
i 
 

UNIVERSIDADE DE BRASÍLIA 

FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA 

 

 

 

 

 

 

ANÁLISE DE IMAGEM E VIABILIDADE ECONÔMICA NA AVALIAÇÃO DA 
QUALIDADE FÍSICA DE GRÃOS DE ARROZ 

 

 

 

 

ERICH BARROS BRANDANI 

 

 

 

 

 

 

TESE DE DOUTORADO EM AGRONOMIA 

 

 

 

 

 

 

 

 

 

BRASÍLIA/DF 

FEVEREIRO/2025 



ii 
 

 

UNIVERSIDADE DE BRASÍLIA 

FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA 

 

 

 

 

ANÁLISE DE IMAGEM E VIABILIDADE ECONÔMICA NA AVALIAÇÃO DA 

QUALIDADE FÍSICA DE GRÃOS DE ARROZ 

 

 

ERICH BARROS BRANDANI 

 

 

 

ORIENTADORA: DRA. NARA OLIVEIRA SILVA SOUZA 

CO-ORIENTADOR: DR. RICARDO CARMONA 

 

 

TESE DE DOUTORADO NO PROGRAMA DE PÓS-GRADUAÇÃO EM 

AGRONOMIA 

 

 

 

PUBLICAÇÃO: N°___/2025 

 

 

 

BRASÍLIA-DF 

FEVEREIRO/2025  



iii 
 

 

UNIVERSIDADE DE BRASÍLIA 

FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA 

 

 

 

ANÁLISE DE IMAGEM E VIABILIDADE ECONÔMICA NA AVALIAÇÃO DA 

QUALIDADE FÍSICA DE GRÃOS DE ARROZ 

 

ERICH BARROS BRANDANI 

 

 

TESE DE DOUTORADO SUBMETIDA AO PROGRAMA DE PÓS-GRADUAÇÃO EM 

AGRONOMIA, COMO PARTE DOS REQUISITOS NECESSÁRIOS À OBTENÇÃO 

DO GRAU DE DOUTOR. 

 

APROVADA POR: 

 

NARA OLIVEIRA SILVA SOUZA, Dra. / UnB / narasouza@unb.br / Orientador  
 

FABIANA CARMANINI RIBEIRO, Dra. / UnB / facarmanini@unb.br / Examinadora 

Interna 

 

FLÍVIA FERNANDES DE JESUS SOUZA, Dra. / UEG / Fliviafdejesus@gmail.com 

/ Examinadora Externa 

 

ERNANDES RODRIGUES DE ALENCAR, Dr. / UFV / ernandesalencar@gmail.com 

/ Examinador Externo 

 

BRASÍLIA-DF, 25 de fevereiro de 2025 



iv 
 

FICHA CARTOGRÁFICA 

 

REFERÊNCIA BIBLIOGRÁFICA 

Brandani, E. B. ANÁLISE DE IMAGEM E VIABILIDADE ECONÔMICA NA 
AVALIAÇÃO DA QUALIDADE FÍSICA DE GRÃOS DE ARROZ. Brasília: Faculdade 
de Agronomia e Medicina Veterinária, Universidade de Brasília, 2024, 143p. Tese de 
Doutorado. 

 

CESSÃO DE DIREITOS 

NOME DO AUTOR: ERICH BARROS BRANDANI 

TÍTULO DA TESE: ANÁLISE DE IMAGEM E VIABILIDADE ECONÔMICA NA 
AVALIAÇÃO DA QUALIDADE FÍSICA DE GRÃOS DE ARROZ 

GRAU: DOUTOR   ANO: 2025 

 

É concedida à Universidade de Brasília permissão para reproduzir cópias desta Tese 
de Doutorado para única e exclusivamente propósitos acadêmicos e científicos. O 
autor reserva para si os outros direitos autorais de publicação. Nenhuma parte desta 
Tese de Doutorado pode ser reproduzida sem a autorização por escrito do autor. 
Citações são estimuladas, desde que citada a fonte. 

Nome: Erich Barros Brandani 

E-mail: erich_bb@hotmail.com 

 

 

 

 

 

 

 

 

Barros Brandani, Erich 

ANÁLISE DE IMAGEM E VIABILIDADE ECONÔMICA NA AVALIAÇÃO DA 
QUALIDADE FÍSICA DE GRÃOS DE ARROZ / Erich Barros Brandani; Orientador 
Nara Oliveira Silva Souza. — Brasília, 2025. 



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico ao meu querido Pai, Hamilton Brandani, pois sou fruto de seu esforço na 
área de Classificação Vegetal por mais de 40 anos e por ser a inspiração para a 

minha evolução constante; e ao meu avô, Osvaldo Pereira de Barros, pela sorte de 
poder propiciar, aos seus 96 anos, a experiência de ter um neto Doutor. 

 



vi 
 

 

AGRADECIMENTOS 

 

À minha orientadora, Dra. Nara Oliveira Silva Souza, que me acompanhou na 
Graduação, Mestrado e agora no Doutorado, figura essencial nessa grande conquista, 
da qual não teria conseguido sem sua orientação e confiança.  

À minha querida Mãe, Maria das Dores Souza Barros, pelo amor incondicional 
e por propiciar as condições necessárias para este Doutorado florescer. 

Ao meu amigo, Dr. Wallas Felippe de Souza Ferreira, que me acompanha 
desde a graduação, por ter me ajudado a acreditar que era possível, por todo apoio, 
competência e por compor o time que fez esse Doutorado virar realidade. 

À minha amiga, Dra. Ana Luiza Alves de Oliveira, pela sua contribuição 
intelectual e pelos momentos de aprendizado sempre muito ricos. 

À equipe ENCLASS, em especial à Raquel Ferreira Alves, por toda a dedicação 
e excelência em sua participação neste grande projeto. 

Aos meus amigos e família, base de todo o carinho e amor que existe em mim. 

Muito obrigado! 



vii 
 

ÍNDICE GERAL 

 

ÍNDICE DE FIGURAS ................................................................................................ xi 

ÍNDICE DE TABELAS .............................................................................................. xii 

RESUMO.................................................................................................................. xiv 

ABSTRACT ............................................................................................................... xv 

1. INTRODUÇÃO GERAL ....................................................................................... 1 

1.1 OBJETIVO GERAL ........................................................................................ 3 

1.2 OBJETIVOS ESPECÍFICOS .......................................................................... 3 

2. REVISÃO BIBLIOGRÁFICA ................................................................................ 4 

2.1 A cultura do arroz......................................................................................... 4 

2.1.1 Formas de Produção ............................................................................... 6 

2.1.2 Importação e Exportação ......................................................................... 7 

2.2 Estrutura, composição e padrão de consumo do Grão .................................. 7 

2.3 Composição do Grão ..................................................................................... 8 

2.4 Variedades de Arroz....................................................................................... 9 

2.5 Qualidade do Arroz ........................................................................................ 9 

2.5.1 Campo ................................................................................................... 10 

2.5.2 Indústria de Beneficiamento e Processamento ..................................... 11 

2.5.3 Mercado e Consumidor Final ................................................................. 13 

2.5.4 Melhoramento Genético ........................................................................ 13 

2.6 Padronização e Classificação de Produtos de Origem Vegetal ................... 14 

2.6.1 Classificação Oficial ............................................................................... 14 

2.6.2 Classificação Comercial ........................................................................ 15 

2.7 Padrão Oficial de Classificação do Arroz ..................................................... 15 

2.8 Agricultura Digital ......................................................................................... 17 

2.9 Fundamentos Teóricos da Análise de Imagens ........................................... 18 

2.10 Análise de Imagens na Classificação de Grãos ........................................... 21 

2.10.1 Equipamentos de Análise de Imagens para grãos de arroz .................. 23 

2.11 Viabilidade Financeira.................................................................................... 25 

3. REFERÊNCIAS BIBLIOGRÁFICAS .................................................................. 27 

 



viii 
 

CAPÍTULO I .............................................................................................................. 36 

ANÁLISE DE IMAGENS NA DETERMINAÇÃO DA CLASSE DO ARROZ (Oryza 

sativa L.) BENEFICIADO POLIDO .......................................................................... 36 

RESUMO................................................................................................................... 37 

ABSTRACT ............................................................................................................... 38 

1. INTRODUÇÃO ................................................................................................... 39 

2. MATERIAL E MÉTODOS .................................................................................. 41 

2.1 Obtenção das Amostras .................................................................................. 41 

2.2 Análise via Classificador Oficial ....................................................................... 43 

2.2.1 Metodologia de análise da Classe do arroz .............................................. 43 

2.2.2 Diferenciação de Longo e Longo fino de Médio e Curto ........................... 43 

2.2.3 Diferenciação Médio de Curto ................................................................... 44 

2.2.4 Diferenciação Longo de Longo fino ........................................................... 44 

2.3 Metodologia via Equipamentos de Análise de Imagens................................... 45 

2.3.1 Equipamento 1: Componentes e funcionamento ...................................... 45 

2.3.2 Equipamento 2: Componentes e funcionamento ...................................... 45 

2.3.3 Calibração inicial dos equipamentos ......................................................... 46 

2.3.4 Metodologia de análise dos equipamentos de análise de imagem ........... 46 

2.4 Índice de Acerto Amostral ................................................................................ 47 

2.6 Delineamento experimental e análise estatística ............................................. 48 

3. RESULTADOS .................................................................................................. 48 

3.1 Análise de classe ............................................................................................. 48 

3.2 Tempo de análise na obtenção da classe........................................................ 54 

3.3 Índice de Acerto (IA%) amostral ...................................................................... 56 

4. DISCUSSÃO ...................................................................................................... 58 

5. CONCLUSÃO .................................................................................................... 63 

6. REFERÊNCIAS BIBLIOGRÁFICAS .................................................................. 64 

 

CAPÍTULO II ............................................................................................................. 68 

ANÁLISE DE IMAGENS NA DETERMINAÇÃO DO TIPO DO ARROZ (Oryza sativa 

L.) BENEFICIADO POLIDO ...................................................................................... 68 



ix 
 

RESUMO................................................................................................................... 69 

ABSTRACT ............................................................................................................... 70 

1. INTRODUÇÃO ................................................................................................... 71 

2. MATERIAL E MÉTODOS .................................................................................. 73 

2.1 Montagem das amostras ................................................................................. 73 

2.2 Metodologia de Análise via Classificação Manual ........................................... 75 

2.3 Metodologia de Análise via Equipamentos de Análise de Imagens ................. 76 

2.3.1 Equipamento 1: Componentes e funcionamento ...................................... 76 

2.3.2 Equipamento 2: Componentes e funcionamento ...................................... 77 

2.3.3 Calibração inicial dos equipamentos ......................................................... 77 

2.3.4 Metodologia de análise dos equipamentos de análise de imagem ........... 78 

2.4 Índice de Acerto Percentual Amostral .............................................................. 78 

2.5 Delineamento experimental e análise estatística ............................................. 79 

3. RESULTADOS .................................................................................................. 79 

3.1 Análise de Tipo ................................................................................................ 80 

3.2 Tempo de análise ............................................................................................ 86 

3.3 Índice de Acerto (IA%) amostral ...................................................................... 88 

3.4 Indice de Acerto (IA%) por Defeito .................................................................. 90 

4. DISCUSSÃO ...................................................................................................... 92 

5. CONCLUSÃO .................................................................................................. 100 

6. REFERÊNCIAS BIBLIOGRÁFICAS ................................................................ 101 

 

CAPÍTULO III VIABILIDADE FINANCEIRA DE UTILIZAÇÃO DA ANÁLISE DE 

IMAGENS NA CLASSIFICAÇÃO DE GRÃOS DE ARROZ ................................... 103 

RESUMO................................................................................................................. 104 

ABSTRACT ............................................................................................................. 105 

1. INTRODUÇÃO ................................................................................................. 106 

2. MATERIAL E MÉTODOS ................................................................................ 107 

2.5 Componentes, funcionamento e metodologia de análise do equipamento 

de análise de imagem .................................................................................... 110 



x 
 

3. RESULTADOS E DISCUSSÃO .......................................................................... 111 

3.1 Tempo de Análise .......................................................................................... 111 

3.2 Custos Totais ................................................................................................. 113 

3.2.1 Laboratório de Recebimento ....................................................................... 113 

3.2.2.1 Custo por Análise..................................................................................... 120 

3. CONCLUSÃO .................................................................................................. 122 

4. CONSIDERAÇÕES FINAIS ............................................................................. 122 

5. REFERÊNCIAS BIBLIOGRÁFICAS ................................................................ 124 

ANEXO I.................................................................................................................. 128 

 

  



xi 
 

ÍNDICE DE FIGURAS 
 

Figure 1 — Estrutura do grão de arroz.........................................................................7 

Figure 2 — Etapas do beneficiamento do Arroz em Casca até a expedição do Produto 

Acabado.....................................................................................................................12 

CAPÍTULO I 

Figura 1 — Exemplo de grão das classes Longo Fino (a), Longo (b), Médio (c) e Curto 

(d) utilizados no experimento. ................................................................................... 41 

Figura 2 — Análise de diferença de médias para evidenciar possíveis 

superestimações (cores tendendo ao azul) e subestimações (cores tendendo ao 

vermelho) pelos tratamentos nas amostras de Classe. Sendo o valor de cada 

quadrante a diferença entre a média percentual. ...................................................... 53 

Figura 3 — Tempo médio e desvio padrão de análise das amostras de Classe pelos 

tratamentos (Classificador Oficial, Equipamento 1 e Equipamento 2). ...................... 54 

Figura 4 — Índice de Acerto percentual, desvio padrão e tempo médio de análise das 

amostras de Classe pelos tratamentos (Classificador Oficial, Equipamento 1 e 

Equipamento 2). ........................................................................................................ 57 

CAPÍTULO II 

Figura 1 — Aspecto visual dos grãos bons (a), ardidos (b), amarelos (c), rajados (d), 
picados ou manchados (e) e gessados (f) utilizados no experimento........................xx 

Figura 2 — Tempo médio e desvio padrão de análise das amostras de Classe pelos 

tratamentos (Classificador Oficial, Equipamento 1 e Equipamento 2). ...................... 87 

Figura 3 — Índice de Acerto percentual, desvio padrão e tempo médio de análise das 

amostras de Tipo pelos tratamentos (Classificador Oficial, Equipamento 1 e 

Equipamento 2). ........................................................................................................ 89 

Figura 4 — Índice de Acerto percentual e desvio padrão da identificação dos defeitos 

Mofado e Ardido, Amarelo, Rajado, Picados ou Manchados e Gessado pelos 

tratamentos (Classificador Oficial, Equipamento 1 e Equipamento 2). ...................... 91 

Figura 5 — Captura da imagem de grãos de arroz em esteira pelo equipamento 1. 95 

Figura 6 — Captura da imagem de grãos de arroz em queda livre pelo equipamento 

2. ............................................................................................................................... 96 

 

  



xii 
 

ÍNDICE DE TABELAS 

 

Tabela 1 — Limites máximos de tolerância expressos em %/peso do Arroz Beneficiado 

Polido (Anexo VII do POC do arroz). ......................................................................... 17 

CAPÍTULO I 

Tabela 1 — Proporção de Classe das amostras de arroz de acordo com a classificação 

de classe, em gramas (g) .......................................................................................... 42 

Tabela 2 — Proporção de Classe das amostras de arroz de acordo com a classificação 

de classe, em percentual (%) .................................................................................... 42 

Tabela 3 — Valores médios e desvio padrão da análise de classe em amostras com 

predominância de grãos da classe “Longo Fino” pelos tratamentos Controle, 

Classificador Oficial, Equipamento 1 e Equipamento 2 ............................................. 49 

Tabela 4 — Valores médios e desvio padrão da análise de classe em amostras com 

predominância de grãos da classe “Longo” pelos tratamentos Controle, Classificador 

Oficial, Equipamento 1 e Equipamento 2 .................................................................. 49 

Tabela 5 — Valores médios e desvio padrão da análise de classe em amostras com 

predominância de grãos da classe “Médio” pelos tratamentos Controle, Classificador 

Oficial, Equipamento 1 e Equipamento 2 .................................................................. 50 

Tabela 6 — Valores médios e desvio padrão da análise de classe em amostras com 

predominância de grãos da classe “Curto” pelos tratamentos Controle, Classificador 

Oficial, Equipamento 1 e Equipamento 2 .................................................................. 51 

Tabela 7 — Valores médios e desvio padrão da análise de classe em amostras com 

predominância de grãos da classe “Misturado” pelos tratamentos Controle, 

Classificador Oficial, Equipamento 1 e Equipamento 2. ............................................ 52 

CAPÍTULO II 

Tabela 1 — Limites máximos de tolerância expressos em %/peso do Arroz Beneficiado 

Polido (Anexo VII do POC do arroz) .......................................................................... 73 

Tabela 2 — Proporção de defeitos por amostra (%) ................................................. 74 

Tabela 3 — Valores médios e desvio padrão da análise de amostras de Tipo 1 

(Controle) pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2

 .................................................................................................................................. 80 



xiii 
 

Tabela 4 — Valores médios e desvio padrão da análise de amostras de Tipo 2 

(Controle) pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2

 .................................................................................................................................. 81 

Tabela 5 — Valores médios e desvio padrão da análise de amostras de Tipo 3 

(Controle) pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2

 .................................................................................................................................. 82 

Tabela 6 — Valores médios e desvio padrão da análise de amostras de Tipo 4 

(Controle) pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2

 .................................................................................................................................. 84 

Tabela 7 — Valores médios e desvio padrão da análise de amostras de Tipo 5 

(Controle) pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2

 .................................................................................................................................. 85 

CAPÍTULO III 

Tabela 1 — Custos anuais e diários do laboratório de recebimento, considerando o 

cenário atual sem o Equipamento 1. ....................................................................... 114 

Tabela 2 — Custos anuais e diários do laboratório de recebimento, considerando o 

cenário futuro com o Equipamento 1. ...................................................................... 115 

Tabela 3 — Custo por amostra no laboratório de recebimento para o cenário de 

demanda atual sem o equipamento 1. .................................................................... 117 

Tabela 4 — Custo por amostra no laboratório de recebimento para o cenário de 

capacidade máxima sem o equipamento 1. ............................................................ 117 

Tabela 5 — Custo por amostra no laboratório de recebimento para o cenário de 

introdução do equipamento 1. ................................................................................. 118 

Tabela 6 — Custos anuais e diários do laboratório interno, considerando o cenário 

atual sem o Equipamento 1. .................................................................................... 119 

Tabela 7 — Custos anuais e diários do laboratório interno, considerando o cenário 

futuro com o Equipamento 1. .................................................................................. 119 

Tabela 8 — Custo por amostra no laboratório interno para o cenário de demanda atual 

sem o equipamento 1. ............................................................................................. 121 

Tabela 9 — Custo por amostra no laboratório de recebimento para o cenário de 

capacidade máxima sem o equipamento 1. ............................................................ 121 

Tabela 10 — Custo por amostra no laboratório interno para o cenário de introdução 

do equipamento 1. ................................................................................................... 121 



xiv 
 

RESUMO 

 

O arroz (Oryza sativa L.) é um dos principais alimentos básicos do mundo, sendo 

essencial para a segurança alimentar e economia de diversas regiões, especialmente 

na Ásia, África e América Latina. No Brasil, a classificação do arroz, ou seja, sua 

análise de qualidade, envolve a avaliação de atributos físicos e visuais que impactam 

o valor de mercado e a aceitação do consumidor, incluindo dimensões dos grãos, 

(classe) e a presença de defeitos (tipo). Tradicionalmente, essa análise é realizada de 

forma manual por classificadores oficiais, processo que, embora preciso, demanda 

tempo e pode ser subjetivo. Com os avanços tecnológicos, a análise de imagem surge 

como uma alternativa promissora para automatizar a classificação, oferecendo maior 

rapidez e consistência. Este estudo tem como objetivo avaliar a eficácia e a eficiência 

de equipamentos de análise de imagem na determinação da classe e tipo do arroz 

beneficiado polido, comparando-os com o método tradicional de classificação manual 

a partir da análise de médias, tempo de análise e índice de acerto. A pesquisa analisou 

ainda a viabilidade financeira da adoção de equipamentos de imagem para a indústria 

de beneficiamento de arroz, considerando custos de aquisição, manutenção e 

operação, além do retorno sobre o investimento em diferentes contextos de volume 

de produção. O classificador humano demonstrou alta precisão, porém com um tempo 

de análise prolongado, o que pode limitar sua eficiência em operações de larga escala. 

O Equipamento 1 se destacou pelo equilíbrio entre precisão e rapidez, sendo o mais 

adequado para uso industrial, enquanto o Equipamento 2, apesar da maior 

variabilidade, apresentou alta eficiência em tempo. A análise econômica revelou que 

a automação reduz significativamente os custos por amostra e padroniza os 

processos, tornando a análise mais acessível e eficiente. Assim, a integração entre 

métodos automatizados e a expertise humana se mostra uma solução viável para 

otimizar o controle de qualidade na indústria do arroz, combinando precisão, eficiência 

e redução de custos. 

 

Palavras-chave: Oryza sativa L., Classificação de grãos, inteligência artificial, classe 

do arroz, tipo do arroz 
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ABSTRACT 
 

Rice (Oryza sativa L.) is one of the world's staple foods, playing a crucial role in food 

security and the economy of various regions, especially in Asia, Africa, and Latin 

America. In Brazil, rice classification, which assesses quality attributes, involves 

evaluating physical and visual characteristics that impact market value and consumer 

acceptance, including grain dimensions (class) and the presence of defects (type). 

Traditionally, this analysis is performed manually by official classifiers, a process that, 

although precise, is time-consuming and subject to variability. With technological 

advancements, image analysis has emerged as a promising alternative to automate 

classification, offering greater speed and consistency. This study aims to evaluate the 

effectiveness and efficiency of image analysis equipment in determining the class and 

type of polished rice, comparing them with the traditional manual classification method 

based on mean analysis, processing time, and accuracy index. The research also 

examined the financial feasibility of adopting image analysis equipment in the rice 

processing industry, considering acquisition, maintenance, and operating costs, as 

well as the return on investment in different production volume contexts. The human 

classifier demonstrated high precision but required a longer analysis time, which may 

limit efficiency in large-scale operations. Equipment 1 stood out for its balance between 

precision and speed, making it the most suitable for industrial use, while Equipment 2, 

despite higher variability, achieved high time efficiency. The economic analysis 

revealed that automation significantly reduces per-sample costs and standardizes 

processes, making analysis more accessible and efficient. Thus, integrating automated 

methods with human expertise proves to be a viable solution for optimizing quality 

control in the rice industry, combining precision, efficiency, and cost reduction. 

 

Keywords: Oryza sativa L., Grain classification, artificial intelligence, rice class, rice 

type. 



1 
 

1. INTRODUÇÃO GERAL 

 

O arroz (Oryza sativa L.), cereal cuja principal função é a alimentação humana, 

é uma fonte essencial de energia e nutrição para mais da metade da população 

mundial (BAO et al., 2020). O grão de arroz possui duas partes principais: a casca 

(20%) e a cariopse (80%). A parte comestível e nutricional do arroz encontra-se na 

cariopse, composta pelas camadas externas (7-10%), o germe (2-3%) - que juntos 

formam o farelo de arroz obtido pelo brunimento e polimento do grão - e o endosperma 

amiláceo, conhecido como arroz branco (85-94%) (HINTON; SHAW, 1954). 

Dentre os atributos de qualidade do arroz, a aparência física do grão é um dos 

fatores mais importantes para a aceitação do consumidor, pois é o primeiro atributo 

instantaneamente percebido na hora da compra e influencia diretamente seu valor de 

mercado. Além da aparência física, a qualidade do arroz é definida pelo rendimento 

no beneficiamento (qualidade de moagem), propriedades sensoriais e de cozimento, 

e qualidade nutricional. O valor atribuído a cada uma dessas características varia de 

acordo com a cultura e os costumes do local onde o arroz é consumido (FITZGERALD 

et al., 2009; TRINIDAD et al., 2013 CALINGACION et al., 2014;). 

A qualidade física do grão de arroz, relacionada à sua aparência, está 

associada ao tamanho, formato, nível de gessamento e translucidez (FITZGERALD et 

al., 2009). A qualidade de moagem do arroz está diretamente ligada ao rendimento de 

grãos inteiros após a retirada da casca e das camadas superficiais do grão. O 

percentual de grãos inteiros é determinado pela proporção de grãos que mantêm pelo 

menos três quartos de seu comprimento após a moagem (BRASIL, 2009; 

SREETHONG et al., 2018). No Brasil, o arroz é classificado em classes de acordo 

com suas dimensões: Longo Fino, Longo, Médio e Curto (BRASIL, 2009). 

Para proteger o consumidor brasileiro e padronizar a avaliação da qualidade 

dos produtos de origem vegetal, o Ministério da Agricultura e Pecuária (MAPA) criou 

a Lei 9.972 de 25 de maio de 2000 (BRASIL, 2000), conhecida como “Lei da 

Classificação”. O conceito de “Classificação” é definido como “o ato de determinar as 

qualidades intrínsecas e extrínsecas de um produto vegetal com base em padrões 

oficiais físicos ou descritos” (BRASIL, 2000). Assim, foram criados Padrões Oficiais 

de Classificação (POC) que descrevem a metodologia de análise de qualidade para 
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diversos produtos de origem vegetal, incluindo o arroz, cuja POC é a Instrução 

Normativa nº 06 de 16 de fevereiro de 2009. 

A obtenção dos aspectos de qualidade do arroz durante sua Classificação 

Oficial envolve a definição do processo de beneficiamento (Subgrupo), obtenção dos 

parâmetros de dimensões do grão (Classe) e verificação da presença de defeitos 

(Tipo). Tal avaliação é realizada essencialmente a partir da análise visual dos grãos 

de arroz (BRASIL, 2009). 

Embora a Classificação Oficial do arroz seja obrigatória, a avaliação visual de 

sua qualidade ocorre ao longo de toda a cadeia de produção. Diversas etapas de 

análise visam precificar o produto e garantir o controle de qualidade nos armazéns e 

indústrias de beneficiamento. Produtores e indústrias frequentemente treinam seus 

próprios funcionários para essas avaliações, o que pode introduzir subjetividade, pois 

esses trabalhadores, chamados Classificadores Práticos, não possuem homologação 

oficial do MAPA (BRASIL, 2009; BRASIL, 2011). 

É neste contexto que as novas tecnologias relacionadas às análises 

computadorizadas de imagens apresentam grandes oportunidades de melhoria na 

eficiência e precisão da obtenção das características físicas do grão de arroz. A 

análise computadorizada de imagens envolve a integração entre um equipamento 

(hardware) para a aquisição das imagens e um programa (software) para o 

tratamento, localização, identificação, segmentação e obtenção dos parâmetros de 

interesse na imagem (MARTENS et al., 2023). 

Considerando que a análise da qualidade física e industrial do arroz é 

essencialmente visual, os equipamentos de análise de imagens possuem grande 

potencial de utilização nesta área. A avaliação visual tradicional, embora eficaz, pode 

ser subjetiva e suscetível a inconsistências entre diferentes avaliadores. A introdução 

de tecnologias de análise de imagens e inteligência artificial (IA) oferece uma solução 

mais precisa e eficiente para a avaliação da qualidade dos grãos (BUTARDO; 

SREENIVASULU, 2019). 

Para a aplicação da análise de imagem na classificação de arroz, fazem-se 

necessários estudos comparativos sobre a eficácia e eficiência entre equipamentos 

de análise de imagem e a classificação manual. 
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1.1 OBJETIVO GERAL 

 

Avaliar o uso de equipamentos de análise de imagens na classificação do arroz 

beneficiado polido, tendo como base o padrão oficial de classificação (POC) do arroz, 

elaborado pelo Ministério da Agricultura e Pecuária (MAPA), comparando a eficácia e 

a eficiência dos equipamentos de análise de imagens com a classificação manual 

realizada por classificadores oficiais habilitados pelo MAPA, destacando as vantagens 

e desvantagens de cada método. 

 

1.2 OBJETIVOS ESPECÍFICOS 
 

● Avaliar o tempo e a precisão na obtenção das características de dimensão 

(classe) em amostras de arroz beneficiado polido a partir da classificação 

realizada por um classificador oficial habilitado pelo MAPA e por equipamentos 

de análise de imagens. 

● Avaliar o tempo e a precisão na obtenção das características de defeitos (tipo) 

em amostras de arroz beneficiado polido a partir da classificação realizada por 

um classificador oficial habilitado pelo MAPA e por equipamentos de análise de 

imagens. 

● Avaliar se as metodologias de classificação via análise de imagens e via 

classificador oficial são complementares ou substitutas.  

● Analisar a viabilidade financeira de aquisição dos equipamentos em 

comparação com a análise via classificador oficial.  
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2. REVISÃO BIBLIOGRÁFICA 

 

2.1 A cultura do arroz 

 

O arroz (Oryza sativa L.), é cultivado numa ampla variedade de condições 

ambientais, desde florestas tropicais da África Central, passando por climas áridos 

como o deserto egípcio do delta do Nilo, até altas altitudes do Himalaia no Nepal, da 

China à Austrália, do Japão ao Brasil (STORCK, 2004). É uma das culturas 

alimentares mais importantes e consumidas do mundo, sendo um cereal que 

representa a base alimentar de mais de três bilhões de pessoas, desempenhando um 

papel fundamental para a segurança alimentar mundial. Somente na Ásia, mais de 

dois bilhões de pessoas obtêm de 60 a 70% de sua ingestão calórica do arroz e de 

seus produtos (SOSBAI, 2018). 

Muitos países atribuem o desenvolvimento de sua civilização ao cultivo do 

arroz, que desempenha um papel estratégico não somente nos aspectos econômico 

e social, mas também cultural, sendo utilizado em cerimônias religiosas, festas e 

pinturas como símbolo de vida, fertilidade e abundância (SREETHONG et al., 2018). 

De acordo com a OECD-FAO (2018), para alimentar nove bilhões de pessoas 

até 2050, a produção de alimentos precisará ser aumentada em mais de 50%, 

especialmente alimentos básicos para pessoas de baixa renda, como o arroz 

(ITTERSUM et al., 2013). 

Vários historiadores e cientistas apontam o Sudeste da Ásia como o local de 

origem do arroz, que inclui China, Índia e Indochina. A Índia é o país que apresenta 

as regiões com maior diversidade e ocorrência de variedades endêmicas, além de 

possíveis centros de origem dessas espécies. O gênero Oryza é o mais rico e 

importante da tribo Oryzeae, que engloba cerca de 23 espécies, dispersas nas regiões 

tropicais da Ásia, África e Américas (BARBIERI; STUMPF, 2008). 

Segundo Chang (1976), o arroz se propagou pelo sudeste asiático, da Índia até 

a China, há cerca de 3.000 anos a.C. O resquício mais antigo de grãos de arroz foi 

identificado na China, encontrado no vale do Rio Yang-Tsé-Kiang, datado do período 

entre 3395 e 2000 a.C. Há escritos indianos de 1300 a 1000 a.C. sobre o cultivo de 

arroz, os quais descrevem certas práticas agronômicas como forma de cultivo e a 

classificação em grupos, de acordo com o ciclo, exigência hídrica e valor nutricional 

(BARBIERI; STUMPF, 2008). 
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O arroz foi introduzido pelos chineses na Coreia, no Japão e nas Filipinas por 

volta de 100 a.C. e, até a introdução pelos árabes no Delta do Nilo, o arroz não era 

conhecido nos países Mediterrâneos. Terres et al. (1998) relatam que a expansão do 

cultivo pelos árabes foi muito importante para levar o arroz até o delta do Rio Nilo, 

para a costa africana, Marrocos e Espanha. Na península Ibérica e em regiões da 

Itália, o arroz chegou por volta de 883 d.C. Foi introduzido na América por portugueses 

e espanhóis no início do século XVI, à época dos descobrimentos, onde se tornou um 

dos primeiros alimentos de consumo interno (TERRES et al., 1998). 

No Brasil, o arroz constava no cardápio dos descobridores europeus, porém há 

relatos de que já era utilizado na alimentação das populações locais (PEREIRA, 

2002). Entretanto, segundo Silva (1950), estudos indicam que o arroz cultivado e 

consumido no Brasil antes da chegada dos europeus não se tratava de Oryza sativa, 

originário da Ásia, mas sim de espécies nativas da América do Sul. Muitas dessas 

espécies ainda são encontradas no Pantanal Mato-grossense e às margens dos 

igarapés, principalmente na região Amazônica. O arroz era conhecido pelos índios 

Tupis como “auatiapé” (auati = milho e apé = com casca) (PEREIRA, 2002). 

Brandão (1972) relata que o cultivo do arroz começou a surgir no cenário 

agrícola da região sul do país a partir de 1824, com a chegada dos colonos alemães 

a São Leopoldo, no Rio Grande do Sul, onde foi estabelecida a primeira lavoura de 

sequeiro. No início do século XX, por meio do uso de "rodas de caçamba" ou de 

bombas, surgiram as primeiras lavouras irrigadas. Entre 1903 e 1904, às margens do 

Arroio Pelotas, tiveram início os primeiros cultivos com instalações de levante 

mecânico para irrigação das lavouras (TERRES et al., 1998). Segundo Pereira (2002), 

o aporte tecnológico já apresentado pelos pioneiros do cultivo do arroz gaúcho 

explicaria o porquê do estado do Rio Grande do Sul vir a se tornar, anos depois, um 

dos estados que mais produzem arroz no Brasil. 

