser feito com qualquer
entrada de uma p-upla.

Considere o grupo C =Cp = ⟨σ⟩, onde σ é uma aplicação que leva (g1,g2, . . . ,gp) em
(g2, . . . ,gp,g1). Podemos definir uma ação de C sobre X através da posição xσ i

:= (xσ )σi−1 ,
x ∈ X . Note que esta é uma ação bem definida, pois se x = (g1,g2, . . . ,gp) ∈ X então
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xσ = (g2, . . . ,gp,g1) ∈ X , já que

g2 . . .gpg1 = g−1
1 g1g2 . . .gpg1 = g−1

1 g1 = 1.

Agora, observe que o elemento σ ∈ C fixa o elemento (g1,g2, . . . ,gp−1,gp) ∈ X se, e
somente se, g1 = g2 = · · ·= gp−1 = gp = g, e neste caso temos que gp = 1, isto é, a ordem
de g é p. Sendo assim, para concluir a demonstração basta verificar que existe pelo menos
um elemento x ∈ X , diferente da identidade, tal que xσ = x. Então, considere o subconjunto
Y = {(g1,g2, . . . ,gp) ∈ X | g1 = g2 = · · ·= gp}. Queremos mostrar que |Y |> 1.

Observe que a cardinalidade da órbita de um elemento que não é fixado pela a aplicação σ

é |C : Cx|= p, já que p é primo. Considerando que k é o número de órbitas com p elementos,
pela equação das órbitas temos que |X |= |Y |+ kp, daí |G|p−1 = |Y |+ kp e como p divide
|G| segue que p divide |G|p−1, e portanto, p divide |Y |+ kp, donde concluímos que p divide
|Y |. Logo, |Y |> 1 e a identidade de Gp não é o único elemento de Y . Consequentemente,
existe um elemento (g1,g2, . . . ,gp)∈ X , com g1 = g2 = · · ·= gp = g ̸= 1, tal que gp = 1.

1.4 Produto Semidireto

Nesta seção trataremos sobre produtos semidiretos. Esta é uma ferramenta importante
para o estudo de um grupo a partir de seus automorfismos. Começaremos com a seguinte
definição.

Definição 1.4.1. Sejam H e N subgrupos de um grupo G, com N normal em G. Dizemos
que G é um produto semidireto (interno) de N por H, quando G = HN e H ∩N = {1}. Em
símbolos, G = N ⋊H.

Cada elemento g ∈ G pode ser escrito de maneira única na forma g = hn, onde h ∈ H e
n ∈ N. De fato, se g é o produto hn e se também pode ser escrito como o produto h1n1, com
n,n1 ∈ N e h,h1 ∈ H, teremos hn = h1n1 e, consequentemente, h−1

1 h = n1n−1 ∈ N∩H = {1}.
Logo, h−1

1 h = n1n−1 = 1 e segue que h1 = h e n1 = n. Portanto, temos a unicidade anunciada.
A operação de G, funciona da seguinte forma: dados os elementos g = hn e g1 = h1n1

em G temos que

hnh1n1 = hh1nn−1h−1
1 nh1 = hh1nh1n1 ∈ G,

pois hh1 ∈ H e nh1n1 ∈ N.
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Observe que, a conjugação em N por h ∈ H produz, para cada h, um automorfismo αh de
N, dado por nαh = nh = h−1nh. Sendo assim, podemos escrever

hnh1n1 = hh1nαh1 n1.

A aplicação h 7→ αh é um homomorfismo α : H → Aut(N). Veja: dados h,h1 ∈ H e
n ∈ N,

(hh1)
α = nαhh1 = h−1

1 h−1nhh1 = (h−1
1 nh)αh1 = (nαh)αh1 = nαhαh1 = hαhα

1 .

E isto determina uma ação de H sobre N por automorfismos.
Com isto em vista, vamos definir agora uma maneira de construir um novo grupo a partir

de dois grupos dados e uma ação por automorfismos.
Sejam H e N grupos, não necessariamente subgrupos de um grupo dado. Suponha que

H aja sobre N por automorfismos, isto é, existe um homomorfismo ϕ : H → Aut(N) dado
por nhϕ

= nh. O conjunto G = {(h,n) | h ∈ H,n ∈ N} forma um grupo quando munido da
seguinte operação ∗: para (h,n) e (h1,n1) em G,

(h,n)∗ (h1,n1) = (hh1,nhϕ

1 n1) = (hh1,nh1n1) ∈ G.

A operação ∗ está bem definida. A associatividade vale, pois para quaisquer (h,n),
(h1,n1) e (h2,n2) em G, temos

((h,n)∗ (h1,n1))∗ (h2,n2) = (hh1,nh1n1)(h2,n2)

= ((hh1)h2,(nh1n1)
h2n2)

= (h(h1h2),nh1h2nh2
1 n2)

= (h,n)(h1h2,n
h2
1 n2)

= (h,n)∗ ((h1,n1)∗ (h2,n2)).

O elemento neutro de G é o par ordenado (1H ,1N) e o elemento inverso do par (h,n) é
(h−1,(n−1)h−1

).

Definição 1.4.2. Sejam H e N grupos e suponha que H aja sobre N com ação σ . O grupo
G definido acima é chamado de produto semidireto (externo) de N por H com ação σ , e
denotado por G = N ⋊σ H.

Sejam H∗ := {(h,1N) | h ∈ H} e N∗ := {(1H ,n) | n ∈ N}. Ao considerarmos a aplicação
f1 : H → H∗ que h 7→ (h,1N), podemos perceber que H∗ é um subgrupo de G isomorfo a H,
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e ao considerarmos f2 : N → N∗ que n 7→ (1H ,n), podemos perceber que N∗ é um subgrupo
normal de G isomorfo a N. Para verificar que N∗ é normal em G, basta conjugar (1H ,n) ∈ N∗

por um elemento arbitrário (h,n1) ∈ G e constatar que o conjugado está em N∗:

(1H ,n)(h,n1) = (h,n1)
−1 ∗ (1H ,n)∗ (h,n1)

= (h−1,(n−1
1 )h−1

)∗ (1H ,n)∗ (h,n1)

= (h−1,(n−1
1 )h−1

n)∗ (h,n1)

= (1H ,((n−1
1 )h−1

n)hn1)

= (1H ,n−1
1 nhn1) ∈ N∗.

Além disso, observe que H∗∩K∗ = {(1H ,1N)} e que G = H∗N∗, pois (h,1N)(1H ,n) =
(h,n). Estes resultados nos permitem identificar G como o produto semidireto interno
de N∗ por H∗. Para simplificar as notações dos elementos de G usaremos justaposição e
escreveremos hn no lugar do par ordenado (h,n). Assim, o produto (h,n) ∗ (h1,n1) será
escrito como hnh1n1.

Uma observação importante é que quando consideramos um grupo H e o homomorfismo
identidade I : Aut(H)→ Aut(H), o produto semidireto G = Aut(H)⋉I H é chamado de
produto holomorfo de H. No último capítulo, estudaremos um subgrupo de um produto
holomorfo.

1.5 Grupos Solúveis

Nesta seção definiremos grupos solúveis e apresentaremos alguns resultados sobre solu-
bilidade que contribuirão para a demonstração do Teorema A.

