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Resumo

Nesta dissertação, apresentamos um estudo sobre subvariedades umbílicas
tipo-espaço, com codimensão 2, de variedades semi-riemannianas, tendo como
base o artigo [Cipriani-Senovilla-Van der Veken, Results Math 72, 25-46 (2017)].
São introduzidas quantidades extrínsecas associadas com a deformação de subva-
riedades ao longo de direções normais, que serão relacionadas com propriedades
umbílicas, tendo como principais ferramentas os tensor de cisalhamento total
e o operador cisalhamento. No teorema principal, são mostradas condições
necessárias e suficientes para que uma dessas subvariedades seja umbílica com
respeito a uma direção normal, condições que estão relacionadas com o tensor de
cisalhamento total. Com a existência dessa direção umbílica, é demonstrada sua
unicidade e, no último caso visto, o lorentziano, mostra-se como determinar seu
caráter causal.

Palavras-chave: umbílica, totalmente umbílica, pseudoumbílica, ortoum-
bílica, subgeodésica, variedade semi-riemanniana, subvariedade, codimensão
2.



Abstract

In this dissertation, we present a study of umbilical submanifolds of codimen-
sion 2 in semi-Riemannian manifolds, based on the article [Cipriani-Senovilla-Van
der Veken, Results Math 72, 25-46 (2017)]. Extrinsic quantities associated with
the deformation of submanifolds along normal directions are introduced, which
will be related to umbilical properties, having as main tools the total shear tensor
and the shear operator. In the main theorem, necessary and sufficient conditions
for such submanifolds to be umbilical with respect to a normal direction are
shown, conditions that are related to the total shear tensor. With the existence
of this umbilical direction, its uniqueness is demonstrated and, in the last case
considered, the lorentzian case, it is shown how to determine its causal character.

Keywords: umbilical, totally umbilical, pseudo-umbilical, orto-umbilical,
subgeodesic, semi-Riemannian manifold, submanifold, codimension 2.
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Introdução

Dizemos que um ponto p em uma superfície S do espaço Euclidiano R3 é
um ponto umbílico se as curvaturas principais de p coincidem neste ponto. Um
resultado primordial em Geometria Diferencial acerca de pontos umbílicos é que
uma superfície conexa em que todos os pontos são umbílicos só pode estar contida
em um plano ou em uma esfera (veja [1], Proposição 4, seção 3.2). Damos o
nome de totalmente umbílica às superfícies em que todos os pontos são umbílicos.
Esse resultado é generalizado para subvariedades conexas M de dimensão n ≥ 2
imersas em Rm: se M for totalmente umbílica, então ou M está contida em um
plano n-dimensional ou M está contida em uma esfera n-dimensional que está
contida em algum plano (n + 1)-dimensional. O resultado acima, que depende
fortemente das propriedades especiais do espaço Euclidiano Rm, tem sua versão
quando substituímos Rm por uma variedade completa, simplesmente conexa
com curvatura constante K0 ≠ 0, ou seja, uma das outras formas espaciais, a
saber, a esfera ou o espaço hiperbólico. No caso K0 > 0, a esfera Sm ⊂ Rm+1,
temos que se uma subvariedade conexa Mn ⊂ Sm é totalmente umbílica, então
ela é parte de uma n-esfera. Já para o caso hiperbólico Hm, em que K0 < 0,
se uma subvariedade Mn ⊂ Hm conexa é totalmente umbílica, então ou M

é um espaço hiperbólico Hn, uma esfera geodésica, uma horoesfera ou M é
uma hipersuperfície equidistante de algum espaço hiperbólico Hn+1. Citamos
como referência para as generalizações acima o Capítulo 7 do livro de Michael
Spivak [13]. As subvariedades totalmente umbílicas são também consideradas
em muitos outros casos, como em ambientes de curvatura não constante, onde
evidenciaremos o caso semi-Riemanniano, que é o espaço ambiente deste trabalho.
Tomando variedades lorentzianas, fundamentais para a teoria de Relatividade
por modelarem espaços-tempo, citamos como exemplo os trabalhos [11] e [5],
que faz um conexão interessante entre subvariedades totalmente umbílicas e
superfícies de fóton, uma estrutura importante em relatividade. É baseado nesta
conexão que temos, por exemplo em [3], uma abordagem de unicidade para o
espaço-tempo de Schwarzschild dentre uma classe de espaços-tempo que possuem
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esferas de fóton. De acordo com [4, 9], o caso em que temos uma subvariedade
tipo-espaço de codimensão 2 é de interesse especial do estudo em relatividade.
Nesse contexto, temos a definição de trapped surfaces (superfícies "aprisionadas"),
em que a propriedade de ser trapped está relacionada, por exemplo, com o
decrescimento no volume da subvariedade em questão, ao longo de qualquer
direção de evolução e tem relação com a localização de buracos negros sem a
necessidade do completo conhecimento acerca do futuro do espaço-tempo em
questão a longo prazo.

Neste trabalho, apresentamos um estudo de subvariedades riemannianas
umbílicas com codimensão dois em variedades semi-riemannianas, tendo como
base o artigo de Cipriani, Senovilla e Van der Veken [4]. Nesta referência, são
introduzidos os conceitos de tensor de cisalhamento total e operador cisalhamento,
que são respectivamente a parte livre de traço da segunda forma fundamental e
do operador forma. O anulamento completo do tensor de cisalhamento implica
que a subvariedade é totalmente umbílica, enquanto o anulamento do operador
cisalhamento está relacionado com a umbilicidade da subvariedade com respeito
a uma direção normal. No que segue, o trabalho se concentra em subvariedades
tipo-espaço com codimensão 2, que trazem consigo o conceito de subvariedade
ortoumbílica. Em seguida, é apresentado o teorema principal, que fornece uma
série de afirmações equivalentes acerca da existência de uma direção normal
umbílica não-nula, em termos de operadores cisalhamentos e do operador de
cisalhamento total. Como consequência, são apresentadas condições para: co-
mutatividade de operadores forma, existência e unicidade de direções em que a
subvariedade é totalmente umbílica e uma caracterização para que a subvariedade
seja ortoumbílica, esta última em termos de uma condição necessária e suficiente
envolvendo a segunda forma fundamental e o campo de curvatura média. Por fim,
os autores dedicam parte do trabalho ao caso de espaços ambientes lorentzianos,
com destaque ao caráter causal de uma direção umbílica.

No Capítulo 1, apresentamos os conceitos fundamentais de Geometria Di-
ferencial e da Teoria de Subvariedades. São definidos também operadores e
quantidades que serão utilizados durante o decorrer deste trabalho. São eles:
operador de Casorati B; o operador J , análogo ao de Casorati, mas anônimo; o
tensor de cisalhamento total h̃; o operador cisalhamento e o cisalhamento escalar.

No Capítulo 2, descrevemos e damos uma primeira equivalência para os
tipos de umbilicidade que uma subvariedade pode assumir, a saber: umbílica,
pseudoumbílica, totalmente umbílica e ξ-subgeodésica. Em seguida, estudamos o
caso em que a codimensão é igual a 2, introduzimos uma poderosa ferramenta, o
operador dual de Hodge, e uma nova definição de umbilicidade, a de ser ortoum-
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bílica, que está relacionada com o operador supracitado. Por fim, fornecemos,
para esse caso codimensional, um resultado acerca da equivalência entre uma
subvariedade ser ortoumbílica e ξ-subgeodésica.

No Capítulo 3 se encontra o principal teorema deste trabalho, que relaciona
a noção padrão de umbilicidade com os operadores e quantidades definidas
nos capítulos anteriores, junto com algumas consequências imediatas. Por fim,
caracterizamos a ortoumbilicidade.

No Capítulo 4, o último deste trabalho, aplicamos os conceitos vistos acima
para o caso lorentziano, onde a métrica tem índice v = 1. Encerramos, depois,
com um exemplo de umbilicidade no espaço-tempo de Schwarzschild, em que
a métrica de Schwarzschild está em coordenadas de Eddington-Finkelstein. De
modo geral, basedo no artigo [12], abordamos um exemplo de umbilicidade para
espaços-tempo esfericamente simétricos arbitrários.
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Capítulo 1

Noções Preliminares

Este capítulo tem como objetivo introduzir tanto conceitos fundamentais
de Geometria Diferencial quanto operadores e quantidades relacionadas a estes
conceitos, que serão fundamentais para o decorrer do trabalho.

A primeira seção começa com conceitos relacionados à variedades diferen-
ciáveis, como vetores tangentes, campos de vetores, 1-formas e a generalização
destes, os campos de tensores. Em seguida, introduzimos as variedades semi-
riemannianas.

Na segunda seção, fazemos uma breve introdução à Teoria de Subvariedades,
onde temos como referências os livros de Barret O’Neill [10] e de Manfredo
Perdigão do Carmo [2] e o artigo [4].

Já na terceira seção, que tem como referência o artigo [4], introduzimos o
Operador de Casorati B junto a um operador análogo J , e em seguida definimos o
tensor de cisalhamento total h̃ e o operador cisalhamento Ã, que são análogos livre
de traço da segunda forma fundamental e do operador forma, respectivamente.
Definimos também o cisalhamento escalar associado a um campo normal e, por
fim, utilizaremos das relações entre operador forma e segunda forma fundamental
e entre o tensor cisalhamento e operador cisalhamento, que estão conectados
pelas métricas do ambiente e da subvariedade, a fim de mostrar que os operadores
definidos independem dos referenciais normais adotados.
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1.1 Noções Preliminares de Geometria Semi-riemanniana

Dada uma variedade diferenciável M , denotaremos por F(M) o conjunto das
funções C∞(M,R).

Começaremos com a noção de vetores tangentes.

Definição (D.1.1). Seja p um ponto de uma variedade M . Um vetor tangente
a M em p é uma função real v : F(M) → R que, para a, b ∈ R e f, g ∈ F(M), é:

1. R-linear:
v(af + bg) = av(f) + bv(g);

2. Leibniziana:
v(fg) = v(f)g + fv(g).

A cada ponto p ∈ M , seja TpM o conjunto de todos os vetores tangentes a
M em p. Temos que TpM é um espaço vetorial sobre os números reais R com as
seguintes operações:

1. Adição: dados v, w ∈ TpM e f ∈ F(M), definimos

(v + w)(f) = v(f) + w(f),

2. Multiplicação por escalar: dados f ∈ F(M) e a ∈ R, definimos

(av)(f) = av(f).

Com isso, TpM é chamado o espaço tangente a M em p.
O seguinte teorema é fundamental e será assumido, onde uma demonstração

pode ser encontrada em [10]:

Definição (D.1.2) (Campos de Vetores). Um campo de vetores X em uma
variedade diferenciável M é uma correspondência que a cada ponto p ∈ M associa
um vetor tangente X(p) ∈ TpM . Em termos de aplicações, X é uma aplicação
diferenciável de M no fibrado tangente TM .

Se X é um campo de vetores em M e f ∈ F(M), então Xf denota a função
real em M dada por

(Xf)(p) = X(p)f, para todo p ∈ M.
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Dizemos que X é um campo diferenciável se Xf for diferenciável para toda
f ∈ F(M). Além disso, o conjunto dos campos de vetores diferenciáveis em M ,
denotado por X(M), forma um módulo sobre o anel F(M) com as seguintes
operações:

(1) Adição: dados X, Y ∈ X(M), definimos a adição de campos por

(X + Y )(p) = X(p) + Y (p),

para todo p ∈ M .

(2) Multiplicação por escalar: dada f ∈ F(M), definimos a multiplicação de
um campo de vetores X pelo escalar f por

(fX)(p) = f(p)X(p),

para todo p ∈ M .

Dado ξ = (x1, . . . , xn) um sistema de coordenadas em U ⊂ M , então para
cada 1 ≤ i ≤ n, o campo de vetores ∂i em U que leva cada p em ∂i(p) not= ∂i|p é
chamado o i-ésimo campo coordenado de vetores de ξ.

Teorema (T.1.1) (Teorema da Base). Se ξ = (x1, . . . , xn) é um sistema de
coordenadas de M em p, então os vetores coordenados ∂1|p, . . . , ∂n|p formam uma
base para o espaço tangente TpM e

v =
n∑

i=1
v(xi)∂i|p

para todo v ∈ TpM .

Esses campos de vetores são suaves, visto que ∂i(f) = ∂f

∂xi
. Segue imediata-

mente do Teorema 1.1 que para cada campo de vetores X, temos

X =
n∑

i=1
X(xi)∂i

em U .
Dado um espaço vetorial V real, podemos considerar seu espaço vetorial dual

V ∗, o espaço dos funcionais lineares de V em R. Como TpM é um espaço vetorial
real, vamos considerar o seu dual (TpM)∗, chamado de espaço cotangente de M

em p. Como mencionado acima, os elementos de (TpM)∗ são funcionais lineares
de TpM em R e são geralmente chamados de covetores. Com isso, vamos definir
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1-formas em uma variedade diferenciável M , que são objetos duais a campos de
vetores.

Definição (D.1.3) (1-formas). Uma 1-forma ω em uma variedade M é uma
função que associa a cada ponto p um elemento ωp do espaço cotangente (TpM)∗.
Em termos de aplicações, ω é uma aplicação de M no fibrado cotangente TM∗.

Desta forma, ω associa um número a cada vetor tangente e é linear nos vetores
tangentes em cada ponto.

Se ω é uma 1-forma e X é um campo de vetores em M , denote por ωX a
função real em M cujos valores em cada ponto p é o valor de ω(p) em X(p),
isto é, (ωX)(p) = ω(p)(X(p)). Uma 1-forma ω será diferenciável caso ωX for
diferenciável, para todo X ∈ X(M).

Além disso, o conjunto das 1-formas diferenciáveis em M , denotado por
X∗(M), forma um módulo sobre o anel F(M) com as seguintes operações:

(1) Adição: dadas ω, θ ∈ X∗(M), definimos a adição de 1-formas por

(ω + θ)(p) = ω(p) + θ(p),

para todo p ∈ M .

(2) Multiplicação por escalar: dada f ∈ F(M), definimos a multiplicação de
uma 1-forma pelo escalar f por

(fω)(p) = f(p)ω(p),

para todo p ∈ M .

Existe uma operação notável que converte funções em 1-formas:

Definição (D.1.4). A diferencial de f ∈ F(M) é a 1-forma df tal que (df)(v) =
v(f) para cada vetor tangente v a M .

Claramente df é uma 1-forma: dado p ∈ M , a função (df)p : TpM → R é
linear e se X ∈ X(M), então a função (df)(X) = Xf é diferenciável.

Dado ξ = (x1, . . . , xn) um sistema de coordenadas em U ⊂ M , temos as
1-formas coordenadas dx1, . . . , dxn em U . Em cada ponto de U , essas formas
fornecem a base dual aos campos de vetores coordenadas ∂1, . . . , ∂n, visto que
dxi(∂j) = ∂xi

∂xj

= δij. Segue que para qualquer 1-forma ω

ω =
n∑

i=1
ω(∂i)dxi

Página 13 de 76



em U . Em particular, se f ∈ F(M), como df(∂i) = ∂f

∂xi
, então

df =
n∑

i=1

∂f

∂xi
dxi

em U .
Continuaremos agora com a definição de campos de tensores.
A noção de um campo de tensores em uma variedade generaliza as noções

de funções reais, campos de vetores e 1-formas, e portanto fornece os meios
matemáticos para descrever objetos mais complicados em uma variedade.

Seja V1, . . . , Vs módulos sobre o anel K. Então V1 × . . . × Vs é o conjunto de
todas as s-uplas (v1, . . . , vs) com vi ∈ Vi. As definições usuais de multiplicação
por um elemento de K e adição, componente a componente, tornam V1 × . . . × Vs

um módulo sobre K, chamado produto direto.
Se V é um módulo sobre K, seja V ∗ o conjunto de todas as funções K-lineares

de V para K. Novamente, temos que V ∗ é um módulo sobre K com as definições
usuais de adição de funções e produto por elementos de K, onde chamamos V ∗

de módulo dual de V . Se Vi = V para todo i = 1, . . . , n, abreviamos a notação
V1 × . . . × Vs para V s.

