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Estudar automorfismos é decifrar como
algo muda sem deixar de ser o que é.

Livro das Funções



Resumo

Seja G um grupo. As órbitas da ação natural de Aut(G) em G são chamadas de "órbitas por
automorfismos" de G, e o número de órbitas por automorfismos de G é denotado por ω(G).
Se G é um grupo solúvel de posto finito com número finito de órbitas por automorfismos,
então G possui um subgrupo característico nilpotente radicável e livre de torção K tal que
G = K ⋊H, onde H é um subgrupo finito (ver [4]). Provamos um teorema estrutural para
grupos solúveis de posto finito com ω(G) = 4 e ω(G) = 5. Além disso, a decomposição
G = K ⋊H nos levou a investigar grupos nilpotentes radicáveis e livres de torção. Neste
contexto, provamos que o grupo das matrizes unitriangulares de dimensão n sobre o corpo
dos números racionais Q possui infinitas órbitas por automorfismos quando n > 5, e um
número finito de órbitas quando n ≤ 5. Estes últimos resultados foram obtidos com o auxílio
de métodos computacionais.

Título em português: Sobre grupos solúveis de posto finito com finitas órbitas por
automorfismos.





Abstract

Let G be a group. The orbits of the natural action of Aut(G) on G are called “automorphism
orbits” of G, and the number of automorphism orbits of G is denoted by ω(G). If G is a
soluble group of finite rank with finitely many automorphism orbits, then G has a torsion-free
radicable nilpotent characteristic subgroup K such that G = K ⋊H, where H is a finite
subgroup (see [4]). We prove a structure theorem about mixed order soluble groups of
finite rank satisfying ω(G) = 4 and ω(G) = 5. Moreover, the decomposition G = K ⋊H
led us to investigate torsion-free radicable nilpotent groups. In this topic, we prove that the
unitriangular group of dimension n over the field of rational numbers Q has infinitely many
orbits under the action of its automorphism groups when n > 5, and finitely many orbits
when n ≤ 5. These last result are obtained with the aid of computational methods.
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Introduction

Let G be a group, and let Aut(G) denote its automorphism group. The group G is partitioned
into orbits under the natural action of Aut(G), where two elements g,h ∈ G are in the same
orbit if there exists an automorphism α ∈ Aut(G) such that gα = h. These orbits are referred
to as automorphism orbits and the number of automorphism orbits is denoted by ω(G). A
finite group is called a k-orbit group if it has exactly k automorphism orbits.

The identity group is the only example of an 1-orbit group. Furthermore, it is straight-
forward to verify that the finite 2-orbit groups are exactly the elementary abelian groups of
prime-power order. Interestingly, an equivalent result for infinite groups remains unknown.
Higman, Neumann, and Neumann constructed a non-abelian torsion-free simple group in
which all nontrivial elements are conjugate ([23] (6.4.6)) showing the difference of infinite
groups in this context.

The earliest works in the area of automorphism orbits focused on finite groups. The
investigation into the relationships between groups and their automorphism orbits began with
Higman [13] in 1963. Higman initially explored finite 2-groups in which the involutions
constitute a single automorphism orbit. It is worth noting that a related problem had emerged
earlier: the classification of groups with a prescribed number of conjugacy classes, which are
the orbits under inner automorphisms. This problem was proposed by W. Burnside [8] in
1955 . Since then, the study of automorphism orbits has become a prominent area of interest
among group theorists. Observe that automorphism orbits are unions of conjugacy classes
and hence they give an example of fusion in the holomorph group G⋊Aut(G), a well-known
concept established in the literature (see for instance [11, Chapter 7]).

Laffey and MacHale [16] in 1986 classified all finite soluble non-p-groups with ω(G) = 3.
We will explore this result in greater detail later on. Recently, finite 2-groups that are 3-orbit
groups were classified by Bors and Glasby [7], while 3-orbit groups that are p-groups with
odd prime p were classified by Li and Zhu [18], completing the classification of finite 3-orbit
groups. Laffey and MacHale [16] in 1986 also described the structure for finite soluble
non-p-groups with ω(G) = 4. In the same work they proved that if G is a finite non-soluble
group with ω(G)≤ 4, then G is isomorphic to PSL(2,4). These results represent one of the



2 Introduction

main approaches in the study of automorphism orbits: given a fixed number of orbits, the
goal is to describe the structure of the group accordingly.

Later, Stroppel [27], showed that the only finite non-abelian simple groups G with
ω(G)≤ 5 are the groups PSL(2,q) with q ∈ {4,7,8,9}. In [3], Bastos, Dantas and Garonzi
proved that if G is a finite non-soluble group with ω(G)≤ 6, then G is isomorphic to one
of PSL(2,q) with q ∈ {4,7,8,9}, PSL(3,4) or ASL(2,4). Studies of r-orbit groups for small
values of r > 3 mainly focus on non-solvable groups. Finite simple r-orbit groups for r ≤ 100
are determined in [15], and non-solvable r-orbit groups for r ∈ {4,5,6} are classified (see
[3], [16]).

Finite groups with certain special automorphism orbits have also received significant
attention. Shult proved that a finite p-group for an odd prime p, in which the elements of
order p form an automorphism orbit, is abelian [26]. In 1976, Gross [12] studied finite
2-groups whose involutions form an automorphism orbit. Finite groups in which elements
of the same order lie in the same automorphism orbit, known as AT-groups, were studied
by Zhang [30]. Many aspects of this topic have been explored, yet the area still presents
numerous open questions that can serve as powerful motivation for further research.

These contributions are of significant interest, however, the main subject of this thesis
is infinite groups, and we now turn our attention to their study. Schwachhöfer and Stroppel
[25], in 1999, showed that if G is an abelian group with finitely many automorphism orbits,
then

G = Tor(G)⊕D,

where D is a torsion-free radicable characteristic subgroup of G, and Tor(G) is the set of all
torsion elements in G.

In 2017, Bastos and Dantas [2], proved that if G is an FC-group with finitely many
automorphism orbits, then the derived subgroup G′ is finite and G admits a decomposition

G = Tor(G)×A,

where A is a radicable characteristic subgroup of Z(G). For more details concerning auto-
morphism orbits of groups and infinite groups, see [27].

The main object of study in this thesis is soluble groups of finite rank. While the term
‘rank’ has many connotations in algebra, in soluble group theory it refers to the cardinality of
a maximal linearly independent subset of some kind. In this thesis, we adopt the Prüfer rank.

Definition 0.1. A group is said to have finite Prüfer rank r if every finitely generated
subgroup can be generated by r elements and r is the least such integer.
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For example, Qn has rank n, for any positive integer n. For simplicity, we will refer to
it simply as rank throughout the text. Recall that a group G has mixed order if it contains
non-trivial elements of finite order and also elements of infinite order. Note that a group G is
said to be radicable if for every element g in G and every positive integer n, there exists an
element h in G such that hn = g.

In 2020, Bastos, Dantas and de Melo [4] proved

Theorem 0.1 ([4], Theorem A). Let G be a soluble group of finite rank. If ω(G)< ∞, then
G has a torsion-free radicable nilpotent characteristic subgroup K such that

G = K ⋊H,

where H is a finite subgroup.

The theorem above is essential to our work. It not only provides a key argument in the
proof of a couple of our results, but also serves as a motivation to explore related classes of
groups. In the same work they classified the mixed order soluble groups of finite rank such
that ω(G) = 3.

Theorem 0.2 ([4], Theorem B). Let G be a mixed order soluble group of finite rank. We have
ω(G) = 3 if and only if G= A⋊H where |H|= p for some prime p, H acts fixed-point-freely
on A and A ∼=Qn for some positive integer n.

Furthermore, Bastos, Dantas and de Melo in 2021 extended the results in [5] for virtually
nilpotent groups such that ω(G)< ∞.

Theorem 0.3 ([5], Theorem 1.1). Let A be an abelian group and B a finite subgroup of Aut(A).
Let G = A⋊B be the semidirect product of A and B and assume that A is a characteristic
subgroup of G. Then ω(G)< ∞ if and only if A has finitely many automorphism orbits under
the action of CAut(A)(B).

Theorem 0.4 ([5], Corollary 1.3). Let G be a virtually nilpotent group with ω(G)< ∞. Then
G has a torsion-free radicable nilpotent subgroup K and a torsion subgroup H such that
G = K ⋊H. Moreover, the derived subgroup G

′
= D×Tor(G

′
), where D is a torsion-free

nilpotent radicable characteristic subgroup.

Theorem 0.5 ([5], Corollary 1.4). Let A be a finite dimensional vector space over Q and
B a finite subgroup of Aut(A). Let G = A⋊B be the semidirect product of A and B. Then
ω(G)< ∞ if and only if B is abelian.
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Inpired by these works, we invetigated the structure of groups with 4 automorphism
orbits. We obtained the following results. Throughout this paper, if K is a characteristic
subgroup of a group G, we denote by ωAut(G)(K) the number of automorphism orbits of K
under the action of Aut(G).

Theorem A. Let G be a mixed order soluble group of finite rank with ω(G) = 4. Then
G = K⋊H, where K is a torsion free nilpotent characteristic radicable subgroup, H is a finite
subgroup and one of the following three cases holds (q is a prime number):

1. H acts fixed-point-freely on K, |H|= q, and ωAut(G)(K) = 3;

2. K =Qn, H is cyclic of order q2 and the action of H is fixed-point-free;

3. G = K ×H, where K =Qn and H is elementary abelian q-group.

We also establish a necessary and sufficient condition for a mixed order metabelian group
to have exactly four automorphism orbits, as stated in the following theorem.

Theorem B. Let G be a mixed order metabelian group of finite rank. Then ω(G) = 4 if and
only if G = K ⋊H where one of the following holds:

1. K =Qn, H is cyclic of order q2, the action of H is fixed-point-free and K decomposes as
a Q[H]-module into a direct sum of copies of an isomorphic irreducible Q[H]-module;

2. G = K ×H, where K =Qn and H is elementary abelian.

Now we consider infinite soluble groups of finite rank with five automorphism orbits.

Theorem C. Let G be a mixed order soluble group of finite rank with ω(G) = 5. Then
G = K ⋊H, where K is a torsion-free nilpotent characteristic radicable subgroup, H is a
finite subgroup and one of the following holds:

1. K is non-abelian, G/Z(K) is non-abelian, and ω(G/Z(K))≤ 4;

2. K =Qn, ωAut(G)(K) = 3, and |H|= q2 for some prime q;

3. K =Qn, ωAut(G)(K) = 2, Z(G) is elementary abelian q-group and ω(G/Z(G)) = 3.

4. K =Qn, ωAut(G)(K) = 2, and H is a cyclic group with ω(H) = 4.

Another approach we explored in our research, based on the decomposition provided by
Theorem 0.1, is to consider torsion-free radicable nilpotent groups. Naturally, this leds us
to investigate unitriangular matrices UTn(Q) of dimension n×n over the field of rational
numbers Q, as they present a natural example within this class of groups.
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Definition 0.2. The upper unitriangular matrix group of dimension n×n over the field Q,
denoted by UTn(Q), is the group, under multiplication, with 1’s on the diagonal, 0’s below
the diagonal, and arbitrary entries above the diagonal.

It is worth mentioning that UTn(Q) also belongs to the class of soluble groups of finite
rank, for any positive integer n. This will be discussed when we consider the theoretical
properties of this group.

The group UTn(Q) can be viewed as a subgroup of GLn(Q). In this context, it is known
that its normalizer is Tn(Q), the group of upper triangular matrices of dimension n×n over
Q (for details see [1]). In particular, this subgroup decomposes as the semidirect product

Tn(Q) =UTn(Q)⋊Dn(Q),

were Dn(Q) ≤ GLn(Q) is the subgroup of n × n diagonal matrices over Q. Note that
Dn(Q)∼= (Q×)n.

We now briefly discuss some related results. Borel and Steinberg stated the following
problem: Is the number of the conjugacy classes of unipotent elements in a semisimple
algebraic group finite? This was solved by Platonov for p > 2 for a field of characteristic p.
Platonov also conjectured that in UTn(Q) the number of the unipotent conjugacy classes in
general is infinite. Zalesskii [29], in 1968, showed that the number in question is infinite in
the triangular linear group Tn(Q).

Theorem 0.6 ([29], Proposition 1). Unipotent elements of the triangular linear group Tn(Q),
n ≥ 6, partition into infinitely many conjugacy classes.

This result is particularly relevant to our research, as conjugacy classes are contained
within automorphism orbits.

As our study focus on automorphism orbits, we now turn to some results in the literature
concerning the automorphism group of unitriangular matrices. The automorphism group of
the group of unitriangular matrices over a field was studied by many authors [17, 20, 22, 28] .
The first paper was in Russian, published by Pavlov in 1953. Pavlov studied the automorphism
group of unitriangular matrices over a finite field of odd prime order. Weir [28] described
the automorphism group of the group of unitriangular matrices over a finite field of odd
characteristic. Maginnis [22] described it for the field of order two.

Finally, it was proved by Levchuk [17], in 1983, and reproved by Mahalanobis [20], in
2013, that the automorphism group of UTn(Q) is generated by certain automorphisms.

Theorem 0.7 ([20], Theorem 3.3). The automorphism group of UTn(Q) is generated by
extremal automorphisms, field automorphisms, diagonal automorphisms (conjugation by the
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diagonal matrices), inner automorphisms and central automorphisms (that is, the identity
modulo the center).

Further details regarding these automorphisms will be provided in the Chapter 4. Inspired
by these works we obtained the following results,

Theorem D. The unitriangular group UTn(Q) has finitely many automorphism orbits for
n < 5. In particular, ω(UT3(Q)) = 3 and ω(UT4(Q)) = 9.

Later, we will see that as the dimension increases, the computations involved become
significantly more complex. In the case of dimension 5, we were able to show that the
number of automorphism orbits is finite, and we computed the number of orbits under the
action of the group of upper triangular matrices Tn(Q).

Theorem E. The unitriangular group UT5(Q) has finitely many automorphism orbits. More-
over, the number of orbits under the action of Tn(Q) is 61.

Determining this number required a case-by-case analysis of elements in UT5(Q). Specif-
ically, it was necessary to consider all possible combinations in which each entry is either
zero or nonzero, resulting in a large number of distinct cases. To handle this complexity, we
used the software SageMath [24] to assist in the calculations. These calculations are fully
presented in the Appendix.

The next result introduces a class of groups that does not have finitely many orbits under
automorphism, which stands in contrast to the previous results. The result mentioned by
Zalesskii [29] shows that the classes of conjugate elements of the group UTn(Q) under the
action of diagonal automorphisms and inner automorphisms are infinite. The strategy used in
the proof of this theorem allowed us to obtain the following result,

Theorem F. The unitriangular group UTn(Q) has infinitely many automorphism orbits for
n > 5.

The present work is divided into three chapters. In Chapter 1, we briefly introduce some
basic topics, discuss previous results from the literature and present examples that illustrate
and explore these results. The examples presented constitute an essential part of this work,
we used the software GAP [9] to find some of them. In Chapter 2, we focus on proving
Theorems A, B and C. In Chapter 3, we turn our attention to the group of unitriangular
matrices, where we prove Theorems D, E, and F, we also present structural properties to this
class of groups.



Chapter 1

Preliminaries

This chapter is divided into two parts. In the first part we will introduce some fundamental
concepts and results of group theory that are applied in this thesis. In the second part, we
analyze some theorems and provide illustrative examples. Although much of the discussion
in this chapter focuses on finite groups, this is the only chapter where such emphasis occurs.
In the remainder of the thesis, our attention will be directed primarily toward infinite groups.

1.1 Representation of abelian groups and complete reducibil-
ity

Let G be a group and consider a finite-dimensional vector space V over the field F .

Definition 1.1. A homomorphism φ from a group G to the group GLn(F) is called a
representation of G over V of degree n, where n is the dimension of V over F .

Example 1.1. Let G =C4 = ⟨a | a4 = 1⟩ be the cyclic group of order 4. Define the matrix
A ∈ GL2(Q) by

A =

(
0 1
−1 0

)
,

and observe that

A2 =

(
−1 0
0 −1

)
,A3 =

(
0 −1
1 0

)
,A4 =

(
1 0
0 1

)
.

The function ρ : G → GL2(Q) given by ai 7→ Ai, where 0 ≤ i ≤ 3, is a representation of C4

over Q2.
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Definition 1.2. A representation φ of a group G on a vector space V over a field F is said
to be faithful if the map φ in injective. Also a representation φ is said to be linear if it has
degree 1.

