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Abstract

The cosmic microwave background (CMB) is a powerful observational tool for probing the
formation and evolution of structures in our universe, encoding information through both
primary anisotropies, imprinted by primordial fluctuations, and secondary anisotropies,
which arise from interactions with large-scale structures of the universe. Among the sec-
ondary anisotropies, a particularly powerful probe of ionized gas, such as that found in the
intra-cluster medium (ICM) of galaxy clusters, is the Sunyaev-Zel’dovich effect (SZE), i.e.,
the spectral distortion induced in the CMB spectrum by the interaction of CMB photons
with free electrons in the ICM via inverse Compton scattering.

Although the phenomenology of both the thermal and kinetic components of the SZE is well
understood, a rigorous derivation of this effect is rarely presented in the literature. Therefore,
in this work, we provide such a derivation by formulating the Boltzmann equation in a
curved spacetime framework and applying tools from quantum field theory to describe the
underlying microscopic interactions responsible for the SZ effect.

Keywords: Sunyaev-Zeldovich Effect. Inverse Compton Scattering. Boltzmann Equation.
Cosmic Microwave Background. Quantum Field Theory.



Resumo

A radiacdo cosmica de fundo em micro-ondas (CMB) é uma poderosa ferramenta observaci-
onal para investigar a formacao e a evolucdo de estruturas em nosso universo, codificando
informacdes tanto por meio de anisotropias priméarias, impressas por flutuacées primordiais,
quanto por meio de anisotropias secunddrias, que surgem de interacdes com estruturas
de grande escala do universo. Entre as anisotropias secundarias, uma sonda particular-
mente poderosa para gas ionizado, como a encontrada no meio intra-aglomerado (ICM) de
aglomerados de galéxias, € o efeito Sunyaev-Zel'dovich (SZE), ou seja, a distorcio espectral
induzida no espectro da CMB pela interagdo de fétons da CMB com elétrons livres no ICM

via espalhamento Compton inverso.

Embora a fenomenologia dos componentes térmico e cinético da SZE seja bem compreendida,
uma derivacao rigorosa desse efeito raramente € apresentada na literatura. Portanto, neste
trabalho, realizamos tal derivacdo formulando a equacio de Boltzmann em uma estrutura
de espaco-tempo curvo e aplicando ferramentas da teoria quantica de campos para descrever
as interacdes microscopicas subjacentes responsaveis pelo efeito SZ.

Palavras-chave: Efeito Sunyaev-Zeldovich. Espalhamento Compton Inverso. Equacdo de

Boltzmann. Radiacdo Cosmica de Fundo em Micro-ondas. Teoria Quantica de Campos.
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1 Introduction

One of the most powerful observational probes in modern cosmology is the cosmic
microwave background radiation (CMB). This radiation represents the first light emitted
in the universe and was generated approximately 380,000 years after the Big Bang, during
the epoch of recombination, when the universe cooled enough for protons and electrons
to combine into neutral hydrogen atoms. As a result, photons decoupled from matter and
began to travel freely through space, carrying information about the physical conditions and
primordial density fluctuations of the early universe. These imprints are observed today as
tiny temperature and polarization anisotropies in the CMB (known as primary anisotropies)
which provide a snapshot of the universe at that early epoch, before the formation of large-
scale structures.

In addition to these primordial imprints, the CMB also contains the so-called sec-
ondary anisotropies, which arises from interactions between the CMB photons and matter
as they travel through the evolving universe. These include gravitational effects, such as the
Integrated Sachs-Wolfe effect and gravitational lensing, as well as scattering processes such
as the Sunyaev-Zel'dovich effect (SZE), where CMB photons gain energy by interacting with
hot electrons in the intracluster medium (ICM) of galaxy clusters. By analysing both primary
and secondary anisotropies, we can extract a wealth of information about the universe’s
composition, geometry, and evolution from the physics of the early universe to the growth
of cosmic structures.

Of particular interest in this work is the SZE, which was first proposed by Sunyaev
and Zel'dovich in (Zeldovich; Sunyaev, 1969), and which we aim to investigate more deeply,
not merely from a phenomenological point of view, which is already well established through
both theoretical modelling and observational confirmation (Planck Collaboration, 2016;
Bleem et al., 2015), but rather from a more fundamental, microscopic perspective. While this
study does not aim to introduce new physical results or propose novel mechanisms, it seeks
to revisit the SZE within a rigorous quantum field theoretical and statistical framework,
clarifying the assumptions and derivations that underlie its standard description. This
effort contributes by bridging the gap between phenomenological treatments and more
fundamental approaches, offering a systematic derivation of the Boltzmann collision term
and exploring how quantum-level interactions manifest in macroscopic observables. In this
sense, although the effect itself is well known, the present analysis adds value by deepening
our conceptual understanding and highlighting the theoretical consistency behind the
observable signatures of the SZE in the CMB.

To achieve this goal, we adopt a two-fold approach. First, in Chapter 2, we formulate
the Boltzmann equation within the framework of general relativity, accounting for the
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curvature of spacetime in a spatially flat, expanding universe. This formulation allows for
a consistent description of the gravitational effects on the photon distribution function.
Second, still in Chapter 2, we employ tools from quantum field theory (QFT) to construct a
general form of the collision operator for n-particle interactions. This development leads us
to Chapter 3, where we apply quantum electrodynamics (QED) to model the microscopic
process of Compton scattering between CMB photons and electrons. By integrating these
elements, we derive the collision term that governs the SZE, encapsulating the net effect
of scattering processes on the evolution of the photon distribution. Finally, in Chapter 4,
we bring together all these ingredients to derive how the photon distribution is modified
by inverse Compton scattering and to demonstrate the resulting distortion in the CMB

spectrum.
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2 The Fundamentals of the Boltzmann

equation

In 1872, Boltzmann published the paper (Boltzmann, 2003), in which he investigated
how to describe the behaviour of gas molecules in a thermodynamic system. This work
led to the formulation of what is now known as the Boltzmann equation. To achieve this,
he introduced the distribution function f({,t) representing the number of molecules with
energy ¢ at a time ¢, and derived a partial differential equation for f, considering how
the distribution changes during a short time interval as the result of collisions between the
molecules that make up the gas. In addition to that, he considered that there were no external
forces and that the conditions were uniform throughout the gas. With these considerations,
he successfully derived the equation for monatomic gas molecules:

5f(S) _ /°° /W FEDFED _FEDFED] ontye e orpde. o
{ o Jo o ’ .

0 & ¢
where ¢ and ¢’ are the energy of the molecules before the interaction (collision), and & and

& = ¢+ — & are the energy of the molecules after the interaction. The term (¢,{7,§)
describes the interaction.

Later, Boltzmann generalized this result for polyatomic gases, but we do not need
to discuss these results here; the important fact is that his work shows us how to properly
write a differential equation for the evolution of the distribution function in thermodynamic
systems. Although the equation used today differs in appearance, the idea behind it is the
same as that proposed by Boltzmann. Thus, we now focus on deriving the contemporary
version using quantum field theory (QFT).

2.1 The Boltzmann equation

In contrast to Boltzmann’s original formulation, which described particle distributions
as functions of time and energy, modern relativistic kinetic theory describes them through a
phase-space distribution function f = f(z™), defined on the cotangent bundle of spacetime,
whose coordinates are given by ZM = (xH, p) (Acufia-Cérdenas; Gabarrete; Sarbach, 2022).
As usual, we choose Greek indices to vary from zero to 3, and x* = (¢,x), p, = (=E,p), which

2 = —E? + p? (note that |p| = p, and we choose

leads to the mass-shell condition p#p, = -m
a metric with signature (—, +, + ,+)).
The use of the cotangent bundle (rather than the tangent bundle) is natural for

a Hamiltonian formulation, since the momenta are canonically conjugate to positions.
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However, the metric provides a natural isomorphism between the tangent-cotangent bundles,

so both formulations are, in principle, equivalent.

Despite these technicalities, the core idea remains the same as in Boltzmann’s orig-
inal work: to understand how the distribution of particles evolves under the influence of
interactions. However, in a more elegant way, this evolution is formulated using operator
equations acting on the distribution function f(z™). Following (Enomoto et al., 2023), we

will write the Boltzmann equation in the form:

L{f] = CL[f]. (2.2)

Here, L is the Liouville operator, which encapsulates the geometric evolution in phase-
space (i.e. the gravitational effect on the distribution of particles, in the case of the general
relativity framework), while C is the collision operator, which quantifies the evolution of the
distribution function given the microscopic interactions. Crucially, constructing C requires
the QFT formalism.

2.1.1 The Liouville operator in the context of General Relativity

In classical mechanics, the Liouville operator governs the evolution of distribution
functions in phase space, driven by a flow generated by a Hamiltonian . In curved space-
time, as described by general relativity (GR), this is analogous to taking the Lie derivative
of the distribution function along the Hamiltonian vector field X4, sometimes referred to
as the Liouville vector field (Acufia-Cardenas; Gabarrete; Sarbach, 2022). We can write the
vector field Xy, as:

oH 6?{) : (2.3)

XM= | 2= -
H (6 p.’  OxH

On the other hand, we can describe the path that particles take in a curved spacetime
by the parameter A, which makes it possible to write Hamilton’s equations of motion in the

form:
dxt  OH dpy _ OH

dA ~ dp, dA  dx+’ 24)
Therefore, the vector field (Equation (2.3)) can be written as:
dxH* dp
M_ |22 TER
L) 25

Now, expressing the action of the Liouville operator on the distribution function
f = f(zM) as the Lie derivative of the distribution along X, we have:
0 dx* o dp, @
LUT=Luys :X%az]; " a;{u = a;;'
A proof of the Liouville theorem using the Lie derivative as the Liouville operator can be
found in chapter X of the (Choquet-Bruhat, 2009) book and in (Acufia-Cardenas; Gabarrete;
Sarbach, 2022).

(2.6)
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In the context of GR, we can further simplify equation (2.6) using the fact that free
particles follow a geodesic path, in which the parameter A is the affine parameter of the
geodesic. Furthermore, in the Hamiltonian formalism of GR, this geodesic path is associated
with the Hamiltonian (Acufia-Cardenas; Gabarrete; Sarbach, 2022):

H(x,p) = %g“”(X)pupv, (2.7)

where gH” is the metric tensor, and p#p, = —m? is the mass-shell condition that enforces
relativistic consistency. Consequently, the first equation of motion in equation (2.4) results

in:
dx# 9H 3 (1 .
=-—= 59 (x) )
A~ dp, apﬂ(zg Pabg
1
= 597 (8app + 8 Pa)
= 9" pa
dx*
By pH. (2.8)

On the other hand, the second equation of motion gives:

dpy  OH 9 (1 .4
dr - oxk . oxK (Eg (x)p"‘pﬁ)
1 (69“’3(96))

aPp-

2 OxH

(2.9)

However, it is more usual, and convenient to write the Liouville operator in terms of the
affine connection:

_ Lgop (%9en , 99 ag“”). (2.10)

% = —g°° _
L) dx¥ = Ox¢  OxP
To do this, we have to relate the derivative of the metric to the connection. This relation is
given by:

agaﬁ(x) _ Brvra
s = 207, (2.11)

Proof. To prove this relation, we begin by differentiating the identity

gaﬁgﬁv = 53~

Therefore:

9 apB _ agaﬁ aﬁagﬁv _
ﬁ(g gﬁ”) =98y Y9 Gy =0

Now we multiply both sides of this equation by g°”, which gives after some manipula-

tions:
ag*P e ﬁ,vagp,,

OxH OxH
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Now, we contract the contravariant index of I';,, and rewrite equation (2.10) as:

1(99pu 99gov OGuv

r - A s
PEY = 2\ dx¥ = dxHk  dxP

which allows us to write:

09y
Bk Lo + Dop,

and consequently, using the symmetry relation of the indices of the connection, we

have:

= —g*PgP (Couv + Topp)
_ ap
)

On the other hand F;‘ﬁ = gﬁszv, which results in:
9% (x) _

_2gPvTa
Fpo 29 er

This relation allows us to write the second equation of motion (equation (2.9)) as:

dpy 1
PR _ Byva
i 2( 29 F,uv) PaDg

=T Pap’

(2.12)

Finally, we can write the Liouville operator (equation (2.6)) using equations (2.8) and
(2.12) in the form:

of of
— g2 a v YJ
LUf1 = P 5 + TioPaP 5 (2.13)
which makes it possible to write the Boltzmann equation (2.2) as:
of of
u a v _
P 5z + T PaD e CLf1. (2.14)

Later in this chapter, we will express the Liouville operator explicitly using the metric
of Friedmann-Lemaitre-Robertson-Walker (FLRW), which is spatially homogeneous and
isotropic. For now, however, we will focus on deriving an explicit expression for the collision

operator.

