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Estudar automorfismos € decifrar como

algo muda sem deixar de ser o que €.

Livro das Fungdes



Resumo

Seja G um grupo. As 6rbitas da agéo natural de Aut(G) em G sdo chamadas de "6rbitas por
automorfismos" de G, e o nimero de 6rbitas por automorfismos de G é denotado por ®(G).
Se G é um grupo soldvel de posto finito com nimero finito de érbitas por automorfismos,
entdo G possui um subgrupo caracteristico nilpotente radicdvel e livre de tor¢ao K tal que
G =K x H, onde H é um subgrupo finito (ver [4]). Provamos um teorema estrutural para
grupos soliveis de posto finito com @(G) =4 e ®(G) = 5. Além disso, a decomposicdo
G = K x H nos levou a investigar grupos nilpotentes radicdveis e livres de torcao. Neste
contexto, provamos que o grupo das matrizes unitriangulares de dimensao n sobre o corpo
dos nimeros racionais Q possui infinitas érbitas por automorfismos quando n > 5, e um
ndmero finito de 6rbitas quando n < 5. Estes tltimos resultados foram obtidos com o auxilio

de métodos computacionais.

Titulo em portugués: Sobre grupos soliiveis de posto finito com finitas drbitas por

automorfismos.






Abstract

Let G be a group. The orbits of the natural action of Aut(G) on G are called “automorphism
orbits” of G, and the number of automorphism orbits of G is denoted by ®(G). If G is a
soluble group of finite rank with finitely many automorphism orbits, then G has a torsion-free
radicable nilpotent characteristic subgroup K such that G = K x H, where H is a finite
subgroup (see [4]). We prove a structure theorem about mixed order soluble groups of
finite rank satisfying ®(G) =4 and @(G) = 5. Moreover, the decomposition G = K x H
led us to investigate torsion-free radicable nilpotent groups. In this topic, we prove that the
unitriangular group of dimension n over the field of rational numbers QQ has infinitely many
orbits under the action of its automorphism groups when n > 5, and finitely many orbits

when n < 5. These last result are obtained with the aid of computational methods.
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Introduction

Let G be a group, and let Aut(G) denote its automorphism group. The group G is partitioned
into orbits under the natural action of Aut(G), where two elements g,/ € G are in the same
orbit if there exists an automorphism @ € Aut(G) such that g% = h. These orbits are referred
to as automorphism orbits and the number of automorphism orbits is denoted by ®(G). A
finite group is called a k-orbit group if it has exactly k automorphism orbits.

The identity group is the only example of an 1-orbit group. Furthermore, it is straight-
forward to verify that the finite 2-orbit groups are exactly the elementary abelian groups of
prime-power order. Interestingly, an equivalent result for infinite groups remains unknown.
Higman, Neumann, and Neumann constructed a non-abelian torsion-free simple group in
which all nontrivial elements are conjugate ([23] (6.4.6)) showing the difference of infinite
groups in this context.

The earliest works in the area of automorphism orbits focused on finite groups. The
investigation into the relationships between groups and their automorphism orbits began with
Higman [13] in 1963. Higman initially explored finite 2-groups in which the involutions
constitute a single automorphism orbit. It is worth noting that a related problem had emerged
earlier: the classification of groups with a prescribed number of conjugacy classes, which are
the orbits under inner automorphisms. This problem was proposed by W. Burnside [8] in
1955 . Since then, the study of automorphism orbits has become a prominent area of interest
among group theorists. Observe that automorphism orbits are unions of conjugacy classes
and hence they give an example of fusion in the holomorph group G x Aut(G), a well-known
concept established in the literature (see for instance [11, Chapter 7]).

Laffey and MacHale [16] in 1986 classified all finite soluble non-p-groups with 0 (G) = 3.
We will explore this result in greater detail later on. Recently, finite 2-groups that are 3-orbit
groups were classified by Bors and Glasby [7], while 3-orbit groups that are p-groups with
odd prime p were classified by Li and Zhu [18], completing the classification of finite 3-orbit
groups. Laffey and MacHale [16] in 1986 also described the structure for finite soluble
non-p-groups with @(G) = 4. In the same work they proved that if G is a finite non-soluble
group with @(G) < 4, then G is isomorphic to PSL(2,4). These results represent one of the
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main approaches in the study of automorphism orbits: given a fixed number of orbits, the
goal is to describe the structure of the group accordingly.

Later, Stroppel [27], showed that the only finite non-abelian simple groups G with
o(G) <5 are the groups PSL(2,q) with g € {4,7,8,9}. In [3], Bastos, Dantas and Garonzi
proved that if G is a finite non-soluble group with ®(G) < 6, then G is isomorphic to one
of PSL(2,q) with g € {4,7,8,9}, PSL(3,4) or ASL(2,4). Studies of r-orbit groups for small
values of » > 3 mainly focus on non-solvable groups. Finite simple r-orbit groups for » < 100
are determined in [15], and non-solvable r-orbit groups for r € {4,5,6} are classified (see
[31, [16]).

Finite groups with certain special automorphism orbits have also received significant
attention. Shult proved that a finite p-group for an odd prime p, in which the elements of
order p form an automorphism orbit, is abelian [26]. In 1976, Gross [12] studied finite
2-groups whose involutions form an automorphism orbit. Finite groups in which elements
of the same order lie in the same automorphism orbit, known as AT-groups, were studied
by Zhang [30]. Many aspects of this topic have been explored, yet the area still presents
numerous open questions that can serve as powerful motivation for further research.

These contributions are of significant interest, however, the main subject of this thesis
is infinite groups, and we now turn our attention to their study. Schwachhofer and Stroppel
[25], in 1999, showed that if G is an abelian group with finitely many automorphism orbits,
then

G =Tor(G)® D,

where D is a torsion-free radicable characteristic subgroup of G, and Tor(G) is the set of all
torsion elements in G.
In 2017, Bastos and Dantas [2], proved that if G is an FC-group with finitely many

automorphism orbits, then the derived subgroup G’ is finite and G admits a decomposition
G =Tor(G) X A,

where A is a radicable characteristic subgroup of Z(G). For more details concerning auto-
morphism orbits of groups and infinite groups, see [27].

The main object of study in this thesis is soluble groups of finite rank. While the term
‘rank’ has many connotations in algebra, in soluble group theory it refers to the cardinality of

a maximal linearly independent subset of some kind. In this thesis, we adopt the Priifer rank.

Definition 0.1. A group is said to have finite Priifer rank r if every finitely generated

subgroup can be generated by r elements and r is the least such integer.
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For example, Q" has rank n, for any positive integer n. For simplicity, we will refer to
it simply as rank throughout the text. Recall that a group G has mixed order if it contains
non-trivial elements of finite order and also elements of infinite order. Note that a group G is
said to be radicable if for every element g in G and every positive integer n, there exists an
element 4 in G such that 1" = g.

In 2020, Bastos, Dantas and de Melo [4] proved

Theorem 0.1 ([4], Theorem A). Let G be a soluble group of finite rank. If @(G) < oo, then

G has a torsion-free radicable nilpotent characteristic subgroup K such that
G=KxH,

where H is a finite subgroup.

The theorem above is essential to our work. It not only provides a key argument in the
proof of a couple of our results, but also serves as a motivation to explore related classes of
groups. In the same work they classified the mixed order soluble groups of finite rank such
that 0(G) = 3.

Theorem 0.2 ([4], Theorem B). Let G be a mixed order soluble group of finite rank. We have
o(G) =3 if and only if G = A x H where |H| = p for some prime p, H acts fixed-point-freely

on A and A = Q" for some positive integer n.

Furthermore, Bastos, Dantas and de Melo in 2021 extended the results in [5] for virtually
nilpotent groups such that ®(G) < co.

Theorem 0.3 ([5], Theorem 1.1). Let A be an abelian group and B a finite subgroup of Aut(A).
Let G = A x B be the semidirect product of A and B and assume that A is a characteristic
subgroup of G. Then @(G) < oe if and only if A has finitely many automorphism orbits under
the action of Cpyy(a)(B)-

Theorem 0.4 ([5], Corollary 1.3). Let G be a virtually nilpotent group with @(G) < oo. Then
G has a torsion-free radicable nilpotent subgroup K and a torsion subgroup H such that
G = K x H. Moreover, the derived subgroup G =Dx Tor(G,), where D is a torsion-free
nilpotent radicable characteristic subgroup.

Theorem 0.5 ([5], Corollary 1.4). Let A be a finite dimensional vector space over Q and
B a finite subgroup of Aut(A). Let G = A x B be the semidirect product of A and B. Then
®(G) < e if and only if B is abelian.
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Inpired by these works, we invetigated the structure of groups with 4 automorphism
orbits. We obtained the following results. Throughout this paper, if K is a characteristic
subgroup of a group G, we denote by () (K) the number of automorphism orbits of K
under the action of Aut(G).

Theorem A. Let G be a mixed order soluble group of finite rank with @(G) = 4. Then
G = K x H, where K is a torsion free nilpotent characteristic radicable subgroup, H is a finite

subgroup and one of the following three cases holds (g is a prime number):
1. H acts fixed-point-freely on K, |[H| = g, and @) (K) = 3;
2. K =Q", H is cyclic of order ¢* and the action of H is fixed-point-free;

3. G=K x H, where K = Q" and H is elementary abelian g-group.

We also establish a necessary and sufficient condition for a mixed order metabelian group

to have exactly four automorphism orbits, as stated in the following theorem.

Theorem B. Let G be a mixed order metabelian group of finite rank. Then @(G) = 4 if and
only if G = K x H where one of the following holds:

1. K=Q", H is cyclic of order g°, the action of H is fixed-point-free and K decomposes as
a Q[H|]-module into a direct sum of copies of an isomorphic irreducible Q[H]-module;

2. G=K x H, where K = Q" and H is elementary abelian.

Now we consider infinite soluble groups of finite rank with five automorphism orbits.

Theorem C. Let G be a mixed order soluble group of finite rank with @(G) = 5. Then
G = K x H, where K is a torsion-free nilpotent characteristic radicable subgroup, H is a
finite subgroup and one of the following holds:

1. K is non-abelian, G/Z(K) is non-abelian, and ®(G/Z(K)) < 4;

2. K=Q", 0gy(6)(K) =3, and |[H| = g° for some prime g;

3. K=Q", ®au(6)(K) =2, Z(G) is elementary abelian g-group and (G/Z(G)) = 3.
4. K=Q", 0g()(K) =2, and H is a cyclic group with o(H) = 4.

Another approach we explored in our research, based on the decomposition provided by
Theorem 0.1, is to consider torsion-free radicable nilpotent groups. Naturally, this leds us
to investigate unitriangular matrices UT,(Q) of dimension n x n over the field of rational

numbers Q, as they present a natural example within this class of groups.



Introduction 5

Definition 0.2. The upper unitriangular matrix group of dimension n X n over the field Q,
denoted by UT,(Q), is the group, under multiplication, with 1’s on the diagonal, 0’s below
the diagonal, and arbitrary entries above the diagonal.

It is worth mentioning that UT,(Q) also belongs to the class of soluble groups of finite
rank, for any positive integer n. This will be discussed when we consider the theoretical
properties of this group.

The group UT,(Q) can be viewed as a subgroup of GL,(Q). In this context, it is known
that its normalizer is 7,(Q), the group of upper triangular matrices of dimension n X n over

Q (for details see [1]). In particular, this subgroup decomposes as the semidirect product

T,(Q) = UT,(Q) x Du(Q),

were D,(Q) < GL,(Q) is the subgroup of n x n diagonal matrices over Q. Note that
D,(Q) = (Q*)".

We now briefly discuss some related results. Borel and Steinberg stated the following
problem: Is the number of the conjugacy classes of unipotent elements in a semisimple
algebraic group finite? This was solved by Platonov for p > 2 for a field of characteristic p.
Platonov also conjectured that in UT,(Q) the number of the unipotent conjugacy classes in
general is infinite. Zalesskii [29], in 1968, showed that the number in question is infinite in

the triangular linear group 7,,(Q).

Theorem 0.6 ([29], Proposition 1). Unipotent elements of the triangular linear group 7,,(Q),

n > 6, partition into infinitely many conjugacy classes.

This result is particularly relevant to our research, as conjugacy classes are contained
within automorphism orbits.

As our study focus on automorphism orbits, we now turn to some results in the literature
concerning the automorphism group of unitriangular matrices. The automorphism group of
the group of unitriangular matrices over a field was studied by many authors [17, 20, 22, 28] .
The first paper was in Russian, published by Pavlov in 1953. Pavlov studied the automorphism
group of unitriangular matrices over a finite field of odd prime order. Weir [28] described
the automorphism group of the group of unitriangular matrices over a finite field of odd
characteristic. Maginnis [22] described it for the field of order two.

Finally, it was proved by Levchuk [17], in 1983, and reproved by Mahalanobis [20], in
2013, that the automorphism group of UT,,(Q) is generated by certain automorphisms.

Theorem 0.7 ([20], Theorem 3.3). The automorphism group of UT,(Q) is generated by

extremal automorphisms, field automorphisms, diagonal automorphisms (conjugation by the
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diagonal matrices), inner automorphisms and central automorphisms (that is, the identity

modulo the center).

Further details regarding these automorphisms will be provided in the Chapter 4. Inspired

by these works we obtained the following results,

Theorem D. The unitriangular group UT,(Q) has finitely many automorphism orbits for
n < 5. In particular, ®(UT3(Q)) =3 and o(UT4(Q)) =9.

Later, we will see that as the dimension increases, the computations involved become
significantly more complex. In the case of dimension 5, we were able to show that the
number of automorphism orbits is finite, and we computed the number of orbits under the

action of the group of upper triangular matrices 7,,(Q).

Theorem E. The unitriangular group UT5(Q) has finitely many automorphism orbits. More-
over, the number of orbits under the action of 7,,(Q) is 61.

Determining this number required a case-by-case analysis of elements in UT5(Q). Specif-
ically, it was necessary to consider all possible combinations in which each entry is either
zero or nonzero, resulting in a large number of distinct cases. To handle this complexity, we
used the software SageMath [24] to assist in the calculations. These calculations are fully
presented in the Appendix.

The next result introduces a class of groups that does not have finitely many orbits under
automorphism, which stands in contrast to the previous results. The result mentioned by
Zalesskii [29] shows that the classes of conjugate elements of the group UT,(Q) under the
action of diagonal automorphisms and inner automorphisms are infinite. The strategy used in
the proof of this theorem allowed us to obtain the following result,

Theorem F. The unitriangular group UT,(Q) has infinitely many automorphism orbits for
n>>5.

The present work is divided into three chapters. In Chapter 1, we briefly introduce some
basic topics, discuss previous results from the literature and present examples that illustrate
and explore these results. The examples presented constitute an essential part of this work,
we used the software GAP [9] to find some of them. In Chapter 2, we focus on proving
Theorems A, B and C. In Chapter 3, we turn our attention to the group of unitriangular
matrices, where we prove Theorems D, E, and F, we also present structural properties to this

class of groups.



Chapter 1
Preliminaries

This chapter is divided into two parts. In the first part we will introduce some fundamental
concepts and results of group theory that are applied in this thesis. In the second part, we
analyze some theorems and provide illustrative examples. Although much of the discussion
in this chapter focuses on finite groups, this is the only chapter where such emphasis occurs.
In the remainder of the thesis, our attention will be directed primarily toward infinite groups.

1.1 Representation of abelian groups and complete reducibil-
ity
Let G be a group and consider a finite-dimensional vector space V over the field F.

Definition 1.1. A homomorphism ¢ from a group G to the group GL,(F) is called a

representation of G over V of degree n, where n is the dimension of V over F.

