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Resumo

Nesta dissertacao, apresentamos um estudo sobre subvariedades umbilicas
tipo-espago, com codimensao 2, de variedades semi-riemannianas, tendo como
base o artigo [Cipriani-Senovilla-Van der Veken, Results Math 72, 25-46 (2017)].
Sao introduzidas quantidades extrinsecas associadas com a deformagao de subva-
riedades ao longo de direcoes normais, que serao relacionadas com propriedades
umbilicas, tendo como principais ferramentas os tensor de cisalhamento total
e o operador cisalhamento. No teorema principal, sao mostradas condigoes
necessarias e suficientes para que uma dessas subvariedades seja umbilica com
respeito a uma direcao normal, condigoes que estao relacionadas com o tensor de
cisalhamento total. Com a existéncia dessa dire¢ao umbilica, ¢ demonstrada sua
unicidade e, no ultimo caso visto, o lorentziano, mostra-se como determinar seu

carater causal.

Palavras-chave: umbilica, totalmente umbilica, pseudoumbilica, ortoum-

bilica, subgeodésica, variedade semi-riemanniana, subvariedade, codimensao
2.



Abstract

In this dissertation, we present a study of umbilical submanifolds of codimen-
sion 2 in semi-Riemannian manifolds, based on the article [Cipriani-Senovilla-Van
der Veken, Results Math 72, 25-46 (2017)]. Extrinsic quantities associated with
the deformation of submanifolds along normal directions are introduced, which
will be related to umbilical properties, having as main tools the total shear tensor
and the shear operator. In the main theorem, necessary and sufficient conditions
for such submanifolds to be umbilical with respect to a normal direction are
shown, conditions that are related to the total shear tensor. With the existence
of this umbilical direction, its uniqueness is demonstrated and, in the last case

considered, the lorentzian case, it is shown how to determine its causal character.

Keywords: umbilical, totally umbilical, pseudo-umbilical, orto-umbilical,

subgeodesic, semi-Riemannian manifold, submanifold, codimension 2.
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Introducao

Dizemos que um ponto p em uma superficie S do espaco Euclidiano R? é
um ponto umbilico se as curvaturas principais de p coincidem neste ponto. Um
resultado primordial em Geometria Diferencial acerca de pontos umbilicos é que
uma superficie conexa em que todos os pontos sao umbilicos s6 pode estar contida
em um plano ou em uma esfera (veja [1], Proposicao 4, secao 3.2). Damos o
nome de totalmente umbilica as superficies em que todos os pontos sao umbilicos.
Esse resultado é generalizado para subvariedades conexas M de dimensao n > 2
imersas em R™: se M for totalmente umbilica, entdo ou M esta contida em um
plano n-dimensional ou M esta contida em uma esfera n-dimensional que esta
contida em algum plano (n + 1)-dimensional. O resultado acima, que depende
fortemente das propriedades especiais do espago Euclidiano R™, tem sua versao
quando substituimos R™ por uma variedade completa, simplesmente conexa
com curvatura constante Ky # 0, ou seja, uma das outras formas espaciais, a
saber, a esfera ou o espaco hiperbolico. No caso K, > 0, a esfera S™ c R™"!,
temos que se uma subvariedade conexa M™ C S™ é totalmente umbilica, entao
ela é parte de uma n-esfera. Ja para o caso hiperbdlico H™, em que Ky < 0,
se uma subvariedade M"™ C H™ conexa é totalmente umbilica, entdao ou M
é um espaco hiperbdlico H", uma esfera geodésica, uma horoesfera ou M é
uma hipersuperficie equidistante de algum espaco hiperbélico H""*. Citamos
como referéncia para as generalizagoes acima o Capitulo 7 do livro de Michael
Spivak [13]. As subvariedades totalmente umbilicas sdo também consideradas
em muitos outros casos, como em ambientes de curvatura nao constante, onde
evidenciaremos o caso semi-Riemanniano, que é o espaco ambiente deste trabalho.
Tomando variedades lorentzianas, fundamentais para a teoria de Relatividade
por modelarem espagos-tempo, citamos como exemplo os trabalhos [11] e [5],
que faz um conexao interessante entre subvariedades totalmente umbilicas e
superficies de féton, uma estrutura importante em relatividade. E baseado nesta
conexao que temos, por exemplo em [3], uma abordagem de unicidade para o

espago-tempo de Schwarzschild dentre uma classe de espagos-tempo que possuem

Pagina 7 de 76



esferas de f6ton. De acordo com [4, 9], o caso em que temos uma subvariedade
tipo-espago de codimensao 2 é de interesse especial do estudo em relatividade.
Nesse contexto, temos a definigao de trapped surfaces (superficies "aprisionadas"),
em que a propriedade de ser trapped esta relacionada, por exemplo, com o
decrescimento no volume da subvariedade em questao, ao longo de qualquer
direcao de evolugao e tem relacao com a localizagao de buracos negros sem a
necessidade do completo conhecimento acerca do futuro do espago-tempo em
questao a longo prazo.

Neste trabalho, apresentamos um estudo de subvariedades riemannianas
umbilicas com codimensao dois em variedades semi-riemannianas, tendo como
base o artigo de Cipriani, Senovilla e Van der Veken [4]. Nesta referéncia, séo
introduzidos os conceitos de tensor de cisalhamento total e operador cisalhamento,
que sao respectivamente a parte livre de trago da segunda forma fundamental e
do operador forma. O anulamento completo do tensor de cisalhamento implica
que a subvariedade é totalmente umbilica, enquanto o anulamento do operador
cisalhamento esta relacionado com a umbilicidade da subvariedade com respeito
a uma direcao normal. No que segue, o trabalho se concentra em subvariedades
tipo-espaco com codimensao 2, que trazem consigo o conceito de subvariedade
ortoumbilica. Em seguida, é apresentado o teorema principal, que fornece uma
série de afirmacoes equivalentes acerca da existéncia de uma dire¢ao normal
umbilica nao-nula, em termos de operadores cisalhamentos e do operador de
cisalhamento total. Como consequéncia, sao apresentadas condigoes para: co-
mutatividade de operadores forma, existéncia e unicidade de dire¢cbes em que a
subvariedade é totalmente umbilica e uma caracterizacao para que a subvariedade
seja ortoumbilica, esta tltima em termos de uma condi¢do necessaria e suficiente
envolvendo a segunda forma fundamental e o campo de curvatura média. Por fim,
os autores dedicam parte do trabalho ao caso de espagos ambientes lorentzianos,
com destaque ao carater causal de uma dire¢do umbilica.

No Capitulo 1, apresentamos os conceitos fundamentais de Geometria Di-
ferencial e da Teoria de Subvariedades. Sao definidos também operadores e
quantidades que serdo utilizados durante o decorrer deste trabalho. Sao eles:
operador de Casorati B; o operador 7, andlogo ao de Casorati, mas andénimo; o
tensor de cisalhamento total h; o operador cisalhamento e o cisalhamento escalar.

No Capitulo 2, descrevemos e damos uma primeira equivaléncia para os
tipos de umbilicidade que uma subvariedade pode assumir, a saber: umbilica,
pseudoumbilica, totalmente umbilica e £-subgeodésica. Em seguida, estudamos o
caso em que a codimensao ¢ igual a 2, introduzimos uma poderosa ferramenta, o

operador dual de Hodge, e uma nova definicao de umbilicidade, a de ser ortoum-
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bilica, que esta relacionada com o operador supracitado. Por fim, fornecemos,
para esse caso codimensional, um resultado acerca da equivaléncia entre uma
subvariedade ser ortoumbilica e £-subgeodésica.

No Capitulo 3 se encontra o principal teorema deste trabalho, que relaciona
a nocao padrao de umbilicidade com os operadores e quantidades definidas
nos capitulos anteriores, junto com algumas consequéncias imediatas. Por fim,
caracterizamos a ortoumbilicidade.

No Capitulo 4, o ultimo deste trabalho, aplicamos os conceitos vistos acima
para o caso lorentziano, onde a métrica tem indice v = 1. Encerramos, depois,
com um exemplo de umbilicidade no espago-tempo de Schwarzschild, em que
a métrica de Schwarzschild estd em coordenadas de Eddington-Finkelstein. De
modo geral, basedo no artigo [12], abordamos um exemplo de umbilicidade para

espagos-tempo esfericamente simétricos arbitrarios.
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Capitulo 1

Nocoes Preliminares

Este capitulo tem como objetivo introduzir tanto conceitos fundamentais
de Geometria Diferencial quanto operadores e quantidades relacionadas a estes
conceitos, que serdo fundamentais para o decorrer do trabalho.

A primeira secao comega com conceitos relacionados a variedades diferen-
ciaveis, como vetores tangentes, campos de vetores, 1-formas e a generalizagao
destes, os campos de tensores. Em seguida, introduzimos as variedades semi-
riemannianas.

Na segunda secao, fazemos uma breve introducao a Teoria de Subvariedades,
onde temos como referéncias os livros de Barret O’Neill [10] e de Manfredo
Perdigao do Carmo [2] e o artigo [4].

Ja na terceira se¢ao, que tem como referéncia o artigo [4], introduzimos o
Operador de Casorati B junto a um operador andlogo 7, e em seguida definimos o
tensor de cisalhamento total & e o operador cisalhamento A, que sdo analogos livre
de trago da segunda forma fundamental e do operador forma, respectivamente.
Definimos também o cisalhamento escalar associado a um campo normal e, por
fim, utilizaremos das relagdes entre operador forma e segunda forma fundamental
e entre o tensor cisalhamento e operador cisalhamento, que estao conectados
pelas métricas do ambiente e da subvariedade, a fim de mostrar que os operadores

definidos independem dos referenciais normais adotados.
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1.1 Nocgoes Preliminares de Geometria Semi-riemanniana

Dada uma variedade diferencidvel M, denotaremos por §F(M) o conjunto das
fungoes C° (M, R).

Comecaremos com a nogao de vetores tangentes.

Definicao (D.1.1). Seja p um ponto de uma variedade M. Um vetor tangente
a M em p é uma fungao real v : F(M) — R que, para a,b € Re f,g € F(M), é

1. R-linear:
v(af +bg) = av(f) + bv(g);

2. Leibniziana:

v(fg) =v(f)g+ fu(g).

A cada ponto p € M, seja T,M o conjunto de todos os vetores tangentes a
M em p. Temos que T,M é um espago vetorial sobre os niimeros reais R com as

seguintes operacgoes:

1. Adigao: dados v,w € T,M e f € F(M), definimos
(v +w)(f) =v(f) +w(f),
2. Multiplicac¢ao por escalar: dados f € F(M) e a € R, definimos

(av)(f) = av(f).

Com isso, T,M ¢ chamado o espago tangente a M em p.
O seguinte teorema ¢é fundamental e sera assumido, onde uma demonstracao

pode ser encontrada em [10]:

Definicao (D.1.2) (Campos de Vetores). Um campo de vetores X em uma

variedade diferenciavel M é uma correspondéncia que a cada ponto p € M associa
um vetor tangente X (p) € T,M. Em termos de aplicagdes, X é uma aplicacao
diferenciavel de M no fibrado tangente T'M.

Se X é um campo de vetores em M e f € F(M), entdao X f denota a funcao

real em M dada por
(Xf)(p) = X(p)f, para todo p € M.
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Dizemos que X é um campo diferencidvel se X f for diferenciavel para toda
f e F(M). Além disso, o conjunto dos campos de vetores diferenciaveis em M,
denotado por X(M), forma um médulo sobre o anel F(M) com as seguintes

operacoes:

(1) Adigao: dados X,Y € X(M), definimos a adigdo de campos por
(X +Y)(p) = X(p) +Y(p),

para todo p € M.

(2) Multiplicagao por escalar: dada f € F(M), definimos a multiplicacdo de

um campo de vetores X pelo escalar f por

(fX)(p) = f(p)X(p),

para todo p € M.

Dado ¢ = (2%,...,2™) um sistema de coordenadas em U C M, entdo para
cada 1 <7 <mn, o campo de vetores J; em U que leva cada p em 9;(p) ot Oilp €

chamado o i-ésimo campo coordenado de vetores de &.

Teorema (T.1.1) (Teorema da Base). Se & = (2',...,2") é um sistema de

coordenadas de M em p, entdo os vetores coordenados Oh|p, . . ., Onlp formam uma

base para o espago tangente T,M e

v = zn: v(x") oy,

i=1
para todo v € T,M.

0
Esses campos de vetores sdo suaves, visto que 0;(f) = afz Segue imediata-
r

mente do Teorema 1.1 que para cada campo de vetores X, temos
i=1

em U.

Dado um espaco vetorial V' real, podemos considerar seu espaco vetorial dual
V*, o espago dos funcionais lineares de V' em R. Como 7),M é um espago vetorial
real, vamos considerar o seu dual (7,M)*, chamado de espago cotangente de M
em p. Como mencionado acima, os elementos de (7,M )" sao funcionais lineares

de T,M em R e sao geralmente chamados de covetores. Com isso, vamos definir
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1-formas em uma variedade diferenciavel M, que sdao objetos duais a campos de

vetores.

Definicao (D.1.3) (1-formas). Uma 1-forma w em uma variedade M é uma

funcao que associa a cada ponto p um elemento w, do espago cotangente (7,M)*.

Em termos de aplicagoes, w é uma aplicacdo de M no fibrado cotangente T M*.

Desta forma, w associa um ntimero a cada vetor tangente e é linear nos vetores
tangentes em cada ponto.

Se w é uma 1-forma e X é um campo de vetores em M, denote por wX a
fungao real em M cujos valores em cada ponto p é o valor de w(p) em X(p),
isto é, (wX)(p) = w(p)(X(p)). Uma 1-forma w serd diferencidvel caso wX for
diferenciavel, para todo X € X(M).