Definição 1.5.1. Um grupo G é dito solúvel se existe uma cadeia de subgrupos

{1}= G0 ⊴ G1 ⊴ G2 ⊴ · · ·⊴ Gn = G

onde cada termo Gi é normal em Gi+1 e cada fator Gi+1/Gi é abeliano. Uma cadeia com tal
descrição é chamada de cadeia abeliana ou série abeliana.

Decorre naturalmente desta definição que todo grupo abeliano é solúvel.

Proposição 1.5.2. Seja G um grupo e N,H ≤ G, com N normal em G. Vale que:

(1) Se G é solúvel, então H é solúvel;
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(2) Se G é solúvel, então G/N é solúvel.

(3) Se N e G/N são solúveis, então G é solúvel;

(4) Se N e H são solúveis, então NH é solúvel.

Demonstração. (1) Como G é solúvel, considere a seguinte cadeia de subgrupos de G:

{1}= G0 ⊴ G1 ⊴ G2 ⊴ · · ·⊴ Gn = G,

onde Gi ⊴ Gi+1 e Gi+1/Gi é abeliano.
Seja Ki := Gi ∩H, com i = 0,1, ...,n, uma cadeia finita de subgrupos de H. Primeiro,

vamos mostrar que Ki ⊴ Ki+1: sejam g ∈ Ki+1 e k ∈ Ki, temos que g−1kg ∈ H, pois g,k ∈ H.
Como Gi ⊴ Gi+1, k ∈ Gi e g ∈ Gi+1 segue que g−1kg ∈ Gi. Portanto, g−1kg ∈ Ki.

Agora vamos mostrar que Ki+1/Ki é abeliano. Observe que Ki+1/Ki = Ki+1/(Ki+1 ∩Gi).
Pelo segundo Teorema do Isomorfismo 1.2.5, este último quociente é isomorfo a Ki+1Gi/Gi,
que é subgrupo de Gi+1/Gi e, portanto, abeliano. Isso prova que H é solúvel.

(2) Vamos mostrar que G/N possui uma cadeia abeliana. Como G é solúvel, considere a
mesma cadeia de subgrupos de G dada no item anterior. Seja {NGi/N}n

i=0 uma cadeia de
subgrupos de G/N. Pelo Terceiro Teorema do Isomorfismo

NGi+1/N
NGi/N

∼=
NGi+1

NGi
.

Sendo assim, temos que NGi ⊴ NGi+1. Agora, observe que

NGi+1

NGi
=

(NGi+1)Gi

NGi
=

(NGi)Gi+1

NGi
∼=

Gi+1

NGi ∩NGi
∼=

Gi+1

Gi
NGi ∩NGi

Gi

.

Como, por hipótese,
Gi+1

Gi
é abeliano, o último quociente da equação acima também é. Logo,

os fatores da cadeia {NGi/N}n
i=0 são abelianos, e portanto, G/N é solúvel.

(3) Suponhamos que N e G/N são solúveis. Vamos mostrar que existe uma cadeia finita
de subgrupos de G que satisfaz as propriedades da definição. Para N e G/N considere as
cadeias de subgrupos {Ni}r

i=0 e {Hi/N}s
i=0, respectivamente. Como N e G/N são solúveis,

temos que Ni ⊴ Ni+1 e que Ni+1/N é abeliano, também, Hi/N ⊴ Hi+1/N e o fator
Hi+1/N
Hi/N

é

abeliano. Pelo Terceiro Teorema do Isomorfismo,

Hi+1/N
Hi/N

∼=
Hi+1

Hi
.
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Logo, Hi+1/Hi é abeliano. Agora, note que H0 = N. Então, temos a cadeia

{1}= N0 ⊴ N1 ⊴ · · ·⊴ Nr = N = H0 ⊴ H1 ⊴ . . .Hs = G

satisfazendo as propriedades. Portanto, G é solúvel.
(4) Sem nenhuma perda de generalidade, podemos considerar G = NH. Note que, pelo

Segundo Teorema do Isomorfismo,

G
N

=
HN
N

∼=
H

N ∩H
.

Usando o item (2) concluímos que este último grupo quociente é solúvel. Logo, G/N é
solúvel. Por fim, usando o item (3), obtemos que G = NH é solúvel.

Um famoso e importante resultado, obtido por W. Feit e J. G. Thompson em [2], é o
seguinte

Teorema 1.5.3. Todos os grupos finitos de ordem ímpar são solúveis.

Este teorema tem fundamental importância na demonstração do Teorema A.
Antes do próximo resultado, vamos definir o que chamamos de grupo periódico ou grupo

de torção. Para tanto, relembramos a definição de ordem de um elemento: dado um grupo G
e g ∈ G, a ordem do elemento g é o menor inteiro positivo n tal que gn = 1. Se tal inteiro não
existir, dizemos que a ordem do elemento g é infinita.

Definição 1.5.4. Seja G um grupo. Quando todos os elementos de G têm ordem finita,
dizemos que G é um grupo periódico.

Ademais, outros conceitos que precisaremos são os de grupo virtualmente e localmente
solúvel: dizemos que um grupo G é virtualmente solúvel quando G possui um subgrupo
de índice finito que é solúvel. E dizemos que G é localmente solúvel quando todos os seus
subgrupos finitamente gerados são solúveis. De modo geral usamos essa terminologia para
qualquer propriedade de um grupo, por exemplo, finitude; como veremos a seguir. Antes, é
necessário comentar que, dado um elemento de um grupo, o chamamos de involução quase
regular quando esse elemento possui ordem dois e seu centralizador é finito.

Em 1974, V. P. Shunkov provou o

Teorema 1.5.5. Se um grupo G é periódico e possui uma involução quase regular, então G é
localmente finito e virtualmente solúvel.

A demonstração deste teorema se encontra em [10]. Como sua consequência, temos o
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Corolário 1.5.6. Se um grupo periódico G possui um automorfismo involutivo quase regular,
então G é localmente finito e virtualmente solúvel.

Demonstração. Seja G um grupo periódico que possui um automorfismo α que é involutivo
e quase regular. Dentro do produto holomorfo de G tome o subgrupo L := ⟨α⟩⋉I G. Observe
que L é periódico e possui a involução quase regular α , então ao aplicar o Teorema 1.5.5 de
Shunkov obtemos que L é localmente finito e virtualmente solúvel.

Como L é localmente finito, todos os subgrupos finitamente gerados de L são finitos.
Sendo assim, os subgrupos finitamente gerados da cópia de G em L também são. Logo,
podemos afirmar que G é localmente finito.

Agora vamos mostrar que G é virtualmente solúvel. Como L é virtualmente solúvel,
existe K ≤ L de índice finito e solúvel. Sendo G normal em L podemos tomar o subgrupo
GK e, usando o Teorema 1.1.1, escrever

|GK : G∩K|= |GK : G||G : G∩K|= |GK : K||K : G∩K|.

Ademais, sabemos, pelo Segundo Teorema do Isomorfismo, que |GK : G| = |K : G∩K|.
Então, segue que |G : G∩K|= |GK : K|< ∞. Além disso, G∩K é solúvel, pois K é solúvel.
Portanto, G é virtualmente solúvel.

Agora, vamos introduzir um conceito necessário para a demonstração da próxima pro-
posição. Sejam G um grupo e H um subgrupo de G, defina HG =

⋂
g∈G

g−1Hg. Este é um

subgrupo normal de G que está contido em H. Observe que H é normal em G se, e somente
se, H = HG. Vamos chamar HG de núcleo normal de H em G.

