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RESuUMO

Redes generativas adversarias (GANs) sao um modelo de inteligéncia artificial muito
usado no processamento de imagens. Neste trabalho serda abordado o uso dessa ferramenta
no auxilio a reconstrugao de imagens de ressonancia magnética feitas com dados de bobina
unica sub-amostrados. A GAN foi usada para melhorar as métricas de qualidade das imagens
reconstruidas com diferentes trajetérias, e que apresentavam distorcoes por nao respeitarem
o teorema da amostragem de Nyquist—-Shannon. Testes sao realizados alimentando o mo-
delo treinado com imagens feitas com dados sub-amostrados e entao gerando novas imagens
aprimoradas. O modelo gerador da GAN recebe imagens feitas com dados sub-amostrados
e tenta criar imagens aprimoradas baseadas em imagens tipicas de ressonancia magnética,
enquanto o modelo discriminador da GAN recebe as imagens geradas e as imagens tipicas
e tenta adivinhar quais sao verdadeiras e quais sao falsas. A cada época os dois modelos
se refinam baseando-se no veredito do discriminador, melhorando a qualidade das imagens
geradas. Por fim, sdao extraidas métricas das imagens produzidas como indice de similari-
dade estrutural e relacao sinal ruido. Foram obtidos aumentos de até 100% no indice de
similaridade estrutural médio e de até 128,74% na relagao sinal ruido média (Teste 78).
Os resultados obtidos se equiparam a resultados de outros modelos que usaram o mesmo

conjunto de dados e superaram outros modelos GANs nesse mesmo aspecto.

Palavras-chave: Ressonancia Magnética; GAN; Reconstrucao; Sub-amostrado; Inteligéncia
Artificial.
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ABSTRACT

Generative adversarial networks (GANs) are an artificial intelligence model widely
used in image processing. This paper will address the use of this tool to aid in the
reconstruction of magnetic resonance images made with undersampled single-coil data.
The GAN was used to improve the quality metrics of images reconstructed with diffe-
rent trajectories, which presented distortions due to not respecting the Nyquist—-Shannon
sampling theorem. Tests are performed by feeding the trained model with images made
with undersampled data and then generating new enhanced images. The GAN generator
model receives images made with undersampled data and tries to create enhanced images
based on typical magnetic resonance images, while the GAN discriminator model receives
the generated images and the typical images and tries to guess which are true and which
are false. At each epoch, the two models refine themselves based on the discriminator’s
verdict, improving the quality of the generated images. Finally, metrics such as struc-
tural similarity index and signal-to-noise ratio are extracted from the produced images.
Increases of up to 100% in the average structural similarity index and up to 128.74% in
the average signal-to-noise ratio were obtained (Test 78). The results obtained are similar
to results from other models that used the same data set and outperformed other GAN

models in this same aspect.

Keywords: MRI; GAN; Reconstruction; Undersampled; Artificial Intelligence.
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1 INTRODUCAO

Exames de imagem estao entre as ferramentas mais utilizadas na medicina para o
diagnéstico e tratamento de diversas patologias. Entre os diversos tipos de exames, a
ressonancia magnética tem se mostrado um dos mais versateis exames de imagem e o seu

uso cresce a cada ano [30].

A ressonancia magnética é capaz de obter imagens de corpos moles ou densos e até
mesmo de fluxo, volume e oxigenagao do sangue [25]. Também é um exame que utiliza
de radiagdo nao ionizante, o que traz riscos significantemente menores para saude se
comparados com outros exames de imagem, como por exemplo tomografias [17], que
apesar de se tratar de um exame seguro e com quantidades aceitaveis de radiagao nao
pode ser feito frequentemente para que a dose de radiacao absorvida pelo corpo nao
ultrapasse os limites, que caso ocorra aumentam as chances de surgimento de cancer no

paciente [4].

1.1 PROBLEMA

Um dos pontos negativos do exame de ressonancia é o desconforto causado pelo
procedimento. O exame dura em torno de 30 minutos, o paciente deve ficar sem se
movimentar em um ambiente apertado e ruidoso. O ambiente do exame se torna um
local dificil de permanecer por muito tempo causando movimentacao involuntaria em
alguns pacientes e essa movimentacao atrapalha a aquisicao dos sinais, prejudicando a
qualidade da imagem final com a criacao de artefatos [41]. Outro ponto negativo é que
devido ao longo tempo de exame, poucos podem ser realizados por dia, aumentando o seu
prego, fazendo com que exames de ressonancia magnética estejam entre um dos exames

mais caros de imageamento médico [31].

O exame de ressonancia magnética consiste em aplicar uma sequéncia de pulsos
magnéticos ao longo do corpo do paciente, fazendo com que os ntucleos de hidrogénio
dos atomos do corpo se alinhem com o campo imposto. Primeiramente é aplicado um
campo magnético gradiente ao longo do corpo do paciente chamado de campo magnético
principal (By(z)), esse campo faz com que os niicleos de hidrogénios se alinhem a ele. Um

pulso magnético (By) é aplicado perpendicular ao primeiro, como mostrado na Figura 1.1,



fazendo com que os nticleos se alinhem ao novo campo. Quando o segundo campo ¢é desli-
gado, os atomos tendem a se alinhar novamente com o primeiro campo voltando a posi¢ao
original, porém nesse processo eles emitem um pequeno campo magnético que varia para

atomos em diferentes partes do corpo.

Figura 1.1. Orientacdo do campo magnético By(z) e pulso Bj.

Bobinas distribuidas ao redor do paciente detectam a intensidade do campo magnético
emitido por esses atomos de hidrogénio que voltam a se alinhar ao primeiro campo. Sao
realizadas seguidas alteragoes na frequéncia (codificagao de frequéncia) e fase (codificagao
de fase) do segundo campo emitido, sempre coletando a resposta do corpo a essas al-
teracoes no campo. Os sinais obtidos do corpo sao organizados em uma matriz complexa,
onde cada valor possui uma frequéncia e uma fase, essa matriz é denominada espagco-k.
Por essa matriz se tratar de um espectro de frequéncias e fases é possivel transforma-la em
uma imagem de um corte transversal do paciente através de uma transformada inversa
de Fourier [27].

Quanto maior o tamanho dessa matriz, ou seja, quanto maior a quantidade de sinais
obtidos do corpo, maior a nitidez da imagem final [13], porém para obter uma quantidade
maior de sinais, é necessario um maior tempo de exame, o que aumenta o desconforto
do paciente e diminui a quantidade de exames feitos por dia o que consequentemente

aumenta o prego desse exame.

Uma das formas de diminuir o tempo de exame é adquirindo menos amostras de
sinal do corpo, porém com a diminuicao do niimero de amostras diminui-se a qualidade
da imagem final obtida. A imagem reconstruida com menos amostras fica borrada, com
poucos detalhes, na Figura 1.2 é apresentada uma comparacao entre a qualidade das ima-
gens reconstruidas para diferentes quantidades de etapas de codificacao de fase realizada
na aquisicao dos dados. Deve-se entao encontrar um equilibrio entre tempo de exame

(quantidade de amostras obtidas) e nitidez desejada para a imagem final.

Estudos sao realizados na area de ressonancia magnética buscando diminuir o tempo

dos exames adquirindo menos sinais do corpo, porém sem comprometer a qualidade



(a) (b)

Figura 1.2. Comparacao entre imagens produzidas a partir de aquisicao com
diferentes nimeros de etapas de codificagao de fase. (a) 2 etapas de codificagao de
fase. (b) 16 etapas de codificac@o de fase. (c) 256 etapas de codificagdo de fase.
Adaptado de [13].

das imagens. Técnicas como imageamento paralelo, Compressed Sensing, melhora nos
gradientes de campo magnético e melhora na sequéncia de pulsos magnéticos sao apenas
algumas das técnicas empregadas buscando a diminuicao desse tempo. Reduzir o tempo
do exame também traz o beneficio de otimizar o tempo da méquina, exames mais velozes

permitiriam que mais pacientes sejam examinados diminuindo o custo.

Existem vérias frentes de estudo que buscam obter imagens de qualidade mesmo
com amostras abaixo do minimo necessario para uma reconstrugdo comum, como por
exemplo o uso de Compressed Sensing, que consegue recuperar imagens a partir de sinais

amostrados abaixo da taxa de Nyquist [34].

Uma dessas frentes de estudo é o uso de aprendizado de maquina na reconstrucao e
no aprimoramento dessas imagens. Modelos de processamento de imagens que utilizam
machine learning e deep learning sao amplamente utilizados pois conseguem perceber
padrdes que normalmente outros modelos matematicos ou de software nao conseguiriam
[24]. Desde reconhecimento facial até a identificagdo de tumores em imagens médicas,
modelos sao treinados com diversas imagens, para entao serem aplicados em imagens

reais buscando classificé-las, identificando rostos, tumores, ou o que for necessério [2].

O uso de inteligéncia artificial na induistria médica também tem crescido muito nos
ultimos anos como forma de auxilio a diagnodsticos e otimizacao de processos. No ano de
2023 o tamanho do mercado de aplicacoes de inteligéncia artificial em imageamento por
ressonancia magnética chegou ao valor de 5,9 bilhoes de délares, e a previsao é que esse

valor alcance 16,65 bilhdes em 2034, como mostrado na Figura 1.3 [32].

O uso de processamento de imagens através de inteligéncia artificial para reconstrucao

de imagens de ressonancia ainda estd sendo refinado, as pesquisas estao aumentando e



Yrecedence
RESEARCH

Artificial Intelligence in MRI Market Size 2023 to 2034
(USD Billion)

@

$16.65
$15.15
$13.79

$12.55
$11.42

$8.60
$7.83

$5.00 ¥6:48

2023 2024

-

X3

2033

2032

2031

$10.39
$9.45 I |

2028 2029 2030

2027

$7.12 I
2025 2026

2034

Figura 1.3. Valor de mercado da inteligéncia artificial no imageamento por res-
sonancia magnética[32].

Source: hitps:/iwww.pn 1.com/artificial-intelligence-in-mri-market

iniciativas como as competicoes realizadas pelo grupo FastMRI auxiliam na obtencao de

resultados cada vez melhores [42].

A reconstrucao da imagem utilizando inteligéncia artificial busca realcar informacoes
importantes através do processamento da imagem. O algoritmo realiza essa etapa em
varias imagens diferentes, através de tentativa e erro, melhorando a cada teste o resultado
final. Ao final da anédlise de todas as imagens, o modelo tera criado regras préprias sobre o
valor de cada informagao e o que deve ou nao analisar, o processo é realizado novamente,
sO que agora com parametros iniciais mais refinados do que a iltima vez, cada uma dessas
analises, chamada de época ou geracao, aumenta gradativamente a qualidade da imagem
produzida pelo algoritmo. Apds realizado todo o treino, o modelo é testado com imagens

novas para verificar o seu desempenho e assim chegar em um resultado final [24].