Example 1.1. Let G = Cy = (a | a* = 1) be the cyclic group of order 4. Define the matrix

A € GLy(Q) by
A:(o v,
-1 0

0 -1/’ 1 0/’ 0 1

The function p : G — GL,(Q) given by a — Al , where 0 < i < 3, is a representation of Cy
2
over Q°.

and observe that
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Definition 1.2. A representation ¢ of a group G on a vector space V over a field F is said
to be faithful if the map ¢ in injective. Also a representation ¢ is said to be linear if it has

degree 1.

Definition 1.3. A representation ¢ of a group G on a vector space V over a field F is said to
be irreducible if 0 and V' are the only G?-invariant subspaces of V. Otherwise, ¢ is said to be

reducible.

Definition 1.4. A representation ¢ of G on V over F is said to be completely reducible if
there exists a decomposition
V=V®-->V,,

where each V; is a G? -invariant subspace of V and ¢|y, is irreducible, for 1 <i <r.

Now we will study some properties of representations of abelian groups. Such results
will help in proving one of the main theorems regarding the classification of groups with a
finite number of orbits under automorphisms.

For more details on the following results, we refer the reader to [11].

Theorem 1.1. ([11], Theorem 3.2.2) If G has a faithful irreducible representation, then Z(G)
is cyclic.

Theorem 1.2. ([11], Theorem 3.2.3) If ¢ is a irreducible representation of an abelian group
G with kernel K, then G/K is cyclic. In particular, a non-cyclic abelian group has no faithful

irreducible representation.

Theorem 1.3. ([11], Theorem 3.2.4) Let G be an abelian group of order n and F' a field that
contains a primitive n-th root of unity. Then every irreducible representation of G over F' is

linear.

Theorem 1.4. ([11], Theorem 3.2.5) If ¢ is a linear representation of G, then G/K is cyclic,
where K is the kernel of ¢. In particular, a non-cyclic group has no faithful representation of

degree 1.

Now, we will establish sufficient criteria for a given representation to be completely

reducible. We will refer to this result as Maschke’s Theorem.

Theorem 1.5 (Maschke). ([11], Theorem 3.3.1) Let ¢ be a representation of a finite group
G on a finite-dimensional vector space V over a field F and assume that either F is of
characteristic 0 or of characteristic relatively prime to |G|. Then ¢ is completely reducible.

Next, we present an application of Maschke’s Theorem.
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Theorem 1.6. Let V be a finite-dimensional vector space over a field F, and let Q be a
non-cyclic abelian g-subgroup of Aut(V), with ¢ a prime distinct from the characteristic of
F. Then,

V= H Cv(x),

xeQ#
where Cy (x) = {v € V: v = v}. In particular, V is generated by its subgroups Cy (x) with x
in Q#.

We are interested in understanding finite rank solvable groups with finitely many orbits
under the action of their automorphism group. Theorems 0.2 and 0.5, mentioned in the
introduction, guide our investigation toward a semidirect product structure. In particular, let
G =K x H, where K = Q" and H is a finite abelian group, for some positive integer r.

First note that H acts on K, viewed as a vector space over , so every element of H
can be seen as linear operators of K. Therefore, in the context of linear algebra, it will be
very useful to understand some polynomials. The first one is the characteristic polynomial,
defined by det(x1 — A,), where 1 is the identity matrix and A, is the matrix associated to
the linear operator 4 € H. Other useful polynomials are the polynomials that annihilate the

elements of H, in the sense that if p(x) is a polynomial over F, that annihilate linear operator
h, then p(h) = 0.

Definition 1.5. Let / be a linear operator on a finite-dimensional vector space V over the field
F. The minimal polynomial for h is the (unique) monic generator of the ideal of polynomials

over F' which annihilates /.
In this context, we present a very useful theorem. For more details see [14].

Theorem 1.7 (Cayley-Hamilton). ([14], Theorem 6.4) Let i be a linear operator on a finite-
dimensional vector space V. If f is the characteristic polynomial of /4, then f(h) = 0; in other

words, the minimal polynomial divides the characteristic polynomial.
We now present some interesting results regarding automorphisms orbits.
Theorem 1.8. If K = Q", then ®(K) =2.

Proof. The group K can be viewed as a vector space of dimension n over Q. For any two
non zero vectors x,y € K, we can define basis B; = {vy,...,v,} and B, = {uy,...,v,} such
that x = vy and y = uj. It is known that there exists a unique bijective linear map extending
the map v; — u;. Thus, every non trivial element of K is in the same automorphism orbit. [

Theorem 1.9. Let G = K x H, where K = Q" and H is a finite abelian group, for some

positive integer n. Then K is a characteristic subgroup of G.
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Proof. Let |H| = m. We show that G™ = K. Since K is divisible, we have that K = K" < G".
Now, G/K = H, so G < K. Therefore, G" = K, and we conclude that K is characteristic in
G, as desired. O]

Note that the above result holds for any divisible group. The next result concerns the case

where the group decomposes as the direct product.

Theorem 1.10. Let G = K x H, where K = Q", for some positive integer n, and H is a finite
abelian group. Then 0 (G) =2w(H).

Proof. First, note that G is an abelian group so the torsion elements form a characteristic
subgroup Tor(G) of G. Since Tor(G) = H, we have that HcharG and KcharG. So if
o € Aut(G), then (k;,1)* = (ko,1) and (1,h))% = (1,hy), for h; € H and k; € K, i = 1,2.
So,

(ki,h)* = ((ki, D(1,11))% = (kt, 1)¥(1,h1)* = (k2, o).

We prove that Aut(G) = Aut(K) x Aut(H ). Define the map

f:Aut(G) — Aut(K) x Aut(H)

o— (mot,mat)

where ) : G — K, mp : G — H are the projection homomorphisms, 1; : K -+ G, b : H —- G
are the inclusion homomorphisms and product of homomorphism is given by g% = (g%)™,
for g € G. Note that f is well-defined. Indeed, let @ € Aut(G), and put o; = m;ay;, for
i=1,2. Soa = (a1, ). Note that ; is a group homomorphism, since projection and
inclusion are homomorphism. Now we prove that ker(ot) = 1. Let (ky,1)% = (x,1) (recall
that K charG ), so (k1)* = (k)™ %" = ((k1, 1)%)™ = (x1,1)™ = x;. Then,

(1, )% = (x)1,1%) = (1,1) = a(1,1)

and we conclude that ker(cr;) = 1. As K is a finite dimension vector space, the Rank-Nullity
Theorem shows that ¢ is also surjective. So a; € Aut(K). A similar argument holds to show
that @ € Aut(H). Also, simple calculations show that f is an isomorphism.

Now we focus on automorphism orbits. From the map f, we know that it is possible
to construct automorphisms of G that act as automorphisms of K and H on each respective
component. Thus, to count the number of orbits, it suffices to multiply @(K) and @(H).
Note that @(K) =2 and w(H) is finite. Therefore, we have that ®(G) = 2w(H). O

This result is interesting as it shows that, in this case, the number of orbits is always even.

As an immediate consequence, we have the following corollary.
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Corollary 1.1. Let G = K x H, where K = Q", for some positive integer n, and H is a finite
elementary abelian p-group, for some prime p. Then ®(G) = 4.

We observe that, in G = K x H, where K = Q", for some positive integer n, and H is
a finite elementary abelian p-group the 4 automorphism orbits are {1}, H\ {1}, K\ {1},
G\ (HUK).

Theorem 1.11. G =K x H, where K = Q" and H is a finite abelian group, for some positive
integer n. Then K = Cx(H) x [K,H].

Proof. Define the map 6 : K — K by k% = Z k", written additively. It can be easily

‘H ‘ heH
verified that 0 is a well-defined homomorphism. Note that 6 is idempotent,

1 1
0’=0|— Y n|= 0h=—(|H|0) =
HlE ) HE VH|
First we show that Cx(H) = Im(0). Note that Im(6) < Cx(H), once Oh = h6 = 6 for
all h € H. Conversely, if x € Cx(H), then

6 1 h_ 1

=3 x'= x=—1|H|x=x,
HIS  H&, IH\

sox € Im(0).

Next set A = [K,H] and A} = {k—k®: k € K}. As 6 is an endomorphism and K is
abelian, A; is a subgroup of K. Moreover, k = k% + (k— k%) for k € K, so K = Cx(H) + A,.
On the other hand, if x € Cx(H)NA}, we have x = x? and x = y— ye for some y € P, whence
x=x%=(y—y%)% =0, as 0 is idempotent. It follows that K = Cx(H) ®A;. In addition,
our calculation shows that A; is the kernel of 6.

Finally, by definition, A is generated by the elements —k + kh, ke K, h€ H. But,
(—k+k")0 = —k% + k" = —k® +- k% = 0, which implies that A C A;. Conversely, for k € K
we have

k—kezilx(k—kh)

=

as each k — k" € A. Thus A} C A, whence A| = A and the desired conclusion K = Cx(H) G A
is established. And in multiplicative notation, we have K = Cg(H) X A, so the theorem is

proved.
O

Theorem 1.12. Let G = K x H, where K = Q" and H is a finite abelian group, for some
positive integer n. If Cx (H) # 1 and Cx (H) < K, then ®p () (K) > 4.
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Proof. First note that by Theorem 1.11, K = Cx(H) x [K,H]. Let ¢ € Aut(G). We show that
there are at least 4 different automorphism orbits of G in K. First note that Z(G) = Cx(H).
This means that Cx (H) charK. Since [H,K|charK, Cx(H) # 1 and Cx(H) < K, there is one
orbit for 1, at least one orbit for [H, K]\ {1}, at least one orbit for Cx(H) \ {1}, and least one
orbit for K\ ([H,K]UCk(H)). So @(K) > 4, and we conclude that @) (K) > 4. O

We now turn to the study of fixed-point-free automorphisms. The most important result on
this subject is Thompson’s Theorem on the nilpotency of groups admitting a fixed-point-free

automorphism of prime order.

Definition 1.6. Denote
Co(¢) ={xe G|x? =x}.

An automorphism ¢ of a group G is said to be fixed-point-free if Cg(¢) = 1, that is, if it fixes
only the identity element. A group of automorphisms A of G is fixed-point-free if Cg(A) = 1,

1.e., if it fixes only the identity element.

We now state Thompson’s theorem. For more details on the following theorem, we refer
the reader to [11].

Theorem 1.13 (Thompson). ([11], Theorem 10.2.1) Let G be a finite group. If G admits a

fixed-point-free automorphism of prime order, then G is nilpotent.
In this context, we prove,

Theorem 1.14. Let G = K x H, where K = Q" and H is a finite abelian group, for some
positive integer n. If every element in G\ K has finite order, then H acts fixed-point-freely
on K.

Proof. We prove the contrapositive. If a non-trivial element & € H is such that K" = k, for
some non trivial element k € K, then the element kh € G \ K is such that (kh)" = k"h". Since

K is torsion-free, it follows that k% has infinite order. U]

1.2 Examples

This section presents some well-known results which will be used throughout the text.
Beyond simply stating these theorems and propositions, we provide illustrative examples
to clarify the conditions under which they apply. These examples not only demonstrate the
practical utility of each result but also help the reader grasp their limitations and appropriate

contexts for application.



1.2 Examples 13

In [16], T.J. Laffey and D. MacHale characterized finite groups G that are not p-groups
and have the property that ®@(G) = 3 (see [16] Theorem 2.). This result is stated in the
following theorem.

Theorem 1.15 ([16], Theorem 2.). Let G be a finite group that is not of prime power order.
The following are equivalent:

l. o(G)=3;

2. |G| = p"q, and G has a normal elementary abelian Sylow p-subgroup K, for some
primes p, ¢, and for some integer n > 1. Furthermore, p is a primitive root mod ¢ (i.e.
q — 1 is the least natural number e with p¢ = 1 mod q). Let H be a Sylow g-subgroup
of G. Then K, regarded as a I, [H]-module, is a direct sum of ¢ > 1 copies of the
(unique) irreducible F,[H]-module of dimension g — 1. In particular |K| = p’ (g=1),

Now we provide some examples of finite 3-orbit groups which are not of prime power
order and, in the notation of the above theorem, the subgroup K is a non-trivial direct sum of

irreducible I, [H]-modules, ie, the number ¢ varies.

Example 1.2. With the help of GAP system [9], we found that the following groups are

3-orbit groups. Note that 3 is a primitive root mod 2.
1. The group G = (a,b: > =b* = 1,bab=a"') = C3 x C,, where |[K| =3 and 1 = 1;

2. The group G = (a,b,c: a®> = b> = ¢* = 1,ab = ba,cac = a” ' ,chc = b~ ') = (C3 x
C3) X Cy, where |[K| = 3% and t = 2;

3. The group G = {(a,b,c,d: =P =3=d>= 1,ab = ba,ac = ca,dad = a~ ' ,bc =
cb,dbd = b~ ded = ¢') = (C3 x C3 X C3) 1 Cy, where |K| = 3% and 1 = 3;

If we consider K as a vector space over [F,, then saying that p is a primitive root modulo
g means that the polynomial

X —1=x—1)x "+ 4x41)

has no roots in [, other than 1. The following example demonstrates the necessity of the

assumptions in the above theorem.

Example 1.3. With the help of GAP system [9], we found that the group given by

Gy :=(a,b,c:ad’ =b" = & =1,ab=ba,cac”' =a*,cbc™' = b4>
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has 4 automorphism orbits and the automorphism orbits are represented by elements of
order 1,7,3,3. The group G| can be viewed as the semidirect product (C; x C7) x C3. The
characteristic subgroup V := (a,b) = C; x Cy regarded as [F7|C3]-module is completely
reducible as direct sum of two 1-dimension [F;[C3]-modules, say V = V| @ V,, where V| = (v)
and V, = (w). We will show that there is no automorphism that maps c to ¢?. Assume by
way of contradiction that there is an automorphism 6 that maps c to ¢?. The elements ¢ and

¢? can be viewed as the matrix

4 0 20
c= ((_) Zl) o= ((_) 2) € GLy(V).

Av+w)? = ((v+w)) = (v +w)®) = (v+w)?)" =2(v+w)°.

Then we would have

A contradiction. So there is no automorphism that maps c to .

Thus the assumption that K, regarded as a I, [H]-module, is a direct sum of # > 1 copies

of the (unique) irreducible F,[H]-module of dimension ¢ — 1 is essential.

Example 1.4. With the help of GAP system [9], we found that the group given by
Gy = {(a,b,c:d’ =b" = & =1,ab=ba,cac”' =a*,cbc™' = b2>

has 4 automorphism orbits, and the automorphism orbits are represented by elements of
order 1,7,7,3. The characteristic subgroup V := (a,b) = C; x C; regarded as F7[C3]-module
is completely reducible as direct sum of two 1-dimension F7[Cs;]-modules, say V =V @ V5,

where V| = (v) and V, = (w). And ¢ can be viewed as the matrix

c= (g g) EGLQ(F3).

If v and v+ w are in the same automorphism orbit, then there is an automorphism 0 such that

- 0 0

Av+w) =40 = @) = ()9 = (1)) = (v+w),

this is 4v + 2w or 2v + 4w, which can’t happen. Hence there is no group automorphism of G
that permutes the elements v and v+ w and V is divided into three automorphism orbits. It is

also interesting to note that (v) and (w) are not isomorphic modules, once they have different
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eigenvalues. Indeed, the existence of a module isomorphism f : (v) — (w) would imply

Bw=w" = f(0)° = F(F) = f(Bv) = Af(v) = D
A contradiction.