Definition 1.3. A representation φ of a group G on a vector space V over a field F is said to
be irreducible if 0 and V are the only Gφ -invariant subspaces of V . Otherwise, φ is said to be
reducible.

Definition 1.4. A representation φ of G on V over F is said to be completely reducible if
there exists a decomposition

V =V1 ⊕·· ·⊕Vr,

where each Vi is a Gφ -invariant subspace of V and φ |Vi is irreducible, for 1 ≤ i ≤ r.

Now we will study some properties of representations of abelian groups. Such results
will help in proving one of the main theorems regarding the classification of groups with a
finite number of orbits under automorphisms.

For more details on the following results, we refer the reader to [11].

Theorem 1.1. ([11], Theorem 3.2.2) If G has a faithful irreducible representation, then Z(G)

is cyclic.

Theorem 1.2. ([11], Theorem 3.2.3) If φ is a irreducible representation of an abelian group
G with kernel K, then G/K is cyclic. In particular, a non-cyclic abelian group has no faithful
irreducible representation.

Theorem 1.3. ([11], Theorem 3.2.4) Let G be an abelian group of order n and F a field that
contains a primitive n-th root of unity. Then every irreducible representation of G over F is
linear.

Theorem 1.4. ([11], Theorem 3.2.5) If φ is a linear representation of G, then G/K is cyclic,
where K is the kernel of φ . In particular, a non-cyclic group has no faithful representation of
degree 1.

Now, we will establish sufficient criteria for a given representation to be completely
reducible. We will refer to this result as Maschke’s Theorem.

Theorem 1.5 (Maschke). ([11], Theorem 3.3.1) Let ϕ be a representation of a finite group
G on a finite-dimensional vector space V over a field F and assume that either F is of
characteristic 0 or of characteristic relatively prime to |G|. Then ϕ is completely reducible.

Next, we present an application of Maschke’s Theorem.
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Theorem 1.6. Let V be a finite-dimensional vector space over a field F , and let Q be a
non-cyclic abelian q-subgroup of Aut(V ), with q a prime distinct from the characteristic of
F . Then,

V = ∏
x∈Q#

CV (x),

where CV (x) = {v ∈V : vx = v}. In particular, V is generated by its subgroups CV (x) with x
in Q#.

We are interested in understanding finite rank solvable groups with finitely many orbits
under the action of their automorphism group. Theorems 0.2 and 0.5, mentioned in the
introduction, guide our investigation toward a semidirect product structure. In particular, let
G = K ⋊H, where K =Qn and H is a finite abelian group, for some positive integer n.

First note that H acts on K, viewed as a vector space over Q, so every element of H
can be seen as linear operators of K. Therefore, in the context of linear algebra, it will be
very useful to understand some polynomials. The first one is the characteristic polynomial,
defined by det(x1−Ah), where 1 is the identity matrix and Ah is the matrix associated to
the linear operator h ∈ H. Other useful polynomials are the polynomials that annihilate the
elements of H, in the sense that if p(x) is a polynomial over F , that annihilate linear operator
h, then p(h) = 0.

Definition 1.5. Let h be a linear operator on a finite-dimensional vector space V over the field
F . The minimal polynomial for h is the (unique) monic generator of the ideal of polynomials
over F which annihilates h.

In this context, we present a very useful theorem. For more details see [14].

Theorem 1.7 (Cayley-Hamilton). ([14], Theorem 6.4) Let h be a linear operator on a finite-
dimensional vector space V . If f is the characteristic polynomial of h, then f (h) = 0; in other
words, the minimal polynomial divides the characteristic polynomial.

We now present some interesting results regarding automorphisms orbits.

Theorem 1.8. If K =Qn, then ω(K) = 2.

Proof. The group K can be viewed as a vector space of dimension n over Q. For any two
non zero vectors x,y ∈ K, we can define basis B1 = {v1, . . . ,vn} and B2 = {u1, . . . ,vn} such
that x = v1 and y = u1. It is known that there exists a unique bijective linear map extending
the map vi 7→ ui. Thus, every non trivial element of K is in the same automorphism orbit.

Theorem 1.9. Let G = K ⋊H, where K = Qn and H is a finite abelian group, for some
positive integer n. Then K is a characteristic subgroup of G.
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Proof. Let |H|= m. We show that Gm = K. Since K is divisible, we have that K = Km ≤ Gm.
Now, G/K ∼= H, so Gm ≤ K. Therefore, Gm = K, and we conclude that K is characteristic in
G, as desired.

Note that the above result holds for any divisible group. The next result concerns the case
where the group decomposes as the direct product.

Theorem 1.10. Let G = K ×H, where K =Qn, for some positive integer n, and H is a finite
abelian group. Then ω(G) = 2ω(H).

Proof. First, note that G is an abelian group so the torsion elements form a characteristic
subgroup Tor(G) of G. Since Tor(G) = H, we have that H charG and K charG. So if
α ∈ Aut(G), then (k1,1)α = (k2,1) and (1,h1)

α = (1,h2), for hi ∈ H and ki ∈ K, i = 1,2.
So,

(k1,h1)
α = ((k1,1)(1,h1))

α = (k1,1)α(1,h1)
α = (k2,h2).

We prove that Aut(G)∼= Aut(K)×Aut(H). Define the map

f : Aut(G)→ Aut(K)×Aut(H)

α 7→ (π1αι1,π2αι2)

where π1 : G → K, π2 : G → H are the projection homomorphisms, ι1 : K → G, ι2 : H → G
are the inclusion homomorphisms and product of homomorphism is given by gπ1α = (gα)π1 ,
for g ∈ G. Note that f is well-defined. Indeed, let α ∈ Aut(G), and put αi = πiαιi, for
i = 1,2. So α

f = (α1,α2). Note that α1 is a group homomorphism, since projection and
inclusion are homomorphism. Now we prove that ker(α1) = 1. Let (k1,1)α = (x1,1) (recall
that K charG ), so (k1)

α1 = (k1)
π1αι1 = ((k1,1)α)π1 = (x1,1)π1 = x1. Then,

(x1,1)α = (xα1
1 ,1α2) = (1,1) = α(1,1)

and we conclude that ker(α1) = 1. As K is a finite dimension vector space, the Rank-Nullity
Theorem shows that α1 is also surjective. So α1 ∈ Aut(K). A similar argument holds to show
that α2 ∈ Aut(H). Also, simple calculations show that f is an isomorphism.

Now we focus on automorphism orbits. From the map f , we know that it is possible
to construct automorphisms of G that act as automorphisms of K and H on each respective
component. Thus, to count the number of orbits, it suffices to multiply ω(K) and ω(H).
Note that ω(K) = 2 and ω(H) is finite. Therefore, we have that ω(G) = 2ω(H).

This result is interesting as it shows that, in this case, the number of orbits is always even.
As an immediate consequence, we have the following corollary.
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Corollary 1.1. Let G = K ×H, where K =Qn, for some positive integer n, and H is a finite
elementary abelian p-group, for some prime p. Then ω(G) = 4.

We observe that, in G = K ×H, where K = Qn, for some positive integer n, and H is
a finite elementary abelian p-group the 4 automorphism orbits are {1}, H \ {1}, K \ {1},
G\ (H ∪K).

Theorem 1.11. G = K⋊H, where K =Qn and H is a finite abelian group, for some positive
integer n. Then K =CK(H)× [K,H].

Proof. Define the map θ : K → K by kθ =
1
|H| ∑

h∈H
kh, written additively. It can be easily

verified that θ is a well-defined homomorphism. Note that θ is idempotent,

θ
2 = θ

(
1
|H| ∑

h∈H
h

)
=

1
|H| ∑

h∈H
θh =

1
|H|

(|H|θ) = θ .

First we show that CK(H) = Im(θ). Note that Im(θ)≤CK(H), once θh = hθ = θ for
all h ∈ H. Conversely, if x ∈CK(H), then

xθ =
1
|H| ∑

h∈H
xh =

1
|H| ∑

h∈H
x =

1
|H|

|H|x = x,

so x ∈ Im(θ).
Next set A = [K,H] and A1 = {k − kθ : k ∈ K}. As θ is an endomorphism and K is

abelian, A1 is a subgroup of K. Moreover, k = kθ +(k− kθ ) for k ∈ K, so K =CK(H)+A1.
On the other hand, if x ∈CK(H)∩A1, we have x = xθ and x = y−yθ for some y ∈ P, whence
x = xθ = (y− yθ )θ = 0, as θ is idempotent. It follows that K = CK(H)⊕A1. In addition,
our calculation shows that A1 is the kernel of θ .

Finally, by definition, A is generated by the elements −k + kh, k ∈ K, h ∈ H. But,
(−k+ kh)θ =−kθ + khθ =−kθ + kθ = 0, which implies that A ⊆ A1. Conversely, for k ∈ K
we have

k− kθ =
1
|H|

[
∑

h∈H
(k− kh)

]
∈ A

as each k−kh ∈ A. Thus A1 ⊆ A, whence A1 = A and the desired conclusion K =CK(H)⊕A
is established. And in multiplicative notation, we have K =CK(H)×A, so the theorem is
proved.

Theorem 1.12. Let G = K ⋊H, where K = Qn and H is a finite abelian group, for some
positive integer n. If CK(H) ̸= 1 and CK(H)< K, then ωAut(G)(K)≥ 4.
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Proof. First note that by Theorem 1.11, K =CK(H)× [K,H]. Let ϕ ∈ Aut(G). We show that
there are at least 4 different automorphism orbits of G in K. First note that Z(G) =CK(H).
This means that CK(H)charK. Since [H,K]charK, CK(H) ̸= 1 and CK(H)< K, there is one
orbit for 1, at least one orbit for [H,K]\{1}, at least one orbit for CK(H)\{1}, and least one
orbit for K \ ([H,K]∪CK(H)). So ω(K)≥ 4, and we conclude that ωAut(G)(K)≥ 4.

We now turn to the study of fixed-point-free automorphisms. The most important result on
this subject is Thompson’s Theorem on the nilpotency of groups admitting a fixed-point-free
automorphism of prime order.

Definition 1.6. Denote
CG(φ) = {x ∈ G | xφ = x}.

An automorphism φ of a group G is said to be fixed-point-free if CG(φ) = 1, that is, if it fixes
only the identity element. A group of automorphisms A of G is fixed-point-free if CG(A) = 1,
i.e., if it fixes only the identity element.

We now state Thompson’s theorem. For more details on the following theorem, we refer
the reader to [11].

Theorem 1.13 (Thompson). ([11], Theorem 10.2.1) Let G be a finite group. If G admits a
fixed-point-free automorphism of prime order, then G is nilpotent.

In this context, we prove,

Theorem 1.14. Let G = K ⋊H, where K = Qn and H is a finite abelian group, for some
positive integer n. If every element in G\K has finite order, then H acts fixed-point-freely
on K.

Proof. We prove the contrapositive. If a non-trivial element h ∈ H is such that kh = k, for
some non trivial element k ∈ K, then the element kh ∈ G\K is such that (kh)n = knhn. Since
K is torsion-free, it follows that kh has infinite order.

1.2 Examples

This section presents some well-known results which will be used throughout the text.
Beyond simply stating these theorems and propositions, we provide illustrative examples
to clarify the conditions under which they apply. These examples not only demonstrate the
practical utility of each result but also help the reader grasp their limitations and appropriate
contexts for application.
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In [16], T. J. Laffey and D. MacHale characterized finite groups G that are not p-groups
and have the property that ω(G) = 3 (see [16] Theorem 2.). This result is stated in the
following theorem.

Theorem 1.15 ([16], Theorem 2.). Let G be a finite group that is not of prime power order.
The following are equivalent:

1. ω(G) = 3;

2. |G| = pnq, and G has a normal elementary abelian Sylow p-subgroup K, for some
primes p, q, and for some integer n ≥ 1. Furthermore, p is a primitive root mod q (i.e.
q−1 is the least natural number e with pe ≡ 1 mod q). Let H be a Sylow q-subgroup
of G. Then K, regarded as a Fp[H]-module, is a direct sum of t ≥ 1 copies of the
(unique) irreducible Fp[H]-module of dimension q−1. In particular |K|= pt(q−1).

Now we provide some examples of finite 3-orbit groups which are not of prime power
order and, in the notation of the above theorem, the subgroup K is a non-trivial direct sum of
irreducible Fp[H]-modules, ie, the number t varies.

Example 1.2. With the help of GAP system [9], we found that the following groups are
3-orbit groups. Note that 3 is a primitive root mod 2.

1. The group G = ⟨a,b : a3 = b2 = 1,bab = a−1⟩ ∼=C3 ⋊C2, where |K|= 3 and t = 1;

2. The group G = ⟨a,b,c : a3 = b3 = c2 = 1,ab = ba,cac = a−1,cbc = b−1⟩ ∼= (C3 ×
C3)⋊C2, where |K|= 32 and t = 2;

3. The group G = ⟨a,b,c,d : a3 = b3 = c3 = d2 = 1,ab = ba,ac = ca,dad = a−1,bc =
cb,dbd = b−1,dcd = c−1⟩ ∼= (C3 ×C3 ×C3)⋊C2, where |K|= 33 and t = 3;

If we consider K as a vector space over Fp, then saying that p is a primitive root modulo
q means that the polynomial

xq −1 = (x−1)(xq−1 + · · ·+ x+1)

has no roots in Fp other than 1. The following example demonstrates the necessity of the
assumptions in the above theorem.

Example 1.3. With the help of GAP system [9], we found that the group given by

G1 := ⟨a,b,c : a7 = b7 = c3 = 1,ab = ba,cac−1 = a4,cbc−1 = b4⟩



14 Preliminaries

has 4 automorphism orbits and the automorphism orbits are represented by elements of
order 1,7,3,3. The group G1 can be viewed as the semidirect product (C7 ×C7)⋊C3. The
characteristic subgroup V := ⟨a,b⟩ ∼= C7 ×C7 regarded as F7[C3]-module is completely
reducible as direct sum of two 1-dimension F7[C3]-modules, say V =V1⊕V2, where V1 = ⟨v⟩
and V2 = ⟨w⟩. We will show that there is no automorphism that maps c to c2. Assume by
way of contradiction that there is an automorphism θ that maps c to c2. The elements c and
c2 can be viewed as the matrix

c =

(
4̄ 0̄
0̄ 4̄

)
,c2 =

(
2̄ 0̄
0̄ 2̄

)
∈ GL2(V ).

Then we would have

4̄(v+w)θ = ((v+w)c)θ = ((v+w)θ )cθ

= ((v+w)θ )c2
= 2̄(v+w)θ .

A contradiction. So there is no automorphism that maps c to c2.

Thus the assumption that K, regarded as a Fp[H]-module, is a direct sum of t ≥ 1 copies
of the (unique) irreducible Fp[H]-module of dimension q−1 is essential.

Example 1.4. With the help of GAP system [9], we found that the group given by

G2 := ⟨a,b,c : a7 = b7 = c3 = 1,ab = ba,cac−1 = a4,cbc−1 = b2⟩

has 4 automorphism orbits, and the automorphism orbits are represented by elements of
order 1,7,7,3. The characteristic subgroup V := ⟨a,b⟩ ∼=C7 ×C7 regarded as F7[C3]-module
is completely reducible as direct sum of two 1-dimension F7[C3]-modules, say V =V1 ⊕V2,
where V1 = ⟨v⟩ and V2 = ⟨w⟩. And c can be viewed as the matrix

c =

(
4̄ 0̄
0̄ 2̄

)
∈ GL2(F3).

If v and v+w are in the same automorphism orbit, then there is an automorphism θ such that

4̄(v+w) = 4̄vθ = (4̄v)θ = (vc)θ = (vθ )cθ

= (v+w)cθ

,

this is 4̄v+ 2̄w or 2̄v+ 4̄w, which can’t happen. Hence there is no group automorphism of G
that permutes the elements v and v+w and V is divided into three automorphism orbits. It is
also interesting to note that ⟨v⟩ and ⟨w⟩ are not isomorphic modules, once they have different
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eigenvalues. Indeed, the existence of a module isomorphism f : ⟨v⟩ → ⟨w⟩ would imply

2̄w = wc = f (v)c = f (vc) = f (4̄v) = 4̄ f (v) = 4̄w.

A contradiction.

