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Resumo

Este trabalho € um estudo detalhado do o artigo [2], onde investigamos a existéncia de
solugdes positivas em uma classe de problemas elipticos singulares e quasilineares, dado por

—div(ag(|VulPo)|Vu|P0"2Vu) = % + fo(u) emQ,

u>0 em Q,
u=>0 sobre 0Q,

utilizando o Método de Galerkin. Para completude do trabalho, estudamos a sua versao para

sistemas, que € dada por:

;

A
—div(ay (|VulP) |Vu| "2 Vu) = Tll +£i(v) emQ,

y

A
—div(az(|Vv|P2) [Vy[P22 V) = 722 + ) emQ,

\%
u,v>0 em Q,
u=v=0 sobre dQ2,

\

onde Q c R é um dominio limitado e suave, com N > 3. Parai= 1,2, temos que 2 < p; <N,
0 < B; <1, 4 >0e f; sendo funcdes continuas. A hipétese sobre as fungdes a; : R — R™

serem de classe C! nos permite considerar uma ampla gama de operadores quasilineares.



Abstract

This work is a detailed study on the article [2], where we investigate the existence of
positive solutions in a class of singular and quasilinear elliptic problems, given by

—div(ag(|VulPo)|Vu|Po~2Vu) = % + fo(u) inQ,

u>0 in Q,
u=~0 on dQ,

using the Galerkin method. For completeness of the work, we studied its version for systems,

which is given by:
( . _2 )vl .

—div(a; (|Vul|P') |VulP'™ Vu) = — +filv) inQ,
u
A

—div(ax(|Vv[P2) |Vy|P2 2 Vy) = 722 + ) inQ,
%

u,v>0 in Q,

Uu=v=0 on dQ,

where Q c RY is a bounded and smooth domain, with N >3.Fori=1,2,wehave2 < p; <N,
0 < B; <1, A; > 0and f; are continuous functions. The hypothesis on functions a; : R — R™
being of class C! allows us to consider a wide range of quasilinear operators.
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Lista de Simbolos

Conjunto dos niimeros reais nao negativos.

Dominio limitado de RY.

Representa a fronteira do conjunto Q.

E o conjunto {u: Q — R; ué diferencidvel com derivada continua}.
E o conjunto das funcdes teste.

E o espaco dual de WO] NQ).

Significa divergente.

E a derivada de (-) em relagio a normal exterior.

Convergéncia forte.

Convergéncia fraca.

Significa que ndo converge.

Imers@o de um conjunto em algum outro.
Imersdao compacta de um conjunto em outro.
- 1lze (-

|- lwiv -

Significa em quase todo ponto.

Indica o final de uma demonstracao.



Introducao

Nesta dissertag@o, estamos interessados em estudar a existéncia de solucdo positiva tanto

do problema eliptico singular e quasilinear

—div(ag(|VulPo)|Vu|PO~2Vu) = % + fo(u) emQ,

u
u>0 em €, (P1)
u=20 sobre 0Q,

quanto da sua versdo para sistema

(

A
—div(ai (|Vul”) [Vul” > Vi) = =+ fi(v)  emQ,
U
A
—di P2 p2—2 _ 2
div(az (|Vv|P?) |Vv| Vv) = s + fo(u) emQ, (P2)
u,v>0 em Q,
u=v=_0 sobre 0Q,

onde Q C R" é um dominio limitado suave, com N > 3. Além disso, parai =0, 1, 2,
assumimos 2 < p; <N, 0< fB; <1 e A > 0, sdo parAmetros reais, a; : R™ — R™ sdo
funcdes de classe C le fi : R — R sdo fun¢des continuas com crescimento exponencial.

Problemas deste tipo sdo chamados de singular e surgiram na teoria da condugdo de
calor em materiais eletricamente condutores. Além disso, eles possuem ampla aplicagdo em
modelos fisicos como fluidos ndo newtonianos, fendmenos de camada limite para fluidos
viscosos, quimicos heterogéneos conforme é mencionado nos artigos [5] e [17].

Esta dissertacao € baseada e motivada pelo artigo [2], cujo objetivo € investigar a existén-
cia de solugdes para os problemas (P1) e (P2) via Método de Galerkin, que ¢ um método
de aproximacdes de solugdes para equacdes funcionais abstratas e que também pode ser
usado para provar a existéncia de solugdes para uma equacdo, provando a convergéncia

das solugdes aproximadas em uma topologia adequada [13]. Juntamente com o Método de
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Galerkin, utilizamos um Lema Fundamental que trata-se de uma consequéncia do Teorema
do Ponto Fixo de Brouwer.

Antes de resolver os problemas (P1) e (P2), serd necessério o estudo de um problema
auxiliar para cada caso, os quais investigaremos via Método de Galerkin a fim de mostrar a
existéncia de solug¢do aproximada e, posteriormente, utilizar esta solu¢do obtida na demons-
tragdo dos resultados principais deste trabalho. Na demonstragdo de tais resultados usamos
como ferramenta essencial um Principio de Comparagdo Fraca para o operador em questao.

As hipéteses que utilizamos sobre as fungdes a; : RT — R de classe C! sdo as seguintes:

(a1) existem constantes ki, k» > 0 e k3, k4 > 0 tais que

kit?i +kot™ < a;j(tP)tP1 < katPi + kyt" , para todo 1 > 0;

(ay) afungdo
1 — a;(tPtPi7% & crescente.

E as fungdes f; : R — R s@o continuas satisfazendo as seguintes propriedades:

(f1) existe o > 0 tal que as condigdes de crescimento exponencial no infinito sio dadas

por:

(1 (t
limL)N:O,paraa>Oco e limL)N:oo,para 0< o< o;
7% exp (a!t|ﬂ) 7 exp (a\t|ﬁ>

(f2) acondigdo de crescimento na origem:

tim L) _ g,
10+ tPi—1

(f3) existe 3; > N tal que
fi(t) > 1%, para todo t > 0.

Como estamos procurando solugdes positivas, neste trabalho, consideramos f;(z) = 0,
para todo ¢t < 0.

Assim, para alcangar nosso objetivo, esta dissertacdo € constituida de trés capitulos:

No Capitulo 1, apresentamos o espaco de Sobolev que estamos interessados em encontrar
as solucdes dos problemas e definimos o operador estudado, bem como apresentamos
algumas de suas propriedades e resultados que serdao necessdrios. Além disso, exibimos

alguns resultados importantes como as desigualdades de Trudinger-Moser e Hardy-Sobolev.
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E, por fim, enunciamos e provamos o Lema Fundamental, que serd o ingrediente primordial
para mostrar a existéncia de soluc¢do para os problemas auxiliares.

No Capitulo 2, mostramos a existéncia de solucao positiva para o problema (P1). Antes
disso, mostramos a existéncia de uma solugdo aproximada, a qual encontramos estudando
um problema auxiliar, utilizando o Método de Galerkin. O principal resultado deste capitulo

éo

Teorema 0.0.1. Suponha que as condicoes (a1), (a2) e (f1) a (f3) sejam vdlidas. Entdo,
existe A* > 0 tal que o problema (P1) tem uma solucdo fraca positiva para cada Ay € (0,17).

No Capitulo 3, mostramos a existéncia de solug@o positiva para o problema (P2). Assim
como no Capitulo 2, mostramos, primeiramente, a existéncia de solu¢do para um problema
auxiliar com auxilio do Método de Galerkin, encontrando uma solu¢do aproximada para
o problema (P2). A demonstracdo do caso sistema possui 0 mesmo raciocinio que o caso
escalar, logo, o objetivo é expor para o leitor como o Método de Galerkin pode ser utilizado
na resolu¢do de um sistema, exibindo as semelhancas, diferencas e os cuidados técnicos que

ha nesse processo entre os dois casos. O principal resultado deste capitulo € o

Teorema 0.0.2. Suponha que, para i = 1,2, a; satisfaz (ay), (az) e f; satisfaz (f1) a (f3).
Entdo, existe A* > 0 tal que o problema (P2) tem uma solucdo fraca positiva para cada
O<A+A <A™

Nopi
Observe que, as fungdes a;(t) = 1 +1¢ 7 satisfazem as hipéteses (a;) e (ap), com

k1 = ko = k3 = k4 = 1. Portanto, os Teoremas 0.0.1 e 0.0.2 sdo vdlidos para o operador
—Apl.u — ANI/L
Os problemas com este operador vém de um sistema geral de reacao-difusao:

uy = div[D(u)Vu] + c(x,u), (0.0.1)

onde D(u) = (|Vu|P~>+|Vu|¥~?). Este sistema possui uma ampla gama de aplica¢des em
fisica e ciéncias afins, como biofisica, fisica de plasma e projeto de reacdo quimica. Nessas
aplicacgoes, a fun¢do u descreve uma concentracdo, o primeiro termo do lado direito de (0.0.1)
corresponde a difusdo com um coeficiente de difusdo D(u); enquanto o segundo € a reagdo
e estd relacionado a fonte e processos de perda. Normalmente, em aplicacdes quimicas e
bioldgicas, o termo de reagéo c(x,u) é um polindmio de u com coeficientes varidveis (Ver
[6, 10, 15, 20]).
Da mesma maneira, nota-se que a fungdo

N

filt) =1""exp (aotN*‘)
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satisfaz as hipéteses (f1) — (f3) para y; > N e paratodo t > 0.

Para finalizar, dedicamos o Apéndice A para fazer um breve estudo e lembrancga das
principais propriedades da teoria do Grau de Brouwer. Além disso, reservamos o Apéndice B
para lembranca de conceitos e resultados interessantes sobre a teoria dos Espacos de Sobolev
e da Analise Funcional.



Capitulo 1

Resultados Preliminares

Neste capitulo, estabelecemos alguns resultados importantes que serdo usados nos demais
capitulos. Mais precisamente, na Se¢do 1.1, introduzimos o espago WO1 ’N(Q), no qual
buscamos solugdes dos problemas estudados, o operador bem como suas propriedades e
diversos resultados envolvendo-o, como, por exemplo, um Principio de Comparacao Fraca,
que serd utilizado na demonstracdo dos dois teoremas principais desta dissertacdao. Na Secao
1.2, exibimos algumas desigualdades essenciais em nosso trabalho como a Desigualdade de
Trudinger-Moser e a Desigualdade de Hardy-Sobolev. Por fim, na Secao 1.3, enunciamos
e provamos o Lema Fundamental, que serd utilizado em combina¢dao com o Método de

Galerkin para encontrar solu¢cdes ndo negativas para os problemas auxiliares.

1.1 Espaco de Sobolev WO1 NQ)

Iniciamos esta secdo definindo o espago de fun¢des no qual buscamos as solugdes para
os problemas em questao.

Definiciio 1.1.1. Seja Q C R" um aberto. O espago WO1 ’N(Q) € definido como sendo o fecho
de Cg' () na norma || - [[y1n(q), isto €,

WOLN(Q) — m”"‘wl,N“})‘

Desde que Q seja limitado, consideramos WO1 ’N(Q) dotado com a norma

1
N
lullo = f wtar)"
Q

onde | - | representa a norma da soma.
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Definicao 1.1.2. Dizemos que u € WO1 ’N(Q) ¢ uma solugdo fraca do problema (P/) se u > 0

em € e se verifica
/ ao(|VulP)| V| 2Vuve dx—ao/ L2 dx—/ folu)g dx =0,
Q Q uﬁO Q

para todo ¢ € Wo1 N (). Analogamente, dizemos que (i, v) € WOI’N(Q) X WOl N () 6 solugdo
do problema (P2) se u,v > 0 e satisfaz

/a1(|Vu|p1)|Vu|p‘_2VuV¢ dx =N LA dx+/ fi(v)o dx,
Q Q

/az(]Vv|p2)\Vv]p22VvV(p dx:lz/ i dx—l—/fz(u)(p dx,
Q o vk Q
para todo @, ¢ € WOI’N(Q).

Nesta dissertag@o, trabalhamos com o operador 7; : WO1 NQ) — (WOI’N(Q)),, tal que
<Tl~u,~,¢i> = /Qa,-(|Vu,-|pi)|Vu,~|pi—2VuiV¢,~dx.

Vamos mostrar que T;u; estd bem definido. De fato, usando a hipétese (a;), para cada
LN
¢; € W()’ (Q),

(Tiu;, §i) :/Qa,-(|Vu,-|Pf)|Vui|Pi_2Vu,~V¢,~dx

< ‘ / ai(|Vui|P) | Vg P2 Vu;V didx
Q

< [V Vul Vo
< [ GalVal kel

:k3/Q|Vu,-]p"1]V¢,~]dx+k4/Q\Vu,-|N1]V¢,~\dx.

Usando a Desigualdade de Holder (Ver Apéndice B, Teorema B.1.1) para po, AI’N e
po—

N
, obtemos
N-—-1

pro—1 1 1

N—1
“po 0 po N
(Tuts, 63) < k3 (/ ]Vui]”"dx) " (/ ]Vu,-|”°dx)lo+k4 (/ ]Vui]Na’x) " (/ ]Vui\Ndx)
Q Q Q Q
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= k3| Vil |55~ IV il [ g+ kal [ Vil [y~ 11V 91l

0

—1 -1
= ksl luil 11, 1@il1p + al il [ 110

|l,N < oo,

pois u;, §; € WO1 N@) c WO1 P0(Q). Mostraremos agora que se u € WOI’N(Q) entdo Tu €
(WOI’N(Q))’. De fato, sejam ¢y, ¢ € WOI’N(Q) e ¢ € R, temos
(Tu,cor+¢2) = [ al|Vul”) Vul”2Vu¥ (e + )dx
—¢ / a(|Vul?)[VulP2VuV ¢ dx -+ / a(|Vul?)|VulP~2VuV drdx
Q Q

=c(Tu, 1) + (Tu, §2).

E, pela mesma conta feita anteriormente, obtemos de (a;) e da Desigualdade de Holder

N
,Ne
N—-1

para p, P que
p J—

1
-1 _
(T, ¢1)| < k[l [ 11011+ Kal[ul [ 1911w

Como 2 < p < N, da imersdo de Sobolev (ver Apéndice B), existe uma constante k3, tal que

-1 _
(T, 00} < R4l 110 v+ Kl 5 1o
-1 _
= (Kallullf, kel a5 11) 110 1
1,N
=Cl[o]in, VoW, (Q)

[1.N

A seguir, os trés proximos lemas mostram que o operador 7; é continuo, monétono e

COErcivo.

Lema 1.1.1. O operador T; : WOI’N(Q) — (WOI’N(Q))/ definido por
(Tiui, §i) = /Qai(|VMi|p")|Vui|pi_2VMiV¢idx

é continuo.

Demonstracdo. Seja (u,) C WO1 N@Q)eue WOI’N(Q) tal que u, — u em WO1 N (Q). Entdo,
V| — |Vu| em LN(Q).

Assim, pela reciproca do Teorema da Convergéncia Dominada de Lebesgue (Ver Teorema
B.3.3), existe g € L (Q) tal que
(@) |Vuy(x)| = |Vu(x)| q.t.p. em Q;
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(ii) |Vuu (x)| < g(x) q.t.p. em Q.
Observe que

||Tun—Tu||(W01,N(Q)),: sup |(Tu, —Tu, )|

IolI<1
= Ssup ’<Tun7¢>_<Tua¢>‘
lolI<1
— sup / a(|Vitn|P) Vit~ 2Viun Ve — / a(|Vul?)[VulP2VuVodx|.
MESIES o

Como |Vu,(x)| — |Vu(x)| q.t.p. em Q, entdo |Vu,(x)|? — |Vu(x)|” q.t.p. em Q. Assim,
desde que a € C L temos
a(|Vun|") = a(|Vul),

portanto, do item (i),
a(|Vity|?) | Vitn|P2Vu, Vo — a(|VulP)|VulP2VuVe.
Usando (a; ), obtemos

la(|Vi|P) Vit P2V u, V9| < a(|Vitn|P)|Vuan [P~ V]
< (k3| Vun|P~ 1 + ka| VN 1) V9|
= k3| Vun|P V| + ka| V[N V).

