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de imagens de ressonância magn�etica utilizando

redes advers�arias generativas

Amauri da Costa J�unior

Orientador: Gerardo Antonio Idrobo Pizo



UnB – Universidade de Braśılia
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Resumo

Redes generativas adversárias (GANs) são um modelo de inteligência artificial muito

usado no processamento de imagens. Neste trabalho será abordado o uso dessa ferramenta

no aux́ılio à reconstrução de imagens de ressonância magnética feitas com dados de bobina

única sub-amostrados. A GAN foi usada para melhorar as métricas de qualidade das imagens

reconstrúıdas com diferentes trajetórias, e que apresentavam distorções por não respeitarem

o teorema da amostragem de Nyquist–Shannon. Testes são realizados alimentando o mo-

delo treinado com imagens feitas com dados sub-amostrados e então gerando novas imagens

aprimoradas. O modelo gerador da GAN recebe imagens feitas com dados sub-amostrados

e tenta criar imagens aprimoradas baseadas em imagens t́ıpicas de ressonância magnética,

enquanto o modelo discriminador da GAN recebe as imagens geradas e as imagens t́ıpicas

e tenta adivinhar quais são verdadeiras e quais são falsas. A cada época os dois modelos

se refinam baseando-se no veredito do discriminador, melhorando a qualidade das imagens

geradas. Por fim, são extráıdas métricas das imagens produzidas como ı́ndice de similari-

dade estrutural e relação sinal rúıdo. Foram obtidos aumentos de até 100% no ı́ndice de

similaridade estrutural médio e de até 128,74% na relação sinal rúıdo média (Teste 78).

Os resultados obtidos se equiparam a resultados de outros modelos que usaram o mesmo

conjunto de dados e superaram outros modelos GANs nesse mesmo aspecto.

Palavras-chave: Ressonância Magnética; GAN; Reconstrução; Sub-amostrado; Inteligência

Artificial.
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Abstract

Generative adversarial networks (GANs) are an artificial intelligence model widely

used in image processing. This paper will address the use of this tool to aid in the

reconstruction of magnetic resonance images made with undersampled single-coil data.

The GAN was used to improve the quality metrics of images reconstructed with diffe-

rent trajectories, which presented distortions due to not respecting the Nyquist–Shannon

sampling theorem. Tests are performed by feeding the trained model with images made

with undersampled data and then generating new enhanced images. The GAN generator

model receives images made with undersampled data and tries to create enhanced images

based on typical magnetic resonance images, while the GAN discriminator model receives

the generated images and the typical images and tries to guess which are true and which

are false. At each epoch, the two models refine themselves based on the discriminator’s

verdict, improving the quality of the generated images. Finally, metrics such as struc-

tural similarity index and signal-to-noise ratio are extracted from the produced images.

Increases of up to 100% in the average structural similarity index and up to 128.74% in

the average signal-to-noise ratio were obtained (Test 78). The results obtained are similar

to results from other models that used the same data set and outperformed other GAN

models in this same aspect.

Keywords: MRI; GAN; Reconstruction; Undersampled; Artificial Intelligence.
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3.1 Áreas de interesse para o cálculo da relação sinal rúıdo (SNR). . . . . . . 21
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1 Introduc�~ao

Exames de imagem estão entre as ferramentas mais utilizadas na medicina para o

diagnóstico e tratamento de diversas patologias. Entre os diversos tipos de exames, a

ressonância magnética tem se mostrado um dos mais versáteis exames de imagem e o seu

uso cresce a cada ano [30].

A ressonância magnética é capaz de obter imagens de corpos moles ou densos e até

mesmo de fluxo, volume e oxigenação do sangue [25]. Também é um exame que utiliza

de radiação não ionizante, o que traz riscos significantemente menores para saúde se

comparados com outros exames de imagem, como por exemplo tomografias [17], que

apesar de se tratar de um exame seguro e com quantidades aceitáveis de radiação não

pode ser feito frequentemente para que a dose de radiação absorvida pelo corpo não

ultrapasse os limites, que caso ocorra aumentam as chances de surgimento de câncer no

paciente [4].

1.1 Problema

Um dos pontos negativos do exame de ressonância é o desconforto causado pelo

procedimento. O exame dura em torno de 30 minutos, o paciente deve ficar sem se

movimentar em um ambiente apertado e ruidoso. O ambiente do exame se torna um

local dif́ıcil de permanecer por muito tempo causando movimentação involuntária em

alguns pacientes e essa movimentação atrapalha a aquisição dos sinais, prejudicando a

qualidade da imagem final com a criação de artefatos [41]. Outro ponto negativo é que

devido ao longo tempo de exame, poucos podem ser realizados por dia, aumentando o seu

preço, fazendo com que exames de ressonância magnética estejam entre um dos exames

mais caros de imageamento médico [31].

O exame de ressonância magnética consiste em aplicar uma sequência de pulsos

magnéticos ao longo do corpo do paciente, fazendo com que os núcleos de hidrogênio

dos átomos do corpo se alinhem com o campo imposto. Primeiramente é aplicado um

campo magnético gradiente ao longo do corpo do paciente chamado de campo magnético

principal (B0(z)), esse campo faz com que os núcleos de hidrogênios se alinhem a ele. Um

pulso magnético (B1) é aplicado perpendicular ao primeiro, como mostrado na Figura 1.1,

1



fazendo com que os núcleos se alinhem ao novo campo. Quando o segundo campo é desli-

gado, os átomos tendem a se alinhar novamente com o primeiro campo voltando à posição

original, porém nesse processo eles emitem um pequeno campo magnético que varia para

átomos em diferentes partes do corpo.

Figura 1.1. Orientação do campo magnético B0(z) e pulso B1.

Bobinas distribúıdas ao redor do paciente detectam a intensidade do campo magnético

emitido por esses átomos de hidrogênio que voltam a se alinhar ao primeiro campo. São

realizadas seguidas alterações na frequência (codificação de frequência) e fase (codificação

de fase) do segundo campo emitido, sempre coletando a resposta do corpo a essas al-

terações no campo. Os sinais obtidos do corpo são organizados em uma matriz complexa,

onde cada valor possui uma frequência e uma fase, essa matriz é denominada espaço-k.

Por essa matriz se tratar de um espectro de frequências e fases é posśıvel transformá-la em

uma imagem de um corte transversal do paciente através de uma transformada inversa

de Fourier [27].

Quanto maior o tamanho dessa matriz, ou seja, quanto maior a quantidade de sinais

obtidos do corpo, maior a nitidez da imagem final [13], porém para obter uma quantidade

maior de sinais, é necessário um maior tempo de exame, o que aumenta o desconforto

do paciente e diminui a quantidade de exames feitos por dia o que consequentemente

aumenta o preço desse exame.

Uma das formas de diminuir o tempo de exame é adquirindo menos amostras de

sinal do corpo, porém com a diminuição do número de amostras diminui-se a qualidade

da imagem final obtida. A imagem reconstrúıda com menos amostras fica borrada, com

poucos detalhes, na Figura 1.2 é apresentada uma comparação entre a qualidade das ima-

gens reconstrúıdas para diferentes quantidades de etapas de codificação de fase realizada

na aquisição dos dados. Deve-se então encontrar um equiĺıbrio entre tempo de exame

(quantidade de amostras obtidas) e nitidez desejada para a imagem final.

Estudos são realizados na área de ressonância magnética buscando diminuir o tempo

dos exames adquirindo menos sinais do corpo, porém sem comprometer a qualidade

2



Figura 1.2. Comparação entre imagens produzidas a partir de aquisição com
diferentes números de etapas de codificação de fase. (a) 2 etapas de codificação de
fase. (b) 16 etapas de codificação de fase. (c) 256 etapas de codificação de fase.
Adaptado de [13].

das imagens. Técnicas como imageamento paralelo, Compressed Sensing, melhora nos

gradientes de campo magnético e melhora na sequência de pulsos magnéticos são apenas

algumas das técnicas empregadas buscando a diminuição desse tempo. Reduzir o tempo

do exame também traz o benef́ıcio de otimizar o tempo da máquina, exames mais velozes

permitiriam que mais pacientes sejam examinados diminuindo o custo.

Existem várias frentes de estudo que buscam obter imagens de qualidade mesmo

com amostras abaixo do mı́nimo necessário para uma reconstrução comum, como por

exemplo o uso de Compressed Sensing, que consegue recuperar imagens a partir de sinais

amostrados abaixo da taxa de Nyquist [34].

Uma dessas frentes de estudo é o uso de aprendizado de máquina na reconstrução e

no aprimoramento dessas imagens. Modelos de processamento de imagens que utilizam

machine learning e deep learning são amplamente utilizados pois conseguem perceber

padrões que normalmente outros modelos matemáticos ou de software não conseguiriam

[24]. Desde reconhecimento facial até a identificação de tumores em imagens médicas,

modelos são treinados com diversas imagens, para então serem aplicados em imagens

reais buscando classificá-las, identificando rostos, tumores, ou o que for necessário [2].

O uso de inteligência artificial na indústria médica também tem crescido muito nos

últimos anos como forma de aux́ılio a diagnósticos e otimização de processos. No ano de

2023 o tamanho do mercado de aplicações de inteligência artificial em imageamento por

ressonância magnética chegou ao valor de 5,9 bilhões de dólares, e a previsão é que esse

valor alcance 16,65 bilhões em 2034, como mostrado na Figura 1.3 [32].

O uso de processamento de imagens através de inteligência artificial para reconstrução

de imagens de ressonância ainda está sendo refinado, as pesquisas estão aumentando e

3



Figura 1.3. Valor de mercado da inteligência artificial no imageamento por res-
sonância magnética[32].

iniciativas como as competições realizadas pelo grupo FastMRI auxiliam na obtenção de

resultados cada vez melhores [42].

A reconstrução da imagem utilizando inteligência artificial busca realçar informações

importantes através do processamento da imagem. O algoritmo realiza essa etapa em

várias imagens diferentes, através de tentativa e erro, melhorando a cada teste o resultado

final. Ao final da análise de todas as imagens, o modelo terá criado regras próprias sobre o

valor de cada informação e o que deve ou não analisar, o processo é realizado novamente,

só que agora com parâmetros iniciais mais refinados do que a última vez, cada uma dessas

análises, chamada de época ou geração, aumenta gradativamente a qualidade da imagem

produzida pelo algoritmo. Após realizado todo o treino, o modelo é testado com imagens

novas para verificar o seu desempenho e assim chegar em um resultado final [24].