Therefore, two crucial assumptions are that the normal Sylow subgroup, viewed as a
Fp[H]-module, decomposes as a direct sum of isomorphic Fp[H]-submodules and that p is a
primitive root modulo q. In [4] (Theorem B) it was proved that if G is mixed order soluble
group of finite rank, then ω(G) = 3 if and only if G = K ⋊H where K = Qn and H is of
order q acting fixed-point-freely on K. In particular, note that in this case the polynomial
xq−1 = (x−1)(xq−1+ · · ·+x+1) always has no roots in Q other than 1. Also, as mentioned
in the introduction, Examples 1.3 and 1.4 shows that in some sense the upper bound 3n in
Theorem C does not hold in the finite case.

We now consider 4-orbit groups. The following structure theorem for finite soluble
groups G that are not of prime power order and with ω(G) = 4 was proven by Laffey and
MacHale in [16] (see Theorem 4).

Theorem 1.16 ([16], Theorem 4.). Let G be a finite soluble group which is not of prime
power order such that ω(G) = 4. Then |G|= paqb, and G has a normal Sylow p-subgroup P
for some primes p, q. Let Q be a Sylow q-subgroup of G. Then one of the following holds:

1. Q acts fixed-point-freely on P, |Q|= q, and P is a 2-orbit or 3-orbit group;

2. P is elementary abelian, and Q is cyclic of order q2;

3. P is elementary abelian, and Q is the quartenion group of order 8;

4. G = P×Q, where P, Q are elementary abelian.

We provide some examples of finite soluble groups with ω(G) = 4 that are not p-groups
to better illustrate the preceding theorem.

Example 1.5. 1. With the help of GAP system [9], we found that

G := D18 = ⟨a,b : a9 = b2 = 1,ab = a−1⟩,

has 4 automorphism orbits. Let P = ⟨a⟩ and Q = ⟨b⟩ . Note that G = P⋊Q ∼=C9⋊C2,
Q acts fixed-point-freely on P, |Q| = 2, and P is 3-orbit group. So this exemplifies
item 1. of Theorem 1.16.
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2. With the help of GAP system [9], we found that

G := ⟨a,b : a7 = b3 = 1,ab = a4⟩,

has 4 automorphism orbits. Let P = ⟨a⟩ and Q = ⟨b⟩ . Note that G = P⋊Q ∼=C7⋊C3,
Q acts fixed-point-freely on P, |Q| = 3, and P is 2-orbit group. The automorphism
orbits are represented by elements of order 1,7,3,3. So this also exemplifies item 1. We
note that this example also applies to demonstrate the necessity of the assumptions in
Theorem 1.15.

3. With the help of GAP system [9], we found that the group

G := ⟨a,b,c,d : a3 = b3 = c4 = 1,d2 = c2,bd = ab = ba,

ac = b−1,ad = a−1b,bc = a,cd = c−1⟩,

has 4 automorphism orbits. Let P = ⟨a,b⟩ ∼= C3 ×C3 and Q = ⟨c⟩ ∼= C4 . Note that
G = P⋊Q ∼= PSU(2,7), Q acts fixed-point-freely on P, |Q|= 4, and P is elementary
abelian. So this exemplifies item 2.

4. The group
G := ⟨a : a6 = 1⟩ ∼=C2 ×C3,

has 4 automorphism orbits. We note that there is only one element of order 2, also the
inversion automorphism is sufficient to prove that all elements of order 3 are in the
same automorphism orbit as well as all elements of order 6. So this exemplifies item 4.

In [5], it was proved that for G = A⋊B, where A is a finite-dimensional Q-vector space
and B ≤ Aut(A), we have ω(G)< ∞ if and only if, B is abelian. It shows that case (3) does
not occur in the infinite case. The following example shows that the converse of item (3)
does not hold. We denote the quaternion group of order 8 by Q8.

Example 1.6. Using GAP system [9], we verified that for primes p ∈ {3,5,7,11} the groups
G = (Cp ×Cp)⋊Q8, where Q8 acts faithfully on Cp ×Cp have exactly four automorphism
orbits and (C13 ×C13)⋊Q8 has exactly five.

Therefore, Theorem 1.16 does not fully characterize all finite soluble groups with exactly
four automorphism orbits that are not p-groups.

We present some examples of finite soluble groups, that are not p-groups, with 5 auto-
morphism orbits. These examples will be relevant in the next chapter.
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Example 1.7. 1. With the help of GAP system [9], we found that

G := ⟨a,b : a6 = 1,b2 = a3,bab−1 = a−1⟩,

has 5 automorphism orbits. Let P = ⟨a⟩ and Q = ⟨b⟩ . Note that G = P⋊Q ∼=C3⋊C4,
Q acts fixed-point-freely on P, |Q|= 4. The automorphism orbits are represented by
elements of order 1,2,3,4,6.

2. With the help of GAP system [9], we found that

G := ⟨a,b : a10 = 1,b2 = a5,bab−1 = a−1⟩,

has 5 automorphism orbits. Let P = ⟨a⟩ and Q = ⟨b⟩ . Note that G = P⋊Q ∼=C5⋊C4,
Q acts fixed-point-freely on P, |Q|= 4. The automorphism orbits are represented by
elements of order 1,2,5,4,10.

3. With the help of GAP system [9], we found that

G := ⟨a,b : a6 = b2 = 1,bab = a−1⟩,

has 5 automorphism orbits. Note that G ∼= (C3⋊C2)×C2, Z(G) = ⟨a3⟩ has order 2, the
quotient G/Z(G) is a 3-orbit group of composite order and the automorphism orbits
are represented by elements of order 1,2,2,3,6.

4. With the help of GAP system [9], we found that the group

G := ⟨a,b,c : a5 = b5 = c6 = 1,ab = ba,cac−1 = a2b3,cbc−1 = a−1b−1⟩,

has 5 automorphism orbits. Let P = ⟨a,b⟩ ∼= C5 ×C5 and Q = ⟨c⟩ ∼= C6 . Note that
G = P⋊Q ∼= (C5 ×C5)⋊C6, Q acts fixed-point-freely on P, the automorphism orbits
are represented by elements of order 1,2,3,5,6.

Now we present an example with 6 automorphism orbits.

Example 1.8. Let G = S3 ×S3, we show that ω(G) = 6.
We begin by proving that Aut(S3 × S3) ∼= (S3 × S3)⋊C2, where the cyclic group of

order 2 acts by permutation on the entries of S3 ×S3. Let g = (g1,g2) ∈ G and φ ∈ Aut(G).

First, we show that there exist homomorphisms α,β ,γ,δ : S3 → S3 such that φ =

(
α β

γ δ

)
.

Consider the projection homomorphisms π1,π2 : S3 × S3 → S3 and the inclusion maps
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ι1, ι2 : S3 → S3 ×S3 defined as follows:

(g1,g2)
π1 = g1 (g1,g2)

π2 = g2

(g)ι1 = (g,1) (g)ι2 = (1,g)

Define

α = π1φι1 β = π1φι2

γ = π2φι1 δ = π2φι2.

Then the maps α,β ,γ,δ are homomorphisms from S3 to itself. Moreover, observe that using
notation of [6], we have(

α β

γ δ

)(
g1

g2

)
=

(
gα

1 gβ

2

gγ

1gδ
2

)
=

(
gπ1φι1

1 gι1φπ2
2

gι2φπ1
1 gπ2φι2

2

)
(1.1)

=

(
(g1,1)π1φ (1,g2)

π1φ

(g1,1)π2φ (1,g2)
π2φ

)
=

(
(g1,g2)

π1φ

(g1,g2)
π2φ

)
= gφ . (1.2)

Since φ is an automorphism, we can deduce some properties of the images (S3)
α ,(S3)

β ≤ S3.
From (1.2) we obtain that [(S3)

α ,(S3)
β ] = 1 and (S3)

α(S3)
β = S3. Hence, we conclude that

(S3)
α and (S3)

β are normal subgroups of S3. The normal subgroups of S3 are 1, ⟨(1 2 3)⟩,
and S3. But given the properties above, the only possible cases are (S3)

α = 1, (S3)
β = S3 or

(S3)
α = S3, (S3)

β = 1. This implies that the only nontrivial homomorphisms are such that
either α ∈ Aut(G) and β is the trivial map, or β ∈ Aut(G) and α is trivial. The same holds
for γ and δ . Therefore, φ must be of the form

φ =

(
α 0
0 δ

)
or φ =

(
0 β

γ 0

)
,

where 0 is the zero homomorphism. Note, however, that(
0 β

γ 0

)
=

(
β 0
0 γ

)(
0 1
1 0

)
.
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We can then define the function

f : Aut(S3 ×S3)→ (S3 ×S3)⋊C2(
α 0
0 δ

)
7→ (α,δ )(

0 1
1 0

)
7→ σ .

where σ has order 2 and permutes the entries in S3 × S3. It is easy to verify that f is an
isomorphism. Noting that Aut(S3)∼= S3, we conclude that Aut(S3 ×S3)∼= (S3 ×S3)⋊C2.

Now consider the action of Aut(G) on G, where the orbit of an element g ∈ G is the set

Orb(g) = {gφ : φ ∈ Aut(G)}.

Since we have already described the elements of Aut(G), we can compute all the orbits. They
are as follows:

Orb

(
1
1

)
=

{(
1
1

)}

Orb

(
(12)

1

)
=

{(
(12)

1

)
,

(
(13)

1

)
,

(
(23)

1

)
,

(
1

(12)

)
,

(
1

(13)

)
,

(
1

(23)

)}

Orb

(
(12)
(12)

)
=

{(
(12)
(12)

)
,

(
(13)
(12)

)
,

(
(23)
(12)

)
,

(
(12)
(13)

)
,

(
(13)
(13)

)
,

(
(23)
(13)

)
,(

(12)
(23)

)
,

(
(13)
(23)

)
,

(
(23)
(23)

)
,

}

Orb

(
(123)

1

)
=

{(
(123)

1

)
,

(
(132)

1

)
,

(
1

(123)

)
,

(
1

(132)

)}

Orb

(
(123)
(123)

)
=

{(
(123)
(123)

)
,

(
(132)
(132)

)
,

(
(123)
(132)

)
,

(
(132)
(123)

)
,

}
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Orb

(
(12)
(123)

)
=

{(
(12)
(123)

)
,

(
(13)
(123)

)
,

(
(23)
(123)

)
,

(
(123)
(12)

)
,

(
(123)
(13)

)
,

(
(123)
(23)

)
,(

(12)
(132)

)
,

(
(13)
(132)

)
,

(
(23)
(132)

)
,

(
(132)
(12)

)
,

(
(132)
(13)

)
,

(
(132)
(23)

)}

So ω(G) = 6.

This concludes the preliminary chapter. In what follows, we turn our attention to soluble
groups of finite rank with finitely many automorphism orbits, which form the main focus of
this work.



Chapter 2

Mixed order soluble groups of finite rank

This chapter is devoted to the study of 4-orbit and 5-orbit groups that are mixed order soluble
groups of finite rank. We prove two structural theorems and provide some examples of such
groups.

2.1 Soluble groups with 4 automorphism orbits

In this section we prove Theorem A.

Theorem A. Let G be a mixed order soluble group of finite rank with ω(G) = 4. Then
G = K⋊H, where K is a torsion free nilpotent characteristic radicable subgroup, H is a finite
subgroup and one of the following three cases holds (q is a prime number):

1. H acts fixed-point-freely on K, |H|= q, and ωAut(G)(K) = 3;

2. K =Qn, H is cyclic of order q2 and the action of H is fixed-point-free;

3. G = K ×H, where K =Qn and H is elementary abelian q-group.

Before proving Theorem A, we present some related results. The authors of [5] proved

Theorem 2.1 ([5], Corollary 1.4). Let A be a finite dimensional vector space over Q and
B a finite subgroup of Aut(A). Let G = A⋊B be the semidirect product of A and B. Then
ω(G)< ∞ if and only if B is abelian.

In a different work [4], the same authors proved

Theorem 2.2 ([4], Theorem A). Let G be a soluble group of finite rank. If ω(G)< ∞, then
G has a torsion-free radicable nilpotent characteristic subgroup K such that

G = K ⋊H,
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where H is a finite subgroup.

Theorem 2.3 ([4], Theorem B). Let G be a mixed order soluble group of finite rank. We have
ω(G) = 3 if and only if G= A⋊H where |H|= p for some prime p, H acts fixed-point-freely
on A and A =Qn for some positive integer n.

Now we establish an auxiliary lemma.

Lemma 2.1. Let G = A⋊B, where A =Qm, B ≤ Aut(A), |B|= qn is an elementary abelian
q-group and Z(G) = 1. Then ωAut(G)(A)≥ n+1.

Proof. If n= 1, then H acts fixed-point-freely on A, and consequently ω(G) = 3, by Theorem
2.3. So ωAut(G)(A) = 2, as desired. Thus, we can assume that n ≥ 2. We consider A as a
Q[B]-module. By Maschke’s Theorem, A is a completely reducible Q[B]-module. Hence

A = A1 ⊕ . . .⊕Ak,

where Ai is an irreducible Q[B]-submodule of A, 1 ≤ i ≤ k. Since B is abelian, B/Bi is cyclic,
where Bi denotes the kernel of the representation of B on Ai. Moreover, since B is elementary
abelian and non-cyclic, we have that Bi is a maximal subgroup of B. Therefore, for each A j

there exists a maximal subgroup Bi such that A j ≤CA(Bi).
Observe that the components Ai are contained in at least n distinct centralizers of maximal

subgroups of B, since the intersection of any n−1 maximal subgroups of B is non-trivial and
Z(G) = 1. Thus, we may select n distinct components, say A1, . . . ,An, with each Ai ≤CA(Bi)

for distinct maximal subgroups B1, . . . ,Bn. Let vi ∈ Ai be a non-trivial element of Ai for each
i. Now we show that v1,v1v2, . . . ,v1v2 · · ·vn are in distinct orbits. Since

CG(x)α =CG(xα),

for all x ∈ G and α ∈ Aut(G), it is sufficient to show that these elements have non-isomorphic
centralizers. It is a straightforward calculation that CG(v1) = AB1, CG(v1v2) = A(B1 ∩
B2), CG(v1v2 · · ·vi) = A(B1 ∩B2 ∩ ·· · ∩Bi), . . . ,CG(v1v2 · · ·vn) = A(B1 ∩B2 ∩ ·· · ∩Bn), as
desired.

We proceed with the proof of Theorem A.

Proof of Theorem A. By Theorem 2.2, G = K ⋊H where K is a torsion-free radicable nilpo-
tent characteristic subgroup and H is a finite group.

First, suppose that ωAut(G)(K) = 3. Then either K is nilpotent of class 2 with its center
Z(K) occupying two automorphism orbits in G, or K is abelian. In both cases, every element
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of G\K has prime order q and acts fixed-point-freely on K. However, the case where K is
abelian contradicts Theorem 2.3. Therefore, K is nilpotent of class 2.

Assume now that ωAut(G)(K) = 2. Since K is nilpotent, we have K =Qn. If CH(K) ̸= 1,
then CG(K) = K ×CH(K) is an abelian characteristic subgroup with at least four automor-
phism orbits, by Lemma 2.1. Thus, in this case G = K ×H.

Then H acts faithfully on K. Note that CK(H)=Z(G), then CK(H)= 1 since ωAut(G)(K)=

2. This implies, via Theorem 2.3, that the quotient group G/K ∼= H is a finite abelian group
with at most three automorphism orbits. By Theorem 1.15, we conclude that G/K ∼= H have
a prime power order.

If H is not a cyclic group, then H contains an elementary abelian q-group B of rank at
least two for some prime q such that KB is characteristic. By Lemma 2.1 this leads to a
contradiction, and therefore H must be cyclic of order q2.

Therefore if G is a mixed order soluble group of finite rank with ω(G) = 4, then G =

K ⋊H, where K is either isomorphic to a finite direct product of Q or class-2 nilpotent. We
now provide an example illustrating the latter case.

Example 2.1. Define λ
3 = 1 for some 1 ̸= λ ∈C and consider the splitting field F =Q[λ ] =

{x+yλ : x,y ∈Q} over Q of the separable polynomial X3−1 and the group K =UT3(F) of
upper 3 by 3 unitriangular matrices over the field F . Define a map α : K → K by1 a c

0 1 b
0 0 1

 7→

1 λa λ
2c

0 1 λb
0 0 1

 .

The map α extends to a fixed-point-free automorphism of K of order 3. By denoting H = ⟨α⟩
we construct the semidirect product G = K ⋊H.