Decorre da Desigualdade de Young (Ver Teorema B.3.5) para p,p/(p—1),NeN/(N—1) e
do item (ii) que

a(|Vun|?) | Vin| P~ Vun V9| < k3 (& Vitn (x)|P + Ce| VO (x)[7) +ka (] Vitn (x)| + Ce | Vo () V)
< k3(elg(@)|P +Ce| VO (x)|7) +ka(elg ()Y +Ce[ VO (x)[¥) € L' ().

Logo, do Teorema da Convergéncia Dominada de Lebesgue, segue
/ a(|V it |P) Vit~ 2Viu, Vb — / a(|Vul?)|Vu|P 2V uV s,
Q Q

portanto,
|| Tu, — TMH(WOI’N(Q))/ =oy(1).
Tomando n — oo, obtemos

Tu, — Tu em (W, (Q)),
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logo, T € um operador continuo. 0

Lema 1.1.2. O operador T; : WOLN(Q) — (WOI’N(Q)), definido por
(Tt 00) = [ [ Vu]”) Va2 Vi g
Q

é coercivo.

Demonstragdo. Fazendo ¢; = u; na defini¢@o de 7; e usando a limitacao do operador 7; dado

pela hipdtese (aj ), obtemos
(Tt = | ai(| V)| Vo
Q
> / Kt |Vii| P+ ko |Vitg Vdlx
Q

~ N
= ki||u;] ffpi+k2||ui||1,1v

Zk2||'f‘i||11V7Na
logo,
ATR005) s Yy
o] |1 v

Fazendo ||u;||; v tender ao infinito, uma vez que N > 3, o lado direito da desigualdade vai ao
infinito, portanto,
. Tiui u;
hm < 1% l> — +oo
[l .= [l 1.

]

Para mostrarmos a monotonicidade de 7;, utilizaremos a desigualdade dada pela proposi-
¢do abaixo que pode ser encontrada em [7].

Proposicdo 1.1.1. Seja a: RT — R™ uma funcdo de classe C' tal que as condicées (ay) e

(ay) sdo vdlidas. Entdo vale
Che— 1P < (Pl 2 a(bIP )P 23—,

para x,y € RV

Demonstragdo. Observe que
N

ai(|x|P) x[P2x = ai (1P - 2y,x =) = Y (@il |xlP) el -2 = (I[P [y1P-2y) (x5 = 3))
j=1
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10

e para todo z, & € R", utilizando a regra do produto e regra da cadeia, temos

N 0 N
Y a— ai(|2lP) |27 22) & = (pi— 22l Y ai|2P)zkz €k
k:

k,j=1

N
+ Y a7z 28 &k,
k,j=1

N
+pi Y (@) |2 2z 6.
k,j=1

Portanto,

N

N
kzai () 2P 22) & = (pi— 2P ar((2lP) Y i

=
+ai(|z|P)[z|P 2 €
it
+ pidi (") |27 Y wzi&i;.
o=

Como

k,j=1 k=1 j=1

N N N 2
Z ezl =Y (&) Y, (zj&)) = (Z ﬂ?j) ,

obtemos

™=
QU‘CU

<k

N 2
(ai(l2l") 2”22 & = (pi —2) 2" *ai(|zl™) ( ) Zj5j>

k,j=1

2
N
+ pidj(zF) |z ( Y Zjé‘) :

k,j=1
+ai(|2]P) |27 g

N 2
= < Y z,-%;) 2P [(pi = 2)ai|2]") + piai([2] ") [z]"]

k,j=1
+ai([2]) [z 2 1€ .



1.1 Espago de Sobolev Wol NQ) 11

Da hipdtese (az), temos (ai(|z|?)[21" %)’ > 0 e daf (p; — 2)ai([2l") + pial(||”) 2] > 0.
Logo,

N

d , —
) —a ai(|21") 2" 22) 685 > aillzl™) [z . (1.1.1)
jk=1

Além disso, se |y| > |x|, segue da desigualdade triangular que
e =y < Ix] + Iyl < Iyl + Iyl =2l

1 1
Portanto, 5|x—y| < |yl eparat € [O, 4_1] , temos

1 1
ekele=3)| 2 bl = b1 2 gyl = bl el (5 1) 2 gl

Fazendo z = x—ye & = x —y, de uma cdlculo direto, obtemos

N

1 N a
Z ([P P2 — a(y [P [y | P2, ) (= / Y % (ai(|27) 2”22 &t
J.k=

Usando (1.1.1), obtemos

(ai(|x|P)) [x|P2x — ai (|y|P) [y P2y, x — y) > ailly + 1 (x = y) [P [y + £ (x — ) |72 | = y| >
(1.1.2)

De (a;), concluimos

‘ , ‘ : ki _ .
(i) el =2 = ai(y[P) [y 1P =2y = ) = e =y 2 e =y = Cle—y P

Lema 1.1.3. O operador T; : Wol’N(Q) — (WO1 N( )) definido por
(Tous, ¢5) = /Q ai(|V i) Vi P2V 0,V ydx

é monotono.

Demonstragdo. Observe que

(Tiw; — Tiviyui — vi) = (T, u; — vi) — (Tivi, ui — vi)
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= / a,-(|Vu,-|p")]Vui\p"_ZVui(Vu,-—Vvi)dx
Q
_/ ai(|Vvil ) Vil 2V vi( Vi — Vvi)dx
Q

= /Q(Vu,- — V) [ai(]Vui\pi)Wu,-]p"_ZVui —ai(\Vvi|p")]Vv,-]p"_2Vvi] dx,
Usando a Proposicao 1.1.1, temos

(Tiu;j — Tyvi,u; — vi) > C/ |Vu,-—Vv,~|pdx:C||u—v||pr > 0. O
Q )

O préximo lema fornece a unicidade da solucdo para o problema linear com o operador

estudado.

Lema 1.1.4. Suponha que as condicdes (ay) e (ay) sejam satisfeitas. Entdo, existe uma

tinica solu¢do u; € WO1 N(Q) para o problema linear

—div(a;(|Vui|P) |V |P2Vu;) = hi(x) em Q,

ui=~0 sobre 0Q,
onde h; € (WOI’N(Q))’, para todoi=0,1,2e¢2 < p; <N.
Demonstragdo. Considere o operador T; : WO1 NQ) — (WOl N (Q))’ dado por

(T ) = [ Vual”) [V~ 2V19 9 d.

Q

Desde que 7; € continuo, mondétono e coercivo. Aplicamos o Teorema de Minty-Browder
(Ver Teorema B.2.6), para obter um tinico u; € WO1 N (Q) tal que Tiu; = hi(x). N

Nossa abordagem no estudo do problema (P1) e do sistema (P2) baseia-se fortemente no

seguinte Principio de Comparagdo Fraca.

Lema 1.1.5. Se Q é um dominio limitado e se u;,v; € WO1 N(Q) satisfaz

—diV(ai(|Vu,-|pi)|Vu,~\p"_2Vui) S —div(ai(|Vv,-|pi)|Vv,~\p"_2Vv,-) €m .Q,

uj <V sobre 0Q,

entdo u; < v; em Q.
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Demonstragdo. Temos
/Qai(|Vui|p")|Vu,~]pi_2Vu,~V¢dx < /Qai(|Vvi|pi)|Vv,'|p"_2Vv,~V¢dx,
para todo u;,v; > 0. Considere ¢ = (u—v)* = max{u—v,0} > 0, entdo
/gzai(]Vui|pi) Vi P2V V (u—v) Tdx < /Qa,'(|Vvi|p") IVvi|Pi 2V vV (u—v) Tdx.

Desde que

Viu—v), se u>v,

V(u—v)t = ( )
0, se u<v,

segue
/{> ai(|Vii|PY Vi |P=2VuV (e — v) — a;(|Vvi] 7)) | Vi P2 VvV (4 — v)dx < 0.
uj>vj
Usando (1.1.2), obtemos
0< /{ i [a;(|Vui| P | Vi P2V u; — a; (|Vvi | P Vi P2V ]V (i — v)dx < 0,
ui>v;
logo
/{ (Vi) Va2V — a9 9 2]V (= ) = 0.
ui>v;

Considere Qp = {x € Q : u;(x) > v;(x)}. Hd duas possibilidades:

(i) Qy = T,

(if) Vu; = Vy; em Q.
Se ocorresse (if) terfamos v; = u; + ¢, onde ¢ é uma constante. Como em 0 temos u; = v;,
entdo, por continuidade, segue que ¢ = 0. Portanto, u; = v; em Qg, o que contradiz u; > v;.
Segue entdo que Qp = &, isto &, {x € Q: u;(x) > vi(x)} = &, logo, u; < v; em Q. O

O préximo lema fornece a regularidade L™(Q) das solucdes para a classe de problemas
p&g-Laplaciano estudada. Precisaremos dessa regularidade na demonstraciao dos problemas

principais.
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Lema 1.1.6. Seja u; € WO1 N(Q) a solugdo do problema

—diV(a,'(|Vu,'|pi)|Vui|pi_2Vu,~) = fl cm .Q.,
ui=0 sobre 0Q,

(1.1.3)

*

, N
tal que f; € L' (Q) com r; > NN

entdo também ||u;||« é pequeno, para todo i =0,1,2 ¢2 < p; <N.

. Entdo, u; € L. Em particular, se ||fi||,, é pequeno,

Demonstragdo. Ver [1, Lema 2.5]. O

No que diz respeito a regularidade da soluc@o do problema (1.1.3), podemos afirmar
que o préximo resultado € vdlido e a demonstragcdo pode ser elaborada seguindo os mesmos

argumentos utilizados em [10, Teorema 1].

Lema 1.1.7. Fixe h; € L”(Q), para todo i =0, 1,2, e considere u; € WOI’N(Q) NL*(Q), com
2 < pi < N, satisfazendo o problema

—div(a;(|Vui|P)|Vui|P2Vu;) = h;  em Q,
u; =0 sobre dQ.

Entéo, u; € C*(Q), para algum a € (0,1).

Agora, usando o Lema 1.1.5, podemos reaplicar os argumentos de [18, Lema de Hopf]

para obter o préximo resultado.

Lema 1.1.8. Seja Q C RY um dominio limitado com fronteira suave e i = 0,1,2. Se
u; € CH(Q) OWOI’N(Q), com2<p;<N,e

—div(a;(|Vu;|P) |[Vui|P2Vu)) >0 em Q,
u; >0 em Q,
u; =0 sobre JQ.

”
Entdo, 8_1; < 0 em dQ, onde 1 é a normal exterior para dQ.

Para outros conceitos sobre o espaco de Sobolev WO1 ’N(Q), o leitor pode consultar o
Apéndice B, onde expomos algumas outras defini¢des e resultados importantes para 0 nosso
estudo.
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1.2 Algumas desigualdades importantes

Os Lemas 1.1.6 e 1.1.7 foram apresentados a fim de que possamos obter a regularidade
exigida no Lema 1.1.8, que por sua vez, culmina no proxima lema que serd importante para

alcancarmos a positividade das solugdes buscadas para os problemas (P1) e (P2).

— d
Lema 1.2.1. Sejam ¢, ® > 0 quaisquer funcdes em C}(Q). Se % >0em dQ, onde Vv é a

normal interior para dQ, entdo existe C > 0 tal que

¢ (x)

o(x)

>C >0, paratodo x¢€ Q.

Demonstragdo. Para 0 > 0 suficientemente pequeno, consideramos o seguinte conjunto
Qs ={x € Q; dist(x,0Q) < 6}.

¢ (x)

o(x)

continua e, assim, alcanga maximo e minimo em Q\ Qg, logo existe m > 0 tal que

Observe que Q\ Qg é compacto e desde que 0 < @, @ € C(l) (Q) em Q segue que >0¢é

¢ (x)

o(x)

> m, para todo x € Q\ Qs. (1.2.1)

0
Segue de —¢ > 0em dQ que — < 0, onde 1 é a normal exterior sobre dQ. Além disso,

av an

como Q C R” é um dominio limitado, entdo dQ é um conjunto compacto e, consequente-

mente, existe C; < 0 satisfazendo

0 _
% < Cy, para todo x € Q.

Como o € C}(Q), existe C > 0 tal que

< C,, para todo x € Q5.

’860(x)
an

2y
Considere K = inf 5 < 0 e defina a fun¢do H(x) = acw(x) — ¢ (x), para todos os x €
Qs

— . . C
Qs e a € R a serem escolhidos posteriormente. Como 0 < o < ?1 obtemos
0

JdH(x) Jdw(x) d(x) —
an o an — o > oKg —C1 > 0, para todo x € Q3.
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Agora, fixe x € Qs e considere a fungio
f(x) =H(x+sn), para todo s € R.

Para cada x € Qg, escolhemos um tinico X € Q5 de modo que exista 5> 0 tal que x 451 =
X € dQ. Portanto, como H(dQ) = 0 temos

f(5) =H(x+5n)=H(X) =0.

Aplicando o Teorema do Valor Médio, existe & € (0,5), tal que

f(5) = f(0) =£'(E)5-0),

o que implica que

—H(x) = 3—;I(x+§n)§> 0, em Q;.

Portanto, H(x) < 0 para todo x € Q5 e, portanto,
am(x) —¢(x) <0, para todo x € Qg5,
que resulta em
am(x) < ¢(x), para todo x € Q5.

Assim,
¢ (x)
o(x)

Em virtude de (1.2.1) e (1.2.2), concluimos que existe C > 0 de modo que

¢ (x)

o(x)

> o > 0, para todo x € Qj. (1.2.2)

> C, para todo x € Q. O]

Destacamos também um resultado importante devido a Trudinger-Moser [19, 16] que

nos permitird fazer boas limitacdes quando estudarmos os problemas auxiliares.

Teorema 1.2.1 (Desigualdade de Trudinger-Moser). Para todo u € WO1 N(Q) e a >0, entdo

exp (au%) cL'(Q)
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e existe constante M > 0 tal que

para todo o < oy = Nwy_|, onde y_ é a medida (N — 1)-dimensional de uma (N — 1)

esfera.

Demonstragdo. Ver [16, 19]. ]

Utilizaremos o resultado abaixo devido a Hardy-Sobolev [11] nas Secdes 2.2 e 3.2 que
tratam das demonstragdes dos teoremas principais deste trabalho.

Teorema 1.2.2 (Desigualdade de Hardy-Sobolev). Se u € C!'(Q)N WO1 P(Q) com1 < p <N,
. u - 1 1 1-7
entaoF eL (Q),para;:;—T,O<T§ le

u

cdr

L(Q) < ’VMILT’(Q)a

onde d(x) = dist(x,dQ) e C é uma constante positiva que ndo depende de x.

Demonstragdo. Ver [11]. O

1.3 Lema Fundamental

Como aplicacdo do Teorema do Ponto Fixo de Brouwer (ver Teorema A.2.1) obtemos
o resultado abaixo que € de fundamental importancia no nosso estudo, especificamente,
na implementacdo do Método de Galerkin. O leitor pode encontrar alguns conceitos e

propriedades sobre a Teoria do Grau de Brouwer no Apéndice A.

Lema 1.3.1. Seja G : RY — RY uma funcéo continua tal que (G(&),E) > 0 para todo & € R?
com ||E|| = r para algum r > 0. Entdo, existe zo € B,(0) tal que G(zg) = 0.

Demonstragdo. Suponha por contradi¢do que
G(E) #0, paratodo & € RY, com ||E||=r

e defina
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Observe que

_=rG@ _ 6@ _
lel="G@En = Tee) ="

logo g(B,(0)) C B,(0) e, portanto, g(&) € B,(0). Além disso, g € continua, pois G € continua,

por hipétese. Assim, pelo Teorema do Ponto Fixo de Brouwer, a fun¢do g tem um ponto fixo
em B,(0). Seja zo tal ponto fixo de g, isto €, zo = g(z¢). Entdo,

llzol] = ||g(z0)|| = r > 0.

