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“The Self is not intelligible, nor is Nature, for Nature is what we are.
That’s ok; we still do physics.”





Resumo

Simulações Computacionais de Cristais 2D

As tecnologias quânticas baseiam-se no entendimento mais sofisticado da matéria que
possuímos e, para buscar esse desenvolvimento tecnológico, precisamos continuar aprimo-
rando nossos métodos de exploração e ser criativos ao imaginar materiais além dos que já
fomos capazes de sintetizar. Este estudo propõe uma investigação teórica de classes mo-
dernas de materiais bidimensionais (2D): os dicalcogenetos de metais de transição (DMTs)
e os carbonetos, nitretos e carbonitretos de metais de transição (MXenes). Este viés explo-
ratório é sustentado pela teoria de perturbação do funcional de densidade (TPFD) para
prever a estabilidade e a caracterização de materiais não sintetizados, e pela teoria do
funcional de densidade (TFD) para propriedades eletrônicas, sendo estas posteriormente
refinadas com métodos pós-TFD baseados em funções de Wannier. Nesta abordagem mais
refinada, discutimos os fundamentos da teoria quântica e do estado sólido para obter resul-
tados de grande relevância para o desenvolvimento de tecnologias quânticas, como a massa
efetiva dos portadores de carga e bandas eletrônicas planas encontradas em Y2CCl2, pro-
priedades ópticas com efeitos excitônicos significativos encontrados sobre as bandas planas
em Y2CCl2 e também nos vales K em MoS2, e ainda propriedades topológicas reveladas
pela curvatura de Berry na estrutura de bandas em MoS2. O foco deste estudo não se
restringe a exploração de materiais, dedicando-se também ao desenvolvimento de técnicas
computacionais que aprimorem nossos métodos atuais de simulação.

Palavras-chave: DFT. MXenes. DMTs. Materiais 2D. Simulação Computacional. Esta-
bilidade. Bandas planas. Éxciton. Curvatura de Berry.





Abstract
Quantum technologies are grounded in the most sophisticated understanding of matter
we have so far, and to pursue this technological development we must keep pushing our
methods of exploration and be creative in imagining materials beyond what have already
been synthesized. This study presents a theoretical investigation of modern classes of two-
dimensional (2D) materials; the transition metal dichalcogenides (TMDs) and transition
metal carbides, nitrides, and carbonitrides (MXenes). Such exploration is underpinned
by density functional perturbation theory (DFPT) to predict the stability and charac-
terization of unsynthesized materials, and density functional theory (DFT) for electronic
properties, which are further refined with post-DFT methods based on Wannier functions.
In this finer approach we discuss the fundamentals of quantum theory and solid-state sys-
tems to achieve results of great relevance to the development of quantum technologies,
such as charge carrier effective mass and flat band behavior in Y2CCl2, optical properties
with significant excitonic effects which are created in the flat bands of Y2CCl2 and in the
valleys of MoS2, and also possible topological properties revealed by the Berry curvature
in the MoS2 band structure. The focus of the study goes beyond materials exploration, to
also dedicate on developing computational techniques that improve our current methods
of simulation.

Key-words: DFT. MXenes. TMDs. 2D Materials. Computational Simulation. Stability.
Flat band. Exciton. Berry Curvature.
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Introduction

Humanity relies on the technology of its era. We continuously push the boundaries
of our understanding and, consequently, the boundaries of the technology we can achieve.
The electronic properties of materials are associated with groundbreaking developments
in technology which unquestionably lead to major transformations in society; we live in
the electronic age. From early studies of conductors, insulators, and later semiconductors,
these and other electronic phases of matter have become fundamental to the advancement
of cutting-edge electronic technologies. Technology which was always sustained in quan-
tum mechanics, even before we knew it, though now we know, and now our knowledge
grows, and as time goes on, more exotic properties are entering our repertoire of tech-
nologies.

Nowadays, these modern devices are being labeled as "quantum technology", bring-
ing this mystery out of the scientific shell and growing popularity in the media. Many of
these quantum technologies are rising with advanced topological phases of matter, spin-
tronics and valleytronics exploration, quantum information processing, growing efficiency
in photovoltaic cells, and as much as our understanding of the electron states can provide.
As scientists continue to push the boundaries of knowledge, opening the path for further
technology development, a necessity to refine our methods of studying the electron in
solid state systems also increase, as we want to simulate the most exotic phenomena we
can think of.

Quantum mechanics is not trivial, and solutions for many-body systems are as
complex as they can get. For dealing with such complexity, computational simulations
have been a key tool in the study of the electronic properties of materials. DFT simu-
lations revolutionized the range and accuracy of physical properties that could now be
theoretically proposed independently of experiments, but there is still more to grasp.
Post-DFT methods are able to refine even further the electronic description and thus,
prediction. Wannier functions give an elegant description of the electron states in the
crystalline environment, and can serve as a great path to improve our computational de-
scription of reality.

Independently of the methods we use, it is crucial to evaluate how well the natural
description is being constructed. Quantum mechanics concepts are sometimes elusive, but
with careful pondering, the data-structure contained in their mathematics is surprisingly
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computationally oriented. Operators are represented as matrices, quantum states as vec-
tors, and many properties appear in tensor form. In solid-state simulation, it’s usual to
map these properties in a unit cell that is represented on a discrete grid. All of these
structures must be carefully constructed in computational language. Here we discuss the
methodology used for this purpose, and show how physical properties can be better stud-
ied with proper information treatment. We go from quantum mechanics first principles,
through DFT and the most relevant computational methodologies for simulating solid
systems, into refined techniques for obtaining state-of-the-art properties of synthesized
and even unsynthesized crystals. Predicting the existence of a crystal before giving it
birth is possible due to simulations of the stability and characterization of the material,
which then invites us into exploring advanced electronic and optical properties, such as
excitonic and topological phenomena.

The structure of this dissertation is composed of three main parts, the first being
a complete theoretical review endorsed by the best literature references, which is rec-
ommended as optional for the reader that is already comfortable with their knowledge
in the first and second quantization languages, and fundamental solid-state representa-
tions. The second part connects physics with reality, exhibiting, discussing, and justifying
the materials which are targeted for our simulations; we work with a transition metal
dichalcogenide (TMD) and the newborn family of transition metal carbides, nitrides, and
carbonitrides (MXenes). The third, and last part, is the heart of this study, being where
we develop our computational methods, exhibiting and discussing the properties we were
able to simulate and the technologies that may come with it.



Part I

The Underlying Physical Theory
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1 Quantum Theory

Deepening in condensed matter physics will require strong foundations of the the-
ory that describes the lower scales of reality. Crystals are sets of atoms, and to understand
them, we need quantum theory. This section begins with the fundamental concepts of
quantum mechanics and crosses to the second quantization of many-body systems.

1.1 Physical Systems
Associated to any physical system, there is a complex Hilbert space H , also known

as the state space of the system. In any system, a state is represented by a state vector,
which is an unitary vector in Hilbert space |Ψ⟩ ∈ H . All unit vectors in a finite Hilbert
space correspond to a possible physical state of the system (MANZANO, 2020). For
obtaining physical information about that system, we make use of operators, which act
on the Hilbert space of the state vectors as follows:

𝑄̂ |Ψ⟩ = 𝑞 |Ψ⟩ , (1.1)

where 𝑄̂ is an operator that acts in |Ψ⟩ to produce 𝑞 |Ψ⟩, being 𝑞 the measurement
of the physical observable. The action of an operator in a state vector is given by an
eigenvalue and eigenvector equation (1.1), where the eigenvectors are called eigenstates.
It is important to keep in mind that, despite all physical observables being represented
by operators, not all operators are related to a physical observable.

Quantum theory does not allow every observable to be measured simultaneously.
According to Heisenberg’s uncertainty relation (HEISENBERG, 1927), some operators are
incompatible, that is, measuring a state with an operator may cause loss of information
about some previous measurement. The compatibility of operators is defined by their
commutator, where compatible operators have necessarily to commute, that is,

[𝑄̂1, 𝑄̂2] = 𝑄̂1𝑄̂2 − 𝑄̂2𝑄̂1 = 0.

A set containing the maximum amount of commuting observable operators 𝑄̂1, ..., 𝑄̂𝑗

is called a complete experiment. When acting on a state vector, the operators produce
a set of eigenvalues 𝑞1, ..., 𝑞𝑗, which is the maximum amount of information that can be
obtained from the system. The state vector is then written as |𝑞1, ..., 𝑞𝑗⟩.
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The existence of complete experiments causes the notion of sates of maximum
information. This states are called pure states, and are represented by unit vectors. For
presenting the maximum information allowed by the uncertainty relation, they are quan-
tum analogs to the classical states where is known all positions and momentum of a system.

The choice for some complete set of commuting operators is not necessarily unique.
As an example, let’s consider a quantity 𝑘 of physical systems, where in each of them
we have a complete experiment with a quantity 𝑗 of operators. Be then the set of
operators 𝑄̂1, ..., 𝑄̂𝑗, that acting on the 𝑘 state vectors lead us to {|Ψ1⟩ , ..., |Ψ𝑘⟩} =
{|𝑞11, ..., 𝑞1𝑗⟩ , ..., |𝑞𝑘1, ..., 𝑞𝑘𝑗⟩}. For another set of operators 𝑄̂′

1, ..., 𝑄̂′
𝑗, we have the eigen-

states as {|𝜑1⟩ , ..., |𝜑𝑘⟩} = {
⃒⃒⃒
𝑞′

11, ..., 𝑞′
1𝑗

⟩
, ...,

⃒⃒⃒
𝑞′

𝑘1, ..., 𝑞′
𝑘𝑗

⟩
}, where at least one of the oper-

ators in the second set does not commute with the first set, despite being both complete
sets. If a system is represented by the state vector |Ψ𝑛⟩, this can always be written as a
linear combination of all eigenstates from 𝑄̂′

1, ..., 𝑄̂′
𝑗 (MANZANO, 2020),

|Ψ𝑛⟩ =
𝑗∑︁
𝛼

𝑎𝑛𝛼 |𝜑𝛼⟩ . (1.2)

This equation is the mathematical representation for the notion of superposition.
The vectors |𝜑𝛼⟩ above are the basis vectors, and the system |Ψ𝑛⟩ is said to be in the
{|𝜑𝛼⟩} representation. In general, every pure state can be written as a linear combination
of any set of vectors that form a basis for the Hilbert space. Here, 𝑎𝑛𝛼 are complex num-
bers that represent the probability amplitude of measuring the system |Ψ𝑛⟩ in the state
|𝜑𝛼⟩.

It’s convenient to use a basis set with properties of orthonormality

⟨𝜑𝛼|𝜑𝛽⟩ = 𝛿𝛼𝛽, (1.3)

and completeness

∑︁
𝛼

|𝜑𝛼⟩ ⟨𝜑𝛼| = 1. (1.4)

One can represent the adjoint state of |Ψ𝑛⟩ as

⟨Ψ𝑛| =
∑︁

𝛼

𝑎*
𝑛𝛼 ⟨𝜑𝛼| , (1.5)

so we can write the normalization as
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⟨Ψ𝑛|Ψ𝑛⟩ =
∑︁

𝛼

|𝑎𝑛𝛼|2 = 1, (1.6)

being |𝑎𝑛𝛼|2 the probability to measure the system |Ψ𝑛⟩ in the state |𝜑𝛼⟩.

For a pure state |Ψ𝑛⟩ that is not an eigenstate of some observable 𝑄̂, measurements
of that observable may have different results, i.e., each measurement might be a distinct
eigenvalue of 𝑄̂. In general, if the number of identical particles is sufficiently large, all
eigenvalues will eventually be measured. The average of the measurements, also called
the expectation value ⟨𝑄̂⟩ of the observable 𝑄̂, is

⟨𝑄̂𝑛⟩ = ⟨Ψ𝑛| 𝑄̂ |Ψ𝑛⟩ . (1.7)

In a simple system of an nonrelativistic electron in an atom, the maximum in-
formation is described by four quantum numbers 𝑛, 𝑙, 𝑚𝑙, 𝑚𝑠. Thus, any state |𝜑𝜏 ⟩ can
be written as |𝑛 𝑙 𝑚𝑙 𝑚𝑠⟩, which are the electron states in the energy representation, i.e.,
they are eigenstates of the energy operator. States are not limited to one representation.
The vector |𝑥⟩ ≡ |𝑟𝜎⟩ is an eigenstate of the position operator 𝑟 and the spin projection
operator 𝑠𝑧. We have

𝑟 |𝑥⟩ = 𝑟 |𝑥⟩ (1.8)

𝑠𝑧 |𝑥⟩ = 𝜎
ℏ
2 |𝑥⟩ , (1.9)

where 𝜎 = ±1. The states |𝑥⟩ satisfy the improper orthogonality relation

⟨𝑥|𝑥′⟩ = 𝛿𝜎𝜎′𝛿(𝑟 − 𝑟′) ≡ 𝛿(𝑥, 𝑥′). (1.10)

Since space is a continuous, the state vectors |𝑥⟩ are not properly normalizable,
thus they are not elements of the Hilbert space of one particle H1. Nevertheless, they still
can be used to represent the elements of H1 in the sense of a basis set, since they form a
complete basis in a vector space which contains H1 (ENGEL; DREIZLER, 2011). To see
this, we start by

|𝜑𝛼⟩ = 1 |𝜑𝛼⟩

=
∑︁

𝑥

|𝑥⟩ ⟨𝑥|𝜑𝛼⟩

=
∑︁

𝑥

⟨𝑥|𝜑𝛼⟩ |𝑥⟩ , (1.11)
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and then we may rescue our notion of space as a continuous, to better describe
nature, rewritten the equation above in the integral form

ˆ
𝑑𝑥 ⟨𝑥|𝜑𝛼⟩ |𝑥⟩ , (1.12)

where the ingeral
´

𝑑𝑥 abbreviates integration over space and summation over all
internal degrees of freedom, as e.g. in the case of spin-1

2 fermions

ˆ
𝑑𝑥 ≡

∑︁
𝜎=↑,↓

ˆ
𝑑3𝑟. (1.13)

The scalar product of the state vector |𝑥⟩ and the single particle state |𝜑𝛼⟩ is
interpreted as the wavefunction of the particle 𝜑𝛼(𝑥) ≡ ⟨𝑥|𝜑𝛼⟩, so we have

ˆ
𝑑𝑥𝜑𝛼(𝑥) |𝑥⟩ . (1.14)

Based on this concept, we may find the orthonormality relation written as

⟨𝜑𝛼|𝜑𝛽⟩ =
∑︁

𝑥

⟨𝜑𝛼|𝑥⟩ ⟨𝑥|𝜑𝛽⟩

=
ˆ

𝑑𝑥𝜑𝛼(𝑥)*𝜑𝛽(𝑥) = 𝛿𝛼𝛽. (1.15)

1.2 Mixed States
In most cases, however, we do not know with certainty the pure state |Ψ𝑛⟩ in

which the system is found, but rather a set of possible pure states |Ψ1⟩ , ..., |Ψ𝑘⟩. Due to
statistical uncertainty, it is impossible to represent the state of these systems with a single
state vector, as they are described with classical probabilities 𝑊1, ..., 𝑊𝑘 of being in pure
states |Ψ1⟩ , ..., |Ψ𝑘⟩. For these systems, whose states are called mixed states, it is necessary
to use a statistical description analogous to what occurs in classical systems, while still
preserving the statistical component of quantum nature. To determine ⟨𝑄̂⟩ for a mixture
|Ψ1⟩ , ..., |Ψ𝑘⟩, each expectation value ⟨𝑄̂𝑛⟩ is obtained through ⟨𝑄̂𝑛⟩ = ⟨Ψ𝑛| 𝑄̂ |Ψ𝑛⟩ and
then multiplied by a probabilistic weight 𝑊𝑛 in a summation, where 𝑊𝑛 is a real number
equal to the probability that any given particle in the set is in the pure state |Ψ𝑛⟩:

⟨𝑄⟩ =
∑︁

𝑛

𝑊𝑛 ⟨Ψ𝑛| 𝑄 |Ψ𝑛⟩ . (1.16)

By doing so, a classical probability is incorporated into a particle that is a priori
in a pure state |Ψ𝑛⟩, and upon measuring it, there is the quantum probabilistic effect of



1.2. Mixed States 31

finding it in one of the basis states |𝜑𝜏 ⟩.

We consider a set of independent states |Ψ1⟩ , ..., |Ψ𝑘⟩ and their respective statis-
tical weights 𝑊1, ..., 𝑊𝑘. Using these, the density operator is defined as:

𝑛̂ =
∑︁

𝑛

𝑊𝑛 |Ψ𝑛⟩ ⟨Ψ𝑛| . (1.17)

To write this operator in matrix form, another orthonormal and complete ba-
sis |𝜑1′⟩ , ..., |𝜑𝑘′⟩ is chosen, so that we can use the principle of superposition |Ψ𝑛⟩ =∑︀

𝜏 ′ 𝑎𝑛𝜏 ′ |𝜑𝜏 ′⟩ to obtain:
𝑛̂ =

∑︁
𝑛,𝜏,𝜏 ′

𝑊𝑛𝑎𝑛𝜏 ′𝑎*
𝑛𝜏 |𝜑𝜏 ′⟩ ⟨𝜑𝜏 | . (1.18)

The elements 𝑛𝑗𝑖 of the density matrix, between the states ⟨𝜑𝑗| and |𝜑𝑖⟩, can be defined
using ⟨𝜑𝑗|𝜑𝜏 ′⟩ = 𝛿𝑗𝜏 ′ and ⟨𝜑𝜏 |𝜑𝑖⟩ = 𝛿𝜏𝑖:

⟨𝜑𝑗| 𝑛̂ |𝜑𝑖⟩ =
∑︁

𝑛

𝑊𝑛𝑎*
𝑛𝑗𝑎𝑛𝑖. (1.19)

The elements found in the equation above are elements of the density matrix in the |𝜑𝜏 ⟩
representation, such that the density matrix is explicitly written as:

𝑛̂
.=

⎛⎜⎜⎜⎜⎜⎜⎝
⟨𝜑1| 𝑛̂ |𝜑1⟩ ⟨𝜑1| 𝑛̂ |𝜑2⟩ . . . ⟨𝜑1| 𝑛̂ |𝜑𝑘⟩
⟨𝜑2| 𝑛̂ |𝜑1⟩ ⟨𝜑2| 𝑛̂ |𝜑2⟩ . . . ⟨𝜑2| 𝑛̂ |𝜑𝑘⟩

... ... . . . ...
⟨𝜑𝑘| 𝑛̂ |𝜑1⟩ ⟨𝜑𝑘| 𝑛̂ |𝜑2⟩ . . . ⟨𝜑𝑘| 𝑛̂ |𝜑𝑘⟩

⎞⎟⎟⎟⎟⎟⎟⎠ .

Analyzing the matrix elements, we find some properties, such as the fact that 𝑛̂ is
Hermitian, that is:

𝑛𝑗𝑖 = 𝑛*
𝑖𝑗, (1.20)

as we can verify,

⟨𝜑𝑗| 𝑛̂ |𝜑𝑖⟩ =
∑︁

𝑛

𝑊𝑛𝑎𝑛𝑖𝑎
*
𝑛𝑗 =

(︃∑︁
𝑛

𝑊𝑛𝑎*
𝑛𝑖𝑎𝑛𝑗

)︃*

= (⟨𝜑𝑖| 𝑛̂ |𝜑𝑗⟩)* . (1.21)

Since 𝑊𝑛 represents the probability of finding one of the systems |Ψ𝑛⟩, and |Ψ𝑛⟩
has the probability of being found in the state |𝜑𝜏 ⟩ given by 𝑎2

𝑛𝜏 , the diagonal elements of
the matrix combine these probabilities, resulting in the probability of finding the system
in |𝜑𝜏 ⟩:

𝑛̂𝜏𝜏 =
∑︁

𝑛

𝑊𝑛|𝑎𝑛𝜏 |2, (1.22)
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which provides a physical interpretation of the diagonal elements of the density
matrix, also known as populations. In complement, the off-diagonal elements represent
coupling terms between the states. This operator also obeys the following properties
(MANZANO, 2020):

𝑇𝑟[𝑛̂] = 1, 𝑛̂ > 0. (1.23)

Given a density matrix, it is possible to verify whether it represents a pure or
mixed state. This can be determined using the trace of 𝑛̂2: 𝑇𝑟[𝑛̂2] = 1 implies that the
state is pure, and 𝑇𝑟[𝑛̂2] < 1 implies that the system is in a mixed state. The quantity
𝑇𝑟[𝑛̂2] is referred to as the purity of the states, and it satisfies the condition:

1
𝑑

≤ 𝑇𝑟[𝑛̂2] ≤ 1, (1.24)

where 𝑑 is the number of dimensions of the Hilbert space.

The expected value ⟨𝑄̂⟩ of an observable 𝑄̂ can be written as:

⟨𝑄̂⟩ = 𝑇𝑟[𝑄̂𝑛̂] (1.25)

For example, we can perform measurements of the energies of a system. Consider
a simple two-level system with 𝐸0 and 𝐸1, where the operator corresponding to this
measurement is the Hamiltonian:

𝐻̂ = 𝐸0 |0⟩ ⟨0| + 𝐸1 |1⟩ ⟨1| . (1.26)

This operator has two eigenvalues 𝐸0, 𝐸1 with the corresponding eigenvectors
|0⟩ , |1⟩, which represent the ground state and excited state of the system.

For a pure state |Ψ⟩ = 𝑎0 |0⟩+𝑎1 |1⟩, the probability of measuring the energy at 𝐸0

is given by 𝑃 (𝐸0) = ⟨0|Ψ⟩2 = 𝑎2
0, and analogously for 𝐸1, 𝑃 (𝐸1) = ⟨1|Ψ⟩2 = 𝑎2

1. Applying
equation (1.7), ⟨𝐻⟩ = 𝐸0𝑎

2
0 + 𝐸1𝑎

2
1.

In the case of a mixed state represented by the operator 𝑛̂ = 𝑛̂00 |0⟩ ⟨0|+𝑛̂01 |0⟩ ⟨1|+
𝑛̂10 |1⟩ ⟨0| + 𝑛̂11 |1⟩ ⟨1|, the probability of finding the ground state is given by 𝑃 (0) =
𝑇𝑟[|0⟩ ⟨0| 𝑛̂] = 𝑛̂00. Using (1.25), the expected value of the energy is obtained as:

⟨𝐻̂⟩ = 𝑇𝑟[𝐻̂𝑛̂] = 𝐸0𝑛̂00 + 𝐸1𝑛̂11 (1.27)
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1.3 Multiple Particle Systems
The Hilbert space of 𝑁 identical particles H𝑁 is the tensor product of 𝑁 single-

particle Hilbert spaces,

H𝑁 = H 1
1 ⊗ H 2

1 ⊗ ... ⊗ H 𝑁
1 , (1.28)

and it is spanned by the product states

|𝜑𝛼1 ...𝜑𝛼𝑁
⟩′ = |𝜑𝛼1⟩ ⊗ ... ⊗ |𝜑𝛼𝑁

⟩ . (1.29)

In this form of 𝑁 -particle states, the 𝑘-th particle is in state |𝜑𝛼𝑘
⟩, and the 𝑁 -

particle state characterizes the whole system. The same construction method is valid for

|𝑥1...𝑥𝑁⟩′ = |𝑥1⟩ ⊗ ... ⊗ |𝑥𝑁⟩ , (1.30)

giving the product wavefunction as

Φ′
𝛼1...𝛼𝑁

(𝑥1...𝑥𝑁) = ⟨𝑥1...𝑥𝑁 |′ |𝜑𝛼1 ...𝜑𝛼𝑁
⟩′ . (1.31)

The wavefunctions Φ′
𝛼1...𝛼𝑁

are ordered with respect to the particles and their la-
bels, which is only possible if the individual particles can be distinguished. However, in
the case of 𝑁 identical particles, their bosonic or fermionic nature has to be taken into
account, so that the corresponding subspaces B𝑁 and F𝑁 of H𝑁 presents symmetric or
antisymmetric behavior.

For discussing symmetric or antisymmetric states, we must first understand the
concept of particle permutations. A permutation of particles involves rearranging the
positions or labels of the particles while ensuring that the state of the system remains
unchanged. As e.g., the following states are permutations of particles:

|𝜑𝛼1𝜑𝛼2𝜑𝛼3⟩′ , |𝜑𝛼1𝜑𝛼3𝜑𝛼2⟩′ , |𝜑𝛼2𝜑𝛼1𝜑𝛼3⟩′ , |𝜑𝛼2𝜑𝛼3𝜑𝛼3⟩′ , |𝜑𝛼3𝜑𝛼1𝜑𝛼2⟩′ , |𝜑𝛼3𝜑𝛼2𝜑𝛼1⟩′ .

(1.32)

We introduce the permutation operator 𝑃𝑃𝑁
, which acts on a state vector, doing

a permutation of particles. Equation (1.32) shows the six states corresponding to permu-
tations 𝑃1, ..., 𝑃6 of a system of three particles. For a system of 𝑁 particles, there are 𝑁 !
possible permutations, thus, we say that
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∑︁
𝑃𝑁 ∈𝑆𝑁

𝑃𝑃𝑁
|𝜑𝛼1 ...𝜑𝛼𝑁

⟩′ (1.33)

is a sum of all 𝑁 ! possible permutations of the state vector |𝜑𝛼1 ...𝜑𝛼𝑁
⟩′, where this

set of summed permutations constitutes the symmetric group 𝑆𝑁 .

We say that if 𝑃𝑃𝑁
|Ψ⟩ = |Ψ⟩, for any permutation, then |Ψ⟩ is a totally symmetric

state. If 𝑃𝑃𝑁
|Ψ⟩ = (−1)𝑃 |Ψ⟩, the state is totally antisymmetric. The sign of the permu-

tations (−1)𝑃 corresponds to the property even (+) or odd (−), according to the number
P of pairwise transpositions necessary to restore the original order, where a transposition
is a permutation of a pair of particles.

For a system of identical particles, the only vectors of its state space that can de-
scribe physical states are totally symmetric vectors with respect to permutations of iden-
tical particles and totally antisymmetric vectors with respect to permutations of identical
particles. Particles of each specific nature are labeled, respectively, bosons and fermions.

The last step before we can finally define the fermionic and bosonic states is the
symmetrizer and antisymmetrizer operators

𝑆+ = 1
𝑁 !

∑︁
𝑃𝑁 ∈𝑆𝑁

𝑃𝑃𝑁
(1.34)

𝑆− =
∑︁

𝑃𝑁 ∈𝑆𝑁

(−1)𝑃 𝑃𝑃𝑁
. (1.35)

With these operators, we gain access to the occupation number representation,
which suits both fermionic and bosonic systems. state vectors in this representation can
be easily written as groups of particles in each individual state:

|𝑛1, ..., 𝑛𝑘, ...⟩ = 𝐴±𝑆± |𝜑𝛼1⟩1 ⊗|𝜑𝛼1⟩2 ⊗ ...⊗|𝜑𝛼1⟩𝑛1
⊗ ...⊗|𝜑𝛼𝑘

⟩1 ⊗ ...⊗|𝜑𝛼𝑘
⟩𝑛𝑘

⊗ ..., (1.36)

being the occupation numbers 𝑛𝑘 the number of particles in each state |𝜑𝛼𝑘
⟩, and

𝐴± the normalization factor in each symmetric or antisymmetric case.

For bosons we have the symmetric case:

𝐴+ =
√︃

𝑁 !
𝑛1!𝑛2!...𝑛𝑘!... , (1.37)
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while for fermions, the antisymmetric case:

𝐴− =

⎧⎪⎨⎪⎩
√

𝑁 !, if all states |𝜑𝛼𝑘
⟩ are different,

0, if any two states |𝜑𝛼𝑘
⟩ are equal.

(1.38)

The total number of particles 𝑁 is obtained as the sum over all occupation numbers
𝑛𝑘, as

𝑁 =
∑︁

𝑘

𝑛𝑘. (1.39)

For a more general space, which contains all subspaces of any number of particles,
we define the Fock space of fermions F , and the Fock space of bosons B, as the direct
sum of F𝑁 or B𝑁 , in each case, for all particle numbers 𝑁 ,

F = F0 ⊕ F1 ⊕ ... ⊕ F𝑁 ⊕ ... (1.40)

B = B0 ⊕ B1 ⊕ ... ⊕ B𝑁 ⊕ ..., (1.41)

where the F0 and B0 subspaces are such that they contain no particles at all,
where the only possible state is called the vacuum state |0⟩. Vectors from different F

and B subspaces are necessarily orthogonal. For navigating in each subspace, we shall
later define the correspondent creation and annihilation operators. What we are doing is
digging into the second quantization format, where not only the observables are written
in form of operators, but also the state vectors.

1.4 Fermions

For discussing fermions, we start from the wavefunctions, which must be totally
antisymmetric, i.e. any wavefunction Ψ describing 𝑁 identical fermions satisfies the rela-
tion

Ψ(𝑥𝑝1 ...𝑥𝑝𝑁
) = (−1)𝑃 Ψ(𝑥1...𝑥𝑁). (1.42)

This relation is known as the Pauli principle.

A basis in F𝑁 can be constructed from the canonical basis by explicit antisym-
metrization,
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Φ𝛼1...𝛼𝑁
(𝑥1...𝑥𝑁) = 1√

𝑁 !
∑︁

𝑃𝑁 ∈𝑆𝑁

(−1)𝑃 Φ′
𝛼𝑝1...𝛼𝑝𝑁

(𝑥1...𝑥𝑁)

= 1√
𝑁 !

∑︁
𝑃𝑁 ∈𝑆𝑁

(−1)𝑃 𝜑𝛼𝑝1
(𝑥1)...𝜑𝛼𝑝𝑁

(𝑥𝑁)

= 1√
𝑁 !

∑︁
𝑃𝑁 ∈𝑆𝑁

(−1)𝑃 𝜑𝛼1(𝑥𝑝1)...𝜑𝛼𝑁
(𝑥𝑝𝑁

). (1.43)

The last lines indicate that the basis functions of F𝑁 take the form of a deter-
minant that considers permutations in labels and coordinates, which is called a Slater
determinant.

The antisymmetrized wavefunctions Φ𝛼1...𝛼𝑁
do no longer associate a particular

single-particle quantum number with a given particle. Their determinantal structure is
a direct manifestation of the Pauli principle, and the function Φ𝛼1...𝛼𝑁

vanishes if two of
the labels 𝛼1...𝛼𝑁 are identical. This allows a definite ordering of the quantum numbers
in Φ𝛼1...𝛼𝑁

in the form 𝛼1 < ... < 𝛼𝑁 . This basis functions are orthonormal and complete
in F𝑁 , as the 1-particle basis used in its construction is orthonormal and complete in
H𝑁 .(ENGEL; DREIZLER, 2011)

For spanning F𝑁 with state vectors, we use the antisymmetrized states

|𝑛1, ..., 𝑛𝑁⟩ = |𝜑𝛼1 ...𝜑𝛼𝑁
⟩ = 1√

𝑁 !
∑︁

𝑃𝑁 ∈𝑆𝑁

(−1)𝑃
⃒⃒⃒
𝜑𝛼𝑝1

...𝜑𝛼𝑝𝑁

⟩′
. (1.44)

We notice that, as fermions have all occupation numbers 𝑛𝑘 as one or zero, we
may still represent the state vectors |𝑛1, ..., 𝑛𝑁⟩ as |𝜑𝛼1 ...𝜑𝛼𝑁

⟩. This antisymmetric states,
as happened to the wavefunction form, does not relate the positions of quantum numbers
with particular states, i.e. a given particle is not in a particular single-particle state.

The antisymmetric 𝑁 -fermion state vectors satisfy the orthonormality relation,

⟨𝜑𝛼1 ...𝜑𝛼𝑁
|𝜑𝛽1 ...𝜑𝛽𝑁

⟩ = 𝛿𝛼1𝛽1 ...𝛿𝛼𝑁 𝛽𝑁
. (1.45)

Similarly, the completeness relations have the form

1
𝑁 !

∑︁
𝛼1...𝛼𝑁

|𝜑𝛼1 ...𝜑𝛼𝑁
⟩ ⟨𝜑𝛼1 ...𝜑𝛼𝑁

| = 1F𝑁
(1.46)

∑︁
𝛼1<...<𝛼𝑁

|𝜑𝛼1 ...𝜑𝛼𝑁
⟩ ⟨𝜑𝛼1 ...𝜑𝛼𝑁

| = 1F𝑁
, (1.47)
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where 1F𝑁
represents the unit operator in the 𝑁 -fermionic subspace.

A complete and orthonormal basis of F is obtained as the sum of the basis sets
from all 𝑁 -particle subspaces, including |0⟩. The completeness relation is then

|0⟩ ⟨0| +
∞∑︁

𝑁=1

1
𝑁 !

∑︁
𝛼1...𝛼𝑁

|𝜑𝛼1 ...𝜑𝛼𝑁
⟩ ⟨𝜑𝛼1 ...𝜑𝛼𝑁

| = 1F . (1.48)

For fermions, it is forbidden for multiple particles to occupy the same state. Still,
the creation operator 𝑐†

𝛼 acting on a F𝑁 state vector generates a F𝑁+1 state vector, as

𝑐†
𝛼 |0⟩ = |𝜑𝛼⟩ , (1.49)

𝑐†
𝛼 |𝜑𝛼1 ...𝜑𝛼𝑁

⟩ = |𝜑𝛼𝜑𝛼1 ...𝜑𝛼𝑁
⟩ . (1.50)

This new tool, the creation operator, allows us to create any state from vacuum,

|𝜑𝛼1 ...𝜑𝛼𝑁
⟩ = 𝑐†

𝛼1 ...𝑐†
𝛼𝑁

|0⟩ . (1.51)

The antisymmetry property of fermion states, as e.g.,

|𝜑𝛼1𝜑𝛼2 ...𝜑𝛼𝑁
⟩ = − |𝜑𝛼2𝜑𝛼1 ...𝜑𝛼𝑁

⟩ , (1.52)

demand specific commutation relations, as we see:

|𝜑𝛼1𝜑𝛼2 ...𝜑𝛼𝑁
⟩ = 𝑐†

𝛼1𝑐†
𝛼2 ...𝑐†

𝛼𝑁
|0⟩

= − |𝜑𝛼2𝜑𝛼1 ...𝜑𝛼𝑁
⟩ = −𝑐†

𝛼2𝑐†
𝛼1 ...𝑐†

𝛼𝑁
|0⟩ , (1.53)

which indicate us the anticommutation relation:

{𝑐†
𝛼, 𝑐†

𝛽} = 0. (1.54)

We may notice that if the fermionic creation operator creates a state that is already
occupied, the interchange of those particle states must be equal to the previous state with
a minus sign, signifying that the state must be zero.

𝑐†
𝛼1 |𝜑𝛼1⟩ = |𝜑𝛼1𝜑𝛼1⟩ , (1.55)

and then
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|𝜑𝛼1𝜑𝛼1⟩ = − |𝜑𝛼1𝜑𝛼1⟩ = 0. (1.56)

With creation 𝑐†
𝛼, there is annihilation 𝑐𝛼. One is not without the other; a duality

of existence, as we see from definition:

𝑐𝛼 := (𝑐†
𝛼)†. (1.57)

Consequently,

⟨𝜑𝛼1| = ⟨0| 𝑐𝛼1 (1.58)

⟨𝜑𝛼1 ...𝜑𝛼𝑁
| = ⟨0| 𝑐𝛼𝑁

...𝑐𝛼1 , (1.59)

where we should notice that any new state is written in the left edge for both bras
and kets.

In the same way that an anticommutation relation was found for the creation
operator, it can be found for annihilation:

{𝑐𝛼, 𝑐𝛽} = 0. (1.60)

The annihilation operator destroys a state on the left edge of the ket representation,
acting in the Fock space as F𝑁 → F𝑁−1. It is important to notice that if the annihilated
state is not in the left edge of the ket representation, it must be first reallocated while
respecting the interchanging minus sign, as

𝑐𝛽 |𝜑𝛼𝜑𝛽⟩ = −𝑐𝛽 |𝜑𝛽𝜑𝛼⟩ = − |𝜑𝛼⟩ . (1.61)

It makes sense that particles cannot be annihilated if there are no particles at all,
so for the vacuum state,

𝑐𝛽 |0⟩ = 0. (1.62)

Let us now derive the commutation relation between the creation 𝑐†
𝛼 and annihi-

lation 𝑐𝛽 operators. For that, we must first apply both operators, in both orders, to some
state vector 𝑐†

𝛾 |0⟩. Consider first the case where 𝛼 ̸= 𝛽, 𝛾 = 𝛼:
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𝑐𝛼𝑐†
𝛽 |𝜑𝛼⟩ = 𝑐𝛼 |𝜑𝛽𝜑𝛼⟩ = −𝑐𝛼 |𝜑𝛼𝜑𝛽⟩ = − |𝜑𝛽⟩ , (1.63)

𝑐†
𝛽𝑐𝛼 |𝜑𝛼⟩ = 𝑐†

𝛽 |0⟩ = |𝜑𝛽⟩ . (1.64)

The sum of these two equations results in

(𝑐𝛼𝑐†
𝛽 + 𝑐†

𝛽𝑐𝛼) |𝜑𝛼⟩ = 0, (1.65)

i.e., for 𝛼 ̸= 𝛽, and 𝛾 ̸= 𝛼, {𝑐𝛼, 𝑐†
𝛽} = 0.

For 𝛼 ̸= 𝛽, 𝛾 ̸= 𝛼:

𝑐𝛼𝑐†
𝛽 |𝜑𝛾⟩ = 𝑐𝛼 |𝜑𝛽𝜑𝛾⟩ = 0, (1.66)

𝑐†
𝛽𝑐𝛼 |𝜑𝛾⟩ = 0. (1.67)

So for 𝛼 ̸= 𝛽, {𝑐𝛼, 𝑐†
𝛽} = 0.

Now we consider the case where 𝛽 = 𝛼. For, 𝛾 = 𝛼:

𝑐𝛼𝑐†
𝛼 |𝜑𝛼⟩ = 0, (1.68)

𝑐†
𝛼𝑐𝛼 |𝜑𝛼⟩ = 𝑐†

𝛼 |0⟩ = |𝜑𝛼⟩ . (1.69)

The sum of the two equations gives that for 𝛽 = 𝛼, and 𝛾 = 𝛼, {𝑐𝛼, 𝑐†
𝛽} = 1. Now,

finally, when 𝛽 = 𝛼, and 𝛾 ̸= 𝛼,

𝑐𝛼𝑐†
𝛼 |𝜑𝛾⟩ = 𝑐𝛼 |𝜑𝛼𝜑𝛾⟩ = |𝜑𝛾⟩ , (1.70)

𝑐†
𝛼𝑐𝛼 |𝜑𝛾⟩ = 0. (1.71)

Again, the sum of the equations gives {𝑐𝛼, 𝑐†
𝛼} = 1. All we obtained from every

possible scenario can be expressed in a single generalized statement, {𝑐𝛼, 𝑐†
𝛽} = 𝛿𝛼𝛽.