Therefore, two crucial assumptions are that the normal Sylow subgroup, viewed as a
[F,[H]-module, decomposes as a direct sum of isomorphic [F,,[H]-submodules and that p is a
primitive root modulo g. In [4] (Theorem B) it was proved that if G is mixed order soluble
group of finite rank, then w(G) = 3 if and only if G = K x H where K = Q" and H is of
order ¢ acting fixed-point-freely on K. In particular, note that in this case the polynomial
x9—1=(x—1)(x9"'4...4x+1) always has no roots in Q other than 1. Also, as mentioned
in the introduction, Examples 1.3 and 1.4 shows that in some sense the upper bound 3" in
Theorem C does not hold in the finite case.

We now consider 4-orbit groups. The following structure theorem for finite soluble
groups G that are not of prime power order and with @(G) = 4 was proven by Laffey and
MacHale in [16] (see Theorem 4).

Theorem 1.16 ([16], Theorem 4.). Let G be a finite soluble group which is not of prime
power order such that @(G) = 4. Then |G| = p®4®, and G has a normal Sylow p-subgroup P
for some primes p, g. Let O be a Sylow g-subgroup of G. Then one of the following holds:

1. Q acts fixed-point-freely on P, |Q| = ¢, and P is a 2-orbit or 3-orbit group;
2. P is elementary abelian, and Q is cyclic of order ¢;
3. Pis elementary abelian, and Q is the quartenion group of order 8;

4. G =P x Q, where P, Q are elementary abelian.

We provide some examples of finite soluble groups with @(G) = 4 that are not p-groups

to better illustrate the preceding theorem.
Example 1.5. 1. With the help of GAP system [9], we found that
G:=Dig=(a,b:d’ =b*=1,a" =a ),

has 4 automorphism orbits. Let P = (a) and Q = (b) . Note that G = P x Q = Cg x (3,

Q acts fixed-point-freely on P, |Q| = 2, and P is 3-orbit group. So this exemplifies

item 1. of Theorem 1.16.
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2. With the help of GAP system [9], we found that
G:=(a,b:a =b>=1,a"=a"),

has 4 automorphism orbits. Let P = (a) and Q = (b) . Note that G = P x Q = C; x C3,
Q acts fixed-point-freely on P, |Q| = 3, and P is 2-orbit group. The automorphism
orbits are represented by elements of order 1,7,3,3. So this also exemplifies item 1. We

note that this example also applies to demonstrate the necessity of the assumptions in
Theorem 1.15.

3. With the help of GAP system [9], we found that the group

G:=(a,b,c,d: A=b=c"=1,d>=cb"=ab=ba,

a“=blal=abb =a,c?!=c""),

has 4 automorphism orbits. Let P = (a,b) = C3 x C3 and Q = (c) = C4 . Note that
G =P xQ=PSU(2,7), Q acts fixed-point-freely on P, |Q| = 4, and P is elementary

abelian. So this exemplifies item 2.

4. The group
G:=(a:a®=1)2C, xC3,

has 4 automorphism orbits. We note that there is only one element of order 2, also the
inversion automorphism is sufficient to prove that all elements of order 3 are in the

same automorphism orbit as well as all elements of order 6. So this exemplifies item 4.

In [5], it was proved that for G = A x B, where A is a finite-dimensional (Q-vector space
and B < Aut(A), we have 0(G) < « if and only if, B is abelian. It shows that case (3) does
not occur in the infinite case. The following example shows that the converse of item (3)
does not hold. We denote the quaternion group of order 8 by QOsg.

Example 1.6. Using GAP system [9], we verified that for primes p € {3,5,7,11} the groups
G = (C, x Cp) x Qg, where Qg acts faithfully on C), x C,, have exactly four automorphism
orbits and (Cy3 X C13) % Qg has exactly five.

Therefore, Theorem 1.16 does not fully characterize all finite soluble groups with exactly
four automorphism orbits that are not p-groups.
We present some examples of finite soluble groups, that are not p-groups, with 5 auto-

morphism orbits. These examples will be relevant in the next chapter.
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Example 1.7. 1. With the help of GAP system [9], we found that
G:=(a,b:a®=1,0*>=d>,bab~' =a™ "),

has 5 automorphism orbits. Let P = (a) and Q = (b) . Note that G = P x Q = C3 x Cy,
Q acts fixed-point-freely on P, |Q| = 4. The automorphism orbits are represented by
elements of order 1,2,3,4,6.

2. With the help of GAP system [9], we found that
G:={a,b: a® =1, =a°,bab™! :a_]>,

has 5 automorphism orbits. Let P = (a) and Q = (b) . Note that G =P x Q = Cs5 x Cy,
Q acts fixed-point-freely on P, |Q| = 4. The automorphism orbits are represented by
elements of order 1,2,5,4,10.

3. With the help of GAP system [9], we found that
G:=(ab:a®=b>=1,bab=a""),

has 5 automorphism orbits. Note that G 2% (C3 x C3) X Cs, Z(G) = (a®) has order 2, the
quotient G/Z(G) is a 3-orbit group of composite order and the automorphism orbits

are represented by elements of order 1,2,2,3,6.

4. With the help of GAP system [9], we found that the group
G:=(a,b,c: @ = b =c®=1,ab=ba,cac' =a*b>,chc™ = a b1y,

has 5 automorphism orbits. Let P = (a,b) = Cs x Cs and Q = (¢) = C¢ . Note that
G =P xQ=(CsxCs)xCg, Q acts fixed-point-freely on P, the automorphism orbits

are represented by elements of order 1,2,3,5,6.
Now we present an example with 6 automorphism orbits.

Example 1.8. Let G = S3 x S3, we show that ®(G) = 6.
We begin by proving that Aut(S3 x S3) = (S3 X S3) x C,, where the cyclic group of
order 2 acts by permutation on the entries of S3 X S3. Let g = (g1,£2) € G and ¢ € Aut(G).

B
Yy o
Consider the projection homomorphisms 7,7 : S3 X §3 — S3 and the inclusion maps

First, we show that there exist homomorphisms «, 3,7, 0 : S3 — S3 such that ¢ =
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11,1y : 83 — 83 X S3 defined as follows:

(g1,82)" =g (81,82)" =g
(&)" =(g1) (&)2=(1,g)
Define
o= meL B=mon
Y=mo1 0 =M.

Then the maps «, 3,7, 8 are homomorphisms from S5 to itself. Moreover, observe that using
notation of [6], we have

a B\ (ar) _ (g% _ (eler?™ (L)
v §)\& gl g gt
(8171)m¢(1782)m¢ (glagZ)nl(P )
- o mo | — me | =8 - (1.2)
(g1,1)™%(1,82)™ (81,82)
Since ¢ is an automorphism, we can deduce some properties of the images (S3)%, (S3)? < S;.
From (1.2) we obtain that [(S3)%, (S3)P] = 1 and (83)*(S3)P = S3. Hence, we conclude that
(S3)% and (S3)P are normal subgroups of S3. The normal subgroups of S3 are 1, (12 3)),
and S3. But given the properties above, the only possible cases are (53)* =1, (S3)ﬁ =Sz or
($3)% = 83, (53)P = 1. This implies that the only nontrivial homomorphisms are such that

either o € Aut(G) and B is the trivial map, or f € Aut(G) and « is trivial. The same holds
for v and 8. Therefore, ¢ must be of the form

(o 0 (0 B
(58 = o)

where 0 is the zero homomorphism. Note, however, that

Ga-GoCe)
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We can then define the function

f: Aut(S;; X 53) — (S3 X S3) X Cy

a 0
(0 5) — (o, 9)
(O 1)
— O.
1 0

where ¢ has order 2 and permutes the entries in S3 X §3. It is easy to verify that f is an
isomorphism. Noting that Aut(S3) = S3, we conclude that Aut(S3 x S3) = (S3 x §3) X C,.

Now consider the action of Aut(G) on G, where the orbit of an element g € G is the set
Orb(g) = {g” : ¢ € Aut(G)}.

Since we have already described the elements of Aut(G), we can compute all the orbits. They
are as follows:
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Orb (12)\ | { (12) (13) (23) (123) (123) (123)

i (123)) 1 \@23)) '\ a23)) ' \23)) '\ (12) )"\ 13) )"\ 23) )’
(12) (13) (23) (132)\ [(132)\ [(132)
(132) )7\ (132) )\ (132) ) "\ (12) )7\ (13) J '\ (23)

This concludes the preliminary chapter. In what follows, we turn our attention to soluble

So o(G) = 6.

groups of finite rank with finitely many automorphism orbits, which form the main focus of

this work.



Chapter 2
Mixed order soluble groups of finite rank

This chapter is devoted to the study of 4-orbit and 5-orbit groups that are mixed order soluble
groups of finite rank. We prove two structural theorems and provide some examples of such

groups.

2.1 Soluble groups with 4 automorphism orbits

In this section we prove Theorem A.

Theorem A. Let G be a mixed order soluble group of finite rank with @(G) = 4. Then
G = K x H, where K is a torsion free nilpotent characteristic radicable subgroup, H is a finite

subgroup and one of the following three cases holds (g is a prime number):

1. H acts fixed-point-freely on K, |H| = ¢, and @y;(6)(K) = 3;

2. K =Q", H is cyclic of order ¢* and the action of H is fixed-point-free;
3. G=K x H, where K = Q" and H is elementary abelian g-group.

Before proving Theorem A, we present some related results. The authors of [S] proved

Theorem 2.1 ([5], Corollary 1.4). Let A be a finite dimensional vector space over Q and
B a finite subgroup of Aut(A). Let G = A x B be the semidirect product of A and B. Then
®(G) < e if and only if B is abelian.

In a different work [4], the same authors proved

Theorem 2.2 ([4], Theorem A). Let G be a soluble group of finite rank. If ©(G) < oo, then

G has a torsion-free radicable nilpotent characteristic subgroup K such that

G=KxH,
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where H is a finite subgroup.

Theorem 2.3 ([4], Theorem B). Let G be a mixed order soluble group of finite rank. We have
o(G) =3 if and only if G = A x H where |H| = p for some prime p, H acts fixed-point-freely

on A and A = Q" for some positive integer n.
Now we establish an auxiliary lemma.

Lemma 2.1. Let G =A x B, where A = Q", B < Aut(A), |B| = ¢" is an elementary abelian
g-group and Z(G) = 1. Then @y, g)(A) > n+1.

Proof. If n=1, then H acts fixed-point-freely on A, and consequently @(G) = 3, by Theorem
2.3. 50 @awc) (A) =2, as desired. Thus, we can assume that n > 2. We consider A as a
Q[B]-module. By Maschke’s Theorem, A is a completely reducible Q[B]-module. Hence

AZAIEB...EBAk,

where A; is an irreducible Q[B]-submodule of A, 1 <i < k. Since B is abelian, B/B; is cyclic,
where B; denotes the kernel of the representation of B on A;. Moreover, since B is elementary
abelian and non-cyclic, we have that B; is a maximal subgroup of B. Therefore, for each A ;
there exists a maximal subgroup B; such that A; < C4(B;).

Observe that the components A; are contained in at least n distinct centralizers of maximal
subgroups of B, since the intersection of any n — 1 maximal subgroups of B is non-trivial and
Z(G) = 1. Thus, we may select n distinct components, say Aj,...,A,, with each A; < Cs(B;)
for distinct maximal subgroups By, ...,B,. Let v; € A; be a non-trivial element of A; for each

i. Now we show that vi,v{vy,...,v{v2- -V, are in distinct orbits. Since
Cg(x)" = Cs(x"),

forall x € G and o € Aut(G), it is sufficient to show that these elements have non-isomorphic
centralizers. It is a straightforward calculation that Cg(vy) = ABj, Cg(viv2) = A(B1 N
By), Cg(viva--+vi) =AB NBN---NBj),...,Cs(viva---vy) =ABiNB,N---NBy), as
desired. [

We proceed with the proof of Theorem A.

Proof of Theorem A. By Theorem 2.2, G = K x H where K is a torsion-free radicable nilpo-
tent characteristic subgroup and H is a finite group.

First, suppose that ®4,,(c) (K) = 3. Then either K is nilpotent of class 2 with its center
Z(K) occupying two automorphism orbits in G, or K is abelian. In both cases, every element
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of G\ K has prime order ¢ and acts fixed-point-freely on K. However, the case where K is
abelian contradicts Theorem 2.3. Therefore, K is nilpotent of class 2.

Assume now that @y,,()(K) = 2. Since K is nilpotent, we have K = Q". If Cy(K) # 1,
then Cg(K) = K x Cy(K) is an abelian characteristic subgroup with at least four automor-
phism orbits, by Lemma 2.1. Thus, in this case G = K X H.

Then H acts faithfully on K. Note that Cx (H) = Z(G), then Cx (H) = 1 since () (K) =
2. This implies, via Theorem 2.3, that the quotient group G/K = H is a finite abelian group
with at most three automorphism orbits. By Theorem 1.15, we conclude that G/K = H have
a prime power order.

If H is not a cyclic group, then H contains an elementary abelian g-group B of rank at
least two for some prime g such that KB is characteristic. By Lemma 2.1 this leads to a

contradiction, and therefore H must be cyclic of order qz. [

Therefore if G is a mixed order soluble group of finite rank with @(G) = 4, then G =
K x H, where K is either isomorphic to a finite direct product of QQ or class-2 nilpotent. We
now provide an example illustrating the latter case.

Example 2.1. Define 1> = 1 for some 1 # A € C and consider the splitting field F = Q[A] =
{x+yA: x,y € Q} over Q of the separable polynomial X — 1 and the group K = UT3(F) of
upper 3 by 3 unitriangular matrices over the field F. Define a map o : K — K by

1 a ¢ 1 Aa M
01 b|l—=10 1 Ab
0 01 0 0 1

The map o extends to a fixed-point-free automorphism of K of order 3. By denoting H = ()

we construct the semidirect product G = K x H.

We will argue that the group G in Example 2.1 has 4 automorphism orbits. First we will
show that every non-trivial element in K’ is in the same automorphism orbit. Recall that the
commutator subgroup K’ of K consists of unitriangular matrices (a;;) € K such that a;; = 1
and a;; =0 fori #3, j# 1,i# j. We now show that all non-trivial elements of K’ lie in the

same automorphism orbit. For any two elements k;,k> € K, conjugation by

k"o o
0 1 0| €eTs(F)
0 0 k

provides an automorphism that connects two non-trivial elements in K'.
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Now we show that K \ K’ form a single automorphism orbit. By Theorem 3 of [17], for
every A = (a;j) € GL,(F) the map 6, given by

b b b

1 aag 1 +b61271 (C — %) det(A) + (Clal,l + a271)2(aa172 + a272)

k=10 1 a2 + bz |
0 0 |

extends to an automorphism of K. The existence of these automorphisms implies that any
two elements in K \ K’ are connected, and thus U753 (F) has exactly 3 automorphism orbits.
Further examples of groups with 3 automorphism orbits can be found in [21]. Now since «
commutes with 64 for every A € GL,(F), we can define the extension of 64 to G by fixing
o — o. This extension yields an automorphism of G.

Now we will show that every element in G \ K is in a single automorphism orbit. We will
show that o and o~ ! are in the same automorphism orbit. Observe that Q[A]/Q is a Galois
extension. Hence, we can define a field automorphism @ : A A? that can be extended to an
automorphism of K by the action ¢ : x+ yA — x+ ylz on each matrix entry of K (since it
is compatible with the operations of matrix multiplication). In fact, the map ¢ is complex

conjugation. Define the map ¢ : G — G by

1 ¢(a) o(c)
k=10 1 ()

0 0 1

o— ol

Basic calculations show that this map extends to an automorphism of G.
Now it remains to show that the element za for z € Z(K) is in the same orbit as the
element ka for k ¢ Z(K). We will present an element x € K such that (ka)* = za. Let

1 a b 1 0 ¢ 1 x1 x
k=101 ¢|, z=10 1 0], x=]0 1 x3]| €Kk.
0 01 0 01 0O 0 1

1 .
Note that (ka)® = x ko = x 'kaxa ' = x 'kx®  a. And this last product corresponds
to
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1 a+(A*—=1x; b+cAx;+ (A —1xy —axs — (A% 4+ 1)x1x;
0 1 c+ (A% —1)x; a.
0 0 1

Note that we can easily find the entries for matrix x by simply equating the above matrix
with za. Hence every element in G\ K is in a single automorphism orbit. Consequently, the
group presented in Example 2.1 has 4 orbits under automorphism.