Por outro lado,

—rG(z0)
|G (z0)|

2 = ||z0])* = (z0,20) = (20,8(z0)) = <ZO,

>:Hamm““a“”

Como, por hipoétese,
(20,G(20)) > 0,

segue que

1G(z0)l|
que € um absurdo. Portanto, existe zo € B,(0) tal que G(z0) = 0. O

0<r’=

(z0,G(z0)) <0,



Capitulo 2

Primeiro Resultado: caso escalar

Neste capitulo, investigaremos a existéncia de solu¢do ndo negativa para o problema

—div(ag(|VulPo)|Vu|Po"2Vu) = % + fo(u) emQ, (P1)

u=>0 sobre dQ,

onde Q C R ¢ um dominio limitado suave com N >3, 2< pg <N, 0< By <1e Ay > 0.
As hipéteses sobre as funcdes ag : R™ — R™ de classe Cc'e fo: R — R continua com

crescimento exponencial sdo as seguintes:

(a1) existem constantes ki, k, > 0 e k3, k4 > 0 tais que

kP + kot < ap(tPO)tP0 < kstPo + kgt para todo ¢ > 0;

(a2) A fungdo
t— ao(tp(’)tp°_2 ¢ crescente, para todot > 0;

(f1) existe ap > 0 tal que as condi¢des de crescimento exponencial no infinito sdo dadas
por:
fm -
exp (OC|Z"N >

lim — o)
7 exp (alt\ﬁ>

=0, para @ > o

=oo, para 0 < @ < Qp;

(f2) acondi¢do de crescimento na origem:
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0 fot)

0+ tPo—1

(f3) existe 3 > N tal que
fo(t) > %! paratodot > 0.

A hipétese (a;) nos dé certas condi¢des que serdo utilizadas para limitar o operador do
problema. Enquanto que a hipétese (ay) foi fundamental na demonstragdo da Proposicao
1.1.1 que fornece uma desigualdade crucial tanto para obter propriedades do operador quanto
nos ajudard na prova da convergéncia da solucdo aproximada.

A hipétese (f) indica o crescimento critico da fung¢@o f, o que nos ajudaré a fazer
estimativas. A hipétese (f») € importante para garantir uma boa geometria na origem. E,
por fim, a hipStese (f3) serd utilizada na Se¢do 2.2 que possibilitard usar um Principio de
Comparacgdo Fraca, demonstrado no Lema 1.1.5.

Decorre de (f1) e (f2), que, para todo 8 > 0 e para todo a > ay, existe Cg > 0, tal que

fo(0)i] < 817 +Cslef exp (ale|¥°7) (2.0.1)

para todo go > 0. Neste trabalho, usaremos go > N e fy(t) = 0, para todo r < 0. Para
estabelecer a existéncia de solugdo positiva para o problema (P/) usamos um problema
auxiliar, para o qual mostramos a existéncia de solu¢do via Método de Galerkin.

O principal resultado deste capitulo € o

Teorema 2.0.1. Suponha que as condicdes (ay), (a2) e (f1) - (f3) sejam vdlidas. Entdo,
existe ™ > 0 tal que o problema (P1) tem uma solucdo fraca positiva para cada Ay € (0,17).

2.1 Problema auxiliar para o caso escalar

Para cada 0 < € < 1 fixado, consideramos o seguinte problema auxiliar

(u_i\.—;j)ﬁo +f()(bl) cm Q,

u=>0 sobre dQ,

—div(ag(|VulPo)|Vu[PO"2Vu) =
(2.1.1)

onde as funcdes ag e fo satisfazem as hipéteses do Teorema 2.0.1.
Mostraremos a existéncia de solucao para este problema auxiliar utilizando o Método de

Galerkin e o Lema Fundamental descrito no Lema 1.3.1.
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Antes de prosseguirmos com o enunciado e a prova do principal resultado desta se¢do,
vamos obter uma estimativa a priori da solucio procurada. Lembremos que se u: Q — R é

J’_

uma fun¢do qualquer, definimos a parte positiva u™ e a parte negativa u~ da funcio u por

u"(x) = max{u(x),0} e u (x):=max{—u(x),0}, paratodox € Q.
Deste modo, para cada € > 0, podemos reescrever o problema (2.1.1) da seguinte forma

L
(ut +&)Po thlw) em & (2.1.2)

u=20 sobre dQ.

—div(ag(|VulPo)|Vu|Po"2Vu) =

De fato, suponha que u € solucio do problema acima, entdo
/ ao(|VulP0)|Vu|Po~ 2VuV¢dx—}lO/ dx+/ fo(u)pdx.
Q ut + g)h

Fazendo a funcdo teste ¢ assumir o valor da parte negativa de u, isto é, ¢ = u™, obtemos

/a0(|Vu|p°)|Vu|p0 2VuVu~ dx-ﬁo/ dx—l—/fo u dx.
Q ++£

Vamos analisar cada uma das integrais acima. Como u = u™ —u ™, segue que

/ ao(|Vau|P0) [V POV iV~ o / ao(|V (it — u)|P) | Vit — Vi |92 (Vit — Vi)V d.
Q Q

Observe que o lado direito da igualdade se anula no conjunto {x € Q;u(x) > 0} uma vez que

ut e u~ possuem suporte disjuntos, logo, podemos considerar somente os valores de x para

os quais u(x) < 0 acarretando em u™ = 0. Assim,
/Q 10|V P [V P2V Vi~ dx = /Q ao(|Vu~ [P0) Vi [P (—Vu~ )V dx
_ /an(|Vu_|P°)|Vu_|p°_2|Vu_|2dx
— /Q ao(|Vu~ |P0) [V |Podx. (2.13)

Além disso, observe que, por definicdo, u~ € ndo negativa, logo,

0
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—+

Novamente, como u™ e u~ possuem suporte disjuntos e, por hipétese, fo(r) = 0 para

todo ¢ <0, entdo
/ folw)u dx = / folut —u )u"dx = / fo(—u")u"dx=0. (2.1.5)
Q Q Q
De (2.1.3), (2.1.4) e (2.1.5) segue que
/ ao(|Vu™ |P2)|[Vu™ |Podx < 0.
Q
Agora, por (a ), obtemos

0> / ao(|Vi~ [P0) |V [Podx > g / Vu~ |Podx+k / Vi Vdx
Q Q Q

> ko / Vu [Ndx = ko [u” |V >0,
Q Y

logo, k2||u_||]1\iN = 0. Desde que k» > 0, segue ||u"||;xn =0, logo, u” =0eu=u">0.
Portanto, como uma solug@o do problema (2.1.2) também € solucio do problema (2.1.1),
vamos procurar solucdes assumindo, a partir deste momento, que u é ndo negativa. Com isso,

estamos prontos para enunciar € demonstrar o resultado principal desta secao.

Lema 2.1.1. Para cada 0 < € < 1, existe A* > 0 tal que o problema (2.1.1) tem uma solu¢do
fraca ndo negativa para todo Ay € (0,A7).

Demonstragcdo. Seja B = {ej,ey,...,en,...} uma base de Schauder de WOI’N(Q). Para cada
m € N, defina

Wm = [617627' "7em]
sendo o espago de dimengdo finita gerado por {ej,ey,...,e,}. Observe que os espagos
(W, || - 1]) € (R™,]-|) sdo isometricamente isomorfos pela aplicagdo natural
S:w, - R"
dado por
m
u=y &ejrrSu)=£&=(8,%,....5n),

j=1

onde

m m

E1= Y 151 com [E[Y =&Y + &Y+ + 18" = Y Y

Jj=1 Jj=1
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1

N
lullo = ¥t'as)
Q
m
Julfty = / Vuldx = V(Zém)
Q =1

m m
:/ ZéjVej dx = Z|§j\N\Vej|Ndx
Q|j=1 Qj=1

i | /‘Vej‘ dx—;}gﬂ HeJHlN
-yl = e

De fato, veja que

N

Logo,
|

Para cada m € IN, defina a fungdo G : R — R tal que

= |S(u)]. (2.1.6)

G(§) = G(&1,62,---,6m) = (G1(§),G2(G), - -, Gm(8)),

onde & = (&1,&,,...,&,) € R,

Gi(E) = /an(yvu|l’0)\vu|m 2VuVe; dx— AO/ /fo we; dx,

m
paratodo j=1,2,....m,eu= Z Ejej € Wy,. Portanto,
j=1

u—|—€

fc
i( ao(|VulP)|Vu|Po~ ZVuVejéj dx — %/ﬁ /fo Jei&j dx)

Zﬁjejdx

\

a0(|vu|Po)|Vu|P0 2VuZ§JVeJ dx — QLO/
=

/fo i{‘,jej dx.

u+£ BO
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Como
m m m
u—= Zéjej (] Z@quV(Zéjej):Vu
=1 j=1 =1
segue que
(6(6).8) = [ aol[Vul™)|Vul™ 2Vu¥u dx— 2o / de— [ foluudx
Q (u+ )P
—/ao |Vu|PO) | Vu|Po dx — ZO/ dx /fo Ju dx.

A partir de agora, precisamos estimar cada parcela acima de modo a obter (G(§),&) >0
e, assim, podermos aplicar o Lema 1.3.1. Inicialmente, observe que, ao assumirmos u > 0
em Q, segue da imersio de Sobolev Wo] N(Q) < L'(Q) que existe uma constante C¢ > 0 tal
que

u
/g)(u+g)l3 dx</gﬁdx<gﬁ /\”Wx— |ul]1 < Cellul |1 - (2.1.7)

Usando (2.0.1) existem o > o e go > N tal que

/ | fo(u)u| dx < 5/ |u|P0 dx+C5/ |u|? exp a|u|%) dx
Q

= 8llullfy+Cs [ Jul® exp (alul 1) ax.
Da imersdo de Sobolev WO1 P0(Q) — LPO(Q), existe uma constante positiva Cy, tal que

[ otwgal < 563l +C [ fut® exp (el 1) ax

Por outro lado, vale

/Q|f0(”)”| dx > ‘/Qfo(u)u dx

Z/Qfo(u)u dx,

logo, obtemos
| foluu dx < 1w, +Cs [l exp (™) ax.  @18)
Q
Agora, de (a), temos

/ao(wuvm)wuv’o dxzkl/ V]P0 dx+k2/ VulV dx
Q Q Q
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= k| [ul 7%, +ka|ue] Y - (2.1.9)
Segue de (2.1.7), (2.1.8) e (2.1.9) que

(G(8),&) =k lul 12" 0 Cs /Q jul®exp (aful 1) dx

N
— ko[t |}y + (1 — 5C1)Hu||1p0 ﬂngHu||17N—C5/Q|u|q°exp<Oﬂ\u|1\/1>dx. (2.1.10)

Como, por hipétese, k; > 0, tomando 0 > 0 suficientemente pequeno tal que (k; — 6Cy) > 0,
podemos reescrever (2.1.10) como

N
(6(8).8) = allully — AaCellllLy —Cs [ Jufexp (ful ™) dr.  @.L11)

1 1
Usando a Desigualdade de Holder com s,s" > 1 conjugados de Lebesgue, isto é — + - =1,
s s

temos

N / Al, N l?
Cs [ ufoexp (alul 1) dx < Cs (/ 0 dx> (/ exp (otslul 77 dx)
Q Q Q
M 5
= Calll® ([ exo (asta 1) ax)
Q

Como go > N e s’ > 1, entdio da imersdo de Sobolev W'V (Q) — LS,(Q), existe C} > 0 tal
que ||u|% < ¢ HuHW”\, @ Desde que Q € limitado, as normas |[ul|y1vq) € HMHWOLN(Q) =

||u||1 v sdo equivalentes, portanto, existe uma constante C; tal que

N / N %
Cs [ lul®exp (aul 1) dx < CoCillullf gy ( [ exp (sl *1) di
Q Q
1
Co 11490 A ’
< C5Ch[ul| 9 (/Qexp(asyu\m) dx) . @L12)

Entdo, segue de (2.1.11) e (2.1.12) que

1

—~ L N
(G(&).&) > kallullYy — AoCellulli.y — C5Cilull Py ( | exp (aslul 1) dx)
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Suponha agora que ||u||; y = r, para algum r > 0 escolhido posteriormente. Temos

N
_a wor [ ul NP
/exp <O¢s|u\N—l> dx:/exp os||ull) v dx
o Q BN LITEY
N
N |u’ N—1
:/exp osrv-T [ ——— dx
Q [Jual[ 1.5

e, aplicando a Desigualdade de Trudinger-Moser (ver Teorema 1.2.1), impomos que

1
onde oy = Ny~ em que wy_; é a medida (N — 1)-dimensional de uma (N — 1)-esfera.

Portanto, existe M > 0 tal que

N
N |u| N—1
sup [ exp | ousr¥T (o dx <M
|[ual [y y <1/ a1 v

(G(&).€) > ko™ — AgCer — C5C1 M5 r.

e dai,

Agora, é necessario escolher r, tal que

~ korN
ker—C(;ClM%rqO > ZT
Logo,
~ k k k
k2—C5C1M~%I’qO_NZ =2 — rqO_NS /—3 T /-\2/ 1
2 CsCiMs  2C5CiMs
P .- T 1
2CsC\M's

_1

ky \""
—r S — 1 .
2CsC1M's
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o\ T k 0
Agora, considerando r = min (—N> , —3/1 , temos que
os 2CsCI1M's
koY
(G(§).§) 2 =5~ — MCer.
Veja que
kor kprN 1
_—— 0
> MCer >0 Ay < T
portanto, escolhendo
k!
A=
4C,

obtemos
(G(E),E) >0, paratodo 0 <Ay < A*, E€R™ e [E];=r

Assim, estamos nas hipéteses do Lema 1.3.1 e, portanto, ao aplicd-lo obtemos que, para
cadam € IN, existe y € R™ com |y|; < r < 1 tal que G(y) = 0. Isto é,

G(y) =0= (Gi(y),G2(y),...,Gu(y)) = (0,0,...,0)
= Gj(y)=0, paracada j=1,2,...,m

Logo, por (2.1.6), existe u,, € W, satisfazendo

=|y| <r<1, paratodo me N (2.1.13)

tal que

O:Gj(y):/Q 0(| Vit| )70 |V ity |02V 14, Ve ; dx — )10/ dx—/fo (um)ej dx,

um+€

logo

/ 0(|Vit| )70 | Vit POV, Ve dx-).()/—dx—i—/fo (um)ej dx, (2.1.14)
Q

para j = 1,2,...,m. Multiplicando a equacdo (2.1.14) por qualquer escalar ¢;, para cada
j=1,2,...,m, temos que

.G.
/a0(|Vum|)p°|Vum|p0ZVMmV(ejGj) dx = ).0/ 4% dx+/ fo(um)ejo; dx,
Q o (um+ Q

g)ﬁo
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paracada j =1,2,...,m. Agora, somando as m equacdes termo a termo, obtemos

/ 0(|Vitm|)P0 | Vi | PO~ 2VumVZe]Gj dx= QLO/ Lj=1€09] dx +/fo (um Ze]G] dx.
Q

= (tm +€)Po

m m
Note que Z e;jo; € Wy, logo, escrevendo ¢ = Z e;j0j, concluimos que
=1 j=1

/a0(|Vum\)p°]Vum|p0_2Vuqu) dx:).o/de+/fo(um)¢ dx, (2.1.15)
Q o (m+€)Po Q

para todo ¢ € W,,, o que mostra que u,, ¢ uma solucao fraca aproximada do problema auxiliar
(2.1.1).

De (2.1.13), observamos que r ndo depende de m, logo (u,,) é uma sequéncia limitada
em W,,. Como W,, C WO1 N(Q), entdo (u,) é limitada em WO1 N(Q), que é um espaco
reflexivo de Banach. Assim, pelo Teorema B.3.4, existe uma subsequéncia de (u,,) que
converge fracamente para algum u € Wo1 N(Q) Além disso, pela imersdo compacta de
Sobolev W'V (Q) i "L%(Q),6 > 1, existe uma subsequéncia de (1,,) que converge para
algum u € L? (Q). Compilando essas informagdes e utilizando o Teorema B.3.3, a menos de
subsequéncia, existe u € WO] N (Q) tal que

(U — em WOI’N(Q),
Uy — U emLGQ,0>1,
" ()62 (2.1.16)
Um(x) — u(x) q.t.p em Q,
| [um(x)| < g(x) € L9(Q) qtpem Q,0>1.