O arroz é um dos cereais mais cultivados do mundo, estando atrás somente do 

trigo e do milho. Segundo dados da USDA (2023), a estimativa de produção mundial 

para a safra 2023/24 é de aproximadamente 513 milhões de toneladas em uma área 

de aproximadamente 166 milhões de hectares. De acordo com dados da CONAB 

(2023), a estimativa de produção de arroz para a safra 2022/2023 no Brasil é de 10 

milhões de toneladas, provenientes de uma área de aproximadamente 1,5 milhões de 

hectares, representando um resultado 6,9% inferior ao volume de produção da safra 

2021/2022. 
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Os maiores produtores mundiais de arroz são: China, Índia, Bangladesh, 

Indonésia, Vietnã, Tailândia, Mianmar, Filipinas, Paquistão e Brasil (FAO, 2021). No 

cenário brasileiro, o estado do Rio Grande do Sul se destaca como o maior produtor 

nacional, com aproximadamente 6,9 milhões de toneladas, representando 

aproximadamente 69% da produção nacional — com predominância do sistema de 

produção irrigado — e correspondendo a 59,2% da área de cultivo do país, seguido 

pelos estados de Santa Catarina e Tocantins (CONAB, 2023). 

 

2.1.1 Formas de Produção 

 

No cenário produtivo brasileiro, o principal sistema de cultivo de arroz é o 

sistema irrigado por inundação, seguido pelo sistema de cultivo de terras altas, 

conhecido como cultivo de sequeiro. O cultivo de arroz irrigado é caracterizado como 

um estabilizador da safra nacional, pois não é um sistema tão dependente de 

condições climáticas como ocorre no cultivo de sequeiro, o qual depende da 

ocorrência de chuvas e, em alguns casos, pode utilizar irrigação suplementar por 

aspersão (ANA, 2020). 

De toda a área irrigada do Brasil, o arroz corresponde a 25% dessa área e a 

40% do volume de água captada — ou seja, o manejo da cultura por inundação requer 

um volume maior por unidade de área do que em outros ecossistemas. O sistema de 

arroz irrigado traz melhorias no manejo do solo, da água e dos insumos, 

proporcionando o triplo da produtividade em relação ao sistema de arroz sequeiro 

(ANA, 2020). 

Na média dos anos entre 2014 e 2018, o arroz de sequeiro rendeu 2.134 kg/ha 

e o irrigado 7.403 kg/ha — 3,5 vezes mais (EMBRAPA, 2023). Com isso, as áreas de 

sequeiro representam 19% da área total, mas apenas 10% da produção, enquanto o 

arroz irrigado concentra 81% da área total e 90% da produção. 

Segundo dados da EMBRAPA (2023), cerca de 81% dos 1.622,5 mil hectares 

semeados com arroz no país foram cultivados no sistema irrigado na safra 2022, com 

maior concentração dessas lavouras na Região Sul, sendo o Rio Grande do Sul o líder 

em área cultivada, com aproximadamente 957 mil hectares, além de 147,9 mil 

hectares em Santa Catarina e 21,5 mil hectares no Paraná. Outras regiões do país 

também apresentam produção no sistema de arroz irrigado, com maior destaque para 
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o estado do Tocantins, com 100 mil hectares, Mato Grosso (93,3 mil hectares) e 

Maranhão (103,6 mil hectares) (CONAB, 2023). 

 

2.1.2 Importação e Exportação 

 

Nos últimos cinco anos, o Brasil produziu entre 10,4 e 12,4 milhões de 

toneladas de arroz, representando 76% da produção do Mercosul (CONAB, 2023). 

Entre janeiro de 2020 e 2024, o país importou 372.890,70 toneladas, principalmente 

do Paraguai (58%), seguido por Uruguai e Argentina. Em 2023/24, devido ao El Niño, 

a importação de arroz aumentou 30% em volume e 55% em valor. Aproximadamente 

99% das importações vieram do Mercosul, sendo 64% do Paraguai (ABIARROZ, 

2024). As exportações brasileiras de arroz em casca atingiram 50,8% do total em 

2023, com Senegal, Gâmbia, Peru, Cuba e EUA como principais destinos. As 

exportações em valor superaram a média dos últimos cinco anos em 72%, apesar de 

uma queda de 13% em volume em relação a 2022 (ABIARROZ, 2024; ANEC, 2024). 

 

2.2 Estrutura, composição e padrão de consumo do Grão 

 

Os grãos de arroz são compostos pela casca, que envolve o pericarpo, 

membrana diretamente ligada ao tegumento que envolve a semente. A semente é 

composta pela nucela, capa de aleurona, endosperma amiláceo e o embrião (CONAB, 

2015). 

 

 

 

 

 

 

 

 

 

Fonte: Elaborado e adaptado pelo autor de acordo com Vieira e Rabelo (2006). 

No Brasil, o arroz é consumido especialmente na forma de grãos inteiros, 

podendo ser arroz branco polido, arroz integral e arroz parboilizado, caracterizados 

Figure 1 — Estrutura do grão de arroz. 
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pela forma de processamento pós-colheita. O arroz branco é obtido através da retirada 

da casca, do germe, do pericarpo e da maior parte da camada interna (aleurona). O 

arroz integral é o grão do qual foi retirada apenas a casca. O arroz parboilizado, ainda 

com casca, passa por um processo hidrotérmico e, quando beneficiado, pode ser tanto 

integral quanto polido (BRASIL, 2009). 

A preferência é por um arroz com qualidade de cocção que proporcione bom 

rendimento, cozimento rápido, grãos secos e soltos após o cozimento, além de 

permanecer macio mesmo após o resfriamento (VIEIRA e RABELO, 2006; CONAB, 

2015). 

Cerca de 95% dos brasileiros consomem arroz, sendo que mais da metade o 

fazem no mínimo uma vez por dia. O maior consumo, com pouco mais de 70% do 

total, ainda é do arroz branco polido, conhecido como arroz "agulhinha". O consumo 

de arroz parboilizado quintuplicou nos últimos anos, aproximando-se de 25%, 

enquanto o arroz integral corresponde a 3 a 4% do consumo no Brasil (ELIAS et al., 

2012; CONAB, 2015). 

O consumo aparente médio mundial de arroz beneficiado é de 54 

kg/pessoa/ano. Em países asiáticos, a média é de 78 kg/pessoa/ano, região que 

produz 90% de todo o arroz mundial. Na América do Sul, esse valor médio é de 29 

kg/pessoa/ano, sendo o Brasil um grande consumidor, com uma média de 32 

kg/pessoa/ano (SOSBAI, 2018; ANA, 2020). 

 

2.3 Composição do Grão 

 

O arroz é composto principalmente por amido, com menores quantidades de 

proteínas, lipídios, fibras e minerais. A distribuição desses nutrientes varia entre as 

frações do grão; as camadas externas contêm mais proteínas, lipídios, fibras, minerais 

e vitaminas, enquanto o centro é rico em amido. O polimento reduz o teor de 

nutrientes, exceto o amido, diferenciando o arroz integral do polido. O conteúdo 

mineral depende das condições de cultivo, fertilização e processamento, com 72% 

dos minerais concentrados no farelo e 28% no arroz polido. O beneficiamento pode 

resultar em perdas de 0 a 10% do peso do grão integral, porém outros fatores 

influenciam o valor nutritivo do arroz, tais como variáveis relacionadas a condições de 

cultivo — umidade, temperatura, solo, adubação, horas de luz — além das formas de 
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preparo do cereal para consumo (ITANI et al., 2002; ZHOU et al., 2002; WALTER et 

al., 2008). 

 

2.4 Variedades de Arroz  

 

O gênero Oryza é rico em diversidade genética, pois, ao longo de todo o mundo, 

milhares de variedades são cultivadas. Por ser considerada a principal fonte de 

energia para a maioria da humanidade, sua preferência está associada a aspectos 

econômicos, tradicionais e culturais, variando de país para país, ou — no caso de 

países continentais como o Brasil — de região para região. Alguns mercados, como o 

da Índia e do Paquistão, são famosos por oferecer tipos especiais de arroz, como os 

arrozes-aromáticos Basmati; na Tailândia destaca-se o arroz-verde ou 'Midori Mai'; no 

Japão, o arroz-preto ou 'Kuro Mai' e o arroz-vermelho 'Aka Mai'; e, na Itália, o arroz-

arbório ou 'Volano' (PEREIRA et al., 2007). 

O arroz cultivado pertence à espécie Oryza sativa L., diferenciando-se em três 

grupos varietais: Índica, Japônica e Fragrante. Além de diferenças na estrutura da 

planta, esses grupos apresentam diferenças na composição do grão e dimensões, 

influenciando diretamente na determinação da classe dos grãos (PINHEIRO, 1999; 

BASSINELLO; CASTRO, 2004): 

1. Índica: variedades mais comuns no contexto mundial, sendo o mais 

consumido, apresenta grãos longos e finos; 

2. Japônica: como exemplo temos o arroz japonês utilizado no preparo de 

sushis e o arroz arbóreo ou italiano, utilizado no preparo de risotos, com elevada 

porcentagem de amilopectina e grãos curtos e redondos; 

3. Fragrante: duas principais variedades são o arroz basmati e o jasmine, 

característicos pela presença de compostos voláteis que liberam fragrâncias 

agradáveis (BASSINELLO; CASTRO, 2004; RIBEIRO; SERAVALLI, 2007). 

 

2.5 Qualidade do Arroz 

 

O conceito de qualidade do arroz é um termo subjetivo e sua percepção varia 

de acordo com aspectos socioeconômicos e culturais do país em questão, além de 

seu uso proposto (WEBB, 1991), sendo de suma importância o entendimento sobre 
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os nichos de mercado consumidor, pois o arroz de qualidade para o brasileiro é muito 

diferente do que os asiáticos entendem como um arroz de qualidade Para falar da 

qualidade do grão de arroz é preciso levar em consideração fatores genéticos, fatores 

relacionados ao manejo da cultura e condições ambientais de cultivo, além de seu 

manuseio durante as etapas pós-colheita (VANIER, 2017); 

De forma geral, as características de influência na qualidade do arroz são: (1) 

a cor da casca e do pericarpo; (2) as dimensões do grão, como o tamanho e formato; 

(3) o rendimento no beneficiamento; (4) nível de gessamento, a cor e a translucidez 

do grão; (5) as características de cozimento, alimentação e processamento; e (6) a 

pureza física e varietal (WEBB, 1985). Desta forma, todas as etapas da cadeia de 

produção, desde a obtenção de novas variedades nas instituições de pesquisa e 

melhoramento genético, passando pelo campo, armazéns, indústrias de 

beneficiamento e processamento, compartilham a responsabilidade de gerir a 

qualidade do grão de arroz até seu consumo final, mesmo que a percepção de 

qualidade em cada etapa seja diferente, como veremos a seguir. 

 

2.5.1 Campo 

 

Nesta etapa a qualidade está intimamente ligada às condições de solo e clima, 

manejo cultural e ao ataque de pragas e doenças. Desta forma, entende-se como 

qualidade, as variedades de arroz que apresentem características agronômicas 

favoráveis como, por exemplo, resistência a pragas e doenças, alta produtividade e 

resistência a condições ambientais adversas. De acordo com UNCTAD (2003), 

existem mais de 2 mil cultivares de arroz plantadas no mundo. O banco de 

germoplasma do Instituto Internacional de Investigação do Arroz (IRRI) conta com 

mais de 150 mil acessos; tamanha diversidade confere ao arroz diferentes atributos: 

diferença nos ciclos e morfologias das plantas, tipo de grão, resistência ao 

acamamento, resistência e tolerância a fatores bióticos, doenças, pragas e 

competição com plantas daninhas, além de fatores abióticos, como temperatura, seca, 

acidez do solo e deficiências nutritivas no momento do cultivo (IRRI, 2022). 

Para estabelecer uma melhor estratégia de produção de arroz no Brasil, é 

fundamental não só solucionar as dificuldades e problemas intrínsecos ao processo 

produtivo, mas também conhecer de maneira profunda todas as características 
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organolépticas e físico-químicas para definir os padrões e as exigências de qualidade 

no mercado nacional e internacional (FERREIRA et al., 2005). 

 

2.5.2 Indústria de Beneficiamento e Processamento 

 

Dentro das indústrias de beneficiamento e processamento, a qualidade dos 

grãos de arroz é avaliada de forma constante, desde o recebimento da carga, 

passando pelo controle de qualidade interno, responsável pela regulagem de 

máquinas, monitoramento dos níveis de quebra dos grãos e pela devida segregação 

dos grãos, seus subprodutos e resíduos, até chegar na etapa de amostragem para a 

realização da Classificação Oficial antes de seu empacotamento. Nesta etapa, as 

características de qualidade dos grãos de arroz envolvem a ausência de mistura 

varietal, homogeneidade dos grãos, com maturação completa, translúcidos, ausência 

de defeitos e alto rendimento de beneficiamento (BRASIL, 2009). 

Tendo em vista que os grãos de arroz irão passar por uma série de máquinas 

e processos, um fator de extrema importância que interfere diretamente no preço a 

ser pago pelo arroz é sua renda e rendimento. Segundo o padrão oficial de 

classificação (POC) do arroz, a renda do beneficiamento consiste na porcentagem de 

arroz (inteiro e quebrado) resultante do processo de descascamento e polimento do 

grão. Já o rendimento do grão consiste no percentual de grãos inteiros e de grãos 

quebrados, pesados separadamente, após o beneficiamento. Ressalta-se que para 

se obter o rendimento final do grão de arroz é necessário a obtenção de sua classe 

— definida segundo as dimensões do grão em longo fino, longo, médio, curto ou 

classe misturado, quando não contempla nenhuma das outras classes (BRASIL, 

2009). 

As etapas de beneficiamento do arroz consistem em: limpeza do produto (com 

relação às matérias estranhas e impurezas), descascamento, polimento, seleção e 

classificação do grão, podendo ou não, ser realizado o processo de parboilização do 

grão ainda com casca (Figura 2). 
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No processo de parboilização há a realização de três etapas: encharcamento, 

gelatinização e secagem. Todo esse processo objetiva transferir para o endosperma 

grande parcela das vitaminas hidrossolúveis e sais minerais contidos no tegumento e 

no embrião; além disso, diminui significativamente a porcentagem de grãos quebrados 

por conta da gelatinização do amido, aumentando assim o rendimento do produto, a 

redução dos subprodutos e a melhora de suas condições de conservação (OLIVEIRA; 

AMATO, 2021). 

O arroz branco comum adquiriu maior qualidade ao longo dos anos, devido, 

principalmente, ao melhoramento genético utilizado e, em grande parte, pelo 

processamento posterior, com equipamentos de alta tecnologia, com maior agilidade 

e precisão no beneficiamento dos grãos — limpeza e seleção (BASSINELLO; 

CASTRO, 2004). 

Outro fator de qualidade muito importante nesta etapa é a incidência de defeitos 

no grão, como, por exemplo, os grãos mofados, ardidos, danificados por insetos, 

manchados, amarelos, rajados, gessados, entre outros. Tais defeitos são identificados 

no recebimento da carga, na etapa de separação eletrônica por cor, que tem como 

objetivo expulsar os grãos defeituosos do lote que está sendo beneficiado, além da 

análise realizada nos laboratórios de controle de qualidade internos às indústrias. 

Neste caso, a análise de qualidade é realizada por um colaborador treinado para tal 

atividade, não sendo obrigatória a sua habilitação via curso oficial homologado pelo 

MAPA. 

F
Figure 2 — Etapas do beneficiamento do Arroz em Casca até a expedição do 
Produto Acabado. 
Fonte: Elaborado pelo autor. 
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No que diz respeito à Classificação Oficial — a última análise antes de ofertar 

tal produto ao consumidor final —, é obrigatória e realizada por um profissional 

devidamente habilitado em curso homologado pelo MAPA, antes do empacotamento 

de um lote, visando a identificação do percentual de defeitos presentes no lote de 

grãos e verificando se eles estão dentro do limite permitido para sua comercialização 

com o objetivo de proteger o consumidor final. Após a emissão do certificado oficial 

de classificação, o produto é embalado e pode ser comercializado a partir das redes 

de mercados (BRASIL, 2007; BRASIL, 2009). 

 

2.5.3 Mercado e Consumidor Final 

 

Entende-se, neste caso, como mercado, os pontos de distribuição do produto 

já embalado e devidamente identificado seguindo todos os critérios descritos no 

Padrão Oficial de Classificação do Arroz (BRASIL, 2009). É neste momento que o 

consumidor final entra em contato visual com o produto e, desta forma, busca avaliar 

sua qualidade de acordo com suas características de pureza física, sanidade e 

aparência. A presença de grãos defeituosos e quebrados é um dos fatores críticos 

nesta etapa e tem influência direta na percepção de qualidade do arroz pelo 

consumidor final. 

Além dos fatores relacionados aos aspectos visuais do grão de arroz, é 

considerado o custo do produto e, após sua aquisição, o consumidor final inclusive 

tem a oportunidade de avaliar suas características organolépticas como, por exemplo, 

o sabor, textura e o aroma do arroz e além do tempo de cozimento e o rendimento de 

panela. Tais parâmetros são decisórios quando relacionados à aquisição recorrente 

de uma marca comercial de arroz embalado (WALTER et al., 2008). 

 

2.5.4 Melhoramento Genético 

 

A etapa de pesquisa e melhoramento genético é responsável pela produção de 

novas variedades de arroz a partir das demandas de qualidade de todas as etapas de 

sua cadeia produtiva, passando pela etapa de produção no campo, o beneficiamento, 

a comercialização e o consumidor final, sendo este último o mais importante, tendo 

em vista que, caso os consumidores não gostem do sabor, textura, aroma, aparência, 
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cozimento ou processabilidade de um arroz recém-desenvolvido, qualquer outro 

atributo notável da variedade pode ser inútil (IRRI, 1985; IRRI, 2022). 

 

2.6 Padronização e Classificação de Produtos de Origem Vegetal 

 

2.6.1 Classificação Oficial 

 

Os grãos são comercializados com base em padrões nacionais e internacionais 

de classificação. De acordo com a Lei nº 9.972/2000 (BRASIL, 2000), Classificação é 

o ato de determinar as qualidades intrínsecas e extrínsecas de um produto vegetal, 

com base em padrões oficiais, físicos ou descritos. A classificação baseia-se em 

critérios de qualidade, identidade e segurança, considerando características físicas, 

químicas, biológicas e sensoriais. A padronização define requisitos mínimos de 

qualidade, higiene e segurança específicos para cada produto vegetal. Para garantir 

que os produtos atendam aos padrões, são implementados procedimentos de 

inspeção e fiscalização, com agentes responsáveis por verificar a conformidade e 

realizar análises laboratoriais (BRASIL, 2000; BRASIL, 2007). 

O Decreto nº 6.268, de 22 de novembro de 2007, regulamenta a Lei nº 9.972, 

de 25 de maio de 2000, estabelecendo a classificação de produtos vegetais, seus 

subprodutos e resíduos de valor econômico. Este decreto detalha os procedimentos 

para classificação, padronização e inspeção desses produtos, assegurando qualidade 

e conformidade com padrões estabelecidos (BRASIL, 2007). 

O decreto exige certificação para determinados produtos, comprovando a 

conformidade com os padrões estabelecidos. Rotulagem adequada é mandatória, 

contendo informações sobre a classificação, origem, peso e prazo de validade. 

Penalidades, como multas e apreensão de produtos, são estabelecidas para infrações 

relacionadas à classificação, padronização e inspeção (BRASIL, 2007). 

A responsabilidade pela implementação e fiscalização da lei é atribuída 

principalmente ao Ministério da Agricultura e Pecuária (MAPA). O Decreto nº 

6.268/2007 destaca o compromisso do governo brasileiro em garantir a qualidade e 

segurança dos produtos de origem vegetal, promovendo padronização e fiscalização 

rigorosa no mercado (BRASIL, 2007). 
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2.6.2 Classificação Comercial 

 

A Classificação Comercial é realizada por empresas privadas e produtores, 

focando em padrões específicos de mercado e atendendo às demandas de 

consumidores e comerciantes, podendo fazer referência ou não aos padrões oficiais 

de classificação — utilizando-se dos conceitos oficiais para classe e tipo, mas sendo 

flexível quanto aos limites de tolerância adotados. Este tipo de classificação pode 

variar conforme a necessidade do mercado, levando em consideração aspectos como 

aparência, sabor e outros atributos de qualidade que são valorizados pelos 

consumidores finais. As normas e critérios utilizados na Classificação Comercial 

podem ser menos rigorosos e mais flexíveis, adaptando-se rapidamente às mudanças 

nas preferências de mercado e às condições comerciais (SENAR, 2017). 

Enquanto a Classificação Comercial é orientada pelas demandas do mercado 

e flexível, a Classificação Oficial é regulamentada pelo governo, garantindo padrões 

uniformes e rigorosos de qualidade e segurança para os produtos de origem vegetal. 

A Classificação Comercial é frequentemente utilizada nos casos em que não há 

obrigatoriedade da classificação oficial, como na compra de produtos não 

beneficiados pela indústria e na exportação, baseando-se em contratos privados e 

parâmetros que podem variar de acordo com o objetivo e destino do produto (BRASIL, 

2000).Portanto, a Classificação Comercial é orientada pela demanda do mercado e 

flexível, a Classificação Oficial proporciona uma garantia consistente de qualidade e 

segurança, conforme regulamentado pelas autoridades governamentais (BRASIL, 

2007). 

Embora a Classificação Oficial do arroz seja obrigatória, a avaliação visual de 

sua qualidade ocorre ao longo de toda a cadeia de produção. Diversas etapas de 

análise visam precificar o produto e garantir o controle de qualidade nos armazéns e 

indústrias de beneficiamento. Produtores e indústrias frequentemente treinam seus 

próprios funcionários para essas avaliações, o que pode introduzir subjetividade, pois 

esses trabalhadores, chamados Classificadores Práticos, não possuem homologação 

oficial do MAPA (BRASIL, 2009; BRASIL, 2011). 

 

2.7 Padrão Oficial de Classificação do Arroz 
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O Padrão Oficial de Classificação (POC) do arroz é definido no Regulamento 

Técnico do Arroz, regulamentado pela Instrução Normativa nº 6/2009. Segundo esta 

instrução, os requisitos de identidade deste cereal são definidos pela própria espécie 

do produto e pela sua forma de apresentação; e os requisitos de qualidade são 

definidos em função do processo de beneficiamento, das dimensões do grão e dos 

limites máximos de tolerância estabelecidos nesta norma (BRASIL, 2009). 

O arroz é classificado em grupos (quanto à sua forma de apresentação), em 

subgrupos (de acordo com o processo de beneficiamento), em classes (de acordo 

com as dimensões do grão) e em tipos (de acordo com a presença de grãos 

defeituosos no lote comercializado, expressos por números arábicos e definidos pelos 

limites máximos de tolerância estabelecidos na Instrução Normativa, podendo ainda 

ser enquadrado como fora de tipo e desclassificado) (BRASIL, 2009). 

Assim, este cereal é classificado em dois grupos (arroz em casca e arroz 

beneficiado), que são subdivididos em subgrupos. O arroz em casca pode ser dividido 

nos subgrupos natural e parboilizado; e o arroz beneficiado nos subgrupos arroz 

integral, arroz polido, arroz parboilizado integral e arroz parboilizado polido. 

Independente do grupo e do subgrupo, o arroz é classificado em cinco classes — 

longo fino, longo, médio, curto e misturado — e classificado em cinco tipos — Tipo 1, 

Tipo 2, Tipo 3, Tipo 4 e Tipo 5 — podendo ainda ser enquadrado como Fora de Tipo 

e Desclassificado (BRASIL, 2009). 

Os critérios de comercialização e os preços dos produtos agrícolas são 

influenciados pelos critérios de padronização e classificação. Não são critérios 

aleatórios nem permanentes. É a representação do resultado da interferência de 

agentes socioeconômicos com diferentes expectativas e exigências; ou seja, os 

parâmetros quanto à qualidade não são exatamente os mesmos para os segmentos 

de ciência/tecnologia, produtores rurais, armazenadores, processadores, varejistas e 

consumidores. Devido a essa dinâmica, são necessárias várias revisões periódicas 

nos critérios e normas de classificação para buscar adequar e ajustar os parâmetros 

de acordo com a realidade do mercado. Portanto, além da questão da qualidade dos 

grãos, é fundamental fazer referência à legislação oficial de classificação (FERREIRA 

et al., 2005). 

Para verificar as características físicas dos grãos, que determinam sua classe 

e, consequentemente, o rendimento de grãos inteiros, examina-se as dimensões dos 

grãos para determinar a identidade do produto. Além disso, é importante identificar 
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defeitos visuais nos grãos, como mofados, ardidos, amarelos, rajados, picados, 

manchados, gessados e verdes. A análise também deve considerar a presença de 

matérias estranhas, impurezas, grãos quebrados e quireras na amostra. Esses 

parâmetros são estabelecidos na Tabela 1, correspondente ao Anexo VII do POC do 

arroz, que define os limites de tolerância para defeitos no arroz beneficiado, subgrupo 

polido (BRASIL, 2009). 

 

Tabela 1 — Limites máximos de tolerância expressos em %/peso do Arroz Beneficiado 
Polido (Anexo VII do POC do arroz). 

 
Tipos 

Matérias 
estranhas e 
impurezas 

Mofados 
e ardidos 

Picados ou 
Manchados 

Gessados 
e Verdes 

Rajados Amarelos 
Total de 
quebrados 
e quirera 

Quireras 

1 0,10 0,15 1,75 2,00 1,00 0,50 7,50 0,50 
2 0,20 0,30 3,00 4,00 1,50 1,00 15,00 1,00 
3 0,30 0,50 4,50 6,00 2,00 2,00 25,00 2,00 
4 0,40 1,00 6,00 8,00 3,00 3,00 35,00 3,00 
5 0,50 1,50 8,00 10,00 4,00 5,00 45,00 4,00 
Observação: O limite máximo de tolerância admitido para marinheiro é de 10 (dez) grãos em 1000 g (um mil gramas) para todos 

os tipos. Acima desse limite o produto será considerado como Fora de Tipo. 

O produto enquadrado como Fora de tipo por Matérias Estranhas e Impurezas, Grãos mofados e ardidos, não poderá ser 

comercializado quando destinado diretamente à alimentação humana, devendo ser rebeneficiado, para efeito de reenquadramento 

em Tipo (Art. 7° e § 1° e § 2° da IN 06/2009 do MAPA) 

 

A classificação oficial referida no POC do arroz envolve a análise da qualidade 

física e industrial do grão, sendo predominantemente uma avaliação visual. Tal 

avaliação tradicional, embora eficaz, pode ser subjetiva e suscetível a inconsistências 

entre diferentes avaliadores, mesmo que treinados em cursos homologados e 

habilitados pelo MAPA. A evolução da agricultura e, por consequência, a introdução 

de novas tecnologias de análise de imagens e inteligência artificial (IA) oferecem uma 

solução, com potencial de maior precisão e eficiência na avaliação da qualidade de 

grãos (BUTARDO; SREENIVASULU, 2019). 

 

2.8 Agricultura Digital 

 

A agricultura, ao longo dos séculos, passou por diversas transformações 

significativas que moldaram a forma como produzimos alimentos e outros produtos 

agrícolas. Desde os primeiros métodos rudimentares até as tecnologias avançadas 

de hoje, a evolução agrícola pode ser dividida em quatro grandes fases: Agricultura 

1.0, 2.0, 3.0 e 4.0. Cada uma dessas fases trouxe inovações que aumentaram a 

produtividade, eficiência e sustentabilidade do setor (QUEIROZ et al., 2022). Antes do 
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surgimento da agricultura, o ser humano dedicava grande parte do dia à busca de 

alimentos na natureza. No início do século passado, ainda na era da Agricultura 1.0, 

um agricultor conseguia produzir alimentos para cerca de quatro pessoas. Em 1960, 

durante a Agricultura 2.0, essa capacidade aumentou para 26 pessoas. Hoje, na era 

da Agricultura 3.0, um agricultor é capaz de alimentar mais de 150 pessoas 

(KIRSCHENMANN, 2020). 

A Agricultura 4.0, ou Agricultura Digital, representa a mais recente fase de 

evolução do setor agrícola, caracterizada pelo uso de tecnologias avançadas como 

inteligência artificial (IA), internet das coisas (IoT), big data e análise de imagem. 

Essas tecnologias estão transformando a agricultura em um sistema altamente 

eficiente, preciso e sustentável (QUEIROZ et al., 2022). 

A Era Digital, iniciada no início do século XXI, marcou uma rápida 

transformação da indústria tradicional através da adoção da tecnologia da informação. 

Essa nova era criou formas de organizar a produção, otimizar operações e logística, 

além de oferecer melhores meios para atender às demandas dos consumidores. A 

modernização dos processos de informação e comunicação se tornou a força motriz 

que transformou muitas indústrias, incluindo telecomunicações, bens de capital, 

saúde, serviços, automóveis e transporte, entre outras (CLAY; KITCHEN, 2018). 

A transformação digital está avançando a passos largos e sua aplicação na 

agricultura é essencial para atender à demanda alimentar de nove bilhões de 

habitantes em 2050 de forma sustentável (FAO, 2019). Essa nova revolução agrícola 

é fundamentada na adoção da automação e robótica, no uso diversificado de sensores 

de solo, plantas e clima, no processamento e armazenamento de dados em nuvem, 

na análise de imagens, na inteligência artificial e na conectividade (KIRSCHENMANN, 

2020; QUEIROZ et al., 2022). 

 

2.9 Fundamentos Teóricos da Análise de Imagens 
 

O avanço acelerado da tecnologia digital, caracterizado pela substituição de 

métodos analógicos e pela criação de novos algoritmos, tem impulsionado um 

aumento significativo no número de aplicações que utilizam processamento digital de 

imagens e análise de vídeo (VIA). Paralelamente, o uso de dispositivos de captura de 

imagem, como câmeras tridimensionais (3D) ou captura bidimensional (2D), tem se 

tornado cada vez mais comum, permitindo a extração de informações biométricas a 
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partir de imagens. Na Agricultura Digital, essas tecnologias podem ser aplicadas para 

a análise de imagens de grãos, possibilitando a classificação automática e precisa 

com base em características físicas e visuais. Esse avanço tecnológico promove 

melhorias na eficiência e qualidade do controle de produtos agrícolas, beneficiando 

tanto produtores quanto consumidores (QUEIROZ et al., 2022). 

A imagem digital é uma representação visual de uma cena ou objeto, composta 

por uma série de elementos discretos chamados pixels, cada um com uma cor e 

posição específica em uma grade bidimensional. Na agricultura digital, a análise de 

imagens desempenha um papel crucial, especialmente na classificação de grãos. 

Equipamentos de análise de imagem, como câmeras de alta resolução e softwares 

específicos, são utilizados para capturar imagens detalhadas dos grãos. A criação de 

uma imagem digital começa com a captura da cena ou objeto utilizando dispositivos 

como câmeras digitais, scanners ou microscópios eletrônicos. A imagem obtida é 

transformada em uma matriz bidimensional de pixels, onde cada pixel possui um valor 

numérico correspondente à sua intensidade ou cor. Esses valores numéricos podem 

ser manipulados e analisados por meio de algoritmos digitais, o que permite uma 

ampla gama de aplicações (GONZALEZ e WOODS, 2010; SZELISKI, 2022). 

Uma imagem digital pode ser comparada a uma matriz de eixos X e Y, onde 

unidades discretas formadoras da imagem se dispõem em linhas e colunas, sendo 

que índices identificam um ponto na imagem e o seu correspondente atributo. As 

unidades discretas, formadoras da imagem são ditas elementos da imagem, do inglês 

“Pictures Elements” (CÍCERO et al., 1998). 

Toda imagem digital, em duas dimensões (2D), obedece a um sistema de 

coordenadas espaciais XY, onde são reconhecidos pontos, unidades discretas com 

atributos numéricos que denotam propriedades como a cor, sendo a representação 

da intensidade luminosa uma função f(x,y) com valor proporcional ao brilho ou, no 

caso de imagens monocromáticas, níveis de cinza (GONZALEZ e WOODS, 2010). 

A análise de imagem digital consiste no reconhecimento da cena para a 

geração de características dimensionais, como áreas ou comprimentos de objetos, ou 

atributos, como padrões de cores e texturas, e a sua mensuração através de métodos 

de contagem ou frequência dos elementos formadores da imagem denominados 

“pixels”, do inglês “pictures elements” que foi abreviado para “pics els” e então fundido 

gerando o termo “pixels”. Para o processamento de imagens digitais foram 

desenvolvidos algoritmos de computação, que devidamente sistematizados são a 
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base para a análise de imagens digitais, podendo esta ser caracterizada pelo 

arquivamento de dados e ou comparação de padrões (CÍCERO et al., 1998). 

Utilizando a análise de imagens, Gunasekaran et al. (1988) avaliaram danos 

provocados por patógenos em sementes de soja e de milho. McDonald e Chen (1990) 

relataram que, além de sua utilização em agrometeorologia, a análise de imagens vem 

sendo adaptada para a análise de formas e dimensões de objetos contidos em uma 

cena. Vooren e Heijden (1993) utilizaram a análise de imagens digitais para avaliar 

características externas, como tamanho e forma, de bulbos e tubérculos. Para se ter 

o processamento da imagem digital quatro etapas são necessárias: captura da 

imagem, pré-processamento, segmentação e análise. 

A captura da imagem pode ser feita com o auxílio de câmera fotográfica e 

escâner, e é nesta etapa que ocorre a digitalização da imagem. No pré-

processamento haverá a melhoria da imagem, como o realce de contrastes e a 

remoção de ruídos, sendo esta etapa de grande importância para aumentar as 

chances de sucesso das etapas seguintes (GONZALEZ e WOODS, 2010). A 

segmentação consiste nos processos de limiarização e reconhecimento dos objetos 

de interesse. A limiarização incide na varredura da imagem original identificando os 

pixels pertencentes ao objeto e ao fundo, por meio de limiares ou limites pré-definidos, 

que podem ser por intensidade de cinza ou por variação de cor (GONZALEZ e 

WOODS, 2010). Para limiarização por cor pode-se utilizar vários tipos de modelo de 

cores na identificação dos pixels pertencentes ao objeto e ao fundo da imagem, entre 

eles estão os modelos de HSV, RGB, CIELab e YCbCr descritos a seguir (LOPES, 

2003): 

● Modelo HSV: composto por um sistema de cores formado pelos 

componentes de Matiz (Hue-H), Saturação (Saturation-S) e Valor (Value-V). O 

matiz é responsável por verificar o tipo de cor que varia desde o vermelho até o 

violeta mais o magenta, em que a saturação regula a quantidade de tom de cinza 

que uma imagem apresentará, e o valor representa a intensidade de brilho. 