The set of tools containing the fermionic creation and annihilation operators, as
well as their relations, is resumed in:

{𝑐𝛼, 𝑐𝛽} = 0 {𝑐†
𝛼, 𝑐†

𝛽} = 0 {𝑐𝛼, 𝑐†
𝛽} = 𝛿𝛼𝛽, (1.72)
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which is enough to handle all possible operations in the fermionic Fock space F .
(ENGEL; DREIZLER, 2011)

1.5 Bosons
Bosons are not the main focus of this work, but of course, for completeness of

information, let us briefly show this particles subspace.

The bosonic creation operator 𝑎̂†
𝛼 acting on a B𝑁 state vector generates a B𝑁+1

state vector, as

𝑎̂†
𝛼 |𝑛1, 𝑛2, ..., 𝑛𝛼, ...⟩ =

√
𝑛𝛼 + 1 |𝑛1, 𝑛2, ..., 𝑛𝛼 + 1, ...⟩ . (1.73)

For its adjoint operator, the annihilation operator (𝑎̂†
𝛼)† = 𝑎̂𝛼:

𝑎̂𝛼 |𝑛1, 𝑛2, ..., 𝑛𝛼, ...⟩ = √
𝑛𝛼 |𝑛1, 𝑛2, ..., 𝑛𝛼 − 1, ...⟩ . (1.74)

Associated with those, the very important commutation properties may be derived
in a similar fashion we did for the fermionic operators, and we get:

[𝑎̂𝛼, 𝑎̂𝛽] = 0 [𝑎̂†
𝛼, 𝑎̂†

𝛽] = 0 [𝑎̂𝛼, 𝑎̂†
𝛽] = 𝛿𝛼𝛽. (1.75)

1.6 Change of Basis
We showed that any state can be written in terms of creation and annihilation

operators, so for changing basis in the second quantization format, we must see how
these operators transform. The basis set used until now is one with labels 𝜑𝛼. How about
particles in a given coordinates 𝑥? We may remember the concept of transforming basis
vectors in H1,

|𝑥⟩ = 1 |𝑥⟩ =
∑︁

𝛼

|𝜑𝛼⟩ ⟨𝜑𝛼|𝑥⟩ =
∑︁

𝛼

𝜑*
𝛼(𝑥) |𝜑𝛼⟩ =

∑︁
𝛼

𝜑*
𝛼(𝑥)𝑐†

𝛼 |0⟩ . (1.76)

This suggests the definition of new operators Ψ̂†(𝑥) and Ψ̂(𝑥). These are usually
called field operators and are responsible for the creation and annihilation of particles at
coordinates 𝑥,
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Ψ̂†(𝑥) =
∑︁

𝛼

𝜑*
𝛼(𝑥)𝑐†

𝛼 (1.77)

Ψ̂(𝑥) =
∑︁

𝛼

𝜑𝛼(𝑥)𝑐𝛼, (1.78)

with inverse transformation

𝑐†
𝛼 =
ˆ

𝑑𝑥𝜑𝛼(𝑥)Ψ̂†(𝑥) (1.79)

𝑐𝛼 =
ˆ

𝑑𝑥𝜑*
𝛼(𝑥)Ψ̂(𝑥). (1.80)

With those we may write

|𝑥⟩ = Ψ̂†(𝑥) |0⟩ and ⟨𝑥| = ⟨0| Ψ̂(𝑥). (1.81)

In case of spin-1
2 fermions, the field operator is divided into components,

Ψ̂(𝑥) = Ψ̂(𝑟𝜎) =

⎧⎪⎨⎪⎩Ψ̂(𝑟, 1
2) if 𝜎 = 1

2

Ψ̂(𝑟, −1
2) if 𝜎 = −1

2

.

The commutation or anticommutation relations of bosons and fermions are pre-
served for their respective field operators, for e.g. the fermionic case produces relations
similar to (1.72),

{Ψ̂(𝑥), Ψ̂(𝑥′)} = 0 {Ψ̂†(𝑥), Ψ̂†(𝑥′)} = 0 {Ψ̂(𝑥), Ψ̂†(𝑥′)} = 𝛿(𝑥, 𝑥′). (1.82)

In general, transformation of basis conserves the commutation or anticommutation
relations. These properties gather the symmetric and antisymmetric nature of bosonic and
fermionic particles. The general basis transformation is written as:

𝑐†
𝑣𝑗

=
∑︁

𝑖

⟨𝑢𝑖|𝑣𝑗⟩ 𝑐†
𝑢𝑖

𝑐𝑣𝑗
=
∑︁

𝑖

⟨𝑣𝑗|𝑢𝑖⟩ 𝑐𝑢𝑖
, (1.83)

where |𝑣𝑗⟩ and |𝑢𝑖⟩ correspond to different basis sets. These relations, despite being
written in terms of the fermionic notation for operators, are general for both bosons and
fermions.
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1.7 Number of Particles

To obtain the number 𝑛𝛼 of particles in a particular state |𝜑𝛼⟩, we define the occu-
pation number operator 𝑛̂𝛼 = 𝑐†

𝛼𝑐𝛼, where 𝑛̂𝛼 |𝑛𝛼⟩ = 𝑛𝛼 |𝑛𝛼⟩. For fermions, the occupation
number can only be one or zero, and for bosons, it is easy to check that this indeed gives
the number of particles in a specific state,

𝑎̂†
𝛼𝑎̂𝛼 |𝑛1, 𝑛2, ..., 𝑛𝛼, ...⟩ = 𝑎̂†

𝛼

√
𝑛𝛼 |𝑛1, 𝑛2, ..., 𝑛𝛼 − 1, ...⟩

=
√

𝑛𝛼 − 1 + 1√
𝑛𝛼 |𝑛1, 𝑛2, ..., 𝑛𝛼, ...⟩ = 𝑛𝛼 |𝑛1, 𝑛2, ..., 𝑛𝛼, ...⟩ . (1.84)

Then, the operator for the total number of particles in the system is 𝑁̂ = ∑︀
𝛼 𝑛̂𝛼.

We may also write this operator in the 𝑥-basis, so we obtain the number of particles in
some region of space. For spin-1

2 particles we have

𝑁̂ =
∑︁

𝛼

ˆ
𝑑𝑥′𝑑𝑥𝜑𝛼(𝑥)Ψ̂†(𝑥)𝜑*

𝛼(𝑥′)Ψ̂(𝑥′)

=
ˆ

𝑑3𝑥𝑑3𝑥′∑︁
𝛼

⟨𝑥|𝜑𝛼⟩ ⟨𝜑𝛼|𝑥′⟩ Ψ̂†(𝑥)Ψ̂(𝑥′)

=
∑︁

𝜎,𝜎′=↑,↓

ˆ
𝑑3𝑟𝑑3𝑟′𝛿𝜎𝜎′𝛿(𝑟 − 𝑟′)Ψ̂†(𝑟𝜎)Ψ̂(𝑟′𝜎′)

=
∑︁

𝜎=↑,↓

ˆ
𝑑3𝑟Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎). (1.85)

We might write this in the form

𝑁̂ =
ˆ

𝑑3𝑟𝑛̂(𝑟), (1.86)

where

𝑛̂(𝑟) =
∑︁

𝜎=↑,↓
Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎) (1.87)

is the particle density operator, which gives the number of particles contained in
an infinitesimal region of space around 𝑟.

So far, we have been intentionally considering spin-1
2 particles, so we stay close to

the concept of electron density, which will be central in the DFT section.
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1.8 One-Body Operators
Now, it is time to write in the second quantized form, i.e. in terms of annihilation

and creation operators, the quantum operators that act on one particle at a time. Oper-
ators as such include the position and momentum operators, 𝑥̂ and 𝑝.

In a 𝑁 body system, we wrote the correspondent space as a tensor product of all 𝑁

single particle spaces, H𝑁 = H 1
1 ⊗H 2

1 ⊗ ...⊗H 𝑁
1 . Thus, an operator 𝑜𝑞 of some subspace

H 𝑞
1 , which acts only in the particle of that subspace, is written as 11 ⊗ ... ⊗ 𝑜𝑞 ⊗ ... ⊗1𝑁 .

For a system of 𝑁 identical particles, exchanging any two particles leads to the
exact same physics, so we work not with H𝑁 but with the totally symmetric subspace
B𝑁 or the totally antisymmetric subspace F𝑁 . For maintaining the physics of the system
under particle exchange, we need symmetric operators. They, called one-body operators,
are obtained as the sum over all single particle operators,

𝑂̂ =
𝑁∑︁

𝑞=1
𝑜𝑞. (1.88)

We can write 𝑜𝑞 as

𝑜𝑞 = 1𝑜𝑞1 =
∑︁
𝛼,𝛽

|𝜑𝛼⟩𝑞 𝑞⟨𝜑𝛼|𝑜𝑞 |𝜑𝛽⟩𝑞 𝑞⟨𝜑𝛽| =
∑︁
𝛼,𝛽

𝑜𝛼𝛽 |𝜑𝛼⟩𝑞 𝑞⟨𝜑𝛽|, (1.89)

where 𝑜𝛼𝛽 is 𝑞⟨𝜑𝛼|𝑜𝑞 |𝜑𝛽⟩𝑞 = ⟨𝜑𝛼| 𝑜 |𝜑𝛽⟩, since the operator elements must be iden-
tical for identical particles. That can be inserted in equation (1.88), resulting in

𝑂̂ =
∑︁
𝛼,𝛽

𝑜𝛼𝛽

𝑁∑︁
𝑞=1

|𝜑𝛼⟩𝑞 𝑞⟨𝜑𝛽|. (1.90)

This is the one-body operator written in terms of the first quantization language.
We must now proceed for second quantization, and for that, let us write the action of the
operator in a state vector, in terms of tensor products:

𝑂̂𝐴±𝑆± |𝜑1⟩1 ⊗ |𝜑1⟩2 ⊗ ... ⊗ |𝜑1⟩𝑛1
⊗ |𝜑2⟩𝑛1+1 ⊗ ... |𝜑2⟩𝑛1+𝑛2

⊗ ... ⊗ |𝜑𝑘⟩𝑞 ⊗ .... (1.91)

Since the one-body operator is symmetric, it necessarily commutes with the per-
mutation operator, and thus also with the symmetrizer and antisymmetrizer operators,
allowing
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𝐴±𝑆±𝑂̂ |𝜑1⟩1 ⊗ |𝜑1⟩2 ⊗ ... ⊗ |𝜑1⟩𝑛1
⊗ |𝜑2⟩𝑛1+1 ⊗ ... |𝜑2⟩𝑛1+𝑛2

⊗ ... ⊗ |𝜑𝑘⟩𝑞 ⊗ .... (1.92)

For simplicity, from now on we may omit the symbol of the tensor product and
the operator terms ∑︀𝛼,𝛽 𝑜𝛼𝛽, leading to

𝐴±𝑆±
(︁ 𝑁∑︁

𝑞=1
|𝜑𝛼⟩𝑞 𝑞⟨𝜑𝛽|

)︁
|𝜑1⟩1 |𝜑1⟩2 ... |𝜑1⟩𝑛1

|𝜑2⟩𝑛1+1 ... |𝜑2⟩𝑛1+𝑛2
... |𝜑𝑘⟩𝑞 .... (1.93)

We may notice that the subindex 𝑞 contained in the tensor product states is
explicit, for it represents the particle related to the operator action. From all 𝑁 states in
the sum, it will not vanish only those which ⟨𝜑𝛽|𝜑𝑘⟩ = 1, i.e., there will be exactly 𝑛𝛽

states. Then,

𝐴±𝑆±
(︁ 𝑁∑︁

𝑞=1
|𝜑𝛼⟩𝑞 𝑞⟨𝜑𝛽|

)︁
|𝜑1⟩1 |𝜑1⟩2 ... |𝜑1⟩𝑛1

|𝜑2⟩𝑛1+1 ... |𝜑2⟩𝑛1+𝑛2
... |𝜑𝑘⟩𝑞 ...

= 𝑛𝛽𝐴±𝑆± |𝜑1⟩1 |𝜑1⟩2 ... |𝜑1⟩𝑛1
|𝜑2⟩𝑛1+1 ... |𝜑2⟩𝑛1+𝑛2

... |𝜑𝛼⟩𝑞 .... (1.94)

Despite looking like a totally symmetrized or antisymmetrized state, the last line
is not such. The terms 𝑛𝛽𝐴± = 𝑛𝛽

√︁
𝑁 !

𝑛1!...𝑛𝛽 !...𝑛𝛼!... are not in accordance with the tensor
product states since the correct normalization factor would be correct only with 𝑛𝛽 = 1.
We may write the last equation in a way that the normalization factor fits the new state,
as

𝑛𝛽

√︃
𝑛𝛼 + 1

𝑛𝛽

⎯⎸⎸⎷ 𝑁 !
𝑛1!...(𝑛𝛽 − 1)!...(𝑛𝛼 + 1)!...𝑆± |𝜑1⟩1 ... |𝜑1⟩𝑛1

|𝜑2⟩𝑛1+1 ... |𝜑2⟩𝑛1+𝑛2
... |𝜑𝛼⟩𝑞 ...,

(1.95)

so when we rewrite in terms of the occupation number representation,

√
𝑛𝛼 + 1√

𝑛𝛽 |𝑛1...𝑛𝛽 − 1...𝑛𝛼 + 1...⟩ = 𝑎†
𝛼𝑎𝛽 |𝑛1...𝑛𝛽...𝑛𝛼...⟩ . (1.96)

The result we just achieved is remarkable. The term ∑︀𝑁
𝑞=1 |𝜑𝛼⟩𝑞 𝑞⟨𝜑𝛽| is equivalent

to 𝑎†
𝛼𝑎𝛽. Notice that despite the usage of creation and annihilation operators with bosonic

notation, this result is valid for both bosons and fermions; the math is exactly the same.
Finally, we may write the one-body operator in the second quatization format,
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𝑂̂ =
∑︁
𝛼,𝛽

𝑜𝛼𝛽𝑎†
𝛼𝑎𝛽. (1.97)

Despite the absence of the summation, previously stated as necessary for the sym-
metrization of the one-body operator, this is compensated by the pair of creation and
annihilation operators with the respective commutation or anticommutation relations,
which are enough for the symmetry of the operator. It should be clear that the last ex-
pression shows the action of the operator 𝑂̂ as the transitioning of particles from states
|𝜑𝛽⟩ to states |𝜑𝛼⟩, with amplitude 𝑜𝛼𝛽 related to these transitions.

1.9 Two-Body Operators
As seen before, for a 𝑁 body system,

H𝑁 = H 1
1 ⊗ ... ⊗ H 𝑞

1 ⊗ ... ⊗ H 𝑞′

1 ⊗ ... ⊗ H 𝑁
1 . (1.98)

Now we shall work with 𝑤̂𝑞𝑞′ , which is an operator of some subspace H 𝑞
1 ⊗ H 𝑞′

1 ,
responsible for the interaction between particles of such subspace. We maintain notation,
but when acting in 𝑁 particle states, we need to consider this operator as

𝑤̂𝑞𝑞′ = 11 ⊗ ... ⊗ 𝑤̂𝑞𝑞′ ⊗ ... ⊗ 1𝑁 . (1.99)

If particles are identical, physics is unchanged in the exchange of particles, so we
work not with H𝑁 but with the totally symmetric subspace B𝑁 or totally antisymmetric
subspace F𝑁 . Not surprisingly, as one-body operators, two-body operators must also be
symmetric, so the totally symmetric operator defined in first quantization format is

𝑊̂ = 1
2!

𝑁∑︁
𝑞,𝑞′=1
𝑞 ̸=𝑞′

𝑤̂𝑞𝑞′ , (1.100)

where the factor 1
2! is responsible for redundancy of interactions.

Now we shall see how to write this operator in second quantized format, so be-
fore that, let’s check some important features of the commutation and anticommutation
relations of bosons and fermions. We have

[𝑎̂𝛼, 𝑎̂†
𝛽] = 𝛿𝛼𝛽 {𝑐𝛼, 𝑐†

𝛽} = 𝛿𝛼𝛽, (1.101)
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or,

𝑎̂𝛼𝑎̂†
𝛽 = 𝑎̂𝛽𝑎̂†

𝛼 + 𝛿𝛼𝛽 (1.102)

𝑐𝛼𝑐†
𝛽 = −𝑐𝛽𝑐†

𝛼 + 𝛿𝛼𝛽. (1.103)

The following discussion considers the same notation 𝑎̂𝛼, 𝑎̂†
𝛽, for both bosons and

fermions, using

𝑎̂𝛼𝑎̂†
𝛽 = 𝜂𝑎̂𝛽𝑎̂†

𝛼 + 𝛿𝛼𝛽, (1.104)

where 𝜂 is −1 for fermions, and 1 for bosons.

Similarly,

𝑎̂𝛼𝑎̂𝛽 = 𝑎̂𝛽𝑎̂𝛼 (1.105)

𝑐𝛼𝑐𝛽 = −𝑐𝛽𝑐𝛼, (1.106)

so

𝑎̂𝛼𝑎̂𝛽 = 𝜂𝑎̂𝛽𝑎̂𝛼. (1.107)

Having reviewed the properties of the creation and annihilation operators, we pro-
ceed to the two-body operator in the second quantized format, where we shall maintain
the same notation for the creation and annihilation of bosons and fermions. The mathe-
matics should be equivalent in both cases.

We can always write a two-particle operator 𝑤̂𝑞𝑞′ as an expansion of two single-
particle operators

𝑤̂𝑞𝑞′ =
∑︁
𝑖𝑗

𝐶𝑖,𝑗𝑓
𝑖
𝑞𝑔

𝑗
𝑞′ , (1.108)

where 𝐶𝑖𝑗 are coefficients of the expansion. Including this in definition (1.100), we
get

𝑊̂ = 1
2

𝑁∑︁
𝑞,𝑞′=1
𝑞 ̸=𝑞′

∑︁
𝑖𝑗

𝐶𝑖,𝑗𝑓
𝑖
𝑞𝑔

𝑗
𝑞′ = 1

2
∑︁
𝑖𝑗

𝐶𝑖,𝑗

𝑁∑︁
𝑞,𝑞′=1
𝑞 ̸=𝑞′

𝑓 𝑖
𝑞𝑔

𝑗
𝑞′ . (1.109)
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We continue our derivation focusing on the summation over 𝑞 and 𝑞′. For this, we
shall temporally omit the superscripts 𝑖, 𝑗 in the one-particle operators to write

𝑁∑︁
𝑞,𝑞′=1
𝑞 ̸=𝑞′

𝑓𝑞𝑔𝑞′ =
𝑁∑︁

𝑞=1
𝑓𝑞

𝑁∑︁
𝑞′=1

𝑔𝑞′ −
𝑁∑︁

𝑞=1
𝑓𝑞𝑔𝑞. (1.110)

Now we apply the second quantized format for the one-body operator (1.97),

𝑁∑︁
𝑞,𝑞′=1
𝑞 ̸=𝑞′

𝑓𝑞𝑔𝑞′ =
∑︁

𝛼1,𝛽1

𝑓𝛼1𝛽1 𝑎̂†
𝛼1 𝑎̂𝛽1

∑︁
𝛼2,𝛽2

𝑔𝛼2𝛽2 𝑎̂†
𝛼2 𝑎̂𝛽2 −

∑︁
𝛼3,𝛽3

(𝑓𝑔)𝛼3𝛽3 𝑎̂†
𝛼3 𝑎̂𝛽3

=
∑︁

𝛼1,𝛽1,𝛼2,𝛽2

𝑓𝛼1𝛽1𝑔𝛼2𝛽2 𝑎̂†
𝛼1 𝑎̂𝛽1 𝑎̂†

𝛼2 𝑎̂𝛽2 −
∑︁

𝛼3,𝛽3

(𝑓𝑔)𝛼3𝛽3 𝑎̂†
𝛼3 𝑎̂𝛽3

=
∑︁

𝛼1,𝛽1,𝛼2,𝛽2

𝑓𝛼1𝛽1𝑔𝛼2𝛽2 𝑎̂†
𝛼1(𝜂𝑎̂†

𝛼2 𝑎̂𝛽1 + 𝛿𝛼2𝛽1)𝑎̂𝛽2 −
∑︁

𝛼3,𝛽3

(𝑓𝑔)𝛼3𝛽3 𝑎̂†
𝛼3 𝑎̂𝛽3

=
∑︁

𝛼1,𝛽1,𝛼2,𝛽2

𝑓𝛼1𝛽1𝑔𝛼2𝛽2𝜂𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽1 𝑎̂𝛽2 + 𝛿𝛼2𝛽1𝑓𝛼1𝛽1𝑔𝛼2𝛽2 𝑎̂†
𝛼1 𝑎̂𝛽2 −

∑︁
𝛼3,𝛽3

(𝑓𝑔)𝛼3𝛽3 𝑎̂†
𝛼3 𝑎̂𝛽3

=
∑︁

𝛼1,𝛽1,𝛼2,𝛽2

𝑓𝛼1𝛽1𝑔𝛼2𝛽2𝜂2𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽2 𝑎̂𝛽1 + 𝛿𝛼2𝛽1𝑓𝛼1𝛽1𝑔𝛼2𝛽2 𝑎̂†
𝛼1 𝑎̂𝛽2 −

∑︁
𝛼3,𝛽3

(𝑓𝑔)𝛼3𝛽3 𝑎̂†
𝛼3 𝑎̂𝛽3

=
∑︁

𝛼1,𝛽1,𝛼2,𝛽2

𝑓𝛼1𝛽1𝑔𝛼2𝛽2 𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽2 𝑎̂𝛽1 + 𝑓𝛼1𝛼2𝑔𝛼2𝛽2 𝑎̂†
𝛼1 𝑎̂𝛽2 −

∑︁
𝛼3,𝛽3

(𝑓𝑔)𝛼3𝛽3 𝑎̂†
𝛼3 𝑎̂𝛽3 .

(1.111)

That was a lot, but we can reduce this expression by realizing that

∑︁
𝛼1,𝛼2,𝛽2

𝑓𝛼1𝛼2𝑔𝛼2𝛽2 𝑎̂†
𝛼1 𝑎̂𝛽2 =

∑︁
𝛼1,𝛼2,𝛽2

⟨𝜑𝛼1| 𝑓 |𝜑𝛼2⟩ ⟨𝜑𝛼2 | 𝑔 |𝜑𝛽2⟩ 𝑎̂†
𝛼1 𝑎̂𝛽2

=
∑︁

𝛼1,𝛽2

⟨𝜑𝛼1 | 𝑓𝑔 |𝜑𝛽2⟩ 𝑎̂†
𝛼1 𝑎̂𝛽2 =

∑︁
𝛼1,𝛽2

(𝑓𝑔)𝛼1𝛽2 𝑎̂†
𝛼1 𝑎̂𝛽2 . (1.112)

Using this, we may cancel the second and the last term of equation (1.111), and
substitute all back into (1.109) to finally obtain

𝑊̂ = 1
2
∑︁
𝑖𝑗

𝐶𝑖,𝑗

∑︁
𝛼1,𝛽1,𝛼2,𝛽2

𝑓 𝑖
𝛼1𝛽1𝑔𝑗

𝛼2𝛽2 𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽2 𝑎̂𝛽1 . (1.113)

We may still make further simplification, by considering the canonical matrix
element

𝑊𝛼1𝛼2𝛽1𝛽2 = 𝑞⟨𝜑𝛼1| 𝑞′⟨𝜑𝛼2|𝑞𝑞𝑞′ |𝜑𝛽1⟩𝑞 |𝜑𝛽2⟩𝑞′ , (1.114)



48 Chapter 1. Quantum Theory

and expanding 𝑞𝑞𝑞′ ,

𝑊𝛼1𝛼2𝛽1𝛽2 =
∑︁
𝑖,𝑗

𝐶𝑖𝑗 ⟨𝜑𝛼1| 𝑓 𝑖
𝑞 |𝜑𝛽1⟩ ⟨𝜑𝛼2 | 𝑔𝑗

𝑞′ |𝜑𝛽2⟩ =
∑︁
𝑖,𝑗

𝐶𝑖𝑗𝑓
𝑖
𝛼1𝛽1𝑔𝑗

𝛼2𝛽2 . (1.115)

Inserting this in the expression for the two-body operator,

𝑊̂ = 1
2

∑︁
𝛼1,𝛽1,𝛼2,𝛽2

𝑊𝛼1𝛼2𝛽1𝛽2 𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽2 𝑎̂𝛽1 . (1.116)

This is the final expression for the two-body operator in the second quantized
form. The action of such is to annihilate one particle from each state |𝜑𝛼1⟩ and |𝜑𝛼2⟩,
and then create one particle in each state |𝜑𝛽1⟩ and |𝜑𝛽2⟩. The matrix element 𝑊𝛼1𝛼2𝛽1𝛽2 ,
represented in the two-particle sector of Fock space, indicates the amplitude associated
with this transition of states. We may also write it in the 𝑥-representation as

⟨𝑥′
1| ⟨𝑥′

2| 𝑊̂ |𝑥1⟩ |𝑥2⟩ . (1.117)

A good example is the interaction between two particles, which is usually local
with respect to the coordinates of the pair of particles,

⟨𝑥′
1| ⟨𝑥′

2| 𝑊̂ |𝑥1⟩ |𝑥2⟩ = 𝛿(𝑥1, 𝑥′
1)𝛿(𝑥2, 𝑥′

2)𝑤(𝑥1, 𝑥2). (1.118)

The function 𝑤(𝑥1, 𝑥2) has to be symmetric and real, as the operator 𝑊̂ is hermi-
tian. If the interaction is spin-independent, we may write 𝑤(𝑥1, 𝑥2) = 𝑤(𝑟1, 𝑟2), e.g. in the
very important case of the Coulomb interaction. Coulomb force is also Galilei invariant,
i.e.,

𝑤(𝑟1, 𝑟2) = 𝑤(𝑟1 − 𝑟2). (1.119)

The 𝛼-representation may be obtained through the completeness relation,

⟨𝜑𝛽1| ⟨𝜑𝛽2| 𝑊̂ |𝜑𝛼1⟩ |𝜑𝛼2⟩ =

=
ˆ

𝑑𝑥′
1𝑑𝑥′

2𝑑𝑥1𝑑𝑥2 ⟨𝜑𝛽1| ⟨𝜑𝛽2|𝑥′
1⟩ |𝑥′

2⟩ ⟨𝑥′
1| ⟨𝑥′

2| 𝑊̂ |𝑥1⟩ |𝑥2⟩ ⟨𝑥1| ⟨𝑥2|𝜑𝛼1⟩ |𝜑𝛼2⟩ , (1.120)

which, if being local,

⟨𝜑𝛼1| ⟨𝜑𝛼2| 𝑊̂ |𝜑𝛽1⟩ |𝜑𝛽2⟩ =
ˆ

𝑑𝑥′
1𝑑𝑥′

2𝑑𝑥1𝑑𝑥2𝜑
*
𝛽1(𝑥1)𝜑*

𝛽2(𝑥2)𝑊̂𝜑𝛼1(𝑥1)𝜑𝛼2(𝑥2). (1.121)
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The matrix elements must satisfy the symmetry relations:

𝑊𝛼1𝛼2𝛽1𝛽2 = 𝑊𝛼2𝛼1𝛽2𝛽1 = 𝑊 *
𝛽1𝛽2𝛼1𝛼2 . (1.122)

For fermionic particles, the matrix elements still inherit the antisymmetric relation
𝑊𝛼1𝛼2𝛽1𝛽2 = −𝑊𝛼2𝛼1𝛽1𝛽2 . The action of two-body operators on antisymmetric two-particle
states can, once again, be found with aid from the completeness relation,

𝑊̂ |𝜑𝛼1𝜑𝛼2⟩

= 1
2!
∑︁

𝛽1,𝛽2

|𝜑𝛽1𝜑𝛽2⟩ ⟨𝜑𝛽1𝜑𝛽2| 𝑊̂ |𝜑𝛼1𝜑𝛼2⟩ = 1
2
∑︁

𝛽1,𝛽2

⟨𝜑𝛽1𝜑𝛽2| 𝑊̂ |𝜑𝛼1𝜑𝛼2⟩ |𝜑𝛽1𝜑𝛽2⟩ , (1.123)

where we must be careful with the antisymmetric matrix element ⟨𝜑𝛽1𝜑𝛽2| 𝑊̂ |𝜑𝛼1𝜑𝛼2⟩,
which can be expressed in terms of the canonical matrix elements,

⟨𝜑𝛽1𝜑𝛽2 | 𝑊̂ |𝜑𝛼1𝜑𝛼2⟩ = 1
2!(⟨𝜑𝛽1| ⟨𝜑𝛽2| − ⟨𝜑𝛽2| ⟨𝜑𝛽1 |)𝑊̂ (|𝜑𝛼1⟩ |𝜑𝛼2⟩ − |𝜑𝛼2⟩ |𝜑𝛼1⟩)

= ⟨𝜑𝛽1| ⟨𝜑𝛽2 | 𝑊̂ |𝜑𝛼1⟩ |𝜑𝛼2⟩ − ⟨𝜑𝛽2| ⟨𝜑𝛽1|)𝑊̂ |𝜑𝛼2⟩ |𝜑𝛼1⟩

= 𝑊𝛽1𝛽2𝛼1𝛼2 − 𝑊𝛽2𝛽1𝛼2𝛼1 = 2𝑊𝛽1𝛽2𝛼1𝛼2 . (1.124)

Inserting this relation in (1.123), the action on an antisymmetric two-particle be-
comes

𝑊̂ |𝜑𝛼1𝜑𝛼2⟩ =
∑︁

𝛽1,𝛽2

𝑊𝛽1𝛽2𝛼1𝛼2 |𝜑𝛽1𝜑𝛽2⟩ . (1.125)

The same conclusion is verified with the second quantization format (1.116),

𝑊̂ |𝜑𝛼1𝜑𝛼2⟩ = 1
2

∑︁
𝛾1,𝛾2,𝛽1,𝛽2

𝑊𝛽1𝛽2𝛾1𝛾2𝑐†
𝛽1𝑐†

𝛽2𝑐𝛾2𝑐𝛾1 |𝜑𝛼1𝜑𝛼2⟩

= 1
2

∑︁
𝛾1,𝛾2,𝛽1,𝛽2

𝑊𝛽1𝛽2𝛾1𝛾2𝑐†
𝛽1𝑐†

𝛽2𝑐𝛾2𝑐𝛾1𝑐†
𝛼1𝑐†

𝛼2 |0⟩

= 1
2

∑︁
𝛾1,𝛾2,𝛽1,𝛽2

𝑊𝛽1𝛽2𝛾1𝛾2𝑐†
𝛽1𝑐†

𝛽2(𝛿𝛼1𝛾1𝛿𝛼2𝛾2 − 𝛿𝛼1𝛾2𝛿𝛼2𝛾1) |0⟩

=
∑︁

𝛽1,𝛽2

𝑊𝛽1𝛽2𝛼1𝛼2𝑐†
𝛽1𝑐†

𝛽2 |0⟩ =
∑︁

𝛽1,𝛽2

𝑊𝛽1𝛽2𝛼1𝛼2 |𝜑𝛽1𝜑𝛽2⟩ . (1.126)

The second quantized form of a two-particle operator in the 𝑥-representation is ob-
tained with aid of the completeness relation. We also consider locality (1.118), to simplify
as
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𝑊̂ = 1
2

∑︁
𝛼1,𝛽1,𝛼2,𝛽2

𝑊𝛼1𝛼2𝛽1𝛽2 𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽2 𝑎̂𝛽1

= 1
2

ˆ
𝑑𝑥1𝑑𝑥2

∑︁
𝛼1,𝛽1,𝛼2,𝛽2

⟨𝜑𝛼1| ⟨𝜑𝛼2|𝑥1⟩ |𝑥2⟩ 𝑤(𝑥1, 𝑥2) ⟨𝑥1| ⟨𝑥2|𝜑𝛽1⟩ |𝜑𝛽2⟩ 𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽2 𝑎̂𝛽1

= 1
2

ˆ
𝑑𝑥1𝑑𝑥2

∑︁
𝛼1,𝛽1,𝛼2,𝛽2

𝜑*
𝛼1(𝑥1)𝜑*

𝛼2(𝑥2)𝑤(𝑥1, 𝑥2)𝜑𝛽1(𝑥1)𝜑𝛽2(𝑥2)𝑎̂†
𝛼1 𝑎̂†

𝛼2 𝑎̂𝛽2 𝑎̂𝛽1

𝑊̂ = 1
2

ˆ
𝑑𝑥1𝑑𝑥2

∑︁
𝛼1,𝛽1,𝛼2,𝛽2

𝜑*
𝛼1 𝑎̂†

𝛼1(𝑥1)𝜑*
𝛼2(𝑥2)𝑎̂†

𝛼2𝑤(𝑥1, 𝑥2)𝜑𝛽2(𝑥2)𝑎̂𝛽2𝜑𝛽1(𝑥1)𝑎̂𝛽1 ,

where in the last line we have ordered the terms so that the transformation of
basis (1.78) becomes clear, leading to the final form as: (ENGEL; DREIZLER, 2011)

𝑊̂ = 1
2

ˆ
𝑑𝑥1𝑑𝑥2Ψ̂†(𝑥1)Ψ̂†(𝑥2)𝑤(𝑥1, 𝑥2)Ψ̂(𝑥2)Ψ̂(𝑥1). (1.127)
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2 Solid State

2.1 Chemical Introduction

Before we get deeper into systems of many atoms, we shall first discuss the atom.
From our knowledge of quantum mechanics, the maximum information of an electron in
an atom is described by states containing four quantum numbers |𝑛 𝑙 𝑚𝑙 𝑚𝑠⟩. The first
three are information concerning the probabilistic region where the electron may be found,
being the state |𝑛 𝑙 𝑚𝑙⟩ an atomic orbital.

In an atomic orbital, the integer 𝑛 is called principal, as it is responsible for the
main contribution of the energy level of the electron. The principal quantum number
obeys the relation: 𝑛 ≥ 1. The azimuthal quantum number 𝑙 is information about the an-
gular momentum of the electron, having its value confined in the relation 0 ≤ 𝑙 ≤ (𝑛 − 1),
being the values 0, 1, 2, 3 commonly called 𝑠, 𝑝, 𝑑, 𝑓 orbitals, respectively. Each orbital is
also restricted to the relation −𝑙 ≤ 𝑚𝑙 ≤ 𝑙, being 𝑚𝑙 the magnetic quantum number,
which gives the angular momentum projection vector over some axis, usually z. As e.g., a
possible electron state |100⟩ is called 1𝑠 orbital, and |210⟩ is 2𝑝; the latter being energet-
ically degenerated for the three possible 𝑚𝑙 numbers, 2𝑝𝑥, 2𝑝𝑦, 2𝑝𝑧. Each atomic orbital
can contain two antiparallel electrons, i.e., with opposite spin quantum numbers. The spin
quantum number 𝑚𝑠 obeys the relation −𝑚𝑠 ≤ 𝑠 ≤ −𝑚𝑠, being 𝑠 = 1

2 the total spin of an
electron. Then, each possible electron state is called a spin-orbital, which is a pure state
containing maximum information about the electron.

The electrons in an atom will occupy the lowest available energy states, but they
might be excited to higher states if they absorb the correspondent energy. The occupied
states with greater value of 𝑛 are called valence states, as they represent the most external
orbitals of the atom, and all states above those are called excited states. As e.g., the six
electrons in the carbon atom are illustrated in figure (1):
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Figure 1 – Electron states in carbon atom. Valence electrons are those with 𝑛 = 2. All
states with 𝑛 > 2 are excited states.

So far, we discussed electron states in a single atom, but when a system considers
a plural of atoms in a short distance, these electron states might overlap and reshape
into orbitals around the whole set of atoms. These wave function interactions might be in
phase or out of phase. In the former, we have a symmetric linear combination of atomic
orbitals called bonding molecular orbitals, while the latter is an antisymmetric linear
combination of atomic orbitals, or antibonding molecular orbitals. A simple example of
the H2 molecule is illustrated in figure (2):

Figure 2 – H2 molecule energy states, constructed from hydrogen valence states. Both
electrons occupies the bonding state, while the antibonding state is left empty.
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In the bonding states, the electron density (in the form of 1.87) is strongly localized
in the region between the nuclei, which gives rise to chemical bonds; these are the lower
energy states of the electrons. The antibonding states are of higher energy, as the region
between the nuclei is of low electron density and the outside region is high, resulting in
low localization of the electron; that is the opposite of a chemical bond. The difference
in electronegativity of the atoms is the cause of polarization in the covalent bond. If the
difference is too big, it is the case of an ionic bond, where we might consider it as if one
atom is taking one electron from another.

In Figure 2 is not obvious, but in bigger atoms, where the core atomic orbitals are
much tighter into the nuclei, we consider only the valence states for the constitution of
molecular orbitals. The number of initial (valence) atomic orbitals is equal to the number
of resulting molecular orbitals, so if we increase the number of atoms in the system, ex-
tra states will appear as combinations of bonding and antibonding states, and those are
energetically placed between the completely antibonding and completely bonding states.
If the number of atoms in the system is very large, as in crystals, the discrete energy
states become a set of continuous energy regions which we call energy bands. All valence
orbitals of each atom will interact, thus we may find a set of energy bands as a result.

In molecular orbitals, just as in single atoms, electrons can be excited from low-
energy states into higher states if an energy equivalent to the gap between states is
absorbed from some source. That is a good reason for investing in solar energy, and for
using sunscreen before sunlight breaks the bonds of your molecules. In case of energy
bands, if the electrons completely fill a band, there is an energy gap between the highest
occupied state and the lowest unoccupied state, so the material is an insulator. If the
highest occupied state is inside an energy band, even small temperatures might cause
electrons to go into excited states, where they become unlocalized, and able to transport
charge; that is a conductor, i.e., a metal. A semiconductor is simply an insulator with a
gap small enough; the line is not well defined, or is defined by practical purposes. The
unlocalized electrons in metals are shared between all atoms in the structure, giving rise
to the concept of a "sea of electrons", which is essentially a shared electron density from
where all the positively charged nuclei are bound; these are the metallic bonds.

Figure 1 shows how electrons are distributed in the carbon atom, however, when
bonding is to occur, the valence states might combine in different forms which we call
hybridized orbitals. Carbon might be hybridized in 𝑠𝑝, 𝑠𝑝2 and 𝑠𝑝3 forms, but we shall
only discuss the 𝑠𝑝3 form for the scope of this study. Figure 3 illustrates the energy levels
in this configuration.
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Figure 3 – Electron states in sp3 hybridization of carbon atom.

