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Resumo

Este trabalho é um estudo detalhado do o artigo [2], onde investigamos a existência de
soluções positivas em uma classe de problemas elípticos singulares e quasilineares, dado por

−div(a0(|∇u|p0)|∇u|p0−2
∇u) =

λ0

uβ0
+ f0(u) em Ω,

u > 0 em Ω,

u = 0 sobre ∂Ω,

utilizando o Método de Galerkin. Para completude do trabalho, estudamos a sua versão para
sistemas, que é dada por:

−div(a1(|∇u|p1) |∇u|p1−2
∇u) =

λ1

uβ1
+ f1(v) em Ω,

−div(a2(|∇v|p2) |∇v|p2−2
∇v) =

λ2

vβ2
+ f2(u) em Ω,

u,v > 0 em Ω,

u = v = 0 sobre ∂Ω,

onde Ω⊂RN é um domínio limitado e suave, com N ≥ 3. Para i= 1,2, temos que 2≤ pi <N,
0 < βi ≤ 1, λi > 0 e fi sendo funções contínuas. A hipótese sobre as funções ai : R+→ R+

serem de classe C1 nos permite considerar uma ampla gama de operadores quasilineares.



Abstract

This work is a detailed study on the article [2], where we investigate the existence of
positive solutions in a class of singular and quasilinear elliptic problems, given by

−div(a0(|∇u|p0)|∇u|p0−2
∇u) =

λ0

uβ0
+ f0(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

using the Galerkin method. For completeness of the work, we studied its version for systems,
which is given by:

−div(a1(|∇u|p1) |∇u|p1−2
∇u) =

λ1

uβ1
+ f1(v) in Ω,

−div(a2(|∇v|p2) |∇v|p2−2
∇v) =

λ2

vβ2
+ f2(u) in Ω,

u,v > 0 in Ω,

u = v = 0 on ∂Ω,

where Ω⊂RN is a bounded and smooth domain, with N≥ 3. For i= 1,2, we have 2≤ pi <N,
0 < βi≤ 1, λi > 0 and fi are continuous functions. The hypothesis on functions ai : R+→R+

being of class C1 allows us to consider a wide range of quasilinear operators.



Conteúdo

Introdução 1

1 Resultados Preliminares 5
1.1 Espaço de Sobolev W 1,N

0 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Algumas desigualdades importantes . . . . . . . . . . . . . . . . . . . . . 15
1.3 Lema Fundamental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Primeiro Resultado: caso escalar 19
2.1 Problema auxiliar para o caso escalar . . . . . . . . . . . . . . . . . . . . . 20
2.2 Prova do Teorema 2.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Segundo Resultado: caso sistema 38
3.1 Problema auxiliar para o caso sistema . . . . . . . . . . . . . . . . . . . . 39
3.2 Prova do Teorema 3.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Apêndice A Teoria do Grau de Brouwer 63
A.1 Conceito e propriedades básicas . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Teorema do Ponto Fixo de Brouwer . . . . . . . . . . . . . . . . . . . . . 65

Apêndice B Medida, EDPs e Análise Funcional 68
B.1 Espaço de Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2 Espaço de Sobolev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.3 Alguns resultados de convergência . . . . . . . . . . . . . . . . . . . . . . 72
B.4 Noções de Análise Funcional . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliografia 75



Lista de Símbolos

R+ Conjunto dos números reais não negativos.
Ω Domínio limitado de RN .
∂Ω Representa a fronteira do conjunto Ω.
C1(Ω) É o conjunto {u : Ω→R; u é diferenciável com derivada contínua}.
C∞

0 (Ω) É o conjunto das funções teste.
(W 1,N

0 (Ω))′ É o espaço dual de W 1,N
0 (Ω).

div Significa divergente.
∂ (·)
∂η

É a derivada de (·) em relação a normal exterior.

→ Convergência forte.
⇀ Convergência fraca.
↛ Significa que não converge.
↪→ Imersão de um conjunto em algum outro.
c.p.t.c
↪→ Imersão compacta de um conjunto em outro.
|| · ||θ || · ||Lθ (Ω).
|| · ||1,N || · |W 1,N(Ω).
q.t.p Significa em quase todo ponto.
□ Indica o final de uma demonstração.



Introdução

Nesta dissertação, estamos interessados em estudar a existência de solução positiva tanto
do problema elíptico singular e quasilinear

−div(a0(|∇u|p0)|∇u|p0−2
∇u) =

λ0

uβ0
+ f0(u) em Ω,

u > 0 em Ω,

u = 0 sobre ∂Ω,

(P1)

quanto da sua versão para sistema

−div(a1(|∇u|p1) |∇u|p1−2
∇u) =

λ1

uβ1
+ f1(v) em Ω,

−div(a2(|∇v|p2) |∇v|p2−2
∇v) =

λ2

vβ2
+ f2(u) em Ω,

u,v > 0 em Ω,

u = v = 0 sobre ∂Ω,

(P2)

onde Ω ⊂ RN é um domínio limitado suave, com N ≥ 3. Além disso, para i = 0, 1, 2,
assumimos 2 ≤ pi < N, 0 < βi ≤ 1 e λi > 0, são parâmetros reais, ai : R+ → R+ são
funções de classe C1 e fi :R→R são funções contínuas com crescimento exponencial.

Problemas deste tipo são chamados de singular e surgiram na teoria da condução de
calor em materiais eletricamente condutores. Além disso, eles possuem ampla aplicação em
modelos físicos como fluídos não newtonianos, fenômenos de camada limite para fluidos
viscosos, químicos heterogêneos conforme é mencionado nos artigos [5] e [17].

Esta dissertação é baseada e motivada pelo artigo [2], cujo objetivo é investigar a existên-
cia de soluções para os problemas (P1) e (P2) via Método de Galerkin, que é um método
de aproximações de soluções para equações funcionais abstratas e que também pode ser
usado para provar a existência de soluções para uma equação, provando a convergência
das soluções aproximadas em uma topologia adequada [13]. Juntamente com o Método de
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Galerkin, utilizamos um Lema Fundamental que trata-se de uma consequência do Teorema
do Ponto Fixo de Brouwer.

Antes de resolver os problemas (P1) e (P2), será necessário o estudo de um problema
auxiliar para cada caso, os quais investigaremos via Método de Galerkin a fim de mostrar a
existência de solução aproximada e, posteriormente, utilizar esta solução obtida na demons-
tração dos resultados principais deste trabalho. Na demonstração de tais resultados usamos
como ferramenta essencial um Príncipio de Comparação Fraca para o operador em questão.

As hipóteses que utilizamos sobre as funções ai :R+→R+ de classe C1 são as seguintes:

(a1) existem constantes k1, k2 > 0 e k3, k4 ≥ 0 tais que

k1t pi + k2tN ≤ ai(t pi)t pi ≤ k3t pi + k4tN , para todo t ≥ 0;

(a2) a função
t 7−→ ai(t pi)t pi−2 é crescente.

E as funções fi :R→R são contínuas satisfazendo as seguintes propriedades:

( f1) existe α0 > 0 tal que as condições de crescimento exponencial no infinito são dadas
por:

lim
t→∞

fi(t)

exp
(

α|t|
N

N−1

) = 0, para α > α0 e lim
t→∞

fi(t)

exp
(

α|t|
N

N−1

) = ∞, para 0 < α < α0;

( f2) a condição de crescimento na origem:

lim
t→0+

fi(t)
t pi−1 = 0;

( f3) existe γi > N tal que
fi(t)≥ tγi−1, para todo t ≥ 0.

Como estamos procurando soluções positivas, neste trabalho, consideramos fi(t) = 0,
para todo t ≤ 0.

Assim, para alcançar nosso objetivo, esta dissertação é constituída de três capítulos:
No Capítulo 1, apresentamos o espaço de Sobolev que estamos interessados em encontrar

as soluções dos problemas e definimos o operador estudado, bem como apresentamos
algumas de suas propriedades e resultados que serão necessários. Além disso, exibimos
alguns resultados importantes como as desigualdades de Trudinger-Moser e Hardy-Sobolev.
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E, por fim, enunciamos e provamos o Lema Fundamental, que será o ingrediente primordial
para mostrar a existência de solução para os problemas auxiliares.

No Capítulo 2, mostramos a existência de solução positiva para o problema (P1). Antes
disso, mostramos a existência de uma solução aproximada, a qual encontramos estudando
um problema auxiliar, utilizando o Método de Galerkin. O principal resultado deste capítulo
é o

Teorema 0.0.1. Suponha que as condições (a1), (a2) e ( f1) a ( f3) sejam válidas. Então,
existe λ

∗ > 0 tal que o problema (P1) tem uma solução fraca positiva para cada λ0 ∈ (0,λ ∗).

No Capítulo 3, mostramos a existência de solução positiva para o problema (P2). Assim
como no Capítulo 2, mostramos, primeiramente, a existência de solução para um problema
auxiliar com auxílio do Método de Galerkin, encontrando uma solução aproximada para
o problema (P2). A demonstração do caso sistema possui o mesmo raciocínio que o caso
escalar, logo, o objetivo é expor para o leitor como o Método de Galerkin pode ser utilizado
na resolução de um sistema, exibindo as semelhanças, diferenças e os cuidados técnicos que
há nesse processo entre os dois casos. O principal resultado deste capítulo é o

Teorema 0.0.2. Suponha que, para i = 1,2, ai satisfaz (a1), (a2) e fi satisfaz ( f1) a ( f3).
Então, existe λ

∗ > 0 tal que o problema (P2) tem uma solução fraca positiva para cada
0 < λ1 +λ2 < λ

∗.

Observe que, as funções ai(t) = 1+ t
N−pi

pi satisfazem as hipóteses (a1) e (a2), com
k1 = k2 = k3 = k4 = 1. Portanto, os Teoremas 0.0.1 e 0.0.2 são válidos para o operador
−∆piu−∆Nu.

Os problemas com este operador vêm de um sistema geral de reação-difusão:

ut = div[D(u)∇u]+ c(x,u), (0.0.1)

onde D(u) = (|∇u|p−2 + |∇u|N−2). Este sistema possui uma ampla gama de aplicações em
física e ciências afins, como biofísica, física de plasma e projeto de reação química. Nessas
aplicações, a função u descreve uma concentração, o primeiro termo do lado direito de (0.0.1)
corresponde à difusão com um coeficiente de difusão D(u); enquanto o segundo é a reação
e está relacionado à fonte e processos de perda. Normalmente, em aplicações químicas e
biológicas, o termo de reação c(x,u) é um polinômio de u com coeficientes variáveis (Ver
[6, 10, 15, 20]).

Da mesma maneira, nota-se que a função

fi(t) = tγi−1 exp
(

α0t
N

N−1

)
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satisfaz as hipóteses ( f1)− ( f3) para γi > N e para todo t ≥ 0.
Para finalizar, dedicamos o Apêndice A para fazer um breve estudo e lembrança das

principais propriedades da teoria do Grau de Brouwer. Além disso, reservamos o Apêndice B
para lembrança de conceitos e resultados interessantes sobre a teoria dos Espaços de Sobolev
e da Análise Funcional.



Capítulo 1

Resultados Preliminares

Neste capítulo, estabelecemos alguns resultados importantes que serão usados nos demais
capítulos. Mais precisamente, na Seção 1.1, introduzimos o espaço W 1,N

0 (Ω), no qual
buscamos soluções dos problemas estudados, o operador bem como suas propriedades e
diversos resultados envolvendo-o, como, por exemplo, um Princípio de Comparação Fraca,
que será utilizado na demonstração dos dois teoremas principais desta dissertação. Na Seção
1.2, exibimos algumas desigualdades essenciais em nosso trabalho como a Desigualdade de
Trudinger-Moser e a Desigualdade de Hardy-Sobolev. Por fim, na Seção 1.3, enunciamos
e provamos o Lema Fundamental, que será utilizado em combinação com o Método de
Galerkin para encontrar soluções não negativas para os problemas auxiliares.

1.1 Espaço de Sobolev W 1,N
0 (Ω)

Iniciamos esta seção definindo o espaço de funções no qual buscamos as soluções para
os problemas em questão.

Definição 1.1.1. Seja Ω⊂RN um aberto. O espaço W 1,N
0 (Ω) é definido como sendo o fecho

de C∞
0 (Ω) na norma || · ||W 1,N(Ω), isto é,

W 1,N
0 (Ω) :=C∞

0 (Ω)
||·||W1,N (Ω).

Desde que Ω seja limitado, consideramos W 1,N
0 (Ω) dotado com a norma

||u||1,N =

(∫
Ω

|∇u|Ndx
) 1

N

,

onde | · | representa a norma da soma.
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Definição 1.1.2. Dizemos que u ∈W 1,N
0 (Ω) é uma solução fraca do problema (P1) se u > 0

em Ω e se verifica∫
Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇φ dx−λ0

∫
Ω

φ

uβ0
dx−

∫
Ω

f0(u)φ dx = 0,

para todo φ ∈W 1,N
0 (Ω). Analogamente, dizemos que (u,v) ∈W 1,N

0 (Ω)×W 1,N
0 (Ω) é solução

do problema (P2) se u,v > 0 e satisfaz∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φ dx = λ1

∫
Ω

φ

uβ1
dx+

∫
Ω

f1(v)φ dx,

e ∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕ dx = λ2

∫
Ω

ϕ

vβ2
dx+

∫
Ω

f2(u)ϕ dx,

para todo φ ,ϕ ∈W 1,N
0 (Ω).

Nesta dissertação, trabalhamos com o operador Ti : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))
′
, tal que

⟨Tiui,φi⟩=
∫

Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇φidx.

Vamos mostrar que Tiui está bem definido. De fato, usando a hipótese (a1), para cada
φi ∈W 1,N

0 (Ω),

⟨Tiui,φi⟩=
∫

Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇φidx

≤
∣∣∣∣∫

Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇φidx

∣∣∣∣
≤
∫

Ω

ai(|∇ui|pi)|∇ui|pi−1|∇φi|dx

≤
∫

Ω

(k3|∇ui|pi−1 + k4|∇ui|N−1)|∇φi|dx

= k3

∫
Ω

|∇ui|pi−1|∇φi|dx+ k4

∫
Ω

|∇ui|N−1|∇φi|dx.

Usando a Desigualdade de Hölder (Ver Apêndice B, Teorema B.1.1) para p0,
p0

p0−1
,N e

N
N−1

, obtemos

⟨Tiui,φi⟩ ≤ k3

(∫
Ω

|∇ui|p0dx
) p0−1

p0
(∫

Ω

|∇ui|p0dx
) 1

p0
+ k4

(∫
Ω

|∇ui|Ndx
)N−1

p0
(∫

Ω

|∇ui|Ndx
) 1

N
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= k3||∇ui||p0−1
p0
||∇φi||p0 + k4||∇ui||N−1

N ||∇φi||N
= k3||ui||p0−1

1,p0
||φi||1,p0 + k4||ui||N−1

1,N ||φi||1,N < ∞,

pois ui,φi ∈W 1,N
0 (Ω) ⊂W 1,p0

0 (Ω). Mostraremos agora que se u ∈W 1,N
0 (Ω) então Tu ∈

(W 1,N
0 (Ω))′. De fato, sejam φ1,φ2 ∈W 1,N

0 (Ω) e c ∈R, temos

⟨Tu,cφ1 +φ2⟩=
∫

Ω

a(|∇u|p)|∇u|p−2
∇u∇(cφ1 +φ2)dx

= c
∫

Ω

a(|∇u|p)|∇u|p−2
∇u∇φ1dx+

∫
Ω

a(|∇u|p)|∇u|p−2
∇u∇φ2dx

= c⟨Tu,φ1⟩+ ⟨Tu,φ2⟩.

E, pela mesma conta feita anteriormente, obtemos de (a1) e da Desigualdade de Hölder

para p,
p

p−1
,N e

N
N−1

que

|⟨Tu,φ1⟩| ≤ k3||u||p−1
1,p ||φ ||1,p + k4||u||N−1

1,N ||φ ||1,N .

Como 2≤ p < N, da imersão de Sobolev (ver Apêndice B), existe uma constante k′3, tal que

|⟨Tu,φ1⟩| ≤ k′3||u||
p−1
1,p ||φ ||1,N + k4||u||N−1

1,N ||φ ||1,N

=
(

k′3||u||
p−1
1,p + k4||u||N−1

1,N ||
)
||φ ||1,N

=C||φ ||1,N , ∀ φ ∈W 1,N
0 (Ω).

A seguir, os três próximos lemas mostram que o operador Ti é contínuo, monótono e
coercivo.

Lema 1.1.1. O operador Ti : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))
′
definido por

⟨Tiui,φi⟩=
∫

Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇φidx

é contínuo.

Demonstração. Seja (un)⊂W 1,N
0 (Ω) e u ∈W 1,N

0 (Ω) tal que un→ u em W 1,N
0 (Ω). Então,

|∇un| → |∇u| em LN(Ω).

Assim, pela recíproca do Teorema da Convergência Dominada de Lebesgue (Ver Teorema
B.3.3), existe g ∈ LN(Ω) tal que

(i) |∇un(x)| → |∇u(x)| q.t.p. em Ω;
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(ii) |∇un(x)| ≤ g(x) q.t.p. em Ω.
Observe que

||Tun−Tu||
(W 1,N

0 (Ω))′
= sup
||φ ||≤1

|⟨Tun−Tu,φ⟩|

= sup
||φ ||≤1

|⟨Tun,φ⟩−⟨Tu,φ⟩|

= sup
||φ ||≤1

∣∣∣∣∫
Ω

a(|∇un|p)|∇un|p−2
∇un∇φdx−

∫
Ω

a(|∇u|p)|∇u|p−2
∇u∇φdx

∣∣∣∣.
Como |∇un(x)| → |∇u(x)| q.t.p. em Ω, então |∇un(x)|p→ |∇u(x)|p q.t.p. em Ω. Assim,
desde que a ∈C1, temos

a(|∇un|p)→ a(|∇u|p),

portanto, do item (i),

a(|∇un|p)|∇un|p−2
∇un∇φ → a(|∇u|p)|∇u|p−2

∇u∇φ .

Usando (a1), obtemos

|a(|∇un|p)|∇un|p−2
∇un∇φ | ≤ a(|∇un|p)|∇un|p−1|∇φ |

≤ (k3|∇un|p−1 + k4|∇un|N−1)|∇φ |
= k3|∇un|p−1|∇φ |+ k4|∇un|N−1|∇φ |.

Decorre da Desigualdade de Young (Ver Teorema B.3.5) para p, p/(p−1),N e N/(N−1) e
do item (ii) que

|a(|∇un|p)|∇un|p−2
∇un∇φ | ≤ k3(ε|∇un(x)|p +Cε |∇φ(x)|p)+ k4(ε|∇un(x)|N +Cε |∇φ(x)|N)

≤ k3(ε|g(x)|p +Cε |∇φ(x)|p)+ k4(ε|g(x)|N +Cε |∇φ(x)|N) ∈ L1(Ω).