Veja bem, em (2.1.15), mostramos que u,, € W,, € uma solucdo do problema auxiliar
(2.1.1), porém, o objetivo € estender essa solugcdo para WO] ’N(Q). Em outras palavras,
queremos mostrar que cada integral em (2.1.15) converge para uma integral dependendo
de u € WO1 ’N(Q). Para tanto, utilizaremos fortemente as convergéncias dadas em (2.1.16)
atreladas ao Teorema da Convergéncia Dominada de Lebesgue.

Fixe k € IN e considere m > k, entdo W, C W, logo, de (2.1.15), vale

/a0(|Vum|p°)|Vum|p0_2VumV¢k dxzﬁo/de-l—/fo(um)q)k dx, (2.1.17)
Q Q (um -|-g)[30 o
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para toda ¢ € Wy. Como ¢ € Wy e 0 < By < I, observe que

Ox
(ttm(x) + £)Po

) Ok . 7
e <)|c>lie|ﬁo <%0 < 11(Q), pois g e Wi V(@)

e de (2.1.16) temos que

O O
(tn(x)+E)P " (ulx) +£)Bo

g.t.p em Q.

Portanto, usamos o Teorema da Convergéncia Dominada de Lebesgue (Teorema B.3.1) para

% / 0
/Sl(um+8)ﬁ0 = o (u+e)bo dx. (2.1.18)

Agora, como f é uma fun¢do continua, novamente de (2.1.16), segue que

obter que

fo(um<x))¢k —)fo(bt()c))(])k g.t.p em Q. (2.1.19)

Usando (2.0.1), temos que

N
ot (3) )t (5) | < 8t ()70 + C 1t () 0 exp ( () 577 )
e dai
N
Fo(tim ()] < Bl (5) P2 Clam ()]0 exp () |77 ) .
Multiplicando a desigualdade acima por |¢|, obtemos

N

ot ()94l < 8l (6) [P0~ 19|+ Ci it ()]0~ exp (@1t ()| 77 ) [

Para usarmos o Teorema da Convergéncia da Dominada de Lebesgue, precisamos provar que

a funcéo g : R — R definida por

Bl (x)) = 8w ()7 05|+ Caom ()] exp thn ()71 ) 64

satisfaz
| fo(ttm(x)) 9] < glum(x)) € L1(Q). (2.1.20)

E suficiente mostrar que g(u,,(x)) é convergente em L!(Q). De fato, como 2 < py < N,
usamos (2.1.16) para obter

[ ()P0 @ = [u(x)[P 7" k] qtp em Q. (2.1.21)
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i () [P0 9| < g ()P0 @] € L1(Q). (2.1.22)
Segue de (2.1.21), (2.1.22) e do Teorema da Convergéncia Dominada de Lebesgue que
/Iuml”°l|¢k\ dx%/ ul 71| x| dx. (2.1.23)
Q Q

Além disso, como gg > N > 3, novamente de (2.1.16) obtemos

[ty ()90~ L exp (ayum(x)\%) s Ju(x)| % T exp (a\u(x)y%) gtp em Q. (2.1.24)
. / . I 1

Agora, considerando s,s" > 1 tais que —+ — = 1, usamos (2.1.16) e o fato que go > N > 3
s s

para obter
1|07 Ju] 71 em LF(Q). (2.1.25)

Além disso, de (2.1.13) obtemos

N
_N_ N U (x N-T
/exp <a5|um(x)|"’—1>dx:/exp (Oﬂs||btm||iv,1vI (‘ nl )’) )dx
Q Q |t [ 1.5
N
N—1
S/exp (aerNl (M) >dx
Q |1t |1,N
< w / o (Ll >
> p exp | asry-1 dx
[lum()]1<1.S @ st ]1.3

e aplicando a Desigualdade de Trudinger-Moser (ver Teorema 1.2.1), existe uma constante
M > 0 tal que

/exp (ocs\um(x)|%>dx§M. (2.1.26)
Q

Dai, de (2.1.25), (2.1.26) e da Desigualdade de Holder, temos

[t exp (o 7)
Q

1
< </ |um\<q01)°“’dx>s (/ exp ((Xs\um|NNl)dx) 2.1.27)
Q Q

—1 1 —
< ||I’tiﬂ||‘[{?’(g)]‘4S =M.
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Usamos (2.1.24), (2.1.27) e o Teorema de Brezis-Lieb (Ver Teorema B.3.2) para concluir
que
|0~ exp (alum\%> — |u| ! exp (oc|uy%) : (2.1.28)

Segue de (2.1.28) que

qo—1 s qo—1 e
Q|um| exp | a|uy| | |dx — Q|u| exp ( o|ul | @y |dx. (2.1.29)

Portanto, de (2.1.23) e (2.1.29) provamos que

N

| Bn)dx =8 [ ol odx+Cs [ ux) " exp (afu(x) ) locla,

que mostra a identidade (2.1.20).
Entdo, usamos (2.1.19), (2.1.20) e o Teorema da Convergéncia Dominada de Lebesgue

para concluir que

/ Foltm) e dx — / Folu)y dx. (2.1.30)
Q Q

Por fim, o pr6ximo passo € mostrar que
/ 10|Vt P) Vit PO 2V 10,V . dx — / a0 (|VulP0) |V P2V uV oy, dx.
Q Q
Para isto, vamos usar a Proposi¢ao 1.1.1 para obter a desigualdade

C|Vity, — Vil < (ao(|Vitn|P°) Vit |P0 2 Vity, — ag(|VulP0)|Vu|PO">Vu, Vi, — Vu),
i\ V2
onde C = <Zz) > (. De fato,

(ao(|Vity|P0) Vit |PO ">V, — ag(|VulP0) |[Vu|PO~>Vu, Vi, — Vi) =
= ao(| Vit |P0) | Vit [P (Vityy, Vit — Vit) — ao(|Vu|P0) Vi PO~ (Vu, Vi, — V)
= ao(|Vity|P0) Vit |PO "2 (| Vit |* — Vit Vie) — ao(|VulP0)|Vu|PO"2(VuViu, — |Vul?)
= ao(|Vity|P0) Vit [P0 — ag (| Vit |P0) Vit |PO "2V, Ve + ag (| Vu|P0) |V u| PO
— ao(|VulPO)|Vu|Po~>Vu,, Vu,

logo,

C|Vity, — VulN < ao(|Vity|P0)| Vit |P° — ag(|V ity |PO) |Vt POVt Vi + ag (| Vit P0) | Ve PO
— ao(|VulP)|Vu|PO =2V, Vu.
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Integrando, obtemos
OSC/|Vum—Vu|Ndx=C||um—u||]1v7N
Q
g/ao(]Vum|)p°|Vum|p° dx—/ao(\Vum])p°|Vum|p0ZVMmVudx—i—on(l),
Q Q

onde
on(l):/ao(]Vu|p°)\Vu|p° dx—/ao(\Vu]p°)|Vu|p0ZVMmVu dx,
Q Q

pois da convergéncia fraca u,, — u temos que 0,(1) — 0.
Usando que u,, € WO1 ’N(Q) ¢ solugdo do problema auxiliar (2.1.1), segue que

Cllttm = ul[§

</a0(|Vum|)p°|Vum|p0_2VumVum dx—/a0(|Vum|)p°|Vum|p°_2VumVudx—1—on(l)
Q

Ja
:%/gzmdx%—/gfo(”m)umd)c—)\o/deX—/Qfo(”m)”dx+0n(l)-

Mas, pelas convergéncias mostradas em (2.1.18) e (2.1.30), obtemos

U u
——dx— [ ———d
/gz(um+8)ﬁ0 * /Q(u+e)ﬁo »

ftames fyrem
um-l—e u+8
/fo (ttm) umdx—>/fo Yudx

/Qfo(um)bldx—>/gfo(u)udx.

Portanto, as quatro integrais se anulam quando m — oo, logo podemos usar um abuso de
notagdo para denotar toda a expressdo do lado direito da igualdade acima por simplesmente
on(1), isto é,

Um u
}O/Qm dX‘F/QfO(”m)“m dx_AO/QW dx—/ng(”m)udx"‘On(l):0n<1)7
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Assim,

[l = ul[}yy < 0a(1).

Como 0, (1) — 0 segue que ||u,, — ul|1 y — 0 e, portanto
1N
un — u, em W, (Q). (2.1.31)
Do Lema 1.1.1, sabemos que a func¢ao definida por
E(u) = / ao(|VulP) Vi 22V UV gy dix
Q
¢ continua, entdo, usamos este fato e (2.1.31) para obter a convergéncia
/ 0| Vit |P0) | Vit P2V, V. dx — / ao(|VulP0) [Vul o2 VuV ey dx,  (2.1.32)
Q Q

para todo ¢, € W;.. Fazendo m — o em (2.1.17), usamos (2.1.18), (2.1.30) e (2.1.32) para

concluir que

/ o([Vu|P0) |V P02V 0V dx-?to/ dx+/fo W dx,  (2.1.33)
Q

para todo @ € W;.

Resta agora mostrar que a igualdade (2.1.31) vale para toda ¢ € WOI’N(Q). Com efeito,
como [Wilxew € denso em WOI’N(Q), dado ¢ € WO1 N (Q), existe uma sequéncia (¢ ) € W tal
que

Or — ¢ quando k — oo.

k
Lembrando de ¢, é da forma Z Ojej, entdo, por linearidade, obtemos

j=1
/ ao(|Vu| )| VulPo2VuV ¢y, dx — / ao(|Vu|)P°|VulPo2VuV ¢ dx, (2.1.34)
Q Q
/dea/de, (2.1.35)
o (ute)h o (u+te)bo

/ fo(u)gy dx — / fo(u)¢ dx. (2.1.36)
Q Q



2.2 Prova do Teorema 2.0.1 34

Portanto, como ¢ € WO1 ’N(Q) ¢ arbitrario, segue de (2.1.33) - (2.1.36) que

0 0— _ ¢
Laatvumywarzviso a=ia [ gt [ pwoar i

para todo ¢ € WO1 ’N(Q), 0 que mostra que u € uma solugdo fraca nao negativa do problema
(2.1.1). [

Mediante disto, agora, estamos prontos para provar o resultado principal deste capitulo.

2.2 Prova do Teorema 2.0.1

. 1 .
Para cadan € IN, sejam € = — e u1 = u,, onde u, € uma solucao fraca ndo negativa do
n n
problema auxiliar

—diV(ao(|Vun|p0)|Vun|p0’2Vun) = Ll + fo(u,) em Q,
(”n + ﬁ)ﬁo
u, >0 em Q,
u, =0 sobre dQ,

obtida pelo Lema 2.1.1. Observe que de (f3), existe y > N tal que

Ao Ao _
0 foln) >
(tn+ ) (#a+1)
Como a fungdo t — ( ) B + 1%~ ¢ limitada inferiormente em ¢ > 0, segue que ela
t+1
atinge um minimo positivo z. Logo,
; Po po—2 — Ao
—div(ao(|Vuu|[P°)|Vuy|PO " Vu,) = ————— + fo(un)
1\Fo
(un+3)
> Lﬁ—ﬂunm_l >z>0 em Q.
(ty +1)™

Desde que o operador 7 : Wo1 NQ) — (WOI N(Q))’ dado por

(Tv,0) :/an(wv\m)yvv|ﬂ02vvv¢
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€ continuo, mondtono e coercivo (Ver Secao 1.1), podemos aplicar o Teorema de Minty-

Browder para obter que existe uma tnica solucdo v € WO1 ’N(Q) para o problema linear

—div(ap(|Vv|P)|[Vy[Po2Vy) =z em Q,
v>0 em Q,
v=0 sobre dQ,

assim, temos

—div(ao(|Vun]1’0)|Vun|p°_2Vu,,) > —diV(a0(|Vv|p°)|Vv|p0_2Vv) em Q, @2.1)
Up =V sobre 0Q.

Em virtude do Principio de Comparacdo Fraca (Lema 1.1.5) concluimos que
up(x) >v(x) >0 em Q, Vne N, (2.2.2)

o que implica que u,(x) - 0, para cada x € Q, pois u,(x) é sempre limitado inferiormente
por um nimero positivo.
Agora, de (2.1.16), temos

Uy — U, em WOI’N(Q) quando m — +oo,
logo, pelo Teorema B.4.1 e (2.1.13), segue que

\|ttn]|1 4 < liminf||uy|[1x <7 <1, paratodo n e IN.
m——+oo

Portanto, (u,) é uma sequéncia limitada em WO1 N (Q), pois r ndo depende de n. Assim,

como WOI’N(Q) ¢ um espaco de Banach reflexivo, a menos de subsequéncia, existe u €
1N
W, (Q) tal que

(1 — u em WOI’N(Q),
Uy — U em L9(Q), 6>1,
(2.2.3)
up(x) — u(x) q.t.p em Q,
[ un(x)| < g(x) € L9(Q) qtpem Q, 6>1.
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Decorre de (2.1.37) que

/a0(|Vun|p0))|Vun|p0_2VunV¢ dx:a@/%dX—*—/fO(un)(P dx, (2.2.4)
Q Q

o (un+ 1)
para todo ¢ € WO1 N (Q). Como fp é continua, por (2.2.3), temos
Sfolun(x))9 — fo(u(x))o, q.t.p em Q.
Argumentando como em (2.1.20), obtemos que a fun¢io g : R — R satisfaz
| (n(x)) 9] < glun(x)) € L1 ()

Entdo, pelo Teorema da Convergéncia Dominada de Lebesgue, concluimos que

| flunodr— [ folwodx. vo e Wy (). (2.2.5)
Além disso, usando mesmo raciocinio para obter (2.1.32), temos

/ a0 (|Vitn|P0)) | Vitn| P2V 10,V pelx — / dao(|Vu[P)) [V 2VuVdx, ¥ ¢ € W (Q)
Q Q
(2.2.6)

E ainda, por (2.2.3),
0 ¢

(i) =3P W

n

g.t.p em Q. (2.2.7)

Desde que z € L™(Q), pelo Lema 1.1.6 e (2.2.1), segue que v € L”(Q), e assim, pelo
Lema 1.1.7 obtemos que v € C%(Q), para algum o € (0,1). Agora, em virtude do Lema
1.1.8, obtemos

av

—— <0 em dQ, onde 7 é a normal unitdria exterior em dQ.

an
Assim, para cada x € Q, segue do Lema 1.2.1 que existe uma constante C > 0, tal que

X)
(%)

—~

1%

>C,

U

logo, por (2.2.2),
up(x) > v(x) > Cd(x) >0,

onde d(x) = dist(x,dQ). Portanto,
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LM/LM/LM
/Q(unmﬁ)ﬁo ~Ja w0 T Jq (Cdx)P

Dai, usamos a Desigualdade de Hardy-Sobolev (ver Teorema 1.2.2) para obter _¢ €
(Cd(x))Po
L'(Q) e C; > 0 tal que
¢
———— dx < G|9]1.v,
/Q (Cd(x)™
e, portanto
/%dngzH(])HLN. (2.2.8)
o (un(x)+3)
Logo, de (2.2.7) e (2.2.8) e do Teorema da Convergéncia Dominada de Lebesgue, temos
0 s idx, Vo e W, (Q). (2.2.9)
1\Bo uﬁo
o (un(x)+3) Q

Fazendo n — 4o em (2.2.4), usamos (2.2.5), (2.2.6) e (2.2.9) para concluir que
[ ao(Vupr)) ulm2uve dx =2 [ Lo dxt [ ol dx, o € WM (@),
Q Q uro Q

0 que prova que u € WOI’N(Q) € uma solucdo fraca positiva para problema (P1).