In 𝑠𝑝3 hybridization, the 𝑠 valence state is merged with all three 𝑝 valence states,
resulting in four degenerated 𝑠𝑝3 orbitals. Since all four states are degenerated, the four
chemical bonds are equidistant from one another by electron repulsion, giving rise to a
tetrahedral geometry, illustrated in Figure 4. In general, the orbital’s geometry will give
rise to the geometry of the structure, which is the essence of crystals, which we are now
in good position to discuss.

Figure 4 – Carbon atom (pink) in 𝑠𝑝3 hybridization bonding with four atomic species
(blue) in tetrahedral geometry. Illustration made in BIOVIA Materials Studio.

A deeper understanding of chemistry is unnecessary for this oversimplified intro-
duction to the theory of solids, but it is left for reference (FLEMING, 2011).
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2.2 Symmetry
The physical properties of matter depend not only on the constituent elements

but also on the way these constituents organize themselves. When studying crystalline
structures, we work with the periodic atomic organization that constitutes the crystal. To
conceptualize this organization, we use the fundamental concepts of the lattice and the
basis of the crystalline structure.

When characterizing physical objects, we use notions of symmetry to develop the
fundamental concepts which we work with. The study of symmetries is necessary for the
characterization of both the bases and the crystalline lattices.

An asymmetric element, such as the letter R, essentially has only one symmetry,
a rotation of 2𝜋. Elements of this type are characterized by the number 1. A mirror sym-
metry, characterized by the letter m, reflects with regards to a line in the two-dimensional
(2D) case or a plane in the three-dimensional (3D) case, where every part of the element
has an image at the same distance from the mirror but on the opposite side. Rotation axes
include symmetries in which the element is rotated by some angle around an axis. For a
rotation of 𝜋, two rotations are necessary to return to the original position, thus, these
are characterized by the number 2. Similarly, ternary axes (2𝜋

3 ) are characterized by the
number 3, quaternary axes (𝜋

2 ) by the number 4, and hexagonal axes (𝜋
3 ) by the number 6.

The glide is a symmetry element characterized by the letter g, whose operation
combines a mirror reflection with a translation in a certain direction.

Figure 5 – Illustrations containing symmetries of the mirror type (m) or rotation axis
C𝑛 (𝑛 = 1, 2, ..., 6).
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2.3 Crystalline Lattices

As redes de Bravais são definidas como o conjunto de pontos discretos que geram
uma geometria periódica onde a vizinhança de cada ponto é idêntica. Podemos representar
esta como o infinito conjunto de pontos representados pelo vetor de posição

𝑟 = 𝑛1𝑎1 + 𝑛2𝑎2 + 𝑛3𝑎3, (2.1)

onde 𝑛1, 𝑛2 e 𝑛3 são números inteiros arbitrários e 𝑎1, 𝑎2 e 𝑎3 são vetores não
coplanares, chamados de vetores de base. Os vetores de base são ditos como os que geram
a rede cristalina.

Em uma rede, a célula unitária é um volume de espaço contendo átomos, capaz de
reproduzir por translação toda a estrutura cristalina do sólido, sem que haja sobreposições
ou espaços vazios. Quando o volume da célula unitária é o mínimo possível, ela é denom-
inada primitiva. (ASHCROFT et al., 1976)

Bravais lattices are defined as the set of discrete points that generate a periodic
geometry where the neighborhood of each point is identical. This can be represented as
an infinite set of points described by the position vector:

𝑟 = 𝑛1𝑎1 + 𝑛2𝑎2 + 𝑛3𝑎3, (2.2)

where 𝑛1, 𝑛2, and 𝑛3 are arbitrary integers, and 𝑎1, 𝑎2, and 𝑎3 are non-coplanar
vectors, referred to as basis vectors. Basis vectors are known as those that generate the
crystalline lattice.

In a crystal lattice, the unit cell is a volume of space containing atoms, capable
of reproducing the entire crystalline structure of the solid through translation, without
overlaps or voids. When the volume of the unit cell is minimized, it is called primitive.
(ASHCROFT et al., 1976)

2.3.1 Bravais Lattices

There are five types of planar lattices, each one characterized by an angle and the
relation between the lattice vectors:
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Oblique Lattice: |𝑎1| ≠ |𝑎2|, 𝛾 ̸= 𝜋
2 .

Rectangular Lattice, p (primitive) mode: |𝑎1| ≠ |𝑎2|, 𝛾 = 𝜋
2 .

Rectangular Lattice, c (centered) mode: |𝑎1| ≠ |𝑎2|, 𝛾 ̸= 𝜋
2 .

Square Lattice, p mode: |𝑎1| = |𝑎2|, 𝛾 = 𝜋
2 .

Hexagonal Lattice: |𝑎1| = |𝑎2|, 𝛾 = 2𝜋
3 .

Figure 6 – The planar lattices, and next to them, their characterizations based on their
respective symmetry elements.

To represent all fourteen 3D Bravais lattices, seven crystal systems are used, which
may have multiple types. These are: Primitive (P), Base Centered (C), Body Centered
(I) and Face Centered (F). To characterize each crystal system, we use the vectors 𝑎, 𝑏,
and 𝑐, which have between them the angles 𝛼𝑎𝑏, 𝛼𝑏𝑐, and 𝛼𝑐𝑎. These vectors are lattice
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vectors in the case of type P lattices.

Triclinic System (P): |𝑎| ≠ |𝑏| ≠ |𝑐|, 𝛼𝑎𝑏 ̸= 𝛼𝑏𝑐 ̸= 𝛼𝑐𝑎

Monoclinic System (P), (I): |𝑎| ≠ |𝑏| ≠ |𝑐|, 𝛼𝑏𝑐 = 𝛼𝑐𝑎 = 𝜋
2 , 𝛼𝑎𝑏 ̸= 𝜋

2

Orthorhombic System (P), (I), (C), (F): |𝑎| ≠ |𝑏| ≠ |𝑐|, 𝛼𝑎𝑏 = 𝛼𝑏𝑐 = 𝛼𝑐𝑎 = 𝜋
2

Tetragonal System (P), (I): |𝑎| = |𝑏| ≠ |𝑐|, 𝛼𝑎𝑏 = 𝛼𝑏𝑐 = 𝛼𝑐𝑎 = 𝜋
2

Trigonal System (P): |𝑎| = |𝑏| = |𝑐|, 𝛼𝑎𝑏 = 𝛼𝑏𝑐 = 𝛼𝑐𝑎 < 2𝜋
3

Cubic System (P), (I), (F): |𝑎| = |𝑏| = |𝑐|, 𝛼𝑎𝑏 = 𝛼𝑏𝑐 = 𝛼𝑐𝑎 = 𝜋
2

Tetragonal System (P), (I): |𝑎| = |𝑏| ≠ |𝑐|, 𝛼𝑏𝑐 = 𝛼𝑐𝑎 = 𝜋
2 , 𝛼𝑎𝑏 = 2𝜋

3

2.3.2 Lattice Planes and Crystalline Directions

The crystalline directions are characterized by indices [𝑢𝑣𝑤], which correspond, in
terms of the crystal axes, to the smallest integers proportional to any point contained in
the direction vector. The vector representing this direction is written as:

𝑟𝑢𝑣𝑤 = 𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐. (2.3)

The opposite direction of [𝑢𝑣𝑤] is characterized as [𝑢̄𝑣𝑤̄].

Figure 7 – Some examples of crystalline directions.

To characterize a plane, or a family of parallel and equidistant planes, we use a
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similar index. This time, we determine the points where the plane intercepts the crystal
axes and then find the set of smallest integers (ℎ𝑘𝑙) that maintain the same proportion
as the reciprocals of the intercepts. These indices are known as Miller Indices.

Figure 8 – Examples of crystalline planes.

We indicate the spacing between planes of the same family using the vector 𝑑ℎ𝑘𝑙.

2.4 Diffraction

The crystalline structure can be studied through the diffraction of photons, elec-
trons, and neutrons. The behavior of diffraction will depend on the crystalline structure
and the wavelength of the incident rays.

To understand the concept behind Bragg’s law, we suppose that a fraction of the
incident waves are reflected at an angle equal to the angle of incidence by each crystalline
plane, spaced by 𝑑ℎ𝑘𝑙. The reflection caused by each crystalline plane has an optical path
difference of 2𝑑ℎ𝑘𝑙 sin(𝜃), causing an interference in the reflected ray due to the wave
vectors being in different phases. The diffracted rays are those whose wavelength satisfies
Bragg’s law, ensuring that the interference between the waves reflected by each plane is
constructive, i.e., the optical path difference corresponds to a multiple of the wavelength.
For this, we consider the wavelength 𝜆 ≤ 2𝑑ℎ𝑘𝑙, and the scattering of the rays is elastic,
implying no energy loss. Using 𝑑ℎ𝑘𝑙 simply as 𝑑, Bragg’s law is expressed as: (KITTEL,
2004)

2𝑑 sin 𝜃 = 𝑛𝜆 (2.4)
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Figure 9 – Illustration showing the optical path difference in the process of crys-
talline diffraction.

If each plane were completely reflective, only one would suffice to reflect all radi-
ation at all wavelengths. However, due to atomic spacing, only about 10−3 to 10−5 of the
incident radiation is reflected by each plane, meaning that diffraction can include contri-
butions from up to 105 planes of a perfect crystal. Bragg’s law is a consequence of the
periodicity of crystalline structures and is independent of the lattice or the elements com-
posing the crystal. To perform a deeper analysis of the scattering intensity, it is necessary
to consider the spatial distribution of electrons in the crystal cell.

2.5 Fourier Analysis

All physical properties of a perfect crystal must be invariant under lattice transla-
tions, these being characterized by a translation vector of the type 𝑙 = 𝑢1𝑎1+𝑢2𝑎2+𝑢3𝑎3,
where each 𝑢𝑖 is an integer, and all 𝑎𝑖 being the lattice base vectors. As e.g., the electronic
density at some position 𝑛(𝑟) must be the same as 𝑛(𝑟 + 𝑙). Since we are dealing with
periodic functions 𝑓(𝑟) = 𝑓(𝑟 + 𝑙), it is suggestive to investigate a Fourier analysis. We
start with the one-dimensional case 𝑓(𝑥):

𝑓(𝑥) = 𝑓0 +
∑︁
𝑛>0

[︂
𝐶𝑛𝑐𝑜𝑠

(︂
𝑛

2𝜋𝑥

𝑎

)︂
+ 𝑆𝑛𝑠𝑖𝑛

(︂
𝑛

2𝜋𝑥

𝑎

)︂]︂
, (2.5)

where 𝐶𝑛 and 𝑆𝑛 are Fourier coefficients, and the factor 2𝜋
𝑎

is what guarantees the
periodicity of the function 𝑓(𝑥) with period 𝑎, as we can verify:
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𝑓(𝑥 + 𝑎) = 𝑓0 +
∑︁
𝑛>0

[︃
𝐶𝑛𝑐𝑜𝑠

(︃
𝑛

2𝜋(𝑥 + 𝑎)
𝑎

)︃
+ 𝑆𝑛𝑠𝑖𝑛

(︃
𝑛

2𝜋(𝑥 + 𝑎)
𝑎

)︃]︃

𝑓(𝑥 + 𝑎) = 𝑓0 +
∑︁
𝑛>0

[︂
𝐶𝑛𝑐𝑜𝑠

(︂
𝑛

2𝜋𝑥

𝑎
+ 2𝜋𝑛

)︂
+ 𝑆𝑛𝑠𝑖𝑛

(︂
𝑛

2𝜋𝑥

𝑎
+ 2𝜋𝑛

)︂]︂

𝑓(𝑥 + 𝑎) = 𝑓0 +
∑︁
𝑛>0

[︂
𝐶𝑛𝑐𝑜𝑠

(︂
𝑛

2𝜋𝑥

𝑎

)︂
+ 𝑆𝑛𝑠𝑖𝑛

(︂
𝑛

2𝜋𝑥

𝑎

)︂]︂
= 𝑓(𝑥).

(2.6)

The space that contains the points allowed in the Fourier expansion consistent
with the lattice periodicity is such that contains the points 𝑛2𝜋

𝑎
. In this one-dimensional

example, these points distribute themselves into a line, distanced of 2𝜋
𝑎

. Not far bellow, we
shall generalize this in three dimensions, where these points will also form a lattice which
depends inversely on the lattice vectors 𝑎𝑖. We call this new pattern as the reciprocal
lattice, and it will be better described latter using the new defined vectors 𝑏𝑖, but first,
we must finish the Fourier analysis.

It is convenient to express equation (2.5) in a more compact form, using 𝑔 = 2𝜋𝑛
𝑎

,

𝑓(𝑥) =
∑︁

𝑛

𝐴𝑛𝑒𝑖𝑔𝑥, (2.7)

being the sum over all integers 𝑛 being positive, negative, or zero. The 𝐴𝑛 coeffi-
cients are complex numbers that obey 𝐴𝑛 = 𝐴*

−𝑛, in such a way that the sum over all 𝑛

is a real number. For generalization in three dimensions, we consider 𝑔𝑖 = 2𝜋𝑛𝑖

𝑎𝑖
, so

𝑓(𝑟) =
∑︁

𝑔1,𝑔2,𝑔3

𝐴𝑔1𝑔2𝑔3𝑒𝑖(𝑔1𝑥1+𝑔2𝑥2+𝑔3𝑥3), (2.8)

that can be simplified as

𝑓(𝑟) =
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟. (2.9)

As intended, this expression respects the translational symmetry of the crystal, as
we can verify in

𝑓(𝑟 + 𝑙) =
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·(𝑟+𝑙) (2.10)

=
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟𝑒𝑖𝐺·𝑙 (2.11)

=
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟𝑒
𝑖2𝜋

𝑛𝑖
𝑎𝑖

𝑙𝑖𝑎𝑖 (2.12)

=
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟𝑒𝑖2𝜋𝑁 , (2.13)
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where 𝑁 is an integer, thus 𝑓(𝑟+𝑙) = 𝑓(𝑟). It is useful to keep in mind the relation
we just used, 𝑒𝑖𝐺·𝑙 = 1.

Not to forget the Fourier coefficients, which can be obtained as integrals over the
unity cell volume ((ZIMAN, 1972)),

𝐴𝐺 = 1
𝑉𝑢𝑐

ˆ
𝑐𝑒𝑙𝑙

𝑑3𝑟𝑓(𝑟)𝑒−𝑖𝐺·𝑟. (2.14)

The Fourier analysis is now over, however, we must see in more depth how to define
reciprocal lattice vectors 𝐺, which are of great importance for the crystal description in
Fourier space, or as we shall call it, reciprocal space.

2.6 Reciprocal Lattice

In this section, the relationship between reciprocal space and wave vectors 𝑘 will
become clear, with the space of wave vectors being the space of momentum vectors.
Heisenberg’s uncertainty principle is a beautiful expression of the duality that exists
between momenta and positions, just like the duality between wave and particle. The
reciprocal space corresponds to a wave representation of objects, dual to its corpuscular
representation.

2.6.1 Vectors in the Reciprocal Lattice

The construction of the basis vectors of the reciprocal lattice is defined as (KIT-
TEL, 2004):

𝑏1 = 2𝜋
𝑎2 × 𝑎3

𝑉
𝑏2 = 2𝜋

𝑎3 × 𝑎1

𝑉
𝑏3 = 2𝜋

𝑎1 × 𝑎2

𝑉
, (2.15)

where 𝑉 = 𝑎1 · (𝑎2 × 𝑎3) is the volume of the unit cell. An equivalent and
generalized definition for an arbitrary number of dimensions is expressed as

𝑎𝑖 · 𝑏𝑗 = 2𝜋𝛿𝑖𝑗. (2.16)

In this way, it is possible to map any point in the reciprocal lattice through the
vector:

𝐺 = 𝑣1𝑏1 + 𝑣2𝑏2 + 𝑣3𝑏3, (2.17)
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where 𝑣𝑖 is an integer. With this we can verify the invariance of equation (2.9)
under a translation 𝑇 = 𝑢1𝑎1 + 𝑢2𝑎2 + 𝑢3𝑎3,

𝑓(𝑟 + 𝑇 ) =
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·(𝑟+𝑇 )

=
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟𝑒𝑖𝐺·𝑇

=
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟𝑒𝑖(𝑣1𝑏1+𝑣2𝑏2+𝑣3𝑏3)·(𝑢1𝑎1+𝑢2𝑎2+𝑢3𝑎3)

=
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟𝑒𝑖2𝜋(𝑣1𝑢1+𝑣2𝑢2+𝑣3𝑢3)

=
∑︁
𝐺

𝐴𝐺𝑒𝑖𝐺·𝑟 = 𝑓(𝑟).

(2.18)

The step taken for the last line occurs because all the terms 𝑢𝑖 and 𝑣𝑖 are integers,
so any combination of these will still result in a multiple of 2𝜋 within the exponential.
Thus, we verify that the mapping of the reciprocal lattice through the vector 𝐺 is equiv-
alent to a mapping of the Fourier space in a crystalline solid.

As an example for the construction of reciprocal lattice vectors from the vectors
of the real lattice, we now follow this process for the 2D hexagonal lattice of some M2X
material in Cartesian coordinates.

Figure 10 – Illustration of the planar hexagonal crystal lattice of M2X.
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It is possible to obtain the two-dimensional lattice from equation (2.16), where in
matrix form we can write:

⎛⎝𝑎1𝑥 𝑎1𝑦

𝑎2𝑥 𝑎2𝑦

⎞⎠⎛⎝𝑏1𝑥 𝑏1𝑦

𝑏2𝑥 𝑏2𝑦

⎞⎠ = 2𝜋

⎛⎝1 0
0 1

⎞⎠ (2.19)

Here, it would be sufficient to find and multiply on the left the inverse matrix
of the real vectors 𝑎𝑖 to obtain the matrix with the reciprocal vectors 𝑏𝑖 in Cartesian
coordinates. However, we can obtain the reciprocal vectors in a simpler way, using only
equations (2.22) and assuming the vector 𝑎3 = 0̂𝑖 + 0𝑗̂ + 1𝑘. Thus, we have the vectors:

𝑎1 = |𝑎1|̂𝑖 + 0𝑗̂ + 0𝑘

𝑎2 = |𝑎2|
1
2 𝑖̂ + |𝑎2|

√
3

2 𝑗̂ + 0𝑘

𝑎3 = 0̂𝑖 + 0𝑗̂ + 1𝑘

(2.20)

and the operations

𝑎2 × 𝑎3 = |𝑎2|
√

3
2 𝑖̂ − |𝑎2|

1
2 𝑗̂

𝑉 = |𝑎1||𝑎2|
√

3
2

𝑎3 × 𝑎1 = |𝑎1|𝑗̂

(2.21)

which used in equation (2.22) result in:

𝑏1 = 2𝜋

(︃
1

|𝑎1|
𝑖̂ −

√
3

3|𝑎1|
𝑗̂

)︃
𝑏2 = 2𝜋

2
√

3
3|𝑎2|

𝑗̂ (2.22)
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Figure 11 – Illustration of the reciprocal lattice of M2X, containing the K and K′ points.

As in the real hexagonal lattice, where |𝑎1| = |𝑎2|, we also have |𝑏1| = |𝑏2| for
the reciprocal lattice. Together with the angle of 2𝜋

3 obtained, we also have a hexagonal
configuration for the reciprocal lattice. If the real lattice was defined with an angle of 2𝜋

3 ,
we would obtain 𝜋

3 for the reciprocal lattice. The black dots (K points) and yellow dots
(K′ points) are obtained in the reciprocal lattice by transforming the coordinates of the
positions of the M and X atoms.

2.6.2 Diffraction Condition

To analyze a crystal volume, we consider volume units 𝑑𝑉 positioned at a distance
𝑟 from the origin. The optical path difference between the incident waves generates a
phase difference 𝑒𝑖2𝜋(𝑘·𝑟), while the optical path difference for refracted waves generates a
phase difference 𝑒𝑖2𝜋(−𝑘′·𝑟). Thus, the wave scattered by the volume 𝑑𝑉 at 𝑟 has a phase
factor 𝑒𝑖2𝜋(𝑘−𝑘′)·𝑟 relative to the wave scattered at the origin.
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Figure 12 – Wave scattering at the origin and in a volume positioned at 𝑟.

We assume that the amplitude of the wave scattered in a volume 𝑑𝑉 is proportional
to the local electronic density 𝑛(𝑟). The total amplitude scattered in the direction 𝑘′ is
given by the integral, over the crystal volume, of the local electronic density multiplied by
the phase factor, such as that we define 𝐴 as the scattering amplitude: (KITTEL, 2004)

𝐴 =
ˆ

𝑑𝑉 𝑛(𝑟)𝑒𝑖2𝜋(𝑘−𝑘′)·𝑟 =
ˆ

𝑑𝑉 𝑛(𝑟)𝑒−𝑖2𝜋Δ𝑘·𝑟 (2.23)

Where −Δ𝑘 = 𝑘 −𝑘′. Δ𝑘 measures the change in the wave vector, and it is called
the scattering vector.

We can substitute 𝑛(𝑟) with its Fourier representation (2.9), and then obtain:

𝐴 =
∑︁
𝐺

ˆ
𝑑𝑉 𝑁𝐺𝑒𝑖2𝜋𝐺·𝑟𝑒−𝑖2𝜋Δ𝑘·𝑟 =

∑︁
𝐺

ˆ
𝑑𝑉 𝑁𝐺𝑒𝑖2𝜋(𝐺−Δ𝑘)·𝑟 (2.24)

Thus, when the scattering vector is equivalent to a reciprocal lattice vector 𝐺 =
Δ𝑘, the exponential contribution disappears and the scattering amplitude simply becomes
A = 𝑁𝐺V. Similarly, when the scattering vector significantly differs from the reciprocal
lattice vector, the scattering amplitude becomes negligible regardless of 𝑟, and this equal-
ity is therefore called the scattering condition.

We consider elastic scattering, hence the energies and frequencies of the waves 𝑘

and 𝑘′ are conserved, such that their magnitudes are identical. Thus, 𝑘2 = 𝑘′2, and the
scattering condition can be rewritten as:
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Δ𝑘 = 𝐺

𝑘 + 𝐺 = 𝑘′

(𝑘 + 𝐺)2 = 𝑘2

2𝑘 · 𝐺 + 𝐺2 = 0

(2.25)

If 𝐺 represents a reciprocal lattice vector, it is evident that the same is true for
−𝐺, and from this we arrive at the final form of the diffraction condition:

2𝑘 · 𝐺 = 𝐺2 (2.26)

2.6.3 The First Brillouin Zone

Now we seek a geometric interpretation for the diffraction condition, so we divide
equation (2.26) by four, obtaining:

𝑘 ·
(︃

𝐺

2

)︃
=
(︃

𝐺

2

)︃2

. (2.27)

It becomes evident that any wave vector 𝑘, whose projection relative to the recip-
rocal lattice vector 𝐺

2 has a magnitude
⃒⃒⃒

𝐺
2

⃒⃒⃒
, satisfies the diffraction condition. That is, if we

draw lines between points in reciprocal space, separated by 𝐺, the planes perpendicular
to these lines, positioned precisely at the midpoints of each line, contain points where a
wave vector 𝑘 originating from the origin satisfies the diffraction condition. These planes
are called Bragg planes. The regions represented by these sets of planes are known as Bril-
louin zones, which contain points in reciprocal space where all wave vectors are diffracted.

The first Brillouin zone (BZ) corresponds to the smallest volume entirely contained
by planes that satisfy the diffraction condition. It is of essential importance for the study
of electronic band structures in crystals, as it represents a primitive cell in reciprocal
space, centered at a lattice point. Figure 13 illustrates the construction of the first BZ
in a hexagonal symmetry crystal, such as of the M2X materials we work with in this
study. The vector 𝐺 is considered as the reciprocal lattice vectors and their symmetry
equivalents.
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Figure 13 – Generation of the first Brillouin zone for the hexagonal lattice.

2.7 Periodic Functions

2.7.1 Lattice Translations

Now that we are exploring solids using quantum mechanics, the periodicity of the
lattice incites us to explore the translation operator with a displacement equal to some
lattice vector 𝑎𝑖.

𝑇 (𝑎𝑖) = 𝑒−𝑖
𝑎𝑖
ℏ ·𝑝, (2.28)

where 𝑝 is the momentum operator, which can be understood as the generator of
spatial translations. The translation operator is a unitary transformation that acts on a
position state vector |𝑟⟩ as such:

𝑇 (𝑎𝑖) |𝑟⟩ = |𝑟 + 𝑎𝑖⟩ . (2.29)

We notice that

𝑇 †(𝑎𝑖) = 𝑇 *(𝑎𝑖) = 𝑒𝑖
𝑎𝑖
ℏ ·𝑝 = 𝑇 (−𝑎𝑖); (2.30)

and now, we are in a good position to find an important relation for the translation
operator wave functions. Being |Ψ𝑛⟩ an eigenvector from 𝑇 (𝑎𝑖),
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⟨𝑟| 𝑇 (𝑎𝑖) |Ψ𝑛⟩ = ⟨𝑟| 𝑇 (𝑎𝑖) |Ψ𝑛⟩ (2.31)

⟨𝑟 − 𝑎𝑖|Ψ𝑛⟩ = 𝜆𝑛𝑎𝑖
⟨𝑟|Ψ𝑛⟩ (2.32)

Ψ𝑛(𝑟 − 𝑎𝑖) = 𝜆𝑛𝑎𝑖
Ψ𝑛(𝑟), (2.33)

where 𝜆𝑛𝑎𝑖
is the correspondent eigenvalue of 𝑇 (𝑎𝑖). Since 𝑇 (𝑎𝑖) is a unitary oper-

ator, the transformation should be unitary |𝜆𝑛𝑎𝑖
| = 1. Then, we may write this eigenvalue

in its most general form:

𝜆𝑛𝑎𝑖
= 𝑒𝑖𝑘𝑖 . (2.34)

We may also hide the minus sign in the argument of the wave function by consid-
ering it on the exponential term 𝑘𝑖,

Ψ𝑛(𝑟 + 𝑎𝑖) = 𝑒𝑖𝑘𝑖Ψ𝑛(𝑟). (2.35)

This relation says that a space translation of some lattice vector 𝑎𝑖 in a wave func-
tion of the translation operator can be written as the original wave function multiplied
by a phase factor.

2.7.2 Bloch’s Theorem

We now consider the translation operator with a displacement equal to some gen-
eral vector that respects the same periodicity of the solid, i.e. 𝑙 = ∑︀𝑑

𝑖=1 𝑛𝑖𝑎𝑖 = 𝑛𝑖𝑎𝑖, being
𝑛𝑖 integers, and 𝑑 the total number of dimensions in the crystal:

Ψ𝑛(𝑟 + 𝑙) = Ψ𝑛(𝑟 + 𝑛𝑖𝑎𝑖) = (𝑒𝑖𝑘𝑖)𝑛𝑖Ψ𝑛(𝑟) (2.36)

Ψ𝑛(𝑟 + 𝑙) = 𝑒𝑖𝑛𝑖𝑘𝑖Ψ𝑛(𝑟). (2.37)

Conveniently, we define a general vector in the reciprocal space, 𝑘 = 𝑘𝑖𝑏𝑖, so that
using the relation 𝑎𝑖 · 𝑏𝑖 = 2𝜋𝛿𝑖𝑗, we may write 𝑒𝑖𝑛𝑖𝑘𝑖 = 𝑒𝑖 𝑘·𝑙

2𝜋 = 𝑒𝑖𝑘·𝑙, to finally obtain

Ψ𝑛(𝑟 + 𝑙) = 𝑒𝑖𝑘·𝑙Ψ𝑛(𝑟). (2.38)

The important insight this relation reveals to us is that any spatial translation in a
wave function of the translation operator may be represented by a phase factor described
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by the product of the displacement vector with some vector in reciprocal space.

This translational symmetry must be contained in the Hamiltonian itself, being
invariant under lattice translation, where we take the important assumption that the po-
tential term has the same periodicity of the solid, i.e. 𝑉 (𝑟+𝑙) = 𝑉 (𝑟). Figure 14 illustrates
a periodic potential for the case of a one-dimensional lattice with some lattice parameter 𝑎.

Figure 14 – Illustration of a periodic potential in an one-dimensional lattice.

Since the displacement is according to the periodicity of the lattice, we observe
that this operator commutes with the potential term from the Hamiltonian,

𝑇 (𝑙)(𝑉 (𝑟)Ψ(𝑟)) = 𝑉 (𝑟 + 𝑙)Ψ(𝑟 + 𝑙) = 𝑉 (𝑟)𝑇 (𝑙)Ψ(𝑟). (2.39)

The translation operator obviously commutes with the kinetic energy term, since
both are composed by no other than the momentum operator. Thus, we conclude that
the translation operator commutes with the Hamiltonian of the system, or more gener-
ally, 𝐻̂ commutes with all powers of 𝑇 (𝑙), 𝑇 (𝑙)𝑛 = 𝑇 (𝑛𝑙), which is equivalent to consider
that it commutes with the entire group of symmetry operations generated by 𝑇 (𝑙). This
commutation relation demands the existence of a common set of eigenvectors.

The final result of the Bloch theorem is hardly overestimated. What we obtained
for the plane wave functions of the translation operator is also true for any wave function
or state vector that satisfies the Schrödinger equation in a periodic system. There exists a
vector 𝑘 in the reciprocal space such that translations in the real space 𝑇 (𝑙) are equivalent
to multiplying the state by a phase factor 𝑒𝑖𝑘·𝑙. In the case of electron waves, it means
that we can label every wave function by its wave vector 𝑘, i.e.

Ψ𝑘(𝑟 + 𝑙) = 𝑒𝑖𝑘·𝑙Ψ𝑘(𝑟). (2.40)

What is usually called Bloch functions is a more convenient way to write what we
just done:
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Ψ𝑘(𝑟) = 𝑒𝑖𝑘·𝑟𝑢𝑘(𝑟), (2.41)

where 𝑢𝑘(𝑟) = 𝑢𝑘(𝑟 + 𝑙).

Figure 15 – Illustration of the real part of a Bloch wave function.

Now, we label the electron wave function by its wave vector 𝑘, but is this vector
well defined? We can write 𝑘 = 𝑘′ + 𝐺, where 𝐺 is some reciprocal lattice vector, and 𝑘′

is another wave vector. We already know that 𝑒𝑖𝐺·𝑙 = 1, then Bloch theorem (2.40) states
that

Ψ𝑘(𝑟 + 𝑙) = 𝑒𝑖(𝑘′+𝐺)·𝑙Ψ𝑘(𝑟) (2.42)

= 𝑒𝑖𝑘′·𝑙𝑒𝑖𝐺·𝑙Ψ𝑘(𝑟) = 𝑒𝑖𝑘′·𝑙Ψ𝑘(𝑟). (2.43)

The state Ψ𝑘 satisfies Bloch’s theorem as if it has the wave vector 𝑘′, i.e., the
electron wave function is not defined by a unique wave vector but instead includes all
possible lattice translations in reciprocal space. This is a hint for the uncertainty princi-
ple of position and momentum in crystalline states, which shall be discussed later,

The second quantization of electron states in Bloch’s form can be defined in terms
of the field operators (1.78):

Ψ̂†(𝑟𝜎) =
∑︁
𝑛𝑘

Ψ𝑛𝑘(𝑟𝜎)𝑐†
𝑛𝑘 Ψ̂(𝑟𝜎) =

∑︁
𝑛𝑘

Ψ𝑛𝑘(𝑟𝜎)𝑐𝑛𝑘, (2.44)

where 𝜎 are the spin coordinates, 𝑛 is the electron energy level, 𝑐†
𝑛𝑘 and 𝑐𝑛𝑘 are the

fermionic creation and annihilation operators, which obey the anticommutation relations
(1.72).
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2.7.3 Counting States

Let us consider more carefully the reciprocal lattice vector

𝐺 = 𝑛𝑖𝑏𝑖 = 𝑛𝑖
2𝜋

𝑎𝑖

. (2.45)

Any electron wave function, or electron state, is then assigned by a wave number
in the set 𝑘 = 𝑘′ + 𝑛𝑖

2𝜋
𝑎𝑖

, i.e., all points 𝑘 can be mapped into the region

− 𝜋

𝑎𝑖

< 𝑘𝑖 <
𝜋

𝑎𝑖

, (2.46)

or

−𝑏𝑖

2 < 𝑘𝑖𝑏𝑖 <
𝑏𝑖

2 (2.47)

−1
2 < 𝑘𝑖 <

1
2 . (2.48)

This result is exactly what we got before entering quantum theory. All wave vec-
tors 𝑘 in reciprocal space are equivalent to some vector inside the Brillouin zone.

In our consideration for translational symmetry, we have not included yet any
boundary condition. A real solid system is periodic until it ends; it has a finite number
of unit cells. The most feasible way to deal with this problem is to treat the solid with
Born-von Kármán boundary conditions, i.e. a cyclic system:

Ψ𝑘(𝑟 + 𝐿𝑖𝑎𝑖) = Ψ𝑘(𝑟), (2.49)

where 𝐿𝑖 is the total amount of unit cells along the 𝑖 axis.

We must still restrict ourselves to Bloch’s theorem, so the relation

Ψ𝑘(𝑟 + 𝐿𝑖𝑎𝑖) = 𝑒𝑖(𝑘𝑖𝑏𝑖·𝐿𝑖𝑎𝑖)Ψ𝑘(𝑟) = 𝑒𝑖(2𝜋𝑘𝑖𝐿𝑖)Ψ𝑘(𝑟) (2.50)

demands the condition 𝑘𝑖 = 𝑚𝑖

𝐿𝑖
, with 𝑚𝑖 integers. Considering the Brillouin zone

relation stated in (2.48), we find that the allowed wave vectors are the ones that satisfies

𝑘 = 𝑚𝑖

𝐿𝑖

𝑏𝑖, (2.51)

with integers 𝑚𝑖 respecting −1
2𝐿𝑖 < 𝑚𝑖 < 1

2𝐿𝑖. Thus, we obtain a fine grid of evenly
distributed k-points inside the Brillouin zone. There are exactly as many allowed wave
vectors in a Brillouin zone as there are unit cells in the solid system; 𝑁 = ∏︀𝑑

𝑖=1 𝐿𝑖, where
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𝑑 is the number of dimensions of the system and 𝑁 is the total number of unit cells, or
allowed wave vectors.

Now we concern with the density of states in reciprocal space. Having 𝑁 unit cells
in a 2D crystal of total area 𝐴C implies that the area of each unity cell is 𝑎uc = 𝐴C

𝑁
. Since

the Brillouin zone is a unit cell in reciprocal space, its area is 𝐴BZ = |𝑏1 × 𝑏2| = 4𝜋2

𝑎𝑢𝑐
.

Thus, the number of allowed k-vectors per unit area of reciprocal space is

𝑁

𝐴BZ
= 𝑁

𝑎uc

4𝜋2 = 𝐴C

4𝜋2 . (2.52)

In real systems, 𝑁 is very large so that this distribution is nearly continuous. We
often express the sum over the k-vectors as an integral

∑︁
𝑘

→ 𝐴C

4𝜋2

ˆ
𝑑2𝑘. (2.53)

For simplicity, is usually assume that 𝐴C = 1, so that 𝑁 is the number of cells per
unit area of the crystal and 1

𝑁
is the area of a unit cell.

2.7.4 Plane Wave Basis

Expanding the Bloch wave function in a Fourier transform (2.9) would require
a sum over every wave vector in the reciprocal lattice, which is unfeasible in practical
calculations. However, the coefficients 𝐴𝑘 of plane waves with small kinetic energies are
more important than those with large kinetic energies. Thus, we set a cutoff energy that
limits the kinetic energy of the wave vectors taken as basis:

ℏ2

2𝑚𝑒

|𝑘|2 ≤ 𝐸cut (2.54)

The Fourier transform (2.9) of a squared function in real space results in squared
Fourier coefficients, and reciprocal space vectors with double the length. The density
matrix formalism explored in (1.18) contains a squared wave function in the operator, so
the resulting reciprocal vector gives a factor of four to the cutoff energy in charge density
calculations:

ℏ2

2𝑚e
|𝑘|2 ≤ 4𝐸cut

|𝑘| ≤ 2
ℏ

√︁
2𝑚e𝐸cut = |𝑘cut|. (2.55)
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Figure 16 – Cutoff vector representation

2.7.5 Wannier Functions

We have defined a form for wave functions in a periodic lattice potential. Now we
ought to think of wave functions for the different energy levels an electron might occupy.
We define 𝜒𝑛(r) as a construction tool for a function in the Bloch form (2.40) as:

Ψ𝑛,𝑘(𝑟) = 1√
𝑁

∑︁
𝑙𝑒𝑖𝑘·𝑙𝜒𝑛(𝑟−𝑙),(2.56)

where it exists a function 𝜒𝑛(r) for each energy level 𝑛 of our system. These
momentum-independent functions are called Wannier functions.

The wave function given in (2.56) can be understood as constituted of a sum of
contributions from localized energy levels multiplied by a phase factor. We might think of
a Wannier function 𝜒𝑛(r − l) as somewhat analogous to an atomic orbital for a free atom
centered at 𝑙, 𝜑𝑛(r − l); but from the orthogonality of Bloch functions of different energy
levels, Ψ𝑛,𝑘(r), Ψ𝑛′,𝑘(r), we have that 𝜒𝑛(r) must be orthogonal to 𝜒𝑛′(r) (ZIMAN, 1972).

Wannier functions are coefficients in a Fourier form (2.9) of Bloch functions, which
can be directly expressed by inversion,

∑︁
k

𝑒−𝑖k·l′Ψ𝑛,𝑘(r) = 1√
𝑁

∑︁
kl

𝑒𝑖k·(l−l′)𝜒𝑛(r − l)

=
√

𝑁
∑︁

l
𝛿ll′𝜒𝑛(r − l)

=
√

𝑁
∑︁

l
𝜒𝑛(r − l′), (2.57)
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as

𝜒𝑛(𝑟 − 𝑙) = 1√
𝑁

∑︁
𝑘

𝑒−𝑖𝑘·𝑙Ψ𝑛,𝑘(𝑟). (2.58)

Equations (2.56) and (2.58) are a perfect demonstration of the crystal version of
the uncertainty principle. As seen in the construction of Bloch functions, translational
symmetry along lattice vectors in crystalline quantum states implies that all possible
lattice-translated states must be equivalent up to a phase factor, for a certain momen-
tum. The Bloch wave function is then a state defined in momentum, but constructed as
a superposition of lattice-translated states. Thus, certainty in momentum is associated
with uncertainty in position; while the Wannier functions, electron states localized in real
space, are constructed as a superposition of states with different momentum coordinates.
So certainty in position gives uncertainty in momentum.