Um dos problemas enfrentados ao treinar modelos de inteligência artificial como

GANs é a necessidade de grande quantidade de dados para o modelo obter melhores

resultados. Como imagens médicas são recursos limitados são utilizadas formas para ex-

pandir o conjunto de dados. Algumas dessas formas são rotacionar as imagens, cortar

trechos das imagens gerando novas entre outras. Esse tipo de procedimento é chamado

de data augmentation e é muito usado na criação de modelos de inteligência artificial [21].

Treinar modelos de inteligência artificial capazes de perceber padrões em imagens

criadas a partir de espaços-k sub-amostrados e aprimorá-las tem sido um grande desa-

fio, porém tem gerado bons resultados que podem mudar o futuro do imageamento por

ressonância magnética, com exames velozes e com alta qualidade.
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1.2 Proposta de Pesquisa

Redes Generativas Adversariais (GANs) são um dos modelos de inteligência artificial

que mais estão sendo estudados para o processamento de imagens. Ao buscar pelo termo

“Generative Adversarial Networks” no Google Trends, é posśıvel observar o interesse no

assunto ao longo do tempo baseado no número de pesquisas realizadas no Google, como

mostrado no gráfico da Figura 1.4. O número de buscas nos últimos anos aumentou e isso

se reflete nos artigos publicados, realizando uma busca na base do CAPES por artigos

contendo o termo ““Generative Adversarial Networks” or “GAN”” entre os anos de 2016

e 2019 obtêm-se 2.307 resultados, ao realizar a mesma busca porém entre os anos de 2020

e 2023 obtêm-se 10.641 resultados, o que mostra que a ferramenta está se mostrando

promissora e que os estudos na área estão aumentando.

Figura 1.4. Resultados de buscas relacionadas a GANs nos últimos dez anos
segundo o Google Trends.

O modelo de uma GAN é separado em duas redes neurais distintas, uma geradora

que cria imagens para simular imagens de um conjunto de dados, ou seja, falsas imagens

de ressonância no contexto do projeto, e uma rede neural discriminadora que avalia se

as imagens criadas pertencem ao conjunto de dados original ou se foram criadas. Caso

a imagem criada seja apontada como falsa, a primeira rede neural faz ajustes e repete o

processo, dessa forma as duas redes neurais são aperfeiçoadas com o tempo, a primeira em

criar imagens cada vez mais semelhantes com as do conjunto de dados, e a segunda cada

vez mais refinada em apontar imagens criadas [29]. Modelos desse tipo podem se mostrar

capazes de melhorar a qualidade de imagens de ressonância magnética sub-amostradas

através do seu processo de aprimorar imagens até que essas se confundam com um grupo

controle, que no caso seria de imagens reconstrúıdas a partir de espaços-k tipicamente

amostrados [8].

Redes adversárias generativas poderiam então ser utilizadas na reconstrução de ima-

gens de ressonância magnética no intuito de melhorar as métricas de qualidade final

da imagem. A GAN seria utilizada após a reconstrução da imagem feita com dados
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sub-amostrados, alimentando o modelo com essas imagens distorcidas com o objetivo

de produzir imagens com métricas de qualidade superior às imagens de entrada. Dessa

forma podem ser testados diferentes tipos e graus de sub-amostragem procurando aquele

em que a GAN gera melhores resultados [8].

Uma das limitações para o uso de GANs é a necessidade de uma grande quantidade

de imagens de treinamento, isso facilita que o modelo generalize melhor os dados e não

aprenda a melhorar apenas as imagens de treino. Como imagens médicas não são de

fácil acesso e por isso a quantidade dispońıvel é limitada, foram aplicadas técnicas de

aumento de dados (data augmentation) que possibilitam a extração de mais informações

do conjunto de dados criando novas imagens a partir deles [21].

Outra limitação é a necessidade de alta capacidade computacional. Computadores

necessitam de unidades gráficas fortes para poder realizar o processamento das imagens,

porém algumas ferramentas online auxiliam nesse ponto, como o uso do ambiente de

programação do Google. O Google Colab possui alto poder computacional de forma

gratuita para pesquisa através da GPU Tesla T4 e também a possibilidade de máquinas

com maior capacidade através de pagamento de mensalidade. Para esse trabalho foi

usada a GPU L4, que requer pagamento de mensalidade, com 22,5 GB e uma memória

RAM de 53 GB [16].

1.3 Objetivos

1.3.1 Objetivo Geral

Reconstruir imagens de ressonância magnética a partir de dados sub-amostrados de

bobina única utilizando GANs e comparar a qualidade das imagens geradas por meio das

métricas SSIM e SNR para diferentes taxas de amostragem e trajetórias.

1.3.2 Objetivos Espećıficos

• Criar conjuntos de treino e teste com imagens feitas com dados com diferentes

parâmetros de sub-amostragem;

• Desenvolver um algoritmo para extrair as métricas de qualidade média(SSIM e

SNR) das imagens reconstrúıdas;

• Ajustar a hiperparametrização da GAN para conjuntos de teste com diferentes

trajetórias de sub-amostragem;

• Analisar e apresentar os resultados da pesquisa com base na avaliação experimental.
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2 Fundamentac�~ao Te�orica

Para embasar o projeto, foi realizada uma pesquisa teórica sobre a aquisição de ima-

gens de ressonância magnética, para entender o processo de como os dados são obtidos e

transformados em imagens.

Em seguida foi realizada um levantamento de literatura cient́ıfica para criar um acervo

de artigos que abordam o que está sendo estudado atualmente no tema, esses artigos

formam parte do referencial teórico da pesquisa.

Foi realizado também um estudo sobre GANs, como funcionam e como é o processo

de treinamento e produção de imagens, e como essa ferramenta poderia auxiliar na re-

construção e aprimoramento de imagens de ressonância magnética.

2.1 Aquisic�~ao de Dados e Reconstruc�~ao da Imagem

A imagem obtida no exame de ressonância magnética é o resultado final de uma série

de procedimentos que envolvem aplicação de um campo magnético intenso, a emissão de

pulsos de radiofrequência em uma determinada região de estudo do paciente, a coleta

de dados e, por fim, a reconstrução da imagem. Os procedimentos serão abordados em

detalhes nas seções a seguir.

2.1.1 Campo Magnético Principal e Vetor Magnetização

O equipamento de ressonância magnética consiste em um tubo onde uma maca é

posicionada no interior, este tubo possui várias bobinas ocultas dispostas em volta do

corpo do paciente que tanto produzem quanto captam campos magnéticos [35].

Com o paciente deitado dentro do equipamento, é aplicado primeiramente um campo

magnético gradiente ao longo do corpo do paciente, chamado de direção z, dessa forma o

campo magnético é menos intenso no pé do paciente e mais intenso na cabeça [27].

Os spins dos átomos de hidrogênio presentes no corpo do paciente tendem então a ali-

nhar seu próprio campo magnético com o campo magnético gradiente imposto realizando

um movimento de precessão. O movimento se caracteriza pela movimentação circular de

7



um eixo formando um cone. Devido ao campo magnético gradiente os diferentes spins

irão precessar em frequências diferentes como descrito pela equação de Larmor (Equação

2.1) , e é através dessa diferença na frequência de cada parte do corpo que é feita a

seleção de corte, pois os sinais emitidos por cada parte do corpo vão possuir diferentes

frequências [27].

ω = γB0, (2.1)

Na fórmula, ω é a frequência de precessão, B0 é a intensidade do campo magnético no

corte e γ é a razão giromagnética, que para o hidrogênio é de 42,58 MHz/T. Dessa forma

o campo magnético gradiente também é chamado de campo magnético principal, ou de

gradiente de seleção de corte [27].

Os átomos imersos então no gradiente de seleção de corte tendem a se alinhar pa-

ralelamente (direção z) ou antiparalelamente (direção -z) ao campo principal enquanto

realizam o movimento de precessão. Porém a maior parte desses átomos se alinham para-

lelamente gerando assim um campo magnético resultante chamado de vetor magnetização

resultante (M0) que se alinha então ao eixo z, como mostrado na Figura 2.1. [27].

Figura 2.1. (a) Vetores dos campos magnéticos dos átomos de hidrogênio se
alinhando paralelamente e antiparalelamente à direção z. (b) Vetor magnetização
resultante criado pelo movimento dos átomos de hidrogênio. Imagem retirada de
[27] e modificada.

Outros átomos poderiam ser escolhidos para realização do exame, porém o hidrogênio

se mostra a melhor escolha por ser o terceiro elemento mais presente no corpo humano,

os átomos de hidrogênio possuem alto momento magnético tornando-os mais senśıveis a

campos magnéticos externos e moléculas que contém hidrogênio diferem bastante entre

tecidos saudáveis e tecidos com alguma patologia [27].
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Com os átomos alinhados ao campo magnético principal o exame avança para a etapa

de aplicação de pulsos de radiofrequência, nessa etapa são obtidos os dados do corpo do

paciente que serão usados na reconstrução da imagem, o procedimento é explicado em

detalhes na próxima seção.

2.1.2 Pulso de Radiofrequência

Para obter os sinais, bobinas são posicionadas em volta do paciente. Essas bobinas

captam os sinais de radiofrequência induzidos pela precessão dos núcleos de hidrogênio.

Elas são posicionadas de forma a captar sinais perpendiculares ao campo magnético

principal, não sendo capazes de captar os sinais gerados pelos átomos de hidrogênio que

estão paralelos a ele [35].

Para as bobinas em volta do corpo do paciente captarem o sinal é necessário então

desviar o vetor magnetização resultante gerado pelos núcleos de hidrogênio de forma per-

pendicular ao campo magnético principal, para isso são usados pulsos de radiofrequência.

