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A geometria Riemanniana das superficies quanticas - O caso

do AdSQ

Resumo:

Esta tese tem como objetivo construir, de forma rigorosa, uma estrutura algébrica que
possua as propriedades geométricas do espago anti de Sitter bi-dimensional por meio da quantizagao
das coordenadas do hiperboloide que o define. Inicialmente, sdo definidos os objetos mateméticos
essenciais para essa construgao, e é formalizado um andlogo ao célculo diferencial e integral sobre
a dlgebra criada. A partir dessas defini¢oes, sdo apresentados dois médulos importantes, um que
representa o analogo ao espaco tangente e seu respectivo dual. Também é definida uma forma
hermitiana, que funciona como a métrica do espaco, sendo construido explicitamente seu inverso.
Com essas ferramentas, é desenvolvido um célculo pseudo-Riemanniano para variedades algébricas,
permitindo a obtenc@o dos simbolos de Christoffel, curvatura, Laplaciano, vetores de Killing e até
mesmo a defini¢ao de autofuncgoes algébricas, viabilizando a integracao sobre a superficie quantica.
O trabalho discute ainda a nao unicidade de alguns elementos e a estrutura algébrica necesséria
para garantir que o ordenamento dos elementos nao comutativos leve a resultados consistentes
com a quantizacao pela deformacao do paréntese de Poisson cldssico. Além disso, é introduzido
um programa que atua como uma ferramenta de cdlculo para objetos nao comutativos, facilitando

os calculos em superficies nao comutativas nesse formalismo.

Palavras-Chave: Geometria nao comutativa, geometria algébrica de Poisson, Geometria Riema-
niana nao comutativa, espaco Anti-de Sitter bidimensional nao comutativo, quantizacao geométrica,

calculo pseudo-Riemanniano.



Abstract:

The main objective of this thesis is to rigorously construct an algebraic structure that
possesses the geometric properties of the two-dimensional anti-de Sitter space through the quan-
tization of the coordinates of the hyperboloid that defines it. Initially, the essential mathematical
objects for this endeavor are defined, and an analogue of differential and integral calculus on the
constructed algebra is formalized. With these constructions, two important modules are defined:
one serving as an analogue to the tangent space, and its respective dual. A Hermitian form is also
defined to serve as the metric of the space, and its inverse is concretely constructed. With these
tools, a pseudo-Riemannian calculus for algebraic varieties is developed, allowing for the determi-
nation of the Christoffel symbols, curvature, Laplacian, Killing vectors, and even the definition of
algebraic eigenfunctions, enabling integration on the quantum surface. The article also discusses
the non-uniqueness of some elements and the correct algebraic structure required for ensuring that
the ordering of non-commutative elements leads to results consistent with quantization through the
deformation of the classical Poisson bracket. Additionally, a program is introduced that functions
as a calculator for non-commutative objects, facilitating computations involving non-commutative

surfaces in this formalism.

Keywords:Non-commutative geometry, Poisson algebraic geometry, non-commutative Rieman-
nian geometry, two-dimensional non-commutative anti-de Sitter space, geometrical quantization,

pseudo-Riemannian calculus.






1 Introduction and Mathematical Preliminaries

The main goal of this thesis is to develop a coherent and rigorous prescription for constructing
quantum surfaces that exhibit the same geometric objects found in commonly studied topological
structures within Riemannian and Poisson geometries. Among these objects, I refer to the metric
tensor, curvature, Ricci scalar, Christoffel symbols, and other geometric objects used in the theory
of general relativity. We will apply this prescription for the study of AdSs as a quantum surface
following [1], [2] and [3], as well as comparing all important results we obtained in our paper
[7] with other works that do a similar analysis but in a different extent. As a new result we
will derive all geometrical properties that allow us to analyse geometrically the ncAdSs as a
quantum surface solving its field equations from a mainly geometrical formalism, in opposition
to the usual deformation quantization procedure that is widely applied in the literature. The
authors of [4] found exact solutions for the correspondence AdS2/CFET; treating the AdS as a
quantum surface, and some of the results obtained in my work can be demonstrated using a totally
different approach, showing that these two formalisms could attain consistent results despite their

foreseeable unrelatedness.

In this introductory chapter, we will establish the fundamental mathematical frameworks
requisite for our endeavor. We will commence by delineating the algebraic structures suitable for
the formalism of quantum surfaces, among which Weyl’s algebra field of fractions and Heisenberg
algebra stand out. Additionally, we will conduct a comprehensive review of the canonical formula-
tion of Poisson geometry, an approach that is usually employed within non-commutative geometric
schemes. This entails the promotion of the Poisson structure to the usual commutation relations,
acting upon a given Hilbert space. Initially we present some important definitions, theorems and
propositions regarding the Weyl and Heinsenberg algebras and we define over it a field of fractions,
complex and differential structures in order to rigorously construct the ”calculus” over these alge-
bras. After this we study the main properties of the Poisson structure on manifolds and we will
take as example the case of minimal surfaces. This example is chosen because our main references
[1-3] use it as a starting point to build his theory. By the existence of some special features of
these manifolds one can study some properties of the non-commutative minimal surfaces without

worrying about unnecessary complications that may appear in a more general case.

In the second chapter we introduce some properties of the AdS space-time setting the co-
ordinates and the embedding we will use in the following parts. The study of Anti-de Sitter (AdS)
space is important in theoretical physics, particularly due to the AdS/CFT (Anti-de Sitter/Confor-
mal Field Theory) correspondence. This idea, proposed by Juan Maldacena in 1997, links gravity

in AdS space to a conformal field theory on its boundary. AdS space provides a useful setting for



exploring quantum gravity, helping to connect general relativity with quantum mechanics. The
AdS/CFT correspondence suggests that a higher-dimensional gravitational theory in AdS space
is equivalent to a lower-dimensional quantum field theory, offering insights into black hole physics
and strongly coupled systems. Beyond fundamental physics, this correspondence has applications
in condensed matter physics and quantum chromodynamics, linking gravitational theories with
real-world systems. Following this we discuss some historical background for the non-commutative
formulation of quantum mechanics and why one would construct a theory over a non-commutative
space-time, presenting also a quantization scheme that was used in our previous paper. We finish
this section with an outline of the AdSs/CFT; correspondence for the commutative case and set

the prescription we will use to verify it in a non-commutative background.

In the third chapter, we demonstrate how to construct the non-commutative analogue
of the AdSy/CFT; correspondence by quantizing the embedding coordinates and Killing vectors
of the commutative theory. Through this quantization process, one should obtain a set of oper-
ators that retain the symmetries of the commutative case as the non-commutativity parameter
approaches zero. Wepresent an alternative approach to quantizing the surface. We discuss how
the main properties of Weyl algebras can be used as a tool for geometric quantization and grad-
ually add features to this algebra to create an algebraic structure that enables the construction
of the quantum AdS, using only the generators of the algebra as parameterization variables. To
define a well-defined tangent space, we establish a module structure and discuss the existence of
basis vectors and a metric within this framework, concluding this section with some examples. In
the final part of this chapter, we construct the non-commutative analogues of the metric tensor,
the Christoffel symbols, the curvature tensor, and the Ricci scalar for both ambient and local
coordinates. We analyze the results obtained, explain why some ambiguities could arise, and how
to address them. We conclude by obtaining the non-commutative Killing vector fields that are
solutions to the Killing equation for the non-commutative metric and discuss non-commutative
integration using the eigenfunctions of the non-commutative AdSs (ncAdSs), which are found by

solving the Laplace equation.

In the fourth chapter, we discuss potential developments that could arise from the results
obtained in this thesis. The first proposal is to investigate how one could construct a well-defined
non-commutative Einstein-Hilbert action that could yield the field equations. We raise a series of
questions regarding these ideas and explore two main possibilities. The first approach involves a
direct variation of the action using an integral form that must be rigorously defined. The second
approach attempts to define the contracted Bianchi identity in the non-commutative setting and
use it to derive the resulting field equations. The final proposal for future development is the

construction of the spin connection and the Dirac operator using non-commutative vielbeins.



Lastly we present the tool developed to assist with calculations in this thesis in Appendix
A. This tool is a non-commutative calculator that can verify the accuracy of some of the results
obtained, helping to avoid small mistakes that may arise during lengthy non-commutative cal-
culations. The tool was already functional for several calculations used in this thesis, and we
intend to upgrade it to include new functionalities that could assist anyone interested in analyzing

non-commutative surfaces.

1.1 Algebraic structures

We begin this subsection by defining the key concepts and objects that will be used throughout
this thesis.

Definition 1.1. Let F' be a field and let V' be a vector space over F. We define an associative
non-commutative bilinear operation o : V x V — V that will be denoted by the juxtaposition i.e.
vow = vw # wv for v, w, vw and wv € V.. We call V equipped with o an F-Algebra. If V has an

element I such that for allv € V and Iv = vl = v we say that the algebra is unital.

Definition 1.2. Let R be a ring and let 1 be the multiplicative identity*, we say that M is a left-
/right R-Module if it has an Abelian group structure (M, +) and a left/right scalar multiplication

satisfying 1 -x = x ¥V © € M and obeying the distributive and associative rule.

Definition 1.3. Let A be an associative unital algebra, we say that A is freely generated by a
sub-algebra B if there exists, for any map f: B — C where C is any other algebraic object (Lie

algebra, algebra, group, etc.), a unique homomorphism h : A — C such that h|g= f.?

Definition 1.4. Let A be an algebra, a right (left) ideal of A is a linear subspace D of A such
that d-a € D (a-d € D) Va € A and d € D. We say that an ideal D is two-sided if it is both a
right and a left ideal.

Definition 1.5. Let A be an associative unital algebra and let T be a two-sided ideal in A. The

quotient algebra A/T is the associative unital algebra of equivalence classes defined for a € A as
[a|=a+Z:={a+b|beTL},

for the equivalence relation ~ defined as a ~b = (a—0b) € T for a, b € A.

With these concepts in mind we define a Weyl algebra as

n general the ring R doesn’t need to be unital in order to define a Module properly.
2The sub-algebra B is a generalization of the notion of basis, related to the fact that a linear function f : X — Y

between two vector spaces is totally determined by its values on elements of the basis of Y.



Definition 1.6. Let A be the free associative unital algebra over C generated by U, V. Moreover,
let Z denote the two-sided ideal generated by

UV — VU —ihl.

The Weyl algebra with the non-commutativity parameter h is denoted by Wy, and it is defined by
the expression below

Wy = A/T,

which states that the Weyl algebra is the quotient of the algebra A with the two-sided ideal L.

As a simple example, if we consider the algebra A = A(a,a!) to be the algebra generated by
the ladder operators, the respective Weyl algebra is obtained by setting A = —¢, in other words
W_;, = A(a,a’). Consider also the following example of the construction of W in a direct and
formal way. Let P(X?) = P(X!,..., X™) be a ring of polynomials over the set formal symbols { X}
with ps(X?) € P(X?) being a polynomial of order 3 € N. The set

wo ey ={ S ps(xH [0 ¢ (L1)

BrEN™ j=1

is called the Weyl algebra of order n over P(X?). W is a complex algebra with respect to the
natural addition of C™. The product and the left multiplication are defined as

0j - f=f0; +0;(f) , (1.2)

Lig=fg, (1.3)
for f,g € P(X") and 9;, Ly € End(P(X")). The space End(P(X?)) is a non-commutative ring for
n > 1 with the product defined as the composition of endomorphisms satisfying

0;oLxs = Lxi + dij ,

aioaj—ajoai:LXioLXj—LonLXi:O.

These relations lead us to an alternative definition of W () (P) as the sub-algebra of End(P(X?))

generated by {Lxi,0;} for i € 1,n. Using the notation X7 = H?Zl X;j and 9° = H?Zl 6;” for

o € N™ we can define the general multiplication rule on W) (P) as

X8 X = X0t ¢ Y il xotr—oghtu-o
el BN (o)

Now we continue defining some additional objects and structures that will be useful in our work.

Definition 1.7. Let R be a commutative unital ring and V' be a module over R equipped with a
skew-symmetric bilinear form

w: VerV — R. (1.4)

10



The Heisenberg Lie algebra by is the Lie algebra given by the R-module V & R with the unit
element 1 = (0,1) and its left multiplication over an arbitrary element being 1(V,r) := (0,r) and

with the pair (V,r) related to the direct sum. We also define the Lie algebra bracket

[(a,b), (a',b)] :== (0,w(a,a’)]) (1.5)

There is a relation between the Heisenberg Lie algebra and the Poisson algebra, which we will be

introducing it in a more succinct manner.

Definition 1.8. A Poisson Algebra is a module A over K (a field or a commutative ring)
with two distinct products, namely o and { , }, where o : A ®x A — A is the usual product of
an associative K-algebra, and the second product { , } : A®k A — A is a Lie bracket, turning
it into a Lie algebra such that Ya € A the endomorphism {a,—} : A — A is a derivation, i.e.

{a,—} € Der(A) satisfying the Leibnitz condition.

The relation between the Poisson and Heisenberg algebras can be constructed starting
by taking (V,w) to be a symplectic vector space over R. From the tangent bundle structure with
the projection m 2V x V' — V we use the canonical isomorphism ¢ : TV ~ V x V to construct a

differential 2-form @ from w by the assignment

@(z,y) = w(md(z), mad(y)) ,

Va,y € I'(TV). A symplectic manifold X is 2n-dimensional manifold equipped with a closed
smooth non-degenerate?® 2-form @ € Q?(X), from the assignment above it is clear that X = (V,®)
is a symplectic manifold and the algebra of smooth functions C*° (X, R) is indeed a Poisson algebra

P(V,&) when we define the Poisson bracket as

{f, 9} :=w(Hy Hy) ,
where f,g € C*(X,R) and Hy € I'(T'X) is the Hamiltonian vector field of X uniquely (from the
non-degeneracy of w) defined by
df = w(Hy, -)
The subspace of linear functions £(V,R) C C*°(V) from V to R form the dual vector space V* of
V from the inclusion V* < C*°(V'). By the non-degeneracy of w, Vf € V* J vy € V such that

f :w(va_) € COO(V) )

in this setting the extension Hy of vy € I'(T'V') is a Hamiltonian vector field for f and from this
follows that the Lie bracket of f,g € L(V,R) is

{fvg} = W(Uf>vg)

3This can be achieved by imposing that the form w™ = w Aw A --- A w has the maximal rank at every point

e X.

11



and as a last step we define the following inclusions ¢; : w(v, —) < C°°(V) for the Lie bracket and
¢z 1 R — C*°(V) for the constant functions, then ¢: V& R AGLCIN C>(V) induces a Lie algebra
homomorphism

c: h(V,w) = P(V,0),

showing that the Heisenberg Lie algebra is a sub-Lie algebra of the Poisson algebra P(V,®).
To explictly construct the structure written above consider first the Heisenberg group H(V) =

{V xR, -} on (V,w) where the group law is defined as
(v,a) - (w,B) == (v +w,a+ B+ gw(v,w)) ,

forv,w € V, a, 8 € R and for some constant ¢ that will be related to the Lie bracket on the Heisen-
berg algebra. Using the fact that every symplectic vector space has a Darboux basis {e;, &’ }?,]:1

and if we consider 7 as a basis for R, we can define a new basis for V- x R as {e;, €/, 7}};_; where
;

any vector from it can be written as v = ¢'e; + Dj &/ + af. From it the group law becomes

C
(p.q,0)- (0, ¢,B) = (p +pq+d,a+ B+ 5(}9(1’ —p’q)) ,

and from the linearity of H we can indentify the vectors in the group with vectors of its Lie algebra

b, which consequently gives as the Lie bracket of the group the usual commutation relation

[(U7 Oé), (U}, /8)] = cw(v, w) )

which clearly implies that, for the Darboux basis [e;, é] = céf and all other commutators vanish.
After the definition of the universal enveloping algebra, we will make this construction more suitable

with the usual quantum mechanics setting.

Definition 1.9. Let g be a Lie algebra over a field F', we can construct a Tensor free algebra from

it containing all possible tensor products of elements of g, or explicitly

T(g) = FPe's
i€N
the universal enveloping algebra is essentially the quotient T(g)/Z of the tensor algebra with

the two-sided ideal T generated by the abstract Lie bracket on g and for all a,b in the embedding
of g in T(g) this ideal can be explicitly constructed from

a®b—-—b®a—[a,b],

where [a,b] is the abstract Lie bracket on g € T(g).

If we consider the universal enveloping algebra of the Heisenberg algebra with 2n gener-
ators obtained by identification of the center (elements that commutes with all other elements of

the algebra) of the Heisenberg Lie algebra with multiples of the identity element, we obtain from

12



it the Weyl algebra on 2n generators. For example, let ) be an 2n 4 1 dimensional real Lie algebra

with elements
{pla cery Pny 415 -y Qn, C}, (16)

for ¢ € C the center of the algebra, it will become a Heisenberg algebra if we define on it the
following Lie bracket
[pi, pjl = lai, 4] =0,
[pi, 451 = cbij -

In this setting, the set of generators p,q acts as a Darboux basis, and the symplectic structure
arises from the intrinsic definition of the commutation relation. Therefore, one can easily see that
h is constructed from 2n copies of the previously constructed Weyl algebra with ¢ = ih and the
center C being all complex-number-valued multiples of the identity. The structures of the Weyl and
Heisenberg algebras arise naturally from the physical analysis of quantum phenomena. As will be
discussed in the following chapters, these algebras are suited to introducing non-commutativity as
an intrinsic feature of a given space-time when we promote the usual parametrization coordinates
to operators that act on some Hilbert space. In a sense, this will allow us to define the geometry

of the quantum algebras directly.

Now, we proceed with the next step in our enterprise. We turn our attention to Wy and
aim to make it a field of fractions. For this purpose, we follow a similar path employed in [1] which
is a brief review of the whole proccess done in [38], we omit some technicalities to make our text
more legible. Since our main goal is to have a well defined field of fractions where elements* from
W, x Wy, will be written as the ordered pair (A, B) in direct correspondence to the element AB~!,
we should first define the equivalence class underlying the so-called (right) Ore condition, namely,

there exist a pair of elements «, 8 € W} such that
Aa = Bj , (1.7)

this relation guarantees the existence of a common factor between two elements of the algebra.
We also define the zero element, let A be an element of W} that satisfies the following property
cA+ B =B,V BeWyand c € C, we denote A as 0 for the Weyl algebra and by definition A is
not invertible. We can use this property to define an equivalence relation on Wy x Wp, but first,
for B # 0, we will denote a fraction as (%) and we say that (%) ~ (%) if there exist «, 8 € Wp,
such that

Aa=Cg, 18)
Ba=Dpg . '

and we will not verify that this indeed defines an equivalence relation since it is straightforward to

show this. The relation above is equivalent to § = =% in a field of fractions. The quotient space

4Here we consider the Weyl algebra W}, generated by U and V as stated in the definition (1.6).
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W, x Wy, /~ is denoted by F; and will be called the field of fractions of the Weyl algebra W},. One
can define the addition and multiplication on F for Ya = Wg = Zv and o, 8,7, X, Y, Z, W €

T @
) (-G

It is clear that one should verify if the operations above are well-defined (i.e., they respect the

(1.9)

equivalence classes) and do not depend on the choice of a, 3, ~, since this is done in [38] and [1], we
will omit this verification here. Furthermore, we can represent the unit element by 1y, = (1/1) and
the zero element Oy = (0/1). For every non-zero element B € Wy, we identify B! with (1/B),
and with this notation it is clear that (A/B) = (A/1)-(1/B) = AB~!, note that the way we defined
the product of fractions make the element AB~! not equal, in general, to (1/B) - (4/1) = B~1A
as one should expect (the equality holds if [A, B] = 0). To make F} a *-algebra we extend the
involution operation to it. An involution is an anti-homomorphism that is its own inverse, we
extend it to Fp by setting U* = U, V* = V and as consequence of the universal property of the
fraction ring, we achieve our goal. Since now Fj, is a *-algebra we obtain an well defined structure
that resembles the complex structure of C with the involution operation * satisfying the following
T
%
A)A 1 o (1.10)
() G - () (5) -

From now on we will denote the fractions (A/B) on Fj, as AB~! in this specific ordering. The real

properties

and imaginary elements of Fy, are

R(A) = E(A b A%
(1.11)

I(A) = —(A— A%) .

24 (
We can also define derivatives with respect to the generators in our algebra by noting that, for

example, for some function F(U) with a formal series expansion we have
[F(U), V] =ihF'(U) ,
and the same is valid for some function of V' with some change in sign. As expected we can define
the derivatives as
Liav,

i (1.12)
[A U],

oy (A) =
Ov(4) = ih

and it is easy to verify that this definition obey the Leibnitz rule and all important properties

expected for a well-defined derivative (see [1]). We also extend these derivatives for Fj by simply

14



noting that 9, (AA™1) = (0, A)A~! 4+ A(9,A~!) = 0 which implies that 9, A~ = —A71(9,A)A~!
for x = U,V and A € Fj. To keep the analogy with the complex numbers and their derivatives we
introduce a new element A € F as A = U + V. Clearly [A, A*] = 2h1, in the following we define
the derivatives with respect to these new elements
_ 1
- 2h
B(A) = Ay +i0y)[A] = ——[A, A]
T QU IOVl = o L AL

D(A) = £ (0 —idv)[A] = 5[4 A]

(1.13)

We denote the sub-algebra C[A] C F}, as the algebra generated by A and 1.

Definition 1.10. We say that an element A € Fy, is said to be r-holomorphic if 0A = 0 and we
call this element holomorphic if A € Wy, (equivalently if and only if A € C[A]).

The r-holomorphic elements are analogues of meromorphic functions in the field of fractions, and
generally they are written as fractions of polynomials in A. As the last step in this section we
proceed to define the non-commutative Laplace operator, a notion of integrability in this setting and
some additional objects that will be used in order to define a non-commutative pseudo-Riemannian

geometry.

Definition 1.11. We define the non-commutative Laplace operator Ay as follows

1

Ao(A4) = s

(4. v, vi+ (4 v).01)
An element A is called harmonic if Ag(A) = 0.5

Definition 1.12. Let A and B be r-holomorphic elements, we say that B is a primitive element

of A if 0B = A and we denote B for an arbitrary element A as

B:/AdA.

If a r-holomorphic element A has at least one primitive element we say that A is integrable.

Now we follow similar constructions done in [43], [44], [45] and [46] to introduce some concepts
that we will need to construct the non-commutative pseudo-Riemannian geometry, we refer to
these references for the proofs of any claim that may appear in the following. All the definitions
and results will be taken for a right module and we refer that it is possible to extend to a left one

by writing in parentheses, when a bimodule structure is implied we will say it explicitly.

5Two obvious results that follow from the last definition are
Ag(A) = 409(A) = 499(4) ,
(1.14)
OuR(A) = 0y S(A) and Oy R(A) = —0uSS(A) ,

15



Definition 1.13. Let A be a unital *-Algebra over C. A left (right) A-module M is said to have
a canonical structure of a right (left) A-module if we impose m -a = a* - m (respectively for the
left one a-m =m-a*) fora € A and m € M and the operation - it the scalar multiplication for

the module M.

Definition 1.14. For a right (left) A-module M we denote as M* its dual module. M* will be
canonically a left (right) module if we set (a-w)[m| = aw[m], for w € M*, a € A, the product - is
the scalar multiplication in M™* and the action of w on m € M is denoted by the square brackets.
Using the same argument as in the Def 1.12. we can consider M* as a right module by imposing

a similar involution property.

Definition 1.15. Let A be a unital *-algebra and let M be a A-module. A hermitian form on
M is a right linear map h : M x M — A such that

(i) h(m,n) = h(n,m)" ,
(i) h(m,n - a) = h(m,n)a , (1.15)
(#i1) h(mq + ma,n) = h(my,n) + h(ma,n) .

for m;, my, ma, n € M and a € A where the multiplication by juxtaposition is the natural A

multiplication.

Definition 1.16. Let A be a unital *- algebra and let M be a A-module. The map h:M — M*

s associated to a hermitian form as follows

(i) h(m1)[n] = h(my,n)

(i5) h(my 4+ ma) = h(my) + h(ms) ,

(ii) h(my -a) = a* - h(my) ,
formy, mo, n€ M and a € A. If we consider M* as a right (left) module, h is a homomorphism
of right (left) modules. A hermitian form on the left and right A-module M* defined as h™! :
M* x M* — A with h™Y(wy,ws) = wy (ﬁ_l(w2)> exists when h is a bijection, we call h™' the

inverse hermitian form of h.

Definition 1.17. Let M be a right (left) A-module and let h be a hermitian form on M. The pair
(M, h) is called a right (left) hermitian module. Consider ¢ : (M,h) — (M’ ') satisfying
h(m,n) = h'(¢(m),d(n)) ¥V m,n € M. If ¢ is also a module isomorphism then ¢ is called an

isometry and (M,h) and (M, h) are said to be isometric.

Definition 1.18. A module M is projective if whenever M is a quotient of a free module N, there

exist a module X such that N is isomorphic to M & X.

Definition 1.19. If h is an invertible hermitian form on a finitely generated projective A-module

M, then (M,h) is called a regular hermitian A-module.
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Definition 1.20. Let (M,h) be a hermitian A-module and let ¢ : M — M be an endomorphism.
If h(p(m),n) = h(m, d(n)) ¥ m,n € M then ¢ is said to be orthogonal with respect to h.