2.1.2 The collision operator

We define the collision operator to be the rate of change of the distribution function
over the geodesic by the microscopic processes (M.P.) (Enomoto et al., 2023), that is:
_df df sf

= :E_ %E_. 2.1
|y, dt (2.15)

C[f]
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The second equality can be independently verified using the time component of equation
(2.8), with the subsequent approximation arising from the vast difference between the rapid

timescale of microscopic collisions and the much slower timescale of macroscopic evolution.
To find an explicit formula for (2.15), we consider the following statements:
« The M.P. can be described by QFT.
« The M.P. can be evaluated in the Minkowski space, since the Liouville operator carries
the information of the gravitational effect.

The first of these considerations implies that the distribution function can be understood as
the expectation value of all possible occupation numbers with their probabilities, and the
second implies that these probabilities, i.e., the transition amplitude for the effect we want
to study, can be calculated in flat space using standard QFT.

2.1.2.1 QFT Foundations

To begin, we define a multi-particle state as:

{n}) = (X) Ins(p)) . (2.16)
S.p

where s represents the species of the particle, and (X) represents the tensor product in all
independent single-particle modes. We construct this multi-particle state to be an eigenstate
of the occupation number operator 7is(p):

ns(p) {n}) = ny(p) {n}), (2.17)

i.e., the occupation number operator selects the particles of type s and momentum p and
returns how many of them are in the volume of our system V = [ d3x = (27)36® (p = 0).
Therefore, this is very similar to what we usually do for a Harmonic oscillator in QFT, and
consequently, we can define the number operator as:

is(p) = 0oy (2.18)

()T

Asusual, ay and a,”' are the annihilation and creation operators, respectively. Consequently,

these operators follow the commutation/anti-commutation relations:

[al()sll)’ al(sszZ)T] = 6%%(27)*6" (py — p2). for Bosons

(2.19)
{ ap,. aI(TSZZ)T} = 8°2(27)*6®) (p1 - p2), for Fermions.
From equations (2.18) and (2.19), we can easily show that:
(S)T (s)
a nt)=Vn n
p 1{n}) s(p) {n}) (220

(S) (5)* [{n}) =V (1 + ns(p)) |{n}); + for bosons and — for fermions.
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This allows us to find the normalization constants c. for the decreased state |{n}, pg_l)) and
the increased state |[{n}, p§+1)>, which are such that:

al |{n}) = c- [{n}, p{™"),

(2.21)
ff” [(n}) = . [{n}. p{*)
Normalizing the first equation of (2.21) we have:
({n} ay’ ay’ [{n}) = le-|?
(i} ay’ ay’ [{n}) = Vn,
Vn. (2.22)
On the other hand, for the second equation of (2.21) we have:
({n} ay’ @’ [{n}) = lesl?
({n}llay’ @y’ [{n}) =V (1 £ ny(p))
V (1 £ ng(p)). (2.23)
Given equations (2.22) and (2.23), we can write (2.21) in the form:
(-1) (S)
nt, = n
{n}.ps ) m l{n}), 2
1 .
|{n}, p§+l)> = (S)T |[{n}); + for bosons and — for fermions.

V(1 ns(P))

As a consequence of this normalization, we can write the multi-particle state as

|{n}>:ﬂ(ﬁ( a")’ )|{0}> (2.25)

sp
where |{0}) is the ground state for [{n}).

follows:

Proof. To show (2.25) we begin by applying the occupation operator 7;(p) for all the
species s ng times, i.e.:

[T @)™ 1nyy = [] n@riin).

se{n}.p se{n}.p

On the other hand:

[T @)™ Hn) = o (@ (@)™ [{n))

se{n},p
_ %(a;,m)nstns(p)! {0}
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Joining these two equations, we have:

[T m®)tn) = o (@ NTo V)l 0D

se{n},p

Therefore:

_ 1 (5)T g
{n}) SE]{:L) \/n_slm(ap ) 10}) .

O

Now that we have defined everything we need, we can calculate the transition proba-

bility for the interactions in the gas.

2.1.2.2 Transition Probability

We consider an interaction process:
I={AB,...}  F={X)Y,...}, (2.26)

where the species in the initial set I are destroyed, and the species in the final set F are
created. The complete set of interacting species is S = I U F, while W = S U {bkg} includes
both interacting species and background species that remain uncoupled from the process.
Therefore, we can construct our quantum states in such a way that it is possible to factorize
as follows:

i) = [{ns}) ® |bkg)

1f) = 1{ng}) ® Ibkg) .

in which [{ns}) and [{ng}) describe the interacting subsystem and |bkg) represents back-

(2.27)

ground species. The updated occupation numbers for species s € S are:

ng(p) = ns(p) — Sse1 + Oser (2.28)
with
1 sel 1 seF
Oser = . Oser = : (2.29)
0 s¢l 0 s¢F

Fundamentally, the construction of n{ reflects the nature of the interaction: particles in the
initial set I are annihilated, while those in the final set F are created. In particular, elastic
processes, such as (A(p1) + B(p2) — A(ps) + B(p4) ), involve species that appear in both
sets. These cases are naturally handled by the formalism, as occupation numbers for such
species are updated accordingly. We do not restrict I N F, allowing for a unified treatment of

both elastic and inelastic processes within the same framework.

As is customary, the scattering matrix operator S can be decomposed into two terms:

the identity operator 1, which represents the non-interacting (free) evolution of particles,
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and the transition operator T, which accounts for interactions (Peskin; Schroeder, 1995;
Weinberg, 1995). We thus write:

S=1+iT. (2.30)
In the Appendix A we show that this is a result of the interaction picture in QFT, and that T

has to be treated perturbatively when we in fact compute the transition amplitude. However,
for now, equation (2.30) is sufficient.

Given that the process in hand involves the annihilation of initial-state particles and
the creation of final-state particles, the transition operator can be defined as:

T = (2m)*s® (Z Di — pr C: n al(,ff)'r 1_[ al(,ii) 3 (2.31)

i€l feF feF i€l

where C is a c-number coefficient (typically involving coupling constants), and the Dirac
delta function ensures conservation of total four-momentum. The colons denote normal
ordering of the creation and annihilation operators.

Now, we are finally able to calculate the transition amplitude for such a process:

Masp) = (fl iT i) = <{n/}process| iT [{n}process)

(2.32)
= (2m)*6™ (Z pi— ) pr| CNVINVIFL[ [ Vni(pi) | | V1 = ne(py).
iel feF iel feF
On the other hand, we can define a Lorentz-invariant transition amplitude A as:
<{pf}|inv iT |{pi}>inv =A, (233)
where:
{Piiny = | | V2Ep ap) " 10) (2.34)

iel
and the factor 1/2E), ensures Lorentz invariance of the state normalization. The amplitude A
must preserve energy-momentum conservation, which is already guaranteed by the operator
T. We can factor out this conservation law from A by introducing the Lorentz-invariant
amplitude M. Note that M is not the same as M ;_,r), which is a non-invariant amplitude
specific to our system. Therefore, we have:

A= o[V o |t (1—[ T o

feF il

|0)

(2.35)
= 2m)*s¥| Y pi- )" pr|iM.

iel feF

For each particle species, we have:

aj, [0y =VV Ipa), (0lap, = (px| VV,
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and consequently this implies:

iM=| | V2Ep | | V2Ep ({po)l (c | Tap | e ) [{pi})

i€l feF feF iel (2.36)
= | [ V2Ew | | V2EmCVVIINVIFL
iel feF

Note that the delta functions for energy-momentum conservation appear on both sides,
which cancel out. Thus, we can express equation (2.32) in the form:

iMip = (2m)*8@ (Z Di— Z D ) iM ﬂ “nl(p‘ ﬂ V1< nf(pf . (2.37)

iel feF

i€l

With the result of the equation (2.37), we can calculate the transition probability
given the particles present in the initial state, that is, the particles in the set W. For this, we
have to integrate all momenta in the phase space and sum over quantum numbers (gs) for
every particle in the interaction set S, i.e.:

d*p
Pa-rw = r —(zﬂ; Z IMaopl®

seS

d’ps
:{ j/ (2r )sz ZlMl
X r ni(py) 1—[(1 inf(Pf))}’

i€l feF

X (2.38)

<mmWQp Zm)

iel feF

3
(23)5515 = d°I1; is the Lorentz invariant phase-space measure. The product [];; m

combines into [ 2%"3 Furthermore, the squared delta function in equation (2.38) is regular-

where

ized by interpreting it in a finite spacetime volume V' x ¢, in which 8T is the time scale of
our interaction:

2
(27)*6" (Z pi- ). pf) — (21)*6®@ (Z pi- ). pr
i f i f

This shows that we can write equation (2.38) in the form:

Popy = {Vat]—[ / d’I1 ZlMl (2m)*s™® (Z pi— pr)x

SeS i€l feF

xﬂmmrmimmﬁ

i€l feF

Vst (2.39)

(2.40)

On the other hand, the probability of realizing the initial state |i) = |{n}) (as defined
in equation (2.27)) given the particles present in the set W, is given by the product of
independent probabilities for each particle species and momentum mode:

(0]

= [ Jen®); ). pnw(m) =1. (241)
w.p

nw=0
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Here, p(ny(p)) is the probability of the occupation number n,, of species w with momentum
p in the initial state. Again, by the definition of the state |i), this probability separates into
two probabilities Prwy = PsPpkq}, Which helps us to write the average transition probability

as:
(Plionw) = Z Py Pa-mw

Z Pibkg) ZPSV’GHF)\V

N{bke}

= Z PsP1_r)y
s (2.42)

{Vat]—[ / d31I Z|M| (27)46@ (Z pi - Z pf)x

seS i€l feF

Xl—[fil_l(liff)}.

iel feF
Note that in the third line we use the fact that #(;_.r),, does not depend on the particles in

the background and 2, . P(pkg) = 1. Furthermore, we define the distribution function as
the average occupation numbers, that is:

fs = (ns) = ) p(ns(p))ns(p). (2.43)

Since our objective is to understand the evolution of one particular distribution of par-
ticle species, we can define from equation (2.42), the partial average probability dy [P1—F)y]
for the species ¢ € I by (Enomoto et al., 2023):

(Pa-rw)

dy[Pa-rw] = v a5
(271')3 9y
3 45(4)
&% /ﬁm D, IMP@r)'s cﬁ Zm) (2.44)
seS iel feF
iy gi¢g¢
Xﬂﬁﬂﬂﬂ*
iel feF
For simplicity, we also define:
M=) IMP (2.45)
e

Consequently, we can write equation (2.44) in a more compact form:

cM%%m:{ /&mwmmmwbﬁ Zm%
seS i€l feF
xnﬁﬂﬂﬂ*-

i€l feF

(2.46)
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Finally, we have all the necessary components to write an explicit formula to calculate
the collision term as defined in equation (2.15).

2.1.2.3 The Collision operator

From our partial average probability (equation (2.46)), we define the variation of the
distribution function by the difference between the forward process I — F and the reverse
process F — I, that is:

5fp(Py) ~ . SNy [dy[Puor] - dy[Pronyl], (2.47)

all process

where 6Ny is equal to —1, since our process annihilates particles of species ¢. Using equation
(2.46), we can write this variation of the distribution function as:

5fs(py) ~ {—Z%T > 11 / T MP (2746 (Zpi—pr)x

all process S€S iel feF
i) (2.48)

(e[ aen) )

i€l feF feF i€l

and finally, we write the collision operator (Equation (2.15)) in its final form:

cwwww{% >0 11 / T MP (2746 (Zpi—pr)x

all process s€S iel feF
S#Y (2.49)

X (ﬂffﬂ(lifi)—ﬂfi ﬂ(liff))}.

feF i€l i€l feF

The collision operator C| f] has a clear physical interpretation:

* [Iser fr [lier(1 £ fi) represents the gain rate in fy due to I — F processes creating
p-particles.