Segundo Meneses (2012), o sistema HSV não é uma teoria de cores em si, mas 

uma alternativa para modelar uma representação espacial de três atributos de cor, 

semelhante ao espaço de cor cúbico do RGB. Em outras palavras, o sistema HSV 

é uma transformação numérica do espaço de cor RGB para o espaço HSV. 

● Modelo RGB: proposto por Young-Helmholtz; se baseia na teoria do 

estímulo de três cores: Vermelha (Red-R), Verde (Green-G) e Azul (Blue-B), que 
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podem formar cores secundárias, como a cor magenta (vermelho mais azul), 

ciano (verde mais azul) e amarelo (vermelho mais verde). 

● Modelo CIELab: definido pela Comission Internationale de l'Éclairage 

(CIE) para aumentar a uniformidade das cores percebidas pelo sistema visual da 

pessoa. Funciona como um tradutor universal de línguas entre os dispositivos. 

Permitindo controlar as cores que passam de um dispositivo para outro e 

correlacionar os valores em RGB com os valores em “L” (a luminosidade que 

define a cor relativamente a ser mais clara ou mais escura nos limites do preto e 

branco), “a” (o tom que define a tonalidade da cor nos limites de verde e vermelho) 

e “b” (a saturação que define a intensidade ou pureza da cor nos limites de azul e 

amarelo). Na indústria de alimentos, utiliza-se muito o sistema Hunter-Lab para 

medição de cores. 

● Modelo YCbCr: modelo desenvolvido para permitir que as emissões dos 

sistemas de televisores coloridos fossem compatíveis com os receptores preto e 

branco. É um sistema de espaços entre cores usado como parte do canal de cor 

de uma imagem, vídeo ou sistema de fotografia digital, no qual “Y” representa o 

componente da luma, “Cb” a diferença de azul no componente chroma e “Cr” a 

diferença de vermelho no componente chroma (LOPES, 2003). 

 

2.10 Análise de Imagens na Classificação de Grãos 
 

A legislação e os padrões internos das empresas desempenham papéis 

cruciais na orientação dos processos de qualidade e padronização industrial. A 

classificação de grãos é fundamental para avaliar a qualidade dos lotes de grãos, 

examinar defeitos e garantir conformidade com normas e regulamentos da indústria. 

No entanto, a classificação visual manual, apesar de ser o método convencional, 

frequentemente produz resultados inconsistentes quando envolve múltiplos 

classificadores. Essa variabilidade destaca a influência de fatores como visão 

individual, interpretação e fadiga, que vão além do treinamento e qualificação apenas 

(PATRÍCIO, 2018). 

Além disso, a classificação visual manual não só é propensa a imprecisões 

como também consome tempo significativo. A duração da amostragem depende do 

volume de produtos e seus defeitos, levando as indústrias a otimizar operações 
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reduzindo o número de lotes para decisões mais rápidas. No entanto, é crucial manter 

a confiabilidade da amostragem para o lote examinado (CHEN et al., 2019). 

O advento do processamento digital de imagens pode revolucionar a análise e 

classificação de grãos, especialmente de arroz, por trazer maior precisão. Sistemas 

avançados de visão computacional integrados com algoritmos sofisticados podem 

automatizar o processo de classificação, transformando a triagem visual manual em 

um método digital ágil e preciso, assegurando leituras precisas e rápidas (BORGES 

et al, 2010; NARDINO et al., 2022). 

No contexto atual, as novas tecnologias de análise computadorizada de 

imagens oferecem grandes oportunidades para melhorar a eficiência e precisão na 

obtenção das características físicas de grãos de arroz e outros produtos agrícolas. 

Essa abordagem integra equipamentos (hardware) para aquisição de imagens e 

programas (software) para tratamento, localização, identificação, segmentação e 

obtenção de parâmetros de interesse na imagem (GONZALEZ e WOODS, 2008; 

SZELISKI, 2022). 

Tecnologias de análise computadorizada de imagens têm sido aplicadas com 

sucesso em diversas áreas da agricultura, como fenotipagem de sementes (TODA et 

al., 2020), avaliação da área foliar de plantas (WARD et al., 2018), análise do estande 

de plantio por meio de imagens de satélite (MACHEF et al., 2020), reconhecimento de 

plantas daninhas (PULIDO-ROJAS et al., 2016), detecção de pragas e doenças em 

folhas (DECHANT et al., 2017), determinação do ponto de maturação para a colheita 

de frutos (LIU e XIAO, 2020) e na avaliação da qualidade fisiológica de sementes 

(BRANDANI, 2023). 

As tecnologias de análise de imagens e inteligência artificial oferece uma 

solução mais precisa e eficiente para a avaliação da qualidade dos grãos, 

especialmente na análise visual da qualidade física dos grãos (BUTARDO e 

SREENIVASULU, 2019). 

Equipamentos de análise de imagens capturam imagens de alta resolução dos 

grãos e utilizam algoritmos de processamento para identificar e medir características 

físicas, como tamanho, formato, cor e defeitos superficiais. Esses sistemas podem 

analisar grandes volumes de grãos de forma rápida e consistente, eliminando a 

subjetividade humana. A integração de câmeras multispectrais e hiperespectrais 

permite uma análise detalhada da composição química e estrutura interna dos grãos, 
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proporcionando uma avaliação mais abrangente da qualidade do arroz (NARDINO et 

al., 2022; MARTENS et al., 2023). 

A inteligência artificial e o aprendizado de máquina são essenciais nessas 

tecnologias, permitindo que sistemas aprendam a identificar padrões e características 

associadas a diferentes níveis de qualidade. Algoritmos de aprendizado profundo 

podem ser treinados com grandes conjuntos de dados de imagens de grãos 

classificados manualmente para reconhecer automaticamente características de alta 

qualidade e defeitos, o que acelera o processo de avaliação e melhora sua precisão 

(CHEN et al., 2018). 

A identificação manual de variedades de grãos a olho nu é um processo 

desafiador e demorado para agricultores, manipuladores de grãos, classificadores e 

comerciantes. A identificação de defeitos e variedades de grãos e sementes 

utilizando-se métodos industriais atuais, que utilizam pesos moleculares de proteínas 

ou tecnologia baseada em DNA, são não só demorados e caros, mas requerem ainda 

equipamentos de laboratório específicos. Há uma necessidade urgente de soluções 

eficientes e de baixo custo para a classificação de grãos durante a recepção dos 

grãos, a fim de garantir a segregação precisa e eficaz das variedades (SHAH et al., 

2022). 

 

2.10.1 Equipamentos de Análise de Imagens para grãos de arroz 
 

A introdução de tecnologias de análise de imagens e inteligência artificial (IA) 

oferece uma solução mais precisa, eficiente e rápida para a avaliação da qualidade e 

industrial dos grãos de arroz (BUTARDO e SREENIVASULU, 2019). 

Em um estudo para classificação de variedades de cevada, Shah et al. (2022) 

realizou a avaliação a partir de imagens RGB, uma técnica desenvolvida e capaz de 

classificar uma imagem em apenas quatro milissegundos, superando os métodos 

tradicionais e alcançando uma precisão de 94% em 14 variedades comerciais de 

cevada, algumas das quais são geneticamente muito semelhantes. Os autores 

afirmam inclusive que para melhorar ainda mais a precisão e reduzir os erros de 

classificação, é necessário um conjunto de dados de imagem RGB maior para o 

treinamento das redes neurais, pois o modelo precisa ser avaliado em ambientes não 

controlados, utilizando imagens de resolução mais baixa obtidas por dispositivos 

móveis, como celulares, e deve ser capaz de detectar mais de um grão por imagem. 
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A análise da qualidade de grãos de arroz pode utilizar outros espectros para 

análise de imagem, como no caso do trabalho realizado por Lin et al. (2021), que 

utilizou a tecnologia de espectroscopia de infravermelho próximo (NIRS), análise 

discriminante por mínimos quadrados parciais (PLS-DA) e máquina de vetor de 

suporte (SVM) para detectar misturas de arroz de alta qualidade com outras 

variedades. Para avaliar a fraude qualitativamente, o PLS foi empregado para 

estabelecer um modelo quantitativo que auxilia no reconhecimento do grau de 

adulteração. Cada grupo continha 20 amostras puras e 140 amostras mistas, com 

proporções de mistura variando de 5% a 50% em incrementos de 5%. Os resultados 

da análise qualitativa mostraram que a tecnologia de NIRS é uma ferramenta eficaz e 

rápida para detectar a adulteração de arroz de alta qualidade com outras variedades, 

sendo particularmente eficiente na análise quantitativa de amostras com partículas 

menores. 

O estudo realizado por Srivastava e Mishra (2021) utilizou sistemas de 

imageamento hiperespectral no visível e infravermelho próximo (NIR-HIS) com uma 

câmera XC2 para analisar grãos de arroz com alta qualidade e grãos danificados. Os 

componentes principais apresentaram valores médios e modais distintos para grãos 

bons e danificados. Imagens recortadas em comprimentos de onda específicos 

permitiram a distinção entre grãos bons e danificados com alta precisão. Os autores 

demonstraram que é possível prever ou detectar infestações de insetos em amostras 

de arroz desconhecidas, confirmando a eficácia do HIS nessa aplicação. 

Tian et al. (2020) relata que testes não destrutivos com tecnologia de sensores 

têm se destacado como uma das abordagens mais promissoras para a análise da 

qualidade dos grãos, aproveitando avanços em computação, óptica, matemática, 

química e quimiometria. Esses autores confirmam que esses métodos oferecem 

vantagens como simplicidade, rapidez, baixo custo e ausência de poluição, sendo 

amplamente aplicados na avaliação de propriedades mecânicas, de armazenamento, 

e características físicas e químicas dos grãos, incluindo umidade, cinzas, proteínas e 

amido. O trabalho de Titan et al. (2020) revisa as principais tecnologias utilizadas na 

última década, como modelos mecânicos, tecnologia hiperespectral, espectroscopia 

Raman e infravermelho próximo; apesar do progresso, há necessidade de pesquisas 

adicionais em áreas como mineração de dados espectrais, otimização de algoritmos 

de modelagem e robustez de modelos, para aprimorar a pesquisa e aplicação na 

qualidade de cereais. 
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Wu et al. (2020) avaliou a falsa carie do arroz (Rice False Smut – RFS), doença 

grave que diminui o rendimento e a qualidade dos grãos, utilizando imageamento 

hiperespectral de infravermelho próximo (NIR-HSI) combinando com análise 

patológica pela análise de imagens. Os autores avaliaram a eficácia do modelo, que 

foi confirmada com precisões de 91,07% e 89,38% em variedades de arroz infectadas 

no campo, destacando o potencial do NIR-HSI para a detecção em larga escala de 

grãos na indústria. 

Muitas das tecnologias mencionadas têm sido amplamente estudadas quanto 

à sua eficiência e eficácia de análise automatizada, oferecendo resultados 

promissores no controle de qualidade dos grãos, porém, a análise de viabilidade 

financeira de tais equipamentos devem ser considerada quando da sua aplicação a 

nível industrial. Estudos tem sido realizado em busca da redução dos custos 

relacionados às tecnologias de análise de imagens em grãos (FERNANDEZ-

GALLEGO et al., 2018) incluindo até mesmo a substituição de câmeras de alta 

resolução, com custos altos, pela aquisição via aparelho celular (KOMYSHEV et al., 

2017). Desta forma, a implementação dessas tecnologias envolve custos 

significativos, não apenas relacionados à aquisição dos equipamentos, mas também 

à suporte, manutenção, treinamento de operadores, consumo de energia e 

atualizações de software. Nesse sentido, a viabilidade financeira torna-se um aspecto 

fundamental para avaliar se os benefícios proporcionados por tais tecnologias 

compensam os investimentos necessários. 

 

2.11 Viabilidade Financeira 
 

O avanço tecnológico tem introduzido novas ferramentas, como os 

equipamentos de análise de imagens, que utilizam algoritmos de aprendizado de 

máquina e visão computacional para capturar e processar características físicas e 

visuais dos grãos. De acordo com Butardo e Sreenivasulu (2019) tais tecnologias têm 

o potencial de oferecer análises mais rápidas e menos sujeitas a variações 

interpretativas quando comparadas ao método de análise tradicional, ou seja, via 

análise visual por um analista treinado. Entretanto, seu custo inicial e os gastos 

associados à manutenção, suporte, treinamento de operadores e atualizações de 

software requerem uma análise econômica criteriosa, a fim de determinar sua 

viabilidade financeira e impacto no fluxo de caixa ao longo do tempo. 
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O custeio por absorção integral é uma metodologia consolidada na 

contabilidade gerencial que permite a apropriação de todos os custos de produção — 

diretos e indiretos, fixos e variáveis — aos produtos ou serviços finais (MARTINS, 

2010). Esse método oferece uma visão abrangente da estrutura de custos ao alocar, 

de forma sistemática, cada despesa relacionada ao processo produtivo, viabilizando 

análises precisas e coerentes. Além de ser exigido pela legislação contábil brasileira 

para avaliação de estoques e apuração de resultados, ele também se destaca por sua 

aplicabilidade na avaliação de investimentos e na comparação entre diferentes 

cenários de produção, como o verificado na cadeia de produção do arroz, produto de 

extrema relevância no cenário brasileiro, destinado prioritariamente à alimentação 

humana. 

Na indústria de beneficiamento de arroz, onde o controle de qualidade é um 

fator determinante para a competitividade, o método de custeio por absorção integral 

é especialmente relevante para identificar com precisão os custos associados a cada 

etapa do processo. Ao separar custos fixos, como depreciação e manutenção de 

equipamentos, e custos variáveis, como salários de classificadores humanos e 

consumo de insumos, é possível mapear com clareza as despesas específicas de 

cada método de análise. Essa estruturação facilita a análise comparativa entre 

métodos tradicionais, baseados na mão de obra humana, e métodos automatizados, 

que envolvem investimentos iniciais elevados, mas oferecem potencial para maior 

produtividade e precisão. 

Além disso, a utilização de métricas financeiras, como o Valor Presente Líquido 

(VPL) e o Retorno sobre o Investimento (ROI), possibilita não apenas quantificar os 

custos envolvidos, mas também projetar o retorno esperado ao longo de um horizonte 

temporal pré-definido. Essas ferramentas fornecem uma base sólida para avaliar o 

equilíbrio entre os custos fixos de aquisição e os possíveis ganhos em eficiência e 

qualidade proporcionados pelos equipamentos automatizados. 
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RESUMO 
 

O arroz é um alimento fundamental para a segurança alimentar global, servindo como 

principal fonte calórica para bilhões de pessoas, especialmente na Ásia, África e 

América Latina. No Brasil, o arroz, além de ser um alimento essencial na dieta, possui 

grande importância econômica. Uma das formas de determinar a qualidade do arroz, 

é pelas dimensões dos grãos, que determinam sua Classe e têm grande influência no 

valor de mercado e na preferência do consumidor, a qual, atualmente, é realizada de 

forma manual com auxílio de paquímetro, sendo um processo demorado e subjetivo. 

A análise de imagem surge como uma alternativa promissora, oferecendo rapidez e 

consistência por meio de algoritmos que medem e avaliam as dimensões físicas dos 

grãos. O objetivo deste estudo é avaliar a eficácia e a eficiência de equipamentos de 

análise de imagem na determinação da Classe do arroz, comparando-os com o 

método tradicional de classificação a partir da análise de amostras com valores 

conhecidos, visando a obtenção das médias, tempo de análise e índice de acerto 

amostral. O Classificador Oficial apresentou alta precisão, com índice de acerto 

variando de 80,21% a 95,70%, mas o maior tempo de análise, entre 9 e 27 minutos. 

O Equipamento 1 demonstrou maior eficiência, com tempos de 0,21 a 0,32 minutos e 

índices de acerto de 81,11% a 94,12%. Já o Equipamento 2 manteve um tempo fixo 

de 2 minutos, mas com maior variação no índice de acerto, que oscilou entre 62,39% 

e 88,73%, indicando maior instabilidade em algumas análises. A integração da análise 

humana com sistemas automatizados surge como uma solução promissora para 

otimizar o controle de qualidade na indústria do arroz. 

Palavras-chave: qualidade do arroz, inteligência artificial, classe do arroz, dimensões 
do grão.  
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ABSTRACT 
 

Rice is a fundamental food for global food security, serving as the primary caloric 

source for billions of people, especially in Asia, Africa, and Latin America. In Brazil, 

rice is not only a dietary staple but also holds significant economic importance. One of 

the key factors in determining rice quality is grain dimensions, which define its Class 

and strongly influence market value and consumer preference. Currently, this 

classification is performed manually using a caliper, a time-consuming and subjective 

process. Image analysis emerges as a promising alternative, offering speed and 

consistency through algorithms that measure and evaluate grain dimensions. This 

study aims to assess the effectiveness and efficiency of image analysis equipment in 

determining rice Class, comparing them with the traditional classification method using 

samples with known values, focusing on mean values, analysis time, and sample 

accuracy index. The Official Classifier demonstrated high precision, with accuracy 

ranging from 80.21% to 95.70%, but required the longest analysis time, varying 

between 9 and 27 minutes. Equipment 1 proved to be the most efficient, with analysis 

times ranging from 0.21 to 0.32 minutes and accuracy between 81.11% and 94.12%. 

Equipment 2 maintained a fixed analysis time of 2 minutes but showed greater 

variability in accuracy, ranging from 62.39% to 88.73%, indicating higher instability in 

some analyses. The integration of human analysis with automated systems emerges 

as a promising solution to optimize quality control in the rice industry. 

 

Keywords: rice quality, artificial inteligence, rice class, grain dimensions. 
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1. INTRODUÇÃO 
 

O arroz é essencial para a segurança alimentar global, sendo a principal fonte 

de calorias para mais de 3,5 bilhões de pessoas, com destaque para sua importância 

em nações da Ásia, África e América Latina (MUTHAYYA et al., 2014). No Brasil, o 

arroz desempenha um papel crucial tanto na dieta diária da população quanto na 

economia agrícola do país (EMBRAPA, 2023). Além disso, o país se destaca como o 

maior produtor de arroz fora do continente asiático, com uma produção de 10,6 

milhões de toneladas na safra 2023/2024, colhidas em 1,6 milhão de hectares, e uma 

produtividade média de 6,6 toneladas por hectare (CONAB, 2024).  

A qualidade do arroz é determinada por diversos atributos, como suas 

propriedades nutricionais e de cocção, características sensoriais, rendimento no 

beneficiamento, pureza e aparência física. A valorização de cada característica pode 

variar conforme a cultura e os hábitos alimentares locais. Contudo, as características 

visuais são fatores cruciais para a preferência do consumidor, pois constituem o 

primeiro aspecto perceptível no momento da compra e influenciam diretamente o valor 

de mercado (FITZGERALD et al., 2009). Estudos realizados por Fitzgerald et al. 

(2009), Calingacion et al. (2014), Trinidad et al. (2013) e Zhao et al. (2022) ressaltam 

a complexidade na avaliação da qualidade do arroz e a necessidade de considerar 

múltiplos aspectos para atender às expectativas dos consumidores em diferentes 

contextos culturais e mercados. 

No Brasil, a qualidade do arroz é analisada conforme o Padrão Oficial de 

Classificação (POC), elaborado pelo Ministério da Agricultura e Pecuária (MAPA) 

(BRASIL, 2009). O arroz é classificado de acordo com seus requisitos de identidade 

e qualidade, considerando Grupo (forma de apresentação), Subgrupo (processo de 

beneficiamento), Classe (dimensões do grão) e Tipo (limites de tolerância a defeitos 

presentes na amostra de grãos). 

No que se refere às dimensões do grão, de acordo com o POC, as classes são: 

Longo Fino, Longo, Médio e Curto (BRASIL, 2009). Estas estão diretamente 

relacionadas à qualidade física, podendo indicar características varietais, além de 

serem um pré-requisito para o rendimento no beneficiamento e o percentual final de 

grãos inteiros e quebrados, fatores essenciais para a precificação e a decisão de 

compra do consumidor (ZHOU et al., 2022). 
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As características físicas dos grãos são avaliadas desde o início da cadeia de 

pós-colheita, já na aquisição do arroz em casca pelas indústrias. Isso auxilia no 

processo decisório de beneficiamento, como a regulagem de máquinas de descasque, 

brunição e polimento, além de garantir o controle de qualidade interno até a venda do 

produto acabado: o arroz beneficiado. A Classificação Oficial do produto destinado ao 

consumo humano é obrigatória por lei, visando à proteção do consumidor final e 

viabilizando sua comercialização dentro do território nacional (BRASIL, 2000). 

Atualmente, a determinação da Classe do arroz é realizada por analistas 

treinados, denominados Classificadores Oficiais, por meio da medição manual das 

dimensões dos grãos com o auxílio de um paquímetro (BRASIL, 2009). Apesar de 

eficaz, este processo é oneroso e sujeito à subjetividade inerente à análise humana. 

Como essa análise é essencialmente visual, abre-se espaço para a utilização 

de tecnologias de análise de imagens. Esses equipamentos capturam imagens de alta 

resolução dos grãos e utilizam algoritmos de processamento para identificar e medir 

características físicas, como tamanho, formato, cor e defeitos superficiais. Tais 

sistemas são capazes de analisar grandes volumes de grãos de forma rápida e 

consistente, eliminando a variabilidade humana (LIU et al., 2016; MARTENS et al., 

2023). 

Para implementar a análise de imagem na Classificação do arroz, é necessário 

realizar estudos comparativos entre a análise automatizada e a análise tradicional feita 

por avaliadores humanos. Assim, o objetivo deste estudo foi avaliar o uso de 

equipamentos de análise de imagens na definição da Classe do arroz beneficiado 

polido, conforme o Padrão Oficial de Classificação, comparando a eficácia e eficiência 

dos métodos automatizados e humanos, destacando as vantagens e desvantagens 

de cada abordagem. 
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2. MATERIAL E MÉTODOS 
 

2.1 Obtenção das Amostras 

 

O arroz utilizado no experimento é o comercial encontrado nos supermercados, 

que foram classificados de acordo com o Padrão Oficial de Classificação do Arroz 

(BRASIL, 2009). 

A montagem das amostras ocorreu durante os meses de maio e junho de 2024 

e foram realizadas nos Laboratório de Análise de Sementes da Faculdade de 

Agronomia e Medicina Veterinária do Campus Darcy Ribeiro — Universidade de 

Brasília e no Laboratório de Classificação de Grãos da empresa ENCLASS — 

Empresa Nacional de Certificação e Análise Ltda, localizada em Goiânia, Goiás.  

As amostras de 5 gramas (peso mínimo recomendado pelo POC do arroz para 

a obtenção das características de dimensão dos grãos) foram montadas com grãos 

de todas as classes (figura 1) e pesadas em balança de precisão de três casas 

decimais (balança de marca Gehaka modelo BK300, aferida e calibrada em 16 de 

maio de 2024). 

 

A composição da amostra foi de acordo com o Padrão Oficial de Classificação 

(POC) (BRASIL, 2009) em que o arroz do Grupo Beneficiado, Subgrupo Polido, é 

Classificado em cinco Classes, conforme a Tabela 1, em gramas, e Tabela 2, em 

porcentagem. 

Figura 1 — Exemplo de grão das classes Longo Fino (a), Longo (b), Médio (c) e Curto (d) 
utilizados no experimento.  
Fonte: elaborada pelo autor. 
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Longo Fino: amostras de 5g contendo aproximadamente 82% do peso dos 

grãos inteiros (4,1g) com as dimensões de Longo Fino, 6% do peso dos grãos inteiros 

(0,3g) com dimensões de Longo, 6% do peso dos grãos inteiros (0,3g) com dimensões 

de Médio e 6% do peso dos grãos inteiros (0,3g) com dimensões de Curto. 

Longo: amostras de 5g contendo aproximadamente 82% do peso dos grãos 

inteiros (4,1g) com as dimensões de Longo, 6% do peso dos grãos inteiros (0,3g) com 

dimensões de Longo Fino, 6% do peso dos grãos inteiros (0,3g) com dimensões de 

Médio e 6% do peso dos grãos inteiros (0,3g) com dimensões de Curto. 

Médio: amostras de 5g contendo aproximadamente 82% do peso dos grãos 

inteiros (4,1g) com as dimensões de Médio, 6% do peso dos grãos inteiros (0,3g) com 

dimensões de Longo Fino, 6% do peso dos grãos inteiros (0,3g) com dimensões de 

Longo e 6% do peso dos grãos inteiros (0,3g) com dimensões de Curto. 

Curto: amostras de 5g contendo aproximadamente 82% do peso dos grãos 

inteiros (4,1g) com as dimensões de Curto, 6% do peso dos grãos inteiros (0,3g) com 

dimensões de Longo Fino, 6% do peso dos grãos inteiros (0,3g) com dimensões de 

Longo e 6% do peso dos grãos inteiros (0,3g) com dimensões de Médio. 

Misturada: amostras de 5g contendo aproximadamente 40% do peso dos grãos 

inteiros (2g) com as dimensões de Longo Fino, 20% do peso dos grãos inteiros (1g) 

com dimensões de Longo, 20% do peso dos grãos inteiros (1g) com dimensões de 

Médio e 20% do peso dos grãos inteiros (1g) com dimensões de Curto. 

 

Tabela 1 — Proporção de Classe das amostras de arroz de acordo com a classificação de 
classe, em gramas (g) 
Característica Amostra 1 Amostra 2 Amostra 3 Amostra 4 Amostra 5 
Longo Fino 4,10 0,30 0,30 0,30 2,00 
Longo 0,30 4,10 0,30 0,30 1,00 
Médio 0,30 0,30 4,10 0,30 1,00 
Curto 0,30 0,30 0,30 4,10 1,00 
Total (g) 5,00 5,00 5,00 5,00 5,00 
Classe Longo Fino Longo Médio Curto Misturado 
 
Tabela 2 — Proporção de Classe das amostras de arroz de acordo com a classificação de 
classe, em percentual (%) 

Característica Amostra 1 Amostra 2 Amostra 3 Amostra 4 Amostra 5 

Longo Fino 82 6 6 6 40 
Longo 6 82 6 6 20 
Médio 6 6 82 6 20 
Curto 6 6 6 82 20 
Total (%) 100 100 100 100 100 
Classe Longo Fino Longo Médio Curto Misturado 
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Para cada Classe foram montadas amostras com 4 repetições, totalizando 20 

amostras, armazenadas em potes herméticos a temperatura ambiente, longe da luz 

solar direta até a Classificação. 

 

2.2 Análise via Classificador Oficial 

 

As análises realizadas via classificação manual, por um Classificador Oficial 

habilitado pelo MAPA, ocorreram durante o mês de julho de 2024 e foram realizadas 

no Laboratório de Classificação de Grãos da empresa ENCLASS - Empresa Nacional 

de Certificação e Análise Ltda, localizada em Goiânia, Goiás. 

 

2.2.1 Metodologia de análise da Classe do arroz 

 

A análise da Classe foi realizada de acordo com a metodologia descrita no 

artigo 35, parágrafo 5 do POC do Arroz (Instrução Normativa MAPA N° 06 de 2009), 

a partir das dimensões dos grãos, em que utilizou-se paquímetro digital devidamente 

calibrado, com precisão de (zero vírgula zero um milímetro) da marca Mitutoyo para 

determinar a proporção das diferentes classes presentes nas amostras. 

 

2.2.2 Diferenciação de Longo e Longo fino de Médio e Curto 

 

Foi iniciada a determinação da classe pelo comprimento dos grãos, verificando-

se as dimensões específicas para distinguir os grãos das classes longo, médio e curto. 

Para separar os grãos das classes longo fino e longo, dos grãos médio e curto, o 

equipamento foi travado em 5,99 mm (cinco vírgula noventa e nove milímetros): 

 

a) Os grãos com comprimento menor que 6,00 mm (seis milímetros) foram 

considerados pertencentes às classes médio ou curto; e 

b) Os grãos com comprimento maior ou igual a 6,00 mm (seis milímetros) foram 

classificados como longo fino ou longo. 
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2.2.3 Diferenciação Médio de Curto 

 

Em seguida, foi travado o paquímetro em 4,99 mm (quatro vírgula noventa e 

nove milímetros), e os grãos das classes médio e curto foram submetidos à medição 

de comprimento. Observou-se: 

 

a) Os grãos com comprimento maior ou igual a 5,00 mm (cinco milímetros) foram 

classificados na classe médio; e 

b) Os grãos com comprimento menor que 5,00 mm (cinco milímetros) foram 

classificados na classe curto. 

 

2.2.4 Diferenciação Longo de Longo fino 

 

Os grãos com comprimento maior ou igual a 6,00 mm (seis milímetros), das 

classes longo fino ou longo, foram submetidos à medição da espessura, travando-se 

o paquímetro em 1,90 mm (um vírgula noventa milímetros): 

 

a) Os grãos que não passaram na abertura do equipamento foram 

considerados pertencentes à classe longo; e 

b) Os grãos que passaram na abertura do equipamento foram submetidos ao 

teste de determinação da relação comprimento/largura. Caso o resultado da divisão 

do comprimento pela largura fosse maior ou igual a 2,75 (dois vírgula setenta e cinco), 

o grão foi considerado da classe longo fino; caso o resultado fosse menor que 2,75 

(dois vírgula setenta e cinco), o grão foi considerado da classe longo. 

 

Se o percentual de grãos das classes longo ou longo fino, individualmente, não 

atingisse 80% (oitenta por cento) do peso da amostra, considerou-se o somatório dos 

grãos das classes longo e longo fino para o enquadramento do produto na classe 

longo, desde que o percentual mencionado fosse alcançado. 

Foi registrado no laudo de classificação, obrigatoriamente, os percentuais de 

grãos das classes encontradas na amostra (ANEXO I). 

As amostras foram recompostas para a utilização das mesmas na análise via 

Equipamentos de Análise de Imagens na Classificação do Arroz. 
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2.3 Metodologia via Equipamentos de Análise de Imagens 

  

 Neste estudo foram utilizados dois equipamentos de análise de imagens de 

empresas diferentes, porém com a mesma proposta de análise de qualidade do grão 

de arroz beneficiado polido. Os mesmos foram denominados “Equipamento 1” e 

“Equipamento 2” e seu funcionamento/metodologia de análise, assim como suas 

particularidades, serão descritas a seguir. 

 As análises realizadas no equipamento 1 ocorreram no laboratório de qualidade 

interno de uma indústria de beneficiamento e empacotamento de arroz, localizada em 

Aparecida de Goiânia, Goiás. As análises realizadas no equipamento 2 ocorreram no 

próprio laboratório da empresa fabricante do equipamento, localizado em Blumenau, 

Santa Catarina. 

 

2.3.1 Equipamento 1: Componentes e funcionamento 

 

O equipamento 1 é composto por uma unidade principal contendo uma 

tremonha na parte superior, por onde se introduz a amostra de grãos, uma correia 

transportadora de cor azul, uma câmera digital de alta resolução e uma gaveta frontal. 

Conta ainda com mouse, teclado e monitor, com os quais se faz a interação pelo 

usuário via interface do software.  

Para iniciar a análise, coloca-se a amostra na abertura acima da unidade 

principal e, via interface do software, dá-se o comando de início. Então o equipamento 

começa a vibrar, resultando na passagem dos grãos pela tremonha e a queda dos 

mesmos na correia transportadora, sendo a captura das imagens feita por uma 

câmera digital interna com sistema de iluminação integrada ao equipamento durante 

a passagem dos grãos, resultando em uma imagem de duas dimensões (2D), 

finalizando com sua queda na gaveta localizada no final da correia. 

 

2.3.2 Equipamento 2: Componentes e funcionamento 

 

O equipamento 2 é composto por um microcomputador integrado ao scanner 

de imagens, composto por uma placa vibratória helicoidal de alimentação, calha de 
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alinhamento, sistema de espelhos, câmera digital de alta resolução, sistema de 

iluminação e gaveta. Também conta com um leitor de código de barras, monitor, 

mouse e teclado para interação do usuário via software.  

Para início da análise a amostra é colocada na placa helicoidal do equipamento 

e, via interface do software, dá-se o comando de início. Através da placa helicoidal 

vibratória os grãos são dosados e enfileirados. Após isto, cada grão é transferido para 

uma calha de alinhamento onde adquire velocidade e direcionamento para a captura 

das imagens que é feita quando este fica em queda livre, grão a grão. A captura das 

imagens é feita quando o grão passa por um sistema de iluminação indireta, onde são 

obtidas três imagens de cada grão, através de um sistema de espelhos, resultando 

em uma imagem de três dimensões (3D). Após passar pelo sistema de captura de 

imagens, o grão fica acondicionado na gaveta de retirada de amostra. 

 

2.3.3 Calibração inicial dos equipamentos 

 

Em ambos os equipamentos foram realizadas calibrações iniciais, com 

amostras montadas, ou seja, com parâmetros conhecidos, semelhantes às utilizadas 

no experimento, para a obtenção da configuração final a ser utilizada. Nos dois 

equipamentos tal configuração foi realizada por um técnico de suporte da empresa 

fabricante dos equipamentos. 