Proposição 1.5.7. Se G é um grupo localmente solúvel e virtualmente solúvel, então G é
solúvel.

Demonstração. Como G é virtualmente solúvel, existe H ≤ G de índice finito que é solúvel.
Tome o núcleo normal HG. Sabemos que HG é solúvel, pois é subgrupo de H, e também que
|G : HG| é finito, considere-o igual a n. Agora, seja T = {t1, t2, ..., tn} ⊆ G um transversal de
HG em G. Assim, temos que

G = t1HG
.
∪ t2HG

.
∪ ...

.
∪ tnHG

= ⟨t1, t2, ..., tn,HG⟩
= ⟨t1, t2, ..., tn⟩HG.

Já que G é localmente solúvel, o subgrupo ⟨t1, t2, ..., tn⟩ é solúvel. Portanto, usando a
Proposição 1.5.2 item (2), concluímos que G é solúvel.



Capítulo 2

Grupos Unicamente 2-divisíveis

2.1 Caracterização e Propriedades

Neste capítulo estudaremos os grupos 2-divisíveis na direção de obter resultados para a
demonstração do Teorema A. Veremos quando essa propriedade é herdada por subgrupos e
também quando grupos finitos são 2-divisíveis. Vamos começar com a seguinte

Definição 2.1.1. Um grupo G é 2-divisível se para cada elemento x ∈ G existe um elemento
y ∈ G tal que y2 = x. Se o elemento y é único, dizemos que G é um grupo unicamente
2-divisível.

Uma observação importante é que um grupo G unicamente 2-divisível não possui involu-
ções, isto é, elementos de ordem 2. Caso contrário, se existisse g ∈ G tal que a ordem g é 2,
teríamos que g2 = 1 e (1)2 = 1. Mas, isto contradiz a unicidade.

Em geral, não podemos dizer que grupos 2-divisíveis não possuem involuções. Por
exemplo, o grupo multiplicativo dos números complexos (C\{0}, ·) é 2-divisível, pois todos
os seus elementos têm duas raízes quadradas, mas este grupo possui a involução -1.

A afirmação é válida, porém, para grupos finitos 2-divisíveis. Antes de verificar isso,
vejamos a

Proposição 2.1.2. Seja G um grupo finito. G é 2-divisível se, e somente se, a ordem de G é
ímpar.

Demonstração. Primeiro, vamos mostrar que se G é 2-divisível, então a ordem de G é ímpar.
Suponha, por contradição, que a ordem de G seja par. Pelo Lema 1.3.2 para p = 2, existe

g1 ∈ G tal que a ordem de g1 é 2. Então, a aplicação ϕ : G → G, dada por gϕ = g2, não é
injetiva pois gϕ

1 = 1 = 1ϕ . Como uma aplicação com domínio e contradomínio finitos e de
mesma cardinalidade é injetiva se, e somente se, é sobrejetiva, segue que ϕ não é sobrejetiva.
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Isto significa que existe g ∈ G para o qual não existe h ∈ G tal que h2 = g. Mas, isto contradiz
a hipótese de que G é 2-divisível. Logo, a ordem de G deve ser ímpar.

Resta mostrar que se |G| é ímpar, então G é 2-divisível.
Seja |G|= n, com n ímpar, e considere a mesma aplicação ϕ : G → G, dada por gϕ = g2.

Observe que para todo g ∈ G, o elemento g
n+1

2 ∈ G satisfaz

(g
n+1

2 )ϕ = (g
n+1

2 )2 = gn+1 = gng = g.

Portanto, ϕ é sobrejetiva. Assim, para cada g ∈ G existe h ∈ G tal que h2 = g. Logo, G é
2-divisível.

Agora, sabemos que um grupo G finito e 2-divisível possui ordem ímpar. Sendo assim, 2
não divide a ordem de G. Logo, pelo Teorema 1.3.2 segue que G não possui elemento de
ordem 2.

Em relação aos subgrupos, temos o seguinte: para grupos infinitos 2-divisíveis, em geral,
não vale que seus subgrupos são 2-divisíveis. Veja o exemplo: o grupo (R+ \ {0}, ·) é
2-divisível, porém, o subgrupo (Q+ \{0}, ·) não é, pois não existe elemento neste subgrupo
cujo quadrado é 2. Todavia, para grupos finitos vale a seguinte:

Proposição 2.1.3. Seja G um grupo finito 2-divisível. Se H é subgrupo de G, então H
também é 2-divisível.

Demonstração. Sabemos que |G| é ímpar. Do Teorema de Lagrange sabemos que |H| divide
|G|. Logo, |H| é ímpar. Portanto, segue do resultado anterior que H é 2-divisível.

Tanto para grupos finitos como para grupos infinitos, vale a

Proposição 2.1.4. Em um grupo unicamente 2-divisível, a interseção finita de subgrupos
2-divisíveis é um subgrupo 2-divisível.

Demonstração. Seja G o referido grupo e sejam H1,H2, ...,Hn subgrupos 2-divisíveis de G.

Tome o subgrupo H :=
n⋂

i=1

Hi. Veja que se x ∈ H, então x está em cada Hi. Sabemos que

existe um único elemento y ∈ G tal que y2 = x. Note que esse elemento y também pertence a
cada Hi, pois estes são subgrupos 2-divisíveis. Então, y ∈ H e, portanto, H é 2-divisível.

A propriedade de um grupo ser unicamente 2-divisível é herdada por centralizadores.
Veja:

Proposição 2.1.5. Seja G um grupo unicamente 2-divisível. Se T é um subconjunto não
vazio de G, então CG(T ) é um subgrupo unicamente 2-divisível de G.
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Demonstração. Já sabemos que centralizadores são sempre subgrupos. Por isso, precisamos
apenas mostrar que CG(T ) é unicamente 2-divisível.

Tomando x ∈CG(T ), temos que xt = tx para todo t ∈ T . Sabemos que existe um único
y ∈ G tal que y2 = x. Então, para verificar o fato acima, precisamos mostrar que y ∈CG(T ),
isto é, que yt = ty para todo t ∈ T . Veja que

(t−1yt)2 = t−1ytt−1yt = t−1y2t = t−1xt = t−1tx = x.

Daí, pela unicidade do elemento cujo quadrado é igual a x, segue que t−1yt = y, assim,
obtemos que yt = ty para todo t ∈ T. Logo, y ∈ CG(T ) e, portanto, CG(T ) é unicamente
2-divisível.

O resultado abaixo será muito útil na conclusão da demonstração do Teorema A.

Proposição 2.1.6. Seja G um grupo unicamente 2-divisível. Se ϕ é um automorfismo de G,
então CG(ϕ) é um subgrupo unicamente 2-divisível de G.

Demonstração. Já sabemos que CG(ϕ) é um subgrupo de G. Temos apenas que mostrar que
para todo x ∈CG(ϕ) existe um único y ∈CG(ϕ) tal que y2 = x.

Tome x ∈CG(ϕ). Pela hipótese, existe um único y ∈ G tal que y2 = x. Veja que (y2)ϕ =

xϕ = x = y2. Daí, (yϕ)2 = y2. Como G é unicamente 2-divisível, segue da última igualdade
que yϕ = y. Portanto, y ∈CG(ϕ).