We now turn to the proof of Theorem B which we state again for convenience.

Theorem B. Let G be a mixed order metabelian group of finite rank. Then @(G) = 4 if and
only if G = K x H where one of the following holds:

1. K=Q", H is cyclic of order qz, the action of H is fixed-point-free and K decomposes

as a Q[H]-module into a direct sum of copies of isomorphic irreducible Q[H]-module;
2. G=K x H, where K = Q" and H is elementary abelian.

We already proved that item 2 is a sufficient condition for a group to have 4 automorphism
orbits (see Theorem 1.10). Now we prove that item 1 is a sufficient condition for a group to

have 4 automorphism orbits. We begin with an auxiliary lemma.

Lemma 2.2. Let G = K x H where K = Q" and H is a cyclic group of order ¢°. If o(G) =4,
then H acts fixed-point-freely on K, and K decomposes as a Q[H]|-module into a direct sum

of copies of the same irreducible Q[H]-module.

Proof. Using Theorem 2.1, we obtain that H acts fixed-point-freely on K. By Maschke’s
Theorem K = K} ® Ky @ - - - @ K, where K; is an irreducible Q[H]-module, for 1 <i <r. If
H = (h: W = 1), we choose a basis for K; so that & is represented by the companion matrix
of its minimal polynomial m;(X) on K;. Hence K; is determined up to Q[H|-isomorphism by
the minimal polynomial m;(X) of & on K.

Since 19" = 1 we conclude that the minimal polynomial my,(x) of Tj, : K — K, given by
k— k" divides

1= (x—1)(1 +x+x2+-~~+xq—|—~-—|—xq27l).
Since h acts fixed-point-freely,
my(x) divides (1+x+x2 4 4x7 4 +x7 1),

Assume, by way of contradiction, that K is not isomorphic to K,. Hence m;(X) # my(X).
Let0# u; € K;, fori = 1,2. Since G is a 4 orbit group, the characteristic subgroup K occupies
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2 automorphism orbits, hence there exists ¢ € Aut(G) with u{ = u; + u,. Now he ' = hkw
for some w € K and let g(X) be the minimal polynomial of ¥ on K. Consider

uZg(h) = u (g(h®))® = uf (g(h"))® = u1g("))° = 0.

Hence (u; +u)g(h) = 0. But the minimal polynomial of & on uj +u, is my(X)my(X). Since
deg(g) = deg(m;), we have a contradiction. O

Theorem 2.4. Let G = K x H where K = Q" and H is a cyclic group of order ¢°. If H acts
fixed-point-freely on K and K, regarded as a Q[H|-module, is a direct sum of copies of the
irreducible Q[H|-module, then ®(G) = 4.

Proof. First, we determine the orders of elements in G \ K, demonstrating that they must be

either ¢ or ¢>. Set H = (h). The minimal polynomial my(x) divides

Lx+a?+oxl o xd
Using the identity (xy)" = x"(y* 71) ...Y"y, it is clear that for every k € K, (h/ k)q2 =1

Now we show that any two elements of K are conjugate by some automorphism. Let
u,v € K be non-trivial elements. Since K is the direct sum of isomorphic Q[H]-modules,
we have that Ky = {vf(h): f(X) € Q[X]} and K; = {uf(h): f(X) € Q[X]} are irreducible
Q[H]-submodule of K. If K| = K, then K = Ky & K3, where K is a complement of K, and
the map o given by u® = v, h° = h and w® = w extends to an automorphism of G, for w € K,.
Not that K| and K are fixed. If K| # Ky, then K = Ky @ K| & K>, where K, is a complement
of K1, and the map o given by u® = v, v’ = u and h° = h extends to an automorphism of G.
Note that K and K5 are switched and K5 is fixed.

Now we must show that elements of order q2 form a single orbit under Aut(G). Note that
for any h € H the map k — k'K is an automorphism of K since / acts fixed-point-freely.
Therefore, the elements of the coset 2K are in the same orbit by conjugation. So it suffices to
show that there exists ¢ € Aut(G) such that h° = k' for every positive integer i coprime to
g. Let K = K; @ --- @ K, be the sum of irreducible Q[H]-modules and let 0 # k; € K;. Each
k € K; can be written in the form k = k; f(h) for some f(X) € Q[X] with deg(f) < ¢*> — 1.
Define a map h® =K', k§ = k; and (k;f(h))° = k;f(h°). Note that if 0 # k € K is such
that kg (1) = 0 for some g(X) € Q[X], then ®>_; (X) (the cyclotomic polynomial for 7 —1)
divides g(X) and hence it also divides g(X'). So kg(h') = 0 and the extension of the map ¢
is well defined, hence it extends to an automorphism of G. Finally, observe that as i ranges
over all possible values coprime with g, it simultaneously covers all powers of 49. Thus, the

elements of order ¢ constitute a single orbit. 0
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Combining this result with Theorem A, we establish Theorem B.

2.2 Soluble groups with 5 automorphism orbits

Following the result presented in the previous section, it is natural to ask whether similar
structural conclusions can be drawn for groups with five automorphism orbits. This question
arises as a natural continuation of the investigation. Now we explore this case in more detail.

We start by providing a proof of Theorem C and later we provide some examples.

Theorem C. Let G be a mixed order soluble group of finite rank with @(G) = 5. Then
G = K x H, where K is a torsion free nilpotent characteristic radicable subgroup, H is a finite

subgroup and one of the following holds:
1. K is non-abelian, G/Z(K) is non-abelian, and 0(G/Z(K)) < 4;
2. K=Q", ®gu(c)(K) =3, and |H| = g* for some prime g;
3. K=Q", ®gu(c)(K) =2, Z(G) is elementary abelian g-group and ®(G/Z(G)) = 3.
4. K=Q", 0q(c)(K) =2, and H is a cyclic group with ©(H) = 4.
Proof of Theorem B. By Theorem 2.2, G = K x H where K is a torsion-free radicable nilpo-

tent characteristic subgroup and H is a finite group.

¢ Claim 1. If X is nilpotent of class 2 or 3, then G/Z(K) is non-abelian, and ®(G/Z(K)) <

Suppose K is nilpotent of class 2. Then ®a,(g)(K) > 3. If [K,H] <K', we will show
that G = K x H, and consequently @(G) > 6. To see this, set h € H and define the mapping
o, - k— kK" from K to K'. Since K’ = Z(K), for x,y € K we have

()% = (xy) " (o) =y I Y =y gt = Oy

So @y, is an homomorphism of K to K’ for any & € H. Note that oy, maps K into an abelian
group so K’ is contained in the kernel of oy, and so [K’,h] = 1. For any k € K we have
K" = k[k, h), K = k[k,h]" and then k = k[k, h]/", i some positive integer. Since K is torsion-
free we obtain that [k,h] = 1 and G/Z(K) is non-abelian, as desired.

If K is nilpotent of class 3, we can use the same argument to see that if

K/y3(K),Hp3(K)/73(K)] < K'/73(K),
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then [K/y3(K),Hy3(K)/y3(K)] = 1. Thus @(G/y3(K)) > 6, and so o(G) > 6.
* Claim 2. If K is abelian with @, () (K) = 3, then |H| = g° for some prime g.

Suppose that K is abelian with @) (K) = 3. In this case, H is an abelian group with
at most three automorphism orbits, while G \ K has exactly two automorphism orbits. By
Theorem 1.15, this implies H cannot have composite order. Moreover, G must be non-abelian,
since in the direct product K x H of abelian groups, K would have exactly two automorphism
orbits.

Note that if Cx(H) # 1, then K = Cx(H) x [K,H], where both factors are characteristic
subgroups, which would force @, y(g)(K) > 4, contradicting our hypothesis. Thus Cx(H) =
1.

When H is not cyclic, Lemma 2.1 shows that G \ K contains both elements of prime
order ¢ and elements of infinite order, with |H| = q2 for some prime g. If H is cyclic, we

immediately conclude |H| = ¢*.

* Claim 3. If K is abelian with @, ()(K) = 2 and Z(G) # 1, then Z(G) is elementary
abelian g-group and 0(G/Z(G)) = 3.

Suppose that K is abelian and @y,,(G)(K) = 2. In this case, Z(G) = Cy(K). If Cy(K) # 1,
the subgroup K x Cy(K) must have four automorphism orbits, and consequently Cg (K) must
be elementary abelian. Thus, all elements of G\ Cs(K) have order g for some prime q.
Note that Z(G) = Cx(H) x Cu(K), therefore H acts fixed-point-freely on KZ(G)/Z(G) and
o(G/Z(G)) =3.

* Claim 4. If K is abelian with @) (K) =2 and Z(G) = 1, then H is a cyclic group
with o(H) = 4.

If Cy(K) = 1, we may apply Lemma 2.1 to conclude that H is cyclic with w(H) =4, as
desired. ]

Now we present some examples. The first two demonstrate the existence of groups with
exactly five automorphism orbits and elementary abelian centers. We point out that these
cases are analogous to the finite ones in Example 1.7.

Example 2.2.
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1. G=Q xCy, where Cy = (b | b* = 1) is cyclic of order 4 and the action is given by
¢° = —q. We observe that Z(G) = (b?).

2. G=(Qx () x Cy. The first C; factor acts on Q via canonical inversion. We observe
that Z(G) = ;.

3. G = Q% xCs where Cg = (b | b° = 1). And b acts on Q* by

(1)

We note that @ayc) (Qz) =2, the elements of order 2 are in the same automorphism
orbit, the elements of order 3 are in the same automorphism orbit and the elements of
order 6 are in the same automorphism orbit.

Following this result, it is natural to ask what can be said about mixed order soluble
groups of finite rank with six or more automorphism orbits. For instance, if G is a mixed

order soluble groups of finite rank with @(G) = 6, the decomposition of Theorem 0.1
G=KxH,

holds, where K is a torsion-free nilpotent characteristic radicable subgroup and H is a finite
subgroup. In the present work, we do not pursue this case in depth, leaving it as a potential
direction for future investigation. However, we present an example of a finite rank mixed-
order soluble group with 6 automorphism orbits to compare to Example 1.8, where we
considered S3 x S3.

Example 2.3. Let G = (Q X ;) x (Q x C;). We prove that @(G) = 6. We begin by
describing their automorphism group. Note that this group can be viewed as G = Q7 x

({(by) x (b2)), where
10 -1 0
b1:<0 _1>, b2:<0 1)_

The group G can also be viewed as G = (({0} x Q) x (b1)) x ((Q x {0}) x (b2)) and also
G = N x N, where N = Q x C;. We prove that ®(G) = 6. Let g = (g1,82) € G=N XN
and ¢ € Aut(G). First, we show that there exist homomorphisms o, 3,7,0 : N — N such
o B

that ¢ =
at ¢ v s

. Consider the projection homomorphisms 7,7, : N X N — N and the
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inclusion maps 11,1, : N — N X N defined as follows:

(g1,82)™ =g (g1,82)" =g
(&)" =(g,1) (&)2=(1,g)
Define:
o= meL B=mon
Y=mo1 0 =M.

Thus, the maps o, 3, v, 0 are homomorphisms from N to itself. Moreover, observe that
a B\ (ar) _ (g% _ [(e7er?™ o0
v §) \& gles g ey ’"
(8171)m¢(1782)m¢ (glagZ)nl(P )
- Y0 o = ne =8 (22)
(g1, 1)™%(1,82) (81,82)
Now, since ¢ is an automorphism, we can determine some properties of the images
(N)%,(N)P < N. From (2.1) we obtain that [(N)%*, (N)f] =1 and (N)*(N)? = N. Thus,
we conclude that (N)%, (N )[3 <IN. Given the properties above, the only possibilities are

(N)*=1,(N)P =N or (N)* =N, (N)P = 1. This shows that the homomorphisms must

be such that either & € Aut(N) and B is the trivial homomorphism, or 8 € Aut(N) and
o 0

or
0 o

o is trivial. The same applies to ¥ and 6. Hence, we can write either ¢ =

0
0= ( h ) But notice that
Yy O

0 BY (B 0\[0 1
y 0 0 y/\1 0/
This determines all automorphisms of G. Furthermore, we can define the map

f:Aut(N xN) — (Aut(N) x Aut(N)) x S,
o 0
0 o
()
— 0.
10

— (a,9)
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It is easy to see that f is an isomorphism. We know that @(N) = 3, where one orbit is

for e, one orbit is for torsion-free elements and one orbit is for elements of order 2. Now we

0

most o(N )2 = 9 orbits in G. The orders of the elements occurring in each possible orbit are

o 0
count the number of orbits of G. By the automorphism (O ) we know that there are at

of the following types
(1,1), (1, torsion-free), (1,2),

(torsion-free, 1), (torsion-free, torsion-free), (torsion-free, 2),

(2,1),(2,torsion-free), (2,2).

01
Now, the automorphism (l O) shows that the following types of elements are in the same

automorphism orbit

(torsion-free,1) and (1,torsion-free),
(1,2) and (2,1),
(2,torsion-free) and (torsion-free,2).

As all automorphisms have been taken into account, there are exactly @(N)? —3 = 6 auto-

morphism orbits in G.

This concludes the chapter about mixed order soluble groups of finite rank with 4 and 5

automorphism orbits.






Chapter 3
Unitriangular matrices over Q)

In the beginning of this work we mentioned Theorem 0.1, which says that if G is a soluble
group of finite rank with @(G) < o, then G contains a torsion-free characteristic nilpotent
subgroup K such that G = K x H, where H 1is a finite group.

The group of unitriangular matrices plays a significant role within the class of nilpotent
groups, serving as a fundamental example. We investigate certain properties of these groups
in the context of our study. In particular, we considered the group of upper triangular matrices
of dimension n over the field of rational numbers, UT,(Q).

3.1 General overview

3.1.1 Group theoretic properties

Definition 3.1. The upper unitriangular matrix group of dimension n x n over the field Q,
denoted UT,(Q), is the group, under multiplication, with 1’s on the diagonal, 0’s below the
diagonal, and arbitrary entries above the diagonal.

Explicitly,
([1 « x ... )
0 * *
UT,(Q)= 0 0 1 ... x : all star-marked entries vary arbitrarily over Q
(\0 0 0 ... 1/ )
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This subsection is based on the paper [20] by Mahalanobis, in which he finds a set of
generators for the automorphism group of the group of unitriangular matrices over a field. .
We begin by defining some well known properties about UT,(Q).

We define the elementary matrix xe; ; to be the n X n matrix with x in the (7, j) position,
1I’s in the diagonal and O elsewhere, where x € Q. In what follows, we shall discuss the
central series of UT,(Q).

Definition 3.2. Define
Ye = {M: (mm') c UTn(Q)Z mi :O, 1< j, j—i< k}

In other words, the y; = UT,(Q). The subgroup 9, is the commutator of UT,(Q). It
consists of all upper unitriangular matrices with the first superdiagonal entries zero. The first
superdiagonal can be specified by all entries (i, j) with j —i = 1. Similarly 93 consists of all
matrices with the first two superdiagonals zero and so on. It follows that 7, = 1. We denote
the identity matrix by 1.