Definition 1.21. Let A be a unital x-algebra, a derivation in A is a linear map 0 : A — A that
satisfies the Leibniz’s rule, i.e., 0(AB) = AJ(B) + 0(A)B. The collection of all derivations in A

is called the algebra of derivations over A and it is denoted as Der(A).

Definition 1.22. Let A be a unital *-algebra, the complex *-closed vector space V- C Der(A) is
the complexification of the real vector space Vig with hermitian® basis vectors. A Lie pair is the
pair (A, g) where A is a unital *-algebra and g is the Lie algebra over V. A Lie pair defines a

derivation based calculus Q(A) over the algebra A.

In [45] one can find some proven theorems about regular hermitian modules. One of the
results we will use here claims that every regular hermitian module can be constructed as the image
of an orthogonal projection on a free module if the hermitian form h is invertible. Now we will
focus our attention on the geometry of Poisson manifolds in order to build a reasonable set of tools
that will allow us to develop a structure analogous to the Poisson geometry using the previously
defined algebras. These tools will help us to define surfaces in a non-commutative way and we will

start analyzing, as a simple example, the quantum minimal surfaces and its properties.

1.2 Poisson Algebraic Geometry

In the following we recall some standard definitions and constructions regarding Poisson geometrical
objects and minimal classic surfaces in order to finish this section analizing the example of non-
commutative minimal surfaces. We follow an standard exposition of these topics and we refer to

[34], [35] or any book on Riemannian geometry.

Using the definition 1.7 it is easy to see that the Poisson structure together with the
pointwise multiplication makes the vector space of smooth functions on M a Poisson algebra.
In this setup, derivations correspond to the Hamiltonian vector fields X;(g) = {f, g} which are
related to the classical Hamiltonian function. It’s well known that the geometry of surfaces can
be expressed via Poisson brackets and all the information gathered by these means can be related
to the non-commutative geometry and help to define these new objects (see [36] and [37] for a
comprehensive exposition of these topics). Following this strategy we will show some geometrical

properties of Poisson algebras. Let ¥ be a 2-dimensional manifold with ambient coordinates u’

6We say that a set S C Der(A) is *-closed if V 8 € S <= 0* € S where 0*(f) = (a(f*))* for f € C°(A). A

derivation is hermitian if 0 = 9*
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embedded in R™ through the embedding coordinates z*(u’), with Latin letters taking value in 1,2

and Greek letters taking value in 1,...,n. The induced metric takes the following form

n

gab = Y _(0az")(Dpz") . (1.16)

p=1
We introduce a Poisson bracket {—, —} : C®(X) x C®(X) — C*°(X) for an arbitrary density
function p and f,g € C*(%)
€ab
{f,9} = 7(8af)(8bg) : (1.17)

where €? is the usual 2D Levi-Civita symbol. We also define the Poisson bivector #%° = %eab and

v = +/9/p, for g being the determinant of the induced metric. This gives us a way of expressing
the inverse of the metric as g% = (1/92)0%0%g.4 since gq.c?%€°? is just the cofactor expansion of
the inverse of the metric. The geometry of the sub-manifold ¥ C R"™ can be obtained from the
definition of the projection operator P : TR" — T, for X € TR" and TY C TIR"™, which can

be written as

PH(X) = %{x“,x"}{xa,xl’}){“ : (1.18)

where the Einstein summation convention is implied. The projective property can be easily seen

by calculating

PH(X) = %9”9“1(8@33”)(6bx”)(6cxa)(6dx”)Xa = %(9ab90dgbd)(8aac“)(acxo‘)X°‘ ,
= §9(Buz*)(Bez®) X*

and from this expression we get to the following
PP(P(X)) = g (02°) (07") (9% (D) (Dex®) X* ) = 97 g1ag"(0ca”) (0.2 X = PP(X) |

showing that this is indeed a projector. In this setting the Laplace-Beltrami operator on ¥ for
some f € C*(X) is
1 (1
A(f) = {{ﬁxu}’xu}’ (119)
7Y

and we can show that the definition above is equivalent to the usual A(f) = %aa (\/gg“babf> by

direct inspection

Ay = St (2 0@ 0i2)) = S0 (o ao.n)
— \}g@a(seabecligbd(apf)) = \}gaa (mgacacf) _ \}g

Now that we have defined in a more concrete manner how we can construct a surface from their

9a(v/99*0cf) -

Poisson structure we now define what is a minimal surface. Classically, surfaces that have zero mean
curvature at every point are called minimal surfaces and one of its properties is that they minimize
the area functional. In our setting, we can characterize minimal surfaces by the fact that their

embedding coordinates, viewed as functions, belong to the Kernel of the Laplace operator A on X.
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For some local conformal coordinates” u'!, u? satisfying {u!,u?} = 1 and for 2* € ker(A)V u=1,n

every set of embedding coordinates satisfy

A=

n(u',u?)

Another classical way to define minimal surfaces is using the fundamental forms. When evaluating

iy} = s (Ut hl ) L)) . (20)

the length of a element w € TY. one can use the induced inner product from R?, then the first

fundamental form I for u' = u and u? = v is given by
E = (0, X (u,v) ,0,X (u,v)) ,
F = (0,X(u,v) ,0,X (u,v)) , (1.21)
G = (0, X (u,v) , 0, X (u,v)) ,

where X (u,v) defines the parametric surface in R3. The coefficients of the second fundamental

form T,
e = (02X (u,v) , N(u,v)) ,
f = (0,0, X (u,v) ,N(u,v)) , (1.22)
g = (0°X(u,v) , N(u,v)) ,

with N(u,v) = \g"}fgﬁzﬁ ;\\ gvﬁgzzg‘ being the normal. Upon recalling the definition of mean

gE—2fF+eG the

curvature in terms of the first and second fundamental forms, which is H = SEC—T7)

equation H = 0 implies that the coefficients of the fundamental forms must satisfy
eG—2fF+gFE =0, (1.23)

for all points in the surface. Now that we recalled some properties of minimal surfaces we intend
to construct a non-commutative algebra containing the generators U,V in order to define an non-
commutative minimal surface. The strategy we are employing here will be the following: i) We will
define a Weyl algebra and its field of fractions for some generators U, V satistying [U, V] = ikl for
some constant i that measures the non-commutativity of the surface; ii) we will introduce a module
structure in order to replicate the main properties of a tangent space over this non-commutative

manifold. Now we proceed to the next sections to apply this strategy.

1.3 Non-commutative Minimal surfaces

The classical theory of minimal surfaces can be developed, with some modifications, in the non-

commutative set-up by relating all classical quantities to the new ones defined in a free® module

"We say a set of coordinates is conformal if the metric can be written as g., = n(u',u?)d4p for some strictly
positive function n(u',u?). One can always find such coordinates locally for any surface. From now on we will

denote Ag = n(ul,u?)A = {{z*, v}, ul} + {{z*, u?},u?}.
8Since Fy, was extended to a division ring, it suffices to consider a linearly independent generating set as a basis

to promote the direct product of n copies of Fj to a free module.
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over Fp. Consider the canonical basis on F}"* as

E,=(0, .., 0, 1,0, ..., 0) (1.24)

in which the m-th element is non-zero. Returning to the example where the Weyl algebra is
constructed over a ring of polynomials in W5, we can consider the following set of monomials as a
basis
S ={X*Pla, B € N™} . (1.25)
In this case, any non-zero element in the free module F;* generated by m copies of Fj can be
written in a unique way as the finite sum
A= Z aap X 0" (1.26)
a, B

as a consequence, the left action of an element A € Wy, is

m

Z%BHX% ITo% ) - (1.27)

j=1
It is easy to see that any linear differential operator can be written uniquely using the basis S in
the free module Fi". If we assume, for example, that @, (X) € P(X?) is the solution of a system

of linear partial differential equations
Sys = : : (1.28)
Ap(®) =0

then one can assert that ®,; belongs to the left ideal generated by A;.

Now that we have seen an concrete example of this formalism, we can continue introducing

additional features to F7*. One can extend the action of the derivative operator as
du (K) = 0u(K")E; , (1.29)
for K € FJ* and the same holding to dy. We can also introduce a symmetric bi-linear form

L, i i i i
7§ZAB + B'AY) (1.30)
for Z, ? € F;" and we will use this arrow notation for any element of this space. One can easily

show that

(A, B) = —[(4, B), Zh VIE, B) + [BLVIE,) (1.31)

which means that this bi-linear form obey the Leibnitz rule for the derivative operator. Keeping
the analogy between the classical and the non-commutative setting, we shall introduce the non-

commutative minimal surfaces.
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_>
Definition 1.23. A hermitian element A € F;* is called a non-commutative minimal surface if

Ag(A") =0 fori=1m (1.32)
1.32
<8UZ>, 8UZ>> = <3vz, 3vz> and <3UZ>, 3vz> =0.

If we denote £ = (8UZ>, 6UZ>, F = (8UZ>, 6VZ> and G = (8\/2, (‘3VZ>>, the second
relation in (1.28) is analogue to the definition of an isothermal surface? which means that it is
the non-commutative analogue of a conformal parametrization. Sometimes the action of the free
module F}* over some vector space will not preserve this space, and the successive action of
elements of F}* will not be well defined, to avoid some trouble concerning this fact we define a

new non-commutative vector field ® € F/* as
® =0 E; = 20(A)E; = (aU(Ai) - i@v(Ai)>Ei (1.33)
which satisfies the following relations
(P, P)=E -G —2iF,
(®, ®) =0 ifandonlyif E=G and F =0, (1.34)

%
® is r-holomorphic — A is minimal.

These relations follow easily from the direct computation of the bi-linear form (1.30)
using (1.33) and the last assertive follows from the fact that Ag(®) = 45(8(@)) =20(®) =0
since ® is r-holomorphic. To finish this section we will apply this formalism to the case of the

non-commutative catenoid.

1.3.1 The non-commutative Catenoid

Let V be the vector space of infinite sequences of complex numbers, with canonical basis vectors
denoted by |N) with N € Ng. The element X € V, with Ax € C, is written as
A= > Ag-|K). (1.35)
KeN,
The subspace Vo C V of finite linear combinations of |K)’s will be defined as the domain of the

space of linear endomorphisms of V', denoted by £(V, ;). Now we introduce two operators'? that

91n classical differential geometry we say a surface is isothermal if £ = G = o? and F = 0 for some real smooth
function a(u, v). In this case the parameters (u, v) are also called isothermal. The isothermal parametrization is also
called conformal because it preserves angles. Another important result from classical differential geometry is that if
a parametrized surface S is isothermal then AS = 2a?2 (u,v)H|]—\lz(u7 v)|, since in Def(1.8) we impose Ag(A?) =0 it

is straightforward to see that these two conditions imply that H = 0 and the surface is minimal.
107t is clear that they define the usual ladder operators if we divide them by v/2f.
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leave the Vj invariant under their left action

N = V2hN|N - 1) ,

AN = V2R(N + DN +1),  with AT = A* . (39
Using complex coordinates (z, z*) the classical catenoid can be parametrized as
' = R(cosh 2) ,
r? = R(—isinh z) , (1.37)
3 = R(2)
Using the analogy between the commutative and the non-commutative setting we set
X! :i (eA +e Ml 4 eiA*) ,
X2 :i (eA —e MM 4 eiA*) , (1.38)

X3 —R(A) = %(A +AT),

for X € L(V,Vy) with i = 1,3. Now, it suffices to verify if this set of operators satisfy (1.36)
to show that they define a minimal surface. To calculate AO(Y) we use the equations (1.13) and

(1.14) to show that, for A € C

AA 1 AN A x 1 - /\k koAx
AN = LM AIIN) = o 3 S AR AN
=0
);ii Ak 1[A A*]|N>—)\€/\A|N> (139)
(e*M)N) =0 .

Similar calculations can be done for the derivatives d and 8 applied to e which gives d(e*")|N) =
0 and 9(eM)|N) = XeM |N). Since Ag(A) = 409(A) we can calculate the Laplacian for each

component X*
Ag(X') =90 <€A +e A 4 eiA*> =0,
Ao(X?) = —i0d (eA —e AN e_A*) =0, (1.40)
Ao(X?) =200 (A+A*) =0

The last result implies that Ag(X?) € ker(L(V,Vp)). Now the last step is to show that £ = G and
F =0, but we must be careful since X' and X2 don’t leave Vj invariant!! so their composition is

not well defined. In this case an equivalent approach is to show that (®, ®) = 0. First we calculate

1
®|N) = 20(X)|N) = 5 <eA —e A —i(er e, 2. 1) IN) | (1.41)
HThis is a direct consequence of the action of e on |N) generating an infinite sequence of complex numbers
= (N
Z b Ny

N'(')2

i=

which clearly doesn’t belong to Vj.
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as expected et € End(Vp) and the expression (®, ®) = 0 is well defined and yields that X defines

a non-commutative minimal surface.

In the next chapter we will recall the most relevant properties of the AdS surface and
introduce the AdS/CFT correspondence, exploring the commutative case and giving some results
we found in recent papers regarding to the non-commutative setting. In chapter 3, we attempt
to construct a non-commutative generalized surface in a similar way by defining a unique metric
and a torsion-free connection that preserves the complex structure of this generalized space, by
this time two natural questions arise from this context. Firstly, given the well known classical
commutative limit, which can be achieved by taking i — 0, will the commutative differential
geometric equations yield the same results? Secondly, what are the implications, from a physical
perspective, of the non-commutative corrections that will follow from this new setting? We choose
to start with the AdS, given the latest results achieved in [4], [6], [7], [18] and [41] aiming to find a
suitable quantum metric for the non-comutative AdSs. Lastly we will perform a detailed analysis
of the full Riemannian Geometry of ncAdSs following the aforementioned setup, comparing them

with the results obtained in [1-3].
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2 The AdS; and its Quantization Schemes

In this chapter we follow a straightforward way to present the theoretical prerequisites to our work.
We start by stating the most important properties of the AdS space and we briefly present the
importance of the non-commutative geometry in the process of quantization. We will also discuss
the underlying reasons that lead us to choose AdS as the targeted surface for applying the prescrip-
tion we will use to define the geometrical objects of a surface. In this chapter, we will explore the
existing attempts in the literature to construct non-commutative AdS using alternative strategies,
and we will employ these outcomes as a point of comparison between established literature and

the novel proposition introduced by my thesis.

2.1 AdS Spacetime

Anti-deSitter spacetime is a non-compact, maximally symmetric spacetime with constant negative
curvature. By maximally symetric, we mean that it has the maximal number of symmetries for
d+1 dimensions, from now on, we will call it AdSq;1. The AdSqy1 has 3 (d+1)(d+2) symmetries,
that is the same number of the flat spacetime symmetries related to (d + 1) translations, d boosts
and 1d(d — 1) rotations. Usually we study (d + 1)-dimensional AdS spaces because the CFT dual
of AdSg4+1 have d spacetime dimensions. In our work we will focus our attention in the d = 1 case
and the reason for this is that the geometry of AdSs is distinct because it has two disconnected
time-like boundaries which brings more layers of complexity to the analysis, another fact is that it
is possible to construct a quantum version of AdSs which preserves the isometry group SO(2,1)
(for instance see [26]) and retaining some useful notions from the commutative case as the notion
of boundaries, vector fields and so on. We also have that the CFT} is realized as the de Alfaro-
Fubini-Furlan model (dAFF)!2 or could be constructed as a matrix quantum mechanics making

the C'F'T side of the correspondence more tractable.

In the general case, the AdS space-time is a solution to Einstein’s equations with negative
cosmological constant. There are a variety of coordinate systems for it and they satisfies the

equation of the hyperboloid

d
XaXA=X3+ X7, - ) Xp=02. (2.1)
n=1

I2For more information about this well known model see [22].
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It can be embedded in a (d + 2)-dimensional space as

X, :Ecos(t) 7
cos(r)
sin(t)
X, =/ 2.2
d+1 COS(T) ) ( )
X, — Esm(r) a, 7
cos(r)
this embedding defines the Minkowskian AdSy;1 which has the following metric
1 r
2 _ L 2 52 2T 2
ds® = cos? (%) (dt dr® — sin (6) defl) . (2.3)

Here, ¢ is the length scale, which will be chosen in a convenient way in order to make the measure-
ments of the energies be in the right scale, that is, unless specified diferently we are taking from
now £ = 1, r is the radial coordinate r € [0, §), while ¢ € (—00,00) and the angular coordinate (2

defines a (d — 1)-dimensional sphere S¢~1.

The Euclidean AdS and the Euclidean conformal group which is SO(d + 1,1) can be
better studied in this embedding space

d+1
X2 - X2 =72 2.4
0 Z i (24)
j=1

When we consider the global coordinates, the ¢ term of the metric (2.3) changes the sign and it will
just swap the trigonometric functions for the hyperbolic trigonometric ones in the global mapping

(2.2), giving for 7 =it

_,cosh(7)
o=t cos(r) ’
_sinh(7)
Xa1 = cos(r) (2.5)
_sin(r) 4
Xn = gcos(r)ﬂ '

This embedding defines the Euclidean AdSy;1. There is a coordinate system that makes the d-
dimensional Poincaré subgroup of the conformal group clear and manifest, we call it Poincaré Patch

(PP). The relation between the Euclidean, Poicaré patch and global coordinates, respectively, is

2 +ate+ 02 ECOSh(’T)

X = =
0 2z cos(r)
22+ 2w — 02 sinh(7)
et 2z cos(r) ’ (2:6)
X, - ga?, _ sin(r) Q.
z cos(r)

where z is a d-dimensional space vector, z runs from 0 to co and 7 is the global ”time” coordinate,
this fix the signal of Xy. From now on we will use the PP as our natural coordinate system and

we will set d = 1. In our work we used extensively two set of coordinates charts for the lower
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hyperboloid of AdSs, the canonical coordinates from [6] and the coordinalization defined in [5] by
Fefferman and Graham and we will refer to it as FG coordinates from now on. First we consider
the canonical coordinates (z,y) which satisfy the Poisson bracket {z,y} = 1 and can be explicitly

defined as

XO =—Y,
1

X, =— ﬂer_m + £sinh(z) , (2.7)
1 2

Xo = — —y2e% — fcosh
2 YAk Lcosh(z) ,

for (z,y) € R?. The concrete construction for FG coordinates is

XO:_ﬁ7
z
14 2 -1
X1=—2(z+ . ) (2.8)
2 _
X2:_£(z+t 1)7
2 z

for (z,t) € Ry x R with the boundary in z = 0. The relation between these coordinates is given
by
t
r=—Inz and y=1/0—. (2.9)

2.2 Non-Commutative Geometry and Quantization

The aim of non-commutative geometry is to reformulate geometrical structures of a manifold in
terms of an algebra of functions defined on it, generalize this commutative algebra to a non-
commutative one and then generalize the notion of the tangent and cotangent bundle in this
non-commutative setup. Following [8], [9] one can understand that in the transition to the non-
commutative setting the notion of a point is lost and this feature is manifested in non-relativistic
quantum mechanics since the Heisenberg uncertainty principle that makes the whole geometry
non-local. At length scales smaller than some fundamental length, the hypothesis that the ge-
ometry is based on a set of commuting variables is replaced by the rules of the non-commutative
geometry since it is impossible to localize a point. At early stages of quantum mechanics the scien-
tists considered the idea of replacing space-time by a lattice structure. This granular structure has
an intrinsic point to point spacing that could be interpreted as a small scale cut-off and this could
eliminate the UV divergences of quantum field theory. As proposed by Synder in 1947 [42], substi-
tuting the usual space-time coordinates by non-commutative ones makes it possible to transform
the ordinary geometry in some similar structure that retains its main geometrical properties, but
has the desirable features of a lattice structure while still remaining Lorentz invariant, which is a

remarkable result (not shared by lattice models). As an example, one could replace the phase-space
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coordinates x* by generators of a non-commutative algebra which satisfy commutation relations

of the form

(X", X"] = iBJ" (2.10)

for some parameter J that "measures” the non-commutativity of this algebra and J** being some
element of the algebra. Carrying the analogy with quantum mechanics now we impose that these
generators could be represented as hermitian operators acting on some Hilbert space H. Since
(2.10) holds, one cannot simultaneously diagonalize the coordinates X* which makes the notion
of a point ill-defined and following the quantum analogy, as the Bohr cells replace the classical
phase-space points, the classical geometry of the manifold is replaced by some kind of a fuzzy space-
time consisting of cells of volume of the order of (273)? depending on the units of J*” and the
dimension of the space. As a concrete example consider a two-dimensional phase space described
by the coordinates (z,p). Upon the promotion of the classical coordinates to quantum coordinates
(X, P), which are non-commutative by construction, one cannot measure simultaneously X and
P to some arbitrary precision, which means that we can think of this space divided in Bohr cells
of volume 273. If we consider a classical phase-space with finite volume, the quantum analogue
of it would have a finite number of cells, and any function in such space could be represented as
a finite collection of numbers and could be denoted by a matrix. So the natural non-commutative
generalization of the algebra of functions over a two-dimensional phase-space with the restriction

in its total volume is the non-commutative algebra of matrices'>.

Following the natural approach, one could use this non-commutative algebra as a tool for
quantization, and in this context we must analyze the alternatives for this type of quantization. The
standard formulation that uses operators in Hilbert space follows from a collective effort of some
of the most brilliant minds of the last century culminating in an axiomatization of the quantum
theory (see [13]) setting in stone the early rules for the quantization schemes hereafter. After these
early times other formalisms took place such as the path integral formulation and the phase-space
formulation, which we used extensively in our previous works and which is based on Wigner’s quasi-
probability distribution function in phase space, WF for short, and Weyl’s correspondence between
quantum operators and ordinary c-number phase-space functions. It relies on the star-product,
that was fully understood in [12] by Groenewold together with Moyal, which maps products of
operators that act in some Hilbert space to a non-commutative product of functions on the phase

space, giving an alternative procedure to achieve the quantization.

13Gee [8] for further concrete examples and applications of this formalism.
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2.2.1 The phase-space quantization

From the references [10] and [11] we can define the WF and construct the star product in a
convenient way, facilitating the quantization of some phase-space functions. This is related to the
formalism from our recent paper, which allowed to achieve the full construction of the quantum

AdS5. Now we start by defining the WF as

fap) =5 [y (:c - Zy) e~y (m + Zy) , (2.11)

for ¢(z) some measurable function. If ¢ (x) € L?*(R), i.e. if ¢ is a Lebesgue square-integrable

complex-valued function on R satisfying |¢)|?= 1, obviously the WF is normalized

% /dy/dp dz ¢* (m — Zy) e~ WPy (a: + Zy> 7
= /dy dz * (:L‘ - Zy) d(y) (x + Zy) , (2.12)
~ [z pp=1.

/ dp dzf(z,p)

In the classical limit as A — 0, it reduces to the probability density in coordinate space.
The usual z- or p-projection leads to probability densities in momentum or coordinate space. WF
cannot be interpreted as a probability distribution, it is therefore a quasi-probability distribution
because it can assume negative values for an arbitrary open set in the phase-space, but it leads to
correct position and momentum probability distributions given by quantum mechanics, replacing
the wave-function in this formulation. It also provides the integration measure for functions on
phase space that represent classical quantities in general. These functions are associated to ordered

operators upon quantization through the Weyl’s correspondence.

The Weyl correspondence is the association of a quantum-mechanical operator W (g) in a
given ordering prescription to a classical c-number Fourier transformed function g(z,y) on phase-

space. This correspondence reads

W(g) = 6(x.1) = ﬁ / dy dx da dB g(z, y) exp (ialy — y) + i — 2)) | (2.13)

where g(x,y) is the corresponding phase-space function, and r and y are the respective quantum
operators associated to x and y. The ordering prescription requires that an arbitrary operator
written as a power series of r and y be ordered in a completely symmetrized expression by use of
Heisenberg’s commutation relations, [r,y] = i%i. Finally, Groenewold worked out how two classical
c-number functions f(z,y) and g(z,y) must compose in order to yield the product of operators

® and §:
1

o= @2

/da dB dz dy exp(ia(n —y) +iB(xr — 2))(f x 9)(=,y) , (2.14)
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here x stands for the star product. This is the original definition of the star product and it enables
the formulation of quantum mechanics in the phase-space. The star product is an associative
pseudo-differential deformation of the ordinary product of phase-space c-number functions. It is

defined as

ih
X i= exp [12(3905)@, ~%9,9.)] . (2.15)
It can be written in an expanded form as
F(x,y)xG(x,y) = i L ne“jl €nin (9, 0;, F)(9, 9;. Q) (2.16)
Y JY) = 03 iy -+ O, iy ... 05, G) .

n=1

2 = 4y and the matrices ¢ are the Levi-Civita symbols of rank

where 4,5 = 1,2 for 2! = z,z
two. Since it involves exponential of derivatives, it can be easily evaluated through translation of

function arguments

ih— th—

F(z,y)*G(x,y) = F (x—i— 5 0y, y— an) G(z,y) . (2.17)

If one uses the Fourier representation of the star product as an integral kernel

1
F+G(z,y) =2 /dy’ dy" dz’ dz" f(a',y")g(z",y")
9 (2.18)
i
X exp (—h (y(w’ —a") +y(@" —2) +y"(z - m’))) :
If one needs to calculate multiple star products it is worthwhile to remember that the expres-
sion in the exponent is twice the area of the phase-space triangle determined by the points

(z,p), (2',p"), and (z”,p”) which simplifies the calculation of the composition of star products.