We will argue that the group G in Example 2.1 has 4 automorphism orbits. First we will
show that every non-trivial element in K′ is in the same automorphism orbit. Recall that the
commutator subgroup K′ of K consists of unitriangular matrices (ai j) ∈ K such that aii = 1
and ai j = 0 for i ̸= 3, j ̸= 1, i ̸= j. We now show that all non-trivial elements of K′ lie in the
same automorphism orbit. For any two elements k1,k2 ∈ K, conjugation byk−1

1 0 0
0 1 0
0 0 k2

 ∈ T5(F)

provides an automorphism that connects two non-trivial elements in K′.
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Now we show that K \K′ form a single automorphism orbit. By Theorem 3 of [17], for
every A = (ai j) ∈ GL2(F) the map θA given by

k 7→


1 aa1,1 +ba2,1

(
c− ab

2

)
det(A)+

(aa1,1 +ba2,1)(aa1,2 +ba2,2)

2
0 1 aa1,2 +ba2,2

0 0 1

 ,

extends to an automorphism of K. The existence of these automorphisms implies that any
two elements in K \K′ are connected, and thus UT3(F) has exactly 3 automorphism orbits.
Further examples of groups with 3 automorphism orbits can be found in [21]. Now since α

commutes with θA for every A ∈ GL2(F), we can define the extension of θA to G by fixing
α 7→ α . This extension yields an automorphism of G.

Now we will show that every element in G\K is in a single automorphism orbit. We will
show that α and α

−1 are in the same automorphism orbit. Observe that Q[λ ]/Q is a Galois
extension. Hence, we can define a field automorphism ϕ : λ 7→ λ

2 that can be extended to an
automorphism of K by the action ϕ : x+ yλ 7→ x+ yλ

2 on each matrix entry of K (since it
is compatible with the operations of matrix multiplication). In fact, the map ϕ is complex
conjugation. Define the map ϕ : G → G by

k 7→

1 ϕ(a) ϕ(c)
0 1 ϕ(b)
0 0 1


α 7→ α

−1.

Basic calculations show that this map extends to an automorphism of G.
Now it remains to show that the element zα for z ∈ Z(K) is in the same orbit as the

element kα for k /∈ Z(K). We will present an element x ∈ K such that (kα)x = zα . Let

k =

1 a b
0 1 c
0 0 1

 , z =

1 0 c
0 1 0
0 0 1

 , x =

1 x1 x2

0 1 x3

0 0 1

 ∈ K.

Note that (kα)x = x−1kαx = x−1kαxα
−1

α = x−1kxα−1
α . And this last product corresponds

to
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1 a+(λ 2 −1)x1 b+ cλ
2x1 +(λ −1)x2 −ax3 − (λ 2 +1)x1x3

0 1 c+(λ 2 −1)x3

0 0 1

α.

Note that we can easily find the entries for matrix x by simply equating the above matrix
with zα . Hence every element in G\K is in a single automorphism orbit. Consequently, the
group presented in Example 2.1 has 4 orbits under automorphism.

We now turn to the proof of Theorem B which we state again for convenience.

Theorem B. Let G be a mixed order metabelian group of finite rank. Then ω(G) = 4 if and
only if G = K ⋊H where one of the following holds:

1. K =Qn, H is cyclic of order q2, the action of H is fixed-point-free and K decomposes
as a Q[H]-module into a direct sum of copies of isomorphic irreducible Q[H]-module;

2. G = K ×H, where K =Qn and H is elementary abelian.

We already proved that item 2 is a sufficient condition for a group to have 4 automorphism
orbits (see Theorem 1.10). Now we prove that item 1 is a sufficient condition for a group to
have 4 automorphism orbits. We begin with an auxiliary lemma.

Lemma 2.2. Let G = K⋊H where K =Qn and H is a cyclic group of order q2. If ω(G) = 4,
then H acts fixed-point-freely on K, and K decomposes as a Q[H]-module into a direct sum
of copies of the same irreducible Q[H]-module.

Proof. Using Theorem 2.1, we obtain that H acts fixed-point-freely on K. By Maschke’s
Theorem K = K1 ⊕K2 ⊕·· ·⊕Kr, where Ki is an irreducible Q[H]-module, for 1 ≤ i ≤ r. If
H = ⟨h : hq2

= 1⟩, we choose a basis for Ki so that h is represented by the companion matrix
of its minimal polynomial mi(X) on Ki. Hence Ki is determined up to Q[H]-isomorphism by
the minimal polynomial mi(X) of h on Ki.

Since hq2
= 1 we conclude that the minimal polynomial mh(x) of Th : K → K, given by

k 7→ kh divides

xq2
−1 = (x−1)(1+ x+ x2 + · · ·+ xq + · · ·+ xq2−1).

Since h acts fixed-point-freely,

mh(x) divides (1+ x+ x2 + · · ·+ xq + · · ·+ xq2−1).

Assume, by way of contradiction, that K1 is not isomorphic to K2. Hence m1(X) ̸= m2(X).
Let 0 ̸= ui ∈Ki, for i= 1,2. Since G is a 4 orbit group, the characteristic subgroup K occupies
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2 automorphism orbits, hence there exists σ ∈ Aut(G) with uσ
1 = u1 +u2. Now hσ−1

= hkw
for some w ∈ K and let g(X) be the minimal polynomial of hk on K1. Consider

uσ
1 g(h) = uσ

1 (g(h
σ−1

))σ = uσ
1 (g(h

k))σ = [u1g(hk)]σ = 0.

Hence (u1+u2)g(h) = 0. But the minimal polynomial of h on u1+u2 is m1(X)m2(X). Since
deg(g) = deg(m1), we have a contradiction.

Theorem 2.4. Let G = K ⋊H where K =Qn and H is a cyclic group of order q2. If H acts
fixed-point-freely on K and K, regarded as a Q[H]-module, is a direct sum of copies of the
irreducible Q[H]-module, then ω(G) = 4.

Proof. First, we determine the orders of elements in G\K, demonstrating that they must be
either q or q2. Set H = ⟨h⟩. The minimal polynomial mh(x) divides

1+ x+ x2 + · · ·+ xq + · · ·+ xq−1.

Using the identity (xy)n = xn(yxn−1
) . . .yxy, it is clear that for every k ∈ K, (h jk)q2

= 1.
Now we show that any two elements of K are conjugate by some automorphism. Let

u,v ∈ K be non-trivial elements. Since K is the direct sum of isomorphic Q[H]-modules,
we have that K0 = {v f (h) : f (X) ∈Q[X ]} and K1 = {u f (h) : f (X) ∈Q[X ]} are irreducible
Q[H]-submodule of K. If K1 = K0, then K = K0 ⊕K2, where K2 is a complement of K1, and
the map σ given by uσ = v, hσ = h and wσ = w extends to an automorphism of G, for w ∈ K2.
Not that K1 and K2 are fixed. If K1 ̸= K0, then K = K0 ⊕K1 ⊕K2, where K2 is a complement
of K1, and the map σ given by uσ = v, vσ = u and hσ = h extends to an automorphism of G.
Note that K1 and K2 are switched and K2 is fixed.

Now we must show that elements of order q2 form a single orbit under Aut(G). Note that
for any h ∈ H the map k → k−1kh is an automorphism of K since h acts fixed-point-freely.
Therefore, the elements of the coset hK are in the same orbit by conjugation. So it suffices to
show that there exists σ ∈ Aut(G) such that hσ = hi for every positive integer i coprime to
q. Let K = K1 ⊕·· ·⊕Kt be the sum of irreducible Q[H]-modules and let 0 ̸= k j ∈ K j. Each
k ∈ K j can be written in the form k = k j f (h) for some f (X) ∈Q[X ] with deg( f )< q2 −1.
Define a map hσ = hi, kσ

j = k j and (k j f (h))σ = k j f (hσ ). Note that if 0 ̸= k ∈ K is such
that kg(h) = 0 for some g(X) ∈Q[X ], then Φq2−1(X) (the cyclotomic polynomial for q2 −1)
divides g(X) and hence it also divides g(X i). So kg(hi) = 0 and the extension of the map σ

is well defined, hence it extends to an automorphism of G. Finally, observe that as i ranges
over all possible values coprime with q, it simultaneously covers all powers of hq. Thus, the
elements of order q constitute a single orbit.
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Combining this result with Theorem A, we establish Theorem B.

2.2 Soluble groups with 5 automorphism orbits

Following the result presented in the previous section, it is natural to ask whether similar
structural conclusions can be drawn for groups with five automorphism orbits. This question
arises as a natural continuation of the investigation. Now we explore this case in more detail.

We start by providing a proof of Theorem C and later we provide some examples.

Theorem C. Let G be a mixed order soluble group of finite rank with ω(G) = 5. Then
G = K⋊H, where K is a torsion free nilpotent characteristic radicable subgroup, H is a finite
subgroup and one of the following holds:

1. K is non-abelian, G/Z(K) is non-abelian, and ω(G/Z(K))≤ 4;

2. K =Qn, ωAut(G)(K) = 3, and |H|= q2 for some prime q;

3. K =Qn, ωAut(G)(K) = 2, Z(G) is elementary abelian q-group and ω(G/Z(G)) = 3.

4. K =Qn, ωAut(G)(K) = 2, and H is a cyclic group with ω(H) = 4.

Proof of Theorem B. By Theorem 2.2, G = K ⋊H where K is a torsion-free radicable nilpo-
tent characteristic subgroup and H is a finite group.

• Claim 1. If K is nilpotent of class 2 or 3, then G/Z(K) is non-abelian, and ω(G/Z(K))≤
4.

Suppose K is nilpotent of class 2. Then ωAut(G)(K) ≥ 3. If [K,H] ≤ K′, we will show
that G = K ×H, and consequently ω(G)≥ 6. To see this, set h ∈ H and define the mapping
αh : k 7→ k−1kh from K to K′. Since K′ = Z(K), for x,y ∈ K we have

(xy)αh = (xy)−1(xy)h = y−1x−1xhyh = y−1xαhyh = xαhyαh.

So αh is an homomorphism of K to K′ for any h ∈ H. Note that αh maps K into an abelian
group so K′ is contained in the kernel of αh and so [K′,h] = 1. For any k ∈ K we have
kh = k[k,h], khi

= k[k,h]i and then k = k[k,h]|h|, i some positive integer. Since K is torsion-
free we obtain that [k,h] = 1 and G/Z(K) is non-abelian, as desired.

If K is nilpotent of class 3, we can use the same argument to see that if

[K/γ3(K),Hγ3(K)/γ3(K)]≤ K′/γ3(K),
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then [K/γ3(K),Hγ3(K)/γ3(K)] = 1. Thus ω(G/γ3(K))≥ 6, and so ω(G)≥ 6.

• Claim 2. If K is abelian with ωAut(G)(K) = 3, then |H|= q2 for some prime q.

Suppose that K is abelian with ωAut(G)(K) = 3. In this case, H is an abelian group with
at most three automorphism orbits, while G\K has exactly two automorphism orbits. By
Theorem 1.15, this implies H cannot have composite order. Moreover, G must be non-abelian,
since in the direct product K×H of abelian groups, K would have exactly two automorphism
orbits.

Note that if CK(H) ̸= 1, then K =CK(H)× [K,H], where both factors are characteristic
subgroups, which would force ωAut(G)(K)≥ 4, contradicting our hypothesis. Thus CK(H) =

1.
When H is not cyclic, Lemma 2.1 shows that G \K contains both elements of prime

order q and elements of infinite order, with |H| = q2 for some prime q. If H is cyclic, we
immediately conclude |H|= q2.

• Claim 3. If K is abelian with ωAut(G)(K) = 2 and Z(G) ̸= 1, then Z(G) is elementary
abelian q-group and ω(G/Z(G)) = 3.

Suppose that K is abelian and ωAut(G)(K) = 2. In this case, Z(G) =CH(K). If CH(K) ̸= 1,
the subgroup K×CH(K) must have four automorphism orbits, and consequently CH(K) must
be elementary abelian. Thus, all elements of G \CG(K) have order q for some prime q.
Note that Z(G) =CK(H)×CH(K), therefore H acts fixed-point-freely on KZ(G)/Z(G) and
ω(G/Z(G)) = 3.

• Claim 4. If K is abelian with ωAut(G)(K) = 2 and Z(G) = 1, then H is a cyclic group
with ω(H) = 4.

If CH(K) = 1, we may apply Lemma 2.1 to conclude that H is cyclic with ω(H) = 4, as
desired.

Now we present some examples. The first two demonstrate the existence of groups with
exactly five automorphism orbits and elementary abelian centers. We point out that these
cases are analogous to the finite ones in Example 1.7.

Example 2.2.
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1. G = Q⋊C4, where C4 = ⟨b | b4 = 1⟩ is cyclic of order 4 and the action is given by
qσ =−q. We observe that Z(G) = ⟨b2⟩.

2. G = (Q⋊C2)×C2. The first C2 factor acts on Q via canonical inversion. We observe
that Z(G)∼=C2.

3. G =Q2 ⋊C6 where C6 = ⟨b | b6 = 1⟩. And b acts on Q2 by

b =

(
0 1
−1 1

)
.

We note that ωAut(G)(Q2) = 2, the elements of order 2 are in the same automorphism
orbit, the elements of order 3 are in the same automorphism orbit and the elements of
order 6 are in the same automorphism orbit.

Following this result, it is natural to ask what can be said about mixed order soluble
groups of finite rank with six or more automorphism orbits. For instance, if G is a mixed
order soluble groups of finite rank with ω(G) = 6, the decomposition of Theorem 0.1

G = K ⋊H,

holds, where K is a torsion-free nilpotent characteristic radicable subgroup and H is a finite
subgroup. In the present work, we do not pursue this case in depth, leaving it as a potential
direction for future investigation. However, we present an example of a finite rank mixed-
order soluble group with 6 automorphism orbits to compare to Example 1.8, where we
considered S3 ×S3.

Example 2.3. Let G = (Q⋊C2)× (Q⋊C2). We prove that ω(G) = 6. We begin by
describing their automorphism group. Note that this group can be viewed as G = Q2 ⋊
(⟨b1⟩×⟨b2⟩), where

b1 =

(
1 0
0 −1

)
, b2 =

(
−1 0
0 1

)
.

The group G can also be viewed as G = (({0}×Q)⋊ ⟨b1⟩)× ((Q×{0})⋊ ⟨b2⟩) and also
G ∼= N ×N, where N = Q⋊C2. We prove that ω(G) = 6. Let g = (g1,g2) ∈ G = N ×N
and φ ∈ Aut(G). First, we show that there exist homomorphisms α,β ,γ,δ : N → N such

that φ =

(
α β

γ δ

)
. Consider the projection homomorphisms π1,π2 : N ×N → N and the
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inclusion maps ι1, ι2 : N → N ×N defined as follows:

(g1,g2)
π1 = g1 (g1,g2)

π2 = g2

(g)ι1 = (g,1) (g)ι2 = (1,g)

Define:

α = π1φι1 β = π1φι2

γ = π2φι1 δ = π2φι2.

Thus, the maps α,β ,γ,δ are homomorphisms from N to itself. Moreover, observe that(
α β

γ δ

)(
g1

g2

)
=

(
gα

1 gβ

2

gγ

1gδ
2

)
=

(
gπ1φι1

1 gι1φπ2
2

gι2φπ1
1 gπ2φι2

2

)
(2.1)

=

(
(g1,1)π1φ (1,g2)

π1φ

(g1,1)π2φ (1,g2)
π2φ

)
=

(
(g1,g2)

π1φ

(g1,g2)
π2φ

)
= gφ . (2.2)

Now, since φ is an automorphism, we can determine some properties of the images
(N)α ,(N)β ≤ N. From (2.1) we obtain that [(N)α ,(N)β ] = 1 and (N)α(N)β = N. Thus,
we conclude that (N)α ,(N)β �N. Given the properties above, the only possibilities are
(N)α = 1,(N)β = N or (N)α = N,(N)β = 1. This shows that the homomorphisms must
be such that either α ∈ Aut(N) and β is the trivial homomorphism, or β ∈ Aut(N) and

α is trivial. The same applies to γ and δ . Hence, we can write either φ =

(
α 0
0 δ

)
or

φ =

(
0 β

γ 0

)
. But notice that(

0 β

γ 0

)
=

(
β 0
0 γ

)(
0 1
1 0

)
.