Logo, do Teorema da Convergência Dominada de Lebesgue, segue∫
Ω

a(|∇un|p)|∇un|p−2
∇un∇φdx→

∫
Ω

a(|∇u|p)|∇u|p−2
∇u∇φdx,

portanto,
||Tun−Tu||

(W 1,N
0 (Ω))′

= on(1).

Tomando n→+∞, obtemos

Tun→ Tu em (W 1,N
0 (Ω))′,
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logo, T é um operador contínuo.

Lema 1.1.2. O operador Ti : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))
′
definido por

⟨Tiui,φi⟩=
∫

Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇φidx

é coercivo.

Demonstração. Fazendo φi = ui na definição de Ti e usando a limitação do operador Ti dado
pela hipótese (a1), obtemos

⟨Tiui,ui⟩=
∫

Ω

ai(|∇ui|pi)|∇ui|pidx

≥
∫

Ω

k1|∇ui|pi + k2|∇ui|Ndx

= k1||ui||pi
1,pi

+ k2||ui||N1,N
≥ k2||ui||N1,N ,

logo,
⟨Tiui,ui⟩
||ui||1,N

≥ k2||ui||N−1
1,N .

Fazendo ||ui||1,N tender ao infinito, uma vez que N ≥ 3, o lado direito da desigualdade vai ao
infinito, portanto,

lim
||ui||1,N→∞

⟨Tiui,ui⟩
||ui||1,N

=+∞.

Para mostrarmos a monotonicidade de Ti, utilizaremos a desigualdade dada pela proposi-
ção abaixo que pode ser encontrada em [7].

Proposição 1.1.1. Seja a :R+ −→R+ uma função de classe C1 tal que as condições (a1) e
(a2) são válidas. Então vale

C|x− y|pi ≤ ⟨ai(|x|pi)|x|pi−2x−a(|y|pi)|y|pi−2y,x− y⟩,

para x,y ∈RN .

Demonstração. Observe que

⟨ai(|x|pi)|x|pi−2x−ai(|y|pi)|y|pi−2y,x−y⟩=
N

∑
j=1

(
ai(|x|pi)|x|pi−2x j−ai(|y|pi)|y|pi−2y j

)
(x j− y j)
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e para todo z,ξ ∈RN , utilizando a regra do produto e regra da cadeia, temos

N

∑
j,k=1

∂

∂ zk
(ai(|z|pi)|z|pi−2z j)ξkξ j = (pi−2)|z|pi−4

N

∑
k, j=1

ai(|z|pi)zkz jξkξ j

+
N

∑
k, j=1

ai(|z|pi)|z|pi−2
δk, jξkξ j

+ pi

N

∑
k, j=1

a′i(z
pi)|z|2pi−4zkz jξkξ j.

Portanto,

N

∑
j,k=1

∂

∂ zk
(ai(|z|pi)|z|pi−2z j)ξkξ j = (pi−2)|z|pi−4ai(|z|pi)

N

∑
k, j=1

zkz jξkξ j

+ai(|z|pi)|z|pi−2|ξ |2

+ pia′i(z
pi)|z|2pi−4

N

∑
k, j=1

zkz jξkξ j.

Como
N

∑
k, j=1

zkz jξkξ j =
N

∑
k=1

(zkξk)
N

∑
j=1

(z jξ j) =

(
N

∑
j=1

z jξ j

)2

,

obtemos

N

∑
j,k=1

∂

∂ zk
(ai(|z|pi)|z|pi−2z j)ξkξ j = (pi−2)|z|pi−4ai(|z|pi)

(
N

∑
k, j=1

z jξ j

)2

+ pia′i(z
pi)|z|2pi−4

(
N

∑
k, j=1

z jξ j

)2

.

+ai(|z|pi)|z|pi−2|ξ |2

=

(
N

∑
k, j=1

z jξ j

)2

|z|pi−4 [(pi−2)ai(|z|pi)+ pia′i(|z|pi)|z|pi
]

+ai(|z|pi)|z|pi−2|ξ |2.
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Da hipótese (a2), temos (ai(|z|pi)|z|pi−2)′ ≥ 0 e daí (pi− 2)ai(|z|pi)+ pia′i(|z|pi)|z|pi ≥ 0.
Logo,

N

∑
j,k=1

∂

∂ zk
(ai(|z|pi)|z|pi−2z j)ξkξ j ≥ ai(|z|pi)|z|pi−2|ξ |2. (1.1.1)

Além disso, se |y| ≥ |x|, segue da desigualdade triangular que

|x− y| ≤ |x|+ |y| ≤ |y|+ |y|= 2|y|.

Portanto,
1
2
|x− y| ≤ |y| e para t ∈

[
0,

1
4

]
, temos

|y+ t(x− y)| ≥ |y|− t|x− y| ≥ 1
2
|x− y|− t|x− y| ≥ |x− y|

(
1
2
− t
)
≥ 1

4
|x− y|.

Fazendo z = x− y e ξ = x− y, de uma cálculo direto, obtemos

N

∑
j=1

(
ai(|x|pi)|x|pi−2x j−ai(|y|pi)|y|pi−2y j

)
(x j− y j) =

∫ 1

0

N

∑
j,k=1

∂

∂ zk
(ai(|z|pi)|z|pi−2z j)ξkξ jdt.

Usando (1.1.1), obtemos

⟨ai(|x|pi)|x|pi−2x−ai(|y|pi)|y|pi−2y,x− y⟩ ≥ ai(|y+ t(x− y)|pi)|y+ t(x− y)|pi−2|x− y|2.
(1.1.2)

De (a1), concluímos

⟨ai(|x|pi)|x|pi−2x−ai(|y|pi)|y|pi−2y,x− y⟩ ≥ k1

4
|x− y|pi−2|x− y|2 =C|x− y|pi.

Lema 1.1.3. O operador Ti : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))
′
definido por

⟨Tiui,φi⟩=
∫

Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇φidx

é monótono.

Demonstração. Observe que

⟨Tiui−Tivi,ui− vi⟩= ⟨Tiui,ui− vi⟩−⟨Tivi,ui− vi⟩
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=
∫

Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui(∇ui−∇vi)dx

−
∫

Ω

ai(|∇vi|pi)|∇vi|pi−2
∇vi(∇ui−∇vi)dx

=
∫

Ω

(∇ui−∇vi)
[
ai(|∇ui|pi)|∇ui|pi−2

∇ui−ai(|∇vi|pi)|∇vi|pi−2
∇vi
]

dx,

Usando a Proposição 1.1.1, temos

⟨Tiui−Tivi,ui− vi⟩ ≥C
∫

Ω

|∇ui−∇vi|pdx =C||u− v||p1,p > 0.

O próximo lema fornece a unicidade da solução para o problema linear com o operador
estudado.

Lema 1.1.4. Suponha que as condições (a1) e (a2) sejam satisfeitas. Então, existe uma
única solução ui ∈W 1,N

0 (Ω) para o problema linear−div(ai(|∇ui|pi)|∇ui|pi−2
∇ui) = hi(x) em Ω,

ui = 0 sobre ∂Ω,

onde hi ∈ (W 1,N
0 (Ω))′, para todo i = 0,1,2 e 2≤ pi < N.

Demonstração. Considere o operador Ti : W 1,N
0 (Ω)−→ (W 1,N

0 (Ω))′ dado por

⟨Tiui,φi⟩=
∫
Ω

ai(|∇ui|pi) |∇ui|pi−2
∇ui∇φi dx.

Desde que Ti é contínuo, monótono e coercivo. Aplicamos o Teorema de Minty-Browder
(Ver Teorema B.2.6), para obter um único ui ∈W 1,N

0 (Ω) tal que Tiui = hi(x).

Nossa abordagem no estudo do problema (P1) e do sistema (P2) baseia-se fortemente no
seguinte Princípio de Comparação Fraca.

Lema 1.1.5. Se Ω é um domínio limitado e se ui,vi ∈W 1,N
0 (Ω) satisfaz−div(ai(|∇ui|pi)|∇ui|pi−2

∇ui)≤−div(ai(|∇vi|pi)|∇vi|pi−2
∇vi) em Ω,

ui ≤ vi sobre ∂Ω,

então ui ≤ vi em Ω.
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Demonstração. Temos∫
Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇φdx≤

∫
Ω

ai(|∇vi|pi)|∇vi|pi−2
∇vi∇φdx,

para todo ui,vi ≥ 0. Considere φ = (u− v)+ = max{u− v,0} ≥ 0, então∫
Ω

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇(u− v)+dx≤

∫
Ω

ai(|∇vi|pi)|∇vi|pi−2
∇vi∇(u− v)+dx.

Desde que

∇(u− v)+ =

∇(u− v), se u > v,

0, se u≤ v,

segue∫
{ui>vi}

ai(|∇ui|pi)|∇ui|pi−2
∇ui∇(u− v)−ai(|∇vi|pi)|∇vi|pi−2

∇vi∇(u− v)dx≤ 0.

Usando (1.1.2), obtemos

0≤
∫
{ui>vi}

[ai(|∇ui|pi)|∇ui|pi−2
∇ui−ai(|∇vi|pi)|∇vi|pi−2

∇vi]∇(u− v)dx≤ 0,

logo ∫
{ui>vi}

[ai(|∇ui|pi)|∇ui|pi−2
∇ui−ai(|∇vi|pi)|∇vi|pi−2

∇vi]∇(u− v)dx = 0.

Considere Ω0 = {x ∈Ω : ui(x)> vi(x)}. Há duas possibilidades:
(i) Ω0 =∅;
(ii) ∇ui = ∇vi em Ω0.

Se ocorresse (ii) teríamos vi = ui + c, onde c é uma constante. Como em ∂Ω0 temos ui = vi,
então, por continuidade, segue que c = 0. Portanto, ui = vi em Ω0, o que contradiz ui > vi.
Segue então que Ω0 =∅, isto é, {x ∈Ω : ui(x)> vi(x)}=∅, logo, ui ≤ vi em Ω.

O próximo lema fornece a regularidade L∞(Ω) das soluções para a classe de problemas
p&q-Laplaciano estudada. Precisaremos dessa regularidade na demonstração dos problemas
principais.
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Lema 1.1.6. Seja ui ∈W 1,N
0 (Ω) a solução do problema−div(ai(|∇ui|pi)|∇ui|pi−2

∇ui) = fi em Ω,

ui = 0 sobre ∂Ω,
(1.1.3)

tal que fi ∈ Lri(Ω) com ri >
N∗

N∗−N
. Então, ui ∈ L∞. Em particular, se ∥ fi∥ri é pequeno,

então também ∥ui∥∞ é pequeno, para todo i = 0,1,2 e 2≤ pi < N.

Demonstração. Ver [1, Lema 2.5].

No que diz respeito à regularidade da solução do problema (1.1.3), podemos afirmar
que o próximo resultado é válido e a demonstração pode ser elaborada seguindo os mesmos
argumentos utilizados em [10, Teorema 1].

Lema 1.1.7. Fixe hi ∈ L∞(Ω), para todo i = 0,1,2, e considere ui ∈W 1,N
0 (Ω)∩L∞(Ω), com

2≤ pi < N, satisfazendo o problema−div(ai(|∇ui|pi)|∇ui|pi−2
∇ui) = hi em Ω,

ui = 0 sobre ∂Ω.

Então, ui ∈C1,α(Ω), para algum α ∈ (0,1).

Agora, usando o Lema 1.1.5, podemos reaplicar os argumentos de [18, Lema de Hopf]
para obter o próximo resultado.

Lema 1.1.8. Seja Ω ⊂ RN um domínio limitado com fronteira suave e i = 0,1,2. Se
ui ∈C1(Ω)∩W 1,N

0 (Ω), com 2≤ pi < N, e
−div(ai(|∇ui|pi)|∇ui|pi−2

∇ui)≥ 0 em Ω,

ui > 0 em Ω,

ui = 0 sobre ∂Ω.

Então,
∂ui

∂η
< 0 em ∂Ω, onde η é a normal exterior para ∂Ω.

Para outros conceitos sobre o espaço de Sobolev W 1,N
0 (Ω), o leitor pode consultar o

Apêndice B, onde expomos algumas outras definições e resultados importantes para o nosso
estudo.
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1.2 Algumas desigualdades importantes

Os Lemas 1.1.6 e 1.1.7 foram apresentados a fim de que possamos obter a regularidade
exigida no Lema 1.1.8, que por sua vez, culmina no próxima lema que será importante para
alcançarmos a positividade das soluções buscadas para os problemas (P1) e (P2).

Lema 1.2.1. Sejam φ ,ω > 0 quaisquer funções em C1
0(Ω). Se

∂φ

∂ν
> 0 em ∂Ω, onde ν é a

normal interior para ∂Ω, então existe C > 0 tal que

φ(x)
ω(x)

≥C > 0, para todo x ∈Ω.

Demonstração. Para δ > 0 suficientemente pequeno, consideramos o seguinte conjunto

Ωδ = {x ∈Ω; dist(x,∂Ω)< δ}.

Observe que Ω\Ωδ é compacto e desde que 0 < φ ,ω ∈C1
0(Ω) em Ω segue que

φ(x)
ω(x)

> 0 é

contínua e, assim, alcança máximo e mínimo em Ω\Ωδ , logo existe m > 0 tal que

φ(x)
ω(x)

≥ m, para todo x ∈Ω\Ωδ . (1.2.1)

Segue de
∂φ

∂ν
> 0 em ∂Ω que

∂φ

∂η
< 0, onde η é a normal exterior sobre ∂Ω. Além disso,

como Ω⊂ Rn é um domínio limitado, então ∂Ω é um conjunto compacto e, consequente-
mente, existe C1 < 0 satisfazendo

∂φ(x)
∂η

≤C1, para todo x ∈Ωδ .

Como ω ∈C1
0(Ω), existe C2 > 0 tal que∣∣∣∣∂ω(x)

∂η

∣∣∣∣≤C2, para todo x ∈Ωδ .

Considere K0 = inf
Ωδ

∂ω

∂η
< 0 e defina a função H(x) = αω(x)−φ(x), para todos os x ∈

Ωδ e α ∈ R a serem escolhidos posteriormente. Como 0 < α <
C1

K0
obtemos

∂H(x)
∂η

= α
∂ω(x)

∂η
− ∂φ(x)

∂η
≥ αK0−C1 > 0, para todo x ∈Ωδ .
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Agora, fixe x ∈Ωδ e considere a função

f (x) = H(x+ sη), para todo s ∈ R.

Para cada x ∈Ωδ , escolhemos um único x̃ ∈Ωδ de modo que exista ŝ > 0 tal que x+ ŝη =

x̃ ∈ ∂Ω. Portanto, como H(∂Ω)≡ 0 temos

f (ŝ) = H(x+ ŝη) = H(x̃) = 0.

Aplicando o Teorema do Valor Médio, existe ξ ∈ (0, ŝ), tal que

f (ŝ)− f (0) = f ′(ξ )(ŝ−0),

o que implica que

−H(x) =
∂H
∂η

(x+ξ η)ŝ > 0, em Ωδ .

Portanto, H(x)≤ 0 para todo x ∈Ωδ e, portanto,

αω(x)−φ(x)≤ 0, para todo x ∈Ωδ ,

que resulta em
αω(x)≤ φ(x), para todo x ∈Ωδ .

Assim,
φ(x)
ω(x)

≥ α > 0, para todo x ∈Ωδ . (1.2.2)

Em virtude de (1.2.1) e (1.2.2), concluímos que existe C > 0 de modo que

φ(x)
ω(x)

≥C, para todo x ∈Ω.

Destacamos também um resultado importante devido a Trudinger-Moser [19, 16] que
nos permitirá fazer boas limitações quando estudarmos os problemas auxiliares.

Teorema 1.2.1 (Desigualdade de Trudinger-Moser). Para todo u ∈W 1,N
0 (Ω) e α > 0, então

exp
(

αu
N

N−1

)
∈ L1(Ω)
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e existe constante M > 0 tal que

sup
||u||1,N≤1

∫
Ω

exp
(

αu
N

N−1

)
dx≤M,

para todo α ≤ αN := Nω

1
N−1
N−1, onde ωN−1 é a medida (N−1)-dimensional de uma (N−1)

esfera.

Demonstração. Ver [16, 19].

Utilizaremos o resultado abaixo devido a Hardy-Sobolev [11] nas Seções 2.2 e 3.2 que
tratam das demonstrações dos teoremas principais deste trabalho.

Teorema 1.2.2 (Desigualdade de Hardy-Sobolev). Se u ∈C1(Ω)∩W 1,p
0 (Ω) com 1 < p≤ N,

então
u

Cdr ∈ Lr(Ω), para
1
r
=

1
p
− 1− τ

N
, 0 < τ ≤ 1 e

∣∣∣ u
Cdr

∣∣∣
Lr(Ω)

≤ |∇u|Lp(Ω),

onde d(x) = dist(x,∂Ω) e C é uma constante positiva que não depende de x.

Demonstração. Ver [11].

1.3 Lema Fundamental

Como aplicação do Teorema do Ponto Fixo de Brouwer (ver Teorema A.2.1) obtemos
o resultado abaixo que é de fundamental importância no nosso estudo, especificamente,
na implementação do Método de Galerkin. O leitor pode encontrar alguns conceitos e
propriedades sobre a Teoria do Grau de Brouwer no Apêndice A.

Lema 1.3.1. Seja G :Rd→Rd uma função contínua tal que ⟨G(ξ ),ξ ⟩ ≥ 0 para todo ξ ∈Rd

com ||ξ ||= r para algum r > 0. Então, existe z0 ∈ Br(0) tal que G(z0) = 0.

Demonstração. Suponha por contradição que

G(ξ ) ̸= 0, para todo ξ ∈Rd, com ||ξ ||= r

e defina

g : Br(0)→ Br(0)
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ξ 7→ g(ξ ) =
−rG(ξ )

||G(ξ )||
.

Observe que

||g(ξ )||= ||− rG(ξ )||
||G(ξ )||

=
r||G(ξ )||
||G(ξ )||

= r,

logo g(Br(0))⊂ Br(0) e, portanto, g(ξ )∈ Br(0). Além disso, g é contínua, pois G é contínua,
por hipótese. Assim, pelo Teorema do Ponto Fixo de Brouwer, a função g tem um ponto fixo
em Br(0). Seja z0 tal ponto fixo de g, isto é, z0 = g(z0). Então,

||z0||= ||g(z0)||= r > 0.

Por outro lado,

r2 = ||z0||2 = ⟨z0,z0⟩= ⟨z0,g(z0)⟩=
〈

z0,
−rG(z0)

||G(z0)||

〉
=

−r
||G(z0)||

⟨z0,G(z0)⟩.

Como, por hipótese,
⟨z0,G(z0)⟩ ≥ 0,

segue que

0 < r2 =
−r

||G(z0)||
⟨z0,G(z0)⟩ ≤ 0,

que é um absurdo. Portanto, existe z0 ∈ Br(0) tal que G(z0) = 0.