2.3 The commutative AdS,/CFT; correspondence - The massless, mas-

sive and interacting cases

Here we will follow our previous work and present this topic in a similar way (see [18]). The
AdS/CFT correspondence is a conjecture introduced by Juan Maldacena in 1997 which states
that a certain type II-B superstring theory on AdSs x S% is dual to a highly symmetric N' = 4
super Yang-Mills theory in the large N limit. Maldacena demanded that in the 't Hooft limit
coupling be large compared with r dependent term in the metric in units of string length, turning
the metric of a type II-B super-gravity into

T2

52
=7 dt* + ﬁdﬂ + 02d02 . (2.19)

ds?

The form of the metric shows that near the horizon the supergravity solution is AdS5 x S® with the

lenght scale ¢ playing the role of the "radius” of the five-sphere and the 'radius’ of AdS®. When
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analyzing the main features of this conjecture, we must consider firstly, that it is a strong-weak
coupling duality, secondly, that it is non perturbative in the string coupling and also in the Yang-
Mills coupling gy s and, lastly, it is a classical-quantum duality because classical supergravity is
conjectured to be dual to a quantum gauge theory (the corrections are suppressed by powers of

1/N, see [15]). The general correspondence formula is

/ e Saasl¥l Dy = <exp / dda:O(x)gbO(:c)> , (2.20)

where O denotes the conformal primary operators!? on the boundary and the left integral is over
all fields whose the assymptotic boundary values are ¢g. In the classical limit one can make the

saddle-point approximation and find that

Sadas[¢o] = Werr[do] (2.21)

where Saqs is the classical on-shell action of an AdS theory and Wepr is the effective action
given by minus the logarithm of the right hand side of (2.20). Since the AdS metric is divergent
on the boundary, one expect that the classical action is also divergent and in order to extract
any meaningful physical information from it one must renormalize the on-shell action by adding

counter terms which cancel the infinities, giving
Sr=Werr . (2.22)

Here Sk stands for the renormalized on-shell action for AdS. Any field theory on the AdS space
has a corresponding counterpart on the C'FT side. This includes gravity, as the boundary value
of gravitons couples to the energy-momentum tensor which is an standard feature of any CFT.
Thus, the AdS/CFT correspondence is an important tool for formulating non-trivial CFT’s, as

well as extracting information about the physics on the AdS space.

We will follow the usual prescription for the AdS/CFT correspondence which is that
the connected correlation functions for operators O spanning the CFT are generated by the field
theory action on the asymptotical AdS space, in which the the fields ¢g(t) are sources for the
operators O(t). Specifically we will follow some well-determined steps, i) Defining a suitable action
and extremizing it, ii) Using the AdS propagators to find regular solutions expressed in terms
of the boundary fields, iii) Substituting the aforementioned solutions in the action in order to
identify this with the generating functional of the n-point connected correlation functions for the
operators associated with the boundary fields, iv) Lastly, we will calculate the correlation functions

of interest. The first application of this prescription will be done for the massless scalar field.

MFor a good overview of CFT’s and all the background necessary to deeply understand the technical part of the

conjecture we refer to [15], [16] and [17].
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2.3.1 Massless Case

In this section and in the subsequent ones we will use the superscript (0) to refer to the commutative
scalar fields. We then have the massless scalar field denoted as ®(©)(z,t) on the EAdS, (Euclidean
AdS) and the following action

S[eO] = / dz/ dt (0,92 4 (5,0)2] . (2.23)

Taking the variation of (2.23) and extremizing it with respect to the Dirichlet boundary conditions

®O],_y+= 0, one finds the field equation
0o = (82 + 82> ~0. (2.24)

We use the boundary-to-bulk propagator, the details in [14], to express the solution in terms of

the boundary!® field ¢o(t)

1 e Z(bo
dO) (2, 1) = ;/_ wdt’ . (2.25)

After the substitution of the solution (2.25) in the action (2.23) the only non-vanishing

S[@© [go]] =——/ dt/ dt’¢0t_t, ) (2.26)

In order to apply the AdS/CFT correspondence, one should identify (2.26) with the generating

term is the boundary one

functional of the n-point correlation functions for the operator O for which ¢g is the source field.

We can summarize this prescription in the equation below

<[[ O(tz—>> = [[5 (512 [s0]))

where J;, represents the action of the functional derivative with respect to the function ¢o(t;). As

, (2.27)
$0=0

a trivial example, we have the two-point function

(OO = Mﬂ[— —/ dt/ dt'%t,t, )] = —%ﬁ . (2.28)

Now we proceed to analyse the massive and interacting cases using a similar strategy.

2.3.2 Massive Case

For the free real massive scalar field we add the mass term to the action (2.23) to obtain a new

(0] = / dz/ dtl@@o)) (atq><°>)2+<”zé >>2] . (2.29)

15Remember that the boundary value of the field is obtained by taking z — 0 satisfying ¢o(t) = ®(0) (0,¢t).

action

32



Following the procedure applied in [7], [14] and [19] we find that the non-vanishing dom-

inant solution of (2.29) near the boundary z — 07 is
DO (z = 0% 1) = 22 ¢o(t) , (2.30)

for Ay = 1+ /% + (ml)?, satisfying the Breitenlohner-Freedman bound (see [20]) which comes
from the condition that the theory must be free of normalizable negative energy states granting
the theory some consistency. Using the boundary-to-bulk propagator we find the regular solutions

of (2.29)

oo Ay
2060t | (simem) @0 20

for v = /1 4 (mf)2. Substituting the solutions (2.31) into (2.29) we find the on-shell action

4
A F A / 1
S[B© [py]] = — 2\+FP + / d / dt”ﬁ?t;ﬁoﬁg, (2.32)

which is valid for any boundary point satisfying ¢’ # ¢”. Applying (2.27) for the two-point function,

we find that
ALT(AL) 1

2/l (v) |t — )22+

which is the 2-point function of the conformal field theory, for Ay the conformal dimension (see

(O)O") = 6,5, [S[<I><0> w} - (2.33)

[17]), note that if we set Ay = 1 which corresponds to the massless case we obtain (2.28). Now

we proceed to the interacting case.

2.3.3 Interacting case

In order to have a non-trivial n-point function for n > 2, we need to consider an interacting scalar

field. So, we add a cubic term to (2.29) to get

2
2
[0 = / dz/ dt | (0.00)2 4 (9,802 + (m%(o)) + 3—2@ Ml @s
z
for some real parameter A. Extremizing the action yields the field equation
(D - (m€)2)<1>(0) = \(@(©)2, (2.35)

Assuming the same asymptotic behavior of the massive case we use the boundary-to-bulk and
bulk-to-bulk propagators denoted as K(z, t; t') and G(z, t; 2’ t) respectively to construct the

regular solutions. They are defined from the expressions below

O (2, 1) :/ dt' K(t;t)go(t')
R

mi 2

{-(2+a)+ (7) bG(z b2, ) = 6z = st — ¥ .
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From the equations above one can calculate the propagators (see [14])

(As) . \°
w0 = iy (i)

T(A) (n>A+ <A+ Al +1 1 >
G(n) = = (= C AL+ o
) Jah(ay - Hiea,—n\z) {27 2 7 thgm )

In the interaction case, the on-shell action has a bulk as well as a boundary

// (@2(;3) dt dz . (2.36)

To proceed, we have to construct the regular solutions. aThis can be done only pertubatively in

222’

contribution and they will be denoted as

for n =

1 oo
S[®%) = Spay + Swur = —5/ dt 5,

the parameter X\. To the second order in A, the result is (see [14] for details)
<1><0>(z t) = / dt' K(z, t; t')po(t')
Z t Z ) - I 2.37
—A D00 2 gt de | dtdtsK (2t t)K (2, s t)do(t)do(ts)  (2:37)
R2

+OA2

Plugging this in (2.36), we obtain a term that leads exactly to the two-point function (2.33) plus a

non-trivial contribution to the three-point function. Using (2.27), we finally obtain the three-point

function!®

(O(t1)O(t2)O(t3)) = (2.38)

/\F(A+/2)3F((3A+ - 1)/2) <3A+ N 2) |

27TF( ) |t1 — t2|A+‘t1 — t3|A+|t2 — 153|AJr 2v

2.4 The non-commutative AdS,/CFT; correspondence

In this section we will review the results obtained in our previous paper and give all the background
needed to justify our new approach. We will follow the lines of [6] and [7], which are the main
references for this part of the work. In the non-commutative AdS/CFT correspondence, we will
replace the geometry on the gravity side of the correspondence by a non-commutative version of
the Euclidean AdSy and by the general belief that the quasiclassical regime of quantum gravity
should appear as a QFT on some non-commutative background'”, we will try to find some natural
quantum gravitational corrections due to non-commutativity of the background. Another point
of interest is to verify the claim that the AdS/CFT correspondence is exact and holds also at
the quantum level and this will be verified analyzing the non-commutative effects on the explicit

application of the prescription for the correspondence.

16 A1l the details of this calculation can be found in [21].
17This belief is supported by multiple arguments, see [27] for instance.
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2.4.1 Euclidean AdS; and its non-commutative analogue

We start with the canonical coordinates (x,y) defined in the section (2.1). Together with the

embedding (2.7) we introduce the Killing vectors that are written as

1 _ 1,
K°=9,, K'= 7€ “ydy — X0, , K= ¢ Y0, — X'0, . (2.39)

These vector fields satisfiy the Killing equation Lxg = 0 where Lx is the Lie derivative with
respect to K and g is the metric for the EAdS, given by

|
ds? = (dz2 + dt2) . (2.40)

These vector fields generate the SO(2,1) isometry group. This can be seen either by the direct
calculation using (2.39) or by observing that in terms of the natural Poisson structure, where X
are the embedding coordinates. The action of any Killing vector on a function of X, ¢(X), is given
by K" (ng(X)) = {X", ¢(X)} leading to the relations below
(X X} = 0 (2.41)
(KM, K" ="K, ,
where the curly brackets stands for the Poisson Bracket and the straight ones for the commutator
and the ambient metric tensor used to raise and lower the Greek indices is 7,, = diag(1,1, —1),
giving X*X,, = (X%)? 4+ (X')? = (X?)? = —¢2, for £, being some real scale parameter. So, as usual
the action of the Killing vector fields on the embedding coordinates is equivalent to the Poisson
bracket between them (K#X") = {X*, X"} = e"?X,. Another important fact to consider is that
when we take the boundary limit z — 0 of the Killing vector fields K* = K2 + K! denoted in

(2.39) we obtain the generators for the global conformal symmetries on the boundary!®
K_|z:0: —325 3 KO|Z:0: —t@t 5 K+|z:O: —tQBt . (242)

Following the usual procedure for quantization'® of Poisson manifolds, we replace the three em-
bedding coordinates X* by Hermitian operators?® on some Hilbert space, satisfying the analogues

of the equations in (2.41) and promoting Poisson brackets to commutation relations
XHX, =01, [XH, XY =iae"P X, (2.43)

where « stands for the parameter that 'measures’ the non-commutativity (it has units of length).
To recover the commutative AdSy we just take the commutative limit « — 0 and ¢ — £3. We
introduce now a new operator that will be of great importance later in our work

F=3"1= %(Xl - X?), (2.44)

18 They generate respectively the translation, dilatations and special conformal transformations on the boundary

(see [17]).
9For more details about this straightforward method see [28] and [29].
20These new introduced operators defining the non-commutative AdS2 generate the so(2, 1) algebra.
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this operator is the quantum analogue of the radial coordinate defined in section 2 and we will
obtain its spectrum and eigenfunctions in the following sections. In the classical case the boundary
of AdS, is achieved by taking the coordinates to the limit r — oo, i.e., z — 0, so in the non-
commutative theory the expectation value of 7 is expected to become arbitrarily large as we
approach to the boundary and this limit will be very clear after we specify the Hilbert space of

our theory.

2.4.2 States and discrete series representation

The states of our theory belong to the unitary irreducible representations of the universal cover?!

U (S U(1, 1)), which are given by the principal, supplemental and discrete series representations??
and are usually labeled by two parameters ¢y and k. Taking as a basis the eigenvectors?® of X2,

defining X4 = X! 4+ X° and imposing that these eigenvectors are orthonormal we find that

X+|eo,k’,m> =—a ¢y e, k,m+ 1),
X_|eo, kym) = —a ¢yt |eo, kym —1)
. (2.45)
X2|607 k7m> = - (60 + m) |€07 ka m> s
XHX“|eO,k,m> = —a?® k(k+1) |eo, k,m) ,
where the coefficient ¢, is ensuring the orthonormality of this eigenbasis
cm =+ (k+e+m+1)(e—k+m). (2.46)

It is clear from the action of the Casimir operator in the eigenbasis |ep, k, m) that k(k + 1) = i—z
and one can trivially conclude that the commutative limit is obtained when k — +oo. Now we

turn to the radial operator, one can easily calculate its expectation value

2
(co, K, m| #leo, b, m) = — O = Ao r™) (2.47)

and it is clear by the last equation that the boundary of the non-commutative AdSy space is
reached when we take m — o0o. Since we want to construct the FAdS>; we need ¢ € R and from
[28] we conclude that the principal and supplemental series are not suitable?* for our analysis. For

the discrete series D*(k), k can be any negative number which implies that ¢ will be real and the

21The universal cover of a connected topological space A is a simply connected space B with a surjective projection

p: B — A that is locally a homeomorphism.
228ee [30] for a detailed explanation and derivation of all representations.
23Here we will denote these eigenvectors as |eg, k, m) for m € Z.
24The principal series has k = —% —ip for p € R implying that ¢ is imaginary. The supplemental series has

k € R but it is constrained by k € (—%, 0) making again ¢ imaginary and since we cannot take k — oo this case
doesn’t have a commutative limit. Both cases correspond in some limit to the Lorentzian version of AdS2, and

purely quantum case.
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Casimir operator will be negative for any k£ < —1. Since both limits for k£ — Foo exists yielding the
EAdS, in both cases we can define the series DT by the allowed values of m (positive or negative

integers) which are related to the two distinct hyperboloids of the FAdSs.

Using the main results and formulas of [31] we will apply the generalized Laguerre poly-
nomials to construct a differential representation for the embedding coordinates for the discrete
representations D¥ (k). Beginning with DT (k) and setting the lowest state as |—k, k, 0), or
|k, 0) for brevity, which is anihhilated by X_ since we are assuming €y = —k > 0, we expand the

eigenvectors of the radial operator |r, k)| in terms of the X?2 eigenbasis

o0

r k) = ) Wl (n)lk,m) . (2.48)

m=0

Writing the radial operator in terms of the raising and lowering operators

1 - N N
F= 27(X+ - X_ —-2X?%), (2.49)
one can write the eigenvalue equation
1 - N N
Plr k) = — (X4 — X_ —2X?)|r, k) = r|r, k) . (2.50)

2¢

Using the equations (2.45) we get to the following

It ) =~ D B0

— Vm(m —1=2k)} _ (r) +2(k —m)y . (r)

which is the recursion relation for the generalized Laguerre polynomials for m > 0 if we make

(2.51)

! 20
Ui (1) = [ 77:,{ - 1)!%2’“‘1 (;) : (2.52)

The domain of the generalized Laguerre polynomials agrees with the restrictions of our theory

(r > 0) and the boundary occurs at r — oo, this means that these representations picks one of the

boundaries of the commutative EAdS,.

We will find a differential representation for the quantum coordinates X*#. The orthogo-

nality conditions of L% () read

dr 2Pe " LP (x)LP(z) = (S”—’TLF(m +8+1). (2.53)
Ry m!

Defining

m!

Cn =\ =2k =11

(2.54)

and using (2.52) in (2.53) we get the following

20\ 2 Vi (1) V() 0
ar (2 —20r /o, —2k—1 " kym DD L= M 2k — 1)) . 2.
/R+ ' < (07 > c " Cm Cn m! (m ) ( 55)
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We can rewrite the last expression as

/Rdr u:’m(r)u;n(r) =0mn (2.56)
where .
20\ e ke
uzm(r) = <a) e tr/op—k=1/2 w,im(r) , (2.57)

is the orthonormal basis for L?(R ., dr). Finally to get a representation of the differential operator

D = (7 — r) satisfying ﬁw:m(r) = 0 we must use the differential equation that defines the

generalized Laguerre polynomials

d2

m@Lfn(x) +(B+1- x)iLEn(x) +mLE (z) =0. (2.58)

dxr

Upon a series of substitutions and and using « = 2¢r/a and § = —2k — 1 it is not hard to find that

(a(k+;)2+er+a(m—k) d (ar d)> N

20r 2 2/ dr

57 dn Uy, (1) =0 (2.59)

Now if we compare the eigenvalue equation (2.45) for X2 with (2.59) we conclude that this is the
differential representation 7% of X2 on L2 (R4, dr) simply by multiplying the equation (2.59) by

—a. To find the representations of the other operators lets calculate 7% ([7, X2))

(1" (X2) = 7822 ) [ ()] = 7 (17, X)) (2.60)
using [, X?] = $[X!, X?] = 2 we find that
Q2 dpdpy d LAY\ da o
¥ (rdr [rﬁ} - [ro+r er = SO W) - (2.61)
which simplifies to
. d 1
k($0y _ e 1
™(X") = ia (rdr+2> . (2.62)
doing the same procedure for X! using the commutator between X2 and X° we finnaly obtain
2 12 2
kry2y - & (k+3) Cr _d¢ d
&) = 20 ( r + a?  dr (rdr) ’ (2.63)
; 2(k+5)? P dyod
koxly— % 2) v v/ 4 ) 2.64
™ (X) 20 T a2  dr (Tdr) (2.64)

These operators act on L?(R,,dr), the space of square-integrable functions on the half real line.
Replacing » = e® we can recover the linear operators ﬁ(X #) that act on L?(R,dx) spanned by
functions of the set {f(z) = ¢®/%¢(e®)}. In terms of the self-adjoint operators & and 7, that act
as f(x) = zf(x) and § = —iaf’(x) clearly satisfying

[#,3] = il . (2.65)

Representing the operators XH with respect to the new operators & and ¢ acting on L(R,dx), we
have

(X0 = —7, (2.66)



- 1. .. a2 .l

~k Xl — _ _netn 1 —T Loz 9

(X)) 579¢"Y 2£k(k+ e ¥ 4 5¢" (2.67)
- 1. . o? A

~k 2\ _ S oa & -z _ "z

THXT) = —550e") — 5pk(k + e 5 - (2.68)

Since the operators & and ¢ satisfy the canonical commutation relations they can be
mapped to their respective symbols on the Moyal-Weyl plane spanned by coordinates (x,y). This
mapping is an isomorphism and by the Weyl correspondence, the product of functions of the
operators F&(Z, ) is mapped to the star product on the Moyal-Weyl plane F(x, y)xG(z,y) defined
by (2.17) with a — A. The symbols of 7%(X*) are denoted by X* and take the following form

X0 =y, (2.69)
1 1 —x a2 -z ¢ €z
Xl = _?Ey*e *Y — ?ék(k—kl)e +§e ; (2.70)
1 2 14
X2 = —ﬂy*eﬂj * Y — %k(k +1)e ™™ — Eez . (2.71)

Of course, these functions satisfy the same defining relations of the embedding coordinates of

E AdS; when mapping the usual point-wise product to the star product on the Moyal-Weyl plane.
XX, =17, (2.72)

[XF XY, = XF % XY — XY % XP = iae™PX, . (2.73)

Clearly, taking o — 0 we recover the point-wise product and, as explained before, the leading term
of the o expansion in the star commutator is the Poisson bracket for (z,y) coordinates. For some
calculations we will need to to introduce the non-commutative analogue of the FG coordinates, see
section 2.1. Starting with [Z, 9] = iad, we want to define new operators as functions of Z and § in
parallel with (2.8) satisfying the ordering prescription as follows:

~ 1 ~ —F N R,
t:2—€(ye +e"g) Z=e". (2.74)

We can calculate the commutator of the new operators using the fact that  and y are canonically

conjugate. One can easily find by induction
~n—1

[@", 9] = nz" " [2,9] , (2.75)

by expanding in Taylor’s series

(2.76)

=T

. =0 f i Nia . of
[f(2),9] = Lz_:l 8:5”(711)!’4 = wza—x(:v)
With this useful result, we can calculate the commutator of 2 and ¢. Using [f(2),9(2)] = 0 we get

2.0 = o (e 9]+ e, e 7)) = — 0 (2.77)
0

L
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In order to verify if the mapping to the Moyal-Weyl plane preserves this commutator, we
must calculate the Moyal-commutator of the symbols z and ¢. Denoting as %, , the star product

for the canonical coordinates and *, ; the transformed star product, one can calculate

[Z7t]*z,y (.’E, y) = z(m,y) *xyy t(.’E,y) - t(.’E, y) *z,y Z((E,y) ) (278)

applying the definition of the star product

- 1 Za " i1J1 inn - y -
[Zut]*x,y(xay) :;E <2> eI e (8¢1 (“)Zn)e (8j1 (“)jn)(ze ) s (279)
and calculating up to O(1)
(2, t]s, , (T, y) =~ ey —e 2y =0, (2.80)
the term proportional to « is
. —x —x —2x,;
i —.7: e "y ey oy | _ € tia
(2ot (29) = 5 {895(6 19, (“2) + 0y (2 ) dule )} —. s

the term proportional to a? consist in products of two derivatives acting on z and t, clearly for
any y-derivative acting on z the respective term will be zero. Since all terms have at least one
y derivative on z, all of them are zero except the term that has two z-derivatives on z, but it’s
clear that agt(:c,y) = 0. With this analysis, it’s clear that the only non-vanishing term of the

commutator is
e “Tix i
oty (@0y) = ——— = =7 %*, (2.82)

which is equivalent to (2.77). One can easily write %, ; in terms of (z,t) (see [18]). Up to O(«) the

result is

Fap=1— % (@f@_z - azZG_,Z) +0(a?) . (2.83)

Now we proceed to construct the Killing vectors of the theory. From (3.21) the action of the
isometries of AdSs on a scalar field can be obtained by taking the Poisson bracket of this field with
respect to the embedding coordinates. In the non-commutative case for a function d the action of

the SO(2,1) isometry group will induce an infinitesimal variation of the form

Sne® = €, (K"®) = ie, [X", ] , (2.84)

for some infinitesimal parameter €,. A natural step is map these Killing vectors to the Moyal-Weyl
plane. From now on, the functions without A will denote the symbols of the Killing vectors. Then,
the equation above becomes

One® = €, (KID) = ie, [XF, D], , (2.85)
where (K%®) is the symbol of (K#®). Following some straightforward calculations (see [18]) we
get to the deformed Killing vectors

K, = —te"A, KY=20,
(2.86)

—T

2
+_ ¢ 2 2 QT g2
K =5 <2yazsy+(y +2+20 am))>,
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for

2 ./«
AyO(z,y) = o sin (gay) D(x,y) ,

Sy®(z,y) = cos (%ay) D(x,y) .

In the commutative limit, these differential operators agree with (2.39) and they indeed satisfy

(2.87)

the s0(2,1) algebra. K0 is the same as K", while the others are deformations containing infinite

polynomials in 9,. Writing the equations above in terms of FG coordinates we get

K = —éAt : K = —t0; — 20,
. 0, N o2 ) (2.88)
K = =21(t0, + 20.)81 + - | 2 + (1 + @)z Ay = S2(10; + 20.)%A

In the near boundary limit, z — 04, (2.88) gives exactly the commutative expressions
for the conformal generators (2.41). This shows that the ncAdSs is asymptotically AdSs. Now we
may try, in principle, to apply the AdS/CFT correspondence. In the next sections we will explore
briefly the massless, massive and interacting non-commutative scalar fields, since these cases are
deeply discussed in [4], [6], [7] and [18] we will not derive all equations and just proceed to analyse

the main results of these papers.

2.5 The non-commutative correspondence - Massless case

We obtain the field equation from the action principle imposing Dirichlet boundary conditions?®.