Capítulo 3

A prova do Teorema A

Os esforços realizados neste capítulo têm como objetivo fornecer a demonstração do
Teorema A.

Agora, vamos obter alguns resultados. Começaremos estabelecendo notações fixas para
as próximas seções:

(1) salvo menção em contrário, U denotará um grupo infinito unicamente 2-divisível. O
elemento ν ∈ Aut(U) será um automorfismo involutivo quase regular;

(2) G denotará o produto semidireto de U pelo ⟨ν⟩, identificando U e ⟨ν⟩ com as suas
imagens em G. A notação Inv(G) se referirá ao conjunto das involuções do grupo G;

(3) definimos S := {x ∈U |xν = x−1};

(4) a letra A simbolizará um subgrupo fixado de U , que é infinito, maximal (com respeito
à inclusão) abeliano e é invertido por ν (i.e. todos os seus elementos são invertidos por
ν). A existência de A será demonstrada na seção 3.2, através do Lema de Zorn e do
item (2) do Lema 3.2.2;

(5) para cada u ∈U denotaremos por Au o maior subgrupo de A invertido pelo elemento
uνu−1 de G.

3.1 Resultados Auxiliares

Primeiro, vamos verificar que os subgrupos A e Au são unicamente 2-divisíveis.

Lema 3.1.1. O subgrupo A é unicamente 2-divisível. E também, para qualquer u ∈ U, o
subgrupo Au é unicamente 2-divisível.



3.1 Resultados auxiliares 25

Demonstração. Seja a ∈ A um elemento qualquer. Sabemos que existe um único elemento
x ∈U tal que x2 = a. Queremos mostrar que x ∈ A.

Como A é invertido por ν , temos aν = a−1. Então, (x2)ν = (x2)−1, e daí (xν)2 = (x−1)2.
Já que U é unicamente 2-divisível, vale que xν = x−1, ou seja, ν inverte x. Além disso, x
comuta com qualquer elemento de A. De fato, ao tomarmos um elemento arbitrário b ∈ A,
temos que

(b−1xb)2 = b−1x2b = b−1ab = b−1ba = a.

Assim, pela unicidade do elemento cujo quadrado é igual a a, vale que b−1xb = x, ou seja,
x comuta com b. Consequentemente, como A é abeliano, segue que o subgrupo ⟨x,A⟩ é
abeliano. Agora, veja que para qualquer b ∈ A,

(xb)ν = xνbν = x−1b−1 = b−1x−1 = (xb)−1. (3.1.1)

Com isto, concluímos que qualquer elemento do subgrupo ⟨x,A⟩ é invertido por ν . Sendo
assim, como ⟨x,A⟩ contém A, que por hipótese é maximal, temos que ⟨x,A⟩= A, e portanto,
x ∈ A. Logo, A é unicamente 2-divisível.

Para mostrar que o subgrupo Au é unicamente 2-divisível, procedemos analogamente.
Para qualquer elemento a ∈ Au, sabemos que existe um único elemento x ∈ A tal que x2 = a,
e queremos mostrar que x ∈ Au.

De fato, como Au é invertido por uνu−1, temos que auνu−1
= a−1. Então, vale que

(x2)uνu−1
= (x2)−1, e daí (xuνu−1

)2 = (x−1)2. Já que A é unicamente 2-divisível, segue que
xuνu−1

= x−1. Como A é abeliano, o subgrupo ⟨x,Au⟩ é abeliano. Para verificar que os
elementos de ⟨x,Au⟩ são invertidos por uνu−1 basta repetir a equação (3.1.1) trocando ν por
uνu−1 e considerando que b é um elemento qualquer de Au. Agora, temos que o subgrupo
⟨x,Au⟩ contém Au, mas Au é o maior subgrupo de A invertido por uνu−1, então segue que
⟨x,Au⟩= Au. Logo, x ∈ Au, e portanto, Au é unicamente 2-divisível.

No próximo lema vamos ver o conjunto S, definido acima, como um subconjunto do
grupo G.

Lema 3.1.2. Seja S := {x ∈U |xν = x−1}. Podemos reescrevê-lo como S = {νν
x|x ∈U}.

Demonstração. Seja y ∈ S. Existe um único elemento x0 ∈U tal que x2
0 = y. Como yν = y−1,

temos que (x2
0)

ν = x−2
0 e daí (xν

0 )
2 = (x−1

0 )2. Sendo U um grupo unicamente 2-divisível, vale
que xν

0 = x−1
0 , ou seja, νx0ν = x−1

0 . Multiplicando esta última equação à esquerda por x−1
0 ,

temos x−1
0 νx0ν = x−2

0 , o que é equivalente a ν
x0ν = x−2

0 . Ao inverter ambos os lados desta,
obtemos que νν

x0 = x2
0 = y. Logo, y ∈ {νν

x|x ∈U} e, consequentemente, S ⊆ {νν
x|x ∈U}.
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Por outro lado, tomando z ∈ {νν
x|x ∈U}, temos que z = νν

x0 para algum x0 ∈U e

zν = νzν = ννν
x0ν = ν

x0ν = z−1.

Logo, z ∈ S; assim, {νν
x|x ∈U} ⊆ S. Portanto, S = {νν

x|x ∈U}.

A demonstração do próximo lema se encontra em [6].

Lema 3.1.3. Seja H um grupo formado pela união finita de n classes laterais dos subgrupos
C1,C2, ...,Cn de H:

H =
n⋃

i=1

Cigi.

Então o índice (de pelo menos) um desses subgrupos em H não excede n.

Consequência deste lema é o

Corolário 3.1.4. Seja H um grupo formado pela união finita de n subconjuntos S1,S2, ...,Sn

de H:

H =
n⋃

i=1

Si.

Para cada i definimos Ci := ⟨ab−1|a,b ∈ Si⟩. Então, o índice (de pelo menos) um dos
subgrupos C1,C2, ...,Cn em H não excede n.

Demonstração. Para cada i = 1,2, ...,n, tome gi ∈ Si. Vamos mostrar que Si ⊆Cigi para todo
i=1, 2, ..., n, onde Cigi = ⟨ab−1|a,b ∈ Si⟩gi.

Note que em Cigi há um elemento da forma ab−1gi. E podemos escrever qualquer
elemento x ∈ Si, inclusive gi, como x = xg−1

i gi, ao considerarmos a = x e b = gi. Logo

x ∈ Cigi, e portanto, Si ⊆ Cigi. Agora, temos que H =
n⋃

i=1

Si ⊆
n⋃

i=1

Cigi. E por outro lado,

temos que Cigi ⊆ H e
n⋃

i=1

Cigi ⊆ H. Assim, concluímos que H =
n⋃

i=1

Cigi. Por fim, aplicando

o Lema 3.1.3, segue que o índice de (pelo menos) um dos Ci em H não excede n.

No próximo lema, mostraremos que as involuções do grupo G são conjugadas. E, em
seguida, usaremos esse resultado para expressar os elementos de S em termos das involuções
de G.

Lema 3.1.5. (1) Todas as involuções em G são conjugados;

(2) S = {ντ|τ ∈ Inv(G)}.
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Demonstração. (1) Como G é um produto semidireto de U por ⟨ν⟩, qualquer elemento g ∈ G
é um produto da forma g = xy, com x ∈U e y ∈ ⟨ν⟩. Mas, necessariamente, y = ν ou y = id,
então g = xν ou g = x ∈U . Sendo assim, se g ∈ Inv(G), isto é, se g é uma involução em G,
então g possui a forma g = xν , pois U não admite involuções.