Um dos problemas enfrentados ao treinar modelos de inteligéncia artificial como
GANs é a necessidade de grande quantidade de dados para o modelo obter melhores
resultados. Como imagens médicas sao recursos limitados sao utilizadas formas para ex-
pandir o conjunto de dados. Algumas dessas formas sao rotacionar as imagens, cortar
trechos das imagens gerando novas entre outras. Esse tipo de procedimento é chamado

de data augmentation e é muito usado na criagao de modelos de inteligéncia artificial [21].

Treinar modelos de inteligéncia artificial capazes de perceber padroes em imagens
criadas a partir de espacos-k sub-amostrados e aprimora-las tem sido um grande desa-
fio, porém tem gerado bons resultados que podem mudar o futuro do imageamento por

ressonancia magnética, com exames velozes e com alta qualidade.



1.2 PROPOSTA DE PESQUISA

Redes Generativas Adversariais (GANs) sao um dos modelos de inteligéncia artificial
que mais estao sendo estudados para o processamento de imagens. Ao buscar pelo termo
“Generative Adversarial Networks” no Google Trends, é possivel observar o interesse no
assunto ao longo do tempo baseado no nimero de pesquisas realizadas no Google, como
mostrado no grafico da Figura 1.4. O ntimero de buscas nos tltimos anos aumentou e isso
se reflete nos artigos publicados, realizando uma busca na base do CAPES por artigos
contendo o termo ““Generative Adversarial Networks” or “GAN”” entre os anos de 2016
e 2019 obtém-se 2.307 resultados, ao realizar a mesma busca porém entre os anos de 2020
e 2023 obtém-se 10.641 resultados, o que mostra que a ferramenta esta se mostrando

promissora e que os estudos na area estao aumentando.

Interesse ao longo do tempo

Figura 1.4. Resultados de buscas relacionadas a GANs nos ultimos dez anos
segundo o Google Trends.

O modelo de uma GAN é separado em duas redes neurais distintas, uma geradora
que cria imagens para simular imagens de um conjunto de dados, ou seja, falsas imagens
de ressonancia no contexto do projeto, e uma rede neural discriminadora que avalia se
as imagens criadas pertencem ao conjunto de dados original ou se foram criadas. Caso
a imagem criada seja apontada como falsa, a primeira rede neural faz ajustes e repete o
processo, dessa forma as duas redes neurais sao aperfeicoadas com o tempo, a primeira em
criar imagens cada vez mais semelhantes com as do conjunto de dados, e a segunda cada
vez mais refinada em apontar imagens criadas [29]. Modelos desse tipo podem se mostrar
capazes de melhorar a qualidade de imagens de ressonancia magnética sub-amostradas
através do seu processo de aprimorar imagens até que essas se confundam com um grupo
controle, que no caso seria de imagens reconstruidas a partir de espagos-k tipicamente

amostrados [8].

Redes adversarias generativas poderiam entao ser utilizadas na reconstrucao de ima-
gens de ressonancia magnética no intuito de melhorar as métricas de qualidade final

da imagem. A GAN seria utilizada apds a reconstrugao da imagem feita com dados



sub-amostrados, alimentando o modelo com essas imagens distorcidas com o objetivo
de produzir imagens com métricas de qualidade superior as imagens de entrada. Dessa
forma podem ser testados diferentes tipos e graus de sub-amostragem procurando aquele

em que a GAN gera melhores resultados [8].

Uma das limitagoes para o uso de GANs ¢ a necessidade de uma grande quantidade
de imagens de treinamento, isso facilita que o modelo generalize melhor os dados e nao
aprenda a melhorar apenas as imagens de treino. Como imagens médicas nao sao de
facil acesso e por isso a quantidade disponivel é limitada, foram aplicadas técnicas de
aumento de dados (data augmentation) que possibilitam a extragdo de mais informagoes

do conjunto de dados criando novas imagens a partir deles [21].

Outra limitagao é a necessidade de alta capacidade computacional. Computadores
necessitam de unidades gréficas fortes para poder realizar o processamento das imagens,
porém algumas ferramentas online auxiliam nesse ponto, como o uso do ambiente de
programacao do Google. O Google Colab possui alto poder computacional de forma
gratuita para pesquisa através da GPU Tesla T4 e também a possibilidade de maquinas
com maior capacidade através de pagamento de mensalidade. Para esse trabalho foi

usada a GPU L4, que requer pagamento de mensalidade, com 22,5 GB e uma memoria

RAM de 53 GB [16].

1.3 OBJETIVOS
1.3.1 Objetivo Geral

Reconstruir imagens de ressonancia magnética a partir de dados sub-amostrados de
bobina tnica utilizando GANs e comparar a qualidade das imagens geradas por meio das

métricas SSIM e SNR para diferentes taxas de amostragem e trajetérias.

1.3.2 Objetivos Especificos

e Criar conjuntos de treino e teste com imagens feitas com dados com diferentes

parametros de sub-amostragem;

e Desenvolver um algoritmo para extrair as métricas de qualidade média(SSIM e

SNR) das imagens reconstruidas;

e Ajustar a hiperparametrizagao da GAN para conjuntos de teste com diferentes

trajetorias de sub-amostragem;

e Analisar e apresentar os resultados da pesquisa com base na avaliacao experimental.



2 FUNDAMENTAGAO TEORICA

Para embasar o projeto, foi realizada uma pesquisa tedrica sobre a aquisicao de ima-
gens de ressonancia magnética, para entender o processo de como os dados sao obtidos e

transformados em imagens.

Em seguida foi realizada um levantamento de literatura cientifica para criar um acervo
de artigos que abordam o que estda sendo estudado atualmente no tema, esses artigos

formam parte do referencial tedrico da pesquisa.

Foi realizado também um estudo sobre GANs, como funcionam e como é o processo
de treinamento e producao de imagens, e como essa ferramenta poderia auxiliar na re-

construcao e aprimoramento de imagens de ressonancia magnética.

2.1 AQUISIGAO DE DADOS E RECONSTRUGAO DA IMAGEM

A imagem obtida no exame de ressonancia magnética é o resultado final de uma série
de procedimentos que envolvem aplicacao de um campo magnético intenso, a emissao de
pulsos de radiofrequéncia em uma determinada regiao de estudo do paciente, a coleta
de dados e, por fim, a reconstrucao da imagem. Os procedimentos serao abordados em

detalhes nas se¢oes a seguir.

2.1.1 Campo Magnético Principal e Vetor Magnetizacao

O equipamento de ressonancia magnética consiste em um tubo onde uma maca é
posicionada no interior, este tubo possui varias bobinas ocultas dispostas em volta do

corpo do paciente que tanto produzem quanto captam campos magnéticos [35].

Com o paciente deitado dentro do equipamento, é aplicado primeiramente um campo
magnético gradiente ao longo do corpo do paciente, chamado de dire¢ao z, dessa forma o

campo magnético é menos intenso no pé do paciente e mais intenso na cabega [27].

Os spins dos dtomos de hidrogénio presentes no corpo do paciente tendem entao a ali-
nhar seu proprio campo magnético com o campo magnético gradiente imposto realizando

um movimento de precessao. O movimento se caracteriza pela movimentacao circular de



um eixo formando um cone. Devido ao campo magnético gradiente os diferentes spins
irdo precessar em frequéncias diferentes como descrito pela equagao de Larmor (Equagao
2.1) , e é através dessa diferenca na frequéncia de cada parte do corpo que é feita a
selecao de corte, pois os sinais emitidos por cada parte do corpo vao possuir diferentes

frequéncias [27].

w = vBy, (2.1)

Na formula, w é a frequéncia de precessao, By é a intensidade do campo magnético no
corte e 7y é a razao giromagnética, que para o hidrogénio é de 42,58 MHz/T. Dessa forma
o campo magnético gradiente também ¢é chamado de campo magnético principal, ou de

gradiente de selecao de corte [27].

Os atomos imersos entao no gradiente de selecao de corte tendem a se alinhar pa-
ralelamente (dire¢do z) ou antiparalelamente (dire¢do -z) ao campo principal enquanto
realizam o movimento de precessao. Porém a maior parte desses atomos se alinham para-
lelamente gerando assim um campo magnético resultante chamado de vetor magnetizacao

resultante (M) que se alinha entdo ao eixo z, como mostrado na Figura 2.1. [27].

z Z

[ w,

(é) (b)

Figura 2.1. (a) Vetores dos campos magnéticos dos dtomos de hidrogénio se
alinhando paralelamente e antiparalelamente a direcao z. (b) Vetor magnetizagao
resultante criado pelo movimento dos dtomos de hidrogénio. Imagem retirada de
[27] e modificada.

Outros atomos poderiam ser escolhidos para realizagao do exame, porém o hidrogénio
se mostra a melhor escolha por ser o terceiro elemento mais presente no corpo humano,
os atomos de hidrogénio possuem alto momento magnético tornando-os mais sensiveis a
campos magnéticos externos e moléculas que contém hidrogénio diferem bastante entre

tecidos saudaveis e tecidos com alguma patologia [27].



Com os atomos alinhados ao campo magnético principal o exame avanca para a etapa
de aplicagao de pulsos de radiofrequéncia, nessa etapa sao obtidos os dados do corpo do
paciente que serao usados na reconstrucao da imagem, o procedimento é explicado em

detalhes na préxima secao.

2.1.2 Pulso de Radiofrequéncia

Para obter os sinais, bobinas sao posicionadas em volta do paciente. Essas bobinas
captam os sinais de radiofrequéncia induzidos pela precessao dos ntcleos de hidrogeénio.
Elas sao posicionadas de forma a captar sinais perpendiculares ao campo magnético
principal, nao sendo capazes de captar os sinais gerados pelos atomos de hidrogénio que

estao paralelos a ele [35].

Para as bobinas em volta do corpo do paciente captarem o sinal é necessario entao
desviar o vetor magnetizacao resultante gerado pelos nticleos de hidrogénio de forma per-

pendicular ao campo magnético principal, para isso sao usados pulsos de radiofrequéncia.

O pulso de radiofrequéncia (RF) é um campo magnético com sinal perpendicular ao
campo magnético principal ele é ligado e desligado logo em seguida, por isso denominado
como pulso. Quando o pulso é aplicado todos os nicleos de hidrogénio que estavam para-
lelos ao campo principal se alinham a ele, assim as bobinas laterais conseguem detectar

a magnetizagao transversal gerada por esses nicleos [27].

Ao desligar o pulso de RF, os atomos de hidrogénio tendem a relaxar e se alinhar no-
vamente com o campo magnético principal gerando novamente uma magnetizagao longi-
tudinal, porém esse alinhamento nao acontece de forma instantanea, atomos em diferentes
moléculas terao tempos diferentes de alinhamento. Sao entao estipuladas duas variaveis
para agrupar esse tempos de relaxamento, a constante T1 indica o tempo necessario para
a magnetizacao longitudinal recuperar 63% da sua intensidade apds o desligamento do
pulso de RF, e o tempo T2 indica o tempo necessario para a magnetizacao transversal
atingir 37% da intensidade original do vetor magnetizacao apds o desligamento do pulso
de RF [23]. Os tempos T1 e T2 variam de acordo com o tecido do corpo humano como
pode ser visto na Tabela 2.1 e é essa diferenca que ird gerar diferencas de contraste na

imagem final.