By writing the commutative action in terms of Poisson brackets we get

1
S0 = 57 [, OO0 25

where dp is the invariant integration measure on AdSs. In our current work we will give a direct

proof that the natural generalization of the action written above is given by

A 1 N Ao
Sneld] = 5, TH[X", §][X,,, 9], (2.90)
where Tr denotes the trace operation. Mapping this action to the Moyal-Weyl plane gives
1
ne|® = —— XH D), % [X,, Plidx dy . 2.91
Sucl®) = gz [ 1w 2, 8o dy (291)

Now we choose the set of coordinates in which the action above will be written. As we discussed
above in the FG coordinates, as one approaches the boundary, the Lagrangian loses all the non-
commutative corrections2® but retains a scaling factor in the coordinate t

Loe|:s0=k(a)?(0:®)? + (9,®)? , (2.92)

25This can be done because it is proven that there isn’t any non-commutative correction to the boundary term

from the variations of the action (see [6] and [7]).
26This can be easily seen by noting that A;® — %6t¢|z:() and S¢® — D|,—o.
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for k(o) = 4/1+ %. This k(«) term will reappear from various different considerations through
our study and its meaning will be clear after some insightful considerations. From now it suffices to
see that ® satisfies the equation for a massless scalar field on an asymptotically AdSs space. Upon
taking the variation of the action all the boundary terms vanish (see [6]) and the field equation in
the bulk reduces to

(X%, (X, @L). =0 (2.93)

The first result we analyze can be found in [6], after applying some standard techniques to solve
the field equations up to the leading order in O(a?) and after the application of the prescription
for the AdSy/CFT; correspondence the conclusion is that the n-point correlation functions of
quantum mechanical operators O(¢) on the one-dimensional boundary remain conformal and just

get rescaled, at least in the leading order in 2. For the two-point function we get

(OOt = ! (1 + a) ﬁ +0(at) . (2.94)

Moreover, in a subsequent paper (see [4]) the authors of [6] find an exact solution to the field
equations by quantizing the expressions of the coordinates?” z and t in terms of the embedding

coordinates X* as shown below
= (XX, =25 XYL (2.95)

where [—, —]+ stands for the anti-commutator. They also conclude that the appearance of the
non-trivial deformation factor k(«) is of utmost importance for the consistency of the algebraic
relations defining the isometries of the embedding coordinates. This factor can be derived also
by the use of the approach presented further, which relies on a completely different formalism to
achieve the construction of the quantum AdS; surface. Following [4] and applying the prescription

of the correspondence one can show

kla) 1 1

o) =~ ot~ (14 &) o 0. (2.96)

which completely agrees®® (up to order o?) with the results obtained in [6], [7] and [18].

27In [4] the authors use a different signature for the ambient metric tensor 1,5, which is diag(—, -+, +). This
detail doesn’t change any important fact since the groups SO(2, 1) and SO(1, 2) are isomorphic, but it changes signs

in some equations and could be rather cumbersome to find such small differences in both works.
28One should note that there is a small mistake in the derivation of the two-point function in [6] which is addressed

in [7].
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2.6 The non-commutative correspondence - Massive case

One of the key features of the approach is that we are interested in preserving all isometries®® of
AdS5 undeformed, i. e. when making the transition to the non-commutative setup we want to
keep all s0(2,1) isometries untouched and this is important since it allows us to aim at a purely

algebraic approach. In [7] we start by the natural assumption that the action can be written as

- 1 A AA oA -
Sl ®] = ——Tr{[X“, b][X,,, &) — (a£m0<I>)2} : (2.97)
where mg stands for the mass of the scalar field and we assume that the mass doesn’t undergo any
deformation in the quantization process. Upon quantization the field equation obtained from the

variation of the action is
1
KPK, @ o= — [X* X, O], = (mol)*® . (2.98)
o

These non-commutative Killing vectors are exactly the ones in (2.88) and, as we know, they
preserve the s0(2,1) symmetry and two of them get deformed on passing to the quantum case.
In order to simplify finding perturbative (first order in ‘2‘—22) solutions to the field equation we
constructed an operator U(«) which maps the set of commutative Killing vectors on its non-
commutative counterpart modulo some corrections (see [7]). After writing the field equation in
terms of FG coordinates and doing the similarity transformation U(a)LU ~!(a) where L is the

non-commutative Laplacian, we get the following

0 o® 4o ot 2
<,c< ) - — 0 +0(€4)) Dy (z,t) = (ml)*dy(2,1), (2.99)
where £(©) is the commutative Laplacian and ®p(2,t) = U(a)®(z,t) is the transformed scalar
field. Using some of the results from [32] and using some facts already used in the massless case

the on-shell action takes the following form

1 2
Spe[®@[po]] = — = <1 + 3a2> / dt dt' dt" KV (2,440, KLY, (2, t:t")|,_oo(t ) po(t")
2 32¢ R3 (2_100)
4
@
+0(%)
where KU. is the non-commutative boundary-to-bulk propagator defined as
KU.(2,t;t) = UKpe(2, ;1) .
In order to find the two-point function one must expand it in powers of (%)2
2 4
(OMOF) = (OO + T OBOENY +0(%) . (2.101)

29Since all the derivations done in [6] and [7] are carried over perturbative methods one could argue that all
the findings are just artifacts coming from the first order approximations. By assuring that the full symmetries go
undeformed after the quantization we can suppose that might exist a way of constructing exact solutions for this

problem, and this is done in [4] as discussed before.
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and in order to determine the first order correction we can evaluate all the integrals coming from

the on-shell action (see [33] for some additional techiniques). Finally we find that

(OBOF)D = 32\/7;(&1) - {i <A1 _ D (A+ - 2) - 3A+}|t_t1/|m+ . (2.102)

and for the special case of a massless scalar field we have Ay = 1 which reduces the equation above

to
1 1

((’)(t)O(t’)>(1) = _gm )

(2.103)

in conformity with (2.96).

2.7 The non-commutative correspondence - Interacting case

Now we analyze the correspondence for the interacting case and the first step to achieve this goal
is to generalize the equation (2.34). Using our standard strategy and after mapping the trace to

the integral on the Moyal-Weyl plane, we find that the non-commutative interacting action is
1 2 4
Speld) = ——— [ dz dy{[)cfa D], * [X,, D], — (almo)® * D — =0’ A0 x D+ @} (2.104)
260[2 R2 3
which gives the following field equation
L — (Im)?*D =\Dx D . (2.105)

We already solved the free commutative (and non-commutative) theory given by A = 0, now we
apply the same perturbative procedure assuming that A is small and substituting the commutative
Green’s functions by their non-commutative analogues. For the non-commutative boundary-to-

bulk and bulk-to-bulk propagators we have for K(z,t;t') the commutative propagator

Oé2

Koz, ;1) = KU(2,t;t)) + —D. K (2, ;1) + O(a*) |

62
(2.106)
[(UEU*I —(tm)?)| @Y. = —225(z — 2ot — t')

for D, = 3—2(9 +4t0; +620,)0% + 3%282 and the bulk-to-bulk propagator is determined perturva-
tively as a solution of the differential equation denoted above. The perturbative solution for ® of
first order in A is

1 0
3R MUZEG’[{C(Z’H o8N (2.107)
X [Kne(2',t5t1) x Kpe(2', 5 t2)| 0o (1) do(t2) + O(N?)

b(z,1) :/RKnc(z,t;t’)gzﬁo(t')dt’—)\/]R

After substituting this solution in (2.104) we get the on-shell action and in this case, as in the

commutative one in (2.38), we find two terms, a boundary one and a bulk one. After applying the
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prescription for the correspondence we find the perturbative expression for the three-point function

A dz dt 1 3a?
-z 1 (1)
(O(t1)O(t2)O(t3)) 5 /11@2 5 {2A+ 3 ( + 3%2) U, K, (2,1)

z

(2.108)
2
XU, [K3) « K®](z,1) + g[K(l) * K2 % K®)|(z, t)} + permutations + O(a*) ,

C C

for K,.(2,t) = Kpe(z,t;t;). Since the last integral is very hard to calculate explicitly, we verified if
the three-point function for ncAdS, preserves the same set of undeformed conformal invariances3°
found in the commutative case. It was easy to show that the non-commutative three-point function

transforms as the commutative one for silmultaneous scalings on t;’s i.e.
(O(ut1)O(pt2) Ot )) = =32+ (O(41)O(t2) O(ts)) - (2.100)

As a final step we demonstrated the invariance of the three-point function under simultaneous
translations. We reffer to [7] and [18] for a deeper analysis of the calculations done in order to find
the final result. Under translations of the type ¢;+a most of the terms in (2.108) present non-trivial
transformations. After the use of some standard techniques (see [18]) we showed that all terms
in (2.108) are translationally invariant. So we can conclude that the non-commutative three-point
function shares the symmetries of its commutative counterpart and, as the consequence, it should
have the following form

(O(0)0(12)0(ts)) = (1+co?)ar(a. /2°r( (824 — 1)/2) (

- 27TF(1/)3|t1 — t2|A+|t1 — tg‘A+|t2 — 153|AJr

3AL
2v

+ 2) +0(a®). (2.110)

where the coefficient ¢ can be calculated by solving (2.108), which is a non-trivial task and imposed
technical constraints to our final conclusion. By the implicit study of the transformation properties
of (2.108) we verified that its conformal behavior is retained after the quantization and it points
out to a possible continuation of this project by the explicit calculation of the coefficient ¢. This
result also motivated us to try to find another way of quantizing the AdS, that could lead to an
exact solution of the proposed problem. This was done in [4] and in the next chapter we will

develop a method that will yield the same result and expand the possible applications of it.

30We will not demonstrate that the invariance under special conformal transformations holds in this case. One
could argue that since we are analysing the correlator of the same fields, which has the same conformal dimension,

it suffices to show that the three-point function is well behaved for scalings and translations.
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3 The geometry of the Quantum AdS

The previous chapter provides a comprehensive summary of the results obtained so far. We pre-
sented a concrete method for the study of the main properties of the AdS;/CFT; correspondence
for scalar fields and studied the massless, massive and interacting theory on a non-commutative
background. In this context, our quantization was designed to preserve all symmetries of the
embedding keep the algebra of Killing vector fields undeformed. This requirement enables us to

extend all crucial findings from the commutative theory to our non-commutative setup.

In this part of the thesis we want to generalize the example of the non-commutative
Catenoid studied in section 1.3.1. example of this formalism for a simple classical surface. We
apply the same formalism to construct Quantum AdSs;. This nomenclature is justified because
we require that the generators of the algebra, employed to define our embedding coordinates, are
elements of a Weyl algebra for some set of commutation relations. Consequently, the surface is
inherently quantum by the construction. We define the Lie algebra of derivations on this space and
introduce the concept of basis vectors, inverse elements, and positive elements. Additionally, we
establish a homeomorphism that allows us to represent certain functions in this algebra as formal
power series.?! Subsequently, we construct all geometric entities necessary for defining a concrete
quantum manifold, establishing a module over this manifold and proving the linear independence of
its basis elements. Various sets of coordinates are introduced to verify the consistency of our setup.
Following comprehensive consistency checks, we proceed to define the non-commutative analogue
of a metric on both the ambient space and the manifold itself. We demonstrate that most metric
coefficients undergo quantum corrections, reducing to the commutative metric as h — 0. One
interesting detail is that when we apply this procedure, the resulting metric is Hermitian, which
brings another layer of complexity to future calculations as we will discuss in following sections.
After these steps we apply our setup to alternative coordinate systems, providing some examples

of how we can construct metric coefficients in these situations.

As a concluding step, we construct the tangent space of the quantum AdSs as a module
structure of our non-commutative algebra. Using the Fefferman-Graham coordinates as our local
set of coordinates, and the ambient coordinates to construct the surface itself, we define the non-
commutative covariant derivative and Christoffel symbols, which are then used to calculate the
non-commutative Riemann tensor in these coordinates. Following this, we rigorously study the
Ricci scalar within our framework, justifying the need for some caution to avoid ambiguities that
are expected to arise when analyzing quantum surfaces. We prove a theorem relating the Laplace

operator found in this new formalism to another operator derived using a different approach used

31'We define these series this way because we are not worried about any notion of convergence.
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in the previous chapter. Additionally, we construct the non-commutative analogue of the Killing
equation to verify whether the Killing vector fields preserve the symmetries of the FAdS after
quantization. We also discuss the existence of non-commutative integration using eigenfunctions,
showing that by solving the Laplace equation in this setting, one could find non-commutative
functions that satisfy this requirement. We conclude this chapter by discussing some unfinished
steps and potential further developments that could be pursued using the framework introduced

in this thesis.

3.1 The Quantum AdS,

As we saw in the catenoid example, much of the formalism introduced by the non-commutative
calculus can be applied to a class of surfaces and in this section we will try apply it without
initially worrying about the details regarding the module structure that we will define soon, but in
the following subsections we will discuss a more rigorous way of obtaining these results. In order
to differentiate this approach from the Poisson quantization employed in the previous chapter we
will denote the non-commutative parameter as 7, which should not be confused with the Planck’s

constant.

3.1.1 Parametrization

Recall the section 2.1, where we defined the commutative Euclidean AdSs in terms of embedding
coordinates X*, u =1, 2, 3, spanning the three-dimensional Minkowski space with the ambient

metric tensor n = diag(1,1, —1). The constraint equation was
XX, = (X1 + (X2) — (X*)? = -3, (3.1)

with £2 > 0 being a scale parameter. One of the parametrizations for the hyperboloid, which will
be useful, is given by

1 1
Y = ( — v, —%6_“712 + {g sinh u, —%6_“02 — fp cosh u) , (3.2)

where (u,v) € R2. As before, we attach a Poisson bracket to the AdS manifold respecting the
expected relations of the isometry group SO(2,1), which can be related to the global conformal

symmetry on the boundary of this space. For the canonically conjugate coordinates®? w,v the

32This set of coordinates has the following property {u,v} = 1. This pair of coordinates have the same properties

of the set (x,y) introduced in the section 2.1.
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Poisson bracket can be expressed by the following relation
{XH, X"} =ePX,
which can be readly demonstrated

1 1
{XO,Xl} =9, X%, X' - 9,X%°9, X" = 5‘u( — ie*“v2 + 4y sinhu) = ﬁeﬂ%ﬂ + g coshu
0 0

2 _ 012 2
=-—X"=¢€ "nnuX",

(X1, X2} = 0,X'9,X% — 9,X'0,X2 = (_%

: e "% 4 £y cosh u) ( — %e‘“v) -

0

1 1

( - g—e_“v) ( - ie_“UQ — ¢y sinh u) = —e “v(sinhu + coshu) = —v
0 0

— X0 — 1205, X0

1 1
{X2,X0} = 9, X%0,X° — 9,X2%9,X° = fau( — ﬁe*“vz — g coshu) = 7ﬁ€7u,u2 + fp sinhu |
0 0

1_ 201 1
=X = X,

012

Here n and e are defined as nn = diag(1,1,—1) and €"'* = 1. Now we start from the Weyl algebra

Wi (see the discussion in section 1.1) consisting of Hermitian generators U and V satisfying
[U,V] =ihl .

We construct an algebra generated by V, eV and e~V denoting them by V, Y and Y ~! respectively.
The generators of this algebra represent the set of non-commutative local coordinates that will be
used to construct a non-commutative differential calculus over the ncAdSs. In order to ensure the

cannonical commutation relations we form a two-sided ideal Z generated by the following relations:

YY t=1,
(3.3)
YV =VY +ihY ,

where the second relation in (3.3) is clearly corresponding to the canonical commutation relation.

Now we define

Definition 3.1. Let us denote by C[V,Y,Y ~1] the free associative unital algebra on the letters
V,Y,Y~! and let T be the two-sided ideal generated by the relations (3.3). We define the algebra

Cr as the quotient algebra

Ch=ClV,Y,Y'|/T. (3.4)

If one uses the Diamond lemma [39] and the reduction system employed in [2] in order to remove

any ambiguity in the system, one can define a basis for Cy as
EY =Viyd | (3.5)

with i € Ng, j € Z, and (Y ~!)J = Y~J. Clearly we can turn Cj into a *-algebra by defining an

involution operation by requiring the Hermiticity of V,Y and Y ~'. Clearly, the set of relations
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generating 7 is invariant under involution. To check the existence of derivations in Cp, we must
find linear derivative®? operators that satisfy: i) the Leibnitz rule, ii) preserves the relations that

generate the two-sided ideal Z. For our purposes it suffices that the derivations satisfy
oV =1, oY =0,

aUVZOa GUY:Y.

The extension to a general element of the algebra is given by the Leibnitz rule. One can check the
consistency of this definition applying the derivation defined above to the expressions (3.3). For

instance
Ouy(YV —VY —ihY)=0y(Y)V =Voy(Y) —ihoy(Y) =YV - VY —ihY =0,
oYV —-VY —ihY) =Yooy (V) -0y (V)Y —ihdy(Y)=Y -Y =0,

while requiring that 9, (YY 1) = 9,(Y 1Y) = 0 gives: 9pY ' = =Y 19y Y ! = 0. We now state

a series of propositions and lemmas following [2], the proofs can be found there.
Proposition 3.1. The algebra Cp, has no zero divisors.

Proposition 3.2. For every a,b € Cy, there exists p,q € Cy, such that

ap = bq ,
and at least one of p and q is non-zero.

Proposition 3.3. Let Zy(V) be the commutative sub-algebra of Cr, generated by 1 and V and

define a homeomorphism of commutative algebras ¢ : Zy(V) — C*(C) via

The subset Z;7 = {z[V] € Zy(V) : |[¢(z)[v]|> 0V v € C} is a multiplicative set.

In order to construct an sub-algebra where all elements are invertible, we must guarantee the
existence of a non-trivial localization by means of the universal property. This is done in [2] and
we will refer to this paper for any additional information regarding the details of some definitions
and propositions used here. The notation for the aforementioned localization is (Cp) ZF (V) and we
will denote it as Cj in future sections. We will make the distinction if needed in order to avoid any

confusion. Now it is easy to show that for every x € Z;/ (V) and x; € C satisfying

x[V] = ZmiVi )

33We are more interested in the inner derivations Inn(W},), which come from ady(f) = [f,g] for [, | being the

abstract Lie bracket from the algebra. Since in the commutative case the adjoint action always yields zero, we have
in this case only the outer derivations, which are defined as Out(W3) := L(W},)/Inn(W3) where £(W},) stands for

the space of all linear endomorphism of W satisfying the Leibnitz rule.
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we have
Ya[V] =Y oY Vi =Y a;(V+ihl)'Y = [V +ihl]Y
z[V +ih1] clearly belongs to Z;7 (V). One can show the same for Yz~ 1[V], thus with these results
we conclude that any element a € C, can always be written as
alU] =Y ap[VIY",
keZ

with ay € F;7 (V) C (Ch)zfj being generated by Zx(V) and the inverses of the elements from
ZE (V).

In the next subsection we will construct the Riemannian geometry over the non-commutative

AdS5 using a module structure for it.

3.1.2 The module structure

We start this subsection by defining the non-commutative manifolds that are determined by our

choice of embedding coordinates X*. Then we apply this to the construction of the ncAdS,.

Definition 3.2. Let {X*} be a set of n elements X* € A. A triple ¥ = (A, g, {X!, ... ,X"})
where (A, g) is a Lie pair with all elements of the set { X"} being hermitian, is called an embedded

non-commautative manifold.

Now we introduce a free right Cr-module M by defining it to be M = (Cp)? and we will set up the Lie
pair structure in later steps. Now to define the quantum AdS; as an embedded non-commutative
manifold we can use the classical AdS embedding coordinates promoting the commuting canonical
coordinates to the non-commutative ones and imposing the symmetric ordering for V'

X=(-v, vy wvs oy oy L
2%,

l
_ 1y, _ 20 -1
2%, 5 VYV 5 Y+Y7) ) . (3.6)

To see if this embedding satisfies (3.1), we calculate, for u = 0,2
X,U,Xl/n’ul/ — (X0)2 + (X1)2 o (X2)2 ,
1 1
=Vt (4(1/1/—11/)2 -1 (VY‘1VY — (VY )P 4+yYVYy TtV — (Y—1V)2)>
1 1
-4 ((VY‘1V)2 +3 (VY—1VY + (VY )2 4+YVY 'V + (Y‘1V)2)) +
& —1)? —1)?
+4((Y—|—Y ) - (Y—i—Y ) :

1
—V2_Z (v(vy—l — kY THY + (VY + ihY)Y‘1V> - 61,

]

2
=14,
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which implies that
XX, =061, (3.7)
for n = diag(+,+, —). We also must verify if this set of coordinates has the su(1,1) Lie bracket

structure. For instance, one can directly calculate

1 0
(X0, X1 = [— Vo VYTV (Y + Y*l)} — i 200 X2 = —ihX? .
0

After some straightforward calculations is trivial to verify that in general
(X", X"] =ihe"?PX, ,

as expected. Returning to the classical case one can verify that the commutative vectors that span
the tangent space of AdSs are

_ _ 1 . 1
(bu—(’“)u?—(O, 2606 v° 4 £y cosh(u) , 57,

Oy = 81,? = <—1 , —ie*“v , —le“v> .

Lo Lo

e “v? — lysinh(u) |
) (3.8)

In order to obtain the non-commutative analogues we should apply the derivative operators defined
previously to the embedding operators X. For our choice of ordering, the only term that slightly

changes its structure is
1

1 -1 _
S V(YY) = o

7 (VW1 + Y*lv) .

From now on, we will use the greek indices for u = 0,1, 2 to denote the module indices and the

roman ¢ = U, V denote the local coordinates. We will also denote the basis of the right free module

X (Cp)* of rank 2 by {®;} and a tangent vector can be obtained as the linear combination
®; = e, P" (3.9)

where ®!' € Cj, and ¢, is the natural basis of (C)? defined as

éO = (]17Oa0) )
é1 = (Oa]lao) 9
&y = (0,0,1) .

P! can be obtained by the direct calculation from the embedding coordinates from (3.6)

= 9, X" . (3.10)

34This module can be thought as the tangent space of the non-commutative AdSs.
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Doing the direct computation we finally obtain

Y =0,
o = L(VY*IV) + E—O(Y +Y 1

v 24, 2 ’

2 1 -1 o -1
o = (VY W) - (Y -Y 1), (3.11)

24o 2
®) =1,
1

Pl = 02 = Y 'V4+VvYy .

T
In order to prove that {®;} is a basis we must show that for a, b € Cj, the expression a®y +bPy = 0
implies that a and b are equal to zero, but it is easily shown by noting that a@?] + b@?/ = 0 implies
that b = 0, since b vanishes using any of the remaining relations one can show that a = 0. Now we
introduce the Lie algebra g generated by the set of the inner hermitian derivations

_1
" ik

_1
" ih

1

Oo(F) (Xo, F], 0 (F) (X1, F], Do (F) = m[Xm P, (3.12)

for F' € Cy and we will use 7, and its inverse to raise and lower the greek indices. We can also
use complex coordinates A and A* (see [40]) to define a new set of complex derivations, as done in
(1.13), and proceed with the previous construction. In order to define the abstract Lie bracket in

g one should observe that

O (5V(F)) = ﬁ[% X0 F (3.13)

for an arbitrary differentiable function F' in Cj. Using the fact that the operator commutator

should satisfy the Jacobi identity, we get

1 1
- _ Iy
a, (8V(F)) =~y ([F XL X)) + (X, [F) Xy}]) € [Xp F] + 0,(0u(F) |
which trivially gives the Lie bracket structure for g
[a,u 7811]9 = 6/u/pa,a . (314)

We can also introduce a Lie algebra h generated by the 0y and 0y .With it we define the associated

Lie pair (Cp, h) to our non-commutative manifold and we will define a map ¢ : h — (Cp)? as
o(0) = ;X = 6,0, X" = ¢, 0" (3.15)

for 0; € h and note that we could apply this map to any element of h and obtain a representation of it
in the module (Cp,)3. Clearly the right module generated by the image of ¢ has the aforementioned
X(Cr) as its submodule and will be called the module of vector fields on our embedded non-

commutative manifold, denoted by TX. We state some useful definitions from [45]

Definition 3.3. An embedded non-commutative manifold ¥ is called regular if (TX, h) is a

reqular hermitian module, where h is a hermitian form from definition 1.15.
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In view of some propositions and theorems from [45] we aim to demonstrate that T'Y is regular by
asserting the existence of an hermitian form h such that e, h*”h,3 = eg which implies that should
exist a hermitian connection on (T2, h). In the following section we will define the dual-module

structure and a hermitian form that will play the role of the metric tensor in our setting.

3.2 The non-commutative metric

Using the algebraic gadgets introduced in the first chapter we will define a hermitian form that
plays the role of the quantum AdS, metric. Firstly let M* be the dual module of M = (Cp)3.
For a canonically right Cp-module M its dual is a canonically left Cy-module M by means of the
following property
(a-W)[mb] = aW[m]b ,

where a,b € Cy,, W € M*, the element inside the square bracket refer to the functional property of
W over an element m € M and the multiplication by juxtaposition in the right side is the usual
Cr multiplication. In our case, M is a free module of rank 3 and its dual space will also be a
free module of rank 3 with a set of basis dual-vectors {w"} with u = 0,2. Now we introduce a

hermitian form g : M x M — Cy, satisfying

(1) g(m,n) = g(n,m)*
(3.16)
(2) g(mla + ma, nb) = a*g(mla n)b + g(m27 n)b 3
for a,b € C, and m, m1, mo,n € M. In order to have a concrete realisation of g we must determine
its coefficients g,,, and we will do it as follows
Guv = g(éu, ) = Nuw1
With this we have our hermitian form g as

g(U, V) =g(e,U* &, V") = (U")"nu V" = U")"V, , (3.17)

for U,V € M (not to be confused with the coordinates U, V from the last section). Let § : M — M*

be an associate map given by
g(m)[n] = g(m,n) ,
for m,n € M. We construct § explicitly by defining

g(U) = g(e,U*) = (U*)" nuw” . (3.18)

Following the construction done in [45] we can use the inverse of § to define g~!. First, define the

inverse of § as

gTHW) = g (W) = eun™ (W,,)"
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for W € M*. Using the properties of the involution one could easily verify that the definition

above yields the correct result, by direct inspection we get to the following
ﬁ’l(g(éuU“)) = é*((U“)*nWw”) = e, N (UF)™ = 6,60U" = U
for U = é,U". Now we define g~ : M* x M* — C, as

g WD) =W (g7 (D)) = W (e (1,)7) = Woa @0n"™ (1) = W™ (T,)" . (3.19)

1 is a hermitian

where we used the dual basis property w#(é,) = J¥. One can easily check that g~
form on the left module M and on the right module M*. We can also calculate g explicitly as a
function of the local coordinates U and V by direct substitution of the basis elements ®; € X (Cy)

of the last subsection, we get to the following after some straightforward calculations

9Oy, Py) = -V — %]1 , (3.20)

g(q)v,q)v) =1 5 (322)

9(Pu, Py) =V + 431, 3.23
0

in terms of coordinates w,v comparing this with the commutative metric tensor induced on the

surface, which is given by
ds? = datdz,, = (63 + v*)du® + dv* — 2vdudv |

shows us that only cross terms of the non-commutative analogue of the metric receive a non-
commutative correction. In the last calculation we used the vector fields defined in (3.2). One can

I are in fact Hermitian if we treat ¢ as a classical metric tensor since it

also verify that g and g~
only depends on functions of V' and the operations can be carried as in the commutative case. In
the following subsection we will introduce a new set of local coordinates in which the metric takes
a simple form, enabling us to write the non-commutative covariant derivatives in a compact and

simple way.