Além disso, o conjunto das 1-formas diferenciaveis em M, denotado por

X* (M), forma um moédulo sobre o anel §(M) com as seguintes operagoes:

(1) Adicao: dadas w,0 € X*(M), definimos a adigao de 1-formas por

(w+0)(p) = w(p) +0(p),

para todo p € M.
(2) Multiplicagdo por escalar: dada f € §(M), definimos a multiplicacdo de

uma 1-forma pelo escalar f por

(fw)(p) = f()w(p),

para todo p € M.
Existe uma operacao notavel que converte fungdes em 1-formas:

Definicao (D.1.4). A diferencial de f € F(M) é a 1-forma df tal que (df)(v) =

v(f) para cada vetor tangente v a M.

Claramente df é uma 1-forma: dado p € M, a fun¢do (df), : T,M — R é
linear e se X € X(M), entdo a funcao (df)(X) = X f é diferencidvel.

Dado & = (:El, ..., 2") um sistema de coordenadas em U C M, temos as
1-formas coordenadas dz',. .., dx" em U. Em cada ponto de U, essas formas

fornecem a base dual aos campos de vetores coordenadas 01, ..., d,, visto que

, Oyi
dz'(0;) = - = 0;5. Segue que para qualquer 1-forma w

s
w =Y w(8)dz’

=1
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0
em U. Em particular, se f € F(M), como df (0;) = &fi’ entao

N Of

em U.

Continuaremos agora com a definicdo de campos de tensores.

A noc¢ao de um campo de tensores em uma variedade generaliza as nogoes
de funcgdes reais, campos de vetores e 1-formas, e portanto fornece os meios
matematicos para descrever objetos mais complicados em uma variedade.

Seja Vi, ...,V modulos sobre o anel K. Entao Vi x ... x V, é o conjunto de
todas as s-uplas (vq,...,vs) com v; € V;. As defini¢oes usuais de multiplicacao
por um elemento de K e adicao, componente a componente, tornam Vj x ... x Vj
um modulo sobre K, chamado produto direto.

Se V' é um médulo sobre K, seja V™ o conjunto de todas as fungoes K-lineares
de V para K. Novamente, temos que VV* é um médulo sobre K com as definigdes
usuais de adigdo de fungoes e produto por elementos de K, onde chamamos V™

de modulo dual de V. Se V; =V para todo i = 1,...,n, abreviamos a notagao
Vi x...xV, para V?.

Definicao (D.1.5). Para inteiros r,s > 0 nao simultaneamente nulos, uma

aplicagado K-multilinear A : (V*)" x V* — K é chamado tensor do tipo (r,s)
sobre V. (Aqui entendemos que A: V® — Kser=0e A: (V*)" — K se s =0).

O conjunto T2(V') de todos os tensores do tipo (7, s) sobre V' é um médulo
sobre K.
Um campo tensorial A em uma variedade M é um tensor sobre o §(M )-mddulo

X(M). Portanto, se A tem tipo (7, s), entdo A é uma fungao §(M )-multilinear
A:X"(M) xX(M)* — F(M).

Assim, A é uma maquina mutilinear que, quando alimentada de r 1-formas

6',...,0" e de s campos vetoriais X7, ..., X,, produz uma funcio diferenciavel
f=A04...,0",X1,...,X,) € F(M).

Aqui, 0" ocupa a i-ésima posicao contravariante e X, ocupa a j-ésima posicao
covariante.
Novamente, o conjunto T:(M) de todos os campos tensoriais em M do tipo

(r,s) ¢ um mdédulo sobre F(M).
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Seja ¢ um sistema de coordenadas em U C M, onde ¢ = (z*,...,2"). Se A

for um campo tensorial (r,s) em U, entao

A= ZA“ZTau ®®azr ®dle ®®d.13js

J1---Js

Definicao (D.1.6). Uma forma bilinear simétrica b em V espago vetorial real

de dimensao finita é
(1) positiva [negativa] definida quando v # 0 implica b(v,v) > 0 [< 0].
(2) positiva [negativa] semidefinida quando b(v,v) > 0 [< 0] para todo v € V.
(3) ndo-degenerada quando b(v,w) = 0 para todo w € V implicar v = 0.

Se b é um forma bilinear simétrica em V', entao para qualquer subespaco W
de V' a restricao b|(w«w), denotada simplesmente por b|y, é novamente simétrica

e bilinear. Se b for [semi-]definida, entdo também sera b|y .

Definicao (D.1.7). O indice v de uma forma simétrica bilinear b em V é o

maior inteiro que é a dimensao de um subespago W C V' ao qual b|y é negativa
definida.

Portanto 0 < v < dimV e v = 0 se, e somente se, b for positiva semidefinida.
A fungdo ¢ : V — R dada por ¢(v) = b(v,v) é chamada de forma quadrdtica
associada a b. A forma quadratica associada geralmente é mais facil de trabalhar
que a forma b e nenhuma informacao é perdida pois b pode ser reconstruida pela

identidade de polarizacao

bo, w) = sla(v +w) — av) — gw)].

Se ey, ...,e, for uma base de V, a matriz n x n b;; = b(e;, e;) é chamada
a matriz de b relativa a eq,...,e,. Como b é simétrica, a matriz também é

simétrica. Claramente a matriz determina b, pois

n n n
b (Z V€5, Z U)j@j) = Z bijviwj.
i=1 j=1

i,j=1

Lema (L.1). Uma forma bilinear simétrica é nao-degenerada se, e somente se,

sua matriz com relagdo a uma (portanto a qualquer) base é invertivel.

Demonstragao: Seja ey, ..., e, uma base para V. Se v € V', entdo b(v,w) =0

para todo w € V se, e somente se, b(v,e;) = 0 para i =1,...,n. Como (b;;) é
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simétrica,
n n
b(U, ei) = b Zvjej, €; = Z b,»jvj.
j=1 i,7=1

Portanto b é degenerada se, e somente se, existem ntmeros vy, ..., v, nao todos
n

nulos tal que Z bjjuv; = 0. Mas isso ¢ equivalente a dependéncia linear das
ij=1
colunas de (b;;), isto é, a (b;;) ser singular.

Definicao (D.1.8). Um produto escalar g em um espaco vetorial V' é uma forma

bilinear simétrica nao-degenerada em V.

Dado um espago com produto escalar (V, g), pode acontecer que ¢(v) = g(v,v)
seja negativa, onde definimos a norma |v| de um vetor como sendo |g(v, v)[*/2,
Assim, um vetor unitério u é um vetor de norma 1, isto é, g(u,u) = +1.

A matriz de g relativa a uma base ortonormal eq, ..., e, de V é diagonal. De
fato,

g(ei,ej) = (Sz'jé‘j, onde €j = g(ej, Gj) = :tl

Sempre que conveniente, ordenaremos os vetores de uma base ortonormal de
forma que os sinais negativos (se tiver algum) apare¢cam primeiro na chamada
assinatura (q,...,&p).

Levando em consideragao esses sinais, temos a expansdo ortonormal, que sera
fortemente utilizada nesta dissertacao: se eq,...,e, é um base ortonormal de V/,

com g; = g(e;, €;), entdo cada v € V é expresso unicamente como

n
v = Z gig(v, e;)e;.
i=1

Definicao (D.1.9). Um tensor métrico g em uma variedade diferencidvel M é

um campo tensorial (0, 2) simétrico e nao degenerado em M com indice constante.

Em outras palavras, g € 73 atribui suavemente a cada ponto p € M um

produto escalar g, no espaco tangente 7, M e o indice de g, ¢ o mesmo para todo

p.

Definicao (D.1.10). Uma variedade semi-riemanniana é uma variedade dife-

renciavel M munida com um tensor métrico g.

O indice v de g, em uma variedade semi-riemanniana M ¢é chamado indice

de M: 0 <v <n=dmM.Sev =0, M é dita variedade riemanniana, onde
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cada g, ¢ um produto interno (positivo definido) em T,M. Sev=1en >2, M
¢é dita variedade lorentziana.

Como ¢ ¢é nao-degenerada, em cada ponto p de U aberto de M a matriz
(9:;(p)) é invertivel e a sua matriz inversa é denotada por (g”(p)).

Além disso, como g é simétrica, g;; = g;; € portanto g9 = ¢’ paral <i,j <n.
Finalmente, em um sistema de coordenadas (U, x;) em torno de p, o tensor métrico
pode ser escrito como .

g = Z gijdxi ® da’.
ij=1
Para um inteiro v com 0 < v < n, trocando os primeiros v sinais positivos

para negativos, temos em R" o tensor métrico

(Vp, wp) = Zv w' + Z v,
Jj=v+1

de indice v, onde vy, w, € T,R" = R". Temos entao o espago semi-Fuclidiano
R?, que se reduz a R" quando v = 0. Para n > 2, R} é chamado o espaco de
Minkowski n-dimensional. O exemplo mais simples de espago-tempo relativistico
¢é o espaco de Minkowski de dimensao 4.

Como o tensor métrico em uma variedade semi-riemanniana pode assumir
valores reais negativos, nulos ou positivos, para cada um desses valores teremos

uma nomenclatura para os vetores que os atingem:

Definicao (D.1.11). Um vetor tangente v a M é

tipo-espago, se (v,v) > 0 ou v =0,
tipo-nulo, se (v,v) =0e v # 0,

tipo-tempo, se (v,v) < 0.

A categoria no qual um vetor tangente se encaixa é chamado de cardter causal.
Essa terminologia deriva da teoria da relatividade e, particularmente no caso
lorentziano, vetores tipo-nulo sao chamados de tipo-luz.

Seja q(v) = g(v,v) para cada vetor tangente v a M. Em cada ponto p € M,
q ¢ a forma quadratica associada ao produto escalar em p. Portanto, ¢ determina
o tensor métrico. Note, contudo, que ¢ ndo é um campo tensorial: dados
VeX(M)e feF(M),entdo q(fV) = f2q(V) € F(M). Classicamente, q é

chamado elemento de linha de M e é denotado por ds®’. Em termos de um
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sistema de coordenadas,

q=ds* = Z g,;jdxidxj,
ij=1
onde a justaposicao de diferenciais denota a multiplicagdo usual de fungoes, ou
seja,
q(V) = > gyda'(V)da! (V) = > g;V'V7.
i,j=1 6j=1

Para a seguinte defini¢do, usaremos como referéncia [6]:

Definicao (D.1.12) (Espaco-tempo). Seja (M, g) uma variedade lorentziana.

Diremos que M é temporalmente orientdvel se existir um campo de vetores
tipo-tempo V' definido globalmente em toda M (ou seja, g(V(p),V(p)), < 0
para todo p € M). Quando V esta fixado, dizemos que M esta temporalmente
orientada por V.

Um espaco-tempo é uma variedade lorentziana conexa de dimensao maior ou
igual a 2, temporalmente orientada. Os pontos de M sao entao denominados

eventos.

Por fim, dada uma métrica, conseguimos relacionar campos de vetores a

1-formas e vice-versa via isomorfismo:

Definicao (D.1.13) (Isomorfismos Musicais). Seja (M, g) uma variedade

semi-riemanniana. Definimos o isomorfismo bemol
b X(M) — X" (M)

que associa cada campo de vetores X a uma 1-forma X’ dada por X’(V) =
g(X,Y) para todo Y € X(M). Definimos também o isomorfismo sustenido

f:X"(M) - X(M)

que associa cada 1-forma w a um campo de vetores w* dado por g(w?,Y) = w(Y)
para todo Y € X(M).
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1.2 Preliminares da Teoria de Subvariedades

Subvariedade riemanniana de uma Variedade Semi-riemanniana

Considere § uma variedade orientavel n-dimensional e ¢ : § — M uma imersao
em uma variedade semi-riemanniana orientavel (n+k)-dimensional (M, 7). Como

¢ é diferenciavel, podemos definir uma métrica em S dada por g := ¢*7, ou seja,
g(X7 Y) = (¢*§)(X7 Y) - §(¢*(X)7 ¢*(Y))7 para tOdOS X, Y em %<S)7

onde vamos assumir que essa métrica € positiva definida em toda a S, impondo que
(S, 9) seja uma variedade riemanniana orientével, sendo entdo uma subvariedade
de M do tipo-espago. Como a métrica foi definida em termos de ¢, temos que

(0(5),7) e (S, g) sdo isométricas e vamos sempre identificd-las localmente.

Definicao (D.1.14) (Elemento de Volume). Um elemento de volume em

uma variedade semi-riemanniana M n-dimensional é uma forma suave w tal que

w(ey,...,e,) = £1 para qualquer referencial ortonormal em M.

Dessa maneira, se S” é uma subvariedade de M™* conseguimos definir w*

elemento de volume no fibrado normal, onde wL(&, ..., &) = £1, para qualquer

referencial normal.

Formulas de Gauss e Weingarten

Se V e V sdo as conexdes de Levi-Civita de (M, 7) e (S, g) respectivamente,
para X,Y € X(5) e £ € X(S)*, temos as formulas de Gauss e Weingarten,

respectivamente dados por

VxY = VxY +h(X,Y),
Vxé = —AX + VxE.

Aqui, h : X(S) x X(S) — X(S)* é a sequnda forma fundamental, A é o

operador forma ou operador de Weingarten associado a € e V+ é a conexio no

fibrado normal.

Proposicao (P.1.1). Os operadores forma sdo lineares sobre campos normais,
ou seja, dados &;,& € X*H(S) e A € F(M), entdo

Agiae = A + Mg, (1.1)
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Demonstragao: A férmula de Weingarten nos diz que, para qualquer X € X(5),
AeX = —(Vx€)", onde

—(Vx(& +2\&)T
—(Vx& +VxA&)T
—(Vx&)" = (X(N& + A\Vx&)"

A iae, X

/\/‘\/\/\

—(Vx&)" = A(Vx€)"
= Ae X + Mg, X,

visto que & € X+ (M), onde o resultado segue da arbitrariedade de X € %(S).