Definição (D.1.5). Para inteiros r, s ≥ 0 não simultaneamente nulos, uma
aplicação K-multilinear A : (V ∗)r × V s → K é chamado tensor do tipo (r, s)
sobre V . (Aqui entendemos que A : V s → K se r = 0 e A : (V ∗)r → K se s = 0).

O conjunto Tr
s(V ) de todos os tensores do tipo (r, s) sobre V é um módulo

sobre K.
Um campo tensorial A em uma variedade M é um tensor sobre o F(M)-módulo

X(M). Portanto, se A tem tipo (r, s), então A é uma função F(M)-multilinear

A : X∗(M)r × X(M)s → F(M).

Assim, A é uma máquina mutilinear que, quando alimentada de r 1-formas
θ1, . . . , θr e de s campos vetoriais X1, . . . , Xs, produz uma função diferenciável

f = A(θ1, . . . , θr, X1, . . . , Xs) ∈ F(M).

Aqui, θi ocupa a i-ésima posição contravariante e Xj ocupa a j-ésima posição
covariante.

Novamente, o conjunto Tr
s(M) de todos os campos tensoriais em M do tipo

(r, s) é um módulo sobre F(M).
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Seja ξ um sistema de coordenadas em U ⊂ M , onde ξ = (x1, . . . , xn). Se A

for um campo tensorial (r, s) em U , então

A =
∑

Ai1...ir
j1...js

∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs

Definição (D.1.6). Uma forma bilinear simétrica b em V espaço vetorial real
de dimensão finita é

(1) positiva [negativa] definida quando v ̸= 0 implica b(v, v) > 0 [< 0].

(2) positiva [negativa] semidefinida quando b(v, v) ≥ 0 [≤ 0] para todo v ∈ V .

(3) não-degenerada quando b(v, w) = 0 para todo w ∈ V implicar v = 0.

Se b é um forma bilinear simétrica em V , então para qualquer subespaço W

de V a restrição b|(W ×W ), denotada simplesmente por b|W , é novamente simétrica
e bilinear. Se b for [semi-]definida, então também será b|W .

Definição (D.1.7). O índice v de uma forma simétrica bilinear b em V é o
maior inteiro que é a dimensão de um subespaço W ⊂ V ao qual b|W é negativa
definida.

Portanto 0 ≤ v ≤ dimV e v = 0 se, e somente se, b for positiva semidefinida.
A função q : V → R dada por q(v) = b(v, v) é chamada de forma quadrática
associada a b. A forma quadrática associada geralmente é mais fácil de trabalhar
que a forma b e nenhuma informação é perdida pois b pode ser reconstruída pela
identidade de polarização

b(v, w) = 1
2[q(v + w) − q(v) − q(w)].

Se e1, . . . , en for uma base de V , a matriz n × n bij = b(ei, ej) é chamada
a matriz de b relativa a e1, . . . , en. Como b é simétrica, a matriz também é
simétrica. Claramente a matriz determina b, pois

b

 n∑
i=1

viei,
n∑

j=1
wjej

 =
n∑

i,j=1
bijviwj.

Lema (L.1). Uma forma bilinear simétrica é não-degenerada se, e somente se,
sua matriz com relação a uma (portanto a qualquer) base é invertível.

Demonstração: Seja e1, . . . , en uma base para V . Se v ∈ V , então b(v, w) = 0
para todo w ∈ V se, e somente se, b(v, ei) = 0 para i = 1, . . . , n. Como (bij) é
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simétrica,

b(v, ei) = b

 n∑
j=1

vjej, ei

 =
n∑

i,j=1
bijvj.

Portanto b é degenerada se, e somente se, existem números v1, . . . , vn não todos
nulos tal que

n∑
i,j=1

bijvj = 0. Mas isso é equivalente à dependência linear das

colunas de (bij), isto é, a (bij) ser singular.

Definição (D.1.8). Um produto escalar g em um espaço vetorial V é uma forma
bilinear simétrica não-degenerada em V .

Dado um espaço com produto escalar (V, g), pode acontecer que q(v) = g(v, v)
seja negativa, onde definimos a norma |v| de um vetor como sendo |g(v, v)|1/2.
Assim, um vetor unitário u é um vetor de norma 1, isto é, g(u, u) = ±1.

A matriz de g relativa a uma base ortonormal e1, . . . , en de V é diagonal. De
fato,

g(ei, ej) = δijεj, onde εj = g(ej, ej) = ±1.

Sempre que conveniente, ordenaremos os vetores de uma base ortonormal de
forma que os sinais negativos (se tiver algum) apareçam primeiro na chamada
assinatura (ε1, . . . , εn).

Levando em consideração esses sinais, temos a expansão ortonormal, que será
fortemente utilizada nesta dissertação: se e1, . . . , en é um base ortonormal de V ,
com εi = g(ei, ei), então cada v ∈ V é expresso unicamente como

v =
n∑

i=1
εig(v, ei)ei.

Definição (D.1.9). Um tensor métrico g em uma variedade diferenciável M é
um campo tensorial (0, 2) simétrico e não degenerado em M com índice constante.

Em outras palavras, g ∈ T 0
2 atribui suavemente a cada ponto p ∈ M um

produto escalar gp no espaço tangente TpM e o índice de gp é o mesmo para todo
p.

Definição (D.1.10). Uma variedade semi-riemanniana é uma variedade dife-
renciável M munida com um tensor métrico g.

O índice v de gp em uma variedade semi-riemanniana M é chamado índice
de M : 0 ≤ v ≤ n = dimM. Se v = 0, M é dita variedade riemanniana, onde
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cada gp é um produto interno (positivo definido) em TpM . Se v = 1 e n ≥ 2, M

é dita variedade lorentziana.
Como g é não-degenerada, em cada ponto p de U aberto de M a matriz

(gij(p)) é invertível e a sua matriz inversa é denotada por (gij(p)).
Além disso, como g é simétrica, gij = gji e portanto gij = gji para 1 ≤ i, j ≤ n.

Finalmente, em um sistema de coordenadas (U, xi) em torno de p, o tensor métrico
pode ser escrito como

g =
n∑

i,j=1
gijdxi ⊗ dxj.

Para um inteiro v com 0 ≤ v ≤ n, trocando os primeiros v sinais positivos
para negativos, temos em Rn o tensor métrico

⟨vp, wp⟩ = −
v∑

i=1
viwi +

n∑
j=v+1

vjwj,

de índice v, onde vp, wp ∈ TpRn ∼= Rn. Temos então o espaço semi-Euclidiano
Rn

v , que se reduz a Rn quando v = 0. Para n ≥ 2, Rn
1 é chamado o espaço de

Minkowski n-dimensional. O exemplo mais simples de espaço-tempo relativístico
é o espaço de Minkowski de dimensão 4.

Como o tensor métrico em uma variedade semi-riemanniana pode assumir
valores reais negativos, nulos ou positivos, para cada um desses valores teremos
uma nomenclatura para os vetores que os atingem:

Definição (D.1.11). Um vetor tangente v a M é

tipo-espaço, se ⟨v, v⟩ > 0 ou v = 0,

tipo-nulo, se ⟨v, v⟩ = 0 e v ̸= 0,

tipo-tempo, se ⟨v, v⟩ < 0.

A categoria no qual um vetor tangente se encaixa é chamado de caráter causal.
Essa terminologia deriva da teoria da relatividade e, particularmente no caso
lorentziano, vetores tipo-nulo são chamados de tipo-luz.

Seja q(v) = g(v, v) para cada vetor tangente v a M . Em cada ponto p ∈ M ,
q é a forma quadrática associada ao produto escalar em p. Portanto, q determina
o tensor métrico. Note, contudo, que q não é um campo tensorial: dados
V ∈ X(M) e f ∈ F(M), então q(fV ) = f 2q(V ) ∈ F(M). Classicamente, q é
chamado elemento de linha de M e é denotado por ds2. Em termos de um
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sistema de coordenadas,

q = ds2 =
n∑

i,j=1
gijdxidxj,

onde a justaposição de diferenciais denota a multiplicação usual de funções, ou
seja,

q(V ) =
n∑

i,j=1
gijdxi(V )dxj(V ) =

n∑
i,j=1

gijV
iV j.

Para a seguinte definição, usaremos como referência [6]:

Definição (D.1.12) (Espaço-tempo). Seja (M, g) uma variedade lorentziana.
Diremos que M é temporalmente orientável se existir um campo de vetores
tipo-tempo V definido globalmente em toda M (ou seja, g(V (p), V (p))p < 0
para todo p ∈ M). Quando V está fixado, dizemos que M está temporalmente
orientada por V .

Um espaço-tempo é uma variedade lorentziana conexa de dimensão maior ou
igual a 2, temporalmente orientada. Os pontos de M são então denominados
eventos.

Por fim, dada uma métrica, conseguimos relacionar campos de vetores a
1-formas e vice-versa via isomorfismo:

Definição (D.1.13) (Isomorfismos Musicais). Seja (M, g) uma variedade
semi-riemanniana. Definimos o isomorfismo bemol

♭ : X(M) → X∗(M)

que associa cada campo de vetores X a uma 1-forma X♭ dada por X♭(Y ) =
g(X, Y ) para todo Y ∈ X(M). Definimos também o isomorfismo sustenido

♯ : X∗(M) → X(M)

que associa cada 1-forma ω a um campo de vetores ω♯ dado por g(ω♯, Y ) = ω(Y )
para todo Y ∈ X(M).
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1.2 Preliminares da Teoria de Subvariedades
Subvariedade riemanniana de uma Variedade Semi-riemanniana

Considere S uma variedade orientável n-dimensional e ϕ : S → M uma imersão
em uma variedade semi-riemanniana orientável (n+k)-dimensional (M, g). Como
ϕ é diferenciável, podemos definir uma métrica em S dada por g := ϕ∗g, ou seja,

g(X, Y ) := (ϕ∗g)(X, Y ) = g(ϕ∗(X), ϕ∗(Y )), para todos X, Y em X(S),

onde vamos assumir que essa métrica é positiva definida em toda a S, impondo que
(S, g) seja uma variedade riemanniana orientável, sendo então uma subvariedade
de M do tipo-espaço. Como a métrica foi definida em termos de ϕ, temos que
(ϕ(S), g) e (S, g) são isométricas e vamos sempre identificá-las localmente.

Definição (D.1.14) (Elemento de Volume). Um elemento de volume em
uma variedade semi-riemanniana M n-dimensional é uma forma suave ω tal que
ω(e1, . . . , en) = ±1 para qualquer referencial ortonormal em M .

Dessa maneira, se Sn é uma subvariedade de Mn+k, conseguimos definir ω⊥

elemento de volume no fibrado normal, onde ω⊥(ξ1, . . . , ξk) = ±1, para qualquer
referencial normal.

Fórmulas de Gauss e Weingarten

Se ∇ e ∇ são as conexões de Levi-Civita de (M, g) e (S, g) respectivamente,
para X, Y ∈ X(S) e ξ ∈ X(S)⊥, temos as fórmulas de Gauss e Weingarten,
respectivamente dados por

∇XY = ∇XY + h(X, Y ),
∇Xξ = −AξX + ∇⊥

Xξ.

Aqui, h : X(S) × X(S) → X(S)⊥ é a segunda forma fundamental, Aξ é o
operador forma ou operador de Weingarten associado a ξ e ∇⊥ é a conexão no
fibrado normal.

Proposição (P.1.1). Os operadores forma são lineares sobre campos normais,
ou seja, dados ξ1, ξ2 ∈ X⊥(S) e λ ∈ F(M), então

Aξ1+λξ2 = Aξ1 + λAξ2 . (1.1)
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Demonstração: A fórmula de Weingarten nos diz que, para qualquer X ∈ X(S),
AξX = −(∇Xξ)T , onde

Aξ1+λξ2X = −(∇X(ξ1 + λξ2))T

= −(∇Xξ1 + ∇Xλξ2)T

= −(∇Xξ1)T − (X(λ)ξ2 + λ∇Xξ2)T

= −(∇Xξ1)T − λ(∇Xξ)T

= Aξ1X + λAξ2X,

visto que ξ2 ∈ X⊥(M), onde o resultado segue da arbitrariedade de X ∈ X(S).

A relação entre a segunda forma fundamental e o operador forma é dada por

g(AξX, Y ) = g(h(X, Y ), ξ) (1.2)

para todos X, Y ∈ X(S) e todo ξ ∈ X(S)⊥.
Dado qualquer referencial ortonormal {e1, . . . , en} ∈ X(S), o campo vetorial

curvatura média H ∈ X(S)⊥ é definido como

H = 1
n

n∑
i=1

h(ei, ei). (1.3)

Da definição acima, temos

H = 1
n

n∑
i=1

h(ei, ei)

= 1
n

tr(Aξi
)ξi,

onde
ng(H, ξ) = tr(Aξ) = θξ. (1.4)

O termo θξ será chamado, neste trabalho, de expansão de S ao longo de ξ e é a
componente de H ao longo desse campo, até um fator n, ou, equivalentemente,
o traço do operador forma associado a ξ.

Definição (D.1.15) (Fibrados Vetoriais). Um k-fibrado vetorial (E, π) so-
bre uma variedade M consiste de uma variedade E e uma aplicação suave
π : E → M tal que

(1) Cada π−1(p), p ∈ M, é um espaço vetorial de dimensão k
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(2) Para cada p ∈ M existe uma vizinhaça U de p em M e um difeomorfismo

φ : U × Rk → π−1(U) ⊂ E

tal que para cada q ∈ U , a aplicação v → φ(q, v) é um isomorfismo linear
de Rk sobre π−1(q).

Se Mn é uma subvariedade semi-riemanniana de M̃n+k, seja NM =
⋃

p∈M

(TpM)⊥

o conjunto de todos os campos normais a M . Seja π : NM → M a aplicação
que leva cada (TpM)⊥ a p em M . Assim, (NM, π) é um k-fibrado vetorial sobre
M , chamado de fibrado normal de M em M̃ .

Além disso, definimos o Primeiro Espaço Normal de uma imersão isométrica
segundo [7]:

Definição (D.1.16). O Primeiro Espaço Normal de uma imersão isométrica
f : Mn → Mm em p ∈ Mn é o subespaço do espaço normal NM(p) gerado pela
imagem de sua Segunda Forma Fundamental, isto é

N1(p) := span{h(X, Y )| X, Y ∈ TpM}. (1.5)

1.3 Definições Específicas

Nesta seção apresentaremos algumas definições específicas presentes no trabalho
[4].

Definição (D.1.17) (Operador de Casorati). Dado um referencial local or-
tonormal {ξ1, . . . , ξk} em X(S)⊥, isto é, g(ξi, ξj) = εiδij com ε2

i = 1 para todos
i, j ∈ Ik = {p ∈ N| p ≤ k}, o operador de Casorati é definido como

B =
k∑

i=1
g(ξi, ξi)A2

ξi
. (1.6)

A definição acima não depende do referencial escolhido, como vamos mostrar:
Dados X, Y ∈ X(S) quaisquer, como Aξ leva campos tangentes a S em campos

tangentes a S, na base ortonormal de T = {e1, . . . , en} de TpS, escrevemos

Aξj
X =

n∑
i=1

g(Aξj
X, ei)ei

Aξj
Y =

n∑
m=1

g(Aξj
Y, em)em,
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onde observamos que

g(Aξj
X, Aξj

Y ) = g

(
n∑

i=1
g(Aξj

X, ei)ei,
n∑

m=1
g(Aξj

Y, em)em

)

=
n∑

i,m=1
g(Aξj

X, ei)g(Aξj
Y, em)g(ei, em)

=
n∑

i,m=1
g(Aξj

X, ei)g(Aξj
Y, em)δim

=
n∑

i=1
g(Aξj

X, ei)g(Aξj
Y, ei). (1)

Partindo da definição do Operador de Casorati e utilizando a equação (1), na
base ortonormal N = {ξ1, . . . , ξk} normal a S, obtemos

g(BX, Y ) = g

 k∑
j=1

g(ξj, ξj)A2
ξj

X, Y


=

k∑
j=1

g(ξj, ξj)g(Aξj
X, Aξj

Y )

=
k∑

j=1
εjg(Aξj

X, Aξj
Y )

=
k∑

j=1
εj

[
n∑

i=1
g(Aξj

X, ei)g(Aξj
Y, ei)

]

=
n∑
i

 k∑
j=1

εjg(Aξj
X, ei)g(Aξj

Y, ei)
 . (2)

Como a segunda forma fundamental recebe dois campos tangentes a S e trans-
forma em um campo normal a S, na base N , escrevemos

h(X, ei) =
k∑

j=1
εjg(h(X, ei), ξj)ξj

h(Y, ei) =
k∑

s=1
εsg(h(Y, ei), ξs)ξs.

e daí segue que

g(h(X, ei), h(Y, ei)) = g

 k∑
j=1

εjg(h(X, ei), ξj)ξj,
k∑

s=1
εsg(h(Y, ei), ξs)ξs


=

k∑
j,s=1

εjεsg(h(X, ei), ξj)g(h(Y, ei), ξs)g(ξj, ξs)
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=
k∑

j,s=1
εjεsg(h(X, ei), ξj)g(h(Y, ei), ξs)εjδjs

=
k∑

j=1
εjg(h(X, ei), ξj)g(h(Y, ei), ξj)

=
k∑

j=1
εjg(Aξj

X, ei)g(Aξj
Y, ei).