In the second quantization format, the creation and annihilation operators for
Bloch and Wannier states are written as:

𝑐𝑛k = 1√
𝑁

∑︁
R

𝑒−𝑖k·R𝑐𝑛R, 𝑐†
𝑛k = 1√

𝑁

∑︁
R

𝑒𝑖k·R𝑐†
𝑛R; (2.59)

𝑐𝑛R = 1√
𝑁

∑︁
k

𝑒𝑖k·R𝑐𝑛k, 𝑐†
𝑛R = 1√

𝑁

∑︁
k

𝑒−𝑖k·R𝑐†
𝑛k. (2.60)

2.8 Discrete Symmetries

2.8.1 Space Inversion

The space inversion operator 𝜋̂, also known as parity operator, is a unitary and
hermitian operator that acts on vector states to produce space-inverted states |Ψ𝑛⟩ →
𝜋̂ |Ψ𝑛⟩. i.e. all spatial coordinates are mirrored over their axis, as in

⟨Ψ𝑛| 𝜋̂†𝑟𝜋̂ |Ψ𝑛⟩ = − ⟨Ψ𝑛| 𝑟 |Ψ𝑛⟩ . (2.61)

𝜋̂†𝑟𝜋̂ = −𝑟 (2.62)

The eigenvalue of this operator can only be ±1,

𝜋̂ |Ψ𝑛⟩ = ± |Ψ𝑛⟩ . (2.63)

When acting on a spatial vector state |𝑟⟩,
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𝜋 |𝑟⟩ = 𝑒𝑖𝜃 |−𝑟⟩ , (2.64)

where 𝑒𝑖𝜃 |−𝑟⟩ is just some phase factor, which for simplicity we consider 𝑒𝑖𝜃 |−𝑟⟩ =
1.

The momentum operator is the generator of translation, but translations should
also be inverted in the space-inverted scheme, thus, momentum is too inverted. (SAKU-
RAI; TUAN; COMMINS, 1995)

𝜋̂†𝑝𝜋̂ = −𝑝. (2.65)

It’s useful to remember that the Brillouin zone is set in reciprocal space, so the
space inversion operator acting on a wave vector inside the Brillouin zone gives the wave
vector with mirrored momentum coordinates.

For angular momentum 𝐽 , being it an orbital angular momentum 𝐿̂ or a spin
angular momentum 𝑆, we make a similar argument. Angular momentum is generator of
rotation, but rotation commutes with inversion, i.e., applying rotation after inversion is
the same as inversion after rotation, thus angular momentum commutes with the space
inversion operator,

𝜋̂†𝐽𝜋̂ = 𝐽. (2.66)

The parity operator has this as one of its names because it indicates the parity of
functions. Let us take the wave function

Ψ𝑛(𝑟) = ⟨𝑟|Ψ𝑛⟩ . (2.67)

The wave function of the space inverted state is then

⟨𝑟| 𝜋̂ |Ψ𝑛⟩ = ⟨−𝑟|Ψ𝑛⟩ = Ψ𝑛(−𝑟). (2.68)

But we also have (2.63), so the wave functions can be divided by their parity:

Ψ𝑛(−𝑟) =

⎧⎪⎨⎪⎩Ψ𝑛(𝑟), if even parity,

−Ψ𝑛(𝑟), if odd parity.
(2.69)
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2.8.2 Time Reversion

For the time time-reversal operator Θ̂, we should think of its action on a state
vector as reversing the motion of this state,

Θ̂ |Ψ𝑛⟩ =
⃒⃒⃒
Ψ̃𝑛

⟩
, (2.70)

where
⃒⃒⃒
Ψ̃𝑛

⟩
is the time-reversed |Ψ𝑛⟩, which is equivalent to a flip in the sign of the

momentum coordinates, including spin;
⃒⃒⃒
Ψ̃𝑛𝑘↑

⟩
= |Ψ𝑛−𝑘↓⟩*. This operator is quite different

from all previously discussed operators, as it is an anti-unitary operator: (SAKURAI;
TUAN; COMMINS, 1995)

⟨
Ψ̃𝑛′

⃒⃒⃒
Ψ̃𝑛

⟩
= ⟨Ψ𝑛′|Ψ𝑛⟩* (2.71)

Θ̂(𝑐𝑛 |Ψ𝑛⟩ + 𝑐𝑛′ |Ψ𝑛′⟩) = 𝑐*
𝑛Θ̂ |Ψ𝑛⟩ + 𝑐*

𝑛′Θ̂ |Ψ𝑛′⟩ . (2.72)

We say that a Hermitian observable 𝑂̂ is even or odd under time reversal according
to the signal

Θ̂𝑂̂Θ̂−1 = ±𝑂̂. (2.73)

As e.g., the momentum 𝑝 and angular momentum 𝐽 operators are odd, but the
position operator 𝑥̂ is even, as we might expect by intuition;

Θ̂𝑝Θ̂−1 = −𝑝, (2.74)

Θ̂𝐽Θ̂−1 = −𝐽, (2.75)

Θ̂𝑥̂Θ̂−1 = 𝑥̂. (2.76)

For the wave function, we consider the spinless state vector being act as

Θ̂ |Ψ𝑛⟩ =
ˆ

𝑑3𝑥Θ̂ |𝑥⟩ ⟨𝑥|Ψ𝑛⟩

=
ˆ

𝑑3𝑥 ⟨𝑥|Ψ𝑛⟩* Θ̂ |𝑥⟩

=
ˆ

𝑑3𝑥Ψ*
𝑛(𝑥) |𝑥⟩ . (2.77)

The wave function transformation indicates that the time reversion of a state has
to do with the complex coefficients of the expansion,
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Ψ𝑛(𝑥) → Ψ*
𝑛(𝑥). (2.78)

We may notice that a second application of the operator gives back the original
state,

Θ̂2 = 1. (2.79)

This is also valid for any integer spin states, but different for half-integer spin
states, (SAKURAI; TUAN; COMMINS, 1995)

Θ̂2 = −1. (2.80)

2.8.3 High Symmetry Points and Degeneracy

When we analyze the BZ for the two-dimensional hexagonal lattice, we may find
special points containing the symmetries described in Figure 5. We call those as high
symmetry points, which are illustrated in Figure 17. At the center of the zone, we have
the Γ point, which contains both a 𝐶6, and a intercept of 6 mirrors, being then a 𝐷6

symmetry. Each K point have 𝐶3 symmetry, and M points are intercepts of two mirror
lines.

Figure 17 – High symmetry points of the two-dimensional hexagonal lattice Brillouin
zone.
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Symmetry is of great importance when calculating the band structure, as the en-
ergy function in the BZ has the full point group of the crystal. Any symmetry operation
that leaves the crystal invariant, as discussed above, also transforms the function 𝐸(𝑘)
into itself (ZIMAN, 1972). This means that in every equally named point of the Brillouin
zone, the energy levels are the same. We have degenerated states for every K point or
every M point, thus, it is unnecessary to perform calculations for the whole zone but only
enough to contemplate one of each point.

In heavy atoms we know the existence of strong spin-orbit interaction (ZIMAN,
1972), where the Hamiltonian of the system includes a term like 𝐻̂𝑆𝑂 = 𝜆𝐿̂ ·𝑆. Since both
𝐿̂ and 𝑆 are invertible under time-reversion, this Hamiltonian still maintains time-reversal
symmetry, [𝐻̂, Θ̂] = 0. However, electrons with opposite spins in the same orbit will have
opposite energy displacements, breaking their degeneracy.

High symmetry points are not the only symmetry-concerned factors for degeneracy.
Time-reversal symmetry of the system will always lead any electron Bloch state |Ψ𝑘⟩
degenerated with its time-reversed state Θ̂ |Ψ𝑘⟩. One can argue that this might be just
the same state, with a phase factor 𝑒𝑖𝛿 difference, therefore not a pair of degenerated
states. This is a valid argument, but it fails when it comes to half-integer spin systems,
as

Θ̂2 |Ψ𝑘⟩ = Θ̂𝑒𝑖𝛿 |Ψ𝑘⟩ = 𝑒−𝑖𝛿Θ̂ |Ψ𝑘⟩

= 𝑒−𝑖𝛿𝑒𝑖𝛿 |Ψ𝑘⟩ = |Ψ𝑘⟩ . (2.81)

This is in contradiction with equation (2.80). Thus, for half-integer spin systems,
we call this pair of degenerated states as a Kramer degeneracy. Time reversal symmetry
of a system with odd number of electrons will always lead to electron Bloch functions
Ψ𝑘(𝑟) degenerated with their complex conjugated Ψ*

𝑘(𝑟), where both the wave vector 𝑘

and the spin 𝜎 have been reversed. In the hexagonal Brillouin zone, we have then that K
points that are momentum-inverted must have opposite spin separation, so it conserves
time-reverse symmetry. We distinguish those as K and K′ points. Γ and M points are
centers of inversion, thus they keep the energy levels as degenerated.

2.9 Schrödinger Equation for Many-electron Systems
The band structure, i.e. the energy levels of the electron in the Brillouin zone, is

central along this study. It is from the band structure that our material’s optical and
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electrical properties are calculated; properties such as electrical conductivity, optical ab-
sorption, and excitonic description.

A type of approach to calculate such properties is called ab initio. This name comes
from the fact that the approach is based on the fundamental Hamiltonian of the system,
with no additional and adjustable physical parameters. It is good remembering that an
ab initio approach does not demand an absence of approximations.

First, we consider a system formed by 𝑚 nuclei and 𝑛 electrons. The state of the
system is described by the it’s wave function, which must satisfy the non-relativistic time
independent Schrödinger equation. For this problem, we consider the electrons positions
as 𝑟𝑖, where 𝑖 = 1, ..., 𝑛; and the nuclei positions as 𝑅𝐴, where 𝐴 = 1, ..., 𝑚.

Then, the stationary Schrödinger equation is:

𝐻̂ |Ψ ({𝑅}, {𝑟})⟩ = 𝐸 |Ψ ({𝑅}, {𝑟})⟩ . (2.82)

The Hamiltonian of the system is given by the sum of kinetic energies of all elec-
trons and nuclei, and the sum of all nucleus-electron, nucleus-nucleus and electron-electron
interactions. It is also possible to add an external electromagnetic field which interacts
with electrons and nuclei,

𝐻̂ = 𝑇e + 𝑇n + 𝑉nn + 𝑉en + 𝑉ee + 𝑉n-field + 𝑉e-field. (2.83)

Being 𝑅𝐴𝐵 the distance between nucleus 𝐴 and nucleus 𝐵, 𝑅𝐴𝑖 the distance be-
tween nucleus 𝐴 and electron 𝑖, and 𝑟𝑖𝑗 the distance between electron 𝑖 and electron
𝑗,

𝐻̂ = − ℏ2

2𝑚e

𝑛∑︁
𝑖

∇2
𝑖 − ℏ2

2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

+
𝑚∑︁

𝐴>𝐵

𝐾e𝑍𝐴𝑍𝐵𝑒2

𝑅𝐴𝐵

−
𝑚∑︁

𝐴=1

𝑛∑︁
𝑖=1

𝐾𝑒𝑍𝐴𝑒2

𝑅𝐴𝑖

+
𝑛∑︁

𝑖>𝑗

𝐾e𝑒
2

𝑟𝑖𝑗

+𝑉n-field + 𝑉e-field. (2.84)

For the external field interactions, we have

𝑉n-field =
𝑚∑︁
𝐴

[︁
𝑍𝐴𝑒Φext(𝑅𝐴𝑡) + 𝑖

𝑍𝐴𝑒ℏ
𝑀𝐴𝑐

𝐴ext(𝑅𝐴𝑡) · ∇𝐴 − 𝐼𝐴 · 𝐵ext(𝑅𝐴𝑡)
]︁

(2.85)

𝑉e-field =
𝑛∑︁
𝑖

[︁
− 𝑒Φext(𝑟𝑖𝑡) − 2𝑖𝜇B𝐴ext(𝑟𝑖𝑡) · ∇𝑖 + 𝜇B𝜎̂𝑖 · 𝐵ext(𝑟𝑖𝑡)

]︁
. (2.86)
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Here, Φext and 𝐴ext are the scalar and vector field potentials corresponding to the
external electromagnetic field,

𝐸ext(r𝑡) = −∇Φext(r𝑡) − 1
𝑐

𝜕𝐴ext(r𝑡)
𝜕𝑡

(2.87)

𝐵ext(r𝑡) = ∇ × 𝐴ext(r𝑡), (2.88)

𝐼𝐴 is the magnetic moment of the 𝐴-th nucleus, 𝜇B = 𝑒ℏ
2𝑚𝑐

is the Bohr magneton,
and 𝜎̂𝑖 is the spin operator corresponding to the 𝑖-th electron.

For all this, we have considered the motion of both electrons and nuclei as non-
relativistic. We also characterize each nucleus as a point particle with mass, charge, and
magnetic moment. All this treatment is not problematic for the concerns of this study,
but if heavy atoms are under consideration, relativistic effects become not negligible. For
the external field, it can be either static or time-dependent, e.g. a laser pulse. The cou-
pling of the field with the quantized particles is specified assuming the Coulomb gauge,
∇ · 𝐴𝑒𝑥𝑡(r𝑡) = 0. Despite all this discussion, which aims only to open our minds to pos-
sibilities, the continuation of this study will assume no external fields, giving us back
to:

𝐻̂ = − ℏ2

2𝑚e

𝑛∑︁
𝑖

∇2
𝑖 − ℏ2

2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

+
𝑚∑︁

𝐴>𝐵

𝐾e𝑍𝐴𝑍𝐵𝑒2

𝑅𝐴𝐵

−
𝑚∑︁

𝐴=1

𝑛∑︁
𝑖=1

𝐾𝑒𝑍𝐴𝑒2

𝑅𝐴𝑖

+
𝑛∑︁

𝑖>𝑗

𝐾e𝑒
2

𝑟𝑖𝑗

. (2.89)

For shortening and clarity of text, we use from now on a simpler notation, where
|Ψ ({𝑅}, {𝑟})⟩ = Ψ, and considering also the atomic units, 𝐾e = ℏ = 𝑒 = 𝑚e = 1, we
may rewrite equation (2.82) as

⎛⎝−1
2

𝑛∑︁
𝑖

∇2
𝑖 − 1

2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

+
𝑚∑︁

𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

−
𝑚∑︁

𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

+
𝑛∑︁

𝑖>𝑗

1
𝑟𝑖𝑗

⎞⎠Ψ = 𝐸Ψ. (2.90)

Concerning a molecular system, we treat the movement of the nuclei as an adiabatic
process (KOŁSOS, 1970), i.e., they move extremely slow with regards to movement of the
electrons, enabling a separate description for the movement of electrons and nuclei. If
we consider a solid system, this argument is even stronger. This separate description
is made by separating the wave function of the system into two independent functions,
Ψ({𝑅}, {𝑟}) = 𝜑({𝑅}, {𝑟})𝜒({𝑅}), or in condensed notation, Ψ = 𝜑𝜒. We have then:

−𝜒

2

𝑛∑︁
𝑖

∇2
𝑖 𝜑 − 1

2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

𝜑𝜒 +
𝑚∑︁

𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝜑𝜒 −
𝑚∑︁

𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

𝜑𝜒 +
𝑛∑︁

𝑖>𝑗

1
𝑟𝑖𝑗

𝜑𝜒 = 𝐸𝜑𝜒. (2.91)
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Now we take a moment to develop the second term of the equation in an isolated
manner, which can be expanded as

−1
2

𝑚∑︁
𝐴=1

∇2
𝐴

𝑀𝐴

(𝜑𝜒) = −1
2

𝑚∑︁
𝐴=1

1
𝑀𝐴

(∇𝐴 · (𝜒∇𝐴𝜑 + 𝜑∇𝐴𝜒))

= −1
2

𝑚∑︁
𝐴=1

1
𝑀𝐴

(𝜒∇𝐴 · ∇𝐴𝜑 + ∇𝐴𝜒 · ∇𝑖𝜑 + 𝜑∇𝐴 · ∇𝐴𝜒 + ∇𝐴𝜑 · ∇𝐴𝜒)

= −1
2

(︃
𝑚∑︁

𝐴=1

𝜒∇2
𝐴𝜑

𝑀𝐴

+ 2∇𝐴𝜑 · ∇𝐴𝜒

𝑀𝐴

+ 𝜑∇2
𝐴𝜒

𝑀𝐴

)︃
.

(2.92)

At this point, we shall use the Born-Oppenheimer approximation (BORN; OP-
PENHEIMER, 1927), where ∇𝐴𝜑 is considered extremely small, as the adiabatic move-
ment of the nuclei is irrelevant for the electron dynamics. This way, we treat {𝑅} as fixed
parameters in 𝜑({𝑅}, {𝑟}). By this approximation, the first two terms in the sum are
equal to zero, giving

−1
2

𝑚∑︁
𝐴=1

∇2
𝐴

𝑀𝐴

(𝜑𝜒) ≈ −1
2

𝑚∑︁
𝐴=1

𝜑∇2
𝐴𝜒

𝑀𝐴

. (2.93)

Using this result in the Schrödinger equation (2.91):

−𝜒

2

𝑛∑︁
𝑖

∇2
𝑖 𝜑 − 𝜑

2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

𝜒 +
𝑚∑︁

𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝜑𝜒 −
𝑚∑︁

𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

𝜑𝜒 +
𝑛∑︁

𝑖>𝑗

1
𝑟𝑖𝑗

𝜑𝜒 = 𝐸𝜑𝜒. (2.94)

It is now possible to separate the complete Schrödinger equation of the system
into nuclear and electronic equations, and for this we divide both sides by 𝜑𝜒,

− 1
2𝜑

𝑛∑︁
𝑖

∇2
𝑖 𝜑 −

𝑚∑︁
𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

+
𝑛∑︁

𝑖>𝑗

1
𝑟𝑖𝑗

= 𝐸 + 1
2𝜒

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

𝜒 −
𝑚∑︁

𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

= 𝜖({𝑅}). (2.95)

The isolated electronic equation is then:

− 1
2𝜑

𝑛∑︁
𝑖

∇2
𝑖 𝜑 −

𝑚∑︁
𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

+
𝑛∑︁

𝑖>𝑗

1
𝑟𝑖𝑗

= 𝜖({𝑅})

−1
2

𝑛∑︁
𝑖

∇2
𝑖 𝜑 −

𝑚∑︁
𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

𝜑 +
𝑛∑︁

𝑖>𝑗

𝜑

𝑟𝑖𝑗

= 𝜖({𝑅})𝜑,

(2.96)

that can be rewritten isolating 𝜑, as

⎛⎝−1
2

𝑛∑︁
𝑖

∇2
𝑖 −

𝑚∑︁
𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

+
𝑛∑︁

𝑖>𝑗

1
𝑟𝑖𝑗

⎞⎠𝜑({𝑅}, {𝑟}) = 𝜖({𝑅})𝜑({𝑅}, {𝑟}), (2.97)
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being this, finally, the Schrödinger equation for the electronic Hamiltonian, which
gives us the electronic properties of the system:

𝐻̂el |Φ({𝑅}, {𝑟})⟩ = 𝜖({𝑅}) |Φ({𝑅}, {𝑟})⟩ . (2.98)

The nuclear equation is obtained as:

𝐸 + 1
2𝜒

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

𝜒 −
𝑚∑︁

𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

= 𝜖({𝑅})

𝐸𝜒 + 1
2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

𝜒 −
𝑚∑︁

𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝜒 = 𝜖({𝑅})𝜒

−1
2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

𝜒 +
𝑚∑︁

𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝜒 + 𝜖({𝑅})𝜒 = 𝐸𝜒,

(2.99)

where the second and third terms of the equation are regarded as the potential
𝑉 ({𝑅}). Giving form to the final Schrödinger equation for the nuclear Hamiltonian

−1
2

𝑚∑︁
𝐴

∇2
𝐴

𝑀𝐴

𝜒 + 𝑉 ({𝑅})𝜒 = 𝐸𝜒

𝐻̂n |𝜒({𝑅})⟩ = 𝐸 |𝜒({𝑅})⟩ ,

(2.100)

being the one responsible for the description of the system’s dynamics.

To obtain the second quantization of the electronic Hamiltonian, the one of most
interest in this study, we shall expand it as the sum of one-body and two-body field
operators:

𝐻̂ = 𝑇 + 𝑉𝑒𝑥𝑡 + 𝑊̂ , (2.101)

where 𝑇 , 𝑉𝑒𝑥𝑡 and 𝑊̂ are operators that represent the kinetic energy, the external
potential interaction and the electron-electron interaction, respectively. These become:

𝑇 =
𝑁∑︁

𝑖=1

(−𝑖ℏ∇𝑖)2

2 = −ℏ2

2
∑︁

𝜎=↑,↓

ˆ
𝑑3𝑟Ψ̂†(𝑟𝜎)∇2Ψ̂(𝑟𝜎), (2.102)

𝑊̂ = 1
2

𝑁∑︁
𝑖,𝑗=1
𝑖 ̸=𝑗

𝑤(𝑟𝑖, 𝑟𝑗) = 1
2

∑︁
𝜎,𝜎′=↑,↓

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′Ψ̂†(𝑟𝜎)Ψ̂†(𝑟′𝜎′)𝑤(𝑟, 𝑟′)Ψ̂(𝑟′𝜎′)Ψ̂(𝑟𝜎),

(2.103)
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and,

𝑉𝑒𝑥𝑡 =
𝑁∑︁

𝑖=1
𝑣𝑒𝑥𝑡(𝑟𝑖) =

ˆ
𝑑3𝑟𝑣𝑒𝑥𝑡(𝑟)𝑛̂(𝑟). (2.104)

Here, all we are doing is the zero-temperature formalism. We used the field op-
erators, previously discussed in the quantum theory section, Ψ̂(𝑟𝜎), which describes the
creation and annihilation operators of particles with spin 𝜎 and position 𝑟. Also, the
electron density is represented as:

𝑛̂(𝑟) =
𝑁∑︁
𝑖

𝛿3(𝑟 − 𝑟𝑖) =
∑︁

𝜎=↑,↓
Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎). (2.105)

The solution for the electronic equation (2.98), as well as for the nuclear equation
(2.100), demands a formidable computational cost as we increase the number of nuclei and
electrons in the system. A variety of approaches have been developed to obtain approx-
imate solutions, the oldest, the Hartree-Fock approximation (HARTREE; HARTREE,
1935). Density functional theory (DFT) is a more recent and computationally accessible
method, and it is the core methodology of this research. Before further exploration into
this subject, there are still some necessary concepts to be understood about solids.

The vacuum state of the fermionic Fock space, where the electrons are usually rep-
resented, is called the zero-electron vacuum, but here we work with a different approach;
the Fermi vacuum. Also called the Fermi sea, it is the independent-electron ground state
in which all the electrons occupy the lowest-energy spin-orbitals. In a ground state con-
figuration, the Fermi level separates occupied from unoccupied states.

In that approach, the independent-particle excited states are described by the
difference of their occupation number with respect to the highest occupied state vector in
the Fermi sea. This perspective leads to the notion of holes under the Fermi sea when an
electron is affected by the annihilation operator below the Fermi level. The same operator
that annihilates an electron over the Fermi level is equivalent to a creation operator of
a quasi-particle called "electron hole", of positive charge 𝑒. An excitation of an electron
from under the Fermi level to a state above it is described by the annihilation of that
electron state and the creation of the excited state, but the annihilation in the Fermi sea
is equivalent to a hole creation, so the result is a neutral pair composed of an electron and
a hole that interacts electrostatically, which is considered a bosonic quasi-particle called
"exciton". Quasi-particles are very common in the quantum description of matter, and
another essential one is discussed in the following, when we explore the vibrations of the
lattice.
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2.10 Phonons
Of great importance when discussing real solids is to not simply consider them as

a lattice of atoms with fixed positions, as in reality those atoms are vibrating in constant
search for equilibrium, the lowest energy configuration. This vibrating system can be best
understood as a coupled harmonic oscillator (KITTEL, 2004), which for simplicity of first
approach we shall discuss as a one-dimensional set of equally spaced atoms with equal
mass. The Hamiltonian of this system is written as

𝐻 =
𝑛∑︁
𝑠

[︂ 1
2𝑀

𝑝2
𝑠 + 1

2𝐶(𝑞𝑠+1 − 𝑞𝑠)2
]︂

, (2.106)

where 𝑞𝑠 and 𝑝𝑠 are the position and momentum of the 𝑠-th atom, and 𝐶 is the
elastic force constant of the system.

The energy of a lattice vibration is quantized. In analogy with the quantization of
the electromagnetic wave, we call the lattice vibrational quanta as a bosonic quasi-particle
called "phonon". For further discussion, we must express the position and momentum
operators in Bloch form (2.40),

𝑞𝑠 = 1√
𝑁

∑︁
𝑘

𝑄̂𝑘𝑒𝑖𝑘𝑠𝑎 𝑝𝑠 = 1√
𝑁

∑︁
𝑘

𝑃𝑘𝑒−𝑖𝑘𝑠𝑎, (2.107)

where 𝑄̂𝑘 and 𝑃𝑘 are phonon coordinates correspondent to the displacement and
momentum of the lattice vibration in the reciprocal space. From that we observe that a
phonon is a collective mode of the entire lattice instead of being associated with single
atoms.

The inverse transformations are:

𝑄̂𝑘 = 1√
𝑁

∑︁
𝑠

𝑞𝑠𝑒
−𝑖𝑘𝑠𝑎 𝑃𝑘 = 1√

𝑁

∑︁
𝑠

𝑝𝑠𝑒
𝑖𝑘𝑠𝑎, (2.108)

such that the commutation relations are respected:

[𝑄̂𝑘′ , 𝑃𝑘] = 1
𝑁

[︃∑︁
𝑠′

𝑞𝑠′𝑒−𝑖𝑘′𝑠′𝑎,
∑︁

𝑠

𝑝𝑠𝑒
𝑖𝑘𝑠𝑎

]︃

= 1
𝑁

∑︁
𝑠′

∑︁
𝑠

[𝑞𝑠′𝑝𝑠]𝑒−𝑖(𝑘′𝑠′−𝑘𝑠)𝑎

= 1
𝑁

𝑖ℏ
∑︁

𝑠

𝑒−𝑖(𝑘′−𝑘)𝑠𝑎 = 𝑖ℏ𝛿𝑘,𝑘′ . (2.109)
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Now, the Hamiltonian (2.106) can be expressed in phonon coordinates as

𝐻 = 1
𝑁

𝑛∑︁
𝑠

∑︁
𝑘

∑︁
𝑘′

[︂ 1
2𝑀

𝑃𝑘𝑃𝑘′𝑒−𝑖(𝑘+𝑘′)𝑠𝑎 + 1
2𝐶(𝑄̂𝑘𝑒𝑖𝑘(𝑠+1)𝑎 − 𝑄̂𝑘𝑒𝑖𝑘𝑠𝑎)(𝑄̂𝑘′𝑒𝑖𝑘′(𝑠+1)𝑎 − 𝑄̂𝑘′𝑒𝑖𝑘′𝑠𝑎)

]︂

= 1
𝑁

𝑛∑︁
𝑠

∑︁
𝑘

∑︁
𝑘′

[︂ 1
2𝑀

𝑃𝑘𝑃𝑘′𝑒−𝑖(𝑘+𝑘′)𝑠𝑎 + 1
2𝐶𝑄̂𝑘𝑄̂𝑘′𝑒𝑖𝑘𝑠𝑎(𝑒𝑖𝑘𝑎 − 1)𝑒𝑖𝑘′𝑠𝑎(𝑒𝑖𝑘′𝑎 − 1)

]︂

=
∑︁

𝑘

[︂ 1
2𝑀

𝑃−𝑘𝑃𝑘 + 𝐶𝑄̂−𝑘𝑄̂𝑘(1 − 𝑐𝑜𝑠(𝑘𝑎))
]︂

.

(2.110)

The angular frequency is now introduced as

𝜔𝑘 ≡
√︃

2𝐶

𝑀
(1 − 𝑐𝑜𝑠(𝑘𝑎)), (2.111)

so the final form of the Hamiltoninan in phonon coordinates can be written as

𝐻̂ =
∑︁

𝑘

[︂ 1
2𝑀

𝑃−𝑘𝑃𝑘 + 1
2𝑀𝜔2

𝑘𝑄̂−𝑘𝑄̂𝑘

]︂
. (2.112)

The equations of motion are then found using the commutation relations,

[𝑄̂𝑘, 𝐻] = 𝑖ℏ ˙̂
𝑄𝑘, [ ˙̂

𝑄𝑘, 𝐻] = 𝑖ℏ ¨̂
𝑄𝑘,

so we may find

¨̂
𝑄𝑘 + 𝜔2

𝑘𝑄̂𝑘 = 0, (2.113)

which is the equation of motion for a harmonic oscillator of frequency 𝜔𝑘. The
energy of such mode of vibration is

𝐸𝑘 =
(︂

𝑛𝑘 + 1
2

)︂
ℏ𝜔𝑘, (2.114)

where 𝑛𝑘 is the occupation number of the vibrational mode, i.e., the number of phonons
in that state. The term 1

2ℏ𝜔𝑘 is the contribution of frequency 𝜔𝑘 to the zero point energy,
which is the vibrational energy of the system at zero Kelvin. That is not a statement to
be left unnoticed, that due to the uncertainty relation between position and momentum,
a system vibrates even at zero Kelvin.

As seen in the quantum theory section, the occupation number operator may be
written in terms of creation and annihilation operators. In that perspective, we may
rewrite the Hamiltoninan (2.112) as
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𝐻̂ =
∑︁

𝑘

(︂
𝑎̂†

𝑘𝑎̂𝑘 + 1
2

)︂
ℏ𝜔𝑘, (2.115)

where the bosonic creation and annihilation operators are responsible for creating
and annihilating phonon states in each mode of vibration. They are thus defined as

𝑎̂†
𝑘 = 1√

2ℏ

(︃√︁
𝑀𝜔𝑘𝑄̂−𝑘 − 𝑖

1√
𝑀𝜔𝑘

𝑃𝑘

)︃
𝑎̂𝑘 = 1√

2ℏ

(︃√︁
𝑀𝜔𝑘𝑄̂𝑘 + 𝑖

1√
𝑀𝜔𝑘

𝑃−𝑘

)︃
.

(2.116)

We might also write the phonon coordinates in terms of creation and annihilation
operators;

𝑄̂𝑘 =
√︃

ℏ
2𝑀𝜔𝑘

(︁
𝑎̂𝑘 + 𝑎̂†

−𝑘

)︁
𝑃𝑘 = 𝑖

√︃
ℏ𝑀𝜔𝑘

2
(︁
𝑎̂†

𝑘 − 𝑎̂−𝑘

)︁
. (2.117)
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3 DFT

3.1 What is Density Functional Theory

3.2 The Many-Body Problem
To begin our discussion on the foundations of DFT, we first recall something ex-

plored in the solid state chapter: The second quantized form of the nonrelativistic Hamil-
tonian of a stationary system of 𝑁 interacting electrons or, in general, spin-1

2 particles.

𝐻̂ = 𝑇 + 𝑊̂ + 𝑉ext, (3.1)

where 𝑇 , 𝑊̂ and 𝑉ext are operators for the kinetic energy, electron-electron inter-
action, and external potential interaction, respectively. Those are:

𝑇 =
𝑁∑︁

𝑖=1

(−𝑖ℏ∇𝑖)2

2𝑚
= − ℏ2

2𝑚

∑︁
𝜎=↑,↓

ˆ
𝑑3𝑟Ψ̂†(𝑟𝜎)∇2Ψ̂(𝑟𝜎), (3.2)

𝑊̂ = 1
2

𝑁∑︁
𝑖,𝑗=1
𝑖 ̸=𝑗

𝑤(𝑟𝑖, 𝑟𝑗) = 1
2

∑︁
𝜎,𝜎′=↑,↓

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′Ψ̂†(𝑟𝜎)Ψ̂†(𝑟′𝜎′)𝑤(𝑟, 𝑟′)Ψ̂(𝑟′𝜎′)Ψ̂(𝑟𝜎),

(3.3)

and,

𝑉ext =
𝑁∑︁

𝑖=1
𝑣ext(𝑟𝑖) =

ˆ
𝑑3𝑟𝑣ext(𝑟)𝑛̂(𝑟). (3.4)

Being the electron density,

𝑛̂(𝑟) =
𝑁∑︁
𝑖

𝛿3(𝑟 − 𝑟𝑖) =
∑︁

𝜎=↑,↓
Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎). (3.5)

The form of the electron-electron interaction, characterized by 𝑤(𝑟, 𝑟′), is not rele-
vant for the DFT formalism. We only assume that 𝑤(𝑟, 𝑟′) is symmetric and independent
of spin, as we see in Coulomb interaction. The external potential interaction 𝑣ext is also an
arbitrary function of 𝑟, but we usually work with the electron-nuclei interaction present
in (2.83). Latter, we shall include the presence of external electromagnetic fields, and be-
yond that, we shall redefine this external potential operator when we start working with
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pseudopotentials. (ENGEL; DREIZLER, 2011)

3.3 Hohenberg-Kohn Theorem
The eigenstates |Ψ𝑘⟩ for the many-body Hamiltonian are then obtained as the

solution of the stationary Schrödinger equation,

𝐻̂ |Ψ𝑘⟩ = 𝐸𝐾 |Ψ𝑘⟩ . (3.6)

From the resulting eigenstates, there is one in particular to which we shall focus
our attention. The ground state |Ψ0⟩.

In this first approach, we consider only non-degenerate ground states. Those states
can be obtained by a set of possible Hamiltonians, i.e., a set of local potentials 𝑣ext. Fun-
damentally, this set of potentials includes not only physical potentials, but an infinity of
pure mathematical constructs. Also, we must keep in mind that adding a constant to any
potential 𝑣ext(𝑟) leads to the same ground state, so both potentials are physically equiv-
alent. In a similar way, any ground state |Ψ0⟩ is physically equivalent to itself multiplied
by a phase factor 𝑒𝑖𝜃 |Ψ0⟩.

The solution of the Scrödinger equation is therefore a map 𝐴 between the set V

of potentials 𝑣ext, and the set G of ground states |Ψ0⟩; (ENGEL; DREIZLER, 2011)

𝐴 : V → G . (3.7)

This mapping process can be extended. Let us now introduce the ground state
electron density,

𝑛0(𝑟) = ⟨Ψ0| 𝑛̂(𝑟) |Ψ0⟩ =
∑︁

𝜎=↑↓

ˆ
𝑑3𝑟 ⟨Ψ0| Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎) |Ψ0⟩

=
∑︁

𝜎,𝜎′,𝜎′′=↑↓

ˆ
𝑑3𝑟𝑑3𝑟′𝑑3𝑟′′ ⟨Ψ0|𝑟′𝜎′⟩ ⟨𝑟′𝜎′| Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎) |𝑟′′𝜎′′⟩ ⟨𝑟′′𝜎′′|Ψ0⟩

=
∑︁

𝜎,𝜎′,𝜎′′=↑↓

ˆ
𝑑3𝑟𝑑3𝑟′𝑑3𝑟′′ ⟨Ψ0|𝑟′𝜎′⟩ 𝛿𝜎,𝜎′𝛿𝜎,𝜎′′𝛿(𝑟 − 𝑟′)𝛿(𝑟 − 𝑟′′) ⟨𝑟′′𝜎′′|Ψ0⟩

=
∑︁

𝜎=↑↓

ˆ
𝑑3𝑟|⟨𝑟𝜎|Ψ0⟩|2, (3.8)

where for a system of 𝑁 particles, we write:
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𝑛0(𝑟1, ..., 𝑟𝑁) =
∑︁

𝜎1,...,𝜎𝑁

ˆ
𝑑3𝑟1...𝑑

3𝑟𝑁 |⟨𝑟1𝜎1| ⊗ ... ⊗ ⟨𝑟𝑁𝜎𝑁 |Ψ0⟩|2. (3.9)

This indicates we may define a second map 𝐵 between the set G and the set N

of all ground state electron densities 𝑛0;

𝐵 : G → N . (3.10)

Both maps 𝐴 and 𝐵 are surjective by construction, but they are also injective
(ENGEL; DREIZLER, 2011), thus unique. Figure 18 illustrates these maps.

Figure 18 – Mapping between potentials, ground states, and ground state electron densi-
ties sets.

Now, we are ready to discuss the fundamental statements of the Hohenberg-Kohn
theorem:
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As illustrated in Figure 18, 𝑣ext, |Ψ0⟩, and 𝑛0 uniquely determine each other. The
first Hohenberg-Kohn theorem states that the ground state can be obtained as a unique
functional of the ground state electron density,

|Ψ0⟩ = |Ψ[𝑛0]⟩ . (3.11)

This functional is a realization of the map 𝐵−1, and it applies to atoms, molecules,
or solids, i.e., it is a universal functional.

As a consequence of the above, we also have that any observable ground state is a
density functional, in particular, the ground state energy,

𝐸0 = 𝐸[𝑛0] := ⟨Ψ[𝑛0]| 𝐻̂ |Ψ[𝑛0]⟩ = ⟨Ψ[𝑛0]| 𝑇 + 𝑊̂ |Ψ[𝑛0]⟩ +
ˆ

𝑑3𝑟𝑣ext(𝑟)𝑛0(𝑟). (3.12)

From the variational principle, the second Hohenberg-Kohn theorem states that
the true ground state is the one that has the minimum value for 𝐸[𝑛], i.e.,

𝐸0 = min
𝑛∈N

𝐸[𝑛]. (3.13)

Having seen both Hohenberg-Kohn theorems, we entered into DFT theory know-
ing that there is a mapping between ground states, external potentials, and ground state
electron densities. The choice of an external potential is uniquely tied to some ground
state configuration. Ritz variational principle (RITZ, 1909) states that the ground state
energy of the system is minimized when the electron distribution is such that it is the
exact ground state density. In this scenario, the goal of DFT is to find the electron density
that minimizes the ground state energy. Because of the co-dependency of the ground state
and the ground state electron density, we feel invited to an iterative method in search for
the minimum ground state energy (3.13).

Nevertheless, all the arguments so far have considered the inexistence of degenerate
ground states. The elaboration is not that different, but to grasp the complete picture of
DFT, we must start redefining the set of possible 𝑣ext, V .