A relacao entre a segunda forma fundamental e o operador forma é dada por

para todos X,Y € X(S) e todo & € X(5)".
Dado qualquer referencial ortonormal {ey, ..., e,} € X(S), o campo vetorial

curvatura média H € X(S)* é definido como

1 n
H = *Zh(€i,6i). (1.3)
)
Da defini¢do acima, temos
1 n
H=— Zh(@i, €Z'>
=
= Lir(Ag)e
T r{Ag )Sis
onde
ng(H,§) = tr(Ag) = . (1.4)

O termo 0 serd chamado, neste trabalho, de expansao de S ao longo de { e ¢ a
componente de H ao longo desse campo, até um fator n, ou, equivalentemente,

o trago do operador forma associado a &.

Definicao (D.1.15) (Fibrados Vetoriais). Um k-fibrado vetorial (E, ) so-
bre uma variedade M consiste de uma variedade E e uma aplicacao suave
m: E — M tal que

(1) Cada 7~ *(p), p € M, é um espaco vetorial de dimensio k
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(2) Para cada p € M existe uma vizinhaca U de p em M e um difeomorfismo
o:UxRY -7 Y (U)C E

tal que para cada q € U, a aplicacdo v — (g, v) é um isomorfismo linear
de R* sobre 771(q).

Se M™ é uma subvariedade semi-riemanniana de M™*, seja NM = U (m,Mm)*"
peEM
o conjunto de todos os campos normais a M. Seja m : NM — M a aplicacao

que leva cada (T,M)* a p em M. Assim, (NM,7) é um k-fibrado vetorial sobre
M, chamado de fibrado normal de M em M.
Além disso, definimos o Primeiro Espaco Normal de uma imersao isométrica

segundo [7]:

Definicao (D.1.16). O Primeiro Espaco Normal de uma imersao isométrica

f:M"— M™empe M™ é o subespago do espago normal NM (p) gerado pela

imagem de sua Segunda Forma Fundamental, isto é

Ni(p) := span{h(X,Y)| X, Y € T,M}. (1.5)

1.3 Definicoes Especificas

Nesta secao apresentaremos algumas defini¢oes especificas presentes no trabalho
[4]-

Definicao (D.1.17) (Operador de Casorati). Dado um referencial local or-

tonormal {&j,..., &} em X(9)*, isto é, §(&, &) = £:6;; com & = 1 para todos
i,7 € Iy ={p € N|p <k}, o operador de Casorati é definido como

k
B=73 3(& &) AL, (1.6)
=1

A defini¢ao acima nao depende do referencial escolhido, como vamos mostrar:
Dados X, Y € X(S5) quaisquer, como A, leva campos tangentes a S em campos

tangentes a S, na base ortonormal de 7 = {ey,...,e,} de TS, escrevemos
A, X =D g(Ag, X, e)e;
i=1

AﬁjY = Z g(AﬁjY? em)ema

m=1
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onde observamos que

9(Ag; X, Ag)Y) (Z 9(Ag; X, e;)ei, Z 9(AgY, em em>
m=1

i=1

(Ag; X, €)g(Ag, Y, em)g(ei, em)

Z
Z (Ae; X, €)g(Ag; Y, em)dim
Z A{ X 61 Aé Y 61) (1)

n

Partindo da defini¢do do Operador de Casorati e utilizando a equacao (1), na

base ortonormal N = {;,..., &} normal a S, obtemos
k
G(BX,Y) = g [ 3 9(6,6)A42 X, Y
j=1

Z (6]76]) (AﬁjX’AéjY)

= i €j [i 9(Ag; X, €)g(Ag,Y, 6@')]

- Z {; £j9(Ag; X, e:)g(Ag;Y, €:) (2)

Como a segunda forma fundamental recebe dois campos tangentes a S e trans-

forma em um campo normal a S, na base A, escrevemos
X ez Zgjg X 61 5])5
Y ez Z 559 Y ez §S)§s~
e dal segue que
k k
?(h(Xv ei)7h Y el = Zgjg X7 ez)agj)gjazgsg(h(}/a ei)ags)gs
]:]_ s=1
- Z 5]559 X, el),g‘])g(h(y, ei)afs)?(&jags)

7,5=1
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k
= Y eesg(h(X, e:), §)G(R(Y, €:), & )05

jsl

:Zejg (X e:),&5)g(h(Y, €:),§5)

g(Aﬁan el)g<A§]K el)

Il
Q.
I M?r
X

Q)

<

Finalmente, somando em i € {1,...,n}, a equacgao (2) nos fornece
Z hX,e;),h(Y,e;)) Z Zgjg Ae; X, e)g(Ag, Y, e5)
7 7j=1

=9(BX,Y),

que determina completamente B, como desejavamos.

Definicao (D.1.18). Seja ¢ : (S,g) — (M, g) uma imersao isométrica. Temos

as seguintes definigoes:

e O tensor de cisalhamento total h, dado pela parte livre de traco da segunda

forma fundamental:

MX,Y)=hX,Y)—g(X,Y)H.

« O operador cisalhamento associado a ¢ € X(S)*, definido como a parte

livre de traco do operador forma correspondente a &:
Ao = Ac— 26
& — 4 n §Ls
onde 1 denota o operador identidade.

o O cisalhamento escalar o¢ associado a ¢ € X(S)*, definido, a menos de

sinal, por
o = tr(flg).

Notamos que, para todos X,Y € X(S) e todo & € X(S)*, o tensor de

cisalhamento total h e os operadores cisalhamento sao relacionados por

9(AeX,Y) = g(h(X,Y),£).
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Com efeito, partindo da definicdo de operador cisalhamento, temos

GAX,Y) = g(AX — ng(H,O)X.Y)
(AeX,Y) —g(H,§)g(X,Y)
(h(X,Y),€) — (X, Y)g(H, )
(h(X,Y) — (X, Y)H,¢)
g(h(X,Y),€).

|
Q 9

Seja T (S) o conjunto de todos os (1, 1)-campos tensoriais em S. Definimos o

seguinte produto escalar positivo-definido em T (S):
(A, B) =tr(AB), (1.7)
para todos A, B € T(S). Com essa defini¢ao, o cisalhamento escalar é tal que
ag = tr(flg) = tr(A¢Ae) = (A¢, Ae).

Dado um referencial ortonormal {&,...,&} em X(S)* o operador auto-

adjunto
k
Z Sufz Ag» (18)

assim como o operador de Casorati, também ¢é independente do referencial

adotado. Primeiro mostramos que J ¢ realmente auto-adjunto:

~ 1
1
1
— g(X, A, — ~0Y)
n
- g(X, AfiY)'

Por esse motivo e pela equacao (1.8), um célculo anédlogo ao feito para o

operador de Casorati mostra que

g(TX,Y) Zn: h(X,e),h(Y,e)) (1.9)
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para qualquer referencial local ortonormal tangente {ey,...,e,} e quaisquer
X, Y € X(9).
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Capitulo 2

Tipos de Umbilicidade e
Subvariedades de Codimensao

k=2

Comecamos o capitulo definindo tipos diferentes de umbilicidade e daremos
certas equivaléncias para cada. Essa se¢do é de enorme importancia, pois o
restante do trabalho seguird fazendo relacao entre esses diferentes tipos, mas
particularizando cada vez mais.

Na secao seguinte, particularizamos para o caso em que a codimensao é k = 2.
Quando fazemos essa restricdo, podemos evidenciar as possiveis opgoes para
assinatura da meétrica, além de ter duas dire¢coes normais bem definidas para
cada ponto.

Em seguida, definiremos o operador dual de Hodge, que toma campos normais
e leva em normais que sao ortogonais aos tomados inicialmente. Como visto
anteriormente, uma subvariedade S é pseudoumbilica quando é umbilica com
respeito ao campo de vetores curvatura média H. Uma vez que a codimensao ¢é
2 e o dual de Hodge de H é ortogonal a H, faz sentido pensar na umbilicidade
com respeito a esse campo. Com isso, definiremos mais um tipo de umbilici-
dade, aparentemente deslocado, mas que aparece por conta das particularidades
deste capitulo. Em seguida, relacionaremos esse novo tipo de umbilicidade com
os outros tipos previamente considerados. Mais a frente, caracterizaremos a
ortoumbilicidade.

As definigoes e resultados deste capitulo estao presentes no artigo base [4]

desta dissertagao.
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2.1 Tipos de Umbilicidade

No caso de uma hipersuperficie, a codimensao é igual a um e assim temos
apenas uma direcao normal definida. Logo, um ponto de uma hipersuperficie é
umbilico com respeito ao operador forma associado da hipersuperficie. No caso
em que a codimensao é maior que um, existem mais dire¢oes para que um ponto
seja umbilico com respeito ao correspondente operador forma. No que segue,
vamos definir alguns tipos de umbilicidade com respeito a um campo vetorial
normal em um ponto, mas todas as defini¢oes fazem sentido quando estabelecidas

pontualmente.

Definicao (D.2.1). Considerando a imersao ¢ : (S, g) — (M,7), dizemos que

ela é
o umbilica com respeito a & € X(S)* se Ag for proporcional a identidade;
o pseudoumbilica se for umbilica com respeito a curvatura média H;
o totalmente umbilica se for umbilica com respeito a todo & € X(5)*;

o &-subgeodésica se existir € € X(S)* tal que h(X,Y) = L(X,Y)¢ para todos
X,Y € X(9), onde L é um (0, 2)-campo tensorial em S.

A nogao de uma subvariedade S ser £-subgeodésica foi definida no artigo [12].
O exemplo a seguir mostra que podemos ter imersoes que sao umbilicas com
respeito a uma dada direcao mas nao necessariamente com respeito a outras

direcoes e consequentemente nao sendo totalmente umbilica.

Exemplo 1 (Codimensdo 2). Sejam f : S™ — M"' hipersuperficie imersa
em uma variedade riemanniana e F : M™™ — N"*2 hipersuperficie totalmente
umbilica imersa em uma variedade riemanniana, com 1 normal a S em M e
¢ normal a M em N. Chamando ¥V, V eV as conexées de Levi-Civita de S™,
M™1 e N™2 respectivamente, temos f = F o f : S — N"2, wma imersio de

codimensao 2. Para campos X,Y € X(S) temos que

VxY =VxY + hp(X,Y) = VxV 4+ 5(X,Y)¢ (2.1)
VxY =VxY + hi(X,Y), (2.2)

implicando em
VxY = VxY + hi(X,Y) +g(X,Y)E.
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Note que, para o operador forma na direcio de &, temos

9(AeX,Y) = g(h(X,Y), )
= g(hf(Xu Y) +g(Xa Y)f,f)
= g(X, Y)7

mostrando que A¢ = Id, onde concluimos que S é umbilica com respeito ao campo
€. Mais geralmente, para X,Y € X(S5), obtemos

Logo, A, = A\d se, e somente se, A£ = Md. Seque que a imersao f é umbilica

com respeito a 1 se, e somente se, a imersao f é umbilica com respeito a 1.

O préximo exemplo mostra uma subvariedade que é pseudoumbilica, mas que

nao é totalmente umbilica.

Exemplo 2 (Produto de esferas). Sejam fi : S™(r1) — R"™ e fy : S"(ry) —
R as esferas de raio r1 e ro, Tespectivamente. Denotaremos as métricas
e conexdes por (R™ g, V), (S"(r1), g1, V') e (S™(r2), g2, V?). Nas esferas, os
vetores posicdo p; sao vetores mormais, assim denotaremos por N; = 2o vetor
normal unitdrio em p; € S™(r), para X,Y € X(S"(r;)). As segundafs formas
fundamentais sdo dadas por h'(X,Y) = \;N;. Por um lado,

XN(X,Y) = g(h'(X,Y), Ny) = g(VxY — VY, N;) = g(VxY, N;).

Por outro lado, g(Y,p;) = 0 para todo Y € X(S"(r;)), onde a compatilibidade da
métrica nos revela que, dado X € X(S"(r;)),

0= Xg(Y,p)
= g(VxY,pi) + (Y, Vxp)

_ 1
mostrando que g(VxY,p;) = —g(X,Y). Logo, \{(X,Y) = ——g(X,Y) e conse-

i

. 1 — - 1
quentemente, h'(X,Y) = ——g(X,Y)N;. Seque que VxY = VY ——=g(X,Y)p;.
T

T i
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A wvariedade produto S™(r1) x S™(ry) € imersa em R"™ x R"™ onde temos que

a conexdo de R*+2 pode ser decomposta como VxY =V x Y1+ Vx,Ys e assim

- 1 1

VxY =V Y+ Vi, Ys — ﬁgl(Xla Y1)p1 — 292()(2,5/2)}727
1 2

com X,Y € X(S"(r1) x S™(r2)), onde X; e Y; sao as projecoes de X e Y nos

espagos tangentes de S™(r;), respectivamente para i = 1,2. Assim, a sequnda

forma fundamental para a imersao do produto é dada por

1 1
h(X> Y) = —77%91()(175/1) - 77%92()(2,5/2)

Vejamos que S = S™(r1) x S™(r2) ndo é umbilica com respeito aos campos normais
P1=p1+0epe=0+pa:

N N _ 1

g(‘AﬁlX? Y) = g(h(X7 Y)7p1> = _Tﬁgl(Xla }/1)7

1

N 1
9(A4;,X)Y) = —pgz(XmYz)-
2

Vamos agora calcular o campo de curvatura média H de S para, em sequida, mos-

trar que S é pseudoumbilica em uma situagio particular. Considere {ey, ..., en, f1,..
referencial tangente a S. Dessa forma, temos h(e;, e;) = ——p1 e h(fi, fi) =
1
——5D2, onde
r

2

H = :L (i h(e;, e;) + zn:h(fzafz)> = _:2])1 - 7,12p2'

i 2
Segque que
g(AgX,Y)=g(h(X,Y), H)
N DG ST S |
=49 r%91 1, ¥1)pP1 7392 2, 12)P2, r%pl T§p2

1 1
= —01(X1, Y1) + —92(X2,Y2),
1 )

1

onde tomando r1 = ry =1, obtemos Ay = ——1d, mostrando que S € pseudoum-
r

bilica

A proposicao a seguir apresenta algumas propriedades dos tipos de umbilici-
dade.
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Proposigao (P.2.1).