This determines all automorphisms of G. Furthermore, we can define the map

f : Aut(N ×N)→ (Aut(N)×Aut(N))⋊S2(
α 0
0 δ

)
7→ (α,δ )(

0 1
1 0

)
7→ σ .
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It is easy to see that f is an isomorphism. We know that ω(N) = 3, where one orbit is
for e, one orbit is for torsion-free elements and one orbit is for elements of order 2. Now we

count the number of orbits of G. By the automorphism

(
α 0
0 δ

)
we know that there are at

most ω(N)2 = 9 orbits in G. The orders of the elements occurring in each possible orbit are
of the following types

(1,1),(1, torsion-free),(1,2),

(torsion-free,1),(torsion-free, torsion-free),(torsion-free,2),

(2,1),(2, torsion-free),(2,2).

Now, the automorphism

(
0 1
1 0

)
shows that the following types of elements are in the same

automorphism orbit
(torsion-free,1) and (1, torsion-free),

(1,2) and (2,1),

(2, torsion-free) and (torsion-free,2).

As all automorphisms have been taken into account, there are exactly ω(N)2 −3 = 6 auto-
morphism orbits in G.

This concludes the chapter about mixed order soluble groups of finite rank with 4 and 5
automorphism orbits.





Chapter 3

Unitriangular matrices over Q

In the beginning of this work we mentioned Theorem 0.1, which says that if G is a soluble
group of finite rank with ω(G)< ∞, then G contains a torsion-free characteristic nilpotent
subgroup K such that G = K ⋊H, where H is a finite group.

The group of unitriangular matrices plays a significant role within the class of nilpotent
groups, serving as a fundamental example. We investigate certain properties of these groups
in the context of our study. In particular, we considered the group of upper triangular matrices
of dimension n over the field of rational numbers, UTn(Q).

3.1 General overview

3.1.1 Group theoretic properties

Definition 3.1. The upper unitriangular matrix group of dimension n×n over the field Q,
denoted UTn(Q), is the group, under multiplication, with 1’s on the diagonal, 0’s below the
diagonal, and arbitrary entries above the diagonal.

Explicitly,

UTn(Q)=




1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
0 0 1 . . . ∗
. . . . . . . . . . . . ∗
0 0 0 . . . 1


n×n

: all star-marked entries vary arbitrarily over Q


.
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This subsection is based on the paper [20] by Mahalanobis, in which he finds a set of
generators for the automorphism group of the group of unitriangular matrices over a field. .
We begin by defining some well known properties about UTn(Q).

We define the elementary matrix xei, j to be the n×n matrix with x in the (i, j) position,
1’s in the diagonal and 0 elsewhere, where x ∈ Q. In what follows, we shall discuss the
central series of UTn(Q).

Definition 3.2. Define

γk = {M = (mi, j) ∈UTn(Q) : mi, j = 0, i < j, j− i < k}.

In other words, the γ1 = UTn(Q). The subgroup γ2 is the commutator of UTn(Q). It
consists of all upper unitriangular matrices with the first superdiagonal entries zero. The first
superdiagonal can be specified by all entries (i, j) with j− i = 1. Similarly γ3 consists of all
matrices with the first two superdiagonals zero and so on. It follows that γn = 1. We denote
the identity matrix by 1.

It is known that

Proposition 3.1 ([20], Proposition 1.1). In UTn(Q), the lower central series and the upper
central series are identical and it is of the form

UTn(Q) = γ1 > γ2 > .. . > γn−1 > γn = 1.

With this discussion, it becomes clear that UTn(Q) has nilpotency class n−1. This is a
very basic property, but we will present an example to illustrate the idea clearly.
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Example 3.1. The group UT4(Q) has nilpotency class 3 and the lower central series is

γ1 =




1 a1,2 a1,3 a1,4

0 1 a2,3 a2,4

0 0 1 a3,4

0 0 0 1

 : ai, j ∈Q

 ,

γ2 =




1 0 a1,3 a1,4

0 1 0 a2,4

0 0 1 0
0 0 0 1

 : ai, j ∈Q

 ,

γ3 =




1 0 0 a1,4

0 1 0 0
0 0 1 0
0 0 0 1

 : ai, j ∈Q

 ,

γ4 = {1}.

We now proceed to analyze the derived series. In [10] it was discussed that the kth term
in the derived series for UTn(Q) is UTn(Q)(k) = γ2k . See the following example.

Example 3.2. The group UT4(Q) has derived lenght 3 and the derived series is

UT4(Q)(1) =




1 a1,2 a1,3 a1,4

0 1 a2,3 a2,4

0 0 1 a3,4

0 0 0 1

 : ai, j ∈Q

 ,

UT4(Q)(2) =




1 0 a1,3 a1,4

0 1 0 a2,4

0 0 1 0
0 0 0 1

 : ai, j ∈Q

 ,

UT4(Q)(3) = {1}.

Note that there is a bijection between the commutator subgroup UT4(Q)(2) and the group
UT3(Q). However, there is no isomorphism between them, since one is abelian while the
other has nilpotency class 2.

Proposition 3.2. The group of unitriangular matrices UTn(Q) is a soluble group of finite
rank, for any positive integer n.
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Proof. The solubility is clear. To see that the group has finite rank, observe that, based on
the description of γi and the discussion above, the quotients γi/γi+1 are direct sums of a finite
number of copies of Q, for 1 ≤ i ≤ n−1. And the property of having finite rank is extension
closed. In fact, if N and G/N have rank r and r′ respectively, then G has rank at most r+ r′.
Therefore, we can conclude that UTn(Q) is a soluble group of finite rank for any positive
integer n.

We now proceed to define a class of maximal abelian subgroups, which will play an
important role in our subsequent analysis.

Definition 3.3. For j > i let us define Ni, j to be the subset of UTn(Q) all of whose matrices
have all rows greater than the ith row zero and all columns less than the jth column zero,
except from the diagonal entries.

It is straightforward to see that Ni, j is an abelian normal subgroup of UTn(Q). We now
present some examples.

Example 3.3. Let G =UT4(Q). The subgroup N1,2 and N2,3 has elements of the form

N1,2 =




1 a1,2 a1,3 a1,4

0 1 0 0
0 0 1 0
0 0 0 1

 : ai, j ∈Q

 ,

N2,3 =




1 0 a1,3 a1,4

0 1 a2,3 a2,4

0 0 1 0
0 0 0 1

 : ai, j ∈Q

 .

Levchuk proved

Proposition 3.3 ([17], Lemma 5.). The centralizer of Ni, j is

CUTn(Q)(Ni, j) = N j−1,i+1.

Levchuk also mentioned that the subgroups Ni,i+1 are maximal abelian normal subgroups
of UTn(Q), for i = 1,2, . . .n−1. Knowing this property is particularly useful, because the
image of maximal abelian normal subgroups under automorphism are maximal abelian
normal subgroups.
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Example 3.4. Let G =UT4(Q). The subgroup N2,3 has elements of the form

N2,3 =




1 0 a1,3 a1,4

0 1 a2,3 a2,4

0 0 1 0
0 0 0 1

 : ai, j ∈Q

 .

It is a maximal abelian subgroup isomorphic to Q4. This subgroup is also a characteristic
subgroup of G, proof of this fact can be found in [20] or [17].

3.1.2 Ring of niltriangular matrices and automorphism group

The unitriangular group UTn(Q) is isomorphic to the associated group (with multiplication
a◦b = a+b+ab) of the ring NTn(Q) of upper niltriangular matrices of degree n over Q, ie,
all entries on and below the main diagonal are zero. See [20] and [17].

NTn(Q)=




0 ∗ ∗ . . . ∗
0 0 ∗ . . . ∗
0 0 0 . . . ∗
. . . . . . . . . . . . ∗
0 0 0 . . . 0


n×n

: all star-marked entries vary arbitrarily over Q


.

The notation for this group is (NTn(Q),◦) and the isomorphism is given by x 7→ 1n + x, for
x ∈ NTn(Q) and 1n the identity matrix of size n. In the literature, authors typically prefer
to work within the ring NTn(Q) (for instance [20],[17]). Accordingly, we will adopt this
notation when stating the theorems that will be used in our analysis and whenever the group
UTn(Q) is under consideration, it will be specified.

In [17] Levchuk provided a complete description of the automorphisms of the associated
group of NTn(K), where K is an associative ring with identity, and also specified the structure
in the case where the underlying ring is commutative in which the element 2 is invertible.
We will state this particular case and then focus on working over the field Q.

Let K be a commutative ring in which the element 2 is invertible. In order to state the
characterization theorem for the automorphism group of the associated group of NTn(K) we
begin by describing some automorphisms of this group.



38 Unitriangular matrices over Q

For i < j and x ∈ K we define the matrix unit xεi, j to be the n×n matrix with x in the
(i j) position and 0 elsewhere. The relations on the associated group are

(xεi, j)◦ (yεi, j) = (x+ y)εi, j, (3.1)

[xεi, j,yεk,l] =


xyεi,l whenever j = k,

−xyεk, j whenever i = l,

0 otherwise,

(3.2)

from the relations above it follows, that a set of generators for NTn(K) is of the form xεi,i+1,
x ∈ K and i = 1,2, . . . ,n−1.

Transformations of the elementary matrices in NTn(K) can be extended to an automor-
phism of the associated group, provided that the transformation preserves relations (3.1) and
(3.2), for details see [17] Lemma 3.

Now we will present some examples of automorphisms of the associated group of the
ring. We present them as action on the generators xεi,i+1 and they can be extended using
relation (3.2), for i = 1,2, . . . ,n−1. The automorphisms are as follows:

1. Inner automorphisms: We will denote by J the subgroup of inner automorphisms
of the associated group. For an invertible matrix A = (ai, j) ∈ NTn(K), the inner
automorphism induced by A is defined by

X 7→ A−1 ◦X ◦A,

where X ∈ NTn(K);

2. Diagonal automorphisms: We will denote by D the subgroup of diagonal automor-
phisms. For a diagonal matrix diag [d1, . . . ,dn], where each di is invertible, i = 1, . . . ,n,
the diagonal automorphism induced by diag [d1, . . . ,dn] is given by

εi, j 7→ d−1
i εi, jd j;

3. Central automorphisms: The subgroup of central automorphisms will be denoted by
Z , it is generated by the automorphisms

xεi,i+1 7→ xεi,i+1 + xλ
ε1,n,
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where λ is a linear map of K+ to itself;

4. Extremal Automorphisms: We will denote by U the subgroup of extremal automor-
phisms, these automorphisms are given by the rule,

xε1,2 → x(ε1,2 +λε2,n)+
λx2

2
ε1,n,

xεn−1,n → x(εn−1,n +µε1,n−1)+
µx2

2
ε1,n, x ∈ K,

for λ ,µ running through K. All other generators remain fixed;

5. Field Automorphisms: We will denote by Aut(K) the subgroup formed by induced
field automorphisms. It is generated by the automorphisms

xεi,i+1 7→ xµ
εi,i+1,

where µ is a field automorphism and i = 1, . . . ,n−1;

6. Flip Automorphisms: Let W denote the subgroup generated by the flip automorphism
which is given by

xεi, j 7→ (−1)i− j−1xεn− j+1,n−i+1.

This automorphism is given by flipping the matrix by the anti-diagonal and changing
the sign of some entries. This is an automorphism of order 2.

Now we state the theorem of characterization of the automorphism group of NTn(K).

Theorem 3.1 ([17], Corollary 5). Let K be a commutative ring in which the element 2 is
invertible. Then the group of automorphism of the associated group of NTn(K) coincides
with the product

(Z⋊GL2(K))⋊Aut(K),

for n = 3, and for n > 3, coincides with the product

((((ZJ )⋊U)⋊W )⋊D)⋊Aut(K).

We consider the particular case where the field is the rational numbers Q. This allows
to give a conciser decomposition of its automorphism group. It is well known that the only
field automorphism in Q is the trivial one. So as a corollary of the above discussion and the
mentioned results we have.
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Corollary 3.1. The group of automorphism of Aut((NTn(Q),◦)) coincides with the product

((((ZJ )⋊U)⋊W )⋊D,

for n > 3 and coincides with the product

Z⋊GL2(Q),

for n = 3.

The corollary above describes the automorphism group of the associated group (NTn(Q),◦).
As previously mentioned, authors in the literature generally prefer to work in the associated
group (NTn(Q),◦). For this reason, we stated the existing theorems in terms of the associated
group. However, it is straightforward to verify that the analogous results hold for the case of
UTn(Q). We now proceed to argue that the automorphism group of the unitriangular group
UTn(Q) can also be described analogously.

It was mentioned that the map from the associated group (NTn(Q),◦) to the group
(UTn(Q), ·) with operation · matrix multiplication, defined by x 7→ 1+ x is an isomorphism
of groups. Let us denote this isomorphism by

θ : (NTn(Q),◦)→ (UTn(Q), ·)
x 7→ 1+ x.

Since xεi,i+1, x ∈Q and i = 1,2, . . . ,n−1, is a set of generators for (NTn(Q),◦), their image
by θ is also a set of generators of UTn(Q). Observe that in our notation, (xεi,i+1)

θ = xei,i+1.
Define a map

Φ : Aut((NTn(Q),◦))→ Aut((UTn(Q), ·))
α 7→ θαθ

−1.

The map Φ is easily seen to be a homomorphism. It has the inverse θ
−1

αθ , so it follows
that Φ is an isomorphism. In this way, we obtain a decomposition for the unitriangular group
analogous to the one in Corollary 3.1. Moreover, to describe its automorphisms, it suffices to
apply Φ. We illustrate the case for central automorphisms, the others automorphisms behave
in the same way.

Example 3.5. Let z ∈ Z be a central automorphism of (NTn(Q),◦) generated by the auto-
morphisms xεi,i+1 7→ xεi,i+1+xλ

ε1,n, where λ is a linear map of Q+ to itself. In (UTn(Q), ·),
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the central automorphism zΦ has the following action on generators,

(xei,i+1)
zΦ

= (xei,i+1)
θzθ−1

= ((−1)+ xei,i+1)
θz = (xεi,i+1)

θz =

= (xεi,i+1 + xλ
ε1,n)

θ = 1+(xεi,i+1 + xλ
ε1,n),

for x ∈Q. So the central automorphism zΦ of (UTn(Q), ·) is defined by

xei,i+1 7→ 1+(xεi,i+1 + xλ
ε1,n).

In this way, the passage of automorphisms between (NTn(Q),◦) and (UTn(Q), ·) is
clear. In the remainder of the text, the notation becomes increasingly heavy, and to improve
readability, we will omit explicit references to the application Φ.

We present an example containing the image of central, extremal and flip automorphisms
for a specific element.

Example 3.6. Let x ∈UT4(Q), such that

x =


1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

=




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1





1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

In term of ei,i+1 notation, we have x = [e1,2,e2,3]e2,3e1,2. This is the decomposition of x in
terms of the generators ei,i+1.

1. We apply the central automorphism z given by

xei,i+1 7→ 1+(xεi,i+1 + xε1,n),

so the elements of the decomposition of x are mapped to

ez
1,2 = 1+(ε1,2 + ε1,4),

ez
2,3 = 1+(ε2,3 + ε1,4),

[e1,2,e2,3]
z = 1+([ε1,2 + ε1,4,ε2,3 + ε1,4]) =

= 1+(([ε1,2,ε2,3])+([ε1,2,ε1,4])+([ε1,4,ε2,3])+([ε1,4,ε1,4])) =

= 1+ ε1,3.
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We can now compute the image of x by z.

xz =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1




1 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1

=


1 1 1 2
0 1 1 0
0 0 1 0
0 0 0 1

 .

2. We apply the flip automorphism w given by

xεi, j 7→ (−1)i− j−1xεn− j+1,n−i+1.

so the elements of the decomposition of x are mapped to

ew
1,2 = 1+ ε3,4,

ew
2,3 = 1+ ε2,3,

ew
1,3 = 1+(−1)ε2,4.

We can now compute the image of x by z.

xw =


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 1




1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

=


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

3. We apply the extremal automorphism u given by

xε1,2 → x(ε1,2 + ε2,4)+
x2

2
ε1,4.

All other generators remain fixed. So the elements of the decomposition of x are
mapped to

ew
1,2 = 1+(ε1,2 + ε2,4 +

1
2

ε1,4),

ew
2,3 = 1+ ε2,3,
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[e1,2,e2,3]
z = 1+([ε1,2 + ε2,4 +

1
2

ε1,4),ε2,3]) =

= 1+(([ε1,2,ε2,3])+([ε2,4,ε2,3])+([
1
2

ε1,4,ε2,3])) =

= 1+ ε1,3.