O pulso de radiofrequência (RF) é um campo magnético com sinal perpendicular ao

campo magnético principal ele é ligado e desligado logo em seguida, por isso denominado

como pulso. Quando o pulso é aplicado todos os núcleos de hidrogênio que estavam para-

lelos ao campo principal se alinham a ele, assim as bobinas laterais conseguem detectar

a magnetização transversal gerada por esses núcleos [27].

Ao desligar o pulso de RF, os átomos de hidrogênio tendem a relaxar e se alinhar no-

vamente com o campo magnético principal gerando novamente uma magnetização longi-

tudinal, porém esse alinhamento não acontece de forma instantânea, átomos em diferentes

moléculas terão tempos diferentes de alinhamento. São então estipuladas duas variáveis

para agrupar esse tempos de relaxamento, a constante T1 indica o tempo necessário para

a magnetização longitudinal recuperar 63% da sua intensidade após o desligamento do

pulso de RF, e o tempo T2 indica o tempo necessário para a magnetização transversal

atingir 37% da intensidade original do vetor magnetização após o desligamento do pulso

de RF [23]. Os tempos T1 e T2 variam de acordo com o tecido do corpo humano como

pode ser visto na Tabela 2.1 e é essa diferença que irá gerar diferenças de contraste na

imagem final.

São emitidos diversos pulsos de RF ao longo do exame, e a cada repetição de pulso são

coletados os sinais vindos do corpo. Um exame de ressonância pode ter várias repetições

dessas etapas, de acordo com o tipo de exame e qualidade final desejada para a imagem

[13]. Na próxima seção será detalhado o processo de sequência de pulsos para obtenção

dos dados.
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Tabela 2.1. Tempos T1 e T2 para diferentes tecidos do corpo humano para um
exame realizado com campo magnético de 3T [36].

Tecido T1 [ms] T2 [ms]

Sangue 1932 ± 85 275 ± 50
Massa Cinzenta 1820 ± 114 99 ± 7
Matéria Branca 1084 ± 45 69± 3

Nervo Óptico 1083 ± 39 78 ± 5

2.1.3 Codificação de Frequência e de Fase

O sinal emitido pelos núcleos de hidrogênio é detectado pelas bobinas locais. Esse

sinal é composto de sinais emitidos por cada um dos núcleos de hidrogênio do corpo do

paciente, para selecionar apenas o corte desejado o sinal é filtrado pela frequência de

precessão dos spins no corte desejado, como explicado anteriormente [27].

Selecionando o corte é posśıvel captar apenas os sinais emitidos naquela área do corpo.

O sinal obtido é a soma da amplitude dos sinais de todos os núcleos de hidrogênio naquele

corte, porém esses dados estão desorganizados e para isso foi criada a codificação de fase

e codificação de frequência para mapeá-los [27].

A codificação de frequência e de fase mapeiam o corte nos eixos horizontal e ver-

tical respectivamente. A cada etapa do exame é aplicado pulsos com frequência e fase

espećıficos e então medido a amplitude do sinal, essa amplitude então é armazenada em

uma matriz onde o eixo horizontal é a frequência e o vertical e a fase dos sinais. O

processo é repetido diversas vezes, e as diferentes configurações de frequência e fase são

os pares ordenados dessa matriz [27].

A matriz onde os sinais de amplitude são armazenados é chamada de espaço-k. Cada

ponto dessa matriz é a amplitude do sinal em determinado momento do exame e por

se tratar de uma matriz que está em função de frequência e fase podemos aplicar uma

transformada de Fourier de duas dimensões e obter uma nova matriz no domı́nio espacial,

e essa nova matriz é a imagem do corte transversal [27].

2.1.4 Espaço-k

O espaço-k é uma matriz que contém os sinais espaciais obtidos após as diversas

sequências de pulsos realizadas durante o exame de ressonância magnética codificado

em frequência e fase. Cada ponto contém a amplitude do sinal obtido em determinado

momento do exame e dessa forma cada um desses pontos contém informação de todo o

corte, não havendo relação de um ponto no espaço-k para um único ponto da imagem

final. Uma representação do espaço-k pode ser observada na Figura 2.2 ao lado da image
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final produzida [27].

Figura 2.2. Espaço-k. A matriz é composta de tons de cinza, onde os pontos mais
claros representam sinais com maior amplitude, e os mais escuros com menor.

É importante lembrar que devido o espaço-k ser em função de frequências e fases ele

se trata de uma matriz complexa, possuindo parte real e imaginária, dessa forma, não

existe uma representação viśıvel. Para representar o espaço-k é calculado o absoluto do

mesmo, podendo assim representar a soma da parte real e imaginária.

Existem várias formas de preencher o espaço-k, essas formas são chamadas de tra-

jetórias e são escolhidas de acordo com o tipo de exame, cada uma tendo seus pontos

positivos e negativos. Na Figura 2.3 é posśıvel visualizar algumas dessas trajetórias.

Também é posśıvel observar na figura, em sua segunda linha de imagens, como seria a

sub-amostragem do espaço-k com cada uma das trajetórias, e na terceira linha, a imagem

final produzida por cada um desses espaços-k [10].

A figura contém ńıveis diferentes de sub-amostragem para cada uma das trajetórias,

e por isso as imagens finais possuem diferentes ńıveis de nitidez. Para a trajetória car-

tesiana foi apresentado um ńıvel de sub-amostragem de 42,19%, para a radial uma sub-

amostragem de 88,65% e para a trajetória espiral uma sub-amostragem de 62,04%.

É interessante notar que diferentes trajetórias vão possuir diferentes impactos na

imagem. Por exemplo, a trajetória radial que prioriza manter as baixas frequências do

espaço-k, correspondendo ao centro do mesmo, possui um melhor contraste da imagem

final, pois são as baixas frequências que impactam nesse contraste[28]. Porém a trajetória

espiral que poupa mais as altas frequências em relação a trajetória radial, possui uma

maior nitidez nas transições da imagem, possuindo linhas delimitadoras mais ńıtidas, pois

as altas frequências são responsáveis pela noção espacial da imagem final [27].

11



Figura 2.3. Coluna (a): Trajetória cartesiana vertical. Coluna (b): Trajetória
radial. Coluna (c): Trajetória espiral.

2.1.5 Sub-Amostragem

A aquisição de sinais em um exame de ressonância magnética deve seguir o Teorema

de amostragem de Nyquist–Shannon, que diz que a frequência de amostragem de um

sinal deve ser pelo menos o dobro da maior frequência contida naquele sinal. Caso esse

critério não seja respeitado, a imagem final irá apresentar “aliasing”, esse fenômeno cria

distorções na imagem que afetam a sua qualidade final, como apresentado na Figura 2.4.

Formas de reconstruir imagens com menos amostras são estudadas a vários anos, uma

das mais promissoras dessas formas tem sido o uso de Compressed Sensing, que aproveita

da esparsidade da imagem para reconstrúı-la a partir de um espaço-k com um número de

amostras abaixo do mı́nimo segundo o critério de Nyquist–Shannon[14].

Outra forma que tem sido estudada nos anos recentes é o uso de inteligência artificial

para a reconstrução de imagens sub-amostradas. Treinar redes neurais para obtenção
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Figura 2.4. Comparação entre imagem reconstrúıda respeitando critério de Ny-
quist (a) e imagem feita com dados sub-amostrados apresentando aliasing (b). Ima-
gem retirada de [39] e modificada.

de imagens ńıtidas tem obtido bons resultados e o número de artigos publicados nessa

área tem crescido nos últimos anos conforme verificado no portal da CAPES que será

mostrado na seção de levantamento da literatura cient́ıfica.

2.2 Redes Generativas Adversariais (GANs)

Redes generativas adversárias (do inglês GANs) são um modelo de rede neural de

aprendizado profundo que tem como objetivo criar amostras o mais fiéis posśıveis a um

conjunto de treinamento. Essas amostras podem ser de diversos tipos como por exemplo

imagens ou sinais de áudio. No contexto do trabalho de mestrado são criadas imagens

utilizando a GAN.

O modelo é separado em duas partes, uma rede neural generativa e outra discrimina-

tiva. A parte generativa irá criar imagens que se assemelham a imagens de um conjunto

de treinamento, já a parte discriminativa irá julgar se a imagem criada pertence ou não

ao conjunto de treinamento [15]. A Figura 2.5 apresenta o fluxo seguido por um modelo

GAN genérico em uma etapa, essa etapa é repetida várias vezes aperfeiçoando as imagens

geradas.

2.2.1 Modelo Generativo

O modelo generativo tipicamente recebe como entrada diferentes tipos de sinais, como

por exemplo outras imagens ou até mesmo rúıdo, e usa essa informação de entrada como

13



Figura 2.5. Fluxo de produção e processamento de imagens em um modelo GAN.

parâmetros iniciais para gerar imagens, o objetivo do modelo generativo é enganar o

modelo discriminativo, de forma que ele confunda as imagens geradas com as imagens

pertencentes ao conjunto de dados. O modelo generativo não tem acesso às imagens

do conjunto de dados para que essas imagens não influenciem nas imagens que serão

produzidas por ele e sua única forma de aprendizado é com os veredictos recebidos do

discriminador a cada iteração [6]. Nas primeiras etapas o modelo generativo não conse-

guirá produzir imagens muito semelhantes com o conjunto de dados, porém a cada nova

iteração, o modelo irá se refinar baseando-se nos veredictos do discriminador.

2.2.2 Modelo Discriminativo

O modelo discriminativo é treinado com imagens vindas do conjunto de dados e com

imagens produzidas pelo modelo generativo misturadas e escolhidas de forma aleatória.

Ele deve classificar as imagens que receber indicando se elas pertencem ou não ao conjunto

de dados. A sáıda do discriminador é um valor entre 0 e 1, se a imagem analisada for

do conjunto de dados ela deve receber um valor próximo a 1, caso contrário um valor

próximo de 0. A cada etapa ele recebe o gabarito com a resposta certa da classificação e

faz os ajustes necessários para na próxima etapa aumentar a taxa de acerto [6].

2.3 Levantamento da Literatura Cient��fica

No intuito de saber o andamento das pesquisas na área foi realizada uma levantamento

de artigos na base de dados da CAPES baseada na seguinte pergunta cient́ıfica:

“É posśıvel reconstruir imagens de ressonância magnética sub-amostradas com nitidez

com o aux́ılio de inteligência artificial?”