Capítulo 2

Primeiro Resultado: caso escalar

Neste capítulo, investigaremos a existência de solução não negativa para o problema−div(a0(|∇u|p0)|∇u|p0−2
∇u) =

λ0

uβ0
+ f0(u) em Ω,

u = 0 sobre ∂Ω,
(P1)

onde Ω⊂RN é um domínio limitado suave com N ≥ 3, 2≤ p0 < N, 0 < β0 ≤ 1 e λ0 > 0.
As hipóteses sobre as funções a0 : R+ → R+ de classe C1 e f0 : R→ R contínua com
crescimento exponencial são as seguintes:

(a1) existem constantes k1, k2 > 0 e k3, k4 ≥ 0 tais que

k1t p0 + k2tN ≤ a0(t p0)t p0 ≤ k3t p0 + k4tN , para todo t ≥ 0;

(a2) A função
t 7−→ a0(t p0)t p0−2 é crescente, para todo t ≥ 0;

( f1) existe α0 > 0 tal que as condições de crescimento exponencial no infinito são dadas
por:

lim
t→∞

f0(t)

exp
(

α|t|
N

N−1

) = 0, para α > α0

e
lim
t→∞

f0(t)

exp
(

α|t|
N

N−1

) = ∞, para 0 < α < α0;

( f2) a condição de crescimento na origem:
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lim
t→0+

f0(t)
t p0−1 = 0;

( f3) existe γ0 > N tal que
f0(t)≥ tγ0−1, para todo t ≥ 0.

A hipótese (a1) nos dá certas condições que serão utilizadas para limitar o operador do
problema. Enquanto que a hipótese (a2) foi fundamental na demonstração da Proposição
1.1.1 que fornece uma desigualdade crucial tanto para obter propriedades do operador quanto
nos ajudará na prova da convergência da solução aproximada.

A hipótese ( f1) indica o crescimento crítico da função f , o que nos ajudará a fazer
estimativas. A hipótese ( f2) é importante para garantir uma boa geometria na origem. E,
por fim, a hipótese ( f3) será utilizada na Seção 2.2 que possibilitará usar um Princípio de
Comparação Fraca, demonstrado no Lema 1.1.5.

Decorre de ( f1) e ( f2), que, para todo δ > 0 e para todo α > α0, existe Cδ > 0, tal que

| f0(t)t| ≤ δ |t|p0 +Cδ |t|q0 exp
(

α|t|
N

N−1

)
, (2.0.1)

para todo q0 ≥ 0. Neste trabalho, usaremos q0 > N e f0(t) = 0, para todo t ≤ 0. Para
estabelecer a existência de solução positiva para o problema (P1) usamos um problema
auxiliar, para o qual mostramos a existência de solução via Método de Galerkin.

O principal resultado deste capítulo é o

Teorema 2.0.1. Suponha que as condições (a1), (a2) e ( f1) - ( f3) sejam válidas. Então,
existe λ

∗ > 0 tal que o problema (P1) tem uma solução fraca positiva para cada λ0 ∈ (0,λ ∗).

2.1 Problema auxiliar para o caso escalar

Para cada 0 < ε < 1 fixado, consideramos o seguinte problema auxiliar−div(a0(|∇u|p0)|∇u|p0−2
∇u) =

λ0

(u+ ε)β0
+ f0(u) em Ω,

u = 0 sobre ∂Ω,

(2.1.1)

onde as funções a0 e f0 satisfazem as hipóteses do Teorema 2.0.1.
Mostraremos a existência de solução para este problema auxiliar utilizando o Método de

Galerkin e o Lema Fundamental descrito no Lema 1.3.1.
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Antes de prosseguirmos com o enunciado e a prova do principal resultado desta seção,
vamos obter uma estimativa a priori da solução procurada. Lembremos que se u : Ω→R é
uma função qualquer, definimos a parte positiva u+ e a parte negativa u− da função u por

u+(x) := max{u(x),0} e u−(x) := max{−u(x),0}, para todo x ∈Ω.

Deste modo, para cada ε > 0, podemos reescrever o problema (2.1.1) da seguinte forma−div(a0(|∇u|p0)|∇u|p0−2
∇u) =

λ0

(u++ ε)β0
+ f0(u) em Ω,

u = 0 sobre ∂Ω.

(2.1.2)

De fato, suponha que u é solução do problema acima, então∫
Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇φdx = λ0

∫
Ω

φ

(u++ ε)β0
dx+

∫
Ω

f0(u)φdx.

Fazendo a função teste φ assumir o valor da parte negativa de u, isto é, φ = u−, obtemos

∫
Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇u−dx = λ0

∫
Ω

u−

(u++ ε)β0
dx+

∫
Ω

f0(u)u−dx.

Vamos analisar cada uma das integrais acima. Como u = u+−u−, segue que∫
Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇u−dx=

∫
Ω

a0(|∇(u+−u−)|p0)|∇u+−∇u−|p0−2(∇u+−∇u−)∇u−dx.

Observe que o lado direito da igualdade se anula no conjunto {x ∈Ω;u(x)≥ 0} uma vez que
u+ e u− possuem suporte disjuntos, logo, podemos considerar somente os valores de x para
os quais u(x)≤ 0 acarretando em u+ ≡ 0. Assim,∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇u−dx =

∫
Ω

a0(|∇u−|p0)|∇u−|p0−2(−∇u−)∇u−dx

=−
∫

Ω

a0(|∇u−|p0)|∇u−|p0−2|∇u−|2dx

=−
∫

Ω

a0(|∇u−|p0)|∇u−|p0dx. (2.1.3)

Além disso, observe que, por definição, u− é não negativa, logo,

∫
Ω

u−

(u++ ε)β0
dx≥ 0. (2.1.4)
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Novamente, como u+ e u− possuem suporte disjuntos e, por hipótese, f0(t) = 0 para
todo t ≤ 0, então∫

Ω

f0(u)u−dx =
∫

Ω

f0(u+−u−)u−dx =
∫

Ω

f0(−u−)u−dx = 0. (2.1.5)

De (2.1.3), (2.1.4) e (2.1.5) segue que∫
Ω

a0(|∇u−|p0)|∇u−|p0dx≤ 0.

Agora, por (a1), obtemos

0≥
∫

Ω

a0(|∇u−|p0)|∇u−|p0dx≥ k1

∫
Ω

|∇u−|p0dx+ k2

∫
Ω

|∇u−|Ndx

≥ k2

∫
Ω

|∇u−|Ndx = k2||u−||N1,N ≥ 0,

logo, k2||u−||N1,N = 0. Desde que k2 > 0, segue ||u−||1,N = 0, logo, u− = 0 e u = u+ ≥ 0.
Portanto, como uma solução do problema (2.1.2) também é solução do problema (2.1.1),

vamos procurar soluções assumindo, a partir deste momento, que u é não negativa. Com isso,
estamos prontos para enunciar e demonstrar o resultado principal desta seção.

Lema 2.1.1. Para cada 0 < ε < 1, existe λ
∗ > 0 tal que o problema (2.1.1) tem uma solução

fraca não negativa para todo λ0 ∈ (0,λ ∗).

Demonstração. Seja B = {e1,e2, . . . ,em, . . .} uma base de Schauder de W 1,N
0 (Ω). Para cada

m ∈N, defina
Wm = [e1,e2, . . . ,em]

sendo o espaço de dimenção finita gerado por {e1,e2, . . . ,em}. Observe que os espaços
(Wm, || · ||) e (Rm, | · |) são isometricamente isomorfos pela aplicação natural

S : Wm→Rm

dado por

u =
m

∑
j=1

ξ je j 7→ S(u) = ξ = (ξ1,ξ2, . . . ,ξm),

onde

|ξ |=
m

∑
j=1
|ξ j| com |ξ |N = |ξ1|N + |ξ2|N + · · ·+ |ξm|N =

m

∑
j=1
|ξ j|N
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e

||u||1,N =

(∫
Ω

|∇u|Ndx
) 1

N

.

De fato, veja que

||u||N1,N =

∫
Ω

|∇u|Ndx =

∫
Ω

∣∣∣∣∣∇
(

m

∑
j=1

ξ je j

)∣∣∣∣∣
N

dx

=

∫
Ω

∣∣∣∣∣ m

∑
j=1

ξ j∇e j

∣∣∣∣∣
N

dx =

∫
Ω

m

∑
j=1
|ξ j|N |∇e j|Ndx

=
m

∑
j=1

∣∣ξ j
∣∣N ∫

Ω

∣∣∇e j
∣∣N dx =

m

∑
j=1

∣∣ξ j
∣∣N ||e j||N1,N

=
m

∑
j=1

∣∣ξ j
∣∣N = |ξ |N .

Logo,
||u||1,N = |ξ |= |S(u)|. (2.1.6)

Para cada m ∈N, defina a função G :Rm→Rm tal que

G(ξ ) = G(ξ1,ξ2, . . . ,ξm) = (G1(ξ ),G2(ξ ), . . . ,Gm(ξ )),

onde ξ = (ξ1,ξ2, . . . ,ξm) ∈Rm,

G j(ξ ) =
∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇e j dx−λ0

∫
Ω

e j

(u+ ε)β0
dx−

∫
Ω

f0(u)e j dx,

para todo j = 1,2, . . . ,m, e u =
m

∑
j=1

ξ je j ∈Wm. Portanto,

⟨G(ξ ),ξ ⟩=
m

∑
j=1

G j(ξ )ξ j

=
m

∑
j=1

(∫
Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇e jξ j dx−λ0

∫
Ω

e jξ j

(u+ ε)β0
dx−

∫
Ω

f0(u)e jξ j dx
)

=
∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇u

m

∑
j=1

ξ j∇e j dx−λ0

∫
Ω

1
(u+ ε)β0

m

∑
j=1

ξ je j dx

−
∫

Ω

f0(u)
m

∑
j=1

ξ je j dx.
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Como

u =
m

∑
j=1

ξ je j e
m

∑
j=1

ξ j∇e j = ∇

(
m

∑
j=1

ξ je j

)
= ∇u

segue que

⟨G(ξ ),ξ ⟩=
∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇u dx−λ0

∫
Ω

u
(u+ ε)β0

dx−
∫

Ω

f0(u)u dx

=
∫

Ω

a0(|∇u|p0)|∇u|p0 dx−λ0

∫
Ω

u
(u+ ε)β0

dx−
∫

Ω

f0(u)u dx.

A partir de agora, precisamos estimar cada parcela acima de modo a obter ⟨G(ξ ),ξ ⟩ ≥ 0
e, assim, podermos aplicar o Lema 1.3.1. Inicialmente, observe que, ao assumirmos u≥ 0
em Ω, segue da imersão de Sobolev W 1,N

0 (Ω) ↪→ L1(Ω) que existe uma constante Cε > 0 tal
que ∫

Ω

u
(u+ ε)β0

dx≤
∫

Ω

u
εβ0

dx≤ 1
εβ0

∫
Ω

|u|dx =
1

εβ0
||u||1 ≤Cε ||u||1,N . (2.1.7)

Usando (2.0.1) existem α > α0 e q0 > N tal que∫
Ω

| f0(u)u| dx≤ δ

∫
Ω

|u|p0 dx+Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx

= δ ||u||p0
p0
+Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx.

Da imersão de Sobolev W 1,p0
0 (Ω) ↪→ Lp0(Ω), existe uma constante positiva C1, tal que∫

Ω

| f0(u)u| dx≤ δC1||u||p0
1,p0

+Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx.

Por outro lado, vale ∫
Ω

| f0(u)u| dx≥
∣∣∣∣∫

Ω

f0(u)u dx
∣∣∣∣≥ ∫

Ω

f0(u)u dx,

logo, obtemos ∫
Ω

f0(u)u dx≤ δC1||u||p0
1,p0

+Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx. (2.1.8)

Agora, de (a1), temos∫
Ω

a0(|∇u|p0)|∇u|p0 dx≥ k1

∫
Ω

|∇u|p0 dx+ k2

∫
Ω

|∇u|N dx
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= k1||u||p0
1,p0

+ k2||u||N1,N . (2.1.9)

Segue de (2.1.7), (2.1.8) e (2.1.9) que

⟨G(ξ ),ξ ⟩ ≥ k1||u||p0
1,p0

+ k2||u||N1,N−λ0Cε ||u||1,N−δC1||u||p0
1,p0
−Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx

= k2||u||N1,N +(k1−δC1)||u||p0
1,p0
−λ0Cε ||u||1,N−Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx. (2.1.10)

Como, por hipótese, k1 > 0, tomando δ > 0 suficientemente pequeno tal que (k1−δC1)> 0,
podemos reescrever (2.1.10) como

⟨G(ξ ),ξ ⟩ ≥ k2||u||N1,N−λ0Cε ||u||1,N−Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx. (2.1.11)

Usando a Desigualdade de Holder com s,s′ > 1 conjugados de Lebesgue, isto é
1
s
+

1
s′
= 1,

temos

Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx≤Cδ

(∫
Ω

|u|q0s′ dx
) 1

s′
(∫

Ω

exp
(

αs|u|
N

N−1

)
dx
) 1

s

=Cδ ||u||
q0
s′

(∫
Ω

exp
(

αs|u|
N

N−1

)
dx
) 1

s

Como q0 > N e s′ > 1, então da imersão de Sobolev W 1,N(Ω) ↪→ Ls′(Ω), existe C′1 > 0 tal
que ||u||q0

s′ ≤C′1||u||
q0
W 1,N(Ω)

. Desde que Ω é limitado, as normas ||u||W 1,N(Ω) e ||u||W 1,N
0 (Ω)

=

||u||1,N são equivalentes, portanto, existe uma constante C̃1 tal que

Cδ

∫
Ω

|u|q0 exp
(

α|u|
N

N−1

)
dx≤CδC′1||u||

q0
W 1,N(Ω)

(∫
Ω

exp
(

αs|u|
N

N−1

)
dx
) 1

s

≤CδC̃1||u||q0
1,N

(∫
Ω

exp
(

αs|u|
N

N−1

)
dx
) 1

s

. (2.1.12)

Então, segue de (2.1.11) e (2.1.12) que

⟨G(ξ ),ξ ⟩ ≥ k2||u||N1,N−λ0Cε ||u||1,N−CδC̃1||u||q0
1,N

(∫
Ω

exp
(

αs|u|
N

N−1

)
dx
) 1

s

.
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Suponha agora que ||u||1,N = r, para algum r > 0 escolhido posteriormente. Temos

∫
Ω

exp
(

αs|u|
N

N−1

)
dx =

∫
Ω

exp

(
αs||u||

N
N−1
1,N

(
|u|
||u||1,N

) N
N−1
)

dx

=
∫

Ω

exp

(
αsr

N
N−1

(
|u|
||u||1,N

) N
N−1
)

dx

e, aplicando a Desigualdade de Trudinger-Moser (ver Teorema 1.2.1), impomos que

αsr
N

N−1 ≤ αN =⇒ r ≤
(

αN

αs

)N−1
N

,

onde αN = Nω

1
N−1
N−1 em que ωN−1 é a medida (N− 1)-dimensional de uma (N− 1)-esfera.

Portanto, existe M > 0 tal que

sup
||u||1,N≤1

∫
Ω

exp

(
αsr

N
N−1

(
|u|
||u||1,N

) N
N−1
)

dx≤M

e daí,
⟨G(ξ ),ξ )≥ k2rN−λ0Cεr−CδC̃1M

1
s rq0.

Agora, é necessário escolher r, tal que

k2rN−CδC̃1M
1
s rq0 ≥ k2rN

2
.

Logo,

k2−CδC̃1M
1
s rq0−N ≥ k2

2
⇐⇒ rq0−N ≤ k2

CδC̃1M
1
s
− k2

2CδC̃1M
1
s

⇐⇒ rq0−N ≤ k2

2CδC̃1M
1
s

⇐⇒ r ≤

(
k2

2CδC̃1M
1
s

) 1
q0−N

.
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Agora, considerando r = min

(αN

αs

)N−1
N

,

(
k2

2CδC̃1M
1
s

) 1
q0−N

, temos que

⟨G(ξ ),ξ ⟩ ≥ k2rN

2
−λ0Cεr.

Veja que
k2rN

2
−λ0Cεr > 0⇔ λ0 <

k2rN−1

2Cε

,

portanto, escolhendo

λ
∗ =

k2rN−1

4Cε

,

obtemos
⟨G(ξ ),ξ ⟩> 0, para todo 0 < λ0 < λ

∗, ξ ∈Rm e |ξ |s = r.

Assim, estamos nas hipóteses do Lema 1.3.1 e, portanto, ao aplicá-lo obtemos que, para
cada m ∈N, existe y ∈Rm com |y|s ≤ r < 1 tal que G(y) = 0. Isto é,

G(y) = 0⇒ (G1(y),G2(y), . . . ,Gm(y)) = (0,0, . . . ,0)

⇒ G j(y) = 0, para cada j = 1,2, . . . ,m.

Logo, por (2.1.6), existe um ∈Wm satisfazendo

||um||1,N = |y| ≤ r < 1, para todo m ∈N (2.1.13)

tal que

0=G j(y) =

∫
Ω

a0(|∇um|)p0|∇um|p0−2
∇um∇e j dx−λ0

∫
Ω

e j

(um + ε)β0
dx−

∫
Ω

f0(um)e j dx,

logo∫
Ω

a0(|∇um|)p0|∇um|p0−2
∇um∇e j dx = λ0

∫
Ω

e j

(um + ε)β0
dx+

∫
Ω

f0(um)e j dx, (2.1.14)

para j = 1,2, . . . ,m. Multiplicando a equação (2.1.14) por qualquer escalar σ j, para cada
j = 1,2, . . . ,m, temos que∫

Ω

a0(|∇um|)p0|∇um|p0−2
∇um∇(e jσ j) dx = λ0

∫
Ω

e jσ j

(um + ε)β0
dx+

∫
Ω

f0(um)e jσ j dx,
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para cada j = 1,2, . . . ,m. Agora, somando as m equações termo a termo, obtemos∫
Ω

a0(|∇um|)p0|∇um|p0−2
∇um∇

m

∑
j=1

e jσ j dx= λ0

∫
Ω

∑
m
j=1 e jσ j

(um + ε)β0
dx+

∫
Ω

f0(um)
m

∑
j=1

e jσ j dx.

Note que
m

∑
j=1

e jσ j ∈Wm, logo, escrevendo φ =
m

∑
j=1

e jσ j, concluimos que

∫
Ω

a0(|∇um|)p0|∇um|p0−2
∇um∇φ dx = λ0

∫
Ω

φ

(um + ε)β0
dx+

∫
Ω

f0(um)φ dx, (2.1.15)

para todo φ ∈Wm, o que mostra que um é uma solução fraca aproximada do problema auxiliar
(2.1.1).

De (2.1.13), observamos que r não depende de m, logo (um) é uma sequência limitada
em Wm. Como Wm ⊂ W 1,N

0 (Ω), então (um) é limitada em W 1,N
0 (Ω), que é um espaço

reflexivo de Banach. Assim, pelo Teorema B.3.4, existe uma subsequência de (um) que
converge fracamente para algum u ∈W 1,N

0 (Ω). Além disso, pela imersão compacta de

Sobolev W 1,N(Ω)
cpct.
↪→ Lθ (Ω),θ ≥ 1, existe uma subsequência de (um) que converge para

algum u ∈ Lθ (Ω). Compilando essas informações e utilizando o Teorema B.3.3, a menos de
subsequência, existe u ∈W 1,N

0 (Ω) tal que
um ⇀ u em W 1,N

0 (Ω),

um→ u em Lθ (Ω),θ ≥ 1,

um(x)→ u(x) q.t.p em Ω,

|um(x)| ≤ g(x) ∈ Lθ (Ω) q.t.p em Ω,θ ≥ 1.