It is known that

Proposition 3.1 ([20], Proposition 1.1). In UT,(Q), the lower central series and the upper

central series are identical and it is of the form

ULQ=n>n>...>%h1>h=1

With this discussion, it becomes clear that UT,(Q) has nilpotency class n — 1. This is a

very basic property, but we will present an example to illustrate the idea clearly.
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Example 3.1. The group UT;(Q) has nilpotency class 3 and the lower central series is

;

I aip a1z aig
0 1 a3 axs
= ’ ' tajj € ,
N 0 0 1 34 i,j Q
(\0 O 0 1
(/1 0 a13 aa
0 1 0 aj 4
— ’ 1aij e y
e 00 1 o | @E=Q
L\oo o 1
(/1 00 a4
010 O
= a4 e ,
V3 00 1 0 i,j @
L\0o 00 1
n={1}.

We now proceed to analyze the derived series. In [10] it was discussed that the kth term
in the derived series for UT;,(Q) is UT,(Q)*) = yy. See the following example.

Example 3.2. The group UT4(Q) has derived lenght 3 and the derived series is

I aip a3 aigs
UTy(Q)) = g (l) a? Zz’i rai;€Q o,
0 0 0 17
(/1 0 ay3 a4
UT4(Q)? = 3(1) (1) a(z)’4 raij€Q o,
00 O 1

\

UTy(QY = {1}.

Note that there is a bijection between the commutator subgroup U T4(Q)(2) and the group
UT;(Q). However, there is no isomorphism between them, since one is abelian while the

other has nilpotency class 2.

Proposition 3.2. The group of unitriangular matrices UT,(Q) is a soluble group of finite

rank, for any positive integer n.
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Proof. The solubility is clear. To see that the group has finite rank, observe that, based on
the description of ¥; and the discussion above, the quotients ¥;/%+ are direct sums of a finite
number of copies of Q, for 1 <i <n— 1. And the property of having finite rank is extension
closed. In fact, if N and G/N have rank r and 7’ respectively, then G has rank at most r + 7.
Therefore, we can conclude that UT,(Q) is a soluble group of finite rank for any positive

integer n. O

We now proceed to define a class of maximal abelian subgroups, which will play an

important role in our subsequent analysis.

Definition 3.3. For j > i let us define N, ; to be the subset of UT,(Q) all of whose matrices
have all rows greater than the i™ row zero and all columns less than the jth column zero,

except from the diagonal entries.

It is straightforward to see that &; ; is an abelian normal subgroup of UT,(Q). We now

present some examples.

Example 3.3. Let G = UT4(Q). The subgroup N; » and N, 3 has elements of the form

(

I aip ai3 aia
0 1 0 0
Nir = 1a; i € ,
L2 00 1 0 i€Q
(\o 0 o 1
([1 0 ai3 aia
0 1 ax3 axa
Nosy = ' ’ 1a; i €
>3 00 1 0 i €Q
00 O 1

Levchuk proved

Proposition 3.3 ([17], Lemma 5.). The centralizer of N ; is

CUTh(Q) <N17J) = Nj_17i+1 .

Levchuk also mentioned that the subgroups N; ;11 are maximal abelian normal subgroups
of UT,(Q), fori=1,2,...n— 1. Knowing this property is particularly useful, because the
image of maximal abelian normal subgroups under automorphism are maximal abelian

normal subgroups.
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Example 3.4. Let G = UT4(Q). The subgroup N, 3 has elements of the form

a3 a4

a3 axs
1 0
0 1

N273 = 14 € Q

S O O
S © = O

It is a maximal abelian subgroup isomorphic to Q*. This subgroup is also a characteristic
subgroup of G, proof of this fact can be found in [20] or [17].

3.1.2 Ring of niltriangular matrices and automorphism group

The unitriangular group U7, (Q) is isomorphic to the associated group (with multiplication
aob = a+ b+ ab) of the ring NT,,(Q) of upper niltriangular matrices of degree n over Q, ie,
all entries on and below the main diagonal are zero. See [20] and [17].

0 * x ... %
0 * *
NT,(Q) = 0 0 O * : all star-marked entries vary arbitrarily over
(\0 0 0 ... 0/ )

The notation for this group is (N7,,(Q),o) and the isomorphism is given by x — 1, +x, for
x € NT,,(Q) and 1, the identity matrix of size n. In the literature, authors typically prefer
to work within the ring N7,(Q) (for instance [20],[17]). Accordingly, we will adopt this
notation when stating the theorems that will be used in our analysis and whenever the group
UT,(Q) is under consideration, it will be specified.

In [17] Levchuk provided a complete description of the automorphisms of the associated
group of NT,,(K), where K is an associative ring with identity, and also specified the structure
in the case where the underlying ring is commutative in which the element 2 is invertible.
We will state this particular case and then focus on working over the field Q.

Let K be a commutative ring in which the element 2 is invertible. In order to state the
characterization theorem for the automorphism group of the associated group of NT,,(K) we

begin by describing some automorphisms of this group.
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For i < j and x € K we define the matrix unit x&; ; to be the n X n matrix with x in the

(ij) position and O elsewhere. The relations on the associated group are

(x€ij) o (v&i,j) = (x+ )€, 3.1)
XYE; | whenever j =k,
[x€; j, yer 1] = —xy€.; wheneveri=I, (3.2)
0 otherwise,

from the relations above it follows, that a set of generators for N7,,(K) is of the form XE i1,
xeKandi=1,2,...,.n—1.

Transformations of the elementary matrices in N7,,(K) can be extended to an automor-
phism of the associated group, provided that the transformation preserves relations (3.1) and
(3.2), for details see [17] Lemma 3.

Now we will present some examples of automorphisms of the associated group of the
ring. We present them as action on the generators xg; ;1 and they can be extended using

relation (3.2), fori = 1,2,...,n— 1. The automorphisms are as follows:

1. Inner automorphisms: We will denote by 7 the subgroup of inner automorphisms
of the associated group. For an invertible matrix A = (a; ;) € NT,(K), the inner

automorphism induced by A is defined by
X—Alox oA,

where X € NT,(K);

2. Diagonal automorphisms: We will denote by D the subgroup of diagonal automor-
phisms. For a diagonal matrix diag[dy,...,d,], where each d; is invertible, i = 1,...,n,

the diagonal automorphism induced by diag[dy,...,d,| is given by
& j— di_lgﬁjdj;

3. Central automorphisms: The subgroup of central automorphisms will be denoted by
Z, it is generated by the automorphisms

A
XEjjt1 > XEijr1 +X"Ep,
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where A is a linear map of K T to itself;

4. Extremal Automorphisms: We will denote by U/ the subgroup of extremal automor-

phisms, these automorphisms are given by the rule,

2

x
x€ 2 > x(€12+ A& ,) + — €Ly
2

u
XE—1n — x(gn—Ln +.u817n—1) + Tsl,ny xeKk,

for A, 1 running through K. All other generators remain fixed;

5. Field Automorphisms: We will denote by Aut(K) the subgroup formed by induced

field automorphisms. It is generated by the automorphisms
X€i i1 = X it
’ ) )

where U is a field automorphism and i =1,...,n —1;

6. Flip Automorphisms: Let W denote the subgroup generated by the flip automorphism
which is given by
x€i ;> (= 1) e, i

This automorphism is given by flipping the matrix by the anti-diagonal and changing

the sign of some entries. This is an automorphism of order 2.

Now we state the theorem of characterization of the automorphism group of N7, (K).

Theorem 3.1 ([17], Corollary 5). Let K be a commutative ring in which the element 2 is
invertible. Then the group of automorphism of the associated group of NT,(K) coincides
with the product

(Z xGLy(K)) x Aut(K),

for n = 3, and for n > 3, coincides with the product
((ZT) xU) x W) x D) x Aut(K).

We consider the particular case where the field is the rational numbers Q. This allows
to give a conciser decomposition of its automorphism group. It is well known that the only
field automorphism in Q is the trivial one. So as a corollary of the above discussion and the

mentioned results we have.
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Corollary 3.1. The group of automorphism of Aut((N7,(Q),0)) coincides with the product
(((ZT) xU) x> W) xD,
for n > 3 and coincides with the product
Z xGL,(Q),

for n = 3.

The corollary above describes the automorphism group of the associated group (NT,(Q), o).
As previously mentioned, authors in the literature generally prefer to work in the associated
group (NT,(Q), o). For this reason, we stated the existing theorems in terms of the associated
group. However, it is straightforward to verify that the analogous results hold for the case of
UT,(Q). We now proceed to argue that the automorphism group of the unitriangular group
UT,(Q) can also be described analogously.

It was mentioned that the map from the associated group (NT,(Q),o) to the group
(UT,(Q),-) with operation - matrix multiplication, defined by x — 1 -+ x is an isomorphism
of groups. Let us denote this isomorphism by

6 : (NT,(Q),0) — (UT;(Q),")

x+— 1+4+x.

Since x€&;;+1,x€ Qandi=1,2,...,n— 1, is a set of generators for (NT,,(Q), o), their image
by 6 is also a set of generators of UT,(Q). Observe that in our notation, (xei7,~+1)9 = X€j 1.
Define a map

@ : Aut((NT,(Q),0)) = Aut((UT,(Q),-))

o 000!

The map & is easily seen to be a homomorphism. It has the inverse 8!« @, so it follows
that @ is an isomorphism. In this way, we obtain a decomposition for the unitriangular group
analogous to the one in Corollary 3.1. Moreover, to describe its automorphisms, it suffices to
apply ®@. We illustrate the case for central automorphisms, the others automorphisms behave

in the same way.

Example 3.5. Let z € Z be a central automorphism of (N7,(Q), o) generated by the auto-
morphisms x&; ;1 — X&; ;41 +x* €] », Where A is a linear map of Q" toitself. In (UT,(Q),-),
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the central automorphism z% has the following action on generators,

D -1
(xeiir1) = (xeji41)%0 = ((—1) +xeiir1)% = (xgi11)% =

= (xgi i1+ e10)? = 1+ (xgi i+ en),
for x € Q. So the central automorphism z® of (UT;,(Q), -) is defined by

A
xejjiy1 — 1+ (x€ i1 +Xx"€1).

In this way, the passage of automorphisms between (N7,(Q),0) and (UT,(Q),) is

clear. In the remainder of the text, the notation becomes increasingly heavy, and to improve

readability, we will omit explicit references to the application P.

We present an example containing the image of central, extremal and flip automorphisms

for a specific element.

Example 3.6. Let x € UT;(Q), such that

Y

- O O O
S = O O

0 00 0
0 1 0 1
0 1 0 1
1 01 0

oS O O =
S O = =
oS O O =
oS O = O
oS O O =
oS O = O
- O O O
oS O O =

1
1
1
0

S O O =
S O = =

S O ==

S = O O

- O O O

In term of ¢; ;| notation, we have x = le12,e2.3]e23e1 2. This is the decomposition of x in

terms of the generators e; ;.

1. We apply the central automorphism z given by
xejir1 = 1+ (X€ i1+ X€1 n),
so the elements of the decomposition of x are mapped to
eia=1+(€12+€14),

8373 =1+ (8273 + 8174),

le12,e23)° =1+ ([e12+€14,823+€14]) =

=1+ (([e12,&3]) + ([€12,€14]) + ([€14,823]) + ([€14,€14])) =

= I[—|—£173.
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We can now compute the image of x by z.

1 010 1 001\ /1 101 1 112
XZ_OIOO 0110 0100 (O1 10
oo 1ofloo1o0o]{loo0o 10 (0010

0 001 0 001 0 001 0 001

. We apply the flip automorphism w given by
XEj j > (_l)i_j_lxgn—j—i—l,n—i-l—L
so the elements of the decomposition of x are mapped to
evﬁ2=ﬂ+£374,
6313:1—{—8273,
ev1v73 =1+ (—1)8274.
We can now compute the image of x by z.

1 00 O 1 000 1 000 1 00O
s |0 1 0 —1 0110 0100 0110
X = et

001 O 0010 0011 0011

0 00 1 0001 0001 0001

. We apply the extremal automorphism u given by
52
xe€1p —x(E1p+&24) + S €14

All other generators remain fixed. So the elements of the decomposition of x are
mapped to

1
cip=1+(&12+ &4+ 5814),

w
6273 = 1 + 8273,
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1
le12,e23) =1+ ([€12+ &4+ 581,4),82,3]) =

=1+ (([e12,€3]) + ([&24,823]) + ([%81,4,82,3])) =
=1+¢&3.

We can now compute the image of x by z.

S O O =
S O = O
R =
- o O o
S O O =
oS O = O
S = = O
- o o o
o o o =
S O = =
o = O O
—_ O =N~
oS O O
S O =
O = = =
—_ O O~

Understanding the automorphism group will be extremely useful for studying the orbits.
Recall that if A < Aut(G) acts in G, the action partitions G into orbits. In this sense, it
will be convenient to select an element from each orbit and write 7 for the resulting set

representatives. Then G is the disjoint union

G = Orbg(1).

teT

This motivates the definition,

Definition 3.4. The set of elements of T are called orbit representatives to the action of A in
G.

We conclude the general overview section with a useful property.

Proposition 3.4. Let X € UT,(Q). If an entry on the first superdiagonal of X is nonzero, it

cannot be transformed to zero via conjugation by a diagonal or unitriangular matrix.

Proof. The group UT,(Q) can be viewed as a subgroup of GL,(Q). In this context, it is
known that its normalizer is T;,(Q), the group of upper triangular matrices of dimension n x n

over Q (for details see [1]). In particular, this subgroup decomposes as the semidirect product

T,(Q) = UT,(Q) x Du(Q),

were D, (Q) is the subgroup of n x n diagonal matrices over Q. We will analyze the action of

the normalizer on UT,(Q) and on its corresponding abelianization.



44 Unitriangular matrices over Q

Let T € T,(Q), then T = UD, for U € UT,(Q) and D € D,(Q). Moreover U = 1 + N,
where 1 is the identity matrix and N is a nilpotent matrix, such that N" = 0. Therefore,
n—1

U''=1+N)"'=14+ Y (-1)'N =1-N4+N>— -+ (1) 'N""".
k=1

Thus 7' =D 'U~! can be computed and
T-'XxT =D '(U"'XU)D,

can also be computed.