3.3 The Fefferman-Graham coordinates

Now we introduce the last set of coordinates we will analyze, they are the non-commutative ana-

logues to the FG coordinates for AdSs, and they are obtained for the commutative case by making

1 2
z=e" and t=—ve ™ with {z,t}= z , (3.24)
éo 80
which gives a new set of derivations
Oy =—20, —td,, and 9, = giat . (3.25)
0
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From now on we will denote

1

R=Y ,Z=Y '=R', and T =
20,

(VY*1 + Y*lv) (3.26)
and assume that the ideal generated by the relations (3.3) also has a new set of relations
ih o ih
TZ:ZTJre—Z , ZR :IL,RT:TR+€—11. (3.27)
0 0

Using this new set of generators, we define the derivatives under respect to R and T'

Or(4) =~ 2[4, B
‘ L (3.28)
Op(A) = (A T] .

In order to verify the consistency of the definition above, one should show that the set of derivatives

respects the ideal generated by the relations (3.27), from (3.27) and (3.28), one immediately has

aT(T) =1, aT(R) =0,
(3.29)
OR(T) =0, Op(R)=1.

Checking the relations defining the ideal we can get, for instance

0T(TZfZTf@Zz) —7-7Z=0,

Lo
ih 2 2%k, 2ih
8R(TZ T - %022) = Z|2,T) + (2,77 + Z—OZB - *ZTZB + Z—OZ?’ —0,

and the other relations can be easily verified. It is also easy to see that these derivatives are indeed
Hermitian. In order to write the coordinates X* of the ncAdSs in the coordinates R and T we
first note that
14
V=3 (TR n RT) ,
and we use it to construct

X0= V= —%0 (TR n RT) . (3.30)

Now taking the previously constructed X' and X? in coordinates U,V one can obtain the embed-

ding in terms of the new coordinates. Firstly note that

2
VY-ly = %0 (T2R +TRT + RTZTR + RT2> ,

W2 ih, . B2
RTZTR= 7+ ~T+T?R= 7 +TRT .
z7 " 6 I

With these results, one can show that

R BN h2
e VYTV = 2£0(£0TRT+4Z),

where we used



Now we apply these results on the coordinates X' and X2, which gives

14
0_ 0
X" = 5 (TRJrRT),
¢ K2
1 _*o _
X! = > (TRT+ (1+4£(2)>Z R> ) (3.31)
¢ K2
2 _ 0
X = 5 (TRT+(1+4£%>Z+R>.

We can now calculate the vector fields on the free right module ((fh)‘3 generated by the derivatives of
? with respect to R and T'. Applying the derivative operators defined in (3.28) in the coordinates
(3.31) we get to the following

®Y% = R,

@%:@%:-%{TR+RT),

¥p=—hT (3.32)
@%——f?(—(r+j%)Z2+T2—l>,

520 (—(1+Z%)ZQ+T2+]1> .

To further construct the geometrical objects over the non-commutative AdSs one could analyse

&
::Jl\')
I
|
\

the full set of coordinates by adding the elements Wand.J to the set of generators, with the set of

commutation relations satisfying

r,2)=57, [RT)=1,
ih ih (3.33)
woR = 2w2, (zw) = Lwzrw
Ly Lo

with the inverse3® elements R = Z~' and W = T~ ! as well as one could construct J, that is
canonically conjugate to Z satisfying

[lﬂ=%l, (3.34)
for J = RTR. We will not follow this path because, in order to define a proper affine connection,
we would have to use the Lie algebra of derivations g for our full set of coordinates, which would
lead to some ambiguities, in order to avoid this we will only use the complex algebra C[Z, R, T
modulo the ideals defined by the relations in (3.27) to construct Cp. Clearly with the full set of

local coordinates we can define the set of inner derivations Z C der(Cy) for some function A € Cp,

as follows: P P
8T(A) = _fo[AaR] ) 8R(A) = '*O[A’T] )
ih ih
, , (3.35)
__ _ 20

note that the relation for the derivative with respect to Z follows from the derivative of a function

with respect to the inverse variable, for instance 4 F(A~!) = —A~1F/(A~1)A~L. Recovering the

35Tn order to have well defined inverse elements in the algebra, we should make sure to add to the ideal (3.27)

the relations AB — 1 = 0, for any pair of inverse elements A and B.
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parametric equation for the ncAdSs written with respect to R and T we can write it compactly as

¢
X = —20<TR+RT, TRT + k*Z — R, TRT+k2Z+R) , (3.36)

for k=,/1+ %, and denote the tangent vectors to the ncAdS, surface in a similar way
0

. ‘
Oy = e,PG = —50 (23, TR+ RT, TR + RT) ,

(3.37)
dp =, = —%0 <2T, —K2Z24+T? -1, —K*Z%>+T? + ]1) .

Using the formalism above we are able to directly calculate from the definitions established earlier
the matrix elements of g with respect to the coordinates Z, T, R:
9(®r, o) = k327,

P N 24
9(®r, b1) = g(br, br)" = -1, (3.38)

g(dr, &) = 2R
This shows explicitly that our metric isn’t only symmetric but Hermitian, as expected. When
we constructed the metric for the coordinates U and V, as well as to the other set R, Z and
T, it was easy to note that g was defined for a canonically right Cy-module M for the first and
the second entries. We now introduce the elements of the opposite algebra C;” in which the
module construction implied earlier would have a swap from right to left and vice versa. The sided

multiplication properties of some arbitrary elements A, B € Cj are defined by

AYB) = AB, Alecy,
(3.39)

A"(B) = BA , AT e .
One can also note that (BC)"F = FBC = C"(FB) = C"B"F which implies that the opposite
algebra acts as an anti-involution and for real elements it is equivalent to the usual involution. In
order to define the relations between the algebra and its opposite in a more rigorous way we will
use the notion of enveloping algebra that is introduced in [47]. For any algebra A we define the

enveloping algebra A€ as

A =AQ@c AP, (3.40)
it is easy to see that a A-bimodule M, can be considered a left A°-module. There are natural

homomorphisms from A and A° to A¢ if we take
Al e AA®g 1gor € A°
B e A? w14 ®c Be A°,
where the subscript of the tensor product symbol denotes the common subfield or algebra that
the product is taken over. As an simple example consider the set of derivations (3.35) written as

elements of A¢

OTF:—%@((]l@R—R@ ]l)F) . ORF = f%@((MT—T@Jl)F) ,

6ZF:—5—2@((]1®J—J®]1)F> , aJF:Z%@((Jl@Z—Z@n)F) .

(3.41)
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where we treated A° as a right A-module and we also introduced a non-linear3® map © : A° — A
that takes an element of A° and associates it with an element in A that carries the information
of the specific multiplication order, for instance, using n = A ®¢ B and C € A the map do the
following

nC = (A®¢ B)C — ACB € A .

The differential calculus 2*(A) can be extended in a natural way to the enveloping algebra by
taking
e
0" (A%) = Q" (A) @4 Q" (AP) = (Q*(.A)) , (3.42)

where the exterior derivative satisfy d(A ® B) = dA® B+ A® dB for A € A and B € A°.
Now we introduce a identification that will be useful: (1 ®¢ &) Q¢ 1 — 17 @4 £ which implies
that (A ®g Q1 (AP)) @4e M ~ M @4 Q' (A) for a A-bimodule M and with these results we can

construct a suitable space to define our connections and covariant derivatives
QA @4 M = (QA) @4 M) & (M @4 QA)) . (3.43)

We will use this space when we define the non-commutative connection in AdSs and the non-
commutative Killing vector fields. If we define as g, metric for the right A-module structure and
as g; the metric for the left A-module structure, it is easy to show that ¢;(®r, ®r) = g.(Pr, Pr) as
elements of A and in order to obtain a symmetric g without the complex off-diagonal terms we can
define g, := %(gr + ¢g;) where g5 stands for the symmetric one with zero off-diagonal terms. Clearly
det(g) = £31 and since all elements of the metric are R dependent we can treat it commutatively,
note also that the determinant of gy receive a quantum correction since the off-diagonal terms
cancel and we carry the O(h?) correction inside k(h). As g can act by the left over some element A
of the algebra, we must guarantee that the metric action transforms correctly. If we remember that
when changing the side of the action we get some extra terms with derivatives now we must impose
a specific ordering to fulfill our purposes in constructing such geometrical formalism. The chosen
ordering will be the symmetric one for any quadratic term in the polynomial ring which has only
one dependence in the generators Z, R and T'. For the odd terms or cross terms in the polynomial
ring we use the symmetrization of such element. The formal definition of the symmetric mapping
S : A — A° is the following

1 n
S(A1ds. . Ap) =~ S A A @ T (A, Al (3.44)
o(Ar)

where the 7 function refer to the specific symmetrization of the A;’s in a such way that we don’t get
elements of the form [[; A;® 1 or 1 ® [[; A for the quadratic terms also obeying the symmetric
property for the odd ones, and this specific symmetrization guarantees the hermiticity of a general

element obtained from the action of S over A. The function o is just the set of possible permutations

36This map distributes over addition but in general @((mB)C) # ©(mB)C for B,C € A and m € A°.
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in some index set I. For instance we apply this mapping in some terms that will appear in the

following sections
S(TR) = %((TR)I +(TRY) = %(TR ©1+1®RT), ST})=ToT.
Applying this map to the components of g, we get
s(gs(ch, @R)) — 227177 = KR(Z e Z),
S(gs(CI)R, @T)) :S(gs(@T, @R)*) ~0, (3.45)
S(94(@r, @) = BR'R' = B(R&R) .

For g we can note also that most of the coefficients got a non-commutative correction and we
recover the usual AdS? metric when we take 7 — 0. Since we defined the field of functions with

inverses, we can also denote the metric and its inverse in the following way>”

BRze it
9(Pa, Pp) = ) (3.46)
o GR
and
) K%RQ zh;o
g (@, db) = 7 : (3.47)
0 )
e ez

It is easy to see that g, is obtained by doing the following

k27> 0
1
9:(Pas @) = 5 (9@, o) + 0u(@0, ) ) = . (3.48)
0 2R?
Now we are ready to construct the covariant derivative and the connection coefficients for the

Quantum AdSs.

3.4 The Levi-Civita Connection

In this section we will derive the non-commutative connection using two strategies that should
yield the same result. Firstly, we will introduce some definitions and from now on we denote as g

as the complex Lie algebra generated inner derivations 0 € Der(éh).

37The precise definition of the determinant of the metric can be derived from the fact that the matrix algebra of
commutative functions in Cp(R) have the usual determinant 2-form well defined, with this property one can easily
show that det[g] = (31, by applying the usual definition of determinant, since all metric coefficients are functions

of R, Z and 1 and hence commutative, making the metric non-singular in the whole ncAdS>.
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Definition 3.4. Let (A,g) be a Lie pair and let M be a right A-module. A connection on M is
a map g X M — M such that

(1) Vo(m +n) =Vaogm+ Van ,
(2) Vaa,+po,m = AVg,m + BVg,m ,
(3) Vo(ma) = (Vem)a +md(a) ,
formne M; 9,0,,0, € g; \,8€ C and a € A.
Definition 3.5. A connection V on a right hermitian A-module is called hermitian if
Oh(m,n) = h(Vym,n) + h(m,Van) ,

for all m,n € M and 0,0 € g. We say that an hermitian connection is compatible with the

hermitian form h.

The notion of torsion freeness will be introduced utilizing the map from (3.15), as the following

definition states

Definition 3.6. A connection V in a non-commutative embedded manifold is called torsion free

if for the map from (3.15) the connection satisfy the following

Vo, #(95) = Va,(0a) = ([0, 9g]) , (3.49)

for all 0,05 € g and if the connection is compatible with an hermitian form h we call it o Levi-

Civita connection.

It is proven in [45] that given a free hermitian module with an orthogonal projection
defined in it, any hermitian connection of the free module induces a hermitian connection on
the corresponding projective module, which implies that every regular hermitian module has a
hermitian connection and therefore, from the theorem (4.6), it is guaranteed that exists a Levi-
Civita connection on every regular embedded manifold. Following this procedure we will define a
projection for the ncAdSy and after this we will verify the properties of this projection and use it
to construct our connection for the ambient coordinates and the local coordinates. It is necessary
to stress out that for each case we will use a different Lie algebra of derivations g which will result
in a different construction for the connection coefficients. As a final step we will compare both

results with its commutative counterparts.

3.4.1 Connection in ambient coordinates

One of our objectives in this chapter is to find an analogue to the non-commutative Ricci scalar.

If we remember the commutative case, following [44] one can find that the Poisson structure
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introduced in the 2-Riemannian manifold (¥, g¢) embedded in the m-dimensional Riemannian

manifold (M,g), allow us to construct®®

a pair of orthogonal projections Hj = 5; — P]? for
P} = {a', 2"} gy {z™, 2'}g,,; satisfying P,II € End(T,M). In this setting the Ricci scalar R is
obtained from the equation R = PI'P* R, ;1. we will find two non-commutative analogues of this
equation. We start by constructing the endomorphisms P and II directly from the commutative

definition

1 1
X, XX X =
£3h2[ ’YH } £3h2

I 1
=z (5;@ - 5;,‘5V)XPXU =01+ XX,

pr, = (%X, - X%, ) (XX - X7 x*)

now we must define them properly from the strategy employed in the commutative case and show

that they are indeed projectors, we do this in the following

Proposition 3.4. The endomorphism II of (C;)? is a projector and it is defined as

1
H(U) = 6,I1,U" = e, X' X,U" (3.50)
0
for U € (Cy)3 and X* the embedding coordinates defined in (3.7).

Proof: We can easily prove that II is indeed a projector by applying it twice over U € (Cp)?3

1 1
I(U) = 6,1, 11", U° = 738, X"(X, X")X,U° = 556, X" X,U° = &,11",U” = TI(U) ,
0 0

where we used (3.7). O

We can construct 1I explicitly as a formal matrix

(X0)2 XO0x! —x0x?
(Ir,) = —glg X1X0 (x1)? —Xx'x?| . (3.51)

X2X0 X2X!  —(X?2)?
It is easy to see that II*, = (II,#)* and we can apply the projector over the basis elements
{é.} which gives II(é,) = ?XW hinting to the fact that the projection yields as image a rank 1
module. In the classical geometry the complementary projection of II, that is defined as P = 1 —11I,
characterizes the module of sections of the tangent bundle, we will refer to it as TCy = P((Cﬁ)3>

and this allow us to define a finitely generated projective module given by
(Ch)?’ =TCr &Ny ,

where Ny, = H((Ch)3). One could try to identify X' (Cy) with TCp but we should verify if TCy, is

38In the following construction we are considering that Va/ p? = 1. The full construction can be found in [44]
and one can find a little mistake in the indices at the definition of Dij. Here in my construction we consider the

corrected case.
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spanned by ®; given in (3.37). We can write it explicitly as

021 + (X0)? Xoxt —X0x?
1
(P*,) = 72 X1x0 21+ (xH)? —X1x? . (3.52)
0
X2x0 X2X! 021 — (X?)?

Proposition 3.5. The endomorphisms II and P are orthogonal projectors in the sense of (1.19)

with respect to the hermitian form g from (3.18).

Proof: One easily checks that

1
&

1

e%(UV)*””(XAXpV”) :

1
g(H(U)v V) = - ﬁg(éﬂXﬂXuqu épvp) = (UV)*XVXMVPU#P =
0

1

—SEXNX,V0) = g(UTI(V))
0

g(H(U)v V) - g(éuUV7

for U, V € (Cr)? and by the right-linearity of g it is easy to show that P is also orthogonal. [J

Using the proposition (2.9) from [45] it is guaranteed that (T'Cp,g|rc,) is a regular hermitian
module. It is clear that we can generate T'C; with the vectors €, = é,P*, and the space Np is
the equivalent of the classical normal subspace and analogously it is simple3® to prove that A}, is

generated by X = (X9 X1, X?) with H(?) — X Now we write explicitly the basis {€,}

1
6o = Z2(&3]1 (X2, X1XO, X2X0) ,
0
1
& = P(XOXl’ 21+ (x1)?, X2X1) : (3.53)
0
1
&y = 72(_ X0x2 —x1x2, 21— (X2)2) ,
0

Following the proposition (3.8) from [45] we will show that the non-commutative analogue of
the tangent space of the hyperboloid, that can be generated by eqg = (0,—z,—y), e1 = (2,0,z)
and es = (—y,z,0), receive a non-comutative correction. First we define the non-commutative
elements that generate the module T'Cj by ey = %g””él,Xp, these elements carry the su(1,1)
symmetry which can be seen easily using the map defined in (3.15) for the embedding coordinates
that obey the same Lie algebra structure, as one could also use the s0(3) symmetry to construct
the tangent space of the classical sphere. It is obvious that {e,} € TCy, since these elements are
linear combinations of the projected basis {€,} which belongs to the tangent space by definition.

Calculating {e,} explicitly we get

1 1 ih
eo=—%<é2X1+é1X2) = —%(é2X1+é1X2> —%?XO )
0
1 1 ih
o = %(éoXQ +8X°) = %(éon +X°) - HX X, (3.54)
0
1 1 J
es = ——(éoXl - élxo) = ——(éoX1 — é1X°) - %?Xz ,
£0 EO ZO

39The proof follows a similar path as is done in [45] p.12.
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Proposition 3.6. The transformation rules between the sets of basis vectors {e,} and {€,} are

1 1
o= (en"PenXytifiey) , e = fen X, (3.55)

Proof: The second relation follow from the definition of {e}. The first one can be obtained when

we calculate

1 v 1 v o3~ 1 o o\ ~
e X = el Pe,Xp)X, = @(%nﬂﬂ — 97 ) XpX,
L pB 5 o 5 5 pPa TP ih o5
= %(eun XpX, = 6 X, X7 ) = &y + €aP? I, g X

where we used the bracket of X,, and X” and by applying the orthogonality of P and II the last

expression implies that the first relation is true. [J

The last proposition means that, as in the fuzzy sphere case, the tangent space for ncAdSs
has 3 generators which are mapped to 2 if we take i — 0 in the commutative limit, as expected.
In order to calculate the metric coefficients for the basis {e,} we must know its action over {é,}
since

1 [ Y ~
g(eweu) = ﬁeup €y 5X0'g(epyea)X,8 )
and we calculate it directly using P, = (53 + éX,,X"’) = (PVP)

Gpa = g(€p,€a) = vanMP}\a = Ppa -

Proposition 3.7. The hermitian form g applied in the basis elements {e,} yields the respective
restriction of g in TCy, and gives as result
h2

71 - (3.56)
0

g(e#, 61,) = PV# -

satistying (guu)* = gup-

Proof: By direct inspection and using

7€, = 0?07 — nun®n’’ + 60607 — 808 — 0P85 8] + P66y

we get the following expression for the components of g in the new basis
1
glewev) = 5 [mu (X"Pﬁ(,XB — X"Pp”XU) +XPP, X5~ XPyoaX, — X, Ps, X" + X, P, X, | ,
0
note that if you commute the projector with the embedding coordinates with lower indices, which
gives [Xq, Pg,] = %(eaﬁ’\X,\Xﬂy + eM’\XﬂXA> = —ih(eap Iry + €0, 1gy), you can get some

elements that simplify by the orthogonality of II and P. We show below the explicit calculations

for every term separately

- 1 (0% « ]' «@ Zh « o
i) @WVX PpoX? = =0, 11%° Py, + %X Nuv[Poa , XP] = %nwx &7 X5X,
2 h2
= NuwXXa = ——5Nuw -
l €
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Following the last step, we can calculate each term individually as follows

- o 2 o
”) ﬁX P Xan;w = _ﬁnqu X, = 277#1/ ;

1 ih
iii) 73X P X = 7 PWX X5+ - 7 [X P X5 =Py, + <6BV”XJX# +66HUXVXJ)XB ,
0

54

ih
Pt g1 < P Xo (XX + mewﬂxp) +X, (eH”BXUX/g>> ,

2

h
2712 h?

h2
=-P, - 62 (QHW +1I,, — 77”,,) ,
) 1 _, 1., ih o, h? h2
w) — E—QX PoX, = E[X v PoalX, = e XoXo X, = —£4X v X = =1, ,
0 0 0
1 1 ih h? h?
v)  — ﬁXyPﬁMXﬁ = —K*QXV[PBH,X&] = £4X eu T XpXo = _ETXVXM = ETHVM J
0 0 0 0
L1 2
UZ) £2X P X,u = —?XVXH = 2Huu ;
0
canceling all terms and simplifying the resulting expression we prove (3.56) and g, is
h? h?
uv = 27]/w - Pup, - ﬁH/w - QHV/L = Pup, - ﬁnlw .
0 0

If we use the fact?® that II,, = (II,,)* with the same holding for P it is easy to verify that

(g(e#, el,)>* = (9w)" = gou O

The last proposition shows that if we want an orthogonal projector in order to define the connection
properly, we should make it using some linear combination of IT’s and P’s, but before doing it, we
will show in the next proposition that exists an suitable inverse metric which is also orthogonal
and can be written with respect to the projectors.

Proposition 3.8. The hermitian form ¢!

restricted to TCy can be indirectly constructed and
has the following form ¢g"” = (1 + %)n’“’ + II¥# satisfying the equation e, = e,9""g,, where it

can be considered the inverse of the metric g, in the projection space.

Proof: In order to prove the proposition, one can verify these relations using (3.55)

y ih . ih ih
eMH”:—%e#e‘ X, = En ( +%eu),

2

h ih

e, P*" = (1 + 62) Ye, — Z—n“”é# ,

0 3.57
o i . (3.57)
e, Il ——Z—n €y s

0

~ v v~ Zh‘
e Pt =nt (eu—ke €H> )

40This is a fact only for projectors with indices in same level, both up or down.
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with the relations above we will show that the operator g"” = (1 + ?—;)n‘“’ + II"* satisfies the
0
following equation e, g""g,, = e,. Since e, and €, belong to TCy, the action of II over them is zero

and we used this fact to calculate the relations in (3.57), using this we first show that

v h? L ih L th_,
Y :e#< gz)n + s (eu—i—%eu):e —|—%e

applying it to g, one get

(61/ n %él’)gup _ (1+ Z)ep — %ép—i- (%ép— Z;ep) =e,,

as we intended to show. To show the reasoning behind this result we write explicitly the product

of the restriction of the metric and its inverse
h? h?
0oy = (1 )11 (P - 1L, )
now we just simplify further the expression obtained and in order to help the reader to verify some
intermediate steps we write the expression below which is obtained after some straightforward
calculations
h? h? h? h? h? h?
P g = (1 ) B (1 G ) G ] = G (1 )

and after some simple algebra we get to the following

g" gup*P + = [XHX} va

0

and this is expected because the projector act as an identity operator over the generators of the

projected space giving trivially e, P, = e, as was shown previously. [J

Now we turn our attention to the connection in 7'Cy and verify how it compose with the projectors

IT and P, the following proposition (see [45]) elucidates this.

Proposition 3.9. Let (A, g) be a Lie pair and let V be a hermitian connection on the free hermitian

module (A™, h). If P : A™ — A™ is an orthogonal projection, then PoV is a hermitian connection

on (p(A"% 9|P(A’”)) :

Now we will explicitly construct the hermitian right connection and with this goal we start by
defining its coefficients

56— o TP
Vo, e, =€,

(3.58)

for our case I'f),, € C; and € some basis for (Cr)3. The action of the connection defined previously

in an arbitrary element of (Cj)3

Va(eU") =&, T0,U" + 6,0,U" (3.59)
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for V,, = Vg, and U” € Cp. Using the fact that for our case all the elements of g are hermitian

we can apply the hermiticity condition to our connection and obtain
8ag(élla él/) = g(vaé#; él/) + g(élh vaéu) = (gl/prgp.) + guprgu I (360)

for the general case g,,,I'2,, could have real and imaginary parts, if we denote** S(g,,,I'%,,) as V(@)
it is easy to see that if use the hermiticity of g to show that R(g,,15,) = R(g.,['4,) = 1009w

one get to the following

aag;w = 2%(guprgu) + i(’Y(a)uu - ’yz:a)y‘u,) ’

and in order to cancel the imaginary part we can impose that 'yzka)w = Y(a)uw as well as define the

connection coeflicients using the inverse of g giving as result
P 1 pA P AP
Fau = 59 6(19)\# +19 V() - (361)

Upon setting a suitable v(4),, € Cp we should have a well defined metric connection V7, where for
a different choice of v one get a different connection. Using the corollary (3.7) from [45] we can
construct explicitly an hermitian connection for the tangent space T'Cy as the composition of the

projector P and the connection V7 as can be seen below
1
Vaby = PoV(E,) =V (épPP#) = ¢,0a P + €, (iaagm n m(aw)Poﬂ . (3.62)

where P is the projector defined in (3.52) and metric §,, = ¢(é,,€,) which is the respective

hermitian form that turns the projected space defined by P,” into an hermitian module.