Finalmente, somando em i ∈ {1, . . . , n}, a equação (2) nos fornece

n∑
i

g(h(X, ei), h(Y, ei)) =
n∑
i

 k∑
j=1

εjg(Aξj
X, ei)g(Aξj

Y, ei)


= g(BX, Y ),

que determina completamente B, como desejávamos.

Definição (D.1.18). Seja φ : (S, g) → (M, g) uma imersão isométrica. Temos
as seguintes definições:

• O tensor de cisalhamento total h̃, dado pela parte livre de traço da segunda
forma fundamental:

h̃(X, Y ) = h(X, Y ) − g(X, Y )H.

• O operador cisalhamento associado a ξ ∈ X(S)⊥, definido como a parte
livre de traço do operador forma correspondente a ξ:

Ãξ = Aξ − 1
n

θξ1,

onde 1 denota o operador identidade.

• O cisalhamento escalar σξ associado a ξ ∈ X(S)⊥, definido, a menos de
sinal, por

σ2
ξ = tr(Ã2

ξ).

Notamos que, para todos X, Y ∈ X(S) e todo ξ ∈ X(S)⊥, o tensor de
cisalhamento total h̃ e os operadores cisalhamento são relacionados por

g(ÃξX, Y ) = g(h̃(X, Y ), ξ).
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Com efeito, partindo da definição de operador cisalhamento, temos

g(ÃξX, Y ) = g(AξX − 1
n

ng(H, ξ)X, Y )

= g(AξX, Y ) − g(H, ξ)g(X, Y )
= g(h(X, Y ), ξ) − g(X, Y )g(H, ξ)
= g(h(X, Y ) − g(X, Y )H, ξ)
= g(h̃(X, Y ), ξ).

Seja T (S) o conjunto de todos os (1, 1)-campos tensoriais em S. Definimos o
seguinte produto escalar positivo-definido em T (S):

⟨A, B⟩ = tr(AB), (1.7)

para todos A, B ∈ T (S). Com essa definição, o cisalhamento escalar é tal que

σ2
ξ = tr(Ã2

ξ) = tr(ÃξÃξ) = ⟨Ãξ, Ãξ⟩.

Dado um referencial ortonormal {ξ1, . . . , ξk} em X(S)⊥ o operador auto-
adjunto

J =
k∑

i=1
g(ξi, ξi)Ã2

ξ , (1.8)

assim como o operador de Casorati, também é independente do referencial
adotado. Primeiro mostramos que J é realmente auto-adjunto:

g(Ãξi
X, Y ) = g(Aξi

X − 1
n

θX, Y )

= g(Aξi
X, Y ) − 1

n
θg(X, Y )

= g(X, Aξi
Y ) − g(X,

1
n

θY )

= g(X, Aξi
− 1

n
θY )

= g(X, Ãξi
Y ).

Por esse motivo e pela equação (1.8), um cálculo análogo ao feito para o
operador de Casorati mostra que

g(JX, Y ) =
n∑

i=1
g(h̃(X, ei), h̃(Y, ei)) (1.9)
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para qualquer referencial local ortonormal tangente {e1, . . . , en} e quaisquer
X, Y ∈ X(S).
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Capítulo 2

Tipos de Umbilicidade e
Subvariedades de Codimensão

k = 2

Começamos o capítulo definindo tipos diferentes de umbilicidade e daremos
certas equivalências para cada. Essa seção é de enorme importância, pois o
restante do trabalho seguirá fazendo relação entre esses diferentes tipos, mas
particularizando cada vez mais.

Na seção seguinte, particularizamos para o caso em que a codimensão é k = 2.
Quando fazemos essa restrição, podemos evidenciar as possíveis opções para
assinatura da métrica, além de ter duas direções normais bem definidas para
cada ponto.

Em seguida, definiremos o operador dual de Hodge, que toma campos normais
e leva em normais que são ortogonais aos tomados inicialmente. Como visto
anteriormente, uma subvariedade S é pseudoumbílica quando é umbílica com
respeito ao campo de vetores curvatura média H. Uma vez que a codimensão é
2 e o dual de Hodge de H é ortogonal a H, faz sentido pensar na umbilicidade
com respeito a esse campo. Com isso, definiremos mais um tipo de umbilici-
dade, aparentemente deslocado, mas que aparece por conta das particularidades
deste capítulo. Em seguida, relacionaremos esse novo tipo de umbilicidade com
os outros tipos previamente considerados. Mais à frente, caracterizaremos a
ortoumbilicidade.

As definições e resultados deste capítulo estão presentes no artigo base [4]
desta dissertação.
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2.1 Tipos de Umbilicidade

No caso de uma hipersuperfície, a codimensão é igual a um e assim temos
apenas uma direção normal definida. Logo, um ponto de uma hipersuperfície é
umbílico com respeito ao operador forma associado da hipersuperfície. No caso
em que a codimensão é maior que um, existem mais direções para que um ponto
seja umbílico com respeito ao correspondente operador forma. No que segue,
vamos definir alguns tipos de umbilicidade com respeito a um campo vetorial
normal em um ponto, mas todas as definições fazem sentido quando estabelecidas
pontualmente.

Definição (D.2.1). Considerando a imersão ϕ : (S, g) → (M, g), dizemos que
ela é

• umbílica com respeito a ξ ∈ X(S)⊥ se Aξ for proporcional à identidade;

• pseudoumbílica se for umbílica com respeito à curvatura média H;

• totalmente umbílica se for umbílica com respeito a todo ξ ∈ X(S)⊥;

• ξ-subgeodésica se existir ξ ∈ X(S)⊥ tal que h(X, Y ) = L(X, Y )ξ para todos
X, Y ∈ X(S), onde L é um (0, 2)-campo tensorial em S.

A noção de uma subvariedade S ser ξ-subgeodésica foi definida no artigo [12].
O exemplo a seguir mostra que podemos ter imersões que são umbílicas com

respeito a uma dada direção mas não necessariamente com respeito a outras
direções e consequentemente não sendo totalmente umbílica.

Exemplo 1 (Codimensão 2). Sejam f : Sn → Mn+1 hipersuperfície imersa
em uma variedade riemanniana e F : Mn+1 → N

n+2 hipersuperfície totalmente
umbílica imersa em uma variedade riemanniana, com η normal a S em M e
ξ normal a M em N . Chamando ∇, ∇̄ e ∇̃ as conexões de Levi-Civita de Sn,
Mn+1 e Nn+2, respectivamente, temos f̃ = F ◦ f : Sn → Nn+2, uma imersão de
codimensão 2. Para campos X, Y ∈ X(S) temos que

∇̃XY = ∇̄XY + hF (X, Y ) = ∇̄XY + g(X, Y )ξ (2.1)
∇̄XY = ∇XY + hf (X, Y ), (2.2)

implicando em
∇̃XY = ∇XY + hf (X, Y ) + g(X, Y )ξ.
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Note que, para o operador forma na direção de ξ, temos

g(AξX, Y ) = g̃(hf̃ (X, Y ), ξ)
= g̃(hf (X, Y ) + g(X, Y )ξ, ξ)
= g(X, Y ),

mostrando que Aξ = Id, onde concluímos que S é umbílica com respeito ao campo
ξ. Mais geralmente, para X, Y ∈ X(S), obtemos

g(AηX, Y ) = g̃(hf̃ (X, Y ), η)
= g̃(hf (X, Y ) + g(X, Y )ξ, η)
= g̃(hf (X, Y ), η)
= g(Af

ηX, Y ).

Logo, Aη = λId se, e somente se, Af
η = λId. Segue que a imersão f̃ é umbílica

com respeito a η se, e somente se, a imersão f é umbílica com respeito a η.

O próximo exemplo mostra uma subvariedade que é pseudoumbílica, mas que
não é totalmente umbílica.

Exemplo 2 (Produto de esferas). Sejam f1 : Sn(r1) → Rn+1 e f2 : Sn(r2) →
Rn+1, as esferas de raio r1 e r2, respectivamente. Denotaremos as métricas
e conexões por (Rn+1, ḡ, ∇̄), (Sn(r1), g1, ∇1) e (Sn(r2), g2, ∇2). Nas esferas, os
vetores posição pi são vetores normais, assim denotaremos por Ni = pi

ri

o vetor

normal unitário em pi ∈ Sn(ri), para X, Y ∈ X(Sn(ri)). As segundas formas
fundamentais são dadas por hi(X, Y ) = λiNi. Por um lado,

λi(X, Y ) = ḡ(hi(X, Y ), Ni) = ḡ(∇̄XY − ∇i
XY, Ni) = ḡ(∇̄XY, Ni).

Por outro lado, ḡ(Y, pi) = 0 para todo Y ∈ X(Sn(ri)), onde a compatilibidade da
métrica nos revela que, dado X ∈ X(Sn(ri)),

0 = Xḡ(Y, pi)
= ḡ(∇̄XY, pi) + ḡ(Y, ∇̄Xpi)
= ḡ(∇̄XY, pi) + ḡ(Y, X),

mostrando que ḡ(∇̄XY, pi) = −ḡ(X, Y ). Logo, λi(X, Y ) = − 1
ri

ḡ(X, Y ) e conse-

quentemente, hi(X, Y ) = − 1
ri

ḡ(X, Y )Ni. Segue que ∇̄XY = ∇i
XY − 1

r2
i

ḡ(X, Y )pi.
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A variedade produto Sn(r1) × Sn(r2) é imersa em Rn+1 × Rn+1, onde temos que
a conexão de R2n+2 pode ser decomposta como ∇̃XY = ∇̄X1Y1 + ∇̄X2Y2 e assim

∇̃XY = ∇1
X1Y1 + ∇2

X2Y2 − 1
r2

1
g1(X1, Y1)p1 − 1

r2
2
g2(X2, Y2)p2,

com X, Y ∈ X(Sn(r1) × Sn(r2)), onde Xi e Yi são as projeções de X e Y nos
espaços tangentes de Sn(ri), respectivamente para i = 1, 2. Assim, a segunda
forma fundamental para a imersão do produto é dada por

h(X, Y ) = − 1
r2

1
g1(X1, Y1) − 1

r2
2
g2(X2, Y2).

Vejamos que S = Sn(r1)×Sn(r2) não é umbílica com respeito aos campos normais
p̃1 ∼= p1 + 0 e p̃2 ∼= 0 + p2:

g̃(Ap̃1X, Y ) = g̃(h(X, Y ), p̃1) = − 1
r2

1
g1(X1, Y1),

g̃(Ap̃2X, Y ) = − 1
r2

2
g2(X2, Y2).

Vamos agora calcular o campo de curvatura média H de S para, em seguida, mos-
trar que S é pseudoumbílica em uma situação particular. Considere {e1, . . . , en, f1, . . . , fn}
referencial tangente a S. Dessa forma, temos h(ei, ei) = − 1

r2
1
p1 e h(fi, fi) =

− 1
r2

2
p2, onde

H = 1
n

(
n∑

i=1
h(ei, ei) +

n∑
i=1

h(fi, fi)
)

= − 1
r2

1
p1 − 1

r2
2
p2.

Segue que

g(AHX, Y ) = g̃(h(X, Y ), H)

= g̃

(
− 1

r2
1
g1(X1, Y1)p1 − 1

r2
2
g2(X2, Y2)p2, − 1

r2
1
p1 − 1

r2
2
p2

)

= 1
r4

1
g1(X1, Y1) + 1

r4
2
g2(X2, Y2),

onde tomando r1 = r2 = r, obtemos AH = − 1
r4 Id, mostrando que S é pseudoum-

bílica

A proposição a seguir apresenta algumas propriedades dos tipos de umbilici-
dade.
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Proposição (P.2.1).

(1) S é umbílica com respeito a ξ ∈ X(S)⊥ se, e somente se, Aξ = (θξ/n) 1 ou,
equivalentemente, Ãξ = 0.

(2) Se S é umbílica com respeito a ξ ∈ X(S)⊥, então é umbílica com respeito
a todo campo vetorial proporcional a ξ.

(3) S é totalmente umbílica se, e somente se, h(X, Y ) = g(X, Y )H para todos
X, Y ∈ X(S) ou, equivalentemente, se e somente se h̃ = 0.

(4) Se S é ξ-subgeodésica para algum ξ ∈ X(S)⊥, o Primeiro Espaço Normal
N1 é no máximo unidimensional em cada ponto.

(5) Se S é ξ-subgeodésica, então todos os operadores forma são proporcionais
em pontos onde ξ não se anula. Além disso, nos pontos onde H ̸= 0,
subvariedades ξ-subgeodésicas têm ξ proporcional a H.

(6) Se S é ξ-subgeodésica, então qualquer geodésica γ : I ⊂ R → S de (S, g)
satisfaz ∇γ′γ′ = h(γ′, γ′) = fξ para alguma função f : I → R, onde γ é
subgeodésica com respeito a ξ em (M, g), o que explica a terminologia
ξ-subgeodésica.

Demonstração:

(1) De fato, supondo S umbílica com respeito a ξ, temos por definição que
Aξ = λ1, e tomando o traço em ambos os lados

θξ = tr(Aξ) = tr(λ1)
= λtr(1)
= λn,

obtemos λ = θξ/n. A equivalência surge da definição de operador cisalha-
mento:

0 = Ãξ = Aξ − θξ

n
1

se, e somente se, Aξ = θξ

n
.

(2) A afirmação se mostra verdadeira pelo fato de que Aλξ = λAξ, justificado
pela Proposição 1.1.
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(3) Supondo S totalmente umbílica, ou seja, Aξ = (θξ/n)1, ∀ξ ∈ X (S), temos
pela equação (1.4)

AξX = (θξ/n)X = g(H, ξ)X.

Por um lado, temos

g(AξX, Y ) = g(H, ξ)g(X, Y )
= g(g(X, Y )H, ξ).

Por outro lado, nos é dado que

g(AξX, Y ) = g(h(X, Y ), ξ),

e quando juntamos ambos os lados, segue que

g(h(X, Y ), ξ) = g(g(X, Y )H, ξ),

e assim, pela arbitrariedade de ξ e pela não-degeneração da métrica g,
concluímos que

g(h(X, Y ) − g(X, Y )H, ξ) = 0,

que é equivalente a h(X, Y ) = g(X, Y )H. Reciprocamente, se h(X, Y ) =
g(X, Y )H para todos X, Y ∈ X(S), então dado arbitrariamente ξ ∈ X(S)⊥,
temos que

g(h(X, Y ), ξ) = g(X, Y )g(H, ξ)
= g(X, Y )θξ/n

implica em

g(AξX, Y ) = g(θξ/nX, Y ),

que é equivalente a g(AξX − θξ/nX, Y ) = 0 e, como g é não-degenerada,
segue que

AξX = (θξ/n)X,
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ou, equivalentemente, Aξ = (θξ/n)1. Pela arbitrariedade de ξ , segue que
S é totalmente umbílica. Para a equivalência, pela definição do operador
total de cisalhamento temos

h̃(X, Y ) = h(X, Y ) − g(X, Y )H = 0

se, e somente se, h(X, Y ) = g(X, Y )H, ou seja, é necessário e suficiente
que S seja totalmente umbílica.