 

2.3.4 Metodologia de análise dos equipamentos de análise de imagem 

 

 Para ambos os equipamentos o procedimento de análise funciona da seguinte 

maneira:  

 

1. Captura de imagens de alta resolução;  

2. Pré-processamento; 

3. Segmentação dos objetos de interesse na imagem (isola-se os grãos de arroz 

do fundo da imagem); 

4. Identificação e análise dos parâmetros, com auxílio de algoritmos de 

processamento, visando a obtenção de características de interesse como, por 



47 
 

exemplo, dimensões (comprimento e largura), formato, cor e defeitos 

superficiais; 

5. Classificação, via metodologia de árvore de decisão a partir da combinação 

lógica das informações adquiridas.  

 

Ambos os equipamentos possibilitam revisão de análise pelo operador, 

viabilizando possíveis correções na classificação. Este procedimento não foi 

realizado, visando a avaliação dos equipamentos sem a interferência humana. 

Todas as análises foram salvas e gerou-se o relatório digital para posterior 

compilação e análise estatística. 

 

2.4 Índice de Acerto Amostral 
 

O índice de acerto (IA%) foi aplicado para expressar a precisão da medição dos 

tratamentos, ou seja, Classificador Oficial, Equipamento 1 e Equipamento 2 (valor 

medido), em relação ao valor da amostra controle (valor real) em uma escala de 0 a 

100, considerando tanto subestimações quanto superestimações. 

Desta forma, os dados de cada uma das medições foram tratados pela seguinte 

fórmula:  

 

𝐼𝐴% =  (1 −   
 ǀ𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜 −  𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙ǀ 

𝑀𝑎𝑥(𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜, 𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙)
 )  ×  100  

Sendo: 

● Valor Medido: o valor em gramas obtido pelo método de medição (Classificação 

Oficial, Equipamento 1 e Equipamento 2). 

● Valor Real: o valor da amostra controle em gramas, com o qual o método está 

sendo comparado. 

 

Fórmula explicada: 

● Erro absoluto  (ǀ𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜 −  𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙ǀ): Calcula a diferença 

absoluta entre os valores medido e real; 

● Normalização do Erro - Divisão pelo maior valor [𝑀𝑎𝑥(𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜,

𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙)]: O erro é normalizado pelo maior valor, seja o real ou o 

medido, para evitar índices negativos ou fora do intervalo de 0% a 100%; 
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● Cálculo do índice final (1−Erro Normalizado): O índice é 1 menos a 

proporção do erro normalizado; 

● Multiplicação por 100: Converte o índice em porcentagem. 

 

2.5 Tempo de análise 

 

O tempo de análise foi cronometrado para todos os tratamentos. Para o 

Classificador Oficial, a cronometragem iniciou na abertura dos recipientes com as 

amostras e encerrou ao término da classificação. Nos equipamentos, o tempo foi 

obtido diretamente dos relatórios gerados ao final de cada análise. Todos os 

resultados foram compilados para posterior análise estatística. 

 

2.6 Delineamento experimental e análise estatística 
 

O experimento foi realizado no Delineamento Inteiramente Casualizado, em 

esquema fatorial 5x4, sendo 5 Classes e 4 tratamentos (amostra controle, 

classificador oficial, equipamento 1 e equipamento 2). Foram obtidas as análises de 

variância e as médias comparadas pelo teste de Scott-Knott a 5% de probabilidade. 

Foi utilizado o software SISVAR 5.6 (FERREIRA, 2019). 

Para a plotagem dos gráficos, foi utilizado o software SigmaPlot v.10 (Systat 

Software Inc, Germany). 

3. RESULTADOS 
 

3.1 Análise de classe 
 

Na análise da amostra de classe "Longo Fino", ou seja, com predominância de 

grãos desta classe, observa-se que todos os métodos de avaliação apresentam 

resultados próximos ao do controle para a classe predominante "Longo Fino” (Tabela 

3). Essas similaridades apontam para uma alta precisão na identificação dessa classe, 

sem diferenças estatisticamente significativas (p>0,05). Em relação à classe "Longo", 

as proporções ficaram entre 5,17% e 5,94%, confirmando a capacidade de todos os 

métodos de reconhecer corretamente a baixa proporção desta classe, apesar de 

subestimar os valores em relação ao controle, mesmo que sem diferenças 

estatisticamente significativas (p>0,05). No entanto, uma observação relevante 
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emerge na classe "Médio", em que os Equipamentos 1 e 2 reportaram proporções 

superiores (7,29% e 6,90%) em comparação ao controle (6,11%). Percebe-se uma 

leve tendência desses equipamentos em superestimar a proporção de grãos "Médio", 

revelando diferenças estatisticamente significativas (p<0,05). Porém, o Classificador 

Oficial (5,60%) subestimou os valores de “Médio”, compensando na classe “Curto” 

(6,41%), mesmo sem diferença estatisticamente significativa em relação ao controle 

(p>0,05). 

 
Tabela 3 — Valores médios e desvio padrão da análise de classe em amostras com 
predominância de grãos da classe “Longo Fino” pelos tratamentos Controle, Classificador 
Oficial, Equipamento 1 e Equipamento 2 
Tratamento Longo Fino Longo Médio Curto 
Controle 82,07 ± 0,22 a 5,94 ± 0,15 a 6,11 ± 0,13 b 5,94 ± 0,13 a 
Classificador Oficial 82,78 ± 0,73 a 5,35 ± 0,38 a 5,60 ± 0,45 b 6,41 ± 0,27 a 
Equipamento 1 81,62 ± 1,10 a 5,80 ± 0,86 a 7,29 ± 1,02 a 5,49 ± 0,59 a 
Equipamento 2 82,19 ± 0,42 a 5,17 ± 0,59 a 6,90 ± 1,18 a 5,77 ± 1,21 a 

CV 0,98 11,42 14,71 13,79 
Médias seguidas pela mesma letra na coluna não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 
 

Ao superestimar uma classe, tem-se como consequência a subestimação de 

outra que é, geralmente a classe que está na “divisa”, ou seja, a mais próxima no 

quesito de dimensão do grão, que para classe médio pode ser tanto “Longo”, quanto 

“Curto”. Para a classe "Curto", não foram observadas diferenças significativas entre 

os métodos (p>0,05), todos apresentando valores em torno do controle (5,94%), 

apesar de visível a subestimação desta classe pelos equipamentos 1 e 2 e a 

superestimação pelo Classificador Oficial. O coeficiente de variação (CV) foi 

notavelmente baixo para a classe predominante "Longo Fino" (0,98%), mas mais 

elevado para as outras classes, revelando variabilidade entre os métodos. 

 

 
Tabela 4 — Valores médios e desvio padrão da análise de classe em amostras com 
predominância de grãos da classe “Longo” pelos tratamentos Controle, Classificador Oficial, 
Equipamento 1 e Equipamento 2 
Tratamento Longo Fino Longo Médio Curto 
Controle 6,21 ± 0,17 b 81,55 ± 0,22 a 6,21 ± 0,14 a 6,03 ± 0,02 b 
Classificador Oficial 6,36 ± 0,16 b 80,79 ± 0,69 a 6,20 ± 0,81 a 6,48 ± 0,14 a 
Equipamento 1 7,79 ± 0,39 b 79,50 ± 0,39 a 6,70 ± 0,38 a 5,79 ± 0,07 b 
Equipamento 2 22,50 ± 2,76 a 66,03 ± 2,49 b 6,61 ± 0,64 a 5,03 ± 0,07 c 

CV 14,94 1,96 10,06 5,17 
Médias seguidas pela mesma letra na coluna não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 
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Na amostra de classe "Longo", o Equipamento 2 se destacou ao superestimar 

a classe "Longo Fino" (22,50%) e subestimar a classe “Longo” (66,03%) em 

comparação ao controle e aos demais métodos, demonstrando diferença 

estatisticamente significativa em ambos os casos (p<0,05) — Tabela 4. Essa diferença 

aponta para uma possível imprecisão do Equipamento 2 na diferenciação entre grãos 

“Longo fino” e “Longo”, visível também em seu alto desvio padrão. Na classe "Médio", 

todos os métodos mostraram proporções semelhantes, entre 6,21% e 6,70%, o que 

sugere precisão e consistência, apesar da tendência dos equipamentos em 

superestimar tal classe, como visto nas amostras com predominância de grãos “Longo 

Fino”.  

Na Classe “Curto” apenas o equipamento 1 não apresentou diferenças 

estatisticamente significativas em relação ao Controle (p>0,05). O classificador 

humano apresentou um valor levemente superior (6,48%) em relação ao controle 

(6,03%), resultado semelhante ao visto nas amostras com predominância de grãos 

“Longo Fino”, enquanto o Equipamento 2 reportou uma proporção menor (5,03%), 

indicando variação entre métodos (p<0,05). O coeficiente de variação permaneceu 

baixo para "Longo" (1,96%), mas foi elevado para "Longo Fino" (14,94%), refletindo 

principalmente a variabilidade do Equipamento 2. 

 
Tabela 5 — Valores médios e desvio padrão da análise de classe em amostras com 
predominância de grãos da classe “Médio” pelos tratamentos Controle, Classificador Oficial, 
Equipamento 1 e Equipamento 2 
Tratamento Longo Fino Longo Médio Curto 
Controle 6,09 ± 0,09 b 6,23 ± 0,09 c 81,79 ± 0,15 a 5,95 ± 0,06 b 
Classificador Oficial 5,67 ± 0,46 b 6,75 ± 1,07 c 76,23 ± 3,89 b 10,96 ± 4,95 a 
Equipamento 1 6,70 ± 0,17 b 7,80 ± 0,62 b 76,90 ± 1,13 b 8,50 ± 0,81 b 
Equipamento 2 8,20 ± 0,97 a 16,24 ± 0,64 a 67,04 ± 0,96 c 8,64 ± 0,70 b 

CV 9,25 8,67 3,20 33,13 
Médias seguidas pela mesma letra na coluna não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 
 

A análise da amostra de classe "Médio" revelou novamente uma tendência do 

Equipamento 2 em superestimar a classe "Longo Fino", semelhante ao visto na 

amostra de classe “Longo”, com 8,20%, frente ao controle de 6,09% (p<0,05). Uma 

superestimação semelhante foi observada para a classe "Longo", em que o 

Equipamento 2 reportou 16,24%, significativamente acima do controle (6,23%) 

(p<0,05) — Tabela 5. Esse comportamento indica a propensão deste equipamento em 
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classificar incorretamente grãos com característica de “Longo Fino” e “Longo”. O 

equipamento 1 superestimou os grãos da classe “Longo”, apresentando diferença 

estatisticamente significativa em relação ao controle e ao método humano (p<0,05). 

Para a classe predominante "Médio", o Equipamento 1 (76,90%) e o método humano 

(76,23%) mostraram valores ligeiramente inferiores, não diferindo estatisticamente 

entre si (p>0,05), mas do controle (p<0,05).  

No entanto, o Equipamento 2 apresentou uma subestimação mais acentuada 

(67,04%), sendo compensado na superestimação dos grãos das classes “Longo Fino” 

e “Longo”, o que reflete uma limitação na precisão do equipamento na diferenciação 

das classes. Na classe "Curto", o método humano registrou a maior proporção 

(10,96%), confirmando sua tendência em superestimar os grãos desta classe, 

diferindo estatisticamente do controle (p<0,05). O mesmo foi verificado pelos 

equipamentos 1 e 2, com resultados de 8,50% e 8,64%, respectivamente, apesar de 

não diferir estatisticamente do controle (p>0.05). O coeficiente de variação foi baixo 

para "Médio" (3,2%), mas apresentou uma alta variabilidade para "Curto" (33,13%). 

 

 
 
Tabela 6 — Valores médios e desvio padrão da análise de classe em amostras com 
predominância de grãos da classe “Curto” pelos tratamentos Controle, Classificador Oficial, 
Equipamento 1 e Equipamento 2 

Tratamento Longo Fino Longo Médio Curto 
Controle 6,02 ± 0,09 b 6,18 ± 0,15 b 5,99 ± 0,07 c 81,89 ± 0,08 a 
Classificador Oficial 6,07 ± 0,15 b 6,13 ± 0,31 b 6,22 ± 0,75 c 81,45 ± 0,53 a 
Equipamento 1 6,49 ± 0,22 a 6,49 ± 0,41 b 12,49 ± 1,02 b 74,33 ± 0,87 b 
Equipamento 2 6,66 ± 0,22 a 11,79 ± 1,52 a 19,76 ± 1,80 a 63,47 ± 1,68 c 

CV 3,29 12,48 11,37 1,51 
Médias seguidas pela mesma letra na coluna não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 
 

Para a amostra com predominância de grãos da classe "Curto", o Equipamento 

1 e o Equipamento 2 mostraram proporções levemente superior na classe "Longo 

Fino" (6,49% e 6,66%), mas sem grandes discrepâncias, apesar da diferença 

estatisticamente significativa (p<0,05) em relação ao controle (6,02%) e ao método 

humano (6,07%) — Tabela 6. Na classe "Longo", o Equipamento 2 registrou uma 

proporção significativamente maior (11,79%) em comparação ao controle (6,18%), 

sugerindo uma tendência de superestimação, verificada anteriormente nas amostras 

de classe “Médio”.  
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A classe "Médio" foi novamente superestimada pelo Equipamento 1 (12,49%) 

e especialmente pelo Equipamento 2 (19,76%) em relação ao controle (5,99%), o que 

destaca uma inclinação dos equipamentos para classificar grãos como "Médio" 

quando a predominância é de grãos "Curto". Para a classe predominante "Curto", o 

controle (81,89%) e o classificador humano (81,45%) mostraram alta precisão, 

enquanto o Equipamento 1 (74,33%) e o Equipamento 2 (63,47%) apresentaram 

subestimação significativa (p<0,05). O coeficiente de variação foi baixo para "Curto" 

(1,51%), mas mais alto para classes como "Longo" e "Médio". 

 
Tabela 7 — Valores médios e desvio padrão da análise de classe em amostras com 
predominância de grãos da classe “Misturado” pelos tratamentos Controle, Classificador 
Oficial, Equipamento 1 e Equipamento 2. 
Tratamento Longo Fino Longo Médio Curto 
Controle 39,83 ± 0,16 b 20,01 ± 0,07 a 19,97 ± 0,04 a 20,10 ± 0,17 b 
Classificador Oficial 40,21 ± 0,57 b 19,35 ± 0,63 a 17,60 ± 0,91 b 22,79 ± 0,77 a 
Equipamento 1 41,64 ± 0,31 b 19,20 ± 0,09 a 21,32 ± 0,59 a 18,02 ± 0,40 c 
Equipamento 2 43,52 ± 1,44 a 20,75 ± 1,93 a 19,31 ± 1,94 a 16,63 ± 2,56 c 

CV 2,22 5,99 6,52 8,03 
Médias seguidas pela mesma letra na coluna não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 
 

Na amostra "Misturado", o Equipamento 2 apresentou uma proporção mais alta 

para a classe "Longo Fino" (43,52%) do que o controle (39,83%), diferindo 

estatisticamente (p<0,05), indicando novamente uma tendência a superestimação, 

observada nas amostras de classe “Longo” e “Médio” (Tabela 7). Na classe "Longo", 

todos os métodos apresentaram resultados similares ao controle, com leve 

subestimação pelo classificador humano e equipamento 1 e leve superestimação pelo 

equipamento 2, mesmo que sem diferença estatisticamente significativa (p>0,05). 

Para "Médio", todos os métodos, exceto o Classificador Oficial (que apresentou 

17,60%), não diferiram estatisticamente do controle (p>0,05), indicando um desvio 

leve no método manual, corroborando com os resultados vistos nas amostras 

anteriores, em que o ser humano tende a subestimar os grãos da classe “Médio” 

compensando na superestimação de grãos da classe “Curto”.  

Os equipamentos demonstraram subestimação dos grãos da classe “Curto” 

(Equipamento 1: 18,02%; Equipamento 2: 16,63%) diferindo estatisticamente do 

controle (p>0,05). O coeficiente de variação foi baixo para "Longo Fino" (2,22%) e 

mais elevado para "Curto" (8,03%), refletindo maior variabilidade nessa última classe. 

De forma geral, o CV tende a ser menor para a classe com maior proporção dentro de 

cada amostra. 
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Conforme a Figura 1, observa-se a matriz de cores, onde o eixo “y”, 

denominado “Classe da Amostra”, indica a classe predominante da amostra 

analisada, o eixo “x”, denominado “Classe do Grão”, indica a classe do grão dentro da 

amostra, e o valor de cada quadrante indica a diferença do percentual da média obtida 

pelo método de análise em relação à amostra controle, sendo possível verificar 

visualmente a tendência de superestimação (cores tendendo ao azul) ou 

subestimação (cores tendendo ao vermelho), em que o melhor resultado (próximo de 

zero) tende à cor branca, ou seja, sem discrepância em relação ao controle. 

 

 

Figura 2 — Análise de diferença de médias para evidenciar possíveis superestimações (cores 
tendendo ao azul) e subestimações (cores tendendo ao vermelho) pelos tratamentos nas 
amostras de Classe. Sendo o valor de cada quadrante a diferença entre a média percentual. 

 

Ao observar o desempenho geral dos métodos, verificamos que o Classificador 

Oficial, em geral, obteve os resultados mais próximos ao controle, sendo seu gráfico 

com cores leves, apesar de apresentar uma leve tendência de superestimar a classe 

"Curto" em amostras em que esta classe não era a predominante. O Equipamento 1, 

embora tenha demonstrado uma leve subestimação das classes predominantes 

(quadrantes em tons vermelhos) compensando com uma leve superestimação das 

outras classes (quadrantes em tons de azul), teve um desempenho consistente em 

relação ao controle. O Equipamento 2 mostrou uma tendência frequente de 

superestimar a classe "Longo Fino" e, em algumas amostras, a classe "Longo". Além 

disso, ele apresentou uma subestimação das classes predominantes quando estas 

não eram "Longo Fino", sugerindo necessidade de ajustes na calibração para 

aprimorar sua precisão na diferenciação correta entre as classes, ou seja, das 

dimensões do grão.  
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3.2 Tempo de análise na obtenção da classe 
  

Em relação ao tempo de análise dos métodos automatizados, é evidente a 

padronização no processo de aquisição e processamento das imagens analisadas, 

em que o Equipamento 1 foi o mais rápido, com tempos de análise variando de 0,21 

a 0,32 min (13 a 19 segundos), e o Equipamento 2 manteve um tempo fixo de 2 

minutos, independente das diferentes proporções de classe encontradas nas 

amostras, sendo ambos mais eficientes que Classificador Oficial na análise manual 

com auxílio de paquímetro (Figura 3).  

 

Figura 3 — Tempo médio e desvio padrão de análise das amostras de Classe pelos 
tratamentos (Classificador Oficial, Equipamento 1 e Equipamento 2). 

 

Nas amostras com predominância de grãos da classe "Longo Fino", o 

Classificador Oficial levou 9 minutos, sendo o menor tempo registrado entre todas as 

classes, sugerindo familiaridade com grãos da classe "Longo Fino". Tal resultado é 

possivelmente explicado pelo fato da grande recorrência de análises de marcas 

comerciais com variedades de grãos desta classe na região onde o mesmo trabalha, 

além de ser a classe de grão mais consumida no Brasil (BARATA, 2005). 

Para amostras com predominância de grãos da classe "Longo", o tempo de 

análise manual foi de 15 minutos, um aumento que indica maior esforço de medição, 

sendo possivelmente justificado pela complexidade de análise, em que grãos da 

classe “Longo” se diferenciam dos da classe “Longo Fino” pela diferença da relação 
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comprimento/largura (menor que 2,75) e espessura (maior que 1,90 milímetros) 

(BRASIL, 2009), o que pode ter demandado mais tempo. 

Nas amostras com predominância de grãos da classe "Médio", o tempo de 

análise foi o mais alto, com 27 minutos, indicando que esta classe demanda maior 

atenção. Uma possível explicação está no fato de que o grão médio (entre 5,00 e 5,99 

milímetros) está na “divisa” entre três classes, se diferenciando no comprimento 

inferior ao das classes “Longo Fino” e “Longo” (maior ou igual a 6 milímetros) e 

superior ao da classe “Curto” (menores que 5 milímetros), sendo necessárias diversas 

verificações para a definição correta da classe. Vale ressaltar a tendência do ser 

humano em superestimar a proporção de grãos curtos em detrimento dos grãos 

médios, como o visto no teste de médias, nas amostras em que tal classe não é 

predominante, sendo nas amostras de classe “Médio” onde ocorreu a maior 

discrepância de resultados (76,23%) em relação ao controle (81,79%), evidenciando 

uma maior demanda de tempo pela dificuldade na diferenciação entre grãos de classe 

“Médio” e “Curto”. 

Para amostras com predominância de grãos da classe "Curto", a análise 

humana levou 16 minutos, considerado um tempo intermediário. Tal resultado 

complementa o resultado visto nas amostras com predominância de grãos da classe 

"Médio" e sugere duas hipóteses que podem ser complementares. Uma é a de que o 

tempo de análise é maior em amostras com alta proporção de grãos “pequenos”, ou 

seja, nas amostras da classe “Médio” (27 minutos), “Misturado” (25 minutos) e “Curto” 

(16 minutos), tendo em vista a complexidade no manuseio para a medição no 

paquímetro. Outra hipótese indica que a análise foi mais demorada em amostras com 

alta proporção específica de grãos médios (entre 5,00 e 5,99 milímetros), como as 

amostras da classe “Médio” (81,79% para o controle) e “Misturado” (19,97% para o 

controle), além de um maior erro, com diferenças estatísticas significativas (p<0,05) 

em relação ao controle, em que o ser humano tendeu a considerar grãos médios como 

grãos curtos, superestimando as proporções de grãos da classe “Curto” de forma geral 

no experimento, como verificado via teste de médias. 

Por fim, nas amostras de classe "Misturado", o tratamento Humano teve um 

tempo de 25,00 minutos, possivelmente refletindo a complexidade de diferenciar 

múltiplas classes com características distintas, também sendo amostras em que se 

verifica alta proporção de grãos “pequenos” (aproximadamente 40%), ou seja, médios 

(19,97%) e curtos (20,10%). 
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O Equipamento 1 foi o tratamento que demonstrou maior eficiência, com 

tempos variando entre 0,21 e 0,32 minutos. Já o Equipamento 2 manteve o tempo 

constante de 2,00 minutos, sendo ideal para cenários que priorizam uniformidade 

temporal, embora não seja tão rápido quanto o Equipamento 1. 

Para o Classificador Oficial vale uma análise detalhada visando identificar as 

causas subjacentes à elevada variação temporal entre as amostras das diferentes 

classes. Seu tempo de análise variou entre 9 e 27 minutos, com desvio padrão de 3 a 

5 minutos. Entre as possíveis fontes de variabilidade, destaca-se a influência do 

tamanho do grão, pois grãos menores tendem a exigir maior atenção e esforço na 

medição, especialmente ao manusear o paquímetro, o que resulta em um aumento 

no tempo de análise.  

Fatores fisiológicos como o cansaço físico e sonolência também podem 

influenciar no tempo e na precisão da análise. Além disso, há também a possibilidade 

de interrupções pontuais durante a análise — como pausas para necessidades 

fisiológicas, atendimento de ligações, e resposta a e-mails urgentes — que podem 

impactar o tempo total, tendo em vista que tais pausas acarretam uma necessidade 

de readaptação ao retomar a análise, o que requer um tempo adicional para recuperar 

o foco nos critérios de avaliação estabelecidos. Vale ressaltar que o tempo de análise 

foi cronometrado e que, em caso de pausa na análise, o Classificador foi orientado a 

pausar o cronômetro até seu retorno à análise.  

Portanto, o tratamento Humano apresentou o maior tempo de análise, 

especialmente nas classes "Médio" e "Misturado", sendo recomendado para situações 

em que a máxima precisão é essencial em detrimento do tempo.  

 

3.3 Índice de Acerto (IA%) amostral  
 

 A Figura 3 apresenta uma matriz de cores, variando em intensidade de azul 

para representar altos índices de acerto e vermelho para baixos índices, oferecendo 

uma visualização clara do desempenho de cada método em diferentes amostras de 

arroz com composições variadas de classes de grãos. Em cada quadrante, são 

exibidos o índice de acerto percentual (IA%), seguido do desvio padrão, entre 

parênteses, e o tempo de análise, proporcionando uma análise combinada da eficácia 

e eficiência de cada método. 
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Figura 4 — Índice de Acerto percentual, desvio padrão e tempo médio de análise das amostras 
de Classe pelos tratamentos (Classificador Oficial, Equipamento 1 e Equipamento 2). 

 

O Classificador Oficial demonstrou alta precisão na maioria das amostras, 

embora com tempos de análise mais longos, variando entre 9 e 27 minutos. Na 

amostra "Longo Fino", obteve um índice de acerto (IA%) de 91,89% com desvio 

padrão de ±7,42, e para "Longo" alcançou IA% de 94,44% com menor variabilidade 

(±5,29). Na amostra "Médio", seu desempenho foi mais moderado (IA% de 80,21%, 

±17,85), com dificuldades na diferenciação de grãos médios e curtos, como verificado 

no teste de médias. Na amostra "Curto", obteve IA% de 95,70% com baixa 

variabilidade (±4,90). Em "Misturado", o IA% foi de 92,42% (±5,66), mantendo a 

eficácia, apesar das grandes variações no tempo de análise. 

O Equipamento 1 apresentou excelente equilíbrio entre eficácia e eficiência 

com tempos de análise extremamente rápidos, de 0,21 a 0,28 minutos em todas as 

amostras. Em "Longo Fino", obteve IA% de IA% de 91,16% (±8,83), e para "Longo", 

IA% de 90,22% (±8,11). Em "Médio", superou o Classificador Oficial com IA% de 

84,17% (±9,87). Em "Curto", alcançou IA% de 81,11% (±19,81), sugerindo a 

necessidade de ajustes para grãos curtos. No "Misturado", teve o melhor 

desempenho, com IA% de 94,12% (±3,12), consolidando-se como uma opção eficaz 

e eficiente. 



58 
 

O Equipamento 2 apresentou desempenho variável em termos de índice de 

acerto, com um tempo de análise constante de 2 minutos em todas as amostras, 

demonstrando alta eficiência em termos de velocidade. Na amostra "Longo Fino", 

obteve IA% de 87,33% (±11,02), indicando um desempenho satisfatório. Para “Longo” 

o IA% reduziu para 71,32% (±25,90), evidenciando dificuldades na diferenciação entre 

grãos das classes "Longo" e "Longo Fino", como o verificado no teste de médias. Em 

"Médio" e “Curto” o índice de acerto reduziu gradativamente, indicando baixa precisão 

em amostras com grãos pequenos, com IA% de 65,20% ±18,15 para "Médio" e 

62,39% (±23,42) para "Curto". No entanto, em "Misturado" o desempenho retornou a 

níveis satisfatórios, com IA% de 88,73% (±5,56), mostrando maior estabilidade em 

amostras com proporções equilibradas. 

 

4. DISCUSSÃO  

 

A análise da qualidade física do arroz é inicializada na expedição do arroz em 

casca diretamente do campo, onde a avaliação de qualidade é necessária para 

garantir uma transação comercial justa entre o produtor e a indústria de 

beneficiamento e empacotamento, que também realizará a análise ao receber o 

produto. Essa análise inicial inclui a determinação da renda e rendimento do arroz, 

fatores diretamente ligados às dimensões do grão e, portanto, à sua classe, sendo 

uma informação essencial para prever o desempenho do grão no beneficiamento e na 

obtenção do produto acabado. Como destacado pelo CEPEA, o rendimento do arroz, 

representado pela proporção de grãos inteiros e quebrados, afeta diretamente seu 

valor de mercado, sendo que o Indicador do Arroz em Casca ESALQ/SENAR-RS 

utiliza um rendimento mínimo de 57% de grãos inteiros para precificar o produto, com 

tolerância de cerca de 10% de grãos quebrados (CEPEA, 2024). Além disso, para a 

Embrapa, o percentual de grãos inteiros obtidos após o beneficiamento é um critério 

determinante de valorização, dado que grãos classificados como inteiros devem ter 

comprimento igual ou superior a três quartos do comprimento mínimo da sua classe 

(BASSINELLO e CARVALHO, 2021). 

Adicionalmente, as normas de precificação da CONAB (Companhia Nacional de 

Abastecimento) preveem deságios para produtos com renda inferior a 68%, atribuindo 

valores específicos para cada ponto percentual abaixo desse limite, demonstrando 
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que, para a indústria, a qualidade física dos grãos é um fator diretamente vinculado 

ao retorno econômico (CONAB, 2023).  

Compreendendo essas diversas etapas da análise de qualidade do arroz, 

percebe-se que a introdução de equipamentos de análise de imagem pode ser 

vantajosa, especialmente em situações que demandam agilidade, como no 

recebimento de matéria-prima pela indústria. Durante a safra, quando grandes 

volumes de carga chegam para classificação, a agilidade na análise é crucial para que 

o arroz, ainda com sujidades e úmido, seja direcionado rapidamente para secagem, 

limpeza ou armazenamento adequado. Além disso, o controle de qualidade continua 

internamente na indústria, onde os equipamentos de análise de imagem possuem 

grande potencial de utilização visando o controle em tempo real dos índices de 

qualidade do arroz durante o beneficiamento. Esse suporte também pode facilitar a 

tomada de decisões na regulagem de máquinas nesta etapa. Esse controle se encerra 

com a análise do lote de produto final, ou seja, do arroz beneficiado, que, no Brasil, é 

obrigatoriamente realizada por um técnico experiente e habilitado pelo Ministério da 

Agricultura, conhecido como Classificador Oficial (BRASIL, 2009). 

A análise de qualidade dos grãos de arroz tem se beneficiado da aplicação de 

tecnologias emergentes de processamento de imagens e inteligência artificial, que 

buscam superar as limitações dos métodos tradicionais manuais, como o tempo 

elevado de análise e a variabilidade nos resultados (SINGATHALA et al., 2023; 

KURADE et al., 2023). Dentre essas tecnologias, destacam-se os métodos de 

aprendizado de máquina, como as árvores de decisão e as redes neurais, 

amplamente empregados na análise de imagens de grãos de arroz devido às suas 

características e vantagens distintas (GOODFELLOW et al., 2016; ALPAYDIN, 2016). 

O método de árvore de decisão, utilizado nos dois equipamentos que participaram 

deste estudo, segue uma abordagem analítica baseada em regras, em que cada “nó” 

representa uma pergunta sobre uma característica do grão, como comprimento e 

largura. Esse processo continua até chegar a uma classificação final, como grão 

inteiro ou quebrado (GOODFELLOW et al., 2016) ou, no caso do experimento, a 

classe do grão. As árvores de decisão são mais fáceis de interpretar e exigem menos 

custo computacional, oferecendo rapidez na análise, como foi verificado na análise de 

tempo do experimento. Elas são mais indicadas para situações em que a classificação 

segue regras claras e com menor variabilidade. 
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As redes neurais, em particular as redes neurais convolucionais (CNNs), 

utilizam um processo de aprendizado inspirado no funcionamento do cérebro humano, 

em que a rede ajusta seus parâmetros internos para minimizar erros de classificação 

após ser treinada com um grande conjunto de dados (LECUN; BENGIO; HINTON, 

2015). Essa abordagem permite que as redes neurais detectem características 

complexas como cor, forma e textura dos grãos, o que resulta em alta precisão e 

capacidade de generalização, mesmo com variações nas condições de luz e posição 

(KRIZHEVSKY; SUTSKEVER; HINTON, 2017). Assim, enquanto as árvores de 

decisão são ideais para contextos com regras claras, as redes neurais são mais 

indicadas para cenários complexos que exigem maior precisão. Ambos os métodos 

podem ser combinados em sistemas híbridos, aproveitando as vantagens da 

simplicidade das árvores de decisão e da robustez das redes neurais. 

Estudos recentes apontam que métodos automatizados, ao utilizarem técnicas 

de segmentação e algoritmos de aprendizado profundo, apresentam vantagens em 

termos de precisão e eficiência, especialmente em operações de grande escala 

(SINGH e CHAUDHURY, 2020; SONAWANE et al., 2021). Além disso, pesquisas 

mostram que o uso de redes neurais convolucionais (CNNs) pode melhorar 

significativamente a classificação de grãos com base em suas características 

morfológicas, como textura e forma (LINGWAL; BHATIA; TOMER, 2021). 

Entretanto, há desafios na precisão desses métodos, especialmente na 

diferenciação de classes próximas de grãos, como “Médio” e “Curto”, em que ruídos 

de imagem podem comprometer a eficácia da análise (MLADENOV et al., 2021; 

WANG et al., 2022). Comparações com métodos tradicionais indicam que, embora a 

automação traga ganhos em velocidade, é comum que ainda seja necessário o 

acompanhamento por operadores especializados para ajustes finos e para garantir a 

confiabilidade dos resultados (SALGADO, 2022). Além disso, estudos ressaltam a 

importância da calibração dos equipamentos de acordo com as características das 

amostras de grãos utilizadas, já que amostras mais heterogêneas podem apresentar 

uma maior variabilidade de resultados (BRASIL, 2005). 

Fazendo uma análise da composição das amostras, percebeu-se que as 

maiores variações e o menor índice de acerto estão associados às amostras de classe 

predominante, em que sua composição foi de aproximadamente 4,1g para a classe 

predominante e 0,30g para as outras classes, totalizando 5g, sendo este o peso 

mínimo recomendado para a definição de classe, indicado no Padrão Oficial de 
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Classificação do arroz (Brasil, 2009). Em contraposição, observa-se que o melhor 

índice de acerto e menor desvio padrão dos equipamentos foi obtido nas amostras de 

classe “Misturado”, em que a sensibilidade ao erro é menor devido à proporção 

equilibrada entre as diferentes classes de grãos (aproximadamente 2 gramas de grãos 

“Longo Fino”, e 1 grama para as classes “Longo”, “Médio” e “Curto”, totalizando 5g de 

amostra), evidenciando que erro de interpretação de um grão em 1,00 grama é menos 

impactante no índice de acerto do que o erro de 1 grão em 0,30 gramas. Sendo 

recomendada a utilização de amostras maiores na análise automatizada, tendo em 

vista que ambos os equipamentos foram excelentes no quesito tempo de análise. 