Sao emitidos diversos pulsos de RF ao longo do exame, e a cada repeticao de pulso sao
coletados os sinais vindos do corpo. Um exame de ressonancia pode ter varias repeticoes
dessas etapas, de acordo com o tipo de exame e qualidade final desejada para a imagem
[13]. Na préoxima segao serda detalhado o processo de sequéncia de pulsos para obtengao
dos dados.



Tabela 2.1. Tempos T1 e T2 para diferentes tecidos do corpo humano para um
exame realizado com campo magnético de 3T [36].

Tecido T1 [ms] T2 [ms]

Sangue 1932 £ 85 275 + 50
Massa Cinzenta 1820 + 114 99 + 7
Matéria Branca 1084 + 45 69+ 3

Nervo Optico 1083 £39 78 £ 5

2.1.3 Codificacao de Frequéncia e de Fase

O sinal emitido pelos ntcleos de hidrogénio é detectado pelas bobinas locais. Esse
sinal é composto de sinais emitidos por cada um dos nicleos de hidrogénio do corpo do
paciente, para selecionar apenas o corte desejado o sinal é filtrado pela frequéncia de

precessao dos spins no corte desejado, como explicado anteriormente [27].

Selecionando o corte é possivel captar apenas os sinais emitidos naquela area do corpo.
O sinal obtido é a soma da amplitude dos sinais de todos os nticleos de hidrogénio naquele
corte, porém esses dados estao desorganizados e para isso foi criada a codificacao de fase

e codificagao de frequéncia para maped-los [27].

A codificacao de frequéncia e de fase mapeiam o corte nos eixos horizontal e ver-
tical respectivamente. A cada etapa do exame é aplicado pulsos com frequéncia e fase
especificos e entao medido a amplitude do sinal, essa amplitude entao é armazenada em
uma matriz onde o eixo horizontal é a frequéncia e o vertical e a fase dos sinais. O
processo ¢é repetido diversas vezes, e as diferentes configuracoes de frequéncia e fase sao

os pares ordenados dessa matriz [27].

A matriz onde os sinais de amplitude sdao armazenados é chamada de espago-k. Cada
ponto dessa matriz é a amplitude do sinal em determinado momento do exame e por
se tratar de uma matriz que estd em funcao de frequéncia e fase podemos aplicar uma
transformada de Fourier de duas dimensoes e obter uma nova matriz no dominio espacial,

e essa nova matriz é a imagem do corte transversal [27].

2.1.4 Espaco-k

O espaco-k é uma matriz que contém os sinais espaciais obtidos apds as diversas
sequéncias de pulsos realizadas durante o exame de ressonancia magnética codificado
em frequéncia e fase. Cada ponto contém a amplitude do sinal obtido em determinado
momento do exame e dessa forma cada um desses pontos contém informacao de todo o
corte, nao havendo relagao de um ponto no espaco-k para um tnico ponto da imagem

final. Uma representacao do espaco-k pode ser observada na Figura 2.2 ao lado da image
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final produzida [27].

Figura 2.2. Espaco-k. A matriz é composta de tons de cinza, onde os pontos mais
claros representam sinais com maior amplitude, e os mais escuros com menor.

E importante lembrar que devido o espaco-k ser em funcao de frequéncias e fases ele
se trata de uma matriz complexa, possuindo parte real e imaginaria, dessa forma, nao
existe uma representacao visivel. Para representar o espaco-k é calculado o absoluto do

mesmo, podendo assim representar a soma da parte real e imaginaria.

Existem varias formas de preencher o espacgo-k, essas formas sao chamadas de tra-
jetorias e sao escolhidas de acordo com o tipo de exame, cada uma tendo seus pontos
positivos e negativos. Na Figura 2.3 é possivel visualizar algumas dessas trajetorias.
Também ¢é possivel observar na figura, em sua segunda linha de imagens, como seria a
sub-amostragem do espago-k com cada uma das trajetorias, e na terceira linha, a imagem

final produzida por cada um desses espagos-k [10].

A figura contém niveis diferentes de sub-amostragem para cada uma das trajetérias,
e por isso as imagens finais possuem diferentes niveis de nitidez. Para a trajetéria car-
tesiana foi apresentado um nivel de sub-amostragem de 42,19%, para a radial uma sub-

amostragem de 88,65% e para a trajetdria espiral uma sub-amostragem de 62,04%.

E interessante notar que diferentes trajetérias vao possuir diferentes impactos na
imagem. Por exemplo, a trajetdria radial que prioriza manter as baixas frequéncias do
espago-k, correspondendo ao centro do mesmo, possui um melhor contraste da imagem
final, pois s@o as baixas frequéncias que impactam nesse contraste[28]. Porém a trajetéria
espiral que poupa mais as altas frequéncias em relacao a trajetoria radial, possui uma
maior nitidez nas transicoes da imagem, possuindo linhas delimitadoras mais nitidas, pois

as altas frequéncias sao responsaveis pela noc¢ao espacial da imagem final [27].
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Figura 2.3. Coluna (a): Trajetdria cartesiana vertical. Coluna (b): Trajetdria
radial. Coluna (c): Trajetéria espiral.

2.1.5 Sub-Amostragem

A aquisigao de sinais em um exame de ressonancia magnética deve seguir o Teorema
de amostragem de Nyquist—Shannon, que diz que a frequéncia de amostragem de um
sinal deve ser pelo menos o dobro da maior frequéncia contida naquele sinal. Caso esse
critério nao seja respeitado, a imagem final ird apresentar “aliasing”, esse fenomeno cria

distorcoes na imagem que afetam a sua qualidade final, como apresentado na Figura 2.4.

Formas de reconstruir imagens com menos amostras sao estudadas a varios anos, uma
das mais promissoras dessas formas tem sido o uso de Compressed Sensing, que aproveita
da esparsidade da imagem para reconstrui-la a partir de um espaco-k com um nimero de

amostras abaixo do minimo segundo o critério de Nyquist—Shannon[14].

Outra forma que tem sido estudada nos anos recentes é o uso de inteligéncia artificial

para a reconstrucao de imagens sub-amostradas. Treinar redes neurais para obtenc¢ao
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(b)

Figura 2.4. Comparacao entre imagem reconstruida respeitando critério de Ny-
quist (a) e imagem feita com dados sub-amostrados apresentando aliasing (b). Ima-
gem retirada de [39] e modificada.

de imagens nitidas tem obtido bons resultados e o nimero de artigos publicados nessa
area tem crescido nos ultimos anos conforme verificado no portal da CAPES que serd

mostrado na se¢ao de levantamento da literatura cientifica.

2.2 REDES GENERATIVAS ADVERSARIAIS (GANS)

Redes generativas adversarias (do inglés GANs) sdo um modelo de rede neural de
aprendizado profundo que tem como objetivo criar amostras o mais fiéis possiveis a um
conjunto de treinamento. Essas amostras podem ser de diversos tipos como por exemplo
imagens ou sinais de dudio. No contexto do trabalho de mestrado sao criadas imagens
utilizando a GAN.

O modelo é separado em duas partes, uma rede neural generativa e outra discrimina-
tiva. A parte generativa ira criar imagens que se assemelham a imagens de um conjunto
de treinamento, ja a parte discriminativa ira julgar se a imagem criada pertence ou nao
ao conjunto de treinamento [15]. A Figura 2.5 apresenta o fluxo seguido por um modelo
GAN genérico em uma etapa, essa etapa é repetida varias vezes aperfeicoando as imagens

geradas.

2.2.1 Modelo Generativo

O modelo generativo tipicamente recebe como entrada diferentes tipos de sinais, como

por exemplo outras imagens ou até mesmo ruido, e usa essa informagao de entrada como
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Figura 2.5. Fluxo de produgédo e processamento de imagens em um modelo GAN.

parametros iniciais para gerar imagens, o objetivo do modelo generativo é enganar o
modelo discriminativo, de forma que ele confunda as imagens geradas com as imagens
pertencentes ao conjunto de dados. O modelo generativo nao tem acesso as imagens
do conjunto de dados para que essas imagens nao influenciem nas imagens que serao
produzidas por ele e sua tnica forma de aprendizado é com os veredictos recebidos do
discriminador a cada iteragao [6]. Nas primeiras etapas o modelo generativo nao conse-
guird produzir imagens muito semelhantes com o conjunto de dados, porém a cada nova

iteracao, o modelo ira se refinar baseando-se nos veredictos do discriminador.

2.2.2 Modelo Discriminativo

O modelo discriminativo é treinado com imagens vindas do conjunto de dados e com
imagens produzidas pelo modelo generativo misturadas e escolhidas de forma aleatéria.
Ele deve classificar as imagens que receber indicando se elas pertencem ou nao ao conjunto
de dados. A saida do discriminador é um valor entre 0 e 1, se a imagem analisada for
do conjunto de dados ela deve receber um valor préoximo a 1, caso contrario um valor
proximo de 0. A cada etapa ele recebe o gabarito com a resposta certa da classificacao e

faz os ajustes necessarios para na préxima etapa aumentar a taxa de acerto [6].

2.3 LEVANTAMENTO DA LITERATURA CIENTIFICA

No intuito de saber o andamento das pesquisas na area foi realizada uma levantamento

de artigos na base de dados da CAPES baseada na seguinte pergunta cientifica:

“E possivel reconstruir imagens de ressonancia magnética sub-amostradas com nitidez

com o auxilio de inteligéncia artificial?”

Foram entao escolhidos os seguintes descritores para as buscas:

e MRI;
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e Reconstruction;
e Undersampled;

e Artificial Intelligence.

A busca foi realizada na base de dados da CAPES usando os conectores “and” para
filtrar os artigos que possuissem os quatro temas. A busca entao foi realizada da seguinte

forma:

299

““MRI” and “Reconstruction” and “Undersampled” and “Artificial Intelligence

A Figura 2.6, contém o fluxograma da filtragem realizada para chegar em 48 artigos
que auxiliaram na realizacao do trabalho. Esses artigos contém diferentes abordagens no

uso de inteligéncia artificial aplicada a reconstrugao de imagens de ressonancia magnética.

Artigos removidos antes da triagem:

Artigo anteriores a 2015: 204

Artigos sem revisdo por pares: 41

Artigos sem o assunto "Inteligéncia Artificial™: 38
Artigos sem o assunto "Reconstrucdo de Imagem™ 116

Artigos identificados:
493

h 4

Artigos removidos na triagem:
Artigos em triagem:
94

M&o utilizam inteligéncia artificial
nia reconstrucdo ou apimoramento: 46

h 4

Total de arfigos
selecionados:
43

Figura 2.6. Fluxograma de triagem dos artigos selecionados.