* [licr fi I1fer (1 £ ff) represents the loss rate from inverse processes (F — I).

The (1 + f) factors incorporate quantum statistics: (1 + f) for bosons (stimulated emission)
and (1 — f) for fermions (Pauli blocking).

2.1.3 The Full Boltzmann equation

With the results obtained so far, namely equations (2.14) and (2.49), we can now write
the full Boltzmann equation (2.2) in its final form, before making further considerations
about the spacetime geometry and our M.P system:
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0fy ofy _J1
u a v _ )z 31 2 45(4)
Pt Thper s =15 Y [1/ enimPents® |y p- Y, e

all process seS iel feF

xfhﬁhum—ﬂﬁﬂuﬂﬂ}

feF iel i€l feF

(2.50)

2.2 The Boltzmann equation for the FLRW universe

2.2.1 The FLRW universe

As we discussed in the chapter 1, for modelling the SZE it is sufficient to work
with the FLRW universe without perturbation in the metric. That is, we work with a fully
homogeneous and isotropic universe described by the metric:

Joo(X,t) = —
goi (X, 1) = gio(X, 1) = 0; (2.51)
gij(x, 1) = a*()6y,
which has inverse:
g% (x,6) = ~1;
g% (x,t) = g (x,t) = 0; (2.52)
g’ (x,t) = a 2(t)8Y.
Note that we used the flat FLRW metric, since current observational data strongly support a
spatially flat universe (Ridsdnen; Bolejko; Finoguenov, 2015; Ade et al., 2014). An important
component of this metric is the scale factor a(t).

Using this metric, we can calculate the connections that appear in the Boltzmann
equation (2.50), using the definition of the affine metric (equation (2.10)). The result of this
calculation results in the following non-null connection elements:

o ; ?l’ ajai.H (2.53)
U/ (U

where H = % is the Hubble parameter.

Proof. We begin by noticing that the spatial derivatives of the metric vanish due to

homogeneity:
d
ok =0

Also, since goo = —1 is constant, we have:

d
@900 =0.




24

For a = 0:
1 0 0 0
o _ 10
Loo = 59 P (@gpo * 350970 7 35 pgoo)
1 1
= Eg°°(0+0—0) + EgO"(0+0—0) =
1 0 0 d
ry. =T = 590’3 (6xl 9o+ 5596 ~ ﬁgio)
1 1
- 5gOO(o+0—o) + 5g°"(0+0—0) -
1 0 0 0
o_21 o
Fl.j—Eg p(a 7901 T axlgpj axpglj)
1
= Egoo(o +0-— @(azélj)) +0
10
==350(@ %)
1 . .
= —5(2a05ij) = —aa5ij.
For a =i:

i 1 4 0 0 0
oo = Eg axogpo + axogpo T 3xP goo | =

; i 1 (0 o d
F(’)J.:F;O:—gl (ax]gko axogkj_axkgjo)

1 0 1 ., .

= 59" 5 5(a%)) = 5a76% (2aady))
_aa = H6.

a

. 1 . o) 0
i _ 1 im =
ij = 29 axkgrru ax ngk axmgjk =0.

2.2.2 The Boltzmann equation for the FLRW universe

Firstly, we should note that since we are working in an FLRW universe, we have to
consider a homogeneous and isotropic distribution function; this means that we do not have
a dependence on the spatial position in our distribution. Consequently, we can reduce our
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phase-space coordinates to zM = (x°, Pu), and write the left-hand side (LHS), of equation
(2.50), i.e., the Liouville operator, as:

e fzp , 0y

M
= 2.54
[f¢(z )] X Iuvpotp ap,u ( )
On the other hand, by equation (2.53), we can write this as:
M 0 fl,b afy f1,b ofy
f'(,b(z ) Fljp pjg-l-r‘]oplp ap +F0Jplpjap0
3fzp 0fy - ,0fy i9fw
O—a + 8ijaapop’ 5 +H8,pip° 5~ 3] +H& pip’ 5p0

Using equation (2.51), we have the identities:

po = goop” = —p% pr = gup' =a*sups p;=9"g,pi = 8ipi.

and can write:

oy a0 o .
LU @] = P55 + Gz popigy = Hpipog =+ Hpip' 3 ¢

af af; af; af;
=p a_¢+H\pop>\a?i—H\pjpﬂ\a?i+lep 30 lp

Finally, from the four-vector components that we indicated at the beginning of this chapter,

5fzp dfy
L[ fp(z")] = E=- sza_E'

Furthermore, the isotropy of our system implies that the distribution function fy

we can write:
(2.55)

depends on the 3-momentum only through its magnitude, p. Therefore, to simplify the
work with our differential equation (2.50), which has only integrals on the momentum and
not in the energy, it is convenient to rewrite the energy derivative in the Liouville operator
(equation (2.55)) in terms of a derivative with respect to p. This is accomplished using the
mass-shell condition, which relates the energy of a particle to its momentum (E? — m? = p?),

and the chain rule:
0 B d dp _E 0

0E GpdE  pdp’
consequently, equation (2.55) is written as:

a fy Edf,
LUfy(@")] = B - Hp*= =%
; § p (2.56)
=F
[at Hp 6p] Ty
Finally, the Boltzmann equation (2.50) has its final form:
0 4 _ 3 45(4)
[E—Hp@]fzp—{z% >, H/d MIMP(2r)*6@ | > pi— > pr| %
all process seS iel feF
(2.57)

([T -[1ajo-s))

feF i€l i€l feF
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where we have to remember that ¢ represents the species of particles that we are interested
in studying.

In this chapter, we have derived the Boltzmann equation in a GR and QFT framework,
ready for applications in cosmology using a flat FLRW metric. In the next chapter, we
will focus on the specific interaction of interest: Compton scattering between photons and

electrons, which plays a crucial role in the SZE. This will allow us to solve the LHS, that is,
the collision term of the Boltzmann equation (2.57).
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3 The Compton Scattering

As discussed in Chapter 1, the SZE arises from inverse Compton scattering of CMB
photons with hot electrons in the ICM of galaxy clusters. The theoretical foundations of this
interaction was established by Arthur Compton in 1923 (Compton, 1923), when he proposed
a quantum hypothesis, based on Einstein’s photoelectric work (Einstein, 1905), to explain

the wavelength shift in scattered radiation. This effect is now known as Compton scattering.

The Compton scattering process is described by the process:
y(p¥) +e (g") - v (p™*) +e (g%), (3.1)
with four-momentum conservation:
p*+q =p*+q*. (3.2)

The four-momentum for the photons are p* = E,(1,p) and p* = E)(1,p’), and the
four-momentum for the electrons are g# = (E.,p.) = Yem.(1,v.) and q'* = (E.,p,) =
yime(1,v',).! Here, p is a unitary vector that defines the direction of the photon momentum
and p, is the three-momentum of the electrons. Diagrammatically, this interaction in a

generic frame is represented in Figure 3.1.

Compton Scattering

p*=E,(1,p)

pt=E,(1,p)

q* = (Ee, Pe) q* = (E;. pe)

Figure 3.1 — Representation of the Compton scattering process in a generic frame. The scattering
angle 6 measure the final photon change of direction (p - p’ = cos 8). In the Laboratory
frame, the initial electron is at rest (p, = 0).

1 Here the subscript y denotes the photon energy, whereas y, and y, denote the electron Lorentz factors, to

avoid notational confusion.
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It is also useful to define our cinematic variables for the scattering process (3.1).
Therefore, we define the Lorentz-invariant Mandelstam variables using four-momenta:

s=(q+p)* = q"qu+ p"pu +2¢"py
t=(p-p)?=p‘pu+p*p, - 2p"p, (3.3)
u=(q-p) =q"q.+p*p, - 29"p,
where, from now on, we will denote the contractions between two four-vectors a* and b* as
a*b, =a-b,and a’=a-a. Using the mass-shell condition, we have:

q>=-m;=q

p2 :O:plz'

72
(3.4)

This allows us to write equation (3.3) in the form:
s=(q+p)?=-m;+2(q-p),
t=(p-p)=-2(p-p), (3.5)
u=(q-p)=-m;-2(q-p).

In addition, for this interaction, since we are interested in the observation of the
anisotropies in the CMB spectrum, the particle that we are interested in studying using the
Boltzmann equation (2.57) is the incoming photon, that is, fy = f, = f, (p.t). Consequently,
from this interaction, we can write the Boltzmann equation 2.57 as:

0 9 1 d*p’ d3q d3q’
— —Hp— =
[at pap] Jr(P) {2Ey / (27)32E, / (27)32E, ) (27)%2E. "
X IMP2m)*6? (p+q—p - q)x

F(0Nfe(@) (1+ £, (p) (1 = fe(@))

(3.6)
X

= fr(D)fe(@) (1+ £,(p)) (1= fe(q))

}.

Note that we suppressed the dependency on time of the distribution functions.

For the remainder of this chapter we will work to improve our understanding of the
Compton effect and calculate the transition amplitude W which will facilitate our work
to solve the RHS of equation (3.6) in Chapter 4. We begin this work by deriving the Compton
formula in the next section.

3.1 Compton Formula

With four-momentum conservation (equation (3.2)), we can now derive the Compton
formula, originally obtained in (Compton, 1923), but here derived in a covariant form within
a generic frame as in Figure 3.1.
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Using equation (3.4), we can rewrite the four-momentum conservation equation (3.2).
Squaring both sides, we have:
(p-p)=(q -9’
p-p=mi+q-q.

Isolating gy, in equation (3.2) and substituting the four-momenta, we can write:
p-p=mi+q-¢ »p-p=mi+q-(p+q-p)
EyE;//(l —¢080) = yem.Ey(1-Ve - p) - YemeE;//(l ~Ve - p).
Rearranging the last equation, we obtain the Compton formula for a generic frame:

E;}/’ _ (1-ve-p) .
Ey ((1 —Ve P+ %(1 —~ cos@)) (37

From now on, we will call the reference frame in which the initial electrons are at rest (i.e.
v, = 0, which implies y, = 1), the laboratory frame (or simply the lab frame), for which
equation (3.7) can be written as:
B = —— i : (3.8)
(1 + ﬁye(l - cos@))

which is the usual Compton formula.

3.2 Transition amplitude and Klein-Nishina formula

To compute the transition amplitude IM]? and the differential cross-section do for
the Compton effect, that is, the Klein-Nishina formula (Klein; Nishina, 1929), we employ the
Quantum Electrodynamics (QED) Feynman rules derived in Appendix A in the dominant
term of the perturbative expansion of the scattering matrix operator S, which is the tree-level.
As derived in the Appendix A, for this level we have two topologically different diagrams,
known as the s— and u— channels:

e (q%) p ¥(P¥) e (g¥) (P9

iM= q/" + p# +
p“/

Y (p*) e (g y(p® PYe(gh)

(3.9)

The first diagram corresponds to the s-channel process, in which the incoming photon is first
absorbed by the electron, forming a virtual electron with momentum g* + p*. This virtual
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electron then emits the outgoing photon, resulting in a final state with a scattered electron
and photon. The second diagram represents the u-channel process. Here, the electron first
emits the outgoing photon and then absorbs the incoming photon, again forming a virtual
electron, now with momentum g# — p’#.2

From the Appendix A, we derive that such diagrams (3.9) have the full matrix element
(A.53):
—i(p+q)+m
(q+p)*+m?
—i(g-p)+m
(q-p)*+m?

iM=~ie*a(q, o) |¢"(p'. 2) ¢(p.A)

(3.10)

+¢(p,A) ¢'(p.4)|u(q.0),

where ¢*(p’, 1') = y¥¢;, are the polarization vectors contracted with the respective gamma
matrices (similar for p). us(p) is the corresponding spinors, with the adjoint defined by
i(p,o) = us(p,o)B, with B = iy® as defined in Appendix A. We can rewrite this using the
Mandelstam variables (3.5) as:

iM=-— ieZg(q/’ O'/) ¢*(p/,/1/) _lp +2(q_llq;+ m)

¢(p. 1)

(3.11)
+¢(p,4)

ip’+ (~ig +m) u(q.0)

- *( l’/ll)
39 p ¢ (p

We can further simplify the numerators of this equation by using the identity {y#y"} =
2n*¥ (equation (A.3) of the Appendix A), and the Dirac equation for the spinor (iy%qq +
m)u(q,o) = 0 (equation (A.16) of the same appendix), which altogether will give (—ig +
m)¢(p,A)u(q,o) = 0, for both ¢(p, 1) or ¢*(p’, A’) if we choose the Lorentz gauge at the lab
frame °.