Seja τ ∈ Inv(G). Então, τ = xν para algum x ∈U . Como τ é uma involução, x ∈ S. De
fato, τ

2 = 1G e isto implica que (xν)2 = 1G, assim, xνxν = 1G e reescrevendo isto temos
que xxν = 1G, o que nos dá xν = x−1. Logo, x ∈ S.

Agora, seja y ∈U o único elemento tal que y2 = x. Então, temos que (y2)ν = (y2)−1 e,
equivalentemente, (yν)2 = (y−1)2. Como U é unicamente 2-divisível, vale que yν = y−1.
Logo, y∈ S. Daí, como νyν = y−1 tem-se que yν = νy−1. Multiplicando esta última equação
à esquerda por y, temos y2

ν = yνy−1 e, como y2 = x, obtemos xν = yνy−1, isto é, τ = yνy−1.
Portanto, a involução τ é um conjugado de ν .

(2) Segue do Lema 3.1.2.

A seguir, vamos obter alguns resultados que envolvem um subgrupo abeliano 2-divisível
de U .

Lema 3.1.6. Seja D um subgrupo abeliano 2-divisível de U. Então, vale o seguinte:

(1) CU(D)/D é um grupo unicamente 2-divisível.

(2) se D é invertido por ν , então νD é um automorfismo involutivo quase regular de
CU(D)/D.

(3) assuma que D é invertido por ν e seja E/D um subgrupo de CU(D)/D que é invertido
por νD. Então, E é invertido por ν , e em particular, E é abeliano.

Demonstração. (1) Primeiro, observamos que como D é abeliano, D ≤CU(D). E mais, se
c ∈ CU(D), temos cx = xc, para todo x ∈ D, daí cD = Dc. Logo, D ⊴ CU(D). Portanto,
CU(D)/D é um grupo.

Agora, defina C :=CU(D). Assuma para a,b ∈C que a2D = b2D. Sejam x,y ∈ D com
a2x = b2y, e como D é unicamente 2-divisível considere u,w ∈ D tais que u2 = x e w2 = y.
Sendo assim, temos que a2u2 = b2w2, e como a e b comutam com qualquer elemento de
D, obtemos que (au)2 = (bw)2. Portanto, como C é unicamente 2-divisível pela Proposição
2.1.5, segue que au = bw. Consequentemente, auD = bwD, o que nos permite concluir que
aD = bD.

Além disso, mostremos também que para todo aD ∈ C/D existe bD ∈ C/D tal que
(bD)2 = aD. Seja aD um elemento qualquer em C/D e seja b ∈U tal que b2 = a ∈C. Então,
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como C é unicamente 2-divisível, b ∈C, e portanto, bD ∈C/D. Agora, veja que

(bD)2 = bDbD = b2D = aD.

Assim, concluímos que CU(D)/D é um grupo unicamente 2-divisível.
(2) Seja a aplicação νD : C/D → C/D, definida por (xD)νD = xνD. A bijetividade de

νD segue da bijetividade de ν , assim como o fato de νD ser um automorfismo: dados
aD,bD ∈C/D, temos

(aDbD)νD = (abD)νD

= (ab)νD

= aνbνD

= aνDbνD

= (aD)νD(bD)νD.

E também,
(νD)2 = νDνD = ν

2D = IdD.

Portanto, νD é um automorfismo involutivo.
Agora, tome aD ∈ CC/D(νD), isto é, suponha que aD centraliza νD. Assim, temos

νD = a−1DνDaD, donde vem que νD = a−1
νaD, reescrevendo, obtemos νD = ν

aD. Logo,
ν

a = νd para algum d ∈D. Tome x∈D com x2 = d. Como ν inverte x, temos que νx= x−1
ν .

Então,
ν

a = νx2 = νxx = x−1
νx = ν

x.

Daí, a−1
νa = x−1

νx, e isto implica que ax−1
ν = νax−1. Logo, ax−1 ∈ CC(ν) ⊆ CU(ν).

Podemos escrever, a = ax−1x, assim, aD = ax−1xD e, equivalentemente, aD = ax−1D.

Então, vale a igualdade:
CC/D(νD) =CC(ν)D/D,

onde CC(ν)D/D = {adD |ad ∈ CC(ν), d ∈ D}. Logo, como ν é quase regular, o CC(ν) é
finito e o CC(ν)D/D também o é. Portanto, νD é quase regular.

(3) Para provar este item, basta mostrar que qualquer elemento y ∈ E é invertido por ν e
também que os elementos de E comutam entre si.

Seja xD ∈ C/D um elemento invertido por νD. Então, aplicando νD em xD, temos
xνD = x−1D, daí xν = x−1d, para algum d ∈ D. Conjugando esta última igualdade por ν

obtemos que x = x−νd−1, assim, também temos que xν = x−1d−1. Comparando as duas
expressões de xν , concluímos que d = 1.
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Agora, seja y um elemento qualquer em E. Por hipótese, yD ∈ E/D é invertido por νD.
Daí, sabendo que d = 1 para um elemento qualquer x ∈ C, inclusive para x = y, obtemos
que yν = y−1d = y−1. Logo, E é invertido por ν . E para concluir que E é abeliano, tome
elementos quaisquer y1,y2 ∈ E e veja que

y1y2 = (y−1
1 )ν(y−1

2 )ν = (y−1
1 y−1

2 )ν = ((y2y1)
−1)ν = y2y1.

3.2 Resultados Principais

No início deste capítulo, fixamos a notação A para um subgrupo maximal de U , que é
infinito, abeliano e invertido por ν . Nesta seção, iniciaremos demonstrando o resultado que
assegura a existência de tal subgrupo. Porém, antes disso, precisamos relembrar o Lema de
Zorn.

Lema 3.2.1. (Zorn) Se, em um conjunto não vazio e parcialmente ordenado, todo subconjunto
totalmente ordenado possui uma cota superior, então esse conjunto possui um elemento
maximal.

No nosso contexto, a relação de ordem considerada é a inclusão e o conjunto em questão é
o conjunto de subgrupos de U com alguma propriedade. Observe que a família dos subgrupos
de U que são abelianos possui uma cota superior, pois qualquer cadeia de subgrupos abelianos
tem como cota superior a união dos subgrupos da cadeia. Logo, pelo Lema de Zorn, existe
um subgrupo abeliano maximal em U . Analogamente, podemos argumentar para a família
dos subgrupos de U que são invertidos por ν . Portanto, U possui um subgrupo maximal
abeliano que é invertido por ν . No próximo lema, provaremos a infinitude desse subgrupo.

Lema 3.2.2. Seja D um subgrupo abeliano de U (admitimos D = {1}) tal que D é invertido
por ν e CU(D) é infinito. Assuma que

(S∩CU(D))\D ̸=∅.

Então, vale o seguinte:

(1) Existe um elemento w ∈CU(D)\D que é invertido por ν e tal que CU(⟨D,w⟩) é infinito.

(2) Existe um subgrupo de U infinito e abeliano que é invertido por ν .