(2.1.16)

Veja bem, em (2.1.15), mostramos que um ∈Wm é uma solução do problema auxiliar
(2.1.1), porém, o objetivo é estender essa solução para W 1,N

0 (Ω). Em outras palavras,
queremos mostrar que cada integral em (2.1.15) converge para uma integral dependendo
de u ∈W 1,N

0 (Ω). Para tanto, utilizaremos fortemente as convergências dadas em (2.1.16)
atreladas ao Teorema da Convergência Dominada de Lebesgue.

Fixe k ∈N e considere m≥ k, então Wk ⊂Wm, logo, de (2.1.15), vale∫
Ω

a0(|∇um|p0)|∇um|p0−2
∇um∇φk dx = λ0

∫
Ω

φk

(um + ε)β0
dx+

∫
Ω

f0(um)φk dx, (2.1.17)
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para toda φk ∈Wk. Como φk ∈Wk e 0 < β0 ≤ 1, observe que∣∣∣∣ φk

(um(x)+ ε)β0

∣∣∣∣= |φk|
|um(x)+ ε|β0

≤ |φk|
εβ0
∈ L1(Ω), pois φk ∈Wk ⊂W 1,N

0 (Ω)

e de (2.1.16) temos que

φk

(um(x)+ ε)β0
→ φk

(u(x)+ ε)β0
q.t.p em Ω.

Portanto, usamos o Teorema da Convergência Dominada de Lebesgue (Teorema B.3.1) para
obter que ∫

Ω

φk

(um + ε)β0
dx→

∫
Ω

φk

(u+ ε)β0
dx. (2.1.18)

Agora, como f0 é uma função contínua, novamente de (2.1.16), segue que

f0(um(x))φk→ f0(u(x))φk q.t.p em Ω. (2.1.19)

Usando (2.0.1), temos que

| f0(um(x))um(x)| ≤ δ |um(x)|p0 +Cδ |um(x)|q0 exp
(

α|um(x)|
N

N−1

)
,

e daí
| f0(um(x))| ≤ δ |um(x)|p0−1 +Cδ |um(x)|q0−1 exp

(
α|um(x)|

N
N−1

)
.

Multiplicando a desigualdade acima por |φk|, obtemos

| f0(um(x))φk| ≤ δ |um(x)|p0−1|φk|+Cδ |um(x)|q0−1 exp
(

α|um(x)|
N

N−1

)
|φk|.

Para usarmos o Teorema da Convergência da Dominada de Lebesgue, precisamos provar que
a função ĝ :R→R definida por

ĝ(um(x)) := δ |um(x)|p0−1|φk|+Cδ |um(x)|q0−1 exp
(

α|um(x)|
N

N−1

)
|φk|

satisfaz
| f0(um(x))φk| ≤ ĝ(um(x)) ∈ L1(Ω). (2.1.20)

É suficiente mostrar que ĝ(um(x)) é convergente em L1(Ω). De fato, como 2≤ p0 < N,
usamos (2.1.16) para obter

|um(x)|p0−1|φk| → |u(x)|p0−1|φk| q.t.p em Ω. (2.1.21)



2.1 Problema auxiliar para o caso escalar 30

e
|um(x)|p0−1|φk| ≤ g(x)p0−1|φk| ∈ L1(Ω). (2.1.22)

Segue de (2.1.21), (2.1.22) e do Teorema da Convergência Dominada de Lebesgue que∫
Ω

|um|p0−1|φk| dx→
∫

Ω

|u|p0−1|φk| dx. (2.1.23)

Além disso, como q0 > N ≥ 3, novamente de (2.1.16) obtemos

|um(x)|q0−1 exp
(

α|um(x)|
N

N−1

)
→ |u(x)|q0−1 exp

(
α|u(x)|

N
N−1

)
q.t.p em Ω. (2.1.24)

Agora, considerando s,s′> 1 tais que
1
s
+

1
s′
= 1, usamos (2.1.16) e o fato que q0 >N ≥ 3

para obter
|um|q0−1→ |u|q0−1 em Ls′(Ω). (2.1.25)

Além disso, de (2.1.13) obtemos∫
Ω

exp
(

αs|um(x)|
N

N−1

)
dx =

∫
Ω

exp

(
αs||um||

N
N−1
1,N

(
|um(x)|
||um||1,N

) N
N−1
)

dx

≤

∫
Ω

exp

(
αsr

N
N−1

(
|um(x)|
||um||1,N

) N
N−1
)

dx

≤ sup
||um(x)||≤1

∫
Ω

exp

(
αsr

N
N−1

(
||um||
||um||1,N

) N
N−1
)

dx

e aplicando a Desigualdade de Trudinger-Moser (ver Teorema 1.2.1), existe uma constante
M > 0 tal que ∫

Ω

exp
(

αs|um(x)|
N

N−1

)
dx≤M. (2.1.26)

Daí, de (2.1.25), (2.1.26) e da Desigualdade de Hölder, temos∫
Ω

|um|q0−1 exp
(

α|um|
N

N−1

)
dx

≤
(∫

Ω

|um|(q0−1)s′dx
) 1

s′
(∫

Ω

exp
(

αs|um|
N

N−1

)
dx
) 1

s

(2.1.27)

≤ ||um||q0−1
Ls′(Ω)

M
1
s = M.
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Usamos (2.1.24), (2.1.27) e o Teorema de Brezis-Lieb (Ver Teorema B.3.2) para concluir
que

|um|q0−1 exp
(

α|um|
N

N−1

)
⇀ |u|q0−1 exp

(
α|u|

N
N−1

)
. (2.1.28)

Segue de (2.1.28) que∫
Ω

|um|q0−1 exp
(

α|um|
N

N−1

)
|φk|dx→

∫
Ω

|u|q0−1 exp
(

α|u|
N

N−1

)
|φk|dx. (2.1.29)

Portanto, de (2.1.23) e (2.1.29) provamos que∫
Ω

ĝ(um(x))dx→ δ

∫
Ω

|u(x)|p0−1|φk|dx+Cδ

∫
Ω

|u(x)|q0−1 exp
(

α|u(x)|
N

N−1

)
|φk|dx,

que mostra a identidade (2.1.20).
Então, usamos (2.1.19), (2.1.20) e o Teorema da Convergência Dominada de Lebesgue

para concluir que ∫
Ω

f0(um)φk dx→
∫

Ω

f0(u)φk dx. (2.1.30)

Por fim, o próximo passo é mostrar que∫
Ω

a0(|∇um|p0)|∇um|p0−2
∇um∇φk dx→

∫
Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇φk dx.

Para isto, vamos usar a Proposição 1.1.1 para obter a desigualdade

C|∇um−∇u|N ≤ ⟨a0(|∇um|p0)|∇um|p0−2
∇um−a0(|∇u|p0)|∇u|p0−2

∇u,∇um−∇u⟩,

onde C =

(
k2

4

)N−2

> 0. De fato,

⟨a0(|∇um|p0)|∇um|p0−2
∇um−a0(|∇u|p0)|∇u|p0−2

∇u,∇um−∇u⟩=
= a0(|∇um|p0)|∇um|p0−2⟨∇um,∇um−∇u⟩−a0(|∇u|p0)|∇u|p0−2⟨∇u,∇um−∇u⟩
= a0(|∇um|p0)|∇um|p0−2(|∇um|2−∇um∇u)−a0(|∇u|p0)|∇u|p0−2(∇u∇um−|∇u|2)
= a0(|∇um|p0)|∇um|p0−a0(|∇um|p0)|∇um|p0−2

∇um∇u+a0(|∇u|p0)|∇u|p0

−a0(|∇u|p0)|∇u|p0−2
∇um∇u,

logo,

C|∇um−∇u|N ≤ a0(|∇um|p0)|∇um|p0−a0(|∇um|p0)|∇um|p0−2
∇um∇u+a0(|∇u|p0)|∇u|p0

−a0(|∇u|p0)|∇u|p0−2
∇um∇u.
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Integrando, obtemos

0≤C

∫
Ω

|∇um−∇u|N dx =C||um−u||N1,N

≤
∫

Ω

a0(|∇um|)p0|∇um|p0 dx−
∫

Ω

a0(|∇um|)p0|∇um|p0−2
∇um∇u dx+on(1),

onde
on(1) =

∫
Ω

a0(|∇u|p0)|∇u|p0 dx−
∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇um∇u dx,

pois da convergência fraca um ⇀ u temos que on(1)→ 0.
Usando que um ∈W 1,N

0 (Ω) é solução do problema auxiliar (2.1.1), segue que

C||um−u||N1,N

≤
∫

Ω

a0(|∇um|)p0|∇um|p0−2
∇um∇um dx−

∫
Ω

a0(|∇um|)p0 |∇um|p0−2
∇um∇udx+on(1)

= λ0

∫
Ω

um

(um + ε)β0
dx+

∫
Ω

f0(um)umdx−λ0

∫
Ω

u
(um + ε)β0

dx−
∫

Ω

f0(um)udx+on(1).

Mas, pelas convergências mostradas em (2.1.18) e (2.1.30), obtemos∫
Ω

um

(um + ε)β0
dx→

∫
Ω

u
(u+ ε)β0

dx,

∫
Ω

u
(um + ε)β0

dx→
∫

Ω

u
(u+ ε)β0

dx,∫
Ω

f0(um)umdx→
∫

Ω

f0(u)udx

e ∫
Ω

f0(um)udx→
∫

Ω

f0(u)udx.

Portanto, as quatro integrais se anulam quando m→ ∞, logo podemos usar um abuso de
notação para denotar toda a expressão do lado direito da igualdade acima por simplesmente
on(1), isto é,

λ0

∫
Ω

um

(um + ε)β0
dx+

∫
Ω

f0(um)um dx−λ0

∫
Ω

u
(um + ε)β0

dx−
∫

Ω

f0(um)u dx+on(1)= on(1),
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Assim,
||um−u||N1,N ≤ on(1).

Como on(1)→ 0 segue que ||um−u||1,N → 0 e, portanto

um→ u, em W 1,N
0 (Ω). (2.1.31)

Do Lema 1.1.1, sabemos que a função definida por

E(u) =
∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇φk dx

é contínua, então, usamos este fato e (2.1.31) para obter a convergência∫
Ω

a0(|∇um|p0)|∇um|p0−2
∇um∇φk dx→

∫
Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇φk dx, (2.1.32)

para todo φk ∈Wk. Fazendo m→ ∞ em (2.1.17), usamos (2.1.18), (2.1.30) e (2.1.32) para
concluir que∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇φk dx = λ0

∫
Ω

φk

(u+ ε)β0
dx+

∫
Ω

f0(u)φk dx, (2.1.33)

para todo φk ∈Wk.
Resta agora mostrar que a igualdade (2.1.31) vale para toda φ ∈W 1,N

0 (Ω). Com efeito,
como [Wk]k∈N é denso em W 1,N

0 (Ω), dado φ ∈W 1,N
0 (Ω), existe uma sequência (φk) ∈Wk tal

que
φk→ φ quando k→ ∞.

Lembrando de φk é da forma
k

∑
j=1

σ je j, então, por linearidade, obtemos

∫
Ω

a0(|∇u|)p0|∇u|p0−2
∇u∇φk dx→

∫
Ω

a0(|∇u|)p0|∇u|p0−2
∇u∇φ dx, (2.1.34)∫

Ω

φk

(u+ ε)β0
dx→

∫
Ω

φ

(u+ ε)β0
dx, (2.1.35)

e ∫
Ω

f0(u)φk dx→
∫

Ω

f0(u)φ dx. (2.1.36)
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Portanto, como φ ∈W 1,N
0 (Ω) é arbitrário, segue de (2.1.33) - (2.1.36) que∫

Ω

a0(|∇u|p0)|∇u|p0−2
∇u∇φ dx = λ0

∫
Ω

φ

(u+ ε)β0
dx+

∫
Ω

f0(u)φ dx, (2.1.37)

para todo φ ∈W 1,N
0 (Ω), o que mostra que u é uma solução fraca não negativa do problema

(2.1.1).

Mediante disto, agora, estamos prontos para provar o resultado principal deste capítulo.

2.2 Prova do Teorema 2.0.1

Para cada n ∈N, sejam ε =
1
n

e u 1
n
= un, onde un é uma solução fraca não negativa do

problema auxiliar
−div(a0(|∇un|p0)|∇un|p0−2

∇un) =
λ0

(un +
1
n)

β0
+ f0(un) em Ω,

un ≥ 0 em Ω,

un = 0 sobre ∂Ω,

obtida pelo Lema 2.1.1. Observe que de ( f3), existe γ0 > N tal que

λ0(
un +

1
n

)β0
+ f0(un)≥

λ0

(un +1)β0
+ |un|γ0−1.

Como a função t 7−→ λ0

(t +1)β0
+ tγ0−1 é limitada inferiormente em t ≥ 0, segue que ela

atinge um mínimo positivo z. Logo,

−div(a0(|∇un|p0)|∇un|p0−2
∇un) =

λ0(
un +

1
n

)β0
+ f0(un)

≥ λ0

(un +1)β0
+ |un|γ0−1 ≥ z > 0 em Ω.

Desde que o operador T : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))′ dado por

⟨T v,φ⟩=
∫

Ω

a0(|∇v|p0)|∇v|p0−2
∇v∇φ
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é contínuo, monótono e coercivo (Ver Seção 1.1), podemos aplicar o Teorema de Minty-
Browder para obter que existe uma única solução v ∈W 1,N

0 (Ω) para o problema linear
−div(a0(|∇v|p0)|∇v|p0−2

∇v) = z em Ω,

v > 0 em Ω,

v = 0 sobre ∂Ω,

assim, temos−div(a0(|∇un|p0)|∇un|p0−2
∇un)≥−div(a0(|∇v|p0)|∇v|p0−2

∇v) em Ω,

un = v sobre ∂Ω.
(2.2.1)

Em virtude do Princípio de Comparação Fraca (Lema 1.1.5) concluímos que

un(x)≥ v(x)> 0 em Ω, ∀n ∈N, (2.2.2)

o que implica que un(x)↛ 0, para cada x ∈Ω, pois un(x) é sempre limitado inferiormente
por um número positivo.

Agora, de (2.1.16), temos

um ⇀ un em W 1,N
0 (Ω) quando m→+∞,

logo, pelo Teorema B.4.1 e (2.1.13), segue que

||un||1,N ≤ liminf
m→+∞

||um||1,N ≤ r < 1, para todo n ∈N.

Portanto, (un) é uma sequência limitada em W 1,N
0 (Ω), pois r não depende de n. Assim,

como W 1,N
0 (Ω) é um espaço de Banach reflexivo, a menos de subsequência, existe u ∈

W 1,N
0 (Ω) tal que 

un ⇀ u em W 1,N
0 (Ω),

un→ u em Lθ (Ω), θ ≥ 1,

un(x)→ u(x) q.t.p em Ω,

|un(x)| ≤ g(x) ∈ Lθ (Ω) q.t.p em Ω, θ ≥ 1.

(2.2.3)
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Decorre de (2.1.37) que∫
Ω

a0(|∇un|p0))|∇un|p0−2
∇un∇φ dx = λ0

∫
Ω

φ(
un +

1
n

)β0
dx+

∫
Ω

f0(un)φ dx, (2.2.4)

para todo φ ∈W 1,N
0 (Ω). Como f0 é contínua, por (2.2.3), temos

f0(un(x))φ → f0(u(x))φ , q.t.p em Ω.

Argumentando como em (2.1.20), obtemos que a função ĝ :R→R satisfaz

| f (un(x))φ | ≤ ĝ(un(x)) ∈ L1(Ω)

Então, pelo Teorema da Convergência Dominada de Lebesgue, concluímos que∫
Ω

f0(un)φdx→
∫

Ω

f0(u)φdx, ∀φ ∈W 1,N
0 (Ω). (2.2.5)

Além disso, usando mesmo raciocínio para obter (2.1.32), temos∫
Ω

a0(|∇un|p0))|∇un|p0−2
∇un∇φdx→

∫
Ω

a0(|∇u|p0))|∇u|p0−2
∇u∇φdx, ∀ φ ∈W 1,N

0 (Ω)

(2.2.6)
E ainda, por (2.2.3),

φ(
un(x)+ 1

n

)β0
→ φ

u(x)β0
q.t.p em Ω. (2.2.7)

Desde que z ∈ L∞(Ω), pelo Lema 1.1.6 e (2.2.1), segue que v ∈ L∞(Ω), e assim, pelo
Lema 1.1.7 obtemos que v ∈C1,α(Ω), para algum α ∈ (0,1). Agora, em virtude do Lema
1.1.8, obtemos

∂v
∂η

< 0 em ∂Ω, onde η é a normal unitária exterior em ∂Ω.

Assim, para cada x ∈Ω, segue do Lema 1.2.1 que existe uma constante C > 0, tal que

v(x)
d(x)

≥C,

logo, por (2.2.2),
un(x)≥ v(x)≥Cd(x)> 0,

onde d(x) = dist(x,∂Ω). Portanto,
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∫
Ω

φ(
un(x)+ 1

n

)β0
dx≤

∫
Ω

φ

(un(x))
β0

dx≤

∫
Ω

φ

(Cd(x))β0
dx.

Daí, usamos a Desigualdade de Hardy-Sobolev (ver Teorema 1.2.2) para obter
∣∣∣∣ φ

(Cd(x))β0

∣∣∣∣ ∈
Lr(Ω) e C2 > 0 tal que ∫

Ω

φ

(Cd(x))β0
dx≤C2||φ ||1,N ,

e, portanto ∫
Ω

φ(
un(x)+ 1

n

)β0
dx≤C2||φ ||1,N . (2.2.8)

Logo, de (2.2.7) e (2.2.8) e do Teorema da Convergência Dominada de Lebesgue, temos∫
Ω

φ(
un(x)+ 1

n

)β0
dx→

∫
Ω

φ

uβ0
dx, ∀φ ∈W 1,N

0 (Ω). (2.2.9)

Fazendo n→+∞ em (2.2.4), usamos (2.2.5), (2.2.6) e (2.2.9) para concluir que∫
Ω

a0(|∇u|p0))|∇u|p0−2
∇u∇φ dx = λ0

∫
Ω

φ

uβ0
dx+

∫
Ω

f0(u)φ dx, ∀φ ∈W 1,N
0 (Ω),

o que prova que u ∈W 1,N
0 (Ω) é uma solução fraca positiva para problema (P1).