Proof. (-ig +m)¢(p,)u(q,o) = 0:

(=ig + m)¢(p, Mu(q,0) = (=iguy* + m)y”e, (p,A)u(q, o)
= (=iquy*y” +y"m)e, (p,A)u(q, o)
= —iqu{y". 7" }er(p,Hu(q,0) + ¢(p, A) (ig + m)u(q, o).

The second term vanishes by the Dirac equation for the spinor (A.16), and for the first

2 As shown in the Appendix A, at this level we do not have a t-channel contribution, which exchange

momentum via a virtual photon.

Choosing the Lorentz gauge in the lab frame, where g* = (m, 0), simplifies terms like g”¢, ; = 0. However,
the resulting amplitude is covariant, and the Klein-Nishina formula remains valid in any inertial frame
after the proper transformation.
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term, we use the identity (A.3). Therefore:

(~ig + m)¢(p, Du(q,0) = -2iq”s, (p.A)u(q,0).

By our gauge choice (Lorentz gauge at the lab frame), the term g”¢, (p,4) = 0, which
means that:

(—ig + m)¢(p,Au(q,0) = 0. (3.12)

O

Therefore, equation (3.11) can be written as:

o i iy
iM = —ie*u(q, o) | (P, G ey 2 ¢(p,/1) ¢(P,/1)

,¢*(p’,/1’) u(q,0).  (3.13)

To simplify our calculations, we will define the operators:

A=t @000, B =t @), (314)
and consequently we can rewrite equation (3.13) in the form:
iM = —e%ii(q,0’) [A+Blu(q,0). (3.15)

Now, taking the square of the equation (3.15), we have:

IM? = ¢* [a(q', ") (A + B)u(q,9)] [(q, 0)B(A" + BN Bu(q’,o")] , (3.16)
where, using the property gy#g = —y*, we obtain:

P Y

1 — T—lz_* ,ﬂ,— /’/1/’ T 1_ l/ y 3.1
A=[BA'B £ (p )zq.pﬂp ), B=BB'AT =-¢(p, )q ¢ (P ), (3.17)

with A and B given by (3.14) and its Dirac adjoint by (3.17).

As we have seen in Chapter (2), we need the average square amplitude |M|? to
compute the collision term in the Boltzmann equation for our process ((3.6))v. Despite
needing an average over the polarization and spin of only three of the four particles involved
in the processes, to continue our calculation, we will average over the four particles, which
is more convenient for our calculation. Therefore, to compute this unpolarized squared
amplitude (| M|?), we average over the two initial photon polarizations and the two initial
electron spin states, and sum over the final ones. This results in a prefactor of %. Thus, using
(3.16) we can write:

M) = - ZZWF

/1/1’00

=7 Z Z e’ [ii(q’,0") (A +B)u(q,0)i(q,0) (A +B)u(q,d’)|.

AN o0’

(3.18)
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To simplify the spin sums, we make use of the completeness relation for Dirac spinors
(Weinberg, 1995):

D ua(9,0)ip(q,0) = (=i + M), (3.19)

and similarly for the outgoing spinor:
D u(@, 0 (' 07) = (=ig + ). (3.20)
O-/

Now, we can rewrite equation (3.18) as (Weinberg, 1995):

4
(IMP) =5 3" 3 (A+ Blag (u(9,0)71(a,0)) (A + Blys (t5(q',0") (', "))
Ao (3.21)

4
e . BN, s
= ZTr [(A+B)(~ig +m)(A+B)(-ig +m)] .
AN
Doing all products inside the trace and using the property that all traces with an odd number
of gamma matrices are zero (i.e. Tr[odd number of y’s matrices | = 0), we have:

4

(IMP) = == Tr|AgAg'+ AgBq’ + BaAq' + BB+

(3.22)
-m* (AA + AB + BA + BB)

Using (3.14) and (3.16), we have:

et
(IMP) = =)

AV

T N L+T3 N 1y N
(g-p)? (g-p)q-p) (q-p)?

_mz( t . bh+1t3 . ts )
(@-p)?* (@°ps)(q-p) (q-p)?

(3.23)

b

where:

Tr [¢*(p".A) p¢ (P A" (p. D pg (p'. )]

Tr [¢*(p".A) pe (P A g (0. ) p'e* (.|
Tr [¢(p.A)p'¢" (p".A)gg" (p. ) pt (p'. A ']
Tr [¢(p.A)p'¢ (P A) g (0. ) p'd* (0G|
Tr [¢*(p'. ) pE(p.A) ¢ (p.A) pe(p'.A)]
|
|
|

(3.24)

Tr [¢*(p".A) pt (P A (P A) p'E (pA)]
Tr [¢(p)p'E (0 2)¢ (P4 (0 A)]
Tr [¢(p ) p'¢* (P’ )¢ (P’ A)p't (p.A)] -

Note that when we use (3.16), a negative sign appears in front of all 7; and ¢;’s, which inverts

T
T
T
T
h
[5)
i3
l4

the sign of the equation (3.23).
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To solve these traces, we assume real polarization vectors for the external photons,

such that ¢ = ¢* and ¢’ = ¢, corresponding to linearly polarized states, where now to

simplify we denote ¢(p’,4") = ¢’. Although we work in Feynman gauge, where unphysical

polarizations may formally appear, only the physical transverse components contribute for

on-shell external photons (i.e., the polarization vectors satisfy ¢#p, = 0 and contain no

longitudinal or scalar parts). In addition, since we adopt the gauge in the lab frame, we also

use that q”¢, = 0 and q""¢}, = 0, and, of course, we use energy-momentum conservation as

given in equation (3.2). To do these calculations in a more efficient way, we used the Wolfram

Mathematica (Research, 2023) software with the package FeynCalc (Mertig; Shtabovenko;

Orellana, 2023), which results in the following traces:

Ti=-16(q-p)(p-€)*+8(q-p)(q-p).

T,=T3=8(q-p)(p-€)*-8(q-p)(p’-€)*+16(q - p)(q-p')(e &)
+8mi(p-p)(e-€) —8mi(p-&)(p -€)(e-¢€)
—4mi(p-p’)-8(q-p)(q-p).

T, =16(q - p')(p'-€)*+8(q- p)(q- P').

t1 =t4 =0,

ty=t3=8(p-p)(e-&)-8(p-&)(p -e)e-&)—4(p-p’)

Putting these results in (3.23) we obtain after some simplifications:

D [8((q-p)2+(q-p’)—2(q-p)(q-p’))+32(£,E,)2}’

(IMP) = ¢
~ (q-p)(q-p)

16

which can be written in the compact form:

2 _é (p-p)° o2
M >‘16%[8(q-p><q-p'>+32(E ”]'

In the lab frame, we have:

p-p' =-EyE,(1-cosb),
q-p=-Eyme,

q-p=-Em,.

Using the Compton Formula (3.8) we can rewrite the first relation:
, , 1 1

p-p :EyEyme (E_y - ]:T)’,) ;
q-p=-Eme,

q-p=- E)’, Me .

(3.25)

(3.26)

(3.27)
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This allows us to rewrite equation (3.26) as:

(IMIZ):éz &+E—;—2+4(£-€’)2] (3.28)
2 = E}/, Ey

Finally, we can do the polarization sum. For this, we use that }; ; (¢-€’)* = 1+cos? 6,

and for numerical factors, we just multiply by 2 for each polarization that we are summing

over:
4 £
e E, 14 2
MP = —[4|= + =L - 2| +4(1 +cos? 0O
(M%) 5 (E}’, E, ) ( )}
= 2¢*

E, E,
L+ X _241+cos?8|.
Ey, Ey

Therefore, we finally have our final form for the squared amplitude averaged over initial
and summed over final polarizations and spins:

’

E, E
=L+ L _sin? e] . (3.29)

S (IMP)Y =26t | =
E, " E,

3.2.1 Klein-Nishina Formula

Having obtained the transition amplitude for the Compton scattering (3.29), we now
turn to the computation of the differential cross-section, which encodes the probability per
unit flux and per unit final-state phase space that an initial set of particles undergoes a
specified scattering process. For a process like ours (3.1), this is written as (Peskin; Schroeder,
1995):

do = ———u (IMP) / o / 1a 2n)*6W(q' +p' -q-p). (3.30)
2m,2E, (2m)32E, J (2m)32q" ’ '
where u = % is the relative velocity between the initial particles, which in the lab frame is
setasu = 1.

To proceed, we simplify equation (3.30) by reducing the integrals over the final-state
invariant phase space:

d3p/ d3q/
1:/ / Qr)* 8@ (g +p —q - p).
n)32E, | (2m)32q° 7+p-4a-»p

Performing the d3q’ integral using 5®, we set @’ = q + p — p’, and obtain:

1 d3p’
I = 5(1) /0 0 _ 0_ 0 ’
200 / (27)22E] q +p"-q -p°)

with

sW(q°+p°-q°-p? = 5(1)(\/m2 +E} +E}? - 2E,E;, cos6 + E;, —m, — E;).
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This sets \/ m? + E; + E}? — 2EyE, cos 6 = —E,, + m, + E,, which we can solve and re-obtain

equation (3.8), which sets E), = E, (6). Therefore, we can write the delta function as:

6(E, — Ey(9))

8\ m2+E3+Ej~2E, Fy cos 6+E;

5(1)(q0 +p0 _ q/O _ p/O) —

3E;
0 77
q"E,
= S(E, — E,(9)),
mE, 7 7

which implies that:

1 dB3p  9E,
I= S(E, - E,(0)).
2q’0/ (2m)22E;, mE, (Ey ~E,(0)

We can expand the differential d®p’ in terms of the solid angle dQ as:

3.7 _ 2 ’
d*p’ = E2dE}dQ.