Os 48 artigos finais serviram como base tedrica para a realizacao do projeto e auxi-
liaram na fundamentagao tedrica e selecao do modelo escolhido para a reconstrucao das

imagens de ressonancia magnética.

2.3.1 Trabalhos Correlatos

Os artigos selecionados possuem diferentes abordagens no uso da inteligéncia artifi-
cial na reconstrucao de imagens de ressonancia magnética, como uso de CNNs [19] [5],
autoencoders [9] [26], dictionary learning [40] [1] entre diversas outras formas de utilizar
inteligéncia artificial na reconstrucao de imagens de ressonancia magnética. Entretanto,
entre os 48 trabalhos filtrados no levantamento realizado no portal de periddicos da
CAPES apenas um utilizou de GANs para realizar a tarefa de reconstruir imagens de

ressonancia a partir de dados sub-amostrados.
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O titulo do trabalho é “Prior-Guided Image Reconstruction for Accelerated Multi-
Contrast MRI via Generative Adversarial Networks”[8] e tem como objetivo a melhora na
qualidade de imagens de ressonancia magnética multi-contraste feitas a partir de dados
sub-amostrados. Para isso ele alimenta a rede generativa com imagens feitas a partir
de dados sub-amostrados, porém diferente do trabalho de mestrado ele usa diferentes
técnicas de sub-amostragem em um unico treinamento da GAN, combinando informagoes

de diferentes tipos de dados para obtencao de melhores resultados.

O trabalho apresenta uma técnica que utiliza trés tipos de dados de entrada para
o treinamento: dados com menos amostras nas baixas frequéncias, dados com menos
amostras nas altas frequéncias e dados perceptuais, obtidos através de redes neurais

classificadoras que evidenciam as caracteristicas da imagem.

O artigo apresenta resultados onde foi atingido SSIM de até 92% usando apenas 2%
das amostras necessarias para construir uma imagem tipica de ressonancia magnética,

mostrando o poder das redes generativas|§].

O trabalho em questao, entretanto, necessita de técnicas especificas para obtencao do
espago-k e um dos canais precisa ser pré-processado com uma rede neural classificadora
antes de ser utilizado pela GAN. Esse pré-processamento aumenta o tempo de recons-
trucao das imagens e nao é o padrao usado em maquinas de ressonancia. Dessa forma
para este método ser implementado seria necessario alteracao na forma que obtemos as

imagens.

O cédigo criado durante o mestrado difere do trabalho em questao pois realiza o
processamento sem tratamento prévio, utilizando imagens criadas com dados da forma
que eles sao gerados por maquinas de ressonancia magnética utilizadas hoje na industria,
sendo necessarios menos etapas de pré-processamento e aceitando uma maior diversidade

de dados para treinamento

Outro artigo que usa um processamento interessante é o “Deep learning for under-
sampled MRI reconstruction”[20]. Apesar de ndao usar GAN na reconstrucao das imagens,
no trabalho é usado um modelo U-Net para processamento dos dados, o mesmo usado

neste trabalho na rede generativa.

O trabalho em questao usa a rede generativa para extrair os detalhes da imagem
feita com um espaco-k sub-amostrado e depois realcar esses detalhes. Ao final dessa
etapa é calculado novamente o espaco-k que é usado para completar os espacos faltantes

do espaco-k original, e por fim obter a imagem final a partir desse novo espago-k.

O estudo consegue atingir melhoras de 0,22 no SSIM da imagem de entrada se com-
parada com a imagem na saida da U-Net e uma melhora de aproximadamente mais 0,3

com a jungao dos espacos-k.
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Esse estudo incentivou o teste com a uniao do espaco-k antes e apds o processamento

para observar se ocorreriam mais melhorias na imagem.

Outro estudo que foi muito importante como base deste trabalho é o “fastMRI:
An Open Dataset and Benchmarks for Accelerated MRI”[42]. O trabalho apresenta
os detalhes de diversos conjuntos de dados para desafios de reconstrucao de imagens de
ressonancia magnética, entre eles o conjunto de joelho de bobina unica utilizado neste
trabalho.

O estudo do FastMRI também propoe a criacao de uma tabela de classificacao para
organizar os algoritmos de reconstrucao criados para o desafio. A pagina da internet com
a tabela original nao esta mais disponivel online, porém a pégina foi arquivada em um

repositério online[12].
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3 MATERIAIS E METODOS

Serao apresentados nas secoes abaixo os materiais e métodos utilizados na realizacao
do trabalho. Serao abordados os temas: Banco de dados, pré-processamento, modelo

GAN e métricas de avaliagao.

3.1 BANcoO DE DADOS

As imagens utilizadas no estudo foram obtidas do banco de dados de espacos-k do
grupo de pesquisa FastMRI, este grupo incentiva pesquisas e competicoes na area de
reconstrugao e aprimoramento de imagens de ressonancia magnética a partir de dados
sub-amostrados utilizando inteligéncia artificial. As competicoes buscam melhorar cada
vez mais o indice de similaridade das imagens reconstruidas e a relacao sinal ruido e sao
realizadas em diversas categorias. O banco de dados é criado especificamente para que
pesquisadores possam trabalhar com dados brutos de imagens de ressonancia de forma

gratuita, dessa forma todas as imagens contidas nele sdo anonimizadas [18].

O conjunto de dados utilizado sera o mesmo que foi utilizado no desafio de recons-
trucao de imagens de joelho de bobina tnica (knee singlecoil challenge). Os conjuntos de
imagens de uma tinica bobina nao foram diretamente obtidos por uma tnica bobina, sao
simulados, obtidos através da combinacao de amostras de multiplas bobinas [42]. A van-
tagem de se realizar testes com amostras de uma tnica bobina é poder realizar testes com
computadores com menor capacidade de processamento, dessa forma podendo-se obter
resultados relevantes para pesquisas na area realizando ensaios que geram resultados mais
rapidamente, podendo assim refinar esses resultados de forma mais eficiente realizando

varias vezes os treinamentos alterando os seus parametros.

O conjunto de imagens utilizado é separado em quatro partes, cada parte é composta
de arquivos do tipo .h5, que contém um conjunto de espacos-k, esses conjuntos contém
cortes de um mesmo exame realizado em um joelho, formando um volume. A primeira
parte é chamada de imagens de treino, contém 973 volumes contendo 34.723 cortes que
foram tipicamente amostrados. A segunda é chamada de imagens de validacao e contém
199 volumes e 7.135 cortes também tipicamente amostrados. A terceira parte é chamada

de imagens de teste e contém 108 volumes e 3.903 cortes sub-amostrados. O quarto e
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ultimo é chamado de conjunto desafio, foi utilizado como parametro no desafio reali-
zado pela equipe do FastMRI e contém 92 volumes e 3.305 cortes sub-amostrados. As

informagoes acerca do conjunto de dados estao reunidas na Tabela 3.1.

Tabela 3.1. Organizacao do conjunto de dados [42].

Volumes Cortes Amostragem

Treinamento 973 34.742 Tipicamente amostrado

Validagao 199 7.135 Tipicamente amostrado
Teste 108 3.903  Sub-amostrado
Desafio 92 3.305  Sub-amostrado

Para o projeto foram usadas apenas as imagens do conjunto de treinamento, pois
por estarem tipicamente amostradas foi possivel sub-amostrar as imagens conforme fosse
necessario, usando diferentes niveis de sub-amostragem e diferentes trajetorias como serd

apresentado na secao de pré-processamento.

Para expandir a quantidade de dados utilizados foram extraidos mais de um corte
por volume, uma vez que cada volume possui em torno 35 cortes. Porém nao é todo corte
que se mostra 1util, uma vez que as extremidades do volume possuem pouca informacao,

assim geralmente sao extraidos apenas os cortes do meio.

Foram feitos treinamentos de 973 imagens até 6000 imagens, os conjuntos de teste
geralmente contém 10% do tamanho dos conjuntos de treinamento e os conjuntos de teste

variam de 50 a 100 imagens.

3.2 PRE-PROCESSAMENTO

O pré-processamento consiste em uma sequéncia de etapas para preparar as imagens
do conjunto de dados para o processamento que serd realizado pela GAN. As imagens
utilizadas do conjunto de dados sao feitas a partir de espagos-k tipicamente amostrados,
dessa forma é necessario simular a sub-amostragem desse espaco-k. Para isso sao apagadas
algumas amostras da matriz de acordo com a trajetéria escolhida e depois reconstruida a
imagem, como mostrado na Figura 2.3. Esse processo de apagar amostras é comumente
usado em estudos desse tipo pois simula de forma fiel a sub-amostragem gerada por
equipamentos de ressonancia [42]. Os detalhes do funcionamento do algoritmo que realiza

o pré-processamento serao apresentados na se¢ao de Resultados e Discussao.
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3.3 MobELO GAN

O cédigo usado é baseado no modelo GAN adaptado para o processamento de ima-
gens. No codigo feito a entrada do sistema ¢ uma imagem e a saida outra imagem, esse

tipo de arquitetura que traduz uma imagem em outra é chamado de pix2pix.

Assim como filtros de redes sociais alteram imagens colocando filtros de cores, redes
pix2pix recebem uma imagem de entrada e de acordo com o treinamento feito geram uma
outra imagem baseada na entrada. Esse tipo de processamento é realizado no trabalho
de forma que as imagens de entrada sao as imagens de ressonancia magnética feitas com
dados sub-amostrados e a saidas sao imagens com suas métricas de qualidade aprimora-

das.

Phillip Isola apresenta em seu artigo o pix2pix [22] e estabelece métodos para melhor
realizar essa tradugao de imagem para imagem o que auxiliou na criacao do algoritmo
GAN que processou as imagens de ressonancia. Os detalhes do funcionamento da GAN,
assim como das suas redes generativa e discriminativa serao apresentados na secao de

Resultados e Discussao.

3.4 METRICAS DE AVALIAGAO

As imagens geradas pelo modelo devem ser avaliadas para verificar se o resultado
obtido se aproxima de uma imagem feita com dados tipicamente amostrados. Para isso
sao usados dois valores que indicam a qualidade da imagem: o indice de similaridade
estrutural (SSIM) e a relagao sinal ruido (SNR).

O indice de similaridade estrutural indica a semelhanca entre duas imagens e é dado

por

(2papty + C1)(204y + Co)
(12 + 12+ C1)(02 + 02+ Cy)’

SSIM(z,y) = (3.1)
onde uma imagem é dada como padrao e uma segunda recebe um valor de 0% a 100%
de semelhanca. A imagem usada como padrao é a imagem feita com dados tipicamente
amostrados, chamada de imagem x, e a imagem gerada, chamada de imagem y, é a
imagem que serd comparada. Na equacao u, e p, sao a intensidade média dos pixels em
cada uma das imagens, o, e 0, sao os desvios padrao de cada imagem, o,, ¢ a covariancia
entre as duas imagens, C; e (5 sao duas constantes para equilibrar a divisao, evitando

divisées por zero [3].