(4) Dado arbitrariamente p ∈ S, como h(X, Y ) = L(X, Y )ξ, temos que h é
proporcional a ξ e assim

N1(p) = ⟨ξ⟩,

mostrando que tem apenas um elemento na base.

(5) Como L é um tensor simétrico do tipo (0, 2), existe uma aplicação autoad-
junta L tal que L(X, Y ) = g(LX, Y ) = g(X,LY ), para todos X, Y ∈ X(S).
Como S é ξ-subgeodésica, h(X, Y ) = L(X, Y )ξ e dados η1, η2 ∈ X(S)⊥,
temos

g(Aη1X, Y ) = g(h(X, Y ), η1)
= g(L(X, Y )ξ, η1)
= g(LX, Y )g(ξ, η1)
= g(g(ξ, η1)LX, Y ),

onde concluímos que Aη1 = g(ξ, η1)L. Analogamente, temos que Aη2 =
g(ξ, η2)L. Observe que se g(ξ, η1) = 0 ou g(ξ, η2) = 0, então os operadores
são trivialmente proporcionais. Agora, supondo g(ξ, ηi) ̸= 0 para i = 1, 2,
temos

Aη1

g(ξ, η1)
= L = Aη2

g(ξ, η2)

e assim g(ξ, η2)Aη1 = g(ξ, η1)Aη2 , para quaisquer η1, η2 ∈ X(S)⊥. Logo, os
operadores forma são sempre proporcionais.

Além disso, nos pontos onde H ̸= 0, tomando o traço que define S ser
ξ-subgeodésica, temos

nH = tr(h) = tr(L)ξ
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onde concluímos que H = tr(L)
n

ξ e, portanto, H e ξ são proporcionais.

(6) Dada γ : I ⊂ R → S geodésica de (S, g), temos que γ′ ∈ X(S) e assim

∇γ′γ′ = h(γ′, γ′)
= L(γ′, γ′)ξ
= (L ◦ γ′)(t)ξ
= f(t)ξ,

onde bastou tomar f = (L ◦ γ′).

Vamos assumir a partir de agora que a imersão ϕ : (S, g) → (M, g) tem
codimensão 2.

2.2 A estrutura do Fibrado Normal com fibras bidimen-
sionais

Como consideramos φ subvariedade tipo-espaço, então no fibrado normal a
métrica só pode ter uma das opções de assinatura: (+, +), (−, +) e (−, −).
Denotaremos tais assinaturas por (ε1, ε2), onde ε1 = ε2 = ±1 a fim de não
especificar um deles. Além disso, {ξ1, ξ2} denotará um referencial ortonormal em
X(S)⊥ com g(ξi, ξi) = εi, i ∈ {1, 2}. Com respeito a esse referencial, a segunda
forma fundamental h é decomposta como

h(X, Y ) = ε1g(Aξ1X, Y )ξ1 + ε2g(Aξ2X, Y )ξ2 (2.3)

para quaisquer X, Y ∈ X(S). De fato, escrevendo h(X, Y ) = a(X, Y )ξ1 +
b(X, Y )ξ2, pela ortonormalidade do referencial {ξ1, ξ2}, temos para quaisquer
X, Y ∈ X(S)

g(h(X, Y ), ξ1) = g(a(X, Y )ξ1, ξ1) + g(b(X, Y )ξ2, ξ1)
= a(X, Y )g(ξ1, ξ1)
= a(X, Y )ε1,
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por definição temos g(h(X, Y ), ξ1) = g(Aξ1X, Y ) e ε2
1 = 1, onde a multiplicação

por ε1 na equação acima nos fornece a(X, Y ) = ε1g(Aξ1X, Y ). O mesmo processo
feito com ξ2 nos mostra que b(X, Y ) = ε2g(Aξ2X, Y ), como prometido.

Naturalmente, podemos escrever o campo de vetores curvatura média em
termos do referencial {ξ1, ξ2}. Por definição,

H = 1
n

n∑
i=1

h(ei, ei),

onde {e1, . . . , en} é um referencial qualquer de X(S), e assim

H = 1
n

n∑
i=1

h(ei, ei) = 1
n

n∑
i=1

(ε1g(Aξ1ei, ei)ξ1 + ε2g(Aξ1ei, ei)ξ2)

= 1
n

(
ε1

n∑
i=1

g(Aξ1ei, ei)ξ1 + ε2

n∑
i=1

g(Aξ1ei, ei)ξ2

)

= 1
n

(ε1tr(Aξ1)ξ1 + ε2tr(Aξ2)ξ2)

= 1
n

(ε1θξ1ξ1 + ε2θξ2ξ2).

Vale resumir a equação acima e referenciá-la para uso posterior:

H = 1
n

(ε1θξ1ξ1 + ε2θξ2ξ2). (2.4)

Usando o elemento de volume ω⊥ do fibrado normal, podemos definir para
qualquer campo normal ξ ∈ X(S)⊥ seu campo dual de Hodge ⋆⊥ξ ∈ X(S)⊥ por

g(⋆⊥ξ, η) = ω⊥(ξ, η), (2.5)

para todo η ∈ X(S)⊥.

Proposição (P.2.2). O operador dual de Hodge é um operador linear que
satisfaz

⋆⊥(⋆⊥ξ) = −ε1ε2ξ, g(⋆⊥ξ, η) = −g(ξ, ⋆⊥η), (2.6)

para todo η ∈ X(S)⊥.

Demonstração:

(1) ⋆⊥ é linear:
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Dados ξ1, ξ2 ∈ X(S)⊥ e f ∈ F(M), temos que o campo ⋆⊥(fξ1 + ξ2) é tal
que, para todo η ∈ X(S)⊥,

g(⋆⊥(fξ1 + ξ2)) = ω⊥(fξ1 + ξ2, η)
= fω⊥(ξ1, η) + ω⊥(ξ2, η)
= fg(⋆⊥ξ1, η) + g(⋆⊥ξ2, η)
= g(f ⋆⊥ ξ1 + ⋆⊥ξ2, η),

o que implica em g(⋆⊥(fξ1 + ξ2) − (f ⋆⊥ ξ1 + ⋆⊥ξ2), η). Como a métrica é
não-degenerada, segue que ⋆⊥(fξ1 + ξ2) = f ⋆⊥ ξ1 + ξ2.

(2) ⋆⊥(⋆⊥ξ) = −ε1ε2ξ:

Considere um referencial ortonormal {ξ1, ξ2} ⊂ X(S)⊥, isto é, g(ξi, ξj) =
εiδij . Suponha que o referencial esteja orientado de tal forma que ω⊥(ξ1, ξ2) =
1. Como ⋆⊥ξ1 ∈ X(S)⊥, podemos escrever segundo o referencial como
⋆⊥ξ1 = a1ξ1 + a2ξ2. Note, primeiramente, que g(⋆⊥ξi, ξi) = ω⊥(ξi, ξi) = 0.
Em seguida, fazemos o produto interno de ⋆⊥ξ1 por ξ1 segundo a métrica
g e obtemos

0 = g(⋆⊥ξ1, ξ1)
= g(a1ξ1 + a2ξ2, ξ1)
= a1ε1,

revelando que a1 = 0. Agora, fazendo o produto de ⋆⊥ξ1 por ξ2, temos, por
um lado, que

g(⋆⊥ξ1, ξ2) = ω⊥(ξ1, ξ2)
= 1.

Por outro lado, temos que

g(⋆⊥ξ1, ξ2) = g(a2ξ2, ξ2)
= a2ε2,

onde concluímos que a2 = ε2. Logo, ⋆⊥ξ1 = ε2ξ2. Analogamente, escre-
vendo ⋆⊥ξ2 = b1ξ1 + b2ξ2, temos por definição que o produto de ⋆⊥ξ2 por
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ξ1 é

g(⋆⊥ξ2, ξ1) = ω⊥(ξ2, ξ1) = −ω⊥(ξ1, ξ2) = −1,

onde

−1 = g(⋆⊥ξ2, ξ1)
= g(b1ξ1 + b2ξ2, ξ1)
= b1ε1,

mostrando que b1 = −ε1. Além disso, o produto de ⋆⊥ξ2 por ξ2 segundo a
métrica g é tal que

0 = g(⋆⊥ξ2, ξ2)
= g(b2ξ2, ξ2)
= b2ε2,

implicando em b2 = 0. Logo, ⋆⊥ξ2 = −ε1ξ1. Agora que sabemos como o
operador ⋆⊥ age nos campos do referencial, tome ξ = mξ1 + nξ2 um campo
normal arbitrário. Segue que

⋆⊥ξ = m ⋆⊥ ξ1 + n ⋆⊥ ξ2 = mε2ξ2 − nε1ξ1

e a aplicação repetida deste operador nos fornece

⋆⊥(⋆⊥ξ) = mε2 ⋆⊥ ξ2 − nε1 ⋆⊥ ξ1

= −mε1ε2ξ1 − nε1ε2ξ2

= −ε1ε2(mξ1 + nξ2) = −ε1ε2ξ.

Perceba que a escolha da orientação do referencial não afeta o resultado:
se orientássemos de tal forma que ω⊥(ξ2, ξ1) = 1, teríamos, para ⋆⊥ξ1 =
a1ξ1 +a2ξ2, que ω⊥(ξ1, ξ2) = −1 = g(⋆⊥ξ1, ξ) = a2ε2, isto é, a2 = −ε2, onde
juntando ao fato de que g(⋆⊥ξ1, ξ1) = 0, teríamos a1 = 0 e consequentemente
⋆⊥ξ1 = −ε2ξ2. De maneira análoga, escrevendo ⋆⊥ξ2 = b1ξ1 + b2ξ2, como
1 = g(⋆⊥ξ2, ξ1) = b1ε1 e 0 = g(⋆⊥ξ2, ξ2) = b2ε2, teríamos ⋆⊥ξ2 = ε1ξ1.
Prosseguindo, encontraríamos

⋆⊥(⋆⊥ξ1) = ⋆⊥(−ε2ξ2) = −ε1ε2ξ1,
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⋆⊥(⋆⊥ξ2) = ⋆⊥(ε1ξ1) = −ε1ε2ξ2,

os mesmos obtidos com a outra escolha de orientação, onde o resultado
seguiria identicamente.

(3) g(⋆⊥ξ, η) = −g(ξ, ⋆⊥η):

Pelas simetria da métrica e antissimetria do elemento de volume ω⊥, temos

g(⋆⊥ξ, η) = ω⊥(ξ, η) = −ω⊥(η, ξ) = −g(⋆⊥η, ξ) = −g(ξ, ⋆⊥η).

Da demonstração da proposição acima, assumindo que {ξ1, ξ2} ∈ X(S)⊥ está
orientado de tal forma que ω⊥(ξ1, ξ2) = 1, podemos concluir que

(i) g(⋆⊥ξ, ξ) = 0,

(ii) g(⋆⊥ξ, ⋆⊥ξ) = ε1ε2g(ξ, ξ),

(iii) ⋆⊥ξ1 = ε2ξ2, ⋆⊥ξ2 = −ε1ξ1.

De fato, as primeira e terceira equações já foram mostradas durante a prova da
Proposição, enquanto para mostrar a segunda equação basta notar que

g(⋆⊥ξ, ⋆⊥ξ) = −g(⋆⊥(⋆⊥ξ), ξ) = −g(−ε1ε2ξ, ξ) = ε1ε2g(ξ, ξ).

Da propriedade (iii) acima e da expressão de H no referencial {ξ1, ξ2}, temos
que o campo dual de Hodge do campo de vetores curvatura média é expresso
nesse referencial como

⋆⊥H = ε1ε2

n
(θξ1ξ2 − θξ2ξ1) (2.7)

pois

⋆⊥H = 1
n

(
ε1θξ1(⋆⊥ξ1) + ε2θξ2(⋆⊥ξ2)

)
= 1

n
(ε1θξ1(ε2ξ2) + ε2θξ2(−ε1ξ1))

= ε1ε2

n
(θξ1ξ2 − θξ2ξ1) .

O campo de vetores ⋆⊥H define direção com expansão nula. De fato,

θ⋆⊥H = trA⋆⊥H = ng(H, ⋆⊥H) = 0. (2.8)
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Definição (D.2.2). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana em uma variedade semi-riemanniana com codimensão 2.
A subvariedade é dita ortoumbílica se A⋆⊥H = 0.

O operador cisalhamento segundo ⋆⊥H é, por definição, Ã⋆⊥H = A⋆⊥H −
1
n

θ⋆⊥H = A⋆⊥H , pois a expansão de ⋆⊥H é nula segundo a equação (2.8). Dessa
maneira, a condição A⋆⊥H = 0 é equivalente a Ã⋆⊥H = 0, onde o item (1) da
Proposição 2.1 nos informa que a subvariedade S é umbílica com respeito a ⋆⊥H,
um campo ortogonal a H. Essa característica explica a terminologia ortoumbílica.

Uma pergunta surge: quando uma subvariedade pode ser simultaneamente
pseudoumbílica e ortoumbílica? A resposta é dada pelo seguinte Lema:

Lema (L.2). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma variedade
riemanniana em uma variedade semi-riemanniana com codimensão 2. Se S for
tanto pseudoumbílica quanto ortoumbílica, então

(1) (S, g) é totalmente umbílica, ou

(2) O campo de vetores curvatura média satisfaz g(H, H) = 0.

Demonstração: Se S for totalmente umbílica, como a proposição lógica do
Lema contém um ou inclusivo, assumir uma das sentenças como verdadeira torna
a afirmação verdadeira por completo. Da mesma maneira, se H = 0, então
g(H, H) = 0 e a afirmação continua verdadeira. Agora resta mostrar que se S
não for totalmente umbílica, isto é, h̃ ̸= 0, e se H ̸= 0, então g(H, H) = 0. Note
que, ao assumir que H ̸= 0, temos no referencial ortonormal {ξ1, ξ2} de campos
normais que H = 1

n
(ε1θξ1ξ1 + ε2θξ2ξ2) ̸= 0 nos informa que pelo menos um entre

θξ1 e θξ2 é não nulo. Dessa maneira, ⋆⊥H = ε1ε2

n
(θξ1ξ2 − θξ2ξ1) ̸= 0 e {H, ⋆⊥H}

constitui um referencial ortogonal de X(S)⊥. Como (S, g) é ortoumbílica, ou
seja, A⋆⊥H = 0, temos para todos X, Y ∈ X(S) que

0 = g(A⋆⊥HX, Y ) = g(h(X, Y ), ⋆⊥H),

mostrando que h(X, Y ) = L(X, Y )H, onde L é um tensor simétrico 2-covariante
(essa é só uma maneira mais bonita de dizer que h(X, Y ) é proporcional a
H). Com isso, temos por definição que h̃(X, Y ) = h(X, Y ) − g(X, Y )H =
(L(X, Y ) − g(X, Y )) H para todo X, Y ∈ X(S). Agora, como (S, g) é pseudoum-
bílica, ou seja, ÃH = 0, temos que

0 = g(ÃHX, Y )
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= g(h̃(X, Y ), H)
= (L(X, Y ) − g(X, Y )) g(H, H),

impondo que g(H, H) = 0, pois h̃ ̸= 0 (não totalmente umbílica) quer dizer que
existem X, Y ∈ X(S) tal que L(X, Y ) − g(X, Y ) ̸= 0.

2.3 Equivalência entre subvariedades Ortoumbílicas e ξ-
Subgeodésicas

Na seguinte proposição, provaremos que a propriedade de ser ξ−subgeodésica é
equivalente à propriedade de ser ortoumbílica quando a codimensão é 2.

Proposição (P.2.3). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana em uma variedade semi-riemanniana de codimensão 2.
As seguintes condições são equivalentes em qualquer aberto onde H ̸= 0:

(1) S é ortoumbílica;

(2) S é ξ−subgeodésica para algum campo não nulo ξ ∈ X(S)⊥.