Foram então escolhidos os seguintes descritores para as buscas:

• MRI;
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• Reconstruction;

• Undersampled;

• Artificial Intelligence.

A busca foi realizada na base de dados da CAPES usando os conectores “and” para

filtrar os artigos que possúıssem os quatro temas. A busca então foi realizada da seguinte

forma:

““MRI” and “Reconstruction” and “Undersampled” and “Artificial Intelligence””

A Figura 2.6, contém o fluxograma da filtragem realizada para chegar em 48 artigos

que auxiliaram na realização do trabalho. Esses artigos contém diferentes abordagens no

uso de inteligência artificial aplicada a reconstrução de imagens de ressonância magnética.

Figura 2.6. Fluxograma de triagem dos artigos selecionados.

Os 48 artigos finais serviram como base teórica para a realização do projeto e auxi-

liaram na fundamentação teórica e seleção do modelo escolhido para a reconstrução das

imagens de ressonância magnética.

2.3.1 Trabalhos Correlatos

Os artigos selecionados possuem diferentes abordagens no uso da inteligência artifi-

cial na reconstrução de imagens de ressonância magnética, como uso de CNNs [19] [5],

autoencoders [9] [26], dictionary learning [40] [1] entre diversas outras formas de utilizar

inteligência artificial na reconstrução de imagens de ressonância magnética. Entretanto,

entre os 48 trabalhos filtrados no levantamento realizado no portal de periódicos da

CAPES apenas um utilizou de GANs para realizar a tarefa de reconstruir imagens de

ressonância a partir de dados sub-amostrados.
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O t́ıtulo do trabalho é “Prior-Guided Image Reconstruction for Accelerated Multi-

Contrast MRI via Generative Adversarial Networks”[8] e tem como objetivo a melhora na

qualidade de imagens de ressonância magnética multi-contraste feitas a partir de dados

sub-amostrados. Para isso ele alimenta a rede generativa com imagens feitas a partir

de dados sub-amostrados, porém diferente do trabalho de mestrado ele usa diferentes

técnicas de sub-amostragem em um único treinamento da GAN, combinando informações

de diferentes tipos de dados para obtenção de melhores resultados.

O trabalho apresenta uma técnica que utiliza três tipos de dados de entrada para

o treinamento: dados com menos amostras nas baixas frequências, dados com menos

amostras nas altas frequências e dados perceptuais, obtidos através de redes neurais

classificadoras que evidenciam as caracteŕısticas da imagem.

O artigo apresenta resultados onde foi atingido SSIM de até 92% usando apenas 2%

das amostras necessárias para construir uma imagem t́ıpica de ressonância magnética,

mostrando o poder das redes generativas[8].

O trabalho em questão, entretanto, necessita de técnicas espećıficas para obtenção do

espaço-k e um dos canais precisa ser pré-processado com uma rede neural classificadora

antes de ser utilizado pela GAN. Esse pré-processamento aumenta o tempo de recons-

trução das imagens e não é o padrão usado em máquinas de ressonância. Dessa forma

para este método ser implementado seria necessário alteração na forma que obtemos as

imagens.

O código criado durante o mestrado difere do trabalho em questão pois realiza o

processamento sem tratamento prévio, utilizando imagens criadas com dados da forma

que eles são gerados por máquinas de ressonância magnética utilizadas hoje na indústria,

sendo necessários menos etapas de pré-processamento e aceitando uma maior diversidade

de dados para treinamento

Outro artigo que usa um processamento interessante é o “Deep learning for under-

sampled MRI reconstruction”[20]. Apesar de não usar GAN na reconstrução das imagens,

no trabalho é usado um modelo U-Net para processamento dos dados, o mesmo usado

neste trabalho na rede generativa.

O trabalho em questão usa a rede generativa para extrair os detalhes da imagem

feita com um espaço-k sub-amostrado e depois realçar esses detalhes. Ao final dessa

etapa é calculado novamente o espaço-k que é usado para completar os espaços faltantes

do espaço-k original, e por fim obter a imagem final a partir desse novo espaço-k.

O estudo consegue atingir melhoras de 0,22 no SSIM da imagem de entrada se com-

parada com a imagem na sáıda da U-Net e uma melhora de aproximadamente mais 0,3

com a junção dos espaços-k.
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Esse estudo incentivou o teste com a união do espaço-k antes e após o processamento

para observar se ocorreriam mais melhorias na imagem.

Outro estudo que foi muito importante como base deste trabalho é o “fastMRI:

An Open Dataset and Benchmarks for Accelerated MRI”[42]. O trabalho apresenta

os detalhes de diversos conjuntos de dados para desafios de reconstrução de imagens de

ressonância magnética, entre eles o conjunto de joelho de bobina única utilizado neste

trabalho.

O estudo do FastMRI também propõe a criação de uma tabela de classificação para

organizar os algoritmos de reconstrução criados para o desafio. A página da internet com

a tabela original não está mais dispońıvel online, porém a página foi arquivada em um

repositório online[12].
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3 Materiais e M�etodos

Serão apresentados nas seções abaixo os materiais e métodos utilizados na realização

do trabalho. Serão abordados os temas: Banco de dados, pré-processamento, modelo

GAN e métricas de avaliação.

3.1 Banco de Dados

As imagens utilizadas no estudo foram obtidas do banco de dados de espaços-k do

grupo de pesquisa FastMRI, este grupo incentiva pesquisas e competições na área de

reconstrução e aprimoramento de imagens de ressonância magnética a partir de dados

sub-amostrados utilizando inteligência artificial. As competições buscam melhorar cada

vez mais o ı́ndice de similaridade das imagens reconstrúıdas e a relação sinal rúıdo e são

realizadas em diversas categorias. O banco de dados é criado especificamente para que

pesquisadores possam trabalhar com dados brutos de imagens de ressonância de forma

gratuita, dessa forma todas as imagens contidas nele são anonimizadas [18].

O conjunto de dados utilizado será o mesmo que foi utilizado no desafio de recons-

trução de imagens de joelho de bobina única (knee singlecoil challenge). Os conjuntos de

imagens de uma única bobina não foram diretamente obtidos por uma única bobina, são

simulados, obtidos através da combinação de amostras de múltiplas bobinas [42]. A van-

tagem de se realizar testes com amostras de uma única bobina é poder realizar testes com

computadores com menor capacidade de processamento, dessa forma podendo-se obter

resultados relevantes para pesquisas na área realizando ensaios que geram resultados mais

rapidamente, podendo assim refinar esses resultados de forma mais eficiente realizando

várias vezes os treinamentos alterando os seus parâmetros.

O conjunto de imagens utilizado é separado em quatro partes, cada parte é composta

de arquivos do tipo .h5, que contém um conjunto de espaços-k, esses conjuntos contém

cortes de um mesmo exame realizado em um joelho, formando um volume. A primeira

parte é chamada de imagens de treino, contém 973 volumes contendo 34.723 cortes que

foram tipicamente amostrados. A segunda é chamada de imagens de validação e contém

199 volumes e 7.135 cortes também tipicamente amostrados. A terceira parte é chamada

de imagens de teste e contém 108 volumes e 3.903 cortes sub-amostrados. O quarto e
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último é chamado de conjunto desafio, foi utilizado como parâmetro no desafio reali-

zado pela equipe do FastMRI e contém 92 volumes e 3.305 cortes sub-amostrados. As

informações acerca do conjunto de dados estão reunidas na Tabela 3.1.

Tabela 3.1. Organização do conjunto de dados [42].

Volumes Cortes Amostragem

Treinamento 973 34.742 Tipicamente amostrado
Validação 199 7.135 Tipicamente amostrado
Teste 108 3.903 Sub-amostrado
Desafio 92 3.305 Sub-amostrado

Para o projeto foram usadas apenas as imagens do conjunto de treinamento, pois

por estarem tipicamente amostradas foi posśıvel sub-amostrar as imagens conforme fosse

necessário, usando diferentes ńıveis de sub-amostragem e diferentes trajetórias como será

apresentado na seção de pré-processamento.

Para expandir a quantidade de dados utilizados foram extráıdos mais de um corte

por volume, uma vez que cada volume possui em torno 35 cortes. Porém não é todo corte

que se mostra útil, uma vez que as extremidades do volume possuem pouca informação,

assim geralmente são extráıdos apenas os cortes do meio.

Foram feitos treinamentos de 973 imagens até 6000 imagens, os conjuntos de teste

geralmente contém 10% do tamanho dos conjuntos de treinamento e os conjuntos de teste

variam de 50 a 100 imagens.

3.2 Pr�e-Processamento

O pré-processamento consiste em uma sequência de etapas para preparar as imagens

do conjunto de dados para o processamento que será realizado pela GAN. As imagens

utilizadas do conjunto de dados são feitas a partir de espaços-k tipicamente amostrados,

dessa forma é necessário simular a sub-amostragem desse espaço-k. Para isso são apagadas

algumas amostras da matriz de acordo com a trajetória escolhida e depois reconstrúıda a

imagem, como mostrado na Figura 2.3. Esse processo de apagar amostras é comumente

usado em estudos desse tipo pois simula de forma fiel a sub-amostragem gerada por

equipamentos de ressonância [42]. Os detalhes do funcionamento do algoritmo que realiza

o pré-processamento serão apresentados na seção de Resultados e Discussão.
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3.3 Modelo GAN

O código usado é baseado no modelo GAN adaptado para o processamento de ima-

gens. No código feito a entrada do sistema é uma imagem e a sáıda outra imagem, esse

tipo de arquitetura que traduz uma imagem em outra é chamado de pix2pix.

Assim como filtros de redes sociais alteram imagens colocando filtros de cores, redes

pix2pix recebem uma imagem de entrada e de acordo com o treinamento feito geram uma

outra imagem baseada na entrada. Esse tipo de processamento é realizado no trabalho

de forma que as imagens de entrada são as imagens de ressonância magnética feitas com

dados sub-amostrados e a sáıdas são imagens com suas métricas de qualidade aprimora-

das.