V = {𝑣ext | 𝑣ext multiplicative, 𝑣ext(𝑟) ̸= 𝑣′
ext(𝑟) + 𝑐𝑜𝑛𝑠𝑡}, (3.14)

that can generate a set G composed of 𝑛𝑔 degenerate ground states |Ψ0,𝑖⟩:
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G =
⋃︁
𝑣ext

G𝑣ext , G𝑣ext =
{︃

|Ψ⟩ | |Ψ0⟩ =
𝑛𝑔∑︁
𝑖=1

𝑐𝑖 |Ψ0,𝑖⟩
}︃

. (3.15)

The set of ground states is then associated with a set of ground state electron
densities N :

N =
⋃︁
𝑣ext

N𝑣ext , N𝑣ext =
{︁
𝑛(𝑟) | 𝑛(𝑟) = ⟨Ψ0| 𝑛̂(𝑟) |Ψ0⟩ , |Ψ0⟩ ∈ G𝑣ext

}︁
. (3.16)

Despite considering degenerate ground states, there still exists a one-to-one cor-
respondence between any potential 𝑣ext to a subset G𝑣ext of all the correspondent ground
states, as well as to the subset N𝑣ext of ground state electron densities, generated from
these ground states. The mapping between these sets is represented in Figure 19:

Figure 19 – Mapping between the external potentials and the corresponding set of ground
states and ground state densities, considering degenerate cases.

The subsets G𝑣ext and N𝑣ext for different 𝑣ext are disjoint, and from each element
in N𝑣ext we can identify the corresponding G𝑣ext and 𝑣ext. However, we note that it is not
impossible to obtain the same density from two different elements in a subset G𝑣ext , but
that is not a problem since we are only concerned with obtaining an energy functional
𝐸[𝑛0], and the energy of any ground state is equal by definition.
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𝐸[𝑛0(𝑟)] = ⟨Ψ[𝑛0(𝑟)]| 𝐻̂ |Ψ[𝑛0(𝑟)]⟩ , (3.17)

which is unambiguous for all 𝑛0(𝑟) in the set. The second Hohenberg-Kohn theo-
rem, the minimum principle 3.13, is still valid for the degenerate energy functional.

The fact that a ground state electron density 𝑛0(𝑟) corresponds to a unique ex-
ternal potential implies that finding the ground state density also determines all excited
states, which is due to the solutions of the Schrödinger equation being unambiguously
defined by 𝑣𝑒𝑥𝑡:

𝑛0(𝑟) → 𝑣ext → |Ψ𝑖⟩ , 𝑖 = 0, 1, ..., ∞. (3.18)

The formalism being developed so far can be extended to include not only the
electrostatic external potential 𝑣ext, but also an external magnetic field 𝐵ext. Now we
work on spin-polarized systems, which are described by the Hamiltonian:

𝐻̂ = 𝑇 + 𝑊̂ +
ˆ

𝑑3𝑟{𝑣ext(𝑟)𝑛̂(𝑟) + 𝐵ext(𝑟) · 𝑚̂(𝑟)}, (3.19)

where the operator of magnetization density, 𝑚̂(𝑟) = 𝜇𝛽
∑︀𝑁

𝑖=1 𝜎𝑖𝛿
(3)(𝑟 − 𝑟𝑖), can

be written in terms of field operators as:

𝑚̂(𝑟) = 𝜇𝛽

∑︁
𝜎,𝜎′=↑,↓

Ψ̂†(𝑟𝜎)𝜎𝜎,𝜎′Ψ̂(𝑟𝜎′), (3.20)

being the Bohr magneton, 𝜇𝛽 = |𝑒|ℏ
2𝑚𝐶

, and the vector of Pauli matrices, 𝜎𝜎,𝜎′ , whose
components can be expressed as:

𝜎𝑥,𝜎𝜎′ = 𝛿𝜎′,−𝜎; 𝜎𝑦,𝜎𝜎′ = 𝑖𝑠𝑖𝑔𝑛(𝜎′)𝛿𝜎′,−𝜎; 𝜎 𝜎𝜎′ = 𝑠𝑖𝑔𝑛(𝜎)𝛿𝜎′,𝜎. (3.21)

Just as the ground state electron density, we may define the ground state magne-
tization density,

𝑚̂0(𝑟) = ⟨Ψ0| 𝑚̂(𝑟) |Ψ0⟩ . (3.22)

Two different ground states |Ψ0⟩ and |Ψ′
0⟩ from the set of all possible ground states

will always lead to (𝑛0, 𝑚0) and (𝑛′
0, 𝑚′

0) with the condition 𝛿𝑛0,𝑛′
0
𝛿𝑚0,𝑚′

0
= 0, i.e., |Ψ0⟩ is

a unique functional of (𝑛0, 𝑚0),
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|Ψ0⟩ = |Ψ[𝑛0, 𝑚0]⟩ . (3.23)

We can use the functional |Ψ[𝑛0, 𝑚0]⟩ to define the spin-polarized energy functional

𝐸[𝑛, 𝑚] = ⟨Ψ[𝑛0, 𝑚0]| 𝑇 + 𝑊̂ |Ψ[𝑛0, 𝑚0]⟩ +
ˆ

𝑑3𝑟{𝑣𝑒𝑥𝑡(𝑟)𝑛̂(𝑟) + 𝐵𝑒𝑥𝑡(𝑟) · 𝑚̂(𝑟)},

(3.24)

which satisfies the minimum principle

𝐸[𝑛0, 𝑚0] < 𝐸[𝑛, 𝑚] ∀ (𝑛, 𝑚) ̸= (𝑛0, 𝑚0). (3.25)

3.4 Kohn-Sham Equations
So far, we have discussed the fundamental concepts that led us to the electronic

ground state by minimization of 𝐸[𝑛0, 𝑚0]. The Schrödinger equation (3.6), which gives
the electronic states used in the construction of the electron density (3.5), consists of a
many-body problem that is computationally demanding beyond our current capabilities.
Maybe in the future, quantum computation may help us in this approach (SEELEY;
RICHARD; LOVE, 2012), but to the present day we still need a simplification of the
question. The Kohn-Sham equations (KOHN; SHAM, 1965) provide us with a substitute
system of single-particle nature, which converges to the same electron density of the
Schrödinger problem, still accounting for the electron-electron interactions. The answer
we seek is from an interacting system, but instead we obtain a single-particle system that
mimics the electron density of the interacting one. The identical electron density can thus
be mapped to the exact ground state energy and used to evaluate physical properties.

To first begin the construction of the Kohn-Sham equations, let us simply start
defining a system of noninteracting electrons,

𝐻̂KS = 𝑇KS + 𝑉KS, (3.26)

with a multiplicative effective potential 𝑣KS given in

𝑉KS =
ˆ

𝑑3𝑟𝑛̂(𝑟)𝑣KS. (3.27)

An 𝑁 -particle ground state for this system, first assumed as nondegenerate, is
defined as a determinant of single-particle states, a Slater determinant,
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Φ0(𝑟1𝜎1, ..., 𝑟𝑁𝜎𝑁) ≡ ⟨𝑟1𝜎1| ⊗ ... ⊗ ⟨𝑟𝑁𝜎𝑁 |Φ0⟩

= 1√
𝑁 !

det

⎛⎜⎜⎜⎝
𝜑1(𝑟1𝜎1) . . . 𝜑𝑁(𝑟1𝜎1)

... . . . ...
𝜑1(𝑟𝑁𝜎𝑁) . . . 𝜑𝑁(𝑟𝑁𝜎𝑁)

⎞⎟⎟⎟⎠ , (3.28)

which is constructed from the lowest solutions 𝜑𝑖 of the single-particle Schrödinger
equation:

(︃
−ℏ2∇2

2𝑚
+ 𝑣KS

)︃
𝜑𝑖(𝑟𝜎) = 𝐸𝑖𝜑𝑖(𝑟𝜎). (3.29)

The lowest solutions are considered as such for being the occupied states, i.e., the
ones with eigenvalues below the Fermi level, 𝐸𝑖 < 𝜖F. The energy of the highest occupied
state is often called the Fermi energy 𝐸F. (ENGEL; DREIZLER, 2011)

The ground state electron density of such a system is given by

𝑛0 KS(𝑟) =
∑︁

𝜎=↑,↓

𝑁∑︁
𝑖=1

Θ𝑖|𝜑𝑖(𝑟𝜎)|2, (3.30)

where, for zero-temperature calculations, the theta function Θ𝑖 is defined as

Θ𝑖 = 𝛿(𝜖F − 𝐸𝑖) =

⎧⎪⎨⎪⎩1 for 𝐸𝑖 < 𝜖F

0 elsewhere
. (3.31)

In the case of systems with 𝑇 > 0, the theta function becomes a Fermi distribution,

Θ𝑖 =
[︃
1 + 𝑒

(︁
𝐸𝑖−𝜇

𝑘B𝑇

)︁]︃
, (3.32)

being 𝜇 the chemical potential, chosen to result in ∑︀𝑖 Θ𝑖 = 𝑁 .

Using the ground state electron density, the ground state energy is written as:

𝐸0 KS =
𝑁∑︁

𝑖=1
Θ𝑖

∑︁
𝜎=↑,↓

ˆ
𝑑3𝑟𝜑*

𝑖 (𝑟𝜎)−ℏ2∇2

2𝑚
𝜑𝑖(𝑟𝜎) +

ˆ
𝑑3𝑟𝑣KS(𝑟)𝑛0 KS(𝑟). (3.33)

As seen in the Hohenberg-Kohn theorems, this ground state can be obtained
through the minimization of the functional:
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𝐸KS[𝑛] = ⟨Φ[𝑛]| 𝑇KS + 𝑉KS |Φ[𝑛]⟩ . (3.34)

An important implication is that 𝜑𝑖 themselves are functionals of the density,
which is uniquely defined by the effective potential 𝑣KS. Thus, the orbitals that compose
the Slater determinant depend on 𝑣KS and can also be expressed as density functionals,
𝜑𝑖(𝑟𝜎) = 𝜑𝑖[𝑛](𝑟𝜎) (ENGEL; DREIZLER, 2011).

Considering that we want to find a 𝑣KS that reflects the nature of the original
interacting system, we decompose 𝐸[𝑛] in a convenient form:

𝐸[𝑛] = 𝑇KS[𝑛] + 𝐸H[𝑛] + 𝐸ext[𝑛] + 𝐸xc[𝑛], (3.35)

where the kinetic functional is

𝑇KS[𝑛] =
𝑁∑︁

𝑖=1
Θ𝑖

∑︁
𝜎=↑,↓

ˆ
𝑑3𝑟𝜑*

𝑖 (𝑟𝜎)−ℏ2∇2

2𝑚
𝜑𝑖(𝑟𝜎); (3.36)

the classical energy from self-interactions and interactions between the 𝑁 -particles
is included in the Hartree term,

𝐸H = 1
2

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′𝑛(𝑟)𝑤(𝑟, 𝑟′)𝑛(𝑟′); (3.37)

and the coupling between particles and the usual external potential is given in

𝐸ext[𝑛] =
ˆ

𝑑3𝑟𝑣ext(𝑟)𝑛(𝑟). (3.38)

The last term, known as the exchange-correlation energy functional, is defined
by construction as the term that absorbs all the so far neglected many-body effects, as
the Pauli exclusion principle. We can declare 𝐸xc[𝑛] as a density functional considering
that the energy itself is a density functional, as well as all the other terms. In a rigorous
approach, this decomposition could only be defined for densities that are noninteracting
𝑣-representable; discussion that will be left for the reference (ENGEL; DREIZLER, 2011).
Further exploration of this convenient functional will be left to the next section.

To complete our construction of the method, we must still find a form for the 𝑣KS

term, which uniquely defines the ground state density. For doing so, we start by proofing
that the total energy functional is considerably insensitive to errors in the electron den-
sity. This fact is important for practical applications and should not be left unseen.
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In order to evaluate the ground state energy functional of some electron density
that is close to the ground state,

𝑛(𝑟) = 𝑛0(𝑟) + 𝛿𝑛(𝑟), (3.39)

we use a variational method:

𝐸[𝑛] = 𝐸[𝑛0] +
ˆ

𝑑3𝑟
𝛿𝐸

𝛿𝑛(𝑟)

⃒⃒⃒⃒
𝑛=𝑛0

𝛿𝑛(𝑟) + O(𝛿𝑛2). (3.40)

A fixed particle number 𝑁 implies

ˆ
𝑑3𝑟𝑛(𝑟) =

ˆ
𝑑3𝑟𝑛0(𝑟) = 𝑁 →

ˆ
𝑑3𝑟𝛿𝑛(𝑟) = 0, (3.41)

which finally gives the result we intended to demonstrate, i.e., the sensitivity of
the ground state energy functional due to small density variations is of second order:

𝐸[𝑛0 + 𝛿𝑛] − 𝐸[𝑛0] = O(𝛿𝑛2). (3.42)

This result makes physical sense, since our approach intends to find a stable ground
state configuration corresponding to the minimum of some functional.

Now, in order to find the final form of 𝑣KS, we must only write equation (3.42)
in a more explicit manner. The Hartree term (3.37) and the external potential energy
functional (3.38) are quite straightforward:

𝐸H[𝑛0 + 𝛿𝑛] − 𝐸H[𝑛0] =
ˆ

𝑑3
ˆ

𝑑3𝑟′𝛿𝑛(𝑟)𝑤(𝑟, 𝑟′)𝑛0(𝑟′) + O(𝛿𝑛2); (3.43)

𝐸ext[𝑛0 + 𝛿𝑛] − 𝐸ext[𝑛0] =
ˆ

𝑑3𝑟𝑣ext(𝑟)𝛿𝑛(𝑟). (3.44)

The kinetic term (3.36) is explicitly dependent of the orbitals, which are unique
functionals of the density,

𝑇KS[𝑛0 + 𝛿𝑛] − 𝑇KS[𝑛0] = (3.45)

= (−𝑖ℏ)2

2𝑚

∑︁
𝑖,𝜎

Θ𝑖

ˆ
𝑑3𝑟

{︁
𝛿𝜑*

𝑖 (𝑟𝜎)∇2𝜑𝑖(𝑟𝜎) + 𝜑*
𝑖 (𝑟𝜎)∇2𝛿𝜑𝑖(𝑟𝜎)

}︁
+ O(𝛿𝜑2) (3.46)

The second term, integrated by parts, becomes
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(−𝑖ℏ)2

2𝑚

∑︁
𝑖,𝜎

Θ𝑖

ˆ
𝑑3𝑟

{︁
∇ · (𝜑*

𝑖 (𝑟𝜎)∇𝛿𝜑𝑖(𝑟𝜎)) − ∇𝜑*
𝑖 (𝑟𝜎) · ∇𝛿𝜑𝑖(𝑟𝜎)

}︁
= (3.47)

= (−𝑖ℏ)2

2𝑚

∑︁
𝑖,𝜎

Θ𝑖

{︁‹
𝑑𝑆 · (𝜑*

𝑖 (𝑟𝜎)∇𝛿𝜑𝑖(𝑟𝜎)) −
ˆ

𝑑3𝑟∇𝜑*
𝑖 (𝑟𝜎) · ∇𝛿𝜑𝑖(𝑟𝜎)

}︁
, (3.48)

where, assuming zero surface contributions, the first term will vanish and the
second can be written with partial integration, which reveals another surface contribution
that can be neglected. The kinetic term can then be written as

𝑇KS[𝑛0 + 𝛿𝑛] − 𝑇KS[𝑛0] = (3.49)

= (−𝑖ℏ)2

2𝑚

∑︁
𝑖,𝜎

Θ𝑖

ˆ
𝑑3𝑟

{︁
𝛿𝜑*

𝑖 (𝑟𝜎)∇2𝜑𝑖(𝑟𝜎) + 𝛿𝜑𝑖(𝑟𝜎)∇2𝜑*
𝑖 (𝑟𝜎)

}︁
+ O(𝛿𝜑2). (3.50)

Using the single-particle equations (3.29) inside the kinetic term gives:

𝑇KS[𝑛0 + 𝛿𝑛] − 𝑇KS[𝑛0] = (3.51)

=
∑︁
𝑖,𝜎

Θ𝑖

ˆ
𝑑3𝑟 [𝐸𝑖 − 𝑣KS(𝑟)] {𝛿𝜑*

𝑖 (𝑟𝜎)𝜑𝑖(𝑟𝜎) + 𝛿𝜑𝑖(𝑟𝜎)𝜑*
𝑖 (𝑟𝜎)} + O(𝛿2). (3.52)

Before further progress, aiming to explicitly write the kinetic term variation as a
function of the density variation, we may use the Kohn-Sham electron density definition
(3.30) inside 𝑛(𝑟) = 𝑛0(𝑟) + 𝛿𝑛 to obtain

∑︁
𝜎=↑,↓

𝑁∑︁
𝑖=1

Θ𝑖|𝜑𝑖(𝑟𝜎) + 𝛿𝜑𝑖(𝑟𝜎)|2 =
∑︁

𝜎=↑,↓

𝑁∑︁
𝑖=1

Θ𝑖|𝜑𝑖(𝑟𝜎)|2 + 𝛿𝑛, (3.53)

so

𝛿𝑛 =
𝑁∑︁

𝑖=1
Θ𝑖

∑︁
𝜎=↑,↓

{︁
𝛿𝜑*

𝑖 (𝑟𝜎)𝜑𝑖(𝑟𝜎) + 𝜑*
𝑖 (𝑟𝜎)𝛿𝜑𝑖(𝑟𝜎)

}︁
+ O(𝛿2). (3.54)

This expression is conveniently contained in the kinetic term variation, so we can
use it and the fact that

´
𝑑3𝑟𝛿𝑛 = 0, to finally obtain:

𝑇KS[𝑛0 + 𝛿𝑛] − 𝑇KS[𝑛0] = =
∑︁
𝑖,𝜎

Θ𝑖

ˆ
𝑑3𝑟 − 𝑣KS(𝑟)𝛿𝑛 + O(𝛿2). (3.55)

The remaining exchange-correlation functional is explicitly undefined, so we keep
it in Taylor form:
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𝐸xc[𝑛0 + 𝛿𝑛] − 𝐸xc[𝑛0] =
ˆ

𝑑3𝑟
𝛿𝐸xc[𝑛]
𝛿𝑛(𝑟)

⃒⃒⃒⃒
𝑛=𝑛0

𝛿𝑛(𝑟) + O(𝛿2). (3.56)

The last step towards the Kohn-Sham equations is to construct equation (3.42)
explicitly writing all the terms as functions of the density variation, but neglecting second-
order contributions,

ˆ
𝑑3
{︁
𝑣KS(𝑟) − 𝑣ext(𝑟) −

ˆ
𝑑3𝑟′𝑤(𝑟, 𝑟′)𝑛0(𝑟′) − 𝛿𝐸xc[𝑛]

𝛿𝑛(𝑟)

⃒⃒⃒⃒
𝑛=𝑛0

}︁
𝛿𝑛(𝑟) = 0, (3.57)

which is equivalent to

𝑣KS(𝑟) = 𝑣ext(𝑟) + 𝑣H[𝑛0](𝑟) + 𝑣xc[𝑛0](𝑟). (3.58)

Inserting (3.58) into (3.29) returns the final Kohn-Sham equations:

{︁
− ℏ2∇2

2𝑚
+ 𝑣ext(𝑟) + 𝑣H[𝑛0](𝑟) + 𝑣xc[𝑛0](𝑟)

}︁
𝜑𝑖(𝑟𝜎) = 𝐸𝑖𝜑𝑖(𝑟𝜎). (3.59)

It should be noted that the Kohn-Sham potential, 𝑣KS, is also a density functional.
For obtaining the solutions 𝜑𝑖 one must resolve to a self-consistent implementation, where
𝑣KS is first constructed from some trial density, then fed into the Kohn-Sham equations
to result in an improved set of Slater orbitals, thus an improved density and an improved
potential. This iterative process must be repeated until some convergence criterion is
achieved. The final Slater orbitals are not the exact ground state of the interacting sys-
tem but serve as a mathematical tool to represent the electron density, which uniquely
maps the exact ground state energy. It is an important remark that since the interact-
ing ground state is never obtained, the Kohn-Sham approach does not provide all the
information about the final system, but enough to evaluate most of the structural and
electrical properties of the system. (ENGEL; DREIZLER, 2011)

An important information that can be obtained directly from the eigenvalues of
the Kohn-Sham converged system is the ionization potential, which is equivalent to the
energy of the highest occupied state (ALMBLADH, 1985).

3.5 Exchange and Correlation

3.5.1 The Exact Functionals

The aim of DFT is to map the many-body system onto an effective single-particle
system. In practice, we cannot perform exact calculations of the exchange-correlation en-
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ergy functional, as it would require the solution of the many-body problem. Nevertheless,
we start our approach by deriving the exact representation of the solution to serve as a
guideline into the approximation methods.

We begin dividing the the exchange-correlation energy functional, 𝐸xc[𝑛], into the
correlation 𝐸c[𝑛] and the exchange 𝐸x[𝑛] parts

The exchange energy functional is defined as (ENGEL; DREIZLER, 2011),

𝐸x[𝑛] := ⟨Φ0| 𝑊̂ |Φ0⟩ − 𝐸H[𝑛], (3.60)

where |Φ0⟩ is the KS Slater determinant (3.28). This equation can be explicitly
written as:

𝐸x[𝑛] = −1
2
∑︁
𝑖𝑗

Θ𝑖Θ𝑗

∑︁
𝜎𝜎′

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′𝜑*

𝑖 (𝑟𝜎)𝜑𝑗(𝑟𝜎)𝑤(𝑟, 𝑟′)𝜑*
𝑗(𝑟𝜎)𝜑𝑖(𝑟𝜎). (3.61)

The definition above is an implicit density functional, as the slater orbitals are
themselves functionals of the electron density. The definition of the correlation energy
functional is then constructed as

𝐸c[𝑛] := 𝐸xc[𝑛] − 𝐸x[𝑛]. (3.62)

The exchange energy functional definition given in (3.61) contains important prop-
erties, such as the cancelation of the self-interaction energy present in 𝐸H, i.e., the terms
where 𝑖 = 𝑗:

𝐸SI
H = 1

2
∑︁

𝑖

Θ2
𝑖

∑︁
𝜎𝜎′

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′|𝜑𝑖(𝑟𝜎)|2𝑤(𝑟, 𝑟′)|𝜑𝑖(𝑟𝜎)|2 = −𝐸SI

x . (3.63)

Another property present in (3.61) is its additivity with respect to the spin orien-
tations. Using 𝑤(𝑟, 𝑟′) = 𝑒2

|𝑟−𝑟′| ,

𝐸x[𝑛 ↑, 𝑛 ↓] = −𝑒2

2
∑︁

𝜎

∑︁
𝛼𝛽

Θ𝛼𝜎Θ𝛽𝜎

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′ 𝜑

*
𝛼𝜎(𝑟)𝜑𝛽𝜎(𝑟)𝜑*

𝛽𝜎(𝑟′)𝜑𝛼𝜎(𝑟′)
|𝑟 − 𝑟′|

. (3.64)

The expression above can be thought of as two separate energy functionals, each
for a distinct spin orientation; 𝐸x↑ and 𝐸x↓.
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Now, we aim the full 𝐸xc[𝑛] exact representation. To reach such a form, we de-
scribe the exact many-body Hamiltonian in terms of the Kohn-Sham Hamiltonian and
a correction Hamiltonian, i.e., 𝐻̂ = 𝐻̂KS + 𝐻̂ ′. The elements that substantiate 𝐻̂ ′ are
representatives of the electron-electron interactions 𝑊̂ that are not contained in 𝐻̂KS, so
we write

𝐻̂ ′ = 𝑊̂ −
ˆ

𝑑3𝑟𝑛̂(𝑟) {𝑣H(𝑟) + 𝑣xc(𝑟)} . (3.65)

To make an adiabatic connection between 𝐻̂ and 𝐻̂KS, we follow the approach of
defining

𝐻̂(𝜆) = 𝐻̂KS + 𝜆𝐻̂ ′, (3.66)

where 𝜆 ∈ [0, 1] is a coupling constant. The Schrödinger equation for this system
is

𝐻̂(𝜆) |Ψ0(𝜆)⟩ = 𝐸0(𝜆) |Ψ0(𝜆)⟩ (3.67)

The Hohenberg-Kohn theorems ensure that 𝐻̂KS is constructed from the same
ground state electron density that represents the interacting system 𝐻̂, however, we cannot
easily assume the conservation of the ground state electron density through the path
that connects these two systems, 𝐻̂(𝜆). The adiabatic connection must then enforce the
preservation of this property. For this, we consider some external potential 𝑢𝜆(𝑟) such
that

𝑢𝜆(𝑟) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑣KS(𝑟) if 𝜆 = 0

unknown if 0 < 𝜆 < 1

𝑣ext(𝑟) if 𝜆 = 1

, (3.68)

which can be used to write the Hamiltonian

𝐻̂(𝜆) = 𝑇 +
ˆ

𝑑3𝑟𝑢𝜆(𝑟)𝑛̂(𝑟) + 𝜆𝑊̂ . (3.69)

This procedure maintains the endpoints of the variation,

𝐻̂(𝜆) =

⎧⎪⎨⎪⎩𝐻̂KS for 𝜆 = 0

𝐻̂ for 𝜆 = 1
. (3.70)

For the unknown region of 𝑢𝜆, we must use the condition
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𝑛𝜆(𝑟) = ⟨Ψ0(𝜆)| 𝑛̂𝜆(𝑟) |Ψ0(𝜆)⟩ ≡ 𝑛(𝑟) for all 0 ≤ 𝜆 ≤ 1. (3.71)

The ground state energy through the variation path is given as

𝐸0(𝜆) = ⟨Ψ0(𝜆)| 𝐻̂(𝜆) |Ψ0(𝜆)⟩ , (3.72)

which can be differentiated with respect to 𝜆:

𝑑

𝑑𝜆
𝐸0(𝜆) = (3.73)

=
⟨

𝑑Ψ0(𝜆)
𝑑𝜆

⃒⃒⃒⃒
⃒𝐻̂(𝜆)Ψ0(𝜆)

⃒⃒⃒⃒
⃒+
⟩ ⟨

Ψ0(𝜆)
⃒⃒⃒⃒
⃒𝐻̂(𝜆)

⃒⃒⃒⃒
⃒𝑑Ψ0(𝜆)

𝑑𝜆

⟩
+
⟨

Ψ0(𝜆)
⃒⃒⃒⃒
⃒𝑑𝐻̂(𝜆)

𝑑𝜆

⃒⃒⃒⃒
⃒Ψ0(𝜆)

⟩
= (3.74)

= 𝐸0(𝜆)
(︃⟨

𝑑Ψ0(𝜆)
𝑑𝜆

⃒⃒⃒⃒
⃒Ψ0(𝜆)

⟩
+
⟨

Ψ0(𝜆)
⃒⃒⃒⃒
⃒𝑑Ψ0(𝜆)

𝑑𝜆

⟩)︃
+
⟨

Ψ0(𝜆)
⃒⃒⃒⃒
⃒𝑑𝐻̂(𝜆)

𝑑𝜆

⃒⃒⃒⃒
⃒Ψ0(𝜆)

⟩
. (3.75)

Normalization ensures ⟨Ψ0(𝜆)|Ψ0(𝜆)⟩ = 1, and thus 𝑑
𝑑𝜆

⟨Ψ0(𝜆)|Ψ0(𝜆)⟩ = 0. Equa-
tion (3.75) then becomes:

𝑑

𝑑𝜆
𝐸0(𝜆) =

⟨
Ψ0(𝜆)

⃒⃒⃒⃒
⃒𝑑𝐻̂(𝜆)

𝑑𝜆

⃒⃒⃒⃒
⃒Ψ0(𝜆)

⟩
. (3.76)

which can be integrated from 0 to 1 with respect to 𝜆, giving

𝐸0 − 𝐸KS 0 =
ˆ 1

0
𝑑𝜆

⟨
Ψ0(𝜆)

⃒⃒⃒⃒
⃒𝑑𝐻̂(𝜆)

𝑑𝜆

⃒⃒⃒⃒
⃒Ψ0(𝜆)

⟩
(3.77)

=
ˆ 1

0
𝑑𝜆

⟨
Ψ0(𝜆)

⃒⃒⃒⃒
⃒
ˆ

𝑑3𝑟𝑛̂(𝑟)𝑑𝑢𝜆(𝑟)
𝑑𝜆

+ 𝑊̂

⃒⃒⃒⃒
⃒Ψ0(𝜆)

⟩
(3.78)

=
ˆ

𝑑3𝑟[𝑢𝜆=1(𝑟) − 𝑢𝜆=0(𝑟)]𝑛(𝑟) + 1
2
∑︁
𝜎,𝜎′

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′𝑤(𝑟, 𝑟′)

ˆ 1

0
𝑑𝜆

× ⟨Ψ0(𝜆)| Ψ̂†(𝑟𝜎)Ψ̂†(𝑟′𝜎′)Ψ̂(𝑟′𝜎′)Ψ̂(𝑟𝜎) |Ψ0(𝜆)⟩ . (3.79)

Using the anticommutation relations of the fermionic field operators (1.82), we
have that

Ψ̂†(𝑟𝜎)Ψ̂†(𝑟′𝜎′)Ψ̂(𝑟′𝜎′)Ψ̂(𝑟𝜎) (3.80)

= Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎)Ψ̂†(𝑟′𝜎′)Ψ̂(𝑟′𝜎′) − 𝛿(3)(𝑟 − 𝑟′)𝛿𝜎𝜎′Ψ̂†(𝑟𝜎)Ψ̂(𝑟𝜎), (3.81)

so
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𝐸0 − 𝐸KS 0 =
ˆ

𝑑3𝑟[𝑢𝜆=1(𝑟) − 𝑢𝜆=0(𝑟)]𝑛(𝑟) + 1
2

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′𝑤(𝑟, 𝑟′)

ˆ 1

0
𝑑𝜆

× ⟨Ψ0(𝜆)| 𝑛̂(𝑟)𝑛̂(𝑟′) − 𝛿(3)(𝑟 − 𝑟′)𝑛̂(𝑟) |Ψ0(𝜆)⟩ . (3.82)

The second term of this equation defines the exchange-correlation energy func-
tional, which can be expressed using the density-density response function of the inter-
acting system (ENGEL; DREIZLER, 2011):

𝐸xc[𝑛] = 1
2

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′𝑤(𝑟, 𝑟′)

ˆ 1

0
𝑑𝜆
[︁
𝑖ℏ𝜒𝜆(𝑟0, 𝑟′0) − 𝑛̂(𝑟)𝛿(3)(𝑟 − 𝑟′)

]︁
. (3.83)

Response functions are a major concept inside DFT, but it’s details will be left
for reference, (ENGEL; DREIZLER, 2011). Conceptually, what must be known is that
the response function used above is a time-ordered response function at the limit 𝑡 → 0.
A time-ordered response function uses the Heisenberg form of the density function to
construct a description of how an observable responds over time to the perturbation
generator of such causality.

Equation (3.83) represents the adiabatic connection formula for 𝐸xc[𝑛], but as
previously discussed, it does not serve as a tool for practical calculations, but rather as a
concept to sustain our understanding of the exchange-correlation energy functional.

3.5.2 The Approximated Functionals

Far from being useless, the adiabatic connection format (3.83) has a major applica-
tion that can be seen in the homogeneous electron gas (HEG). The HEG is a well-known
interacting system in which the electron density is contained in the response function 𝜒𝜆.
This hypothetical system can be defined as an infinite set of interacting electrons that
do not experience a spatially varying external potential, such as a smooth positive back-
ground charge density, 𝑛+, instead of a discrete set of atomic nuclei. This positive charge
is necessary to cancel the divergence in the energy density of an infinite set of negative
charges due to long-range Coulomb interactions.

This concept implies that the exchange-correlation energy density 𝜖HEG
xc = 𝐸HEG

xc 𝑛0

of the system becomes a simple function of the ground state electron density 𝑛0, which is
now spatially constant. The translational and rotational symmetries of the HEG simplify
the response function and the electron-electron interactions to depend only on the distance
between the particles, |𝑟 − 𝑟′|. The adiabatic connection then becomes:
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𝜖HEG
xc (𝑛0) = 1

2

ˆ
𝑑3𝑟

ˆ
𝑑3𝑟′𝑤(𝑟 − 𝑟′)

ˆ 1

0
𝑑𝜆
[︁
𝑖ℏ𝜒𝜆(𝑟 − 𝑟′, 0; 𝑛0) − 𝑛0𝛿

(3)(𝑟 − 𝑟′)
]︁

. (3.84)

The Fourier transformation (2.9), very present in solid-state physics, simplify the
system to:

𝜖HEG
xc (𝑛0) = 1

2

ˆ
𝑑3𝑘

(2𝜋)3)𝑤(𝑘)
[︃
𝑖ℏ
ˆ 1

0
𝑑𝜆

ˆ
𝑑𝜔

2𝜋
𝜒𝜆(𝑘, 𝜔; 𝑛0 − 𝑛0)

]︃
. (3.85)

where the Fourier version of the electron-electron interaction and the response-
function are:

𝑤(𝑘) =
ˆ

𝑑3𝑟𝑒−𝑖𝑘·𝑟𝑤(𝑟 − 𝑟′) (3.86)

𝜒𝜆(𝑘, 𝜔) =
ˆ

𝑑𝑡

ˆ
𝑑3𝑟𝑒𝑖𝜔𝑡𝑒−𝑖𝑘·𝑟𝜒𝜆(𝑟 − 𝑟′, 𝑡 − 𝑡′). (3.87)

Considering 𝑤(𝑘) only as a Coulomb interaction, we obtain an explicit format

𝑤(𝑘) = 4𝜋𝑒2

𝑘2 . (3.88)

In reality, the systems we want to simulate are not homogeneous, but locally this
is not a bad approximation. That is the main idea of the local density approximation
(LDA) technique, where the energy per particle 𝜖xc of a system with density 𝑛(𝑟) is
locally approximated to 𝜖HEG

xc of a homogeneous gas with 𝑛0 = 𝑛(𝑟). The LDA exchange-
correlation functional is defined as

𝐸LDA
xc [𝑛] =

ˆ
𝑑3𝑟𝑛(𝑟)𝜖HEG

xc (𝑛0 = 𝑛(𝑟)), (3.89)

and the local spin-density approximation (LSDA) variant is

𝐸LSDA
xc [𝑛 ↑, 𝑛 ↓] =

ˆ
𝑑3𝑟𝑛(𝑟)𝜖HEG

xc (𝑛 ↑, 𝑛 ↓). (3.90)

The LDA and LSDA functionals are universal first-principles functionals of 𝑛, since
they do not require any free parameters. Despite being easily used in the DFT formalism,
the short-range approximation leaves room for further improvements of the functional.

The predominant idea of an improvement to local approximations is represented in
generalized gradient approximations (GGA) (BECKE, 1988). Still based on the LDA and



106 Chapter 3. DFT

LSDA, the GGA approach considers not only the local density, but also the local density
gradient, gathering information about the change in the local density. The general format
of such approximations is as follows:

𝐸GGA
xc [𝑛 ↑, 𝑛 ↓] =

ˆ
𝑑3𝑟𝑓(𝑛 ↑, 𝑛 ↓, ∇𝑛 ↑, ∇𝑛 ↓). (3.91)

In this study, we focus our discussion on the Perdew-Burke-Ernzerhof (PBE)
(PERDEW; BURKE; ERNZERHOF, 1996) variant of the GGA format, which was devel-
oped within a decade of research from the first attempt of a GGA potential; a long path
we shall not see entirely. We begin our discussion from the correlation energy potential in
the form (PERDEW; BURKE; WANG, 1996a):

𝐸GGA
c [𝑛↑, 𝑛↓] =

ˆ
𝑑3𝑟 𝑛

[︁
𝜖HEG

c (𝑟S, 𝜁) + 𝐺(𝑟S, 𝜁, 𝑡)
]︁

, (3.92)

where 𝐺 is the gradient contribution, 𝑟S is the local Seitz radius, defined as the
average distance between electrons around 𝑟, 4𝜋𝑟3

S
3 = 1

𝑛
= 3𝜋2

𝑘F
; 𝜁 = (𝑛↑−𝑛↓)

𝑛
is the rel-

ative spin polarization; 𝑡 = |∇𝑛|
2𝜑(𝜁)𝑘𝑠𝑛

is a dimensionless density gradient, where 𝜑(𝜁) =
[(𝜁+1)2/3+(𝜁−1)2/3]

2 is a spin-scaling factor and 𝑘𝑠 =
√︁

4𝑘F𝑒
𝜋𝑎0

is the Thomas-Fermi screening
wave number. 𝑎0 = ℏ2

𝑚𝑒
and 𝑘F is the radius of the Fermi surface of free electrons, this

spherical surface is the Fermi level 𝜖F of noninteracting electrons in a constant potential.

The gradient contribution must be constructed under three conditions:

1. The slowly varying density limit (𝑡 → 0) causes the gradient term to approach
the second-order contribution (WANG; PERDEW, 1991), 𝐺 → ( 𝑒2

𝑎0
)𝛽𝜑3𝑡2. Here,

𝛽 ≈ 0.066725.

2. The rapidly varying density limit 𝑡 → ∞ gives 𝐺 → −𝜖𝐻𝐸𝐺
c , which is equivalent to

the absence of correlation effects.

3. In a path uniformly scaling the density to its high limit, the correlation energy
must scale to a constant. To achieve this, 𝐺 must cancel the logarithmic singularity
of 𝜖HEG

c (LEVY, 1989) in the limit: 𝜖HEG
c (𝑟S, 𝜁) → ( 𝑒2

𝑎0
)𝜑3

[︁
𝛾𝑙𝑛

(︁
𝑟S
𝑎0

)︁
− 𝜔

]︁
, where 𝛾

and 𝜔 are weak functions of 𝜁 which shall be considered in their 𝜁 = 0 values,
𝛾 = 1−𝑙𝑛(2)

𝜋2 ≈ 0.031091 and 𝜔 ≈ 0.046644. The form we must construct to respect
the high-density scaling condition must scale to 𝐺 → 𝑒2

𝑎0
𝛾𝜑3𝑙𝑛(𝑡2).

All the above conditions are satisfied with the ansatz:(PERDEW; BURKE; ERNZ-
ERHOF, 1996)
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𝐺 = 𝑒2𝛾𝜑3

𝑎0
𝑙𝑛

[︃
1 + 𝛽

𝛾
𝑡2
(︃

1 + 𝐴𝑡2

1 + 𝐴𝑡2 + 𝐴2𝑡4

)︃]︃
, (3.93)

with

𝐴 = 𝛽

𝛾

(︃
𝑒𝑥𝑝

{︃
−𝜖HEG

c 𝑎0

𝛾𝜑3𝑒2

}︃
− 1

)︃−1

. (3.94)

Equation (3.93) shows a gradient contribution that scales from the lower limit
𝑡 → 0 as a second-order expansion to the higher limit 𝑡 → ∞ as the necessary cancellation
of 𝜖HEG

c , thus satisfying the first two conditions. The third condition is too satisfied, as
scaling to the high-density limit leads to

𝐸GGA-PBE
c → 𝑒2

𝑎0

ˆ
𝑑3𝑟𝑛𝛾𝜑3𝑙𝑛

⎛⎜⎝1 + 1
𝜒𝑠2

𝜑2 +
(︁

𝜒𝑠2

𝜑2

)︁2

⎞⎟⎠ , (3.95)

where 𝑠 = |∇𝑛|
2𝑛𝑘F

, 𝜒 = 𝛽𝑐2

𝛾
𝑒

−𝜔
𝛾 ≈ 0.72161, and 𝑐 =

(︁
3𝜋2

16

)︁ 1
3 ≈ 1.2277.

