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December 16, 2024



Universidade de Braśılia
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A geometria Riemanniana das superf́ıcies quânticas - O caso
do AdS2.

Resumo:

Esta tese tem como objetivo construir, de forma rigorosa, uma estrutura algébrica que

possua as propriedades geométricas do espaço anti de Sitter bi-dimensional por meio da quantização

das coordenadas do hiperboloide que o define. Inicialmente, são definidos os objetos matemáticos

essenciais para essa construção, e é formalizado um análogo ao cálculo diferencial e integral sobre

a álgebra criada. A partir dessas definições, são apresentados dois módulos importantes, um que

representa o análogo ao espaço tangente e seu respectivo dual. Também é definida uma forma

hermitiana, que funciona como a métrica do espaço, sendo constrúıdo explicitamente seu inverso.

Com essas ferramentas, é desenvolvido um cálculo pseudo-Riemanniano para variedades algébricas,

permitindo a obtenção dos śımbolos de Christoffel, curvatura, Laplaciano, vetores de Killing e até

mesmo a definição de autofunções algébricas, viabilizando a integração sobre a superf́ıcie quântica.

O trabalho discute ainda a não unicidade de alguns elementos e a estrutura algébrica necessária

para garantir que o ordenamento dos elementos não comutativos leve a resultados consistentes

com a quantização pela deformação do parêntese de Poisson clássico. Além disso, é introduzido

um programa que atua como uma ferramenta de cálculo para objetos não comutativos, facilitando

os cálculos em superf́ıcies não comutativas nesse formalismo.

Palavras-Chave: Geometria não comutativa, geometria algébrica de Poisson, Geometria Riema-

niana não comutativa, espaço Anti-de Sitter bidimensional não comutativo, quantização geométrica,

cálculo pseudo-Riemanniano.
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Abstract:

The main objective of this thesis is to rigorously construct an algebraic structure that

possesses the geometric properties of the two-dimensional anti-de Sitter space through the quan-

tization of the coordinates of the hyperboloid that defines it. Initially, the essential mathematical

objects for this endeavor are defined, and an analogue of differential and integral calculus on the

constructed algebra is formalized. With these constructions, two important modules are defined:

one serving as an analogue to the tangent space, and its respective dual. A Hermitian form is also

defined to serve as the metric of the space, and its inverse is concretely constructed. With these

tools, a pseudo-Riemannian calculus for algebraic varieties is developed, allowing for the determi-

nation of the Christoffel symbols, curvature, Laplacian, Killing vectors, and even the definition of

algebraic eigenfunctions, enabling integration on the quantum surface. The article also discusses

the non-uniqueness of some elements and the correct algebraic structure required for ensuring that

the ordering of non-commutative elements leads to results consistent with quantization through the

deformation of the classical Poisson bracket. Additionally, a program is introduced that functions

as a calculator for non-commutative objects, facilitating computations involving non-commutative

surfaces in this formalism.

Keywords:Non-commutative geometry, Poisson algebraic geometry, non-commutative Rieman-

nian geometry, two-dimensional non-commutative anti-de Sitter space, geometrical quantization,

pseudo-Riemannian calculus.
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1 Introduction and Mathematical Preliminaries

The main goal of this thesis is to develop a coherent and rigorous prescription for constructing

quantum surfaces that exhibit the same geometric objects found in commonly studied topological

structures within Riemannian and Poisson geometries. Among these objects, I refer to the metric

tensor, curvature, Ricci scalar, Christoffel symbols, and other geometric objects used in the theory

of general relativity. We will apply this prescription for the study of AdS2 as a quantum surface

following [1], [2] and [3], as well as comparing all important results we obtained in our paper

[7] with other works that do a similar analysis but in a different extent. As a new result we

will derive all geometrical properties that allow us to analyse geometrically the ncAdS2 as a

quantum surface solving its field equations from a mainly geometrical formalism, in opposition

to the usual deformation quantization procedure that is widely applied in the literature. The

authors of [4] found exact solutions for the correspondence AdS2/CFT1 treating the AdS as a

quantum surface, and some of the results obtained in my work can be demonstrated using a totally

different approach, showing that these two formalisms could attain consistent results despite their

foreseeable unrelatedness.

In this introductory chapter, we will establish the fundamental mathematical frameworks

requisite for our endeavor. We will commence by delineating the algebraic structures suitable for

the formalism of quantum surfaces, among which Weyl’s algebra field of fractions and Heisenberg

algebra stand out. Additionally, we will conduct a comprehensive review of the canonical formula-

tion of Poisson geometry, an approach that is usually employed within non-commutative geometric

schemes. This entails the promotion of the Poisson structure to the usual commutation relations,

acting upon a given Hilbert space. Initially we present some important definitions, theorems and

propositions regarding the Weyl and Heinsenberg algebras and we define over it a field of fractions,

complex and differential structures in order to rigorously construct the ”calculus” over these alge-

bras. After this we study the main properties of the Poisson structure on manifolds and we will

take as example the case of minimal surfaces. This example is chosen because our main references

[1-3] use it as a starting point to build his theory. By the existence of some special features of

these manifolds one can study some properties of the non-commutative minimal surfaces without

worrying about unnecessary complications that may appear in a more general case.

In the second chapter we introduce some properties of the AdS space-time setting the co-

ordinates and the embedding we will use in the following parts. The study of Anti-de Sitter (AdS)

space is important in theoretical physics, particularly due to the AdS/CFT (Anti-de Sitter/Confor-

mal Field Theory) correspondence. This idea, proposed by Juan Maldacena in 1997, links gravity

in AdS space to a conformal field theory on its boundary. AdS space provides a useful setting for

7



exploring quantum gravity, helping to connect general relativity with quantum mechanics. The

AdS/CFT correspondence suggests that a higher-dimensional gravitational theory in AdS space

is equivalent to a lower-dimensional quantum field theory, offering insights into black hole physics

and strongly coupled systems. Beyond fundamental physics, this correspondence has applications

in condensed matter physics and quantum chromodynamics, linking gravitational theories with

real-world systems. Following this we discuss some historical background for the non-commutative

formulation of quantum mechanics and why one would construct a theory over a non-commutative

space-time, presenting also a quantization scheme that was used in our previous paper. We finish

this section with an outline of the AdS2/CFT1 correspondence for the commutative case and set

the prescription we will use to verify it in a non-commutative background.

In the third chapter, we demonstrate how to construct the non-commutative analogue

of the AdS2/CFT1 correspondence by quantizing the embedding coordinates and Killing vectors

of the commutative theory. Through this quantization process, one should obtain a set of oper-

ators that retain the symmetries of the commutative case as the non-commutativity parameter

approaches zero. Wepresent an alternative approach to quantizing the surface. We discuss how

the main properties of Weyl algebras can be used as a tool for geometric quantization and grad-

ually add features to this algebra to create an algebraic structure that enables the construction

of the quantum AdS2 using only the generators of the algebra as parameterization variables. To

define a well-defined tangent space, we establish a module structure and discuss the existence of

basis vectors and a metric within this framework, concluding this section with some examples. In

the final part of this chapter, we construct the non-commutative analogues of the metric tensor,

the Christoffel symbols, the curvature tensor, and the Ricci scalar for both ambient and local

coordinates. We analyze the results obtained, explain why some ambiguities could arise, and how

to address them. We conclude by obtaining the non-commutative Killing vector fields that are

solutions to the Killing equation for the non-commutative metric and discuss non-commutative

integration using the eigenfunctions of the non-commutative AdS2 (ncAdS2), which are found by

solving the Laplace equation.

In the fourth chapter, we discuss potential developments that could arise from the results

obtained in this thesis. The first proposal is to investigate how one could construct a well-defined

non-commutative Einstein-Hilbert action that could yield the field equations. We raise a series of

questions regarding these ideas and explore two main possibilities. The first approach involves a

direct variation of the action using an integral form that must be rigorously defined. The second

approach attempts to define the contracted Bianchi identity in the non-commutative setting and

use it to derive the resulting field equations. The final proposal for future development is the

construction of the spin connection and the Dirac operator using non-commutative vielbeins.

8



Lastly we present the tool developed to assist with calculations in this thesis in Appendix

A. This tool is a non-commutative calculator that can verify the accuracy of some of the results

obtained, helping to avoid small mistakes that may arise during lengthy non-commutative cal-

culations. The tool was already functional for several calculations used in this thesis, and we

intend to upgrade it to include new functionalities that could assist anyone interested in analyzing

non-commutative surfaces.

1.1 Algebraic structures

We begin this subsection by defining the key concepts and objects that will be used throughout

this thesis.

Definition 1.1. Let F be a field and let V be a vector space over F. We define an associative

non-commutative bilinear operation ◦ : V × V → V that will be denoted by the juxtaposition i.e.

v ◦w = vw ̸= wv for v, w, vw and wv ∈ V . We call V equipped with ◦ an F-Algebra. If V has an

element I such that for all v ∈ V and Iv = vI = v we say that the algebra is unital.

Definition 1.2. Let R be a ring and let 1 be the multiplicative identity1, we say that M is a left-

/right R-Module if it has an Abelian group structure (M,+) and a left/right scalar multiplication

satisfying 1 · x = x ,∀ x ∈M and obeying the distributive and associative rule.

Definition 1.3. Let A be an associative unital algebra, we say that A is freely generated by a

sub-algebra B if there exists, for any map f : B −→ C where C is any other algebraic object (Lie

algebra, algebra, group, etc.), a unique homomorphism h : A −→ C such that h|B= f .2

Definition 1.4. Let A be an algebra, a right (left) ideal of A is a linear subspace D of A such

that d · a ∈ D (a · d ∈ D) ∀a ∈ A and d ∈ D. We say that an ideal D is two-sided if it is both a

right and a left ideal.