Demonstração: Suponha S ortoumbílica, ou seja, que A⋆⊥H = 0. Assim

0 = g(A⋆⊥HX, Y ) = g(h(X, Y ), ⋆⊥H), para quaisquer X, Y ∈ X(S),

onde concluímos que h(X, Y ) está na direção de H, uma vez que a codimensão
é 2, mostrando que h(X, Y ) = L(X, Y )H, para quaisquer X, Y ∈ X(S). Como
h é simétrica e bilinear, temos que L é um (0, 2)−tensor simétrico e assim S é
H−subgeodésica. Como H ̸= 0 e H ∈ X(S)⊥, basta tomar ξ = H e o resultado
segue.

Reciprocamente, suponha S subvariedade ξ−subgeodésica, com ξ ∈ X(S)⊥ e
ξ ≠ 0. Por definição, h(X, Y ) = L(X, Y )ξ para quaisquer X, Y ∈ X(S), onde ξ é
um campo normal a S não nulo. Segue que

g(A⋆⊥ξX, Y ) = g(h(X, Y ), ⋆⊥ξ)
= L(X, Y )g(ξ, ⋆⊥ξ)
= 0,
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para quaisquer X, Y ∈ X(S). Como a métrica g é não degenerada, pela arbitrari-
edade de Y ∈ X(S) temos A⋆⊥ξX = 0 para todo X ∈ X(S), onde a arbitrariedade
de X ∈ X(S) nos revela que A⋆⊥ξ = 0. Note que ξ e H são proporcionais, pois

nH = tr(h) = tr(L)ξ,

implicando que ⋆⊥H = tr(L(X, Y )) ⋆⊥ ξ e mostrando que

A⋆⊥H = AL(X,Y )⋆⊥ξ = L(X, Y )A⋆⊥ξ = 0,

isto é, S é ortoumbílica.

Note que se H = 0 no máximo em um conjunto com interior vazio, então a
Proposição 2.3 é válida globalmente. De fato, seja N = {p ∈ S|H(p) = 0} onde
intN = ∅. Temos então que o complementar de N , N c = {p ∈ S|H(p) ̸= 0},
é um subconjunto denso de S. Vamos mostrar que N c é aberto: considere

f : S → R definida por f(p) =
2∑

i=1
|g(H(p), ξi(p))|2, onde {ξ1, ξ2} é um referencial

normal ortonormal. Temos que f(p) = 0 se, e somente se, H(p) = 0, implicando
em N c = f−1((0, ∞)) e mostrando que N c é aberto. Assim, a Proposição 2.3
vale em N c, um aberto e denso. Supondo que (1) valha em N c, então (2) vale
em N c, isto é, h(X, Y ) = L(X, Y )ξ em N c. Pela continuidade na equação acima
e por valer em um conjunto denso, temos que a mesma equação vale para toda
S. Analogamente, se vale para (2) em N c, então vale para (1) em N c. Isto é,
A⋆⊥H = 0 em N c e, pela continuidade do operador forma em um conjunto denso,
segue que A⋆⊥H = 0 em toda S. Segue que a proposição vale globalmente neste
caso.

Corolário (C.2.1). Em qualquer aberto onde H ≠ 0 existe um campo de
vetores não nulo ξ ∈ X(S)⊥ tal que A⋆⊥ξ = 0 se, e somente se, S é ortoumbílica.

Demonstração: Se S é ortoumbílica, então A⋆⊥H = 0 por definição, onde basta
tomar ξ = H. Reciprocamente, suponha que exista um tal campo ξ ∈ X(S)⊥

não nulo tal que A⋆⊥ξ = 0. Em um referencial ortonormal {ξ1, ξ2} ⊂ X(S)⊥,
escrevendo ξ = aξ1 + bξ2, vemos que ⋆⊥ξ = aε2ξ2 − bε1ξ1 ̸= 0, pois pelo menos
um entre a e b é não nulo e {ξ1, ξ2} é um conjunto L.I.. Dessa maneira, {ξ, ⋆⊥}
determina um referencial ortogonal em X(S)⊥ e, para todos X, Y ∈ X(S), temos
0 = g(A⋆⊥ξX, Y ) = g(h(X, Y ), ⋆⊥ξ), mostrando que h(X, Y ) = L(X, Y )ξ, onde
L é um tensor simétrico 2-covariante. Segue que S é ξ-subgeodésica e, do item
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(5) da Proposição 2.1, temos que ξ e H são proporcionais. Consequentemente,
⋆⊥ξ e ⋆⊥H são proporcionais, uma vez que a codimensão é 2. Logo, A⋆⊥ξ = 0
implica A⋆⊥H = 0, isto é, S é ortoumbílica.
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Capítulo 3

O Teorema Principal e suas
Consequências

Nesse capítulo, enunciaremos e demonstraremos o principal teorema deste
trabalho. Ele relaciona a existência de uma direção umbílica não-nula com o
operador cisalhamento e, consequentemente, com conceitos relacionados com este
operador, como, por exemplo, o tensor de cisalhamento total h̃- relacionados
pelas métricas do ambiente e da subvariedade, como visto no primeiro capítulo-
e o cisalhamento escalar. O restante do capítulo segue com consequências do
teorema, que traz implicações como a comutatividade de operadores formas
e a unicidade da direção umbílica, quando esta existir. Encerramos, depois,
caracterizando ortoumbilicidade.

As definições e resultados deste capítulo estão presentes no artigo base [4]
desta dissertação.

3.1 Caracterização de ser Pseudoumbílica

O seguinte lema mostra uma relação entre os operadores B e J :

Lema (L.3). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma vari-
edade riemanniana n−dimensional em uma variedade semi-riemanniana com
codimensão 2. Sejam B o operador de Casorati e J o operador definido em (1.8).
Então

B − J = 2ÃH + g(H, H)1, (3.1)
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onde H é o campo vetorial curvatura média. Além disso, tr(B − J ) = ng(H, H).

Demonstração: Por um lado, ao considerar um referencial ortonormal {ξ1, ξ2}
de X(S)⊥, temos que os operadores são escritos como

B = g(ξ1, ξ1)A2
ξ1 + g(ξ2, ξ2)A2

ξ2 ,

J = g(ξ1, ξ1)Ã2
ξ1 + g(ξ2, ξ2)Ã2

ξ2 ,

e a diferença entre eles é igual a

B − J = g(ξ1, ξ1)A2
ξ1 + g(ξ2, ξ2)A2

ξ2 − g(ξ1, ξ1)Ã2
ξ1 + g(ξ2, ξ2)Ã2

ξ2

= g(ξ1, ξ1)(A2
ξ1 − Ã2

ξ1) + g(ξ2, ξ2)(A2
ξ2 − Ã2

ξ2)

=
2∑

i=1
g(ξi, ξi)(A2

ξi
− Ã2

ξi
).

Calculando a diferença entre os quadrados A2
ξi

− Ã2
ξi

, temos

A2
ξi

− Ã2
ξi

= A2
ξi

−
(

Aξi
− 1

n
θξi

1
)2

= A2
ξi

−
(

A2
ξi

− 2
n

θξi
Aξi

+ 1
n2 θ2

ξi
1
)

= 2
n

θξi
Aξi

− 1
n2 θ2

ξi
1.

Por outro lado, temos pela expressão de H nesse referencial, dada na equação
(2.4), que

AH = A 1
n(ε1θξ1 ξ1+ε2θξ2 ξ2)

= 1
n

(ε1θξ1Aξ1 + ε2θξ2Aξ2) ,

e que

g(H, H) = g
( 1

n
(ε1θξ1ξ1 + ε2θξ2ξ2) ,

1
n

(ε1θξ1ξ1 + ε2θξ2ξ2)
)

= 1
n2 [g(ε1θξ1ξ1, ε1θξ1ξ1) + 2g(ε1θξ1ξ1, ε2θξ2ξ2) + g(ε2θξ2ξ2, ε2θξ2ξ2)]

= 1
n2

[
ε2

1θ
2
ξ1 + ε2

2θ
2
ξ2

]
= 1

n2

(
ε1θ

2
ξ1 + ε2θ

2
ξ2

)
.
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Juntando as igualdades, segue que

B − J = ε1(A2
ξ1 − Ã2

ξ1) + ε2(A2
ξ2 − Ã2

ξ2)

= ε1

( 2
n

θξ1Aξ1 − 1
n2 θ2

ξ11
)

+ ε2

( 2
n

θξ2Aξ2 − 1
n2 θ2

ξ21
)

= 2
n

(ε1θξ1Aξ1 + ε2θξ2Aξ2) − 1
n2

(
ε1θ

2
ξ1 + ε2θ

2
ξ2

)
1

= 2AH − g(H, H)1.

Como ÃH = AH = 1
n

θH1, temos que

2AH = 2ÃH + 2
n

θH1

= 2ÃH + 2
n

ng(H, H)1

= 2ÃH + 2g(H, H)1,

onde podemos finalmente concluir que

B − J = 2AH − g(H, H)1
= 2ÃH + 2g(H, H)1 − g(H, H)1
= 2ÃH + g(H, H)1.

Além disso, tomando o traço dos dois lados temos que

tr(B − J ) = tr(2ÃH + g(H, H)1)
= 2tr(ÃH) + g(H, H)tr(1)
= ng(H, H),

pois ÃH é livre de traço.

Corolário (C.3.1). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana n−dimensional em uma varidade semi-riemanniana com
codimensão 2. Então S é pseudoumbílica se, e somente se,

B − J = AH .

Ou equivalentemente, se e somente se B − J for proporcional à identidade.
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Demonstração: Pela definição de operador cisalhamento, segue da demonstra-
ção do lema acima que B − J = 2AH − g(H, H)1. Assim B − J = AH se, e
somente se, 2AH − g(H, H)1 = AH , ou equivalentemente, AH = g(H, H)1. Logo,
S é pseudoumbílica por definição.

3.2 Teorema Principal

Nesta seção enunciamos e provamos o principal teorema deste trabalho.

Teorema (T.3.1). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana n−dimensional em uma variedade semi-riemanniana com
codimensão 2. As seguintes condições são equivalentes:

(i) S é umbílica com respeito a um campo vetorial normal não nulo ξ ∈ X(S)⊥.

(ii) Quaisquer dois operadores cisalhamento são proporcionais entre si.

(iii) Existem Ã ∈ T (S) e G ∈ X(S)⊥ tais que ⟨Ã, Ã⟩ = n2 e

h̃(X, Y ) = g(ÃX, Y )G, (3.2)

para todos X, Y ∈ X(S).

(iv) Os componentes de quaisquer dois operadores cisalhamento Ãη1 e Ãη2 com
respeito a qualquer referencial tangente satisfazem

(Ãη1)i
j(Ãη2)r

s = (Ãη2)i
j(Ãη1)r

s, (3.3)

para todos i, j, r, s = 1 . . . , n.

(v) Quaisquer dois operadores cisalhamento Ãη1 e Ãη2 satisfazem

⟨Ãη1 , Ãη1⟩2 = σ2
η1σ2

η2 . (3.4)

Demonstração:

(i) =⇒ (ii). Suponha S ortoumbílica com respeito a um campo normal não nulo
ξ ∈ X(S)⊥, isto é, Ãξ = 0. Considere η ∈ X(S)⊥ tal que {ξ, η} ⊂ X(S)⊥
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é um conjunto linearmente independente. Então, dados η1, η2 ∈ X(S)⊥,
temos que existem funções a1, a2, b1, b2 tais que

η1 = a1ξ + b1η

η2 = a2ξ + b2η.

Dessa forma, Ãη1 = Ãa1ξ+b1η = a1Ãξ + b1Ãη = b1Ãη e Ãη2 = b2Ãη segundo
o mesmo processo, onde notamos que

b2Ãη1 = b2b1Ãη = b1b2Ãη = b1Ãη2 .

Nos pontos onde b1 ou b2 se anulam, a proporcionalidade é trivial. Podemos
considerar os pontos onde b1 e b2 não se anulam, donde segue que Ãη1 =
b1

b2
Ãη2 , como queríamos.

(ii) =⇒ (iii). Seja {ξ1, ξ2} ⊂ X(S)⊥ um referencial ortonormal tal que g(ξ1, ξ1) =
ε1 e g(ξ2, ξ2) = ε2. Como por hipótese Ãξ1 e Ãξ2 são proporcionais, então
existem Ã ∈ T (S) e funções λ1 e λ2 tais que Ãξ1 = λ1Ã e Ãξ2 = λ2Ã. De
fato, a proporcionalidade entre os operadores nos fornece funções f1 e f2

tais que f1Ãξ1 = f2Ãξ2 = Ã ∈ T (S). Nos pontos onde f1 ou f2 se anulam,
o campo Ã satisfaz a igualdade trivialmente. Podemos considerar então os
pontos onde f1 e f2 não se anulam para escrever

Ãξ1 = 1
f1

Ã = λ1Ã,

Ãξ2 = 1
f2

Ã = λ2Ã.

Por expansão ortonormal, temos

h̃(X, Y ) = ε1g(h̃(X, Y ), ξ1)ξ1 + ε2g(h̃(X, Y ), ξ2)ξ2

= ε1g(Ãξ1X, Y )ξ1 + ε2g(Ãξ2X, Y )ξ2

= ε1g(λ1ÃX, Y )ξ1 + ε2g(λ2ÃX, Y )ξ2

= g(ÃX, Y )(ε1λ1ξ1 + ε2λ2ξ2)

para quaisquer X, Y ∈ X(S), onde é suficiente tomar G na direção de
ε1λ1ξ1 + ε2λ2ξ2 ∈ X(S)⊥.

Seja k2 = tr(Ã2). Para que tenhamos tr(Ã2) = n2 podemos reescalar Ã,

isto é, fazendo Ãscal = n

k
Ã. Assim, tr(Ã2

scal) = ⟨n

k
Ã,

n

k
Ã⟩ = n2

k2 ⟨Ã, Ã⟩ = n2.
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Contudo, teríamos

g(ÃscalX, Y )G = g
(

n

k
ÃX, Y

)
G = n

k
g(ÃX, Y )G = n

k
h̃(X, Y ).

Para ajustar isso, podemos reescalar G, tomando Gscal = k

n
G teremos

g(ÃscalX, Y )Gscal = g
(

n

k
ÃX, Y

)
k

n
G

= g(ÃX, Y )G
= h̃(X, Y ).

(iii) =⇒ (i). Considere o referencial {ξ1, ξ2} orientado de tal forma que ω⊥(ξ1, ξ2) =
1. Se G = 0, então para todos X, Y ∈ X(S) tem-se 0 = h̃(X, Y ) =
h(X, Y ) − g(X, Y )H, onde S é totalmente umbílica e afirmação é válida
para qualquer campo normal não nulo que quisermos tomar. Suponha
G ≠ 0 e escrevamos G = α(ε1λ1ξ1 + ε2λ2ξ2), onde α é uma função di-
ferenciável não nula. Então ⋆⊥G é não nulo, pois do contrário teríamos
⋆⊥G = α(ε1λ1 ⋆⊥ ξ1 + ε2λ2 ⋆⊥ ξ2) = αε1ε2(λ1ξ2 − λ2ξ1) = 0, o que acontece
se, e somente se, λ1 = λ2 = 0, contradizendo a suposição de que G = 0.
Por hipótese, h̃ está na direção de G, onde para todos X, Y ∈ X(S) temos

0 = g(h̃(X, Y ), ⋆⊥G)
= g(Ã⋆⊥GX, Y ),

implicando em Ã⋆⊥G = 0, isto é, S é umbílica com respeito a ⋆⊥G ∈ X(S)⊥,
que é não nulo.

(ii) ⇐⇒ (iv). Suponha que quaisquer dois operadores cisalhamento sejam pro-
porcionais entre si. Então dados η1, η2 ∈ X(S)⊥ existe λ12 função diferenciá-
vel tal que Ãη1 = λ12Ãη2 , o que é equivalente a dizer que (Ãη1)i

j = λ12(Ãη2)i
j .

Assim, para quaisquer i, j, r, s a equação (3.3) se torna λ12(Ãη2)i
j(Ãη2)r

s em
ambos os lados. Reciprocamente, suponha que para todos i, j, r, s = 1, . . . , n

se tenha

(Ãη1)i
j(Ãη2)r

s = (Ãη2)i
j(Ãη1)r

s.