Four new conditions are imposed into the exchange energy:

1. Under uniform density scaling, the 𝐸x must scale alike. Thus, with 𝜁 → 0, we must
obtain

𝐸GGA-PBE
x =

ˆ
𝑑3𝑛𝜖HEG

𝑥 (𝑛)𝐹x(𝑠), (3.96)

where 𝜖HEG
𝑥 = −2𝑒2𝑘F

4𝜋
, so the uniform gas limit is recovered when 𝐹x(0) = 1.

2. For small density variations around the uniform density, we must recover the LSDA
linear response, which in this situation is a good approximation to the exact exchange-
correlation energy, while the gradient expansion is not. For that, as 𝑠 → 0

𝐹x(𝑠) → 1 + 𝜇𝑠2, (3.97)

where 𝜇 = 𝛽𝜋2

3 ≈ 0.21951.

3. The exact exchange energy follows the spin-scaling form

𝐸x[𝑛 ↑, 𝑛 ↓] = 𝐸x[2𝑛 ↑] + 𝐸x[2𝑛 ↓]
2 . (3.98)

4. The Lieb-Oxford bound

𝐸x[𝑛 ↑, 𝑛 ↓] ≥ 𝐸xc[𝑛 ↑, 𝑛 ↓] ≥ −1.679𝑒2
ˆ

𝑑3𝑟𝑛
4
3 (3.99)

must be satisfied, which requires 𝐹x(𝑠) ≤ 1.804.



108 Chapter 3. DFT

To satisfy the second and fourth requirements, we use the format

𝐹x(𝑠) = 1 + 𝜅 − 𝜅(︁
1 + 𝜇𝑠2

𝜅

)︁ , (3.100)

with 𝜅 = 0.804.

Considering all the above, the final form of the GGA-PBE energy functional is
given by 𝐸GGA-PBE

xc = 𝐸GGA-PBE
c + 𝐸GGA-PBE

x , which is conveniently written as

𝐸GGA-PBE
xc =

ˆ
𝑑3𝑛𝜖HEG

𝑥 (𝑛)𝐹xc(𝑟S, 𝜁, 𝑠), (3.101)

where the enhancement factor (BHATTACHARJEE; KOSHI; LEE, 2024),

𝐹xc(𝑟S, 𝜁, 𝑠) = 𝐹x(𝑠) + 𝜖HEG
c (𝑟S, 𝜁)

𝜖x(𝑛) 𝐹c(𝑟S, 𝜁, 𝑡), (3.102)

is defined to consider the nonlocality of GGA in local exchange while still preserv-
ing the correct features of the LSDA. (PERDEW; BURKE; ERNZERHOF, 1996)

The GGA-PBE is one of the best and most well-known potentials to this day,
but, at some additional computational cost, there are some not purely DFT exchange-
correlation energy functionals that give better results for some physical properties, as the
electronic structure. This new type of functional is called the hybrid exchange-correlation
energy functional, which combines DFT functionals and non-DFT elements such as the
exact Hartree-Fock (HF) exchange energy (HARTREE, 1928; Fock, 1930).

A very popular hybrid functional that has been giving excellent results for the en-
ergy gap of insulators and semi-conductors is the Heyd-Scuseria-Ernzerhof 2003 (HEYD;
SCUSERIA; ERNZERHOF, 2003) (HSE03), which was in 2006 corrected by the own au-
thors into the HSE06 version. The HSE03 and HSE06 functionals are based on a screened
Coulomb operator for the HF exchange interaction, and combine it to the GGA-PBE
exchange-correlation energy functional.
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3.6 Of Two-Dimensional Materials
“Upward, not Northward” —represents the confusion between a circle and a sphere,

creatures of different dimensions, as discussed in the romance by Edwin A. Abbott, "Flat-
land". Reducing the dimensions of physical systems is not only a simplification, but brings
with it its own features. Other than being highly transparent, mechanically strong and
flexible, two-dimensional (2D) materials also benefit from confining electrons in the lower
dimension, reducing the electronic screening and scattering effects; leading to enhanced
or even unique electronic properties.

This lower dimension revolution began with the discovery of graphene (NOVOSELOV
et al., 2004; NOVOSELOV et al., 2005; NOVOSELOV et al., 2007), which was only the
beginning, rapidly followed by the family of transition metal dichalcogenides (TMDs),
widening the range of possible monolayers (CHHOWALLA et al., 2013a; GANATRA;
ZHANG, 2014). It became clear that more atomic combinations were possible to be con-
structed as 2D crystalline systems, and now, the scientific community has opened its eyes
to a whole new class of 2D materials: Transition metal carbides, nitrides, and carboni-
trides (MXenes) (ANASORI; LUKATSKAYA; GOGOTSI, 2017; PERSSON; ROSEN,
2019); where most of the conceivable monolayers have not yet been synthesized, leaving
a wide range of physical properties unexplored.

In this study, we focus on the most recent families, TMDs and MXenes. The atten-
tion given to each of these is related to their position in the present time. MXenes are yet
considered a newborn class of materials, which incites us to explore unsynthesized struc-
tures. For that, we focus on the important properties for synthesis, such as the stability
and characterization of the materials, without sacrificing important electronic properties
such as the band structure, excitonic properties, and the effective mass of the charge car-
rier states. TMDs are not that new anymore, so we leave the stability calculations out of
consideration and use an already synthesized material, MoS2 (MAK et al., 2010), to head
towards further development of computational methods to calculate advanced electronic
properties such as exciton states, valleytronics, and topological quantities.

3.7 Of Transition Metal Dichalcogenides
The crystal structure of 2D TMDs is of a quasi-2D type, where a few atomic lay-

ers of specific geometry are combined. We can classify them according to the symmetries
associated with layer sequencing and the coordination geometry of the transition metal.
The main polymorphs representing TMD crystals are: 1T, 2H, and 3R. The numbers 1, 2,
and 3 indicate the number of layers in the unit cell, while the letters indicate the crystal
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system: T → tetragonal, H → hexagonal, R → rhombohedral. While the 1T form exhibits
metallic behavior associated with octahedral coordination between the transition metal
and its chalcogen ligands, the 2H and 3R forms behave as semiconductors due to trigonal
prismatic coordination (CHHOWALLA et al., 2013b).

In the case of monolayer TMDs, only two forms are present: 2H, with trigonal
prismatic coordination and semiconducting behavior; and 1T, with octahedral coordina-
tion and metallic behavior. The crystal structure of 2H-MX2 (semiconductor) consists of
a plane of transition metals sandwiched between two planes of chalcogens. Each M atom
is coordinated in a trigonal prismatic geometry with six X atoms, while each X atom
is bonded to three M atoms. This characterizes a structure with inversion asymmetry,
as there is no inversion center in trigonal prisms. Figure 20 illustrates this configuration
applied to MoS2.

Figure 20 – a) Crystal structure of 2H-MoS2 viewed along the x-axis. b) Crystal structure
of 2H-MoS2 viewed along the z-axis.

A semiconductor is defined by an energy gap between the highest occupied state
and the lowest unoccupied state, with that energy gap being large enough to deny the
usual conductor behavior, but insufficient for the material to be considered as an insu-
lator. This, and more sophisticated properties of materials can be studied from its band
structure, which is the core of our discussion in MoS2.

The band structure of MoS2 is described (MATTHEISS, 1973) as containing par-
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tially filled 𝑑 bands from Mo energetically between Mo-S 𝑠 − 𝑝 bonding and antibonding
bands. The 𝑠 contribution to the states near Fermi level is rather negligible (RIDOLFI;
LEWENKOPF; PEREIRA, 2018), where the Mo 𝑑 orbitals are prominent. The trigo-
nal prismatic symmetry splits these 𝑑 bands into three groups (XIAO et al., 2012a): 𝐴1

symmetry → lobes along 𝑧, [𝑑𝑧2 ]; 𝐸 symmetry → in-plane orbitals [𝑑𝑥𝑧, 𝑑𝑥2−𝑦2 ]; and 𝐸 ′

symmetry → out-of-plane orbitals [𝑑𝑥𝑧, 𝑑𝑦𝑧]. There is also a mirror symmetry in the 𝑧

plane to be considered, which denies hybridization of the out-of-plane orbitals. The hy-
bridization between 𝐴1 and 𝐸 orbitals is responsible for opening a direct band gap located
at the K and K′ points of the first Brillouin zone (BZ) (MATTHEISS, 1973), meaning the
valence band maximum aligns with the conduction band minimum. In both valleys where
the direct gap occurs, the band energies are identical (degenerate) but from non-equivalent
states. The non-equivalence arises from the absence of inversion symmetry (2.63).

Preservation of time-reversal symmetry (2.70) implies Θ̂𝐽Θ̂−1 = −𝐽 . Graphene
satisfies this symmetry without breaking inversion symmetry by having 𝐿z(K) = 0, but
MoS2 does not. The orbital angular momentum quantum number of the valence energy
state at K valley is +2 and for the valence state at K′ valley is -2. The spin separation
of bands must also be opposite in each valley. In the next chapter, we discuss that the
valence energy band that peaks at K is not the same band that peaks at K′, but its spin
counterpart. These different valley configurations are responsible for decoupled optical
transitions at K and K′, where circular polarization to the right selectively excites elec-
trons at K′ valence states, while left polarization excites electrons at K valence states.
These optical selection rules are a result of angular momentum conservation in the tran-
sition from ±2 angular momentum states into the 0 angular momentum conduction band.

The spin-orbit interaction is a relativistic effect that considers the coupling be-
tween the electron’s spin and the magnetic field generated by the orbital motion of the
nucleus from the electron’s perspective. Strong spin-orbit coupling splits both valence and
conduction bands into two non-degenerate subbands with opposite spin polarizations and
energy differences of 0.45 eV in the valence bands and 0.15 eV in the conduction bands
for MoX2 materials, while only a few meV for WX2 materials. Moreover, time-reversal
symmetry in TMDs requires that spin splitting in different valleys must be opposite,
maintaining energy degeneracy between valleys despite their opposite momentum num-
bers. As a result, spin-up orbitals in the K valley’s valence band have higher energy than
spin-down orbitals, while the relationship is inverted in the K′ valley.

These unique features of 2H-type monolayer TMD band structures lead to spin-
valley coupling, where the total angular momentum emerges from individual momenta.
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This structure also enables valley-selective optical transitions: left-circularly polarized
light can only excite the K valley, while right-circularly polarized light excites only the K′

valley. Furthermore, when electrons recombine with holes in the K and K′ valleys, they
emit light with polarization matching their absorption. An electron in a valley can be
excited from the valence to the conduction band by absorbing a photon with energy equal
to the gap. In this process, the excited electron leaves behind a hole in the valence band -
a quasiparticle with opposite charge that is also a fermion. The electron and hole can then
form a Coulomb-bound pair called an exciton, which is a composite boson (JOE, 2021).
This valley-selective excitation underpins valleytronics, where information is encoded in
valley polarization rather than charge or spin. These excitons inherit the valley degree of
freedom (valley excitons), and their high binding energies (up to hundreds of meV) make
them remarkably stable even at room temperature (XIAO et al., 2012b).

Figure 21 – First Brillouin zone of MoS2 and its distinct K and K′ valleys, where bright
exciton states are formed with opposite spins, induced by different light po-
larization.

Due to spin-valley coupling, intervalley scattering only occurs when the spins in
each valley are simultaneously flipped, thereby transferring a momentum equivalent to the
difference between the K and K′ point momenta. The difficulty of this scattering process
results in long valley polarization times, enabling exciton valley qubits in TMDs to oper-
ate without polarization flipping. Valley coherence has been experimentally demonstrated
(JONES et al., 2013), showing these qubits won’t be limited by decoherence. Finally, spin-
valley qubit control has been theoretically proposed (BROOKS; BURKARD, 2019). Thus,
valley excitons in TMD monolayers have tremendous potential as quantum information
carriers (BORGES et al., 2023).
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3.8 Of MXenes

A general MXene is described by the formula Mn+1XnTx , where 𝑛 ranges from 1
to 3, M is a transition metal, X is carbon, nitrogen, or carbonitride, and Tx represents 𝑥

termination groups. The exact composition of these terminations is not fully standardized
and depends on the synthesis method (ANASORI; LUKATSKAYA; GOGOTSI, 2017).

Conductive MXenes have found applications in technologies such as photovoltaic
cells (SAEED et al., 2022), energy storage (AMPONG et al., 2023), electromagnetic
interference shielding (LIU; XIAO; III, 2016; HUANG et al., 2025), water purification
(ALHADITHY et al., 2024), and gas sensors (ZHANG CHENGCHENG TAO, 2025).
However, the semiconductor section of MXenes remains less explored, leaving many phys-
ical properties to be discovered. Nevertheless, previous studies have shown that Y2CF2

is a stable semiconductor that could be synthesized from yttrium-carbon-based MAX
phases (HONG; KLIE; ÖĞÜT, 2016; ALIAKBARI; AMIRI; DEZFULI, 2023), and also
its three-dimensional stacking has already been achieved (DRUFFEL et al., 2019). In
this work, we theoretically investigate the effect of changing carbon for nitrogen in this
structure, and also, mainly, we investigate the effects of different terminations (T = F,
Cl, Br) on Y2CT2 MXenes.

MXenes are synthesized by selectively etching atomic layers from their parent
MAX phases, which consist of alternating layers of transition metal carbides or nitrides
and A-element layers, having the formula Mn+1AXn, where A typically belongs to groups
13 or 14 of the periodic table. The etching process involves wet-chemical exfoliation, where
A atoms are removed and some atoms from the etching solution become termination
groups on the resulting MXene (PERSSON; ROSEN, 2019). The chemical bond between
transition metals M and A atoms in MAX phases is primarily metallic, making it unfea-
sible to separate these layers through simple mechanical shearing due to their mechanical
strength, while in contrast, the M–X bonds exhibit a more mixed covalent/ionic charac-
ter (BARSOUM, 2000). This difference in bonding nature enables the selective etching
of A-layers through chemical reactions that target the weaker M–A metallic bonds while
preserving the stronger M–X network. The resulting Mn+1Xn layers then form MXenes
with surface terminations.

The first and still most common synthesis method uses aqueous fluoride-containing
solutions like hydrofluoric acid (HF) at 55∘C (NAGUIB et al., 2014). The specific condi-
tions vary for different materials, but in general, MXenes with heavier transition metals
M or higher 𝑛 values in Mn+1XnTx require higher concentrations in etching solutions and
longer reaction times. After etching, the exposed transition metal surfaces react with the
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solution to form a mixture of –O, –OH, and –F terminations. While still an emerging
field, post-synthesis processes can now produce MXenes with controlled terminations (LAI
et al., 2015). As an example, the chemical reactions to obtain the material present in this
study, Y2CF2, from a MAX phase precursor Y2AC, are:

𝑌2𝐴𝐶 + 3𝐻𝐹 → 𝑌2𝐶 + 𝐴𝐹3 + 3
2𝐻2 (3.103)

𝑌2𝐶 + 2𝐻2𝑂 → 𝑌2𝐶(𝑂𝐻)2 + 𝐻2 (3.104)

𝑌2𝐶 + 2𝐻𝐹 → 𝑌2𝐶𝐹2 + 𝐻2 (3.105)

The general picture is given in Figure 22:

Figure 22 – General chemical exfoliation for the synthesis process of an M2XT2 MXene
derived from its precursor MAX phase.

Regardless of the termination group, the crystal structure of an MXene inherits its
hexagonal symmetry directly from the parent MAX phase. Most MAX phases crystallize
in the P63/mmc space group, resulting in MXenes where M atoms adopt a hexagonal
close-packed arrangement with X atoms occupying octahedral interstitial sites. For Y2CT2

(illustrated in Figure 23) and other M2XT2 MXenes, this leads to a TMXMT-TMXMT
stacking sequence where termination groups (T) bridge the interlayer gaps. The monolayer
symmetry consequently reduces to the trigonal P3m1 space group.

The 2D hexagonal unit cell in real space transforms into a rotated (𝜋/4) hexagonal
cell in reciprocal space. The high symmetry points of interest in this configuration are
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the Γ, M, and K points, as illustrated in Figure 23 b), along with the unit cells in both
spaces.

Figure 23 – a) Real space unit cell for Y2C1T2 MXenes in the trigonal p-3m1 space-
group. b) First Brillouin zone representation, showing Γ, M and K points of
high symmetry (the top view of the real lattice in the center is not in true
proportion in relation to the reciprocal lattice). c) Side view of the Y2CT2
monolayer. d) Top view of the Y2CT2 monolayer.

This study dedicates to push further the limits of our current knowledge over
this futuristic class of 2D materials. Not neglecting the basic, but essential, stability
and electronic properties, we head towards a more in depth exploration of the electronic
structure. This exploratory posture was reinforced during the study, after realizing we
were gifted with exotic results for Y2CCl2, which is discussed in the next section.
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4 Novel MXenes Predictions

4.1 DFT with CASTEP
The simulations of materials from the MXene family will be the first here pre-

sented. For such materials, which have not yet been synthesized, we focus on the stability,
characterization, and basic electronic properties, such as the band structure and the effec-
tive mass of the band states. Conduced by these properties, we choose to work with the
CASTEP (Cambridge Sequential Total Energy Package) (SEGALL et al., 2002a; CLARK
et al., 2005), which uses the DFT formalism (3) to calculate physical properties of mate-
rials.

DFT is a method for calculating the electron density that minimizes the total en-
ergy of a many-body system, relying solely on the fundamental laws of quantum mechan-
ics, thus being called an ab initio method. For such minimization, an exchange-correlation
functional is necessary to perform the calculations. The Generalized Gradient Approxi-
mation (GGA), proposed by Perdew, Burke, and Ernzerhof (PBE) (CORSO et al., 1996;
PERDEW; BURKE; WANG, 1996b), was used for the geometry optimization of the crys-
tal, within a norm-conserved pseudopotential to replace the core electrons in each atomic
species (LIN et al., 1993). The electronic configuration explicitly considered in calculations
for each atom is shown in Table 1.

Atom Configuration
Y 4d1 5s2

C 2s2 2p2

F 2s2 2p5

Br 4s2 4p5

Cl 3s2 3p5

Table 1 – Pseudo atoms configurations used for geometry optimization.

The first Brillouin zone (BZ) is the unit cell in reciprocal space; thus, integration
over the BZ is necessary for calculations. This integration was performed as a sum over a
9x9x1 k-point Monkhorst-Pack grid (MONKHORST; PACK, 1976), which was found to
be sufficient for electron density convergence.

DFT calculations are a self-consistent methodology. The parameters used for the
convergence of both monolayers were: Total energy change less than 1×10−5 eV/atom,
maximum force on each atom below 0.03 eV/Å, pressure less than 0.05 GPa, and maximum
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atomic displacement not greater than 1×10−3 Å, using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (PFROMMER et al., 1997) for the minimization. The cut-off energy
for the plane-wave basis, necessary for representing the Kohn-Sham orbitals, was set as
680 eV for Y2CBr2 and 750 eV for Y2CCl2.

All materials studied here belong to the same hexagonal structure, represented in
Figure 23. However, geometry optimization revealed distinct lattice parameters for each
system. Consequently, the reciprocal lattice and thus the BZ will have different sizes for
each material. The resulting lattice parameters, obtained by minimizing the system energy
using the GGA-PBE approach, are presented in Table 2.

System Lattice Parameters (Å)

Y2CF2

a = 3.479
b = 3.479
c = 20.422

Y2CCl2
a = 3.620
b = 3.620
c = 19.270

Y2CBr2

a = 3.669
b = 3.669
c = 18.965

Table 2 – Lattice parameters for the studied systems, according to the DFT GGA-PBE
geometry optimization.

The GGA-PBE approach is known to underestimate the energy gap of semiconduc-
tors, which invites us to perform a second calculation using a hybrid functional. Based on
the geometry optimization already calculated, we conducted an additional single point cal-
culation using the HSE06 hybrid functional (HEYD; SCUSERIA; ERNZERHOF, 2003).
This step aims to achieve a more experimentally precise prediction of the energy gap
contained in the band structure of the materials.

4.2 Lattice Stability and Characterization

4.2.1 Cohesive Energy

Cohesive energy is a measure that indicates the strength with which atoms are
bonded within a crystal structure. Verifying the effect of terminations on cohesive energy
means observing how the termination groups affect one of the main stability indicators.
The formal definition of cohesive energy, 𝐸coh, is the difference between the energy sum-
mation of the pseudo atoms and the total energy of the system, divided by the number
of atoms in the system. For Y2CT2 MXenes we have:
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𝐸coh =
2𝐸pseudo

Y + 𝐸pseudo
C + 2𝐸pseudo

T − 𝐸tot
Y2CT2

5 . (4.1)

Applying the values obtained after geometry optimization of the primitive cells,
we found the resulting cohesive energies:

System Ecoh(eV)
Y2CF2 7.462
Y2CCl2 6.513
Y2CBr2 6.249

Table 3 – Cohesive energy(Ecoh) for the studied systems, according to the DFT GGA-
PBE geometry optimization.

Higher cohesive energy was obtained for termination groups with greater elec-
tronegativity. These large cohesive energies, overall, are good indicators of stability for
the proposed systems, closely resembling the results found for graphene (SHIN et al.,
2013) and other MXenes (ZHANG et al., 2018).

4.2.2 Phonon Energy States

The Born-Oppenheimer energy surface is defined as the ground state energy of an
electronic system in a field of fixed nuclei. We can obtain these energy states from the
Schrödinger equation:

𝐻BO({𝑅}, {𝑟})Φ({𝑅}, {𝑟}) = 𝐸({𝑅}, {𝑟})Φ({𝑅}, {𝑟}), (4.2)

where the Born-Oppenheimer Hamiltonian is (BARONI et al., 2001)

𝐻BO({𝑅}, {𝑟}) = −1
2

𝑛∑︁
𝑖

∇2
𝑖 +

𝑚∑︁
𝐴>𝐵

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

−
𝑚∑︁

𝐴=1

𝑛∑︁
𝑖=1

𝑍𝐴

𝑅𝐴𝑖

+
𝑛∑︁

𝑖>𝑗

1
𝑟𝑖𝑗

. (4.3)

The system’s geometry equilibrium is reached when the force acting on each nu-
cleus is zero, i.e.

𝐹𝐴 ≡ −𝜕𝐸({𝑅}, {𝑟})
𝜕𝑅𝐴

= 0. (4.4)

For understanding the vibrations of the lattice we might think of the Hamiltonian
response to small lattice displacements 𝑢𝑛

𝜈 = 𝜒𝑛
𝜈 − 𝑅𝑛

𝜈 , where 𝜒𝑛
𝜈 is the position of the 𝑛th
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atom in the 𝜈 axis, and 𝑅𝑛
𝜈 is its equilibrium position. Despite similarities, this notation is

not representing covariance nor contravariance, as the number of atoms is not a quantity
related to any metric. The expanded potential is thus

𝑉 = 𝑉0 +
∑︁
𝑛,𝜈

𝑢𝑛
𝜈

𝜕𝑉

𝜕𝑢𝑛
𝜈

+
∑︁

𝑛,𝑚,𝜈,𝜇

𝑢𝑛
𝜈 𝑢𝑚

𝜇

𝜕2𝑉

𝜕𝑢𝑛
𝜈 𝜕𝑢𝑚

𝜇

+ ... (4.5)

In the harmonic approximation we might neglect all terms beyond the third, and
the second is also zero as we are concerned with oscillations near equilibrium. The matrix
of force constants is defined from the third term as

Φ𝑛,𝑚
𝜈,𝜇 ≡ 𝜕2𝑉

𝜕𝑢𝑛
𝜈 𝜕𝑢𝑚

𝜇

. (4.6)

From Hamilton equation 𝑝̇𝑛
𝜈 = − 𝜕𝐻

𝜕𝑢𝑛
𝜈

we obtain 3𝑁 equations of motion,

𝑀𝑛𝑢̈𝑛
𝜈 = −

∑︁
𝑚,𝜇

𝑢𝑚
𝜇 Φ𝑛,𝑚

𝜈,𝜇 , (4.7)

which can be understood as each term on the sum being the force acting on the
𝜈th axis of the 𝑛th atom due to a displacement 𝑢𝑚

𝜇 of the 𝑚th atom in the 𝜇th axis.

From translational symmetry, we might write a guess solution for the small dis-
placement as a function of time as

𝑢𝑛
𝜈 = 𝑈𝑛

𝜈 𝑒𝑖(𝑞𝜈𝑅𝑛
𝜈 −𝜔𝑡) (4.8)

where 𝑞𝜈 is the 𝜈th component of the phonon wave vector 𝑞, 𝑈𝑛
𝜈 is the amplitude

of the vibration, and 𝜔 is the respective angular frequency. Using this solution in equation
4.7,

𝑀𝑛𝜔2𝑈𝑛
𝜈 𝑒𝑖(𝑞𝜈𝑅𝑛

𝜈 −𝜔𝑡) =
∑︁
𝑚,𝜇

𝑈𝑚
𝜇 𝑒𝑖(𝑞𝜇𝑅𝑚

𝜇 −𝜔𝑡)Φ𝑛,𝑚
𝜈,𝜇 . (4.9)

Only the relative position 𝑅𝑚 − 𝑅𝑛 is relevant, so we might take 𝑅𝑚 as the origin
without loss of generality, to obtain:

𝑀𝑛𝜔2𝑈𝑛
𝜈 =

∑︁
𝑚,𝜇

𝑈𝑚
𝜇 𝑒−𝑖(𝑞𝜇𝑅𝑛

𝜇)Φ𝑛,𝑚
𝜈,𝜇

𝜔2𝑈𝑛
𝜈 =

∑︁
𝑚,𝜇

𝑈𝑚
𝜇 𝐷𝑛,𝑚

𝜈,𝜇 (𝑞), (4.10)



4.2. Lattice Stability and Characterization 125

where 𝐷𝑛,𝑚
𝜈,𝜇 (𝑞) ≡ 1

𝑀𝑛
Φ𝑛,𝑚

𝜈,𝜇 𝑒−𝑖(𝑞𝜇𝑅𝑛
𝜇) is the dynamical matrix, which contains all the

information about the lattice vibrations. The dynamical matrix can be seen as the mass-
reduced Fourier transform of the force constants matrix, and is hermitian by construction,
giving real eigenvalues. Non-trivial solutions are obtained from

|𝐷𝑛,𝑚
𝜈,𝜇 (𝑞) − 𝜔2𝛿𝜈𝜇𝛿𝑛𝑚| = 0. (4.11)

The lattice vibration frequencies are obtained as the square roots of the eigen-
values, and the eigenvectors give the pattern of atomic displacements belonging to each
mode (SEGALL et al., 2002b). It is important to notice that negative eigenvalues will give
imaginary frequencies, which is more than nonsense; when these imaginary frequencies are
used in the displacement function (4.8) they result in a real component of the exponen-
tial term, i.e., indicates instability of the system due to increasing displacement with time.

For computing the matrix of force constants, we obtain the potential term as the
ground state expectation value of the potential operator, 𝑉 = ⟨Φ({𝑅}, {𝑟})| 𝑉 |Φ({𝑅}, {𝑟})⟩,
so we can write

𝜕2𝑉

𝜕𝑢𝑛
𝜈 𝜕𝑢𝑚

𝜇

= 𝜕
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𝜈
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⃒Φ
⟩
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⟨

Φ
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⃒ 𝜕Φ
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⟩
+
⟨

Φ
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𝜈
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⃒Φ
⟩)︃

= 𝜕
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𝜇
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𝜖
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𝜕𝑢𝑛
𝜈

⃒⃒⃒⃒
⃒Φ
⟩

=
⟨

𝜕Φ
𝜕𝑢𝑚

𝜇

⃒⃒⃒⃒
⃒ 𝜕𝑉

𝜕𝑢𝑛
𝜈

⃒⃒⃒⃒
⃒Φ
⟩

+
⟨

Φ
⃒⃒⃒⃒
⃒ 𝜕𝑉

𝜕𝑢𝑛
𝜈

⃒⃒⃒⃒
⃒ 𝜕Φ
𝜕𝑢𝑚

𝜇

⟩
+
⟨

Φ
⃒⃒⃒⃒
⃒ 𝜕2𝑉

𝜕𝑢𝑚
𝜇 𝑢𝑛

𝜈

⃒⃒⃒⃒
⃒Φ
⟩

. (4.12)

ab initio methods for solving this equation may vary. Our solution comes from
linear response, or, density functional perturbation theory (DFPT); an analytical way of
computing the second derivative of the total energy with respect to a given perturbation.
The nature of the perturbation can vary when obtaining different properties, but for the
dynamical matrix we only need a perturbation in the atomic positions, giving the linear
response of the wave function 𝜕Φ

𝜕𝜆
due to a displacement 𝜆.

Phonon dispersion is the relation between the squared vibrational frequency and
the phonon wave vector, which can be mapped inside the first BZ. Figure 24 shows
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phonon dispersion curves for Y2CF2,Y2CCl2 and Y2CBr2 along the Γ-K-M-Γ symmetry
path in BZ.

Figure 24 – Phonon dispersion curves of Y2CF2 (red), Y2CCl2 (blue) and Y2CBr2 (green)
in the frequency range from 0 to 600 cm−1, calculated with the GGA-PBE
exchange-correlation functional.

According to the phonon dispersion curves shown in Figure 24, all materials ex-
amined here presented positive squared frequencies throughout the entire path, meaning
absence of imaginary frequencies, hence a strong indication of high dynamic stability. We
also observed that the three acoustic branches of each material are very similar to their
counterparts, though differently, the decrease in the termination group mass (Br > Cl
> F) correlated with a decrease in the energy of the optical branches. This behavior is
strongly related to the presence of the atomic mass in the dynamical tensor, where heavier
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systems produce lower vibrational energy states. We also remark that Y2CF2 presented
two small phonon band gaps (247–265 and 390–417 cm−1), Y2CCl2 presented one slightly
bigger (320–358 cm−1), and Y2CBr2 presented a more robust one (284–342 cm−1). These
phonon band gaps represent forbidden vibrational states in these structures, which impli-
cates the reduction of thermal conductivity and suppression of electron-phonon scattering
within that vibrational range, enhancing electron mobility.

For further exploration into physical properties that derive from lattice interac-
tions, we shall first grasp the concept of phonon density of states (DOS), which can be
understood as the amount of vibrational modes in each frequency range. The DOS is
calculated as

𝑁(𝜔) = 1
4𝜋3

∑︁
𝑖

ˆ
𝛿(𝜔 − 𝜔𝑖(𝑞))𝑑𝑞, (4.13)

where 𝜔𝑖(𝑞) is the 𝑖th band frequency of a phonon vector 𝑞 in reciprocal space.

4.2.3 Thermodynamics

The total vibrational energy of the lattice, as a quantum harmonic oscillator, is
expressed as

𝐸 =
∑︁

𝑞

𝐸𝑞 =
∑︁

𝑞

(︂
𝑛𝑞 + 1

2

)︂
ℏ𝜔𝑞, (4.14)

where 𝑛𝑞 is the occupation number of phonon states of momentum vector 𝑞.

The part of this energy that is independent of occupied phonon states is called
zero-point energy 𝐸zp and may be written in integral form using the DOS:

𝐸zp = 1
2

ˆ
ℏ𝜔𝑁(𝜔)𝑑𝜔. (4.15)

The obtained results for the zero-point energy of each monolayer are presented in
Table 4

System Ezp(eV)
Y2CF2 0.248
Y2CCl2 0.188
Y2CBr2 0.196

Table 4 – Zero-point energy (Ezp) for the studied systems.
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The average occupancy of phonons with wave vector 𝑞 in thermal equilibrium is
given by the Planck distribution,

⟨𝑛𝑞⟩ = 1
𝑒𝑥𝑝( ℏ𝜔𝑞

𝑘B𝑇
) − 1

, (4.16)

so the energy fraction that comes from the occupied states, Ephonon is

𝐸phonon =
∑︁

𝑞

⟨𝑛𝑞⟩ℏ𝜔𝑞; (4.17)

which can also be written in integral form:

𝐸phonons =
ˆ

ℏ𝜔

𝑒𝑥𝑝( ℏ𝜔
𝑘B𝑇

) − 1
𝑁(𝜔)𝑑𝜔. (4.18)

In thermodynamics, the heat capacity at a constant volume is defined as 𝐶V =(︁
𝑑𝑈
𝑑𝑇

)︁
𝑣
, where T is the temperature and U is the internal energy. The contribution from

the lattice to the heat capacity, i.e., the lattice heat capacity at constant volume is thus
calculated from the derivative with respect to the temperature of the lattice vibrational
energy:

𝐶V(𝑇 ) =
(︃

𝑑𝐸

𝑑𝑇

)︃
𝑣

= 𝑘𝐵

ˆ
𝑑𝜔𝑁(𝜔)

(︁
ℏ𝜔

𝑘𝐵𝑇

)︁2
𝑒𝑥𝑝

(︁
ℏ𝜔

𝑘𝐵𝑇

)︁
[︁
𝑒𝑥𝑝

(︁
ℏ𝜔

𝑘𝐵𝑇

)︁
− 1

]︁2 . (4.19)

For our system, isolated from interactions, the enthalpy becomes just the internal
energy

𝐻(𝑇 ) = 𝐸zp + 𝐸phonon, (4.20)

and the entropy may be obtained from the heat capacity at constant volume, as

𝑆(𝑇 ) =
ˆ

𝐶V

𝑇
𝑑𝑇 = 𝐸𝑝ℎ𝑜𝑛𝑜𝑛

𝑇
− 𝑘𝐵

ˆ
𝑁(𝜔)𝑙𝑛

[︃
1 − 𝑒𝑥𝑝

(︃
− ℏ𝜔

𝐾B𝑇

)︃]︃
𝑑𝜔. (4.21)

Gibbs free energy as a function of temperature can then be easily calculated as
the difference between enthalpy and entropy times temperature, 𝐺(𝑇 ) = 𝐻(𝑇 ) − 𝑇𝑆(𝑇 ).

Figure 25 shows the calculated curves of enthalpy 𝐻(𝑇 ), free energy 𝐺(𝑇 ), and
temperature times entropy, 𝑇𝑆(𝑇 ), as a function of temperature. The most important
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prediction of these properties is that 𝐺(𝑇 ) remains negative across all temperature val-
ues and decreases with rising temperatures, being a crucial aspect for consideration in
material stability studies. Our results indicate that for terminations exhibiting higher
electronegativity and increased atomic mass, the free energy experiences a more rapid
decline with rising temperature.

We also observe that, at low temperatures, the heat capacity of all materials is
consistent with the third law of thermodynamics, being proportional to 𝑇 3. At high tem-
peratures, Y2CF2 and Y2CCl2 converged to near 24 cal/cell · K, while Y2CBr2 went close
to 30 cal/cell · K, significantly higher than its counterparts and close to the Duolong-
Petit limit (ASHCROFT; MERMIN, 2022), i.e., 𝐶𝑉 = 3𝑅 for 𝑇 → ∞. For conversion,
considering the unit cell containing 5 atoms, 30 cal/cell · K ≈ 25 J/mol · K.

Figure 25 – a) Thermodynamic properties for Y2CT2 MXenes: Enthalpy [𝐻(𝑇 )] (blue),
temperature times entropy, 𝑇 × 𝑆(𝑇 ) (red), and free energy [𝐺(𝑇 )] (green).
b) Constant volume heat capacity, 𝐶𝑉 , for the Y2CF2 (red), Y2CCl2 (blue)
and Y2CBr2 (green) monolayers as a function of the temperature (K), using
the GGA-PBE functional.

4.2.4 Vibrational Spectroscopy

In condensed matter physics, infrared (IR) and Raman spectra are useful for study-
ing and identifying chemical substances or functional groups and their low-frequency
vibrational modes. It can be used to characterize new materials so that they can be iden-
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tified in future samples. The following discussion explores IR and Raman spectroscopy,
where the spectra are calculated from the vibrational eigenmode frequencies of the optical
phonons at Γ, i.e., 𝜔𝑖(𝑞 = 0). From now on, we consider 𝜔𝑖 ≡ 𝜔𝑖(𝑞 = 0).

In IR absorption, an electron state is annihilated, and a higher energy electron
state is created; the energy difference is absorbed from an annihilated photon in the IR
range. That excited state can eventually decay back into the lower energy state, releasing
the energy difference as a lattice vibration, i.e., the creation of a phonon state with the
same energy and momentum as in the absorbed photon. This process is illustrated in
Figure 26.

The formalism presented in (POREZAG; PEDERSON, 1996) considers that a dis-
placement 𝑈 𝑖

𝜇 in the direction of the 𝑖th eigenvector 𝜐𝑖
𝜇 can then be written as 𝑈 𝑖

𝜇 = 𝑄𝑖𝜐𝑖
𝜇,

with 𝑄𝑖 being a normal-mode coordinate. The first-order IR intensity is then evaluated
as:

𝐼 𝑖
IR = 𝒩 𝜋

3𝑐

⃒⃒⃒⃒
⃒ 𝑑𝜇

𝑑𝑄𝑖

⃒⃒⃒⃒
⃒
2

, (4.22)

where 𝒩 is the particle density in the sample, 𝑐 is the speed of light, and 𝜇 is the
dipole moment of the system, which can be calculated as (GRYCIUK; GÓRECKI, 2002):

𝜇 =
∑︁
𝑚

𝑟𝑚𝑞𝑚 +
˚

𝐶

𝑟𝑛̂(𝑟) 𝑑𝑉, (4.23)

where 𝑟𝑚 and 𝑞𝑚 are the position and charge, respectively, of the 𝑚th atom. 𝑛̂ is
the electron density and the integration is taken over the cell C.

For each material, the calculated infrared spectrum shown in Figure 27 predicts
four peaks of light absorption, with six modes of vibration within. These modes are equiv-
alent for every Y2CT2 MXene, where only the atomic specimen present in the vibration
is different. Nevertheless, as a consequence of the differences in the termination groups,
not only in electronegativity but more importantly in mass, the positions and sizes of the
peaks are significantly different for each material. Structures with heavier termination
groups presented lower vibration frequencies for all modes.

Table 5 shows the resulting modes of vibration. The first and third energy peaks
correspond to two degenerate in-plane asymmetric stretching modes of vibration (E𝑢),
while the second and the fourth correspond to non-degenerate asymmetric out-of-plane
modes (A2𝑢).
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System E𝑢 A2𝑢 E𝑢 A2𝑢

Y2CF2 288 384 422 653
Y2CCl2 170 283 359 587
Y2CBr2 121 213 342 568

Table 5 – Frequency of the modes of vibration generated from infrared light absorption
in MXenes, in cm−1.