Phillip Isola apresenta em seu artigo o pix2pix [22] e estabelece métodos para melhor

realizar essa tradução de imagem para imagem o que auxiliou na criação do algoritmo

GAN que processou as imagens de ressonância. Os detalhes do funcionamento da GAN,

assim como das suas redes generativa e discriminativa serão apresentados na seção de

Resultados e Discussão.

3.4 M�etricas de avaliac�~ao

As imagens geradas pelo modelo devem ser avaliadas para verificar se o resultado

obtido se aproxima de uma imagem feita com dados tipicamente amostrados. Para isso

são usados dois valores que indicam a qualidade da imagem: o ı́ndice de similaridade

estrutural (SSIM) e a relação sinal rúıdo (SNR).

O ı́ndice de similaridade estrutural indica a semelhança entre duas imagens e é dado

por

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3.1)

onde uma imagem é dada como padrão e uma segunda recebe um valor de 0% a 100%

de semelhança. A imagem usada como padrão é a imagem feita com dados tipicamente

amostrados, chamada de imagem x, e a imagem gerada, chamada de imagem y, é a

imagem que será comparada. Na equação µx e µy são a intensidade média dos pixels em

cada uma das imagens, σx e σy são os desvios padrão de cada imagem, σxy é a covariância

entre as duas imagens, C1 e C2 são duas constantes para equilibrar a divisão, evitando

divisões por zero [3].

A relação sinal rúıdo apresenta a amplitude de sinal em relação a amplitude de rúıdo

contido na imagem e é dado por
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SNR = 10 log10

(
σ2
s

σ2
r

)
, (3.2)

quanto maior o valor de SNR, maior a presença de sinal em relação ao rúıdo. Na fórmula

σ2
s é o desvio padrão ao quadrado dos valores de amplitude contidos dentro de uma área

de interesse representada com um S na Figura 3.1, considerado como sinal, e e σ2
r é o

desvio padrão ao quadrado dos valores de amplitude das áreas representadas com um N

na figura, considerados como rúıdo.

Figura 3.1. Áreas de interesse para o cálculo da relação sinal rúıdo (SNR). A área
assinalada com o S indica a área que contém o sinal de interesse, a área assinalada
com o N indica onde se concentra o rúıdo isolado. Imagem retirada de [11].

É utilizado um algoritmo que calcula essas duas métricas, o algoritmo recebe um

número qualquer de imagens, de acordo com a necessidade do projeto, calcula para cada

uma dessas imagens o valor de SSIM e SNR e depois calcula a média desses valores

para cada imagem. Dessa forma um grupo de imagens gerados juntos recebe apenas dois

valores, um de SNR e um de SSIM, esses valores então são usados para avaliar o modelo.

Foram geradas tabelas com os resultados de cada teste feito explicitando os detalhes

dos parâmetros utilizados, como tamanho da imagem de entrada, trajetória utilizada,

número de épocas, entre outros parâmetros, e também é inserido os resultados na forma

de SSIM e SNR.

Os resultados também foram avaliados em função de duas variáveis que ajudam a

comparar a melhor no SSIM e no SNR, chamadas de Razão dos SSIM (RSSIM) e Razão
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dos SNR (RSNR). Essas variáveis são a razão entre as métricas das imagens produzidas

pela GAN e as métricas das imagens de entrada,

RSSIM =
SSIMpr

SSIMin

, (3.3)

RSNR =
SNRpr

SNRin

, (3.4)

na fórmula, SSIMpr e SNRpr são as respectivas métricas das imagens geradas, e SSIMin

e SNRin as métricas das imagens de entrada. Logo, caso os valores de RSSIM e RSNR

sejam maiores do que 1, ocorreu melhora nas métricas das imagens. Através dessas duas

variáveis é posśıvel observar o quanto as métricas aumentaram ou diminúıram em relação

às métricas da imagem de entrada.
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4 Resultados e Discuss~oes

Foram realizados 110 testes com diferentes arquiteturas do modelo da GAN e dife-

rentes parâmetros de sub-amostragem para as imagens. Os parâmetros usados nesses

testes como por exemplo trajetórias e ńıvel de sub-amostragem podem ser observados na

planilha Resultados.csv no repositório do Github do trabalho [7].

A arquitetura final e detalhamento tanto do código de pré-processamento quanto da

GAN serão apresentadas nas seções a seguir. Também serão apresentados os detalhes das

imagens produzidas e suas métricas de qualidade. Na discussão será abordada a análise

dos dados que permitirão observar o limite encontrado para aprimoramento de imagens

de ressonância magnética feitas com dados sub-amostrados.

4.1 Resultados

4.1.1 Pré-Processamento

O algoritmo de pré-processamento possui diversas especificações que podem ser alte-

radas de acordo com a necessidade, essas especificações alteram os parâmetros da sub-

amostragem, como taxa de amostragem, trajetórias e presença ou não de artefatos. No

pré-processamento as imagens são modificadas para todas terem o mesmo tamanho e

possúırem altura e largura iguais, essa tarefa é realizada sem redimensionar as imagens,

ao invés disso, todas as imagens são completadas com zero até terem as mesmas dimensões

da maior imagem. O modelo também dá a opção de fixar a dimensão das imagens, cor-

tando as imagens maiores do que o valor, e completando com zero as menores. Essas

dimensões são sempre arredondadas para potências de dois, pois no processamento da

GAN são realizadas diversas divisões por dois, facilitando esse processo.

O algoritmo possui três tipos de trajetória: HF, random, spiral1, spiral4 e radial.

A trajetória do tipo HF preserva as colunas com baixas frequências do espaço-k e filtra

as colunas com altas frequências em intervalos regulares escolhidos pelo usuário, essa

trajetória recebe os parâmetros:

• start interval : Indica o intervalo a partir do centro do espaço-k no qual as colunas
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de frequências devem ser preservadas;

• interval : Indica o intervalo no qual as frequências acima do start interval serão

zeradas. Por exemplo, se interval for 3, a cada três colunas a terceira será zerada.

A trajetória random filtra aleatoriamente as colunas, de acordo com o valor da variável

“mask percentage” que recebe um valor de 0 a 1. Se o valor for 1 nenhuma amostra é

removida, a taxa de sub-amostragem é igual a zero e a imagem é mantida inteira, porém

se o valor for 0, todas as amostras são removidas e a taxa de sub-amostragem é de 100%

A trajetória spiral1 e spiral4 filtram o espaço-k em um formato espiral. A trajetória

spiral1 consiste de apenas uma espiral e a spiral4 consiste em quatro espirais. Ambas

as trajetórias recebem o parâmetro “turns”, que indica quantas voltas a espiral deve

realizar.

A trajetória radial filtra o espaço-k com linhas que atravessam o centro do espaço-k.

A função recebe o parâmetro “number angles” que indica quantas linhas serão traçadas,

essas linhas são sempre traçadas de forma que o ângulo entre elas sejam iguais.

Na Figura 4.1 é posśıvel observar como são as trajetórias e como a mudança de

parâmetros altera seu formato. Foi dado zoom na trajetória HF para permitir melhor

visualização das colunas.
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Figura 4.1. Diferentes trajetórias que podem ser aplicadas ao espaço-k. (a)
Trajetória tipo HF com “start interval” igual a 10 e “interval” igual a 4, a Tra-
jetória corresponde a 24,22% de sub-amostragem. (b) Trajetória tipo HF com
“start interval” igual a 5 e “interval” igual a 2, a Trajetória corresponde a 49,22%
de sub-amostragem. (c) Trajetória tipo random com “mask percentage” igual a
0,8, a trajetória corresponde a 19,92% de sub-amostragem. (d) Trajetória tipo
random com “mask percentage” igual a 0,3, a Trajetória corresponde a 69,92% de
sub-amostragem. (e) Trajetória tipo spiral1 com “turns” igual a 16, a Trajetória
corresponde a aproximadamente 93,79% de sub-amostragem.(f) Trajetória tipo spi-
ral1 com “turns” igual a 4, a Trajetória corresponde a 98,43% de sub-amostragem.
(g) Trajetória tipo spiral4 com “turns” igual a 16, a trajetória corresponde a 75,16%
de sub-amostragem. (h) Trajetória tipo spiral4 com “turns” igual a 4, a trajetória
corresponde a 93,72% de sub-amostragem. (i) Trajetória tipo radial com “num-
ber angles” igual a 20, a trajetória corresponde a 96,13% de sub-amostragem. (j)
Trajetória tipo radial com “number angles” igual a 10, a trajetória corresponde a
98,06% de sub-amostragem.

As trajetórias utilizadas pelo grupo FastMRI no conjunto de dados de teste e desafio

são chamadas por eles de “Equispaced mask”, que é igual a trajetória HF, e “Random

mask”, que se assemelha a trajetória random, sendo a única diferença que a trajetória

usada no conjunto de dados poupa as baixas frequências e apaga aleatoriamente as outras

frequências, enquanto a trajetória usada no mestrado apaga todas as freqûencias com

mesma probabilidade.

O algoritmo também permite a inserção de artefatos. Esses artefatos são inseridos na
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imagem reconstrúıda sem sub-amostragem no espaço-k, depois é realizada a transformada

direta para recriar o espaço-k e realizar a sub-amostragem se necessário, dessa forma o

artefato aparece na imagem como se tivesse aparecido no espaço-k durante a aquisição.

Os artefatos são ćırculos brancos, seu tamanho, intensidade de cor e posição são escolhidos

de forma aleatória, para não criar nenhum padrão que possa influenciar o treinamento.

A Figura 4.2 apresenta imagens com artefatos inseridos.

Figura 4.2. Imagens de joelho do banco de dados do FastMRI. (a) Imagem
de joelho do conjunto de dados de treino. (b) Artefato colocado na imagem fi-
nal sem sub-amostragem. (c) Artefato colocado na imagem final depois realizado
sub-amostragem no espaço-k da imagem com artefato. Sub-amostragem tipo HF
com start interval igual a 5 e interval igual a 2. (d) Imagem de joelho do con-
junto de dados de treino. (e) Dois artefatos colocados na imagem final sem sub-
amostragem. (f) Dois artefatos colocados na imagem final depois realizado sub-
amostragem no espaço-k da imagem com artefatos. Sub-amostragem tipo random,
com mask percentage igual a 0,5.