SetX = (x; ;) €UT,(Q),U = (a;;) €UT,(Q), D =diag[dy,...,d,) and T 'XT = (b;).
The formula above allows us to compute all entries of the matrix T'XT. However, as
the entries move further from the diagonal, the expression becomes increasingly complex.
Nonetheless, the first and second superdiagonals can be calculated with relative ease. By
applying the matrix multiplication algorithm, we obtain the following values in the entries of
the first and second superdiagonals of the resulting matrix repectively,

d.
i1 =~ i, (33)
1

it 1,i+2Xii4+1di+1 + dip1dig2Xi i — Qijip1Xig1,i+2di42
did;q
Note that the entries on the first superdiagonal are not affected by the matrix U, they only

biit2 = (3.4)

depend on elements of D, which are nonzero. This means that if an entry of X on the first
superdiagonal is nonzero, it cannot be transformed to zero via conjugation by a diagonal or

unitriangular matrix. O

3.2 The unitriangular group UT;(Q)

With the previous section, we now have a description of the automorphism group of UT,,(Q).
To compute the number of orbits, it remains to analyze the action on suitable elements and
determine how they relate under automorphism. In this section we prove,

Theorem 3.2. The unitriangular group UT3(Q) has 3 automorphism orbits.
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Proof. Let G := UT;(Q). We show that elements in G’ \ {1} and G\ G’ coincide with the
two non trivial automorphism orbits. If x,y € G'\ {1}, for

1 0 X13 1 0 Y13
x=10 1 0 Y= 01 0 5
00 1 00 1

it is clear that there is a diagonal matrix A given by

X1,3 0 0
A=10 1 0 [,
0 0 »g

such that x* = y. Since G’ is a characteristic subgroup, its non trivial elements form an

automorphism orbit. Now we analyze elements in G\ G'. Set

I x12 x13
x=10 1 X2.3 GG\G/.
0 O 1

We now proceed by considering three distinct cases. First assume xj, # 0 and x23 = 0.
Conjugation by matrix A yields

1 0 0 110
A=10 x5 —xaxh |, ¥=]0 1 0f=8.
0 0 1 00 1

Similarly assume x; » = 0 and x, 3 # 0. Conjugation by matrix A yields

1 xi3x3 O 100
A=0 1 0|, *=|01 1]|=8.
0 0 X3 00 1
Now assume x; 2 7# 0 and x, 3 # 0. Conjugation by matrix A yields
1 0 0 1 10
A=10 xié X1,3(X%72X273)71 , A= 01 1] =8;3.
0 O (x273x1 72)71 0 01
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Now we construct automorphisms that connects the three matrices By, B>, B3 above. In [17]
Levchuk states that in Q automorphism, up to multiplication by a central automorphism, has
the form

ai1ajpx
I+xg1p— 1+ x(a1,181’2+a1,282,3)+T£173 ,

az 142X

>
1+xg3— 1+ (x(az,18172 +ax283)+ > 81,3) , xe€Q,

where (a; j) € GL2(Q). We can choose two following matrices that serve, up to conjugation
by triangular matrix, to connect these elements

Al = (i (1)> JAp = (? (1)> EGLz(Q).

In other words, A sends B, to B3 and A; sends B; to By. This proves that G\ G’ forms an
automorphism orbit. Thus 0 (G) = 3. O]

3.3 The unitriangular group UT,(Q)

In this section we prove,

Theorem 3.3. The unitriangular group UT4(Q) has 9 automorphism orbits and 16 orbits
under the action of 74(Q). Furthermore the number of orbits in the following characteristic

subgroups are

{1} » » M3 G
Aw(G) 1 2 4 5 9

74(Q) 1 2 5 7 16
Table 3.1 Number of orbits for n = 4.

In the table each row corresponds to a specific group of automorphisms acting on the
group, while each column represents a characteristic subgroup. For instance, under the action

of T4(Q), the characteristic subgroup 7 has 5 distinct orbits.

Proof. First, we outline the strategy used. We establish a partition for UT;(Q) and for each

subset of the partition, we will present a finite number of orbit representatives. The approach
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involves taking an arbitrary element from the subset and constructing an automorphism that
maps this element to the representative. It is worth noting that another interesting problem is
to count the number of orbits under the action of conjugation by triangular matrices, since
finite number of orbits under the action of conjugation by triangular matrices implies finite
automorphism orbits. So we will first consider the action of 74(Q).

Consider the following partition of UT4(Q)

UT4(Q) =YTuHhuhUuY,UYsUYsUY;UYs,

where
(/1 0 x13 x4
01 0 X2.4
Y1 = Tl ix € ,
: 00 1 0 o €Q
L\oo o 1
([1 x12 xi13 Xi4
0 1 «x X
Y, = 23 2 cxi; € Qux10,x03,x34 70 2,
0 0 1 xag
L\o 0 o 1
([1 x12 xi3 X4 )
0 1 x3 x4
Y; = ’ ol ix i €Qxp0,x 0,,
3 o0 1 o i €Q,x12,x03 #
(\o 0 0o 1 ,
(/1 x12 xi3 X4 )
0 1 0 X2.4
Y= T ixi€Qyxr0,x 0,,
4 0 0 1 ij €Qux12,X34 #
(\o 0 o 1 ,
(/1 x12 xi3 X4
0 1 0 x4
Y; = Tl ix i eQ,x 0,
5 0 0 1 0 i,j @ 1727é
L \o 0 o 1
(/1 0 xi3 x4
0 1 x3 x4
Yo = ’ T ix i eQx 0,
6 0 0 1 0 i,j @ 2737é
00 O 1
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(/1 0 xi3 x4
0 1 x23 x24
Y, = ’ T ixi€Qx03,x 0,,
7 00 1 x4 ij €Qx23,x34 #
\o o o 1
(/1 0 xi13 x4
01 0 x4
Ys = T i x e Qux 0
8 00 1 x4 ij €Q,x34 #
L \oo o 1

This partition was motivated by the analysis in Propposition 3.4, since conjugation by
triangular matrices modifies the entries in the first superdiagonal, but does not send a non
zero entry to zero. Note that each subset of the partition corresponds to a union of cosets in
the quotient group G/G'. So the conjugacy classes of elements in one subset ¥; remains in Y;,
for 1 <i<8.

*Claim 1. The number of orbits under the action of 74(Q) is finite.

Let 74(Q) act on G, this action partitions G into orbits {O;};c;. To prove this claim, we
proceed as follows: we take an arbitrary element from one of the subsets ¥; in the partition
and find a triangular matrix A € T4(Q) such that, upon conjugation by A, we obtain a finite
set of elements of UT4(Q), where

di aip a13 aia
0 d ar3 axy
0 0 d5 asg
0O O 0 ds

A=

This means that we consider a finite partition in which each subset is infinite, and for each
subset, we find a finite set of elements such that any element in the subset can be mapped to
one of these representatives by conjugation.

Since Y] corresponds to the derived subgroup, it is expected to contain several other
characteristic subgroups. For this reason, we will treat Y; last. In what follows we provide an
extended explanation for the first case and the other cases are analogous.
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Subset Y>:

The subset Y, has elements of the form

I x12 x13 X14
0 1 x3 x4
0 0 1 X34
0 O 0 1

where x; 7,x 3,X3 4 are non zero. We want to find entries of matrix A such that

o=

S O O =
S O = =
S = = O
— = O O

We computed x* = (b;;) € UT4(Q) and obtained the following entries

bi1=1,brp=1,b33=1,bsg4=1,

b — drx1 2 bia— ap3drxy p +drdsx1 3 —aypdixa3
12= 13=
' di didy ’
b as 4drd3x1 2 + a3 adodzxy 3 + dodzdaxy 4 — a1 203 4d3x2 3 — a1 2d3daxy 4 + a1 pas 3dax3 4 — a1 3drdaxz 4
14=
ddods
d3x23 a3 4dsxp 3 +dzdaxp 4 — a> 3daxs 4 dyx3 4
by3 = NIYES b3 4= .
dp drd; d3

To find the matrix A, we equate the corresponding entries b;; with those of the candidate
representative and set up a system of equations. Solving this system of equations we found
that matrix A can defined by

1 1 1
dy=1,dy=—,d3 = ydy = ————,
X122 X1,2X2.3 X1,2X23X3 4
—X1.3
aip=0,a13=0,a14=0,a23 = — :
X10X2,3
2
X1,2X1,4X2,3 — X1 2X1,3X2,4 — X] 3X3.4 X12X2.4 + X1 3X3 4
61274 - - 3 2 ,61374 - - P P .
X1,2%2,3%3,4 X242 3X3,4

This means that all elements of ¥, can be mapped to the matrix above via conjugation by an
appropriate matrix. Most of the subsets Y; can be treated in the same manner, following the
general procedure outlined above.

I
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Subset Y3:
I x12 x13 x14 11 00
0 1
e X3 X24 ,)54: 0110
0 O 1 0 0010
0O 0 0 1 0 001
Where matrix A is defined by
1 1
dy=1,dy=—,d3= ydg =1,
X1,2 X1,2X23
_ - - X113 _ X24X13 —X14X23 X4
aip=0,a13=0,a14=0,a23 = — NORES ,a3.4 = :
x172X273 x172x273 x213

Subset Y,:

A few specific cases require a more detailed analysis. The initial idea for ¥4 was to proceed
as in the previous case, however we were unable to identify a single representative to which
all elements could be conjugated. As a result, we divided the analysis into a few separate

cases to account for the distinct behaviors observed. First assume x 2x2 4 +x1 3x3 4 # 0 and
x13 # 0.

1 X12 X13 X14 1110
0 1 0 «x 0100
X = 2’4 ’_,VA =
0 0 1 x35 0011
0 O 0 1 0 001
Where matrix A is defined by
1 X34 1
d1:17d2:_7d3: : 7d4: )
X1,2 X12X2.4 +X13X3.4 X12X2. 4+ X13X34
X2.4 X1.4
aip=0,a13=0,a14=0,a23 = sa2a=0,a34=— 5 :
X1,2X2,4 1+ X13X3 4 X1,2X1,3%2,4 + X7 3X3 4

Now assume x 2x2 4 +x13x3 4 7 0 and x1 3 = 0.

1 X12 X13 X14 1 110
0 1 0

i x274,xA:OIOO
0 0 1 X35 0011
0 0 O 1 0001
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Where matrix A is defined by

1 1
di=ldy=—dy= 2% 4= ,
X1,2 X1,2X2.4 X1,2X2.4
1 —X14
aip=0,a13=0,a14=0,a03=—,a04=5——,a34=0.
X122 x172x2,4
Now assume x 2x2 4 +x13x3 4 = 0 and x1 3 # 0.
1 X12 X13 X14 1 100
0 1 0
e X2.4 A 01 00
0 0 1 x34 0011
0 O 0 1 0001
Where matrix A is defined by
1 1
dl - 17d2 - _7d3 = 17d4 =
X1,2 X34
X1,3 X14
aip=0,a13=0,a14=0,0203=——",a204=0,a34 = ———.
X1,.2 X1,3X3.4
Now assume x1 2x2 4 +x13x34 = 0 and x1 3 = 0.
I x12 x13 X14 1 100
0 1 0 1
Y= X2.4 ,XA _ 0 00
0 0 1 X34 0011
0 O 0 1 0001
Where matrix A is defined by
1 1
dl - 17d2 = _7d3 = 1;d4 =
X1.2 X34
X1.4
ajp=0,a13=0,a14=0,a23=0,a04 = — ;a3 4 =0.
X1,2X3.4
Subset Y5:
I x12 x13 X14 1 100
0 1 0 1 1
¥ = x2/4 ’x4 _ 0 O
0 O 1 0 0010
0 0 0 1 0001
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Where matrix A is defined by

1 1
d1:17d2:_7d3:17d4: )
X122 X1,2X2.4
X1.4 —X13
ayp = ya13=0,a14=0,a23 = ya24 =0,a34=0.
X1,2X2.4 X1,2
I x12 x13 X14 1 100
0 1 0 0 0100
x= X =
0 0 1 0 0010
0 O 0 1 00 01
Where matrix A is defined by
1
dl = 17d2 = _7d3 = 17d4 = 17
X122
—X13 —X14
aijp=0,a13=0,a14=0,a03 = —=,a24=0,a34 = ——.
X1,.2 X1,3

Subset Yj:

First assume x1 4x 3 —x1 3x2.4 7 0.

10 X1,3 X14 1 010
01
e X3 X4 ,xA _ 01 11
0 0 1 0 0010
00 O 1 0 001
Where matrix A is defined by
1 X23
dl:17d2:17d3:_7d4:_ 7 5
X23 X1,4X2.3 — X1,3X2.4
X13—X23 X1,4X23 — (X1,3 —X23)X2.4
ajp=—""—"=,a13=0,a14=0,a23=0,a24=0,a34 = 3 ( ) :
X23 X1,4%3 3 — X1,3%2,3%2 4
Now assume X1,4X23 —X1,3X24 = 0.
I 0 x13 x14 1 000
0 1
e X3 X4 ,{‘ _ 01 10
0 0 1 0 0010
00 O 1 0 001
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Where matrix A is defined by

1
dy = 17d2: 17d3 :_7d4: 17

X23
X1,3 X2 4
ajp=—=,a13=0,a14=0,a23=0,a04=0,a34 = ——-.
X233 X2.3
Subset Y7:
First assume x 3 # 0.
10)61’3 X1.4 1 00O
0 1
e X3 X4 7)(4: 01 10
00 1 x34 0 011
00 O 1 0 001
Where matrix A is defined by
1 1
dl:17d2:17d3:_5d4: )
X23 X23X3 4
X1,3 —X1,4%X23 +X13X24
ajp=—",a13=0,a14=0,a03 = )
X23 X1,3X23X3 4
—X1.4
a4 =0,a34 = ——"—.
X1,3X2,3X3 4
Now assume x1 3 = 0.
1 0 0 x4 1 000
0 1
= X23 X24 ’){‘: 0110
00 1 x34 0 011
0O 0 O 1 0 001
Where matrix A is defined by
1 1
di=1,dy=1,d3=—,dy = ;
X23 X23X3 4

X23X3 4
—X2.4

ajp=0,a13= ya14 = 0,003 =0,a24 =0,

a4 =

)

5 .
X2.3X3,4
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Subset Yg:

First assume x; 3 # 0.

10x173 X1,4 1 010
01 O
y— X2’4,)54:0100
00 1 x34 0 011
00 O 1 0 0 01
Where matrix A is defined by
1 1
di=1,dy=1,d3=—,dy = :
X13 X1,3X3.4
X2.4
ajp=0,a13=0,a14=0,a23 = . 3)’63 %
—X14
a2’4:O,a374: > —.
X1,3%3.4
Now assume x1 3 = 0.
1 00 x4 1 00O
010
Y= X274’XA:0100
0 0 1 x34 0011
00 0 1 0001
Where matrix A is defined by
1
d1:17d2:17d3:17d4:aa
X1.4—X34
01,2:0701,3:T7a1,4:07
X2.4
a3 =—,a24=0,a34=0.
X34

Subset Y;:

In this case, the set corresponds to the derived subgroup. Therefore, we will divide the

analysis into cases according to the form of the matrix. First consider elements x € Y7 of the
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form, where x1 4 # 0

I 00 x4 1 001

010 O 0100
= .

001 O 0010

000 1 0001

Where matrix A is defined by

d1 :X174,d2 = 1,d3 = 1,d4 = l,

ajp=0,a13=0,a14=0,a23=0,a24=0,a34=0.

Now consider elements x € ¥; of the form, where xj 3 # 0.

10 xi3 x4 1010
o1 0 o lo100
oo 1 oflT Tloo1o

00 0 1 0001

Where matrix A is defined by

1
dy = 17d2: 17d3: _7d4: 17

X13
—X1.4
ajp=0,a13=0,a14=0,a23=0,a24=0,a34 = ——.
X1,3
Now consider elements x € Y; of the form, where x; 3,x2 4 # 0.
I 0 x13 x14 1 010
0 1 0 X2.4 01 01
X = 5 =
0 0 1 0 0010
0O 0 O 1 0 0 01
Where matrix A is defined by
1 1
dl - 17d2 = 17d3 = _7d4 = T
X1,3 X2.4
—X1.4

ajp=0,a13=0,a14 =0,a23 =0,a24 =0,a34 =

X1,3%2.4
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Finally consider elements x € Y} of the form, where x; 4 # 0.

100 x4 1000
010

o x| 4 |01 01
001 0 0010
000 1 0001

Where matrix A is defined by

dy=1,dy =x34,d3=1,d4 =1,

arp=x14,a13=0,a14=0,a23=0,a24=0,a34=0.