As a result, we have that our final-state phase space can be written as:

1
=—— | E?S(E, - E,(0)dE.dQ
167r2meE,,/ y 8(E, — Ey(6)dE,
E/Z
- 4.
lér*m.E,

Thus, equation (3.30) can be simplified in the lab frame as:

do 1 E}

— =————— (M. 3.31
dQ 232n2m§E§<| % (3:31)

Finally, using our result from the last section, we can write the Klein-Nishina formula:

dO’ e4 E/Z E E/
— = L1+ L _sin?0]. (3.32)
dQ  327’m; Ej |E, E,

3.3 Low-Energy Limit and Approximate Elasticity of Compton

Scattering

It is quite convenient for us now to work in a low-energy limit, where the incident
photon satisfies E, < m,, since in our context we are trying to model the SZE and the CMB
photons have very low energy. One important result of this limit is that the Compton formula
(3.8) will result in:

E, ~ Ey, (3.33)

as a direct consequence of E, /m, — 0. This behaviour implies that our process can be

effectively treated as an elastic scattering.
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As a consequence, the Klein-Nishina formula (3.32) can also be simplified:

4

dor e )
= 1 + cos” 9), 3.34
10 = 3200 ) (3.34)

which is exactly the classical result derived by J.J. Thomson (Thomson, 1920) for the scat-
tering of electromagnetic radiation by a free charged particle at rest. To determine the total
scattering cross-section in this elastic regime, we can integrate (3.34) over the solid angle,

which will result in the well-known result:

e4

or =

= . 3.35
6mim (3:35)

One last thing we can do for convenience is to write an expression relating the
Thomson cross-section with the scattering amplitude averaged over the spin of the initial

electron and summed over the final spin and polarization, that is, relating the | M|? defined
in equation (2.45) and necessary to compute (3.6). For this we compare the equations (3.29),
(3.31) and (3.32) with our result for the low-energy scattering (3.34), which allows us to
write for this limit:

dor 2 2 4 2
= M|, M|?) =2e*(1+cos”0).
10 647r2m§<| 1%, (M) ( )
We can multiply the expression for (| M|?) by ZZ‘Z, which will give:

(M|?y = 12rm2o7 (1 + cos®0) . (3.36)

To relate this to | M|2, we undo the average that we have made in (3.18) over the initial
electron spin, and maintain the average over the initial photon polarization. This guarantees
that, effectively, we only sum over three particles as required by equation (2.45), which will
allow us to write:

IMP2 = 2(M|?) = 24mrm2o7(1 + cos®6) . (3.37)

Since our goal in the next chapter is to model the SZE, which arises from the interac-
tion of CMB photons with electrons in an approximately isotropic radiation field, we can
simplify the analysis by averaging over the scattering angle 6, neglecting the explicit angular

dependence:

1 [" 2 Ay 4

= (1+cos“0)sinBdb = —.
2 Jo 3

Therefore, we have the angle-averaged squared amplitude:

IM|? = 32rm?or. (3.38)

With all the necessary components now established, we are ready to proceed in
our exploration of the SZE, culminating in the derivation of the equation that governs the
evolution of CMB photons following interactions of the type discussed throughout this
chapter.
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4 The Sunyaev-Zel’dovich effect

As discussed in previous chapters, the SZE arises from the interaction between CMB
photons and hot electrons in the ICM. In this context, we can safely consider the low-energy
limit, since the energy of CMB photons is much smaller than that of the ICM electrons,
leading to approximately elastic scattering. Moreover, we neglect the Pauli blocking and
stimulated emission factors, which would otherwise introduce terms of the form (1 - f,) and
(1 + fy) in the collision integral. The justification is twofold: first, the electron occupation
numbers f, are minimal in the ICM, as a consequence of the epoch of electron-positron anni-
hilation in the early universe, rendering Pauli blocking negligible (Dodelson; Schmidt, 2020);
second, as we will see in the following derivation, the stimulated emission contributions
cancel out upon integration over the full scattering process.

In addition, we work in the non-relativistic limit (NR) for the electron, which is
justified by the fact that despite being called hot (with temperatures T, ~ keV) (Birkinshaw,
1999) their average velocities (thermal velocity) are still small compared to the speed of
light, implying T, < m,. As a consequence of this and the conservation of energy for elastic
scattering, the initial and final energy of the electrons are simply E, = E, ~ m,.

With all these considerations, we write the Boltzmann equation (3.6) as:

1 d’p’
b { ol <27r)32me/ o
X IMP(2r)*8 (p+q - b~ d) % (1)

3
Er pap

X | fy(p)fe(qd) - fy(p)fe(q)]} :

Note that we are using the fact that E, = p and the same for the final photon.

Under these assumptions, in the rest of this chapter, we compute the collision term on
the RHS of equation (4.1), and from it, derive a simplified form of the Boltzmann equation
that describes how the CMB spectrum is distorted by its interaction with the ICM.
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4.1 The Collision term for Compton scattering in a low energy

non-relativistic limit

We begin to solve the collision term of equation (4.1) using 5 to integrate over d*¢’,
which will result in:

Clfy(p)] =

i / d*q Ep’ s p+q_2_p,_(q+p—p’)2
2m.p J (27)32m, ) (2m)32p’ 2m, 2m,

X IMP2[fe(g+p - P)f, (P) = fe(@) f,(P)]

(4.2)

2m,

oS3 ’_ / o 1 q s _ (arp-p)?)
Again, §©® ensures that q' = q+p - p’. In addition, 5V (p +5——p' - 2—me) is the delta
of energy conservation.
We can simplify the energy conservation delta using the fact that in NR the momen-

tum of the photons is much smaller than the momentum of the electrons (p, p” < q). This
allows us to approximate:

2 —_n)2 (p —
¢ _@Q+p-p)° 9 @-p 4.3)
2m, 2m, M,
Therefore, we proceed to expand the delta function to the second order, which gives:
2 "2 ’
50 9 , (q+p-p) 50 (p_ o q-(p'-p)
P+2me P T om. P P"‘—e
(p - )
~ 5(1)( _ /) + q (p p) 5(1)( _ /)
PP me o -p° TP
1 q-(p—p’>)2 g,
+ = ) -
o o I
’ : ( - ,) 0 ’
=80 (p—p)+ B2 250 (p - )
e p
1(q (p-p))° & (1) ,
- ) _
+2( m 37 (p-p),
(4.4)
where we have used the fact that ﬁ = _Gip" In addition, the NR also allows us to

approximate f.(q+p —p’) = fe(q).

With all these results and considerations, in addition to the angle-averaged square
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amplitude (3.38), we can rewrite equation (4.2) as:

B 32m mlor d3 '
C[fV(P)]—[ 2map /(2ﬂ)32mefe(Q)/(2n)32p

"\ 2
X(5(1>(p_p,)+ 4 ®=P) 9 ), )+%(q-(51—p)) aazaém(p_p,))

me ap e p

X [fy(p,) - fy(p)]

(4.5)
Here, we should note that if we had considered stimulated emission, the extra terms that
appear would simply cancel each other out. We can now drop the zeroth-order integral over
d3p’, because f d*p’s(p - p’) [fy (p)) - fy(p)] = 0. Therefore, we can write the collision

| 4mem?or d3q

| [ k)

" d’p’ ( -(p - p)
(2m)3p’ M,
d’*p’ ( -(p-p)
(27T)3p, me

term as:

Clfy (]

sV (p-p >) () - £, ()] 4.6)

) 57 §W(p - p)) £, (P) - fy(P)])

For our next step, it is easier to solve the d*q of (4.6):

L(q) =

(2 )3fe( )_

b= [ Sl

To solve these integrals, we assume the electron gas is in thermal equilibrium and adopt a

(4.7)

Maxwell-Boltzmann distribution shifted by the bulk velocity !, where q = m, (Ve + uy), Ve
is the thermal random velocity of the electrons and uy, is the bulk velocity of the electron
gas to the CMB rest frame. Usually, the bulk velocity is much smaller than its thermal
velocity (Birkinshaw, 1999); however, we will consider the contribution of this component
here because it provides a source of correction to the standard SZE. The shifted Maxwell-

Boltzmann distribution is given by:

3 _ 2

1 As mentioned before, in the ICM T, < m,, so the gas is extremely nondegenerate; quantum (FermiDirac)

corrections are negligible.
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where the factor 5 appears to account for the two spin states of the electron. For convenience

we will introduce two new variables
B 1
2m.T, (4.9)
y =q - meup — d°q = d’y,
(4.10)

which allows us to rewrite 4.8 as
¢ g3 (27)3e

fol@) = foy) = 2%
272

Now, let’s solve the first d*q integral
q (y + meup)
L@ = /(2 L= [ S Sn
3 %/d3y(y+meub)e o),

Zmeﬂ

The first integral that appears here, that is, / d3y ye“’y2 is the integral of an odd function
integrated over all the symmetrical space; therefore, this term vanishes, leaving us with:

e %/e(_ayz)d3y

271'2
fl.UB azan / yze(_ayz)dy ,
0

Li(q) =

273
where 477 comes from the integral over the solid angle. Using the Feynman trick, we define

[SI

an integral:
Ha= [ evay=1 [Cewray=1 (%)
~Jo Y=3 oo y=3\al -
whose derivative is: -
ﬂ:—/ y2e @dy.
da 0
Consequently, we have:
/ —ayd _ dl _ d (ﬂ)%_ﬂ%a_%
0 Y="da” "da\a) T3 '
Thus, we can finally write I;(q) as
neug a: a"2m?
I(q) =—2=—4
1(q) = 2 3 2
neu
fe( )_ - ezBa

Il(‘l):/ (27)

which represents the electron number flux density due to the bulk motion of the gas

(4.11)
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Moving on to the second d*q integral and using a similar procedure, we have:

d’q q° d’y (y + meuy)?
I (q) :/(2—71)3]2(@; :/er(y)Teb
e e
3
_ nea23 /d3y(y+meub)2€_ay
2Mmem 2
:ﬂ [/ d’y y +2me(uy - y) + m2u )e‘“yz]
2me7rz
- [l ~4n / dy(ye o’ 4 y2e ‘ay)
2me7r2 0

Note that, as usual, u, = |up|. More importantly, the term involving uy, - y vanishes upon
integration due to isotropy. Again, 47 appears from the integrations over the solid angles.
We can also note that we already solved the last integral of the last line in our resolution of

=3

1
I,(q) and obtained /OOO dy y’e % Pomial T 2. On the other hand, for the first integral in the

last line, we again use the Feynman trick and obtain /0 dy y4e‘“y = % ga 2. Thus, we
finally have:
n a% ﬂ% 3 n%a 3
L(q) = L= 4n g 2
. 1,(q) =/ o )3fe( )— e (3T + meub) (4.12)

which represents the total kinetic energy density of the electron gas.

Finally, using 4.11 and 4.12 we can write 4.6 as:

2 3.7
Clf, (p)] = 2m,m O'Tne[/ d’p (ub (p-p) 0

b (271')3[)’ me
d’p’ ( (q (p-p)

50 (P~ p)) [£(2") = £y(p)]

+ (3Te + meui)

(27)3p’ m, ) dp /25(1)(13 p)) [fy(P) = fr(D)]

The last thing missing is to solve the d*®p’ integrals, which are a little more complicated
than the d3q. To simplify our work, we will define two more integrals:

3 ’ . o
I(p) = / (d (“" (p P>a%5u>(p_p/)) 1) - ()] .

27)3p’ M, (4.13)
4.13
d3 ’ ’
L - [ 2 ( (LR} 2 mp - p>) )~ f )]
Consequently, we write the collision term as:
CLFP) =20 (1 (p) 4 (3T + i) ()| (414)
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For the I; (p) integral, we start by expanding the differential in its radial and angular
parts, that is, d3p’ = p”2dp’dQ, and using the product uy, - (p — p’) to write two separated
integrals:

’ s ) 0 ’ ’
n = [ 5 )3[ [ (R0 - ) ) - 5]

_ ® //ub'pli() —_n Ny —
/Odpp(—m ap,51(p P))[f(P) fr(p)]

e

Similarly as in the integration process of I5(q), we have a term uy, - p’ that vanishes upon

integration by isotropy, leaving us with:

4 : ® ’ 7 ’ d
B(P) =i /0 dp'p’ [1,(0) - £,(p)] (ap,

5m@—ﬁﬁ-

Now, we integrate by parts setting u = p’ [fy(p’) - fy (p)] and dv = aip,d(l)(p - pHdp'.
In addition, the boundary term uv|8o vanishes due to the rapid decay of f,(p’) for large
momenta and its regularity at the origin, which leads to:

47 up-p / , ,
1P == 5 m P~ )5 5 (P 1) = £ (p)])
_ Am ub po N
where O(p) is the Heaviside step function that is equal to 1 when p > 0. Thus, we finally
have: A
7T Up -
T =— .
1(p) @)y me fy(p) (4.15)

Moving on to the I,(p), our strategy starts in a similar way as for I; (p); we separate
d?p’ into its radial and angular parts, and for the radial integral we integrate by parts twice as
follows. For the first integration, we choose u; = p’(§- (p —p’))? [ 5 () = fi ( p)] and dv; =
ap/25(1)(p p’)dp’, and for the second we choose u, = ap,ul and dv; = 52 6(1)(p p)dp’.
Again, the uv|;’ terms vanish in both our integrations, leaving us with:

d3 ’ ’
L(p) = /( ( (q (p- p)) 320(p - p)) 1, () = £,(D)]

27)3p’ m,
1 aqy ( o2
_2m§ (27)3 \dp2

(ﬂ@~@—ﬁ»ﬂﬂ@ﬁ—ﬁ@ﬂ»

p’=p
Note that in the second line we neglect the Heaviside step function as we have done for the
I, (p) integral. Now, solving the derivatives with respect to p’, we obtain:

dqy
b= 5 [ Goeel|

0 92
- 15/))2 (Z@fy (p) + Pa—p2fy (P))