Capítulo 3

Segundo Resultado: caso sistema

Neste capítulo, investigaremos a existência de solução positiva para o sistema
−div(a1(|∇u|p1) |∇u|p1−2

∇u) =
λ1

uβ1
+ f1(v) em Ω,

−div(a2(|∇v|p2) |∇v|p2−2
∇v) =

λ2

vβ2
+ f2(u) em Ω,

u = v = 0 sobre ∂Ω,

(P2)

onde Ω⊂RN é um domínio limitado suave com N ≥ 3, 2≤ pi < N, 0 < βi ≤ 1 e λi > 0,
com i = 0,1,2.

As hipóteses que utilizamos sobre funções ai : R+ → R+ de classe C1 e fi : R→ R

contínua com crescimento exponencial são as seguintes:

(a1) existem constantes k1, k2 > 0, k3, k4 ≥ 0 tais que

k1t pi + k2tN ≤ ai(t pi)t pi ≤ k3t pi + k4tN , para todo t ≥ 0;

(a2) a função
t 7−→ ai(t pi)t pi−2 é crescente, para todo t ≥ 0;

( f1) existe α0 > 0 tal que as condições de crescimento exponencial no infinito são dadas
por:

lim
t→∞

fi(t)

exp
(

α|t|
N

N−1

) = 0, para α > α0

e
lim
t→∞

fi(t)

exp
(

α|t|
N

N−1

) = ∞, para 0 < α < α0;
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( f2) a condição de crescimento na origem:

lim
t→0+

fi(t)
t pi−1 = 0;

( f3) existe γi > N tal que
fi(t)≥ tγi−1, para todo t ≥ 0.

Da mesma forma que no capítulo anterior, de ( f1) e ( f2), para todo δ > 0 e para todo
α > α0, existe Cδ > 0 tal que

| fi(t)t| ≤ δ |t|pi +Cδ |t|qi exp
(

α|t|
N

N−1

)
, (3.0.1)

para todo qi ≥ 0. Neste trabalho, usaremos qi > N fi(t) = 0 para todo t ≤ 0. Para estabelecer
a existência de solução não negativa para o problema (P2) usamos um problema auxiliar,
para o qual mostramos a existência de solução via Método de Galerkin.

O principal resultado deste capítulo é o

Teorema 3.0.1. Suponha que, para i = 1,2, ai satisfaz (a1) - (a2) e fi satisfaz ( f1) - ( f3).
Então, existe λ

∗ > 0 tal que o problema (P2) tem uma solução fraca positiva para cada
0 < λ1 +λ2 < λ

∗.

3.1 Problema auxiliar para o caso sistema

Para cada 0 < ε < 1 fixado, consideramos o seguinte problema auxiliar
−div(a1(|∇u|p1)|∇u|p1−2

∇u) =
λ1

(u+ ε)β1
+ f1(v) em Ω,

−div(a2(|∇v|p2)|∇v|p2−2
∇v) =

λ2

(v+ ε)β2
+ f2(u) em Ω,

u = v = 0 sobre ∂Ω,

(3.1.1)

onde as funções ai e fi satisfazem as hipóteses do Teorema 3.0.1. Assim como no Capítulo
2, mostraremos a existência de solução para este problema auxiliar utilizando o Método de
Galerkin e o Lema Fundamental descrito no Lema 1.3.1.

Antes de prosseguirmos com o enunciado e a prova do principal resultado desta seção,
vamos obter, assim como no Capítulo 2, uma estimativa a priori da solução procurada. Desde
modo, para cada ε > 0, podemos reescrever o problema (3.1.1) da seguinte forma
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
−div(a1(|∇u|p1)|∇u|p1−2

∇u) =
λ1

(u++ ε)β1
+ f1(v) em Ω,

−div(a2(|∇v|p2)|∇v|p2−2
∇v) =

λ2

(v++ ε)β2
+ f2(u) em Ω,

u = v = 0 sobre ∂Ω.

(3.1.2)

Primeiramente, suponha que u,v é solução do problema acima, então∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φ dx = λ1

∫
Ω

φ

(u++ ε)β1
dx+

∫
Ω

f1(v)φ dx

e ∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕ dx = λ2

∫
Ω

ϕ

(v++ ε)β2
dx+

∫
Ω

f2(u)ϕ dx,

para toda φ ,ϕ ∈W 1,N
0 (Ω).

Para mostrar que u,v≥ 0 em Ω, basta tomar φ = u− e ϕ = v−. Os passos para mostrar
a não negatividade das funções u,v são análogos aos do Capítulo 2 com a diferença na
última integral de cada igualdade acima, em que teremos f1(v)u− e f2(u)v−. Mas, como
fi ≥ 0,u− ≥ 0 e v− ≥ 0, tem-se∫

Ω

f1(v)u− dx≥ 0 e
∫

Ω

f2(u)v− dx≥ 0.

Logo, se u e v são soluções de (3.1.2) então ambas devem ser, necessariamente, não
negativas. E como as soluções de (3.1.2) são também soluções do problema auxiliar (3.1.1),
podemos procurar soluções assumindo que u,v≥ 0 em Ω.

O principal resultado desta seção é o seguinte:

Lema 3.1.1. Para cada 0 < ε < 1, existe λ
∗ > 0 tal que o problema (3.1.1) tem um solução

fraca não negativa para cada 0 < λ1 +λ2 < λ
∗, com i = 1,2.

Demonstração. Seja B = {e1,e2, . . . ,em, . . .} uma base de Schauder de W 1,N
0 (Ω). Para cada

m ∈N, defina
Wm = [e1,e2, . . . ,em]

sendo o espaço de dimensão finita gerado por {e1,e2, . . . ,em}. Para cada m ∈N, definimos a
função J :R2m→R2m tal que

J(η ,ξ ) = (F1(η ,ξ ),F2(η ,ξ ), . . . ,Fm(η ,ξ ),G1(η ,ξ ),G2(η ,ξ ), . . . ,Gm(η ,ξ )),
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onde (η ,ξ ) = (η1,η2, . . . ,ηm,ξ1,ξ2, . . . ,ξm) ∈R2m,

Fj(η ,ξ ) =

∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇e j dx−λ1

∫
Ω

e j

(u+ ε)β1
dx−

∫
Ω

f1(v)e j dx,

para todo j = 1,2, . . . ,m,

G j(η ,ξ ) =

∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇e j dx−λ2

∫
Ω

e j

(v+ ε)β2
dx−

∫
Ω

f2(u)e j dx,

para todo j = 1,2, . . . ,m,

u =
m

∑
j=1

η je j ∈Wm,

e

v =
m

∑
j=1

ξ je j ∈Wm.

Vamos considerar em W 1,N
0 (Ω)×W 1,N

0 (Ω) a norma definida por

||(u,v)||N = ||u||N1,N + ||v||N1,N .

Observe que

||(u,v)||N = ||u||N1,N + ||v||N1,N =
∫

Ω

|∇u|Ndx+
∫

Ω

|∇v|Ndx

=

∫
Ω

∣∣∣∣∣∇ m

∑
j=1

η je j

∣∣∣∣∣
N

dx+

∫
Ω

∣∣∣∣∣∇ m

∑
j=1

ξ je j

∣∣∣∣∣
N

dx

=

∫
Ω

∣∣∣∣∣ m

∑
j=1

η j∇e j

∣∣∣∣∣
N

dx+

∫
Ω

∣∣∣∣∣ m

∑
j=1

ξ j∇e j

∣∣∣∣∣
N

dx

=

∫
Ω

m

∑
j=1
|η j|N |∇e j|Ndx+

∫
Ω

m

∑
j=1
|ξ j|N |∇e j|Ndx

=
m

∑
j=1
|η j|N

∫
Ω

|∇e j|Ndx+
m

∑
j=1
|ξ j|N

∫
Ω

|∇e j|Ndx

=
m

∑
j=1
|η j|N ||e j||N1,N +

m

∑
j=1
|ξ j|N ||e j||N1,N =

m

∑
j=1
|η j|N +

m

∑
j=1
|ξ j|N

= |η |N + |ξ |N = |(η ,ξ )|N ,
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onde

|η |=
m

∑
j=1
|η j| e |ξ |=

m

∑
j=1
|ξ j|,

tais que vale

|η |N =
m

∑
j=1
|η j|N e |ξ |N =

m

∑
j=1
|ξ j|N .

Logo, segue que
||(u,v)||= |(η ,ξ )|, (3.1.3)

o que mostra que os espaços (Wm, ||(·, ·)||) e (R2m, | · |) são isométricos. Portanto,

⟨J(η ,ξ ),(η ,ξ )⟩= ⟨(F1(η ,ξ ),F2(η ,ξ ), . . . ,Fm(η ,ξ ),G1(η ,ξ ),G2(η ,ξ ), . . . ,Gm(η ,ξ )),

(η1,η2, . . . ,ηm,ξ1,ξ2, . . . ,ξm)⟩

=
m

∑
j=1

Fj(η ,ξ )η j +
m

∑
j=1

G j(η ,ξ )ξ j

=
m

∑
j=1

(∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇e jη jdx−λ1

∫
Ω

e jη j

(u+ ε)β1
dx−

∫
Ω

f1(v)e jη jdx
)

+
m

∑
j=1

(∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇e jξ jdx−λ2

∫
Ω

e jξ j

(v+ ε)β2
dx−

∫
Ω

f2(u)e jξ jdx
)

=

∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇

(
m

∑
j=1

e jη j

)
dx−λ1

∫
Ω

1
(u+ ε)β1

m

∑
j=1

e jη jdx

−
∫

Ω

f1(v)
m

∑
j=1

e jη jdx +

∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇

(
m

∑
j=1

e jξ j

)
dx

−λ2

∫
Ω

1
(v+ ε)β2

m

∑
j=1

e jξ jdx−
∫

Ω

f2(u)
m

∑
j=1

e jξ jdx

=

∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇udx−λ1

∫
Ω

u
(u+ ε)β1

dx−
∫

Ω

f1(v)udx

+

∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇vdx−λ2

∫
Ω

v
(v+ ε)β2

dx−
∫

Ω

f2(u)vdx.

Assim,

⟨J(η ,ξ ),(η ,ξ )⟩=
∫

Ω

a1(|∇u|p1)|∇u|p1 dx−λ1

∫
Ω

u
(u+ ε)β1

dx−
∫

Ω

f1(v)u dx
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+

∫
Ω

a2(|∇v|p2)|∇v|p2 dx−λ2

∫
Ω

v
(v+ ε)β2

dx−
∫

Ω

f2(u)v dx.

(3.1.4)

Precisamos conseguir estimativas sobre as integrais acima de tal forma que consigamos
⟨J(η ,ξ ),(η ,ξ )⟩ ≥ 0 e possamos aplicar o Lema 1.3.1. O processo será semelhante ao feito
no Capítulo 2, mas com algumas diferenças técnicas.

Ao assumirmos u,v ≥ 0 em Ω, segue da imersão de Sobolev W 1,N
0 (Ω) ↪→ L1(Ω), que

existe constantes Cε1 , Cε2 > 0, tais que∫
Ω

u
(u+ ε)β1

dx≤
∫

Ω

u
εβ1

dx≤ 1
εβ1

∫
Ω

|u|dx =
1

εβ1
||u||1 ≤Cε1 ||u||1,N (3.1.5)

e ∫
Ω

v
(v+ ε)β2

dx≤
∫

Ω

v
εβ2

dx≤ 1
εβ2

∫
Ω

|v|dx =
1

εβ2
||v||1 ≤Cε2||v||1,N . (3.1.6)

Usando (3.0.1), obtemos

f1(v)u≤ δ1||v||p1−1||u||+Cδ1||v||
q1−1||u||exp

(
α1||v||

N
N−1

)
.

Pela Desigualdade de Young para p1 e
p1

p1−1
, obtemos

δ1||v||p1−1||u|| ≤ δ1
p1−1

p1
||v||p1 +

δ1

p1
||u||p1 ,

agora, usando a desigualdade de Young para q1 e
q1

q1−1
, obtemos

Cδ1||v||
q1−1||u||exp

(
α||v||

N
N−1

)
≤Cδ1

q1−1
q1
||v||q1 exp

(
α||v||

N
N−1

)
+

Cδ1

q1
||u||q1 exp

(
α||v||

N
N−1

)
,

logo,

f1(v)u≤ δ1
p1−1

p1
||v||p1 +

δ1

p1
||u||p1 +Cδ1

q1−1
q1
||v||q1 exp

(
α||v||

N
N−1

)
+

Cδ1

q1
||u||q1 exp

(
α||v||

N
N−1

)
.



3.1 Problema auxiliar para o caso sistema 44

Por fim, integrando a desigualdade acima e utilizando as imersões de Sobolev, existem
constantes positivas C1,C2,C3 e C4 tais que∫

Ω

f1(v)u dx≤δ1C1||v||p1
1,p1

+δ1C2||u||p1
1,p1

+Cδ1C3

∫
Ω

|v|q1 exp
(

α1|v|
N

N−1

)
dx

+Cδ1C4

∫
Ω

|u|q1 exp
(

α1|v|
N

N−1

)
dx (3.1.7)

e, de forma análoga, obtemos C5,C6,C7 e C8, tais que∫
Ω

f2(u)v dx≤δ2C5||u||p2
1,p2

+δ2C6||v||p2
1,p2

+Cδ2C7

∫
Ω

|u|q2 exp
(

α2|u|
N

N−1

)
dx

+Cδ2C8

∫
Ω

|v|q2 exp
(

α2|u|
N

N−1

)
dx. (3.1.8)

Agora, de (a1), temos∫
Ω

a1(|∇u|p1)|∇u|p1 ≥ k1

∫
Ω

|∇u|p1 dx+ k2

∫
Ω

|∇u|N dx

= k1||u||p1
1,p1

+ k2||u||N1,N (3.1.9)

e ∫
Ω

a2(|∇v|p2)|∇v|p2 ≥ k1

∫
Ω

|∇v|p2 dx+ k2

∫
Ω

|∇v|N dx

= k1||v||p2
1,p2

+ k2||v||N1,N . (3.1.10)

De (3.1.5)− (3.1.10) podemos reescrever (3.1.4) como

⟨J(η ,ξ ),(η ,ξ )⟩ ≥ k1||u||p1
1,p1

+ k2||u||N1,N−λ1Cε1||u||1,N−δ1C1||v||p1
1,p1

−δ1C2||u||p1
1,p1
−Cδ1C3

∫
Ω

|v|q1 exp
(

α1|v|
N

N−1

)
dx

−Cδ1C4

∫
Ω

|u|q1 exp
(

α1|v|
N

N−1

)
dx+ k1||v||p2

1,p2
+ k2||v||N1,N−λ2Cε2||v||1,N

−δ2C5||u||p2
1,p2
−δ2C6||v||p2

1,p2
−Cδ2C7

∫
Ω

|u|q2 exp
(

α2|u|
N

N−1

)
dx

−Cδ2C8

∫
Ω

|v|q2 exp
(

α2|u|
N

N−1

)
dx,

logo

⟨J(η ,ξ ),(η ,ξ )⟩= k2(||u||N1,N + ||v||N1,N)+(k1−δ1C2)||u||p1
1,p1

+(k1−δ2C6)||v||p2
1,p2

−λ1Cε1||u||1,N−λ2Cε2||v||1,N−δ1C1||v||p1
1,p1
−Cδ1C3

∫
Ω

|v|q1 exp
(

α1|v|
N

N−1

)
dx
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−Cδ1C4

∫
Ω

|u|q1 exp
(

α1|v|
N

N−1

)
dx−δ2C5||u||p2

1,p2

−Cδ2C7

∫
Ω

|u|q2 exp
(

α2|u|
N

N−1

)
dx−Cδ2C8

∫
Ω

|v|q2 exp
(

α2|u|
N

N−1

)
dx.

Observe que, como 2≤ p1, p2 < N e das imersões de Sobolev, existem constantes C9,C10 > 0
tais que

δ1C1||v||p1
1,p1
≤ δ1C9||v||p1

1,N

e
δ2C5||u||p2

1,p2
≤ δ2C10||u||p2

1,N .

Como ||(u,v)||N = ||u||N1,N + ||v||N1,N , segue que

δ1C9||v||p1
1,N ≤ δ1C9||(u,v)||p1 e δ2C10||u||p2

1,N ≤ δ2C10||(u,v)||p2

e, como k1 > 0, tomando δ1,δ2 > 0 suficientementes pequenos tais que (k1−δ1C2),(k1−
δ2C6)> 0 obtemos

⟨J(η ,ξ ),(η ,ξ )⟩ ≥ k2||(u,v)||N−λ1Cε1||u||1,N−λ2Cε2||v||1,N−δ1C9||(u,v)||p1

−δ2C10||(u,v)||p2−Cδ1C3

∫
Ω

|v|q1 exp
(

α1|v|
N

N−1

)
dx

−Cδ1C4

∫
Ω

|u|q1 exp
(

α1|v|
N

N−1

)
dx+Cδ2C7

∫
Ω

|u|q2 exp
(

α2|u|
N

N−1

)
dx

−Cδ2C8

∫
Ω

|v|q2 exp
(

α2|u|
N

N−1

)
dx. (3.1.11)

Usando a desigualdade de Hölder com s,s′ > 1 tais que
1
s
+

1
s′
= 1, temos que

Cδ1C3

∫
Ω

|v|q1 exp
(

α1|v|
N

N−1

)
dx≤Cδ1C3

(∫
Ω

|v|q1s′ dx
) 1

s′
(∫

Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

=Cδ1C3||v||q1
s′

(∫
Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

,

Cδ1C4

∫
Ω

|u|q1 exp
(

α1|v|
N

N−1

)
dx≤Cδ1C4

(∫
Ω

|u|q1s′ dx
) 1

s′
(∫

Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

=Cδ1C4||u||q1
s′

(∫
Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

,

Cδ2C7

∫
Ω

|u|q2 exp
(

α2|u|
N

N−1

)
dx≤Cδ2C7

(∫
Ω

|u|q2s′ dx
) 1

s′
(∫

Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s
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=Cδ2C7||u||q2
s′

(∫
Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s

e

Cδ2C8

∫
Ω

|v|q2 exp
(

α2|u|
N

N−1

)
dx≤Cδ2C8

(∫
Ω

|v|q2s′ dx
) 1

s′
(∫

Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s

=Cδ2C8||v||q2
s′

(∫
Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s

.

Como q1,q2 > N e s′ > 1, da imersão de Sobolev W 1,N
0 (Ω) ↪→ Ls′(Ω) existem constantes

C11,C12,C13,C14 > 0, tais que

Cδ1C3

∫
Ω

|v|q1 exp
(

α1|v|
N

N−1

)
dx≤Cδ1C11||v||q1

1,N

(∫
Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

,

Cδ1C4

∫
Ω

|u|q1 exp
(

α1|v|
N

N−1

)
dx≤Cδ1C12||u||q1

1,N

(∫
Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

,

Cδ2C7

∫
Ω

|u|q2 exp
(

α2|u|
N

N−1

)
dx≤Cδ2C13||u||q2

1,N

(∫
Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s

e

Cδ2C8

∫
Ω

|v|q2 exp
(

α2|u|
N

N−1

)
dx≤Cδ2C14||v||q2

1,N

(∫
Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s

.