We can now compute the image of x by z.

xu =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1




1 1 0
1
2

0 1 0 1
0 0 1 0
0 0 0 1

=


1 1 1

1
2

0 1 1 0
0 0 1 0
0 0 0 1

 .

Understanding the automorphism group will be extremely useful for studying the orbits.
Recall that if A ≤ Aut(G) acts in G, the action partitions G into orbits. In this sense, it
will be convenient to select an element from each orbit and write T for the resulting set
representatives. Then G is the disjoint union

G =
⋃
t∈T

OrbG(t).

This motivates the definition,

Definition 3.4. The set of elements of T are called orbit representatives to the action of A in
G.

We conclude the general overview section with a useful property.

Proposition 3.4. Let X ∈UTn(Q). If an entry on the first superdiagonal of X is nonzero, it
cannot be transformed to zero via conjugation by a diagonal or unitriangular matrix.

Proof. The group UTn(Q) can be viewed as a subgroup of GLn(Q). In this context, it is
known that its normalizer is Tn(Q), the group of upper triangular matrices of dimension n×n
over Q (for details see [1]). In particular, this subgroup decomposes as the semidirect product

Tn(Q) =UTn(Q)⋊Dn(Q),

were Dn(Q) is the subgroup of n×n diagonal matrices over Q. We will analyze the action of
the normalizer on UTn(Q) and on its corresponding abelianization.
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Let T ∈ Tn(Q), then T =UD, for U ∈UTn(Q) and D ∈ Dn(Q). Moreover U = 1+N,
where 1 is the identity matrix and N is a nilpotent matrix, such that Nn = 0. Therefore,

U−1 = (1+N)−1 = 1+
n−1

∑
k=1

(−1)kNk = 1−N +N2 −·· ·+(−1)n−1Nn−1.

Thus T−1 = D−1U−1 can be computed and

T−1XT = D−1(U−1XU)D,

can also be computed.
Set X = (xi, j)∈UTn(Q), U = (ai, j)∈UTn(Q), D = diag [d1, . . . ,dn] and T−1XT = (bi j).

The formula above allows us to compute all entries of the matrix T−1XT . However, as
the entries move further from the diagonal, the expression becomes increasingly complex.
Nonetheless, the first and second superdiagonals can be calculated with relative ease. By
applying the matrix multiplication algorithm, we obtain the following values in the entries of
the first and second superdiagonals of the resulting matrix repectively,

bi,i+1 =
di+1

di
xi,i+1, (3.3)

bii+2 =
ai+1,i+2xi,i+1di+1 +di+1di+2xi,i+2 −ai,i+1xi+1,i+2di+2

didi+1
. (3.4)

Note that the entries on the first superdiagonal are not affected by the matrix U , they only
depend on elements of D, which are nonzero. This means that if an entry of X on the first
superdiagonal is nonzero, it cannot be transformed to zero via conjugation by a diagonal or
unitriangular matrix.

3.2 The unitriangular group UT3(Q)

With the previous section, we now have a description of the automorphism group of UTn(Q).
To compute the number of orbits, it remains to analyze the action on suitable elements and
determine how they relate under automorphism. In this section we prove,

Theorem 3.2. The unitriangular group UT3(Q) has 3 automorphism orbits.
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Proof. Let G :=UT3(Q). We show that elements in G′ \{1} and G\G′ coincide with the
two non trivial automorphism orbits. If x,y ∈ G′ \{1}, for

x =

1 0 x1,3

0 1 0
0 0 1

 ,y =

1 0 y1,3

0 1 0
0 0 1

 ,

it is clear that there is a diagonal matrix A given by

A =

x1,3 0 0
0 1 0
0 0 y1,3

 ,

such that xA = y. Since G′ is a characteristic subgroup, its non trivial elements form an
automorphism orbit. Now we analyze elements in G\G′. Set

x =

1 x1,2 x1,3

0 1 x2,3

0 0 1

 ∈ G\G′.

We now proceed by considering three distinct cases. First assume x1,2 ̸= 0 and x2,3 = 0.
Conjugation by matrix A yields

A =

1 0 0
0 x−1

1,2 −x1,3x−1
1,2

0 0 1

 , xA =

1 1 0
0 1 0
0 0 1

= B1.

Similarly assume x1,2 = 0 and x2,3 ̸= 0. Conjugation by matrix A yields

A =

1 x1,3x−1
2,3 0

0 1 0
0 0 x−1

2,3

 , xA =

1 0 0
0 1 1
0 0 1

= B2.

Now assume x1,2 ̸= 0 and x2,3 ̸= 0. Conjugation by matrix A yields

A =

1 0 0
0 x−1

1,2 x1,3(x2
1,2x2,3)

−1

0 0 (x2,3x1,2)
−1

 , xA =

1 1 0
0 1 1
0 0 1

= B3.
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Now we construct automorphisms that connects the three matrices B1, B2, B3 above. In [17]
Levchuk states that in Q automorphism, up to multiplication by a central automorphism, has
the form

1+ xε1,2 → 1+

(
x(a1,1ε1,2 +a1,2ε2,3)+

a1,1a1,2x2

2
ε1,3

)
,

1+ xε2,3 → 1+

(
x(a2,1ε1,2 +a2,2ε2,3)+

a2,1a2,2x2

2
ε1,3

)
, x ∈Q,

where (ai, j) ∈ GL2(Q). We can choose two following matrices that serve, up to conjugation
by triangular matrix, to connect these elements

A1 =

(
1 0
1 1

)
,A2 =

(
0 1
1 0

)
∈ GL2(Q).

In other words, A1 sends B2 to B3 and A2 sends B2 to B1. This proves that G\G′ forms an
automorphism orbit. Thus ω(G) = 3.

3.3 The unitriangular group UT4(Q)

In this section we prove,

Theorem 3.3. The unitriangular group UT4(Q) has 9 automorphism orbits and 16 orbits
under the action of T4(Q). Furthermore the number of orbits in the following characteristic
subgroups are

{1} γ3 γ2 N2,3 G

Aut(G) 1 2 4 5 9

T4(Q) 1 2 5 7 16

Table 3.1 Number of orbits for n = 4.

In the table each row corresponds to a specific group of automorphisms acting on the
group, while each column represents a characteristic subgroup. For instance, under the action
of T4(Q), the characteristic subgroup γ2 has 5 distinct orbits.

Proof. First, we outline the strategy used. We establish a partition for UT4(Q) and for each
subset of the partition, we will present a finite number of orbit representatives. The approach
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involves taking an arbitrary element from the subset and constructing an automorphism that
maps this element to the representative. It is worth noting that another interesting problem is
to count the number of orbits under the action of conjugation by triangular matrices, since
finite number of orbits under the action of conjugation by triangular matrices implies finite
automorphism orbits. So we will first consider the action of T4(Q).

Consider the following partition of UT4(Q)

UT4(Q) = Y1 ∪Y2 ∪Y3 ∪Y4 ∪Y5 ∪Y6 ∪Y7 ∪Y8,

where

Y1 =




1 0 x1,3 x1,4

0 1 0 x2,4

0 0 1 0
0 0 0 1

 : xi, j ∈Q

 ,

Y2 =




1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

 : xi, j ∈Q,x1,2,x2,3,x3,4 ̸= 0

 ,

Y3 =




1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0
0 0 0 1

 : xi, j ∈Q,x1,2,x2,3 ̸= 0

 ,

Y4 =




1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1

 : xi, j ∈Q,x1,2,x3,4 ̸= 0

 ,

Y5 =




1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 0
0 0 0 1

 : xi, j ∈Q,x1,2 ̸= 0

 ,

Y6 =




1 0 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0
0 0 0 1

 : xi, j ∈Q,x2,3 ̸= 0

 ,
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Y7 =




1 0 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

 : xi, j ∈Q,x2,3,x3,4 ̸= 0

 ,

Y8 =




1 0 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1

 : xi, j ∈Q,x3,4 ̸= 0

 .

This partition was motivated by the analysis in Propposition 3.4, since conjugation by
triangular matrices modifies the entries in the first superdiagonal, but does not send a non
zero entry to zero. Note that each subset of the partition corresponds to a union of cosets in
the quotient group G/G′. So the conjugacy classes of elements in one subset Yi remains in Yi,
for 1 ≤ i ≤ 8.

•Claim 1. The number of orbits under the action of T4(Q) is finite.

Let T4(Q) act on G, this action partitions G into orbits {Oi}i∈I . To prove this claim, we
proceed as follows: we take an arbitrary element from one of the subsets Yi in the partition
and find a triangular matrix A ∈ T4(Q) such that, upon conjugation by A, we obtain a finite
set of elements of UT4(Q), where

A =


d1 a1,2 a1,3 a1,4

0 d2 a2,3 a2,4

0 0 d3 a3,4

0 0 0 d4

 .

This means that we consider a finite partition in which each subset is infinite, and for each
subset, we find a finite set of elements such that any element in the subset can be mapped to
one of these representatives by conjugation.

Since Y1 corresponds to the derived subgroup, it is expected to contain several other
characteristic subgroups. For this reason, we will treat Y1 last. In what follows we provide an
extended explanation for the first case and the other cases are analogous.
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Subset Y2:

The subset Y2 has elements of the form

x =


1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

 ,

where x1,2,x2,3,x3,4 are non zero. We want to find entries of matrix A such that

xA =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

We computed xA = (bi j) ∈UT4(Q) and obtained the following entries

b1,1 = 1,b2,2 = 1,b3,3 = 1,b4,4 = 1,

b1,2 =
d2x1,2

d1
,b1,3 =

a2,3d2x1,2 +d2d3x1,3 −a1,2d3x2,3

d1d2
,

b1,4 =
a2,4d2d3x1,2 +a3,4d2d3x1,3 +d2d3d4x1,4 −a1,2a3,4d3x2,3 −a1,2d3d4x2,4 +a1,2a2,3d4x3,4 −a1,3d2d4x3,4

d1d2d3
,

b2,3 =
d3x2,3

d2
,b2,4 =

a3,4d3x2,3 +d3d4x2,4 −a2,3d4x3,4

d2d3
,b3,4 =

d4x3,4

d3
.

To find the matrix A, we equate the corresponding entries bi j with those of the candidate
representative and set up a system of equations. Solving this system of equations we found
that matrix A can defined by

d1 = 1,d2 =
1

x1,2
,d3 =

1
x1,2x2,3

,d4 =
1

x1,2x2,3x3,4
,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 =
−x1,3

x2
1,2x2,3

,

a2,4 =−
x1,2x1,4x2,3 − x1,2x1,3x2,4 − x2

1,3x3,4

x3
1,2x2

2,3x3,4
,a3,4 =−

x1,2x2,4 + x1,3x3,4

x2
1,2x2

2,3x3,4
.

This means that all elements of Y2 can be mapped to the matrix above via conjugation by an
appropriate matrix. Most of the subsets Yi can be treated in the same manner, following the
general procedure outlined above.
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Subset Y3:

x =


1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0
0 0 0 1

 ,xA =


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


Where matrix A is defined by

d1 = 1,d2 =
1

x1,2
,d3 =

1
x1,2x2,3

,d4 = 1,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 =
−x1,3

x2
1,2x2,3

,a2,4 =
x2,4x1,3 − x1,4x2,3

x1,2x2,3
,a3,4 =

−x2,4

x2,3
.

Subset Y4:

A few specific cases require a more detailed analysis. The initial idea for Y4 was to proceed
as in the previous case, however we were unable to identify a single representative to which
all elements could be conjugated. As a result, we divided the analysis into a few separate
cases to account for the distinct behaviors observed. First assume x1,2x2,4 + x1,3x3,4 ̸= 0 and
x1,3 ̸= 0.

x =


1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 x35

0 0 0 1

 ,xA =


1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 =
1

x1,2
,d3 =

x3,4

x1,2x2,4 + x1,3x3,4
,d4 =

1
x1,2x2,4 + x1,3x3,4

,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 =
x2,4

x1,2x2,4 + x1,3x3,4
,a2,4 = 0,a3,4 =−

x1,4

x1,2x1,3x2,4 + x2
1,3x3,4

.

Now assume x1,2x2,4 + x1,3x3,4 ̸= 0 and x1,3 = 0.

x =


1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,5

0 0 0 1

 ,xA =


1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
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Where matrix A is defined by

d1 = 1,d2 =
1

x1,2
,d3 =

x3,4

x1,2x2,4
,d4 =

1
x1,2x2,4

,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 =
1

x1,2
,a2,4 =

−x1,4

x2
1,2x2,4

,a3,4 = 0.

Now assume x1,2x2,4 + x1,3x3,4 = 0 and x1,3 ̸= 0.

x =


1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1

 ,xA =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 =
1

x1,2
,d3 = 1,d4 =

1
x3,4

,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 =−
x1,3

x1,2
,a2,4 = 0,a3,4 =−

x1,4

x1,3x3,4
.

Now assume x1,2x2,4 + x1,3x3,4 = 0 and x1,3 = 0.

x =


1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1

 ,xA =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 =
1

x1,2
,d3 = 1,d4 =

1
x3,4

,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 = 0,a2,4 =−
x1,4

x1,2x3,4
,a3,4 = 0.

Subset Y5:

x =


1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 0
0 0 0 1

 ,xA =


1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .
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Where matrix A is defined by

d1 = 1,d2 =
1

x1,2
,d3 = 1,d4 =

1
x1,2x2,4

,

a1,2 =
x1,4

x1,2x2,4
,a1,3 = 0,a1,4 = 0,a2,3 =

−x1,3

x1,2
,a2,4 = 0,a3,4 = 0.

x =


1 x1,2 x1,3 x1,4

0 1 0 0
0 0 1 0
0 0 0 1

 ,xA =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 =
1

x1,2
,d3 = 1,d4 = 1,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 =
−x1,3

x1,2
,a2,4 = 0,a3,4 =

−x1,4

x1,3
.

Subset Y6:

First assume x1,4x2,3 − x1,3x2,4 ̸= 0.

x =


1 0 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0
0 0 0 1

 ,xA =


1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = 1,d3 =
1

x2,3
,d4 =−

x2,3

x1,4x2,3 − x1,3x2,4
,

a1,2 =
x1,3 − x2,3

x2,3
,a1,3 = 0,a1,4 = 0,a2,3 = 0,a2,4 = 0,a3,4 =

x1,4x2,3 − (x1,3 − x2,3)x2,4

x1,4x2
2,3 − x1,3x2,3x2,4

.

Now assume x1,4x2,3 − x1,3x2,4 = 0.

x =


1 0 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0
0 0 0 1

 ,xA =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 .
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Where matrix A is defined by

d1 = 1,d2 = 1,d3 =
1

x2,3
,d4 = 1,

a1,2 =
x1,3

x2,3
,a1,3 = 0,a1,4 = 0,a2,3 = 0,a2,4 = 0,a3,4 =−

x2,4

x2,3
.

Subset Y7:

First assume x1,3 ̸= 0.

x =


1 0 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

 ,xA =


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = 1,d3 =
1

x2,3
,d4 =

1
x2,3x3,4

,

a1,2 =
x1,3

x2,3
,a1,3 = 0,a1,4 = 0,a2,3 =

−x1,4x2,3 + x1,3x2,4

x1,3x2,3x3,4
,

a2,4 = 0,a3,4 =
−x1,4

x1,3x2,3x3,4
.

Now assume x1,3 = 0.

x =


1 0 0 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

 ,xA =


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = 1,d3 =
1

x2,3
,d4 =

1
x2,3x3,4

,

a1,2 = 0,a1,3 =
x1,4

x2,3x3,4
,a1,4 = 0,a2,3 = 0,a2,4 = 0,

a3,4 =
−x2,4

x2
2,3x3,4

.
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Subset Y8:

First assume x1,3 ̸= 0.

x =


1 0 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1

 ,xA =


1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = 1,d3 =
1

x1,3
,d4 =

1
x1,3x3,4

,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 =
x2,4

x1,3x3,4
,

a2,4 = 0,a3,4 =
−x1,4

x2
1,3x3,4

.

Now assume x1,3 = 0.

x =


1 0 0 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1

 ,xA =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = 1,d3 = 1,d4 =
1

x3,4
,

a1,2 = 0,a1,3 =
x1,4 − x3,4

x3,4
,a1,4 = 0,

a2,3 =
x2,4

x3,4
,a2,4 = 0,a3,4 = 0.