Within a crystalline environment, the interaction of light with the lattice results
in a probability of the light being scattered. Given an interaction, the greatest probability
is of an elastic scattering, though it is possible to happen an energy shift of the scattered
photons, where an electron is excited into a virtual state that immediately decays into
an electron state different from before. The energy and momentum difference between
the previous and new electron states is compensated by the creation or annihilation of
a phonon state that matches the difference. That is known as the Raman effect of in-
elastic scattering of monocromatic light, where the case of phonon creation is known as
Stokes scattering, and anti-Stokes scattering happens when a phonon state is annihilated.
Figure 26 illustrates these processes.

For calculations, we follow the formalism in (MIWA, 2011), where the intensity
𝐼 𝑖

Raman of each 𝑖th eigenmode 𝜔𝑖 follows a proportion relation as

𝐼 𝑖
Raman ∝

⃒⃒⃒
𝑒in · 𝐴𝑖 · 𝑒out

⃒⃒⃒2 1
𝜔𝑖

⎛⎝ 1
𝑒𝑥𝑝

(︁
ℏ𝜔𝑖

𝑘B𝑇

)︁
− 1

+ 1
⎞⎠ , (4.24)

where 𝑒in (𝑒out) is the polarization vector of the incident (scattered) photon. The
Raman susceptibility tensor 𝐴𝑖 is calculated as

𝐴𝑖
𝜇𝜈 =

√
Ω
∑︁
𝑛,𝜉

𝑑𝜒𝜇𝜈

𝑑𝑅𝑛,𝜉

𝜐𝑖
𝑛,𝜉√
𝑀𝑛

, (4.25)

where 𝜐𝑖
𝑛 is the 𝑖th vibrational eigenmode of the 𝑛th atom, with mass 𝑀𝑛 and posi-

tion 𝑅𝑛; Ω is the volume of the unit-cell, 𝜒 is the electronic linear dielectric susceptibility,
and Greek indices represent the Cartesian directions.

𝜒 derivatives are evaluated as

𝑑𝜒𝜇𝜈

𝑑𝑅𝑛,𝜉

= − 1
Ω

𝑑3𝐸

𝑑𝜖𝜇𝑑𝜖𝜈𝑑𝑅𝑛,𝜉

, (4.26)

where 𝜖𝜇 (𝜖𝜈) is a uniform electric field in the 𝜇th (𝜈th) direction, and 𝐸 is the
total energy of the system.
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Figure 26 – Energy level diagram representing IR absorption, Stokes Raman scattering,
and anti-Stokes Raman scattering.

Similarly to what was predicted in IR, the Raman spectrum shown in Figure 27
predicts four peaks of inelastic light scattering, also containing six modes of vibration
within, where two of the peaks represent individual modes of vibration, and the other two
are related to degenerated vibrational states. The first and third peaks both correspond
to the degenerated in-plane shear modes of vibration (E𝑔), while the second and fourth
peaks refer to non-degenerated symmetric and asymmetric out-of-plane modes (A1𝑔),
respectively.

Due to the same causes highlighted in the phonon and IR discussions, despite the
fact that all materials presented in Figure 27 contain the same modes of vibration, the
size and positions of the peaks are unique for each material. Again, heavier termination
groups in the monolayers were correlated with lower frequencies for each mode of vibra-
tion. Table 6 contains all the predictions for the vibrational modes to be expected from
light scattering in the studied systems.
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System E𝑔 A1𝑔 E𝑔 A1𝑔

Y2CF2 134 214 327 412
Y2CCl2 114 178 190 320
Y2CBr2 82 127 158 284

Table 6 – Frequency of the Raman modes of vibration for MXenes, in cm−1.

Figure 27 – a) Infrared spectrum for Y2CF2 (red), Y2CCl2 (blue) and Y2CBr2 (green). b)
Raman spectrum for the Y2CF2 (red), Y2CCl2 (blue) and Y2CBr2 (green).

4.3 Electronic Properties

4.3.1 Band Structure

The energy levels of electrons can be mapped in reciprocal space, generating what
we call the electronic structure. To explore the regions of most interest, the mapping inside
the BZ is performed in a path passing through the high symmetry points of the cell, Γ →
K → M → Γ, just as done in the phonon dispersion. Figure 28 presents the Kohn-Sham
band structure calculated for Y2CF2, Y2CCl2 and Y2CBr2, using both GGA-PBE and
HSE06 functionals.

Spin-polarized calculations were also performed for all three materials, but we
found only non-magnetic ground states, which is explained by the strong covalent bond
between yttrium and carbon, and the attached termination groups. Other studies have
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found that these non-magnetic states can be altered with the application of strain (ZHAO;
KANG; XUE, 2014).

From Figure 28, we observe that for the three MXenes, the smallest energy gap
corresponds to an indirect transition, with the gap size correlating to the electronegativity
of the termination group. Indirect transitions require phonon assistance, meaning electrons
can be excited while absorbing momentum from lattice vibrations. Therefore, direct band
gaps are generally more attractive for applications.

Close analysis reveals that although the smallest gap is indirect for all three materi-
als, direct transitions are not very energetically distant, especially for the Cl termination.
This incites us to question whether the predominant transitions in these materials are
direct or indirect. It is observed that for the direct transition calculated with GGA-PBE,
Y2CF2 contains an unusual flat valence band in the vicinities of the M point. We note
that in Y2CCl2, not only are the direct (at M) and indirect (from Γ to M) band gaps
energetically very close to each other, but with the hybrid functional we see that the
energy levels between the high symmetry points do not change much, luring our attention
to the verification of some "flatness effect" in that crystalline direction.
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Figure 28 – Electronic band structure of Y2CF2 (red), Y2CCl2 (blue) and Y2CBr2 (green).
a) using GGA-PBE exchange-correlation functional along the 2D Brillouin
high symmetry pathand, b) using HSE06 hybrid functional. c) and d) are the
same energy bands of a) and b), but zoomed near Fermi level in M → Γ path.

System PBE Direct (eV) PBE Indirect (eV) HSE06 Direct (eV) HSE06 Indirect (eV)
Y2CF2 1.122 0.908 2.115 1.919
Y2CCl2 0.913 0.835 1.530 1.454
Y2CBr2 0.886 0.758 1.318 1.099

Table 7 – Direct and indirect band gaps, obtained for Y2CF2, Y2CCl2 and Y2CBr2, using
both PBE and HSE06 functionals.

4.3.2 Effective Mass

Heading into a semi-classical picture, where we preserve the Newtonian intuition
of 𝐹 = 𝑚𝑎, an electron/hole in the crystal structure, in the presence of some external
electromagnetic field, is not accelerated as if its inertial mass is 𝑚e. Instead, due to the
interaction with the lattice, the electron/hole behaves as if it has an effective mass 𝑚*,
which can be anisotropic or even negative.
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For that, we start from the position of the particle as a distribution probability
given by the squared amplitude of the plane wave packet. In this perspective, the group
velocity, 𝑣g, is what most closely resembles the classical intuition of velocity. This is our
first important tool for investigating the particle dynamics in the lattice:

𝑣g(𝑘) ≡ 𝑑𝜔

𝑑𝑘
= 1

ℏ
𝑑𝐸(𝑘)

𝑑𝑘
. (4.27)

We take a second derivative to obtain the acceleration of the particles,

𝑎g(𝑘) = 𝑑𝑣g(𝑘)
𝑑𝑡

= 1
ℏ

𝑑2𝐸(𝑘)
𝑑𝑘2

𝑑𝑘

𝑑𝑡
. (4.28)

We neglect not the physical intuition that we aimed from the beginning: The in-
clination of the energy levels in the reciprocal space, along a certain direction, gives the
velocity of the particles that occupies these states, traveling in that direction. When we
consider the whole curvature of the energy levels in reciprocal space, we see that the
curvature itself contains all information about the effective velocity and acceleration of
particles occupying energy states in a crystal. Thus, a horizontally flat energy band means
that the group velocity of the electron/hole wave packet is zero, and its effective mass
tends to infinity along that direction, i.e., particles are strongly localized in specific spa-
tial locations due to high inertia. This type of structure might lead to unusual physical
properties, often studied in topology (PHONG; MELE, 2023) and superconductor physics
(DENG; SIMON; KöHLER, 2003; CHEN; LAW, 2024; KURLETO et al., 2023).

Going further, the work done by an external force in a wavepacket is:

𝑑𝐸(𝑘) = 𝐹𝑑𝑟 = 𝐹𝑣g(𝑘)𝑑𝑡, (4.29)

so force can be isolated to:

𝐹 = 1
𝑣g

(𝑘)𝑑𝐸(𝑘)
𝑑𝑡

= 1
𝑣g(𝑘)

𝑑𝐸

𝑑𝑘

𝑑𝑘

𝑑𝑡
= ℏ

𝑑𝑘

𝑑𝑡
. (4.30)

Finally, after having expressions for both force and acceleration, we might recon-
struct the Newtonian equation, 𝐹 = 𝑚*𝑎, where the effective mass tensor is:

𝑚*(𝑘) = ℏ2 1
𝑑2𝐸(𝑘)

𝑑𝑘2

; (4.31)

𝑚*(𝑘) =

⎛⎜⎜⎜⎝
𝑚𝑥𝑥 𝑚𝑥𝑦 𝑚𝑥𝑧

𝑚𝑦𝑥 𝑚𝑦𝑦 𝑚𝑦𝑧

𝑚𝑧𝑥 𝑚𝑧𝑦 𝑚𝑧𝑧

⎞⎟⎟⎟⎠ . (4.32)
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These results can be used in the semi-classical dynamics of charge carriers in energy
bands, which respond to external Lorentz forces as:

𝑚*(𝑘)𝑎g(𝑘) = 𝑒(𝐸𝑒𝑥𝑡 + 𝑣g(𝑘) × 𝐵𝑒𝑥𝑡). (4.33)

The sign of the effective mass ratio, 𝑚*

𝑚𝑒
, reveals the concavity of the curvature, and

we propose the absolute value of this quantity as a measurement of flatness. The energies
and effective mass ratio of the valence band, calculated along the path between two Γ
points, are shown in Figure 29.

Figure 29 – Highest occupied energy bands for Y2CF2 (red), Y2CCl2 (blue) and Y2CBr2
(green), between two Γ points, with correspondent effective mass (black) as
a multiple of the electron mass 𝑚𝑒.

The purpose of Figure 29 is to identify peaks in the effective mass, corresponding
to regions where the flatness effect is expected. This analysis allows the interpreter to
determine whether the peaks in effective mass are located in a horizontal band or if they
are observed in a non-zero velocity state. We see that the precision of the effective mass
calculations is extremely sensitive at high values due to the singularity in 4.31, but it is
completely safe to call flat any region where the absolute value of the effective mass is
two orders of magnitude above the electron mass. In fact, the literature already considers⃒⃒⃒

𝑚*

𝑚𝑒

⃒⃒⃒
> 25 as supermassive states (KURLETO et al., 2023).

All three materials exhibited several peaks of high effective mass, which is com-
pletely normal for non-zero velocity states. Nevertheless, a large area around the M sym-
metry point in Y2CF2 remained a horizontal flat region. The mass ratio found at the M
point is far beyond the flatness requirement we stated earlier,

⃒⃒⃒
𝑚*

𝑚𝑒

⃒⃒⃒
≈ 200, implying a

high flatness effect for hole states in direct transitions. The negative mass found at that
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point indicates the presence of a smooth energy peak hidden in flatness. Unfortunately,
the ideal scenario would be to find such massive states closer to the Fermi level, but in
Y2CF2 they are 0.2 eV below the top of the valence band.

Besides being a good measurement of flatness, the effective mass calculation can
provide important information for general studies of electron/hole mobility. A pair of
bands that are degenerate at the highest occupied state usually have different curvatures,
resulting in heavy and light holes at that momentum coordinate. In Figure 28 we can see
that each material presents two distinct curvatures in the Γ point, corresponding to their
light and heavy hole states. Table 8 shows, for each MXene, the mass ratio for the electron
at the bottom of the conduction band and for the light and heavy holes associated with
the degenerate state at the top of the valence bands.

System Electron Light Hole Heavy Hole
Y2CF2 1.14 −0.49 −2.51
Y2CCl2 1.00 −0.57 −2.52
Y2CBr2 1.02 −0.44 −1.64

Table 8 – Mass ratio for electron and holes associated with the indirect transition from Γ
to M, obtained for Y2CF2, Y2CCl2 and Y2CBr2.

From Table 8, we observe no correlation between the termination electronegativity
and resulting effective masses in the indirect transition states. The values obtained are
also far from any flatness effect, being considerably similar for all materials except for the
lighter heavy hole found in Y2CBr2.

To ensure that the code developed for this study gives reasonable results, we also
performed the effective mass calculation for silicon, which is well explored in the literature.
The obtained effective mass for the electron in the longitudinal direction is 0.89𝑚𝑒, very
close to the 0.90𝑚𝑒 obtained with the well established QuantumATK code (SMIDSTRUP
et al., 2019), and still close to the experimental measurement of 0.98𝑚𝑒 (DEXTER et al.,
1954).

At this point we have almost finished our results for the novel MXenes we com-
mitted to explore, observing the effect caused by a change in the termination groups of
these materials. We based all calculations on DFT methods and successfully found pos-
itive phonon frequencies and negative free energy predictions for Y2CF2, Y2CCl2, and
Y2CBr2, making them great candidates for future synthesis due to high dynamic stability
and good thermodynamic indicators. If synthesized, one should expect semiconductor be-
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havior from all of them, with an indirect band gap in the visible light range. The gap size
was found to be correlated with the electronegativity of the terminations. Interestingly,
for the Y2CCl2 in particular, the direct band gap is virtually the same as the indirect one.
The study included the expected characterization of the materials in terms of infrared
and Raman spectra, showing similar patterns of vibration, except for higher vibration
frequencies in materials with lighter termination groups. Lastly, we found an interesting
quality in the Y2CF2 energy bands, which demonstrated supermassive electronic states in
a flat region of the valence band. We emphasize the fact that similar MXenes can manifest
different physical properties, which incites the continuous exploration in the vast range
of 2D materials in the MXene family.
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5 Advanced Electronic Properties of MXenes
and TMDs

5.1 Quantum Espresso and Wannier90

For obtaining more sophisticated electronic properties with denser grids and sig-
nificantly less computational cost, we post-process DFT results to obtain a tight-binding
Hamiltonian, but with single-particle states constructed with Wannier functions instead of
atomic orbitals. The choice of Wannier functions as a basis set is justified for its similarities
with atomic orbitals while being naturally connected to the Bloch functions, inheriting
their orthogonality.

Our process starts with DFT calculations, then uses the Wannier90 (MOSTOFI
et al., 2008) framework to obtain the tight-binding Hamiltonian, and then we construct
algorithms whose computations are equivalent to solving the physical equations for the
desired properties. The DFT tool compatible with the Wannier90 framework we chose
to work with is the open source Quantum Espresso package (GIANNOZZI et al., 2009).
From MXenes, we selected Y2CCl2 as the candidate for a better electronic description,
as its nearly direct band gap and nearly flat band structure are suggestive of an inter-
esting exploration. For TMDs, we pick MoS2, which is a widely studied material and full
of space for physical exploration, which is perfect for pushing our limits into developing
computational tools related to valleytronics and topological properties.

To perform once again DFT calculations of Y2CCl2, but now using Quantum
Espresso, we tightened the convergence parameter for total energy from 1×10−5 to 1×10−8

eV/atom. The cut-off energy for the plane-wave basis was reduced from 750 to 400 eV, as
it was enough for convergence. The grid was drastically increased in density, from a 9x9x1
to a 20x20x3 k-point set, justified by our need for precision in the electronic levels. As we
are now less interested in the band gap itself and more focused on the curvatures of the
eigenstates and eigenvalues, we felt no need to perform the accurate HSE06 functional,
but preferred to concentrate the computational resources into the finer grid expansion
with the PBE functional.

For MoS2, which calculation is more complex due to strong spin-orbit coupling, we
spent more resources considering a cutoff energy for the plane-wave basis at 500 eV, and
also a 1×10−8 convergency criteria. A fine grid consisting of 32x32x1 k-points is justified
by the post DFT methods which greatly benefit from a fine k-sample. For this material,
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we also kept the lower PBE exchange-correlation functional.

In the Y2CCl2 Wannierization process, we considered a 20x20x1 grid with the 𝑑𝑥𝑦,
𝑑𝑦𝑧, 𝑑𝑧2 , 𝑑𝑥2−𝑦2 , 𝑝𝑥, 𝑝𝑦, 𝑝𝑧, and 𝑠 orbitals of Y, and the 𝑠𝑝3 hybridization for the C and
Cl atoms. These orbital projections were considered to construct 30 Wannier functions,
which formed 36 energy bands, of which we are only interested in the ones near the Fermi
level.

For MoS2 we considered 22 energy bands near the Fermi level, using also 22 Wan-
nier functions to represent them within a 32x32x1 grid. For this material, the most sig-
nificant orbitals near the Fermi level are the 𝑑𝑥𝑦, 𝑑𝑦𝑧, 𝑑𝑧2 and 𝑑𝑥2−𝑦2 Mo orbitals; and 𝑝𝑥,
𝑝𝑦 and 𝑝𝑧 S orbitals.

5.2 Tight-Binding in Wannier Basis

The tight-binding method was originally idealized considering basis states for a
single-particle system as a linear combination of the atomic orbitals of the constituent
atoms. As being tightly bound to the atoms of the crystal, the atomic orbitals are lo-
calized states periodically distributed in the lattice. Another alternative for periodically
localized states is the Wannier functions, which are the choice of this study, as shall be
later discussed.

A basis function for the tight-binding method is then written as a normalized
Bloch function:

|𝜑𝜏,𝑘(𝑟)⟩ = 1√
𝑁

𝑁∑︁
𝛼=1

𝑒𝑖𝑘·𝑅𝛼 |𝜒𝜏 (𝑟 − 𝑅𝛼)⟩ , (5.1)

where 𝜒𝜏 represents a Wannier or orbital function of quantum number 𝜏 , and 𝑅𝛼

is the position vector of each nucleus 𝛼, which is summed up to all the atoms considered
in our calculations. This sum over the atomic sites of a two-dimensional crystal can be
written as:

𝑁∑︁
𝛼=1

𝑅𝛼 =
𝑚∑︁
𝑛1

𝑚∑︁
𝑛2

𝑛1𝑎1 + 𝑛2𝑎2 =
𝑚∑︁
𝑛1

𝑚∑︁
𝑛2

𝑅𝑛1𝑛2 , (5.2)

where the sums should run the entire lattice. Figure (5.2) brings a visual repre-
sentation of the atomic site position vectors.
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Figure 30 – Crystalline sites localized by its position vectors 𝑅𝑛1𝑛2 . Each site correspond
to the origin of a crystalline cell identified with the coordinates of it’s origin.

In the tight-binding method, the localized electron states interact with their near-
est neighbors. The electronic Hamiltonian for this system can be expressed as:

𝐻̂ = 𝑝2

2𝑚e
+
∑︁

𝛼

𝑉 (𝑟 − 𝑅𝛼), (5.3)

where 𝑚e stands for the electron mass, while 𝑟 and 𝑅𝛼 are the positions of the
electron and an atomic site of index 𝛼. The quantity of nuclei accounted in the sum is a
choice between precision and computational cost.

To construct the Hamiltonian matrix in the basis of Bloch functions, each element
is written as:

𝐻𝜏𝜏 ′(𝑘) = 1
𝑁

ˆ
𝑑𝑟 ⟨𝜑𝜏,𝑘(𝑟)| 𝐻̂ |𝜑𝜏 ′,𝑘(𝑟)⟩ . (5.4)

where we integrate over the total volume of the crystal, using 1
𝑁

as the normaliza-
tion factor in units of unit cells. Substituting the Bloch functions with (5.1) we obtain:

𝐻𝜏𝜏 ′(𝑘) =
∑︁
𝑅𝛼

∑︁
𝑅𝛽

1
𝑁

ˆ
𝑑𝑟𝑒−𝑖𝑘·𝑅𝛼 ⟨𝜒𝜏 (𝑟 − 𝑅𝛼)| 𝐻̂𝑒𝑖𝑘·𝑅𝛽 |𝜒𝜏 ′(𝑟 − 𝑅𝛽)⟩ . (5.5)

Each term in the summation represents the energy from the interaction between
electron states in sites 𝛼 and 𝛽. Intending to reduce the equation to a single sum, we
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consider the position coordinates as the relative distance between an atomic site 𝛽 and a
site 𝛼, being 𝑅 = 𝑅𝛽 − 𝑅𝛼. Substituting 𝑅𝛽 and shifting the whole system by 𝑅𝛼, also
using ∑︀𝑅𝛼

1
𝑁

= 1, the equation can be rewritten as:

𝐻𝜏𝜏 ′(𝑘) =
∑︁
𝑅

𝑒𝑖𝑘·𝑅
ˆ

𝑑𝑟 ⟨𝜒𝜏 (𝑟)| 𝐻̂ |𝜒𝜏 ′(𝑟 − 𝑅)⟩ =
∑︁
𝑅

𝑒𝑖𝑘·𝑅𝑡𝑅
𝜏𝜏 ′ , (5.6)

where 𝑡𝑅
𝜏𝜏 ′ are the hopping integrals, which describe the energy associated with the

hopping of an electron from its origin to the position 𝑅, changing from an initial Wannier
state of quantum number 𝜏 into the state of quantum number 𝜏 ′. If 𝑅 = 0, this quantity
is an on-site energy instead of a hopping energy, being the energy associated with the
individual localized states. In the limiting case of considering every atomic site of the
lattice, this method contemplates the energy of all possible spatial state transitions of an
electron in the crystal. The hopping integrals and on-site energies can be obtained with
the Wannier-90 post-DFT framework (MOSTOFI et al., 2008).

Using the creation and annihilation operators of Wannier states (2.60), we may
write the Hamiltonian operator in the second quantization format, which gives a better
intuition of the interactions contemplated in the system:

𝐻̂ =
∑︁

𝜏,𝜏 ′,𝛼

𝜖𝛼
𝜏𝜏 ′𝑐

†
𝜏 ′,𝛼𝑐𝜏,𝛼 +

∑︁
𝑛,𝑛′,𝛼 ̸=𝛽

𝑡𝛼𝛽
𝜏𝜏 ′𝑐

†
𝜏 ′,𝛽𝑐𝜏,𝛼. (5.7)

5.3 Energy States in Crystals
After adequate modeling of the system’s Hamiltonian, the energy states are given

by the time-independent Schrödinger equation:

𝐻 |Ψ𝑛,𝑘(𝑟)⟩ = 𝐸𝑛,𝑘 |Ψ𝑛,𝑘(𝑟)⟩ , (5.8)

where 𝐸𝑛,𝑘 is an energy eigenvalue of quantum number 𝑛, and momentum vector
𝑘. Each eigenvalue is associated with a Bloch energy state |Ψ𝑛,𝑘(𝑟)⟩, which is represented
as a linear combination of the basis functions,

|Ψ𝑛,𝑘(𝑟)⟩ =
∑︁

𝜏

𝑐𝜏
𝑛,𝑘 |𝜑𝜏,𝑘(𝑟)⟩ . (5.9)

Substituting in (5.9), we obtain

𝐻
∑︁

𝜏

𝑐𝜏
𝑛,𝑘 |𝜑𝜏,𝑘(𝑟)⟩ = 𝐸𝑛,𝑘

∑︁
𝜏

𝑐𝜏
𝑛,𝑘 |𝜑𝜏,𝑘(𝑟)⟩ , (5.10)
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and then multiplying both sides by ⟨𝜑𝜏 ′,𝑘(𝑟)|, also considering the orthonormality
of Bloch functions based on Wannier functions:

∑︁
𝜏

⟨𝜑𝜏 ′,𝑘(𝑟)| 𝐻 |𝜑𝜏,𝑘(𝑟)⟩ 𝑐𝜏
𝑛,𝑘 = 𝐸𝑛,𝑘

∑︁
𝜏

⟨𝜑𝜏 ′,𝑘(𝑟)|𝜑𝜏,𝑘(𝑟)⟩ 𝑐𝜏
𝑛,𝑘∑︁

𝜏

𝐻𝜏 ′𝜏 𝑐𝜏
𝑛,𝑘 = 𝐸𝑛,𝑘

∑︁
𝜏

𝛿𝜏 ′𝜏 𝑐𝜏
𝑛,𝑘∑︁

𝜏

𝐻𝜏 ′𝜏 𝑐𝜏
𝑛,𝑘 = 𝐸𝑛,𝑘𝑐𝜏 ′

𝑛,𝑘.

(5.11)

In matrix notation, where the left side corresponds to a matrix-vector product,
and the right side a scalar multiplication of a vector:

HC𝑛,𝑘 = 𝐸𝑛,𝑘C𝑛,𝑘, (5.12)

where H is the Hamiltonian, 𝐸𝑛,𝑘 is an energy state, and C𝑛,𝑘 is the correspondent
wave function as a column vector, being its elements the coefficients for the linear combi-
nation of the basis functions, where each of which is constructed from Wannier functions
of quantum numbers 𝜏 .

5.4 Grids

The first step we discuss in solid simulations is the construction of grids, as they
are the coordinate space in which the simulation is calculated. Here, all calculations are
performed in 2D momentum space, so each point contained in the grid is called a k-point
vector of dimension two. Generalizations for three dimensions are straightforward. A com-
plete grid for electronic calculations must represent the unit cell of the reciprocal space,
although some calculations might focus on specific high-symmetry points. We discuss two
grids that contemplate the whole unit cell.

The first grid we’ve already worked with is a simple momentum space unit cell
constructed with its basis vectors, also known as the Monkhorst-Pack type of grid. Here
we work with uniformly distributed points, with coordinates based on fractions of the
basis vectors 𝑏 of the reciprocal space. This set for an 𝑛 x 𝑛 grid can be written as:

k =
{︃

b1
(𝑖 − 1)

𝑛
+ b2

(𝑗 − 1)
𝑛

+ 𝑂 | 𝑖, 𝑗 ∈ {1, . . . , 𝑛}
}︃

, (5.13)
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where 𝑂 is the origin coordinate. A 7 x 7 example is presented in Figure 31,
showing a Monkhorst grid for the 2D hexagonal unit cell, as used in both cases of Y2CCl2
and MoS2:

Figure 31 – Unit cell shaped grid, equivalent to the Brillouin Zone.

This type of grid is very simple to construct and brings the benefit of allowing
modular arithmetic methods in calculations, as any border coordinate can be linked to
the opposite border to form a system of cyclical coordinates, 𝑘𝑝(𝑛+1, 𝑗) = 𝑘𝑝(1, 𝑗), which
can be constructed with modular indexes. One major use of this property is seen in the
gradient operator for a set of discrete circular coordinates. An element of the action of
such an operator can be defined as:

(∇𝑄)𝑘𝑥
=

𝑄|𝑘𝑥+1|𝑛,𝑘𝑦 − 𝑄|𝑘𝑥−1|𝑛,𝑘𝑦

2Δ𝑘
, (5.14)

Where |𝑛 + 1|𝑛 = 𝑛 + 1 𝑚𝑜𝑑 𝑛 ≡ 1 𝑚𝑜𝑑 𝑛. This gradient operator can be compu-
tationally constructed as a routine or a method in object-oriented programming.

Another very useful type of grid is the hexagonal Brillouin zone grid, constructed
following the hexagonal symmetry. Despite being the canonical Brillouin Zone, we may
choose to dislocate the center to focus on some intended momentum coordinate. The big
disadvantage of this type of grid is that it makes the use of periodic conditions difficult.
Figure 32 shows this grid for a small number of 𝑘-points, while Figure 33 shows the en-
ergy levels of Y2CCl2 represented in a denser configuration, where we call special attention
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again to the nearly flat bands seen in the valence states.

Figure 32 – Grid for the Brillouin zone in the 2D hexagonal system.

Figure 33 – Valence and conduction energy levels of Y2CCl2 Brillouin Zone.

Based on these calculations we reformulated the effective mass (4.31) and group
velocity (4.27) algorithms to map the higher valence electron/hole states in the entire
Brillouin zone, demonstrating the flat band behavior of Y2CCl2 in the path between Γ
high symmetry points. Figure 34 shows the absolute value of the obtained effective mass
tensor element 𝑚*(𝑘)𝑦𝑦, and the group velocity tensor element 𝑣𝑔(𝑘)𝑦𝑦. We note the flat
band in the 𝑦 axis composed of carrier states with an effective mass higher than 20 𝑚𝑒,
and zero group velocity.
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Figure 34 – a) Higher valence state effective mass along 𝑦 mapped in Y2CCl2 Brillouin
Zone (30 𝑚𝑒 is set as threshold for numerical precision).
b) Higher valence state group velocity along 𝑦 mapped in Y2CCl2 Brillouin
Zone.

5.5 Addressing Band-States
We’ve been treating 𝑛 as a general quantum number, but we must precise it to

its real meaning. 𝑛 should not be taken as a simple energy level index, as this relates to
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a hierarchical logic of addressing the states, in which the quantum number is determin-
ing the energetic position of the states in relation to the others. In solid state systems,
the energy states are distributed in energy bands. Each one is constituted of a number
of energy states within the reciprocal unit cell equivalent to the number of atoms in
the system, forming a nearly continuous structure, as a single entity mapped in the mo-
mentum space. One major significance of this study comes from realizing how much our
description of the physical properties depends on the correct addressing of the band states.

It’s common to see energy bands treated as simple energy levels along the momen-
tum space (BIENIEK et al., 2022; DIAS et al., 2018). In this sense, energy bands can be
hierarchically set from lower to higher energy bands, but we show that this method creates
conflict with the definition of an energy band as a single continuous entity. In practice,
the hierarchical position of an energy band may vary along reciprocal space, such that
the continuity of the correspondent wave functions must be preserved. Energy bands may
cross each other, causing an energy level of index 𝑚 that may previously belong to some
specific energy band to become part of the other. In this sense, an energy level 𝑚 is not
associated with a particular energy band 𝑛, but at each point in momentum space it may
belong to a different band. The index for an energy band must not be mistaken for the
hierarchical index of energy states.

Let us discuss the two configuration possibilities for addressing the single-particle
bands index. The simple hierarchical logic is just 𝐸0,𝑘 = 𝐸min,𝑘 and 𝐸𝑛+1,𝑘 > 𝐸𝑛,𝑘 ∀𝑛, 𝑘.
The method we propose to address the single-particle states begins with the hierarchi-
cal logic, then proceeds to the correct addressing algorithm, where 𝐸0,0 = 𝐸min,0 and
𝐸𝑛+1,0 > 𝐸𝑛,0, and then for every other momentum coordinate we set each band index
according to the minimization of:

𝛿Ψ𝑚
𝑛,𝑘 = | |𝑛, 𝑘⟩ − |𝑚, 𝑘 + Δ𝑘⟩ |, (5.15)

where 𝑛 is the fixed band index that represents the band being addressed, 𝑚

should be every possible band index, and 𝑘 + Δ𝑘 is a neighbor momentum coordinate to
𝑘. The quantity 𝛿Ψ𝑚

𝑛,𝑘 represents the discontinuity between states, so after its calculation
for every 𝑚, we state that:

|𝑛, 𝑘 + Δ𝑘⟩ = |𝑛′, 𝑘 + Δ𝑘⟩ if 𝛿Ψ𝑛′

𝑛,𝑘 = min[𝛿Ψ𝑚
𝑛,𝑘]. (5.16)

We built a computational code that calculates all possible 𝛿Ψ𝑚
𝑛,𝑘 for each momen-

tum step, and for each momentum step it is chosen to become part of the energy band
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𝑛 the energy state 𝑚 whose wave function discontinuity is the lowest for that step. The
results for the comparison of both index configurations are shown in Figure 35, which
illustrates the energy bands calculated for Y2CCl2.
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Figure 35 – Both perspectives on energy eigenstates along path in first Brillouin zone. The
energy levels or bands are distinguished by color in both cases. a) Energy
levels addressed according to energy hierarchy. b) Energy bands addressed
according to wave function continuity. The green, red and yellow are the first
to third higher valence bands, respectively; while the blue, cyan and pink
bands are the first to third lower conduction bands, respectively. The ordering
of the bands considered the higher/lower value of each valence/conduction
band.
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We can observe that when the continuity of the wave functions is considered, the
energy eigenstates also demonstrate better continuity, while the hierarchically defined
bands demonstrate a break of continuity in the crossing regions.

To see what happens in the wave functions for both types of index configuration,
Figure 36 shows the probability coefficients |𝑐𝜏

𝑣(𝑘)|2 along 𝑘, for the first and third valence
bands (𝑣 = 1, 3) (green and yellow in Figure 35), corresponding to the 𝜏 Wannier states
that compose the basis.

Figure 36 – Probability coefficients for first and third valence bands, and first and third
hierarchical levels. Each individual coefficient is distinguished by color.

When we see the behavior of the wave function in each picture, it is observed that
the hierarchical energies method contains a break of continuity exactly in the crossing
regions. It becomes clear that the band state configuration is the optimal one. We chose
the first (green) and third (yellow) highest energy bands in particular to observe what
happens in the avoided crossing region, between Γ and K points. The wave function com-
position at these avoided crossing regions concentrates in particular Wannier functions (or
orbitals);

⃒⃒⃒
𝑐pink

1 (𝑘)
⃒⃒⃒2

grows as
⃒⃒⃒
𝑐blue

1 (𝑘)
⃒⃒⃒2

decreases, but
⃒⃒⃒
𝑐pink

3 (𝑘)
⃒⃒⃒2

decreases as
⃒⃒⃒
𝑐blue

3 (𝑘)
⃒⃒⃒2

grows. We shall not go deeper into this subject, as for now we only intend to demonstrate
that the wave function of the electron in a crystal asks for band labels, and not only
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hierarchical energy levels.

Despite the fact that most of the physical properties calculations avoid this prob-
lem by including the sum of all bands, it is impossible to specify the band interactions by
means other than correctly addressing the band index. From now on, we will be addressing
band states divided in conduction and valence bands. The ordering of bands will still be
given from energy hierarchy, but now we consider the higher energy value of each band
to order valence bands, and the lower energy value of each to order conduction bands.
The notation for the state vectors will also consider 𝑘 not as a label, but as a coordinate,
which leaves only the band index as a label: |𝑛, 𝑘⟩ → |Ψ𝑛(𝑘)⟩.

Now, we use the same method to obtain MoS2 band states, which will be crucial
for the rest of the discussion, shown in Figure 37:

Figure 37 – MoS2 energy bands after index correction.

When conserving the wave function continuity, it is possible to see that degenerate
bands separated by spin-orbit coupling are not symmetric, and that’s what justifies the
distinction between K and K′, respecting the orbital angular momentum in each point
of momentum space. Still, M is a valid reflection symmetry of the energy eigenstates,
but those just do not belong to the same bands. Figure 38 shows the two valence bands
mapped in the 2D hexagonal unit cell, where it becomes clear the fact that each band is
responsible for the highest occupied state in distinct valleys.
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Figure 38 – 2D mapping of the MoS2 valence bands in the hexagonal unit cell.

5.6 Momentum Matrix

Physical properties such as optical absorption and the Berry curvature can be cal-
culated with the canonical momentum matrix elements, 𝑃 𝛼

𝑣𝑐(𝑘), which give the coupling
between the single-particle states |Ψ𝑣(𝑘)⟩ and |Ψ𝑐(𝑘)⟩, resulting from an interaction with
an electromagnetic field in the 𝛼 polarization. These elements are defined as:

𝑃 𝛼
𝑣𝑐(𝑘) = ⟨Ψ𝑐(𝑘)| 𝑝𝛼 |Ψ𝑣(𝑘)⟩ . (5.17)

For practical calculations, we use the commutation relation 𝑝 = −𝑖𝑚e
ℏ [𝑟, 𝐻̂], and

the momentum space representation of the position vector 𝑟 = 𝑖∇𝑘 (ZAK, 1968), which
gives:
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𝑃𝑣𝑐(𝑘) = −𝑖𝑚e

ℏ
⟨Ψ𝑐(𝑘)| [𝑟, 𝐻̂] |Ψ𝑣(𝑘)⟩

= 𝑚e

ℏ
⟨Ψ𝑐(𝑘)| [∇𝑘𝐻̂ − 𝐻̂∇𝑘] |Ψ𝑣(𝑘)⟩

= 𝑚e

ℏ
(︁
⟨Ψ𝑐(𝑘)| (∇𝑘𝐻̂) |Ψ𝑣(𝑘)⟩ + ⟨Ψ𝑐(𝑘)| 𝐻̂∇𝑘 |Ψ𝑣(𝑘)⟩ − ⟨Ψ𝑐(𝑘)| 𝐻̂∇𝑘 |Ψ𝑣(𝑘)⟩

)︁
= 𝑚e

ℏ
⟨Ψ𝑐(𝑘)| (∇𝑘𝐻̂) |Ψ𝑣(𝑘)⟩ .

(5.18)

For each dimension, this simplifies to:

𝑃 𝛼
𝑣𝑐(𝑘) = 𝑚e

ℏ

⟨
Ψ𝑐(𝑘)

⃒⃒⃒⃒
⃒ 𝜕𝐻̂

𝜕𝑘𝛼

⃒⃒⃒⃒
⃒Ψ𝑣(𝑘)

⟩
. (5.19)

Equation (5.19) is simple to solve, as from equation (5.6) it is trivial to find
𝜕𝐻̂
𝜕𝛼

= 𝑖𝑅𝛼𝐻̂. Also, it’s evident that a quantity that describes the coupling of bands
must correctly consider the band index in all the BZ.

Figure 39 shows the momentum matrix elements in the 𝑥̂ polarization correspond-
ing to the interaction between valence and conduction bands of Y2CCl2, considering both
index configurations.
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Figure 39 – Y2CCl2 Momentum matrix element in both index configurations, considering
the bands/levels in the vicinity of the Fermi level.

We see that the optical activity within the band structure is quite complex, where
strange behavior happens in the avoided crossing regions, revealing some instances of
discontinuity. This type of result invites reflection upon the limits of our simulations, being
the Wannierization process or even the DFT calculation. There is something we couldn’t
grasp yet, but it’s very unlikely that nature presents behaviors such as what is here
demonstrated. Nevertheless, one important realization is that despite the smallest energy
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gap being indirect, from Γ to M high symmetry point, the large momentum element at M
corresponds to the interaction of bands at this coordinate, indicating optical activity in
the direct gap. The optical activity between bands near the Fermi level is constituted from
transitions from the second valence band to the first and third conduction bands, while the
second and third valence bands interact only with the second conduction band. This type
of close analysis is crucial for avoiding misleading impressions from first sight. Correctly
addressing the band states significantly improves our capacity of optical investigation in
crystals. In another scenario, where avoided crossing is absent, we explore other features
of optical phenomena, such as the role of spin. Figure 40 demonstrates the behavior of the
momentum components in the 𝑥̂ polarization for 𝑣 = 1, 2 and 𝑐 = 1, 2, calculated with
both index configurations for MoS2.
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Figure 40 – MoS2 Momentum matrix elements in both index configurations. Each element
along the momentum space is distinguished by color.