Como ||(u,v)||N = ||u||N1,N + ||v||N1,N , de (3.1.11), segue que

⟨J(η ,ξ ),(η ,ξ )⟩ ≥ k2||(u,v)||N−λ1Cε1 ||(u,v)||−λ2Cε2||(u,v)||−δ1C9||(u,v)||p1
1,N−δ2C10||(u,v)||p2

1,N

−Cδ1C11||(u,v)||q1
1,N

(∫
Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

−Cδ1C12||(u,v)||q1
1,N

(∫
Ω

exp
(

α1s|v|
N

N−1

)
dx
) 1

s

−Cδ2C13||(u,v)||q2
1,N

(∫
Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s

−Cδ2C14||(u,v)||q2
1,N

(∫
Ω

exp
(

α2s|u|
N

N−1

)
dx
) 1

s

. (3.1.12)
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Suponha agora que ||(u,v)||= r, para algum r > 0 escolhido posteriormente. Então, temos∫
Ω

exp
(

α1s|v|
N

N−1

)
dx =

∫
Ω

exp

(
α1s||v||

N
N−1
1,N

(
|v|
||v||1,N

) N
N−1
)

dx

≤
∫

Ω

exp

(
α1s||(u,v)||

N
N−1

(
|v|
||v||1,N

) N
N−1
)

dx

=

∫
Ω

exp

(
α1sr

N
N−1

(
|v|
||v||1,N

) N
N−1
)

dx.

e ∫
Ω

exp
(

α2s|u|
N

N−1

)
dx =

∫
Ω

exp

(
α2s||u||

N
N−1
1,N

(
|u|
||u||1,N

) N
N−1
)

dx

≤
∫

Ω

exp

(
α2s||(u,v)||

N
N−1

(
|u|
||u||1,N

) N
N−1
)

dx

≤
∫

Ω

exp

(
α2sr

N
N−1

(
|u|
||u||1,N

) N
N−1
)

dx.

Para aplicar a Desigualdade de Trudinger-Moser, impomos que

α1sr
N

N−1 ≤ αN =⇒ r ≤
(

αN

α1s

)N−1
N

e α2sr
N

N−1 ≤ αN =⇒ r ≤
(

αN

α2s

)N−1
N

,

onde αN = Nω

1
N−1
N−1 em que ωN−1 é a medida (N− 1)-dimensional de uma (N− 1)-esfera.

Portanto, existe M1,M2 > 0, tais que

sup
||v||1,N≤1

∫
Ω

exp

(
α1sr

N
N−1

(
|v|
||v||1,N

) N
N−1
)

dx≤M1

e

sup
||u||1,N≤1

∫
Ω

exp

(
α2sr

N
N−1

(
|u|
||u||1,N

) N
N−1
)

dx≤M2.

Logo, existe C15,C16 > 0, tais que podemos reescrever (3.1.12) como

⟨J(η ,ξ ),(η ,ξ )⟩ ≥ k2rN−λ1Cε1r−λ2Cε2r−δ1C9rp1−δ2C10rp2

−Cδ1C11M
1
s

1 rq1−Cδ1C12M
1
s

1 rq1−Cδ2C13M
1
s

2 rq2−Cδ2C14M
1
s

2 rq2
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= k2rN−λ1Cε1r−λ2Cε2r−δ1C9rp1−δ2C10rp2

−Cδ1(C11 +C12)M
1
s

1 rq1−Cδ2(C13 +C14)M
1
s

2 rq2

= k2rN−λ1Cε1r−λ2Cε2r−δ1C9rp1−δ2C10rp2

−Cδ1C15M
1
s

1 rq1−Cδ2C16M
1
s

2 rq2.

Agora, é necessário escolher r, tal que

k2rN

2
−Cδ1C15M

1
s

1 rq1 ≥ k2rN

4

e
k2rN

2
−Cδ2C16M

1
s

2 rq2 ≥ k2rN

4
.

Em outras palavras,

k2rN

4
≥Cδ1C15M

1
s

1 rq1 ⇐⇒ rq1−N ≤ k2

4Cδ1C15M
1
s

1

⇐⇒ r ≤

 k2

4Cδ1C15M
1
s

1

 1
q1−N

e

k2rN

4
≥Cδ2C16M

1
s

2 rq2 ⇐⇒ rq2−N ≤ k2

4Cδ2C16M
1
s

2

⇐⇒ r ≤

 k2

4Cδ2C16M
1
s

2

 1
q2−N

.

Considerando

r = min

1,
(

αN

α1s

)N−1
N

,

(
αN

α2s

)N−1
N

,

 k2

4Cδ1C15M
1
s

1

 1
q1−N

,

 k2

4Cδ2C16M
1
s

2

 1
q2−N

 ,

temos

⟨J(η ,ξ ),(η ,ξ )⟩ ≥ k2rN

4
+

k2rN

4
−λ1Cε1r−λ2Cε2r−δ1C9rp1−δ2C10rp2.

Dessa forma, veja que r > 0 é fixado e a última desigualdade é verdadeira para todo
δ1,δ2 > 0 tais que (k1−δ1C2),(k1−δ2C6)> 0. Como queremos que ⟨J(η ,ξ ),(η ,ξ )⟩> 0,
precisamos ter

k2rN

4
−λ1Cε1r−δ1C9rp1 > 0⇔ λ1 <

k2rN−1−4δ1C9rp1−1

4Cε1
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e
k2rN

4
−λ2Cε2r−δ2C10rp2 > 0⇔ λ2 <

k2rN−1−4δ2C10rp2−1

4Cε2

.

Definindo λ
∗
1 > 0 e λ

∗
2 > 0 como

λ
∗
1 =

k2rN−1−4δ1C9rp1−1

8Cε1

e λ
∗
2 =

k2rN−1−4δ2C10rp2−1

8Cε2

,

então, tomando λ
∗ = min{λ ∗1 ,λ ∗2 }, temos

⟨J(η ,ξ ),(η ,ξ )⟩> 0, ∀ η ,ξ ∈Rm e |(η ,ξ )|s = r, para todo 0 < λ1 +λ2 < λ
∗.

Assim, estamos nas hipóteses do Lema 1.3.1 e, portanto, ao aplicá-lo obtemos que para
todo m ∈N, existe (x,y) ∈R2m com |(x,y)| ≤ r < 1 tal que

J(x,y) = 0⇔ (F1(η ,ξ ),F2(η ,ξ ), . . . ,Fm(η ,ξ ),G1(η ,ξ ),G2(η ,ξ ), . . . ,Gm(η ,ξ )) = 0

⇔ Fj(η ,ξ ) = 0, G j(η ,ξ ) = 0, j = 1,2, . . . ,m

Consequentemente, de (3.1.3) existe um,vm ∈Wm satisfazendo

||(um,vm)||= |(x,y)|s ≤ r < 1, para todo m ∈N, (3.1.13)

tal que

0=Fj(η ,ξ )=

∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇e j dx−λ1

∫
Ω

e j

(um + ε)β1
dx−

∫
Ω

f1(vm)e j dx

logo∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇e j dx = λ1

∫
Ω

e j

(um + ε)β1
dx+

∫
Ω

f1(vm)e j dx (3.1.14)

para j = 1,2, · · · ,m. Multiplicando a equação (3.1.14) por qualquer escalar σ j, temos que∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇(e jσ j) dx = λ1

∫
Ω

e jσ j

(um + ε)β1
dx+

∫
Ω

f1(vm)e jσ j dx

para cada j = 1,2, · · · ,m. Agora, somando as m equações termo a termo, obtemos∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇

(
m

∑
j=1

e jσ j

)
dx= λ1

∫
Ω

∑
m
j=1 e jσ j

(um + ε)β1
dx+

∫
Ω

f1(vm)
m

∑
j=1

e jσ j dx
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Note que
m

∑
j=1

e jσ j ∈Wm, logo, escrevendo φ =
m

∑
j=1

e jσ j, concluímos que

∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇φ dx = λ1

∫
Ω

φ

(um + ε)β1
dx+

∫
Ω

f1(vm)φ dx, (3.1.15)

para todo φ ∈Wm. E, também vale

0=G j(η ,ξ )=

∫
Ω

a2(|∇vm|p2)|∇vm|p2−2
∇vm∇ϕ dx−λ2

∫
Ω

ϕ

(vm + ε)β2
dx−

∫
Ω

f2(um)ϕ dx,

o que acarreta em∫
Ω

a2(|∇vm|p2)|∇vm|p2−2
∇vm∇ϕ dx = λ2

∫
Ω

ϕ

(vm + ε)β2
dx+

∫
Ω

f2(um)ϕ dx (3.1.16)

para todo ϕ ∈Wm.
Portanto, decorre de (3.1.15) e (3.1.16) que (um,vm) é uma solução fraca aproximada do

problema auxiliar (3.1.1).
A partir daqui, o nosso objetivo é estender as soluções encontradas um,vm ∈Wm para

soluções u,v no espaço W 1,N
0 (Ω).

De (3.1.13), notamos que r não depende de m, logo, temos que (um) e (vm) são sequências
limitadas em W 1,N

0 (Ω). Sendo este um espaço de Banach reflexivo, pelo Teorema B.3.4 existe
uma subsequências de (um) e (vm) que convergem fracamente para algum u,v ∈W 1,N

0 (Ω).

Da imersão compacta de Sobolev W 1,N(Ω)
cpct.
↪→ Lθ (Ω),θ ≥ 1, existe subsequências de (um)

e (vm) que convergem para algum u,v ∈ Lθ (Ω). Utilizando esses fatos e o Teorema B.3.3,
para alguma subsequência de (um) e (vm), existe u,v ∈W 1,N

0 (Ω) tais que
um ⇀ u em W 1,N

0 (Ω),

um→ u em Lθ (Ω),θ ≥ 1,

um(x)→ u(x) q.t.p em Ω,

|um(x)| ≤ g1(x) ∈ Lθ (Ω) q.t.p em Ω,θ ≥ 1

(3.1.17)

e 
vm ⇀ v em W 1,N

0 (Ω),

vm→ v em Lθ (Ω),θ ≥ 1,

vm(x)→ v(x) q.t.p em Ω,

|vm(x)| ≤ g2(x) ∈ Lθ (Ω) q.t.p em Ω,θ ≥ 1.

(3.1.18)
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Fixe k ∈N e considere m≥ k, então Wk ⊂Wm e de (3.1.14) e (3.1.16), temos∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇φk dx = λ1

∫
Ω

φk

(um + ε)β1
dx

+

∫
Ω

f1(vm)φk dx (3.1.19)

para todo φk ∈Wk e∫
Ω

a2(|∇vm|p2)|∇vm|p2−2
∇vm∇ϕk dx = λ2

∫
Ω

ϕk

(vm + ε)β2
dx

+

∫
Ω

f2(um)ϕk dx, (3.1.20)

para todo ϕk ∈Wk.

Como φk,ϕk ∈Wm, observe que∣∣∣∣ φk

(um + ε)β1

∣∣∣∣≤ |φk|
εβ1
∈ L1(Ω)

e ∣∣∣∣ ϕk

(vm + ε)β2

∣∣∣∣≤ |ϕk|
εβ2
∈ L1(Ω).

De (3.1.17) e (3.1.18), temos

φk

(um(x)+ ε)β1
→ φk

(u(x)+ ε)β1
q.t.p em Ω

e
ϕk

(vm(x)+ ε)β2
→ ϕk

(v(x)+ ε)β2
q.t.p em Ω.

Portanto, usamos agora o Teorema da Convergência Dominada de Lebesgue (Teorema B.3.1)
para obter ∫

Ω

φk

(um + ε)β1
dx→

∫
Ω

φk

(u+ ε)β1
dx (3.1.21)

e ∫
Ω

ϕk

(vm + ε)β2
dx→

∫
Ω

ϕk

(v+ ε)β2
dx (3.1.22)

Agora, como fi é uma função contínua, novamente de (3.1.17) e (3.1.18) obtemos

f1(vm(x))φk→ f1(v(x))φk q.t.p em Ω (3.1.23)
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e
f2(um(x))ϕk→ f2(u(x))ϕk q.t.p em Ω. (3.1.24)

Usando (2.0.1), temos

| f1(vm(x))vm(x)| ≤ δ |vm(x)|p1 +Cδ1 |vm(x)|q1 exp
(

α1|vm(x)|
N

N−1

)
e

| f2(um(x))um(x)| ≤ δ |um(x)|p2 +Cδ2 |um(x)|q2 exp
(

α2|um(x)|
N

N−1

)
.

Daí,
| f1(vm(x))| ≤ δ |vm(x)|p1−1 +Cδ1|vm(x)|q1−1 exp

(
α1|vm(x)|

N
N−1

)
e

| f2(um(x))| ≤ δ |um(x)|p2−1 +Cδ2 |um(x)|q2−1 exp
(

α2|um(x)|
N

N−1

)
.

Multiplicando as desigualdade acima por |φk| e |ϕk|, respectivamente, obtemos

| f1(vm(x))φk| ≤ δ1|vm(x)|p1−1|φk|+Cδ1|vm(x)|q1−1 exp
(

α1|vm(x)|
N

N−1

)
|φk|

e
| f2(um(x))ϕk| ≤ δ2|um(x)|p2−1|ϕk|+Cδ2|um(x)|q2−1 exp

(
α2|um(x)|

N
N−1

)
|ϕk|.

Precisamos provar que as funções ĝ1, ĝ2 :R→R definidas por

ĝ1(vm(x)) := δ1|vm(x)|p1−1|φk|+Cδ1 |vm(x)|q1−1 exp
(

α1|vm(x)|
N

N−1

)
|φk|

e
ĝ2(um(x)) := δ2|um(x)|p2−1|ϕk|+Cδ2 |um(x)|q2−1 exp

(
α2|um(x)|

N
N−1

)
|ϕk|

satisfazem
| f1(vm(x))φk| ≤ ĝ1(vm(x)) ∈ L1(Ω) (3.1.25)

e
| f2(um(x))ϕk| ≤ ĝ2(um(x)) ∈ L1(Ω). (3.1.26)

Para usarmos o Teorema da Convergência Dominada de Lebesgue Generalizado é sufici-
ente mostrar que ĝ1(vm(x)) e ĝ2(um(x)) são convergentes em L1(Ω). Provaremos apenas a
primeira desigualdade, pois a segunda segue o mesmo raciocínio. De fato, como 2≤ p1 < N,
invocamos (3.1.18) para obter

|vm(x)|p1−1|φk| → |v(x)|p1−1|φk|, q.t.p em Ω (3.1.27)
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e
|vm(x)|p1−1|φk| ≤ g2(x)|p1−1|φk| ∈ L1(Ω). (3.1.28)

Segue de (3.1.27), (3.1.28) e do Teorema da Convergência Dominada de Lebesgue que∫
Ω

|vm|p1−1|φk| dx→
∫

Ω

|v|p1−1|φk| dx (3.1.29)

Além disso, novamente de (3.1.18) temos

|vm(x)|q1−1 exp
(

α1|vm(x)|
N

N−1

)
→ |v(x)|q1−1 exp

(
α1|v(x)|

N
N−1

)
q.t.p em Ω. (3.1.30)

Agora, considerando s,s′ > 1 tais que
1
s
+

1
s′
= 1, usamos (3.1.18) e o fato de q1 > N

para obter
|vm|q1−1→ |v|q1−1 em Ls′(Ω). (3.1.31)

Além disso, de (3.1.13) temos∫
Ω

exp
(

α1|vm(x)|
N

N−1

)
dx =

∫
Ω

exp

(
α1s||vm||

N
N−1
1,N

(
|vm(x)|
||vm||1,N

) N
N−1
)

dx

≤

∫
Ω

exp

(
α1sr

N
N−1

(
|vm(x)|
||vm||1,N

) N
N−1
)

dx

≤ sup
||vm(x)||≤1

∫
Ω

exp

(
α1sr

N
N−1

(
|vm(x)|
||vm||1,N

) N
N−1
)

dx

e aplicando a Desigualdade de Trudinger-Moser, existe uma constante M1 > 0 tal que∫
Ω

exp
(

α1|vm(x)|
N

N−1

)
dx≤

∫
Ω

exp

(
αN

(
|vm(x)|
||vm||1,N

) N
N−1
)

dx≤M1. (3.1.32)

Logo, de (3.1.31), (3.1.32) e da Desigualdade de Hölder, obtemos

∫
Ω

|vm|q1−1 exp
(

α1|vm|
N

N−1

)
dx≤

(∫
Ω

|um|(q1−1)s′ dx
) 1

s′
(∫

Ω

exp
(

α1s|vm|
N

N−1

)
dx
) 1

s

≤ |vm|q1−1
Ls′(Ω)

M
1
s

1 = M1. (3.1.33)

Usamos (3.1.30), (3.1.33) e Teorema de Brezis-Lieb (ver Teorema B.3.2) para concluir que

|vm|q1−1 exp
(

α1|vm|
N

N−1

)
⇀ |v|q1−1 exp

(
α1|v|

N
N−1

)
. (3.1.34)



3.1 Problema auxiliar para o caso sistema 54

Segue de (3.1.34) que∫
Ω

|vm|q1−1 exp
(

α1|vm|
N

N−1

)
|φk| dx→

∫
Ω

|v|q1−1 exp
(

α1|v|
N

N−1

)
|φk| dx. (3.1.35)

Portanto, de (3.1.29) e (3.1.35) provamos que∫
Ω

ĝ1(vm(x)) dx→ δ1

∫
Ω

|v(x)|p1−1|φk| dx+Cδ1

∫
Ω

|v(x)|q1−1 exp
(

α1|v(x)|
N

N−1

)
|φk| dx,

isto demonstra a identidade (3.1.25).
Então, usamos (3.1.23), (3.1.24), (3.1.25), (3.1.26) e o Teorema da Convergência Domi-

nada de Lebesgue para concluir que∫
Ω

f1(vm)φk dx→
∫

Ω

f1(v)φk dx (3.1.36)

e ∫
Ω

f2(um)ϕk dx→
∫

Ω

f2(u)ϕk dx. (3.1.37)

O nosso próximo passo é demonstrar que∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇φk dx→

∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φk dx (3.1.38)

e ∫
Ω

a2(|∇vm|p2)|∇vm|p2−2
∇vm∇ϕk dx→

∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕk dx. (3.1.39)

Para tanto, usamos a Proposição 1.1.1 para obtermos as desigualdades

C|∇um−∇u|N ≤ ⟨a1(|∇um|p1)|∇um|p1−2
∇um−a1(|∇u|p1)|∇u|p1−2

∇u,∇um−∇u⟩,

e

C|∇vm−∇v|N ≤ ⟨a2(|∇vm|p2)|∇vm|p2−2
∇vm−a2(|∇v|p2)|∇v|p2−2

∇v,∇vm−∇v⟩,

onde C =

(
k2

4

)N−2

> 0. Temos

⟨a1(|∇um|p1)|∇um|p1−2
∇um−a1(|∇u|p1)|∇u|p1−2

∇u,∇um−∇u⟩=
= a1(|∇um|p1)|∇um|p1−2⟨∇um,∇um−∇u⟩−a1(|∇u|p1)|∇u|p1−2⟨∇u,∇um−∇u⟩
= a1(|∇um|p1)|∇um|p1−2(|∇um|2−∇um∇u)−a1(|∇u|p1)|∇u|p1−2(∇u∇um−|∇u|2)
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= a1(|∇um|p1)|∇um|p1−a1(|∇um|p1)|∇um|p1−2
∇um∇u+a1(|∇u|p1)|∇u|p1

−a1(|∇u|p1)|∇u|p1−2
∇um∇u

e de maneira semelhante

⟨a2(|∇vm|p2)|∇vm|p2−2
∇vm−a2(|∇v|p2)|∇v|p2−2

∇v,∇vm−∇v⟩=
= a2(|∇vm|p2)|∇vm|p2−2⟨∇vm,∇vm−∇v⟩−a2(|∇v|p2)|∇v|p2−2⟨∇v,∇vm−∇v⟩
= a2(|∇vm|p2)|∇vm|p2−2(|∇vm|2−∇vm∇v)−a2(|∇v|p2)|∇v|p2−2(∇v∇vm−|∇v|2)
= a2(|∇vm|p2)|∇vm|p2−a2(|∇vm|p2)|∇vm|p2−2

∇vm∇v+a2(|∇v|p2)|∇v|p2

−a2(|∇v|p2)|∇v|p2−2
∇vm∇v.