All cases have been computed and we found that every element of UT4(Q) can be
conjugated to an element of the set S, where

1 001 1 010 1 010 1100 1100

S:{o1oo 0100 0101 0110 0110
0oo1o0|l'foo1ol’'foo1o0o|l’'fOo0O 1 1]'|l0O0O0T1O0]’
0001 0001 0001 0001 0001
1110 1 000 1100 1 000 1100
0100 0101 0100 0100 0101
oo11]l'foo1ol’'foo11|l'fo0o1 1]'|l0O0O0T1O0]’
0001 0001 0001 0001 0001
1100 1 010 1 000 1 000 1 010
010070111’0110’011070100}%1}'
0010 0010 0010 0011 0011
0001 0001 0001 0001 0001

This proves Claim 1.
*Claim 2. There are 16 orbits under the action of 7;(Q).

It has already been mentioned that the orbits under the action of 74(Q) remain within
each Y;. Therefore, to verify that the elements in the set S form a set of orbit representatives,
it suffices to check that the conjugacy class under the action of 74(Q) of a specific element
does not contain any other element of the set S. We will present a specific case, as the others

follow in an analogous manner.
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The conjugacy class of the candidate for orbit representative in Y5

1100
0101
0010’
0001

has the form
dy ax3 axad,—ajpdy

! dy d d\d
0 1 0 d—4
d2 )
0 O 1 0
0 O 0 1

for di,d»,ds € Q\ {0} and a;2,a23,a24 € Q. Notice that this conjugacy class does not

contain

S O =
S O = =
S = O O
—_ O O O

0

once dy4 is nonzero. So both elements belong to different orbits under the action of 74(Q).
Upon doing all calculations, this proves that the set S is a set of orbit representatives for
the action of 74(Q), so Claim 2 is proved. In particular, this also shows that the number of

automorphism orbits for n = 4 is finite.
*Claim 3. o(UT4(Q)) <09.

Now to prove that the number of automorphism orbits is at least 9 we will use our
understanding of the automorphisms and attempt to connect the representatives through their
action. For instance, using the central automorphism xe; ;| — xe; ;11 +xey,, and conjugation

we were able to connect e; 3 —> €2 4€3 3€1 2.

cent conju
€3 = s CONUE = ep4€23€1

o O o =
S O = O
S = = O
- O O O
S O O =
o O = O
S = = O
—_ O O =
o O O =
o O = O
O = = =
- O = O
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Using extremal and conjugation automorphism we were able to connect e3 4e; > and

63’461_7;)6172.
1
1100 1 1 —1 ) 1 110
01 00O : 0100
e34€12 = |y extr 01 O 0 L_yconjug _ 63746;%61’2
0 011 00 1 1 0011 '
00 01 00 0 1 00 01
1
1 100 1 10 ) 1 100
0100 - 01 01
6172 — '_>extr 0 1 O 1 |_>con]ug — 62746172
0010 001 0 0010
0 0 01 000 1 0 0 01

Using flip automorphism we were able to connect e 3 — e2 4 and e > — e 4€1 2.

e13 = =ex4

S O O =
S O = O
S = O =
— O O O
S O O =
S O = O
S = O O
- O = O

Using flip and conjugation automorphism we were able to connect e3 4e1 > — 63746;;,6] 2
and €34+ e1.

1100 1000 1000
01 10| 40111 o110
_ . flip ,_yconjug _
23127010 0 1 0 001 1 00 1 1| 94
000 1 000 1 000 1
1100 1000
0100 gf0100
e1r = =e
271001 0 001 1 34
000 1 000 1
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1100 10 -1 0 1010
0o101| 4lo1 0 o0 o100
— |_>p HCOnjug — ea 40
24270 0 1 0 00 1 1 001 1 34€13
000 1 00 0 1 000 1

We obtain the following connections between elements.

{e14},{e13,e24},{e24€13},
{eserzern}t,{erzern,ezserst,
{63,46{%61,2763,461,2}7
{e34,€e12,€24€12,€3 413},

{e24e23€12,€23}.

This implies that we have at most 9 orbits automorphism orbits. And the possible orbit
representatives are:

S O O =
S O = O
- o O O
S O O =
oS O = O
—_—0 O =
S O O =
S O = O
- O O O
S O O =
S O = O
- O = O
S O = O
S = = O
- o O O

S O O -
S O = =
S = = O O = O O
- O O O
oS O O =
S O = =
o =, O O O = O O
- O O O
o O O =
S O = =
SO = O O O = O =
—_— —_= O O
S O O
S O = =
S = = O O = O =
- = O O

*Claim 4. o(UT4(Q)) =9.
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It is not possible to connect the remaining representatives. Consider the following

elements: e 4,e13,e24€13,€23,€23€12,€12,€34€1 2,83 4€) 3€] 2, they are respectively:

100 1
0100
€ ,
0010 1\ {e}
000 1
1010\ /1010
0100 01016\
oo10|lloo1 o]\
0001/ \oo o1
100 0
01106N\
00 1 0 23\ 72,
000 1
1100\ /1 100\ /1100\ /1100
o110l (o100l [o100] o110
) 9 9 GG\N23.
o010l loo1olloo1 1] loo 11 !
0001/ \ooo1/ \ooo1/ \ooo1

Let us show that each element is in a distinct orbit under automorphisms. We can restrict the
analysis to check whether e 3, e 41 3 share the same orbit and whether e; 31 2,€12,€3 4€1 2,3 4€2 3€1 2
share the same orbit.

Note that e; 3 belongs to the subgroup 9, M Nj ». The subgroup Nj » can only be mapped
to itself or to the other maximal abelian subgroup N3 4. Thus, given an automorphism
o € Aut(G), we have that e‘f‘s € NN, or e?‘ﬁ € 1> N N3 4. On the other hand, the element
ez 4e1 3 does not belong to any of these subgroups, so they cannot be in the same orbit under
automorphisms.

Now, note that the element e 5 € Nj 5, and since N 5 is a maximal abelian subgroup, its
image under an automorphism belongs to N » or N3 4. The other elements e> 3e1 2, €3 4€1 2, €3 4€23€1 2
do not belong to these subgroups, so e » does not share its orbit under automorphisms with
the other elements. Moreover, since e 3e1 2 € N2 3N; 2 \ N2 3, applying & € Aut(G) we have
that

(e23e12)” = €3 zef.
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We have already seen that e‘zx’ 36?72 belongs to N> 3N, or N> 3N3 4. Finally, note that
e34e12 € N3 4Ny and, under an automorphism, it can only be mapped to elements in

N3,4N172. Therefore, €23€1,2, €34€12, and €34€23€1 2 are in distinct orbits. O

This proves,

Theorem D. The unitriangular group UT,(Q) has finitely many automorphism orbits for
n < 5. In particular, ®(UT3(Q)) =3 and @(UT4(Q)) =9.

3.4 The unitriangular group UT5(Q)

In this section we prove,

Theorem E. The unitriangular group UT5(Q) has finitely many automorphism orbits. More-
over, the number of orbits under the action of 75(Q) is 61.

Proof. We already have an algorithm to find representatives of orbits under the action of
conjugation by 75(Q), so we will restrict our analysis to this action. Note that if the action
of T5(Q) yields finitely many orbits, then the action of Aut(UT5(Q)) also produces finitely
many orbits.

We will first proceed in a manner analogous to the previous case. Consider the following
partition of UT5(Q)

UTs(Q) =Y UhUY;UY,UYs UYsUY,UYgUYgUY o UY U

UYpUY13UY4UY5 U Y,
where
1 0 x13 x14 x5 \
01 0 )C274 X275
Y| = 00 1 0 X35 in7j€@ )
00 O 1 0
(\0o0o 0o o 1 )
( (1 X12 X13 X14 X|5 \
0 1 0 X2’4 X2’5
=410 0 1 0 x35|:x,;€Q xip#0),
0 O 0 1 0
(\0o 0 0o 0o 1 ,
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(1 0 X13 X14 X15 )
0 1 x23 x4 x25
Y; = 00 1 0 x35 cx € Q, )CQ,37QO ,
00 O 1 0
00 O 0 1
’ ’ \
I x12 x13 X14 X155
0 1 x23 x4 x25
Y, = 0 O 1 0 X35 ZX,‘JG@, X172,X2737é0 ,
0 O 0 1 0
(\o 0 0o o 1
(/1 0 X13 X14 X15 )
0 1 x23 x4 x5
Y5 = 00 1 0 X35 :x,-7j€@, x273,X4757é0 R
00 0 1 X45
(\oo o o 1 )
(1 0 X13 X14 X15 )
0 1 x23 x4 x25
Yo=410 0 1 x34 x35|:x,;€Q, x23,x347#0,
00 O 1 0
(\0 0 0 0 1 )
I x12 x13 X14 X155
0 1 x3 x4 x25
Y; = 0 0 1 x34 wm5|:x,;€Q, x12,%3,x3470 >,
0 O 0 1 0
L \o 0 0 1 )
( (1 X12 X13 X14 XI5 )
0 1 0 X24 X255
Ys=4[0 0 1 0 x5|:x,;€Q xipx57#0,
0 0 0 1 X45
(\0 0 0 0 1 )
I x12 x13 X14 X5
0 1 x3 x4 x5
Yo=¢10 0 1 0 x35(:x;€Q, xi12,x3,x57#0,,
0 0 0 1 X45
0 O 0 0 1
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X12 X13 X14 X15
I x3 x4 x25
0 1 x34 x35]:x;€Q,
0 0 1 X4,5
0 0 0 1

Yi0=

0 x13 x14 X155
I 0 x4 x5
Y= 0 1 0 X35 :x,-,jEQ,
0 0 1 x5
(\oo o o 1
( 0 x13 x14 X5
I 0 x4 x5
Yip = 0 1 x34 x35|:x;€Q,
0 O 1 0
(\oo o o 1
( 0 x13 x14 X155
I 0 x4 x5
0 1 x34 x35]|:x,;€Q,
0 O I x5
0 O 0 1

X12 X13 X14 XI5
1 0 X2 .4 )Cz75
0 1 x34 x35]:x;€Q,
0 0 1 0
0 0 0 1

X13 X14 X155

Yi4 =

\ 7~

X23 X4 X25

1 x4 x35]:x,;€Q,
0 1 X4.5

0 0 1

X1p X13 X14 X15

I 0 x4 x25

0 1 X34 X35 :xi.,jEQa
0 0 1 X4.5

0 0 0 1

S O O = O

\ 7~

=

W

|
cocoocoor~rcocoocoor~rcoocoocoo~cocoocor~rcocoocoocor~rocoococo~co oo~

X12,X23,X3.4,%45 7 0

x457#0 ¢,

AN

x347#0 2,

x34,%57# 0 ¢,

x12,x34 #0 ¢,

X23,%34,%5 70 ¢,

X12,X3.4,X457# 0
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*Claim 1. The number of orbits under the action of 75(Q) is finite.

We proceeded in an analogous manner of UTy(Q): for each subset of the partition, we
identified a finite set of orbit representatives under the action of 75(Q). This was done by
selecting an element x € ¥;, 1 <i < 16, and finding a matrix A € T,,(Q) that conjugates it to
a chosen representative.

di aip a3 aisa aps
d a3 a4 axs
0 ds azs azs
0 0 d4 a475
0 0 0 ds

S O O O

However, determining these representatives required a case-by-case analysis. We had to
consider the cases where each entry is either zero or nonzero in order to solve the system
of equations, this leads to a large number of cases. Moreover, there are more equations
than in the case for dimension 4. Therefore, we used software SageMath [24] to solve these
systems of equations. The solve! function solves equations. To use it, first we specify some
variables; then the arguments to solve are a system of equations, together with the variables
for which to solve.

For instance, we want to find matrix A that conjugates element

I xio0 0 0 O 1 1000
0 I x3 0 O 01100
x=10 0 1 x34 0 | €Yy to y=100 11 0
0O 0 O I xs5 000171
0O 0 0 o0 1 00 0O0°1

The entries of the matrix x* are functions of the variables d; and a; ;, for 1 < k < 5 and
1 <i< j<5. We equate these entries with the corresponding entries of y. This defines a
system of 10 equations, which we denote by eql, eq2, eq3, eq4, eqb, eq6, eq7, eq8, eq9,
and eq10. We use the solve function with this set of equations as input to solve for the
variables dy and g; ;. The code used to call the function is:

solve( [eql,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eql0],
d1,d2,d3,d4,d5,al12,al13,al14,al15,a23,a24,a25,a34,a35,a45)

Thttps://doc.sagemath.org/html/en/tutorial/tour_algebra.html
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The output is

1 1 1 1
d1:17d2:_ad3: 7d4: 7d5: )
X1,2 X1,2X23 X1,2X2.3X3 4 X1,2X2 3X3 4X45

aip=0,a13=1,a14=1,a15=1,

1 1
a3 =0,a04 = —,a25=—,
X12 X12
1
a4 =0,a35 = :
X12%23
ags = 0.

It can be easily verified that the matrix A with those entries satisfy x* = y.

The computations involved for all the cases are quite extensive, and for the sake of
readability, they are presented in full in the Appendix. Our work can be reproduced, we
provide the code with all systems of equations on the GitHub repositoryz.

Based on the computations presented in the Appendix, we established a finite list of
candidates for orbit representatives in UT5(Q) for the action of 75(Q). This proves Claim 1.

*Claim 2. The number of orbits under the action of 75(Q) is 61.

To determine a valid set of representatives, further argumentation is required. Consider
the characteristic series,
{1} =nu—pB-—Nu—pr-G.

The elements of Y] are precisely the elements of 9. To determine a set of orbit represen-
tatives in 9, for the action of 75(Q), we take all the candidates and verify whether there exists
a matrix that conjugates one into another. If no such matrix exists, it means they belong
to different orbits. All the subgroups mentioned above are normal, so they do not share
orbits under 75(Q). Therefore, it suffices to verify whether the candidate representatives are
connected to the others within the same subset. This can be done computing the conjugacy
class of a specific element and observing that it doesn’t contain any other element of the list.
We will now explicit the representatives.

The orbits representatives in 7y, are

2https://github.com/juhmit/unitriangular_n5.git
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0 0 1
1 00
0 00
00 01O
00 0 01

00 00
1 0 0 O
0 0 0
00 010
00 0 01

1
0
0

The orbits representatives in 93 \ 4 are

00 0O

1

0
1

0
0 00

1

00 0O

The orbits representatives in Ny \ 13 are

0 1
1 1
0 0
0 0 0 1
0 0 0O

1 0 00O
0 1 1 0
0 0 0 0
00 010
00 0 01

The orbits representatives in 9 \ N4 are

0 0 0O
1

1

0

0 00

0

1

0

1

0 0 0

00 00

1

0

0 0

1

0 00

0

1
00 0 01

0 00

0

0 0 O

1

0

0

1

00 00

1

0 0 0

00 00

1

0

1

1

0 00
0 0 0O

0

1
0
0 0 0

1

0 00

00 0O

0

0

1

1

0 00
0 0 0O

0

1

1

0 00

00 0O

00

0

0

1

1

0 00
0 0 00O

., 16.

2,..

Therefore, it becomes necessary to organize the group in an appropriate way, we will focus

The final case G\ 9, is more intricate as it involves all elements from ¥;, for i

on certain subgroups, mainly the maximal abelian normal subgroups Ny 2,N> 3,N3 4,Ny 5, the
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characteristic subgroup 7, and products between them. Denote

Nip:=Hi,
Ny 3 := H»,
N3 4 := Hj,
Nys5:= Hy,
V=23

In the appendix, we present the calculations and list the candidates for orbit representa-
tives. Based on these candidates, we verify that they are indeed representatives by proceeding
as follows: All the subgroups mentioned above are normal, so they do not share orbits under
T5(Q). Therefore, it suffices to verify whether the candidate representatives are connected
to the others within the same subset. This can be done with a simple matrix conjugation
computation. We will now explicit the representatives.