Definition 1.5. Let A be an associative unital algebra and let I be a two-sided ideal in A. The

quotient algebra A/I is the associative unital algebra of equivalence classes defined for a ∈ A as

[a] = a+ I := {a+ b | b ∈ I} ,

for the equivalence relation ∼ defined as a ∼ b =⇒ (a− b) ∈ I for a, b ∈ A.

With these concepts in mind we define a Weyl algebra as

1In general the ring R doesn’t need to be unital in order to define a Module properly.
2The sub-algebra B is a generalization of the notion of basis, related to the fact that a linear function f : X −→ Y

between two vector spaces is totally determined by its values on elements of the basis of Y .
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Definition 1.6. Let A be the free associative unital algebra over C generated by U, V . Moreover,

let I denote the two-sided ideal generated by

UV − V U − iℏ1.

The Weyl algebra with the non-commutativity parameter ℏ is denoted by Wℏ and it is defined by

the expression below

Wℏ = A/I,

which states that the Weyl algebra is the quotient of the algebra A with the two-sided ideal I.

As a simple example, if we consider the algebra A = A(â, â†) to be the algebra generated by

the ladder operators, the respective Weyl algebra is obtained by setting ℏ = −i, in other words

W−i = A(â, â†). Consider also the following example of the construction of Wℏ in a direct and

formal way. Let P (Xi) = P (X1, ..., Xn) be a ring of polynomials over the set formal symbols {Xi}

with pβ(X
i) ∈ P (Xi) being a polynomial of order β ∈ N. The set

W (n)(P ) =

 ∑
βk∈Nn

pβ(X
i)

n∏
j=1

∂βk

j

 , (1.1)

is called the Weyl algebra of order n over P (Xi). W (n) is a complex algebra with respect to the

natural addition of Cn. The product and the left multiplication are defined as

∂j · f = f∂j + ∂j(f) , (1.2)

Lfg = fg , (1.3)

for f, g ∈ P (Xi) and ∂j , Lf ∈ End(P (Xi)). The space End(P (Xi)) is a non-commutative ring for

n ≥ 1 with the product defined as the composition of endomorphisms satisfying

∂i ◦ LXj = LXj + δij ,

∂i ◦ ∂j − ∂j ◦ ∂i = LXi ◦ LXj − LXj ◦ LXi = 0 .

These relations lead us to an alternative definition of W (n)(P ) as the sub-algebra of End(P (Xi))

generated by {LXi , ∂i} for i ∈ 1, n. Using the notation Xσ =
∏n

j=1X
σj

j and ∂σ =
∏n

j=1 ∂
σj

j for

σ ∈ Nn we can define the general multiplication rule on W (n)(P ) as

Xα∂βXγ∂ω = Xα+γ∂β+ω +
∑

σ<α,β σ ̸=0

β! γ!

σ! (β − σ)! (γ − σ)!
Xα+γ−σ∂β+ω−σ .

Now we continue defining some additional objects and structures that will be useful in our work.

Definition 1.7. Let R be a commutative unital ring and V be a module over R equipped with a

skew-symmetric bilinear form

ω : V ⊗R V −→ R . (1.4)
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The Heisenberg Lie algebra h is the Lie algebra given by the R-module V ⊕ R with the unit

element 1 = (0, 1) and its left multiplication over an arbitrary element being 1(V, r) := (0, r) and

with the pair (V, r) related to the direct sum. We also define the Lie algebra bracket

[(a, b), (a′, b′)] := (0, ω(a, a′)1) (1.5)

There is a relation between the Heisenberg Lie algebra and the Poisson algebra, which we will be

introducing it in a more succinct manner.

Definition 1.8. A Poisson Algebra is a module A over K (a field or a commutative ring)

with two distinct products, namely ◦ and { , }, where ◦ : A ⊗K A → A is the usual product of

an associative K-algebra, and the second product { , } : A ⊗K A → A is a Lie bracket, turning

it into a Lie algebra such that ∀a ∈ A the endomorphism {a,−} : A → A is a derivation, i.e.

{a,−} ∈ Der(A) satisfying the Leibnitz condition.

The relation between the Poisson and Heisenberg algebras can be constructed starting

by taking (V, ω) to be a symplectic vector space over R. From the tangent bundle structure with

the projection π1,2V × V → V we use the canonical isomorphism ϕ : TV ≃ V × V to construct a

differential 2-form ω̃ from ω by the assignment

ω̃(x, y) = ω(π2ϕ(x), π2ϕ(y)) ,

∀x, y ∈ Γ(TV ). A symplectic manifold X is 2n-dimensional manifold equipped with a closed

smooth non-degenerate3 2-form ω̃ ∈ Ω2(X), from the assignment above it is clear that X = (V, ω̃)

is a symplectic manifold and the algebra of smooth functions C∞(X,R) is indeed a Poisson algebra

P(V, ω̃) when we define the Poisson bracket as

{f, g} := ω̃(Hf , Hg) ,

where f, g ∈ C∞(X,R) and Hf ∈ Γ(TX) is the Hamiltonian vector field of X uniquely (from the

non-degeneracy of ω) defined by

df = ω̃(Hf ,−)

The subspace of linear functions L(V,R) ⊂ C∞(V ) from V to R form the dual vector space V ∗ of

V from the inclusion V ∗ ↪−→ C∞(V ). By the non-degeneracy of ω, ∀f ∈ V ∗ ∃ vf ∈ V such that

f = ω(vf ,−) ∈ C∞(V ) ,

in this setting the extension Hf of vf ∈ Γ(TV ) is a Hamiltonian vector field for f and from this

follows that the Lie bracket of f, g ∈ L(V,R) is

{f, g} = ω(vf , vg)

3This can be achieved by imposing that the form ω∧n = ω ∧ ω ∧ · · · ∧ ω has the maximal rank at every point

x ∈ X.
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and as a last step we define the following inclusions c1 : ω(v,−) ↪−→ C∞(V ) for the Lie bracket and

c2 : R ↪−→ C∞(V ) for the constant functions, then c : V ⊕R (c1,c2)−−−−→ C∞(V ) induces a Lie algebra

homomorphism

c : h(V, ω) ↪−→ P(V, ω̃) ,

showing that the Heisenberg Lie algebra is a sub-Lie algebra of the Poisson algebra P(V, ω̃).

To explictly construct the structure written above consider first the Heisenberg group H(V ) =

{V ×R, · } on (V, ω) where the group law is defined as

(v, α) · (w, β) :=
(
v + w,α+ β +

c

2
ω(v, w)

)
,

for v, w ∈ V , α, β ∈ R and for some constant c that will be related to the Lie bracket on the Heisen-

berg algebra. Using the fact that every symplectic vector space has a Darboux basis {ei, ẽj}ni,j=1

and if we consider r̂ as a basis for R, we can define a new basis for V ×R as {ei, ẽj , r̂}ni,j=1 where

any vector from it can be written as v = qiei + pj ẽ
j + αr̂. From it the group law becomes

(p, q, α) · (p′, q′, β) =
(
p+ p′, q + q′, α+ β +

c

2
(pq′ − p′q)

)
,

and from the linearity of H we can indentify the vectors in the group with vectors of its Lie algebra

h, which consequently gives as the Lie bracket of the group the usual commutation relation

[(v, α), (w, β)] = cω(v, w) ,

which clearly implies that, for the Darboux basis [ei, ẽ
j ] = cδji and all other commutators vanish.

After the definition of the universal enveloping algebra, we will make this construction more suitable

with the usual quantum mechanics setting.

Definition 1.9. Let g be a Lie algebra over a field F , we can construct a Tensor free algebra from

it containing all possible tensor products of elements of g, or explicitly

T (g) = F
⊕
i∈N
⊗ig ,

the universal enveloping algebra is essentially the quotient T (g)/I of the tensor algebra with

the two-sided ideal I generated by the abstract Lie bracket on g and for all a, b in the embedding

of g in T (g) this ideal can be explicitly constructed from

a⊗ b− b⊗ a− [a, b] ,

where [a, b] is the abstract Lie bracket on g ∈ T (g).

If we consider the universal enveloping algebra of the Heisenberg algebra with 2n gener-

ators obtained by identification of the center (elements that commutes with all other elements of

the algebra) of the Heisenberg Lie algebra with multiples of the identity element, we obtain from
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it the Weyl algebra on 2n generators. For example, let h be an 2n+1 dimensional real Lie algebra

with elements

{p1, ..., pn, q1, ..., qn, c} , (1.6)

for c ∈ C the center of the algebra, it will become a Heisenberg algebra if we define on it the

following Lie bracket

[pi, pj ] = [qi, qj ] = 0 ,

[pi, qj ] = cδij .

In this setting, the set of generators p, q acts as a Darboux basis, and the symplectic structure

arises from the intrinsic definition of the commutation relation. Therefore, one can easily see that

h is constructed from 2n copies of the previously constructed Weyl algebra with c = iℏ and the

center C being all complex-number-valued multiples of the identity. The structures of the Weyl and

Heisenberg algebras arise naturally from the physical analysis of quantum phenomena. As will be

discussed in the following chapters, these algebras are suited to introducing non-commutativity as

an intrinsic feature of a given space-time when we promote the usual parametrization coordinates

to operators that act on some Hilbert space. In a sense, this will allow us to define the geometry

of the quantum algebras directly.

Now, we proceed with the next step in our enterprise. We turn our attention to Wℏ and

aim to make it a field of fractions. For this purpose, we follow a similar path employed in [1] which

is a brief review of the whole proccess done in [38], we omit some technicalities to make our text

more legible. Since our main goal is to have a well defined field of fractions where elements4 from

Wℏ×Wℏ will be written as the ordered pair (A,B) in direct correspondence to the element AB−1,

we should first define the equivalence class underlying the so-called (right) Ore condition, namely,

there exist a pair of elements α, β ∈Wℏ such that

Aα = Bβ , (1.7)

this relation guarantees the existence of a common factor between two elements of the algebra.