0
-4(q- (p-PNQ- ﬁ’)@fy(p) :
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Using again that q = m,(ve + 1), we can write § = Since, as mentioned, we usually

|v +uy |
have u, < v,, we will approximate |ve + up| =~ U, and consequently § = 0, + U— . This allows
e

us to write the dot products as:

Ve +ub

2 2
A A AL 2_ . A_A[ ~ ~o _
(q-(p-p")) _(—|Ve+ub| (p p)) ~((ve+ve) (p ))

= (e (p - P')*+2(0e - (- >>( (p- >)+0(

lea-w

)

and
A up

(@ (b= FN@-B) =~ (0 +2)-(p— ) (00 + &) p

= (B (B P) (Do P) + (up - (p—p') (e - P')

Ue
0 PIC (D= gty
Ve Ue

Because the electrons are in thermal equilibrium, any directional dependence in our inte-
grand must be removed by averaging over their orientations. Since the bulk velocity uy, is
fixed, this is equivalent to averaging over the thermal-velocity unit vector 0, (i.e. § — 0e).
We therefore employ the standard isotropic-average identities 2:

(6 =0,  (dlol) =387 ((6A) (6 B) =5 (AB)

where the indices i and j are the spatial coordinates indices. In addition, we neglect all
terms of order (Z—f)z This approximation is justified because, as we have already mentioned
(up < V), rendering these quadratic terms physically insignificant. Since any terms linear in
llj—’e’ vanish upon isotropic averaging as per the identities above, these O(Z—g) contributions are
the first non-zero, but negligible, correction. Crucially, this differs from the main kinematic
term that also scales with ui in equation (4.14); what is being dropped here is a small,
higher-order correction to the anisotropy of the scattering process, whereas the meulzj term is
retained in (4.14) represents a fundamental contribution to the scalar kinetic energy of the
system, a primary physical effect that survives all averaging. Therefore, we can write:

(@ (5= ) >3- §)
, (4.16)
(@ (= FNG B == 30-p P,

Consequently, averaging over the electron directions allows us to write I;(p) as simply:

dq’
L(p) = o 2/(27T)3P

To proof this identities we just integrate over the solid angle of the possible directions of the electron’s
thermal velocity vector.

.0 2 . 0
- p)gfy(p)+§p(1—p~p>a—pzfy(p)-

2
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Finally, we can solve the I, (p) integral over dQ)’. For this, we will consider that the

incoming photons are in the direction p = 2, so that p - p = cos (8”). This finally gives us:

4

L(p) = 32 (2n)?

(4 50+ ) @17)

Lastly, with the results of the equations (4.15) and (4.17), we can write (4.14) as:

() == e "P)p5- ’ 235 \P 5y ’ )
Lf, (p)] orhe(up P)Papfy(p t) + 3 p 29p ( apfy(p 2 (4.18)
L ornele 149 4if (p.f)
me p2 ap p ap V4 p’ .

With this simplified form of the collision term, we now pass to write the Boltzmann equation
and derive the SZE.

4.2 The Boltzmann equation for photon interacting via Comp-

ton scattering in the flat FLRW universe and the SZE

Now that we have obtained the collision term for the Compton scattering (4.18), we
can write the Boltzmann equation (4.1) for the CMB photons in a flat FLRW universe as:
orneu; 1 4 ( , 0

G G G
[E - Hpﬁ] fy(p,t) =—orne(uy - ﬁ)p%fy (p,t) +

orne.l, 1 0
+ —_—
me p2?0p

(4.19)

0
(p“%fy(p,t)) .

We can further simplify this equation by introducing two new variables. The first
variable we introduce is x = Tl()t) , where T'(t) = 2 is the photon temperature as a function of
time. This variable will simplify the LHS of (4.19) in such a way that the only term left on

this side will be the time derivative term:

Proof. To see this, we first rewrite the time derivative

dx 0
fy p.t) = atfy(x ) +—= at 3x — fy(x.0)

op oT\\ o
afy(x,t) + ( (TE - E)) 8_xfy(x’t)

Therefore, in the absence of external forces:

0 0 0
afy (p,t) = afy (x,t) + XHa_xfy (x,t). (4.20)
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On the other hand, the momentum derivative can be written:

0 ax 0 190
%fy(l?,t) fy fa_xf”(x’t)’

and finally, the LHS of equation (4.19) can be written as:

[%— ]fy(pt) +xHai—xH Jy(x,t)
(4.21)
afy (xat) .
O
Therefore, we can write (4.19) as:
o) .. 0 or 1 0
= fy (%) = = orne(up - ) x5 fy (x,1) + —2— —fy(x t)
ot d0x 3 0x (4.22)
ornedl, 1 0 [ 40 '
¥ m, x20x (x axfy(x’t) '

The second variable we introduce to further simplify the Boltzmann equation (4.22)
is a dimensionless evolution parameter, y, known as the Compton-y parameter, which
combines the physical constants into a single variable. This parameter is defined by its

differential: T
dy = Z0%e gy | (4.23)
me

The integrated parameter y, obtained by integrating this differential along the photon’s

path, has a direct physical interpretation. It represents the product of the total scattering
probability for a photon, given by the Compton optical depth (z.), and the mean fractional
energy transfer per scattering, which is proportional to T /m,.

Using the chain rule, the time derivative is transformed into a derivative with respect

to y:
0 dy 0 ornl 0

3t dtdy  m, 0y’
Substituting this into equation (4.22) yields its final form, which is a generalized Kompaneets

equation:

2
M. (up - X)

T

0
Ef(x,Y) =

x—f(x,y) + (W;;f + 1) %ai ( 4a%f(x,y)) ) (4.24)

4.2.1 The SZE effect

The last thing missing to understand how the CMB photon distribution changes after
the interaction with the electron gas (of the ICM) is to solve the Boltzmann equation (4.24).
For this, we use as our initial condition the Bose-Einstein distribution:

fy=0)=fO%x)=(e*-1)"". (4.25)
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Now, in a regime of small optical depth for the Compton scattering (equivalent to
y < 1), which is reasonable for the ICM as shown by (Schiappucci et al., 2023), we expand
our solution to the Boltzmann equation f(x,y) around y = 0, and truncate at its first order,
that is, we suppose a solution of the form:

Fay) =00+ ). (4.26)
Putting this into (4.24), we get:

_me (up - x)
Te

2

%(f(o)(x) +yfP(x) = (f(O)(X) +yfV(x)

The first term does not depend on y. Therefore, it goes to zero, which gives:

me(ay - X
O =~ BB 8 (70 ) 4y £ ()
e
2
Methy 10 (49 10 (1)
+( - +1)xzax( 200+ V).
Since we want to write f(x,y) up to its first order, we write the term y f(1 (x) as:
W (y) = M@ %) 9 . eUp 19 (49 co0
pf0) = - 2T 2 (x)+( - +1) ol LT A C0) IR CE)

Consequently, this result allows us to write our solution to the Boltzmann equation in terms
only of f(%(x) using (4.26) and (4.27) as:

[ omewed) 8 (mad \16(,8)] .0

- ) . (4.28)
|y me(up %) O Mely, 10 (4,0 x -1
=1 y—Te x6x+y(3Te +1 23 | 32 (e*-1)

As already mentioned, the Compton-y parameter is related to the Compton optical
depth by:

T
y=Te—, (4.29)
me
which allows us to write (4.28) in the form:
.9 up 16 (,0
f(x,y) =1 -1e(up- x)xa + (T? +y) Zax ( ax)] (e*-1)7" (4.30)

On the other hand, the Doppler shift gives us the relation:

AT
T = —Te(lIb . 5(\:) (431)
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and consequently we can write (4.30) as:
AT 8 u; 19 &) _
1+ X5 + (r—b +y) —— (x“—)] (e*-1) L (4.32)

Finally, in equation (4.32) we have obtained how the CMB distribution changes after

interactions with the electrons in the ICM via inverse Compton scattering in the low-energy
NR limit for a small probability of interaction. It is easily seen that if the photon does not
interact (y = 0), the distribution remains unchanged. The first term that alters the CMB

distribution is:
AT 8

x_
T ox
which corresponds to the kinetic Sunyaev-Zel'dovich effect (kSZE). This contribution arises

(e*-1)7", (4.33)

due to the bulk motion of the galaxy cluster relative to the CMB rest frame. The term accounts
for the Doppler shift correction caused by this motion, resulting in a first-order correction to
the photon distribution. Next, the term:

19 (x4%) (e*-1)7" (4.34)
corresponds to the thermal Sunyaev-Zel'dovich effect (tSZE), which is the leading term of
the effect and arises from the Compton interaction. Lastly, the interesting aspect of our
derivation is the emergence of the ui term, which is a relativistic correction due to the bulk
motion of the cluster. This second-order correction agrees in form with those found in the
literature (Challinor; Lasenby, 1998; Nozawa; Itoh; Kohyama, 2005), where similar uﬁ terms

arise from expanding the relativistic Boltzmann equation beyond leading order.

To visualize how the various SZE components modify the CMB spectrum, we plot the
full solution (4.32) using the following physically motivated parameters that can be found in

the literature:

. % = 107 the typical amplitude of CMB temperature anisotropies (Dodelson;

Schmidt, 2020);
« ¥ =0.05 arepresentative Compton-y parameter within our assumed regime (Birkin-
shaw, 1999);

« 7, =0.01 atypical optical depth for ICM electrons (Carlstrom; Holder; Reese, 2002);

_ 500km/s
- c

. Up a realistic bulk velocity for galaxy clusters, consistent with observational

estimates in the range of 500 km/s — 1000 km/s (Birkinshaw, 1999);
2
e 0= % a second-order bulk-motion correction that arises from retaining the ui
term in the electron momentum distribution.
The resulting spectra are shown in Figures 4.1 and 4.3. Figure 4.1 compares the

undistorted CMB blackbody spectrum (4.25) to the spectrum modified by the total SZE
distortion (4.32). The behaviour illustrated in this figure is the essence of the inverse Compton
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scattering: photons below x ~ 3.83 (or v ~ 217 GHz) lose intensity, while those above
this threshold gain intensity. The point x ~ 3.83 is the null SZE, where the distorted and
undistorted spectra coincide, and no net change in photon intensity is observed. This is

Blackbody Spectrum with SZ Distortions
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Figure 4.1 - Comparison between the undistorted CMB blackbody spectrum (4.25) ( represented
by By - dashed black) and the spectrum including the full SZE distortion (solid purple)
(4.32). The vertical dotted line marks at x ~ 3.83 (or v ~ 217 GHz), marks where the
distorted spectrum intersects with the blackbody spectrum, that is, where we have a
null SZE. The SZE reduces intensity below the null tSZE point and increases it above,
producing a spectral distortion distinct from a simple blackbody shift.

the same behaviour observed in the Planck data result in Figure 4.2. Therefore, we observe
excellent agreement between theory and observation of the SZE due to the up-scattered
CMB photons by hot electrons in galaxy clusters.

= ‘ " L Talil J [ i s ' -' - g —
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b4 GHz 70GHz 100GHz 143 GHz 217 GHz 353 GHz 545 GHz
Figure 4.2 — Multi-frequency Planck observations of a galaxy cluster. The panels show the same region

of sky at various frequencies ranging from 44 GHz to 545 GHz. The spectral evolution
across bands reveals the SZE distortion. Image credit: (ESA / Planck Collaboration, 2019).