A relagao sinal ruido apresenta a amplitude de sinal em relacao a amplitude de ruido

contido na imagem e é dado por
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2
SNR = 101log,, (%) , (3.2)

quanto maior o valor de SNR, maior a presenca de sinal em relacao ao ruido. Na férmula

02 é o desvio padrao ao quadrado dos valores de amplitude contidos dentro de uma area
de interesse representada com um S na Figura 3.1, considerado como sinal, e e 02 é o

desvio padrao ao quadrado dos valores de amplitude das areas representadas com um N

na figura, considerados como ruido.

Figura 3.1. Areas de interesse para o célculo da relagao sinal ruido (SNR). A érea
assinalada com o S indica a area que contém o sinal de interesse, a area assinalada
com o N indica onde se concentra o ruido isolado. Imagem retirada de [11].

E utilizado um algoritmo que calcula essas duas métricas, o algoritmo recebe um
nimero qualquer de imagens, de acordo com a necessidade do projeto, calcula para cada
uma dessas imagens o valor de SSIM e SNR e depois calcula a média desses valores
para cada imagem. Dessa forma um grupo de imagens gerados juntos recebe apenas dois

valores, um de SNR e um de SSIM, esses valores entao sao usados para avaliar o modelo.

Foram geradas tabelas com os resultados de cada teste feito explicitando os detalhes
dos parametros utilizados, como tamanho da imagem de entrada, trajetéria utilizada,

niumero de épocas, entre outros parametros, e também é inserido os resultados na forma

de SSIM e SNR.

Os resultados também foram avaliados em fungao de duas variaveis que ajudam a
comparar a melhor no SSIM e no SNR, chamadas de Razao dos SSIM (RSSIM) e Razao
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dos SNR (RSNR). Essas varidveis sdo a razao entre as métricas das imagens produzidas

pela GAN e as métricas das imagens de entrada,

IM

RSSIM = —gg e (3.3)
N

RSNR = %, (3.4)

na férmula, SSIM,, e SN R,, sao as respectivas métricas das imagens geradas, e SSIM;,
e SNR;, as métricas das imagens de entrada. Logo, caso os valores de RSSIM e RSNR
sejam maiores do que 1, ocorreu melhora nas métricas das imagens. Através dessas duas
variaveis é possivel observar o quanto as métricas aumentaram ou diminuiram em relagao

as métricas da imagem de entrada.
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4 RESULTADOS E DISCUSSOES

Foram realizados 110 testes com diferentes arquiteturas do modelo da GAN e dife-
rentes parametros de sub-amostragem para as imagens. Os parametros usados nesses
testes como por exemplo trajetorias e nivel de sub-amostragem podem ser observados na

planilha Resultados.csv no repositério do Github do trabalho [7].

A arquitetura final e detalhamento tanto do codigo de pré-processamento quanto da
GAN serao apresentadas nas segoes a seguir. Também serao apresentados os detalhes das
imagens produzidas e suas métricas de qualidade. Na discussao serd abordada a andlise
dos dados que permitirao observar o limite encontrado para aprimoramento de imagens

de ressonancia magnética feitas com dados sub-amostrados.

4.1 RESULTADOS
4.1.1 Pré-Processamento

O algoritmo de pré-processamento possui diversas especificagoes que podem ser alte-
radas de acordo com a necessidade, essas especificacoes alteram os parametros da sub-
amostragem, como taxa de amostragem, trajetérias e presenca ou nao de artefatos. No
pré-processamento as imagens sao modificadas para todas terem o mesmo tamanho e
possuirem altura e largura iguais, essa tarefa é realizada sem redimensionar as imagens,
ao invés disso, todas as imagens sao completadas com zero até terem as mesmas dimensoes
da maior imagem. O modelo também da a opcao de fixar a dimensao das imagens, cor-
tando as imagens maiores do que o valor, e completando com zero as menores. Essas
dimensoes sao sempre arredondadas para poténcias de dois, pois no processamento da

GAN sao realizadas diversas divisoes por dois, facilitando esse processo.

O algoritmo possui trés tipos de trajetoria: HF, random, spirall, spiralj e radial.
A trajetéria do tipo HF preserva as colunas com baixas frequéncias do espaco-k e filtra
as colunas com altas frequéncias em intervalos regulares escolhidos pelo usuario, essa

trajetoria recebe os parametros:

e start_interval: Indica o intervalo a partir do centro do espago-k no qual as colunas
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de frequéncias devem ser preservadas;

e interval: Indica o intervalo no qual as frequéncias acima do start_interval serao

zeradas. Por exemplo, se interval for 3, a cada trés colunas a terceira sera zerada.

A trajetoria random filtra aleatoriamente as colunas, de acordo com o valor da variavel
“mask_percentage” que recebe um valor de 0 a 1. Se o valor for 1 nenhuma amostra ¢é
removida, a taxa de sub-amostragem ¢é igual a zero e a imagem ¢ mantida inteira, porém

se o valor for 0, todas as amostras sdo removidas e a taxa de sub-amostragem é de 100%

A trajetéria spirall e spiralj filtram o espago-k em um formato espiral. A trajetoria
spirall consiste de apenas uma espiral e a spiral/ consiste em quatro espirais. Ambas
as trajetorias recebem o parametro “turns”, que indica quantas voltas a espiral deve

realizar.

A trajetoria radial filtra o espacgo-k com linhas que atravessam o centro do espaco-k.
A fungao recebe o parametro “number_angles” que indica quantas linhas serao tragadas,

essas linhas sao sempre tragadas de forma que o angulo entre elas sejam iguais.

Na Figura 4.1 é possivel observar como sao as trajetérias e como a mudanga de
parametros altera seu formato. Foi dado zoom na trajetéria HF para permitir melhor

visualizacao das colunas.
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Figura 4.1. Diferentes trajetérias que podem ser aplicadas ao espago-k. (a)
Trajetoria tipo HF com “start_interval” igual a 10 e “interval” igual a 4, a Tra-
jetoéria corresponde a 24,22% de sub-amostragem. (b) Trajetéria tipo HF com
“start_interval” igual a 5 e “interval” igual a 2, a Trajetéria corresponde a 49,22%
de sub-amostragem. (c) Trajetéria tipo random com “mask_percentage” igual a
0,8, a trajetéria corresponde a 19,92% de sub-amostragem. (d) Trajetéria tipo
random com “mask_percentage” igual a 0,3, a Trajetdria corresponde a 69,92% de
sub-amostragem. (e) Trajetéria tipo spirall com “turns” igual a 16, a Trajetéria
corresponde a aproximadamente 93,79% de sub-amostragem.(f) Trajetéria tipo spi-
rall com “turns” igual a 4, a Trajetdria corresponde a 98,43% de sub-amostragem.
(g) Trajetoria tipo spiral com “turns” igual a 16, a trajetéria corresponde a 75,16%
de sub-amostragem. (h) Trajetéria tipo spiraly com “turns” igual a 4, a trajetéria
corresponde a 93,72% de sub-amostragem. (i) Trajetéria tipo radial com “num-
ber_angles” igual a 20, a trajetéria corresponde a 96,13% de sub-amostragem. (j)
Trajetéria tipo radial com “number_angles” igual a 10, a trajetoria corresponde a
98,06% de sub-amostragem.

As trajetorias utilizadas pelo grupo FastMRI no conjunto de dados de teste e desafio
sao chamadas por eles de “FEquispaced mask”, que é igual a trajetéria HF, e “Random
mask”, que se assemelha a trajetéria random, sendo a tunica diferenca que a trajetoria
usada no conjunto de dados poupa as baixas frequéncias e apaga aleatoriamente as outras
frequéncias, enquanto a trajetéria usada no mestrado apaga todas as frequencias com

mesma probabilidade.

O algoritmo também permite a insergao de artefatos. Esses artefatos sao inseridos na

25



imagem reconstruida sem sub-amostragem no espaco-k, depois é realizada a transformada
direta para recriar o espaco-k e realizar a sub-amostragem se necessario, dessa forma o
artefato aparece na imagem como se tivesse aparecido no espaco-k durante a aquisicao.
Os artefatos sao circulos brancos, seu tamanho, intensidade de cor e posi¢ao sao escolhidos
de forma aleatéria, para nao criar nenhum padrao que possa influenciar o treinamento.

A Figura 4.2 apresenta imagens com artefatos inseridos.

(b)

(d) () Ul

Figura 4.2. Imagens de joelho do banco de dados do FastMRI. (a) Imagem
de joelho do conjunto de dados de treino. (b) Artefato colocado na imagem fi-
nal sem sub-amostragem. (c) Artefato colocado na imagem final depois realizado
sub-amostragem no espago-k da imagem com artefato. Sub-amostragem tipo HF
com start_interval igual a 5 e interval igual a 2. (d) Imagem de joelho do con-
junto de dados de treino. (e) Dois artefatos colocados na imagem final sem sub-
amostragem. (f) Dois artefatos colocados na imagem final depois realizado sub-
amostragem no espago-k da imagem com artefatos. Sub-amostragem tipo random,
com mask_percentage igual a 0,5.

Apos realizar o pré-processamento em todas as imagens que serao usadas pela GAN,
essas imagens sao separadas em trés grupos: grupo de treinamento, grupo de validagao
e grupo de teste. Os trés grupos podem passar por pré-processamentos diferentes de-
pendendo da aplicacao que serd estudada e o algoritmo permite a selecao de parametros

diferentes para os conjuntos de treino, validacao e de teste para cada uma das trajetérias.

As imagens sao armazenadas em pares contendo duas imagens do mesmo exame
posicionadas lado a lado. Do lado esquerdo é colocada a imagem que serd usada no
treinamento do modelo discriminador da GAN, sao imagens feitas a partir de dados

tipicamente amostradas, do lado direito é posicionada uma imagem feita com dados sub-
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amostrados de acordo com as especificacoes usadas no pré-processamento, essas serao as
imagens usadas pelo modelo generativo e discriminativo da GAN como entrada para criar
novas imagens. Na Figura 4.3 é possivel observar um exemplo de como sao armazenadas

as imagens.

Figura 4.3. Imagem do conjunto de dados utilizado pela GAN. A imagem ¢é sepa-
rada em duas partes, na esquerda a imagem feita com dados tipicamente amostrados
e a direita a imagem feita com o espago-k sub-amostrado..

4.1.2 Rede Generativa Adversaria

Finalizado o pré-processamento inicia-se a fase de aprimoramento das imagens pela
GAN. As imagens sao recebidas pela GAN conforme apresentado na Figura 4.3 e o niimero
de imagens pode variar de acordo com as necessidades do projeto. As imagens sao
separadas em trés grupos: imagens de treino, de validacao e de teste. As imagens de
treino sao usadas no treinamento dos modelos gerador e discriminador, as imagens de
validacao sao usadas para checar o estado do treinamento a cada 100 épocas, e as imagens
de teste sao usadas depois que os modelos ja estao treinados como conjunto de imagens

a serem aprimoradas.