Demonstração. (1) Seja V := CU(D). Da Proposição 2.1.5, sabemos que V é um grupo
infinito unicamente 2-divisível. Observe que ν também é um automorfismo para V . Com
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efeito, dado u ∈V , temos que uν ∈V , pois, se d ∈ D ocorre que uν centraliza d. Veja:

uνd = uν(d−1)ν = (ud−1)ν = (d−1u)ν = (d−1)νuν = duν .

Sendo assim, como V é um grupo infinito unicamente 2-divisível e ν é um automorfismo
involutivo quase regular para V , sem perda de generalidade, podemos assumir que U =V , e
ainda, que D ≤ Z(U), pois D ≤ Z(V ).

Do fato de que a (S∩CU(D))⊂ S, decorre que (S∩CU(D))\D ⊂ S\D. Logo, pelo que
assumimos como hipótese, segue que S \D ̸= ∅. Sendo assim, tome b ∈ S \D, e escreva
b = ντ com τ ∈ Inv(G). Seja

u ∈U tal que u−2 = ντ.

Veja que ao conjugar por τ ambos os lados desta última equação obtemos que τν = (u−2)τ ,
mas τν = u2, então u2 = (u−2)τ . Conjugando por τ novamente, temos que (u2)τ = u−2,
reescrevendo obtemos (uτ)2 = (u−1)2. Como U é unicamente 2-divisível, concluímos que
uτ = u−1. Usando um argumento análogo, também constatamos que uν = u−1. Sendo assim,
da igualdade ντ = u−2 vem que

ν = u−1u−1
τ = u−1

ττu−1
τ = u−1

τ(u−1)τ = u−1
τu = τ

u.

Agora, afirmamos que existe h ∈CU(τ) tal que hu é invertido por um número infinito de
involuções de G. Suponha por um momento que essa afirmação vale.

Observação: Para todo h ∈CU(τ), temos que hu /∈ D.
De fato, se h = 1 obtemos hu = u, e como b = u−2 /∈ D, decorre que u /∈ D. Caso

contrário, se hu ∈ D e h ̸= 1, então como a involução τ inverte hu temos que

u−1h−1 = (hu)τ = hτuτ = hu−1.

Isso significa que u inverte h. Mas, isto não é possível em U . Se fosse possível, da equação
acima, teríamos que uhu−1 = h−1, donde decorre que

uhu−1h = 1, (3.2.1)

mas, como D ≤ Z(U), temos que huu = uhu, e isso implica que hu = uh. Daí, comutando u
com h na equação (3.2.1), temos huu−1h = 1, o que leva a h2 = 1. Mas, isto não ocorre em
um grupo unicamente 2-divisível quando h ̸= 1. Portanto, a observação vale.
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Como todas as involuções em G são conjugadas, ao conjugar hu por um elemento
apropriado de CU(hu), podemos assumir que ν inverte hu. Veja: se x−1 ∈CU(hu), vale que

hu = (hu)x−1
.

Como a involução τ inverte hu, temos (hu)τ = (hu)−1, substituindo hu do lado esquerdo desta
equação por (hu)x−1

, vem que ((hu)x−1
)τ = (hu)x−1τ = (hu)−1. Como ν = x−1

τ , obtemos
que (hu)ν = (hu)−1. Agora, perceba que como hu é invertido por um número infinito de
involuções, podemos concluir que CU(hu) é infinito.

Portanto, tomando w = hu, e sabendo que CU(w)⊂U =CU(D), podemos deduzir que
CU(⟨D,w⟩) =CU(D)∩CU(w) =CU(w) é infinito. Então, de fato, existe w ∈CU(D)\D que
é invertido por ν e tal que o CU(⟨D,w⟩) é infinito.

Porém, resta demonstrar a existência de h. Façamos isso.
Para cada a ∈ S, seja

sa := ντ
a.

Como τ
a é uma involução de G, temos que sa ∈ S. Então, seja la ∈U tal que

l−2
a = sa.

Veja que

(l−2
a )ν = (sa)

ν = (ντ
a)ν = νντ

a
ν = τ

a
ν = (ντ

a)−1 = s−1
a = l2

a .

Conjugando por ν ambos os lados da equação (l−2
a )ν = l2

a , decorre que (l2
a)

ν = l−2
a , equiva-

lentemente, (lν
a )

2 = (l−1
a )2. Logo, lν

a = l−1
a .

Por cálculos análogos, podemos concluir também que lτa

a = l−1
a . Partindo do fato de que

la é invertido por ν , temos
lν
a l−1

a = l−2
a = sa = ντ

a,

daí ν laν l−1
a = ντ

a e, pela lei do cancelamento à esquerda, temos laν l−1
a = τ

a, ou seja,
ν = τ

ala . Daí, como ν também é igual a τ
u, segue que τ

ala = τ
u. Logo, obtemos

alau−1
τ = τalau−1,

isto é, alau−1 ∈CU(τ).
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Defina ha := alau−1, assim, la = a−1hau. Como la e a são invertidos por ν , ao conjugar a
última igualdade por ν , obtemos

a(hau)ν = l−1
a = l−1

a a−1a = (ala)−1a = (alau−1u)−1a = (hau)−1a,

donde, a(hau)νa−1 = (hau)−1, e ainda, aνhauνa−1 = aνhau(aν)−1 = (hau)−1. Observe
que aν é uma involução de G, pois (aν)2 = aνaν = aaν = aa−1 = 1G. Então, podemos
escrever

(hau)aν = (hau)−1.

Agora, observe que CU(τ) é finito pois τ é um conjugado de ν e, por hipótese, CU(ν)

é finito. Sendo assim, o conjunto {ha | a ∈ S} é finito, pois está contido em CU(τ). Além
disso, o conjunto S é infinito, pois existem infinitas involuções em G. Isto significa que o
conjunto das involuções {aν | a ∈ S} é infinito. Portanto, existe h = ha ∈CU(τ) para o qual
existem infinitas involuções aν ∈ G, com a ∈ S, que invertem hu. E assim, terminamos a
demonstração de (1).

(2) Pelo Lema de Zorn, existe um subgrupo D0 de U que é maximal, abeliano e que é
invertido por ν . Suponha que CU(D0) é infinito. Note que se D0 é infinito, o resultado vale.

Vamos supor, por contradição, que D0 seja finito. Sabemos que ν age sobre CU(D0).
Observe que se x ∈ CU(D0), então νν

x ∈ S e νν
x = νx−1

νx = (x−1)νx ∈ CU(D0). Como
podemos tomar infinitos x em CU(D0), segue que S∩CU(D0) é infinito. Então, (S∩CU(D0))\
D0 ̸=∅. Pelo item (1) existe w∈CU(D0)\D0 que é invertido por ν . Sendo assim, o subgrupo
⟨D0,w⟩ é abeliano e invertido por ν (observe que, como este subgrupo é abeliano, o produto
de dois elementos que são invertidos por ν também é invertido por ν). Mas, como D0 é
maximal segue que D0 = ⟨D0,w⟩, e isto implica que w ∈ D0, uma contradição.

Agora, vamos provar o seguinte lema técnico.

Lema 3.2.3. Seja x ∈ U, e seja s ∈ U o único elemento tal que s−2 = νx−1
νx. Então,

xs ∈CU(ν).

Demonstração. Afirmamos que ν inverte s. De fato, ao conjugar por ν ambos os lados da
equação s−2 = νν

x, temos que (s−2)ν = ν
x
ν . Mas, ν

x
ν = s2. Então, (s−2)ν = s2. Conju-

gando por ν novamente, obtemos (s2)ν = s−2. E reescrevendo, (sν)2 = (s−1)2. Portanto,
como U é unicamente 2-divisível vale que sν = s−1.