Since the first and second bands, for both conduction and valence states, are re-
sulted from degenerated bands splitting due to spin-orbital interaction, we may reference
C1 and C2 as C↑ and C↓ respectively, and similarly with respect to the valence bands.
This approach by itself is only possible if the bands are correctly addressed, and it allows
us to study the optical activity between energy bands.
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5.7 Optics
An optical absorption is understood as a transition of electronic states upon en-

ergy absorption from an interaction with an electromagnetic field, i.e., photons of energy
equivalent to the gap between energy bands can excite electrons from the lower energy
state into the higher energy state. The transition rate of these excitations is given by
Fermi’s Golden rule:

𝑊𝑖→𝑓 = 2𝜋

ℏ

⃒⃒⃒
⟨𝑓 |𝐻̂int|𝑖⟩

⃒⃒⃒2
𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔), (5.20)

where 𝐻̂int is the Hamiltonian of the interaction, 𝐸𝑖 and 𝐸𝑓 are the energies of
the initial and final states, respectively, and 𝜔 is the frequency of the electromagnetic field.

Due to conservation of momentum, a photon can induce the transition of an elec-
tron only between states with identical momentum coordinates 𝑘, a restricted scenario
which we call direct absorptions. If the interaction also considers the creation or annihila-
tion of phonons as a way to transfer momentum between electrons and vibrational modes
of the lattice, indirect absorptions become possible. Nevertheless, for this study we work
only with direct transitions, which are the predominant type (KOPACZEK et al., 2019).
The transition rate 𝑊 between band states becomes:

𝑊 (𝜔) = 2𝜋

ℏ
∑︁
𝑐,𝑣,k

⃒⃒⃒
⟨Ψ𝑐(𝑘)| 𝐻̂int |Ψ𝑣(𝑘)⟩

⃒⃒⃒2
𝛿 (𝐸𝑐(k) − 𝐸𝑣(k) − ℏ𝜔) , (5.21)

where the interaction Hamiltonian is:

𝐻̂int = − 𝑒

𝑚0
A · p̂, (5.22)

being 𝐴 the vector potential of the electromagnetic field with amplitude 𝐴0 and
direction 𝑒, which can be not only 𝑥̂ or 𝑦 but also combinations of these, as we define
circular polarizations:

A± = 𝐴0𝜖
±, 𝜖± = 1√

2
(𝑥̂ ± 𝑖𝑦), (5.23)

where A+ is right-handed and A− is left-handed. Circularly polarized light does
not simply excite electrons from valence to conduction states, but this polarization of
light brings with it a dual sign for the angular momentum ±ℏ.

The strength of this interaction is given by the momentum matrix in circular po-
larization, where 𝜕𝐻̂

𝜕𝑘𝛼
→ 1√

2( 𝜕𝐻̂
𝜕𝑘𝑥

± 𝑖 𝜕𝐻̂
𝜕𝑘𝑦

). The results for this quantity in MoS2, mapped
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not only at the valleys but in the whole BZ, are shown in Figure 41.

Figure 41 – MoS2 momentum matrix elements with both circular polarizations, coupling
spin up or spin down bands.

From Figure 41 we can clearly see the optical selection rules, affecting the cou-
pling of states at different sides of the unit cell, which is divided by a broken mirror
plane. It’s important to notice an anomaly shown at one M point of each valley, giving
the highest coupling rate where it shouldn’t be that high. This is explained by a nu-
merical error in the Wannierization process, most likely due to border effect, indicating
space for improvement of calculations. Nevertheless, the K points are the central symme-
try for the continuity of this study, and these are perfectly represented in the figure above.

Below, Figure 42 shows the unit cell mapping of the momentum matrix element
with 𝑥̂ and 𝑦 polarizations in Y2CCl2:
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Figure 42 – Y2CCl2 momentum matrix elements with 𝑥̂ and 𝑦 polarization, showing re-
gions of optical activity.

This map of the momentum matrix elements in the unit cell confirms the peak
of optical activity at the M high symmetry point, but it shows how the flat band be-
havior of the valence states in Y2CCl2 gives no K valleys of optical activity as in MoS2,
but a large wall dividing the unit cell into two triangles of lesser optical activity. The
optical transitions happen not in the K points, but in the path between Γ points. The
𝑥̂ polarization resulted in a 𝑦 line of activity, while the 𝑦 polarization gave lesser optical
activity, but still followed the in-between between Γ paths, insinuating a perpendicular



162 Chapter 5. Advanced Electronic Properties of MXenes and TMDs

relation between the photon polarization and the lines of maximal optical absorption in
reciprocal space. Both momentum maps (figures 41 and 42) are still imperfect, revealing
higher fragility of the wave function continuity algorithm when working in two dimensions.

The optical absorption coefficient 𝛼±
𝑣𝑐(𝜔) for the transition between each pair of

bands obeys the proportion relation:

𝛼±
𝑣𝑐(𝜔) ∝ 1

𝜔

ˆ
BZ

𝑑k
(2𝜋)3

⃒⃒⃒
p±

𝑐𝑣(k)
⃒⃒⃒2

𝛿 (ℏ𝜔 − (𝐸𝑐(k) − 𝐸𝑣(k))) , (5.24)

and the total absorption coefficient is:

𝛼±(𝜔) ∝ 1
𝜔

∑︁
𝑐,𝑣

ˆ
BZ

𝑑k
(2𝜋)3

⃒⃒⃒
p±

𝑐𝑣(k)
⃒⃒⃒2

𝛿 (ℏ𝜔 − (𝐸𝑐(k) − 𝐸𝑣(k))) . (5.25)

This model contains only single-particle states; however, in reality, exciton states
are necessary to fully grasp the physical picture. The first peaks in the experimental
optical spectrum are energies corresponding to the creation of excitonic quasiparticles.

5.8 Exciton States

The Bethe-Salpeter equation (BSE) (SALPETER; BETHE, 1951) is an approx-
imate equation that uses perturbation theory to describe the electron-hole interaction.
Through this equation, it is possible to obtain the exciton energy states and their corre-
sponding wave functions.

An exciton is constituted by an electron and a hole coupled by an electromagnetic
interaction. Thus, the exciton Hamiltonian must include contributions from the electron
Hamiltonian, the hole Hamiltonian, and the electromagnetic potential:

𝐻̂X = 𝐻̂e + 𝐻̂h + 𝑉 . (5.26)

The exciton state vectors |Ψ𝑖
X⟩ are expanded as a linear combination of the basis

states:

⃒⃒⃒
Ψ𝑖

X

⟩
=
∑︁
𝑣,𝑐,𝑘

𝐴𝑖
𝑣,𝑐(𝑘)𝑐†

𝑐(𝑘)𝑐𝑣(𝑘) |GS⟩ =
∑︁
𝑣,𝑐,𝑘

𝐴𝑖
𝑣,𝑐(𝑘) |Ψ𝑐,𝑣(𝑘)⟩ , (5.27)

where |GS⟩ is the ground state, and |Ψ𝑐,𝑣(𝑘)⟩ = |Ψ𝑐(𝑘)⟩ ⊗ |Ψ𝑣(𝑘)⟩, coupling the
electron and hole states. We have then 𝑁𝑣 × 𝑁𝑐 × 𝑁𝑘 basis functions, being that the
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dimension of the BSE Hamiltonian.

The eigenvalues and eigenstates are thus obtained from simple diagonalization,

𝐻̂X

⃒⃒⃒
Ψ𝑖

X

⟩
= 𝐸X𝑖

⃒⃒⃒
Ψ𝑖

X

⟩
. (5.28)

This Schrödinger equation may be written as:

(𝐸𝑐(𝑘) − 𝐸𝑣(𝑘))𝐴𝑖
𝑣,𝑐(𝑘) + 1

𝐴C

∑︁
𝑣′,𝑐′,𝑘′

𝑉 (𝑞) ⟨Ψ𝑐(𝑘)|Ψ𝑐′(𝑘′)⟩ ⟨Ψ𝑣′(𝑘′)|Ψ𝑣(𝑘)⟩ 𝐴𝑖
𝑣′,𝑐′(𝑘′)

= 𝐸X𝑖
𝐴𝑖

𝑣,𝑐(𝑘),
(5.29)

with 𝐴C = 𝐴UC𝑁𝑘 corresponding to the total area of the crystal in real space,
𝑉 (𝑞) being the electromagnetic potential in reciprocal space, where 𝑞 = 𝑘′ − 𝑘. Let’s
assume the Keldysh (KELDYSH, 1979) form:

𝑉 (𝑞) = − 𝑒2

2𝜖0𝜖𝑑|𝑞|(1 + 𝑟0|𝑞|) . (5.30)

𝑉 (𝑞) = − 𝑒2

2𝜖0𝜖𝑑|𝑞|
(1 + 𝑟0|𝑞|). (5.31)

Here, 𝑒 is the electron charge, 𝜖0 is the permittivity constant in vacuum, 𝑟0 corre-
sponds to the 2D polarizability of the system, representing the scale at which the Coulomb
potential transitions from 3D to 2D environment (13.55 Å for MoS2), and 𝜖𝑑 is the en-
vironmental dielectric constant (2.5 for air/silica interface) (RIDOLFI; LEWENKOPF;
PEREIRA, 2018). The 2D polarizability of the MXene crystal was estimated to be equal
to the TMD counterpart, due to the lack of literature on this newborn material.

The nature of the electromagnetic potential includes a singularity problem when
𝑞 = 0. To solve this, we start by understanding that in this discrete model, each momen-
tum vector 𝑘 in our grid represents a small area that when summed up results in the
full unit cell area. Each potential calculation should not be thought of as an interaction
between charges with specific grid momentum coordinates 𝑘 and 𝑘′, but as the interac-
tion between charges whose coordinates belong to the surroundings of the specific grid
coordinates. Instead of defining another expression for the potential in the singularity, as
commonly used (RIDOLFI; LEWENKOPF; PEREIRA, 2018), we solve the singularity
problem using an integral form of the electromagnetic potential inside a small area around
the momentum vector coordinates. This small area must be correspondent to the fraction



164 Chapter 5. Advanced Electronic Properties of MXenes and TMDs

of the reciprocal unit cell area related to each point in the grid Δ𝐴 = 𝐴BZ
𝑁𝑘

. Even for very
dense grids, where each point becomes very close to each other, the integral form com-
pensates for that by reducing the area of integration, converging the results for higher 𝑁𝑘.

The potential is then numerically calculated as

𝑉𝐾(𝑞 ≈ 0) = − 2
Δ𝐴

ˆ 0

−𝑁𝑠Δ𝑥

ˆ 𝑁𝑠Δ𝑦
2

− 𝑁𝑠Δ𝑦
2

𝑒2

2𝜖0𝜖𝑑

√︁
𝑘2

𝑥 + 𝑘2
𝑦(1 + 𝑟0

√︁
𝑘2

𝑥 + 𝑘2
𝑦)

𝑑𝑦𝑑𝑥, (5.32)

where Δ𝐴 is the total area of of the small unit cell represented in Figure 43; 𝑁𝑠 is
the number of steps in the numerical integration. Δ𝑥 = |𝑏1𝑥+𝑏2𝑥|

2𝑁𝑝𝑁𝑠
, and Δ𝑦 = |𝑏1𝑦−𝑏2𝑦 |

𝑁𝑝𝑁𝑠

𝑥step
𝑁𝑠

,
being 𝑥step the counter of steps in the 𝑘𝑥 direction, necessary to define Δ𝑦 since its height
varies for each 𝑥step. The factor 2 in front of the integral permits a cheaper integration on
only half of the total area that should be considered.

Figure 43 – Illustration of the numeric integral around the singularity point.

The exciton calculations performed for MoS2 and Y2CCl2 resulted in binding en-
ergies, 𝐸bind = 𝐸gap − 𝐸X, of 0.334 and 0.299 eV respectively, for their first exciton states,
where in the case of MoS2 it is a degenerate state; being both significant indicators of good
exciton state stability. The squared absolute values of their wave functions are shown in
figures 44 and 45, where we have considered

⃒⃒⃒
𝐴1

↑,↑(𝑘)
⃒⃒⃒2

,
⃒⃒⃒
𝐴2

↑,↑(𝑘)
⃒⃒⃒2

,
⃒⃒⃒
𝐴1

↓,↓(𝑘)
⃒⃒⃒2

and
⃒⃒⃒
𝐴2

↓,↓(𝑘)
⃒⃒⃒2

for MoS2, and
⃒⃒⃒
𝐴1

2,1(𝑘)
⃒⃒⃒2

for Y2CCl2:
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Figure 44 – Squared absolute value of the wave functions for the degenerated pair of
exciton states in MoS2.

Figure 44 shows the first pair of degenerate exciton state wave functions in MoS2,
|Ψ1

X⟩ = 𝐴1
↑,↑(𝑘 ≈ K)𝑐†

𝑐=↑(𝑘 ≈ K)𝑐𝑣=↑(𝑘 ≈ K) |GS⟩ and |Ψ2
X⟩ = 𝐴2

↓,↓(𝑘 ≈ K′)𝑐†
𝑐=↓(𝑘 ≈

K′)𝑐𝑣=↓(𝑘 ≈ K′) |GS⟩, being optically selected, as expected. This pair of states is com-
monly called "A excitons", while the second pair, |Ψ3

X⟩ = 𝐴3
↓,↑(𝑘 ≈ K)𝑐†

𝑐=↓(𝑘 ≈ K)𝑐𝑣=↓(𝑘 ≈
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K) |GS⟩ and |Ψ4
X⟩ = 𝐴4

↑,↑(𝑘 ≈ K′)𝑐†
𝑐=↑(𝑘 ≈ K′)𝑐𝑣=↑(𝑘 ≈ K′) |GS⟩, is called "B excitons".

For being constituted of electron-hole pairs sharing the same spin alignment and momen-
tum coordinate, both A and B excitons are bright states, i.e., they can decay back to
ground state by photon emission of equivalent energy and polarization.

Figure 45 – Squared absolute value of the first exciton state wave function in Y2CCl2.

The first exciton state in Y2CCl2, shown in Figure 45, differs from what is seen in
the TMD counterpart. Firstly, the wave function spreads in a straight line, and this line is
centered in the M high symmetry point, as the momentum mapping (Figure 42) suggests.
What is also important to notice is that this exciton state, |Ψ1

X⟩ = 𝐴1
2,1(𝑘 ≈ M)𝑐†

𝑐=1(𝑘 ≈
M)𝑐𝑣=2(𝑘 ≈ M) |GS⟩, is less localized because the hole states in its constitution belong to
nearly flat band states, which have an effective mass of ≈ 20 𝑚e. Since the effective mass
of the exciton is the sum of electron and hole masses, this is a supermassive exciton.

The contribution of each band transition to the optical absorption coefficient con-
sidering excitonic effects 𝜉𝛼(𝜔) is given as:

𝜉𝛼
𝑣𝑐(𝜔) = 1

𝜔

𝜋

𝐴C

∑︁
𝑖,𝑘

𝑂𝛼
𝑖,𝑣,𝑐(𝑘)𝛿(ℏ𝜔 − 𝐸X𝑖

). (5.33)

And the total absorption coefficient:

𝜉𝛼(𝜔) = 1
𝜔

𝜋

𝐴C

∑︁
𝑖,𝑣,𝑐,𝑘

𝑂𝛼
𝑖,𝑣,𝑐(𝑘)𝛿(ℏ𝜔 − 𝐸X𝑖

), (5.34)
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where we’ve been using the oscillator strength 𝑂𝛼
𝑖,𝑣,𝑐(𝑘), which represents the con-

tribution to the 𝑖th excitonic state given by the interaction between an electron in |Ψ𝑐(𝑘)⟩
and a hole in |Ψ𝑣(𝑘)⟩, induced by an electromagnetic field in the 𝛼 polarization. This
quantity is computed as:

𝑂𝛼
𝑖,𝑣,𝑐(𝑘) =

⃒⃒⃒
𝐴𝑖

𝑣,𝑐(𝑘)𝑃 𝛼
𝑣𝑐(𝑘)

⃒⃒⃒2
. (5.35)

Figure 46 – Excitonic Optical absorption spectra of monolayer MoS2 under right-handed
circularly polarized light. a) considers hierarchical energy states, while b)
considers continuous energy bands.
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The spectrum shown in Figure 46 corresponds to excitation by right-handed cir-
cular polarization of light, such that the exciton states here observed are produced in the
K valley, while the K′ valley would be excited by left-handed circularly polarized light,
producing peaks in the same energetic positions yet with opposite spins with relation to
these results from positive polarization. We can see the importance of the correct index
configuration for elucidating which electron-hole pair represents each exciton state, which
is one step further than the most advanced methods for excitonic calculations in the lit-
erature (WU; QU; MACDONALD, 2015; RIDOLFI; LEWENKOPF; PEREIRA, 2018;
DIAS et al., 2018). Each peak represents an optical excitation related to the creation
of some specific exciton, the first state correspondent to the interaction between a hole
in the upper valence state and an electron in the lower conduction state with the same
spin, i.e., each valley is responsible for an exciton state of distinct spin orientation yet
energetically degenerate. The second exciton state in each valley is of opposite spin in re-
lation to the first exciton state, and higher states are condensed in the same energy range,
resulting in an intense absorption composed of contributions from multiple exciton states.

This optical control over both valleys is the key to valleytronics, where information
can be encoded in the valley degree of freedom of the exciton states. Spin up A excitons
are formed in the K valley upon 1.390 eV energy absorption from right-handed circularly
polarized light, while B excitons with spin down are formed if the energy of the inci-
dent photons is 1.535 eV. A and B excitons are also formed upon left-handed circularly
polarized light, but they appear in the K′ valley, and the spin values are also opposite
from the K valley. Exciton states can be in superposition, which leads to the possibility
of quantum information encoding, unlike usual binary information contained in common
electronic technologies. This material is a candidate for being used as a quantum bit, the
quantum information unit considered in quantum computation (BORGES et al., 2023).

Figure 47 shows the excitonic absorption spectra in Y2CCl2, where the first peak
represents the light absorption that forms the supermassive exciton (fig. 44), light whose
photon energy is 0.486 eV and polarization is in the 𝑥̂ axis.
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Figure 47 – Excitonic Optical absorption spectra of monolayer Y2CCl2 under 𝑥̂ polarized
light.

At this point, it is important to recover that all those calculations are based on
DFT with GGA-PBE exchange-correlation functionals. A more experimentally accurate
result would come from a calculation with the HSE06 hybrid functional, which would shift
the whole spectrum at least 0.5 eV higher by opening the valence-conduction energy gap
by that amount. Another consideration is that we only considered two valence and two
conduction bands for the results, which are responsible for the lower energy exciton states.
A more accurate result in the energetically higher states would require contributions from
more band interactions.

5.9 Berry Curvature

The Berry curvature is a profound subject with various applications to topolog-
ical condensed matter physics, impacting quantum computation, spintronics, and many
emerging technologies (KöNIG et al., 2007; MOURIK et al., 2012). Chern numbers and
anomalous Hall properties can be directly extracted from Berry curvature, as well as other
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quantities such as the quantum metric. The anomalous Hall effect and spin Hall effect
find applications in spintronic devices, such as magnetic sensors and magnetic memory
devices (NAKATANI et al., 2024), where information is encoded in the spin current rather
than charge current, being much more energy-efficient than common electronics. Chern
numbers are one of the fundaments in topological quantum computing (CHEN et al.,
2023), where quantum information is topologically protected from decoherence, which is
a crucial aspect for the future of quantum computation (AASEN et al., 2025). This study
merely scratches the surface, but we go far enough to understand how the calculation of
these properties that are derived from Berry curvature can be impacted by proper treat-
ment of the electronic states.

We start by pondering upon adiabatic transformations of our system, i.e., we
now consider the system in an eigenstate |Ψ𝑛(𝑘(𝑡))⟩, where 𝑘(𝑡) is slowly changing. The
quantum adiabatic theorem (KATO, 1950) states that a system initially in one of its
eigenstates |Ψ𝑛(𝑘(0))⟩ remains in that instantaneous state |Ψ𝑛(𝑘(𝑡))⟩ under adiabatic
transformations. This state evolves in time according to the time-dependent Schrödinger
equation,

𝑖ℏ
𝑑

𝑑𝑡
|Ψ𝑛(𝑘(𝑡))⟩ = 𝐻̂(𝑘(𝑡)) |Ψ𝑛(𝑘(𝑡))⟩ . (5.36)

Now we must remember that (5.8) does not uniquely determine the phase of the
basis functions, as it allows an arbitrary phase factor which is usually unexplored, since
observables are gauge invariant. |Ψ𝑛(𝑘(𝑡))⟩ → 𝑒𝑖𝜑(𝑘) |Ψ𝑛(𝑘(𝑡))⟩ is a local gauge transfor-
mation, as 𝜑(𝑘) can vary arbitrarily at each point in parameter space. This phase factor
can be expanded as (XIAO; CHANG; NIU, 2010):

𝑒𝑖𝜑(𝑘) |Ψ𝑛(𝑘(𝑡))⟩ = 𝑒𝑖𝛾𝑛(𝑡)𝑒𝑥𝑝

[︃
−𝑖

ℏ

ˆ 𝑡

0
𝑑𝑡′𝜖𝑛(𝑘(𝑡′))

]︃
|Ψ𝑛(𝑘(𝑡))⟩ , (5.37)

where the second exponential is the dynamical phase, which is irrelevant to our discus-
sion, while the first exponential contains the Berry phase 𝛾𝑛(𝑡), which can be canceled
with local gauge transformations, and hence for long neglected. The exception was no-
ticed by (BERRY, 1984), when he considered the effect of this phase upon closed paths,
where the initial and final coordinates are equal, and the 𝛾𝑛(𝑡) becomes a gauge-invariant
quantity. To obtain the form of this phase, we consider that it must satisfy the time-
dependent Schrödinger equation, so inserting (5.37) into (5.36), and multiplying both
sides by ⟨Ψ𝑛(𝑘(𝑡))| gives:

𝛾̇𝑛(𝑡) = 𝑖 ⟨Ψ𝑛(𝑘(𝑡))| ∇𝑘 |Ψ𝑛(𝑘(𝑡))⟩ · 𝑘̇(𝑡). (5.38)
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Integrating in time, then considering a closed loop 𝐶 after using 𝑘̇(𝑡′)𝑑𝑡′ → 𝑑𝑘,
we finally obtain a geometric phase 𝛾𝑛 of the 𝑛th band state, which is not only gauge-
invariant but also time-independent and brings intuition of how the physical state changes
over the coordinate space:

𝛾𝑛 =
˛

𝐶

𝑑𝑘 · 𝑖 ⟨Ψ𝑛(𝑘)| ∇𝑘 |Ψ𝑛(𝑘)⟩ =
˛

𝐶

𝑑𝑘 · 𝐴𝑛, (5.39)

where 𝐴𝑛 = 𝑖 ⟨Ψ𝑛(𝑘)| ∇𝑘 |Ψ𝑛(𝑘)⟩ is now called the Berry connection of the 𝑛th
band state, being a gauge-dependent quantity. Stokes’s theorem can be invoked to give
a representation of the Berry phase in terms of a vector field called the Berry curvature,
Ω𝑛(𝑘) = ∇𝑘 × 𝐴𝑛(𝑘):

𝛾𝑛 =
˛

𝐶

𝑑𝑘 · 𝐴𝑛 =
‹

𝑆

𝑑𝑆 · Ω𝑛(𝑘). (5.40)

The Berry curvature is gauge-invariant and analogous to a magnetic field 𝐵, but
it is defined in momentum space, or any parameter space, and its nature is not magnetic;
it is a local geometric description as it quantifies the non-commutativity of adiabatic
parallel transport of quantum states in parameter space. This intuition is better grasped
in the more generalized expression for the Berry curvature, expressed as an antisymmetric
tensor Ω𝑛

𝛾 = 𝜖𝛼𝛽𝛾Ω𝑛
𝛼𝛽, where (XIAO; CHANG; NIU, 2010)

Ω𝑛
𝛼𝛽 = 𝑑

𝑑𝑘𝛼
𝐴𝑛

𝛽 − 𝑑

𝑑𝑘𝛽
𝐴𝑛

𝛼. (5.41)

If we were to go deeper into the subject, we could take integrals of Ω𝑛,𝑥𝑦(𝑘) over
closed manifolds, such as the BZ, to result in topological invariants known as Chern num-
bers 𝑐𝑛, opening perspectives for many topological properties such as the quantum Hall
effect (THOULESS et al., 1982). Here we will limit ourselves to compute the total Berry
curvature according to a more approachable form of calculation, discussed in (WANG et
al., 2006), from where we obtain:

Ω𝛼,𝛽(𝑘) = −2𝑖
∑︁
𝑣,𝑐

⟨Ψ𝑐(𝑘)| 𝜕𝐻
𝜕𝛼

|Ψ𝑣(𝑘)⟩ ⟨Ψ𝑣(𝑘)| 𝜕𝐻
𝜕𝛽

|Ψ𝑐(𝑘)⟩
(𝐸𝑐(𝑘) − 𝐸𝑣(𝑘))2 . (5.42)

This expression brings the intuition that the curvature relates to band interac-
tions, and can be easily calculated using the momentum matrix elements 𝑃 𝛼

𝑣𝑐(𝑘). These
results for the total Berry curvature are perfectly obtained using any addressing method
for the energy states, as the sum over all valence and conduction bands will include inter-
actions of all combinations regardless of the index configuration. Nevertheless, if we fix
the conduction and valence band indices, we have the expression that brings the curvature
contribution from each band interaction:



172 Chapter 5. Advanced Electronic Properties of MXenes and TMDs

Ω𝑣,𝑐
𝛼,𝛽(𝑘) = −2𝑖

⟨Ψ𝑐(𝑘)| 𝜕𝐻
𝜕𝛼

|Ψ𝑣(𝑘)⟩ ⟨Ψ𝑣(𝑘)| 𝜕𝐻
𝜕𝛽

|Ψ𝑐(𝑘)⟩
(𝐸𝑐(𝑘) − 𝐸𝑣(𝑘))2 . (5.43)

This result can be properly calculated only if we correctly address the band states,
as we show by comparison in Figure 48, where we consider = 𝑥 and 𝛽 = 𝑦 in both
scenarios:

Figure 48 – Real part of Berry curvature contributions for each band interactions in both
pictures of index configurations. The contribution from each pair of bands is
distinguished by color, and both scenarios considers = 𝑥 and 𝛽 = 𝑦.
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We see that without the correct index configuration, the Berry curvatures for par-
ticular interactions are nonsense, but it is a meaningful result when we properly consider
the band index configuration, being associated with the optical selection rules and valley-
dependent topology (ZHOU et al., 2021). This approach gives a finer view of the band
interactions at a topological level, showing spin dependency in the band contribution to
the total Berry curvature, being an elucidating information for valleytronics physics. Fig-
ure 49 shows the Berry curvatures considering 𝛼 = 𝑥, 𝑦 and 𝛽 = 𝑥, 𝑦, where we verify the
antisymmetric nature of the Berry tensor:

Figure 49 – Real part of Berry curvature tensor components.

Finally, these non-zero results are shown for the entire unit cell:
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Figure 50 – Spin up and down contributions to the Berry curvature within the unit cell
(Berry curvature units in Å2).
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Conclusions

I cannot conclude without first emphasizing the importance of the gradual con-
struction of knowledge both as a personal pursuit and as a collective human goal. This
study represents the best contribution my present self can offer to the community, and I
recognize that much work is yet to be done. This study was able to accomplish a journey
through the understanding of the fundamental properties of physics, until achieving great
practical methodologies and results of the quantum mechanical behavior in realistic solid
systems.

We explored two of the most modern classes of materials, TMDs and MXenes,
giving the individual attention each material deserved. For the MXene family, we used
DFT to explore unsynthesized crystals, starting by simulating their stability and vibra-
tional properties. Our results predict viable synthesis conditions for Y2CF2, Y2CCl2 and
Y2CBr2 by obtaining positive phonon band states and using the phonon density to find
good thermodynamic indicators of the materials’ stability. The vibrational description of
the materials also permitted the calculation of the lattice interaction with light, resulting
in the infrared and Raman spectra, which will be valuable for future characterization of
the synthesized materials. Having assured the materials’ condition to exist, we dived into
their electronic properties. All three MXenes exhibited a semiconductor band structure,
all with an indirect band gap. Our attention was caught by the flatness of the highest va-
lence band in each material, which called for further investigation into the effective mass
of charge carriers in those electronic states. We found an impressive effective mass in the
M high symmetry coordinate of the Y2CF2 reciprocal lattice, two orders of magnitude
higher than the electron mass, confidently indicating a real flat band region. Y2CCl2 also
called for special attention, as we noticed that more than a strip of flatness effect, the
almost flat region located in the direct band gap was energetically close to the top of the
valence band. For that reason, the electronic structure of Y2CCl2 was chosen for a deeper
analysis alongside MoS2, a widely studied TMD known for its valleytronic properties.

We pushed the limits of computational simulation by constructing advanced algo-
rithms capable of threatening the wave function of the electron states one step further
than simple DFT calculations. Using Wannier functions, we were capable of correctly
finding the coupling of the electronic states, and with it calculate optical and topological
interactions, finding their absorption spectrum with excitonic effects, analyzing the opti-
cal transitions in detail and the effect of the coupling of states in topological phenomena
by the prediction of the Berry curvature. We were able to demonstrate the valleytronic
structure of MoS2 in more depth than what is done in the current literature. Also, we
found massive states with one order of magnitude higher than the electron mass in the va-
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lence band of Y2CCl2, states which are also in a region of high optical activity, indicating
direct optical transitions from massive states. These were predicted to majorly contribute
to excitonic behavior, resulting in a massive exciton state whose binding energy is similar
to the recognized stable excitons in MoS2, but differently from the K valley localization
and radial distribution of the wave function, its wave is distributed in a linear shape in
the center of the reciprocal unit cell.

Despite achieving groundbreaking results with our methodology, we notice the
eternal incompletion of knowledge as we see a clear path for deeper investigation. There
is much more to be explored in topological properties, spintronics, and valleytronics;
applications in quantum technology. Everything done in this study can be pushed even
further beyond, and we finish this document with open doors.
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A B S T R A C T

Transition metal carbides, nitrides, and carbonitrides (MXenes) represent a versatile class of two-dimensional 
materials that recently emerged as promising materials for electronic and quantum applications. MXenes are 
composed not only of the primary elements mentioned, but also feature surface terminations that vary according 
to the synthesis method, thereby greatly expanding the range of properties in these materials. This study 
theoretically investigates the anticipated structure, stability, thermodynamic, and electronic properties of 
yttrium-carbon-based monolayers terminated with F, Cl, and Br groups. The calculations are substantiated by 
density functional theory (DFT) and density functional perturbation theory (DFPT), employing the GGA-PBE 
exchange functional and the HSE06 hybrid functional for a better prediction of the electronic structure. The 
findings regarding phonon dispersion, cohesive energy, and thermodynamic properties indicate good stability. 
Concerning electronic properties, all materials demonstrated semiconductor behavior, each characterized by a 
unique indirect band gap extending from Γ to M high symmetry points, although the direct transition is ener
getically close, especially in the Y2CCl2 structure. Considerable focus was directed towards the effective mass of 
the particles within these monolayers, justified by the flat band behavior that appears as a platform for exotic 
quantum phenomena such as correlated insulators and superconductivity.

1. Introduction

Following the discovery of graphene [1–3], two-dimensional (2D) 
materials have garnered significant attention in technology. Subse
quently, the family of transition metal dichalcogenides (TMDs) was 
incorporated, facilitating the production of numerous more monolayers 
[4,5]. The scientific community is now recognizing a novel category of 
2D materials, specifically transition metal carbides, nitrides, and car
bonitrides (MXenes); the majority of potential monolayers remain 
unsynthesized, resulting in a vast array of physical properties yet to be 
investigated. Conductor MXenes have been utilized in significant tech
nologies, including photovoltaic cells, energy storage, and gas sensors; 
however, the semiconductor domain remains shrouded in potential, 
necessitating investigation into undiscovered physical properties. A 
general MXene is described by the formula Mn+1Xn Tx, where n might 
be from 1 to 3,M is a transition metal, X is carbon, nitrogen, or car
bonitride, and Tx stands for the x number of terminations T. These ter
minations are not well defined in terms of viability and depend on the 
method used for the synthesis of the material [6].

In the synthesis processes, MXenes are obtained from selective 
etching of atomic layers of a parent MAX phase. MAX phases, Mn+1AXn, 

are interleaved layers of transition metal carbides or nitrides, with layers 
of A atoms, usually belonging to the groups 13 or 14 of the periodic table 
of elements. For removing the A atoms, MAX phases are submitted to a 
wet-chemical exfoliation, where some atoms from the etching solution 
will end up as a termination group for the resulting MXene [7].

The most common technique used for the synthesis of MXenes is to 
etch the A-atoms from its precursor in an aqueous fluoride-containing 
solution, such as hydrofluoric acid (HF) [1]. This process can be per
formed by controlling the concentration of HF and the reaction time at a 
temperature of 55∘C. The specificities of the process vary for each 
particular material, but in general, an increase in the atomic number of 
M, or a larger n in the Mn+1XnTx formula, demands stronger etching and 
longer time. After etching the A atoms, the exposed and highly reactive 
surface constituted of transition metals M forms bonds with atoms in the 
solution, giving rise to a mixture of − O, − OH, and -F terminations. 
Despite being still an emerging field of study, there are already 
post-synthesis processes capable of producing MXenes with chosen ter
minations [2].

Based on evidence from previous studies [8] that Y2CF2 is a stable 
semiconductor material that could be synthesized from 
yttrium-carbon-based MAX phases [9], and considering that a 
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Insights em efeitos de substituição em MXenes baseados em ı́trio. Uma investigação
utilizando DFT

Vendramini, V.R.P∗ and D. L. Azevedo†

Instituto de F́ısica, Universidade de Braśılia (UnB)

Os carbetos, nitretos e carbonitretos de metais de transição, conhecidos como MXenes, consti-
tuem uma classe emergente de materiais bidimensionais (2D). A literatura cient́ıfica reconhece que a
maioria dos MXenes apresenta comportamento condutor. No presente estudo, empregamos cálculos
ab initio para elucidar a estrutura, estabilidade, propriedades espectroscópicas, termodinâmicas e
eletrônicas dos MXenes pertencentes à famı́lia do ı́trio, os quais ainda não foram sintetizados expe-
rimentalmente. Todos os cálculos realizados fundamentam-se nos métodos da Teoria do Funcional
da Densidade (DFT) e da Teoria do Funcional da Densidade por Perturbação (DFPT), utilizando
o funcional de troca-correlação GGA-PBE e o funcional h́ıbrido HSE06 para uma estimativa mais
precisa do gap de banda. Nossos resultados referentes à dispersão de fônons e às propriedades ter-
modinâmicas indicam alta estabilidade para os materiais na fase 2H do sistema trigonal prismático.
Embora o Y2NF2 tenha sido previsto como condutor, conforme a tendência geral dos MXenes, ob-
servamos um comportamento semicondutor para o Y2CF2, com um gap de banda indireto de 1.908
eV, estendendo-se do ponto Γ ao ponto M.

Keywords: MXenes, DFT, semicondutor, 2D, monocamadas, Ítrio

I. INTRODUÇÃO

Após o primeiro grande avanço com o grafeno, os ma-
teriais bidimensionais tornaram-se um campo de pes-
quisa extremamente popular, abrindo caminho para no-
vas possibilidades tecnológicas [1–3]. Os Dicalcogenetos
de Metais de Transição (TMDs) emergiram como uma
classe moderna de materiais 2D, confirmando o poten-
cial da tendência bidimensional [4, 5]. Nos últimos anos,
a atenção volta-se para uma nova classe: carbetos, ni-
tretos e carbonitretos de metais de transição (MXenes),
que têm o potencial de se tornar uma das classes mais
versáteis de materiais 2D, com um grande número de
materiais ainda inexplorados e uma ampla gama de pro-
priedades f́ısicas [6, 7]. A fórmula geral para os MXenes é
Mn+1XnTm, onde n varia de 1 a 3, M representa o metal
de transição, X representa os carbetos, nitretos ou carbo-
nitretos, e Tx representa o número x de terminações T.
Essas terminações dependem do método utilizado para a
śıntese do MXene [6].

Os MXenes são obtidos a partir da corrosão seletiva
das camadas atômicas de algum material precursor, usu-
almente sintetizados por esfoliação dos materiais paren-
tais em solução qúımica [7]. As fases MAX, Mn+1AXn,
consistem em camadas hexagonais intercaladas de carbe-

∗ victor.vendra@gmail.com
† david888azv@gmail.com

tos ou nitretos de metais de transição, com camadas de
átomos de A, geralmente dos grupos 13 ou 14 da tabela
periódica dos elementos. A ligação qúımica entre os me-
tais de transição M e os átomos A é metálica, portanto,
não é posśıvel separar essas camadas das fases MAX por
simples cisalhamento mecânico. No entanto, as ligações
entre os elementos M-X são de natureza covalente, sendo
mais fortes do que as ligações metálicas, o que possibilita
a corrosão seletiva das camadas Mn+1Xn [6]. A técnica
de śıntese mais comumente empregada na produção de
MXenes consiste em corroer os átomos de A de seu pre-
cursor em uma solução aquosa contendo flúor, como o
ácido fluoŕıdrico (HF) [8]. Este processo pode ser rea-
lizado controlando a concentração de HF e o tempo de
reação, mantendo uma temperatura de 55◦C. As espe-
cificidades práticas do processo variam para cada mate-
rial particular, mas geralmente, o aumento do número
atômico em M, ou um n maior na fórmula Mn+1XnTm,
exige uma corrosão mais forte e um tempo maior. Após
a corrosão dos átomos de A, a superf́ıcie exposta e alta-
mente reativa dos metais de transição M forma ligações
com átomos da solução, resultando em uma mistura de
terminações de -O, -OH e -F. Apesar de ainda ser um
campo emergente de estudo, já existem processos pós-
śıntese capazes de produzir MXenes com terminações es-
pećıficas [9]. Neste estudo pensamos além dos materiais
já sintetizados, mas, mantemos as terminações em F pois
elas resultam da técnica de corrosão mais comum, o uso
de soluções de HF. Apesar de não haver ainda registro
de monocamadas de Y2CF2, já é relatada a śıntese de
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