Subset Y1:

In this case, the set corresponds to the derived subgroup. Therefore, we will divide the
analysis into cases according to the form of the matrix. First consider elements x ∈ Y1 of the
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form, where x1,4 ̸= 0

x =


1 0 0 x1,4

0 1 0 0
0 0 1 0
0 0 0 1

 ,xA =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

Where matrix A is defined by

d1 = x1,4,d2 = 1,d3 = 1,d4 = 1,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 = 0,a2,4 = 0,a3,4 = 0.

Now consider elements x ∈ Y1 of the form, where x1,3 ̸= 0.

x =


1 0 x1,3 x1,4

0 1 0 0
0 0 1 0
0 0 0 1

 ,xA =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = 1,d3 =
1

x1,3
,d4 = 1,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 = 0,a2,4 = 0,a3,4 =
−x1,4

x1,3
.

Now consider elements x ∈ Y1 of the form, where x1,3,x2,4 ̸= 0.

x =


1 0 x1,3 x1,4

0 1 0 x2,4

0 0 1 0
0 0 0 1

 ,xA =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = 1,d3 =
1

x1,3
,d4 =

1
x2,4

,

a1,2 = 0,a1,3 = 0,a1,4 = 0,a2,3 = 0,a2,4 = 0,a3,4 =
−x1,4

x1,3x2,4
.
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Finally consider elements x ∈ Y1 of the form, where x2,4 ̸= 0.

x =


1 0 0 x1,4

0 1 0 x2,4

0 0 1 0
0 0 0 1

 ,xA =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

Where matrix A is defined by

d1 = 1,d2 = x2,4,d3 = 1,d4 = 1,

a1,2 = x1,4,a1,3 = 0,a1,4 = 0,a2,3 = 0,a2,4 = 0,a3,4 = 0.

All cases have been computed and we found that every element of UT4(Q) can be
conjugated to an element of the set S, where

S =

{
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ,


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ,


1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1


}
∪{1}.

This proves Claim 1.

•Claim 2. There are 16 orbits under the action of T4(Q).

It has already been mentioned that the orbits under the action of T4(Q) remain within
each Yi. Therefore, to verify that the elements in the set S form a set of orbit representatives,
it suffices to check that the conjugacy class under the action of T4(Q) of a specific element
does not contain any other element of the set S . We will present a specific case, as the others
follow in an analogous manner.
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The conjugacy class of the candidate for orbit representative in Y5
1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

has the form 
1

d2

d1

a2,3

d1

a2,4d2 −a1,2d4

d1d2

0 1 0
d4

d2
0 0 1 0
0 0 0 1

 ,

for d1,d2,d4 ∈ Q \ {0} and a1,2,a2,3,a2,4 ∈ Q. Notice that this conjugacy class does not
contain 

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

once d4 is nonzero. So both elements belong to different orbits under the action of T4(Q).
Upon doing all calculations, this proves that the set S is a set of orbit representatives for

the action of T4(Q), so Claim 2 is proved. In particular, this also shows that the number of
automorphism orbits for n = 4 is finite.

•Claim 3. ω(UT4(Q))≤ 9.

Now to prove that the number of automorphism orbits is at least 9 we will use our
understanding of the automorphisms and attempt to connect the representatives through their
action. For instance, using the central automorphism xei,i+1 7→ xei,i+1+xe1n, and conjugation
we were able to connect e2,3 7→ e2,4e2,3e1,2.

e2,3 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 7→cent


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 7→conjug


1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

= e2,4e2,3e1,2



58 Unitriangular matrices over Q

Using extremal and conjugation automorphism we were able to connect e3,4e1,2 and
e3,4e−1

1,3e1,2.

e3,4e1,2 =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 7→extr


1 1 −1 −1

2
0 1 0 0
0 0 1 1
0 0 0 1

 7→conjug


1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

= e3,4e−1
1,3e1,2

e1,2 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 7→extr


1 1 0

1
2

0 1 0 1
0 0 1 0
0 0 0 1

 7→conjug


1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

= e2,4e1,2

Using flip automorphism we were able to connect e1,3 7→ e2,4 and e1,2 7→ e2,4e1,2.

e1,3 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 7→flip


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

= e2,4

Using flip and conjugation automorphism we were able to connect e3,4e1,2 7→ e3,4e−1
1,3e1,2

and e3,4 7→ e1,2.

e2,3e1,2 =


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 7→flip


1 0 0 0
0 1 1 1
0 0 1 1
0 0 0 1

 7→conjug


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

= e3,4e2,3

e1,2 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 7→flip


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

= e3,4
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e2,4e1,2 =


1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 7→flip


1 0 −1 0
0 1 0 0
0 0 1 1
0 0 0 1

 7→conjug


1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

= e3,4e1,3

We obtain the following connections between elements.

{e1,4},{e1,3,e2,4},{e2,4e1,3},
{e3,4e2,3e1,2},{e2,3e1,2,e3,4e2,3},
{e3,4e−1

1,3e1,2,e3,4e1,2},

{e3,4,e1,2,e2,4e1,2,e3,4e1,3},
{e2,4e2,3e1,2,e2,3}.

This implies that we have at most 9 orbits automorphism orbits. And the possible orbit
representatives are:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

•Claim 4. ω(UT4(Q)) = 9.
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It is not possible to connect the remaining representatives. Consider the following
elements: e1,4,e1,3,e2,4e1,3,e2,3,e2,3e1,2,e1,2,e3,4e1,2,e3,4e2,3e1,2, they are respectively:

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ γ3 \{e},


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ∈ γ2 \ γ3,


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ∈ N2,3 \ γ2,


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ∈ G\N2,3 .

Let us show that each element is in a distinct orbit under automorphisms. We can restrict the
analysis to check whether e1,3,e2,4e1,3 share the same orbit and whether e2,3e1,2,e1,2,e3,4e1,2,e3,4e2,3e1,2

share the same orbit.
Note that e1,3 belongs to the subgroup γ2 ∩N1,2. The subgroup N1,2 can only be mapped

to itself or to the other maximal abelian subgroup N3,4. Thus, given an automorphism
α ∈ Aut(G), we have that eα

1,3 ∈ γ2 ∩N1,2 or eα
1,3 ∈ γ2 ∩N3,4. On the other hand, the element

e2,4e1,3 does not belong to any of these subgroups, so they cannot be in the same orbit under
automorphisms.

Now, note that the element e1,2 ∈ N1,2, and since N1,2 is a maximal abelian subgroup, its
image under an automorphism belongs to N1,2 or N3,4. The other elements e2,3e1,2,e3,4e1,2,e3,4e2,3e1,2

do not belong to these subgroups, so e1,2 does not share its orbit under automorphisms with
the other elements. Moreover, since e2,3e1,2 ∈ N2,3N1,2 \N2,3, applying α ∈ Aut(G) we have
that

(e2,3e1,2)
α = eα

2,3eα
1,2.
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We have already seen that eα
2,3eα

1,2 belongs to N2,3N1,2 or N2,3N3,4. Finally, note that
e3,4e1,2 ∈ N3,4N1,2 and, under an automorphism, it can only be mapped to elements in
N3,4N1,2. Therefore, e2,3e1,2, e3,4e1,2, and e3,4e2,3e1,2 are in distinct orbits.

This proves,

Theorem D. The unitriangular group UTn(Q) has finitely many automorphism orbits for
n < 5. In particular, ω(UT3(Q)) = 3 and ω(UT4(Q)) = 9.

3.4 The unitriangular group UT5(Q)

In this section we prove,

Theorem E. The unitriangular group UT5(Q) has finitely many automorphism orbits. More-
over, the number of orbits under the action of T5(Q) is 61.

Proof. We already have an algorithm to find representatives of orbits under the action of
conjugation by T5(Q), so we will restrict our analysis to this action. Note that if the action
of T5(Q) yields finitely many orbits, then the action of Aut(UT5(Q)) also produces finitely
many orbits.

We will first proceed in a manner analogous to the previous case. Consider the following
partition of UT5(Q)

UT5(Q) =Y1 ∪Y2 ∪Y3 ∪Y4 ∪Y5 ∪Y6 ∪Y7 ∪Y8 ∪Y9 ∪Y10 ∪Y11∪
∪Y12 ∪Y13 ∪Y14 ∪Y15 ∪Y16,

where

Y1 =




1 0 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q


,

Y2 =




1 x1,2 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q, x1,2 ̸= 0


,
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Y3 =




1 0 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q, x2,3 ̸= 0


,

Y4 =




1 x1,2 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q, x1,2,x2,3 ̸= 0


,

Y5 =




1 0 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x2,3,x4,5 ̸= 0


,

Y6 =




1 0 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q, x2,3,x3,4 ̸= 0


,

Y7 =




1 x1,2 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q, x1,2,x2,3,x3,4 ̸= 0


,

Y8 =




1 x1,2 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x1,2,x4,5 ̸= 0


,

Y9 =




1 x1,2 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x1,2,x2,3,x4,5 ̸= 0


,
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Y10 =




1 x1,2 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x1,2,x2,3,x3,4,x4,5 ̸= 0


,

Y11 =




1 0 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 0 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x4,5 ̸= 0


,

Y12 =




1 0 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q, x3,4 ̸= 0


,

Y13 =




1 0 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x3,4,x4,5 ̸= 0


,

Y14 =




1 x1,2 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 0
0 0 0 0 1

 : xi, j ∈Q, x1,2,x3,4 ̸= 0


,

Y15 =




1 0 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x2,3,x3,4,x4,5 ̸= 0


,

Y16 =




1 x1,2 x1,3 x1,4 x1,5

0 1 0 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 x4,5

0 0 0 0 1

 : xi, j ∈Q, x1,2,x3,4,x4,5 ̸= 0


.
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•Claim 1. The number of orbits under the action of T5(Q) is finite.

We proceeded in an analogous manner of UT4(Q): for each subset of the partition, we
identified a finite set of orbit representatives under the action of T5(Q). This was done by
selecting an element x ∈ Yi, 1 ≤ i ≤ 16, and finding a matrix A ∈ Tn(Q) that conjugates it to
a chosen representative.

A =


d1 a1,2 a1,3 a1,4 a1,5

0 d2 a2,3 a2,4 a2,5

0 0 d3 a3,4 a3,5

0 0 0 d4 a4,5

0 0 0 0 d5


However, determining these representatives required a case-by-case analysis. We had to
consider the cases where each entry is either zero or nonzero in order to solve the system
of equations, this leads to a large number of cases. Moreover, there are more equations
than in the case for dimension 4. Therefore, we used software SageMath [24] to solve these
systems of equations. The solve1 function solves equations. To use it, first we specify some
variables; then the arguments to solve are a system of equations, together with the variables
for which to solve.

For instance, we want to find matrix A that conjugates element

x =


1 x1,2 0 0 0
0 1 x2,3 0 0
0 0 1 x3,4 0
0 0 0 1 x45

0 0 0 0 1

 ∈ Y10 to y =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 .

The entries of the matrix xA are functions of the variables dk and ai, j, for 1 ≤ k ≤ 5 and
1 ≤ i < j ≤ 5. We equate these entries with the corresponding entries of y. This defines a
system of 10 equations, which we denote by eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9,
and eq10. We use the solve function with this set of equations as input to solve for the
variables dk and ai, j. The code used to call the function is:

solve( [eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10],
d1,d2,d3,d4,d5,a12,a13,a14,a15,a23,a24,a25,a34,a35,a45)

1https://doc.sagemath.org/html/en/tutorial/tour_algebra.html

https://doc.sagemath.org/html/en/tutorial/tour_algebra.html
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The output is

d1 = 1,d2 =
1

x1,2
,d3 =

1
x1,2x2,3

,d4 =
1

x1,2x2,3x3,4
,d5 =

1
x1,2x2,3x3,4x45

,

a1,2 = 0,a1,3 = 1,a1,4 = 1,a1,5 = 1,

a2,3 = 0,a2,4 =
1

x1,2
,a2,5 =

1
x1,2

,

a3,4 = 0,a3,5 =
1

x1,2x2,3
,

a4,5 = 0.

It can be easily verified that the matrix A with those entries satisfy xA = y.
The computations involved for all the cases are quite extensive, and for the sake of

readability, they are presented in full in the Appendix. Our work can be reproduced, we
provide the code with all systems of equations on the GitHub repository2.

Based on the computations presented in the Appendix, we established a finite list of
candidates for orbit representatives in UT5(Q) for the action of T5(Q). This proves Claim 1.

•Claim 2. The number of orbits under the action of T5(Q) is 61.

To determine a valid set of representatives, further argumentation is required. Consider
the characteristic series,

{1}− γ4 − γ3 −N24 − γ2 −G.

The elements of Y1 are precisely the elements of γ2. To determine a set of orbit represen-
tatives in γ2 for the action of T5(Q), we take all the candidates and verify whether there exists
a matrix that conjugates one into another. If no such matrix exists, it means they belong
to different orbits. All the subgroups mentioned above are normal, so they do not share
orbits under T5(Q). Therefore, it suffices to verify whether the candidate representatives are
connected to the others within the same subset. This can be done computing the conjugacy
class of a specific element and observing that it doesn’t contain any other element of the list.
We will now explicit the representatives.

The orbits representatives in γ4 are

2https://github.com/juhmit/unitriangular_n5.git

https://github.com/juhmit/unitriangular_n5.git
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
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in γ3 \ γ4 are


1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in N24 \ γ3 are


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 1 0
0 1 0 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in γ2 \N24 are


1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 1 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 .

The final case G\ γ2 is more intricate as it involves all elements from Yi, for i = 2, . . . ,16.
Therefore, it becomes necessary to organize the group in an appropriate way, we will focus
on certain subgroups, mainly the maximal abelian normal subgroups N1,2,N2,3,N3,4,N4,5, the
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characteristic subgroup γ2, and products between them. Denote

N1,2 := H1,

N2,3 := H2,

N3,4 := H3,

N4,5 := H4,

γ2 := Z3.

In the appendix, we present the calculations and list the candidates for orbit representa-
tives. Based on these candidates, we verify that they are indeed representatives by proceeding
as follows: All the subgroups mentioned above are normal, so they do not share orbits under
T5(Q). Therefore, it suffices to verify whether the candidate representatives are connected
to the others within the same subset. This can be done with a simple matrix conjugation
computation. We will now explicit the representatives.

The orbits representatives in H1Z3 \Z3 are


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 1 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 1 1 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 1 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in H2Z3 \Z3 are
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
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 1
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in H3Z3 \Z3 are


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 1
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in H4Z3 \Z3 are


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 1 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

The orbits representatives in H1H2Z3 \ (H1Z3 ∪H2Z3) are
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
1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


1 1 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in H1H3Z3 \ (H1Z3 ∪H3Z3) are


1 1 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 1 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 1 1 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in H1H4Z3 \ (H1Z3 ∪H4Z3) are


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 1 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

The orbits representatives in H2H3Z3 \ (H2Z3 ∪H2Z3) are


1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in H2H4Z3 \ (H2Z3 ∪H3Z3) are


1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 0 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

 ,


1 0 0 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

 .

The orbits representatives in H3H4Z3 \ (H3Z3 ∪H4Z3) are
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
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 ,


1 0 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 .

The orbits representatives in H1H2H3Z3 \ (H1H2Z3 ∪H1H3Z3 ∪H2H3Z3) are


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .

The orbits representatives in H1H3H4Z3 \ (H1H4Z3 ∪H1H3Z3 ∪H3H4Z3) are


1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 ,


1 1 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 .

The orbits representatives in H1H2H4Z3 \ (H1H2Z3 ∪H1H4Z3 ∪H2H4Z3) are


1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,


1 1 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

 .

The orbits representatives in H2H3H4Z3 \ (H2H3Z3 ∪H2H4Z3 ∪H3H4Z3) are


1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 .

The orbits representatives in H1H2H3H4Z3 \ (H1H2H3Z3 ∪ H1H3H4Z3 ∪ H1H2H4Z3 ∪
H2H3H4Z3) are
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
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 .

The number of orbit representatives we obtained for each of the sets is presented in the
table below.

Subsets number of orbit rep.