We also define the zero element, let A be an element of Wℏ that satisfies the following property

cA+B = B ,∀ B ∈ Wℏ and c ∈ C, we denote A as 0 for the Weyl algebra and by definition A is

not invertible. We can use this property to define an equivalence relation on Wℏ ×Wℏ, but first,

for B ̸= 0, we will denote a fraction as
(
A
B

)
and we say that

(
A
B

)
∼
(
C
D

)
if there exist α, β ∈ Wℏ

such that

Aα = Cβ ,

Bα = Dβ .
(1.8)

and we will not verify that this indeed defines an equivalence relation since it is straightforward to

show this. The relation above is equivalent to a
b = x·a

x·b in a field of fractions. The quotient space

4Here we consider the Weyl algebra Wℏ generated by U and V as stated in the definition (1.6).
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Wℏ×Wℏ/∼ is denoted by Fℏ and will be called the field of fractions of the Weyl algebra Wℏ. One

can define the addition and multiplication on Fℏ for Y α =Wβ = Zγ and α, β, γ, X, Y, Z, W ∈

Wℏ (
X

Y

)
+

(
Z

W

)
=

(
Xα+ Zβ

Y α

)
=

(
Xα+ Zβ

Wβ

)
(
X

Y

)
·
(
Z

W

)
=

(
Xα

Wγ

)
.

(1.9)

It is clear that one should verify if the operations above are well-defined (i.e., they respect the

equivalence classes) and do not depend on the choice of α, β, γ, since this is done in [38] and [1], we

will omit this verification here. Furthermore, we can represent the unit element by 1W = (1/1) and

the zero element 0W = (0/1). For every non-zero element B ∈ Wℏ we identify B−1 with (1/B),

and with this notation it is clear that (A/B) = (A/1)·(1/B) = AB−1, note that the way we defined

the product of fractions make the element AB−1 not equal, in general, to (1/B) · (A/1) = B−1A

as one should expect (the equality holds if [A,B] = 0). To make Fℏ a *-algebra we extend the

involution operation to it. An involution is an anti-homomorphism that is its own inverse, we

extend it to Fℏ by setting U∗ = U , V ∗ = V and as consequence of the universal property of the

fraction ring, we achieve our goal. Since now Fℏ is a ∗-algebra we obtain an well defined structure

that resembles the complex structure of C with the involution operation ∗ satisfying the following

properties (A
1

)∗
=
(A∗

1

)
,(

1

A

)∗
=
(
1

A∗

)
,

(AB−1)∗ =
((A
1

)
·
(
1

B

))∗
=
((

1

B∗

)
·
(A∗

1

))
= (B∗)−1A .

(1.10)

From now on we will denote the fractions (A/B) on Fℏ as AB−1 in this specific ordering. The real

and imaginary elements of Fℏ are

ℜ(A) = 1

2
(A+A∗) ,

ℑ(A) = 1

2i
(A−A∗) .

(1.11)

We can also define derivatives with respect to the generators in our algebra by noting that, for

example, for some function F (U) with a formal series expansion we have

[F (U), V ] = iℏF ′(U) ,

and the same is valid for some function of V with some change in sign. As expected we can define

the derivatives as

∂U (A) =
1

iℏ
[A, V ] ,

∂V (A) = −
1

iℏ
[A,U ] ,

(1.12)

and it is easy to verify that this definition obey the Leibnitz rule and all important properties

expected for a well-defined derivative (see [1]). We also extend these derivatives for Fℏ by simply
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noting that ∂x(AA
−1) = (∂xA)A

−1 +A(∂xA
−1) = 0 which implies that ∂xA

−1 = −A−1(∂xA)A
−1

for x = U, V and A ∈ Fℏ. To keep the analogy with the complex numbers and their derivatives we

introduce a new element Λ ∈ Fℏ as Λ = U + iV . Clearly [Λ,Λ∗] = 2ℏ1, in the following we define

the derivatives with respect to these new elements

∂(A) =
1

2
(∂U − i∂V )[A] =

1

2ℏ
[A,Λ∗] ,

∂(A) =
1

2
(∂U + i∂V )[A] = −

1

2ℏ
[A,Λ] .

(1.13)

We denote the sub-algebra C[Λ] ⊂ Fℏ as the algebra generated by Λ and 1.

Definition 1.10. We say that an element A ∈ Fℏ is said to be r-holomorphic if ∂A = 0 and we

call this element holomorphic if A ∈Wℏ (equivalently if and only if A ∈ C[Λ]).

The r-holomorphic elements are analogues of meromorphic functions in the field of fractions, and

generally they are written as fractions of polynomials in Λ. As the last step in this section we

proceed to define the non-commutative Laplace operator, a notion of integrability in this setting and

some additional objects that will be used in order to define a non-commutative pseudo-Riemannian

geometry.

Definition 1.11. We define the non-commutative Laplace operator ∆0 as follows

∆0(A) = −
1

ℏ2
(
[[A, V ], V ] + [[A,U ], U ]

)
,

An element A is called harmonic if ∆0(A) = 0.5

Definition 1.12. Let A and B be r-holomorphic elements, we say that B is a primitive element

of A if ∂B = A and we denote B for an arbitrary element A as

B =

∫
A dΛ .

If a r-holomorphic element A has at least one primitive element we say that A is integrable.

Now we follow similar constructions done in [43], [44], [45] and [46] to introduce some concepts

that we will need to construct the non-commutative pseudo-Riemannian geometry, we refer to

these references for the proofs of any claim that may appear in the following. All the definitions

and results will be taken for a right module and we refer that it is possible to extend to a left one

by writing in parentheses, when a bimodule structure is implied we will say it explicitly.

5Two obvious results that follow from the last definition are

∆0(A) = 4∂∂(A) = 4∂∂(A) ,

∂Uℜ(A) = ∂V ℑ(A) and ∂V ℜ(A) = −∂Uℑ(A) ,
(1.14)
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Definition 1.13. Let A be a unital *-Algebra over C. A left (right) A-module M is said to have

a canonical structure of a right (left) A-module if we impose m · a = a∗ ·m (respectively for the

left one a ·m = m · a∗) for a ∈ A and m ∈ M and the operation · it the scalar multiplication for

the module M .

Definition 1.14. For a right (left) A-module M we denote as M∗ its dual module. M∗ will be

canonically a left (right) module if we set (a · ω)[m] = aω[m], for ω ∈M∗, a ∈ A, the product · is

the scalar multiplication in M∗ and the action of ω on m ∈ M is denoted by the square brackets.

Using the same argument as in the Def 1.12. we can consider M∗ as a right module by imposing

a similar involution property.

Definition 1.15. Let A be a unital *-algebra and let M be a A-module. A hermitian form on

M is a right linear map h :M ×M → A such that

(i) h(m,n) = h(n,m)∗ ,

(ii) h(m,n · a) = h(m,n)a ,

(iii) h(m1 +m2, n) = h(m1, n) + h(m2, n) .

(1.15)

for m, m1, m2, n ∈ M and a ∈ A where the multiplication by juxtaposition is the natural A

multiplication.

Definition 1.16. Let A be a unital *- algebra and let M be a A-module. The map ĥ : M → M∗

is associated to a hermitian form as follows

(i) ĥ(m1)[n] = h(m1, n) ,

(ii) ĥ(m1 +m2) = ĥ(m1) + ĥ(m2) ,

(iii) ĥ(m1 · a) = a∗ · ĥ(m1) ,

for m1, m2, n ∈M and a ∈ A. If we consider M∗ as a right (left) module, ĥ is a homomorphism

of right (left) modules. A hermitian form on the left and right A-module M∗ defined as h−1 :

M∗ ×M∗ → A with h−1(ω1, ω2) = ω1

(
ĥ−1(ω2)

)
exists when ĥ is a bijection, we call h−1 the

inverse hermitian form of h.

Definition 1.17. Let M be a right (left) A-module and let h be a hermitian form on M. The pair

(M,h) is called a right (left) hermitian module. Consider ϕ : (M,h) → (M ′, h′) satisfying

h(m,n) = h′(ϕ(m), ϕ(n)) ∀ m,n ∈ M . If ϕ is also a module isomorphism then ϕ is called an

isometry and (M,h) and (M,h) are said to be isometric.

Definition 1.18. A module M is projective if whenever M is a quotient of a free module N, there

exist a module X such that N is isomorphic to M ⊕X.

Definition 1.19. If h is an invertible hermitian form on a finitely generated projective A-module

M, then (M,h) is called a regular hermitian A-module.
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Definition 1.20. Let (M,h) be a hermitian A-module and let ϕ : M →M be an endomorphism.

If h(ϕ(m), n) = h(m,ϕ(n)) ∀ m,n ∈M then ϕ is said to be orthogonal with respect to h.

Definition 1.21. Let A be a unital ∗-algebra, a derivation in A is a linear map ∂ : A → A that

satisfies the Leibniz’s rule, i.e., ∂(AB) = A∂(B) + ∂(A)B. The collection of all derivations in A

is called the algebra of derivations over A and it is denoted as Der(A).

Definition 1.22. Let A be a unital *-algebra, the complex *-closed vector space V ⊂ Der(A) is

the complexification of the real vector space VR with hermitian6 basis vectors. A Lie pair is the

pair (A, g) where A is a unital *-algebra and g is the Lie algebra over V . A Lie pair defines a

derivation based calculus Ω(A) over the algebra A.

In [45] one can find some proven theorems about regular hermitian modules. One of the

results we will use here claims that every regular hermitian module can be constructed as the image

of an orthogonal projection on a free module if the hermitian form h is invertible. Now we will

focus our attention on the geometry of Poisson manifolds in order to build a reasonable set of tools

that will allow us to develop a structure analogous to the Poisson geometry using the previously

defined algebras. These tools will help us to define surfaces in a non-commutative way and we will

start analyzing, as a simple example, the quantum minimal surfaces and its properties.