Proposition 3.10. The projected connection V7 acting upon the basis sets {e,} and {€,} of TCy
gives

o1 ~ 1 i
Vaéy, = feaXy + Zepnp)\ (7((1))\11 + ﬁW(a)Ao’X Xl/) )
0 0

1. [ ~ th_ (. o o
Vaeu = %6(1)(“ =+ %eu)\peg’y(a)ﬁAXp + geg (’L")/(a)ﬁ + Eaﬁ )XUXN s

for e and € from (3.55).

Proof: We start calculating the first term from the upper expression

) E 1 1
8,00 P", = %(XP[XQ,X#] + [Xa,Xp]XH) - Eepeap XoXp = peaXy

where we used (3.55) and the fact that

1

e X" = e (9] + 5 XX, ) XP = e(XP — XP) =0,
0

41The index (o) inside parenthesis is to emphasize that it carry different symmetry properties in comparison to

the other pair of indices.
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simillarly one can show that the same is valid for {e,}. Applying " = P*” and §,, = P,, one

get to the following expression

5 1 5 1 . -
Ve, = %eaXH + epr’)\ (ng(e(wﬂXgX(, + eaanAX‘g) + ZW(Q)AU)P o
1 1 ~ :~ o o
= %BQXH + ( - inApepeaAGHOU + Zep’Y(oc)ptT> (6;L —1I ll> ’
1

= %eaxu +1ié, (’Y(a)pu - 7(a)pangu) )

using that épP”’\ = épn’»‘ and the orthogonality of IT and P. To calculate the remaining expression

we must use the result of the first one, we start by writing the full expression as

1 1
Ve, = vg(%q}pgxﬁ,) = e {(Vgé,\)Xp + éAaaXp] ,

1 1 .~ o ~ g
= feMAP |:{€06(XX)\ + 2607795 (’Y(a)b’)\ — rY(a),BoH )\)}Xp + ExEap Xg:| s

1. ihéﬁ 0 iéﬁ N . ih -
= *%ea [T % eozﬁ He,u + Eeu p’Y(a)ﬁcpr - 165%’)/(a)ﬁ01_[ oy
1. i€ th_ /. - -
= 7%60“)(# + Tfeﬂ)\p’)/(a)BAXp — %65 <’L’y(a)6 + EQ’B )Ha# ,

which finishes the proof. [

Using the results from the last proposition, we have two natural choices for 7(4)s, in order to
simplify the expressions obtained. The first choice is the trivial v(,)s, = 0 and the second is
Y(a)Bo = i€aps Which clearly satisfies (Y(a)ss)" = —i€ags = i€aop = V(a)op in order to fulfill the
construction employed earlier. Setting v = 0 and acting upon an arbitrary U = é,U" € (Cp)? we
get to the following
o (eu) = ép% (%XPXQXV — "My, )U” + 6,0aU" (3.63)
0

where we substituted (3.61) in (3.59) and obtained for v =0

1 1 ih
T%, = 5P 0aPr) = =5 (€a”Tloy = 5 XPXoX, )
2 2 7
Doing the same calculation for v(,)g, = i€ags We obtain
e[~ +ru . 1[/ih 9 N . .
Va (el/U ) = €p§ (FXPXQXV — Gap Hg,,) — P? €arv | euaaU ,
0
with
p_ Lpo P Lo o ih ., oA
Th, = 5P0aPa) 1P = =5 (€Tl — XXX, ) = PPear,
0

In the upcoming section of this work, we will apply a similar procedure to identify a well-
suited connection for local coordinates. Additionally, our aim is to establish correlations between
the results obtained in this section and the new ones, comparing the equivalence of the connections.

Following this, we will utilize the definition of an embedded non-commutative manifold and leverage
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findings from [45] to formulate our Levi-Civita connection. The primary objective is to define the
curvature tensor for both sets of coordinates and calculate the Ricci scalar, subsequently comparing

the results from these two approaches.

3.4.2 Connection in local coordinates

Building on the groundwork explored in the previous section, our focus now shifts towards con-
structing a connection for the space X'(C). This connection will be expressed with respect to the
basis ¢ utilizing the hermitian right metric constructed in (3.46). To achieve this, we commence
defining a set of arbitrary Christoffel symbols that will properly characterize the connection. Firstly
we define the action of the connection over a right Cp-module explicitly for a element A € (Cp)3

such that A = é, A% for A = ®* A’ with A® € Cj, and é,P¢ = ®; a basis of X(éh)
Vo, A= Va(a®FA") = 6,08 (0,4 +T}; A7) | (3.64)

where we used the image of the homeomorphism ¢ from (3.15) in order to define properly the
action of the connection over the vector é,®;" as our connection coefficients. Returning to the co-
ordinates R,T and Z, we will try to construct the relations for I'}, following the usual commutative
construction. We will take for granted the following properties for V assuming it to be ) metric
compatible and i¢) torsion-free which is a reasonable ansatz for the structure of the connection

coefficients. These properties can be translated to the following equations

i) 0;9(Pa, ) = g(ViPq, Pp) + g(Pa, VD) ,

ii) Vo, p(0) — Vo,0(0a) = ¢([0a, 0g]) ,

(3.65)

as we will see below, some of these properties will imply a different structure for the connection

coefficients. Using the map ¢ we can calculate the hermitian form g
Gab = 9(9(D0), @(00)) = 9(Ea®, 658]) = 9(2a(0.X7),65(0X7)) = (0.X) g(éar5)(OX7)

for ? = €, X being the ambient coordinates of the ncAdSs. Following the last construction one
can use the hermiticity of g, to construct the connection coefficients directly from the action of

the elements of g in the hermitian form g as follows
Oug (@1, @) = g(®s, P)TY, + (9(®c, 2TT)

in the following calculations we will denote g(p(9,), (b)) as gap. Using the hermiticity of g and
defining f(a)ij = gikfﬁj = %&lgij +10(a)ij, one can find that if

0a9ij =Lwyis TNy == O@is = %ayji -
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additionally in light of the theorem (4.6) from [45] implying that o (). must have some inner
symmetry in its indices in order to define a Levi-Civita connection, for instance, taking all o(q)p. = 0

one gets

1
ab = 596daagdb : (3.66)

If we try to calculate explicitly each I';, for this case we find the following set of equations, for

instance
Or (QRR) = 0= %(QRRF%% + gRTP%R> )
and it is straightforward to show that
Or (gRR) = QK7 = %(QRRFgR + gRTFﬂR) ;

or (QTT) = 0= %(QTRI‘?T + gTTF%) ;

Or (QTT) - E(Q)R = %(gTRl“gT + gTTl"gT) s (3.67)
Or (gTR) = 0=grrl'Rs + 977l hp + (gRRl“ﬁT + gRTrﬁT) ;
Oor (gTR) = 0=grrl'%x + grrTig + (gRRF% + gRTF%:T)

The solution to the system of non-commutative equations above is equivalent to apply (3.66) to

each combination of indices as we do below
1
I'Ep= ( R OpgrR +9RT3R9TR) =—k*Z,
g RIRT + 9 RITT ) = 20,

r=(o"
(g Rorgrr + 9" Orgrr
(

FTR - ) =0,
I, = (9™ 0rgrr + gRTaTgTT> =0,
. o (3.68)
= (9 Orgrr +9 3T9TT) =0,
= (gTRaRQRT + gTTaRgTT) =kZ,
ihk? .
= (9 ROrgrr +9TT3R9TR) A AR

ITp= (gTRaTgRR + gTTaTgTR) =0.

Plugging the set of Christoffel Symbols above in (3.67) satisfy the full set of equations, as expected.
If we compare the non-commutative set of connection coefficients with the non-zero commutative
analogues ', = —T't, = —TY = —z and I'}, = —r3, we observe that the set of coefficients obtained
above does not converge to the commutative limit as we take i — 0, this can be explained by
remembering that we have a family of Levi-Civita connections associated with an non-commutative
manifold, we can also consider the fact that we haven’t used yet the torsion free condition in our
setup. Since we know the symmetry properties of o(4) 5. we must modify slightly these coefficients

in order to obtain the correct commutative limit. Writing the coefficients for o # 0

1
ab = 59 “Qagap +ig° U(a)db ) (3.69)
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implying that we must choose wisely eight hermitian elements of C;. Analyzing the non-converging
coefficient I'%. we can impose to it the following form (a(h) - 1) R3 for some real valued function

a(h), this imposition will guarantee the correct commutative limit implying that
R R? h 3
Upp = iz O(T)RT ~ 5 0(M)TT = (a(h) - 1>R ;
0 0

And from this equation, we can use the torsion free condition and solve the system of sixteen
equations and unknowns to find the correct converging set of Christoffel Symbols. This would be
clearly a cumbersome task and we will not follow this path, we instead rewrite our objects using
a projector defined as an endomorphism p : (Cz)? — (Cx)? which satisfies p((Ch)3> = X(Cp), this
will prove to be very useful to circumvent the aforementioned nuisance. We will also denote the
projector as

P(A) = p(6,AY) = é,p", A = ¢, D1 g™ (D)) s, A (3.70)

for g% the inverse of the hermitian metric constructed for X (Cz). The coefficients p#, can be
calculated directly from

p‘uu = ‘I’figab(‘l’f)*%u ; (371)
and can be used to prove that p is indeed a projector, namely
PP(U) = eupop U = &, 0k (B]) 15, BL g™ (2F) NoalU™ = E,@H " g (D7) Noal™
= ®40¢ 9" (®7) Noa = euPhg™ (7)) NealU® = €upHaU” = p(U) .
As an example solving for u = v = 0 we obtain

P’ = ®)g (Ppo)* = % g™ (Pro)* + %9 (Pr0)* + @597 F(PRo)* + 259" (Pr0)* |
3h2)

— TRT (1 o
BT+ (14
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where we used the program from the appendix A to help in the long calculations. Doing the same

for the other combination of indices we get

0 = % TRTRT — RTR + THOTRT+ (1 + ZZ;)T + 3’2’2];22 + ;Z)R}
PPy = % :— TRTRT — RTR — ;—Z)TRT (1 T ii;)T _ 3;2];;22 ;Z)R]
plo = % :TRTRT—RTR— %TRT—F ( + ZZ;)T-F ZSZQZ— QZZ)R}
P2 = % :— TRTRT — RTR + %TRT (1 T Z};)T _ i;isz _ ;Z)R}
Pr= g T (1 R )T (5 g )

+ (% + Zzz)(ZT+TZ) _ g—h(RT-i-TR) ( f;)]l} ,

1[ T?RT? 1 5h? h?  3nt R? ih (3.72)

Pha=g|m Ty (3 Teg)T”(_*ﬂw? +32@4)Z Ty TR

+ %FLTR @£3ZT ‘Zf ] ,

+ Zf; + %TR - 3?;] ,

1] T?RT? 512 1 K 3K R?
Zy=_| - —— —TRT - T? — (2 — — — — ) 2% - ——
P2=5 { 2 ( 442) (2 402 3263) 2

B (zh ih3
Lo 443 14

We can also show that the projector p is orthogonal with respect to the hermitian form g from

)ZT MR +TR) + K1 }
0
(3.18) by direct inspection
9(p(U),V) = g(éa<1>a9“b(<1>f)*na5U“, éwv”) = (U*)* @) ¢"(®F) Napryo V7
= (U) s (59" (9) 1o ) V7 = 9(2aU®, 2504 (@7) 10 V) = 9(U,p(V)) -
If we compose the projection p with the connection from (3.69), denoting it by V.=p o V where

V refer to the connection defined in (3.69), and impose the torsion free condition, we can finally

define a Levi-Civita connection on X'(C) starting from
~ 1
VoU = (p o Vo)U = p(éoﬁan‘ +é, (inwaan,,p ¥ mwa(a)w,) U”) :

using J,7,, = 0 and applying the projected connection to the basis of X(Cy), we get to the

following
Vaba = By9" (10 (@2)" 0a ] +i(92) 002 @2 )
where from now on we will denote (®7)*o(q) >\<I>2 as 0(q)cd- Now we apply the torsion free condition

using [Ogr,O0r] = 0 and 9, X% = ®%
(Vo) = V(D) 60X = Dog™ (10s(@5)" 0a®} + 16 (ayas — s (B5) N — 153700 )

= g% (77a,8<¢’g)*[8a76b]Xﬁ + (6 (ayap — 5(b)da)) =0

72



since the commutator of derivatives is zero, this implies an additional constraint in the indices
of ¢ meaning that 7(,)pc = 0(c)ap and considering the following o(,);; = Jza)ji, we conclude that
0 (a)be Must be symmetric in all three indices, giving 4 choices for our case. In particular, one could
choose ¢ = 0 for all combinations of indices, it would still be a Levi-Civita connection. Calculating

for this case we get

Va(U) = 3,0,U° + &9 (®F)*1apda®) U, (3.73)
for I'S, = g“((bg‘)*nagaa@f . Calculating each coefficient directly one gets to the following

ir = (9"7(@%)" + 9™ (@) )napdn®} = k2 ,

Py = (4"(03)° + 9™ (05)" )1as0n) = 3R
iz = (QRR@%) g (@F) )WaﬁaTq)/% =-R*,
i = (9" (@%)" + 9™ (©%)" )nasdr @}, = %R ,
i = (97H(@5)" + g™ (94)" ) nasdr®, = K22,
Thr = (977(@%)" + 9" (©%)" ) 1ap0r®] = k2 |
D = (483" + 977 (@5)" napnfy = S HZ°
My = (705" + 977 (85) ) napdr®) = S R

and can be easily seen by the expressions above that this set of Christoffel symbols have the correct
commutative limit. Choosing another hermitian elements for ¢ satisfying the symmetry of indices,
one could find another Levi-Civita connection. We will use 6 = 0 in order to calculate the Ricci
Scalar. As a last consideration, if one wants to use the opposite algebra to define the connection

for the left module of X'(C) the natural way of doing it is just defining the left connection as
. l
(vaax) - {(a X +rdbxb) %} : (3.74)

with the right analogue being all connections we defined before belonging to the opposite algebra.
We can also define the symmetric connection over A€, seeing it as an left module, following the

same procedure we employed to construct the symmetric hermitian form ¢°

V5, X = %(vgﬂ +Vh, )X

Additionally we can generalize the usual definition of the Laplace-Beltrami operator for a Levi-
Civita connection A(F) = |g\_1/28u<|g|1/2g“”8,,F) by using |g|= ¢31 for the non-commutative
case and applying the symmetric mapping to the metric. This must be done because when we define
the Laplacian one should raise the index in one of the covariant derivatives, and in order to fulfill

our construction of the dual moduli for differential forms, it must act from the left instead, making
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necessary the use of right and left algebra simultaneously to guarantee the correct transformation

property of the resulting Laplacian. This can be translated as
A(F) := 8, (gabab(F)) : (3.75)

for F € Cr , g = (gap) ™! the inverse metric constructed in (3.47) and a,b being the coordinates
R and T. Now we apply the symmetric mapping to the inverse metric following the procedure we

did for g*

1 1
(s<g*1(<I>R, @R)) = pROR=5RR,

ko(h)2 0 k(h)>2 (376)
S(gfl(cpT,qﬂ )) - 7@ 7= 7 AN

It is easy to see that the cross terms vanish since they are proportional to the identity and from the
commutator of the generators of g we get Or(OrF) = Or(OrF'). In order to differentiate elements

of C; we use the function © to define how to do it
94[(B @ O)F] := aA@((B ® C)F) - @(((aAB) ®C+B®(040)+B® caA)F) :

which implies that 94(B ® C) := (04B) ® C + B ® (04C) + (B ® C')04 when considering the
enveloping algebra as a left module with the map © to C;. Now we can explicitly calculate the
non-zero terms of (3.75)
1 .
Or (g—l(ch, @R)aRF) =5 (RZR’ OLF + (R + RT)(?RF) ,
10 (3.77)
Or (g—l(q>T,<1>T)aRF) = k(2227 hF .
0
With these tools we will prove the following theorem that relates the Laplacian in both ambient

and local coordinates, giving us the possibility of defining the integration over (Cj)® by using the

analogues of eigenfunctions of the surface.

Theorem 3.1. The non-commutative Laplacian defined in (3.75) acting on an arbitrary func-

tion F' € Cy, satisfies the following equation

M) = 0u(S(a70F)) ) = 35 ((p (X)X s 1) F (3.78)

for X* the ambient coordinates of the ncAdSs and 1, = diag(1,1,—1).

Proof: We will try to show that the Laplacian (3.75) constructed using the coordinates (3.2) can
be written as
l v\T thg 2
(X XYY 0 F = T(A(F) - ﬁF) . (3.79)
The proof for this claim will be provided in the following steps. First we directly calculate the

Laplacian using the metric elements, for instance, as said before the cross terms vanish since

O (g—l(<1>R, <I>T)8T(F)> +or (g—l(ch, <I>R)8R(F)) = F[T,R] + [R,T|F =0,
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which is expected since the derivatives commute. For the other terms we get
Or (971 (@, @™)0n(F)) = 7 on(RRTOR(F)) |

_ L
or (g7 (@7, @T)or(F)) = 7 ZOE).
Expanding this we get a messy expression that can be further simplified using (3.33)

2

h2

A(F) = —= [R[F TR, T}

= Z[[F, R, R}Z - —hlz<k2 (Z[F, R

1
—[F, R]Z) + R[F,T|RT — TRIF, T]R) =5 (k2 (ZFR —9F - RFZ)
+ (RFTRT — RTFRT — TRFTR + TRTFR)) :

reordering the symmetric terms of type RTF RT we obtain a simplification

1 1
> (RT + TR) F (RT + TR) -2 (RTFRT +TRFTR + RTFTR + TRFRT)
1 . 2
-2 (QRTFRT +9TRFTR + 2—71 (FTR - FRT)) — RTFRT + TRFTR + Q%F .
0 0
Substituting the above expression in the main one and multiplying the Laplacian by 2A2, we get
to the following
2W2A(F) = ~2k*(ZFR — RFZ) + 4k*F — 2(RFTRT + TRTFR)
2 (3.80)
+ (RT + TR)F(RT + TR) -a

One can also verify

()

(X — (XQ)Z(X2)T)F = @(ZFR — RFZ — 2F)
& (TRTFR + RFTRT)

and also

(XOYXO)F = ez(RTJrTR) F(RT +TR) .

If we use the fact that (X*)/(X*")",, F = ((XO) (XO) + (X (X1 — (X2)l(X2)’") F and dividing
the whole equation (3.80) by Z% we get

h2e2

SUAF) = (X)X + BL)F

which can be rearranged and yelds the final result

AE) = 5 (X)) + 1) (3.81)

This expression for the quantum Laplacian agrees with [4] where it is obtained by a different

approach. [

The previous step is of big importance in our work since it connects the two different

formalisms employed, one from my work defining the whole differential calculus over the ncAdS in
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order to construct an well suited Laplacian and the other formalism coming from [4] where they
use the construction that comes from the deformation of the Poisson structure of the Euclidean
AdS. Now that we have our first important theorem we will use the Levi-Civita connections for
both local and ambient coordinates to pursuit a natural following step that is to define a curvature
following the usual relations from the commutative differential geometry. We will start by giving
a simple definition to it and we will proceed calculating it until we find the Ricci Scalar for the

ncAdS,.

3.5 Non-commutative curvature

We will define the non-commutative curvature R : g2 x X (Cr) — X (Cp) as a right acting operator

using the Levi-Civita connection constructed in the last section. The expressions for the Riemann

curvature in ambient and local coordinates, respectively, and their components are
R(p, 0y)ea = (vuvy —V,V, - v[aﬂ,ay])ea = xR »

(3.82)
R(0a, 0p)®. = (Vo,Va, — Vo, Vo, ). = PsRE

cab »

the derivatives used belong to g and depend of the choice of coordinates, we also considered that
€, is the basis of TCj, coming from its Lie algebra properties and lastly ®. € X(éh) and a,b,c
and d being the coordinates R and T. Note that from the definition above it is easy to see that

R(0y,0v)eq = —R(0y,0y)eq and from the torsion free condition, we can show that

RO 0 )ea + RO, u)er + R(Oy; da)en = Vup([0: 0al) + Vi ([0a; Oul) + Vap ([0, 00]) =
Viow.o.1¢a = Vi9,.0.1¢u = Vioa.0,1¢0 = #([0u: (00, 9al]) + ([00: [0a 0,]]) + ¢ ([0as [0, 0]]) = 0,

where we used the Jacobi identity and the fact that e, = ¢(d,) from (3.15), leading us to the
conclusion that the first Bianchi identity holds for the non-commutative case. The last result
shows that In the first part of this section we will state some useful propositions in order to prove
the main result of this chapter. After we introduce all small results we will show that these two
constructions are equivalent. To start our endeavor we consider y(,)gx = 0 and we analyze the

curvature for the ambient coordinates showing that

1 ih 1
1 (éa + 2 ea)X# = e ey X, X,
7 2

1
Vhen = Vaeu = 7 (67 (Va) Xo + 4" €as 6, X, ) =
éo Z0

with this we can calculate separately each term of the Riemann curvature

1
VulViea) = 51 0776 s X0 X X X+ £ e (€7 Xo X+ €00 X, X )|
0
1
Vu(Vica) = 51 (076, e X0 Xy X Xa + By e (€0, X Xa + 00" X, X, )| 0 (3.83)
0
1

o
v[awal/]ea = ﬁeﬂl’pep’y G’YXUX(X 3
0
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and after some straightforward calculations we get to the following expression

1
R (D O0)ea = 71 {meﬁ (6" X X + € Xo X7 = €57 X, X, ) X + € (= X, X
0

+ Aol + e, P Xy X, X + megeu,fx,,) —e, (egxyxa el

(3.84)
+ihe, 7P Xo X, X0 + iﬁf%ew”Xa) + ihé% (euﬁaeﬁXgnm — e,,ﬁ"engnlm
+ eyuaeaXonua>:| 5
which can be further simplified to
1 1 h? 1 h?
RO, 0)ea = — <ey (mm + = Xo X, + TXNXQ) —e, (nm + 2 Xo X, + —4X1,Xa>) :
G 6% t & £

and using the definition of g(e,,e,) from the proposition (3.7) we find that the curvature has the

following form

1 1
R(éﬂa ay)ea = 7672 (eug(eua eoz) - 6ug(€#a ea)) = ?(eug,ua - e,ugua) ; (385)
0 0

in order to write it as (3.82) we use the fact that e, = eyP*, which allows us to rewrite the
expression

exR oy = Elge)\ (P/\Vg,uoz - P)\;Lgl/a) )
and upon setting Ryaur = g(ep, R(Oyu, 0v)eq) we get to the expression

1
Rpozuu = %(gpugua - gpugua) ) (386)

which is the non-commutative analogue of the Riemann curvature tensor, keeping the same symme-

t42. Now we turn our attention to the curvature

tries and structure of the commutative counterpar
tensor calculated in the local coordinates. Since the generators of the Lie algebra for local coor-
dinates commutes with each other the term Vg, 5,] Will be zero and the curvature will take the
simpler form seen in (3.82). Now we proceed to calculate all non-zero terms of the non-commutative

right acting Riemann tensor R%.,;, using
Va(Vade) = Va (@c5,) = ba(0uT5 + TLIE,) |
Vil(Vade) = Vi (@eT5. ) = da (0478 + TTE) |
where we impose that (). = 0 for all combinations of a,b and c clearly satisfying the symmetry

constraint for this set of indices. Now by direct inspection we find the non-zero elements
h2
R?TR = _R¥RT =R’ (1 - 72) )
205
thl /1
Ritrr = —Rirr = K(i + k(h)Q) )

. (3.87)
ih1 1
Rinr = ~Rfrn =5~ 5 +HH?) .
52
T _ _pT  _ 52 2 h
Rbrr = ~Rhrr = 22k (1+ %g) .

42We use the program constructed in the appendix (A.1) to explicitly calculate each of the 81 terms of this tensor

in order to verify these properties. The full construction can be found in the github file provided there.
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Now that we have the whole set of ingredients that will be needed to prove the main theorem of

this section, we state it below.

Theorem 3.2. The non-commutative Ricct scalar will be denoted as R and can be calculated

for the ambient and local coordinates, respectively, using the following expressions
R = g”p (Rpoz;U/)gaV = ,R'papvgow )
R := gab (Rcacb> )
yielding the same result for the non-commutative Ricci scalar R = — (e% + %f) 1 showing that the
0 0

curvature scalar receive a non-commutative correction for these specific ordering choices.