Após realizar o pré-processamento em todas as imagens que serão usadas pela GAN,

essas imagens são separadas em três grupos: grupo de treinamento, grupo de validação

e grupo de teste. Os três grupos podem passar por pré-processamentos diferentes de-

pendendo da aplicação que será estudada e o algoritmo permite a seleção de parâmetros

diferentes para os conjuntos de treino, validação e de teste para cada uma das trajetórias.

As imagens são armazenadas em pares contendo duas imagens do mesmo exame

posicionadas lado a lado. Do lado esquerdo é colocada a imagem que será usada no

treinamento do modelo discriminador da GAN, são imagens feitas a partir de dados

tipicamente amostradas, do lado direito é posicionada uma imagem feita com dados sub-
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amostrados de acordo com as especificações usadas no pré-processamento, essas serão as

imagens usadas pelo modelo generativo e discriminativo da GAN como entrada para criar

novas imagens. Na Figura 4.3 é posśıvel observar um exemplo de como são armazenadas

as imagens.

Figura 4.3. Imagem do conjunto de dados utilizado pela GAN. A imagem é sepa-
rada em duas partes, na esquerda a imagem feita com dados tipicamente amostrados
e a direita a imagem feita com o espaço-k sub-amostrado..

4.1.2 Rede Generativa Adversária

Finalizado o pré-processamento inicia-se a fase de aprimoramento das imagens pela

GAN. As imagens são recebidas pela GAN conforme apresentado na Figura 4.3 e o número

de imagens pode variar de acordo com as necessidades do projeto. As imagens são

separadas em três grupos: imagens de treino, de validação e de teste. As imagens de

treino são usadas no treinamento dos modelos gerador e discriminador, as imagens de

validação são usadas para checar o estado do treinamento a cada 100 épocas, e as imagens

de teste são usadas depois que os modelos já estão treinados como conjunto de imagens

a serem aprimoradas.

Para a criação das funções geradora e discriminadora foram utilizadas funções da

biblioteca tensorflow, a biblioteca foi escolhida por ser a com maior suporte para criação

de algoritmos de inteligência artificial.

O algoritmo possui alguns parâmetros modificáveis que permitem a visualização das

imagens conforme é realizado o processamento, essas opções são:

• show intermediate images - Apresenta imagens intermediárias, como por exemplo

as imagens que entram no modelo generativo e qual a sáıda esperada;

• show predicted images after training - Após a finalização do treinamento apresenta
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as imagens criadas em comparação com as imagens de entrada.colunas a terceira

será zerada.

O algoritmo também possui configurações que foram ajustadas para o seu melhor

funcionamento, são elas:

• BUFFER SIZE - Argumento usado na função “tf.data.Dataset.shuffle”, indica o

número de imagens de treinamento que serão embaralhadas para depois serem es-

colhidas, idealmente deve ser maior ou igual ao número de imagens de treinamento.

Foi configurado para sempre ter o mesmo valor que a quantidade de imagens de

treinamento.

• BATCH SIZE - O modelo é treinado com conjunto de imagens, o número de ima-

gens nesse conjunto é dado pelo BATCH SIZE. Para modelos U-Net, o ideal é que

o tamanho de batch seja igual a um[33].

• LAMBDA. Controla o impacto da perda L1 (Diferença absoluta média entre va-

lores preditos e reais) em relação a perda do discriminador. Valor que foi testado

empiricamente até chegar no ideal de 150.

No código também é posśıvel ajustar a quantidade de etapas de repetição que serão

realizadas na variável “step”, o valor normalmente ajustado é de 1000 etapas, mas esse

valor foi alterado de acordo com o desejado durante a realização dos testes.

O treinamento dos modelos usando a GPU L4 do Google colab citada anteriormente

levava em torno de 30 minutos a cada 1500 épocas do modelo usando as configurações

ideais citadas acima. O tempo de aplicação do modelo nas imagens de teste dependia da

quantidade de imagens. Para 100 imagens o modelo levava em torno de dez minutos.

As imagens de teste aprimoradas são armazenadas em uma pasta. Para cada imagem

aprimorada são geradas quatro imagens: A imagem feita com dados sub-amostrados, a

imagem feita com dados tipicamente amostrados, a imagem aprimorada e uma imagem

contendo as três primeiras lado a lado para comparação, essa quarta pode ser vista na

Figura 4.4.
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Figura 4.4. Imagens produzidas pelo algoritmo comparando as imagens de en-
trada (reconstrúıda a partir de dados sub-amostrados com a trajetória spiral1 ),
tipicamente amostrada e aprimorada.

Nas seções a seguir será explicado de forma mais detalhada o funcionamento dos

modelos gerador e discriminador contidos dentro da GAN.

4.1.3 Rede Generativa

A rede generativa foi baseada no modelo U-Net, usado em algoritmos pix2pix. O

modelo U-Net é um modelo de rede neural convolucional muito usado na segmentação

de imagens médicas pois é eficiente em extrair informações de imagens mesmo com uma

quantidade limitada de amostras. A arquitetura da U-Net consiste em um encoder onde

ocorre a redução da resolução espacial com ênfase nas caracteŕısticas da imagem (down-

samplig), e um decoder que realiza o aumento da resolução da imagem com as carac-

teŕısticas realçadas (upsampling)[33].

No encoder é realizada a operação de downsampling, que diminui as dimensões da

imagem. São utilizadas oito camadas convolucionais com diferentes quantidades de filtros

de tamanho 4x4 e salto de dois pixels para os filtros(strides = 2), a cada salto é realizada

a soma ponderada dos valores e salvo em uma nova matriz, dessa forma as dimensões da

imagem são reduzidas pela metade. No primeiro downsample são 64 filtros e cada um

desses filtros realiza as operações de saltos e somas ponderadas para gerar novas matrizes,

dessa forma gerando 64 matrizes.

No primeiro downsample também não é aplicada a normalização da batch aos dados

pois os dados ainda não passaram por transformações e aplicar a normalização nesse

momento pode excluir dados úteis, porém a normalização é aplicada nas próximas sete

camadas.

A cada camada as dimensões das matrizes são reduzidas pela metade e, para não serem

perdidas informações, a quantidade de filtros aumenta a cada downsample, começando
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com 64 na primeira camada e terminando com 512 na última.

No decoder é realizado o upsampling, que aumenta as dimensões da imagem. São

usadas sete camadas que realizam convolução transposta, com diferentes quantidades de

filtros e salto de dois pixels para os filtros (strides = 2). A cada camada são usadas

diferentes quantidades de filtros de tamanho 4x4 para recuperar a resolução da imagem,

começando com 512 para poder processar melhor os diversos detalhes, e terminando com

64 filtros. Também as três primeiras camadas são implementadas contendo dropout, essas

camadas zeram metade dos seus resultados, forçando a rede a não depender totalmente

das partes que são zeradas, evitando que o modelo não consiga generalizar os dados de

treinamento, ou seja, evitando o overfitting[37].

O decoder também possui camadas de concatenação, entre as camadas de upsampling,

essas camadas recebem, através das skip connections imagens intermediárias das camadas

de downsampling e as concatena. Skip connections são conexões entre camadas do encoder

com a camada correspondente do decoder, dessa forma, posśıveis detalhes que tenham sido

perdidos durante a etapa de donwsampling podem ser recuperados durante o upsampling.

Após cada camada de upsampling a matriz sendo processada é concatenada com a matriz

do bloco donwsampling correspondente, dessa forma são realizadas sete operações do tipo,

uma para cada skip connection.

A arquitetura completa do gerador pode ser observada na Figura 4.5, nela é posśıvel

observar também o formato em ”U”que dá nome a arquitetura U-Net.
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Figura 4.5. Arquitetura do modelo Gerador.
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Na imagem, os retângulos representam as camadas do modelo gerador. De azul temos

a camada de entrada que recebe as imagens de tamanho 512 por 512 e com os três canais

correspondendo ao RGB, mesmo que a imagem seja preta e branca ela possui os três

canais de cor com a mesma intensidade. As setas pretas representam as conexões entre

as camadas.

Os retângulos verdes representam as oito camadas do encoder, cada uma possuindo

suas próprias dimensões de entrada e sáıda, podemos ver que a cada camada, as dimensões

da imagem diminuem e o número de imagens aumenta, pois a cada camada o número de

filtros cria aquele correspondente número de imagens.

As setas rosa representam as skip connections, que ligam as camadas do encoder as

camadas do decoder. Os retângulos laranja correspondem às sete camadas do decoder e

são associadas às camadas de concatenação, representadas pelos retângulos pretos. As

camadas de concatenação recebem matrizes das skip connections e agrupa todas elas

juntas, dobrando o número de imagens. As camadas do decoder então diminuem o

número de imagens enquanto aumenta o tamanho da imagem.

Por fim, é realizada uma convolução transposta, que aumenta a resolução da ima-

gem, possui sáıda também com três canais RGB e utiliza a função de ativação tanh que

normaliza os valores da matriz entre -1 e 1.

4.1.4 Rede Discriminativa

A rede discriminativa é um modelo convolucional classificatório que deve distinguir

pares de imagens. Existem dois tipos de pares. O primeiro tipo de par contém a imagem

de entrada da GAN, feita usando dados sub-amostrados, em conjunto com a imagem

feita com dados tipicamente amostrados, chamada de imagem alvo. Esse primeiro par é

chamado de par verdadeiro. O segundo tipo de par é composto pela imagem de entrada

e a imagem gerada pelo modelo generativo, chamada de par falso.

Ele recebe duas imagens de dimensões 512x512x3 na sua camada de entrada, e as

concatena, gerando um novo conjunto de tamanho 512x512x6. São então realizadas

uma série de downsamplings em sete camadas que diminuem as dimensões da imagem

evidenciando suas caracteŕısticas. Assim como no modelo gerador, esses downsamplings

possuem filtros de tamanho 4x4, saltos de tamanho 2 (strides = 2) e possuem filtros que

vão aumentando a cada camada, começando com 64 e finalizando com 512. Também é

aplicada a regularização do L2, que penaliza pesos muito grandes na rede, forçando o

modelo a possuir pesos menores evitando o overfitting[38].