1.2 Poisson Algebraic Geometry

In the following we recall some standard definitions and constructions regarding Poisson geometrical

objects and minimal classic surfaces in order to finish this section analizing the example of non-

commutative minimal surfaces. We follow an standard exposition of these topics and we refer to

[34], [35] or any book on Riemannian geometry.

Using the definition 1.7 it is easy to see that the Poisson structure together with the

pointwise multiplication makes the vector space of smooth functions on M a Poisson algebra.

In this setup, derivations correspond to the Hamiltonian vector fields Xf (g) = {f, g} which are

related to the classical Hamiltonian function. It’s well known that the geometry of surfaces can

be expressed via Poisson brackets and all the information gathered by these means can be related

to the non-commutative geometry and help to define these new objects (see [36] and [37] for a

comprehensive exposition of these topics). Following this strategy we will show some geometrical

properties of Poisson algebras. Let Σ be a 2-dimensional manifold with ambient coordinates ui

6We say that a set S ⊂ Der(A) is *-closed if ∀ ∂ ∈ S ⇐⇒ ∂∗ ∈ S where ∂∗(f) =
(
∂(f∗)

)∗
for f ∈ C∞(A). A

derivation is hermitian if ∂ = ∂∗
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embedded in Rn through the embedding coordinates xµ(ui), with Latin letters taking value in 1, 2

and Greek letters taking value in 1, ..., n. The induced metric takes the following form

gab =

n∑
µ=1

(∂ax
µ)(∂bx

µ) . (1.16)

We introduce a Poisson bracket {− , −} : C∞(Σ)× C∞(Σ) −→ C∞(Σ) for an arbitrary density

function ρ and f, g ∈ C∞(Σ)

{f, g} = ϵab

ρ
(∂af)(∂bg) , (1.17)

where ϵab is the usual 2D Levi-Civita symbol. We also define the Poisson bivector θab = 1
ρϵ

ab and

γ =
√
g/ρ, for g being the determinant of the induced metric. This gives us a way of expressing

the inverse of the metric as gab = (1/γ2)θacθbdgcd since gacϵ
abϵcd is just the cofactor expansion of

the inverse of the metric. The geometry of the sub-manifold Σ ⊂ Rn can be obtained from the

definition of the projection operator P : TRn −→ TΣ, for X ∈ TRn and TΣ ⊂ TRn, which can

be written as

Pµ(X) =
1

γ2
{xµ, xν}{xα, xν}Xα , (1.18)

where the Einstein summation convention is implied. The projective property can be easily seen

by calculating

Pµ(X) =
1

γ2
θabθcd(∂ax

µ)(∂bx
ν)(∂cx

α)(∂dx
ν)Xα =

1

γ2
(θabθcdgbd)(∂ax

µ)(∂cx
α)Xα ,

= gac(∂ax
µ)(∂cx

α)Xα ,

and from this expression we get to the following

Pρ(P(X)) = gef (∂ex
ρ)(∂fx

µ)
(
gac(∂ax

µ)(∂cx
α)Xα

)
= gefgfag

ac(∂ex
ρ)(∂cx

α)Xα = Pρ(X) ,

showing that this is indeed a projector. In this setting the Laplace-Beltrami operator on Σ for

some f ∈ C∞(Σ) is

∆(f) =
1

γ

{
1

γ
{f, xµ}, xµ

}
, (1.19)

and we can show that the definition above is equivalent to the usual ∆(f) = 1√
g∂a

(√
ggab∂bf

)
by

direct inspection

∆(f) =
1

γ
θab∂a

(θcd
γ

(∂cf)(∂dx
µ)(∂bx

µ)
)
=

1
√
g
∂a

(ϵab
γ
θcdgbd(∂cf)

)
,

=
1
√
g
∂a

(ρ
γ
θabθcdgbd(∂pf)

)
=

1
√
g
∂a

(
ργgac∂cf

)
=

1
√
g
∂a(
√
ggac∂cf) .

Now that we have defined in a more concrete manner how we can construct a surface from their

Poisson structure we now define what is a minimal surface. Classically, surfaces that have zero mean

curvature at every point are called minimal surfaces and one of its properties is that they minimize

the area functional. In our setting, we can characterize minimal surfaces by the fact that their

embedding coordinates, viewed as functions, belong to the Kernel of the Laplace operator ∆ on Σ.
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For some local conformal coordinates7 u1, u2 satisfying {u1, u2} = 1 and for xµ ∈ ker(∆) ∀ µ = 1, n

every set of embedding coordinates satisfy

∆(f) =
1

η(u1, u2)

{
{{f, ua}δab, ub}

}
=

1

η(u1, u2)

(
{{f, u1}, u1}+ {{f, u2}, u2}

)
, (1.20)

Another classical way to define minimal surfaces is using the fundamental forms. When evaluating

the length of a element w ∈ TΣ one can use the induced inner product from R3, then the first

fundamental form I for u1 = u and u2 = v is given by

E = ⟨∂uX(u, v) , ∂uX(u, v)⟩ ,

F = ⟨∂vX(u, v) , ∂uX(u, v)⟩ ,

G = ⟨∂vX(u, v) , ∂vX(u, v)⟩ ,

(1.21)

where X(u, v) defines the parametric surface in R3. The coefficients of the second fundamental

form II,

e = ⟨∂2uX(u, v) , N(u, v)⟩ ,

f = ⟨∂u∂vX(u, v) , N(u, v)⟩ ,

g = ⟨∂2vX(u, v) , N(u, v)⟩ ,

(1.22)

with N(u, v) = ∂uX(u,v) ∧ ∂vX(u,v)
|∂uX(u,v) ∧ ∂vX(u,v)| being the normal. Upon recalling the definition of mean

curvature in terms of the first and second fundamental forms, which is H = gE−2fF+eG
2(EG−F 2) , the

equation H = 0 implies that the coefficients of the fundamental forms must satisfy

eG− 2fF + gE = 0 , (1.23)

for all points in the surface. Now that we recalled some properties of minimal surfaces we intend

to construct a non-commutative algebra containing the generators U, V in order to define an non-

commutative minimal surface. The strategy we are employing here will be the following: i) We will

define a Weyl algebra and its field of fractions for some generators U, V satisfying [U, V ] = iℏ1 for

some constant ℏ that measures the non-commutativity of the surface; ii) we will introduce a module

structure in order to replicate the main properties of a tangent space over this non-commutative

manifold. Now we proceed to the next sections to apply this strategy.

1.3 Non-commutative Minimal surfaces

The classical theory of minimal surfaces can be developed, with some modifications, in the non-

commutative set-up by relating all classical quantities to the new ones defined in a free8 module

7We say a set of coordinates is conformal if the metric can be written as gab = η(u1, u2)δab for some strictly

positive function η(u1, u2). One can always find such coordinates locally for any surface. From now on we will

denote ∆0 = η(u1, u2)∆ = {{xµ, u1}, u1}+ {{xµ, u2}, u2}.
8Since Fℏ was extended to a division ring, it suffices to consider a linearly independent generating set as a basis

to promote the direct product of n copies of Fℏ to a free module.
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over Fℏ. Consider the canonical basis on Fm
ℏ as

En = (0, ..., 0, 1, 0, ..., 0) (1.24)

in which the m-th element is non-zero. Returning to the example where the Weyl algebra is

constructed over a ring of polynomials in Wℏ, we can consider the following set of monomials as a

basis

S = {Xα∂β |α, β ∈ Nm} . (1.25)

In this case, any non-zero element in the free module Fm
ℏ generated by m copies of Fℏ can be

written in a unique way as the finite sum

A =
∑
α, β

aαβX
α∂β , (1.26)

as a consequence, the left action of an element A ∈Wℏ is

A(f) =
∑
α, β

aαβ

m∏
i=1

Xαi

m∏
j=1

∂βj (f) . (1.27)

It is easy to see that any linear differential operator can be written uniquely using the basis S in

the free module Fm
ℏ . If we assume, for example, that Φsol(X) ∈ P (Xi) is the solution of a system

of linear partial differential equations

Sys =


A1(Φ) = 0

...
...

An(Φ) = 0

(1.28)

then one can assert that Φsol belongs to the left ideal generated by Ai.

Now that we have seen an concrete example of this formalism, we can continue introducing

additional features to Fm
ℏ . One can extend the action of the derivative operator as

∂U (K) = ∂U (K
i)Ei , (1.29)

for K ∈ Fm
ℏ and the same holding to ∂V . We can also introduce a symmetric bi-linear form

⟨
−→
A,
−→
B ⟩ = 1

2

m∑
i=1

(AiBi +BiAi) , (1.30)

for
−→
A,
−→
B ∈ Fm

ℏ and we will use this arrow notation for any element of this space. One can easily

show that

∂U ⟨
−→
A,
−→
B ⟩ = 1

iℏ
[⟨
−→
A,
−→
B ⟩, V ] =

1

iℏ
⟨[Ai, V ]Ei,

−→
B ⟩+ 1

iℏ
⟨
−→
A, [Bi, V ]Ei⟩ , (1.31)

which means that this bi-linear form obey the Leibnitz rule for the derivative operator. Keeping

the analogy between the classical and the non-commutative setting, we shall introduce the non-

commutative minimal surfaces.
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Definition 1.23. A hermitian element
−→
A ∈ Fm

ℏ is called a non-commutative minimal surface if

∆0(A
i) = 0 for i = 1,m

⟨∂U
−→
A, ∂U

−→
A ⟩ = ⟨∂V

−→
A, ∂V

−→
A ⟩ and ⟨∂U

−→
A, ∂V

−→
A ⟩ = 0 .