Uma possível explicação para o desempenho distinto entre os equipamentos 

está no método de aquisição de imagem e no algoritmo de processamento e análise 

utilizados por cada um. No equipamento 1, a imagem foi capturada em uma esteira, 

resultando em uma imagem bidimensional, enquanto o equipamento 2 realiza a 

captura do grão em queda livre, obtendo três imagens do mesmo grão por meio de 

um sistema de espelhos que permite visualizar todas as suas faces. Esse sistema, a 

princípio, oferece potencial para uma análise mais completa do grão, mas também 

está associado a um processamento mais complexo, que exige mais tempo e pode 

ser mais suscetível a erros. Além disso, a captura durante a queda livre pode introduzir 

ruídos na imagem, prejudicando o processamento e a análise, o que pode ter 

contribuído para o desempenho inferior do equipamento 2. 

Outro ponto importante a ser observado é que o objetivo do estudo foi a análise 

de todas as classes na composição das amostras, visando a avaliação do 

desempenho dos métodos em diferentes cenários, de certa forma, extremos. Nas 

indústrias de beneficiamento de arroz, a aquisição de lotes geralmente envolve 

variedades com características semelhantes, de fornecedores recorrentes, em que 

variações de classe são raras e frequentemente removidas durante o processamento, 

por meio de máquinas de seleção por tamanho, como trieurs e câmaras de plano 

rotativo. Além disso, essas variações estão, em sua maioria, associadas a grãos de 

variedades especiais, que possuem características específicas, diferentes das 

variedades de arroz comum. A calibração dos equipamentos pode ser ajustada para 

variedades ou características mais homogêneas, o que possivelmente resultaria em 

um índice de acerto maior nesses contextos. 

Além disso, ambos os equipamentos permitem ao operador revisar as decisões 

tomadas pela máquina e corrigir possíveis interpretações incorretas, possibilitando 
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ajustes antes da emissão do relatório final. Embora tal função não tenha sido utilizada 

no experimento, ela representa uma potencial melhoria no índice de acerto dos 

equipamentos, permitindo obter resultados rápidos que, com alguns ajustes, também 

se tornam mais precisos, ressaltando a importância da presença de um operador 

qualificado. 

Embora esses equipamentos possam acelerar o processo, eles ainda 

dependem de operadores qualificados. Mesmo com uma interface intuitiva, é 

fundamental que o operador possua conhecimento sobre a qualidade do arroz e 

experiência prática. Recomenda-se, portanto, a presença de classificadores oficiais 

para monitorar periodicamente a calibração dos equipamentos e realizar análises 

manuais em situações em que a precisão é mais crítica que a rapidez, como na 

expedição do produto acabado. É importante destacar que, apesar da menor 

eficiência em termos de tempo, o método conduzido pelo Classificador Oficial 

demonstrou o melhor desempenho geral neste estudo, mantendo consistência e 

precisão na análise e evidenciando a capacidade de adaptação humana a diferentes 

cenários. Portanto, a adoção de métodos automatizados para a análise de arroz 

representa um avanço na busca por eficiência e consistência na avaliação de 

qualidade, ao mesmo tempo em que evidencia a importância de uma abordagem 

híbrida que combine a eficiência das máquinas com a expertise humana, 

especialmente em contextos industriais onde altos índices de acerto são críticos para 

a qualidade final do produto (BRITES et al., 2016; FONSECA et al., 2015). 
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5. CONCLUSÃO 
 

O Classificador Oficial destacou-se pela alta precisão e consistência, mas o 

tempo de análise mais longo pode limitar sua viabilidade em contextos de grande 

volume, tornando-o mais apropriado para situações em que a precisão é a 

prioridade. O Equipamento 1 oferece um bom equilíbrio entre precisão e tempo de 

análise, sendo altamente vantajoso para operações que demandam rapidez sem 

comprometer a precisão de forma significativa. O Equipamento 2, embora tenha 

apresentado maior variabilidade, demonstrou ser eficiente em termos de tempo e 

potencialmente eficaz em amostras menos complexas e que priorizem rapidez na 

análise. 

  



64 
 

6. REFERÊNCIAS BIBLIOGRÁFICAS 
 

ALPAYDIN, E. Machine Learning: The New AI. MIT Press, 2016. Disponível em: 

<https://mitpress.mit.edu/9780262529518/machine-learning/>; Acesso em: 23 de 

outubro de 2024. 

BAO, J. (ed.). Rice: Chemistry and Technology. 4. ed. Cambridge: Academic Press, 

2018.  

BARATA, T. S. Caracterização do consumo de arroz no Brasil: um estudo na 

Região Metropolitana de Porto Alegre. 2005. 93 f. Dissertação (Mestrado em 

Agronegócios) - Universidade Federal do Rio Grande do Sul - Cepan, Porto Alegre, 

RS, 2005. 

BASSINELLO, P. Z.; CARVALHO, N. C. Qualidade de grãos. Embrapa Arroz e 

Feijão, 2021. Disponível em: <https://www.embrapa.br/agencia-de-informacao-

tecnologica/cultivos/arroz/pos-producao/pos-colheita/qualidade-de-graos.> Acesso 

em: 31 out. 2024. 

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa 

nº 6, de 16 de fevereiro de 2009. Diário Oficial da União, Brasília, 17 de fevereiro de 

2009. Seção 1, p. 1. 

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Lei nº 9.972, de 25 de 

maio de 2000. Diário Oficial da União, Brasília, 26 de maio de 2000. Seção 1, p. 1. 

BRITES, C. M.; MORGADO, E.; COELHO, I.; SANTOS, J. P.; BARROS, A.; LOPES, 

M.; MENDES-MOREIRA, P. Desenvolvimento de um sistema global de qualidade do 

arroz, recorrendo a ferramentas de análises de imagem, físico-químicas, sensoriais e 

quimiométricas para melhorar a qualidade da cultura e o valor de utilização. Relatório 

Final do Projeto BEST-RICE-4-LIFE, 2016. Disponível em: 

<https://cncalteracoesclimaticas.pt/content_page/projetos/desenvolvimento-de-um-

sistema-global-de-qualidade-do-arroz-recorrendo-a-ferramentas-de-analises-de-

imagem-fisico-quimicas-sensoriais-e-quimiometricas-para-melhorar-a-qualidade-da-

cultura-e-o-valor-de-utilizacao>. Acesso em: 31 out. 2024. 



65 
 

CALINGACION, M.; LABORTE, A.; NELSON, A.; RESURRECCION, A.; 

CONCEPCION, JC.; DAYGON, VD. Diversity of Global Rice Markets and the Science 

Required for Consumer-Targeted Rice Breeding. PLoS ONE, v. 9, n.1, e85106, 2014. 

CEPEA - Centro de Estudos Avançados em Economia Aplicada. Metodologia do 

Indicador do Arroz em Casca ESALQ/SENAR-RS. CEPEA/ESALQ/USP, 2015. 

Disponível em: 

<https://www.cepea.esalq.usp.br/upload/kceditor/files/METODOL_Ind_ARROZ_Cepe

a.pdf.> Acesso em: 31 out. 2024. 

CONAB. Companhia Nacional de Abastecimento — Safra Brasileira de Grãos, 2024. 

Disponível em: <https://www.conab.gov.br/info-agro/safras/graos>. Acesso em: 31 de 

out 2024. 

EMBRAPA. Importância econômica e social do arroz no Brasil. Empresa Brasileira 

de Pesquisa Agropecuária, 2023. Disponível em: https://www.embrapa.br/agencia-

de-informacao-tecnologica/cultivos/arroz/pre-producao/socioeconomia/importancia-

economica-e-social. Acesso em: 9 jan. 2025. 

FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects split plot type 
designs. Revista brasileira de biometria, [S.l.], v. 37, n. 4, p. 529-535, 2019. 
Disponível em: <http://www.biometria.ufla.br/index.php/BBJ/article/view/450>. 
Acessado em: 19 de outubro de 2024. 

FITZGERALD, M. A.; MCCOUCH, S. R.; HALL, R. D. Not just a grain of rice: the quest 

for quality. Trends in Plant Science, v. 14, n. 3, p. 133-139, 2009. 

FONSECA, C. S.; BASSINELLO, P. Z.; COELHO, A. A. D.; CASTRO, E. D. M. D.; 

RODRIGUES, J. N. Qualidade de grãos de arroz de terras altas por métodos 

convencionais e por espectroscopia no infravermelho próximo. Revista Brasileira de 

Engenharia Agrícola e Ambiental, v. 19, n. 8, p. 759-765, 2015. Disponível em: 

<https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123403/1/p193.pdf.> Acesso 

em: 31 out. 2024. 

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. MIT Press, 2016. 

Disponível em: < https://www.deeplearningbook.org/contents/convnets.html>; Acesso 

em: 23 de outubro de 2024. 

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet classification with deep 

convolutional neural networks. Communications of the ACM, v. 60, n. 6, p. 84-90, 



66 
 

2017. Disponível em: <https://dl.acm.org/doi/pdf/10.1145/3065386>; Acesso em: 24 

de outubro de 2024. 

KUCHEKAR, N. A.; YERIGER, V. V. Rice grain quality grading using digital image 

processing techniques. IOSR Journal of Electronics and Communication 

Engineering, v. 13, n. 3, p. 84-88, 2018. 

KURADE, C.; MEENU, M.; KALRA, S.; MIGLANI, A.; NEELAPU, B. C.; YU, Y.; 

RAMASWAMY, H. S. An Automated Image Processing Module for Quality Evaluation 

of Milled Rice. Foods, v. 12, n. 1273, p. 1-14, 2023. 

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, p. 436-444, 

2015. Disponível em: <https://www.nature.com/articles/nature14539>; Acesso em: 24 

de outubro de 2024. 

LINGWAL, S.; BHATIA, K. K.; TOMER, M. S. Image-based wheat grain classification 

using convolutional neural network. Multimedia Tools and Applications, v. 80, p. 

1166, 2021. 

LIU, W.; LIU, C.; MA, F. et al. Online Variety Discrimination of Rice Seeds Using 

Multispectral Imaging and Chemometric Methods. Journal of Applied Spectroscopy, 

v. 82, p. 993-999, 2016. 

MARTENS, S.; CORADI, P. C.; MALDANER, V.; CARNEIRO, L. O.; TEODORO, P. 

E.; RODRIGUES, D. M.; ANSCHAU, K. F.; TEODORO, L. P. R.; FLORES, É. M. M. 

Drying and intermittence processes on the polished and brown rice physicochemical 

and morphological quality by near-infrared spectroscopy, X-ray diffraction, and 

scanning electron microscopy. Food Chemistry: X, v. 19, 2023. 

MLADENOV, M. I.; DEJANOV, M. P.; TSENKOVA, R. Complex assessment of grain 

quality using image and spectra analyses. Food Control, v. 120, p. 107543, 2021. 

SINGATHALA, H.; MALLA, J.; LEKKALA, P. Quality Analysis and Classification of Rice 

Grains using Image Processing Techniques. International Research Journal of 

Engineering and Technology, v. 10, n. 08, p.311-315, 2023. 

SINGH, K. R.; CHAUDHURY, S. A cascade network for the classification of rice grain 

based on single rice kernel. Complex & Intelligent Systems, v. 6, p. 321–334, 2020. 



67 
 

SONAWANE, V.; GAIKWAD, N.; MANDEKAR, H.; BARADKAR, K.; GUNJAL, C. Rice 

quality analysis and classification using image processing techniques. International 

Journal of Computer Science and Mobile Computing, v. 10, n. 6, p. 79-82, jun. 

2021. 

TRINIDAD P. T.; AIDA, C. M.; ROSARIO, R. E.; ROSARIO, S. S.; ANGELINA, DR. F.; 

BIENVENIDO O. J. The effect of apparent amylose content and dietary fibre on the 

glycemic response of different varieties of cooked milled and brown rice. International 

Journal of Food Sciences and Nutrition, v. 64, n. 1, p. 89-93, 2013. 

ZHAO, J.; ZHANG, Y.; ZHANG, Y.; HU, Y.; YING, Y.; XU, F.; BAO, J. Variation in 

starch physicochemical properties of rice with different genic allele combinations in two 

environments. Journal of Cereal Science, v. 108, p. 103575, nov. 2022. 

  



68 
 

 

 

CAPÍTULO II 
 

 

 

 

 

 

ANÁLISE DE IMAGENS NA DETERMINAÇÃO DO TIPO DO ARROZ (Oryza sativa 
L.) BENEFICIADO POLIDO 

 

 

  



69 
 

RESUMO 
 

O arroz é um dos alimentos básicos mais consumidos no mundo, desempenhando um 

papel essencial na segurança alimentar e na estabilidade econômica em diversas 

regiões, especialmente na Ásia, África e América Latina. No Brasil, a qualidade do 

arroz é regulamentada pelo Padrão Oficial de Classificação (POC), que estabelece 

critérios específicos para sua classificação, com base na inspeção visual realizada por 

classificadores oficiais. Entre os atributos que definem a qualidade do grão, os defeitos 

de cor, responsáveis pela determinação do Tipo do arroz, desempenham um papel 

crucial, influenciando tanto a aceitação comercial quanto a preferência dos 

consumidores. Apesar de tradicional, tal metodologia apresenta limitações, como 

subjetividade do avaliador, restrições de tempo e fadiga. Equipamentos de análise de 

imagem oferecem alternativas promissoras para inspeção automatizada, capturando 

imagens de alta resolução e utilizando algoritmos para identificar e quantificar 

características físicas dos grãos. O objetivo deste estudo é avaliar a eficácia e a 

eficiência de equipamentos de análise de imagem na determinação do Tipo do arroz, 

comparando-os com o método tradicional de classificação a partir da análise das 

médias, tempo de análise e índice de acerto amostral. O Classificador Oficial 

destacou-se como o método mais preciso e consistente, apresentando índices de 

acerto entre 94,83% e 97,80%. Contudo, teve os maiores tempos de análise, variando 

de 26 a 55 minutos. O Equipamento 1 demonstrou maior eficiência operacional, com 

tempos de 2 a 3 minutos e índices de acerto entre 87,27% e 95,41%. Já o 

Equipamento 2 apresentou tempos intermediários, de 13 a 16 minutos, e índices de 

acerto entre 83,91% e 94,54%. A integração entre o método humano e o automatizado 

oferece potencial para otimizar o controle de qualidade do arroz beneficiado. 

 

Palavras-chave: qualidade do arroz, inteligencia artificial, tipo do arroz, defeitos de 
cor. 
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ABSTRACT 
 

Rice is one of the most consumed staple foods worldwide, playing a key role in food 

security and economic stability in various regions, especially in Asia, Africa, and Latin 

America. In Brazil, rice quality is regulated by the Official Classification Standard 

(POC), which establishes specific criteria for classification based on visual inspection 

conducted by official classifiers. Among the attributes defining grain quality, color 

defects, which determine the rice Type, play a crucial role in influencing both 

commercial acceptance and consumer preference. Despite being traditional, this 

methodology has limitations such as evaluator subjectivity, time constraints, and 

fatigue, affecting consistency and precision. Image analysis equipment provides 

promising alternatives for automated inspection, capturing high-resolution images and 

utilizing algorithms to identify and quantify physical characteristics of the grains. This 

study aimed to evaluate the effectiveness and efficiency of image analysis equipment 

in determining rice Type, comparing them with the traditional classification method 

through the analysis of means, analysis time, and sample accuracy index. The Official 

Classifier stood out as the most precise and consistent method, with accuracy indices 

ranging from 94.83% to 97.80%, but had the longest analysis times, varying from 26 

to 55 minutes. Equipment 1 demonstrated greater operational efficiency, with analysis 

times of 2 to 3 minutes and accuracy indices ranging from 87.27% to 95.41%. 

Equipment 2 had intermediate times, ranging from 13 to 16 minutes, and accuracy 

indices between 83.91% and 94.54%. Integrating human and automated methods 

presents potential for optimizing quality control in polished rice. 

 

Keywords: rice quality, artificial inteligence, rice type, color defects.  
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1. INTRODUÇÃO 
 

O arroz (Oryza sativa L.) é um dos alimentos básicos mais consumidos no 

mundo, sendo crucial para a segurança alimentar e a economia de diversas regiões, 

especialmente na Ásia, África e América Latina. Como fonte primária de calorias e 

nutrientes, ele é consumido diariamente por milhões de pessoas, e a qualidade do 

produto influencia diretamente a aceitação pelo consumidor, o valor de mercado e a 

competitividade no setor agrícola. A qualidade do arroz envolve uma combinação de 

fatores físicos, químicos e sensoriais que, em conjunto, definem seu valor final (BAO, 

2019). Entre esses fatores, os aspectos visuais, como a presença de defeitos de cor 

nos grãos, são especialmente importantes para a preferência do consumidor, já que 

representam a primeira característica percebida na hora da compra e impactam 

diretamente o valor comercial do produto (OLIVEIRA e AMATO, 2021). 

Defeitos de cor em grãos de arroz incluem alterações visuais que 

comprometem a aparência, a qualidade sensorial e até o valor nutricional do produto. 

Esses defeitos incluem grãos ardidos e mofados, amarelos, rajados, picados ou 

manchados, gessados e verdes (BRASIL, 2009). A presença dessas colorações 

indesejáveis pode ser causada por uma série de fatores, como condições climáticas 

adversas durante o cultivo, falhas no manejo pós-colheita, armazenamento 

inadequado e processos de secagem deficientes. Cada tipo de defeito é resultado de 

processos fisiológicos ou danos específicos, que podem comprometer tanto a 

aparência quanto a qualidade do arroz como um todo (OLIVEIRA e AMATO, 2021). 

No Brasil, a qualidade do arroz é regulamentada pelo Padrão Oficial de 

Classificação (POC), elaborado pelo Ministério da Agricultura e Pecuária (MAPA), que 

define normas claras para a classificação do arroz de acordo com seus requisitos de 

identidade e qualidade. Tal padrão classifica o arroz em Grupo, conforme sua forma 

de apresentação; Subgrupo, conforme o processo de beneficiamento; Classe, 

conforme as dimensões dos grãos; e Tipo, conforme os limites de tolerância a defeitos 

na amostra podendo ser enquadrado em cinco Tipos — Tipo 1, Tipo 2, Tipo 3, Tipo 4 

e Tipo 5 — podendo ainda ser enquadrado como Fora de Tipo ou Desclassificado, de 

acordo com o nível e a gravidade dos defeitos presentes na amostra representativa 

do lote analisado (BRASIL, 2009). 

Atualmente a determinação do Tipo do arroz é realizada por analistas treinados 

via curso homologado pelo Ministério da Agricultura e Pecuária (MAPA), denominados 
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Classificadores Oficiais. Esses especialistas realizam uma inspeção visual detalhada 

das amostras, identificando e quantificando os diferentes defeitos presentes para 

atribuir uma classificação de acordo com os critérios estabelecidos no POC, conforme 

a Portaria MAPA n° 521 de 1° de dezembro de 2022 (BRASIL, 2022). No entanto, tal 

prática possui limitações: a avaliação depende da subjetividade do avaliador, o que 

pode introduzir variabilidade entre classificadores; o processo demanda tempo, o que 

limita a quantidade de amostras que podem ser analisadas em um período; e a 

repetitividade da tarefa pode levar ao cansaço físico e mental, impactando a acurácia 

dos resultados.  

Sendo tal análise essencialmente visual, abre-se espaço para alternativas 

envolvendo os equipamentos de análise de imagens, os quais captam imagens de 

alta resolução dos grãos e utilizam algoritmos de processamento para identificar e 

medir características físicas, como tamanho, formato, cor e defeitos superficiais. 

Esses sistemas podem analisar grandes volumes de grãos de forma rápida e 

consistente, eliminando a variabilidade humana (LIU et al., 2016; MARTENS et al., 

2023). 

Para implementar a análise de imagem na Classificação do arroz, é necessário 

realizar estudos que comparem a análise automatizada via equipamentos com a 

análise tradicional feita por avaliadores humanos treinados. Portanto, o objetivo do 

presente estudo foi avaliar o uso de equipamentos de análise de imagens na definição 

do Tipo do arroz beneficiado polido, de acordo com seu Padrão Oficial de 

Classificação, elaborado pelo Ministério da Agricultura e Pecuária (MAPA), 

comparando a eficácia e a eficiência dos equipamentos de análise de imagens com a 

Classificação humana, destacando as vantagens e desvantagens de cada método. 
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2. MATERIAL E MÉTODOS 
 

O arroz utilizado no experimento (cultivar BRS A502, produzido no sistema de 

terras altas no município de Britânia, estado de Goiás, na safra de 2023/2024) foi 

doado pela indústria beneficiadora e empacotadora de arroz, denominada All Nutri 

Alimentos Ltda, localizada em Aparecida de Goiânia, estado de Goiás. Foram 

utilizados ainda grãos defeituosos, obtidos a partir do beneficiamento de arroz de 

diversos lotes.  

 

2.1 Montagem das amostras 
 

A montagem das amostras ocorreu durante os meses de maio e junho de 2024 

e foram realizadas nos Laboratório Sementes de Faculdade de Agronomia e Medicina 

Veterinária do Campus Darcy Ribeiro - Universidade de Brasília, localizada Brasília, 

Distrito Federal, e no Laboratório de Classificação de Grãos da empresa ENCLASS - 

Empresa Nacional de Certificação e Análise Ltda, localizada em Goiânia, Goiás.  

A balança de precisão (valores com três casas decimais) utilizada na pesagem 

dos grãos que compõem as amostras foi da marca Gehaka modelo BK300, aferida e 

calibrada em 16 de maio de 2024, com validade de 1 ano. 

De acordo seu Padrão Oficial de Classificação (POC) (BRASIL, 2009) o arroz 

do Grupo Beneficiado, Subgrupo Polido, é Classificado em cinco Tipos, expressos por 

números arábicos e definidos pelos limites máximos de tolerância descritos na Tabela 

1 a seguir:  

 
Tabela 1 — Limites máximos de tolerância expressos em %/peso do Arroz Beneficiado Polido 
(Anexo VII do POC do arroz) 

 
Tipos 

Matérias 
estranhas e 
impurezas 

Mofados 
e ardidos 

Picados ou 
Manchados 

Gessados 
e Verdes 

Rajados Amarelos 
Total de 
quebrados e 
quirera 

Quireras 

1 0,10 0,15 1,75 2,00 1,00 0,50 7,50 0,50 
2 0,20 0,30 3,00 4,00 1,50 1,00 15,00 1,00 
3 0,30 0,50 4,50 6,00 2,00 2,00 25,00 2,00 
4 0,40 1,00 6,00 8,00 3,00 3,00 35,00 3,00 
5 0,50 1,50 8,00 10,00 4,00 5,00 45,00 4,00 

Observação: O limite máximo de tolerância admitido para marinheiro é de 10 (dez) grãos em 1000 g (um mil gramas) para todos os 

tipos. Acima desse limite o produto será considerado como Fora de Tipo. 

O produto enquadrado como Fora de tipo por Matérias Estranhas e Impurezas, Grãos mofados e ardidos, não poderá ser comercializado 

quando destinado diretamente à alimentação humana, devendo ser rebeneficiado, para efeito de reenquadramento em Tipo (Art. 7° e § 

1° e § 2° da IN 06/2009 do MAPA) 
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Para a montagem das amostras, utilizou-se os grãos bons, ou seja, sem 

defeitos (provenientes do beneficiamento de um lote da cultivar BRS A502, produzido 

no sistema de terras altas no município de Britânia, estado de Goiás, na safra de 

2023/2024) e grãos defeituosos, obtidos a partir do beneficiamento de arroz de 

diversos lotes, tendo em vista que nem todos os lotes possuem todos os defeitos 

utilizados no experimento. Os grãos bons e defeituosos foram segregados via 

identificação visual e catação manual pelo autor do trabalho, Classificador Oficial 

(Cadastro Geral de Classificação MAPA Nº 5166) treinado via curso homologado pelo 

Ministério da Agricultura e Pecuária (MAPA) e então utilizados na montagem das 

amostras. 

Para cada um dos cinco Tipos, utilizou-se na amostra aproximadamente 70% 

do limite permitido para cada defeito (Mofados e Ardidos, Amarelos, Rajados, Picados 

ou Manchados e Gessados e Verdes) descritos na Tabela 2, sendo as amostras de, 

no mínimo, 100 gramas. 

 
Tabela 2 — Proporção de defeitos por amostra (%) 
Defeitos Amostra 1 Amostra 2 Amostra 3 Amostra 4 Amostra 5 
Mofados & Ardidos 0,10 0,20 0,40 0,80 1,20 
Amarelos 0,40 0,80 1,50 2,50 4,00 
Rajados 0,80 1,25 1,75 2,50 3,50 
Picados ou Manchados 1,30 2,50 3,50 5,00 7,00 
Gessados e Verdes 1,00 2,50 4,50 6,30 8,30 
Defeitos Totais 3,60 7,25 11,65 17,10 24,00 
TIPO 1 2 3 4 5 
 

Todas as amostras foram montadas sem a presença de Matérias Estranhas e 

Impurezas (MEI), ou seja, sem a presença de qualquer material que não os grãos de 

arroz. O percentual de grãos quebrados não entrou como parâmetro de análise, 

visando apenas a obtenção do percentual de defeitos de cor, obtido nos grãos inteiros 

e quebrados de forma conjunta. 

A Figura 1 mostra o aspecto visual dos grãos utilizados no experimento, sendo 

possível verificar da esquerda para a direita o grão bom, ou seja, sem defeitos de cor 

e os grãos ardido, amarelo, rajado, picado ou manchado e o gessado. 

Além dos defeitos de forma segregada, foi considerado como parâmetro de 

avaliação o somatório de defeitos totais, visando a obtenção do valor sem a 

segregação específica de cada defeito, podendo também ser um parâmetro de 

interesse comercial. 
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Para todos os cinco Tipos foram montadas amostras com 4 repetições, 

totalizando 20 amostras, armazenadas em potes herméticos a temperatura ambiente, 

longe da luz solar direta, até sua análise. 

 

2.2 Metodologia de Análise via Classificação Manual 
 

 As análises realizadas via classificação manual ocorreram durante o mês de 

julho de 2024 e foram realizadas no Laboratório de Classificação de Grãos da 

empresa ENCLASS - Empresa Nacional de Certificação e Análise Ltda, localizada em 

Goiânia, Goiás.  

A análise de Tipo foi realizada de acordo com a metodologia descrita no artigo 

36 do POC do Arroz (adaptada pelo autor):  

 

2.2.1 Obtenção do percentual de defeitos 

 

Ao abrir o recipiente com a amostra, iniciou-se o cronômetro. Para a 

determinação dos defeitos da amostra, identificou-se e separou-se os mesmos 

observando o que segue:  

I - Separou-se os grãos mofados e ardidos, picados ou manchados, gessados 

e verdes, rajados e amarelos,  

II - Incidindo sobre o grão de arroz dois ou mais defeitos, prevaleceu o defeito 

mais grave obedecendo à seguinte escala decrescente de gravidade: mofados e 

ardidos, amarelos, rajados, picados ou manchados e gessados e verdes;  

Figura 1 — Aspecto visual dos grãos bons (a), ardidos (b), amarelos (c), rajados (d), 
picados ou manchados (e) e gessados (f) utilizados no experimento. 
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III - Pesou-se os defeitos isoladamente e anotou-se no laudo de classificação o 

peso e o percentual encontrado de cada um, expressando o resultado com 2 (duas) 

casas decimais, para posterior enquadramento em tipo. 

Por fim, procedeu-se ao enquadramento do produto em tipo observando o 

estabelecido no Anexo VII do POC do arroz (Tabela 1) e concluiu-se o preenchimento 

do laudo de classificação anotando-se o tempo decorrido de análise. 

Por ser um método não destrutivo, no final das análises as amostras foram 

recompostas para sua utilização nos Equipamentos de Análise de Imagens. 

 

2.3 Metodologia de Análise via Equipamentos de Análise de Imagens 

  

 Neste estudo foram utilizados dois equipamentos de análise de imagens de 

empresas diferentes, porém com a mesma proposta de análise de qualidade do grão 

de arroz beneficiado polido. Esses foram denominados “Equipamento 1” e 

“Equipamento 2” e seu funcionamento, assim como suas particularidades, serão 

descritos a seguir. 

 As análises realizadas no equipamento 1 ocorreram no mês de julho de 2024, 

no laboratório de qualidade interno de uma indústria de beneficiamento e 

empacotamento de arroz, localizada em Aparecida de Goiânia, Goiás. As análises 

realizadas no equipamento 2 ocorreram no mês de agosto de 2024, no próprio 

laboratório da empresa fabricante do equipamento, localizado em Blumenau, Santa 

Catarina. 

 

2.3.1 Equipamento 1: Componentes e funcionamento 

 

O equipamento é composto essencialmente por uma unidade principal 

contendo uma tremonha na parte superior, por onde se introduz a amostra de grãos, 

uma correia transportadora de cor azul, uma câmera digital de alta resolução e uma 

gaveta frontal. Também conta com mouse, teclado e monitor, com os quais se faz a 

interação pelo usuário via interface do software.  

Para iniciar a análise, coloca-se a amostra na abertura acima da unidade 

principal e, via interface do software, dá-se o comando de início. Então o equipamento 

começa a vibrar, resultando na passagem dos grãos pela tremonha e a queda dos 
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mesmos na correia transportadora, sendo a captura das imagens feita por uma 

câmera digital interna com sistema de iluminação integrada ao equipamento durante 

a passagem dos grãos, resultando em uma imagem de duas dimensões (2D), 

finalizando com sua queda na gaveta localizada no final da correia. 

 

2.3.2 Equipamento 2: Componentes e funcionamento 

 

O equipamento é composto por um microcomputador integrado ao scanner de 

imagens, composto por uma placa vibratória helicoidal de alimentação, calha de 

alinhamento, sistema de espelhos, câmera digital de alta resolução, sistema de 

iluminação e gaveta. Também conta com um leitor de código de barras, monitor, 

mouse e teclado para interação do usuário via software.  

Para início da análise a amostra é colocada na placa helicoidal do equipamento 

e, via interface do software, dá-se o comando de início. Através da placa helicoidal 

vibratória os grãos são dosados e enfileirados. Após isto, cada grão é transferido para 

uma calha de alinhamento onde adquire velocidade e direcionamento para a captura 

das imagens que é feita quando este fica em queda livre, grão a grão. A captura das 

imagens é feita quando o grão passa por um sistema de iluminação indireta, onde são 

obtidas três imagens de cada grão, através de um sistema de espelhos, 

proporcionando a análise de toda a superfície do mesmo, resultando em uma imagem 

de três dimensões (3D). Ao sair da calha e iniciar a queda livre o grão interromperá 

uma barreira luminosa de fibra óptica que acionará a câmera e a iluminação. Após 

passar pelo sistema de captura de imagens, o grão fica acondicionado na gaveta de 

retirada de amostra. 

 

2.3.3 Calibração inicial dos equipamentos 

 

 Apesar de possuírem configuração de fábrica, recomenda-se a calibração dos 

equipamentos com relação à metodologia de análise a ser utilizada. Tal calibração é 

realizada visando adaptar o equipamento às características da matéria prima utilizada, 

seja de grãos mais claros ou escuros, dependendo da variedade utilizada e do grau 

de polimento, viabilizando ajustes para explorar o potencial máximo do equipamento 

e, por consequência, uma maior precisão na análise. 
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Em ambos os equipamentos foram realizadas calibrações iniciais, com 

amostras montadas, ou seja, com parâmetros conhecidos, semelhantes às utilizadas 

no experimento, para a obtenção da configuração final a ser utilizada. Em ambos os 

equipamentos tal configuração foi realizada por um técnico de suporte da empresa 

fabricante dos equipamentos. 

 

2.3.4 Metodologia de análise dos equipamentos de análise de imagem 

 

 Para ambos os equipamentos o procedimento de análise funciona da seguinte 

maneira:  

 

1. Captura de imagens de alta resolução;  

2. Pré-processamento; 

3. Segmentação dos objetos de interesse na imagem (isola-se os grãos de arroz 

do fundo da imagem); 

4. Identificação e análise dos parâmetros, com auxílio de algoritmos de 

processamento, visando a obtenção de características de interesse como, por 

exemplo, dimensões (comprimento e largura), formato, cor e defeitos 

superficiais; 

5. Classificação, a partir da combinação lógica das informações adquiridas.  

 

Ambos os equipamentos possibilitam revisão de análise pelo operador, 

viabilizando possíveis correções na classificação. Este procedimento não foi 

realizado, visando a avaliação dos equipamentos sem a interferência humana. 

Após a análise em ambos os equipamentos, é possível visualizar no monitor as 

informações obtidas, salvar amostras para possíveis conferências futuras e gerar 

relatório, tanto em formato digital, quanto via impressora externa. Todas as análises 

foram salvas e gerou-se o relatório digital, com percentual de defeitos e o tempo de 

análise de cada amostra, para posterior compilação e análise estatística. 

 

2.4 Índice de Acerto Percentual Amostral 
 

O índice de acerto (IA%) foi aplicado para expressar a precisão da medição dos 

tratamentos, ou seja, Classificador Oficial, Equipamento 1 e Equipamento 2 (valor 
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medido), em relação ao valor da amostra controle (valor real) em uma escala de 0 a 

100, considerando tanto subestimações quanto superestimações. 