Para a criacao das fungoes geradora e discriminadora foram utilizadas fungoes da
biblioteca tensorflow, a biblioteca foi escolhida por ser a com maior suporte para criagao

de algoritmos de inteligéncia artificial.

O algoritmo possui alguns parametros modificaveis que permitem a visualizagao das

imagens conforme é realizado o processamento, essas opgoes sao:

e show_intermediate_images - Apresenta imagens intermedidrias, como por exemplo

as imagens que entram no modelo generativo e qual a saida esperada;

e show_predicted_images_after_training - Apds a finalizacao do treinamento apresenta
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as imagens criadas em comparagao com as imagens de entrada.colunas a terceira

sera zerada.

O algoritmo também possui configuracoes que foram ajustadas para o seu melhor

funcionamento, sao elas:

e BUFFER_SIZE - Argumento usado na funcao “tf.data.Dataset.shuffle”, indica o
nimero de imagens de treinamento que serao embaralhadas para depois serem es-
colhidas, idealmente deve ser maior ou igual ao ntimero de imagens de treinamento.
Foi configurado para sempre ter o mesmo valor que a quantidade de imagens de

treinamento.

e BATCH_SIZE - O modelo é treinado com conjunto de imagens, o nimero de ima-
gens nesse conjunto é dado pelo BATCH_SIZE. Para modelos U-Net, o ideal é que

o tamanho de batch seja igual a um[33].

e LAMBDA. Controla o impacto da perda L1 (Diferenca absoluta média entre va-
lores preditos e reais) em relagao a perda do discriminador. Valor que foi testado

empiricamente até chegar no ideal de 150.

No cédigo também é possivel ajustar a quantidade de etapas de repeticao que serao
realizadas na variavel “step”, o valor normalmente ajustado ¢ de 1000 etapas, mas esse

valor foi alterado de acordo com o desejado durante a realizacao dos testes.

O treinamento dos modelos usando a GPU L4 do Google colab citada anteriormente
levava em torno de 30 minutos a cada 1500 épocas do modelo usando as configuragoes
ideais citadas acima. O tempo de aplicacao do modelo nas imagens de teste dependia da

quantidade de imagens. Para 100 imagens o modelo levava em torno de dez minutos.

As imagens de teste aprimoradas sao armazenadas em uma pasta. Para cada imagem
aprimorada sao geradas quatro imagens: A imagem feita com dados sub-amostrados, a
imagem feita com dados tipicamente amostrados, a imagem aprimorada e uma imagem
contendo as trés primeiras lado a lado para comparacao, essa quarta pode ser vista na

Figura 4.4.
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Ground Truth

Input Image Predicted Image

Figura 4.4. Imagens produzidas pelo algoritmo comparando as imagens de en-
trada (reconstruida a partir de dados sub-amostrados com a trajetéria spirall),
tipicamente amostrada e aprimorada.

Nas sec¢oes a seguir sera explicado de forma mais detalhada o funcionamento dos

modelos gerador e discriminador contidos dentro da GAN.

4.1.3 Rede Generativa

A rede generativa foi baseada no modelo U-Net, usado em algoritmos pix2pix. O
modelo U-Net é um modelo de rede neural convolucional muito usado na segmentagao
de imagens médicas pois € eficiente em extrair informagoes de imagens mesmo com uma
quantidade limitada de amostras. A arquitetura da U-Net consiste em um encoder onde
ocorre a reducdo da resolugao espacial com énfase nas caracteristicas da imagem (down-
samplig), e um decoder que realiza o aumento da resolu¢ao da imagem com as carac-

teristicas realcadas (upsampling)[33].

No encoder ¢ realizada a operacao de downsampling, que diminui as dimensoes da
imagem. Sao utilizadas oito camadas convolucionais com diferentes quantidades de filtros
de tamanho 4x4 e salto de dois pixels para os filtros(strides = 2), a cada salto é realizada
a soma ponderada dos valores e salvo em uma nova matriz, dessa forma as dimensoes da
imagem sao reduzidas pela metade. No primeiro downsample sao 64 filtros e cada um
desses filtros realiza as operacoes de saltos e somas ponderadas para gerar novas matrizes,

dessa forma gerando 64 matrizes.

No primeiro downsample também nao é aplicada a normalizacao da batch aos dados
pois os dados ainda nao passaram por transformacgoes e aplicar a normalizagao nesse
momento pode excluir dados 1teis, porém a normalizacao é aplicada nas proximas sete

camadas.

A cada camada as dimensoes das matrizes sao reduzidas pela metade e, para nao serem

perdidas informacoes, a quantidade de filtros aumenta a cada downsample, comecando
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com 64 na primeira camada e terminando com 512 na tultima.

No decoder é realizado o upsampling, que aumenta as dimensoes da imagem. Sao
usadas sete camadas que realizam convolugao transposta, com diferentes quantidades de
filtros e salto de dois pixels para os filtros (strides = 2). A cada camada sao usadas
diferentes quantidades de filtros de tamanho 4x4 para recuperar a resolucao da imagem,
comegando com 512 para poder processar melhor os diversos detalhes, e terminando com
64 filtros. Também as trés primeiras camadas sao implementadas contendo dropout, essas
camadas zeram metade dos seus resultados, forcando a rede a nao depender totalmente
das partes que sao zeradas, evitando que o modelo nao consiga generalizar os dados de

treinamento, ou seja, evitando o overfitting[37].

O decoder também possui camadas de concatenacao, entre as camadas de upsampling,
essas camadas recebem, através das skip connections imagens intermedidrias das camadas
de downsampling e as concatena. Skip connections sao conexoes entre camadas do encoder
com a camada correspondente do decoder, dessa forma, possiveis detalhes que tenham sido
perdidos durante a etapa de donwsampling podem ser recuperados durante o upsampling.
Apo6s cada camada de upsampling a matriz sendo processada é concatenada com a matriz
do bloco donwsampling correspondente, dessa forma sao realizadas sete operagoes do tipo,

uma para cada skip connection.

A arquitetura completa do gerador pode ser observada na Figura 4.5, nela é possivel

observar também o formato em "U”que d4 nome a arquitetura U-Net.
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Figura 4.5. Arquitetura do modelo Gerador.
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Na imagem, os retangulos representam as camadas do modelo gerador. De azul temos
a camada de entrada que recebe as imagens de tamanho 512 por 512 e com os trés canais
correspondendo ao RGB, mesmo que a imagem seja preta e branca ela possui os trés
canais de cor com a mesma intensidade. As setas pretas representam as conexoes entre

as camadas.

Os retangulos verdes representam as oito camadas do encoder, cada uma possuindo
suas proprias dimensoes de entrada e saida, podemos ver que a cada camada, as dimensoes
da imagem diminuem e o nimero de imagens aumenta, pois a cada camada o nimero de

filtros cria aquele correspondente nimero de imagens.

As setas rosa representam as skip connections, que ligam as camadas do encoder as
camadas do decoder. Os retangulos laranja correspondem as sete camadas do decoder e
sao associadas as camadas de concatenacao, representadas pelos retangulos pretos. As
camadas de concatenagao recebem matrizes das skip connections e agrupa todas elas
juntas, dobrando o numero de imagens. As camadas do decoder entdao diminuem o

numero de imagens enquanto aumenta o tamanho da imagem.

Por fim, é realizada uma convolucao transposta, que aumenta a resolucao da ima-
gem, possui saida também com trés canais RGB e utiliza a funcao de ativacao tanh que

normaliza os valores da matriz entre -1 e 1.

4.1.4 Rede Discriminativa

A rede discriminativa é um modelo convolucional classificatério que deve distinguir
pares de imagens. Existem dois tipos de pares. O primeiro tipo de par contém a imagem
de entrada da GAN, feita usando dados sub-amostrados, em conjunto com a imagem
feita com dados tipicamente amostrados, chamada de imagem alvo. Esse primeiro par é
chamado de par verdadeiro. O segundo tipo de par é composto pela imagem de entrada

e a imagem gerada pelo modelo generativo, chamada de par falso.

Ele recebe duas imagens de dimensoes 512x512x3 na sua camada de entrada, e as
concatena, gerando um novo conjunto de tamanho 512x512x6. Sao entao realizadas
uma série de downsamplings em sete camadas que diminuem as dimensoes da imagem
evidenciando suas caracteristicas. Assim como no modelo gerador, esses downsamplings
possuem filtros de tamanho 4x4, saltos de tamanho 2 (strides = 2) e possuem filtros que
vao aumentando a cada camada, comecando com 64 e finalizando com 512. Também é
aplicada a regularizacao do L2, que penaliza pesos muito grandes na rede, forcando o

modelo a possuir pesos menores evitando o overfitting[38].

Assim como na rede geradora, em algumas das camadas de downsampling é aplicado

dropout, que desativa metade das unidades da rede convolucional de forma aleatoria
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a cada atualizacao de pesos. Isso ajuda a rede a nao ficar completamente dependente
daquelas conexoes evitando assim o overfitting, ou seja, conseguindo generalizar melhor

os dados de treinamento[37].

O modelo possui uma camada que ajusta o tamanho dos dados adicionando duas
camadas de zeros aos dados (zeropadding), seguida de uma camada de convolu¢ao com

512 filtros de tamanho 4x4, saltos de tamanho 1 e regularizacao do L2.

Em seguida ¢ utilizada uma camada de normalizacao de batch para normalizar a
camada anterior para melhorar a estabilidade do treino, seguida de uma camada que
aplica a funcao de ativacao LeakyReLU, que mantém os valores positivos e diminui os

negativos sem zeré-los, evitando neurénios mortos e problemas de convergéncia.

Por fim, é aplicada mais uma camada de zeropadding e entao uma ultima convolugao
que faz com que a saida dos dados tenha dimensoes bem reduzidas, de tamanho (None, 2,
2, 1), sendo a primeira dimensao o tamanho de batch, o segundo e terceiro o tamanho da
imagem final, e o quarto, que contém apenas um valor, o veredito do discriminador, que

vai de 0 a 1, sendo zero um par de imagens falsas, e um, um par de imagens verdadeiras.