Capitulo 3

Segundo Resultado: caso sistema

Neste capitulo, investigaremos a existéncia de solucdo positiva para o sistema

—div(a (|VulP') |VulP1 =2 Vi) = ﬁ +fi(v) emQ,
—div(aa(|Vv|P2) V|22 Vy) = % +fr(u) emQ, (P2)
v
=0 sobre dQ,

onde Q C RY é um dominio limitado suave com N >3, 2<p; <N, 0<Bi<leA; >0,
comi=0,1,2.
As hipéteses que utilizamos sobre fungdes a; : Rt — R™ de classe C le irR=>R

continua com crescimento exponencial sdo as seguintes:

(a) existem constantes ki, kp > 0, k3, kg > 0 tais que

kit?i + kot™ < a;(tP)eP1 < katPi + kyt" , para todo 1 > 0;

(ay) afungdo

-2

t— a;(tP)eP ¢ crescente, paratodo ¢t > 0;

(f1) existe ap > 0 tal que as condigdes de crescimento exponencial no infinito sdo dadas

lim filt) S
" exp <a|t]T>

lim #}V
7% exp (Oc|t| T)

por:

=0, para a > oy

=oo,para 0 < o < 0p;
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(f2) acondigdo de crescimento na origem:

0+ tPi—1
(f3) existe 3; > N tal que
fi(t) > 1%, para todo t > 0.

Da mesma forma que no capitulo anterior, de (f1) e (f2), para todo 8 > 0 e para todo
a > o, existe Cs > 0 tal que

fi(0)t] < 817 + Cslr| exp (@t ) (3.0.1)

para todo ¢; > 0. Neste trabalho, usaremos ¢g; > N f;(t) = 0 para todo ¢ < 0. Para estabelecer
a existéncia de solu¢do ndo negativa para o problema (P2) usamos um problema auxiliar,
para o qual mostramos a existéncia de solu¢do via Método de Galerkin.

O principal resultado deste capitulo € o

Teorema 3.0.1. Suponha que, para i = 1,2, a; satisfaz (ay) - (az) e f; satisfaz (f1) - (f3).
Entdo, existe A* > 0 tal que o problema (P2) tem uma solucdo fraca positiva para cada
O0<Ai+A4 <A™

3.1 Problema auxiliar para o caso sistema

Para cada 0 < € < 1 fixado, consideramos o seguinte problema auxiliar

—div(ay (|Vu|P)|Vu|P'"2Vu) = L] jlg)ﬁl +£i(v) em Q,
—div(ay(|Vv[P2)|Vy|P22Vy) = (Vjﬁ +f2(u) em Q, (3.L.1)
u=v=0 sobre dQ,

onde as fungdes a; e f; satisfazem as hipéteses do Teorema 3.0.1. Assim como no Capitulo
2, mostraremos a existéncia de solugdo para este problema auxiliar utilizando o Método de
Galerkin e o Lema Fundamental descrito no Lema 1.3.1.

Antes de prosseguirmos com o enunciado e a prova do principal resultado desta se¢do,
vamos obter, assim como no Capitulo 2, uma estimativa a priori da solu¢do procurada. Desde

modo, para cada € > 0, podemos reescrever o problema (3.1.1) da seguinte forma
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(

(VP = ) e
—div(az(|Vv\p2)|Vv|p2’2VV) = (V+j_—28)ﬁz +fr(u) em Q, (3.1.2)
(u=v=0 sobre 0Q.

Primeiramente, suponha que u,v € solu¢do do problema acima, entio

/Qal(|Vu|pl)‘Vu|p12VMV¢ dx =2 /Q(u*—t;&‘)ﬁl dx‘i‘/gfl (v)¢ dx

/a2(|Vv|p2)|Vv]p2_2VvV(p dx:lz/deﬁL/fz(u)(p dx,
Q e)P: Q

o (vt+
para toda ¢, @ € Wol’N(Q).
Para mostrar que u,v > 0 em €, basta tomar ¢ =u~ e ¢ =v . Os passos para mostrar
a ndo negatividade das funcdes u,v sdo andlogos aos do Capitulo 2 com a diferenca na

ultima integral de cada igualdade acima, em que teremos f;(v)u~ e f>(u)v_ . Mas, como
fiZ0u >0ev >0, tem-se

/fl(v)u_dXZO e /fz(u)v_ dx > 0.
Q Q

Logo, se u e v sdo solucdes de (3.1.2) entdo ambas devem ser, necessariamente, nao
negativas. E como as solucdes de (3.1.2) sdo também solucdes do problema auxiliar (3.1.1),
podemos procurar solu¢des assumindo que u,v > 0 em Q.

O principal resultado desta se¢do € o seguinte:

Lema 3.1.1. Para cada 0 < € < 1, existe A* > 0 tal que o problema (3.1.1) tem um solucdo
fraca ndo negativa para cada 0 < Ay + A < A*, comi=1,2.

Demonstragdo. Seja B={ey,ey,...,en,...} uma base de Schauder de WOI’N(Q). Para cada
m € IN, defina

Wm = [el,ez,...,em]
sendo o espago de dimensao finita gerado por {ej, ez, ..., e, }. Para cada m € N, definimos a

funcdo J : R?" — R>" tal que

‘](n7€) = (Fl(n7§)7F2(n7§)ﬂ"'7Fm(n7§)7G1(na§)7G2(n7§)7"';Gm(nag))a
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onde (1,€) = (N, M2y, M, &1, &, .., Em) € RP™,

— e
F.8)= [ v 2vase v [ i | pge ax

paratodo j=1,2,...,m

— €j
Gj(’%é):/Qaz(|Vv|p2)|VV|p2 ZVvVej dX—AZ/Qm dx—/gfz(”)ej dx,

paratodo j=1,2,...,m
m
U= Z nje; Wi,
j=1
m
V= Z Eiej € Wiy
j=1

Vamos considerar em WO1 N Q) x Wo1 N (Q) a norma definida por

1 I = ael ¥y + V][ -

Observe que

)Y = Yy + WY = [ [Val¥dx+ [ 9as

m N N
Q| Jj=1 Q
Z&IVeJ

m N
:/Z iVe; a’x—l—/
Q|j=1 Qlj=

/f nJ|N|VeJ|Ndx+/ Z|§J|N|V‘/’1|Ndx

’N/ \Ve]]Ndx+Z\§]]N/ \Ve,|Vdx
1" lesl N+Z|§J|Nl|ejllm—Z}|n;|N+ji|§j|N
="+ g1 =1, &),

dx

m
VY Eej
=1

N

dx

_Ms ||M§

~
I
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onde

|n|:i|n,-| e €= Y |5,

=

tais que vale

Y=Y " e (&Y =Y 1&IY.
j=1

j=1
Logo, segue que

1w, )] =1(n,8)l; (3.1.3)

0 que mostra que os espacos (Wi, ||(+,-)||) e (R*™,]-]) sdo isométricos. Portanto,

<J(n7§)’(n>§)> = <(Fl(na€>7F2(n7§)7"'7Fm(na5>7G1(n7€)7G2(n75)a"'7Gm(n7€))7
(nlan%"':nm?517€27'“Jém»

=) Fi(n.§) m+ZG n,€)&;

= Z </ al(\Vu]”‘)]Vu\pl2VuVejnjdx—/11/ m] /f1 e]Tl]dx)
=~ \Ja (u+e)p
m B ei&;

+Z (/Qaz(|Vv|p2)|Vv|p2 ZVvVejéjdx—),z/ _}igjﬁz /f2 eﬁ;dx)

j=1
1
:/Q H([Vu|P1) [V P ZVuV<Z€ﬂ7]> dx — M/Qm;ejnjdx

J

—/fl(v)Zejnjdx +/ 2(|Vv]P2) [Vy|P22VyV <ie]§j> dx
Q j=1 j=1
1 m m
_),2/(2m;q@dx—/gfﬁ(u)};ejgjdx
:/ 1(|VulP) | Vu|P 2 VuVudx — /'L/ ;. /f1 Judx
Q

Q(“+ e)b

+/ 2(|Vv]P2)|Vv|P2 2 VyVvdx — Ay dx—/fz(u)vdx.
Q Q Q

Assim,

3 dx—/fl(v)udx
' Q

((n.6).(n.8)) = /Q ar([Vul™)|Vul? dx_*l/Q wre)
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—|—/Qa2(|VVIp2)|VV\p2 dx—lg/gzm dx—/gfz(u)vdx.
(3.1.4)

Precisamos conseguir estimativas sobre as integrais acima de tal forma que consigamos
(J(n,&),(n,&)) > 0 e possamos aplicar o Lema 1.3.1. O processo serd semelhante ao feito
no Capitulo 2, mas com algumas diferencgas técnicas.

Ao assumirmos u,v > 0 em Q, segue da imersdo de Sobolev WOLN(Q) — LY(Q), que
existe constantes Ce,, Cg, > 0, tais que

u u 1 1
/Q(u—ke)ﬁl dx_/gzsﬁldx_ ehi /Q|u|dx eh lully < Ce[|u

v v 1 1
/Q(v+e>ﬁz s [ gin = g [ blar= ggiblh < Calblh @19

Usando (3.0.1), obtemos

LN (3.1.5)

_ _ N
fuv)u < S ]+ Co 19 exp (1) 7).

Pela Desigualdade de Young para p; e P1 T obtemos

o1
P1

_ 1—1
o1 [ [v] |1 1Hu||§51ppl [P+ —[u] |1,

agora, usando a desigualdade de Young para ¢q; e el T obtemos

_ N q1—1 N
oyl exp (@l [47) < Ca, = v exp (ec v 1)
C
+ =2l exp (@] [T ).
q1
logo,

p1—1

o1 q1—1 N
Fulw)ue < 8P 7+ C T ][ exp (e v )

C
=2 uf 7 exp (e vl )
q1



3.1 Problema auxiliar para o caso sistema 44

Por fim, integrando a desigualdade acima e utilizando as imersdes de Sobolev, existem

constantes positivas C1,C,,C3 e Cy tais que

N
/Qfl (v)u dx §51C1||v| If’lp] + 51C2||u| [1771171 —}—C51C3/Q |v|q1 exp <061|V|N*1> dx

+C51C4/ juft exp (o] #7) dx (3.1.7)
Q

e, de forma andloga, obtemos Cs,Cg,C7 € Cg, tais que

N
[ 7oy dx <8.Colull + B:CellV I, +CoCr [l exp (oalul 1) i

+ngcg/ V|2 exp (a2|u|%) dx. (3.1.8)
Q

Agora, de (a; ), temos

/a1(|Vu|p1)|Vu|P1 Zkl/ Vul? dx+k2/ VulV dx
Q Q Q

= k[ [ul 7", +ka | [Y (3.1.9)

/az(\vvym)wv\m zkl/ V|2 dx+k2/ VY dx
Q Q Q

=ki[|V[I72,, +ka|[vI[Y y- (3.1.10)

2
De (3.1.5) — (3.1.10) podemos reescrever (3.1.4) como
(J(,8),(n,8)) > kallul[]", +kal[ul[Y y — 21 Cey [l 1w — B1C1| V][],
= &iCollullf, —Co,Cs [ /7 exp (envfFT) dx
—Ca,Cs [l exp (o v ) d— ka1, + ol v e = 2aCos 1.
— &Csllullf2, — &ML, —c52c7/Q juf?= exp ((onul ¥*7) dx
—C52C8/Q|v|qzexp (az\u|%> dx,

logo

(J(n,8),(n,8)) = ka(|[ul [y + V[V ) + (k1 = 81Co)[ul [T, + (ki — 8:C6) [IV][2,,
N
— M Cey||ul|1 v — X2Ce, | [v][1.v = S1C1[ V][], —Cale/QIV\‘“ exp (ale) dx
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N
~Cs,Co [ [uf exp (oa]y] 1) dx— G5,

N N
—C52C7/ |u|? exp (azlu\ﬁ> dx—C52Cg/ [v|%2 exp (O@u‘ﬁ) dx.
Q Q

Observe que, como 2 < py, p2 < N e das imersdes de Sobolev, existem constantes Cy,C1og > 0
tais que
p p
SICiIVIIT,, < 81Go[v][Tly

8:Cs[ul[72,, < SxCrollul 73y

Como ||(u,v)||"

=||u }KN+||V ]1V,N’ segue que

81Go[[v[[{y < 61Coll(u,v) [P e 8:C10|[ull{%y < 62C10]l(u, V)]

e, como k; > 0, tomando 6, &, > 0 suficientementes pequenos tais que (k; — 0;C3), (k; —
0,Cs) > 0 obtemos

018).01,)) = kol (I~ MCoy a1y — eIl v — BiCl ()17
_52C10||(M=V)||m—C51C3/Q|v|q1 exp <a1|v|%) dx

_N_ _N_
—C51C4/ ’M|‘]1 exp <061|V’N*1> dx+C52C7/ |u|‘12 exp <a2|u‘1v71> dx
Q Q

N

—cgzcg/ V|2 exp (a2|uyzv 1) dx. (.1.11)
Q

1 1
Usando a desigualdade de Holder com s, s > 1 tais que — + — =1, temos que
s s

N / % N s
C51C3/ [v|? exp <a1|v|ﬁ> dx < Cs,C3 (/ [v|?1* dx) </ exp (Ocls]v|ﬂ) dx>
Q Q Q
_C C q1 % d B
=Cs,G3||v|[5 Qexp o syl x|
1
N / s/ N
C51C4/ ‘u’ql exp ((xl\v\m) dx < C51C4 (/ ‘u|q1s dx) </ exp ((Xme) dx>
Q Q Q
1
= Cs,Cy]|ul|% (/ exp <a1s1v1%> dx) .,
Q

C52C7/ |u|‘12 exp (OC2|M|W> dx < C52C7 (/ |u|‘12S dx) (/ exp (Oczs|u|ﬁ> dx)
Q o o

@ =

o=
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1

q2 N s
= Co,Crllul (/Qexp <(x2s|u‘N71> dx)

N / Sl/ N K
C52C8/ ‘v‘qz exp (OCQMW) dx < C52C8 (/ ‘V‘QQS dx) (/ exp (Oczs]u\ﬁ> dx)
Q Q Q

q2 N s
= Cs,Gsl|vl[y (/QGXp <a2s|u|N—1> dx)

Como q1,q2 > N e s’ > 1, da imersdo de Sobolev WOl NQ) < LSI(Q) existem constantes
C11,C12,C13,C14 > 0, tais que

N N %

05103/ 7 exp (e v|*7) dx < Co,Cur Wy (/ exp (eus|y|*7) dx> ,
Q Q

) = csCullulfy ([ ex (crshiFr) ar)
Q

C52C7/ |u92 exp <062|u|1vi> dx < C52C13||u|| (/ exp <a2s|u|NL> dx) 5
Q Q

2‘2

Cs,Ca [ ut® exp (en ]

N N S
CaCs [ Ivexp (alul 1) dx < Co Cualfy (/ exp (otzs|uf¥°7) d")
Q ) o

1Y =

Como ||(u,v) de (3.1.11), segue que

((,8),(0.8)) = kel (e, )[I" = M1 Ce, [[ (1, v)[| = A2 Coy [ (1, )| = 81 Col |, v) [Ty = &2C 10l (,v) [y

—Cs,Ci1|(u,v) (/ exp <a1s|v NL

@ |—

N—— ~~—0
o =

_C51C12H(u y (/ exp <061s|v | 7= 1) dx
Q
1
N s
— C5,Cus |, )] </Qexp (enslufs®r) dx)
— C5,C1al| () </ exp (azs\u NL> dx)s (3.1.12)
Q



3.1 Problema auxiliar para o caso sistema

47

Suponha agora que ||(«,v)|| = r, para algum r > 0 escolhido posteriormente. Entdo, temos

(bl Y
exp (a1s|v|N 1 exp | ais||v||])y dx
Q Q ’ WY
W\
< [ exp| oys||(u,v ||N e dx

Fe)

exp

o]

Fe)

/exp <a2s|u|N1 /exp <Oc2sHu|| N
Q
N
L |u| N-1
exp | ons||(u,v)||¥- dx
Q [[ul |15
u| \
§/exp oczer l (—) dx.
o [foel 1,3

Para aplicar a Desigualdade de Trudinger-Moser, impomos que

N—1
L ay\ ¥ L oy \ NV
osrvi-1 <oy = r< | — e Osrvi-1 <oy=—=r<|— ,

oS

N—-T

onde oy = Nwy~; em que wy— é a medida (N — 1)-dimensional de uma (N — 1)-esfera.