Desta forma, os dados de cada uma das medições foram tratados pela seguinte 

fórmula:  

 

𝐼𝐴% =  (1 −   
 ǀ𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜 −  𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙ǀ 

𝑀𝑎𝑥(𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜, 𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙)
 )  ×  100  

Sendo: 

● Valor Medido: o valor em gramas obtido pelo método de medição (Classificação 

Oficial, Equipamento 1 e Equipamento 2). 

● Valor Real: o valor da amostra controle em gramas, com o qual o método está 

sendo comparado. 

 

Fórmula explicada: 

● Erro absoluto  (ǀ𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜 −  𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙ǀ): Calcula a diferença 

absoluta entre os valores medido e real; 

● Normalização do Erro - Divisão pelo maior valor [𝑀𝑎𝑥(𝑉𝑎𝑙𝑜𝑟 𝑀𝑒𝑑𝑖𝑑𝑜,

𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙)]: O erro é normalizado pelo maior valor, seja o real ou o 

medido, para evitar índices negativos ou fora do intervalo de 0% a 100%; 

● Cálculo do índice final (1−Erro Normalizado): O índice é 1 menos a 

proporção do erro normalizado; 

● Multiplicação por 100: Converte o índice em porcentagem. 

 

2.5 Delineamento experimental e análise estatística 
 

O experimento foi realizado no Delineamento Inteiramente Casualizado, com 

quatro repetições, em esquema fatorial 5x4, sendo 5 Tipos e 4 tratamentos (amostra 

controle, classificador oficial, equipamento 1 e equipamento 2). Foram obtidas as 

análises de variância e as médias comparadas pelo teste de Scott-Knott a 5% de 

probabilidade. Foi utilizado o software SISVAR 5.6 (FERREIRA, 2019). 

Para a plotagem dos gráficos, será utilizado o software SigmaPlot v.10 (Systat 

Software Inc, Germany). 

3. RESULTADOS 
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3.1 Análise de Tipo 
 

Na análise das amostras de tipo 1, em relação ao parâmetro mofado e ardido, 

todos os métodos apresentaram médias semelhantes à amostra controle (0,11 ± 0,00 

a), sem diferença estatística significativa (p>0,05) (Tabela 3). Isso indica que todos os 

métodos mantiveram a acurácia para a identificação deste defeito, mesmo no contexto 

de uma amostra com baixo percentual de defeitos, apesar da leve superestimação 

pelo Equipamento 2 (0,14 ± 0,02 a).  

 
Tabela 2 — Valores médios e desvio padrão da análise de amostras de Tipo 1 (Controle) 
pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2 

Defeitos 

Tratamento 

Controle 
Classificador 

Oficial 
Equipamento 

1 
Equipamento 

2 
CV 

Mofados e Ardidos 0,11 ± 0,00 a 0,11 ± 0,01 a 0,11 ± 0,03 a 0,14 ± 0,02 a 20,48 
Amarelos 0,41 ± 0,01 a 0,40 ± 0,02 a 0,45 ± 0,05 a 0,38 ± 0,04 a 8,88 
Rajados 0,80 ± 0,01 b 0,79 ± 0,04 b 0,78 ± 0,06 b 0,70 ± 0,05 a 6,42 
Picados ou Man. 1,30 ± 0,01 a 1,41 ± 0,12 a 1,34 ± 0,14 a 1,27 ± 0,05 a 8,30 
Gessados 1,01 ± 0,02 a 0,99 ± 0,03 a 0,85 ± 0,07 b 0,97 ± 0,04 a 5,21 

Total de Defeitos 3,63 ± 0,02 b 3,70 ± 0,16 b 3,70 ± 0,16 b 3,46 ± 0,10 a 3,35 
Médias seguidas pela mesma letra na linha não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 
 

Para o defeito amarelo, os valores médios para os métodos também não 

diferiram estatisticamente (p>0,05) da amostra controle (0,41 ± 0,01 a). Isso 

demonstra uma consistência geral entre os métodos na quantificação desse defeito. 

No caso de rajado, os valores médios do Classificador Oficial (0,79 ± 0,04 b) e do 

Equipamento 1 (0,78 ± 0,06 b) foram estatisticamente semelhantes entre si e à 

amostra controle (0,80 ± 0,01 b). No entanto, o Equipamento 2 apresentou um valor 

inferior (0,70 ± 0,05 a), diferindo estatisticamente (p<0,05) dos outros métodos e 

subestimando o percentual desse defeito em relação ao controle.  

Para picados ou manchados, os métodos mantiveram-se próximos à amostra 

controle (1,30 ± 0,01 a), sem diferença estatística significativa (p>0,05). Quanto ao 

parâmetro gessado, o Equipamento 1 apresentou um valor inferior (0,85 ± 0,07 b), 

diferindo estatisticamente (p<0,05) da amostra controle (1,01 ± 0,02 a), enquanto os 

demais métodos não diferiram.  

No somatório de todos os defeitos, a amostra controle apresentou média de 

3,63 ± 0,02 b. O Classificador Oficial (3,70 ± 0,16 b), com leve superestimação, apesar 
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de não diferir estatisticamente do controle (p>0,05), enquanto o Equipamento 1 (3,52 

± 0,08 a) e o Equipamento 2 (3,46 ± 0,10 a) apresentaram valores inferiores e 

estatisticamente diferentes (p<0,05) do controle. Esses resultados indicam uma 

tendência dos equipamentos automatizados em subestimar o total de defeitos nas 

amostras. O coeficiente de variação (CV) variou entre 3,35% para o total de defeitos 

e 20,48% para o defeito mofado e ardido, evidenciando maior homogeneidade nos 

parâmetros de somatório e maior variabilidade para os defeitos com proporções 

baixas. 

 
Tabela 3 — Valores médios e desvio padrão da análise de amostras de Tipo 2 (Controle) 
pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2 

Defeitos 

Tratamento 

Controle 
Classificador 

Oficial 
Equipamento 

1 
Equipamento 2 CV 

Mofados e Ardidos 0,20 ± 0,01 a 0,22 ± 0,00 a 0,21 ± 0,01 a 0,22 ± 0,04 a 11,24 
Amarelos 0,80 ± 0,00 b 0,82 ± 0,03 b 0,89 ± 0,05 c 0,71 ± 0,06 a 6,19 
Rajados 1,25 ± 0,00 b 1,23 ± 0,02 b 1,17 ± 0,08 b 1,06 ± 0,09 a 6,08 
Picados ou Man. 2,51 ± 0,01 a 2,52 ± 0,05 a 2,38 ± 0,03 a 2,33 ± 0,26 a 6,22 
Gessados 2,51 ± 0,00 c 2,45 ± 0,04 c 2,17 ± 0,07 a 2,30 ± 0,01 b 1,98 
Total de Defeitos 7,28 ± 0,01 c 7,23 ± 0,8 c 6,82 ± 0,11 b 6,62 ± 0,14 a 1,62 
Médias seguidas pela mesma letra na linha não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 

 

Na análise das amostras do Tipo 2, para o defeito mofado e ardido, os valores 

médios entre os métodos analisados foram estatisticamente semelhantes (p>0,05) à 

amostra controle (0,20 ± 0,01 a). Este resultado indica que os métodos, incluindo os 

equipamentos automatizados, foram consistentes na identificação e quantificação 

deste defeito específico, assim como verificado nas amostras de Tipo 1.  

No parâmetro amarelo, a amostra controle apresentou média de 0,80 ± 0,00 b. 

O Classificador Oficial (0,82 ± 0,03 b) apresentou resultados estatisticamente 

semelhantes (p>0,05). No entanto, o Equipamento 1 (0,89 ± 0,05 c) apresentou um 

valor superior, diferindo estatisticamente do controle e dos demais métodos (p<0,05), 

refletindo uma tendência à superestimação desse defeito, o que foi verificado nas 

amostras de Tipo 1, apesar de não diferir estatisticamente da amostra controle 

(p>0,05). Já o Equipamento 2 apresentou um valor inferior (0,71 ± 0,06 a), 

subestimando o defeito em relação à amostra controle e diferindo estatisticamente 

(p<0,05) o que também foi verificado nas amostras de Tipo 1, apesar de não diferir 

estatisticamente da amostra controle (p>0,05). 
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Em relação ao defeito rajado, a amostra controle apresentou média de 1,25 ± 

0,00 b. O Classificador Oficial (1,23 ± 0,02 b) e o Equipamento 1 (1,17 ± 0,08 b), 

apesar da subestimação de tal defeito, não diferiram estatisticamente (p>0,05) da 

amostra controle. O Equipamento 2, entretanto, apresentou o menor valor (1,06 ± 0,09 

a), diferindo estatisticamente (p<0,05), indicando subestimação acentuada deste 

defeito. 

Para picados ou manchados, os valores foram consistentes entre a amostra 

controle (2,51 ± 0,01 a), o Classificador Oficial (2,52 ± 0,05 a), e os Equipamentos 1 

(2,38 ± 0,03 a) e 2 (2,33 ± 0,26 a), não havendo diferenças estatísticas significativas 

(p>0,05). Isso demonstra boa sensibilidade e precisão de todos os métodos neste 

parâmetro, assim como verificado nas amostras de tipo 1. 

No defeito gessado, os valores apresentados pelo Equipamento 1 (2,17 ± 0,07 

a) foram estatisticamente inferiores à amostra controle (2,51 ± 0,00 c) e ao 

Classificador Oficial (2,45 ± 0,04 c), evidenciando subestimação (p<0,05). O 

Equipamento 2 (2,30 ± 0,01 b) também apresentou valores inferiores ao controle, mas 

superiores ao Equipamento 1, diferindo estatisticamente (p<0,05). 

No somatório de defeitos, a amostra controle apresentou média de 7,28 ± 0,01 

c. O Classificador Oficial (7,23 ± 0,8 c) manteve-se semelhante estatisticamente ao 

controle (p>0,05). O Equipamento 1 (6,82 ± 0,11 b) e o Equipamento 2 (6,62 ± 0,14 a) 

novamente apresentaram valores estatisticamente inferiores (p<0,05), indicando 

subestimação no total de defeitos. O coeficiente de variação (CV) variou de 1,62% 

para o somatório de defeitos até 11,24% para o defeito mofado e ardido, evidenciando 

maior homogeneidade para o total de defeitos e maior variabilidade para defeitos com 

menores proporções. 

 
Tabela 4 — Valores médios e desvio padrão da análise de amostras de Tipo 3 (Controle) 
pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2 

Defeitos 
Tratamento 

Controle 
Classificador 

Oficial 
Equipamento 

1 
Equipamento 

2 
CV 

Mofados e Ardidos 0,40 ± 0,00 a 0,41 ± 0,01 a 0,39 ± 0,02 a 0,38 ± 0,07 a 10,4 
Amarelos 1,50 ± 0,00 b 1,52 ± 0,03 b 1,61 ± 0,06 c 1,21 ± 0,08 a 4,13 
Rajados 1,76 ± 0,01 a 1,72 ± 0,01 a 1,61 ± 0,16 a 1,63 ± 0,12 a 6,92 
Picados ou Man. 3,51 ± 0,01 b 3,41 ± 0,10 b 3,25 ± 0,19 a 3,19 ± 0,14 a 4,5 
Gessados 4,51 ± 0,00 c 4,40 ± 0,08 c 4,05 ± 0,06 a 4,15 ± 0,05 b 1,58 
Total de Defeitos 11,68 ± 0,01 c 11,47 ± 0,16 c 10,90 ± 0,25 b 10,56 ± 0,04 a 1,58 

Médias seguidas pela mesma letra na linha não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 
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Na análise das amostras do Tipo 3, com relação ao defeito mofado e ardido, 

todos os métodos analisados apresentaram valores médios estatisticamente 

semelhantes (p>0,05) à amostra controle (0,40 ± 0,00 a). Este resultado evidencia alta 

precisão entre os métodos na identificação e quantificação deste parâmetro, mesmo 

em um cenário de aumento da proporção de tal defeito, representado nas amostras 

de Tipo 3. É possível inferir que o defeito ardido, associado ao processo de 

fermentação intensa da massa do grão, tem características de cor bastante 

discrepantes em relação ao grão bom, ou seja, translúcido, sendo este defeito 

prontamente identificado visualmente pelo classificador oficial e, como visto nos 

resultados, pelos equipamentos de análise de imagens. 

No parâmetro amarelo, a amostra controle apresentou um valor médio de 1,50 

± 0,00 b. O Classificador Oficial (1,52 ± 0,03 b) não diferiu estatisticamente (p>0,05) 

do controle, indicando alta proximidade com os valores da amostra padrão. Por outro 

lado, o Equipamento 1 (1,61 ± 0,06 c) apresentou leve superestimação diferindo 

significativamente (p<0,05) da amostra controle e o Equipamento 2 (1,21 ± 0,08 a) 

apresentou subestimação acentuada deste defeito, resultando na diferença estatística 

(p<0,05) em relação ao controle e aos demais métodos de análise. 

Para o defeito rajado, a amostra controle apresentou média de 1,76 ± 0,01 a. 

Todos os métodos avaliados – Classificador Oficial (1,72 ± 0,01 a), Equipamento 1 

(1,61 ± 0,16 a) e Equipamento 2 (1,63 ± 0,12 a) – foram estatisticamente semelhantes 

ao controle (p>0,05), demonstrando consistência entre os métodos. 

No caso de picados ou manchados, a amostra controle apresentou média de 

3,51 ± 0,01 b. O Classificador Oficial (3,41 ± 0,10 b) também foi estatisticamente 

semelhante (p>0,05). Entretanto, o Equipamento 1 (3,25 ± 0,19 a) e o Equipamento 2 

(3,19 ± 0,14 a) subestimaram os valores, diferindo estatisticamente (p<0,05) do 

controle. 

Para o defeito gessado, o valor médio da amostra controle foi de 4,51 ± 0,00 c. 

O Classificador Oficial (4,40 ± 0,08 c) apresentou valores próximos e estatisticamente 

semelhantes (p>0,05). Já o Equipamento 1 (4,05 ± 0,06 a) subestimou este defeito, 

diferindo significativamente (p<0,05). O Equipamento 2 (4,15 ± 0,05 b) apresentou um 

valor intermediário, sendo estatisticamente diferente tanto do controle quanto do 

Equipamento 1 (p<0,05). 

Para o total de defeitos, a amostra controle apresentou média de 11,68 ± 0,01 

c. O Classificador Oficial (11,47 ± 0,16 c), apesar da leve subestimação, não diferiu 
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estatisticamente (p>0,05) do controle. O Equipamento 1 (10,90 ± 0,25 b) e o 

Equipamento 2 (10,56 ± 0,04 a) apresentaram valores inferiores, diferindo 

significativamente (p<0,05) da amostra controle e do Classificador Oficial. 

O coeficiente de variação (CV) variou de 1,58% no total de defeitos e no 

parâmetro gessado, a 10,40% no parâmetro mofado e ardido, indicando maior 

variabilidade para defeitos de menor proporção nas amostras. 

 

 
Tabela 6 — Valores médios e desvio padrão da análise de amostras de Tipo 4 (Controle) 
pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2 

Defeitos 

Tratamento 

Controle 
Classificador 

Oficial 
Equipamento 

1 
Equipamento 

2 
CV 

Mofados e Ardidos 0,80 ± 0,00 b 0,81 ± 0,02 b 0,81 ± 0,03 b 0,67 ± 0,08 a 6,72 
Amarelos 2,51 ± 0,01 a 2,54 ± 0,05 a 2,40 ± 0,09 a 2,39 ± 0,18 a 4,8 
Rajados 2,51 ± 0,00 a 2,46 ± 0,02 a 2,47 ± 0,12 a 2,67 ± 0,38 a 9,05 
Picados ou Man. 5,01 ± 0,02 a 4,86 ± 0,10 a 4,82 ± 0,25 a 5,34 ± 0,23 b 4,08 
Gessados 6,30 ± 0,01 b 6,22 ± 0,02 b 5,78 ± 0,15 a 6,11 ± 0,06 b 1,55 

Total de Defeitos 17,13 ± 0,02 b 16,88 ± 0,10 b 16,26 ± 0,53 a 17,18 ± 0,39 b 2,28 
Médias seguidas pela mesma letra na linha não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 

 

Na análise das amostras do Tipo 4, verificou-se que para o defeito mofado e 

ardido, a amostra controle apresentou média de 0,80 ± 0,00 b. Tanto o Classificador 

Oficial (0,81 ± 0,02 b) quanto o Equipamento 1 (0,81 ± 0,03 b) foram estatisticamente 

semelhantes ao controle (p>0,05). Já o Equipamento 2 apresentou o menor valor (0,67 

± 0,08 a), diferindo significativamente (p<0,05), indicando subestimação deste defeito. 

Para o defeito amarelo, a amostra controle apresentou um valor médio de 2,51 

± 0,01 a. O Classificador Oficial (2,54 ± 0,05 a), Equipamento 1 (2,40 ± 0,09 a) e 

Equipamento 2 (2,39 ± 0,18 a) foram estatisticamente semelhantes (p>0,05), 

demonstrando boa concordância entre os métodos avaliados. O mesmo foi verificado 

em relação ao defeito rajado, em que o Classificador Oficial (2,46 ± 0,02 a), o 

Equipamento 1 (2,47 ± 0,12 a) e o Equipamento 2 (2,67 ± 0,38 a) foram 

estatisticamente semelhantes ao controle (p>0,05), evidenciando alta consistência 

entre os métodos na identificação desse defeito. 

Para picados ou manchados, a amostra controle apresentou média de 5,01 ± 

0,02 a. O Classificador Oficial (4,86 ± 0,10 a) e o Equipamento 1 (4,82 ± 0,25 a), 

apesar da leve subestimação de tal defeito, foram estatisticamente semelhantes ao 
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controle (p>0,05). O Equipamento 2, no entanto, apresentou um valor maior (5,34 ± 

0,23 b), diferindo significativamente (p<0,05), demonstrando superestimação neste 

defeito, sendo o oposto do verificado nas amostras de Tipo 1, 2 e 3. 

Para o defeito gessado, a amostra controle apresentou média de 6,30 ± 0,01 b. 

O Classificador Oficial (6,22 ± 0,02 b) e o Equipamento 2 (6,11 ± 0,06 b) foram 

estatisticamente semelhantes (p>0,05) à ao controle. Já o Equipamento 1 (5,78 ± 0,15 

a) apresentou subestimação significativa (p<0,05) em relação aos demais métodos.  

Para o somatório de defeitos, a amostra controle apresentou média de 17,13 ± 

0,02 b. O Classificador Oficial (16,88 ± 0,10 b) não diferiu estatisticamente do controle 

(p>0,05). O Equipamento 1 (16,26 ± 0,53 a) apresentou subestimação significativa 

(p<0,05), enquanto o Equipamento 2 (17,18 ± 0,39 b) foi estatisticamente semelhante 

ao controle (p>0,05). O coeficiente de variação (CV) variou de 1,55% para o defeito 

gessado a 9,05% para o defeito rajado, evidenciando maior homogeneidade em 

parâmetros mais prevalentes. 

 
Tabela 5 — Valores médios e desvio padrão da análise de amostras de Tipo 5 (Controle) 
pelos tratamentos Classificador Oficial, Equipamento 1 e Equipamento 2 

Defeitos 

Tratamento 

Controle 
Classificador 

Oficial 
Equipamento 

1 
Equipamento 

2 
CV 

Mofados e Ardidos 1,21 ± 0,00 b 1,23 ± 0,05 b  1,18 ± 0,03 b 1,05 ± 0,07 a 4,65 
Amarelos 4,01 ± 0,01 a 3,95 ± 0,07 a 4,00 ± 0,016 a 4,22 ± 0,27 a 4,53 
Rajados 3,51 ± 0,01 b 3,42 ± 0,07 b 3,17 ± 0,10 a 3,55 ± 0,27 b 4,96 
Picados ou Man. 7,01 ± 0,01 b 6,85 ± 0,06 b 6,96 ± 0,26 b 6,38 ± 0,08 a   2,37 
Gessados 8,30 ± 0,00 b 8,25 ± 0,03 b 7,99 ± 0,05 a 7,97 ± 0,08 a 0,68 
Total de Defeitos 24,04 ± 0,01 b 23,69 ± 0,07 b 23,30 ± 0,16 a 23,17 ± 0,38 a 1,02 
Médias seguidas pela mesma letra na linha não diferem estatisticamente entre si, pelo teste de Skott-
Knott a 5% de probabilidade. 

 

Na análise das amostras do Tipo 5, ou seja, as amostras com o maior 

percentual de defeitos do experimento, no defeito mofado e ardido, a amostra controle 

apresentou média de 1,21 ± 0,00 b. O Classificador Oficial (1,23 ± 0,05 b) e o 

Equipamento 1 (1,18 ± 0,03 b) foram estatisticamente semelhantes ao controle 

(p>0,05). O Equipamento 2, no entanto, apresentou um valor significativamente 

inferior (1,05 ± 0,07 a), indicando subestimação (p<0,05), assim como o verificado nas 

amostras de Tipo 4. 

No parâmetro amarelo, a amostra controle apresentou valor médio de 4,01 ± 

0,01 a. O Classificador Oficial (3,95 ± 0,07 a), o Equipamento 1 (4,00 ± 0,016 a) e o 
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Equipamento 2 (4,22 ± 0,27 a) foram estatisticamente semelhantes (p>0,05), 

evidenciando alta concordância entre os métodos nesse defeito. 

Para o defeito rajado, a amostra controle apresentou média de 3,51 ± 0,01 b. 

O Classificador Oficial (3,42 ± 0,07 b) foi estatisticamente semelhante (p>0,05), 

enquanto o Equipamento 1 (3,17 ± 0,10 a) apresentou subestimação significativa 

(p<0,05). O Equipamento 2 (3,55 ± 0,27 b) não diferiu estatisticamente do controle 

(p>0,05), mostrando boa concordância. 

No defeito picados ou manchados, a amostra controle apresentou valor médio 

de 7,01 ± 0,01 b. O Classificador Oficial (6,85 ± 0,06 b) e o Equipamento 1 (6,96 ± 

0,26 b) não diferiram estatisticamente (p>0,05) da amostra controle. O Equipamento 

2 (6,38 ± 0,08 a), no entanto, apresentou subestimação significativa (p<0,05). 

Para o defeito gessado, a amostra controle apresentou média de 8,30 ± 0,00 b. 

O Classificador Oficial (8,25 ± 0,03 b) não diferiu estatisticamente (p>0,05). Já o 

Equipamento 1 (7,99 ± 0,05 a) e o Equipamento 2 (7,97 ± 0,08 a) apresentaram 

subestimação significativa (p<0,05). 

Para o total de defeitos, a amostra controle apresentou média de 24,04 ± 0,01 

b. O Classificador Oficial (23,69 ± 0,07 b) foi estatisticamente semelhante (p>0,05), 

enquanto o Equipamento 1 (23,30 ± 0,16 a) e o Equipamento 2 (23,17 ± 0,38 a) 

subestimaram significativamente o valor total de defeitos (p<0,05). 

O coeficiente de variação (CV) variou de 0,68% para o defeito gessado a 4,96% 

para o defeito rajado, evidenciando maior estabilidade nos defeitos mais prevalentes. 

 

3.2 Tempo de análise 
 

 A figura 1 demonstra o tempo médio (em minutos) na obtenção do tipo pelos 

diferentes tratamentos. 
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Figura 2 — Tempo médio e desvio padrão de análise das amostras de Classe pelos 
tratamentos (Classificador Oficial, Equipamento 1 e Equipamento 2). 

 

Os resultados de tempo médio de análise evidenciam diferenças substanciais 

nos tempos necessários para analisar as amostras de diferentes tipos, refletindo as 

características operacionais específicas de cada método. 

O Classificador Oficial apresentou os maiores tempos médios de análise em 

todas as condições experimentais, destacando-se como o método com menor 

eficiência entre os avaliados. Para o Tipo 1, que possui o menor percentual de 

defeitos, o tempo médio de análise foi de 26 minutos. À medida que o percentual de 

defeitos aumentou, o tempo de análise cresceu gradualmente, alcançando 41 minutos 

no Tipo 2 e 48 minutos no Tipo 3. O maior tempo registrado foi de 55 minutos no Tipo 

4, enquanto no Tipo 5 houve uma ligeira redução para 50 minutos. Esses tempos 

refletem na demanda intensiva de atenção visual e trabalho manual, incluindo a 

separação individual de grãos e a identificação detalhada dos defeitos. A relação entre 

o tempo e a complexidade da amostra sugere que o método manual é particularmente 

sensível ao aumento da heterogeneidade e da quantidade de defeitos presentes, o 

que compromete sua eficiência, especialmente em cenários de alta demanda. 

O Equipamento 1 demonstrou ser o método mais eficiente, com tempos de 

análise consideravelmente menores e mais uniformes em todos os tipos de amostras. 

No Tipo 1, o tempo de análise foi de apenas 3 minutos, mantendo-se constante no 
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Tipo 2 e Tipo 3. Nos Tipos 4 e 5, o tempo médio foi ligeiramente reduzido para 2 

minutos, mesmo com o aumento da quantidade de defeitos. A consistência nos 

tempos de análise evidencia a alta padronização do processo, que realiza a captura e 

a análise das imagens de maneira uniforme, independentemente da complexidade da 

amostra. 

O Equipamento 2 apresentou tempos de análise intermediários entre os dois 

outros métodos. No Tipo 1, o tempo médio foi de 13 minutos, aumentando para 15 

minutos no Tipo 2 e 16 minutos no Tipo 3. Nos Tipos 4 e 5, o tempo foi reduzido para 

14 e 13 minutos, respectivamente. Uma possível explicação para o aumento no tempo 

de análise em relação ao equipamento 1 está na diferença de captura das imagens 

dos grãos, tendo em vista que no equipamento 2 os grãos precisam ser direcionados 

à calha de alinhamento para que seja capturado apenas 1 grão por vez em queda 

livre. Desta forma o equipamento 2 demonstrou eficiência intermediária na 

comparação entre os métodos. 

 

3.3 Índice de Acerto (IA%) amostral 
 

A Figura 2 apresenta uma matriz de cores, variando em intensidade de azul 

para representar altos índices de acerto e vermelho para baixos índices, oferecendo 

uma visualização clara do desempenho de cada método na análise amostras de arroz 

com composições variadas de defeitos de cor (Tipos). Em cada quadrante, são 

exibidos o índice de acerto percentual (IA%), seguido do desvio padrão, entre 

parênteses, e o tempo de análise, proporcionando uma análise combinada da eficácia 

e eficiência de cada método. 
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O Classificador Oficial apresentou consistentemente os maiores índices de 

acerto no experimento como um todo, com valores superiores a 94% para todas as 

proporções de defeitos. Para o Tipo 1, o índice de acerto foi de 94,83% (± 2,08), 

aumentando gradativamente para 96,83% (± 1,91) no Tipo 2 e atingindo o pico no Tipo 

4, com 97,80% (± 0,74). No Tipo 5, o índice manteve-se elevado em 97,70% (± 0,96). 

Tais resultados destacam a alta precisão do método de classificação oficial por um 

avalista treinado, que é capaz de capturar nuances de coloração e textura com 

extrema proximidade aos valores da amostra padrão, refletindo o papel da experiência 

e da percepção humana na avaliação de parâmetros complexos. Entretanto, o tempo 

de análise foi o maior entre os métodos avaliados, variando de 26 minutos para o Tipo 

1 a 55 minutos para o Tipo 4, o que compromete significativamente sua eficiência 

operacional, especialmente em contextos que exigem análise em larga escala ou 

tempo de resposta rápido. 

O Equipamento 1 apresentou índices de acerto levemente inferiores ao 

Classificador Oficial, mas ainda consistentes e adequados para aplicações industriais. 

Figura 3 — Índice de Acerto percentual, desvio padrão e tempo médio de análise das 
amostras de Tipo pelos tratamentos (Classificador Oficial, Equipamento 1 e Equipamento 2). 
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No Tipo 1, o índice foi de 87,27% (± 5,80), aumentando para 91,85% (± 3,03) no Tipo 

2 e estabilizando-se em torno de 91,79% (± 2,30) no Tipo 3. No Tipo 4, o desempenho 

foi ligeiramente superior, atingindo 94,78% (± 1,60), enquanto no Tipo 5 foi registrado 

o melhor índice do equipamento, com 95,41% (± 2,56). Em termos de eficiência, o 

Equipamento 1 demonstrou ser altamente competitivo, com tempos de análise 

extremamente baixos, variando entre 2 e 3 minutos para todos os tipos de amostra, o 

que o torna o método mais eficiente para aplicações industriais de alta produtividade. 

O Equipamento 2 apresentou os menores índices de acerto entre os métodos 

avaliados, evidenciando maior dificuldade em atingir proximidade aos valores da 

amostra padrão. No Tipo 1, o índice de acerto foi de 89,54% (± 7,01), mas caiu para 

87,86% (± 2,87) no Tipo 2 e 88,56% (± 4,41) no Tipo 3. Apesar de uma leve 

recuperação no Tipo 4 (91,25% ± 4,73) e Tipo 5 (92,61% ± 3,09), os valores 

mantiveram-se inferiores aos observados nos outros métodos, com diferenças 

estatísticas mais marcantes em relação à amostra padrão. Esses resultados indicam 

uma maior sensibilidade a parâmetros complexos ou heterogêneos, como os 

presentes em amostras com altos percentuais de defeitos. O tempo de análise do 

Equipamento 2 foi intermediário, variando de 13 a 16 minutos entre os diferentes tipos 

de amostra, indicando um equilíbrio razoável entre eficiência e precisão, mas ainda 

aquém do desempenho do Equipamento 1.  

De forma integrada, os resultados evidenciam diferenças marcantes entre os 

métodos avaliados em relação à precisão e eficiência. O Classificador Oficial 

apresentou elevada precisão, tornando-se a melhor opção em situações que exigem 

máxima confiabilidade nos resultados. No entanto, o tempo prolongado de análise 

restringe sua viabilidade em contextos de alta demanda, em que a eficiência 

operacional é fundamental. O Equipamento 1 destacou-se como o método mais 

equilibrado, oferecendo uma combinação vantajosa entre precisão satisfatória e 

tempos de análise extremamente reduzidos, configurando-se como a alternativa mais 

indicada para aplicações que priorizam rapidez e alta produtividade. Por sua vez, o 

Equipamento 2, embora tenha apresentado menor precisão em comparação aos 

demais, surge como uma solução intermediária, com tempos de análise moderados e 

desempenho adequado em amostras de menor complexidade. 

 

3.4 Indice de Acerto (IA%) por Defeito 
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 A Figura 3 apresenta uma matriz de cores, variando em intensidade de azul 

para representar altos índices de acerto e vermelho para baixos índices, oferecendo 

uma visualização clara do desempenho de cada método na identificação específica 

dos defeitos Mofado e Ardido, Amarelo, Rajado, Picados ou Manchados e Gessado 

presentes nas amostras utilizadas no experimento. Em cada quadrante, são exibidos 

o índice de acerto percentual (IA%), seguido do desvio padrão, entre parênteses, 

proporcionando uma análise da eficácia de cada método na identificação do defeito 

específico. 

 

 

O Classificador Oficial demonstrou o melhor desempenho no experimento, 

atingindo consistentemente os maiores índices de acerto (IA%) em todas as 

categorias de defeitos avaliadas. Na identificação do defeito "Mofado e Ardido", obteve 

um IA% de 95,64% (± 3,95), evidenciando alta precisão na identificação deste defeito. 

Para "Amarelo", o índice foi ainda mais elevado, alcançando 97,34% (± 2,37). Em 

"Rajado", o Classificador Oficial também apresentou alta eficácia, com IA% de 97,25% 

(± 1,78), destacando-se por sua consistência. Na categoria "Picados ou Manchados", 

Figura 4 — Índice de Acerto percentual e desvio padrão da identificação dos defeitos Mofado e 
Ardido, Amarelo, Rajado, Picados ou Manchados e Gessado pelos tratamentos (Classificador 
Oficial, Equipamento 1 e Equipamento 2). 
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o desempenho foi igualmente robusto, registrando IA% de 96,31% (± 3,78). Na análise 

de grãos "Gessados", o índice de acerto foi de 98,30% (± 1,37), o maior do 

experimento, reafirmando sua posição como o método mais preciso e consistente, 

assim como o observado na análise de médias, apesar dos piores resultados em 

eficiência, como o observado na análise de tempo. 

O Equipamento 1 apresentou um desempenho competitivo e equilibrado em 

relação ao Classificador Oficial em várias categorias de defeito. Na identificação de 

"Mofado e Ardido", alcançou IA% de 92,19% (± 8,79), demonstrando bom 

desempenho apesar de uma maior variabilidade em relação ao método humano. Para 

"Amarelo", o índice foi de 92,98% (± 4,87), mantendo-se próximo ao Classificador 

Oficial, mas com um desempenho inferior. Resultado semelhante ao observado no 

defeito "Rajado", em que o IA% foi de 92,50% (± 5,52). No defeito "Picados ou 

Manchados", o IA% foi de 93,80% (± 4,28), o maior resultado para este equipamento, 

evidenciando bom desempenho. Para "Gessado", o índice foi de 89,63% (± 5,44), 

representando o menor valor registrado para este equipamento, destacando 

diferenças na metodologia de análise para esta categoria de defeito.  

O Equipamento 2 apresentou os menores índices de acerto entre os métodos 

avaliados, com maior variabilidade nos resultados. Na categoria "Mofado e Ardido", 

obteve IA% de 83,91% (± 10,26), o menor valor registrado entre os métodos. Para 

"Amarelo", o índice foi de 89,33% (± 7,56), destacando dificuldades na identificação 

precisa dessa categoria. Em "Rajado", o IA% foi de 89,56% (± 7,35), refletindo 

limitações semelhantes. Na análise de "Picados ou Manchados", o desempenho 

melhorou ligeiramente, alcançando IA% de 92,47% (± 4,94), mas ainda abaixo dos 

demais métodos. Para "Gessado", o IA% foi de 94,54% (± 2,53), superando o 

desempenho do Equipamento 1 nessa categoria, mas permanecendo inferior ao 

Classificador Oficial. Desta forma, o equipamento 2 se consolida como a opção menos 

precisa, embora suficiente para aplicações em que a variabilidade seja aceitável e a 

agilidade seja priorizada. 