Logo,

C|∇um−∇u|N ≤ a1(|∇um|p1)|∇um|p1−a1(|∇um|p1)|∇um|p1−2
∇um∇u+a1(|∇u|p1)|∇u|p1

−a1(|∇u|p1)|∇u|p1−2
∇um∇u

e

C|∇vm−∇v|N ≤ a2(|∇vm|p2)|∇vm|p2−a2(|∇vm|p2)|∇vm|p2−2
∇vm∇v+a2(|∇v|p2)|∇v|p2

−a2(|∇v|p2)|∇v|p2−2
∇vm∇v.

Integrando, temos

0≤C

∫
Ω

|∇um−∇u|Ndx =C||um−u||N1,N

≤
∫

Ω

a1(|∇um|p1)|∇um|p1 dx−
∫

Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇u dx+on(1)

onde

on(1) =
∫

Ω

a1(|∇u|p1)|∇u|p1 dx−
∫

Ω

a1(|∇u|p1)|∇u|p1−2
∇um∇u dx

e

0≤C

∫
Ω

|∇vm−∇v|Ndx =C||vm− v||N1,N

≤
∫

Ω

a2(|∇vm|p2)|∇vm|p2 dx−
∫

Ω

a2(|∇vm|p2)|∇vm|p2−2
∇vm∇v dx+on(1),
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onde
on(1) =

∫
Ω

a2(|∇v|p2)|∇v|p2 dx−
∫

Ω

a2(|∇v|p2)|∇v|p2−2
∇vm∇v dx.

Denotamos as duas expressões por on(1), pois segue da convergência fraca que ambas tendem
a zero.

Usando que (um,vm) é solução do problema (3.1.1), segue

C||um−u||N1,N

≤
∫

Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇um dx−

∫
Ω

a1(|∇um|p1)|∇um|p1−2
∇um∇u dx+on(1)

= λ1

∫
Ω

um

(um + ε)β1
dx+

∫
Ω

f1(vm)um dx−λ1

∫
Ω

u
(um + ε)β1

dx−
∫

Ω

f1(vm)u dx+on(1)

e

C||vm− v||N1,N

≤
∫

Ω

a2(|∇vm|p2)|∇vm|p2−2
∇vm∇vm dx−

∫
Ω

a2(|∇vm|p2)|∇vm|p2−2
∇vm∇v dx+on(1)

= λ2

∫
Ω

vm

(vm + ε)β2
dx+

∫
Ω

f2(um)vm dx−λ2

∫
Ω

v
(vm + ε)β2

dx−
∫

Ω

f2(um)v dx+on(1).

Logo,
||um−u||N1,N ≤ on(1) e ||vm− v||N1,N ≤ on(1).

Como on(1)→ 0 segue que
um→ u, em W 1,N

0 (Ω) (3.1.40)

e
vm→ v, em W 1,N

0 (Ω). (3.1.41)

Agora, do Lema 1.1.1, sabemos que as funções definidas por

E1(u) =
∫

Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φk dx

e
E1(v) =

∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇φk dx

são contínuas. Então, de (3.1.40) e (3.1.41), obtemos as convergências (3.1.38) e (3.1.39).
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Fazendo m→ ∞ em (3.1.19) e (3.1.20), usamos (3.1.21), (3.1.22), (3.1.36), (3.1.37),
(3.1.38) e (3.1.39) para concluir que∫

Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φk dx = λ1

∫
Ω

φk

(u+ ε)β1
dx+

∫
Ω

f1(v)φk dx, (3.1.42)

e ∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕk dx = λ2

∫
Ω

ϕk

(v+ ε)β2
dx+

∫
Ω

f2(u)ϕk dx, (3.1.43)

para todo ϕ ∈Wk.
Como [Wk]k∈N é denso em W 1,N

0 (Ω), temos que

φk→ φ quando k→ ∞

e
ϕk→ ϕ quando k→ ∞.

Lembrando que φk e ϕk são da forma
k

∑
j=1

aiei, então, por linearidade, temos

∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φk dx→

∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φ dx (3.1.44)∫

Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕk dx→

∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕ dx (3.1.45)∫

Ω

φk

(u+ ε)β1
dx→

∫
Ω

φ

(u+ ε)β1
dx (3.1.46)∫

Ω

ϕk

(v+ ε)β2
dx→

∫
Ω

ϕ

(v+ ε)β2
dx (3.1.47)∫

Ω

f1(v)φk dx→
∫

Ω

f1(v)φ dx (3.1.48)

e ∫
Ω

f2(u)ϕk dx→
∫

Ω

f2(u)ϕ dx. (3.1.49)

Portanto, como φ ,ϕ ∈W 1,N
0 (Ω) são arbitrárias, segue de (3.1.42) - (3.1.49) que∫

Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φ dx = λ1

∫
Ω

φ

(u+ ε)β1
dx+

∫
Ω

f1(v)φ dx, (3.1.50)



3.2 Prova do Teorema 3.0.1 58

e ∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕ dx = λ2

∫
Ω

ϕ

(v+ ε)β2
dx+

∫
Ω

f2(u)ϕ dx, (3.1.51)

para todo φ ,ϕ ∈W 1,N
0 (Ω), o que demonstra que (u,v) é uma solução fraca do problema

(3.1.1).

3.2 Prova do Teorema 3.0.1

Para cada n ∈N, sejam ε = 1/n,u1/n = un e v1/n = vn, onde (un,vn) é uma solução fraca
não negativa do problema auxiliar

−div(a1(|∇un|p1)|∇un|p1−2
∇un) =

λ1

(un +
1
n)

β1
+ f1(vn) em Ω,

−div(a2(|∇vn|p2)|∇vn|p2−2
∇vn) =

λ2

(vn +
1
n)

β2
+ f2(un) em Ω,

un = vn = 0 sobre ∂Ω,

obtida do Lema 3.1.1. Observe que vale

−div(a1(|∇un|p1)|∇un|p1−2
∇un)≥

λ1

(un + vn +1)β1
+ f1(vn) em Ω

e, de ( f3), existe γ1 > N tal que

−div(a1(|∇un|p1)|∇un|p1−2
∇un)≥

λ1

(un + vn +1)β1
+ |vn|γ1−1 em Ω.

Como a função t→ λ1

(un + t +1)β1
+ tγ1−1 é limitada inferiormente em t ≥ 0, segue que ela

atinge mínimo positivo z1. Então,

−div(a1(|∇un|p1)|∇un|p1−2
∇un)≥ z1 > 0 em Ω.

Desde que o operador T : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))′ dado por

⟨T v,φ⟩=
∫

Ω

a1(|∇ω1|p1)|∇ω1|p1−2
∇ω1∇φdx

é contínuo, monótono e coercivo (Ver Seção 1.1), podemos aplicar o Teorema de Minty-
Browder para obter que existe uma única solução ω1 ∈W 1,N

0 (Ω) para o problema linear
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
−div(a1(|∇ω1|p1)|∇ω1|p1−2

∇ω1) = z1 em Ω,

ω1 > 0 em Ω,

ω1 = 0 sobre ∂Ω.

(3.2.1)

Assim, temos−div(a1(|∇un|p1)|∇un|p1−2
∇un)≥−div(a1(|∇ω1|p1)|∇ω1|p1−2

∇ω1) em Ω,

un = ω1 sobre ∂Ω,

Em virtude do Princípio de Comparação Fraca dado pelo Lema 1.1.5, podemos concluir

un(x)≥ ω1(x)> 0 em Ω, ∀n ∈N. (3.2.2)

Analogamente, provamos que

un(x)≥ ω2(x)> 0 em Ω, ∀n ∈N, (3.2.3)

onde ω2 satisfaz 
−div(a2(|∇ω2|p2)|∇ω2|p2−2

∇ω2) = z2 em Ω,

ω2 > 0 em Ω,

ω2 = 0 sobre ∂Ω,

(3.2.4)

e z2 é um mínimo positivo da função t→ λ2

(vn + t +1)β2
+ tγ2−1. Portanto, temos que un ↛ 0

e vn ↛ 0, para cada x ∈Ω.
Agora, de (3.1.17) e (3.1.18), obtemos

um ⇀ un em W 1,N
0 (Ω) quando m→+∞

e
vm ⇀ vn em W 1,N

0 (Ω) quando m→+∞,

Logo, pelo Teorema B.4.1 e (3.1.13) obtemos

||un||1,N ≤ liminf
m→+∞

||um||1,N ≤ liminf
m→+∞

||(um,vm)|| ≤ r < 1, para todo n ∈N
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e
||vn||1,N ≤ liminf

m→+∞
||vm||1,N ≤ liminf

m→+∞
||(um,vm)|| ≤ r < 1, para todo n ∈N.

Portanto, como r não depende de n, (un) e (vn) são sequências limitadas em W 1,N
0 (Ω).

Assim, como W 1,N
0 (Ω) é um espaço de Banach reflexivo, a menos de subsequência, existe

u,v ∈W 1,N
0 (Ω) tais que

un ⇀ u em W 1,N
0 (Ω),

un→ u, em Lθ (Ω),θ ≥ 1,

un(x)→ u(x) q.t.p em Ω,

|un(x)| ≤ g1(x) ∈ Lθ (Ω) q.t.p em Ω,θ ≥ 1

(3.2.5)

e 
vn ⇀ v em W 1,N

0 (Ω),

vn→ v em Lθ (Ω),θ ≥ 1,

vn(x)→ v(x) q.t.p em Ω,

|vn(x)| ≤ g2(x) ∈ Lθ (Ω) q.t.p em Ω,θ ≥ 1.

(3.2.6)

Decorre de (3.1.50) e (3.1.51) que∫
Ω

a1(|∇un|p1)|∇un|p1−2
∇un∇φ dx = λ1

∫
Ω

φ

(un +
1
n)

β1
dx+

∫
Ω

f1(vn)φ dx (3.2.7)

e ∫
Ω

a2(|∇vn|p2)|∇vn|p2−2
∇vn∇ϕ dx = λ2

∫
Ω

ϕ

(vn +
1
n)

β2
dx+

∫
Ω

f2(un)ϕ dx, (3.2.8)

para todo φ ,ϕ ∈W 1,N
0 (Ω). Além disso, como fi são funções contínuas, de (3.2.5) e (3.2.6),

obtemos
f1(vn(x))φ → f1(v(x))φ q.t.p em Ω

e
f2(un(x))ϕ → f2(u(x))ϕ q.t.p em Ω.

Argumentando como em (3.1.25) e (3.1.26), obtemos uma função ĝ1 :R→R satisfazendo

| f1(vn(x))φ | ≤ ĝ1(vn(x))
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e
| f2(un(x))ϕ| ≤ ĝ2(un(x))

Então, usamos o Teorema da Convergência Dominada de Lebesgue para concluir que∫
Ω

f1(vn)φ dx→
∫

Ω

f1(v)φ dx, ∀φ ∈W 1,N
0 (Ω) (3.2.9)

e ∫
Ω

f2(un)ϕ dx→
∫

Ω

f2(u)ϕ dx, ∀ϕ ∈W 1,N
0 (Ω). (3.2.10)

E ainda, aplicando o mesmo raciocínio para obter (3.1.38) e (3.1.39), temos∫
Ω

a1(|∇un|p1)|∇un|p1−2
∇un∇φ dx→

∫
Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φ dx, (3.2.11)

e ∫
Ω

a2(|∇vn|p2)|∇vn|p2−2
∇vn∇ϕ dx→

∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕ dx, (3.2.12)

para todo φ ,ϕ ∈W 1,N
0 (Ω).

Pelas identidades (3.2.5) e (3.2.6), obtemos

φ(
un(x)+ 1

n

)β1
→ φ

u(x)β1
q.t.p em Ω (3.2.13)

e
ϕ(

vn(x)+ 1
n

)β2
→ ϕ

v(x)β2
q.t.p em Ω. (3.2.14)

Desde que ω1,ω2 ∈ L∞(Ω), pelo Lema 1.1.6 e (3.2.1), (3.2.4), segue que ω1,ω2 ∈ L∞(Ω),
e assim, pelo Lema 1.1.7 obtemos que ω1,ω2 ∈C1,α(Ω), para algum α ∈ (0,1). Agora, em
virtude do Lema 1.1.8, obtemos

∂ω1

∂η
,
∂ω2

∂η
< 0 sobre ∂Ω, onde η é a normal unitária exterior em ∂Ω.

Assim, para cada x ∈Ω, segue do Lema 1.2.1 que existe uma constante C > 0 tal que

ω1(x)
d(x)

≥C e
ω2(x)
d(x)

≥C,

logo, por (2.2.2),

un(x)≥ ω1(x)>Cd(x)> 0 e vn(x)≥ ω2(x)>Cd(x)> 0,
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onde d(x) = dist(x,∂Ω) e C é uma constante positiva que não depende de x. Portanto,∫
Ω

φ(
un(x)+ 1

n

)β1
dx≤

∫
Ω

φ

un(x)β1
dx≤

∫
Ω

φ

(Cd(x))β1
dx

e ∫
Ω

ϕ(
vn(x)+ 1

n

)β2
dx≤

∫
Ω

ϕ

vn(x)β2
dx≤

∫
Ω

ϕ

(Cd(x))β2
dx.

Com isso, usamos a Desigualdade de Hardy-Sobolev para obter
∣∣∣∣ φ

(Cd(x))β1

∣∣∣∣, ∣∣∣∣ ϕ

(Cd(x))β2

∣∣∣∣ ∈
Lr(Ω) e C17,C18 > 0 tais que∫

Ω

φ(
un(x)+ 1

n

)β1
dx≤C17||φ ||1,N (3.2.15)

e ∫
Ω

ϕ(
vn(x)+ 1

n

)β2
dx≤C18||ϕ||1,N (3.2.16)

Portanto, de (3.2.13), (3.2.14), (3.2.15), (3.2.16) e do Teorema da Convergência Dominada
de Lebesgue, obtemos∫

Ω

φ(
un +

1
n

)β1
dx→

∫
Ω

φ

uβ1
dx, ∀φ ∈W 1,N

0 (Ω) (3.2.17)

e ∫
Ω

ϕ(
vn +

1
n

)β2
dx→

∫
Ω

ϕ

vβ2
dx, ∀ϕ ∈W 1,N

0 (Ω). (3.2.18)

Fazendo n→+∞ em (3.2.7) e (3.2.8), usamos (3.2.9), (3.2.10), (3.2.11), (3.2.12), (3.2.17)
e (3.2.18), para concluir que∫

Ω

a1(|∇u|p1)|∇u|p1−2
∇u∇φ dx = λ1

∫
Ω

φ

uβ1
dx+

∫
Ω

f1(v)φ dx, ∀φ ∈W 1,N
0 (Ω)

e ∫
Ω

a2(|∇v|p2)|∇v|p2−2
∇v∇ϕ dx = λ2

∫
Ω

ϕ

vβ2
dx+

∫
Ω

f2(u)ϕ dx, ∀ϕ ∈W 1,N
0 (Ω),

o que prova que (u,v) ∈W 1,N(Ω)×W 1,N(Ω) é um solução fraca positiva do problema (P2).



Apêndice A

Teoria do Grau de Brouwer

A teoria do grau topológico é uma ferramenta muito utilizada no estudo de existência de
soluções para equações não lineares. Dedicamos este apêndice para estudarmos a versão do
grau para dimensão finita, conhecido como Grau de Brouwer. Para mais detalhes o leitor
pode consultar [14].

A.1 Conceito e propriedades básicas

Seja f ∈ C1(Ω,RN). Relembre que f ′(x) ∈ L(RN ,RN) e, portanto, f ′(x) pode ser
representado por uma matriz N×N. Seja S o conjunto dos pontos críticos de f .

Definição A.1.1. Seja f : Ω→ RN uma função em C1(Ω,RN) e seja b /∈ f (S)∪ f (∂Ω).
Então, definimos o grau topológico de Brouwer de f em relação a Ω no ponto b como

d( f ,Ω,b) =


0, se f−1(b) =∅,

∑
x∈ f−1(b)

sgn(J f (x)), caso contrário, (A.1.1)

onde a função sgn denota a função sinal, definida por

sgn(t) =

1, se t > 0,

−1, se t < 0,

e J f (x)) é o determinante da matriz jacobiana de f .

Vamos verificar que a definição acima está bem definida. Observe que, como b /∈
f (S)∪ f (∂Ω), então f ′(x) está bem definida para x ∈ f−1(b) e J f (x) ̸= 0. Logo, f ′(x) é um
isomorfismo e, pelo Teorema da Função Inversa, f é invertível em uma vizinhança de x.
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Afirmação 1. f−1(b) é finito.

Com efeito, suponha que f−1(b) seja infinito e considere uma sequência (xn) em f−1(b).
Como Ω é compacto e f−1(b)⊂Ω segue que f−1(b) é limitado e, do Teorema de Bolzano-
Weierstrass, (xn) admite subsequência (xnk) convergente para algum x ∈ Ω. Como f é
contínua, temos f (xnk)→ f (x), mas f (xnk) = b, logo, f (x) = b e, portanto, x ∈ f−1(b).
Agora, usando o fato que f é invertível em uma vizinhança de x, temos que f é injetiva
nessa vizinhança, por outro lado, pelo que vimos acima, em qualquer vizinhança de x existe
infinitos xnk tais que f (xnk) = b, o que contradiz a injetividade de f . Concluímos então que
f−1(b) é finito e (A.1.1) faz sentido.

□

Veja que definimos a função f em C1(Ω,RN), no entanto, é possível estender a definição
de grau para funções f meramente contínuas em Ω. O leitor interessado pode encontrar mais
informações em [14].

O teorema a seguir elenca algumas propriedades básicas do grau de Brouwer.