Portanto, existe M1, M, > 0, tais que

N
(vl Y
sup eXp (XISI"N*I deMl
IMlin<1/Q [V[1,5

N

sup exp | Opsri-T dx < M.
ulhx<1JQ |u] 1.7

Logo, existe Cy5,C1¢ > 0, tais que podemos reescrever (3.1.12) como

(J(n,8),(,&)) > kar™N — A1 Ceyr — AyCe,r — 8 CorPt — 5,Cor?

1 1 1 1
— C51 C111\41‘v rdt — C51 Clef rdt — C52C13M2S riz — C52C14M2S r2
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= szN — A]Cglr — )Lngzr— 51C9}"p1 — 52C1()rp2

1 1
— Cgl (Cll +C12)Mf it — C52 (C13 + C14)M25 ri2
= kor™N — A1 Ce,r — 2aCe,r — 8§, Cor?' — 8,C 1!

1 1
— C51 C151\41‘v rdt — C52C16Mzs ri?,

Agora, € necessdrio escolher r, tal que

ker 1 ker
—2 —C51C15M1‘ rit > —4
) _ _
ko 1 ko
T — C52C16M2 ri2 > T
Em outras palavras,
T
ko 1 k k "
ZT > C31C15M1S rl — y1—N < 2 T <—r< 2 T
4Cs,CisM; 4Cs,CisM;
e
B
ko N 1 k k "
ZT > Cs,Ci6My r?? <= r2N < e —=
4C52C16M2§ 4(,1526’16M2E
Considerando
1 1
N—1 N-1 q1-N @-N
. oy \ " oy \ " ko k
r=min\« 1, s '\ s ; , T ,
! 2 4Cs,CisM; 4Cs,C16M;
temos
korV kN
<J(n,€), (n,g)) 2 T + T — /11C81r— AQC&}’— 51C9rp1 _ 62C10rl72‘

Dessa forma, veja que r > 0 € fixado e a ultima desigualdade € verdadeira para todo
01,0, > 0 tais que (k; — 8;C2), (k1 — 6,Cg) > 0. Como queremos que (J(1,&),(n,&)) >0,
precisamos ter

ker ker_] — 451C9I’p1_1

—— — M Cer—61CorP’' >0 A
1 1Cg r—01Cor™" > 1 < 4Cs,
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e
kor™ korN 1 — 48,CyorP2 7!
Z——AQCSZI’—SzClorpz >0¢>12 < 2 52 10 .

4 AC,,

Definindo A > 0e A; > 0 como

" ker_l —451C9r1’1_1 " ker_l —452C10r1’2_1
)V] = € A/Z - Y
8Cgl 8C€2

entdo, tomando A* = min{A;, 1} }, temos
Jn,&),(n,&))>0, Vn,EeR™ e |(n,E)|s=r, paratodo 0 <A+ <A™

Assim, estamos nas hipéteses do Lema 1.3.1 e, portanto, ao aplicd-lo obtemos que para
todo m € N, existe (x,y) € R>" com |(x,y)| < r<1tal que

‘](x7y) =0« (Fl(nv§)7F2<nvé)’"'7Fm(nv§)7Gl(na§>7G2(n7§)7"-aGm(na§>) =
@Fj(n,é) :0, Gj(n,é) :0, j: 1,2,...,m

Consequentemente, de (3.1.3) existe uy,, v, € W,, satisfazendo
|| (s vin) || = | (x,¥)|s < r <1, paratodo m € IN, (3.1.13)

tal que

—F(n, &) = /Q a1 (Vi) Vit P =2Vt Ve d— i / dx— / Fi(vm)e; dx

(um+8

logo

/a1(|Vum|p1)|Vum]p1ZVumVej dx:?tl/ dx+/f1(vm)ej dx (3.1.14)
Q Q

Q (Ltm —|—8)B1

para j=1,2,--- ,m. Multiplicando a equacao (3.1.14) por qualquer escalar ¢}, temos que

€jOj

/ a1 (|Vit )| Vit P2V, V(e 6,) dx = Ay / S
Q

dx+/ Vvm)eio; dx
o (up+e)Pr Qfl( m)eiO]

paracada j=1,2,--- ,m. Agora, somando as m equagdes termo a termo, obtemos

m
/Q a1 ([Vten]P) [Vt PV 25 1V (Ze,-o]) dx=1 / (fnﬁ / fi(vm Ze,o] dx

J=1
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m m

Note que Z ejo; € Wy, logo, escrevendo ¢ = Z ejoj, concluimos que
j=1 j=1
/ a1 (| Vit [PV | Vit [P > Vu, Vo dx = A / _ dx+/ filvm)o dx, (3.1.15)
Q o (Um+€)P1 Q

para todo ¢ € W,,. E, também vale

0=G,(n,&)= Vv, |72) [V, P22V, V d—l/Ld—/ )@ dx,
0.8)= [ @il 29 g ar-ta [ P | plunpas

0 que acarreta em

/ > (|Vv|P2) V| P22 Vv, Ve dx = )Lz/ _ % __ dx+/ Folum)@ dx  (3.1.16)
Q o (vm+e)P2 Q
para todo ¢ € W,,,.

Portanto, decorre de (3.1.15) e (3.1.16) que (uy,, vy,) é uma solug@o fraca aproximada do
problema auxiliar (3.1.1).

A partir daqui, o nosso objetivo é estender as solu¢des encontradas u,,,v,, € W,, para
solugdes u, v no espago WO1 NQ).

De (3.1.13), notamos que r ndo depende de m, logo, temos que (u,,) € (v;,) s3o sequéncias
limitadas em WO1 7N(Q). Sendo este um espaco de Banach reflexivo, pelo Teorema B.3.4 existe
uma subsequéncias de (u,,) e (vi;) que convergem fracamente para algum u,v € WOl NQ).
Da imersdo compacta de Sobolev W'V (Q) K (Q),0 > 1, existe subsequéncias de (uy,)
e (V) que convergem para algum u,v € L% (Q). Utilizando esses fatos e o Teorema B.3.3,

para alguma subsequéncia de (i) € (vy,), existe u,v € WO1 N (Q) tais que

(U — u em WO]’N(Q),
— em L9(Q),0 > 1,
4t (@2),0 2 (3.1.17)
U (x) — u(x) q.t.p em Q,
[um(x)] < g1(x) € L°(Q) qtpem Q6>1
e
(
Vip —V em Wol’N(Q)7
Vin =V em L%(Q),0 > 1,
(3.1.18)
Vi (x) = v(x) q.t.p em Q
v (x)| < g2(x) € L9(Q) qtpem Q,6>1.
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Fixe k € IN e considere m > k, entdo W, C W, e de (3.1.14) e (3.1.16), temos

14 p1—2 - —¢k
/Q 1(| Vi |P) | Vu [PV “Vu,,Voy dx = M/ TS dx

/f1 (Vi) @ dx (3.1.19)

para todo ¢, € Wy e

Q

(v + &)
/ T2 (um) @y dx, (3.1.20)
para todo @ € W;.
Como @, ¢ € Wy, observe que
Ok [
— - <=l (Q
(U +€)Pr| ~ P (@)
) o
Or 3 1
< €L (Q).
(v +€)P2| ~ b2 (@)
De (3.1.17) e (3.1.18), temos
Ok Pr
— .t Q
(n(0) T2 () +e)fr P
e
i, L. g.t.p em Q.

)+ 0P (v(x) + )P

Portanto, usamos agora o Teorema da Convergéncia Dominada de Lebesgue (Teorema B.3.1)

para obter
O / O
—d —d 3.1.21
/Q(um+e)ﬁl = o (u+e)h * ( )
3 Pk
—d —d 3.1.22
/Q(vm+e)ﬁz x_>/9(v+e)ﬁz * ( )

Agora, como f; € uma funcao continua, novamente de (3.1.17) e (3.1.18) obtemos

fivm(x) o — fi(v(x))dr q.t.p em Q (3.1.23)
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[
J2(um (%)@ = f2(u(x)) P q.t.p em Q. (3.1.24)
Usando (2.0.1), temos

1m0 (3)] < 81 (0) |7 +Coy [vn ()] exp (01 (0)| 7
c

21t ()it (06)| < ]t ()72 4 Cosy 1 () exp (02t ()] ¥ )
Dai,

()] < 8lvm @7~ +C, im0~ exp (o v ()| 77
€

3 eI < Bl ()72 -+ Coyum ()1~ exp (ol () 7 ).

Multiplicando as desigualdade acima por |¢x| e |@k|, respectivamente, obtemos

1 0m ) 9el < 81[vn ()79l + Co [y (0)11 " exp (1 v () ¥ ) 1

€
_ _ N
12t () x| < St (172 ]+ Ci it ()12 exp (62t ()| F°T ) -
Precisamos provar que as fungdes g1,£> : R — R definidas por
~ _ _ N
81 (v () 1= 81 () 71~ ||+ C, [ym ()~ exp (@ [y () |77 ) 9
c
~ _ _ N
&2(tn(x)) 1= St (017" |4l + C, 1t (1)1 exp (2t (1) 7T ) [
satisfazem
1 (0m(x)) 0] < &1 (vm(x)) € L'(Q) (3.1.25)
c
| F2(1tm (%)) e] < &2 (um(x)) € L'(Q). (3.1.26)

Para usarmos o Teorema da Convergéncia Dominada de Lebesgue Generalizado € sufici-
ente mostrar que gj (vin(x)) e g3 (um(x)) sdo convergentes em L!(Q). Provaremos apenas a
primeira desigualdade, pois a segunda segue o mesmo raciocinio. De fato, como 2 < p; <N,

invocamos (3.1.18) para obter

V()P el = ()P 9], qtp em ©Q (3.1.27)
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()| e < g2 ()71 || € L(Q). (3.1.28)
Segue de (3.1.27), (3.1.28) e do Teorema da Convergéncia Dominada de Lebesgue que
/Ivm\”‘1|¢k|dx%/ [P | | dx (3.1.29)
Q Q
Além disso, novamente de (3.1.18) temos

N N

[V ()| exp (a1|vm(x)\w 1) s ()1 Lexp <a1|v(x)|Nfl) gtp em Q. (3.1.30)

1 1
Agora, considerando 5,8 > 1 tais que —+ - = 1, usamos (3.1.18) e o fato de g; > N
s s
para obter
W 17— ]! em L7(Q). (3.131)

Além disso, de (3.1.13) temos

U N-T
/exp <(X1|vm(x)|%> dx:/exp (alsvaHf/’Nl ( |Vm(x)‘ > >dx
Q Q Vil 1,3
N
N—T
S/CXP 0ty SPR-T ( ]vm(x)|) dx
Q vaHl,N
N
< sup /exp alsr% (M) dx
[ERCTESIpS [Vl 1.3

e aplicando a Desigualdade de Trudinger-Moser, existe uma constante M; > 0 tal que

N
N-1
/exp (al\vm(x)\%> dx < /exp ocN< () > dx<M,.  (3.132)
Q Q ||Vm|’l7N

Logo, de (3.1.31), (3.1.32) e da Desigualdade de Holder, obtemos

1 1
/ vl exp (allvmlﬁ) dx < (/ PRICRUL dx>d (/ exp <a1s|vm|%> dx>‘
Q Q Q

1 P
< \vm\Zi,_(;z)Mf - M. (3.1.33)

Usamos (3.1.30), (3.1.33) e Teorema de Brezis-Lieb (ver Teorema B.3.2) para concluir que

V|7 exp <oc1 |Vm|%> — 9 exp ((Xl M%)_ (3.1.34)
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Segue de (3.1.34) que

q1—1 e q1—1 s
Q]vm| exp | ay|vm| | 0| dx — QM exp | ay|v| || dox. (3.1.35)

Portanto, de (3.1.29) e (3.1.35) provamos que

N

[ 800 dx =81 [ @176 daCo, [ v exp (o) ¥°7) 64

isto demonstra a identidade (3.1.25).
Entdo, usamos (3.1.23), (3.1.24), (3.1.25), (3.1.26) e o Teorema da Convergéncia Domi-

nada de Lebesgue para concluir que

/Q J1(Vm) §pc dx — /Q f1(v) o dx (3.1.36)
e
/Q J2(ttm) Qr dx — /Q J2(u) oy dx. (3.1.37)
O nosso proximo passo € demonstrar que
/ a1 (|Vity|P)) | Vit [PV >V, V oy dx — / ar(|VulP)|VulP' >VuVe, dx  (3.1.38)
Q Q
e

/ ar (| Vv ) [V P22 Vv,V dx—>/ a> (|Vv[P2)|Vv|P2 2V ¢y dx. (3.1.39)
Q Q
Para tanto, usamos a Proposicao 1.1.1 para obtermos as desigualdades

C|Vity, — V" < (a1 (|Vin|P)) |Vity|P' "2 Vity, — ay (|VulP)|VulP' ~>Vu, Vi, — Vi),

C|Vv — VY < (aa(|Vvm|P2) | Vv P22V vy — aa (|VV[P2)| V| P22V, Vv, — V),
fy \ V2
onde C = <Z) > 0. Temos
(a1 (|Vitm|P) | Vit |P' Vit — ay (|Vu|P)) | VulP' 2Vu, Vi, — V) =

= a1(|Vum|p1)|Vum|p1_2<Vum,Vum —Vu) —a1(|Vu|p1)|Vu|p‘_2<Vu,Vum —Vu)
= a1(|Vum|p1)]Vum|p1_2(|Vum|2 — Vu,,Vu) —a1(|Vu|p1)|Vu|p1_2(VuVum — |Vu|2)
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= a1(|Vitg|P") [Vt |P' — a1 (| Vit |PV) Vit |P' ">Vt Vi + ay (|Vu|P) |Vl P!
—ay (|VulP")|VulP' >V, Vu

e de maneira semelhante

(az(|Vv|P?) [Vvm|P2 2V, — az (|VV]P?)| V| P22V, Vv, — V) =
= a(|VV|P?) |V P22 Vv, Vo — V) — an (|V[P2)|Vy[P2 72 (Vy, Vv, — V)
= a3 (|Vvm|P?) |V |P2 72 (|Vvm]? = Vv V) — aa (|Vv[P2)| V| P22 (VvV, — [Vv]?)
= ay(|Vv|7?) [Vvm|P? — a2 (|VVu]P2) |V | P22V, Vv + ay (|Vv]P?) | V| P2
—ay(|Vv[P2)|Vv|P2 2V, V.

Logo,

C| Vit — Vu|¥ < ay(|Vitm|P) | Vit |P' — ay (| Vit |P) | Vit P2V, Vu+ ay (|[Vu|PH) Vil P!
— a1 (|VulP) |Vu|P' 2V, Vu

CIVv— VY < ar(|Vvu]P?) [Vvm|P? — aa (Vv P?) Vv P22V, Vv 4 ao (| Vv|P2) | Vv| P2
— ar (|Vv|P2)|Vv|P2 2V, V.

Integrando, temos
OSC/|Vum—Vu|Ndx:CHum—uH11V’N
Q
S/al(|Vum|f”1)|Vum|p1 dx—/a1(|Vum|p1)|Vum|p1_2VumVudx—i—on(l)
Q Q

onde
on(l):/al(Wu|p‘)|Vu\"1 a’x—/al(\Vu|p‘)]Vu|p‘_2VumVudx
Q Q

OSC/ |va—Vv|Ndx:C||vm—v||]lv,N
Q

§/a2(|va|p2)]va\p2 a’x—/az(\va]pz)]va\pz_ZvaVva’x+0n(1),
Q Q
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onde
on(l):/a2(|Vv|p2)|Vv|P2 dx—/ a(|VV[P2) V|22V, Vv dx.
Q Q

Denotamos as duas expressdes por 0, (1), pois segue da convergéncia fraca que ambas tendem
a zero.