(1) S é umbilica com re~speito a & € X(S)* se, e somente se, Ac = (f¢/n) 1 ou,
equivalentemente, A, = 0.

(2) Se S é umbilica com respeito a £ € X(S)*, entdo é umbilica com respeito

a todo campo vetorial proporcional a &.

(3) S é totalmente umbilica se, e somente se, h(X,Y) = g(X,Y)H para todos

X,Y € %(5) ou, equivalentemente, se e somente se h = 0.

(4) Se S é &-subgeodésica para algum & € X(S)*, o Primeiro Espago Normal

N' é no méximo unidimensional em cada ponto.

(5) Se S é -subgeodésica, entdo todos os operadores forma sao proporcionais
em pontos onde ¢ nao se anula. Além disso, nos pontos onde H # 0,

subvariedades &-subgeodésicas tém & proporcional a H.

(6) Se S é &-subgeodésica, entao qualquer geodésica v: I C R — S de (S, g)
satisfaz V7" = h(y/,7') = f€ para alguma funcdo f : I — R, onde 7 é
subgeodésica com respeito a & em (M,§), o que explica a terminologia

&-subgeodésica.

Demonstragao:

(1) De fato, supondo S umbilica com respeito a £, temos por definicdo que

A¢ = A1, e tomando o traco em ambos os lados

(95 = tT'(Aé') = t?’()\]_)
= Atr(1)
= \n,

obtemos A = ¢ /n. A equivaléncia surge da defini¢do de operador cisalha-

mento:

0
se, e somente se, A¢ = =,
n

(2) A afirmacao se mostra verdadeira pelo fato de que Ay = AAg, justificado
pela Proposicao 1.1.
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(3) Supondo S totalmente umbilica, ou seja, A¢ = (6¢/n)1,VE € X(S), temos
pela equagao (1.4)

AeX = (0g/n)X =g(H,§)X.
Por um lado, temos

9(AeX,Y) = g(H,§)g(X,Y)
=9(9(X,Y)H, ).

Por outro lado, nos é dado que
9(AX,Y) =g(h(X,Y), ),
e quando juntamos ambos os lados, segue que
g(h(X,Y),€) = g(g(X,Y)H, ),

e assim, pela arbitrariedade de £ e pela nao-degeneracao da métrica g,

concluimos que

que é equivalente a h(X,Y) = g(X,Y)H. Reciprocamente, se h(X,Y) =
g(X,Y)H para todos X,Y € X(S), entdo dado arbitrariamente ¢ € X(5)*,

temos que

g(h(X,Y),8)

(X,Y)g(H,¢)

g
g(X’ Y>9§/n

implica em
9(AcX,Y) = g(0e/nX.Y),

que ¢é equivalente a g(A¢X —0:/nX,Y) =0 e, como ¢ é ndo-degenerada,

segue que

AeX = (0g/n) X,
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ou, equivalentemente, A¢ = (6¢/n)1. Pela arbitrariedade de & , segue que
S ¢ totalmente umbilica. Para a equivaléncia, pela definicdo do operador

total de cisalhamento temos

hX,Y)=hX,Y) = g(X,Y)H =0

se, e somente se, h(X,Y) = g(X,Y)H, ou seja, é necessario e suficiente

que S seja totalmente umbilica.

Dado arbitrariamente p € S, como h(X,Y) = L(X,Y)¢, temos que h é

proporcional a & e assim

mostrando que tem apenas um elemento na base.

Como L é um tensor simétrico do tipo (0,2), existe uma aplicacdo autoad-
junta £ tal que L(X,Y) = g(LX,Y) = g(X, LY), para todos X, Y € X(S5).
Como S é &-subgeodésica, h(X,Y) = L(X,Y)¢ e dados ny, 1, € X(S)*,

temos

EX» Y)?(S? 771)
§(€7 771)»CX: Y)u

(
(L(X,Y)E m)
(
= (
onde concluimos que A,, = g(&,m)L. Analogamente, temos que A,, =
(&, m)L. Observe que se g(&,m1) = 0 ou g(&,m2) = 0, entdo os operadores
sao trivialmente proporcionais. Agora, supondo G(&,1;) # 0 para i = 1,2,

temos
Am — £ — A7]2
g(é-v 7]1) g(év 7]2)

e assim G(€,m9) A, = G(€,m)A,,, para quaisquer 7,75 € X(S)*. Logo, os

operadores forma sao sempre proporcionais.

Além disso, nos pontos onde H # 0, tomando o trago que define S ser

&-subgeodésica, temos

nH =tr(h) = tr(L)¢
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tr(L)

onde concluimos que H = ——=¢ e, portanto, H e £ sdo proporcionais.
n

(6) Dada v: 1 C R — S geodésica de (S, g), temos que 7' € X(5) e assim

Vo = h(v',7)
= L(v',7)¢
= (Lo)(t)¢
= ()¢,

onde bastou tomar f = (Lo~").

Vamos assumir a partir de agora que a imersdo ¢ : (S,9) — (M,g) tem

codimensio 2.

2.2 A estrutura do Fibrado Normal com fibras bidimen-

sionais

Como consideramos ¢ subvariedade tipo-espago, entao no fibrado normal a
métrica s6 pode ter uma das opg¢bes de assinatura: (+,+),(—,+) e (—,—).
Denotaremos tais assinaturas por (e1,&;), onde &1 = g5 = £1 a fim de nao
especificar um deles. Além disso, {{, &>} denotard um referencial ortonormal em
X(9)* com §(&, &) = ei,1 € {1,2}. Com respeito a esse referencial, a segunda

forma fundamental h é decomposta como
h(X7 Y) = 5lg(A§1X7 Y)£1 +529(A§2X7 Y)§2 (23)

para quaisquer X,Y € X(S). De fato, escrevendo h(X,Y) = a(X,Y)& +
b(X,Y )&, pela ortonormalidade do referencial {1, &>}, temos para quaisquer
X,Y € X(9)

g(h(X,Y), &) = g(a(X,Y)&1,&1) +g(b(X, V)&, &1)
CL(X, Y)§<£17 51)

G(X, Y)Sl,
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por defini¢do temos G(h(X,Y), &) = g(Ag, X,Y) e &5 = 1, onde a multiplicagio

por £1 na equagao acima nos fornece a(X,Y) = £19(A4¢ X, Y). O mesmo processo

feito com & nos mostra que b(X,Y) = e99(A, X, Y'), como prometido.
Naturalmente, podemos escrever o campo de vetores curvatura média em

termos do referencial {£1,&;}. Por definicao,

n

H = l Zh(ei, ei),

nis
onde {ey,...,e,} é um referencial qualquer de X(.5), e assim
12 12
H = ﬁ Z h(eia 6i) - E Z (519(A§1617 61)51 + 529(A§1 €, 61)62)
i=1 i=1
1 n
= g ( Z (A&ewel 51 + &2 Zg A&ezvez)g >
i=1 i=1

1
% (51tr("4§1)§1 + 52tr("4§2)§2)
1
= (10681 + 206, 6)-

Vale resumir a equacao acima e referencia-la para uso posterior:
1
H = 5(519&51 + £90¢,&2). (2.4)

Usando o elemento de volume w™ do fibrado normal, podemos definir para

qualquer campo normal ¢ € X(S)* seu campo dual de Hodge ¢ € X(S)* por

gx&m) =w (&), (2.5)

para todo n € X(9)*.

Proposicao (P.2.2). O operador dual de Hodge é um operador linear que

satisfaz

*J—(*Lf) = _518257 g(*J—fa 77) = _g(fa*Ln)v (26)

para todo n € X(9)*.

Demonstragao:

(1) ** é linear:
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Dados &1,& € X(S) e f € (M), temos que o campo - (f&, + &) é tal
que, para todo n € X(S)*,

g (f& + &) =wh(fé&+&,n)
= fwr(&,m) +w(&,n)
=[G &, n) + (&2, m)
=g(f & ++"&,n),

o que implica em G(x(f& + &) — (f x & + %1&),n). Como a métrica é

nio-degenerada, segue que - (f& + &) = fx1 & + &.

*L(*Lf) = —g169&:

Considere um referencial ortonormal {¢;,&} C X(S)*, isto é, §(&;, &) =

€;0;5. Suponha que o referencial esteja orientado de tal forma que wh(&,&) =
1. Como & € X(S)*, podemos escrever segundo o referencial como

* € = a1€] + axés. Note, primeiramente, que G(x-&;, &) = wh (€, &) = 0.
Em seguida, fazemos o produto interno de x¢; por & segundo a métrica

g e obtemos

0=g(x&,&)
= g(m& + a2éa, &1)

= &y,

revelando que a; = 0. Agora, fazendo o produto de x-&; por &, temos, por

um lado, que

g1, &) = wh (6, &)
=1.

Por outro lado, temos que

?(*L&» &) = glaxéa, &)

= Q2€9,

onde concluimos que ay = 5. Logo, *-& = e9&,. Analogamente, escre-

vendo & = bi&; + befs, temos por definicio que o produto de =&, por
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g(*Lé-ngl) = wl(g%gl) - _wL(é-ngQ) = _17

onde
—1=g(x"&,&)
= g(bi&1 + 0262, &1)
= blgla
mostrando que by = —e;. Além disso, o produto de =&, por & segundo a

métrica g é tal que

0= §<*J_€27 62)

= G(b2&2, &2)

- 62527
implicando em by = 0. Logo, *~& = —&1&,. Agora que sabemos como o
operador - age nos campos do referencial, tome & = mé; + né, um campo

normal arbitrario. Segue que
*xE=maat &+ nat & = mesks — neréy
e a aplicagao repetida deste operador nos fornece

* (%) = meg xt & —nep xt €
= —m€152§1 — 7’L61€2€2

= —e189(méy + n&z) = —£182€.

Perceba que a escolha da orientacao do referencial nao afeta o resultado:
se orientdssemos de tal forma que w* (&, &) = 1, terfamos, para x-&; =
a1+ axés, que wh (&, &) = —1 = G(*T€1, €) = ages, isto 6, ay = —ey, onde
juntando ao fato de que g(x£1, &) = 0, terfamos a; = 0 e consequentemente
*xt& = —e26. De maneira analoga, escrevendo *& = bi1&; + ba&s, como
1 = g(x6,6) = biey e 0 = G(x &, &) = boey, terfamos «& = &1,
Prosseguindo, encontrariamos

* (k€)= xH(—e08y) = —e16961,
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*L(*L&) = *l(glfl) = —£1628,

os mesmos obtidos com a outra escolha de orientagao, onde o resultado

seguiria identicamente.

(3) g(x"¢&m) = —g(& xn):

Pelas simetria da métrica e antissimetria do elemento de volume w™, temos

gxr&n) =wh (€ n) = —wt(n,€) = —g(xn,&) = —g(&,~n).

Da demonstracio da proposicio acima, assumindo que {&;, &} € X(S)* estd

orientado de tal forma que w™ (&1,&) = 1, podemos concluir que
(i) €. =0,
(i) Gx&*€) = e1229(,€),
(ili) x"& = e2b, * & = —1éy.

De fato, as primeira e terceira equacoes ja foram mostradas durante a prova da

Proposicao, enquanto para mostrar a segunda equacao basta notar que

g&,xE) = —g(x (x7€), &) = (126, §) = e1629(&, §)-

Da propriedade (iii) acima e da expressao de H no referencial {&;, &}, temos
que o campo dual de Hodge do campo de vetores curvatura média é expresso

nesse referencial como

wHH = 222 (05,6 - 00,6) (2.7)

pois

=~ (0a& —0e,81).
O campo de vetores " H define direcio com expansdo nula. De fato,
Opryy = trA, g =ng(H, " H) = 0. (2.8)
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Definicao (D.2.2). Seja ¢ : (S, g9) = (M, g) uma imersao isométrica de uma

variedade riemanniana em uma variedade semi-riemanniana com codimensdo 2.

A subvariedade é dita ortoumbilica se A,y = 0.

O operador cisalhamento segundo - H é, por definicio, A,y = A, gy —
—0,1y = A, 1y, pois a expansido de x~H é nula segundo a equacio (2.8). Dessa
r%aneira, a condicdo A,. H = 0 é equivalente a A,. H = 0, onde o item (1) da
Proposicao 2.1 nos informa que a subvariedade S é umbilica com respeito a x~H,
um campo ortogonal a H. Essa caracteristica explica a terminologia ortoumbilica.

Uma pergunta surge: quando uma subvariedade pode ser simultaneamente

pseudoumbilica e ortoumbilica? A resposta é dada pelo seguinte Lema:

Lema (L.2). Seja ¢ : (S, 9) — (M, 7) uma imersao isométrica de uma variedade
riemanniana em uma variedade semi-riemanniana com codimensao 2. Se S for

tanto pseudoumbilica quanto ortoumbilica, entao
(1) (S,g) ¢ totalmente umbilica, ou

(2) O campo de vetores curvatura média satisfaz g(H, H) = 0.