Proof: To prove this result we already have the most important tools calculated, we just need
to explicit calculate the Ricci scalar from the definitions above. We start calculating it for the

ambient coordinates
1 np av 1 L v ”w v “w av
R = 6*29 (gpugmx - gp#gua)g = ?Q(P A N ) =R g™
0 0

to progress in the demonstration we must use that the trace P“, is 2 from the definition of P,,

and using P*,P,” = P*"P,, we simplify the expression above finding that

1 o1 ) 1 1 1 V
R:%(ﬂu (n” F XX )(n/LV+—XMX,,)) - %(76+6ﬁ+—XHX X,LXV> ,

£ &
3 1 VB L b pp 2 ih
=—pl+ @<X XU e X, ) X, X, = @l XXX

using e’ X, X, X, = —ihX"X, = ihl31 we can finnaly calculate the non-commutative Ricci
scalar for the ambient coordinates

2 h?

R=—-——51-—+1
G b

Now we calculate the Ricci scalar for the local coordinates. Using (3.47) and (3.87) we get to the
following

R = gRRRCRcR + gRTRCRcT + gTRRCTcR + gTTRCTcT >

by direct inspection it is easy to show that for the ambient coordinates we also have that

2 h?

:——IL——
k=gl a

1,

this result is expected since in [44] the author obtain an non-commutative correction for the Ricci
scalar of the fuzzy sphere, when analysing the ncAdS; we see that there are a lot of similarities
between these two non-commutative spaces and this is seen in the fact that we get also a non-

commutative correction here. [J

Using the opposite algebra we could define the analogue left acting Differential geometry,

doing the same calculations it is not hard to show that the Ricci scalar for the left-module structure
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is
1 h?
ha—f@——ﬁ.
ARG
Introducing the enveloping algebra structure and the symmetric mapping from (3.44) we find that

the symmetric Ricci Scalar doesn’t receive any non-commutative correction

2

R® = %S(RlJrRT) :3(7%

1@1)

which is the result we would obtain if we used the metric g° to calculate R. We can also note
that, for the local coordinates, if we change ordering we use to define the Ricci scalar, for instance
R = g*® (Rcacb> the Ricci scalar for this specific ordering doesn’t receive a non-commutative
correction, implying that in the construction of our mathematical structure over the ambient
coordinates we could define these objects in such a way that they relate to the symmetric map
construction without the use of the left module structure. At first glance this result could sound
strange, but it is a well known fact that when calculating the non-commutative scalar curvature
one expect to find non-unique results that depends on the choice of ordering in the definition of
the geometrical objects used (see [51]), and since these ambiguites are expected to arise, our work
is successful in explaining what is the correct ordering prescription in order to remove the non-
commutative correction found in the result for the local coordinates. For the ambient coordinates
we analyse the result obtained in [49] for a pseudo-Riemannian calculi, as defined in the paper
itself, we conclude that the non-uniqueness of the Ricci scalar is a direct consequence of the fact
that we haven’t restricted our definitions to the real case, as is done in [49]. In addition to this,
we also must find an pseudo-inverse metric §*° of g4 such that, for a Hermitian element H € Cp,
this inverse metric satisfies §*°gp. = g5%® = 62H, and following this definition, it is not hard to

prove that the unique scalar curvature R is obtained from the following equation
R = H—lgpuRpaul’gavH—l .

We will not find this pseudo-inverse in my thesis, but I intend to further investigate the existence of
it in future developments from our current work. In the next section we proceed in our construction
of the Riemmanian geometry of the ncAdSs by defining the Killing vector fields for the metric we
found and used so far. In conclusion, we demonstrate that the Killing vector fields in our formalism
are related to those in references [4], [6], [7], and [48]. The underlying Lie algebra symmetry is

crucial in connecting these two seemingly different approaches.

3.6 Killing Vector Fields

A natural first step in the construction of a non-commutative Killing vector field is the definition

of a Lie derivative written with respect to the local coordinates. From now on, we will perform
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all calculations for the left-acting Killing vector field, utilizing the suitable left-module structure
employed earlier. Similarly, one can perform the same calculations analogously for the right-acting

Killing vector field.

Definition 3.7. Let T be a non-commutative left-tensor field over the algebra Cp, we define the
ar - an
non-commutative Lie derivative operator for the local coordinates (R, T, Z) as (ﬁg?c)T) '
1 b

as the symmetrization of the left and right acting Lie derivatives
1
£0(T) 1= 5 (£7(T) + £1(T))

where we follow the usual left/right distinction and use the The left(right) Lie derivative defined

below

ex (T ) = X (0T ) = 0X T

(3.88)

c

—(OeX )T Ty + (O, XTI 0 4+ (O, X T 0

for X = X°0, an general element of the left g-module.

Applying the Lie derivative defined above to the metric written with respect to the local coordinates

yields the non-commutative Killing equation L£x (gl“,) = 0 that can be explicitly written as

X (0u9(@1, ) ) + (X" 9(@a, @) + (9:X") 9(@1, @) = 0. (3.89)

for the left Killing vector field satisfying K = X®0g 4+ X7 0. Now we state the following theorem

about Killing vectors

Theorem 3.3. The symmetric map applied to the solution of the Killing vector field equation
(8.89) satisfies the following relation

K(F) = =X, F)

or F € Ch, K, the Kzllmg vector eld and X, = XV v the ambient coordinates for the metric
N o um
Nuv = dlag(]., ]., —1)

Proof: Our objective is to find the elements X and X7 of K = X®0r + X7 0r, we start solving
(3.89) makingb=c=R

X(0,9(®r, @) + (90X ) 9(Pa, ) + (90X 9( @1, ®0) = 0,

which gives as result the equation X®Z = 9z X%, now we add the equations for the cross terms
a#b
X(0a9(@n, 1)) + (00X (@, &r) + (9rX?) (@, ®0) =0 ,

X (aag(‘bT,‘I’R)> + (5TXG)9(‘I’a, r) + (8RXG)9(‘I>T,<I)a) =0,
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to get to the second equation dr X7 R? + k207 XFZ? = 0 and lastly for a = b = T we find the

third equation for our system
X (5(19(‘1’7"7‘1%)) + (aTXa>g(q)aa(I)T) + <5TXG)9((I’T,@a) =0,
giving as result X 4+ 97 X7 R = 0.Now in order to solve the following system of equations
Xtz —orxf=0,
OrXTR? + K*orX"Z% =0,
XP+0rX"R=0,

we can use the ansatz coming from the commutative case, we will show that the following operators

satisfy the set of equations

XEB=R+2TR,
(3.90)
XT =T+ k*2%2-7T7.

First we apply the ansatz for X in the first equation, which gives
OprXB=142T=(R+2TR)Z = X"Z ,
clearly satisfying it. For the second equation we calculate separately the following terms
OrXT = —2k273 |
orX® =2R,

now we apply these results to the second equation of the system to get
OrXTR? = 2k*Z = —(2k*R)Z? = —K*0r X1 7*

which satisfies the second equation of the system. The last equation is easily satisfied as can be

seen by taking the derivative
(0rXT)R=—(1+2T)R=—(R+2TR) = - X .

We can do solve the right acting Killing vector equation by using the adjoint of the ansatz above.
Now we join both the left and right parts getting as result a candidate for non-commutative Killing
vector field

K™ = xR, + XTor | (3.91)

with X and X7 expressed as

XFR :% [(Rl + RT) + 2(TlRl + TTRT)} 7
) (3.92)

X7 — _ 5 [(Tr +Tl) 2 ((Zz)l i (ZQ)T) 4 ((TZ)Z i (Tz)rﬂ .

Now, as the last step, we must verify if K transforms correctly with the choice of ordering for the

quadratic terms. It is easy to see if we act (multiply as an element of C§) K over some element
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A € Cp, without considering the symmetric map the manipulation of the terms will give raise to
2

an additional term proportional to —%(83 — 0%)A and it will cause K to not transform correctly.

To avoid this we apply the symmetric map S over X7 and X% getting the final form for the

non-commutative Killing vector field

X" :% {(Rl +R) +2(T'R +T’“R’”)] ,

) (3.93)
XT = — 5 [(T + Tl> —2k27'7" + 2TZTT] .
Now we introduce a new set of operators K = K + K7 + K5 defined as
1 [ l r T l
Ko =5 (R +R )aR— (T +T)6T ;
) -
Ky =3 (TR + 17 R ) o + (W22'27 — 177" + 11)8T] , (3.94)
1 ; R . .
K2 25 (TlRl +T7R7)6R + (kZZlZT _ TTTl _ ]1)6T:| ,

and upon acting them over a function F'(R,T) = F we find that, for Kj as an simple example

K\ (F) = % (R[F, T) + [F,T|R + T[F, R + [F, R]T) :
- %([F TR+ RT]) - —%[F, X -

The same calculation can be done for K5 and K3 and they will therefore lead us to the conclusion
that, in fact, the Killing vectors found by our formalism are directly associated with the ones found

in [4] using the quantization of the Poisson algebraic structure, namely

Ku(F) =~ [F,X,] (3.95)

which is the result we intended to prove. [

If we remember that the map defined in (3.15) uses the Lie algebra underlying the symmetry of the
ncAdSs, the expression obtained above can be interpreted as the direct consequence of fact that
Killing vector fields are the manifestation of symmetries in the context of the non-commutative
surfaces. With this result could also try to verify the non-commutative AdS/CFT correspondence
for the massive and interacting case writing the desired action with respect to the local coordinates
since we have an exact form for the Killing vector fields. In the next section we will finish our
analysis of the geometry of the ncAdS, as a quantum surface finding a way to integrate functions
defined over it using the non-commutative eigenfunctions that we will define, we will also show
that it is possible to decompose the functions over ncAdSs as linear combinations of this kind of

eigenfunctions.
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3.7 Euclidean AdS; surface eigenfunctions and non-commutative inte-

gration

In this section I try to construct a well defined way of integrating functions over the quantum
AdSs following a simmilar path as found in [48], we will define functional that should map the
zeroth term of the formal power expansion of the functions F in Cj as a linear combination of
non-commutative eigenfunctions. As a starting point, one could try to solve the action for the

commutative Laplacian in a arbitrary function defined on EAdS,

Afr1) = Z=0k(o7v5 0,10)) = o[ (Pous ) + 25210

2 (3.96)
% o 2r 942
Af(r,t) = %arf(h )+ E&«f(ﬂ t)+ (rlo) 0, f(r,1)
where we used that
. 1 (2 0
g — 62 )
TR 0 r2) Vo=t
we can assume that the solution for the equation Af(r,t) = 0 have the form
f(r,t) =r*R(r")T(t) , (3.97)

for arbitrary a and 8 we could impose some restrictions to these coeflicients in order to find a
simple solution. Setting them to a« = 0 and 8 = —1 we find a simple set of solutions for the
separeted ODE’s. For the coordinate ¢t we get as a solution the superposition of all plane waves
for the parameter A\? > 0, showing explicitly the translation invariance in the t direction
flrt) = i/ Ry (1) edX (3.98)
2m IR r
with RA(%) being the solution in ”momentum” space. Solving for Ry (%) one can get to the

following

1 1 1
r*RY () +2r3 R}, () — A?Ry, <) =0 = Rx(r) =a,cosh ()\) + iby sinh <A>, (3.99)
r r T r r

to have well behaved solutions in the limits » — 0 and r — co we must impose some conditions in
the constants ay and by. If we define

ay + iby

Q) = 2 )

it is easy to see that the general solution for Af(r,t) is of the type

frt)=A (i + it) +B (1 —~ z’t) (3.100)

r

with A(€) and B(¢*) for £ = 1 + it and
A(6) = %/]Roo\exp [A(iﬂ't)] X

BE) = o /R of exp {A(iitﬂ N (3.101)



One can also verify that the solution to the Laplacian (3.96) is (3.97) if one rewrites it as
00 f(§,€7) =0 = [f(§,€") = A§) + B(£) .

Now we introduce the total integral of a function F(r,t) on EAdSs with respect to the induced

e’ [e’e) [e’e) 62 1 .
I(F) = / / / 2—OFA () eMNadrdt . (3.102)
0 —o0 J —o0 ™ r

We say that a function F(r,t) is integrable if I(F') exists, where we used (3.97) to write F(r,t) as

metric g;; as

an integral. Now we turn our attention to the non-commutative case and prove the last theorem

of this thesis.

Theorem 3.4. A function F(R,T) € Cy, will be called integrable over the ncAdSs if F(R,T) can
be written as F(R,T) = FL(R,T) + F_(R,T) for
keg

. 12} R .
&4 iNTN [ £ + R iAT
B@D = fee(= ) (Tpr) eelx7)2
2@0

s

for some real parameter \, k* = k(h)? =1+ % and £+ being some complex coefficients.

Proof: First we will assume that the solution can be expressed as a superposition of the analogues
of plane waves in the quantum surface by defining the non-commutative Fourier transform as

follows

F(R,T) = % /IR T (TYRA(R) T (T)dA (3.103)

for some real parameter A and for 7(T') = exp(iAT/2). Now we start solving the non-commutative

Laplace equation

A(F(R,T)) = %(aR (Ron(F)R) + kQZa%(F)Z> , (3.104)
to simplify the expression above we must use the following properties
RT\ = ToR+ 1 0n(T3) = T (R = 51} |
ZT =Tz +12,T] =Tz (1 - %Z)il :
where the last step can be calculated using [Z, T,] = —%Z@T(TA)Z = %ZﬂZ. Organizing these

terms we rewrite the non-commutative Laplacian as

I

On (RBR(F)R) = T20r ((R S0

]l)aR(R)\)<R+§2)]l)>7-A :

where the exponents in 7, could be moved to the outer parts of the expression since they commute
with the derivative with respect to R. One can note that the inner terms are all R dependent we
then could merge the inner terms of this expression to get

h2\2
102

On (R@R(F)R) - ﬂaR<(R2 - 1)83(72,0)7} . (3.105)
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For the other term we use the remaining properties

h2\2
102

-1
ZR(F)Z = —k2>\271(1 - 22) RaTh -

By taking A(F(R7 T)) = 0 the radial equation becomes

d o h2A\? / 9v9 R2NZ o\ 1
— ——1 — Z|11— Z ZRy = Nl
(- ) eva(s ) o,
and after some manipulations*? we finally get to
d S D LA k222
i (=5 )m) ~ o 0 0
0

If one look carefully, the equation above resembles the general Legendre equation for the commu-
tative case. We write it below

(1—22)y" — 2z + (v +1) - Ny~ 0 (3.108)
%)y xy v(v T2 )V = .

and its solution can be expressed in terms of the hypergeometric function for |1 — z|< 2

P!(z) =

1 (1+z
F1—p)\1—=2

For the case when v = 0 the hypergeometric function becomes 1 and the legendre equation yelds

n/2 1—
) 2F1(—V,V+1;1—u; Tz) (3.109)

eight different solutions. If we extend this analysis to the non-commutative case, we must choose
the solution that have the correct commutative limit and as done in [48] which gives as a final

result

Pt (z) = ﬁ(g) . (3.110)

In order to show this using another approach, we will solve the equation (3.107) directly as we did

in the commutative case. First consider the EDO

(@ = @) - gvl@) = 0

now we do a change of variables and apply the same strategy used in (3.96) to achieve the solution

b b
y(x) = Cy cosh (f tanh ™" (f) ) + iCy sinh (7 tanh™* (£> ) . (3.111)
a a a a
Using the logarithm form of the inverse hyperbolic tangent function as tanh™!(z) = %ln (}f—i)

and expressing £ = % we get to the following

y(x)§<a+w>2’z+§* <‘”) , (3.112)

a—x a+x

for some coefficients £ and £*, we can also apply the solution written above to (3.107) because

all the functions and steps used in solving the EDO are well defined in our setting and by simply

43The inversion of the terms is well defined because we constructed the whole field of fractions and functions

with inverses in the previous section and it guarantee the existence of an inverse term.
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taking x = R, b = £kX and a = :I:% where the choice of sign is related to the sign of A one get

two distinct solutions that have the form

keg
hX 2
i%+R>

(3.113)
i% - R

Raa(R) =&+ (

where &1 are the respective coefficients obtained from the manipulations of ¢ and £* in (3.112) .

Now we can write the full solution for F(R,T)

F(R,T)=Fy(R,T) + F_(R,T), (3.114)
for e
0
_ A+ R\ ",
Fy(RT) = / eHIM/Z | 2 ) ENT/2g) (3.115)
™ JR :l:% - R

This final solution resembles the commutative one and is equal to the solution found in [48]. With
this last construction we finish our construction of the Riemannian geometry of the quantum AdSs
adding to its analysis a wide range of tools that will help us to formalize some results obtained
in [4], [6], [7], [18] and [48] justifying why some steps of these papers following a more rigorous
approach. In the next chapter, we will discuss potential future developments that could arise from

the results obtained in this thesis, presented in a simple and non rigorous manner.
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4 Future developments from this work

This chapter provides a final disccussion on the possible topics one could try to analyse using the
techniques and tools provided by our work on the geometry of quantum surfaces. We expose a
concrete and solid method for the study of the main properties of the AdSs as a quantum surface
and we think that this can be extrapolated to other surfaces as the Fuzzy sphere (see [43], [44],
[45] for some examples of applications) and to the study of field equations and field theories over
these surfaces. We start by discussing the possibility of expanding our analysis to an analogue of
the Einstein-Hilbert equation, exposing some questions about the well definiteness of the integral,
the choice for some of the objects in the integral and the meaning of the result obtained in our
setting. If we achieve a consistent definition for the non-commutative analogue of the Einstein-
Hilbert action we could also consider the possibility of applying it in the construction of the
Jackiw-Teitelboim gravity upon assuming that the scalar field considered is a non-commutative
one, and if we follow the steps we took in order to calculate the fields for the non-commutative
AdS3/CFTy correspondence, as shown in the chapter 2, we could verify if the non-commutative
field equations have some additional properties or quantum corrections. After we also discuss the
application of the framework constructed in this thesis to the case of a spinor field, we do this in
unrigorously but from this discussion we will observe a lot of details that we could explore in other

papers in the future.

4.1 Einstein-Hilbert Action

We could try to define a non-commutative analogue for the Einstein-Hilbert action Sgp using
the commutative analogue as an educated guess and for this we will define all its constituents
individually. Firstly consider the determinant of an non-commutative metric. There is no unique-
way of defining what is an suitable non-commutative determinant and simultaneously guarantee
that it obeys all laws regarding determinants of commuting variables. As our candidate consider

the definition below for the non-commutative left acting determinant, for A € GL(Cy, n)
! 1 :
det'(A) = —€iy i€ . jnSym( 11 aim) ; (4.1)
’ k=1
where a;; are the matrix elements of A and the Sym operation is defined by
1 n
Sym(As ... Ay) = = 3 Perm(A;... 4, ) |
k=1

and can be understood as the sum of all permutations over the generators producing all A; elements.

The determinant defined above doesn’t obey the usual rule det(AB) = det(A)det(B), but it obey
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an slightly different version of this property
Sym (det(AB)) [F] = Sym (det(A)det(B)) (], (4.2)

for F' some element of C; and the square bracket means that the action over F' is done after the
permutation. We should take into account two aspects of this definition, the first one is that as
we will be using the determinant inside a continuous function and this function will be inside a
trace that will make the role of a non-commutative integration we expect that the symmetrization
and other ordering problems regarding to action elements will not be so annoying. The second
aspect is that the non-commutative entrys of our metric are all R-dependent, so we could treat it
commutatively without much to concern, but as we want to give a rigorous prescription for other

types of surfaces we will consider the general case instead.

Our square-root function would obey the properties below for A, B € C;, and a € C

(i) VaAB = VavAVB
(i) VAVA= A, (4.3)

d 1 -1

) ()= 1)

using the definition for the derivative of the inverse function constructed in [1] one can calculate
the derivatives of the square-root up to an arbitrary order and define a suitable formal Taylor
series expansion. With all of this we will define the Einstein-Hilbert Action for the quantum AdSs

as follows
4

c
167G

Spr = Tr[(R - 2A) detl(gs)] , (4.4)

We can also consider another strategy to verify what is the non-commutative analogue of the field
equations, if we construct a non-commutative contracted Bianchi identity, using the first identity
we obtained when we defined the non-commutative curvature tensor, we could explore a rigorous

way to make the following contraction
ViR vap +ViRag — VaRup =0,

following the fact that, for a pseudo-Riemannian real calculus over ncAdSs, one would expect the
scalar curvature R to be Hermitian (see [49]), we can extrapolate from the equation above and
attempt to find the non-commutative Einstein tensor arising from the modified contracted identity.
Several questions emerge: Should the trace here have the same structure as the one defined in the
Arlind paper? Should we construct it directly from the eigenfunctions? Since, within the trace,
we can swap the order of elements in our non-commutative algebra while varying the action, the
ordering will be ignored. Another crucial question is: What is the interpretation of the surface
elements of this integral in the non-commutative setting? If we aim to derive the non-commutative

Einstein field equations from this action, we must first address these questions. Furthermore, we
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intend to apply this formalism to Jackiw-Teitelboim gravity, a solvable model for quantum black
holes that is well understood in the commutative case, as seen in [50]. This model should be the

natural next step to verify the consistency of the framework developed in my thesis.

4.2 The Spin connection and the Dirac operator

As a naive tentative I will try to define not too rigorously the volume form**, the spin connection
and the Dirac operator in the quantum AdS>. We start by denoting as T(g) = @, T*g for
Tkg = ®f:1 g being the k-th tensor power of the algebra g seen as a vector field over Cr spanned
by the derivations 0r and dr. We introduce the exterior algebra by considering the two sided ideal

Zr defined by the following relation
aRb+bRa+a®@a+b@b—(a+b)®(a+b),

for a and b € g. Now we define the exterior algebra®® A(g)

A(g) =T(9)/Ir .

With these definitions we introduce the exterior derivative d of elements F € éh

dF = f—%([F T)dR — [F, R]dT) : (4.5)

for dR,dT € A'(g) the space of 1-forms over g satisfying the duality condition dI(d;) = d7; with

the indices I, J being the coordinates R and T. Now we rewrite the metric g(®,, ®;) as
2 2 p—2 ihto 2 p2
g = 2k(h)*R™2dR © dR + T(dT@dR-dR@dT) + (2R*dT  dT .
Now consider the bi-linear form h : A'(g) x A'(g) — Cr defined as

habea(Q5dX", Z9dX7) = (Q5)*Efdca, (4.6)

for Q, = € A'(g), a and b being the indices in A'(g). Now we introduce the non-commutative dual
basis {©%} satisfying
0" = E%dX° (4.7)

441 know that there is a formalization of this construction following the universal calculus discussed in the chapter
6 of [8], but in these sections I'm trying to follow closely the formalism introduced in [1-3] and see if we can generalize

some steps that are well known from commutative Riemannian geometry.
45We can also define the product A induced by the tensor product ® satisfying the following relation for the

canonical surjection m : T'(g) — A(g)

aNb=7(zQvy),

for a,b € A(g), =,y € T(g) and 7(x) = a and 7(y) = b. This will be the usual exterior product.
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for ¢ being the coordinates R and T and Ef € Cp, the non-commutative vielbein. We proceed to

construct the vielbeins by using the following relation

9(®Pas ®p) = gab = habea(0°,0%) = (ES)*Effdca , (4.8)
which gives the following system of equations
(5k(h)*R™2 = |ER*+|ER|* ,
GR? = |Ep [P+ BT
M — (Bh) B+ (B3 B )
0 (Bhy B+ (BB

The solution for the system above is then given by

Er=0(R*', FEFi=—_—R', EL=0, E.Z=(R. (4.10)

2

We can also verify the converse, for el the inverse of EX

gab(€2) el = beq (4.11)
which gives
R th R!
elR:% s 6520, 6{:—%R 1 5 eg:w (4.12)

Now we can construct explicitly the dual basis

©! = ELdR + E}dT = (,bR™'dR ,
i (4.13)
0% = E%dR + E2dT = ER‘ldR + o RdT .

which satisfies

9ijdX" @ dX7 = §,,(0)* @ 6" . (4.14)

Now we introduce the set of gamma matrices {y*} that satisfies the twisted anti-commutator

defined below
V%A = () +1° () =291 (4.15)

where they should be explicitly*®

R R~ [ ik
R _ T__ 2 (s 4.1
Y 01, Y A (%001 02) s ( 6)

these matrices satisfies the following commutation relations

%
WA =0T =0, WA =R = [203 (4.17)
0

460ne can directly verify (2.72) for these gamma matrices. The conjugation in the definition of the anti-

commutator is needed to guarantee the correct anti-commutation relations.