Queremos mostrar que Ãη1 = λÃη2 , que é equivalente a mostrar que
(Ãη1)i

j = λ(Ãη2)i
j, para todos i, j = 1, . . . , n. Se Ãη2 = 0, o resultado segue

diretamente. Suponha Ãη2 ̸= 0, isto é, pelo menos uma componente de
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(Ãη2)i
j é não nula, onde tomaremos, por exemplo, a componente i = a

e j = b fixados. Como vale a equação (3.3) para todos r, s = 1, . . . , n,
teremos

(Ãη1)r
s = (Ãη1)a

b

(Ãη2)a
b

(Ãη2)r
s,

onde podemos tomar λ = (Ãη1)a
b

(Ãη2)a
b

, uma função que não depende de r e s.

O caso em que mais de uma componente é não nula é inteiramente análogo.
Logo, Ãη1 = λÃη2 , como queríamos.

(ii) ⇐⇒ (v) Lembrando que ⟨Ãξ, Ãξ⟩ = tr(Ã2
ξ) = σ2

ξ , para η1, η2 ∈ X(S)⊥

arbitrários, temos da desigualdade de Cauchy-Schwarz que

⟨Ãη1 , Ãη2⟩2 = |⟨Ãη1 , Ãη2⟩|2

≤ ⟨Ãη1 , Ãη1⟩⟨Ãη2 , Ãη2⟩
= tr(Ã2

η1)tr(Ã2
η2)

= σ2
η1σ2

η2 ,

onde a igualdade vale se, e somente se, Ãη1 e Ãη2 forem proporcionais, como
esperávamos.

O Teorema acima nos diz que, sempre que existir uma direção umbílica,
existe um campo de vetores normal G que satisfaz o item (iii). Note que G está
definido a menos de sinal, por conta da Observação (2), item (2), subsequente às
definições dos vários tipos de umbilicidade. Usando a condição (iii), temos que
g(ÃξX, Y ) = g(h̃(X, Y ), ξ) = g(ÃX, Y )g(G, ξ) para todos X, Y ∈ X(S) e todo
ξ ∈ X(S)⊥. Como a métrica g é não degenerada, a igualdade acima, reescrita
como g(ÃξX − g(G, ξ)ÃX, Y ) = 0 para todos X, Y ∈ X(S), nos diz que

Ãξ = g(G, ξ)Ã, (3.5)

onde o escalar de cisalhamento correspondente é dado por σ2
ξ = tr(Ã2

ξ) =
g(G, ξ)2tr(Ã2) = n2g(G, ξ)2. Como tanto σξ e G são definidas a menos de sinal e
o quadrado delas coincidem, podemos definir

σξ = ng(G, ξ), (3.6)
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para todo ξ ∈ X(S)⊥. Combinando as equações (3.5) e (3.6) temos que

Ãξ = g(G, ξ)Ã = σξ

n
Ã

para todo ξ ∈ X(S)⊥, onde, para quaisquer η1, η2 ∈ X(S)⊥, temos que

⟨Ãη1 , Ãη2⟩ = ⟨ση1

n
Ã,

ση2

n
Ã⟩ = ση1ση2

n2 ⟨Ã, Ã⟩ = ση1ση2 .

Proposição (P.3.1). Existem Ã ∈ T (S) e G ∈ X(S)⊥ tais que ⟨Ã, Ã⟩ = n2 e

h̃(X, Y ) = g(ÃX, Y )G (3.7)

para todos X, Y ∈ X(S) se, e somente se,

h̃(X, Y )♭ ∧ h̃(Z, W )♭ = 0,

para todos X, Y, Z, W ∈ X(S). Ou seja, o item (iii) do Teorema 3.1 pode ser
reformulado como h̃(X, Y )♭ ∧ h̃(Z, W )♭ = 0.

Demonstração: Suponha válido o item (iii). Assim, dados arbitrariamente
U, V ∈ X(M), temos pela definição de produto exterior que

h̃(X, Y )♭(U) ∧ h̃(Z, W )♭(V ) =
∣∣∣∣∣∣h̃(X, Y )♭(U) h̃(Z, W )♭(U)
h̃(X, Y )♭(V ) h̃(Z, W )♭(V )

∣∣∣∣∣∣
=
∣∣∣∣∣∣g(h̃(X, Y ), U) g(h̃(Z, W ), U)
g(h̃(X, Y ), V ) g(h̃(Z, W ), V )

∣∣∣∣∣∣
=
∣∣∣∣∣∣g(ÃX, Y )g(G, U) g(ÃZ, W )g(G, U)
g(ÃX, Y )g(G, V ) g(ÃZ, W )g(G, V )

∣∣∣∣∣∣
= g(ÃX, Y )g(G, U)g(ÃZ, W )g(G, V )
− g(ÃZ, W )g(G, U)g(ÃX, Y )g(G, V )
= g(G, U)g(G, V )(g(ÃX, Y )g(ÃZ, W )
− g(ÃZ, W )g(ÃX, Y ))
= 0.

Pela arbitrariedade dos campos tomados, segue que h̃(X, Y )♭ ∧ h̃(Z, W )♭ = 0.
Reciprocamente, suponha que h̃(X, Y )♭ ∧ h̃(Z, W )♭ = 0. Então, as 1−formas
h̃(X, Y )♭ são linearmente dependentes para todos X, Y ∈ X(S). Dessa maneira,
existe uma 1-forma ω tal que h̃(X, Y )♭ = L(X, Y )ω, com L tensor tipo (0, 2)
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simétrico. Para dada ω, existe um campo de vetores G = ω♯ tal que g(G, Y ) =
ω(Y ). Então fica bem definida h̃(X, Y ) = L(X, Y )G. Além disso, como L é um
tensor tipo (0, 2) simétrico, existe uma aplicação autoadjunta Ã ∈ T (S) tal que
L(X, Y ) = g(ÃX, Y ). Finalmente, podemos ter tr(Ã2) = n2 reescalando G se
necessário, seguindo o mesmo argumento da demonstração de (ii) implica (iii)
no Teorema 3.1.

Seguimos então com dois corolários ao Teorema 3.1.

Corolário (C.3.2). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana n−dimensional em uma varidade semi-riemanniana com
codimensão 2. Se S for umbílica com respeito a um campo vetorial normal não
nulo, então quaisquer dois operadores forma comutam.

Demonstração: Suponha S umíblica com respeito a um campo vetorial normal
não nulo ξ ∈ X(S)⊥, ou seja, suponha válido o item (i) do Teorema 3.1. Pela
equivalência dada pelo Teorema, temos em particular que (i) ⇐⇒ (ii), onde
segue que quaisquer dois operadores cisalhamento são proporcionais entre si.
Dados η1, η2 ∈ X(S)⊥, temos que existe λ ∈ F(S) tal que Ãη1 = λÃη2 e assim
temos que

Ãη1(Ãη2) = λÃη2(Ãη1) = λÃ2
η2 ,

Ãη2(Ãη1) = Ãη2(λÃη2) = λÃ2
η2

e consequentemente [Ãη1 , Ãη2 ] = λ(Ãη2 − Ãη2) = 0. Então se os operadores
cisalhamento são proporcionais, segue que eles comutam. Resta relacionar com
os operadores forma: por definição, os operadores cisalhamento são

Ãη1 = Aη1 − θη1

n
1,

Ãη2 = Aη2 − θη2

n
1,

e o colchete se torna

[
Ãη1 , Ãη2

]
=
[
Aη1 − θη1

n
1, Aη2 − θη2

n
1
]

=
(

Aη1 − θη1

n
1
)(

Aη2 − θη2

n
1
)

−
(

Aη2 − θη2

n
1
)(

Aη1 − θη1

n
1
)

= Aη1Aη2 − θη2

n
Aη1 − θη1

n
Aη2 + θη1θη2

n2 1
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− Aη2Aη1 + θη2

n
Aη1 + θη1

n
Aη2 − θη1θη2

n2 1

= Aη1Aη2 − Aη2Aη1

= [Aη1 , Aη2 ] .

Logo, os operadores forma comutam pois os operadores cisalhamento comutam
por serem proporcionais.

Dada uma família comutativa de operadores diagonalizáveis em um espaço
de dimensão finita, sabemos que existe uma base ortonormal que diagonaliza
simultaneamente todos os operadores dessa família. Uma demonstração pode
ser encontrada em [8], página 207, Teorema 7. Esse fato de Álgebra Linear, nas
condições do corolário acima, nos diz que em qualquer ponto da subvariedade
existe uma base ortonormal do espaço tangente tal que todos os operadores forma
se diagonalizam simultaneamente.

A recíproca do Corolário 3.2 não é verdadeira em geral. Suponha que
quaisquer dois operadores forma comutem. Dado um referencial ortonormal
{ξ1, ξ2} ⊂ X(S)⊥, seja η = c1ξ2 + c2ξ2 ∈ X(S)⊥ campo candidato a direção
umbílica de S. Pela discussão acima, existe um referencial {e1, . . . , en} ∈ X(S)
que diagonaliza os operadores Aξ1 e Aξ2 simultaneamente, onde λi e µi denotarão
os autovalores respectivos, para i = 1, . . . , n. Pela condição de umbilicidade,
Aη = θη

n
1, temos

Aη = Ac1ξ1+c2ξ2 = c1Aξ1 + c2Aξ2 = θη

n
1,

onde aplicado em ei autovetor do referencial que diagonaliza todos simultanea-
mente, obtemos que

θη

n
ei = c1Aξ1ei + c2Aξ2ei = c1λiei + c2µiei.

Subtraindo θη

n
ei em ambos os lados e evidenciando ei, segue que

c1λiei + c2µiei − θη

n
ei = (c1λi + c2µi − θη

n
)ei = 0,
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implicando em c1λi + c2µi = θη

n
, para cada i = 1, . . . , n. No caso em que n = 2,

o sistema c1λ1 + c2µ1 = θη/2
c1λ2 + c2µ2 = θη/2

possui solução por ser um sistema linear de duas equações e duas incógnitas,
enquanto para n > 2, teremos

c1λ1 + c2µ1 = θη/n

c1λ2 + c2µ2 = θη/n
...

c1λn + c2µn = θη/n

um sistema linear com n equações e duas incógnitas, que pode não ter solução.
O próximo corolário mostra a recíproca para o caso n = 2.

Corolário (C.3.3). Uma condição necessária e suficiente para que uma superfí-
cie tipo-espaço em uma variedade semi-riemanniana de dimensão 4 seja umbílica
com respeito a uma direção normal não nula é que quaisquer dois operadores
forma comutem.

Demonstração: A comutatividade de dois operadores forma quaisquer, assu-
mindo que a subvariedade é umbílica com respeito a uma direção normal não
nula, é válida pelo Corolário 3.2.

Reciprocamente, suponha que quaisquer dois operadores forma comutem e
considere ξ, η ∈ X(S)⊥. Vamos mostrar que S é umbílica com relação a uma di-
reção normal não nula utilizando o Teorema 3.1, mais precisamente, a implicação
(iv) =⇒ (i). Por hipótese, Aξ e Aη comutam e existe referencial ortonormal
do espaço tangente que diagonaliza ambos operadores forma simultaneamente.
Denotando por λ1, λ2 e µ1, µ2 os autovalores de Aξ e Aη, respectivamente, escre-
vemos

Aξ =
λ1 0

0 λ2

 , Aη =
µ1 0

0 µ2

 .

Temos θξ = tr(Aξ) = λ1 + λ2, θη = tr(Aη) = µ1 + µ2, onde por definição, nesse
referencial,

Ãξ =

λ1 − (λ1 + λ2)
2 0

0 λ2 − (λ1 + λ2)
2

 ,
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Ãη =

µ1 − (µ1 + µ2)
2 0

0 µ2 − (µ1 + µ2)
2

 .

Note que

λi − (λi + λj)
2 = λi − (λj + λi)

2 = λi − λj

2 ,

µi − (µi + µj)
2 = µi − (µj + µi)

2 = µi − µj

2 ,

para i ̸= j, i, j = 1, 2, onde podemos reescrever os operadores cisalhamento como

Ãξ = 1
2

λ1 − λ2 0
0 λ2 − λ1,

 Ãη = 1
2

µ1 − µ2 0
0 µ2 − µ1

 .

Como as matrizes dos operadores estão na forma diagonal, temos que

(1) (Ãξ)i
j(Ãη)r

s = 0 = (Ãη)i
j(Ãξ)r

s, para (i, j) ∈ {(1, 2), (2, 1)} ou (r, s) ∈
{(1, 2), (2, 1)}.

(2) (Ãξ)i
j(Ãη)r

s = (λ1 − λ2)(µ1 − µ2) = (Ãη)i
j(Ãξ)r

s, para (i, j) = (r, s) ∈
{(1, 1), (2, 2)}.

(3) (Ãξ)i
j(Ãη)r

s = −(λ1 − λ2)(µ1 − µ2) = (Ãη)i
j(Ãξ)r

s, para o caso restante em
que (i, j) ̸= (r, s) com {(i, j)} ∪ {(r, s)} = {(1, 1), (2, 2)}.

Podemos concluir assim que

(Ãξ)i
j(Ãη)r

s = (Ãη)i
j(Ãξ)r

s, para todos i, j, r, s = 1, 2,

como queríamos mostrar.

3.3 A Direção Umbílica

Se {ξ1, ξ2} é um referencial ortonormal no fibrado normal com g(ξi, ξj) = εiδij,
temos uma equação explícita para G a partir da equação (3.6). Com efeito,
escrevendo G no referencial acima, G = a1ξ1 + a2ξ2, segue que g(G, ξ1) =
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a1g(ξ1, ξ1) + a2g(ξ2, ξ1) = a1ε1, onde a1 = ε1g(G, ξ1) = ε1
σξ1

n
. Analogamente,

temos a2 = ε2
σξ2

n
, onde G se reescreve como

G = 1
n

(ε1σξ1ξ1 + ε2σξ2ξ2). (3.8)

Das propriedades do operador dual estrela de Hodge, também conseguimos
uma expressão para ⋆⊥G nesse referencial, a partir da expressão de G:

⋆⊥G = 1
n

(ε1σξ1 ⋆⊥ ξ1 + ε2σξ2 ⋆⊥ ξ2)

= 1
n

(ε1ε2σξ1ξ2 − ε1ε2σξ2 ⋆⊥ ξ1)

= ε1ε2

n
(σξ1ξ2 − σξ2ξ1),

o que vale ser referenciado numa só equação:

⋆⊥G = ε1ε2

n
(σξ1ξ2 − σξ2ξ1). (3.9)

Corolário (C.3.4). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana n−dimensional em uma variedade semi-riemanniana com
codimensão 2. Se S é umbílica com respeito a uma direção normal, então essa
direção é única e é gerada por ⋆⊥G, a menos que G = 0, onde S será totalmente
umbílica.

Demonstração: Suponha S umbílica com relação a um campo vetorial normal
não nulo ξ ∈ X(S)⊥. Como uma consequência da definição, Ãξ = 0, onde
0 = g(ÃξX, Y ) = g(h̃(X, Y ), ξ), para todos X, Y ∈ X(S). Pelo Teorema 3.1 item
(iii), existem A ∈ T (S) e G ∈ X(S)⊥ tal que h̃(X, Y ) = g(ÃX, Y )G, em que o
resultado acima mostra que G e ξ são ortogonais, onde ξ deve necessariamente
ser proporcional a ⋆⊥G, por questões codimensionais. Agora, se G = 0, então
h̃ = 0, que é equivalente a pedir S totalmente umbílica.

Supondo que exista uma direção umbílica η ∈ X(S)⊥, vimos que, dados ξ1, ξ2 ∈
X(S)⊥, os operadores Aξ1 e Aξ2 podem ser diagonalizados simultaneamente.
Sejam λi autovalores de Aξ1 e µi autovalores de Aξ2 , para i ∈ {1, . . . , n}. Temos
então que λi − θξ1

n
e µi − θξ2

n
são autovalores dos operadores cisalhamento Ãξ1

e Ãξ2 , respectivamente. De fato, considerando os vi elementos do referencial
que diagonaliza simultaneamente os operadores cisalhamento acima, com i ∈
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{1, . . . , n}, temos

Ãξ1(vi) = Aξ1(vi) − θξ1

n
(vi) = λivi − θξ1

n
(vi) =

(
λi − θξ1

n

)
vi,

onde para Ãξ2 a conta é análoga. Como {ξ1, ξ2} forma um referencial ortonormal
de X(S)⊥, a direção umbílica η pode ser decomposta nesse referencial η =
a1ξ1 + a2ξ2 e visto que η é direção umbílica, temos

0 = Ãη = Ãa1ξ1+a2ξ2 = a1Ãξ1 + a2Ãξ2 .