Usando que (¢, Vi) € solug@o do problema (3.1.1), segue

Cllttm — ul[}

Uy, u
:Al/gzmdx—l—/gfl(vm)umdx—ll/gmdx—/Qfl(vm)udx+0n(l)

€

</a1(|Vum|p‘)|Vum|p1_2VumVum dx—/a1(]Vum|p1)|Vum|p1_2VumVudx+0n(1)
Q Q

Cllvan = vI1Tn

Vin v
:)Lz/g)m dx—f—/gfz(um)vm dx—lzfgm dx—/gfz(um)vdx—f—on(l).

Logo,

</a2(|va]p2)|va\p2Zvava dx—/az(\va]p2)|va|p2ZvaVvdx—l—on(l)
Q Q

[l —ul [y < 0n(1) e [[vm—VI[{y < 0n(1).

Como 0,(1) — 0 segue que

U — u, em Wy (Q) (3.1.40)

e
1N
vm — v, em W, (Q). (3.1.41)
Agora, do Lema 1.1.1, sabemos que as func¢des definidas por
Ei(u) = / a1 (|VulP) Va2V uV ey, dx

Q

e

E/(v) = /Q ) (|VV[P2) Vo2 2V 0V g, dx

sao continuas. Entdo, de (3.1.40) e (3.1.41), obtemos as convergéncias (3.1.38) e (3.1.39).
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Fazendo m — o em (3.1.19) e (3.1.20), usamos (3.1.21), (3.1.22), (3.1.36), (3.1.37),
(3.1.38) e (3.1.39) para concluir que

Ox

/al(\Vu]”‘)]VquzVuV(])k dx:ll/ 3 dx+/f1(v)¢k dx, (3.1.42)
Q : Q

Q (M+8)

/az(\Vv|p2)|Vv]p22VvV(pk dx:lz/de—i—/fz(u)(pk dx, (3.1.43)
Q o (v+e)P Q

para todo ¢ € W;.
Como [W]ren € denso em WO1 N (), temos que

Or — ¢ quando k — oo

€
Oy — @ quando k — oo.
Lembrando que ¢ e ¢ sdo da forma Zk: aje;, entdo, por linearidade, temos
=1
/Q (|VulP)|Vu|P "2V uV ¢ dx—>/ (|Vu|P)|Vu|P —2VuVe dx (3.1.44)
/Q (|Vv[P2)|Vv|P22ViV ¢ dx—>/ (|Vv[P2)|Vv|P22VV @ dx (3.1.45)
/—¢ dx—>/—dx (3.1.46)
o (u+e)h o (u+eh
/—vf;& dx ﬁ/—w"’g)ﬁ dx (3.1.47)
/ﬁ ¢kdx—>/fl )9 dx (3.1.48)
€
/sz(u)q)k dx—>/sz(u)<p dx. (3.1.49)

Portanto, como ¢, ¢ € Wo1 ’N(Q) sdo arbitrarias, segue de (3.1.42) - (3.1.49) que

/a1(|Vu|p1)]Vu|p1_2VuV¢ dleI/de%—/fl(v)q) dx, (3.1.50)
Q +e)b Q

o (u
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V1|22 V[P 2ViY d:A/Ld +/ dx, (3151
Lt owga—is [ Lo av [ pupan  Gasy

para todo ¢, ¢ € WO1 7N(Q), o que demonstra que (u,v) é uma solugao fraca do problema
(3.1.1). [

3.2 Prova do Teorema 3.0.1

Para cadan € N, sejam € = 1/n,u; , = uy € vy ), = vy, onde (up,v,) € uma solugdo fraca
nao negativa do problema auxiliar

( ] _ A
~div(ar(Vun|P)| Vit 2 Vity) = — -+ fiv) em Q,
(”nz‘ 2)
—div(ax(|Vval )|Vl 2 V) = —Fe ot foun)  em £,
(Vn + ;)
(n =V, =0 sobre 0Q,
obtida do Lema 3.1.1. Observe que vale
A
—di Vitn|P1)| Vit [P Vi) > —— em Q
v(ar(|[Vun|"")[Vi| Un) > (ttn + Vo + DB Ji(va)
e, de (f3), existe y; > N tal que
—div(ay (|Via|P")|Vitn|P' 2 Vu,) > #—Hv =1 em Q
n n n) — (un—|—vn—|—1)ﬁ1 n .
~ A1 [ . .
Como a fungio r — w +1t"~" ¢ limitada inferiormente em ¢ > 0, segue que ela
Up

atinge minimo positivo z;. Ento,
—div(ar (|Vin|P)|Viun|P 2Vu,) > 21 >0 em Q.
Desde que o operador T : WO] NQ) — (WO1 N (Q))’ dado por
(Tv,9) = /Q a1 (Ve ")) [Veon [P 2V o, Vdx

€ continuo, mondtono e coercivo (Ver Secao 1.1), podemos aplicar o Teorema de Minty-

Browder para obter que existe uma tnica solu¢do w; € WO1 ’N(Q) para o problema linear
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—div(a;(|[Vay |P) |V |P' >Vo) =z em Q,
w; >0 em Q, (3.2.1)
=0 sobre dQ.

Assim, temos

—div(ay (|Vite|P")|[Vitn|P' > Vu,) > —div(a; (Vo [P) Vo [P >Ve,) em Q,

Uy, = O sobre 0Q,
Em virtude do Principio de Comparagdo Fraca dado pelo Lema 1.1.5, podemos concluir
up(x) > w(x) >0 em Q, Vne N. (3.2.2)
Analogamente, provamos que
up(x) > wr(x) >0 em Q, Vne N, (3.2.3)

onde , satisfaz

—div(ay(|[Van|P?)|[Van|P? 2Van) =z em Q,
>0 em Q, (3.2.4)
=0 sobre 0Q,

A

= 4% Portanto, temos que u, — 0
(va+t+1)B2 AHe tn

e 7o € um minimo positivo da fungdo ¢ —

e v, - 0, para cada x € Q.
Agora, de (3.1.17) e (3.1.18), obtemos

Up — Uy em WOI’N(Q) quando m — +oo

Vim — v, em WO]’N(Q) quando m — +oo,

Logo, pelo Teorema B.4.1 e (3.1.13) obtemos

i 1.v < Timinf [l |1 < Timin| ()] | < 7 < 1, para todo n € N
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[|vall1n < %ILl#Il:vamHlN < gﬂﬂf“(”m,vm)“ <r<1, paratodo ne€ IN.

Portanto, como r nio depende de n, (u,) e (v,) s3o sequéncias limitadas em WO1 NQ).
Assim, como WO1 ’N(Q) ¢ um espaco de Banach reflexivo, a menos de subsequéncia, existe
u,v e WOI’N(Q) tais que

(1 — u em WOI’N(Q),
Up — U, em L9(Q),0 > 1,
(3.2.5)
up(x) — u(x) q.t.p em Q,
un(x)| < g1(x) € L(Q) qtpem Q,0>1
e
.
Y, — v em WOI’N(Q),
Vp —V em L9(Q),0 > 1,
(3.2.6)
vn(x) = v(x) q.tp em Q
va(x)] < g2(x) € L%(Q) qtp em Q.0 > 1.

Decorre de (3.1.50) e (3.1.51) que

/al(\Vun\pl)|Vun\p‘_2Vuan> dx:ll/de—k/fl(vn)q) dx (3.2.7)
Q Q

Q (un+%)ﬁl

/a2(|an|p2)|an|P2_2VVnV§D dx:}Lz/lex—k/fz(un)(p dx, (3.2.8)
Q o (vt 1)k Q

n

para todo ¢, ¢ € WOl ’N(Q). Além disso, como f; sdo func¢des continuas, de (3.2.5) e (3.2.6),
obtemos

(X))o — fiv(x))o qtp em Q

H(up(x)o — fr(u(x))e q.tp em Q.

Argumentando como em (3.1.25) e (3.1.26), obtemos uma fungo g; : R — R satisfazendo

1 f1(va(x)) 0] < &1(va(x))
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/2 (1 () @] < 82(utn (x))

Entdo, usamos o Teorema da Convergéncia Dominada de Lebesgue para concluir que

[ Aieneds— [ fit)e s voewy™ (@) (3.2.9)
Q Q

/fz(un)(pdx—>/f2(u)godx, Vo e W, N(Q). (3.2.10)
Q Q

E ainda, aplicando o mesmo raciocinio para obter (3.1.38) e (3.1.39), temos

/al(Wun\pl)\Vun\pl_ZVunV(]) dx—>/al(yvu]m)\vu\m—zvuw dx, (3.2.11)
Q Q

/ a>(|Vval ) [V P22V, Ve dix — / w (V)| VoP 2V dy,  (3.2.12)
Q Q

paratodo ¢, ¢ € WOI’N(Q).
Pelas identidades (3.2.5) e (3.2.6), obtemos

— q.t.p em (3.2.13)

9 9
(e + 1" 0

n

g.t.p em Q. (3.2.14)

Desde que m;, @, € L™(Q), pelo Lema 1.1.6 e (3.2.1), (3.2.4), segue que @, , € L7(Q),
e assim, pelo Lema 1.1.7 obtemos que @y, ; € C1%(Q), para algum o € (0,1). Agora, em
virtude do Lema 1.1.8, obtemos

d01 20,
an’ an

<0 sobre dQ, onde 1 é a normal unitédria exterior em dQ.

Assim, para cada x € Q, segue do Lema 1.2.1 que existe uma constante C > 0 tal que

>C,
logo, por (2.2.2),

up(x) > @1 (x) >Cd(x) >0 e vy(x) > wr(x)>Cd(x) >0,
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onde d(x) = dist(x,dQ) e C é uma constante positiva que ndo depende de x. Portanto,

/gﬁd“/gun&ﬁl ix< | ezt

)+
e
¢ / ¢ / d
S dx < —— d=x.
/Q (va(x) + %)ﬁz o ()% o (A0
Com isso, usamos a Desigualdade de Hardy-Sobolev para obter (CdZC)) Bi |’ (Cd(q;))ﬁz <

L' (Q) e C17,Ci3 > 0 tais que

¢
———5 dx < Cy7||9]]1,
/Q(un(x)_l_%)ﬁl X 17/10]]1.5

(]
/LﬁzdeQSH‘PHLN
o (va(x)+3)

Portanto, de (3.2.13), (3.2.14), (3.2.15), (3.2.16) e do Teorema da Convergéncia Dominada

(3.2.15)

(3.2.16)

de Lebesgue, obtemos

/ﬁdx—)/g% dx, Y € W,V (Q) (3.2.17)
Q (un+,

e
¢ o I.N
————dx— | —dx, VoW, (Q). (3.2.18)
/Q (Vn 1 %)ﬁz o vk
Fazendo n — +o em (3.2.7) e (3.2.8), usamos (3.2.9), (3.2.10), (3.2.11), (3.2.12), (3.2.17)

e (3.2.18), para concluir que

[ vivg de=i [ vt [ 7o ax vo i@
Q o uP1 o

/ ar(|VV|P2) V|22V dx = Ay / @ s / Hw)e dx, Yo e Wy™N(Q),
Q Qvﬁz Q

o que prova que (u,v) € WV (Q) x WV (Q) é um solugdo fraca positiva do problema (P2).



Apéndice A
Teoria do Grau de Brouwer

A teoria do grau topolégico € uma ferramenta muito utilizada no estudo de existéncia de
solugdes para equacdes ndo lineares. Dedicamos este apéndice para estudarmos a versdao do
grau para dimensao finita, conhecido como Grau de Brouwer. Para mais detalhes o leitor
pode consultar [14].

A.1 Conceito e propriedades basicas
Seja f € CH(Q,RY). Relembre que f'(x) € L(RY,RY) e, portanto, f'(x) pode ser
representado por uma matriz N X N. Seja S o conjunto dos pontos criticos de f.

Defini¢io A.1.1. Seja f: Q — RY uma funcdo em C'(Q,RY) e seja b ¢ f(S) U f(9Q).

Entdo, definimos o grau topoldgico de Brouwer de f em relagdo a € no ponto b como

0, se f(b) =2,

Z sgn(J¢(x)), caso contrario,
xef~1(b)

d(f,Q,b) = (A.1.1)

onde a fungdo sgn denota a funcao sinal, definida por

1, se t>0,
sgn(r) = 1 t<0
—1, S¢C )

e Jr(x)) é o determinante da matriz jacobiana de f.

Vamos verificar que a definicdo acima estd bem definida. Observe que, como b ¢
F(S)Uf(9Q), entdo f'(x) estd bem definida para x € £~ (b) e J¢(x) # 0. Logo, f'(x) é um
isomorfismo e, pelo Teorema da Fungdo Inversa, f € invertivel em uma vizinhancga de x.
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Afirmagéo 1. f~1(b) é finito.

Com efeito, suponha que f~!(b) seja infinito e considere uma sequéncia (x,) em f~!(b).
Como Q é compacto e f~!(b) C Q segue que f~!(b) é limitado e, do Teorema de Bolzano-
Weierstrass, (x,) admite subsequéncia (x,,) convergente para algum x € Q. Como f é
continua, temos f(x, ) — f(x), mas f(x,,) = b, logo, f(x) = b e, portanto, x € £ (b).
Agora, usando o fato que f € invertivel em uma vizinhanga de x, temos que f € injetiva
nessa vizinhanca, por outro lado, pelo que vimos acima, em qualquer vizinhanga de x existe
infinitos x,, tais que f(x,,) = b, o que contradiz a injetividade de f. Concluimos entio que
£ 1(b) é finito e (A.1.1) faz sentido.

OJ

Veja que definimos a fungio f em C! (Q, RY ), no entanto, é possivel estender a defini¢do
de grau para fungdes f meramente continuas em Q. O leitor interessado pode encontrar mais
informacdes em [14].

O teorema a seguir elenca algumas propriedades basicas do grau de Brouwer.
Teorema A.1.1. Valem as seguinte propriedades:

(i) (Continuidade com relacio a funciio) Seja f € C(Q;RY) e seja b ¢ f(IQ). Existe
uma vizinhanca U de C(Q;RY) tal que para toda g € U,

d(g,Q,b)=d(f,Q,b);
(ii) (Invariancia por Homotopia) Seja H € C(Q x [0,1] : RN) tal que b ¢ H(3Q x [0, 1]).
Entdo, d(H(-,1),Q,b) é independente de t;
(iii) O grau é constante com relacdo a b em cada componente conexa de RN\ f(9Q);

(iv) (Aditividade) Sejam Q NQy =D e b ¢ f(IQ)U f(9Q,), onde f € C(Q;RY), Q =
Q1 Uy, Entdo,
d(f,Q,b) - d(f,Ql,b) +d(f7927b)

Demonstracdo. Ver em [14, Teorema 2.2.1]. OJ

Abaixo, exibimos outras propriedades do grau e suas consequéncias, cujas demonstracoes

podem ser encontradas em [14].

Proposicio A.1.1. Se f € C(Q;RY) e b ¢ f(Q), entdo d(f,Q,b) = 0. Equivalentemente,
se d(f,Q,b) # 0, entdo existe x € Q tal que f(x) = b.

Demonstragdo. Ver em [14, Proposicao 2.2.1]. 0
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Corolario A.1.1.1. Se d(f,Q,b) # 0, entdo f(Q) é uma vizinhanga de b.
Demonstragdo. Ver em [14, Corolario 2.2.1]. O]

Proposicao A.1.2. Seja K C Q um conjunto fechado e b ¢ f(9Q) N f(K). Entdo
d(f,Q,b) =d(f,Q\K,D).

Demonstragcdo. Ver em [14, Proposicao 2.2.2]. [

Proposicio A.1.3. Sejam f,g € C(Q;RY) tais que f = g em dQ. Seja b ¢ f(OQ), entdo
d(f,Q,b) = d(g,Q,b).