4. DISCUSSÃO  
 

Os dados gerais do experimento obtidos com relação à eficácia, tanto na 

comparação de médias quanto em relação ao índice de acerto, indicam o Classificador 

Oficial como referência em termos de precisão, não indicando diferenças estatísticas 
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significativas em relação à amostra controle (p>0,05), independente da proporção de 

defeitos presente na amostra, além de índices de acerto entre 94,63% e 97,80% e 

baixa variabilidade. Tal consistência reflete a experiência e a capacidade de 

julgamento humano na classificação de amostras de arroz de acordo com seu padrão 

oficial, o que traz consigo a problemática da dependência de mão de obra capacitada 

e abre espaço para futuros estudos sobre a variabilidade na análise entre diferentes 

analistas, tornando ainda mais nobre a missão de empresas que buscam replicar o 

potencial do cérebro humano, reduzindo a subjetividade e aumentando a 

padronização por meio de equipamentos de análise de imagens (ZAREIFOROUSH et 

al. 2015). Além disso, tais avanços podem facilitar pesquisas futuras na área de 

classificação de grãos, fornecer orientação para armazenamento e comércio de grãos 

e contribuir para aplicações de agricultura inteligente (BUTARDO e SREENIVASULU, 

2019; FAN et al., 2023). 

Em relação à eficiência do método humano, os tempos de análise, que 

variaram entre 26 e 55 minutos, indicam uma limitação em termos de agilidade, sendo 

indicado para cenários em que a precisão é essencial em detrimento do tempo, como 

na etapa de análise de produto acabado, na indústria de beneficiamento, e na 

Classificação Oficial que, no Brasil, é uma análise obrigatória realizada por um 

profissional experiente e habilitado pelo Ministério da Agricultura, conhecido como 

Classificador Oficial, assim como na análise de fiscalização pelos agentes do poder 

público, visando a proteção do consumidor final (BRASIL, 2009).  

Os equipamentos de análise de imagem, por outro lado, apresentam vantagens 

notáveis em termos de eficiência. O Equipamento 1 demonstrou ser o mais rápido 

entre os métodos avaliados, com tempos de análise entre 2 e 3 minutos por amostra, 

independentemente do nível de defeitos. Embora tenha apresentado índices de acerto 

amostral variando entre 87,27% e 95,41%, ligeiramente inferiores ao Classificador 

Oficial, especialmente em amostras de maior qualidade (Tipos 1 e 2), sua precisão foi 

suficiente para atender às exigências da maioria das aplicações industriais, 

principalmente quando falamos de recebimento de matéria-prima (arroz em casca) 

diretamente do produtor, tendo em vista que neste momento a análise envolve 

amostras potencialmente mais defeituosas do que após seu beneficiamento, além do 

controle de qualidade durante o processo de beneficiamento, que visa principalmente 

o ajuste das máquinas utilizadas no descasque e polimento do grão e é normalmente 

realizado por analistas treinados (ZAREIFOROUSH et al. 2015).  Com a inclusão de 
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equipamentos de análise de imagens tal controle pode ser considerado análise em 

tempo real, tendo em vista o tempo de análise de, no máximo, 3 minutos. Assim, o 

Equipamento 1 se apresenta como uma solução robusta às aplicações industriais que 

priorizam rapidez e alto volume de análise. 

O Equipamento 2 apresentou índices de acerto amostral inferiores e maior 

variabilidade, especialmente em amostras com menores percentuais de defeitos, 

como os Tipos 1 e 2. Apesar disso, o Equipamento 2 mostrou-se eficiente em termos 

de tempo, com análises realizadas entre 13 e 16 minutos, posicionando-se como uma 

alternativa viável para cenários que requerem equilíbrio entre precisão e eficiência, 

especialmente em lotes de menor complexidade ou menor exigência mercadológica. 

A partir da análise do índice de acerto amostral é possível inferir que, quando 

o percentual de defeitos na amostra é baixo, principalmente nos Tipos 1 e 2, pequenas 

discrepâncias absolutas entre o valor medido e o valor real geram diferenças 

proporcionais significativas, amplificando o impacto no índice de acerto. Por exemplo, 

em uma amostra com 1% de defeitos, um erro de 0,5% representa uma discrepância 

relativa de 50%, enquanto em uma amostra com 20% de defeitos, o mesmo erro 

equivale a apenas 2,5%. Essa sensibilidade exacerbada ocorre porque o índice de 

acerto é calculado como uma proporção relativa, tornando-se mais suscetível a erros 

menores em amostras menos defeituosas. Desta forma, verifica-se que o índice de 

acerto de todos os métodos foi gradativamente aumentando conforme a maior 

proporção de defeitos da amostra analisada, culminando nos maiores valores para 

todos os métodos nas amostras de Tipo 4 e 5. Essa relação evidencia a importância 

de calibração cuidadosa para os métodos automatizados, ao trabalhar com amostras 

de alta qualidade, em que até pequenos erros podem comprometer significativamente 

a avaliação e, no caso da expedição do produto acabado, gerar multas e lesar o 

consumidor. Desta forma, recomenda-se ajustes na calibração e criação de 

configurações específicas para cada matéria prima e etapa da cadeia de produção, 

ampliando seu potencial de uso. 

As diferenças observadas no desempenho entre os equipamentos podem ser 

explicadas, em parte, pelos distintos métodos de aquisição de imagem e pelos 

algoritmos de processamento utilizados por cada um, apesar de ambos utilizarem da 

metodologia de árvore de decisão na etapa de classificação. De acordo com Velesaca 

et al. (2021), sistemas baseados em visão computacional têm demonstrado grande 

potencial para superar as limitações do método humano, oferecendo alta precisão, 
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consistência e velocidade na análise de grãos. Esses sistemas utilizam técnicas 

avançadas de aprendizado de máquina e redes neurais convolucionais para identificar 

características como forma, cor e textura dos grãos, permitindo uma classificação 

precisa mesmo em cenários com alta variabilidade nas amostras. Além disso, a 

automação elimina fatores como fadiga e variabilidade individual, garantindo 

resultados mais uniformes em processos contínuos. 

Como podemos verificar na Figura 3, o Equipamento 1 realiza a captura das 

imagens dos grãos sobre uma esteira, resultando em imagens bidimensionais que, 

embora limitadas em perspectiva, apresentam maior estabilidade durante a captura, 

reduzindo a introdução de ruídos visuais. 

 

 

 

 

 

 

 

 

 

 

 

Em contraste, o Equipamento 2 captura os grãos durante a queda livre, obtendo 

três imagens de cada unidade por meio de um sistema de espelhos (Figura 4), 

permitindo a visualização de diferentes faces do grão. Para isto, é necessário um 

sistema que direciona os mesmos para a calha de alinhamento dos grãos, 

demandando um maior tempo para completar a análise. 

Esse método, teoricamente, oferece uma análise mais abrangente, mas 

também está associado a um processamento mais complexo, exigindo maior tempo 

de análise, e apresentando maior suscetibilidade a ruídos durante a captura das 

imagens, devido à dinâmica da queda. Esses fatores ajudam a explicar por que o 

desempenho do Equipamento 2 foi, em algumas situações, inferior ao do 

Equipamento 1, que, mesmo com uma abordagem mais simples, conseguiu entregar 

resultados mais consistentes e estáveis. 

F

Figura 5 — Captura da imagem de grãos de arroz 
em esteira pelo equipamento 1. 
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Considerando as diferentes etapas de controle de qualidade durante a cadeia 

de produção do arroz, a introdução de equipamentos de análise de imagem 

representa uma oportunidade estratégica, especialmente em contextos que exigem 

maior agilidade. Durante o período de safra, quando grandes volumes de arroz 

chegam simultaneamente para classificação, a rapidez na avaliação torna-se crucial 

para que o produto, ainda com sujidades e teor de umidade elevado, seja direcionado 

de forma eficiente para secagem, limpeza ou armazenamento adequado. Nesta etapa, 

os equipamentos automatizados podem reduzir significativamente o tempo de análise 

e aumentar a capacidade de processamento de amostras, evitando gargalos logísticos 

que poderiam comprometer a qualidade final do produto (AUKKAPINYO et al., 2020; 

VELESACA et al., 2021). 

No entanto, é importante destacar que, embora os métodos automatizados 

apresentem vantagens significativas em termos de agilidade e escalabilidade para 

aplicações industriais, eles ainda enfrentam desafios em situações em que a 

interpretação subjetiva ou o julgamento contextual são necessários. O estudo de 

Velesaca et al. (2021) também aponta que a integração de técnicas tradicionais, como 

extração de características morfológicas, com modelos modernos de aprendizado 

profundo pode melhorar ainda mais a precisão e a confiabilidade desses sistemas 

automatizados. Assim, o desenvolvimento contínuo de tecnologias que busquem 

replicar ou até superar a capacidade do cérebro humano na avaliação de grãos é 

essencial para atender às demandas crescentes da indústria, especialmente em 

cenários em que tanto a precisão quanto a eficiência são cruciais. 

Figura 6 — Captura da imagem de grãos de arroz em queda livre pelo equipamento 2. 
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Além do recebimento, o controle de qualidade prossegue nas etapas 

subsequentes de beneficiamento dentro da indústria. Nesse contexto, os 

equipamentos de análise de imagem têm grande potencial de aplicação para realizar 

o monitoramento contínuo e em tempo real dos índices de qualidade do arroz. Essa 

capacidade não apenas permite ajustes rápidos nos parâmetros operacionais das 

máquinas envolvidas no processo, mas também oferece informações consistentes 

para embasar decisões técnicas que impactam diretamente no rendimento industrial 

e na qualidade do produto final. 

O objetivo da análise de qualidade do arroz, ou seja, sua classificação, é ser 

imparcial e justa, visando indicar a qualidade real do produto, auxiliar nas transações 

comerciais, no monitoramento e na melhoria do controle de qualidade durante sua 

cadeia de produção, porém, quando falamos de subestimações ou superestimações 

de defeitos na classificação, o cenário ideal para a indústria é o de superestimação, 

tanto nas etapas de aquisição de matéria-prima, quanto na expedição do produto 

acabado. Na aquisição de matéria-prima, essa abordagem garante a compra e 

internalização de um produto com qualidade superior àquela indicada pela 

classificação. Já na expedição do produto acabado, a superestimação dos defeitos 

assegura que o produto saia da indústria com todos os seus parâmetros de qualidade 

dentro dos limites exigidos na legislação (BRASIL, 2009), fazendo com que o 

consumidor receba um produto cuja qualidade excede ou corresponde ao descrito na 

rotulagem e, desta forma, evita possíveis problemas relacionados à insatisfação e 

multas, no caso de fiscalização. Tal cenário não foi verificado no experimento, em que 

a análise de média do total de defeitos indicou a tendência geral de subestimação 

pelos equipamentos de análise de imagens, evidenciando diferenças estatísticas 

significativas em relação à amostra controle para todos os tipos (p<0,05), com 

exceção do equipamento 2, nas amostras de Tipo 4. 

No caso do defeito gessado, o Padrão Oficial de Classificação (POC) do arroz 

define como “o grão descascado e polido, inteiro ou quebrado, que apresentar 

coloração totalmente opaca e semelhante ao gesso”, exigindo que o grão seja 100% 

gessado, sem áreas translúcidas (Brasil,2009). Os equipamentos de análise de 

imagens, ao contrário da avaliação visual humana, possuem a capacidade de 

identificar o percentual de área gessada em cada grão, o que se apresenta como uma 

funcionalidade relevante para a indústria. No entanto, essa capacidade pode explicar 

a subestimação observada na maioria das amostras analisadas pelos equipamentos, 
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particularmente pelo Equipamento 1, em que diferenças significativas em relação à 

amostra padrão foram identificadas (p<0,05), além do menor índice de acerto para 

este defeito (89,63% ± 5,44). De acordo com Kozlowski et al. (2024), a utilização de 

redes neurais profundas personalizadas e imagens capturadas de ambos os lados 

dos grãos – o que talvez justifique o maior índice de acerto do Equipamento 2 na 

identificação dos grãos gessados – melhora significativamente a precisão na 

classificação de defeitos e variedades, alcançando 94% de acurácia. Essa abordagem 

revela detalhes morfológicos e estruturais que podem passar despercebidos pela 

análise visual humana ou por técnicas convencionais. 

Embora o olho humano demonstre alta precisão na identificação de defeitos, 

as câmeras de alta resolução dos equipamentos de análise de imagens permitiram 

revelar que alguns grãos aparentemente classificados como totalmente gessados na 

amostra padrão apresentavam, na verdade, pequenas áreas translúcidas. Esse nível 

de detalhe capturado pelos equipamentos pode ter levado à subestimação do defeito 

gessado, sugerindo uma diferença na interpretação entre métodos automatizados e 

humano. 

Do ponto de vista industrial, a análise do grão parcialmente gessado é um fator 

de extrema relevância, pois grãos com áreas gessadas, mesmo que incompletas, são 

mais suscetíveis a danos mecânicos durante o beneficiamento, como nos processos 

de transporte por elevadores, descasque e polimento (COOPER et al., 2008; ZHOU 

et al., 2015). Tais danos podem comprometer o rendimento final do arroz beneficiado, 

afetando diretamente a produtividade e a qualidade do produto (WEBB, 1985; 

FITZGERALD et al., 2009). 

Portanto, apesar das diferenças em relação à amostra padrão, os 

equipamentos de análise de imagens oferecem uma vantagem importante no controle 

de qualidade industrial, ao identificar com maior precisão o percentual de área 

gessada. Essa funcionalidade permite uma avaliação mais detalhada, que pode 

contribuir para otimizar os processos de beneficiamento e melhorar o desempenho 

industrial. 

Uma das possíveis explicações para as diferenças no índice de acerto dos 

equipamentos em relação ao Classificador Oficial reside na aplicação da escala de 

gravidade dos defeitos (BRASIL, 2009). No caso da presença de mais de um defeito 

no mesmo grão, os equipamentos podem não ter identificado corretamente o defeito 

mais grave, priorizando características de menor relevância na escala de gravidade. 
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Essa possível limitação no algoritmo de decisão pode ter comprometido a precisão 

final dos resultados em comparação ao método humano, no qual a capacidade de 

julgamento subjetivo e experiência do classificador permitem uma hierarquização mais 

precisa dos defeitos observados. Tal fator é importantíssimo quando falamos do arroz 

beneficiado e polido destinado à alimentação humana, tendo em vista que a 

metodologia utilizada nas análises de fiscalização do MAPA segue estritamente a 

metodologia descrita no POC do arroz (BRASIL, 2009). 

Ambos os equipamentos oferecem a possibilidade de revisão das análises 

realizadas, permitindo ao operador corrigir eventuais interpretações incorretas antes 

da emissão do relatório final. Embora essa funcionalidade não tenha sido utilizada no 

presente experimento, ela representa um importante recurso para potencializar o 

índice de acerto dos equipamentos, além de reforçar a importância do treinamento 

adequado dos profissionais responsáveis pela operação dos mesmos. Ao combinar a 

velocidade inerente ao processamento automatizado com ajustes pontuais realizados 

por um operador qualificado, é possível obter resultados não apenas mais rápidos, 

mas possivelmente mais precisos. Desta forma, a análise integrada dos métodos 

sugere que o uso exclusivo de um único método pode não ser ideal para atender à 

diversidade de demandas no controle de qualidade do arroz beneficiado. Uma 

abordagem híbrida, combinando a alta precisão do Classificador Oficial com a 

eficiência operacional dos equipamentos automatizados, emerge como uma solução 

promissora. Por exemplo, os equipamentos poderiam ser utilizados como uma 

ferramenta de triagem inicial, enquanto o Classificador Oficial seria reservado para 

amostras críticas ou discrepantes, maximizando a produtividade sem comprometer a 

qualidade. 

Aukkapinyo et al. (2019) demonstraram que redes neurais convolucionais 

personalizadas podem alcançar alta precisão na classificação de grãos, mas que a 

calibração adequada dos modelos e a qualidade das imagens capturadas são fatores 

críticos para o sucesso da aplicação. Esses avanços tecnológicos têm o potencial de 

minimizar as subestimações observadas em experimentos com equipamentos 

automatizados, como mencionado no presente estudo. No entanto, é essencial 

considerar que a superestimação dos defeitos, embora possa ser vista como uma 

estratégia conservadora para proteger a qualidade do produto final, pode impactar 

negativamente a eficiência operacional e os custos industriais. 
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Por outro lado, estudos como o de Gadotti et al. (2024) destacam que a 

separação mecanizada baseada em componentes de cor (escalas RGB e cinza) já se 

mostrou viável para identificar defeitos específicos no arroz, como grãos gessados ou 

manchados. Isso reforça a importância de integrar diferentes abordagens tecnológicas 

para melhorar a precisão das classificações automatizadas. Assim, o desenvolvimento 

contínuo de sistemas híbridos que combinem visão computacional com técnicas 

tradicionais pode ser uma solução promissora para equilibrar precisão e eficiência na 

classificação industrial do arroz. 

Em síntese, os resultados deste experimento destacam a importância de 

alinhar as características dos métodos de análise às necessidades específicas de 

cada etapa. O uso de equipamentos automatizados representa um avanço 

significativo em eficiência, mas ainda requer aprimoramentos para alcançar a precisão 

do método humano. Estratégias de calibração contínua, integração de metodologias 

e avaliação econômica são fundamentais para otimizar o desempenho dos sistemas 

de análise de qualidade do arroz beneficiado, garantindo que eles atendam às 

crescentes demandas do mercado de forma eficaz e eficiente (VELESACA et al., 

2021). 

 

5. CONCLUSÃO 
 

O estudo evidenciou que o Classificador Oficial apresentou alta precisão, com 

índices de acerto superiores aos demais métodos, mas baixa eficiência devido ao 

longo tempo de análise (26–55 min), sendo ideal para análises que exigem máxima 

confiabilidade em detrimento do tempo. O Equipamento 1 destacou-se pela rapidez 

(2–3 min) e boa precisão, tornando-se a melhor opção para análises industriais em 

larga escala. Já o Equipamento 2 mostrou desempenho intermediário, com tempo 

moderado (13–16 min) e menor precisão, mas adequado para cenários que equilibram 

agilidade e amostras de menor complexidade. A integração entre a precisão do 

método humano e a eficiência dos equipamentos automatizados surge como uma 

solução promissora para otimizar o controle de qualidade do arroz beneficiado. 
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CAPÍTULO III 
 

 

 

 

 

 

VIABILIDADE FINANCEIRA DE UTILIZAÇÃO DA ANÁLISE 

DE IMAGENS NA CLASSIFICAÇÃO DE GRÃOS DE ARROZ 
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RESUMO 
 

O arroz é um dos alimentos mais consumidos globalmente e sua qualidade é 

determinante para o valor comercial do produto. Tradicionalmente, a análise de 

qualidade é realizada manualmente por classificadores humanos, que avaliam 

características como integridade, defeitos e dimensões do grão. Embora eficaz, esse 

processo é demorado e apresenta variabilidade, especialmente em contextos de 

produção em larga escala. Com o avanço das tecnologias de análise de imagem, 

surge uma alternativa promissora para substituir ou complementar a classificação 

humana, utilizando algoritmos com potencial de maior rapidez e precisão. Este estudo 

avalia a aplicação do método de custeio por absorção integral para calcular os custos 

associados à classificação de grãos de arroz em dois cenários: (1) método tradicional: 

classificação por analistas treinados, e (2) método automatizado: equipamento de 

análise de imagens. A pesquisa aborda o impacto dessa tecnologia no tempo de 

análise e custo por amostra, com base em dados coletados em um estudo de caso 

em uma indústria de beneficiamento de arroz. A introdução do equipamento de análise 

de imagem reduz significativamente os custos por amostra nos laboratórios de 

recebimento e controle de qualidade interno e elimina a distinção entre análises 

simples e completas, tornando todas as análises completas. No laboratório de 

recebimento, o custo por amostra cai de R$ 36,39 (análise simples) e R$ 81,88 

(análise completa) para R$ 17,66, enquanto no laboratório interno, os custos passam 

de R$ 14,59 (análise simples) e R$ 85,08 (análise completa) para R$ 4,55. Essa 

redução, aliada à uniformização e padronização das análises, demonstra o impacto 

positivo da automação em cenários industriais, otimizando recursos, aumentando a 

produtividade e eficiência nos processos de classificação de grãos. 

 

Palavras-chave: Oryza sativa L., controle de qualidade, automação industrial, 

otimização de custos.  
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ABSTRACT 
 

Rice is one of the most widely consumed foods globally, and its quality is critical to the 

product's commercial value. Traditionally, quality analysis has been manually 

performed by human classifiers, who assess characteristics such as grain integrity, 

defects, and dimensions. Although effective, this process is time-consuming and 

variable, particularly in large-scale production contexts. Advances in image analysis 

technologies have introduced a promising alternative to replace or complement human 

classification, using algorithms with the potential for greater speed and precision. This 

study evaluates the application of the full absorption costing method to calculate the 

costs associated with rice grain classification in two scenarios: (1) traditional method: 

classification by trained analysts, and (2) automated method: equipment-based image 

analysis. The research examines the impact of this technology on analysis time and 

cost per sample, based on data collected from a case study in a rice processing 

industry. The introduction of image analysis equipment significantly reduces the cost 

per sample in both receiving and internal quality control laboratories while eliminating 

the distinction between simple and complete analyses, making all analyses complete. 

In the receiving laboratory, the cost per sample drops from R$ 36.39 (simple analysis) 

and R$ 81.88 (complete analysis) to R$ 17.66. In the internal laboratory, costs 

decrease from R$ 14.59 (simple analysis) and R$ 85.08 (complete analysis) to R$ 

4.55. This reduction, combined with the standardization and uniformity of analyses, 

highlights the positive impact of automation in industrial settings by optimizing 

resources, increasing productivity, and improving efficiency in grain classification 

processes. 

 

Keywords: Oryza sativa L., quality control, industrial automation, cost optimization. 
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1. INTRODUÇÃO  
 

O avanço das tecnologias de automação tem impactado significativamente a 

agricultura, especialmente nas etapas de pós-colheita e beneficiamento, em que a 

precisão e a eficiência na classificação dos grãos são determinantes para a 

rentabilidade e competitividade do setor (SILVA; CAVICHIOLI, 2023). O arroz, por ser 

um dos principais grãos cultivados e consumidos globalmente, possui um mercado 

exigente que demanda padrões rigorosos de qualidade física, diretamente 

relacionados à Classe do grão (dimensões) e ao Tipo (presença de defeitos de cor) 

(BORGES; MAINARDI; VELASQUEZ, 2013). Tradicionalmente, a análise e 

classificação desses grãos são realizadas por classificadores humanos, cuja expertise 

garante um alto nível de precisão, mas que dependem de processos manuais 

intensivos e de um tempo considerável para avaliação de grandes volumes, além de 

estarem sujeitos à subjetividade presente na análise humana. 

Tecnologias de análise de imagem e aprendizado de máquina têm surgido 

como alternativas viáveis para suprir as demandas de velocidade e consistência nos 

processos de avaliação. A introdução de equipamentos que utilizam técnicas de 

segmentação de imagem e algoritmos de aprendizado profundo, como redes neurais 

e árvores de decisão, permite uma análise automatizada que busca alcançar os 

mesmos níveis de precisão que os métodos tradicionais, com menor variabilidade e 

em menos tempo (PATRÍCIO; RIEDER, 2018). No entanto, a implementação desses 

equipamentos representa um custo significativo, que precisa ser justificado pela 

eficácia e eficiência dos métodos e por uma análise detalhada da viabilidade 

financeira. Assim, para justificar a adoção de tais tecnologias, é necessário avaliar se 

a economia de tempo e o possível aumento da precisão compensam o investimento 

inicial, considerando as condições de mercado e o retorno sobre o investimento. 

Este terceiro capítulo, portanto, se propõe a determinar o custo por análise da 

análise humana, comumente realizada nas empresas (cenário atual), e comparar com 

a análise realizada pelo equipamento (perspectiva para o futuro). Ao abordar os custos 

diretos e indiretos de cada método, esta análise considera tanto os aspectos 

operacionais quanto os econômicos, incluindo o impacto na eficiência do processo de 

beneficiamento e a capacidade de atender às normas de qualidade da indústria. Para 

alcançar este objetivo, foi utilizada a metodologia de custeio por absorção integral, 

que permitirá uma alocação precisa dos custos, oferecendo subsídios para decisões 
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fundamentadas quanto ao investimento em tecnologia para a classificação de grãos 

de arroz em escala industrial (MARTINS; ROCHA, 2010). 

 

2. MATERIAL E MÉTODOS 
 

2.1 Delineamento do Estudo 

 

Um estudo de caso foi realizado em uma indústria de beneficiamento de arroz 

com o objetivo de compreender a política de controle de qualidade e coletar 

informações que serviram de base para a aplicação da metodologia proposta. Para 

isso, foram entrevistados diversos colaboradores da indústria, incluindo 

classificadores que atuam diretamente nos laboratórios de recebimento de matéria-

prima e controle de qualidade interno, além de um colaborador do setor de Recursos 

Humanos e a Gerente Industrial. Essas entrevistas forneceram dados sobre a política 

de controle de qualidade da empresa e os custos envolvidos no processo. 

Com base nessas informações, os parâmetros operacionais foram 

determinados e o estudo foi delineado com o objetivo de aferir os custos associados 

a dois tipos de análise da qualidade física do arroz: a análise simples, que avalia o 

percentual de matérias estranhas, impurezas, grãos inteiros e quebrados; e a análise 

completa, que inclui, além desses parâmetros, a identificação de defeitos de cor 

presentes na amostra. A pesquisa comparou o cenário atual de controle de qualidade 

da indústria, no qual as análises são realizadas por classificadores treinados, com um 

cenário simulado de adoção do equipamento de análise de imagem. 

A comparação abrangeu os parâmetros de classificação, a frequência de 

análises, as etapas onde ocorrem, os custos e o tempo envolvidos no processo. Além 

disso, foram considerados tanto o atendimento à demanda atual quanto o cenário de 

máximo potencial de análises. A determinação do custo por amostra utilizou o tempo 

como direcionador de custos, e a comparação foi fundamentada em dados de 

desempenho, como eficácia, eficiência e custo operacional de ambos os métodos. 

Essas informações foram complementadas a partir dos experimentos realizados nos 

capítulos anteriores e pelos custos associados à aquisição e manutenção dos 

equipamentos de análise de imagem. 
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2.2 Coleta e Classificação dos Dados 

 

Foram considerados dados relacionados a: 

● Custo de aquisição do equipamento: Valor de mercado do equipamento 

utilizado no estudo; 

● Custo de manutenção e depreciação do equipamento: Incluindo custos 

médios de manutenção preventiva e corretiva, calculados em base 

anual; 

● Custo de mão de obra humana: Valor médio de contratação de um 

classificador oficial com base nos parâmetros de mercado e convenções 

coletivas, acrescido dos encargos trabalhistas vigentes; 

● Custo de tempo de análise e produtividade: Tempo médio de análise e 

produtividade de cada método (equipamento e humano), incluindo o 

número médio de amostras classificadas por unidade de tempo; e 

● Eficiência e eficácia: Dados de eficácia (acurácia na classificação) e 

eficiência (tempo de análise por amostra) foram obtidos nos 

experimentos realizados nos capítulos anteriores, considerando as 

variáveis Classe (dimensões do grão) e Tipo (defeitos visuais). 

 

2.3 Metodologia de Custeio 

 

A metodologia de custeio por absorção integral foi utilizada neste estudo para 

permitir uma visão completa dos custos de produção, considerando todos os 

elementos que contribuem para o processo. Este método é essencial em contextos 

que demandam a recuperação integral dos custos para a formação de preços e 

análise de rentabilidade (CREPALDI, 2011; MARTINS, 2010), em que todos os custos, 

diretos e indiretos, serão alocados a cada método de classificação. O custeio por 

absorção integral permite considerar, além dos custos diretos (mão de obra e 

aquisição dos equipamentos), os custos indiretos, como energia elétrica, manutenção 

e outros insumos utilizados na análise e na operação dos equipamentos. O método 

foi aplicado conforme as seguintes etapas: 

1. Levantamento dos custos fixos e variáveis: Os custos diretos e indiretos 

para cada método de análise foram identificados e classificados como 



109 
 

fixos ou variáveis, com base nos princípios da contabilidade de custos 

industriais; 

2. Alocação dos custos indiretos: foi utilizado um critério de rateio 

proporcional ao tempo de operação e ao uso dos recursos em cada 

método para distribuir os custos indiretos entre os métodos de análise; 

e 

3. Cálculo do custo por amostra analisada: Com os custos totais para cada 

método, foi determinado o custo médio por amostra de grão analisada, 

considerando a produtividade e o tempo de operação de cada método. 

 

2.4 Análise dos Custos  

 

Para a realização dos cálculos, foram definidos os seguintes parâmetros: 

 

 Horizonte de Planejamento (HP): 15 anos, com base na depreciação e 

vida útil estimada dos equipamentos. 

 Jornada de trabalho: 288 dias úteis por ano, desconsiderando finais de 

semana e feriados, sendo 24 dias por mês e 8 horas diárias de trabalho. 

 Direcionador de custos: o tempo foi adotado como direcionador, já que 

as análises de classificação dos grãos são contabilizadas em minutos. 

 Ajustes de tempo para análises no recebimento: acrescentaram-se 10 

minutos ao tempo das análises realizadas para o cenário sem adoção 

do equipamento, e 20 minutos com o equipamento, para contemplar as 

etapas de preparação da amostra, que incluem coleta das amostras no 

caminhão, homogeneização, quarteamento, obtenção das vias de 

amostra, passagem na máquina de prova e pesagem antes do início da 

análise. 

 Ajustes de tempo para análises no laboratório interno: adicionaram-se 3 

minutos ao tempo das análises, uma vez que o preparo se limita à busca 

das amostras, homogeneização, quarteamento e pesagem antes de 

iniciar a análise manual ou automatizada. 
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 O tempo de análise descrito no estudo de caso é referente à 

classificação de amostras de 100 gramas, tanto em análises simples 

quanto completas. 

 

O levantamento dos custos foi organizado por laboratório (recebimento de 

matéria-prima e controle de qualidade interno) e cenário (com e sem o Equipamento 

1). Já para a determinação do custo por amostra foram considerados três cenários: 

(1) Classificador – Demanda Atual, que reflete a realidade do estudo de caso, com 

dois classificadores treinados atendendo à demanda industrial; (2) Classificador – 

Capacidade Máxima, que explora o máximo aproveitamento do tempo ocioso dos 

classificadores, aumentando a eficiência operacional; e (3) Equipamento 1, no qual 

um dos classificadores é substituído pelo equipamento de análise de imagens. 

 

2.5 Componentes, funcionamento e metodologia de análise do equipamento de 

análise de imagem 

 

O equipamento é composto essencialmente por uma unidade principal 

contendo uma tremonha na parte superior, por onde se introduz a amostra de grãos, 

uma correia transportadora de cor azul, uma câmera digital de alta resolução e uma 

gaveta frontal. Também conta com mouse, teclado e monitor, com os quais se faz a 

interação pelo usuário via interface do software.  

Para iniciar a análise, coloca-se a amostra na abertura acima da unidade 

principal e, via interface do software, dá-se o comando de início. Então o equipamento 

começa a vibrar, resultando na passagem dos grãos pela tremonha e a queda dos 

mesmos na correia transportadora, sendo a captura das imagens feita por uma 

câmera digital interna com sistema de iluminação integrada ao equipamento durante 

a passagem dos grãos, finalizando com sua queda na gaveta localizada no final da 

correia. 

 

 O procedimento de análise funciona da seguinte maneira:  

 

1. Captura de imagens de alta resolução;  

2. Pré-processamento; 
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3. Segmentação dos objetos de interesse na imagem (isola-se os grãos de arroz 

do fundo da imagem); 

4. Identificação e análise dos parâmetros, com auxílio de algoritmos de 

processamento, visando a obtenção de características de interesse como, por 

exemplo, dimensões (comprimento e largura), formato, cor e defeitos 

superficiais; 

5. Classificação, a partir da combinação lógica das informações adquiridas.  

 

3. RESULTADOS E DISCUSSÃO 
 

3.1 Tempo de Análise 
 

 As análises de recebimento de matéria-prima e controle de qualidade no 

beneficiamento envolvem a obtenção de parâmetros de interesse e possuem 

particularidades importantes. No recebimento, as análises subsidiam as transações 

comerciais e a tomada de decisão em relação ao destino e uso dos lotes de grãos 

adquiridos. Essa etapa é crítica porque um recebimento eficaz e decisões rápidas 

permitem que o produto vindo do campo, frequentemente com sujidades e elevado 

teor de umidade, seja recebido e direcionado de forma a evitar sua deterioração e 

perda de qualidade (EIFERT et al., 2021). Já no controle de qualidade interno, as 

análises têm como objetivo o monitoramento dos parâmetros de interesse para a 

regulagem de máquinas e para o empacotamento do produto acabado, garantindo 

que os parâmetros de qualidade estejam de acordo com os limites estabelecidos pela 

legislação vigente (BRASIL, 2009). 