Assim como na rede geradora, em algumas das camadas de downsampling é aplicado

dropout, que desativa metade das unidades da rede convolucional de forma aleatória
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a cada atualização de pesos. Isso ajuda a rede a não ficar completamente dependente

daquelas conexões evitando assim o overfitting, ou seja, conseguindo generalizar melhor

os dados de treinamento[37].

O modelo possui uma camada que ajusta o tamanho dos dados adicionando duas

camadas de zeros aos dados (zeropadding), seguida de uma camada de convolução com

512 filtros de tamanho 4x4, saltos de tamanho 1 e regularização do L2.

Em seguida é utilizada uma camada de normalização de batch para normalizar a

camada anterior para melhorar a estabilidade do treino, seguida de uma camada que

aplica a função de ativação LeakyReLU, que mantém os valores positivos e diminui os

negativos sem zerá-los, evitando neurônios mortos e problemas de convergência.

Por fim, é aplicada mais uma camada de zeropadding e então uma última convolução

que faz com que a sáıda dos dados tenha dimensões bem reduzidas, de tamanho (None, 2,

2, 1), sendo a primeira dimensão o tamanho de batch, o segundo e terceiro o tamanho da

imagem final, e o quarto, que contém apenas um valor, o veredito do discriminador, que

vai de 0 a 1, sendo zero um par de imagens falsas, e um, um par de imagens verdadeiras.

A Figura 4.6 contém a arquitetura do modelo discriminador, com todas as suas ca-

madas e dimensões dos dados.

Figura 4.6. Arquitetura do modelo Discriminador.
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Na Figura 4.6, os blocos representam as camadas da rede, com as respectivas di-

mensões dos dados de entrada e de sáıda. Os blocos vermelhos se tratam das camadas de

entrada, seguidas pelo bloco azul que representa a camada de concatenação. Os blocos

verdes representam os downsamplings e os blocos rosa representam os dropouts. No final

do modelo, os blocos laranja representam os zeropadding, os amarelos as convoluções e

os dois blocos pretos representam primeiro a normalização de batch e função de ativação

LeakyReLU.

4.1.5 Imagens

As imagens produzidas pelo algoritmo são salvas de forma que possibilite a com-

paração entre a imagem de entrada, a imagem tipicamente amostrada e a imagem pro-

duzida conforme mostrado na Figura 4.4.

A Figura 4.7 apresenta alguns resultados para as trajetórias spiral4 (teste 78), radial

(Teste 94) e spiral1 (Teste 103). A figura apresenta as melhores imagens produzidas

pelos seus respectivos testes. As métricas com os resultados de todos os testes foram

organizadas em tabelas que podem ser observadas no repositório do Github do projeto[7].

As imagens e modelos treinados podem ser requisitadas por e-mail pois consistem em mais

de 20 Gb de material.

34



Figura 4.7. Imagens geradas pela GAN durante os testes. (a) Imagens geradas
pelo teste n° 78. (b) Imagens geradas pelo teste n° 94. (c) Imagens geradas pelo
teste n° 103.

4.1.6 Gráficos de Perda (Loss)

Nos testes mais avançados do estudo foram extráıdos as curvas da perda da rede

generativa durante o treino e a validação em função da época, para poder observar se

o modelo estava generalizando de forma satisfatória os dados evitando assim o overfit-

ting, que acontece quando o modelo só consegue bons resultados para as imagens de

treinamento. Na Figura 4.8 é posśıvel observar um desses gráficos, referentes ao teste de
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número 78, onde apesar do erro da validação estar oscilando ele não está crescendo e está

estabilizado abaixo de 100, enquanto o erro do treinamento fica próximo a zero.

Figura 4.8. Curva de perda no treino/validação do gerador em função da época.

Também foram extráıdos gráficos da perda da rede generativa e da rede discriminativa

em função da época. Esse tipo de gráfico permite observar se as redes estão equilibradas.

Caso as curvas se afastem muito, pode significar que uma rede está aprendendo mais a

cada época do que a outra, impactando nos resultados finais. A curva referente ao teste

número 78 pode ser observada na Figura 4.9.

Figura 4.9. Curva de perda do gerador e do discriminador em função da época.

Os gráficos extráıdos dos testes citados neste trabalho poderão ser observados no

repositório do github do projeto[7].
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4.1.7 Tabelas

Os resultados dos testes foram organizados em tabelas contendo os parâmetros da

GAN, e também as especificações de sub-amostragem. Na Tabela 4.1 é posśıvel observar

alguns resultados para a trajetória spiral4.

Tabela 4.1. Métricas de qualidade para testes da trajetória spiral4.

N° N° Épocas Tamanho de Buffer SSIM In SNR In (dB) SSIM Pr SNR Pr (dB) RSSIM RSNR

65 1500 1000 0,28±0,06 4,02±2,08 0,58±0,07 8,02±3,94 2,067 1,996
69 1500 1000 0,27±0,05 4,14±1,42 0,56±0,06 7,17±1,35 2,107 1,732
75 500 1000 0,28±0,06 2,92±1,63 0,58±0,08 5,55±2,05 2,096 1,900
78 1500 1000 0,33±0,05 5,15±1,65 0,66±0,05 11,53±5,90 1,977 2,241
80 1500 1500 0,29±0,06 4,02±2,15 0,63±0,08 7,84±3,85 2,180 1,948

Na Tabela 4.1 todos os testes foram realizados com 1500 imagens de treino de tamanho

512 por 512 com exceção do teste 78 que foram utilizadas 3000 imagens. O número de

voltas da espiral da trajetória spiral4 foi de 16 voltas tanto para o treino quanto para

o teste, poupando 24,8% do espaço-k. As variáveis precedidas de Pr se tratam daquelas

geradas pelo modelo (predicted), e as precedidas de In são obtidas das imagens de entrada

(input).

A Tabela 4.2 contém os melhores resultados para cada trajetória, esses resultados

foram os que obtiveram melhor relação de melhora no SSIM e maior SSIM final. Para

chegar nessa relação foi multiplicado o valor do SSIM final pelo RSSIM, e os testes com

os maiores valores da multiplicação foram considerados os melhores.

Tabela 4.2. Métricas de qualidade dos melhores resultados de cada trajetória.

Teste Espaço-k Poupado Trajetória SSIM In SNR In SSIM Pr SNR Pr RSSIM

89 50,39% HF 0,53 ± 0,10 4,74 ± 3,13 0,63 ± 0,09 7,43 ± 5,31 1,184
53 30,07% Random 0,23 ± 0,10 0,47 ± 2,33 0,50 ± 0,04 6,98 ± 3,19 2,124
103 24,49% Spiral1 0,08 ± 0,04 2,33 ± 1,30 0,38 ± 0,06 6,68 ± 3,15 4,774
80 24,84% Spiral4 0,29 ± 0,06 4,02 ± 2,15 0,63 ± 0,08 7,84 ± 3,85 2,180
94 6,14% Radial 0,53 ± 0,11 5,38 ± 3,38 0,65 ± 0,09 7,40 ± 4,98 1,246

4.2 Discuss~ao

Após os 110 testes foram obtidos resultados que melhoraram as métricas de qualidade

das imagens. Serão discutidos sobre os detalhes, assim como as métricas de qualidade,

imagens produzidas e estat́ısticas que podemos extrair desses testes.
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4.2.1 Métricas de Qualidade

Analisando os resultados obtidos foi posśıvel observar padrões nas métricas de qua-

lidade obtidas e nas caracteŕısticas das imagens. Tomemos o teste número 80 citado na

Tabela 4.1, a média de SSIM das imagens geradas foi de 0,63, porém foram analisadas

as métricas individuais de cada imagem de teste, e os dados organizados no diagrama

boxplot da Figura 4.10.

Figura 4.10. Boxplot de SSIM para imagens de entrada e sáıda do teste 80.

Pelo boxplot é posśıvel observar que todas as imagens do conjunto foram aprimoradas,

e apesar da média de SSIM das imagens aprimoradas ser de 0,63, algumas imagens

possuem SSIM acima de 0,7. Na Figura 4.11 estão todas as imagens do teste 80 que

obtiveram SSIM acima de 0,7.
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Figura 4.11. Melhores imagens produzidas no teste 80. (a) SSIM = 0,72. (b)
SSIM = 0,80. (c) SSIM = 0,81.

Assim como nas imagens (b) e (c), que foram as melhores imagens produzidas nesse

teste, as melhores imagens produzidas em outros testes também tinham a caracteŕıstica

de serem mais escuras, com alguns poucos detalhes claros, como mostrado anteriormente

na Figura 4.7

Isso mostra um padrão, onde as imagens mais escuras obtém maiores valores de

SSIM pois devido ao fato de que as imagens sendo comparadas possuem poucos detalhes

e baixa amplitude dos pixels faz com que as imagens geradas se assemelhem mais com as

imagens referência. Porém essas imagens possuem baixo SNR devido a baixa amplitude

dos pixels. Considerando que o SNR médio para o teste 80 foi de 7,84 dB todas as
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imagens da Figura 4.7 conseguiram resultados abaixo da média possuindo: (a) SNR =

4,50 dB, (b) SNR = 2,66 dB e (c) SNR = 4,63 dB. Esse aspecto mostra a importância

de analisar SSIM e SNR sempre em conjunto

Outro ponto interessante a ser observado é o boxplot da média do SSIM das imagens

geradas nos testes onde ocorreu melhora nas métricas de qualidade, correspondente a 71

dos 103 primeiros testes realizados. A Figura 4.12 apresenta o boxplot da média do SSIM

das imagens de entrada e das imagens geradas por testes onde o RSSIM foi maior do que

um, ou seja, ocorreu melhora nas imagens.

Figura 4.12. Boxplot do SSIM de testes que ocorreram melhora nas métricas de
qualidade.

Na Figura 4.12 é posśıvel observar que as métricas das imagens de entrada tendem a

ser bem dispersas, e ao passarem pela GAN elas tendem a ter um menor desvio padrão.