(1.32)

If we denote E = ⟨∂U
−→
A, ∂U

−→
A ⟩, F = ⟨∂U

−→
A, ∂V

−→
A ⟩ and G = ⟨∂V

−→
A, ∂V

−→
A ⟩, the second

relation in (1.28) is analogue to the definition of an isothermal surface9 which means that it is

the non-commutative analogue of a conformal parametrization. Sometimes the action of the free

module Fm
ℏ over some vector space will not preserve this space, and the successive action of

elements of Fm
ℏ will not be well defined, to avoid some trouble concerning this fact we define a

new non-commutative vector field Φ ∈ Fm
ℏ as

Φ = ΦiEi = 2∂(Ai)Ei =
(
∂U (A

i)− i∂V (Ai)
)
Ei (1.33)

which satisfies the following relations

⟨Φ, Φ⟩ = E − G − 2iF ,

⟨Φ, Φ⟩ = 0 if and only if E = G and F = 0 ,

Φ is r-holomorphic −→
−→
A is minimal.

(1.34)

These relations follow easily from the direct computation of the bi-linear form (1.30)

using (1.33) and the last assertive follows from the fact that ∆0(Φ) = 4∂
(
∂(Φ)

)
= 2∂(Φ) = 0

since Φ is r-holomorphic. To finish this section we will apply this formalism to the case of the

non-commutative catenoid.

1.3.1 The non-commutative Catenoid

Let V be the vector space of infinite sequences of complex numbers, with canonical basis vectors

denoted by |N⟩ with N ∈ N0. The element X ∈ V , with AK ∈ C, is written as

A =
∑

K∈N0

AK · |K⟩ . (1.35)

The subspace V0 ⊂ V of finite linear combinations of |K⟩’s will be defined as the domain of the

space of linear endomorphisms of V , denoted by L(V, V0). Now we introduce two operators10 that

9In classical differential geometry we say a surface is isothermal if E = G = α2 and F = 0 for some real smooth

function α(u, v). In this case the parameters (u, v) are also called isothermal. The isothermal parametrization is also

called conformal because it preserves angles. Another important result from classical differential geometry is that if

a parametrized surface S is isothermal then ∆S = 2α2(u, v)H|
−→
N (u, v)|, since in Def(1.8) we impose ∆0(Ai) = 0 it

is straightforward to see that these two conditions imply that H = 0 and the surface is minimal.
10It is clear that they define the usual ladder operators if we divide them by

√
2ℏ.
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leave the V0 invariant under their left action

ΛN =
√
2ℏN |N − 1⟩ ,

Λ†N =
√
2ℏ(N + 1)|N + 1⟩ , with Λ† = Λ∗ .

(1.36)

Using complex coordinates (z, z∗) the classical catenoid can be parametrized as

x1 = ℜ(cosh z) ,

x2 = ℜ(−i sinh z) ,

x3 = ℜ(z) .

(1.37)

Using the analogy between the commutative and the non-commutative setting we set

X1 =
1

4

(
eΛ + e−Λ + eΛ

∗
+ e−Λ∗

)
,

X2 =
1

4

(
eΛ − e−Λ − eΛ

∗
+ e−Λ∗

)
,

X3 =ℜ(Λ) = 1

2
(Λ + Λ∗) ,

(1.38)

for Xi ∈ L(V, V0) with i = 1, 3. Now, it suffices to verify if this set of operators satisfy (1.36)

to show that they define a minimal surface. To calculate ∆0(
−→
X ) we use the equations (1.13) and

(1.14) to show that, for λ ∈ C

∂(eλΛ)|N⟩ = 1

2ℏ
[eλΛ,Λ∗]|N⟩ = 1

2ℏ

∞∑
i=0

λk

k!
[Λk,Λ∗]|N⟩

=
λ

2ℏ

∞∑
i=1

λk−1

(k − 1)!
Λk−1[Λ, Λ∗]|N⟩ = λeλΛ|N⟩ ,

∂(eλΛ)|N⟩ = 0 .

(1.39)

Similar calculations can be done for the derivatives ∂ and ∂ applied to eλΛ
∗
which gives ∂(eλΛ

∗
)|N⟩ =

0 and ∂(eλΛ
∗
)|N⟩ = λeλΛ

∗ |N⟩. Since ∆0(A) = 4∂∂(A) we can calculate the Laplacian for each

component Xi

∆0(X
1) = ∂∂

(
eΛ + e−Λ + eΛ

∗
+ e−Λ∗

)
= 0 ,

∆0(X
2) = −i∂∂

(
eΛ − e−Λ − eΛ

∗
+ e−Λ∗

)
= 0 ,

∆0(X
3) = 2∂∂ (Λ + Λ∗) = 0 .

(1.40)

The last result implies that ∆0(X
i) ∈ ker(L(V, V0)). Now the last step is to show that E = G and

F = 0, but we must be careful since X1 and X2 don’t leave V0 invariant11 so their composition is

not well defined. In this case an equivalent approach is to show that ⟨Φ, Φ⟩ = 0. First we calculate

Φ|N⟩ = 2∂(
−→
X )|N⟩ = 1

2

(
eΛ − e−Λ, −i(eΛ + e−Λ), 2 · 1

)
|N⟩ , (1.41)

11This is a direct consequence of the action of eΛ
∗
on |N⟩ generating an infinite sequence of complex numbers

eΛ
∗
|N⟩ =

∞∑
i=0

√
(N + i)!

N ! (i! )2
|N + i⟩ ,

which clearly doesn’t belong to V0.
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as expected e±Λ ∈ End(V0) and the expression ⟨Φ, Φ⟩ = 0 is well defined and yields that
−→
X defines

a non-commutative minimal surface.

In the next chapter we will recall the most relevant properties of the AdS surface and

introduce the AdS/CFT correspondence, exploring the commutative case and giving some results

we found in recent papers regarding to the non-commutative setting. In chapter 3, we attempt

to construct a non-commutative generalized surface in a similar way by defining a unique metric

and a torsion-free connection that preserves the complex structure of this generalized space, by

this time two natural questions arise from this context. Firstly, given the well known classical

commutative limit, which can be achieved by taking ℏ → 0, will the commutative differential

geometric equations yield the same results? Secondly, what are the implications, from a physical

perspective, of the non-commutative corrections that will follow from this new setting? We choose

to start with the AdS2 given the latest results achieved in [4], [6], [7], [18] and [41] aiming to find a

suitable quantum metric for the non-comutative AdS2. Lastly we will perform a detailed analysis

of the full Riemannian Geometry of ncAdS2 following the aforementioned setup, comparing them

with the results obtained in [1-3].
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2 The AdS2 and its Quantization Schemes

In this chapter we follow a straightforward way to present the theoretical prerequisites to our work.

We start by stating the most important properties of the AdS space and we briefly present the

importance of the non-commutative geometry in the process of quantization. We will also discuss

the underlying reasons that lead us to choose AdS as the targeted surface for applying the prescrip-

tion we will use to define the geometrical objects of a surface. In this chapter, we will explore the

existing attempts in the literature to construct non-commutative AdS using alternative strategies,

and we will employ these outcomes as a point of comparison between established literature and

the novel proposition introduced by my thesis.

2.1 AdS Spacetime

Anti-deSitter spacetime is a non-compact, maximally symmetric spacetime with constant negative

curvature. By maximally symetric, we mean that it has the maximal number of symmetries for

d+1 dimensions, from now on, we will call it AdSd+1. The AdSd+1 has 1
2 (d+1)(d+2) symmetries,

that is the same number of the flat spacetime symmetries related to (d+ 1) translations, d boosts

and 1
2d(d− 1) rotations. Usually we study (d+1)-dimensional AdS spaces because the CFT dual

of AdSd+1 have d spacetime dimensions. In our work we will focus our attention in the d = 1 case

and the reason for this is that the geometry of AdS2 is distinct because it has two disconnected

time-like boundaries which brings more layers of complexity to the analysis, another fact is that it

is possible to construct a quantum version of AdS2 which preserves the isometry group SO(2, 1)

(for instance see [26]) and retaining some useful notions from the commutative case as the notion

of boundaries, vector fields and so on. We also have that the CFT1 is realized as the de Alfaro-

Fubini-Furlan model (dAFF)12 or could be constructed as a matrix quantum mechanics making

the CFT side of the correspondence more tractable.

In the general case, the AdS space-time is a solution to Einstein’s equations with negative

cosmological constant. There are a variety of coordinate systems for it and they satisfies the

equation of the hyperboloid

XAX
A = X2

0 +X2
d+1 −

d∑
n=1

X2
n = ℓ2 . (2.1)

12For more information about this well known model see [22].
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It can be embedded in a (d+ 2)-dimensional space as

X0 = ℓ
cos(t)

cos(r)
,

Xd+1 = ℓ
sin(t)

cos(r)
,

Xn = ℓ
sin(r)

cos(r)
Ω̂n ,

(2.2)

this embedding defines the Minkowskian AdSd+1 which has the following metric

ds2 =
1

cos2
(
r
ℓ

) (dt2 − dr2 − sin2
(r
ℓ

)
dΩ2

d−1

)
. (2.3)

Here, ℓ is the length scale, which will be chosen in a convenient way in order to make the measure-

ments of the energies be in the right scale, that is, unless specified diferently we are taking from

now ℓ = 1, r is the radial coordinate r ∈ [0, π2 ), while t ∈ (−∞,∞) and the angular coordinate Ω

defines a (d− 1)-dimensional sphere Sd−1.

The Euclidean AdS and the Euclidean conformal group which is SO(d + 1, 1) can be

better studied in this embedding space

X2
0 −

d+1∑
j=1

X2
j = ℓ2 . (2.4)

When we consider the global coordinates, the t term of the metric (2.3) changes the sign and it will

just swap the trigonometric functions for the hyperbolic trigonometric ones in the global mapping

(2.2), giving for τ = it

X0 = ℓ
cosh(τ)

cos(r)
,

Xd+1 = ℓ
sinh(τ)

cos(r)
,

Xn = ℓ
sin(r)

cos(r)
Ω̂ .