In contrast, Figure 4.3 separates the contributions from the tSZE, the kSZE, and the
small second-order velocity correction associated with §. From the decomposition in this
figure, it is evident that the tSZE is the dominant contribution. The kSZE appears at sub-
leading order, and the & term arising from u; acts as a second-order relativistic correction.
Though small in amplitude, its spectral shape differs from both tSZE and kSZE, and its
inclusion is crucial for a fully consistent relativistic treatment.
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Figure 4.3 — Comparison of individual SZE components as functions of dimensionless frequency x =

%, where Tj is the present-day CMB temperature. The left panel shows the distortions
at their natural amplitudes: the tSZE (4.34) (solid red) dominates, while the kSZE (4.33)
(dashed blue) and the second-order velocity correction & é% (x4% (e* —1)"!(dot-

dashed green) are much smaller. The right panel rescales the subdominant terms for
visibility: kSZE is scaled by 103, and & by 10, while tSZE remains unscaled. The vertical

dotted line again marks the null tSZE near v ~ 217 GHz.
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5 Final Remarks

Throughout this work, we have explored fundamental aspects of modern physics,
culminating in the derivation of the spectral distortion of CMB photons due to inverse
Compton scattering, as shown in equation (4.32). To achieve this, we employed tools from
both GR, to account for gravitational effects on the photon distribution function, and QFT,
to model the interaction kernel from first principles. Nevertheless, obtaining a compact
analytical expression, such as the one presented for the SZE in Chapter 4, required the
adoption of several physically motivated approximations. In particular, the low-energy and
NR limits were essential, but they impose intrinsic limitations on the applicability of this
standard SZE formalism.

In this context, a significant body of research has focused on extending the SZE
framework beyond these approximations. It is crucial to distinguish between the two main
sources of relativistic corrections. The first is the kSZE, which, as previously discussed, is a
Doppler effect caused by the bulk velocity u; of the electron gas relative to the CMB rest
frame. The second, especially relevant for massive galaxy clusters, is the tSZE. Corrections
to the tSZE become necessary when the electron gas is extremely hot (kgT, ~ 10 keV)
(Challinor; Lasenby, 1998), making the individual electron motions relativistic, even in the
absence of net bulk flow.

There are two primary strategies to incorporate these relativistic effects, both of which
go beyond the near-elastic scattering approximation used in this work. The first is to apply a
power-series expansion. This method builds on the Fokker-Planck approximation to simplify
the collision integral (4.2) in the Boltzmann equation !. This approach is valid when the
energy transfer per scattering is small, systematically introducing higher-order corrections
to the standard kinetic framework. For example, the kSZE can be corrected by expanding in
powers of the bulk velocity, while the tSZE can be refined via an expansion in the temperature
parameter 6, = kpT,/m.c? (Nozawa; Itoh; Kohyama, 2005; Challinor; Lasenby, 1998; Itoh;

Kohyama; Nozawa, 1998; Sazonov; Sunyaev, 1998).

The second, more fundamental approach dispenses with the near-elastic approxima-
tion altogether. It starts from a fully relativistic description of Compton scattering, employing
the complete Klein-Nishina cross section (3.32) and enforcing the conservation of relativistic
four-momentum throughout the interaction. This method leads to an exact evaluation of
the collision term in the Boltzmann equation (4.1), without relying on expansions or approx-

1 This approximation replaces the full collision term with a differential operator that describes the combined

effect of many small energy transfers during scattering(Lifshitz; Pitaevskii, 1981). When electrons have a
bulk motion relative to the photons, these small changes add up, causing a Doppler shift in the photon
spectrum. This is valid when momentum transfer per scattering is small and allows effects like the kSZE
and tSZE to be treated using expansions in velocity and temperature.
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imations. As demonstrated in recent work such as (Terzi et al., 2024), this framework offers
a fundamental re-derivation of the tSZE that is valid even for highly relativistic electron pop-
ulations. A natural next step is to extend this fully relativistic treatment to also incorporate
the kinematic contributions from cluster bulk motion, unifying both effects within a single
coherent theory.

Finally, it is worth emphasizing that, even within the simplified framework used
here, we were able to derive a non-trivial second-order correction involving the bulk velocity.
By considering a shifted Maxwell-Boltzmann distribution and retaining the ui term in the
momentum integrals, we captured a contribution beyond the standard linear Doppler effect
associated with the kSZE. While not traditionally classified as part of the kSZE, this second-
order term reflects the interplay between the bulk motion and the thermal distribution of
electrons, and is sometimes interpreted as a relativistic correction or a mixed kinetic-thermal
effect.
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Appendix A — QED Lagrangian and
Feynman Rules

In this Appendix we will construct the Feynman Rules used in Chapter 3, for a
Compton scattering (3.1):

y(p*) +e (g") = y(p™) +e (q%). (A.1)

We will begin by showing how our metric convention can change the Lagrangian
and after that obtain the invariant transition amplitude defined in equation (2.33) using
perturbation theory and Wick’s theorem.

A.1 Metric convention and QED Lagrangian

Conventionally, a common choice in QFT is to adopt the metric signature 7, =
diag(+1, -1, -1, -1), as found in standard references such as (Peskin; Schroeder, 1995; Ryder,
1996; Griffiths, 2008; Feynman, 1998). However, throughout this dissertation, we adopt the
opposite convention, 7, = diag(-1, +1, +1, +1), which is more commonly used in the context
of general relativity and cosmology, as well as in some quantum field theory texts, such as
(Weinberg, 1995; Schwinger, 1998a; Schwinger, 1998b; Srednicki, 2007), and lecture notes
like (Heinzl, 2021).

This change in signature directly affects the Clifford algebra satisfied by the Dirac
gamma matrices. In the 7, convention, the gamma matrices y# obey the following:

(7" 77} = 2. (A.2)
In contrast, under the 7, metric, the gamma matrices y# satisfy:
{r.r"} =2n". (A3)
Hence, the Clifford algebras associated with each signature are related by an overall sign:
.y’ = -7t 77} (A4)

This relation implies that the gamma matrices in both conventions are connected through a

redefinition that ensures consistency with the respective Clifford algebra:

yH = —iyH (A.5)
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Importantly, this change in metric signature does not affect the structure of the Poincaré
group, nor does it modify the generators of Lorentz transformations in the spinor represen-
tation: '
K = Z[yk.p").

4
It is also important to emphasize that this redefinition of the gamma matrices does not
alter the Pauli matrices o#, which are used in constructing explicit representations of the
gamma matrices (such as in the Dirac or Weyl bases). The Pauli matrices are intrinsic to
the spin-% representation of SU(2) and remain unchanged under changes in the spacetime
metric signature, since they describe internal spin degrees of freedom rather than spacetime
geometry.

However, since the change in metric signature modifies the Clifford algebra, and
consequently the gamma matrices, it is straightforward to see that the QED Lagrangian, and
the corresponding Feynman rules, will also be affected. These changes will be analyzed in
the following sections.

A.2 QED Lagrangian

In the more conventional metric for particle physics 7j,,, the QED Lagrangian is
(Peskin; Schroeder, 1995):

= 1~ - = -

where W is the Dirac field and A, the photon field. In addition, the first term is the Lagrangian
of the free Dirac theory (i.e., free electrons), Liirac = @(i)?“a# — m)W¥; the second term is the
Lagrangian of the free electromagnetic field, Lyaxwen = —3Fu F#”, where Fy,,, = 8,4, -8,A,
is the usual electromagnetic field strength tensor; and finally, the last term describes the
interaction between the fermion and gauge fields: £y = —e‘f’f”‘l’fi#.

The first point to notice is that the covariant quantities A, and F, are defined
independently of the metric signature. Their definitions involve only partial derivatives and
are not tied to the metric. Therefore, their components remain unchanged under a change
of signature, and we may consistently identify:

Ap = Ay, Fuy = Fuo.

What does depend on the metric is the process of raising indices, as in F¥*¥ = n““n”ﬁFaﬁ.

However, this redefinition does not affect the structure of the kinetic term, since:
F,uVF'uv = F,uvﬁlw, (A.7)

because both sides are full contractions that absorb any change in the metric signature.
Furthermore, the interaction term couples the fermionic current to the gauge field via A,
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and not A, and this contraction remains unaffected by metric conventions. Consequently,
we may rewrite the Lagrangian (A.6) as:

= 1 =
Now, focusing on the fermionic sector of the QED Lagrangian (A.8), we substitute
7 =iy*, using Eq. (A.5), and obtain:
B(i74, — m)¥ = ¥ (i(iy*)d, — m) ® (A.9)
=¥ (y*0, +m)¥. (A.10)
where, all our Dirac adjoints are now G = w70 = W3 = ¥, with 8 = iy°. Applying the same
redefinition to the interaction term yields:
—ePFHWA, = —ieTy WA, . (A1)
Finally, the complete QED Lagrangian in the metric convention 7, = diag(-1,
+1,+1,+1) becomes:

1 — _
Lqep = _ZF#VFW - Yy o, + m)¥ — ieWyH ALY . (A.12)

This is the same expression found in QFT references that adopt the 7,, metric, such as
(Weinberg, 1995). Each term maintains its physical role, with only the Clifford algebra-
dependent elements adjusted, that is:

. 1
Lpirac = ~P(yH3, + m)¥,  Litaxwell = —4fwF ., (A13)

Lins = —ieTyHAP.

A.2.1 Equations of motion and Fields
A.2.1.1 Dirac equation

From the Dirac Lagrangian in (A.12), the Euler-Lagrange equation yields the Dirac
equation for the spinor field (Weinberg, 1995):

(7#0u + m)¥ = 0. (A.14)
As usual in QFT, the spinor field can be expanded in terms of creation and annihilation
operators as (Weinberg, 1995; Srednicki, 2007):
d*q
(27)3 ,/2E

where a4, and bfw are the annihilation and creation operators for electrons and positrons,

Y(x) =

Z ( u(q,o)e’ Yago +v(q,0)e” lq'xbfl,a) , (A.15)

respectively, and u(q, o), v(q, o) are the corresponding spinors with spin . Applying the
Dirac equation (A.14) to the field (A.15) we obtain the equation for each spinor as:
(ir*qu + mu(q,0) =

(A.16)
(=iy*qu +m)v(q,0) =0
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A.2.1.2 Maxwell Equation

We begin by gauge-fixing the Maxwell Lagrangian in (A.12) using the Lorentz-
Feynman gauge condition d,A* = 0. This procedure does not alter the structure of the
QED Lagrangian, but greatly simplifies calculations, particularly the photon propagator in
perturbation theory. In this gauge, the Maxwell Lagrangian can be rewritten as:

1
Liaxwell = _E (auAv) (a'uAv)- (A-17)

The Euler-Lagrange equation derived from this Lagrangian yields the photon field
equations:
0A* =0, with 0O=9,0". (A.18)

As usual in QFT, the photon field admits the mode expansion (Weinberg, 1995; Srednicki,
2007):

d’p 1

CNn

where ag ; and ali , are annihilation and creation operators for photons with polarization 4,

3
Au(x) = Z (eip'xs#(p,/l)ap,,l + e_ip'x€;(p, A)ag,/l) , (A.19)
=0

and ¢, (p, 4) are the corresponding polarization vectors.

A.3 Feynman Rules for QED

Now that we have understood the relation between each Lagrangian in their respective
metric convention, we will focus on deriving Feynman rules for QED in our 7, metric, that
is, we will derive the rules from the Lagrangian (A.12), and obtain as a result the same rules
as in (Weinberg, 1995).

Emergence of Feynman Diagrams via Wick’s Theorem

One of the central objectives of QFT is to compute the scattering amplitude A, which
encodes the probability of transitions between the initial and final asymptotic states. As
defined in Chapter 2 equation (2.33) we write this scattering amplitude as:

{P iy T HPDiny = A, (A.20)

where |[{p;});,, is defined by equation (2.34). As we stated in equation (2.35), this transition
amplitude must preserve energy-momentum conservation. Therefore, we can factorize A

as:

A= (2m)*sW (Z pi- ), pf) iM. (A.21)
i f
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As expected, this definition depends on the scattering operator S, which in Chapter 2 we
defined by equation (2.30) as S = 1 + T'. However, this is a simplification. To be more precise,
the interaction picture in QFT allows one to write the scattering operator as (Weinberg,
1995):

S= T exp [—i/ d4x£int] , (A.22)

where 7 is the time-ordering operator, and Ly, is the Lagrangian that describes the interac-
tion between the fields. When we expand this operator in a Dyson series, we can write:

S=1+iTV +i?T@ + 37 ...