De maneira inteiramente análoga, também concluímos que ν
x inverte s. Usando estes

dois fatos, temos

1 = s2
νν

x = ννs2
νν

x = νs−2
ν

x = νs−1
ν

x
ν

xs−1
ν

x = νs−1
ν

xs = νs−1x−1
νxs,
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e isto implica que xsν = νxs. Portanto, xs ∈CU(ν).

Lembramos que fixamos a notação Au, com u ∈U , para denotar o maior subgrupo de A
que é invertido por uνu−1. Tal subgrupo possui índice finito em A. Veja:

Proposição 3.2.4. O índice |A : Au| é finito.

Demonstração. Para cada elemento a ∈ A e considere o elemento

νν
au.

Como νν
au = ν(au)−1

νau = ((au)−1)νau, podemos ver que νν
au ∈ U . Sendo assim,

seja sa ∈U tal que s−2
a = νν

au. Pelo Lema 3.2.3 obtemos que

wa := ausa ∈CU(ν). (3.2.2)

Agora, defina
Ma := {b ∈ A | wb = wa}.

Para cada wc ∈CU(ν), podemos construir um conjunto Mc, e como CU(ν) é finito,

o conjunto {Mc | c ∈ A} também é finito. (3.2.3)

Além disso, observe que se x ∈ A, então x está em algum Mc em que wx = wc, e como
consequência, x ∈

⋃
c∈A

Mc. Logo, A ⊆
⋃
c∈A

Mc. Por outro lado, se x ∈
⋃
c∈A

Mc, então x está

em algum Mc, que por sua vez está contido em A, assim, x ∈ A. Logo,
⋃
c∈A

Mc ⊆ A, e

portanto,
A =

⋃
c∈A

Mc. (3.2.4)

Agora, com raciocínio análogo ao que usamos na demonstração do lema anterior concluí-
mos que ν inverte sa. Além disso, ν inverte a ∈ A e ν centraliza wa.

De (3.2.2) temos que s−1
a = w−1

a au. Conjugando por ν ambos os lados desta equação,
obtemos νs−1

a ν = νw−1
a auν . Daí, s−1

a = ννw−1
a auνν . Comutando ν com w−1

a , temos
que s−1

a = νw−1
a νau. Como w−1

a = s−1
a u−1a−1, vem que s−1

a = (s−1
a u−1a−1)νau. Já que

ν inverte a e sa, reescrevemos s−1
a = sau−νaau, donde segue que s−2

a = u−νaau. Portanto,
s−1

a = u−νaausa = u−νawa.
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Então, obtemos a igualdade w−1
a au = u−νawa. Tendo em vista que busb = ausa, para

todo b ∈Ma, temos w−1
a bu = νu−1

νbwa, então νw−1
a bu = u−1

νbwa, assim

νw−1
a b = u−1

νbwau−1. (3.2.5)

Seja c ∈ Ma. Da equação (3.2.5), também temos que νw−1
a c = u−1

νcwau−1. Como
c−1 = uw−1

a c−1
νuνw−1

a e b = waνu−1
νbwau−1, segue que

c−1b = uw−1
a c−1

νuνw−1
a waνu−1

νbwau−1 = uw−1
a c−1bwau−1,

para todo b,c ∈Ma.

Agora,vamos mostrar que uw−1
a νwau−1 inverte c−1b usando esta última equação e o fato

de que ν inverte c−1b:

uw−1
a νwau−1c−1buw−1

a νwau−1 = uw−1
a νc−1bνwau−1

= uw−1
a b−1cwau−1

= (uw−1
a c−1bwau−1)−1

= (c−1b)−1.

Mas, uw−1
a νwau−1 = uw−1

a waνu−1 = uνu−1, então uνu−1 inverte c−1b e também seu
inverso. Logo, podemos concluir que

uνu−1 inverte ⟨b−1c | b,c ∈Ma⟩,para todo a ∈ A.

Por (3.2.3), pela equação (3.2.4) e pelo Corolário 3.1.4, um dos subgrupos

⟨b−1c | b,c ∈Ma⟩

têm índice finito em A, então |A : Au|< ∞.

Lema 3.2.5. Seja B um subgrupo abeliano finitamente gerado de U que é invertido por ν .
Então, A contém um subgrupo A1 de índice finito tal que ⟨A1,B⟩ é abeliano.

Demonstração. Lembre-se da definição de A, que fixamos no início do capítulo no item
(4), e considere para b ∈ B a definição de Au, com u = b, estabelecida no item (5). Seja
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B = {b1,b2, ...,bn} o conjunto de geradores de B e seja

A1 :=
n⋂

i=1

Abi.

Pela Proposição 3.2.4, |A : Abi| é finito; e pelo Teorema 1.1.2 de Poincaré, temos que
|A : A1| é finito. Além disso, como A1 ≤ Abi e biνb−1

i inverte Abi , vale que biνb−1
i também

inverte A1 para todo bi ∈ B; e ainda, como A1 é subgrupo de A, sabemos que ν inverte
A1, assim, para todo a ∈ A1 temos abiνb−1

i = a−1 e aν = a−1. Então, abiνb−1
i = aν . Daí,

νbiνb−1
i abiνb−1

i ν = a. Lembrando que ν inverte bi, obtemos que b−2
i ab2

i = a. Logo,
b2

i a = ab2
i . Portanto, b2

i ∈CU(A1). Pela Proposição 2.1.5, CU(A1) é unicamente 2-divisível,
então bi ∈CU(A1). Logo, todos os geradores de B comutam com todos os elementos de A1, e
isto significa que, todos os elementos de B comutam com todos os elementos de A1; ademais
B é abeliano e A1 ≤ A é abeliano, então concluímos que ⟨A1,B⟩ é abeliano.

Lema 3.2.6. Seja D um subgrupo 2-divisível de A com índice finito. Então, CU(D)/D é finito
e solúvel.

Demonstração. Seja C :=CU(D) e C :=C/D. Suponha por contradição que C é infinito. Do
Lema 3.1.6 item (1), C é unicamente 2-divisível. E como, por hipótese, |A : D| é finito e
A ≤C, temos que A := A/D é um subgrupo finito de C.

Observe que, por hipótese, D é unicamente 2-divisível, é abeliano e é invertido por ν .
Então, podemos aplicar o Lema 3.1.6, item (2), e concluir que νD é um automorfismo
involutivo quase regular de C. Agora, aplicando o Lema 3.2.2 item (2) (com C no lugar de
U e νD no lugar de ν), concluímos que existe um subgrupo de C infinito e abeliano que é
invertido por νD, e é maximal. Vamos denotá-lo por E.

Agora, note que A é abeliano, finitamente gerado e é invertido por νD. Aplicando o Lema
3.2.5 temos que E contém um subgrupo E1 de índice finito tal que E2 := ⟨E1,A⟩ é abeliano.
Sendo assim, E2 é invertido por νD pois seus geradores o são. Então, aplicando o Lema
3.1.6, item (3), obtemos que E2 em C é invertido por ν e é abeliano. Como E2 é gerado por
E1 e A, segue que E2 contém A propriamente. Mas, isto contradiz a maximalidade de A e
mostra que C é finito.