(2.5)

This embedding defines the Euclidean AdSd+1. There is a coordinate system that makes the d-

dimensional Poincaré subgroup of the conformal group clear and manifest, we call it Poincaré Patch

(PP). The relation between the Euclidean, Poicaré patch and global coordinates, respectively, is

X0 =
z2 + xixi + ℓ2

2z
= ℓ

cosh(τ)

cos(r)
,

Xd+1 =
z2 + xixi − ℓ2

2z
= ℓ

sinh(τ)

cos(r)
,

Xn =
ℓ

z
xi = ℓ

sin(r)

cos(r)
Ω̂ ,

(2.6)

where x is a d-dimensional space vector, z runs from 0 to∞ and τ is the global ”time” coordinate,

this fix the signal of X0. From now on we will use the PP as our natural coordinate system and

we will set d = 1. In our work we used extensively two set of coordinates charts for the lower
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hyperboloid of AdS2, the canonical coordinates from [6] and the coordinalization defined in [5] by

Fefferman and Graham and we will refer to it as FG coordinates from now on. First we consider

the canonical coordinates (x, y) which satisfy the Poisson bracket {x, y} = 1 and can be explicitly

defined as

X0 =− y,

X1 =− 1

2ℓ
y2e−x + ℓ sinh(x) ,

X2 =− 1

2ℓ
y2e−x − ℓ cosh(x) ,

(2.7)

for (x, y) ∈ R2. The concrete construction for FG coordinates is

X0 =− ℓt

z
,

X1 =− ℓ

2

(
z +

t2 − 1

z

)
,

X2 =− ℓ

2

(
z +

t2 − 1

z

)
,

(2.8)

for (z, t) ∈ R+ × R with the boundary in z = 0. The relation between these coordinates is given

by

x = − ln z and y = ℓ
t

z
. (2.9)

2.2 Non-Commutative Geometry and Quantization

The aim of non-commutative geometry is to reformulate geometrical structures of a manifold in

terms of an algebra of functions defined on it, generalize this commutative algebra to a non-

commutative one and then generalize the notion of the tangent and cotangent bundle in this

non-commutative setup. Following [8], [9] one can understand that in the transition to the non-

commutative setting the notion of a point is lost and this feature is manifested in non-relativistic

quantum mechanics since the Heisenberg uncertainty principle that makes the whole geometry

non-local. At length scales smaller than some fundamental length, the hypothesis that the ge-

ometry is based on a set of commuting variables is replaced by the rules of the non-commutative

geometry since it is impossible to localize a point. At early stages of quantum mechanics the scien-

tists considered the idea of replacing space-time by a lattice structure. This granular structure has

an intrinsic point to point spacing that could be interpreted as a small scale cut-off and this could

eliminate the UV divergences of quantum field theory. As proposed by Synder in 1947 [42], substi-

tuting the usual space-time coordinates by non-commutative ones makes it possible to transform

the ordinary geometry in some similar structure that retains its main geometrical properties, but

has the desirable features of a lattice structure while still remaining Lorentz invariant, which is a

remarkable result (not shared by lattice models). As an example, one could replace the phase-space
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coordinates xµ by generators of a non-commutative algebra which satisfy commutation relations

of the form

[Xµ, Xν ] = iβJµν , (2.10)

for some parameter β that ”measures” the non-commutativity of this algebra and Jµν being some

element of the algebra. Carrying the analogy with quantum mechanics now we impose that these

generators could be represented as hermitian operators acting on some Hilbert space H. Since

(2.10) holds, one cannot simultaneously diagonalize the coordinates Xµ which makes the notion

of a point ill-defined and following the quantum analogy, as the Bohr cells replace the classical

phase-space points, the classical geometry of the manifold is replaced by some kind of a fuzzy space-

time consisting of cells of volume of the order of (2πβ)2 depending on the units of Jµν and the

dimension of the space. As a concrete example consider a two-dimensional phase space described

by the coordinates (x, p). Upon the promotion of the classical coordinates to quantum coordinates

(X,P ), which are non-commutative by construction, one cannot measure simultaneously X and

P to some arbitrary precision, which means that we can think of this space divided in Bohr cells

of volume 2πβ. If we consider a classical phase-space with finite volume, the quantum analogue

of it would have a finite number of cells, and any function in such space could be represented as

a finite collection of numbers and could be denoted by a matrix. So the natural non-commutative

generalization of the algebra of functions over a two-dimensional phase-space with the restriction

in its total volume is the non-commutative algebra of matrices13.

Following the natural approach, one could use this non-commutative algebra as a tool for

quantization, and in this context we must analyze the alternatives for this type of quantization. The

standard formulation that uses operators in Hilbert space follows from a collective effort of some

of the most brilliant minds of the last century culminating in an axiomatization of the quantum

theory (see [13]) setting in stone the early rules for the quantization schemes hereafter. After these

early times other formalisms took place such as the path integral formulation and the phase-space

formulation, which we used extensively in our previous works and which is based on Wigner’s quasi-

probability distribution function in phase space, WF for short, and Weyl’s correspondence between

quantum operators and ordinary c-number phase-space functions. It relies on the star-product,

that was fully understood in [12] by Groenewold together with Moyal, which maps products of

operators that act in some Hilbert space to a non-commutative product of functions on the phase

space, giving an alternative procedure to achieve the quantization.

13See [8] for further concrete examples and applications of this formalism.
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2.2.1 The phase-space quantization

From the references [10] and [11] we can define the WF and construct the star product in a

convenient way, facilitating the quantization of some phase-space functions. This is related to the

formalism from our recent paper, which allowed to achieve the full construction of the quantum

AdS2. Now we start by defining the WF as

f(x, p) :=
1

2π

∫
dy ψ∗

(
x− ℏ

2
y

)
e−iypψ

(
x+

ℏ
2
y

)
, (2.11)

for ψ(x) some measurable function. If ψ(x) ∈ L2(R), i.e. if ψ is a Lebesgue square-integrable

complex-valued function on R satisfying |ψ|2= 1, obviously the WF is normalized∫
dp dxf(x, p) =

1

2π

∫
dy

∫
dp dx ψ∗

(
x− ℏ

2
y

)
e−iypψ

(
x+

ℏ
2
y

)
,

=

∫
dy dx ψ∗

(
x− ℏ

2
y

)
δ(y)ψ

(
x+

ℏ
2
y

)
,

=

∫
dx |ψ(x)|2= 1 .

(2.12)

In the classical limit as ℏ → 0, it reduces to the probability density in coordinate space.

The usual x- or p-projection leads to probability densities in momentum or coordinate space. WF

cannot be interpreted as a probability distribution, it is therefore a quasi-probability distribution

because it can assume negative values for an arbitrary open set in the phase-space, but it leads to

correct position and momentum probability distributions given by quantum mechanics, replacing

the wave-function in this formulation. It also provides the integration measure for functions on

phase space that represent classical quantities in general. These functions are associated to ordered

operators upon quantization through the Weyl’s correspondence.

The Weyl correspondence is the association of a quantum-mechanical operator W (g) in a

given ordering prescription to a classical c-number Fourier transformed function g(x, y) on phase-

space. This correspondence reads

W (g) = G(x, y) =
1

(2π)2

∫
dy dx dα dβ g(x, y) exp (iα(y− y) + iβ(x− x)) , (2.13)

where g(x, y) is the corresponding phase-space function, and x and y are the respective quantum

operators associated to x and y. The ordering prescription requires that an arbitrary operator

written as a power series of x and y be ordered in a completely symmetrized expression by use of

Heisenberg’s commutation relations, [x, y] = iℏ. Finally, Groenewold worked out how two classical

c-number functions f(x, y) and g(x, y) must compose in order to yield the product of operators

G and F:

GF =
1

(2π)2

∫
dα dβ dx dy exp(iα(y− y) + iβ(x− x))(f ⋆ g)(x, y) , (2.14)
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here ⋆ stands for the star product. This is the original definition of the star product and it enables

the formulation of quantum mechanics in the phase-space. The star product is an associative

pseudo-differential deformation of the ordinary product of phase-space c-number functions. It is

defined as

⋆ := exp

[
ih

2
(
←−
∂ x
−→
∂ y −

←−
∂ y
−→
∂ x)

]
. (2.15)

It can be written in an expanded form as

F (x, y) ⋆ G(x, y) =

∞∑
n=1

1

n!

(
iℏ
2

)n

ϵi1j1 . . . ϵinjn(∂i1 . . . ∂inF )(∂j1 . . . ∂jnG) , (2.16)

where i, j = 1, 2 for x1 = x, x2 = y and the matrices ϵij are the Levi-Civita symbols of rank

two. Since it involves exponential of derivatives, it can be easily evaluated through translation of

function arguments

F (x, y) ⋆ G(x, y) := F

(
x+

iℏ
2

−→
∂ y, y −

iℏ
2

−→
∂ x

)
G(x, y) . (2.17)

If one uses the Fourier representation of the star product as an integral kernel

F ⋆ G(x, y) =
1

(ℏπ)2

∫
dy′ dy′′ dx′ dx′′ f(x′, y′)g(x′′, y′′)

× exp

(
−2i

ℏ

(
y(x′ − x′′) + y′(x′′ − x) + y′′(x− x′)

))
.

(2.18)

If one needs to calculate multiple star products it is worthwhile to remember that the expres-

sion in the exponent is twice the area of the phase-space triangle determined by the points

(x, p), (x′, p′), and (x′′, p′′) which simplifies the calculation of the composition of star products.