A.23
- Z ( / d4 d4xn T [Lint(xl) o 'Lint(xn)] s ( )

where each Lagrangian gives a vertex of interaction. Consequently, the 7' that appears in
(2.30)is actually T =T +iT® +i273) 4 ... Each term of T is identified as:

) — l) / A - d* X T [ Ling(x1) -~ Line(xon)] (A24)

which means that each term of T involves time-ordered products of the interaction La-

grangian evaluated at different spacetime points.
For the interaction Lagrangian of QED in equation (A.12) (i.e., Lint = —ie@y“A#IP),
the first-order term is:

it — e / d4x17'[@(x1)y”A,,[(x1)‘I’(x1) . (A.25)

However, this vertex describes unphysical processes like e~ — e”y or y — e*e™ (two
fermions plus one photon) that violate energy-momentum conservation: e~ — e~y breaks

q*> = m?,andy — e*e” requires p? > 4m2 butreal photons have p? = 0. Thus (p’, q'| iTV |p, q) =
0, leaving T as the leading contribution:

iZT(Z) _/d4x1d4x27~ -Elnt(X1).£mt(x2)]
_ _7 / dx1d*x, T [(—ielff(xl)ym#(xl)wxl)) (—ieﬁ(xz)yy Av(xz)lp(xz))]

2
=% [ dndnT [([Ferauceen) (T, ta i)
(A.26)
Therefore, for Compton scattering given by equation (A.1), the second-order transition
amplitude term is given by:

P q iy TP |p, @iy = LA? (A.27)

where 5
iA? = % / d*x,d*x, K, (A.28)
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with K” being the matrix element:
K = (0@l T [T 7AW (x1) Ty Ay ()W) | 10, Dy - (A.29)
From equation (2.34) this gives:

K’ = \2Ep\2Eg2Ep\2EX
X (0] g (T [W00) 7 Ay (60) W) B (02)y Ay (62) W ()| ) @l 10)

(A.30)

Applying Wick’s theorem !, we can write:

K’ = \2Ep+2Eg+2Epy2E; 2 X

= (0l agoap pPOa)r* Au(x) P ()P (x2)y Ay () ¥(x2) ) 1aq010)  +

Diagram 1: Photon absorbed at x,, emitted at x;.

Electron propagates via internal line ¥(x;) ¥(x,)

| —

— i i I | I 1
+ (0] aq/,ofapr,m‘l‘(xl)y“z‘lu(xl)‘P(xl)‘I‘(xz)yvAv(xz)‘I‘(xz)aI',,Aafl,a |0)

Diagram 2: Photon absorbed at x;, emitted at x;.

Electron propagates via internal line ¥(x;) W(x5)
(A.31)

The factor 2 arises because Wick’s theorem generates two topologically distinct diagrams
corresponding to the s-channel and u-channel processes. Each of these diagrams is symmetric
under the exchange of interaction vertices (x; < X;). This symmetry does not yield new
diagrams but rather reflects the redundancy in vertex labeling within the time-ordered
product. The first diagram corresponds to the s-channel, and the second to the u-channel
(see diagrams (3.9)). No t-channel diagram appears, as such a process would require an
internal photon-photon propagator, which does not arise at second order in QED, where all

interactions involve fermion-photon couplings.

We now compute the contractions using the field expansions. For the photon field,

L' Wick’s theorem allows us to expand time-ordered products of field operators into a sum over all possible

contractions. In the vacuum expectation value, only the fully contracted terms contribute, as all uncontracted
field operators annihilate the vacuum. This expansion forms the foundation for perturbative calculations
in QFT and the diagrammatic representation via Feynman diagrams.



65

equation (A.19) gives %:

Bk 1 > ;
T _ ik-x ’ —ik-x _x N T +
Apa, ;10) = / g \/ﬂ/éo (e eu(KA)axp +e e (K, A )ak’/l,) a, 110

= [ d?)_k 1 §3 eik-xglu(k ) ak/l'aT |0)

ENGY ’ , A

(271') ZEk =0 p
commutator
Bk 1 >y
+ —E e ¥er(k,A) a a0 |.

3 K A TpA

(27)° \2Ek 52 P

two-photon state

The second term vanishes because it creates a two-photon state, which is orthogonal to the
vacuum and does not contribute to the Compton scattering amplitude at tree level. For the
first term, use the canonical commutation relation in the first equation of (2.19), which

gives:
ek 19 .
Au(x)a,10) = / Gy o & e )T (2n) 61260 (k- p) [0)
X=0
Therefore:

eu(p.A)e’P|0). (A.32)

1
Ay(x)al |0y =

On the other hand, doing the same process for the fermionic field (A.15), we obtain:

Bk 1 & .
W(xy)a! . 0) = (e””‘za uk,o)+b vk, e'””‘z) al 10
(x2)af ; 10) (Wm; kott(k,o’) + bl (ko) i010)
d3k 1 2 ik-x F
= e (ko) ax s ag . |0
(27T)3 (—ZEk OZ_l ( ) ,0 q,Gl >
anticommutator
Bk 1 B s
+ | ———— Y ey o) bl al_|0)

two-particle state
[ dk 1
(27)3 \2Ex

2
2, ¥ u(ko’)(2m)*85:56% (k- ) [0) .
o’=1

Therefore: 1
W(xz)ags10) = ——=€'1"u(q,0) |0) . (A33)

\2Eq

With these results, we can write equation (A.31) as:

K =K +%K, (A.34)

2 Here, A’ denotes a generic polarization, not necessarily the final polarization.
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with

K =2i(q’,0")yke, (p'. X) Sr(x1 — x2) ¥"er (P, D u(q, 0) o~ i@ +P") 31 5i(q+p)-x2

- o (A.35)
K, = 20(’, o))y eu(p. A) Sp(x1 = x2) ¥ g5 (0, V)u(q, 0) e P2 Hd=PI ™

where the label s indicates the s— channel and the label u the u— channel. We define the
fermion propagator as:

— — 1
Sk(x1 — X2) = (0] T{®(x1)¥(x2) } [0) = ¥(x1)¥(x2). (A.36)
Now, we are able to write (A.28) as:
2
iA? = %/ d*x1d*x; (K +K3) - (A.37)

To solve the d*x; integrals, we need to write the fermion propagator of each K in the
momentum space via a Fourier transformation:

4
S(x1—x3) = / (;iﬂl;S(k)e‘k'(xl‘xZ). (A.38)

Now, we will calculate each K7 integral.

Proof. For the K] integral we have:

/d4x1d4x27(’ :2/d4x1d4x2 a(q’, o)y e, (p’, A)x

4
X / (Cziﬂl;S(k)e‘ik(xl_“)V”Ev(P,/l)u(q, o) e“'(q’“Lp')'xle"(q*P)'”].

We now bring together all the exponential terms, which allows us to write:

/d4x1d4x27(’ = 2/d4x1d4x2 u(q, o)y e, (p', )X

d*k
(27)*

S(k)y”e, (p, Du(q, o) e A +P+h)x ei(q+P+k)‘XZ] .

Integrating over both d*x we have:
/ d4xle—i(q'+p/+k).x1 — (271.)45(4) (p/ + q/ + k),

/ d*x,e TP %2 = (o)A (p + g + k).
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We use the first delta function to solve the d*k integral, which results in:

/ d*x1d*x, K] =2(2m)*6W (p + q - p' — @) |i(q', o)y e, (p'. )%

XS(=(p"+q))re(p. Hu(q,0)

Therefore, since p + ¢ = —(p’ + q’) we can write:

/ d*x1d*x, K, =2m)* W (p+q-p - q) x 2

(A.39)
u(q,o")yke,(p’. A)S(p + @)y er(p, Hu(q,0)

For the i integral we have:

/ d*x1d*x, % =2 / d*x1d*x;|a(q’, ")y eu(p, A)X

d*k .
x/ (2n)45(k)e‘lk(x1‘x2)y”€$(p’,l’)u(q,G)><

X e—i(q’—p)~xle—i(p’—q)~xz] _

Integrating over both d*x we have:
/ d4x1e—i(q/_p+k).x1 — (271,)45(4)(q/ —p+ k),
/ d*x;e! P07 = (2my* 5@ (p' — g + k),

we use the second delta function to solve the d*k integral, which results in:

/ d*x1d*x, %, =(27)*6W (¢’ - p+q - p’) x 2

(A.40)
u(q’,0")r eu(p, A)S(q - p)r’e,(p'. A)u(q, o)

Finally, by equations (A.39) and (A.40) 3 we can write equation (A.37) as:

iA? = 2m)*6W (q+p-q - p)iM®?, (A.41)

3 The delta function of both equations ensure the same overall energy-momentum conservation.
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in which:
iM?D =iMP +im2, (A.42)

where )
iMP = eta(q, o' )yrel(p, 1)S(p + @)y er (P, Du(g. 0),

M = (g, o)y eu(p. S (g - p)y e (0. )u(g, 0).
The only thing missing is the explicit form of the Fermionic propagator that we will derive

(A.43)

next.

Feynman Propagators

We begin by considering a generic free field, ®(x) that satisfies a linear differential
equation of the form:
O0x®(x) =0, (A.44)
with Oy being a linear differential operator acting on spacetime point x. Its adjoint field
satisfies a similar relation, a(y)O; =0.

The Feynman propagator (or two-point Green’s function) is defined as the vacuum
expectation value of the time-ordered product:

Gr(x = y) = (0| T{®(x)@(»)} [0) , (A.45)

which represents the amplitude for propagation of the field from point y to point x.
To find the equation satisfied by the propagator, we act with the operator O, on
(A.45):
OxGr(x =) = (0] OxT{®(x)®(»)} |0) .
However, since Oy is a differential operator, it does not commute with the time-ordering
operator due to singularities at coincident points. This leads to:

OxT{D(X)@(y)} = T{OxP(x)®(y)} + [Ox, THR(X)D(1)}-

Using the free field equation Ox®(x) = 0, the first term vanishes. The remaining contribution
comes from the commutator between the operator and the time-ordering, which generates a
delta distribution at the coincidence point:

O:Gr(x =) = (0] [Ox, TH®(x)®()} |0) = -i8“ (x - y). (A.46)

This identity follows from the canonical (anti)commutation relations and holds universally
for free fields.

Therefore, the Feynman propagator is the Green’s function of the differential operator
Oy:

OxGr(x —y) = —is@(x-y)| (A.47)

Or, if we realize a Fourier transformation, we have in momentum space:

0,Gr(p) = —i. (A.48)
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Fermionic Propagator

We have already determined the equation of motion for fermions (A.14), from which
we have the operator (y#d, + m), that in momentum space ( d, — —ip,) can be written as
(—iy#pyu + m). We apply this to (A.48):

(—iy*pu+ m)Sr(p) = —i. (A.49)
Thus:
—i —i(=iy#py + m)
S = = ) A.50
F(P) —iyHp +m p?>+m? —ic (8.50)

The Feynman prescription —ie ensures the correct treatment of the pole at p? = —m?.

Photon Propagator

The same process is used to derive the photon propagator. However, since A is a
vector field, its propagator is a rank-2 tensor Gﬁv (p), and we generalize (A.48) by writing:

p*Gy (p) = —in®”. (A.51)
Therefore: .
G* (p) = i (A.52)
E p?—ie

where the prescription —ie ensures the correct treatment of the pole at p? = 0.

A.4 Transition amplitude i M for the Compton Scattering

To simplify our notation, we will define for the Compton scattering iM = iM?),
since this is our leading order. Now, with equations (A.50) and (A.43), we can finally write
the transition amplitude for the Compton scattering (equation (A.42)) as:

—i(-i(p+¢)+m)
(p+q)2+m2_l-€¢(P,/1)u(q,a)

S - m) ’
(q—p’)2+m2—ie¢ (p’,A)u(q, o)

iM=e*u(q, o))" (p', 2)

+e*iiy (q)¢(p, A)
where we define y“s:;, 1 = £y and y¥e, 2 = ¢;. We can rewrite this as:

(-i(p+q) +m)

(p+q)?*+m?

siM=—iei(q, o) | ¢ (p', ) ¢(p,4)

(A.53)
(-i(¢g —p)+m)

+#(e. ) (q—p')?+m?

£ (p’. 1)

u(q,o).

Note, that we have dropped the —ie in the denominators, since they will not vanish (we can
see this by using equation (3.5)).
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