Demonstragao: Se S for totalmente umbilica, como a proposicao logica do

Lema contém um owu inclusivo, assumir uma das sentencas como verdadeira torna
a afirmacao verdadeira por completo. Da mesma maneira, se H = 0, entao
g(H,H) =0 e a afirmagao continua verdadeira. Agora resta mostrar que se S
nao for totalmente umbilica, isto é, h # 0, e se H # 0, entdo g(H,H) = 0. Note
que, ao assumir que H # 0, temos no referencial ortonormal {&;, &} de campos

normais que H = —(€10¢,& + €26¢,&2) # 0 nos informa que pelo menos um entre
n
£1€
0c, e O¢, é ndo nulo. Dessa maneira, x H = -2 (0c,6 — 0c,61) #0 e {H,x"H}
n
constitui um referencial ortogonal de X(S)*. Como (S, g) é ortoumbilica, ou

seja, A,y = 0, temos para todos X,Y € X(5) que
0=g(A.yX,Y)=7(h(X,Y),« H),

mostrando que h(X,Y) = L(X,Y)H, onde L é um tensor simétrico 2-covariante
(essa é s6 uma maneira mais bonita de dizer que h(X,Y’) é proporcional a
H). Com isso, temos por definicio que h(X,Y) = h(X,Y) — g(X,Y)H =
(L(X,Y)—g(X,Y)) H para todo X,Y € X(S5). Agora, como (S, g) é pseudoum-

bilica, ou seja, Ay = 0, temos que
0=g(AyX,Y)
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= §<B<X7 Y>7H)
= (L(X7Y> - g(Xv Y))?(Hv H),

impondo que g(H, H) = 0, pois h # 0 (ndo totalmente umbilica) quer dizer que
existem X,Y € X(9) tal que L(X,Y) — g(X,Y) # 0.

2.3 Equivaléncia entre subvariedades Ortoumbilicas e &-

Subgeodésicas

Na seguinte proposi¢ao, provaremos que a propriedade de ser {—subgeodésica é

equivalente a propriedade de ser ortoumbilica quando a codimensao é 2.

Proposicao (P.2.3). Seja ¢ : (S,g) — (M,g) uma imersao isométrica de uma

variedade riemanniana em uma variedade semi-riemanniana de codimensao 2.

As seguintes condig¢oes sao equivalentes em qualquer aberto onde H # 0:
(1) S é ortoumbilica;
(2) S ¢é ¢ —subgeodésica para algum campo nio nulo & € X(S)*.

Demonstragao: Suponha S ortoumbilica, ou seja, que A, = 0. Assim

0=g(A,.yX,Y)=g(h(X,Y),x H), para quaisquer X,Y € %(9),

onde concluimos que h(X,Y) estd na diregdo de H, uma vez que a codimensao
é 2, mostrando que h(X,Y) = L(X,Y)H, para quaisquer X,Y € X(5). Como
h é simétrica e bilinear, temos que L é um (0, 2)—tensor simétrico e assim S é
H —subgeodésica. Como H # 0 e H € X(S)*, basta tomar ¢ = H e o resultado
segue.

Reciprocamente, suponha S subvariedade £ —subgeodésica, com & € X(S)* e
¢ # 0. Por defini¢do, h(X,Y) = L(X,Y)¢{ para quaisquer X,Y € X(S), onde £ é

um campo normal a § nao nulo. Segue que

9(AeX,Y) = g(W(X,Y), ¥ 7€)
= L(X,Y)g(§,%"¢)

Y

I
=
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para quaisquer X,Y € X(S). Como a métrica g é ndao degenerada, pela arbitrari-
edade de Y € X(S) temos A, X = 0 para todo X € X(S), onde a arbitrariedade
de X € X(S) nos revela que A, = 0. Note que £ e H sdo proporcionais, pois

nH =tr(h) = tr(L)¢,
implicando que " H = tr(L(X,Y)) x* € e mostrando que
Ay = AL(X,Y)*ig = L(X7 Y)A*lg =0,

isto é, S é ortoumbilica.

Note que se H = 0 no maximo em um conjunto com interior vazio, entao a
Proposicao 2.3 ¢é valida globalmente. De fato, seja N = {p € S|H(p) = 0} onde
intN = @. Temos entdo que o complementar de N, N° = {p € S|H(p) # 0},

é um subconjunto denso de S. Vamos mostrar que N¢ é aberto: considere

f S — R definida por f(p) = i |G(H (p), &(p))?, onde {&1, &} é um referencial
—1

normal ortonormal. Temos quez}(p) = 0 se, e somente se, H(p) = 0, implicando
em N° = f7'((0,00)) e mostrando que N é aberto. Assim, a Proposicao 2.3
vale em N¢ um aberto e denso. Supondo que (1) valha em N€ entao (2) vale
em N€ isto é, h(X,Y) = L(X,Y)¢ em N¢ Pela continuidade na equagdo acima
e por valer em um conjunto denso, temos que a mesma equacgao vale para toda
S. Analogamente, se vale para (2) em N¢ entdo vale para (1) em N°. Isto é,
A,ig =0 em N€ e, pela continuidade do operador forma em um conjunto denso,
segue que A, 1y =0 em toda S§. Segue que a proposicao vale globalmente neste

caso.

Corolario (C.2.1). Em qualquer aberto onde H # 0 existe um campo de

vetores ndo nulo € € X(S)* tal que A,1e =0 se, e somente se, S € ortoumbilica.

Demonstracao: Se S é ortoumbilica, entdo A,y = 0 por definicdo, onde basta

tomar ¢ = H. Reciprocamente, suponha que exista um tal campo & € X(S)*
nao nulo tal que 4,1, = 0. Em um referencial ortonormal {£,&} C X(S)™,
escrevendo & = a&; + by, vemos que x-& = agybs — be1&y # 0, pois pelo menos
um entre a e b é nao nulo e {£1,&} é um conjunto L.I.. Dessa maneira, {£, «}
determina um referencial ortogonal em X(S)* e, para todos X,Y € X(9), temos
0=g(A.cX,Y) =g(h(X,Y),+¢), mostrando que h(X,Y) = L(X,Y )¢, onde

L é um tensor simétrico 2-covariante. Segue que S é £-subgeodésica e, do item
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(5) da Proposigao 2.1, temos que £ e H sao proporcionais. Consequentemente,
*x1¢ e #1H sdo proporcionais, uma vez que a codimensio é 2. Logo, Ae=0

implica A,z = 0, isto é, S é ortoumbilica.
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Capitulo 3

O Teorema Principal e suas

Consequéncias

Nesse capitulo, enunciaremos e demonstraremos o principal teorema deste
trabalho. Ele relaciona a existéncia de uma dire¢ao umbilica nao-nula com o
operador cisalhamento e, consequentemente, com conceitos relacionados com este
operador, como, por exemplo, o tensor de cisalhamento total - relacionados
pelas métricas do ambiente e da subvariedade, como visto no primeiro capitulo-
e o cisalhamento escalar. O restante do capitulo segue com consequéncias do
teorema, que traz implicacbes como a comutatividade de operadores formas
e a unicidade da dire¢do umbilica, quando esta existir. Encerramos, depois,
caracterizando ortoumbilicidade.

As definigoes e resultados deste capitulo estao presentes no artigo base [4]

desta dissertacao.

3.1 Caracterizacao de ser Pseudoumbilica

O seguinte lema mostra uma relacao entre os operadores B e J :

Lema (L.3). Seja ¢ : (S,9) — (M,g) uma imersao isométrica de uma vari-
edade riemanniana n—dimensional em uma variedade semi-riemanniana com
codimensdo 2. Sejam B o operador de Casorati e J o operador definido em (1.8).
Entao

B—J=2Ay+g(H H)1, (3.1)
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onde H ¢ o campo vetorial curvatura média. Além disso, tr(B —J) = ng(H, H).

Demonstragao: Por um lado, ao considerar um referencial ortonormal {&;, &>}

de X(9)*, temos que os operadores sdo escritos como

= g(gla fl)Agl + §(€27 52)/1?27
=3(&,&)AE, + (%, &) AL,

e a diferenca entre eles é igual a

&1, 51)14?1 +9(&, &) AZ, — 9(51,51)1451 +G(&2. &) A7 &
§,6) (A7 — A7) +9(&, &) (A, — A7)

Z g“& AS Agz)

=1

(
(

=9
g

.

Calculando a diferenca entre os quadrados Agi — f%, temos

- 1 2

Agz - Agz = Agz - <A§i - n06i1>
=A% — A2—29A —I—i921
G & n §il3i n2 &

2 1
=26, A, — —021.
n &A1 n2 &i

Por outro lado, temos pela expressao de H nesse referencial, dada na equagao
(2.4), que

Ap = A% (81951514-6295252)

1
= (610, Ag, + €20¢, As,)

e que

1 1
G H) =5 (- (G106 +abeba) - (G106 + b))
1
3 [G(£10¢, &1, €106,&1) + 2G(£10¢, &1, £20¢,&2) + G(£20¢, 62, €20¢,2)]

ez 4202

= 7112 (Slggl + 62022) .
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Juntando as igualdades, segue que
B-J= 61(14?1 B "2121) + 52(‘422 B Agz)
2 1 2 1
=& <n0£1A£1 — ﬁgé 1) + E9 <n0€2A£2 — ﬁ0§2 1)

1 (810?1 + 829§2> 1

2
(€10, Ag, + 20e,Ag,) — 3

T n

~ 1
Como Ay = Ay = —0y1, temos que
n

- 2
2Ag = 2Ay + —0gx1
n
~ 2
n
= 2Ay +2g(H, H)1,
onde podemos finalmente concluir que

B—J=2Ay —g(H,H)1
= 2Ay +2g(H, H)1 —g(H, H)1
=2Ay +g(H, H)1.

Além disso, tomando o trago dos dois lados temos que

tr(B—J) =tr(2Ay +g(H, H)1)
= 2tr(Ay) +g(H, H)tr(1)
= n§<H7 H)7

pois Ay é livre de traco.

Corolario (C.3.1). Seja ¢ : (S, g) = (M,g) uma imersio isométrica de uma

variedade riemanniana n—dimensional em uma varidade semi-riemanniana com

codimensao 2. Entdo S ¢ pseudoumbilica se, e somente se,
B—J=Ay.
Ou equivalentemente, se e somente se B — J for proporcional da identidade.
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Demonstracao: Pela definicao de operador cisalhamento, segue da demonstra-
¢ao do lema acima que B — J = 2Ay —g(H,H)1l. Assim B —J = Ay se, e
somente se, 2Ay — G(H, H)1 = Ay, ou equivalentemente, Ay = g(H, H)1. Logo,

S é pseudoumbilica por defini¢ao.

3.2 Teorema Principal

Nesta se¢ao enunciamos e provamos o principal teorema deste trabalho.

Teorema (T.3.1). Seja ¢ : (S,g) = (M,q) uma imersao isométrica de uma

variedade riemanniana n— dimensional em uma variedade semi-riemanniana com

codimensao 2. As sequintes condicoes sao equivalentes:
(i) S € umbilica com respeito a um campo vetorial normal ndo nulo & € X(S)*.
(7i) Quaisquer dois operadores cisalhamento sao proporcionais entre si.
(iii) Existem A € T(S) e G € X(S)* tais que (A, A) =n’ e
MX,Y)=g(AX,Y)G, (3.2)
para todos X, Y € X(9).

(iv) Os componentes de quaisquer dois operadores cisalhamento A, e A,, com

respeito a qualquer referencial tangente satisfazem
(A )5 (An)s = (An)j(An)5, (3.3)
para todos i,7,r,s =1...,n.
(v) Quaisquer dois operadores cisalhamento flm e flm satisfazem

<ATI17121771>2 =0, 0. (3'4)

— YmTne

Demonstragao:

(i) = (4i). Suponha S ortoumbilica com respeito a um campo normal ndo nulo
¢ € X(5)*, isto 6, A; = 0. Considere n € X(S)* tal que {&,n} C X(S)*
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é um conjunto linearmente independente. Entao, dados 1,1, € X(S)*,

temos que existem funcgoes ay, as, by, by tais que

m = a§ +bin
N2 = a2 + ban.

Dessa forma, flm = Aal£+b177 = alflg + blfln = blfln e 1217,2 = b2fln segundo

0 mesmo processo, onde notamos que

by A, = babi A, = biby A, = b1 A,,.

Nos pontos onde b; ou by se anulam, a proporcionalidade é trivial. Podemos
considerar os pontos onde b; e b, nao se anulam, donde segue que A, =
by ~
—A

by e como queriamos.

(i) == (i17). Seja {&1, &} C X(S)*" um referencial ortonormal tal que g(&;, &) =
g1 e g(&, &) = e9. Como por hipdtese flgl e 12152 sa0 proporcionais, entao
existem A € T(S) e funcdes \; e \y tais que Ae, = M A e Ag, = \yA. De
fato, a proporcionalidade entre os operadores nos fornece fungoes f; e fo
tais que f1f~151 = f2A§2 — A € T(S). Nos pontos onde f; ou f, se anulam,
o campo A satisfaz a igualdade trivialmente. Podemos considerar entao os

pontos onde f; e f; nao se anulam para escrever

Por expansao ortonormal, temos

;L(X7 Y) = 51§(E(X’ Y)a gl)gl + 52§<E(X7 Y)7 52)52
619(A§1X7 Y)§1 + 529(1452)(, Y)ég
e1g(MAX, V)& + e29( M AX, Y)E,

9(AX,Y) (21 M€ + ea)e&s)

para quaisquer X,Y € X(S), onde é suficiente tomar G na dire¢ao de
e1hié1 + 206 € X(9)

Seja k% = tr(A?). Para que tenhamos tr(A?) = n? podemos reescalar A,
2
isto 6, fazendo Ay = %A. Assim, tr(A2,)) = (%A, %A) = %(A, Ay = n?.
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Contudo, teriamos

n

%9

(AX,Y)G = “h(X,Y).

g(AscalX7 Y)G =g (nAX, Y) G = k

k

k
Para ajustar isso, podemos reescalar G, tomando Gy, = —G teremos
n

. ] !
9 A X, Y ) Grcr = (ZAX, Y) e

= g(AX,Y)G
h(X,Y).