2.3 The commutative AdS2/CFT1 correspondence - The massless, mas-

sive and interacting cases

Here we will follow our previous work and present this topic in a similar way (see [18]). The

AdS/CFT correspondence is a conjecture introduced by Juan Maldacena in 1997 which states

that a certain type II-B superstring theory on AdS5 × S5 is dual to a highly symmetric N = 4

super Yang-Mills theory in the large N limit. Maldacena demanded that in the ’t Hooft limit

coupling be large compared with r dependent term in the metric in units of string length, turning

the metric of a type II-B super-gravity into

ds2 =
r2

ℓ2
dt2 +

ℓ2

r2
dr2 + ℓ2dΩ2

5 . (2.19)

The form of the metric shows that near the horizon the supergravity solution is AdS5×S5 with the

lenght scale ℓ playing the role of the ”radius” of the five-sphere and the ’radius’ of AdS5. When
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analyzing the main features of this conjecture, we must consider firstly, that it is a strong-weak

coupling duality, secondly, that it is non perturbative in the string coupling and also in the Yang-

Mills coupling gYM and, lastly, it is a classical-quantum duality because classical supergravity is

conjectured to be dual to a quantum gauge theory (the corrections are suppressed by powers of

1/N , see [15]). The general correspondence formula is∫
e−iSAdS [ϕ]Dϕ0 =

〈
exp

∫
ddxO(x)ϕ0(x)

〉
, (2.20)

where O denotes the conformal primary operators14 on the boundary and the left integral is over

all fields whose the assymptotic boundary values are ϕ0. In the classical limit one can make the

saddle-point approximation and find that

SAdS [ϕ0] =WCFT [ϕ0] , (2.21)

where SAdS is the classical on-shell action of an AdS theory and WCFT is the effective action

given by minus the logarithm of the right hand side of (2.20). Since the AdS metric is divergent

on the boundary, one expect that the classical action is also divergent and in order to extract

any meaningful physical information from it one must renormalize the on-shell action by adding

counter terms which cancel the infinities, giving

SR =WCFT . (2.22)

Here SR stands for the renormalized on-shell action for AdS. Any field theory on the AdS space

has a corresponding counterpart on the CFT side. This includes gravity, as the boundary value

of gravitons couples to the energy-momentum tensor which is an standard feature of any CFT .

Thus, the AdS/CFT correspondence is an important tool for formulating non-trivial CFT ’s, as

well as extracting information about the physics on the AdS space.

We will follow the usual prescription for the AdS/CFT correspondence which is that

the connected correlation functions for operators O spanning the CFT are generated by the field

theory action on the asymptotical AdS space, in which the the fields ϕ0(t) are sources for the

operators O(t). Specifically we will follow some well-determined steps, i) Defining a suitable action

and extremizing it, ii) Using the AdS propagators to find regular solutions expressed in terms

of the boundary fields, iii) Substituting the aforementioned solutions in the action in order to

identify this with the generating functional of the n-point connected correlation functions for the

operators associated with the boundary fields, iv) Lastly, we will calculate the correlation functions

of interest. The first application of this prescription will be done for the massless scalar field.

14For a good overview of CFT ’s and all the background necessary to deeply understand the technical part of the

conjecture we refer to [15], [16] and [17].
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2.3.1 Massless Case

In this section and in the subsequent ones we will use the superscript (0) to refer to the commutative

scalar fields. We then have the massless scalar field denoted as Φ(0)(z, t) on the EAdS2 (Euclidean

AdS) and the following action

S[Φ(0)] =
1

2

∫ ∞

0

dz

∫ ∞

−∞
dt
[
(∂zΦ

(0))2 + (∂tΦ
(0))2

]
. (2.23)

Taking the variation of (2.23) and extremizing it with respect to the Dirichlet boundary conditions

δΦ(0)|z=0+= 0, one finds the field equation

□Φ(0) =
(
∂2z + ∂2t

)
Φ(0) = 0. (2.24)

We use the boundary-to-bulk propagator, the details in [14], to express the solution in terms of

the boundary15 field ϕ0(t)

Φ(0)(z, t) =
1

π

∫ ∞

−∞

zϕ0
z2 + (t− t′)2

dt′ . (2.25)

After the substitution of the solution (2.25) in the action (2.23) the only non-vanishing

term is the boundary one

S[Φ(0)[ϕ0]] = −
1

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
ϕ0(t)ϕ0(t

′)

(t− t′)2
. (2.26)

In order to apply the AdS/CFT correspondence, one should identify (2.26) with the generating

functional of the n-point correlation functions for the operator O for which ϕ0 is the source field.

We can summarize this prescription in the equation below〈
n∏

i=1

O(ti)

〉
=

n∏
i=1

δti

(
S[Φ(0)[ϕ0]]

) ∣∣∣∣
ϕ0=0

, (2.27)

where δti represents the action of the functional derivative with respect to the function ϕ0(ti). As

a trivial example, we have the two-point function

⟨O(t)O(t′)⟩ = δtδt′

[
− 1

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
ϕ0(t)ϕ0(t

′)

(t− t′)2

]
= − 1

2π

1

(t− t′)2
. (2.28)

Now we proceed to analyse the massive and interacting cases using a similar strategy.

2.3.2 Massive Case

For the free real massive scalar field we add the mass term to the action (2.23) to obtain a new

action

S[Φ(0)] =
1

2

∫ ∞

0

dz

∫ ∞

−∞
dt

[
(∂zΦ

(0))2 + (∂tΦ
(0))2 +

(
mℓ

z
Φ(0)

)2
]
. (2.29)

15Remember that the boundary value of the field is obtained by taking z → 0 satisfying ϕ0(t) = Φ(0)(0, t).
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Following the procedure applied in [7], [14] and [19] we find that the non-vanishing dom-

inant solution of (2.29) near the boundary z → 0+ is

Φ(0)(z → 0+, t) = z∆−ϕ0(t) , (2.30)

for ∆± = 1
2 ±

√
1
4 + (mℓ)2, satisfying the Breitenlohner-Freedman bound (see [20]) which comes

from the condition that the theory must be free of normalizable negative energy states granting

the theory some consistency. Using the boundary-to-bulk propagator we find the regular solutions

of (2.29)

Φ(0)(z, t) =
Γ(∆+)√
πΓ(ν)

∫ ∞

−∞
dt′
(

z

z2 + (t− t′)2

)∆+

ϕ0(t
′) , (2.31)

for ν =
√

1
4 + (mℓ)2. Substituting the solutions (2.31) into (2.29) we find the on-shell action

S[Φ(0)[ϕ0]] = −
∆+Γ(∆+)

2
√
πΓ(ν)

∫ ∞

−∞
dt′
∫ ∞

−∞
dt′′

ϕ0(t
′)ϕ0(t

′′)

|t′ − t′′|2∆+
, (2.32)

which is valid for any boundary point satisfying t′ ̸= t′′. Applying (2.27) for the two-point function,

we find that

⟨O(t′)O(t′′)⟩ = δt′δt′′

[
S[Φ(0)[ϕ0]]

]
= −∆+Γ(∆+)

2
√
πΓ(ν)

1

|t− t′|2∆+
. (2.33)

which is the 2-point function of the conformal field theory, for ∆+ the conformal dimension (see

[17]), note that if we set ∆+ = 1 which corresponds to the massless case we obtain (2.28). Now

we proceed to the interacting case.

2.3.3 Interacting case

In order to have a non-trivial n-point function for n > 2, we need to consider an interacting scalar

field. So, we add a cubic term to (2.29) to get

S[Φ(0)] =
1

2

∫ ∞

0

dz

∫ ∞

−∞
dt

[
(∂zΦ

(0))2 + (∂tΦ
(0))2 +

(
mℓ

z
Φ(0)

)2

+
2λ

3z2
(Φ(0))3

]
, (2.34)

for some real parameter λ. Extremizing the action yields the field equation(
□− (mℓ)2

)
Φ(0) = λ(Φ(0))2. (2.35)

Assuming the same asymptotic behavior of the massive case we use the boundary-to-bulk and

bulk-to-bulk propagators denoted as K(z, t; t′) and G(z, t; z′ t′) respectively to construct the

regular solutions. They are defined from the expressions below

Φ(0)(z, t) =

∫
R

dt′K( t; t′)ϕ0(t
′) ,

{
−
(
∂2z + ∂2t

)
+
(mℓ
z

)2}
G(z, t; z′, t′) = δ(z − z′)δ(t− t′) .
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From the equations above one can calculate the propagators (see [14])

K(z, t; t′) :=
Γ(∆+)√

πΓ(∆+ − 1
2 )

(
z

z2 + (t− t′)2

)∆

,

G(η) =
Γ(∆+)√

πΓ(∆+ − 1
2 )(2∆+ − 1)

(
η

2

)∆+

2F1

(
∆+

2
,
∆+ + 1

2
; ∆+ +

1

2
; η2
)
,

for η = 2zz′

z2z′2+(t−t′)2
. In the interaction case, the on-shell action has a bulk as well as a boundary

contribution and they will be denoted as

S[Φ0] = Sbdy + Sblk = −1

2

∫ ∞

−∞
dt Φ(0)∂zΦ

(0)
∣∣∣
z=0

+
λ

3

∫ ∞

0

∫ ∞

−∞

(
Φ(0)

z2/3

)3

dt dz . (2.36)

To proceed, we have to construct the regular solutions. aThis can be done only pertubatively in

the parameter λ. To the second order in λ, the result is (see [14] for details)

Φ(0)(z, t) =

∫ ∞

−∞
dt′ K(z, t; t′)ϕ0(t

′)

− λ
∫ ∞

0

∫ ∞

−∞

G(z, t; z′, t′)

z′2
dt dz

∫
R2

dt1dt2K(z′, t′; t1)K(z′, t′; t2)ϕ0(t1)ϕ0(t2)

+O(λ2) .