Aplicando em vi, temos

0 = a1Ãξ1(vi) + a2Ãξ2(vi)

= a1

(
λi − θξ1

n

)
vi + a2

(
µi − θξ2

n

)
vi

=
[
a1

(
λi − θξ1

n

)
+ a2

(
µi − θξ2

n

)]
vi

implica em a1

(
λi − θξ1

n

)
= −a2

(
µi − θξ2

n

)
pois vi é não nulo por ser autovetor.

Uma solução é a1 =
(

µi − θξ2

n

)
e a2 = −

(
λi − θξ1

n

)
. Qualquer múltiplo dessa

solução também funciona, o que indica a proporcionalidade entre (a1, a2) e((
µi − θξ2

n

)
, −

(
λi − θξ1

n

))
. Logo,

ηi =
(

µi − θξ2

n

)
ξ1 −

(
λi − θξ1

n

)
ξ2 (3.10)

é um campo de vetores normais ao qual S é umbílica para cada i = 1, . . . , n.
Todos esses campos de vetores são proporcionais entre si: como Ãξ1 e Ãξ2 são
proporcionais entre si, existe uma c tal que Ãξ1 = cÃξ2 . Segue de maneira análoga

ao que fizemos acima que
(

λi − θξ1

n

)
= c

(
µi − θξ2

n

)
. Para i ∈ {1, . . . , n} fixado,

temos ηi =
((

µi − θξ2

n

)
, −

(
λi − θξ1

n

))
=
((

µi − θξ2

n

)
, −c

(
µi − θξ2

n

))
=(

µi − θξ2

n

)
(1, −c). Segue então que todos os ηi estão na direção (1, −c) e são,

portanto, proporcionais. Além disso, como cada uma dessas direções é umbílica,
segue do Corolário 3.4 que ηi e ⋆⊥G são proporcionais para cada i ∈ {1, . . . , n}.
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Mais ainda, temos que

n∑
i=1

g(ηi, ηi) =
n∑

i=1
g

((
µi − θξ2

n

)
ξ1 −

(
λi − θξ1

n

)
ξ2,

(
µi − θξ2

n

)
ξ1 −

(
λi − θξ1

n

)
ξ2

)

= ε1

n∑
i=1

(
µi − θξ2

n

)2

+ ε2

n∑
i=1

(
λi − θξ1

n

)2

= ε1tr(Ã2
ξ2) + ε2tr(Ã2

ξ1)
= ε1σ

2
ξ2 + ε2σ

2
ξ1

= n2g(⋆⊥G, ⋆⊥G),

onde para a última equação utilizamos a equação (3.9).

3.4 Caracterização de S ser Ortoumbílica

Corolário (C.3.5). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana n−dimensional em uma varidade semi-riemanniana com
codimensão 2. Em qualquer aberto onde H ̸= 0, S é ortoumbílica se, e somente
se,

h(X, Y )♭ ∧ H♭ = 0

para todos X, Y ∈ X(S).

Demonstração: Suponha S ortoumbílica, isto é, A⋆⊥H = 0. Como estamos em
um aberto onde H ̸= 0, a Proposição 2.3 nos garante que S é H−subgeodésica,
onde h(X, Y ) = L(X, Y )H para todos X, Y ∈ X(S) com L ∈ T (S) simétrico,
por definição. Dessa maneira, a segunda forma e o campo de vetores curvatura
média são proporcionais, sendo então linearmente dependentes, implicando que
h(X, Y )♭ ∧ H♭ = 0, para todos X, Y ∈ X(S).

Reciprocamente, supondo h(X, Y )♭ ∧ H♭ = 0 com H ̸= 0, temos que existe
um tensor simétrico L ∈ T (S) tal que h(X, Y ) = L(X, Y )H. Assim,

g(A⋆⊥HX, Y ) = g(h(X, Y ), ⋆⊥H) = L(X, Y )g(H, ⋆⊥H) = 0,

para todos X, Y ∈ X(S), onde concluímos que A⋆⊥H = 0 pois a métrica é
não-degenerada.
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Observação: Aqui vale o mesmo argumento por continuidade que sucede a
Proposição 2.3, isto é, se H = 0 no máximo em um conjunto com interior vazio,
então a equivalência é global.

Vale notar que a propriedade de ser ortoumbílica é especial pois ela implica
que S é H−subgeodésica e que os tensores total de cisalhamento h̃ e segunda
forma fundamental h são sempre proporcionais entre si e a H, visto que A⋆⊥H = 0
implica em h(X, Y ) = L(X, Y )H pela Proposição 2.3 e assim

h̃(X, Y ) = (L(X, Y ) − g(X, Y ))H.
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Capítulo 4

O Caso Lorentziano e Superfícies
Umbílicas no Espaço-tempo de

Schwarzschild

Nesse capítulo, M será uma variedade lorentziana com assinatura
(−, +, . . . , +). Como impomos que a subvariedade de codimensão 2 tenha métrica
riemanniana, temos então que a métrica assume assinatura (−, +) no fibrado
normal.

Uma característica das variedades semi-riemannianas que foge da nossa
intuição euclidiana é a existência de vetores tangentes em que a forma associada
à métrica aplicada a esses vetores não é necessariamente positiva definida como
visto e definido no primeiro capítulo. Demos o nome de vetores tipo-nulo a
vetores que, mesmo não-nulos, zeram a forma quadrática. Estudaremos, na
primeira seção, um referencial composto por vetores deste tipo causal e, em
seguida, relacionaremos com o os conceitos e os resultados vistos previamente:
como se comportam os operadores B e J nesse caso? E no caso da existência de
uma direção umbílica, qual seu caráter causal?

Finalmente, trazemos um exemplo de subvariedades tipo-espaço que são
totalmente umbílicas no espaço-tempo de Schwarzschild, espaço este que descreve
buracos negros-não rotacionais. Finalizamos considerando umbilicidade em
espaços-tempo rotacionalmente simétricos, baseado no artigo [12].

As definições e resultados deste capítulo estão presentes no artigo base [4]
desta dissertação.
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4.1 Referencial Nulo em X(S)⊥

Seja {k, l} ⊂ X(S)⊥ um referencial tal que

g(k, k) = g(l, l) − 0, g(k, l) = −1, (4.1)

onde a última equação está normalizada por conveniência. Trocando a ordem, se
necessário, podemos assumir que o referencial {k, l} está orientado positivamente,
isto é, que ω⊥(k, l) = 1. Temos que ⋆⊥k, ⋆⊥l ∈ X(S)⊥, onde devem se decompor
naquele referencial, que é o que faremos:

(I) Escrevendo ⋆⊥k = f1l + f2k, o produto por l segundo a métrica g nos diz
que

g(⋆⊥k, l) = g(f1l + f2k, l)
= g(f1l, l) + g(f2k, l)
= f2g(k, l)
= −f2

e o produto por k nos diz que

g(⋆⊥k, k) = g(f1l, k) − g(⋆⊥k, l)g(k, k)
= −f1.

Mas g(⋆⊥k, k) = 0 segundo a obsevervação (i) que sucede a Proposição 2.2
e g(⋆⊥k, l) = ω⊥(k, l) = 1 pela Equação (2.5), mostrando que f2 = −1 e
f1 = 0, onde concluímos que

⋆⊥k = −k.

(II) Analogamente, escrevemos ⋆⊥l = j1l + j2k e fazemos o produto primeiro
por l, onde obtemos

g(⋆⊥l, l) = j1g(l, l) + j2g(k, l)
= −j2,
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e depois o produto por k, que nos fornece

g(⋆⊥l, k) = j1g(l, k) = g(⋆⊥l, l)g(k, k)
= −j1.

Pelos mesmos motivos supracitados, mais a Equação (2.6), g(⋆⊥l, l) = 0
e g(⋆⊥l, k) = −g(⋆⊥k, l) = −ω⊥(k, l) = −1. Logo, j1 = 1 e j2 = 0, onde
concluímos que

⋆⊥l = l.

Vamos procurar expressões nesse referencial para a segunda forma fundamen-
tal h e para o campo vetorial curvatura média H:

(1) Escrevendo h(X, Y ) = a1(X, Y )l+a2(X, Y )k, para X, Y ∈ X(S), o produto
por l segundo a métrica nos fornece

g(h(X, Y ), l) = g(a1(X, Y )l, l) + g(a2(X, Y )k, l)
= −a2(X, Y )

e o produto por k nos fornece (já substituindo o a2)

g(h(X, Y ), k) = g(a1(X, Y )l, k) + g(h(X, Y ), l)g(k, k)
= −a1(X, Y ),

onde a segunda forma fundamental se decompõe nesse referencial como

h(X, Y ) = −g(h(X, Y ), k)l −g(h(X, Y ), l)k = −g(AkX, Y )l −g(AlX, Y )k.

(4.2)

(2) Para o campo vetorial curvatura média, dado um referencial tangente

{e1, . . . , en}, temos por definição que H = 1
n

n∑
i=1

h(ei, ei), onde o item (1)

acima nos revela que

h(ei, ei) = −g(Akei, ei)l − g(Alei, ei)k

e a soma se torna
n∑

i=1
h(ei, ei) = −

n∑
i=1

g(Akei, ei)l −
n∑

i=1
g(Alei, ei)k

= −θkl − θlk.
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Portanto, H se decompõe nesse referencial como

H = 1
n

(−θkl − θlk). (4.3)

Das equações (I),(II) e (4.3) segue que

⋆⊥H = 1
n

(−θk ⋆⊥ l − θl ⋆⊥ k) = 1
n

(−θkl + θlk) (4.4)

As quantidades θk = tr(Ak) e θl = tr(Al) são chamadas de expansões nulas.
Note que g(⋆⊥ξ, ⋆⊥ξ) = ε1ε2g(ξ, ξ) = −g(ξ, ξ) para todo ξ ∈ X(S) e, em

particular,

g(⋆⊥H, ⋆⊥H) = −g(H, H) = − 1
n2 g((−θkl−θlk), (−θkl−θlk)) = 2

n2 θkθl. (4.5)

Também conseguimos uma expressão para o operador de Casorati B: na
observação que sucede a Definição 1.17 do operador, sabemos que este não
depende do referencial normal dado, onde dados X, Y ∈ X(S) e um referencial
ortonormal tangente {e1, . . . , en} podemos escrever

g(BX, Y ) =
n∑

i=1
g(h(X, ei), h(Y, ei)).

Pela expressão da segunda forma fundamental h, temos

h(X, ei) = −g(AkX, ei)l − g(AlX, ei)k,

h(Y, ei) = −g(AkY, ei)l − g(AlY, ei)k,

onde o produto entre ambos os campos é

g(h(X, ei), h(Y, ei)) = g(−g(AkX, ei)l − g(AlX, ei)k, −g(AkY, ei)l − g(AlY, ei)k)
= g(AkX, ei)g(AlY, ei)g(l, k) + g(AlX, ei)g(AkY, ei)g(k, l)
= −g(AkX, ei)g(AlY, ei) − g(AlX, ei)g(AkY, ei)
= −g(g(AkX, ei)Alei + g(AlX, ei)Akei, Y )

e a soma é
n∑

i=1
g(h(X, ei), h(Y, ei)) = −g(

n∑
i=1

[g(AkX, ei)Alei + g(AlX, ei)Akei], Y ).
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Agora note que

AlX =
n∑

i=1
g(AlX, ei)ei, AkX =

n∑
i=1

g(AkX, ei)ei

e com isso

Ak(AlX) =
n∑

i=1
g(AlX, ei)Akei, Al(AkX) =

n∑
i=1

g(AkX, ei)Alei,

que são os exatos termos que aparecem no lado direito da soma, dentro do
somatório. Logo, temos que

g(BX, Y ) =
n∑

i=1
g(h(X, ei), h(Y, ei)) = g((−AlAk − AkAl)X, Y ).

Como a equação acima vale para todos X, Y ∈ X(S), segue da não-
degeneratividade da métrica que

B = −AkAl − AlAk. (4.6)

Ainda nesse referencial, como o tensor de cisalhamento total é escrito como
h̃(X, Y ) = h(X, Y ) − g(X, Y )H para X, Y ∈ X(S), temos que

h(X, Y ) − g(X, Y )H = −g(AkX, Y )l − g(AlX, Y )k − g(X, Y ) 1
n

(−θkl − θlk)

= −g(AkX, Y )l − g(AlX, Y ) + g(X, Y )θk

n
l + g(X, Y )θl

n
k

= −g(AkX − θkX

n
, Y )l − g(AlX − θlX

n
, Y )k

= −g(ÃkX, Y )l − g(ÃlX, Y )k,

isto é,
h̃(X, Y ) = −g(ÃkX, Y )l − g(ÃlX, Y )k (4.7)

para todos X, Y ∈ X(S), onde os operadores Ãk e Ãl são chamados operadores
cisalhamento nulos. Além disso, σk e σl são chamados escalares de cisalhamento
nulos.

Notemos também que, como o operador J tem a mesma propriedade de não
depender do referencial normal, isto é, dado {e1, . . . , en} referencial ortonormal
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tangente, J é dado por

g(JX, Y ) =
n∑

i=1
g(h̃(X, ei), h̃(Y, ei)),

segue de maneira análoga que

J = −ÃkÃl − ÃlÃk. (4.8)

4.2 O Caráter Causal da Direção Umbílica

Assuma que exista uma direção umbílica. Então tanto o campo G ∈ X(S)⊥,
dado pelo item (iii) do Teorema 3.1, quanto seu dual ⋆⊥G podem ser expressos
em termos do referencial nulo da seção antecedente:

(I) Escrevendo G = a1l + a2k, o produto por l nos fornece

g(G, l) = a1g(l, l) + a2g(k, l)
= −a2

e o produto por k nos fornece

g(G, k) = a1g(l, k) − g(G, l)g(k, k)
= −a1.

Mas a equação (3.6) nos informa que g(G, k) = σk

n
e g(G, l) = σl

n
, onde

a1 = −σk

n
e a2 = −σl

n
e consequentemente

G = − 1
n

(σlk + σkl). (4.9)

(II) Do item acima e das equações (I) e (II), temos que

⋆⊥G = − 1
n

(σl ⋆⊥ k + σk ⋆⊥ l) = 1
n

(σlk − σkl). (4.10)

Uma maneira de determinar o sinal de g(⋆⊥G, ⋆⊥G) é considerando os
operadores B e J . Pelo item (iii) do Teorema 3.1 e pela definição do ten-
sor de cisalhamento total h̃, temos que h̃(X, Y ) = g(ÃX, Y )G e h̃(X, Y ) =
h(X, Y ) − g(X, Y )H, donde segue que h(X, Y ) = g(ÃX, Y )G + g(X, Y )H, onde
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as equações são válidas para todos X, Y ∈ X(S). Recuperando a equação (1.9)
que define como J age, dados referencial ortonormal tangente {e1, . . . , en} e
X, Y ∈ X(S), temos

g(JX, Y ) =
n∑

i=1
g(h̃(X, ei), h̃(Y, ei)),

onde

g(h̃(X, ei), h̃(Y, ei)) = g(g(ÃX, ei)G, g(ÃY, ei), G)
= g(ÃX, ei)g(ÃY, ei)g(G, G)

e a soma se torna
n∑

i=1
g(h̃(X, ei), h̃(Y, ei)) =

n∑
i=1

g(ÃX, ei)g(ÃY, ei)g(G, G).

Na expressão ortonormal tangente, temos

ÃX =
n∑

i=1
g(ÃX, ei)ei, ÃY =

n∑
i=1

g(ÃY, ej)ej,

e o produto entre ambos é o que precisamos para substituir na soma acima, a
dizer

g
(
ÃX, ÃY

)
= g

 n∑
i=1

g(ÃX, ei)ei,
n∑

j=1
g(ÃY, ej)ej


=

n∑
i,j=1

g(ÃX, ei)g(ÃY, ej)g(ei, ej)

=
n∑

i=1
g(ÃX, ei)g(ÃY, ei).