(i43) = (). Considere o referencial {&;, &} orientado de tal forma que w* (&1, &) =
1. Se G = 0, entdo para todos X,Y € X(S) tem-se 0 = h(X,Y) =
h(X,Y)—g(X,Y)H, onde S é totalmente umbilica e afirmagao ¢é valida
para qualquer campo normal nao nulo que quisermos tomar. Suponha
G # 0 e escrevamos G = a(e1 A& + £2X28,), onde v é uma fungao di-
ferenciavel ndao nula. Entdo -G é ndo nulo, pois do contrario terfamos
* G = ale A+ & F e kT &) = agiea( M€y — A1) = 0, 0 que acontece
se, e somente se, \; = Ay = 0, contradizendo a suposicao de que G = 0.
Por hipétese, h estd na dire¢do de GG, onde para todos X,Y € X(S) temos

0

g(h(X,Y),+"G)
= g(A*J-va Y)7
implicando em A,. s = 0, isto é, S é umbilica com respeito a =G € X(S)*,

que é nao nulo.

(11) <= (iv). Suponha que quaisquer dois operadores cisalhamento sejam pro-
porcionais entre si. Entao dados 1,17, € X(S )L existe A\1o funcao diferencia-
vel tal que A,, = M\24,,, 0 que é equivalente a dizer que (flm); = )\12(1[17,2);.

Assim, para quaisquer i, j, r, s a equagao (3.3) se torna )\12(21772)2(;1,72)2 em

ambos os lados. Reciprocamente, suponha que para todos i, j,r,s =1,...,n

se tenha
(Am);(;lng)z = (Am)ﬁ(flm)i

Queremos mostrar que flm = )\flm, que é equivalente a mostrar que
(A, )i = )\(Am);, para todos i,5 = 1,...,n. Se A,, =0, o resultado segue

diretamente. Suponha /Nlm # 0, isto é, pelo menos uma componente de
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(Ay,); € ndo nula, onde tomaremos, por exemplo, a componente i = a

e 7 = b fixados. Como vale a equagao (3.3) para todos r,s = 1,...,n,

teremos

—~

{lm)g A T

A )= A
(o) = (e (Ao

—~

(Ag )5

onde podemos tomar A = ———=,
. (Aﬁz)b L . ) )
O caso em que mais de uma componente é nao nula é inteiramente analogo.

Logo, flm =\

uma fun¢do que nao depende de r e s.

n2s COMO queriamos.

(i1) <= (v) Lembrando que (A¢, A;) = tr(}ig) = o7, para 11,12 € xX(S)*

arbitrarios, temos da desigualdade de Cauchy-Schwarz que

onde a igualdade vale se, e somente se, A, e A,, forem proporcionais, como
esperavamos.

O Teorema acima nos diz que, sempre que existir uma direcado umbilica,
existe um campo de vetores normal G que satisfaz o item (iii). Note que G estd
definido a menos de sinal, por conta da Observagao (2), item (2), subsequente as
defini¢bes dos vérios tipos de umbilicidade. Usando a condigao (7i7), temos que
9(A:X,Y) = g(h(X,Y),€) = g(AX,Y)g(G, €) para todos X,V € X(S) e todo
¢ € X(S)*. Como a métrica g é nao degenerada, a igualdade acima, reescrita
como g(A:X — g(G,€)AX,Y) = 0 para todos X,Y € X(5), nos diz que

A =7(G, A, (3.5)

onde o escalar de cisalhamento correspondente é dado por of = tr(/lg) =
9(G,&)*tr(A%) = ng(G, €)?. Como tanto o¢ e G sio definidas a menos de sinal e
o quadrado delas coincidem, podemos definir

O¢ = ng(G7£)> (36)
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para todo & € X(S)*. Combinando as equagdes (3.5) e (3.6) temos que
~ ~ O¢ ~
Ao =6 64- %
para todo ¢ € X(S)*, onde, para quaisquer 7,1, € X(S)*, temos que
A Om

<121?717AT]2> = <7A7 %/D =T 5
n

Proposigio (P.3.1). Existem A € T(S) e G € X(S)* tais que (A, A) =n’e

hMX,Y) = g(AX,Y)G (3.7)
para todos X, Y € X(S) se, e somente se,
WX, YY ANWZ, W) =0,

para todos X,Y, Z, W € X(S). Ou seja, o item (i7i) do Teorema 3.1 pode ser
reformulado como h(X,Y)" A h(Z,W)" = 0.

Demonstragao: Suponha vélido o item (7i7). Assim, dados arbitrariamente

U,V € X(M), temos pela definigao de produto exterior que

- - XYY (U) R(Z,W)(U)
h(Xa Y)b(U) A h<Za W)b(v) - E(X, Y)b(v) iL(Z, W)b(v
_ [p(h(X,Y),U) g(h(Z,W).U)
g(h(X,Y), V) g(h(ZW),V)
_|gax.vg(c.v) gAzwgc,u
9(AX,Y)g(G, V) g(AZ,W)g(G,V
= 9(AX,Y)g(G, U)g(AZ,W)g(G, V)
- ?( ~Z7 W)?(G> U)?(*AX? Y)§<G7 V)

Pela arbitrariedade dos campos tomados, segue que h(X,Y)” A h(Z, W)’ = 0.
Reciprocamente, suponha que h(X,Y)’ A h(Z, W)’ = 0. Entdo, as 1—formas
E(X , Y)b sao linearmente dependentes para todos X, Y € X(S). Dessa maneira,
existe uma 1-forma w tal que h(X,Y) = L(X,Y)w, com L tensor tipo (0,2)
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simétrico. Para dada w, existe um campo de vetores G' = w* tal que g(G,Y) =
w(Y). Entéo fica bem definida h(X,Y) = L(X,Y)G. Além disso, como L é um
tensor tipo (0,2) simétrico, existe uma aplicacdo autoadjunta A € T(S) tal que
L(X,Y) = g(AX,Y). Finalmente, podemos ter tr(A?) = n? reescalando G se
necessario, seguindo o mesmo argumento da demonstracao de (ii) implica (zii)

no Teorema 3.1.

Seguimos entao com dois corolarios ao Teorema 3.1.

Corolario (C.3.2). Seja ¢ : (S, g) = (M,g) uma imersao isométrica de uma

variedade riemanniana n—dimensional em uma varidade semi-riemanniana com
codimensao 2. Se S for umbilica com respeito a um campo vetorial normal nao

nulo, entdao quaisquer dois operadores forma comutam.

Demonstracao: Suponha & umiblica com respeito a um campo vetorial normal

nao nulo & € X(S)*, ou seja, suponha valido o item (i) do Teorema 3.1. Pela
equivaléncia dada pelo Teorema, temos em particular que (i) <= (ii), onde
segue que quaisquer dois operadores cisalhamento sao proporcionais entre si.
Dados 71,1, € X(S)*, temos que existe A € F(S) tal que 4,, = \A,, e assim

temos que
"21771(/1772) = )‘Anz (Am) = )‘A%y
AUQ (Am> = A772(/\A772) = AA%Q
e consequentemente [A, ,A4,,] = M(A,, — A,,) = 0. Entdo se os operadores

cisalhamento sao proporcionais, segue que eles comutam. Resta relacionar com

os operadores forma: por defini¢do, os operadores cisalhamento sao

N 0
A771 = A771 - %L
- 0
Anz = A772 - %L

e o colchete se torna

Amﬂzlm = Am - %17‘4712 - eﬂl
n n

(ot o) () a2

) 0 0,0
= Ap Ay, — fAm - %Am + %1
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977 97} ‘977 97)
- AW2A771 + 7214711 + ?1"4772 - ;LQ 21
= AmAnz - AnzAm
= [Amv Anz] .
Logo, os operadores forma comutam pois os operadores cisalhamento comutam

por serem proporcionais.

Dada uma familia comutativa de operadores diagonalizaveis em um espago
de dimensao finita, sabemos que existe uma base ortonormal que diagonaliza
simultaneamente todos os operadores dessa familia. Uma demonstracao pode
ser encontrada em [8], pagina 207, Teorema 7. Esse fato de Algebra Linear, nas
condigoes do corolario acima, nos diz que em qualquer ponto da subvariedade
existe uma base ortonormal do espago tangente tal que todos os operadores forma
se diagonalizam simultaneamente.

A reciproca do Corolario 3.2 nao é verdadeira em geral. Suponha que
quaisquer dois operadores forma comutem. Dado um referencial ortonormal
{€,,6) € X(9)*, seja n = c1& + 6 € X(S)T campo candidato a direcao

umbilica de S. Pela discussao acima, existe um referencial {ey,...,e,} € X(95)

que diagonaliza os operadores A¢, e A, simultaneamente, onde \; e 1; denotarao

os autovalores respectivos, para ¢ = 1,...,n. Pela condi¢cdo de umbilicidade,
Oy

A, = —1, temos
n

0
An = A01£1+C2§2 = ClAﬁl + CQA& - gnl’

onde aplicado em e; autovetor do referencial que diagonaliza todos simultanea-

mente, obtemos que

)
%62' = ClAglei + CQA&G@' = 01)\1-61» + Co[b;€;.

0
Subtraindo —e; em ambos os lados e evidenciando e;, segue que
n

0 0
cl)\iei -+ Coll; €; — —"ei = (Cl)\i —+ Coll; — l)ei = 0,
n n
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0 .
implicando em ¢ \; + copt; = —, para cada i = 1,...,n. No caso em que n = 2,
n

o sistema
Cl)\l + Colt1 = Qn/Q

Cl)\g + Collg = 9,]/2

possui solugao por ser um sistema linear de duas equagoes e duas incognitas,

enquanto para n > 2, teremos

Cl>\1 + Coll1 = 977/77,
C1A2 + Coflg = 9,7/71

1A, + Caft, = 0, /10

um sistema linear com n equagdes e duas incognitas, que pode nao ter solucao.

O préximo corolario mostra a reciproca para o caso n = 2.

Corolario (C.3.3). Uma condi¢io necessaria e suficiente para que uma superfi-

cie tipo-espago em uma variedade semi-riemanniana de dimensao 4 seja umbilica
com respeito a uma direcao normal nao nula é que quaisquer dois operadores

forma comutem.

Demonstracao: A comutatividade de dois operadores forma quaisquer, assu-

mindo que a subvariedade é umbilica com respeito a uma direcao normal nao
nula, é valida pelo Corolario 3.2.

Reciprocamente, suponha que quaisquer dois operadores forma comutem e
considere &, € X(S )L. Vamos mostrar que S é umbilica com relagdo a uma di-
recao normal nao nula utilizando o Teorema 3.1, mais precisamente, a implicagao
(tv) = (7). Por hipotese, A¢ e A, comutam e existe referencial ortonormal
do espaco tangente que diagonaliza ambos operadores forma simultaneamente.

Denotando por Ai, Ay e fi1, f12 0s autovalores de A¢ e A,), respectivamente, escre-

(i) )
2 M2

Temos 0 = tr(Ae) = M + Ao, 0, = tr(A,) = 1 + po, onde por definicao, nesse

Vemos

referencial,

\ (A1 4+ A2)
= A
A = 2 ,
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A= 2 X
T 0 (1 + p2)
2
2
Note que

\ (AN + X)) o (Aj+N) A
1 2 (2 2 2 ?

i — (it ) (it ) i —
7 2 (] 2 2 Y

para i # j, i, 7 = 1,2, onde podemos reescrever os operadores cisalhamento como

5 1 (A=A 0 1 1y — po 0
Af:Q( 0 A—A) A”:2( 0 —m)
2 1, 125 H1

Como as matrizes dos operadores estao na forma diagonal, temos que

3("2177) = = (Aﬂ);(ﬁﬁ)gv para (Z>]) € {(172>7(271)} ou (T>S) S
,2), (2, 1)}

(AT = (M = Xa)(p1 — p2) = (A)i(Ae)s, para (i,j) = (r,s) €

(3) (Ae)5(Ay)T = =M1 = Aa) (i1 — pia) = (A
que (i, j) # (r,s) com {(i, J)}U{( s)y =101

Podemos concluir assim que

A ¢)s, para o caso restante em

1), (2,2)}

(flg);(fln); = (fln);(flf)g, para todos i, j,r, s = 1,2,

como queriamos mostrar.

3.3 A Direcao Umbilica

Se {&1, &} € um referencial ortonormal no fibrado normal com g(&;,&;) = €:6;5,
temos uma equagao explicita para G a partir da equagdo (3.6). Com efeito,

escrevendo G no referencial acima, G = a1&; + a6y, segue que §(G, &) =
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g 1
a1G(&1,&1) + a2g(€2,&1) = areq, onde ay = €1G(G, &) = 51%. Analogamente,

o
temos ay = 52Q, onde (G se reescreve como
n

1
G = ﬁ(glUglfl + 820'5252). (3.8)

Das propriedades do operador dual estrela de Hodge, também conseguimos

uma expressao para =G nesse referencial, a partir da expressio de G:

*J_G = (51051 > 51 + €20¢, > 52)

SI—3|=

= (51€2U§152 — €1€20¢, > &)
= 7(05152 — 05,61),

o que vale ser referenciado numa sé equagao:

£1€
*J_G = %(O’&g? - 05251)' (39)

Corolario (C.3.4). Seja ¢ : (S, g) = (M, g) uma imersao isométrica de uma

variedade riemanniana n—dimensional em uma variedade semi-riemanniana com
codimensao 2. Se § € umbilica com respeito a uma direcao normal, entdo essa
direcdo € unica e é gerada por -G, a menos que G =0, onde S serd totalmente

umbilica.

Demonstracao: Suponha S umbilica com relagdo a um campo vetorial normal

niao nulo ¢ € %(S)*. Como uma consequéncia da definicao, [15 = 0, onde
0=g(A:X,Y) =g(h(X,Y),£), para todos X,Y € X(S). Pelo Teorema 3.1 item
(i17), existem A € T(S) e G € X(5)* tal que h(X,Y) = g(AX,Y)G, em que o
resultado acima mostra que G e & sao ortogonais, onde £ deve necessariamente
ser proporcional a *LG, por questoes codimensionais. Agora, se G = 0, entao

h = 0, que é equivalente a pedir S totalmente umbilica.