A Figura 4.6 contém a arquitetura do modelo discriminador, com todas as suas ca-

madas e dimensoes dos dados.

| Output shape: (None, 512, 512, 3) | | Output shape: (None, 512, 512, 3) |

Input shape: [(None, 512, 512, 3), (None, 512, 512, 3)] Output shape: (None, 512, 512, 6)

Input shape: (None, 16, 16, 512) Output shape: (None, 16, 16, 512)

Input shape: (None, 16, 16, 512) | Output shape: (None, 8, 8, 512)

Input shape: (None, 512, 512, 6) Output shape: (None, 256, 256, 64)

Input shape: (None, 8, 8, 512) Output shape: (None, 4, 4, 512)
Input shape: (None, 256, 256, 64) Output shape: (None, 128, 128, 128)
Input shape: (None, 4, 4, 512) Output shape: (None, 4, 4, 512)
Input shape: (None, 128, 128, 128) Output shape: (None, 128, 128, 128) -
l ‘ Input shape: (None, 4, 4, 512) H Output shape: (None, 6, 6, 512) ‘
| Input shape: (None, 128, 128, 128) i Output shape: (None, 64, 64, 256) | —

‘ Input shape: (None, 6, 6, 512) H Output shape: (None, 3, 3, 512) ‘

Dropout

Input shape: (None, 64, 64, 256) Output shape: (None, 64, 64, 256)

BatchNormalization

Input shape: (None, 3, 3, 512) | Output shape: (None, 3, 3, 512)

Input shape: (None, 64, 64, 256) Output shape: (None, 32, 32, 512)

Input shape: (None, 3, 3, 512) Output shape: (None, 3, 3, 512)

Sequential l

Input shape: (None, 32, 32, 512) Output shape: (None, 16, 16, 512)

ZeroPaddingz2D

Input shape: (None, 3, 3, 512)

‘ Output shape: (None, 5, 5, 512)

Input shape: (None, 5, 5, 512) Output shape: (None, 2, 2, 1)

Figura 4.6. Arquitetura do modelo Discriminador.
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Na Figura 4.6, os blocos representam as camadas da rede, com as respectivas di-
mensoes dos dados de entrada e de saida. Os blocos vermelhos se tratam das camadas de
entrada, seguidas pelo bloco azul que representa a camada de concatenacao. Os blocos
verdes representam os downsamplings e os blocos rosa representam os dropouts. No final
do modelo, os blocos laranja representam os zeropadding, os amarelos as convolucoes e
os dois blocos pretos representam primeiro a normalizacao de batch e funcao de ativagao
LeakyReLU.

4.1.5 Imagens

As imagens produzidas pelo algoritmo sao salvas de forma que possibilite a com-
paracao entre a imagem de entrada, a imagem tipicamente amostrada e a imagem pro-

duzida conforme mostrado na Figura 4.4.

A Figura 4.7 apresenta alguns resultados para as trajetérias spiralj (teste 78), radial
(Teste 94) e spirall (Teste 103). A figura apresenta as melhores imagens produzidas
pelos seus respectivos testes. As métricas com os resultados de todos os testes foram
organizadas em tabelas que podem ser observadas no repositério do Github do projeto[7].
As imagens e modelos treinados podem ser requisitadas por e-mail pois consistem em mais
de 20 Gb de material.
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Predicted Image

Ground Truth

Input Image

(a)

Ground Truth Predicted Image

Input Image

(b)

Ground Truth Predicted Image

Input Image

(c)

Figura 4.7. Imagens geradas pela GAN durante os testes. (a) Imagens geradas
pelo teste n° 78. (b) Imagens geradas pelo teste n° 94. (c) Imagens geradas pelo
teste n° 103.

4.1.6 Graficos de Perda (Loss)

Nos testes mais avancados do estudo foram extraidos as curvas da perda da rede
generativa durante o treino e a validacao em funcao da época, para poder observar se
o modelo estava generalizando de forma satisfatoria os dados evitando assim o overfit-
ting, que acontece quando o modelo sé consegue bons resultados para as imagens de

treinamento. Na Figura 4.8 é possivel observar um desses graficos, referentes ao teste de
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numero 78, onde apesar do erro da validagao estar oscilando ele nao esté crescendo e esta

estabilizado abaixo de 100, enquanto o erro do treinamento fica préximo a zero.

Generator Total Loss

—— Treinamento
175 4 —— Validagdo

150 A

1254

100

Loss

751

50

25 1

"y o e | ool aiel. Dl ool il e

200 400 600 800 1000 1200 1400
Step

o 4

Figura 4.8. Curva de perda no treino/validagao do gerador em fungao da época.

Também foram extraidos graficos da perda da rede generativa e da rede discriminativa
em fungao da época. Esse tipo de grafico permite observar se as redes estao equilibradas.
Caso as curvas se afastem muito, pode significar que uma rede esta aprendendo mais a
cada época do que a outra, impactando nos resultados finais. A curva referente ao teste

numero 78 pode ser observada na Figura 4.9.

GenxDisc Loss

—— Generator Loss
140 4 —— Discriminator Loss

120

100 A

80 -

Loss

60 -

40 A

20

0 260 460 600 860 10I00 12I00 14I00
Figura 4.9. Curva de perda do gerador e do discriminador em fungao da época.
Os graficos extraidos dos testes citados neste trabalho poderao ser observados no
repositério do github do projeto[7].
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4.1.7 Tabelas

Os resultados dos testes foram organizados em tabelas contendo os parametros da
GAN, e também as especificagoes de sub-amostragem. Na Tabela 4.1 é possivel observar

alguns resultados para a trajetoria spiral4.

Tabela 4.1. Métricas de qualidade para testes da trajetoria spiral/.

N° N° Epocas Tamanho de Buffer SSIM In  SNR In (dB) SSIM Pr  SNR Pr (dB) RSSIM RSNR
65 1500 1000 0,2840,06 4,0242,08 0,5840,07 8,02+3,94 2,067 1,996
69 1500 1000 0,27+0,05 4,144+1,42 0,56+£0,06 7,17£1,35 2,107 1,732
75 500 1000 0,28+0,06 2,92+1,63 0,568+0,08 5,55£2,05 2,096 1,900
78 1500 1000 0,33£0,05 5,15£1,65 0,66£0,05 11,53+5,90 1,977 2,241
80 1500 1500 0,2940,06 4,024+2,15 0,634+0,08 7,8443,85 2,180 1,948

Na Tabela 4.1 todos os testes foram realizados com 1500 imagens de treino de tamanho
512 por 512 com excecao do teste 78 que foram utilizadas 3000 imagens. O nimero de
voltas da espiral da trajetoria spiral/ foi de 16 voltas tanto para o treino quanto para
o teste, poupando 24,8% do espaco-k. As varidveis precedidas de Pr se tratam daquelas

geradas pelo modelo (predicted), e as precedidas de In s@o obtidas das imagens de entrada
(input).

A Tabela 4.2 contém os melhores resultados para cada trajetoria, esses resultados
foram os que obtiveram melhor relacao de melhora no SSIM e maior SSIM final. Para

chegar nessa relagao foi multiplicado o valor do SSIM final pelo RSSIM, e os testes com

os maiores valores da multiplicacao foram considerados os melhores.

Tabela 4.2. Métricas de qualidade dos melhores resultados de cada trajetoria.

Teste Espago-k Poupado Trajetéria SSIM In SNR In SSIM Pr SNR Pr RSSIM
89 50,39% HF 0,53 +£ 0,10 4,74 £3,13 0,63 +£0,09 7,43 +5,31 1,184
53 30,07% Random 0,23 £ 0,10 0,47 =233 0,50 £ 0,04 6,98 + 3,19 2,124
103 24,49% Spirall 0,08+ 0,04 2,33 +£1,30 0,38 +£0,06 6,68+ 3,15 4,774
80 24 84% Spiral4 0,29 + 0,06 4,02 +£2,15 0,63 £0,08 7,84 + 3,85 2,180
94 6,14% Radial 0,53 +£ 0,11 5,38 £ 3,38 0,65 £0,00 7,40 + 4,98 1,246

4.2 DISCUSSAO

Apds os 110 testes foram obtidos resultados que melhoraram as métricas de qualidade

das imagens. Serao discutidos sobre os detalhes, assim como as métricas de qualidade,

imagens produzidas e estatisticas que podemos extrair desses testes.

37



4.2.1 Meétricas de Qualidade

Analisando os resultados obtidos foi possivel observar padroes nas métricas de qua-
lidade obtidas e nas caracteristicas das imagens. Tomemos o teste numero 80 citado na
Tabela 4.1, a média de SSIM das imagens geradas foi de 0,63, porém foram analisadas
as métricas individuais de cada imagem de teste, e os dados organizados no diagrama
boxplot da Figura 4.10.

Boxplot do SSIM - Teste 80

0.8 -

0.7 1

0.6

0.5 4

SSIM

0.4 4

0.3 4

0.2

SSIMin SSIMpr

Figura 4.10. Boxplot de SSIM para imagens de entrada e saida do teste 80.
Pelo boxplot é possivel observar que todas as imagens do conjunto foram aprimoradas,
e apesar da média de SSIM das imagens aprimoradas ser de 0,63, algumas imagens

possuem SSIM acima de 0,7. Na Figura 4.11 estao todas as imagens do teste 80 que
obtiveram SSIM acima de 0,7.
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Ground Truth

Input Image Predicted Image

(@)

Ground Truth Predicted Image

Input Image

(b)

Input Image Ground Truth Predicted Image

(c)

Figura 4.11. Melhores imagens produzidas no teste 80. (a) SSIM = 0,72. (b)
SSIM = 0,80. (c) SSIM = 0,81.

Assim como nas imagens (b) e (c), que foram as melhores imagens produzidas nesse
teste, as melhores imagens produzidas em outros testes também tinham a caracteristica
de serem mais escuras, com alguns poucos detalhes claros, como mostrado anteriormente

na Figura 4.7

[sso mostra um padrao, onde as imagens mais escuras obtém maiores valores de
SSIM pois devido ao fato de que as imagens sendo comparadas possuem poucos detalhes
e baixa amplitude dos pixels faz com que as imagens geradas se assemelhem mais com as
imagens referéncia. Porém essas imagens possuem baixo SNR devido a baixa amplitude

dos pixels. Considerando que o SNR médio para o teste 80 foi de 7,84 dB todas as
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imagens da Figura 4.7 conseguiram resultados abaixo da média possuindo: (a) SNR =
4,50 dB, (b) SNR = 2,66 dB e (c) SNR = 4,63 dB. Esse aspecto mostra a importancia

de analisar SSIM e SNR sempre em conjunto

Outro ponto interessante a ser observado é o boxplot da média do SSIM das imagens
geradas nos testes onde ocorreu melhora nas métricas de qualidade, correspondente a 71
dos 103 primeiros testes realizados. A Figura 4.12 apresenta o boxplot da média do SSIM
das imagens de entrada e das imagens geradas por testes onde o RSSIM foi maior do que

um, ou seja, ocorreu melhora nas imagens.

Boxplot do SSIM com Médias

0.7 4
0.6
0.5
=
E ———
v *
0.4 .
*
0.3 1
0.2 - Média SSIM Input: 0.38
' Meédia SSIM Predicted: 0.57

T T
SSIM input SSIM predicted

Figura 4.12. Boxplot do SSIM de testes que ocorreram melhora nas métricas de
qualidade.