Demonstragdo. Ver em [14, Proposicao 2.2.3]. U

Corolario A.1.1.2. Sejam f,g € C(Q;RN). Assuma que existe H € C(dQ x [0,1],RY) tal
que H nunca assuma o valor b e tal que H(-,0) = f|sq e H(-,1) = g|yq. Entdo

d(f,Q,b)=d(g,Q,b).

Demonstragdo. Ver em [14, Corolério 2.2.2]. ]

A.2 Teorema do Ponto Fixo de Brouwer

Nesta se¢do, introduzimos o Teorema do Ponto Fixo de Brouwer que é de fundamental
relevancia na aplicagdo do Método de Galerkin, mais precisamente, nos fornece como

consequéncia o Lema 1.3.1 utilizado fortemente nos capitulos 2 e 3.

Teorema A.2.1 (Teorema do Ponto Fixo de Brouwer). Seja B,(x) C RY a bola de centro em

xeraiore f: B (x) — B,(x) uma aplicagdo continua. Entdo, f tem um ponto fixo.

Demonstragcdo. Vamos dividir a demonstracido em dois casos:

Caso 1: A bola é centrada na origem. Neste caso, temos f : B,(0) — B,(0). Defina a
aplicacio ¢ : B,(0) — R" dada por ¢(y) =y — f(y). Como ¢ ¢ a diferenca de duas funcdes
continuas, ¢ é continua. Suponha que

@(y) #0, paratodoy € dB,(0),
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pois caso contrdrio, terfamos f(y) =y e o caso 1 estaria demonstrado. Agora, considere a

aplicacdo

H:B.(0)x[0,1] - R
1) = H(y,t) =y —tf(y).

Observe que H € uma homotopia entre a aplicacdes f e a identidade Id. Vamos mostrar que
H (yo,19) # 0, para todo yo € dB,(0) e 1y € [0, 1], em outras palavras, 0 ¢ H(dB,(0) x [0, 1]).
De fato, se t = 1, obtemos

H(y,1)=y—f(y) = (y) #0, paratodoy € dB(0),

dai
0¢ H(dB-(0)x1).

Por outro lado, se r € [0,1) e y € dB,(0), observe que
ef W = el f W <tr <r=1lyll,
consequentemente, ¢ f(y) # y, de onde segue que
H(y,t) #0, paratodoy € dB,(0) et €0,1).

Portanto,

0¢ H(dB,(0) x [0,1]).

Pelo item (ii) do Teorema A.1.1, o grau € invariante por homotopia, logo,

d(H(-,1),B,(0),0) = cte, paratodor € [0,1],

e, portanto,
d(H( ’0)7Br(0>70) = d(H( 71)’[5”(0)’0)
Segue que
d(f,B:(0),0) =d(1d,5,(0),0) = 1,
entao
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Da Proposigdo A.1.1, existe yo € 5,(0) tal que @(yo). Dessa forma,

yo—f(30),

e, portanto, f tem um ponto fixo yg € Er(O).

Caso 2: Assumimos que o centro da bola é um ponto qualquer x € RY. Considere a
aplicacdo @ : B,(0) — B,(0) dada por ¢(y) = f(x+y) —x. Veja que a aplicagio é continua
e ¢(B,(0)) C B(0), pois

oWl = Ilf(x+y) =l <r,

ou seja, ¢(y) € B,(0). Logo, do Caso 1, ¢ tem um ponto fixo z € B,(0), isto é, ¢(z) =z, 0
que nos fornece f(x+z) = x+z. Denotando w = x+ z, temos f(w) = w e, portanto, f tem

um ponto fixo em B, (x). O

O Teorema do Ponto Fixo de Brouwer € vadlido para dominios mais gerais. O resultado
abaixo fornece um exemplo claro disto e, sua demonstracao pode ser encontrada em [14,
Corolario 2.3.1].

Corolario A.2.1.1. Sejam K C RN um conjunto compacto e convexo e f : K — K uma

aplicacdo continua. Entdo, existe x € K tal que f(x) = x.

Demonstragdo. Desde que K é um compacto do R, existe uma bola de centro em 0 e raio
R tal que K C Bg(0). Como K € fechado e convexo, seja P : RY — K a aplicacio definida

da seguinte maneira: dado x € RV, P, (x) € K é o tinico ponto tal que

— Pe(x)|| = min|Jx—y]|.
[l = Pe(x)]| = minlx—y|

Defina f : Bg(0) — K C Bg(0) por f(x) = f(Pi(x)). Observe que f é continua, pois é uma
composicio de fungdes continuas. Entdo, pelo Teorema do Ponto Fixo de Brouwer, f possui
um ponto fixo x9p. Como a imagem desta aplicacdo estd contida em K, segue da defini¢do de
P, que

Pi(x0) = xp.

Assim, xo = f(Pr(x0)) = f(x0), 0 que prova o resultado. O



Apéndice B

Medida, EDPs e Analise Funcional

Dedicamos este apéndice para trazer a memdoria conceitos relevantes da teoria de Medida,
Equacdes Diferenciais Parciais e de Anélise Funcional que usamos direta ou indiretamente
em nosso estudo.

B.1 Espaco de Lebesgue

Sejam (X,X, i) um espago de medida e 1 < p < . O conjunto de todas as fungdes
mensurdveis de X em K tais que

= [ 1ran) " <=

serd denotado por L7 (X, X, u). Vale destacar que || - ||, € uma seminorma em LP (X, X, 1),
pois pode ocorrer || f||, = 0 para f ndo identicamente nula.

I 1

Teorema B.1.1 (Desigualdade de Holder). Sejam p,q > 1 tais que —+— =1¢ (X, L, 1) um
P 4q

espago de medida. Se f € LP(X,Z, 1) e g € LI(X, X, ), entdo fg € LY(X,Z, 1) e

1/l <1171l -[1&llg,

ou de modo equivalente,

1 1

| fedu< (/X|f\”du>p (/X|g|‘1du)q.
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Para corrigir o que falta para || f||,, ser uma norma, considere a relagdo de equivaléncia
na qual duas funcgdes f, g : X —> K s@o equivalentes se f = g U-q.t.p., isto &, se existe um
conjunto A € X tal que u(A) =0 e f(x) = g(x) para todo x ¢ A. Denotando a classe de
equivaléncia de uma fungdo f por [f], definimos

LP(X, 2, p) = A{[fl:f € LP(X,Z, m)},

que é um espaco vetorial com as operacdes

1+1el=1f+8 e clfl=lef].

Ainda mais, definimos ||[f]||, := || f||, que é uma norma em L” (X, X, u).

B.2 Espaco de Sobolev

Definiciio B.2.1. Dado um aberto Q C RY, uma fungio u € L}, .(Q) e um multi-indice a,

dizemos que v € L},.(Q) é uma a-ésima derivada fraca de u se

/ uD®*pdx = (—1)0‘/ vedx, paratodo ¢ € Cy(Q).
Q Q

Essencialmente, a defini¢do acima diz que uma derivada fraca é uma funcao localmente

integravel que nos permite fazer integracao por partes.

Lema B.2.1. A a-ésima derivada fraca de um fungdo u € L}OC(Q), quando existe, é linica a

menos de conjuntos de medida nula.
Demonstragdo. Ver [8, Lema 4.3]. L]

Defini¢io B.2.2. Seja Q@ ¢ RY um aberto, 1 < p < oo e k € NN {0}. Definimos o Espaco de
Sobolev WP (Q) como sendo

WhP(Q) = {u € LP(Q) : D%u € L”(Q) para todo multi-indice o tal que|at| < k},

com as derivadas D%u acima tomadas no sentido fraca.
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O Espago Wk? (Q) se torna um espago normado definindo a norma

|af<k

Y, ID%ul|=(q), se p = oo.
lo|<k

1
p
( ) /|Dau|1’dx> , sel<p<eo,
||l lwip () =

Teorema B.2.1. (W5P(Q),||- |lwkr(q)) € um espago de Banach.

Demonstragdo. Ver [8, Teorema 4.10]. O
Teorema B.2.2. O espaco W*P(Q) é reflexivo se 1 < p < oo e separdvel se 1 < p < oo,
Demonstragdo. Ver [8, Teorema 4.11]. O

Definicao B.2.3. Sejam X e Y dois espagos vetoriais normados com X C Y. Dizemos que X

estd imerso continuamente em Y se existe C > 0 tal que
l|x|ly <Cllx||x, VxeX.

Nesse caso, escrevemos X — Y.

Teorema B.2.3 (Imersdo de WO1 P(Q), 1 < p <N). Seja @ C RN um aberto limitado e
1 < p < N. Entdo vale a imersdo

WoP(Q) = LI(Q), VYqell,p,

onde p* = é conhecido como expoente critico de Sobolev.

Demonstragdo. Ver [8, Teorema 4.21]. O

Teorema B.2.4 (Imersio de W!'7(Q), p = N). Seja Q@ C RY um aberto limitado de classe

C'. Entdo vale a imersdo
wiNQ) = L1(Q), Vg>1.

Demonstragdo. Ver [8, Teorema 4.28]. O

Definicao B.2.4. Sejam X e Y dois espacos vetoriais normados com X — Y. Dizemos que X
estd imerso compactamente em Y se toda sequéncia (u,,) C X limitada possui subsequéncia

convergente em Y.
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Teorema B.2.5 (Rellich-Kondrachov). Suponha que Q é limitado de classe C'. Entdo, temos

as seguintes imersoes compactas:

cpct.

1 I 1
i) WhP(Q) & LI(Q) para todo g € [1,p*), onde—*:—+ﬁ, se p <N;
p p

cpct.

i) WP(Q) = LY(Q) para todo q € [p,+), se p=N;

i) Wi (@) T3 c(Q), sep>N.
Em particular, WP (Q) s L(Q) para todo p (e todo N).
Demonstragdo. Ver [4, Teorema 9.16]. O
Definicao B.2.5. Seja Q C RY um aberto, | < p<ooe ke NU {0}. O espago W(f’p(Q) é
definido como sendo o fecho de Cj(2) na norma || - [|yy.(q)- isto &,
wiriey) = e,
Observagdo. Segue da defini¢do que u € W(f P (Q) se, e somente se, existe uma sequéncia

() C C(Q) tal que u,, — uem WEP(Q).

Teorema B.2.6 (Minty-Browder). Seja E um espaco de Banach reflexivo. Seja A : E — E'

uma aplicagdo ndo linear continua tal que

<AV1—AV2,V1—V2>>O, Vvl,VQGE, V17£V2,

lim AV
vll=eo []V]]

Entdo, para toda f € E' existe uma tinica solucdo u € E da equagdo Au = f.
Demonstragdo. Ver [4, Teorema 5.16] ]

Lema B.2.2 (Desigualdade de Harnack). Seja u uma fun¢do harménica ndo negativa em .
Entdo, para qualquer subdominio limitado Q' CC Q, existe uma constante C dependendo
apenas de n,Q e Q' tais que

supu < Cinfu
Q Q/

Demonstragdo. Ver [9, Teorema 2.5]. ]
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B.3 Alguns resultados de convergéncia

Como ja mencionado, o método adotado para resolver os problemas em estudo € o de
Galerkin. A prépria natureza desse método exige que empreguemos resultados de conver-
géncia apds obter uma solu¢do aproximada, visando estender essa solu¢do a um espago
mais apropriado. Assim, nesta secao, apresentamos os principais resultados que utilizamos
para atingir esse objetivo, como, por exemplo, o Teorema da Convergéncia Dominada de

Lebesgue e o Teorema de Brezis-Lieb.

Teorema B.3.1 (Convergéncia Dominada de Lebesgue). Seja ( f,,) uma sequéncias de funcoes
em L1 (Q) que satisfaz:

(i) ful) = () qutp. em ©;
(ii) existe uma fungdo g € L' tal que para todo n, |f,(x)| < g(x) g.t.p. em Q.

Entdo f € L'(Q) e || f, — f||1 — 0.

Demonstragdo. Ver [4, Teorema 4.2]. L]

Teorema B.3.2 (Brezis-Lieb). Sejam 1 < p < oo e (fy,), uma sequéncia limitada de funcoes
de LP(Q) que convergem q.t.p. para f e suponha que existe C > 0 tal que

/ |fulPdx < C, paratodon € IN.
Q

Entdo
/ fudx — / fodx, paratodo ¢ € L1(Q),
Q Q
1 1
onde —+—-=1.
P 4
Demonstragcdo. Ver [12, Lema 4.6]. O

O teorema abaixo consiste numa reciproca do Teorema da Convergéncia Dominada de

Lebesgue.

Teorema B.3.3. Sejam (f,) uma sequéncia em LP(Q) e f € LP(Q) tais que
fa— f em LP(Q).

Entdo, existem uma subsequéncia (fn,) e g € LP(Q) tais que

i) fn,(x) = f(x) g.t.p em Q
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ii) |fu(x)] < g(x) g.t.p em Q, para todo n € IN.
Demonstragdo. Ver [4, Teorema 4.9]. O
Uma vez que WO1 ’N(Q) € um espaco reflexivo, podemos utilizar o seguinte resultado:

Teorema B.3.4. Em um espaco reflexivo, toda sequéncia limitada tem subsequéncia fraca-

mente convergente.

Demonstragdo. Ver [3, Teorema 6.5.4] L]

1 1
Teorema B.3.5 (Desigualdade de Young). Sejam p,q > 1 tais que —+ — = 1. Para quaisquer
P 49

a e b ndo-negativos, vale

Q
==
S
.

I

_|_

TR
SHE

B.4 Nocoes de Analise Funcional

Definicdo B.4.1. Sejam E e F espacos normados e L(E, F) o conjunto de todos os operadores
lineares continuos de E em F. Se F é o corpo de escalares, escrevemos E’ no lugar de L(E, F).
Chamamos esse espago de dual topoldgico de E, ou simplesmente de dual de E. Em outras

palavras, E’ é o conjunto de todos os funcionais lineares continuos de E.

Definicao B.4.2. Dois espagos normados E e F sdo isomorfos se existir um operador linear
continuo bijetor 7 : E — F cujo operador inverso T-':F—E, que é sempre linear, é

tammbém continuo.

Definicao B.4.3. Uma fun¢do f : E — F, ndo necessariamente linear, tal que || f(x)|| = ||x||
paratodo x € E é chamada de isometria. Um operador linear 7' : E — F que é uma isometria

€ chamado de isometria linear.

Definicao B.4.4. Um isomorfismo que € também uma isometria € chamado de isomorfismo

isométrico, e nesse caso dizemos que 0s espagos sao isomorfos isometricamente.
Teorema B.4.1. Seja E um espaco normado.
(a) Se x, — x em E, entdo a sequéncia (||x,||);~; € limitada e ||x|| < li’gigfﬂan.
(b) Se x, ~xemE e ¢, — ¢ em E', entdo ¢,(x,) — ¢(x) em K.

Demonstragdo. Ver [3, Proposi¢do 6.2.4]. 0
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Definicio B.4.5. Uma sequéncia (x,);_; no espago de Banach E é chamada de base de
Schauder de E se cada x € E tem uma representagdo tnica sob a forma

(oo}
x= Z Xy,
n=1

onde a, € K para todo n € IN. A unicidade da representacio permite considerar os funcionais
lineares

x * . _
X, E+— K, x, Za]xj =ay,
j=1

que sdo chamados de funcionais lineares coeficientes (ou funcionais coordenadas ou ainda

funcionais biortogonais associados).

Defini¢sio B.4.6. Seja E um espaco de Banach reflexivo e A : E — E’ um operador (possivel-
mente ndo linear). Dizemos que A € estritamente mon6tono se

(Au—Av,u—v) >0, paratodou,v € E com u # v.

Definiciio B.4.7. Seja E um espaco de Banach reflexivo e A : E — E’ um operador (possivel-
mente ndo linear). Dizemos que A € coercivo se
(Au,u)

lim = oo,
lul 1 v —oo |[2e] [ 1.7
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