Por fim, como C é finito e unicamente 2-divisível, a Proposição 2.1.2 garante que C
possui ordem ímpar. Pelo Teorema 1.5.3 de Feit-Thompson, concluímos que C é solúvel.

Lema 3.2.7. Seja R := ⟨S⟩. Se H é um subgrupo finitamente gerado de R, então H é solúvel
e H/Z(H) é finito.
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Demonstração. Seja h um elemento qualquer em R. Como S = {νν
u | u ∈U}, temos que

h =
n

∏
i=1

(νuiνu−1
i )αi,

onde ui ∈U e αi =±1, com i = 1,2, ...,n.

Seja D :=
n⋂

i=1

Aui , onde Aui é o subgrupo de A estabelecido no início do capítulo. Da

Proposição 3.2.4, temos que o índice |A : Aui| é finito, com isso, segue do Teorema 1.1.2
(Teorema de Poincaré) que o índice |A : D| é finito. Além disso, pelo Lema 3.1.1, temos
que Aui é 2-divisível, e como em um grupo unicamente 2-divisível, a interseção finita de
subgrupos 2-divisíveis também é um subgrupo 2-divisível, segue que D é 2-divisível. Então,
podemos aplicar o Lema 3.2.6 e concluir que CU(D)/D é finito e solúvel.

Como Aui é o maior subgrupo de A invertido por uiνu−1
i , podemos concluir que D também

é invertido por ν e por u1νu−1
1 ,u2νu−1

2 , ...,unνu−1
n . Assim, para qualquer elemento d ∈ D,

temos
uiνu−1

i duiνu−1
i = d−1.

Conjugando por ν ambos os lados desta equação, obtemos

νuiνu−1
i duiνu−1

i ν = νd−1
ν = d.

Daí, temos que νuiνu−1
i d = dνuiνu−1

i . Logo, (νuiνu−1
i )αi ∈ CU(D), com i = 1,2, ...,n.

Portanto, como h é o produto dos elementos da forma (νuiνu−1
i )αi , segue que h ∈CU(D) ou,

equivalentemente, D ⊆CU(h).
Seja H um subgrupo finitamente gerado de R. Então H = ⟨h1,h2, . . . ,hs⟩ para alguns

h1,h2, . . . ,hs ∈ R. Dessa forma, temos que CU(H) =
s⋂

i=1

CU(hi). Como D ⊆ CU(hi), com

i = 1,2, . . . ,s, segue que D ⊆CU(H) ou, equivalentemente, H ⊆CU(D). Sendo assim,

HD
D

≤ CU(D)

D

e, portanto, HD/D é finito e solúvel. Pelo Segundo Teorema do Isomorfismo, H/H ∩D
também é finito e solúvel. Como D é abeliano, H ∩D é solúvel. Então, do item (2) da
Proposição 1.5.2, segue que H é solúvel.

Por fim, como H ∩D ≤ Z(H) e |H : H ∩D| é finito, temos que |H : Z(H)| também é
finito, assim, H/Z(H) é finito.

Proposição 3.2.8. Seja R = ⟨S⟩. Então:
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(1) R′ é um grupo periódico;

(2) R é solúvel.

Demonstração. (1) Sejam g ∈ R′ e a1, . . . ,an,b1, . . . ,bn ∈ R tais que

g =
n

∏
i=1

[ai,bi].

Considere X = {ai,bi | i = 1, ...,n} e H = ⟨X⟩. Como X ⊆ H temos que g ∈ H ′. Observe
que H é finitamente gerado, logo, pelo Lema 3.2.7, segue que H/Z(H) é finito. Aplicando o
Teorema 1.1.12, devido a Schur, podemos concluir que H ′ é finito. Sendo assim, g possui
ordem finita, e portanto, R′ é periódico.

(2) Observe que S é ν-invariante, então R também é. Logo, ν é um automorfismo
involutivo quase regular para R′ e como, do item anterior, sabemos que R′ é um grupo
periódico, podemos aplicar o Corolário 1.5.6 e concluir que R′ é virtualmente solúvel. E
ainda, pelo Lema 3.2.7, R é localmente solúvel, então R′ também é localmente solúvel. Logo,
pela Proposição 1.5.7, temos que R′ é solúvel. E como R/R′ é abeliano, segue que R é
solúvel.

No lema a seguir, veremos que é possível escrever o grupo U como um produto dos
subgrupos R = ⟨S⟩ e CU(ν).

Lema 3.2.9. (1) Cada elemento u ∈U pode ser escrito de forma única como um produto
u = cs, com c ∈CU(ν) e s ∈ S;

(2) O subgrupo ⟨S⟩ é normal em U.

Demonstração. (1) Para x ∈U vamos denotar por x
1
2 o único elemento de U cujo quadrado

é x. Seja u ∈U . Suponha que u = cs, com c ∈CU(ν) e s ∈ S. Então, temos que

u(u−1uν)
1
2 = cs((cs)−1(cs)ν)

1
2

= cs(s−1c−1cs−1)
1
2

= cs(s−2)
1
2

= css−1 = c.

Logo, c é unicamente determinado por u e, consequentemente, como s = c−1u = (u−νu)
1
2 , o

elemento s também é unicamente determinado por u.
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Agora, seja u ∈ U um elemento arbitrário. Veja que ν fixa u(u−1uν)
1
2 e que ν inverte

(u−νu)
1
2 :

(u(u−1uν)
1
2 )ν = uν((u−1uν)

1
2 )ν

= uν((u−1uν)ν)
1
2

= uν(u−νu)
1
2

= uν(u−νu)(u−νu)−1(u−νu)
1
2

= u(u−νu)−1(u−νu)
1
2

= u(u−νu)−
1
2

= u((u−νu)−1)
1
2

= u(u−1uν)
1
2

e

((u−νu)
1
2 )ν = ((u−νu)ν)

1
2

= (u−1uν)
1
2

= ((u−νu)−1)
1
2

= ((u−νu)
1
2 )−1.

Portanto, c := u(u−1uν)
1
2 ∈CU(ν) e s = c−1u = (u−νu)

1
2 ∈ S.

(2) Sejam c ∈CU(ν) e s ∈ S. Observe que sc ∈ S, pois (sc)ν = (sν)c = (s−1)c = (sc)−1.
Isto significa que CU(ν) normaliza ⟨S⟩. Como de (1) temos que U = ⟨S⟩CU(ν), segue que
⟨S⟩⊴U .

Finalmente, estamos em condições de demonstrar o

Teorema A. Seja U um grupo unicamente 2-divisível. Se U admite um automorfismo
involutivo quase regular, então U é solúvel.

Demonstração. Caso em que U é um grupo finito: como U é um grupo finito unicamente
2-divisível, pela Proposição 2.1.2, U possui ordem ímpar. Então, segue do Teorema de
Feit-Thompson que U é solúvel.

Caso em que U é um grupo infinito: pela Proposição 3.2.8, ⟨S⟩ é solúvel. Do Lema 3.2.9,
U =CU(ν)⟨S⟩ e ⟨S⟩⊴U . Observe que CU(ν) é um subgrupo finito unicamente 2-divisível e,
por isso, possui ordem ímpar. Logo, pelo Teorema 1.5.3 de Feit-Thompson, CU(ν) é solúvel.
Sendo assim, pela Proposição 1.5.2 item (3), U é solúvel.
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