The orbits representatives in H;Z3 \ Z3 are

1 1.0 00 1 1.0 00 1 1.0 00 1 1.0 00
01 00O 01 0 01 01 010 01 0 0O
oo01o0®0,]001 00,001 O0O0],{0 0 1 0 1],
00010 00010 00 010 00 010
0 0 0 01 00 0 01 00 0 01 00 0 01

1 110 0y (/1 1.0 00

01 0 0O 01 010

0010 1}|,]0 0 1 0 1

00 01O 00 01O

00 0 01 00 0 01

The orbits representatives in H,Z3 \ Z3 are
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0 0 0O
0
0
1

1
0
0

0 1 0
1 00
0 00
000 T1TO0
00 0 01

1 0 0 01

0 0 01 100
0 0,0 0 1 0 O
1 0 00 010
1 00 0 01

00 0O
I 1
0 1
0 0 O
00 0O

1
0
0

The orbits representatives in H3Z3 \ Z3 are

0 0 0O

1

0

0 00

0 0

0

0

1
0 0 0 01

0 0 0

1
0
0
1
00 0O

0

1

0
0 0 0

0 0
1 0 0O
0 00
00 0 1 1
00 0 01

1
0
0

1

0 0 0

1

00 00

0

1
0 0 0
0
1

00
1
0
0 0 O

0
1
1

0 0 0O
1

1
0
0

00 00

1
1

1

0 00
00 00

0 0 0 O
1 0 0 O
0 0 0f,
0 0 0 1 1
0 0 0 0 1
The orbits representatives in H{HZ3 \ (HZ3 U H,Z3) are

1
0
0

The orbits representatives in HyZ3 \ Z3 are
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1

0

0

0

1

0 0 O

0 0 0O

1 00 0] [
The orbits representatives in H)H3Z3 \ (H Z3 UH3Z3) are

1

0
0
0

1

1

0 0 0

00 00

]

S O O O —~
S O = — O
S o - O O
— - O O O
— O O O O
S — O O —
S O = — O
— o = O O
— - O O O
— o O O O

I

1
0
0
The orbits representatives in H{HsZ3 \ (HZ3 U HyZ3) are

1
1

1 0 0O
1
0
0 0 0

0
0
0
0

0
0
1
1

1

1

0
0 00

1

00 00

1

00 00

1 1

1 0 0O

0 0
0 0 0 1
00 0O

0 0 0
1
0
1
0

The orbits representatives in HoHzZ3 \ (HyZ3 U HyZ3) are

1 0 0 0 O 1 0 0 0 1

0 1 0 0 0 1 1 0

0 0 1 01,10 0 1 0].

00 0 10 0 0 0 0

0 0 0 0 1 0 0 0 0 1
The orbits representatives in HyHsZ3 \ (H>Z3 U H3Z3) are

0

00

1

0
0
1

1
0
0 0 0

0 0 0O

I

0 0 0O

1

00 00 1

1

0
1
1

0
0
1

1
0
0 0 0

0
0
1

0
0
1

1

0 0 0O

1

The orbits representatives in H3HsZ3 \ (H3Z3 U HyZ3) are
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S O O O =
S O O = O
S O = O O
S = = O O
- = O O O
S O O O =
S O O = O
S O = O =
S = = O O
- = O O O

The orbits representatives in HiHyH3Z3 \ (H HyZ3 UH H3Z3\UHyH3Z3) are

1 1.0 00
01 100
00110
00010
00 0 01

The orbits representatives in HjH3H4Z3 \ (HiHsZ3 UH | H3Z3\UH3HyZ3) are

S O O O =
S O O = =
S O = O O
S = = O O
- = O O O
S O O O =
S O O = o=
S O = O =
S = = O O
- = O O O

The orbits representatives in HyHyHyZ3 \ (HiH2Z3 UHHyZ3 U HyHyZ3) are

1 1.0 00 1 1.0 00
01 1 00 01 1 00
001 0O0,/]0 0 1 01
00 0 11 000 11
00 0 0 1 0 0 0 01

The orbits representatives in HyHsHyZ3 \ (HyH3Z3 U HyHyZ3 U H3HyZ3) are

1 0 00O
01 1 00
001 10
00 0 11
0 0 0 0 1

The orbits representatives in HiHyH3HZ3 \ (H HyH3Z3 U H{H3sHyZ3 U HiHyHyZ3 U
H2H3H4Z3) are
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S O O O =
S OO = =
S O = = O
S = = O O
—_ -0 O O

The number of orbit representatives we obtained for each of the sets is presented in the

table below.

Subsets number of orbit rep.

—
(9]

Z3

H\Z3\Z3
HyZ3\Z3
H3Z3\ Z3
HyZ5 \Z3

H\H>Z3\ (H\Z3 UH»Z;3
H\H3Z3\ (H\Z3 UH3Z;3
H HyZ; \ (H1Z3 UHZ5
HyH>Z3 \ (HzZ3 UH»Z;5
HyHZ3\ (HyZ3 U H3Z3
H3HsZ3 \ (H3Z3 UHyZ;3

— — ~— ~— ~—

H\H,H3Z3\ (H1H2Z3 UH H3Z3UHyH373)
H\H3H4Z3\ (H1H4Z3 UH H3Z3 U H3HyZ3)
H HyH 75 \ (H] Hy7Z3 UH HyZ3 UH2H4Z3)
HyH;sH,Z; \ <H2H3Z3 UHyH,Z3 UH3H4Z3)

—= NN =N RN W R DO DN

H\HH3H4Z; \ (H1H2H3Z3 UH H3H,Z3 UH HyH 73 UH2H3H4Z3)

(o)
—

total

Table 3.2 Number of orbits representatives under action of 75(Q).

This proves Theorem E. 0

Due to the large number of possible orbite representatives, we do not compute the number
of automorphism orbits of the entire group UT5(Q).
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3.5 The unitriangular group UT,(Q), for n > 6

In this section we prove Theorem F. In the previous sections, we presented a method for
computing automorphism orbits and finding orbit representatives. It is then natural to attempt
to extend this method to higher dimensions. However, a very interesting phenomenon occurs
when we increase to dimension 6, the number of automorphism orbits becomes infinite. We
will prove this in the present section.

We begin by recalling that the group UT,,(Q) is a normal subgroup of 7,,(Q) and that the
normalizer of UT,(Q) in GL,(Q) is exactly the group 7,,(Q). In connection with this, we
have the following result due to Zalesskii.

Theorem 3.4 ([29], Proposition 1). Unipotent elements of group 7,,(Q), n > 6, partition into
infinitely many conjugacy classes.

For the proof see Proposition 1 of [29]. We are now in a position to prove Theorem F.

Theorem F. The unitriangular group UT,(Q) has infinitely many automorphism orbits for
n>>3.

Proof. Assume n = 6. By Corollary 3.1 and the comments following it, we may consider
the action of ((((2J) xU) x W) x D over UT,(Q). Define a subset S of UT,(Q), such that
(x;,j) € Sif and only if (x; ;) has zeros elsewhere, 1’s at the diagonal and at positions (5,6),
(4,6), (3,4), (2,5), (1,3) and any rational number at position (1,2). That is, matrices of the
form

1 xj2 1.0 0 0
0 1 00 10
0 0 1100
0 0 010 1 ’
0 0 00 11
0 0 000 1

6x6

where the (1,2) entry vary arbitrarily over Q. We prove that if elements

1 x;2 1 0 00 1 yjo 1 0 0 0
0 1 0010 0 1 0010

(i) = 0 0 1100 (i) = 0 0 1100 cs

J 0 0 01 0 1| V4 0 0 01 0 1 ’
0 0 00 1 1 0 0 00 1 1
0 0 00 0 1 0 0 00 0 1

are in the same automorphism orbit, then x> =y ».
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Let ¢ be an automorphism of UT,,(Q), such that ¢ = dwukz forz € Z, k€ J,u € U,
w €W, d € D and choose (x; ;) € S. If (x; ;) € S, then (x; ;)™ €, 50 z can be ignored

since this type of automorphism only modifies the (1,6)-entry. Denote (x; ;)™ = (y; ;) € S.

Consider d conjugation by diagonal matrix diag|d,,d,d3,ds,ds,ds]. Note that (x;, j)d
has zeros elsewhere except at the positions (5,6), (4,6), (3,4), (2,5), (1,3), (1,2), since the
diagonal automorphism maps x; ; — d;" 1x,'7 jdj. Now, the flip automorphism has order 2 and
is given by flipping the matrix by the anti-diagonal. If w is trivial or not, we also have that
(x; /)" has zeros elsewhere except at the positions (5,6), (4,6), (3,4), (2,5), (1,3), (1,2).
The matrices are

dy —ds
- = 0 o0 o0
d1x1’2 4 )
0 1 0 0 = 0
o 2
4
g 0 0 12 0 o0
(i) = 4 ds |’
0 0 o 1 o =%
34
6
0 0 o o 1 =
ds
0 0 0 0 0 1

ds —ds —ds ds ds+dexip

ds dy d3 d d
o1 o o % dn
4 dr d
4 —dy
o0 1 2 9 &
(i) = & 4
0 0 0 1 0 -
o
2X1.2
0 0 0 0 1 !
d
0 0 0 0 0 1

Assume that the extremal automorphism u € U is given by

2

Ax
xeyp — 1+ (x(81,2 + 18276) + 78176),

2

X
xesg — 1+ (x(&s,6+1ELs) + “781,6),

for A, u running through Q. And all other generators remain fixed. We note that modulo yy4
the extremal automorphisms act like the identity (for more details see Lemma 13 of [17]).
So this type of automorphism only modifies the (1,6), (2,6), (1,5) entries of (x; ;)¥"" so
that the (5,6), (4,6), (3,4), (2,5), (1,3), (1,2), (2,4), (3,5) entries remain fixed. In other
words, (x; ;)™ coincide with (x; ;)?" in entries (5,6), (4,6), (3,4), (2,5), (1,3), (1,2),
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(2,4), (3,5). So

ds —dg —ds
] % T4 Tde
ds  di
ds
o1 o o &
P
4 —dy
oo 1 % o %
(i)™ = ds a |
o0 o 1 o &
e
2X1.2
00 0 0 I ’
d

0 O 0 0 0 1

where the star-marked entries depend on u.
Assume that k € J is the conjugation by unitriangular matrix A = («; j), then

(i )M = (yi) = Alxi )™ AT = (nij) = Alxi )™ = (yi,)A.

/

Denote (x;;) = (x; 7). We compare the elements of matrices A (x; ;) and (y; j)A at positions:

(1,2) :xj 5, =y12,

(1,3) :x] 3 =y12a23 + 13,
(2,4) :ax3x3 4 =0,

(2,5) : X35 =25,

(3,4) :x’3’4 = Y34,

(3,5) : 0 =y34a45,

(4,6) : X 6+ as5X5 5 = Va6,
(5,6) : x5 6 =56

We can conclude that

/ / /
Xjp=Y12, Xj3=y13, a23=0, xs5=y5s,

/ / /
X34=y34, a45=0, Xg6=ya6, X56=D56-

This means that (x; ;)™ coincides with (y; ;) in entries (5,6), (4,6), (3,4), (2,5), (1,3),
(1,2),(2,4), (3,5). And consequently (x; ;)* coincides with (y; ;) at the above entries.
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Now assume w € W is trivial then we compare (x; ;)" with (y; ;) in entries

(1,2): Z—?m,z =y1.2,
d
OﬁyizL
d
(2,5): é: 1,
d
BA%ézL
d
@ﬁyizL
d
GﬁyizL

From the relations above we obtain that dy = d3 = d4 = dg = d5 = d; so the relations implies
that X12 =Y1,2-

If w is not trivial, then we compare (x; ;)" with (y; ;) in entries

(1,2) 1 == =y12,
(1,3): == =1,
(2,5): = =1,
(3,4): = =1,
(4,6): ——= =1,
(5,6): =x12= 1.

From the relations above we obtain that

de d» dyds

- 5 X12=Y1.2, aa

1, ds=d>, ds=ds.
ds d; y ds=da, d44=4a3
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So x1 = y1 2. This means that if the elements

1x1,21000 1y1,21000

0 1 0010 0 1 0010
(x; ;) = 0 0 1 100 (i 1) = 0 0 1 100 cs
J 0 0 010 1] V4 0 0 01 01 ’

0 0 00 1 1 0 0 0 0 1 1

0 0 0 0 0 1 0 0 00 0 1

are in the same automorphism orbit, then xj » =y 2, and so (x; ;) = (y;,j). This shows that
S has infinitely many orbit representatives, once the set Q is infinite and any two elements
in § with differing entries in (1,2) belong to distinct automorphism orbits. This proves the

Theorem for n = 6.

UT; *
Now we extend to n > 6. One can view UT,(Q) as 5(@) so that
0 UT,-6(Q)

0 1 0
are in the same automorphism orbit, for X,Y € UTs(Q). So we have even fewer automor-

X * Y « . . . . .
( > and ( I) are in the same automorphism orbit in UT,(Q) if and only if X and ¥

phisms to consider, as we can disregard flip and extremal automorphisms. Nevertheless,
the same argument applies to prove that the number of automorphism orbits is infinite and
Theorem E is proved. [

We note that the result would still hold if we considered the action of Aut(U7T5(Q)) on
the quotient UT4(Q)/7a-
This concludes Chapter 3.



Final considerations

To conclude this work, we discuss possible questions to be addressed in future investigations.
Li and Zhu published a paper [18], in 2025, that classifies all finite p-groups with exactly
three automorphism orbits, an odd prime p. With this case now settled, new classification

questions have naturally arisen.

Question 3.1. Let G be a finite rank soluble group. Is it possible to classify all groups with
o(G) =3?

Question 3.2. Let G be a finite rank metabelian group. Is it possible to classify all groups
with o(G) = 3?

In the case of finite groups, within the classification of solvable non-p-groups with 4
automorphism orbits, the groups with 3 automorphism orbits appear as part of the description.
Given this recent result [18] and the fact that the classification of finite groups with 3 orbits

is now complete, we are led to ask the following question:

Question 3.3. Let G be a finite soluble non-p-group. Is it possible to classify all groups with
o(G) =57

Regarding Theorems D, E, and F, several additional questions naturally arise and deserve
further investigation. For instance, in the proof of Theorem F we present a subset of UTg(Q)

which contain infinitely many orbit representatives. It is natural to ask:
Question 3.4. Find a set of orbit representatives of UTg(Q).

The unitriangular groups UT,(Q) form an important example of nilpotent groups, in
which the terms of the lower central series can be easily described. Note that UT,(Q) also is

torsion-free of finite rank. The study of U7, (Q) and its automorphims motivated us to ask,

Question 3.5. Is the nilpotency class for torsion-free groups of finite rank with finitely many
automorphism orbits of bounded?
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Another approach is to study linear groups. Some well-known results in this direction are
the following:

Theorem 3.5 ([19], 3.1.2). (Tits Alternative) Let G be a linear group over a field F.

1. If char(F) = 0, then G is virtually solvable or G contains a nonabelian free subgroup
of rank 2;

2. If char(F) # 0 and G is finitely generated, the same conclusion holds.

Theorem 3.6 ([19], 3.1.6). (Mal’cev ) Let V be a finite-dimensional vector space of dimension
n over an algebraically closed field F, and let G be a solvable subgroup of GL(V,F).

1. If G is irreducible, then G has a normal diagonalizable subgroup D such that [G : D] <
g(n) for some function g;

2. In general, G has a normal triangulable subgroup 7 such that [G : T| < f(n) for some
function f.

We have considered the following question.

Question 3.6. Determine the characteristic subgroups of UT,(Q) with finitely many orbits
under Aut(UT,(Q)) (and under 7,(Q)).

This concludes the Final considerations chapter.
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