Z3 15
H1Z3 \Z3 6
H2Z3 \Z3 5
H3Z3 \Z3 5
H4Z3 \Z3 6
H1H2Z3 \ (H1Z3 ∪H2Z3) 2
H1H3Z3 \ (H1Z3 ∪H3Z3) 4
H1H4Z3 \ (H1Z3 ∪H4Z3) 3
H2H3Z3 \ (H2Z3 ∪H2Z3) 2
H2H4Z3 \ (H2Z3 ∪H3Z3) 4
H3H4Z3 \ (H3Z3 ∪H4Z3) 2
H1H2H3Z3 \ (H1H2Z3 ∪H1H3Z3 ∪H2H3Z3) 1
H1H3H4Z3 \ (H1H4Z3 ∪H1H3Z3 ∪H3H4Z3) 2
H1H2H4Z3 \ (H1H2Z3 ∪H1H4Z3 ∪H2H4Z3) 2
H2H3H4Z3 \ (H2H3Z3 ∪H2H4Z3 ∪H3H4Z3) 1
H1H2H3H4Z3 \ (H1H2H3Z3 ∪H1H3H4Z3 ∪H1H2H4Z3 ∪H2H3H4Z3) 1

total 61

Table 3.2 Number of orbits representatives under action of T5(Q).

This proves Theorem E.

Due to the large number of possible orbite representatives, we do not compute the number
of automorphism orbits of the entire group UT5(Q).
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3.5 The unitriangular group UTn(Q), for n ≥ 6

In this section we prove Theorem F. In the previous sections, we presented a method for
computing automorphism orbits and finding orbit representatives. It is then natural to attempt
to extend this method to higher dimensions. However, a very interesting phenomenon occurs
when we increase to dimension 6, the number of automorphism orbits becomes infinite. We
will prove this in the present section.

We begin by recalling that the group UTn(Q) is a normal subgroup of Tn(Q) and that the
normalizer of UTn(Q) in GLn(Q) is exactly the group Tn(Q). In connection with this, we
have the following result due to Zalesskii.

Theorem 3.4 ([29], Proposition 1). Unipotent elements of group Tn(Q), n ≥ 6, partition into
infinitely many conjugacy classes.

For the proof see Proposition 1 of [29]. We are now in a position to prove Theorem F.

Theorem F. The unitriangular group UTn(Q) has infinitely many automorphism orbits for
n > 5.

Proof. Assume n = 6. By Corollary 3.1 and the comments following it, we may consider
the action of ((((ZJ )⋊U)⋊W )⋊D over UTn(Q). Define a subset S of UTn(Q), such that
(xi, j) ∈ S if and only if (xi, j) has zeros elsewhere, 1’s at the diagonal and at positions (5,6),
(4,6), (3,4), (2,5), (1,3) and any rational number at position (1,2). That is, matrices of the
form 

1 x1,2 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1


6×6

,

where the (1,2) entry vary arbitrarily over Q. We prove that if elements

(xi, j) =


1 x1,2 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 , (yi, j) =


1 y1,2 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 ∈ S,

are in the same automorphism orbit, then x1,2 = y1,2.
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Let ϕ be an automorphism of UTn(Q), such that ϕ = dwukz for z ∈ Z , k ∈ J , u ∈ U ,
w ∈W , d ∈ D and choose (xi, j) ∈ S. If (xi, j)

ϕ ∈ S, then (xi, j)
dwuk ∈ S, so z can be ignored

since this type of automorphism only modifies the (1,6)-entry. Denote (xi, j)
dwuk = (yi, j) ∈ S.

Consider d conjugation by diagonal matrix diag[d1,d2,d3,d4,d5,d6]. Note that (xi, j)
d

has zeros elsewhere except at the positions (5,6), (4,6), (3,4), (2,5), (1,3), (1,2), since the
diagonal automorphism maps xi, j 7→ d−1

i xi, jd j. Now, the flip automorphism has order 2 and
is given by flipping the matrix by the anti-diagonal. If w is trivial or not, we also have that
(xi, j)

dw has zeros elsewhere except at the positions (5,6), (4,6), (3,4), (2,5), (1,3), (1,2).
The matrices are

(xi, j)
d =



1
d2

d1
x1,2

−d3

d1
0 0 0

0 1 0 0
d5

d2
0

0 0 1
d4

d3
0 0

0 0 0 1 0
d6

d4

0 0 0 0 1
d6

d5
0 0 0 0 0 1


,

(xi, j)
dw =



1
d6

d5

−d6

d4

−d6

d3

d6

d2

d6 +d6x1,2

d1

0 1 0 0
d5

d2

d5x1,2

d1

0 0 1
d4

d3
0

−d4

d1

0 0 0 1 0
−d3

d1

0 0 0 0 1
d2x1,2

d1
0 0 0 0 0 1


.

Assume that the extremal automorphism u ∈ U is given by

xe1,2 → 1+(x(ε1,2 +λε2,6)+
λx2

2
ε1,6),

xe5,6 → 1+(x(ε5,6 +µε1,5)+
µx2

2
ε1,6),

for λ ,µ running through Q. And all other generators remain fixed. We note that modulo γ4

the extremal automorphisms act like the identity (for more details see Lemma 13 of [17]).
So this type of automorphism only modifies the (1,6), (2,6), (1,5) entries of (xi, j)

dwu so
that the (5,6), (4,6), (3,4), (2,5), (1,3), (1,2), (2,4), (3,5) entries remain fixed. In other
words, (xi, j)

dwu coincide with (xi, j)
dw in entries (5,6), (4,6), (3,4), (2,5), (1,3), (1,2),
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(2,4), (3,5). So

(xi, j)
dwu =



1
d6

d5

−d6

d4

−d6

d3
∗ ∗

0 1 0 0
d5

d2
∗

0 0 1
d4

d3
0

−d4

d1

0 0 0 1 0
−d3

d1

0 0 0 0 1
d2x1,2

d1
0 0 0 0 0 1


,

where the star-marked entries depend on u.
Assume that k ∈ J is the conjugation by unitriangular matrix A = (ai, j), then

(xi, j)
dwuk = (yi, j) =⇒ A(xi, j)

dwuA−1 = (yi, j) =⇒ A(xi, j)
dwu = (yi, j)A.

Denote (x′i j) = (xi, j)
dwu. We compare the elements of matrices A(x′i j) and (yi, j)A at positions:

(1,2) : x′1,2 = y1,2,

(1,3) : x′1,3 = y1,2a2,3 + y1,3,

(2,4) : a2,3x′3,4 = 0,

(2,5) : x′2,5 = y2,5,

(3,4) : x′3,4 = y3,4,

(3,5) : 0 = y3,4a4,5,

(4,6) : x′4,6 +a4,5x′5,6 = y4,6,

(5,6) : x′5,6 = y5,6.

We can conclude that

x′1,2 = y1,2, x′1,3 = y1,3, a2,3 = 0, x′2,5 = y2,5,

x′3,4 = y3,4, a4,5 = 0, x′4,6 = y4,6, x′5,6 = y5,6.

This means that (xi, j)
dwu coincides with (yi, j) in entries (5,6), (4,6), (3,4), (2,5), (1,3),

(1,2),(2,4), (3,5). And consequently (xi, j)
dw coincides with (yi, j) at the above entries.
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Now assume w ∈W is trivial then we compare (xi, j)
dw with (yi, j) in entries

(1,2) :
d2

d1
x1,2 = y1,2,

(1,3) :
d3

d1
= 1,

(2,5) :
d5

d2
= 1,

(3,4) :
d4

d3
= 1,

(4,6) :
d6

d4
= 1,

(5,6) :
d6

d5
= 1.

From the relations above we obtain that d1 = d3 = d4 = d6 = d5 = d2 so the relations implies
that x1,2 = y1,2.

If w is not trivial, then we compare (xi, j)
dw with (yi, j) in entries

(1,2) :
d6

d5
= y1,2,

(1,3) : −d6

d4
= 1,

(2,5) :
d5

d2
= 1,

(3,4) :
d4

d3
= 1,

(4,6) : −d3

d1
= 1,

(5,6) :
d2

d1
x1,2 = 1.

From the relations above we obtain that

d6

d5

d2

d1
x1,2 = y1,2,

d3

d1

d6

d4
= 1, d5 = d2, d4 = d3.
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So x1,2 = y1,2. This means that if the elements

(xi, j) =


1 x1,2 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 , (yi, j) =


1 y1,2 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 ∈ S,

are in the same automorphism orbit, then x1,2 = y1,2, and so (xi, j) = (yi, j). This shows that
S has infinitely many orbit representatives, once the set Q is infinite and any two elements
in S with differing entries in (1,2) belong to distinct automorphism orbits. This proves the
Theorem for n = 6.

Now we extend to n ≥ 6. One can view UTn(Q) as

(
UT6(Q) ⋆

0 UTn−6(Q)

)
so that(

X ⋆

0 I

)
and

(
Y ⋆

0 I

)
are in the same automorphism orbit in UTn(Q) if and only if X and Y

are in the same automorphism orbit, for X ,Y ∈UT6(Q). So we have even fewer automor-
phisms to consider, as we can disregard flip and extremal automorphisms. Nevertheless,
the same argument applies to prove that the number of automorphism orbits is infinite and
Theorem E is proved.

We note that the result would still hold if we considered the action of Aut(UT6(Q)) on
the quotient UT6(Q)/γ4.

This concludes Chapter 3.



Final considerations

To conclude this work, we discuss possible questions to be addressed in future investigations.
Li and Zhu published a paper [18], in 2025, that classifies all finite p-groups with exactly

three automorphism orbits, an odd prime p. With this case now settled, new classification
questions have naturally arisen.

Question 3.1. Let G be a finite rank soluble group. Is it possible to classify all groups with
ω(G) = 3?

Question 3.2. Let G be a finite rank metabelian group. Is it possible to classify all groups
with ω(G) = 3?

In the case of finite groups, within the classification of solvable non-p-groups with 4
automorphism orbits, the groups with 3 automorphism orbits appear as part of the description.
Given this recent result [18] and the fact that the classification of finite groups with 3 orbits
is now complete, we are led to ask the following question:

Question 3.3. Let G be a finite soluble non-p-group. Is it possible to classify all groups with
ω(G) = 5?

Regarding Theorems D, E, and F, several additional questions naturally arise and deserve
further investigation. For instance, in the proof of Theorem F we present a subset of UT6(Q)

which contain infinitely many orbit representatives. It is natural to ask:

Question 3.4. Find a set of orbit representatives of UT6(Q).

The unitriangular groups UTn(Q) form an important example of nilpotent groups, in
which the terms of the lower central series can be easily described. Note that UTn(Q) also is
torsion-free of finite rank. The study of UTn(Q) and its automorphims motivated us to ask,

Question 3.5. Is the nilpotency class for torsion-free groups of finite rank with finitely many
automorphism orbits of bounded?
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Another approach is to study linear groups. Some well-known results in this direction are
the following:

Theorem 3.5 ([19], 3.1.2). (Tits Alternative) Let G be a linear group over a field F .

1. If char(F) = 0, then G is virtually solvable or G contains a nonabelian free subgroup
of rank 2;

2. If char(F) ̸= 0 and G is finitely generated, the same conclusion holds.

Theorem 3.6 ([19], 3.1.6). (Mal’cev ) Let V be a finite-dimensional vector space of dimension
n over an algebraically closed field F , and let G be a solvable subgroup of GL(V,F).

1. If G is irreducible, then G has a normal diagonalizable subgroup D such that [G : D]≤
g(n) for some function g;

2. In general, G has a normal triangulable subgroup T such that [G : T ]≤ f (n) for some
function f .

We have considered the following question.

Question 3.6. Determine the characteristic subgroups of UTn(Q) with finitely many orbits
under Aut(UTn(Q)) (and under Tn(Q)).

This concludes the Final considerations chapter.



References

[1] J. Alperin and R. Bell. Groups and Representations. Graduate Texts in Mathematics.
162. Springer-Verlag. New York. 1995.

[2] R. Bastos and A. Dantas. FC-groups with finitely many automorphism orbits. J. Algebra,
516:401–413, 2018.

[3] R. Bastos, A. Dantas and M. Garonzi, Finite groups with six or seven automorphism
orbits. J. Group Theory, 20(5):945–954, 2017.

[4] R. Bastos, A. Dantas and E. de Melo. Soluble groups with few orbits under automor-
phisms. Geom. Dedicata, 209:119-123, 2020.

[5] R. Bastos, A. Dantas and E. de Melo. Virtually nilpotent groups with finitely many
orbits under automorphisms. Archiv der Mathematik, 116:261-270, 2021.

[6] J. Bidwell, M. Curran and D. McCaughan. Automorphisms of direct products of finite
groups. Archiv der Mathematik, 86: 481–489, 2006.

[7] A. Bors and S. P. Glasby. Finite 2-groups with exactly three automorphism orbits.
Journal of Group Theory, 2025.

[8] W. Burnside. Theory of groups of finite order. Dover, 1955.

[9] GAP-Group. GAP – groups, algorithms, and programming, version 4.10.1, 2019.
https://www.gap-system.org [last accessed June 2025].

[10] S. Glasby. Subgroups of the upper-triangular matrix group with maximal derived length
and a minimal number of generators. arXiv:1410.5052, 2014.

[11] D. Gorenstein. Finite Groups. Second edition, Chelsea Publishing Co., New York, 1980.

[12] F. Gross. 2-automorphic 2-groups. J. Algebra, 40(2):348-353, 1976.

[13] G. Higman. Suzuki 2-groups. Illinois J. Math., 7:79-96, 1963.



80 References

[14] K. Hoffman and R. Kunze. Linear Algebra. 2nd Edition, Prentice Hall Inc., Upper
Saddle River, 1971.

[15] L. Jafari, S. Kohl, and E. O’Brien. Automorphism group orbits on finite simple groups.
Comm. Algebra, 49(8):3294-3300, 2021.

[16] T. J. Laffey and D. MacHale. Automorphism orbits of finite groups. J. Austral. Math.
Soc. Ser. A, 40(2):253-260, 1986.

[17] V. Levchuk. Connections between the unitriangular group and certain rings. II. Groups
of automorphisms. Siberian Journal of Mathematics , 24(4):543–557, 1983.

[18] C. Li and Y. Zhu. The finite groups with three automorphism orbits. Journal of Algebra,
678:677-705, 2025.

[19] J. Lennox and D. Robinson. The Theory of Infinite Soluble Groups, Clarendon Press,
Oxford (2004).

[20] A. Mahalanobis. The automorphism group of the group of unitriangular matrices over
a field. International Journal of Algebra, 7(15): 723-733, 2013.

[21] H. Mäurer and M. Stroppel. Groups that are almost homogeneous. Geom. Dedicata,
68:229-243, 1997.

[22] J. Maginnis. Outer automorphism of upper triangular matrices. Journal of Algebra
161:267-270, 1993.

[23] D. Robinson. A course in the theory of groups, 2nd edition, Springer Verlag, New York,
1996.

[24] SageMath, the Sage Mathematics Software System (Version 9.3), The Sage Developers,
2023, https://www.sagemath.org.

[25] M. Schwachhöfer and M. Stroppel. Finding representatives for the orbits under the
automorphism group of a bounded abelian group. J. Algebra, 211: 225-239, 1999.

[26] E. Shult. On finite automorphic algebras. Illinois J. Math., 13:625–653, 1969.

[27] M. Stroppel. Locally compact groups with few orbits under automorphisms. Top. Proc.
26(2):819-842, 2002.

[28] A. Weir. Sylow p subgroup of the general linear group over finite fields of characteristic
p. Proceedings of the American Mathematical Society, 6(3):454-464, 1955.



References 81

[29] A. E. Zalesskii. A remark on the triangular linear group. Vesti Acad. Navuk BSSR, ser.
fiz. mat. navuk, 2:129-131, 1968.

[30] J. Zhang. On finite groups all of whose elements of the same order are conjugate in
their automorphism groups. J. Algebra, 153(1):22–36, 1992.




	Table of contents
	List of symbols
	Introduction
	1 Preliminaries
	1.1 Representation of abelian groups and complete reducibility
	1.2 Examples

	2 Mixed order soluble groups of finite rank
	2.1 Soluble groups with 4 automorphism orbits
	2.2 Soluble groups with 5 automorphism orbits

	3 Unitriangular matrices over Q
	3.1 General overview
	3.1.1 Group theoretic properties
	3.1.2 Ring of niltriangular matrices and automorphism group

	3.2 The unitriangular group UT3(Q)
	3.3 The unitriangular group UT4(Q)
	3.4 The unitriangular group UT5(Q)
	3.5 The unitriangular group UTn(Q), for n6

	Final considerations
	References