E além disso o algoritmo tende a convergir em volta da média de 0,57 de SSIM, com

imagens de entrada com diferentes SSIM passando a ter um SSIM perto dessa média

após a GAN.
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4.2.2 Completar Espaço-k

Durante os testes foi testada a abordagem citada anteriormente na seção de Trabalhos

Correlatos do estudo “Deep learning for undersampled MRI reconstruction”[20]. O teste

foi realizado de duas formas diferentes, na primeira os espaços-k das imagens geradas pela

GAN eram usados para completar o espaço-k das imagens de entrada, assim gerando um

novo espaço-k e consequentemente uma nova imagem, as métricas então eram comparadas

com as imagens referência e também com as imagens antes da fusão dos espaços-k. Nos

testes realizados dessa primeira forma não foram observadas melhoras, e sim uma leve

queda no SSIM das imagens. Na Figura 4.13 é posśıvel observar as imagens de um dos

testes, e na Tabela 4.3 a média das métricas de cem imagens testadas.

Figura 4.13. Imagens do teste que combina os espaços-k.

Tabela 4.3. SSIM das imagens obtidas com o teste que combina os espaços-k.

SSIM In SSIM Pr SSIM Comb

0,290 ± 0,02 0,493 ± 0,03 0,295 ± 0,03

A segunda forma de testar o método de junção do espaço-k foi usar a imagem produ-

zida a partir da junção como nova imagem de entrada para o modelo gerador repetindo

o processo várias vezes. Testou-se dessa forma pois esperava-se que o modelo treinado

para melhorar imagens seria capaz de melhorar outras imagens mesmo que essas tivessem

parâmetros de amostragem diferentes, porém também não foram obtidos bons resultados,

como mostrado na Figura 4.14.
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Figura 4.14. Imagens referência, de entrada, geradas e combinadas para com-
paração. A imagem referência é a feita a partir do espaço-k tipicamente amostrado,
a imagem de entrada é a feita com o espaço-k sub-amostrado, as imagens geradas
são aquelas produzidas pelo modelo e as combinadas são as feitas a partir da com-
binação do espaço-k da imagem gerada com a imagem de entrada.

4.2.3 Comparação com Outros Modelos

Os resultados e métricas obtidas durante os testes foram comparados com aqueles

disponibilizados pelo grupo FastMRI em sua tabela de classificação. Apesar das tra-

jetórias usadas neste trabalho não serem as mesmas usadas pelos competidores na época,

o conjunto de dados foi o mesmo, o de imagens de joelho com bobina única.

Para realizar a comparação foram selecionados os algoritmos criados na época que

processavam espaços-k com 4% das suas baixas frequências preservadas e com diferentes

taxas de amostragem no restante do espaço-k. Para a comparação, foi selecionado o

melhor resultado obtido no algoritmo feito para este trabalho com a sub-amostragem

no centro do espaço-k semelhante. Para isso foi escolhido um teste usando a trajetória

spiral4 que possui 2,11% das baixas frequências poupadas.
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Na Tabela 4.4 é posśıvel observar a comparação entre os resultados obtidos pelo

algoritmo feito neste trabalho (Mestrado), o algoritmo com melhor resultado do desafio do

FastMRI (AIRS-Net) e o melhor algoritmo GAN (UnetGan) na tabela da competição. O

teste do mestrado considerado para a comparação é o teste 78. Não foram comparadas as

relações sinal rúıdo pois neste estudo foi usado SNR por área de interesse, e na competição

do FastMRI foi usada a relação sinal rúıdo de pico.

Tabela 4.4. Comparação do modelo criado com os da competição do FastMRI.

Algoŕıtmo SSIM

AIRS-Net 0,6927
UnetGan 0,6061
Mestrado 0,6569

Os modelos criados para a competição não conseguiram valores maiores do que 0,7.

Durante os testes do mestrado a maior parte das imagens acima de 0,65 possuem baixo

contraste e a maior média obtida em um teste é de 0,73. Esse comportamento dos

resultados pode ser creditado ao fato de que o conjunto de dados usado é de bobina

única, nele o espaço-k obtido vêm de várias bobinas que são combinados em um único

espaço-k para diminuir o tamanho ocupado em memória porém perdendo alguns dados.

A tabela de classificação possui os resultados da competição de imagens de cérebro,

que usa um conjunto de dados obtido de várias bobinas. Nos modelos em questão os

resultados conseguiram alcançar valores de até 0,96. Porém o uso desse tipo de conjunto

de dados é mais limitado devido ao espaço ocupado em memória. O conjunto completo

de imagens de cérebro multi-bobina passa de 500Gb.

Outro ponto interessante de se notar é que em estudos onde se obteve melhores resul-

tados, como o estudo com GANs citado nos trabalhos correlatos, os dados são obtidos de

forma que evidencie alguma caracteŕıstica na frequência, não sendo o intuito do mestrado,

que era usar dados da forma como são obtidos em exames hoje.

4.2.4 Comparação Entre Trajetórias

A Tabela 4.2 apresentada anteriormente apresentou os melhores resultados para cada

uma das trajetórias. Foi multiplicado os valores de SSIM Pr e RSSIM de cada teste,

aqueles com os maiores resultados foram considerados os melhores, por combinar alto

valor de SSIM da imagem gerada e alta taxa de crescimento do SSIM.

Nesses testes foi observado que as trajetórias que poupavam mais as baixas frequências
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(HF, spiral4 e radial) obtiveram os maiores valores de SSIM da imagem gerada, isso acon-

tece pois a maior parte da informação de um espaço-k está contido nas baixas frequências.

Essa informação se confirma ao observar o teste com a trajetória radial, a que mais poupa

as baixas frequências, em que apenas 6,14% do espaço-k foi poupado, porém a imagem de

entrada possui SSIM de 0,53. Esse comportamento mostra que a GAN consegue melho-

res resultados quando é treinada com imagens que possuem mais informações nas baixas

frequências do seu espaço-k.

Porém é interessante notar que o maior crescimento de SSIM foi obtido com a tra-

jetória spiral1, aumentando o valor de 0,08 da imagem de entrada para 0,38. Com um

conjunto de dados mais vasto, poderia-se testar a possibilidade de gerar um novo conjunto

de dados de treino e treinar um novo modelo com essas imagens, e assim poder investigar

se ocorreria uma melhoria ainda maior nas imagens finais. Essa forma de repetição difere

da testada durante o mestrado, pois realiza um novo treinamento com um novo conjunto

de dados ao invés de repetir usando o modelo previamente treinado, porém por realizar

um novo treinamento precisaria de mais imagens para gerar um conjunto de treinamento

novo.

Outro ponto interessante de se notar na tabela com os melhores resultados é o au-

mento do SNR para o teste da trajetória random. Apesar de não conseguir atingir um

SSIM acima de 0,6 como os melhores testes, o teste com a máscara random conseguiu di-

minuir de forma significante o rúıdo da imagem de entrada como mostrado na Figura 4.15,

aumentando assim o SNR de 0,47 dB para 6,98 dB.

Figura 4.15. Imagem produzida pelo teste n° 53.
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5 Conclus~ao

O estudo realizou a reconstrução de imagens de ressonância magnética a partir de

dados sub-amostrados de bobina única usando redes generativas adversárias. GANs são

ferramentas poderosas no processamento de imagens e foi investigado o uso dessa fer-

ramenta para o aprimoramento de imagens de ressonância feitas a partir de dados em

diferentes cenários de sub-amostragem.

O trabalho foi capaz de reconstruir imagens de ressonância magnética feitas a partir

de dados sub-amostrados, melhorando as métricas de qualidade das imagens de entrada.

O modelo GAN foi capaz de obter a melhora com diferentes tipos de trajetórias e dife-

rentes padrões de sub-amostragem apresentando um limite do quanto poderia melhorar

as imagens.

Os melhores resultados foram obtidos para as trajetórias HF, spiral4 e radial. Essas

trajetórias são as que mais poupam as baixas frequências do espaço-k. Porém, bons

resultados também foram obtidos com as trajetórias random, que obteve alta melhora no

SNR e spiral1 que conseguiu melhorar de forma significativa o SSIM, ambos inicialmente

muito baixos nas imagens de entrada do modelo.

Foi posśıvel atingir os hiperparâmetros ideais para a GAN através de testes e do

estudo da literatura, baseando as decisões em trabalhos correlatos que abordaram temas

como GANs, U-Net e pix2pix.

Ao comparar o modelo criado com aqueles feitos para a competição do FastMRI,

foi posśıvel observar que os resultados obtidos conseguiram se equiparar aos resultados

obtidos por modelos trabalhando com o mesmo conjunto de dados, e quando comparado

com outras GANs foi capaz de superá-las.

Apesar da obtenção de resultados positivos, o fato do uso de um conjunto de dados de

bobina única limita a obtenção de métricas próximas a 100%. Esse tipo de conjunto de

dados combina os espaços-k de várias bobinas em um só espaço-k, simulando uma bobina

única, porém nesse processo muita informação é perdida. Para efeitos de comparação, o

conjunto de dados de treino de bobina única de imagens de joelho possui 70 GB enquanto o

multi-bobina possui 455 GB. Conjuntos de dados de múltiplas bobinas, poderiam permitir

melhorias mais expressivas na qualidade das imagens geradas, porém são mais exigentes
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em termos computacionais.

Em trabalhos futuros serão testados conjuntos de dados mais amplos, com múltiplas

bobinas e um pré-processamento auxiliado por inteligência artificial, uma vez que mode-

los classificatórios conseguiram bons resultados ao preparar os conjuntos de dados para

treinamento [8]. Também serão realizados testes em que as imagens geradas pelo modelo

possam ser usadas como conjunto de treinamento para um outro modelo, fazendo assim

um aprimoramento em múltiplos estágios de treinamento.

Outra abordagem que será estudada em trabalhos futuros é o processamento dos

espaços-k no aprimoramento das imagens. Duas formas serão abordadas, a primeira

treinando a GAN diretamente com os espaços-k ao invés das imagens reconstrúıdas,

gerando espaços-k aprimorados.

A segunda forma, usando espaços-k de conjuntos multi-bobina reconstruindo as ima-

gens a partir de cada um dos espaços-k. Dessa forma, um exame usando quatro bobi-

nas geraria quatro imagens diferentes incompletas, porém cada uma possuindo aspectos

únicos devido às diferenças nos espaços-k.
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