O nível de detalhamento, ou seja, os parâmetros analisados em cada etapa, 

varia de acordo com a política de qualidade de cada indústria. No presente estudo de 

caso, foi relatado pelo colaborador, envolvido diretamente na área de classificação, 

que o controle de qualidade envolve “análises simples” e “análises completas”, em 

ambos os laboratórios de recebimento de matéria prima e controle de qualidade 

interno, descritas no item 2.1 deste capítulo. De acordo com tal relato, o tempo médio 

de análise simples no laboratório de recebimento dura 20 minutos, sendo 10 minutos 

para a obtenção e preparo da amostra e 10 minutos de análise. A análise simples tem 

como objetivo a precificação e de aprovar ou não o recebimento de determinada 
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carga, sendo fundamental para assegurar uma transação comercial justa e para 

determinar a viabilidade econômica da atividade. Já a análise completa, que dura 45 

minutos incluindo os 10 minutos de obtenção e preparo de amostra, visa a tomada de 

decisão em relação ao uso e destino da carga aceita, fornecendo informações 

detalhadas para o melhor aproveitamento da matéria-prima. Já no laboratório interno, 

a análise simples é realizada a partir de amostras coletadas nas máquinas de 

beneficiamento do arroz como, por exemplo, as máquinas de descasque, brunição e 

polimento, visando a regulagem adequada para o maior aproveitamento do lote 

beneficiado. Tal análise simples tem tempo médio de 6 minutos, enquanto a análise 

completa, que visa observar também o nível de qualidade do produto final, leva em 

média 35 minutos, em ambos os casos contemplando um tempo fixo de 3 minutos 

para a coleta e o preparo das amostras. 

No cenário de introdução dos equipamentos de análise de imagem, o tempo de 

análise é reduzido de forma expressiva, proporcionando ganhos significativos em 

eficiência e rendimento. Um dos principais avanços trazidos por essa tecnologia é a 

eliminação da distinção entre análises simples e completas, uma vez que o 

equipamento entrega todos os parâmetros de interesse em um único processo, 

independentemente do nível de complexidade da amostra. No laboratório de 

recebimento, o tempo médio de análise, que antes variava de 20 a 45 minutos 

dependendo da complexidade, é reduzido para apenas 23 minutos, contemplando 20 

minutos para o preparo da amostra, mas com apenas 3 minutos destinados à análise 

propriamente dita. De maneira similar, no laboratório interno, todas as análises 

passam a ser realizadas em 6 minutos, contemplando integralmente todos os 

parâmetros. Essa uniformização não apenas otimiza os processos, mas também 

possibilita que o controle de qualidade seja realizado de forma padronizada e em 

quase tempo real, promovendo maior consistência nos resultados e agilidade na 

tomada de decisões. 

O impacto dessa economia de tempo no laboratório interno é especialmente 

significativo, considerando que este setor é responsável por realizar ajustes finos nos 

equipamentos de beneficiamento e monitorar todos os parâmetros que envolvem a 

composição do produto final. O controle de qualidade em tempo real auxilia na 

regulagem constante das máquinas, permitindo que o processo seja ajustado de 

forma mais dinâmica e precisa para garantir que o produto final apresente a maior 

qualidade possível. Esse controle aprimorado no laboratório interno possibilita ainda 
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maior flexibilidade para atender diferentes mercados e padrões de qualidade. Por 

exemplo, lotes com características específicas podem ser ajustados para atender a 

demandas de diferentes marcas comerciais, sempre respeitando os parâmetros 

legais. Isso permite que a indústria obtenha um maior retorno financeiro, uma vez que 

reduz as perdas e otimiza o uso da matéria-prima adquirida. Assim, a integração dos 

equipamentos de análise de imagem no laboratório interno aumenta a eficiência 

operacional e potencializa o controle da qualidade, resultando em um produto final 

que maximiza o valor agregado e a competitividade no mercado. 

 

3.2 Custos Totais 
 

Com base no custo total projetado para um horizonte de planejamento de 15 

anos, os valores foram desmembrados em custos anuais e, subsequentemente, em 

custos diários. A escolha de utilizar o custo diário como referência baseia-se no fato 

de que todas as métricas e dados coletados no estudo de caso foram apresentados 

em termos diários. Com o custo diário determinado, foi possível calcular o custo por 

minuto, que, por sua vez, permitiu a obtenção do custo por amostra de forma alinhada 

às referências operacionais da indústria estudada. 

 
3.2.1 Laboratório de Recebimento  

 

No Laboratório de Recebimento, para o cenário sem o equipamento, o custo 

total projetado para 15 anos é de R$ 2.869.242,25, com uma média anual de R$ 

191.282,82 e um custo diário de R$ 664,18 (Tabela 1). Observa-se que a maior parte 

dos custos está concentrada no salário dos dois classificadores que atuam no 

laboratório, representando 92,38% do total, o equivalente a R$ 2.650.524,45 ao longo 

de 15 anos. Outros itens com relevância significativa incluem o consumo de energia 

elétrica, que corresponde a 3,90% do custo total, e os consumíveis, como sacos 

plásticos das vias de amostra e saquinhos plásticos de armazenamento de amostra 

analisada, que juntos representam cerca de 1,47% dos custos.  

Vale destacar que o custo de energia elétrica foi estimado com base no 

consumo de um laboratório de classificação de grãos com estrutura equivalente à do 

laboratório analisado no estudo de caso. Já no cenário com o equipamento, o 
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consumo de energia foi calculado considerando o consumo específico do próprio 

equipamento, fornecendo uma estimativa precisa e alinhada às condições reais de  

operação. 

 

Tabela 6 — Custos anuais e diários do laboratório de recebimento, considerando o cenário 
atual sem o Equipamento 1. 

ITEM Valor Quant. Valor anual 
Valor 
diário 

% dos 
custos 

Calador  R$ 1.119,00  1  R$ 1.119,00   R$ 3,89  0,58% 
Homogeneizador  R$ 3.670,00  1  R$ 244,67   R$ 0,85  0,13% 
Quarteador  R$ 1.500,00  1  R$ 100,00   R$ 0,35  0,05% 
Balança  R$ 2.790,00  1  R$ 279,00   R$ 0,97  0,15% 
Peneiras  R$ 230,00  2  R$ 46,00   R$ 0,16  0,02% 
Máquina de Prova  R$ 22.000,00  1  R$ 1.466,67   R$ 5,09  0,77% 
Pinça  R$ 30,00  1  R$ 2,00   R$ 0,01  0,00% 
Saco Plástico  R$ 0,23  3  R$ 2.384,64   R$ 8,28  1,25% 
Saquinho Plástico  R$ 0,12  1  R$ 414,72   R$ 1,44  0,22% 
Seladora  R$ 90,00  1  R$ 9,00   R$ 0,03  0,00% 
Prancheta  R$ 17,00  1  R$ 1,13   R$ 0,00  0,00% 
Caneta  R$ 0,78  1  R$ 4,68   R$ 0,02  0,00% 
Laudo  R$ 0,12  1  R$ 414,72   R$ 1,44  0,22% 
Energia Elétrica  R$ 2,16  por análise  R$ 7.464,96   R$ 25,92  3,90% 
Manutenção  R$ 240,00  -  R$ 630,00   R$ 2,19  0,33% 
Classificador  R$ 5.396,93  2  R$ 176.701,63   R$ 613,55  92,38% 
TOTAL - -  R$ 191.282,82   R$ 664,18  100,00% 

 

Para o cenário de introdução do equipamento de análise de imagens, o custo 

total projetado para o mesmo período é reduzido para R$ 1.602.278,83, com uma 

média anual de R$ 106.818,59 e um custo diário de R$ 370,90. Nesse caso, o 

equipamento 1 representa 8,39% do custo total, enquanto o salário de um 

classificador, responsável por operar o equipamento, é reduzido para 82,71%, 

totalizando R$ 1.325.262,23 ao longo do período. A economia de energia elétrica, 

refletida no custo ajustado por análise, e a maior eficiência proporcionada pelo 

equipamento, também contribuem para a redução significativa dos custos gerais. 
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Tabela 7 — Custos anuais e diários do laboratório de recebimento, considerando o cenário 
futuro com o Equipamento 1. 

ITEM Valor Quant. Valor anual 
Valor 
diário 

% dos 
custos 

Calador  R$ 1.119,00  1  R$ 1.119,00   R$ 3,89  1,05% 
Homogeneizador  R$ 3.670,00  1  R$ 244,67   R$ 0,85  0,23% 
Quarteador  R$ 1.500,00  1  R$ 100,00   R$ 0,35  0,09% 
Balança  R$ 2.790,00  1  R$ 279,00   R$ 0,97  0,26% 
Peneiras  R$ 230,00  2  R$ 46,00   R$ 0,16  0,04% 
Máquina de Prova  R$ 22.000,00  1  R$ 1.466,67   R$ 5,09  1,37% 
Saco Plástico  R$ 0,23  3  R$ 4.173,12   R$ 14,49  3,91% 
Seladora  R$ 90,00  1  R$ 9,00   R$ 0,03  0,01% 
Energia Elétrica  R$ 0,09  por análise  R$ 544,32   R$ 1,89  0,51% 
Equipamento 1  R$ 134.400,00  1  R$ 8.960,00   R$ 31,11  8,39% 
Manutenção  R$ 240,00  -  R$ 1.526,00   R$ 5,30  1,43% 
Classificador  R$ 5.396,93  1  R$ 88.350,82   R$ 306,77  82,71% 

TOTAL - -  R$ 106.818,59   R$ 370,90  100,00% 

 

A principal diferença entre os dois cenários é a diminuição dos custos com mão 

de obra via substituição de um classificador humano pelo equipamento de análise de 

imagens. Além disso, o uso do equipamento permite uma maior eficiência e 

padronização nas análises, embora represente um investimento inicial elevado. Em 

termos comparativos, o custo total no cenário com o equipamento é 44,17% menor do 

que no cenário sem o equipamento, demonstrando o impacto financeiro positivo da 

adoção da tecnologia. 

A adoção de tecnologias avançadas na indústria tem mostrado impactos 

financeiros positivos significativos. Segundo estudo da Instituto Atlas Intel (2023), 

empresas que implementaram tecnologias da Indústria 4.0, como automação e 

inteligência artificial, relataram redução de custos operacionais e aumento de 

produtividade em até 38%, com retorno sobre o investimento em poucos meses. Além 

disso, a análise de dados em tempo real permite identificar gargalos e otimizar 

processos, reduzindo desperdícios e aumentando a eficiência operacional (CRUZ, 

2020). Esses resultados corroboram a relevância de investimentos tecnológicos para 

melhorar a competitividade e reduzir custos em setores industriais, como o de grãos. 

Tendo em vista a expressiva representatividade dos custos associados à 

contratação do classificador na formação do custo total, é essencial detalhar a 

composição de sua remuneração. O salário-base do Classificador Oficial é de R$ 

2.254,77, mas a inclusão de encargos obrigatórios e benefícios eleva o custo mensal 

total para R$ 5.396,93, configurando-se como a parcela mais significativa entre os 

custos operacionais. Este aumento é atribuído, em grande parte, aos encargos 

trabalhistas, como FGTS sobre o salário, que corresponde a R$ 180,38, e INSS 
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patronal, no valor de R$ 450,95. Além disso, benefícios concedidos ao profissional, 

como auxílio-refeição (R$ 425,04) e auxílio-alimentação (R$ 300,00), também 

impactam diretamente o custo final. Outros componentes importantes incluem o plano 

de saúde, avaliado em R$ 160,63, e benefícios adicionais, como bônus e incentivos, 

que somam R$ 700,00. A esses valores, devem ser acrescidas as parcelas 

proporcionais de férias e seu terço adicional, que juntas alcançam R$ 250,53 por mês, 

bem como o 13º salário, que adiciona R$ 187,90 ao custo mensal. Por fim, as 

provisões para aviso prévio e multas do FGTS somam R$ 287,11 mensais, garantindo 

a cobertura de eventuais obrigações trabalhistas futuras. 

Os custos com mão de obra direta e indireta são elementos fundamentais na 

composição do custo total das operações industriais. De acordo com Araújo et al. 

(2011), a correta mensuração desses custos é essencial para evitar distorções na 

apuração da margem de contribuição e na lucratividade das empresas. Além disso, 

no Brasil, os encargos sociais e trabalhistas frequentemente dobram o custo direto do 

salário pago ao trabalhador (FAMÁ, 2008), o que reforça a necessidade de estratégias 

eficazes para gerenciar esses custos. Estudos como o de Tage (2021) mostram que 

no Brasil esses encargos trabalhistas podem representar até 74% do salário bruto, o 

que reforça a importância de uma gestão eficiente para mitigar esses impactos e 

otimizar os recursos financeiros disponíveis. Além disso, Beltrame e Beuren (2014) 

destacam que os gastos com recrutamento, treinamento e retenção de funcionários 

devem ser tratados como investimentos estratégicos devido ao impacto direto na 

geração de resultados futuros. A mensuração detalhada desses custos permite às 

empresas identificarem oportunidades para otimização financeira e melhoria da 

eficiência operacional. 

 

3.2.1.1 Custo por amostra 

 

Para o laboratório de recebimento no cenário “Classificador – Demanda Atual”, 

o tempo total diário de análise é de 365 minutos, com um custo total diário de R$ 

664,18.  
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Tabela 8 — Custo por amostra no laboratório de recebimento para o cenário de demanda 
atual sem o equipamento 1. 

Análise 
Análise 

/Dia 
Tempo 

Médio (min) 
Tempo 

Total (min) 
Proporção Valor Total 

Valor 
/Minuto 

Valor 
/Amostra 

Simples 7 20 140 38,36%  R$ 254,75   R$ 1,82   R$ 36,39  

Completa 5 45 225 61,64%  R$ 409,42   R$ 1,82   R$ 81,88  

Total 12 - 365 100,00%  R$ 664,18   -   -  

 

As análises simples, realizadas em média sete vezes ao dia com um tempo 

médio de 20 minutos por análise, representam 38,36% do tempo total e geram um 

custo de R$ 254,75, resultando em um custo por amostra de R$ 36,39. Já as análises 

completas, realizadas cinco vezes ao dia com um tempo médio de 45 minutos, 

representam 61,64% do tempo total e geram um custo de R$ 409,42, com um custo 

por amostra de R$ 81,88. Observa-se que, neste cenário, as análises completas 

demandam maior tempo e têm um custo significativamente superior em relação às 

análises simples. 

A análise simples no laboratório de recebimento é realizada com o objetivo 

principal de validar a transação comercial entre o produtor e a indústria. No entanto, 

essa análise está sempre vinculada a uma análise completa da mesma carga, pois, 

uma vez que o produto é internalizado, torna-se necessária uma avaliação mais 

detalhada para embasar as decisões relacionadas às etapas subsequentes de 

beneficiamento. Considerando esse aspecto, o cenário de capacidade máxima do 

laboratório de recebimento (tabela 4) foi estruturado para determinar o número 

máximo de análises possíveis durante a jornada de trabalho dos classificadores, 

otimizando o uso do tempo disponível.  

Neste cenário o tempo total diário de análise é ampliado para 455 minutos, 

mantendo-se o mesmo custo total diário de R$ 664,18. 

 

Tabela 9 — Custo por amostra no laboratório de recebimento para o cenário de capacidade 
máxima sem o equipamento 1. 
Tipo de 
Análise 

Análise 
/Dia 

Tempo Médio 
(min) 

Tempo Total 
(min) Proporção Valor Total 

Valor 
/Minuto 

Valor 
/Amostra 

Simples 7 20 140 30,77%  R$ 204,36   R$ 1,46   R$ 29,19  

Completa 7 45 315 69,23%  R$ 459,81   R$ 1,46   R$ 65,69  

TOTAL 14 - 455 100,00%  R$ 664,18   -   -  

 

As análises simples permanecem em sete por dia, com um tempo médio de 20 

minutos cada, representando 30,77% do tempo total. Essa maior eficiência reduz o 

custo total das análises simples para R$ 204,36, resultando em um custo por amostra 
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de R$ 29,19. Por outro lado, as análises completas também totalizam sete por dia, 

com um tempo médio de 45 minutos por análise, o que equivale a 69,23% do tempo 

total diário. O custo total dessas análises é de R$ 459,81, enquanto o custo por 

amostra é de R$ 65,69. Neste cenário, o custo por minuto é reduzido de R$ 1,82 para 

R$ 1,46, evidenciando o impacto positivo da maximização do uso do tempo ocioso.  

Com a introdução do Equipamento 1, as análises são realizadas 

exclusivamente no formato completo, eliminando a distinção entre análises simples e 

completas. O número de análises diárias aumenta para 21, com um tempo médio de 

23 minutos por análise, totalizando 483 minutos diários de análise.  

 

Tabela 10 — Custo por amostra no laboratório de recebimento para o cenário de introdução 
do equipamento 1. 

Tipo de 
Análise 

Análise 
/Dia 

Tempo Médio 
(min) 

Tempo Total 
(min) Proporção Valor Total 

Valor 
/Minuto 

Valor 
/Amostra 

Completa 21 23 483 100,00%  R$ 370,90   R$ 0,77   R$ 17,66  

 

O custo total diário é reduzido para R$ 370,90, o que representa uma economia 

significativa em relação aos cenários sem o equipamento. O custo por minuto é de R$ 

0,77, e o custo por amostra é de R$ 17,66, destacando a eficiência proporcionada 

pela introdução do equipamento. Este cenário evidencia não apenas a redução de 

custos, mas também a uniformização dos processos e o aumento da capacidade de 

análise diária. 

A adoção de tecnologias avançadas para análises laboratoriais na indústria de 

grãos tem demonstrado impactos significativos na redução de custos e aumento da 

produtividade. De acordo com Oliveira et al. (2024), o desenvolvimento de 

biossensores para análise rápida em grãos pode reduzir os custos em até 80% em 

comparação com métodos tradicionais, além de diminuir o tempo necessário para 

cada análise. Já estudos como os apresentados por Dalbosco et al. (2018) destacam 

que a automação e padronização dos processos analíticos não apenas reduzem os 

custos operacionais, mas também aumentam a confiabilidade dos resultados, 

contribuindo para decisões mais assertivas na cadeia produtiva. 

 

3.2.2 Laboratório Interno  

 

No cenário sem o equipamento, o custo total estimado para 15 anos é de R$ 

2.982.485,65, com um custo anual médio de R$ 198.832,38 e um custo diário de R$ 
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690,39. Assim como no laboratório de recebimento, os maiores custos recaem sobre 

os salários dos classificadores, representando 88,87% do custo total, ou seja, R$ 

2.650.524,45. Outros itens que se destacam incluem o consumo de energia elétrica, 

responsável por 8,76% dos custos, e os consumíveis como saquinhos plásticos e 

laudos, que juntos representam 0,98% do total. 

 

Tabela 11 — Custos anuais e diários do laboratório interno, considerando o cenário atual sem 
o Equipamento 1. 

 

No cenário com o equipamento de análise de imagens, o custo total para o 

mesmo período é reduzido para R$ 1.573.178,23, com um custo anual de R$ 

104.878,55 e um custo diário de R$ 364,16. A principal mudança ocorre na distribuição 

dos custos, com o equipamento 1 representando 8,54% do total, enquanto o custo 

com o classificador, reduzido à metade, ainda corresponde a 84,24% dos custos. 

Adicionalmente, itens como energia elétrica e manutenção apresentam custos 

ajustados devido à introdução do equipamento. 

 

Tabela 12 — Custos anuais e diários do laboratório interno, considerando o cenário futuro 
com o Equipamento 1. 

ITEM Valor Quantidade Valor anual Valor diário 
% dos 
custos 

Homogeneizador  R$ 3.670,00  1  R$ 244,67   R$ 0,85  0,23% 
Quarteador  R$ 1.500,00  1  R$ 100,00   R$ 0,35  0,10% 
Balança  R$ 2.790,00  1  R$ 279,00   R$ 0,97  0,27% 
Máquina de Prova  R$ 22.000,00  1  R$ 1.466,67   R$ 5,09  1,40% 
Saquinho Plástico  R$ 0,12  1  R$ 2.764,80   R$ 9,60  2,64% 
Seladora  R$ 90,00  1  R$ 9,00   R$ 0,03  0,01% 
Energia Elétrica  R$ 0,09  -  R$ 2.073,60   R$ 7,20  1,98% 
Equipamento 1  R$ 134.400,00  1  R$ 8.960,00   R$ 31,11  8,54% 

ITEM Valor Quantidade Valor anual Valor diário 
% dos 
custos 

Homogeneizador  R$ 3.670,00  1  R$ 244,67   R$ 0,85  0,12% 
Quarteador  R$ 1.500,00  1  R$ 100,00   R$ 0,35  0,05% 
Balança  R$ 2.790,00  1  R$ 279,00   R$ 0,97  0,14% 
Máquina de Prova  R$ 22.000,00  1  R$ 1.466,67   R$ 5,09  0,74% 
Pinça  R$ 30,00  1  R$ 2,00   R$ 0,01  0,00% 
Paquímetro  R$ 600,00  1  R$ 40,00   R$ 0,14  0,02% 
Saquinho Plástico  R$ 0,12  1  R$ 967,68   R$ 3,36  0,49% 
Seladora  R$ 90,00  1  R$ 9,00   R$ 0,03  0,00% 
Prancheta  R$ 17,00  1  R$ 1,13   R$ 0,00  0,00% 
Caneta  R$ 0,78  1  R$ 4,68   R$ 0,02  0,00% 
Laudo  R$ 0,12  1  R$ 967,68   R$ 3,36  0,49% 
Energia Elétrica  R$ 2,16  por análise  R$ 17.418,24   R$ 60,48  8,76% 
Manutenção  R$ 150,00  -  R$ 630,00   R$ 2,19  0,32% 
Classificador  R$ 5.396,93  2  R$ 176.701,63   R$ 613,55  88,87% 

TOTAL - -  R$ 198.832,38   R$ 690,39  100,00% 
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Manutenção  R$ 240,00    R$ 630,00   R$ 2,19  0,60% 
Classificador   R$ 5.396,93  1  R$ 88.350,82   R$ 306,77  84,24% 

TOTAL - -  R$ 104.878,55   R$ 364,16  100,00% 

 

A diferença entre os cenários revela uma economia de 47,26% no custo total 

ao longo de 15 anos com a adoção do equipamento, evidenciando seu impacto na 

viabilidade financeira do laboratório interno. Embora o investimento inicial em 

tecnologia seja elevado, ele se justifica pela redução substancial dos custos 

operacionais e pelo potencial de maior precisão e eficiência no controle de qualidade. 

A adoção de tecnologias inovadoras na indústria tem gerado economias 

significativas e aumento da eficiência operacional. De acordo com Bukht e Heeks 

(2017), a digitalização estimula o crescimento econômico ao aumentar a produtividade 

do capital e do trabalho e reduzir os custos operacionais em diversos setores 

industriais. Além disso, a IA pode identificar gargalos produtivos e propor soluções em 

tempo real, resultando em maior produtividade e menor necessidade de intervenção 

humana em processos críticos (ABOAL e TACSIR, 2015; PARVIAINEN et al., 2017). 

Na indústria de grãos especificamente, tecnologias como sensores inteligentes e 

análise automatizada têm demonstrado potencial para reduzir desperdícios e melhorar 

a qualidade final do produto. Por exemplo, segundo Rahman et al. (2023), a adoção 

de tecnologias digitais na pós-colheita melhora a eficiência ao reduzir perdas e 

aumentar a sustentabilidade das operações agrícolas. Esses avanços reforçam como 

a introdução de tecnologias pode não apenas reduzir custos operacionais diretos, mas 

também agregar valor ao produto final. 

 

3.2.2.1 Custo por Amostra 
 

No cenário de demanda atual do laboratório de recebimento sem o 

equipamento, são realizadas 24 análises simples e 4 análises completas por dia. O 

tempo total consumido é de 284 minutos, distribuído em 50,70% para análises simples 

(144 minutos) e 49,30% para análises completas (140 minutos). O custo total diário é 

de R$ 690,39, com o valor por minuto de R$ 2,43. A análise simples apresenta um 

custo por amostra de R$ 14,59, enquanto a análise completa tem um custo 

significativamente maior, de R$ 85,08 por amostra. Este custo elevado reflete o menor 

número e o maior tempo necessário para análises completas, que demandam 35 

minutos em comparação aos 6 minutos das análises simples.  
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Tabela 13 — Custo por amostra no laboratório interno para o cenário de demanda atual sem 
o equipamento 1. 

Tipo de 
Análise 

Análise 
/Dia 

Tempo Médio 
(min) 

Tempo Total 
(min) Proporção Valor Total 

Valor 
/Minuto 

Valor 
/Amostra 

Simples 24 6 144 50,70%  R$ 350,06   R$ 2,43   R$ 14,59  
Completa 4 35 140 49,30%  R$ 340,33   R$ 2,43   R$ 85,08  

 28 - 284 100,00%  R$ 690,39  - - 

 

No cenário de capacidade máxima do classificador humano sem o 

equipamento, o número de análises por dia aumenta para 44 análises simples e 6 

análises completas, totalizando 474 minutos de trabalho. Nesse cenário, a proporção 

de tempo gasto com análises simples é maior (55,70%) devido ao aumento do volume 

dessas análises, enquanto as análises completas representam 44,30% do tempo total.  

 

Tabela 14 — Custo por amostra no laboratório de recebimento para o cenário de 
capacidade máxima sem o equipamento 1. 

Tipo de 
Análise 

Análise 
/Dia 

Tempo Médio 
(min) 

Tempo Total 
(min) Proporção Valor Total 

Valor 
/Minuto 

Valor 
/Amostra 

Simples 44 6 264 55,70%  R$ 384,52   R$ 1,46   R$ 8,74  
Completa 6 35 210 44,30%  R$ 305,87   R$ 1,46   R$ 50,98  

 50 - 474 100,00%  R$ 690,39  - - 

 

O custo total diário permanece o mesmo, R$ 690,39, mas o valor por minuto 

reduz para R$ 1,46, indicando um melhor aproveitamento do tempo disponível. O 

custo por amostra reduziu, sendo R$ 8,74 para análises simples e R$ 50,98 para 

análises completas, evidenciando uma maior eficiência no uso dos recursos do 

laboratório. 

No cenário de introdução do equipamento, todas as análises passam a ser 

realizadas em 6 minutos, eliminando a distinção entre análises simples e completas, 

com um total de 80 análises completas por dia. O tempo total de análise é de 480 

minutos, e o custo total diário é reduzido para R$ 364,16, resultando em um valor por 

minuto de apenas R$ 0,76.  

 

Tabela 15 — Custo por amostra no laboratório interno para o cenário de introdução do 
equipamento 1. 
Tipo de 
Análise 

Análise 
/Dia 

Tempo Médio 
(min) 

Tempo Total 
(min) Proporção Valor Total 

Valor 
/Minuto 

Valor 
/Amostra 

Completa 80 6 480 100,00% R$ 364,16  R$ 0,76   R$ 4,55  

 

O custo por amostra apresenta uma queda expressiva, sendo de apenas R$ 

4,55 para todas as análises, independentemente da complexidade. Este cenário 
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destaca o impacto positivo da introdução do equipamento, que não apenas aumenta 

a capacidade do laboratório, mas também uniformiza os custos e melhora a eficiência. 

A adoção de tecnologias avançadas na análise laboratorial da indústria de 

grãos tem mostrado impactos significativos na redução dos custos operacionais e no 

aumento da eficiência. Segundo Zhang et al. (2023), o uso de sensores baseados em 

espectroscopia no infravermelho próximo (NIR) e análise digital permite realizar 

medições rápidas e precisas das propriedades dos grãos com custos 

significativamente menores em comparação aos métodos tradicionais. Além disso, 

Ferguson et al. (2024) destacam que a automação dos processos analíticos reduz a 

dependência da mão de obra especializada e otimiza os recursos disponíveis no 

laboratório. Essas tecnologias diminuem os custos por amostra analisada e garantem 

maior uniformidade nos resultados das análises laboratoriais na cadeia produtiva de 

grãos. 

 

3. CONCLUSÃO 
 

A introdução do equipamento de análise de imagem reduz significativamente 

os custos por amostra em ambos os laboratórios (recebimento de matéria prima e 

controle de qualidade interno) e elimina a distinção entre análises simples e 

completas, tornando todas as análises completas. No laboratório de recebimento, o 

custo por amostra cai de R$ 36,39 (análise simples) e R$ 81,88 (análise completa) 

para R$ 17,66, enquanto no laboratório interno, os custos passam de R$ 14,59 

(análise simples) e R$ 85,08 (análise completa) para R$ 4,55. Essa redução, aliada à 

uniformização e padronização das análises, demonstra o impacto positivo da 

automação em cenários industriais, otimizando recursos, aumentando a produtividade 

e garantindo maior eficiência nos processos de classificação de grãos. 

 

4. CONSIDERAÇÕES FINAIS 
 
É importante destacar que, na classificação do arroz, a diferença entre seres 

humanos não é apenas subjetiva, envolvendo variações entre analistas e até mesmo 

entre análises realizadas por uma mesma pessoa, mas se refere ainda a aspectos de 
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formação acadêmica, especializações e experiência teórico-prática na área de 

qualidade pós-colheita.  

No contexto industrial, o controle de qualidade não exige obrigatoriamente a 

presença de um classificador oficial nem a aplicação da metodologia preconizada no 

padrão oficial de classificação do arroz. Os classificadores mencionados no estudo de 

caso do terceiro capítulo desta tese, por exemplo, não são classificadores oficiais. 

Estes profissionais, conhecidos como classificadores práticos, conseguem 

desempenhar um trabalho satisfatório para atender às necessidades industriais, mas 

carecem dos requisitos formais recomendados na atuação oficial. Isso significa que 

eles não participaram de cursos homologados pelo Ministério da Agricultura e 

Pecuária (MAPA), em que as instituições que ofertam tais cursos exigem como pré-

requisito, no mínimo, um curso técnico ou graduação em áreas como a de Ciências 

Agrárias, além do registro no respectivo conselho profissional, como por exemplo o 

CREA (Conselho Regional de Engenharia e Agronomia), que regula a atividade de 

engenheiros agrônomos, entre outros.  

Na indústria do arroz, depender exclusivamente dessas variáveis humanas, 

como conhecimento individual e consistência de desempenho, é algo que as 

empresas têm buscado evitar devido à crescente necessidade de padronização e 

produtividade. Este cenário explica a tendência global de substituição parcial ou total 

da mão de obra humana por máquinas, especialmente em atividades que exigem alta 

precisão, repetitividade e eficiência.  

Embora a expertise e o potencial humano sejam inegáveis, como demonstrado 

pelo desempenho do classificador oficial nos experimentos apresentados no primeiro 

e segundo capítulos desta tese, a padronização e a eficiência proporcionadas pelos 

equipamentos de análise de imagens tornam-se alternativas altamente vantajosas e 

recomendadas em contextos industriais.  

O controle de qualidade da indústria de beneficiamento está repleto de pontos 

onde a introdução da análise via equipamentos de análise de imagem traria grandes 

benefícios de tomada de decisão sobre o melhor aproveitamento da matéria-prima e 

da regulagem de máquinas, como por exemplo:  

 Avaliação da qualidade da matéria-prima na etapa de (1) recebimento; 

 A avaliação do percentual de grãos inteiros e quebrados na etapa de (2) 

descasque, (3) brunição e (4) polimento do grão de arroz, tendo em vista 

a grande carga física que é aplicada nos grãos; 
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 Avaliação do resíduo da etapa de (5) seleção eletrônica, tendo em vista 

que tal processo pode expulsar grãos bons, dando informações sobre a 

possibilidade de regulagem ou até mesmo repasse do resíduo para o 

melhor aproveitamento da matéria-prima;  

 Avaliação na etapa de (6) expedição do produto acabado. 

 

No entanto, é essencial reconhecer que os equipamentos de análise de 

imagens, apesar de representarem uma solução promissora, ainda dependem da 

expertise humana para sua operação plena. A calibração, manutenção e operação 

eficiente dessas máquinas requerem profissionais capacitados que entendam tanto 

as particularidades do equipamento quanto as nuances do processo produtivo. Nesse 

sentido, o objetivo não é substituir completamente a atuação humana, mas sim 

complementá-la, unindo a adaptabilidade e o discernimento dos profissionais à 

eficiência e padronização oferecidas pelas tecnologias. Essa integração entre 

tecnologia e expertise humana potencializa os benefícios de ambas as abordagens, 

permitindo que a indústria alcance altos padrões de qualidade de forma consistente e 

eficiente. 
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ANEXO I 
 

LAUDO DE CLASSIFICAÇÃO DE ARROZ BENEFICIADO 
POLIDO  

BASE DE REFERÊNCIA: IN MAPA Nº 06 DE 16/02/2009 E IN Nº 02 DE 07/02/2012  

IDENTIFICAÇÃO DO ANALISTA:   

**** LEMBRE-SE DE CRONOMETRAR O TEMPO DE ANÁLISE ****  

AMOSTRA Nº:  PESO DA AMOSTRA:   

DETERMINAÇÃO DA CLASSE   

CLASSE PESO (g) (%)  

Longo Fino    

Longo    

Médio    

Curto    

CONCLUSÃO (CLASSE):   

TEMPO FINAL (CRONOMETRADO):   

     

LAUDO DE CLASSIFICAÇÃO DE ARROZ BENEFICIADO 
POLIDO 

 

 
BASE DE REFERÊNCIA: IN MAPA Nº 06 DE 16/02/2009 E IN Nº 02 DE 07/02/2012  

IDENTIFICAÇÃO DO ANALISTA:   

**** LEMBRE-SE DE CRONOMETRAR O TEMPO DE ANÁLISE ****  

AMOSTRA Nº:  PESO DA AMOSTRA:   

DETERMINAÇÃO DE DEFEITOS  

DEFEITO PESO (g) (%) TIPO  

Mofados e Ardidos     

Amarelos     

Rajados     

Picados ou Manchados     

Gessados e Verdes     

Defeitos Gerais (total)     

CONCLUSÃO (TIPO):   

TEMPO FINAL (CRONOMETRADO):   

 