Supondo que exista uma direcio umbilica n € X(S)*, vimos que, dados &, &, €
X(S)*, os operadores A, e Ag, podem ser diagonalizados simultaneamente.

Sejam \; autovalores de Ag, e p; autovalores de Ag,, para i € {1,...,n}. Temos
0 0 .

entao que \; — -8 i — 28 s30 autovalores dos operadores cisalhamento Ag,
n n

e Ag,, respectivamente. De fato, considerando os v; elementos do referencial

que diagonaliza simultaneamente os operadores cisalhamento acima, com i €
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{1,...,n}, temos
Ae () = Ag ()~ ) = dn = P00y = (2 - B ),
& \Vi) = Ag Vi n Vi) = A\U; n Vi) = i n Vi,

onde para 12152 a conta é analoga. Como {¢;, &} forma um referencial ortonormal
de X(S)*, a direcio umbilica n pode ser decomposta nesse referencial 1 =

a1&1 + asés e visto que n é direcdo umbilica, temos
0= AU = Aa1§1+a2§2 = G1A§1 + (lgzzl@.
Aplicando em v;, temos

0 = a1dg, (v;) + azde, (v;)

:a1< i_egl>vi+a2<ﬂi_9£2>vi
n n
) 0

= [%( i_&>+a2<ﬂi_£2>]vi
n n

_a

) = —as | pu; — 2 pois v; é nao nulo por ser autovetor.
n n

implica em a; ( i

0
Uma solucao é a; = <ui — 2) e ay = — ( i — 51) Qualquer multiplo dessa
n n

solu¢do também funciona, o que indica a proporcionalidade entre (aj,as) e

(565

ni = <,Ui_952> & — ( 1—6’51) $ (3.10)

n n

é um campo de vetores normais ao qual § é umbilica para cada i = 1,...,n.
Todos esses campos de vetores sao proporcionais entre si: como Ag, e Ag, sao

proporcionais entre si, existe uma c tal que A¢, = cAg,. Segue de maneira analoga

0 0
a0 que fizemos acima que | \; — )= i — "2 ) Paraic {1,...,n} fixado,
n n
0 0 0 0
n n n n

6
i — =2 | (1, —c). Segue entio que todos os 7; estdo na diregio (1, —c) e sdo,
n

portanto, proporcionais. Além disso, como cada uma dessas dire¢des é umbilica,

segue do Corolario 3.4 que n; e *tG sao proporcionais para cada ¢ € {1,...,n}.
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Mais ainda, temos que

Sonn-Sof(n- ) (e (- (-2)g
:51i<ui_9§> +52Z< 8&1>

= 51157“(12122) + 52157"(1421)
—eot et

= n*g(xTG, % @),

onde para a tltima equagao utilizamos a equagao (3.9).

3.4 Caracterizacao de S ser Ortoumbilica

Corolario (C.3.5). Seja ¢ : (S, g) = (M, g) uma imersao isométrica de uma

variedade riemanniana n—dimensional em uma varidade semi-riemanniana com
codimensao 2. Em qualquer aberto onde H # 0, S € ortoumbilica se, e somente
se,

MX, YV ANH =0

para todos X,Y € X(95).

Demonstragao: Suponha S ortoumbilica, isto é, A,1 5 = 0. Como estamos em

um aberto onde H # 0, a Proposi¢ao 2.3 nos garante que S é H—subgeodésica,
onde h(X,Y) = L(X,Y)H para todos X,Y € X(5) com L € T(S) simétrico,
por definicdo. Dessa maneira, a segunda forma e o campo de vetores curvatura
média sao proporcionais, sendo entao linearmente dependentes, implicando que
h(X,Y)" A H® = 0, para todos X,Y € X(S).

Reciprocamente, supondo h(X, Y)b ANH =0 com H # 0, temos que existe
um tensor simétrico L € T(S) tal que h(X,Y) = L(X,Y)H. Assim,

g( Ay X,Y) =g(h(X,Y),«"H) = L(X,Y)g(H,«"H) = 0,

para todos X,Y € X(S), onde concluimos que A,y = 0 pois a métrica é

nao-degenerada.
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Observacao: Aqui vale 0 mesmo argumento por continuidade que sucede a
Proposicao 2.3, isto é, se H = 0 no maximo em um conjunto com interior vazio,
entdo a equivaléncia é global.

Vale notar que a propriedade de ser ortoumbilica é especial pois ela implica
que S é H—subgeodésica e que os tensores total de cisalhamento h e segunda
forma fundamental i sdo sempre proporcionais entre si e a H, visto que A, 5 =0
implica em h(X,Y) = L(X,Y)H pela Proposicao 2.3 e assim

A(X,Y) = (L(X,Y) — g(X,Y))H.
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Capitulo 4

O Caso Lorentziano e Superficies

Umbilicas no Espaco-tempo de
Schwarzschild

Nesse capitulo, M serd uma variedade lorentziana com assinatura
(—,+,...,+). Como impomos que a subvariedade de codimensao 2 tenha métrica
riemanniana, temos entao que a métrica assume assinatura (—, +) no fibrado
normal.

Uma caracteristica das variedades semi-riemannianas que foge da nossa
intuicao euclidiana é a existéncia de vetores tangentes em que a forma associada
a métrica aplicada a esses vetores nao é necessariamente positiva definida como
visto e definido no primeiro capitulo. Demos o nome de wvetores tipo-nulo a
vetores que, mesmo nao-nulos, zeram a forma quadratica. Estudaremos, na
primeira se¢ao, um referencial composto por vetores deste tipo causal e, em
seguida, relacionaremos com o os conceitos e os resultados vistos previamente:
como se comportam os operadores B e J nesse caso? E no caso da existéncia de
uma direcao umbilica, qual seu carater causal?

Finalmente, trazemos um exemplo de subvariedades tipo-espago que sao
totalmente umbilicas no espaco-tempo de Schwarzschild, espago este que descreve
buracos negros-nao rotacionais. Finalizamos considerando umbilicidade em
espagos-tempo rotacionalmente simétricos, baseado no artigo [12].

As definigoes e resultados deste capitulo estdo presentes no artigo base [4]

desta dissertacao.

Pagina 58 de 76



4.1 Referencial Nulo em X(S)*

Seja {k,1} C X(S)* um referencial tal que

gk, k)=79(1) -0, gkl =-1, (4.1)

onde a ultima equagao estd normalizada por conveniéncia. Trocando a ordem, se
necessario, podemos assumir que o referencial {k, [} esta orientado positivamente,
isto 6, que wr(k,1) = 1. Temos que "k, +1 € X(S)*, onde devem se decompor

naquele referencial, que é o que faremos:

(I) Escrevendo x*k = fil + fok, o produto por [ segundo a métrica g nos diz

que

gk, 1) =g(Al+ fak, 1)
=g(f1l,1) + g(f2k, 1)
= f2g(k, 1)
=—/2

e o produto por k nos diz que

gk, k) = g(fil, k) — g(x"k, Dg(k, k)
- _fl-

Mas g(x*k, k) = 0 segundo a obsevervacao (i) que sucede a Proposicio 2.2
e g(xTk,1) = wr(k,1) = 1 pela Equacdo (2.5), mostrando que f, = —1 e
f1 =0, onde concluimos que

*Tk = —k.

(II) Analogamente, escrevemos -1 = 511 + jok e fazemos o produto primeiro

por [, onde obtemos

g1, 1) = jug(l,1) + jag(k, )

= _j27

Pagina 59 de 76



e depois o produto por k, que nos fornece

g(*le k) = jlg(lﬂ k) = g(*J—la l)§<k7 k)
= —J1-

Pelos mesmos motivos supracitados, mais a Equacio (2.6), g(x1,1) = 0
e GxT1 k) = —g(xk, 1) = —w*(k,1) = —1. Logo, j; = 1 e jo = 0, onde
concluimos que

=1

Vamos procurar expressoes nesse referencial para a segunda forma fundamen-

tal h e para o campo vetorial curvatura média H:

(1) Escrevendo h(X,Y) = a1 (X, Y)l+ax(X,Y)k, para X, Y € X(S), o produto

por [ segundo a métrica nos fornece

g(h(Xv Y)? l) = §<a1(Xv Y)l7 l) + g(a2(X7 Y)kv l)
= —a(X,Y)

e o produto por k nos fornece (ja substituindo o as)

g(h(X, Y)> k) = g(al (Xv YL, k) +g(h(X, Y)> l)?(ka k)
= —al(X, Y),

onde a segunda forma fundamental se decompde nesse referencial como

(4.2)
(2) Para o campo vetorial curvatura média, dado um referencial tangente
1 n
{e1,...,en}, temos por defini¢do que H = — > h(e;, e;), onde o item (1)
n

i=1
acima nos revela que

h(ei,e;) = —g(Arei, e)l — g(Aiei, e;)k

e a soma se torna

n

> hei, ;) =— zn:g(Akei, el — > g(Aie, e)k

i=1 =1 i=1

= —0kl — O)k.
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Portanto, H se decompode nesse referencial como
1
H = 5<_9kl — 0,k). (4.3)
Das equagoes (I),(IT) e (4.3) segue que
L 1 i L 1
* H = *(—Qk * - 9[ * ]{Z) = —(—Hkl + le:) (44)
n n

As quantidades 0 = tr(Ay) e 0, = tr(A,;) sao chamadas de expansdes nulas.

Note que G(x"€,+"€) = e1227(€,€) = —7(€,£) para todo & € X(S) e, em
particular,

1 2
G H,«"H) = —g(H,H) = —ﬁg((—ekl—elk), (—0xl—0ik)) = —0k00. (4.5)

Também conseguimos uma expressao para o operador de Casorati B: na
observagao que sucede a Definicao 1.17 do operador, sabemos que este nao
depende do referencial normal dado, onde dados X,Y € X(S) e um referencial

ortonormal tangente {ej, ..., e,} podemos escrever

n

g(BX.,Y) Z h(X,e;), h(Y,e€;)).

Pela expressao da segunda forma fundamental h, temos

hMX,e) = —g(Ar X, e))l — g(A X, e;)k,
h(Y7 ei) - _g(Ak‘Y7 €Z>l - g(AlY7 ei)ka

onde o produto entre ambos os campos é

G(h(X, e:), MY, e:)) = G(—g(ArX, €)l — g(AiX, e)k, —g(ArY, e;)l — g(AiY, e)k)
= g(ArX, €;)g(AY, €;)g(l k) + g(AIX, €;)g(ArY, e)g(k, 1)
= —g(ArX, e;))g(AlY, e;) — g(A1X, e:)g( ALY, e;)
= —g(g(AxX, ;) Aie; + g(A1 X, ;) Age;, Y)

e a soma é

n

ig(h()Q ), h(Y,e) = =g _[g(AnX, e) Are; + g(AX, €;) Ares], Y).

i=1
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Agora note que
AX =3 g(AX e, AX = g(AX, e
i=1 i=1

e com isso
A(AX) =D g(AX e)Ares, A(ArX) =Y g(An X, e;) Ares,
i—1 i=1

que sdo os exatos termos que aparecem no lado direito da soma, dentro do
somatoério. Logo, temos que
n

Como a equagao acima vale para todos XY € X(5), segue da nao-

degeneratividade da métrica que
B=—-AcA — AjA;. (4.6)

Ainda nesse referencial, como o tensor de cisalhamento total é escrito como
MX,Y)=hX,Y)—g(X,Y)H para X,Y € X(S), temos que

B(XY) = g(X,Y)H = —g(AX. V)l = g(AX,Y )k —g(X.Y) - L (64 — k)

8 0
= —g(AX. V)l = g(AX,Y) + g(X,Y) M+ g(X,Y)

= —g(AkX — Qk—X Y)l —g(AX — QZ—X Yk
isto é,
h(X,Y) = —g(A4X, V)l - g(A4X,Y)k (4.7)

para todos X,Y € X(5), onde os operadores A, e A, sdo chamados operadores
cisalhamento nulos. Além disso, o e 0; sdo chamados escalares de cisalhamento
nulos.

Notemos também que, como o operador J tem a mesma propriedade de nao

depender do referencial normal, isto é, dado {ey,...,e,} referencial ortonormal
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tangente, J ¢ dado por
n ~

jXY:Z h(X,e),h(Y,e)),

segue de maneira analoga que

J = —AA — AA,. (4.8)

4.2 O Carater Causal da Direcao Umbilica

Assuma que exista uma direcdo umbilica. Entdo tanto o campo G € X(S)*,
dado pelo item (ii7) do Teorema 3.1, quanto seu dual *tG podem ser expressos
em termos do referencial nulo da secdo antecedente:

(I) Escrevendo G = a1l + ask, o produto por [ nos fornece

(G, 1) = arg(l,1) + asg(k,1)

—_= —a2
e o produto por k nos fornece

?(G7 k) = al?(l’ k) - g(Gv l)g(k’ k)

= —aq.
Mas a equagao (3.6) nos informa que g(G, k) = Tk e g(G,l) = —, onde
o1 o n n’
ap = —— € ap = —— e consequentemente
n n
1
G = —*(O'Zk‘—l—O'kl). (49)
n

(IT) Do item acima e das equagoes (I) e (II), temos que

1 1
*LG:——(O‘Z ~)<L]f+0'k~kL l) :*(O'lk’—a'kl). (410)
n n

Uma maneira de determinar o sinal de g(x"G,*-G) é considerando os
operadores B e J. Pelo item (iii) do Teorema 3.1 e pela definigdo do ten-
sor de cisalhamento total h, temos que h(X,Y) = g(AX,Y)G e h(X,Y) =
hX,Y) - g(X,Y)H, donde segue que h(X,Y) = g(AX,Y)G + ¢g(X,Y)H, onde
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as equagoes sao validas para todos X,Y € X(S). Recuperando a equagao (1.9)
que define como J age, dados referencial ortonormal tangente {eq,...,e,} e
X,Y € X(9), temos

n

jXY:Z XeZ ), h(Y,e)),

onde

(Q(AX, ez)Ga g(AY, €i>7 G)

g(h(X,e:), h(Y,e:) =g
g(zZlX, ei)g(AY7 el)g(G> G)

e a soma se torna
Zg (X, e),h(Y,e;)) = Zg(le, e)g(AY,e)g(G, Q).
i=1 i=1

Na expressao ortonormal tangente, temos

AX =3 g(AX e)e;, AY = g(AY, e))ey,

=1 i=1

e o produto entre ambos ¢ o que precisamos para substituir na soma acima, a

dizer

(AX AY) —g(Zg AX é; 62729 AYeJ )
=1 7=1

i AX €i)g (AY,e]) (€i,e5)

Z AX €i)g AY@Z)

Logo, retornando a soma e utilizando o fato de que Aé autoadjunto, obtemos

ig (X, e), Y ei)) = ZQ(AX, ei)g(le, e)9(G, G)
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e como a métrica é nao-degenerada, concluimos que

J =73(G,G)A%
Tomando o traco na equacio acima, temos tr(J) = g(G,G)tr(A?) =
7(G, G) (A, A) = §(G,G)n? e portanto

GG ) = —g(G,C) = ——tr().

n2
Mas da equagao (4.8) obtemos que
1 o
g(*LG, *lG) = —ﬁtr(—AkAl — AlAk)
1
= —ﬁ[tr(—AkAl) + tT(—AlAk)]

2 ~
E<Ak7 Al>

e portanto temos
e (Ag, A)) < 0 implica em x*G é tipo-tempo;
o (A, A) > 0 implica em G é tipo-espaco;
o (Ag, A)) = 0 implica em x*G é nulo.