Teorema A.1.1. Valem as seguinte propriedades:

(i) (Continuidade com relação a função) Seja f ∈C(Ω;RN) e seja b /∈ f (∂Ω). Existe
uma vizinhança U de C(Ω;RN) tal que para toda g ∈ U ,

d(g,Ω,b) = d( f ,Ω,b);

(ii) (Invariância por Homotopia) Seja H ∈C(Ω× [0,1] :RN) tal que b /∈H(∂Ω× [0,1]).
Então, d(H(·, t),Ω,b) é independente de t;

(iii) O grau é constante com relação a b em cada componente conexa de RN\ f (∂Ω);

(iv) (Aditividade) Sejam Ω1∩Ω2 =∅ e b /∈ f (∂Ω1)∪ f (∂Ω2), onde f ∈C(Ω;RN), Ω =

Ω1∪Ω2. Então,
d( f ,Ω,b) = d( f ,Ω1,b)+d( f ,Ω2,b).

Demonstração. Ver em [14, Teorema 2.2.1].

Abaixo, exibimos outras propriedades do grau e suas consequências, cujas demonstrações
podem ser encontradas em [14].

Proposição A.1.1. Se f ∈C(Ω;RN) e b /∈ f (Ω), então d( f ,Ω,b) = 0. Equivalentemente,
se d( f ,Ω,b) ̸= 0, então existe x ∈Ω tal que f (x) = b.

Demonstração. Ver em [14, Proposição 2.2.1].
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Corolário A.1.1.1. Se d( f ,Ω,b) ̸= 0, então f (Ω) é uma vizinhança de b.

Demonstração. Ver em [14, Corolário 2.2.1].

Proposição A.1.2. Seja K ⊂Ω um conjunto fechado e b /∈ f (∂Ω)∩ f (K). Então

d( f ,Ω,b) = d( f ,Ω\K,b).

Demonstração. Ver em [14, Proposição 2.2.2].

Proposição A.1.3. Sejam f ,g ∈C(Ω;RN) tais que f = g em ∂Ω. Seja b /∈ f (∂Ω), então

d( f ,Ω,b) = d(g,Ω,b).

Demonstração. Ver em [14, Proposição 2.2.3].

Corolário A.1.1.2. Sejam f ,g ∈C(Ω;RN). Assuma que existe H ∈C(∂Ω× [0,1],RN) tal
que H nunca assuma o valor b e tal que H(·,0) = f |∂Ω e H(·,1) = g|∂Ω. Então

d( f ,Ω,b) = d(g,Ω,b).

Demonstração. Ver em [14, Corolário 2.2.2].

A.2 Teorema do Ponto Fixo de Brouwer

Nesta seção, introduzimos o Teorema do Ponto Fixo de Brouwer que é de fundamental
relevância na aplicação do Método de Galerkin, mais precisamente, nos fornece como
consequência o Lema 1.3.1 utilizado fortemente nos capítulos 2 e 3.

Teorema A.2.1 (Teorema do Ponto Fixo de Brouwer). Seja Br(x)⊂RN a bola de centro em
x e raio r e f : Br(x)→Br(x) uma aplicação contínua. Então, f tem um ponto fixo.

Demonstração. Vamos dividir a demonstração em dois casos:
Caso 1: A bola é centrada na origem. Neste caso, temos f : Br(0)→ Br(0). Defina a
aplicação ϕ : Br(0)→RN dada por ϕ(y) = y− f (y). Como ϕ é a diferença de duas funções
contínuas, ϕ é contínua. Suponha que

ϕ(y) ̸= 0, para todo y ∈ ∂Br(0),
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pois caso contrário, teríamos f (y) = y e o caso 1 estaria demonstrado. Agora, considere a
aplicação

H : Br(0)× [0,1]→RN

(y, t) 7→ H(y, t) = y− t f (y).

Observe que H é uma homotopia entre a aplicações f e a identidade Id. Vamos mostrar que
H(y0, t0) ̸= 0, para todo y0 ∈ ∂Br(0) e t0 ∈ [0,1], em outras palavras, 0 /∈H(∂Br(0)× [0,1]).
De fato, se t = 1, obtemos

H(y,1) = y− f (y) = ϕ(y) ̸= 0, para todo y ∈ ∂B(0),

daí
0 /∈ H(∂Br(0)×1).

Por outro lado, se t ∈ [0,1) e y ∈ ∂Br(0), observe que

||t f (y)||= t|| f (y)|| ≤ tr < r = ||y||,

consequentemente, t f (y) ̸= y, de onde segue que

H(y, t) ̸= 0, para todo y ∈ ∂Br(0) e t ∈ [0,1).

Portanto,
0 /∈ H(∂Br(0)× [0,1]).

Pelo item (ii) do Teorema A.1.1, o grau é invariante por homotopia, logo,

d(H(·, t),Br(0),0) = cte, para todo t ∈ [0,1],

e, portanto,
d(H(·,0),Br(0),0) = d(H(·,1),Br(0),0).

Segue que
d( f ,Br(0),0) = d(Id,Br(0),0) = 1,

então
d( f ,Br(0),0) = 1 ̸= 0.
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Da Proposição A.1.1, existe y0 ∈ Br(0) tal que ϕ(y0). Dessa forma,

y0− f (y0),

e, portanto, f tem um ponto fixo y0 ∈ Br(0).
Caso 2: Assumimos que o centro da bola é um ponto qualquer x ∈ RN . Considere a

aplicação ϕ : Br(0)→Br(0) dada por ϕ(y) = f (x+ y)− x. Veja que a aplicação é contínua
e ϕ(Br(0))⊂ Br(0), pois

||ϕ(y)||= || f (x+ y)− x|| ≤ r,

ou seja, ϕ(y) ∈ Br(0). Logo, do Caso 1, ϕ tem um ponto fixo z ∈ Br(0), isto é, ϕ(z) = z, o
que nos fornece f (x+ z) = x+ z. Denotando w = x+ z, temos f (w) = w e, portanto, f tem
um ponto fixo em Br(x).

O Teorema do Ponto Fixo de Brouwer é válido para domínios mais gerais. O resultado
abaixo fornece um exemplo claro disto e, sua demonstração pode ser encontrada em [14,
Corolário 2.3.1].

Corolário A.2.1.1. Sejam K ⊂ RN um conjunto compacto e convexo e f : K → K uma
aplicação contínua. Então, existe x ∈ K tal que f (x) = x.

Demonstração. Desde que K é um compacto do RN , existe uma bola de centro em 0 e raio
R tal que K ⊂ BR(0). Como K é fechado e convexo, seja Pk :RN → K a aplicação definida
da seguinte maneira: dado x ∈RN ,Pk(x) ∈ K é o único ponto tal que

||x−Pk(x)||= min
y∈K
||x− y||.

Defina f̃ : BR(0)→ K ⊂ BR(0) por f̃ (x) = f (Pk(x)). Observe que f̃ é contínua, pois é uma
composição de funções contínuas. Então, pelo Teorema do Ponto Fixo de Brouwer, f̃ possui
um ponto fixo x0. Como a imagem desta aplicação está contida em K, segue da definição de
Pk que

Pk(x0) = x0.

Assim, x0 = f (Pk(x0)) = f (x0), o que prova o resultado.



Apêndice B

Medida, EDPs e Análise Funcional

Dedicamos este apêndice para trazer à memória conceitos relevantes da teoria de Medida,
Equações Diferenciais Parciais e de Análise Funcional que usamos direta ou indiretamente
em nosso estudo.

B.1 Espaço de Lebesgue

Sejam (X ,Σ,µ) um espaço de medida e 1 ≤ p < ∞. O conjunto de todas as funções
mensuráveis de X em K tais que

|| f ||p :=
(∫

X
| f |pdµ

) 1
p

< ∞

será denotado por Lp(X ,Σ,µ). Vale destacar que || · ||p é uma seminorma em Lp(X ,Σ,µ),
pois pode ocorrer || f ||p = 0 para f não identicamente nula.

Teorema B.1.1 (Desigualdade de Holder). Sejam p,q > 1 tais que
1
p
+

1
q
= 1 e (X ,Σ,µ) um

espaço de medida. Se f ∈ Lp(X ,Σ,µ) e g ∈ Lq(X ,Σ,µ), então f g ∈ L1(X ,Σ,µ) e

|| f g||1 ≤ || f ||p · ||g||q,

ou de modo equivalente,

∫
X

f g dµ ≤
(∫

X
| f |p dµ

) 1
p
(∫

X
|g|q dµ

) 1
q

.
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Para corrigir o que falta para || f ||p ser uma norma, considere a relação de equivalência
na qual duas funções f ,g : X −→K são equivalentes se f = g µ-q.t.p., isto é, se existe um
conjunto A ∈ Σ tal que µ(A) = 0 e f (x) = g(x) para todo x /∈ A. Denotando a classe de
equivalência de uma função f por [ f ], definimos

Lp(X ,Σ,µ) := {[ f ]; f ∈ Lp(X ,Σ,µ)},

que é um espaço vetorial com as operações

[ f ]+ [g] = [ f +g] e c[ f ] = [c f ].

Ainda mais, definimos ||[ f ]||p := || f ||p que é uma norma em Lp(X ,Σ,µ).

B.2 Espaço de Sobolev

Definição B.2.1. Dado um aberto Ω ⊂ RN , uma função u ∈ L1
loc(Ω) e um multi-índice α ,

dizemos que v ∈ L1
loc(Ω) é uma α-ésima derivada fraca de u se∫
Ω

uDα
ϕdx = (−1)|α|

∫
Ω

vϕdx, para todo ϕ ∈C∞
0 (Ω).

Essencialmente, a definição acima diz que uma derivada fraca é uma função localmente
integrável que nos permite fazer integração por partes.

Lema B.2.1. A α-ésima derivada fraca de um função u ∈ L1
loc(Ω), quando existe, é única a

menos de conjuntos de medida nula.

Demonstração. Ver [8, Lema 4.3].

Definição B.2.2. Seja Ω⊂RN um aberto, 1≤ p≤∞ e k ∈N∩{0}. Definimos o Espaço de
Sobolev W k,p(Ω) como sendo

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) para todo multi-índice α tal que|α| ≤ k},

com as derivadas Dαu acima tomadas no sentido fraca.
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O Espaço W k,p(Ω) se torna um espaço normado definindo a norma

||u||W k,p(Ω) =



(
∑
|α|≤k

∫
|Dαu|pdx

) 1
p

, se 1≤ p < ∞,

∑
|α|≤k
||Dαu||L∞(Ω), se p = ∞.

Teorema B.2.1. (W k,p(Ω), || · ||W k,p(Ω)) é um espaço de Banach.

Demonstração. Ver [8, Teorema 4.10].

Teorema B.2.2. O espaço W k,p(Ω) é reflexivo se 1 < p < ∞ e separável se 1≤ p < ∞.

Demonstração. Ver [8, Teorema 4.11].

Definição B.2.3. Sejam X e Y dois espaços vetoriais normados com X ⊆ Y . Dizemos que X
está imerso continuamente em Y se existe C > 0 tal que

||x||Y ≤C||x||X , ∀ x ∈ X .

Nesse caso, escrevemos X ↪→ Y .

Teorema B.2.3 (Imersão de W 1,p
0 (Ω), 1 ≤ p < N). Seja Ω ⊂ RN um aberto limitado e

1≤ p < N. Então vale a imersão

W 1,p
0 (Ω) ↪→ Lq(Ω), ∀ q ∈ [1, p∗],

onde p∗ =
N p

N− p
é conhecido como expoente crítico de Sobolev.

Demonstração. Ver [8, Teorema 4.21].

Teorema B.2.4 (Imersão de W 1,p(Ω), p = N). Seja Ω⊂RN um aberto limitado de classe
C1. Então vale a imersão

W 1,N(Ω) ↪→ Lq(Ω), ∀ q≥ 1.

Demonstração. Ver [8, Teorema 4.28].

Definição B.2.4. Sejam X e Y dois espaços vetoriais normados com X ↪→Y . Dizemos que X
está imerso compactamente em Y se toda sequência (um)⊂ X limitada possui subsequência
convergente em Y .
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Teorema B.2.5 (Rellich-Kondrachov). Suponha que Ω é limitado de classe C1. Então, temos
as seguintes imersões compactas:

i) W 1,p(Ω)
cpct.
↪→ Lq(Ω) para todo q ∈ [1, p∗), onde

1
p∗

=
1
p
+

1
N

, se p < N;

ii) W 1,p(Ω)
cpct.
↪→ Lq(Ω) para todo q ∈ [p,+∞), se p = N;

iii) W 1,p(Ω)
cpct.
↪→ C(Ω), se p > N.

Em particular, W 1,p(Ω)
cpct.
↪→ Lq(Ω) para todo p (e todo N).

Demonstração. Ver [4, Teorema 9.16].

Definição B.2.5. Seja Ω⊂RN um aberto, 1≤ p≤ ∞ e k ∈N∪{0}. O espaço W k,p
0 (Ω) é

definido como sendo o fecho de C∞
0 (Ω) na norma || · ||W k,p(Ω), isto é,

W k,p
0 (Ω) :=C∞

0 (Ω)
||·||Wk,p(Ω).

Observação. Segue da definição que u ∈W k,p
0 (Ω) se, e somente se, existe uma sequência

(um)⊂C∞
0 (Ω) tal que um→ u em W k,p(Ω).

Teorema B.2.6 (Minty-Browder). Seja E um espaço de Banach reflexivo. Seja A : E −→ E ′

uma aplicação não linear contínua tal que

⟨Av1−Av2,v1− v2⟩> 0, ∀ v1,v2 ∈ E, v1 ̸= v2,

e
lim
||v||→∞

⟨Av,v⟩
||v||

= ∞.

Então, para toda f ∈ E ′ existe uma única solução u ∈ E da equação Au = f .

Demonstração. Ver [4, Teorema 5.16]

Lema B.2.2 (Desigualdade de Harnack). Seja u uma função harmônica não negativa em Ω.
Então, para qualquer subdomínio limitado Ω

′ ⊂⊂Ω, existe uma constante C dependendo
apenas de n,Ω e Ω

′ tais que
sup
Ω′

u≤C inf
Ω′

u

Demonstração. Ver [9, Teorema 2.5].
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B.3 Alguns resultados de convergência

Como já mencionado, o método adotado para resolver os problemas em estudo é o de
Galerkin. A própria natureza desse método exige que empreguemos resultados de conver-
gência após obter uma solução aproximada, visando estender essa solução a um espaço
mais apropriado. Assim, nesta seção, apresentamos os principais resultados que utilizamos
para atingir esse objetivo, como, por exemplo, o Teorema da Convergência Dominada de
Lebesgue e o Teorema de Brezis-Lieb.

Teorema B.3.1 (Convergência Dominada de Lebesgue). Seja ( fn) uma sequências de funções
em L1(Ω) que satisfaz:

(i) fn(x)→ f (x) q.t.p. em Ω;

(ii) existe uma função g ∈ L1 tal que para todo n, | fn(x)| ≤ g(x) q.t.p. em Ω.

Então f ∈ L1(Ω) e || fn− f ||1→ 0.

Demonstração. Ver [4, Teorema 4.2].

Teorema B.3.2 (Brezis-Lieb). Sejam 1 < p < ∞ e ( fn)n uma sequência limitada de funções
de Lp(Ω) que convergem q.t.p. para f e suponha que existe C > 0 tal que∫

Ω

| fn|pdx≤C, para todo n ∈N.

Então ∫
Ω

fnϕdx→
∫

Ω

f ϕdx, para todo ϕ ∈ Lq(Ω),

onde
1
p
+

1
q
= 1.

Demonstração. Ver [12, Lema 4.6].

O teorema abaixo consiste numa recíproca do Teorema da Convergência Dominada de
Lebesgue.

Teorema B.3.3. Sejam ( fn) uma sequência em Lp(Ω) e f ∈ Lp(Ω) tais que

fn→ f em Lp(Ω).

Então, existem uma subsequência ( fnk) e g ∈ Lp(Ω) tais que

i) fnk(x)→ f (x) q.t.p em Ω
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ii) | fn(x)| ≤ g(x) q.t.p em Ω, para todo n ∈N.

Demonstração. Ver [4, Teorema 4.9].

Uma vez que W 1,N
0 (Ω) é um espaço reflexivo, podemos utilizar o seguinte resultado:

Teorema B.3.4. Em um espaço reflexivo, toda sequência limitada tem subsequência fraca-
mente convergente.

Demonstração. Ver [3, Teorema 6.5.4]

Teorema B.3.5 (Desigualdade de Young). Sejam p,q> 1 tais que
1
p
+

1
q
= 1. Para quaisquer

a e b não-negativos, vale

a
1
p ·b

1
q ≤ a

p
+

b
q
.

B.4 Noções de Análise Funcional

Definição B.4.1. Sejam E e F espaços normados eL(E,F) o conjunto de todos os operadores
lineares contínuos de E em F . Se F é o corpo de escalares, escrevemos E ′ no lugar deL(E,F).
Chamamos esse espaço de dual topológico de E, ou simplesmente de dual de E. Em outras
palavras, E ′ é o conjunto de todos os funcionais lineares contínuos de E.

Definição B.4.2. Dois espaços normados E e F são isomorfos se existir um operador linear
contínuo bijetor T : E −→ F cujo operador inverso T−1 : F −→ E, que é sempre linear, é
tammbém contínuo.

Definição B.4.3. Uma função f : E −→ F , não necessariamente linear, tal que || f (x)||= ||x||
para todo x∈ E é chamada de isometria. Um operador linear T : E −→ F que é uma isometria
é chamado de isometria linear.

Definição B.4.4. Um isomorfismo que é também uma isometria é chamado de isomorfismo
isométrico, e nesse caso dizemos que os espaços são isomorfos isometricamente.

Teorema B.4.1. Seja E um espaço normado.

(a) Se xn ⇀ x em E, então a sequência (||xn||)∞
n=1 é limitada e ||x|| ≤ liminf

n→∞
||xn||.

(b) Se xn ⇀ x em E e ϕn→ ϕ em E ′, então ϕn(xn)→ ϕ(x) em K.

Demonstração. Ver [3, Proposição 6.2.4].
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Definição B.4.5. Uma sequência (xn)
∞
n=1 no espaço de Banach E é chamada de base de

Schauder de E se cada x ∈ E tem uma representação única sob a forma

x =
∞

∑
n=1

anxn,

onde an ∈K para todo n ∈N. A unicidade da representação permite considerar os funcionais
lineares

x∗n : E←→K, x∗n

(
∞

∑
j=1

a jx j

)
= an,

que são chamados de funcionais lineares coeficientes (ou funcionais coordenadas ou ainda
funcionais biortogonais associados).

Definição B.4.6. Seja E um espaço de Banach reflexivo e A : E→ E ′ um operador (possivel-
mente não linear). Dizemos que A é estritamente monótono se

⟨Au−Av,u− v⟩> 0, para todo u,v ∈ E com u ̸= v.

Definição B.4.7. Seja E um espaço de Banach reflexivo e A : E→ E ′ um operador (possivel-
mente não linear). Dizemos que A é coercivo se

lim
||u||1,N→∞

⟨Au,u⟩
||u||1,N

= ∞.
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