Na Figura 4.12 é possivel observar que as métricas das imagens de entrada tendem a
ser bem dispersas, e ao passarem pela GAN elas tendem a ter um menor desvio padrao.
E além disso o algoritmo tende a convergir em volta da média de 0,57 de SSIM, com
imagens de entrada com diferentes SSIM passando a ter um SSIM perto dessa média
apos a GAN.
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4.2.2 Completar Espaco-k

Durante os testes foi testada a abordagem citada anteriormente na secao de Trabalhos
Correlatos do estudo “Deep learning for undersampled MRI reconstruction”[20]. O teste
foi realizado de duas formas diferentes, na primeira os espagos-k das imagens geradas pela
GAN eram usados para completar o espaco-k das imagens de entrada, assim gerando um
novo espago-k e consequentemente uma nova imagem, as métricas entao eram comparadas
com as imagens referéncia e também com as imagens antes da fusao dos espagos-k. Nos
testes realizados dessa primeira forma nao foram observadas melhoras, e sim uma leve
queda no SSIM das imagens. Na Figura 4.13 é possivel observar as imagens de um dos

testes, e na Tabela 4.3 a média das métricas de cem imagens testadas.

~Imagem Imagem de Imagem Gerada Imagem
Referéncia entrada Combinada

Figura 4.13. Imagens do teste que combina os espacos-k.

Tabela 4.3. SSIM das imagens obtidas com o teste que combina os espacos-k.

SSIM In SSIM Pr SSIM Comb
0,290 + 0,02 0,493 £ 0,03 0,295 4+ 0,03

A segunda forma de testar o método de juncao do espago-k foi usar a imagem produ-
zida a partir da juncao como nova imagem de entrada para o modelo gerador repetindo
o processo varias vezes. Testou-se dessa forma pois esperava-se que o modelo treinado
para melhorar imagens seria capaz de melhorar outras imagens mesmo que essas tivessem
parametros de amostragem diferentes, porém também nao foram obtidos bons resultados,

como mostrado na Figura 4.14.
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Imagem Referéncia Imagem de entrada Imagem Gerada 1 Imagem Combinada 1

Imagem Combinada 2

# 1
Imagem Gerada 3
Figura 4.14. Imagens referéncia, de entrada, geradas e combinadas para com-
paracdo. A imagem referéncia é a feita a partir do espaco-k tipicamente amostrado,
a imagem de entrada é a feita com o espago-k sub-amostrado, as imagens geradas

sao aquelas produzidas pelo modelo e as combinadas sao as feitas a partir da com-
binagao do espaco-k da imagem gerada com a imagem de entrada.

4.2.3 Comparacao com Outros Modelos

Os resultados e métricas obtidas durante os testes foram comparados com aqueles
disponibilizados pelo grupo FastMRI em sua tabela de classificagdo. Apesar das tra-
jetorias usadas neste trabalho nao serem as mesmas usadas pelos competidores na época,

o conjunto de dados foi 0 mesmo, o de imagens de joelho com bobina unica.

Para realizar a comparacao foram selecionados os algoritmos criados na época que
processavam espacos-k com 4% das suas baixas frequéncias preservadas e com diferentes
taxas de amostragem no restante do espaco-k. Para a comparacao, foi selecionado o
melhor resultado obtido no algoritmo feito para este trabalho com a sub-amostragem
no centro do espaco-k semelhante. Para isso foi escolhido um teste usando a trajetoria

spiral que possui 2,11% das baixas frequéncias poupadas.
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Na Tabela 4.4 é possivel observar a comparacao entre os resultados obtidos pelo
algoritmo feito neste trabalho (Mestrado), o algoritmo com melhor resultado do desafio do
FastMRI (AIRS-Net) e o melhor algoritmo GAN (UnetGan) na tabela da competigao. O
teste do mestrado considerado para a comparacao é o teste 78. Nao foram comparadas as
relacoes sinal ruido pois neste estudo foi usado SNR por area de interesse, e na competicao

do FastMRI foi usada a relacao sinal ruido de pico.

Tabela 4.4. Comparagao do modelo criado com os da competicao do FastMRI.

Algoritmo SSIM

AIRS-Net 00,6927
UnetGan  0,6061
Mestrado 0,6569

Os modelos criados para a competicao nao conseguiram valores maiores do que 0,7.
Durante os testes do mestrado a maior parte das imagens acima de 0,65 possuem baixo
contraste e a maior média obtida em um teste é de 0,73. Esse comportamento dos
resultados pode ser creditado ao fato de que o conjunto de dados usado é de bobina
unica, nele o espaco-k obtido vém de varias bobinas que sao combinados em um tnico

espaco-k para diminuir o tamanho ocupado em memoria porém perdendo alguns dados.

A tabela de classificacao possui os resultados da competicao de imagens de cérebro,
que usa um conjunto de dados obtido de varias bobinas. Nos modelos em questao os
resultados conseguiram alcancar valores de até 0,96. Porém o uso desse tipo de conjunto
de dados é mais limitado devido ao espago ocupado em memoria. O conjunto completo

de imagens de cérebro multi-bobina passa de 500Gb.

Outro ponto interessante de se notar é que em estudos onde se obteve melhores resul-
tados, como o estudo com GANs citado nos trabalhos correlatos, os dados sao obtidos de
forma que evidencie alguma caracteristica na frequéncia, nao sendo o intuito do mestrado,

que era usar dados da forma como sao obtidos em exames hoje.

4.2.4 Comparacao Entre Trajetoérias

A Tabela 4.2 apresentada anteriormente apresentou os melhores resultados para cada
uma das trajetérias. Foi multiplicado os valores de SSIM Pr e RSSIM de cada teste,
aqueles com os maiores resultados foram considerados os melhores, por combinar alto

valor de SSIM da imagem gerada e alta taxa de crescimento do SSIM.

Nesses testes foi observado que as trajetérias que poupavam mais as baixas frequéncias

43



(HF, spiralje radial) obtiveram os maiores valores de SSIM da imagem gerada, isso acon-
tece pois a maior parte da informacao de um espago-k esta contido nas baixas frequéncias.
Essa informacao se confirma ao observar o teste com a trajetéria radial, a que mais poupa
as baixas frequéncias, em que apenas 6,14% do espago-k foi poupado, porém a imagem de
entrada possui SSIM de 0,53. Esse comportamento mostra que a GAN consegue melho-
res resultados quando é treinada com imagens que possuem mais informagoes nas baixas

frequéncias do seu espaco-k.

Porém ¢é interessante notar que o maior crescimento de SSIM foi obtido com a tra-
jetoria spirall, aumentando o valor de 0,08 da imagem de entrada para 0,38. Com um
conjunto de dados mais vasto, poderia-se testar a possibilidade de gerar um novo conjunto
de dados de treino e treinar um novo modelo com essas imagens, e assim poder investigar
se ocorreria uma melhoria ainda maior nas imagens finais. Essa forma de repeticao difere
da testada durante o mestrado, pois realiza um novo treinamento com um novo conjunto
de dados ao invés de repetir usando o modelo previamente treinado, porém por realizar
um novo treinamento precisaria de mais imagens para gerar um conjunto de treinamento

novo.

Outro ponto interessante de se notar na tabela com os melhores resultados é o au-
mento do SNR para o teste da trajetéria random. Apesar de nao conseguir atingir um
SSIM acima de 0,6 como os melhores testes, o teste com a mascara random conseguiu di-
minuir de forma significante o ruido da imagem de entrada como mostrado na Figura 4.15,

aumentando assim o SNR de 0,47 dB para 6,98 dB.

Ground Truth

Input Image Predicted Image

Figura 4.15. Imagem produzida pelo teste n° 53.
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5 CONCLUSAO

O estudo realizou a reconstrucao de imagens de ressonancia magnética a partir de
dados sub-amostrados de bobina tnica usando redes generativas adversarias. GANs sao
ferramentas poderosas no processamento de imagens e foi investigado o uso dessa fer-
ramenta para o aprimoramento de imagens de ressonancia feitas a partir de dados em

diferentes cendrios de sub-amostragem.

O trabalho foi capaz de reconstruir imagens de ressonancia magnética feitas a partir
de dados sub-amostrados, melhorando as métricas de qualidade das imagens de entrada.
O modelo GAN foi capaz de obter a melhora com diferentes tipos de trajetérias e dife-
rentes padroes de sub-amostragem apresentando um limite do quanto poderia melhorar

as imagens.

Os melhores resultados foram obtidos para as trajetorias HF, spiralj e radial. Essas
trajetorias sao as que mais poupam as baixas frequéncias do espaco-k. Porém, bons
resultados também foram obtidos com as trajetérias random, que obteve alta melhora no
SNR e spirall que conseguiu melhorar de forma significativa o SSIM, ambos inicialmente

muito baixos nas imagens de entrada do modelo.

Foi possivel atingir os hiperparametros ideais para a GAN através de testes e do
estudo da literatura, baseando as decisoes em trabalhos correlatos que abordaram temas
como GANs, U-Net e pix2pix.

Ao comparar o modelo criado com aqueles feitos para a competicao do FastMRI,
foi possivel observar que os resultados obtidos conseguiram se equiparar aos resultados
obtidos por modelos trabalhando com o mesmo conjunto de dados, e quando comparado

com outras GANs foi capaz de superé-las.

Apesar da obtencao de resultados positivos, o fato do uso de um conjunto de dados de
bobina tnica limita a obtencao de métricas proximas a 100%. Esse tipo de conjunto de
dados combina os espacos-k de vérias bobinas em um s6 espaco-k, simulando uma bobina
unica, porém nesse processo muita informacao é perdida. Para efeitos de comparacao, o
conjunto de dados de treino de bobina tinica de imagens de joelho possui 70 GB enquanto o
multi-bobina possui 455 GB. Conjuntos de dados de multiplas bobinas, poderiam permitir

melhorias mais expressivas na qualidade das imagens geradas, porém sao mais exigentes
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em termos computacionais.

Em trabalhos futuros serao testados conjuntos de dados mais amplos, com multiplas
bobinas e um pré-processamento auxiliado por inteligéncia artificial, uma vez que mode-
los classificatorios conseguiram bons resultados ao preparar os conjuntos de dados para
treinamento [8]. Também serao realizados testes em que as imagens geradas pelo modelo
possam ser usadas como conjunto de treinamento para um outro modelo, fazendo assim

um aprimoramento em multiplos estagios de treinamento.

Outra abordagem que sera estudada em trabalhos futuros é o processamento dos
espagos-k no aprimoramento das imagens. Duas formas serao abordadas, a primeira
treinando a GAN diretamente com os espacos-k ao invés das imagens reconstruidas,

gerando espacos-k aprimorados.

A segunda forma, usando espacgos-k de conjuntos multi-bobina reconstruindo as ima-
gens a partir de cada um dos espacos-k. Dessa forma, um exame usando quatro bobi-
nas geraria quatro imagens diferentes incompletas, porém cada uma possuindo aspectos

unicos devido as diferengas nos espagos-k.
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