Da equacio (3.1), B—J = 24y +g(H, H)1, tomamos o traco e multiplicamos
por (—1), obtendo

tr(J) = tr(B) — 2tr(Ay) — g(H, H)n
= —(tr(B) —ng(H, 1))

e assim podemos observar o sinal como segue

GG, = —nl2<tr<3) — ng(H, H)).

Tudo isso implica em

tr(J) < 0 implica em - G é tipo-espaco,

tr(J) > 0 implica em x- G é tipo-tempo,
o tr(J) =0 implica em - G ¢ tipo-nulo,
o tr(B) < ng(H, H) implica em x- G é tipo-espaco,
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o tr(B) > ng(H, H) implica em x- G é tipo-tempo,

o tr(B) = ng(H, H) implica em x- G é tipo-nulo.

4.3 Subvariedades simultaneamente Pseudoumbilicas e

Ortoumbilicas

Proposigao (P.4.1). Seja ¢ : (S, g9) — (M, g) uma imersao isométrica de uma

variedade riemanniana em uma variedade lorentziana com codimensédo 2. Em

qualquer ponto p € S onde H # 0 e S ndo é totalmente umbilica, sdo equivalentes:
(1) B—J=0
(2) (S,g) é tanto pseudoumbilica quanto ortoumbilica.
(3) B=0eJ =0.

Além disso, em todos os casos temos G(H, H) = 0 em p.

Demonstragao:

(1) = (2) Assuma B—J =0, isto é, B= 7. Do Lema 3 temos
24y +G(H, H)1=B—-J =0

e, tomando o traco, obtemos 0 = 2tr(Ay) + ng(H, H) = ng(H, H), onde

concluimos que g(H, H) = 0 (H é tipo-nulo). Por isso, temos
0 =24y +g(H, H)1 =24y,

o que implica em Ay = 0 e consequentemente Ay = e—Hl, isto ¢, S ¢é
pseudoumbilica. Além disso, como g(x* H,x* H) = —g(HT,LH) = 0, temos
que = H também ¢é tipo-nulo e, de g(x*H, H) = 0, afirmamos que eles
sdo proporcionais. De fato, dado referencial normal ortonormal {1, &},

escrevendo
H = a&, + b, * H =c& +dé,

notamos que, para H, temos

0= g(H, H) = g(a& + bfg, CL§1 + bfz) = a2€1 + b2€2
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e como um entre 1 e g9 é igual a —1, segue que a® = b? e isolando b = =+a,
temos que H = a(&, £ &). Para " H, o mesmo procedimento isolando
d = 4c nos revela que xH = c(& £ &). A afirmacdo de que eles sio
proporcionais nos diz que o H e x- H devem ter o mesmo sinal de operacio
entre os campos & e &. Do contrario, supondo sem perda de generalidade
que H = a(é; + &) e xTH = (& — &), terfamos

0

g(H,x H)

(a(&1 + &2),c(§1 — &2))
cg(& + &, 6 — &)
= ac[sl — 62]

= +2ac

I
S «l

mostrando que H = 0 = x+-H, absurdo. Logo, H e - H sao proporcionais e

assim Ay = 0 implica A, 5 = 0, mostrando que S é também ortoumbilica.

(2) = (3) Suponha S pseudo e ortoumbilica. De H # 0, segue do Coro-
lario 3.5 da secao que caracteriza subvariedades ortoumbilicas que S é
H-subgeodésica, que por defini¢ao nos diz que existe um tensor simétrico L
2-covariante tal que h(X,Y) = L(X,Y)H, para todos X,Y € X(5). Como
S é pseudoumbilica, entdo Ay = 0 e daf temos

Da equagao acima, se g(H, H) # 0, terfamos L(X,Y) = g(X,Y") para todos
X,Y € X(S5), onde S seria totalmente umbilica, contrariando a hipdtese.
Portanto devemos ter g(H, H) = 0 e, junto ao Lema 3, temos que B— 7 =
2Ay +G(H,H)1 = 0. Agora, calculemos B: dados {e,...,e,} € X(9)
referencial ortonormal local e X, Y € X(5), temos

NE

9(BX,Y) =) g(h(X,e;),h(Y, e;))

1

.

I
M=

g(L(X,e,)H, L(Y,e;)H)

.
—_
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—g(H, H) zn:L(X, ei)L(Y, ;)

=1

=0.

Como a métrica é ndo degenerada e a equagdo acima vale para quaisquer
X,Y € X(9), segue que B = 0 e consequentemente J = 0 pois B — J = 0.

B) = (1) SeB=0eJ=0,entao B—J =0—-0=0.

[ |
4.4 O Espaco-tempo de Schwarzschild
Vamos considerar M variedade lorentziana de dimensio 4 com métrica
_ 2m 2 2 702 2 (2 2
gz—(l—) dv® + 2dvdr + r=df” + r~ sin” 0dp*. (4.11)
r

Essa métrica é a solu¢do de Schwarzschild em coordenadas de Eddington-
Finkelstein.

Para v, r constantes, com r # 0, obtemos superficies S que possuem métrica
g = r2d6* + r? sin® 0dy?, (4.12)

a métrica das esferas redondas bidimensionais. Essas superficies possuem 0y, 0,

como tangentes e 0,0, como normais. A matriz da métrica (4.11) é

‘(1127)

0, (4.13)

2
gvv:_(l_m)
r

g'U’I" :gT"U = 1
Jgg =T

Tpp = r?sin?6
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Como a matriz (4.14) tem dois blocos nulos, a sua inversa é dada por

0 1 0 0
9
1 (1—m) 0 0
i r
= 1 , 4.14
"] . 0 1 . (4.14)
" 1
0 0 0 —
r2sin260

onde cada bloco é o inverso dos blocos da matriz da métrica.

Proposicao (P.4.1). As superficies (S,g) onde g = r*d6* + r*sin*0dyp? sio

umbilicas com respeito a um campo de vetores normais nao nulo.

Demonstragao: Calcularemos a segunda forma fundamental i : X(5) x X(S) —

X(9)*t. Sejam V a conexdo de M e V a conexdo de S induzida. Por definicio,
dados arbitrariamente X,Y € %(S), temos h(X,Y) = (VxY)*. Como a segunda
forma fundamental i é bilinear e simétrica, basta saber como ela funciona nos

vetores da base tangente a S, isto ¢, podemos nos restringir ao calculo de

h(@g, 89) = (Vaﬂgﬂ = F};@&, + Fgear (4.15)
WDy, 0,) = (Vo,0p)" = T4,0u + 4,0, (4.16)
h(0y,0,) = (?gwﬁgp)l = FZW&, + F;SO@T (4.17)

pois para um campo tangente qualquer, o resultado segue por linearidade. A
formula para célculo dos simbolos de Christoffel é

4
= ; LZZl 9" (T + Tpaw — gw)] (4.18)
onde a notagao g, , representa a derivagao parcial com relagao a a da componente
J,,, da métrica g de M. Nas equagdes (6.5), (6.6) e (6.7), perceba que A da
formula dos simbolos de Christoffel assumem apenas v, r, onde precisaremos
saber apenas as componentes da matriz inversa da métrica que estao nas colunas
com v e r, a dizer, as duas primeiras colunas. Note também que nessas colunas,
as unicas componentes nao nulas sao g =g’ =1e7q" = (1 — 2m>7 0 que

facilitard a nossa vida no céalculo dos simbolos de Christoffel:

(1) Componentes de h(0p, p) :

v 1—1}7" — —
00 = 59 (299r,9 - Qee,r)
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r 1 —TV ()= — T ()= _
Loy = B (9 (2Gpv.0 — Go0.0) + 3" (296,60 — 999,7»))
1 2m
— (1 -2 (22
2 ( r > (=2r)
= —(r —2m).

(2) Componentes de h(0p,0,):

v 1 — UV (— — = " (a a q
FG‘P - 5[9 (gsov,e + ov,0 — g@go,v) +9g (gw,e + 9or,e — ge%r)] =0,

1
FQSO:7

2 [grv (?(pvﬂ + gev,ap - g&p,v) + ng (gtpTﬂ + ?97’,(,0 - g@cp,r)] =0

pois as componentes da métrica envolvidas sao todas nulas.

(3) Componentes de h(0,,0,) :
Too = 59" (2srs = Tsor)
1
= 5(M(=2r sin” 0)

= —rsin?6,

r 1 T (O~ —
nggp = 59 <2gg0r,<p - g<p<p,r)

1 2
== <1 — m) (—2rsin? 0)
2 r

= —sin®0(r — 2m),

analogo a conta em (1), apenas substituindo 6 por ¢, o que nos fornece

o fator sin®#. Consequentemente, na base {d,,0,} e apelidando o termo

-1 2
[ <1, 1— m)} que ainda aparecera de 7, temos
r r

h(0g, D) = (—r,—(r — 2m))
2m
r(-2)
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h(Dp,8,) = (0,0) = 0;

h(0y,0,) = (—r sin? 6, —sin? 0(r — 2m))

= sin? O(—r, —(r — 2m))

= r?sin* 0 {_1 (1, 1-— QmH
r r

= g(acpa 64/7)77'

Finalmente, por linearidade, segue que h(X,Y) = ¢(X,Y)n e S é umbilica, por
definicao, com respeito a n = {_1 (1, 1— 2mﬂ € X(S)*. Dado um referencial
ortonormal tangente {ey, e}, istf) é, g(e;, ej;: d;j, tomando o trago da equacgao
h = gn observamos que tr(h) = tr(g)n implica nH = nn, onde n = H. Logo, S

é totalmente umbilica.

4.5 Superficies Umbilicas em Espacos-tempos Esferica-

Simétri

Temos como exemplo de espago-tempo esfericamente simétrico o espago-tempo
de Schwarzschild. No artigo [12] encontramos um argumento que mostra que,
para um espago-tempo esfericamente simétrico geral, cujo a métrica pode ser
sempre escrita como
_of 2
g = e ny 4+ rodQy, (4.19)

onde 1y = —(du® dv +dv ®du) e dy = df* +sin® 0dp* e ambos f e r dependem
de u e v, as superficies S com u e v constantes sao totalmente umbilicas. Para

mostrar isso, prosseguiremos de maneira inteiramente analoga a demonstragao
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acima. A matriz da métrica é

2f
0 % 0 0
e2f
guwl=|75 O 0 0 (4.20)
0 0 0
0 0 0 r%sin’d
com matriz inversa
21\ 1
0 (2) 0 0
2\
y — 0 0 0
"] = ( 5 ) 1 (4.21)
0 0 s f
0 0 0
r2sinZ 6

Queremos saber quem sao

W8y, 0,) = (Vo,0,)" = T4 ,0u + L0,
Wy, 0,) = (V,0,)" =T 00 + T80,

Calculemos os simbolos de Christoffel:

(1) Componentes de h(0p, Jp):

—_

Fge = *[9””(29011,9 - gee,v)]

=5 () 2

—2rr,
exf 7

— DN

v 1 uv
Ly = 5[9 (2geu,9 - gee,u)]

(@)

—2rry,
e2f

(2) Componentes de h(0p,0,):

FU

O

=0
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Iy, =0

pois na tnica entrada da matriz inversa nio nula para cada simbolo, ¢% e

g¥¥, respectivamente, todas as componentes da métrica se anulam.

(3) Componentes de h(0,,0,):

Iy = (9" (29006 — Gpp0)]

2
=5 (e2f) (—2rr, sin? 0)

—2rr, sin®
e2f ’

— DN | =

v 1 uv
Iy = 5[9 (29010 — Jppu)]
12 .
=5 <e2f) (—2rr, sin” 0)
—2rr, sin? 0
Ceef

Logo, fazendo n = ——(r,,ry), temos
r

e2f
=2rr, —2rr,
h00.30) = (.~
—2r
:Tf(rvﬂ”u)
-2
_ 2=
L‘e?f (ro, r“)]
= 9(0s,0p)n

e finalmente

W9y, 8,) =

—2rr,sin?6 —2rr, sin4
o2f ) o2f
—2rsin? 6
= T (7‘1;, Tu)
2.2,
= r“sin” 0 [re” (TU,TU)}

= 9(897 89)77
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mostrando que a subvariedade S é umbilica na direcio de n € X(S)* e, conse-

quentemente, serd totalmente umbilica.
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