91



for [y, %] := v%y® — 44, Since we are considering the Euclidean case we can obtain the local
gamma matrices 4 which are transformed by the vielbein fields £'. These gamma matrices satisfy

[4%,49]+ = 26" 1 and can be explicitly constructed as

A =% =B+ Epy’ =01,

(4.18)
=42 = Epy + Efn" =0y
We proceed to calculate the vielbein one-form
¢ = eudX® = 0, EidX = (olE]l% + UQE;) dR + (alE; + UQE%)dT ,
ih (4.19)
e = goR_l (01 + %02) dR + ¢y RoodT .
0
Calculating the exterior derivative of the vielbein one-form we obtain
de = Eodng ANdT . (420)
Now we apply the no-torsion condition to find the spin connection one-form w = w,dX*®
de+wAhet+eAw=0,
(4.21)

looadR N AT = ([wT, er) + [eT,wR])dR ANdT

Since de depends on o5 and the right hand side of the equation above depends on the commutators

with eg and ep, this implies that

hR™! R

Now we find a candidate for the Dirac Operator

D =~(0; +w;) = y*(0r + wr) + 77 (0r +wr) ,

R 1 ih 1 ih (4.23)
D=|= — — —R! — Rt —

<£063+2£O Q%R 8T>01+(ZOR 8T+4£(2)>02

As a next step, we must verify the consistency of the Dirac operator obtained above
and find a proper chirality operator that commutes with it. There are numerous details and
definitions that need to be provided to make the construction rigorous. However, before delving
into these details, we should address certain questions. For example, why do we obtain a twisted
anticommutator relation? We suspect that this arises because our metric is not only symmetric
but also Hermitian. Would this issue persist if we consider using the metric g,? Utilizing g; would
clearly add an overall scale factor to some terms of the dual basis, but it would significantly simplify
our calculations. The final point to consider is whether the properly defined Dirac operator would
agree with the operator found in [4], for example. By comparing with their approach, we can verify
the consistency of the prescription applied above. These are some ideas and results that I might

pursue in future papers, expanding on the findings of this thesis.
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5 Conclusion

As discussed in the introduction of this thesis, the primary goal of this research is to explore an
alternative approach to constructing the geometric properties of the ncAdSs as a quantum surface.
This involves analyzing its commutative limit, symmetries, and other attributes that could shed
light on the results obtained through deformation quantization and various perturbative methods.
During the development of the mathematical framework necessary for this endeavor, we applied
the methods from [1], [2], [43], [49] to the ncAdS; and extended our investigation to include
structures such as Killing vector fields and potential non-commutative eigenfunctions. In recent
years, numerous topological and geometric aspects of quantum surfaces have been studied, with
some properties of classical surfaces being either generalized or not to the non-commutative setting
using advanced analytical tools from pseudo-Riemannian calculus (e.g., [49]). Several papers ([52]
- [55]) have calculated the scalar curvature for certain non-commutative surfaces, defining it as
a specific term in the asymptotic expansion of the heat kernel, similar to classical Riemannian
geometry. However, these works typically start with a spectral triple, where the metric is implicitly
defined by the Dirac operator. This approach does not clarify whether a bilinear form representing
the metric corresponding to the Dirac operator exists, nor does it address the existence of structures

like the Levi-Civita connection.

Given this context, a simpler approach becomes appealing, one that defines a module
along with a bilinear form and develops the necessary conditions to make this framework both
well-defined and comprehensible. While the existence of a Levi-Civita connection is not always
assured in this setup, the original authors have established the conditions for its uniqueness, as
well as for the existence of curvature and the Ricci scalar. Utilizing this framework, I constructed a
suitably structured module over a non-commutative unital algebra that could represent the ncAdSs

and examined the geometric aspects of this surface.

Using the metric found and applying the pseudo-Riemannian formalism to our case I found
the Levi-Civita connection, which is non-unique in our setting, and without loss of generality, we
choose the simpler one where we set the respective coefficients v(4)u, and o(q);; equal to zero,

giving the following non-commutative Christoffel symbols as result

1 1 ih
[, = =PPA(9,Py,) = —~ (eaf"’nay - %XPXQXV> ,
2 2 7

Lo = 9" (93) Napday -
Using the metric we defined we determined the correct braiding function that would have to be

imposed over the ordering of elements of the metric in order to have objects that transform correctly

for our case. This is a well known fact, that some ambiguites arise in the ordering implied and
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one should set a suitable braiding function in order to remove some of these ambiguities. In our
case, the chosen function was the symmetric mapping defined in (3.44) and when applied to our
calculations it gives as consequence results that agree with the ones found in [4], [7] and [48]. One
of this results is proven in the theorem (3.1) which shows that the non-commutative Laplacian
satisfies the following equation

AE) = 0u((a0uF)) ) = 35 (p (X)) s+ 1)

Subsequently, I focused on the curvature and the Ricci scalar. Utilizing the developed
framework, we proved the first Bianchi identity and established several symmetry properties of the
Riemann tensor. We derived a closed form for the tensor, demonstrating that when expressed in a
specific basis, it retains the form of the commutative Riemann tensor in the ambient coordinates.
This result was also extended to local coordinates. Based on these findings, we defined the Ricci
scalar with a particular ordering and discovered that by altering this ordering, we could avoid
introducing any non-commutative corrections

2
R = —2% (2 - Z%) .
As can be found in [44], the author defined the Ricci scalar in such a way that it showed non-
commutative corrections up to the fourth power of the non-commutative parameter. This suggests
that similar corrections might be expected in our case. However, we also found that applying the
same construction to the right module structure and symmetrizing it yields a Ricci scalar that
matches its commutative counterpart, as one can see below

R=3(R+R) =g (Rhua) = —S(12 1)

This indicates that an appropriate ordering prescription can be applied to the Ricci scalar, as
defined with respect to the ambient coordinates, to eliminate these corrections. Moreover, by
altering the ordering of indices in the definition of the Ricci scalar in local coordinates, we obtained
a scalar devoid of non-commutative corrections. These ambiguities arise from the fact that we
haven’t constructed a real pseudo-Riemannian calculus on the ncAdS surface, leading to some
results being unclear. This issue will be addressed in future work, as outlined in the concluding

section of this thesis.

Building on the possibilities introduced by applying the framework developed in this thesis
to classical geometric objects, we sought to define a Killing vector field using the previously defined
metric. By employing the symmetric map, we demonstrated that the Killing vector field, which
solves the Killing equation (3.89), is equivalent to the traditional construction that relates the

action of classical Killing vectors to the Poisson bracket with respect to the ambient coordinates.
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In the non-commutative setting, this yields the expression:

Ku(F) = 2 [F X,

This result represents an advancement over previous findings, such as those in [18], as it explicitly
describes the Killing vectors with respect to local non-commutative coordinates. This explicit
formulation enables the determination of additional related objects and opens up new avenues for
exploration. As a further demonstration of the efficacy of this formalism, we utilized the Laplacian
constructed earlier to identify the non-commutative functions that solve the homogeneous case.
These functions were associated with non-commutative eigenfunctions, which can be employed to

integrate functions over the ncAdSs

kLg kg
A = RA -
F(R,T) = fi/ oAT/2 20y +R) " eAT/2g\ + f;/ o IAT/2 20, T R\ " e~ IAT/24)
’ 21 JR % - R 27 IR _% - R

In conclusion, the developments and discoveries presented in this thesis provide a founda-
tion for investigating how classical gauge and field theories behave over non-commutative surfaces.
Additionally, they offer insights into potential non-commutative corrections that could arise from

the application of this specific mathematical framework.
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Appendix

A Non-commutative Calculator

In this appendix, we explain how the non-commutative calculator works. The calculator was sent
together with the main text of this thesis to the evaluation committee, it will be made avaliable
on github as soon as all intended updates are applied to the main program. We also discuss how
to configure it for use on your PC. When performing extensive calculations in non-commutative
algebraic settings, small mistakes in manipulations can turn a simple commutative calculation into
a complex and error-prone task. To address this, I have initiated the development of a program
with a specific data structure that will enable the use of this tool for calculations involving algebraic
elements, functions, and vectors being also possible to extend it to tensors. This will provide an

invaluable tool for verifying the accuracy of the results obtained.

We begin this appendix by explaining the main functions of this tool and how to set up
the algebra in the program, including the necessary information to ensure it works correctly. In the
second part, we describe how we used the calculator in this work, providing examples and presenting
additional results not explicitly included in this thesis. These results can be demonstrated directly

using the provided tool.

A.1 Data Structure and Useful Functions

The objective of the program is to explicitly calculate the steps of a calculation, perform necessary
simplifications, and save these steps in a LaTeX file. This file can then be copied into a user’s main
LaTeX document for further use. With this goal in mind, we begin by defining the main Algebra

(as a class) and introducing the fundamental elements of our data structure, the Monomial.

The elements of the Algebra class are the foundation of our data structure. We initialize
an algebra by setting its main attributes at the beginning of the program. Below, we outline the

most important attributes required for proper initialization:

e To initialize an Algebra, we need to specify the list of algebra elements. These elements,
represented as strings in a list, are the symbols that generate the algebra. We also need to

declare the dimension of the algebra.
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e If we want to define a module structure using copies of the algebra, we must declare the
signature. This is done by setting ALGEBRA.signature = [], where the list contains the

chosen signature for our algebra. In our case, we used the list [1, 1, -1].

e We must also define the pairs of inverse elements, if they exist, using the method definverses.
We have to set the commutation relations between generators of the algebra we declared
using the method set_commutation_relation. In this method, we have to input the order in
which we are calculating the commutator as the first entry. For example, if we want to
declare [T, Z], we must input "TZ" as the first entry. The second entry should be a list with
the elements of the monomial that is the result of the commutator. As a last step, we declare
the derivatives using the method set_derivative, where the first entry is the variable in which

the derivative is being calculated and the second entry is the resulting monomial.

As an example, we provide a fragment of the main Python file used in this thesis. Here
we declare the algebra of elements R, T, Z, W, z, y, z, where z, y, and z stand for X°, X! X2,

and T is the inverse of .

# Inicialization - Declaring elements, algebra, inverses and commutation relations.

elements = ["R", "T", "zZ", "w","x","y","z"

dimension = 3

algebra = Algebra(elements, dimension)

algebra.signature = [1,1,-1]

algebra.definverses("R", "Z")

algebra.definverses ("T", "W")

algebra.set_commutation_relation("TZ", monomial_to_list (Monomial("ZZ", 1, 1, -1, 1,

1)))
algebra.set_commutation_relation("RY", monomial_to_list (Monomial("ZZ", 1, 1, -1, 1,
1)))

algebra.set_commutation_relation("WR", monomial_to_list (Monomial ("WW", 1, 1, -1,
-1, 1)))

algebra.set_commutation_relation("WZ", monomial_to_list(Monomial ("WZZW", 1, 1, -1,
-1, 1)))

algebra.set_commutation_relation("RT", monomial_to_list (Monomial("", 1, 1, -1, 1,
1))

algebra.set_commutation_relation("xy", monomial_to_list (Monomial("z", 1, 1, 0, -1,
1)))

algebra.set_commutation_relation("yz", monomial_to_list(Monomial("x", 1, 1, O, 1,
1)))

algebra.set_commutation_relation("zx", monomial_to_list (Monomial("y", 1, 1, 0, 1,
1))

algebra.set_derivative ("R", Monomial ("T", -1, -1, 1, 1, 1))

algebra.set_derivative("T", Monomial ("R", -1, -1, 1, -1, 1))

algebra.set_derivative("x", Monomial("x", -1, -1, 0, -1, 1))
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20 algebra.set_derivative("y", Monomial("y", -1, -1, 0, -1, 1))

21 algebra.set_derivative("x", Monomial("z", -1, -1, 0, 1, 1))

Now we outline how the calculations are made and the data structure we used to create this

calculator. A monomial is an element of the Monomial class and has the following attributes:

e The "words” associated with elements from the algebra are registered as a string and declared
as the first initialization parameter of a Monomial element. This is because we are working
with elements from a non-commutative algebra, and the string data type is non-commutative
by definition. Each letter of a word is taken from the set of generators of the algebra associated
with the monomial. For an arbitrary monomial MONO, the command MONO.monomial refers

to the string associated with the generators of an algebra element.

e The second parameter required to initialize a Monomial element is the power of the imaginary
unit. In all calculations, this will be taken modulo 4, and its power needs to be set initially.
For an arbitrary monomial MONO, the power of the imaginary unit is referred to as MONO. im

and can yield any integer between 0 and 3.

e The third parameter required for the initialization of a monomial is the power of the A
constant. In the first version of the calculator, I defined the Monomial class using only A
and £ as the constants of our theory. This imposed a constraint if we wanted to track what
happens with other constants in the calculation, and it prevented us from using these new
constants in future calculations. To solve this problem, in the second version, I added a list to
the third entry. This list of constants should be defined where we declare the ALGEBRA we are
using. This list also includes constants, symbols, scale factors, and other relevant elements for
our calculations. These symbols will appear explicitly in all calculations. For an arbitrary
monomial MONO, the list of symbols can be obtained using the command MONO.sym_list,
with each entry referring to the power of each constant declared in the definition of the main
algebra we are working with. In the old version, the third entry only referred to the power

of A and the fourth entry to the power of the scaling factor £;.

e The last two parameters of our object MONOMIAL are the numerator and the denominator of

a possible fraction we could obtain in some calculations.

Consider, as an example of the construction above, the monomial defined in the older ver-

sion of the calculator?” as MONO1 = Monomial (’°T’, 1, 2, -2, 1, 2) , this monomial is equivalent

4TFrom this point forward, whenever we refer to a monomial in this appendix, we are referring to the older

version, as it was predominantly used in my work.
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. 2
to MONO1 = %T, and as a last example, MONO2 = Monomial(’ °’, -1, -1, 2, 4, 3) = %]l7
0

where we used the empty string as the unit of our algebra.

In the main file, we defined the multiplication from the right and from the left between
elements of the class Monomial. The sum of monomials gives rise to an element of the class
Ezpression. An element of the Expression class has only two needed parameters: the first one is
a list of monomials in which the sum is applied between them, and the second is the line index,
which starts at 0 by default and will be used to track how many operations are executed in the
expression between lines of the calculations. This will only be functional in the newer version of the
code. As an example, if we execute the sum of MONO1 with MONO2 from the last example, we should
obtain the following set of outputs: MONO1 + MONO2 = Expression([Monomial(’°T’, 1, 2, -2,
1, 2), Monomial(’ °, -1, -1, 2, 4, 3)], 0) = (%T—Fg%l). The parentheses are implied
since we also defined the multiplication of an Ezpression by elements of the class Monomial, by

constants, and by other elements of the class Fzpression.

When working with the module structure introduced in the main text of the thesis, we
should use the elements of the class Vector. To define an element of this class, we should declare
as the first parameter the algebra we are using for our calculations and as the second parameter
a list of elements. In our case, this list has a length of 3 since the rank of our module is also 3.
To demonstrate this structure, we declare here some objects of the thesis in the data structure we

chose:

# Defining some elements of the thesis in the data structure we choose

3 X0 = Expression([Monomial("TR",0,0,1,-1,2),Monomial ("RT",0,0,1,-1,2)],0)

X1 = Expression([Monomial ("TRT",0,0,1,-1,2),Monomial ("Z",0,0,1,-1,2),Monomial ("Z"
,0,2,-1,-1,8) ,Monomial ("R",0,0,1,1,2)]1,0)

5 X2 = Expression([Monomial ("TRT",0,0,1,-1,2),Monomial("Z",0,0,1,-1,2),Monomial ("Z"

,0,2,-1,-1,8) ,Monomial ("R" ,0,0,1,-1,2)]1,0)

RO = differentiate (algebra, "R", XO0)

R1 = differentiate (algebra, "R", X1)

R2 = differentiate(algebra, "R", X2)

TO = differentiate (algebra, "T", XO0)

Tl = differentiate (algebra, "T", X1)

T2 = differentiate(algebra, "T", X2)

= Vector (algebra, [X0,X1,X2])

Vector (algebra, [RO,R1,R2])

=H =
]

Vector (algebra, [TO,T1,T2])

In this last fragment of code, we first introduced the components of the vector Y After

this, we differentiated them with respect to R and T, respectively, and defined the vectors from
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these components. One can find these objects in the equations (3.2) and (3.32) of the main text.

We finish this subsection by explaining the most useful function of this program, the func-
tion solve(ALGEBRA, EXPRESSION). This function is mainly used to simplify an Ezpression by
finding some anagrams between the words of the monomials contained in it, applying the rules
defined in the main ALGEBRA, and executing the simplification of terms that have the same powers
of the constants and the same combinations of letters. For instance, if an element has the word
"RTR" in its defining monomial and another element has the word "RRT", the function solve() will
swap the second and third letters of the monomial using the built-in function swap(), resulting in
an expression with the simplification of the terms with the same word "RTR" and the remaining
terms coming from the commutation of the elements 7" and R. As a concrete example, suppose we
define the following expressions
EX1=Expression([Monomial ("TTR", O, O, O, 1, 1), Monomial("T", 1, 1, -1, -1, 2)], 0)
EX2=Expression([Monomial ("TRT", O, O, O, 1, 1), Monomial("T", 1, 1, -1, 1, 3)], 0
If we execute the command solve (ALGEBRA, EX1+EX2), the program will simplify the expression
through the following steps:

(TTR — %T) (TRT n %T)
(TTR +T(TR+[R,T)) — g—Z)T)
(QTTR + KOT - g—ZT)

(2TTR + Z%T)

If we execute the command print (solve (ALGEBRA, EX1 + EX2)), we get as our output the sim-

plified expression for the set of operations above, explicitly:

Expression = [Monomial ("TTR", O, O, O, 2.0, 1.0), Monomial("T", 1, 1, -1, 5.0, 6.0)]

where the numerator and denominator in the monomials are converted to the type float to avoid

some problems.

In the next subsection, we will demonstrate how to perform direct calculations using the

provided tool. We will verify some results found in the main text of this thesis.
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A.2 Examples of Application

We start this subsection by demonstrating equation (3.1). In the following calculations, we will
omit the quotation marks around the strings defining the word in elements of the Monomial class.
Using the vectors declared in the last subsection, we also introduce the function inprod (ALGEBRA,
VECTOR1, VECTOR2), which calculates the inner product between two vectors defined using the
signature declared when we initialize the main ALGEBRA. From the code

#Calculating the inner product X \mu X_\mu

XX = inprod(algebra, X,X)

3 print ("XX = ",XX)

o

the output is:

XX = Expression = [Monomial( ,0,0,2,-1.0,1.0), Monomial(ZT,1,1,1,-1.0,4.0),
Monomial (ZT,1,3,-1,-1.0,16.0), Monomial(RTZZ,1,1,1,1.0,4.0),

Monomial (RTZZ,1,3,-1,1.0,16.0), Monomial(ZZ,0,2,0,1.0,2.0),

Monomial (2Z,0,4,-2,1.0,8.0)]

The output provided isn’t fully simplified. To manipulate further the elements from the expression,
we can use the method EXPRESSION. swap (ALGEBRA, MONOMIAL, INDEX1, INDEX2), which swaps
two neighboring indices in some MONOMIAL that belongs to the list of monomials of an element of
the class EXPRESSION. The first step of the calculation is:
XX, =XXo+ X'X1 - X?X, ,
iRl in3 iRl b3 n? I )

(3
=(—-021-—27T — ZT+ —2RTZZ+ ——RTZZ + —Z7Z + —7Z
( 0 4 1667 "1 " 164, Tyt 802

Now we use the commutation relation of [R,T] in the fourth and fifth elements of the expression
above with the following code:

#Swaping the first two letters of the fourthand fifth elements from the last

expression

XX .swap(algebra, 3, 0, 1)
XX.swap (algebra, 4, 0, 1)
print ("XX = ",XX)

which gives as output:

XX = Expression = [Monomial( ,0,0,2,-1.0,1.0), Monomial(ZT,1,1,1,-1.0,4.0),
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Monomial (2T,1,3,-1,-1.0,16.0), Monomial(TRZZ,1,1,1,1.0,4.0),
Monomial (TRZZ,1,3,-1,1.0,16.0), Monomial(ZZ,0,2,0,1.0,2.0),
Monomial(ZZ,0,4,-2,1.0,8.0), Monomial(ZZ,2,2,0,1.0,4.0),
Monomial (ZZ,2,4,-2,1.0,16.0)]

The operations employed were:

ZZ) ,

hfo Zﬁs tho h3 h h4
=(—-021- Z—ZT——ZT —RTZZ —RTZZ — 77 27
( 0 4 164, + * 164, T3 * 82 )
ihdg ih3 ihdy ih ih3 ih K2 4
= —KQH—Z—ZT——ZT — TR+ —1)ZZ+ —|TR+ —1)|ZZ ZZ
( 164, + 4 ( + £y ) + 164y ( + Lo ) + + 862

It is easy to see that the calculator applied the distributive rule and gathered all elements together.

To finish the calculation, we just apply the function solve() to the last expression.

#Using the function ’solve’ to simplify the last expression

3 print("XX = ", solve(algebra, XX))

The output of this query is: XX = Expression = [Monomial ( ,0,0,2,-1.0,1.0)], which is the

expected result. The set of operations done in the last step were:

10 ih3 h2 Bt
20+ 21T, 2 1.7 727 77
= (-4 A R T A R R T )
h2 R4 h2 R4
=(-FP1-=—Z7—-—Z2+—27+—227
( fo 4 1662 T +16€2 )

- ( - é%]l) .
We write below the full code needed for this specific calculation:

#The set of operations needed to obtain the final result

3 XX = inprod(algebra, X,X)

XX .swap (algebra, 3, 0, 1)

5 XX.swap (algebra, 4, 0, 1)

; solve (algebra, XX)

print ("XX = ",XX)

As a final example, we demonstrate how one can use the provided program to easily calculate the
non-commutative Christoffel Symbol I'%, using the formula (3.73). I will not write explicitly all
the steps needed to calculate it manually; only the important steps will be considered. First, note

that:
Pl = (R @3)" + 97 (95)° ) nas0r®f; = (939°%) 1apdr @}, = 9(ea®2g ", 6507 05)
now we declare all variables using the definitions from the thesis and run the following script:
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1 #The full script to calculate the desired Christoffel Symbol

5 GRR = Monomial ("RR",0,0,-2,1,1)

4+ GTR = Momomial("",1,1,-3,-1,2)

5 V1 = Vector(algebra, [R1*GRR+T1*GTR, R2*GRR+T2*GTR, R3*GRR+T3*GTR])

6 V2 = Vector (algebra, [differentiate(algebra,"T",R1), differentiate(algebra,"T",R2),
differentiate (algebra,"T",R3)])

7 Cris = inprod(algebra, Vi, V2)

s print(solve (algebra, Cris))

Where the counting for the ambient indices is not 0,2, it is 1,3 instead. GRR and GTR are the
coefficients from the metric for local coordinates, Ry and T are ®; and ®f. respectively, and the
vectors V'1 and V2 are the vectors from the main expression that we are taking the inner products
of. The output of the last script is: Expression = [Monomial (R,1,1,-1,1.0,2.0)], which gives
the correct result I‘%R = %R. Here it wasn’t necessary to swap any index or execute other cal-
culations before running the solve operation, but we used the function differentiate (ALGEBRA,
VARIABLE, TERM) which differentiates the TERM with respect to VARTABLE using the rules from
the ALGEBRA.

Lastly, I want to point out that these examples are just a small part of all the functions
implemented in the calculator I created to verify some lengthy equations encountered during the
writing of this thesis. In the provided link, I have posted the main file, which can be run on any

PC, and I have explained there all the functionalities not presented here.

A.3 Future Upgrades

As a natural addition to the functionalities of the non-commutative calculator, one should consider
adding tensorial operations. Before doing this, I will list below all the upgrades intended to be

added to the program to make it more suitable for the analysis of non-commutative surfaces.

Add the functionality of the module structure as a specific class type.

e Add more sets of possible manipulations for each term.

Add the differentiation of the algebra and its opposite counterpart. This will likely be added

as a boolean variable, which will be verified before any calculation.

Add the tensor product structure as a class type.
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e Add the possibility to operate the indices following the set of rules from the algebra.
e Create a function that converts all steps used by the solve function to a ITEX file.

e Generalize the structure developed here to apply to any non-commutative surface we wish

to analyze further.

In this appendix, we have developed and utilized a non-commutative calculator to per-
form and verify complex algebraic computations within non-commutative algebraic settings. This
tool has been instrumental in reducing errors in manual calculations and providing a structured
approach to handle algebraic manipulations involving non-commutative elements. We started by
discussing the core functionalities of the non-commutative calculator, including the data struc-
tures and functions that form its foundation. The Algebra class and its associated elements, such
as the Monomial, Expression, and Vector classes, were defined and their roles in the calculator
explained in detail. The initialization process for these structures, including the specification of
algebra elements, dimensions, commutation relations, and derivatives, was elaborated upon to give

a comprehensive understanding of how to set up and use the calculator.

Through several examples, we demonstrated the practical applications of this tool. We
showed how to define algebraic structures, perform operations, and simplify expressions. The
step-by-step breakdown of calculations highlighted the efficacy of the calculator in managing non-
commutative terms and ensuring accurate results. By utilizing functions such as solve() and swap(),
we showcased the ability to automate and verify intricate algebraic processes. The examples
provided, such as the combination of expressions and the inner product calculations, also with the
operations showcased in the main file provided illustrates the robustness of the calculator. We
verified results found in the main text of the thesis, reinforcing the validity and reliability of the

computational tool developed.

In conclusion, the non-commutative calculator represents now an small advancement in
computational algebra, but with further development, it has the potential to become a highly
robust tool for solving complex problems. It provides a powerful means to manage the intricacies
of non-commutative algebraic calculations, ensuring both accuracy and efficiency. This tool not
only supports current research but also paves the way for future explorations and applications in

the study of non-commutative surfaces.
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