Logo, retornando à soma e utilizando o fato de que Ã é autoadjunto, obtemos

n∑
i=1

g(h̃(X, ei), h̃(Y, ei)) =
n∑

i=1
g(ÃX, ei)g(ÃY, ei)g(G, G)

= g(ÃX, ÃY )g(G, G)
= g(Ã2X, Y )g(G, G)
= g(g(G, G)Ã2X, Y ),
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e como a métrica é não-degenerada, concluímos que

J = g(G, G)Ã2.

Tomando o traço na equação acima, temos tr(J ) = g(G, G)tr(Ã2) =
g(G, G)⟨Ã, Ã⟩ = g(G, G)n2 e portanto

g(⋆⊥G, ⋆⊥G) = −g(G, G) = − 1
n2 tr(J ).

Mas da equação (4.8) obtemos que

g(⋆⊥G, ⋆⊥G) = − 1
n2 tr(−ÃkÃl − ÃlÃk)

= − 1
n2 [tr(−AkAl) + tr(−AlAk)]

= 2
n2 ⟨Ãk, Ãl⟩

e portanto temos

• ⟨Ãk, Ãl⟩ < 0 implica em ⋆⊥G é tipo-tempo;

• ⟨Ãk, Ãl⟩ > 0 implica em ⋆⊥G é tipo-espaço;

• ⟨Ãk, Ãl⟩ = 0 implica em ⋆⊥G é nulo.

Da equação (3.1), B−J = 2ÃH +g(H, H)1, tomamos o traço e multiplicamos
por (−1), obtendo

tr(J ) = tr(B) − 2tr(ÃH) − g(H, H)n
= −(tr(B) − ng(H, H))

e assim podemos observar o sinal como segue

g(⋆⊥G, ⋆⊥G) = − 1
n2 (tr(B) − ng(H, H)).

Tudo isso implica em

• tr(J ) < 0 implica em ⋆⊥ G é tipo-espaço,

• tr(J ) > 0 implica em ⋆⊥ G é tipo-tempo,

• tr(J ) = 0 implica em ⋆⊥ G é tipo-nulo,

• tr(B) < ng(H, H) implica em ⋆⊥ G é tipo-espaço,
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• tr(B) > ng(H, H) implica em ⋆⊥ G é tipo-tempo,

• tr(B) = ng(H, H) implica em ⋆⊥ G é tipo-nulo.

4.3 Subvariedades simultaneamente Pseudoumbílicas e
Ortoumbílicas

Proposição (P.4.1). Seja ϕ : (S, g) → (M, g) uma imersão isométrica de uma
variedade riemanniana em uma variedade lorentziana com codimensão 2. Em
qualquer ponto p ∈ S onde H ̸= 0 e S não é totalmente umbílica, são equivalentes:

(1) B − J = 0

(2) (S, g) é tanto pseudoumbílica quanto ortoumbílica.

(3) B = 0 e J = 0.

Além disso, em todos os casos temos g(H, H) = 0 em p.

Demonstração:

(1) =⇒ (2) Assuma B − J = 0, isto é, B = J . Do Lema 3 temos

2ÃH + g(H, H)1 = B − J = 0

e, tomando o traço, obtemos 0 = 2tr(ÃH) + ng(H, H) = ng(H, H), onde
concluímos que g(H, H) = 0 (H é tipo-nulo). Por isso, temos

0 = 2ÃH + g(H, H)1 = 2ÃH ,

o que implica em ÃH = 0 e consequentemente AH = θH

n
1, isto é, S é

pseudoumbílica. Além disso, como g(⋆⊥H, ⋆⊥H) = −g(H, H) = 0, temos
que ⋆⊥H também é tipo-nulo e, de g(⋆⊥H, H) = 0, afirmamos que eles
são proporcionais. De fato, dado referencial normal ortonormal {ξ1, ξ2},
escrevendo

H = aξ1 + bξ2, ⋆⊥H = cξ1 + dξ2,

notamos que, para H, temos

0 = g(H, H) = g(aξ1 + bξ2, aξ1 + bξ2) = a2ε1 + b2ε2
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e como um entre ε1 e ε2 é igual a −1, segue que a2 = b2 e isolando b = ±a,
temos que H = a(ξ1 ± ξ2). Para ⋆⊥H, o mesmo procedimento isolando
d = ±c nos revela que ⋆⊥H = c(ξ1 ± ξ2). A afirmação de que eles são
proporcionais nos diz que o H e ⋆⊥H devem ter o mesmo sinal de operação
entre os campos ξ1 e ξ2. Do contrário, supondo sem perda de generalidade
que H = a(ξ1 + ξ2) e ⋆⊥H = c(ξ1 − ξ2), teríamos

0 = g(H, ⋆⊥H)
= g(a(ξ1 + ξ2), c(ξ1 − ξ2))
= acg(ξ1 + ξ2, ξ1 − ξ2)
= ac[ε1 − ε2]
= ±2ac

mostrando que H = 0 = ⋆⊥H, absurdo. Logo, H e ⋆⊥H são proporcionais e
assim ÃH = 0 implica Ã⋆⊥H = 0, mostrando que S é também ortoumbílica.

(2) =⇒ (3) Suponha S pseudo e ortoumbílica. De H ̸= 0, segue do Coro-
lário 3.5 da seção que caracteriza subvariedades ortoumbílicas que S é
H-subgeodésica, que por definição nos diz que existe um tensor simétrico L

2-covariante tal que h(X, Y ) = L(X, Y )H, para todos X, Y ∈ X(S). Como
S é pseudoumbílica, então ÃH = 0 e daí temos

0 = g(ÃHX, Y )
= g(h̃(X, Y ), H)
= g(h(X, Y ) − g(X, Y )H, H)
= g((L(X, Y ) − g(X, Y ))H, H)
= (L(X, Y ) − g(X, Y ))g(H, H).

Da equação acima, se g(H, H) ̸= 0, teríamos L(X, Y ) = g(X, Y ) para todos
X, Y ∈ X(S), onde S seria totalmente umbílica, contrariando a hipótese.
Portanto devemos ter g(H, H) = 0 e, junto ao Lema 3, temos que B −J =
2ÃH + g(H, H)1 = 0. Agora, calculemos B: dados {e1, . . . , en} ∈ X(S)
referencial ortonormal local e X, Y ∈ X(S), temos

g(BX, Y ) =
n∑

i=1
g(h(X, ei), h(Y, ei))

=
n∑

i=1
g(L(X, ei)H, L(Y, ei)H)
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= g(H, H)
n∑

i=1
L(X, ei)L(Y, ei)

= 0.

Como a métrica é não degenerada e a equação acima vale para quaisquer
X, Y ∈ X(S), segue que B = 0 e consequentemente J = 0 pois B − J = 0.

(3) =⇒ (1) Se B = 0 e J = 0, então B − J = 0 − 0 = 0.

4.4 O Espaço-tempo de Schwarzschild

Vamos considerar M variedade lorentziana de dimensão 4 com métrica

g = −
(

1 − 2m

r

)
dv2 + 2dvdr + r2dθ2 + r2 sin2 θdφ2. (4.11)

Essa métrica é a solução de Schwarzschild em coordenadas de Eddington-
Finkelstein.

Para v, r constantes, com r ̸= 0, obtemos superfícies S que possuem métrica

g = r2dθ2 + r2 sin2 θdφ2, (4.12)

a métrica das esferas redondas bidimensionais. Essas superfícies possuem ∂θ, ∂ϕ

como tangentes e ∂v, ∂r como normais. A matriz da métrica (4.11) é

[gµν ] =


−
(

1 − 2m

r

)
1 0 0

1 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , (4.13)

onde observamos que suas componentes que não se anulam são

gvv = −
(

1 − 2m

r

)
gvr = grv = 1
gθθ = r2

gϕϕ = r2sin2θ
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.
Como a matriz (4.14) tem dois blocos nulos, a sua inversa é dada por

[gµν ] =



0 1 0 0
1

(
1 − 2m

r

)
0 0

0 0 1
r2 0

0 0 0 1
r2 sin2 θ


, (4.14)

onde cada bloco é o inverso dos blocos da matriz da métrica.

Proposição (P.4.1). As superfícies (S, g) onde g = r2dθ2 + r2sin2θdφ2 são
umbílicas com respeito a um campo de vetores normais não nulo.

Demonstração: Calcularemos a segunda forma fundamental h : X(S)×X(S) →
X(S)⊥. Sejam ∇ a conexão de M e ∇ a conexão de S induzida. Por definição,
dados arbitrariamente X, Y ∈ X(S), temos h(X, Y ) = (∇XY )⊥. Como a segunda
forma fundamental h é bilinear e simétrica, basta saber como ela funciona nos
vetores da base tangente a S, isto é, podemos nos restringir ao cálculo de

h(∂θ, ∂θ) = (∇∂θ
∂θ)⊥ = Γv

θθ∂v + Γr
θθ∂r (4.15)

h(∂θ, ∂φ) = (∇∂θ
∂φ)⊥ = Γv

θφ∂v + Γr
θφ∂r (4.16)

h(∂φ, ∂φ) = (∇∂φ∂φ)⊥ = Γv
φφ∂v + Γr

φφ∂r (4.17)

pois para um campo tangente qualquer, o resultado segue por linearidade. A
fórmula para cálculo dos símbolos de Christoffel é

Γλ
µν = 1

2

[ 4∑
α=1

gαλ
(
gνα,µ + gµα,ν − gµν,α

)]
(4.18)

onde a notação gµν,α representa a derivação parcial com relação a α da componente
gµν da métrica g de M. Nas equações (6.5), (6.6) e (6.7), perceba que λ da
fórmula dos símbolos de Christoffel assumem apenas v, r, onde precisaremos
saber apenas as componentes da matriz inversa da métrica que estão nas colunas
com v e r, a dizer, as duas primeiras colunas. Note também que nessas colunas,
as únicas componentes não nulas são gvr = grv = 1 e grr =

(
1 − 2m

r

)
, o que

facilitará a nossa vida no cálculo dos símbolos de Christoffel:

(1) Componentes de h(∂θ, ∂θ) :

Γv
θθ = 1

2gvr(2gθr,θ − gθθ,r)
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= 1
2(1)(2(0) − 2r)

= −r,

Γr
θθ = 1

2
(
grv(2gθv,θ − gθθ,v) + grr(2gθr,θ − gθθ,r)

)
= 1

2

(
1 − 2m

r

)
(−2r)

= −(r − 2m).

(2) Componentes de h(∂θ, ∂φ):

Γv
θφ = 1

2[gvv(gφv,θ + gθv,φ − gθφ,v) + gvr(gφr,θ + gθr,φ − gθφ,r)] = 0,

Γr
θφ = 1

2[grv(gφv,θ + gθv,φ − gθφ,v) + grr(gφr,θ + gθr,φ − gθφ,r)] = 0

pois as componentes da métrica envolvidas são todas nulas.

(3) Componentes de h(∂φ, ∂φ) :

Γv
φφ = 1

2gvr(2gϕr,ϕ − gϕϕ,r)

= 1
2(1)(−2r sin2 θ)

= −r sin2 θ,

Γr
φφ = 1

2grr(2gφr,φ − gφφ,r)

= 1
2

(
1 − 2m

r

)
(−2r sin2 θ)

= − sin2 θ(r − 2m),

análogo à conta em (1), apenas substituindo θ por φ, o que nos fornece
o fator sin2 θ. Consequentemente, na base {∂v, ∂r} e apelidando o termo[−1

r

(
1, 1 − 2m

r

)]
que ainda aparecerá de η, temos

h(∂θ, ∂θ) = (−r, −(r − 2m))

= r
(

−1, −
(

1 − 2m

r

))
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= r2
[−1

r

(
1, 1 − 2m

r

)]
= g(∂θ, ∂θ)η;

h(∂θ, ∂φ) = (0, 0) = 0;

h(∂φ, ∂φ) =
(
−r sin2 θ, − sin2 θ(r − 2m)

)
= sin2 θ(−r, −(r − 2m))

= r2 sin2 θ
[−1

r

(
1, 1 − 2m

r

)]
= g(∂φ, ∂φ)η.

Finalmente, por linearidade, segue que h(X, Y ) = g(X, Y )η e S é umbílica, por
definição, com respeito a η =

[−1
r

(
1, 1 − 2m

r

)]
∈ X(S)⊥. Dado um referencial

ortonormal tangente {e1, e2}, isto é, g(ei, ej) = δij, tomando o traço da equação
h = gη observamos que tr(h) = tr(g)η implica nH = nη, onde η = H. Logo, S
é totalmente umbílica.

4.5 Superfícies Umbílicas em Espaços-tempos Esferica-
mente Simétricos

Temos como exemplo de espaço-tempo esfericamente simétrico o espaço-tempo
de Schwarzschild. No artigo [12] encontramos um argumento que mostra que,
para um espaço-tempo esfericamente simétrico geral, cujo a métrica pode ser
sempre escrita como

g = e2fη2 + r2dΩ2, (4.19)

onde η2 = −(du⊗dv + dv ⊗du) e dΩ2 = dθ2 + sin2 θdφ2 e ambos f e r dependem
de u e v, as superfícies S com u e v constantes são totalmente umbílicas. Para
mostrar isso, prosseguiremos de maneira inteiramente análoga à demonstração
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acima. A matriz da métrica é

[gµν ] =



0 e2f

2 0 0
e2f

2 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


(4.20)

com matriz inversa

[gµν ] =



0
(

e2f

2

)−1

0 0(
e2f

2

)−1

0 0 0

0 0 1
r2 0

0 0 0 1
r2 sin2 θ

.


(4.21)

Queremos saber quem são

h(∂θ, ∂θ) = (∇∂θ
∂θ)⊥ = Γu

θθ∂u + Γv
θθ∂v

h(∂θ, ∂φ) = (∇∂θ
∂φ)⊥ = Γu

θφ∂u + Γv
θφ∂v

h(∂φ, ∂φ) = (∇∂φ∂φ)⊥ = Γu
φφ∂u + Γv

φφ∂v.

Calculemos os símbolos de Christoffel:

(1) Componentes de h(∂θ, ∂θ):

Γu
θθ = 1

2[guv(2gθv,θ − gθθ,v)]

= 1
2

( 2
e2f

)
(−2rrv)

= −2rrv

e2f
,

Γv
θθ = 1

2[guv(2gθu,θ − gθθ,u)]

= 1
2

( 2
e2f

)
(−2rru)

= −2rru

e2f
.

(2) Componentes de h(∂θ, ∂φ):

Γu
θφ = 0

Página 72 de 76



Γv
θφ = 0

pois na única entrada da matriz inversa não nula para cada símbolo, gθθ e
gφφ, respectivamente, todas as componentes da métrica se anulam.

(3) Componentes de h(∂φ, ∂φ):

Γu
φφ = 1

2[guv(2gφv,φ − gφφ,v)]

= 1
2

( 2
e2f

)
(−2rrv sin2 θ)

= −2rrv sin2 θ

e2f
,

Γv
φφ = 1

2[guv(2gφu,φ − gφφ,u)]

= 1
2

( 2
e2f

)
(−2rru sin2 θ)

= −2rru sin2 θ

e2f
.

Logo, fazendo η = −2
re2f

(rv, ru), temos

h(∂θ, ∂θ) =
(−2rrv

e2f
,
−2rru

e2f

)
= −2r

e2f
(rv, ru)

= r2
[ −2
re2f

(rv, ru)
]

= g(∂θ, ∂θ)η

h(∂θ, ∂φ) = 0 = g(∂θ, ∂φ)η

e finalmente

h(∂φ, ∂φ) =
(

−2rrv sin2 θ

e2f
,
−2rru sin2 θ

e2f

)

= −2r sin2 θ

e2f
(rv, ru)

= r2 sin2 θ
[ −2
re2f

(rv, ru)
]

= g(∂θ, ∂θ)η
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mostrando que a subvariedade S é umbílica na direção de η ∈ X(S)⊥ e, conse-
quentemente, será totalmente umbílica.
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