(2.37)

Plugging this in (2.36), we obtain a term that leads exactly to the two-point function (2.33) plus a

non-trivial contribution to the three-point function. Using (2.27), we finally obtain the three-point

function16

⟨O(t1)O(t2)O(t3)⟩ =
λΓ(∆+/2)

3Γ
(
(3∆+ − 1)/2

)
2πΓ(ν)3|t1 − t2|∆+ |t1 − t3|∆+ |t2 − t3|∆+

(
3∆+

2ν
+ 2

)
. (2.38)

2.4 The non-commutative AdS2/CFT1 correspondence

In this section we will review the results obtained in our previous paper and give all the background

needed to justify our new approach. We will follow the lines of [6] and [7], which are the main

references for this part of the work. In the non-commutative AdS/CFT correspondence, we will

replace the geometry on the gravity side of the correspondence by a non-commutative version of

the Euclidean AdS2 and by the general belief that the quasiclassical regime of quantum gravity

should appear as a QFT on some non-commutative background17, we will try to find some natural

quantum gravitational corrections due to non-commutativity of the background. Another point

of interest is to verify the claim that the AdS/CFT correspondence is exact and holds also at

the quantum level and this will be verified analyzing the non-commutative effects on the explicit

application of the prescription for the correspondence.

16All the details of this calculation can be found in [21].
17This belief is supported by multiple arguments, see [27] for instance.
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2.4.1 Euclidean AdS2 and its non-commutative analogue

We start with the canonical coordinates (x, y) defined in the section (2.1). Together with the

embedding (2.7) we introduce the Killing vectors that are written as

K0 = ∂x , K1 =
1

ℓ
e−xy∂x −X2∂y , K2 =

1

ℓ
e−xy∂x −X1∂y . (2.39)

These vector fields satisfiy the Killing equation LKg = 0 where LK is the Lie derivative with

respect to K and g is the metric for the EAdS2 given by

ds2 =
1

z2

(
dz2 + dt2

)
. (2.40)

These vector fields generate the SO(2, 1) isometry group. This can be seen either by the direct

calculation using (2.39) or by observing that in terms of the natural Poisson structure, where X

are the embedding coordinates. The action of any Killing vector on a function of X, ϕ(X), is given

by Kµ
(
ϕ(X)

)
= {Xµ, ϕ(X)} leading to the relations below

{Xµ, Xν} = ϵµνγXγ ,

[Kµ,Kν ] = ϵµνγKγ ,
(2.41)

where the curly brackets stands for the Poisson Bracket and the straight ones for the commutator

and the ambient metric tensor used to raise and lower the Greek indices is ηµν = diag(1, 1,−1),

giving XµXµ = (X0)2+(X1)2− (X2)2 = −ℓ2, for ℓ0 being some real scale parameter. So, as usual

the action of the Killing vector fields on the embedding coordinates is equivalent to the Poisson

bracket between them (KµXν) = {Xµ, Xν} = ϵµνρXρ. Another important fact to consider is that

when we take the boundary limit z → 0 of the Killing vector fields K± = K2 ± K1 denoted in

(2.39) we obtain the generators for the global conformal symmetries on the boundary18

K−|z=0= −∂t , K0|z=0= −t∂t , K+|z=0= −t2∂t . (2.42)

Following the usual procedure for quantization19 of Poisson manifolds, we replace the three em-

bedding coordinates Xµ by Hermitian operators20 on some Hilbert space, satisfying the analogues

of the equations in (2.41) and promoting Poisson brackets to commutation relations

X̂µX̂µ = −ℓ21 , [X̂µ, X̂ν ] = iαϵµνρX̂ρ , (2.43)

where α stands for the parameter that ’measures’ the non-commutativity (it has units of length).

To recover the commutative AdS2 we just take the commutative limit α → 0 and ℓ → ℓ0. We

introduce now a new operator that will be of great importance later in our work

r̂ = ẑ−1 =
1

ℓ
(X̂1 − X̂2) , (2.44)

18They generate respectively the translation, dilatations and special conformal transformations on the boundary

(see [17]).
19For more details about this straightforward method see [28] and [29].
20These new introduced operators defining the non-commutative AdS2 generate the so(2, 1) algebra.

35



this operator is the quantum analogue of the radial coordinate defined in section 2 and we will

obtain its spectrum and eigenfunctions in the following sections. In the classical case the boundary

of AdS2 is achieved by taking the coordinates to the limit r → ∞, i.e., z → 0, so in the non-

commutative theory the expectation value of r̂ is expected to become arbitrarily large as we

approach to the boundary and this limit will be very clear after we specify the Hilbert space of

our theory.

2.4.2 States and discrete series representation

The states of our theory belong to the unitary irreducible representations of the universal cover21

U
(
SU(1, 1)

)
, which are given by the principal, supplemental and discrete series representations22

and are usually labeled by two parameters ϵ0 and k. Taking as a basis the eigenvectors23 of X̂2,

defining X̂± = X̂1 ± iX̂0 and imposing that these eigenvectors are orthonormal we find that

X̂+|ϵ0, k,m⟩ = −α cm |ϵ0, k,m+ 1⟩ ,

X̂−|ϵ0, k,m⟩ = −α cm−1 |ϵ0, k,m− 1⟩ ,

X̂2|ϵ0, k,m⟩ = −α (ϵ0 +m) |ϵ0, k,m⟩ ,

X̂µX̂
µ|ϵ0, k,m⟩ = −α2 k(k + 1) |ϵ0, k,m⟩ ,

(2.45)

where the coefficient cm is ensuring the orthonormality of this eigenbasis

cm =
√
(k + ϵ0 +m+ 1)(ϵ0 − k +m) . (2.46)

It is clear from the action of the Casimir operator in the eigenbasis |ϵ0, k, m⟩ that k(k + 1) = ℓ2

α2

and one can trivially conclude that the commutative limit is obtained when k → ±∞. Now we

turn to the radial operator, one can easily calculate its expectation value

⟨ϵ0, k, m| r̂ |ϵ0, k, m⟩ = −
⟨X̂2⟩
ℓ

=
α(ϵ0 +m)

ℓ
, (2.47)

and it is clear by the last equation that the boundary of the non-commutative AdS2 space is

reached when we take m → ∞. Since we want to construct the EAdS2 we need ℓ ∈ R and from

[28] we conclude that the principal and supplemental series are not suitable24 for our analysis. For

the discrete series D±(k), k can be any negative number which implies that ℓ will be real and the

21The universal cover of a connected topological space A is a simply connected space B with a surjective projection

p : B → A that is locally a homeomorphism.
22See [30] for a detailed explanation and derivation of all representations.
23Here we will denote these eigenvectors as |ϵ0, k, m⟩ for m ∈ Z.
24The principal series has k = − 1

2
− iρ for ρ ∈ R implying that ℓ is imaginary. The supplemental series has

k ∈ R but it is constrained by k ∈
(
− 1

2
, 0

)
making again ℓ imaginary and since we cannot take k → ∞ this case

doesn’t have a commutative limit. Both cases correspond in some limit to the Lorentzian version of AdS2, and

purely quantum case.
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Casimir operator will be negative for any k < −1. Since both limits for k → ±∞ exists yielding the

EAdS2 in both cases we can define the series D± by the allowed values of m (positive or negative

integers) which are related to the two distinct hyperboloids of the EAdS2.

Using the main results and formulas of [31] we will apply the generalized Laguerre poly-

nomials to construct a differential representation for the embedding coordinates for the discrete

representations D±(k). Beginning with D+(k) and setting the lowest state as |−k, k, 0⟩, or

|k, 0⟩ for brevity, which is anihhilated by X̂− since we are assuming ϵ0 = −k > 0, we expand the

eigenvectors of the radial operator |r, k⟩+ in terms of the X̂2 eigenbasis

|r, k⟩+ =

∞∑
m=0

ψ+
k,m(r)|k,m⟩ . (2.48)

Writing the radial operator in terms of the raising and lowering operators

r̂ =
1

2ℓ
(X̂+ − X̂− − 2X̂2) , (2.49)

one can write the eigenvalue equation

r̂|r, k⟩ = 1

2ℓ
(X̂+ − X̂− − 2X̂2)|r, k⟩ = r|r, k⟩ . (2.50)

Using the equations (2.45) we get to the following

ℓr

α
ψ+
k,m(r) = −

√
(m+ 1)(m− 2k)ψ+

m+1(r)

−
√
m(m− 1− 2k)ψ+

m−1(r) + 2(k −m)ψ+
k,m(r) ,

(2.51)

which is the recursion relation for the generalized Laguerre polynomials for m > 0 if we make

ψ+
k,m(r) =

√
m!

(m− 2k − 1)!
L−2k−1
m

(
2ℓr

α

)
. (2.52)

The domain of the generalized Laguerre polynomials agrees with the restrictions of our theory

(r ≥ 0) and the boundary occurs at r →∞, this means that these representations picks one of the

boundaries of the commutative EAdS2.

We will find a differential representation for the quantum coordinates X̂µ. The orthogo-

nality conditions of Lα
m(x) read∫

R+

dx xβe−xLβ
m(x)Lβ

n(x) =
δn,m
m!

Γ(m+ β + 1) . (2.53)

Defining

Cm :=

√
m!

(m− 2k − 1)!
, (2.54)

and using (2.52) in (2.53) we get the following∫
R+

dr

(
2ℓ

α

)−2k

e−2ℓr/αr−2k−1
ψ+
k,m(r)

Cm

ψ+
k,n(r)

Cn
=
δn,m
m!

(m− 2k − 1)! . (2.55)
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We can rewrite the last expression as∫
R
dr u+k,m(r)u+k,n(r) = δm,n , (2.56)

where

u+k,m(r) =

(
2ℓ

α

)−k

e−ℓr/αr−k−1/2 ψ+
k,m(r) , (2.57)

is the orthonormal basis for L2(R+, dr). Finally to get a representation of the differential operator

D̂ = (r̂ − r) satisfying D̂ψ+
k,m(r) = 0 we must use the differential equation that defines the

generalized Laguerre polynomials

x
d2

dx2
Lβ
m(x) + (β + 1− x) d

dx
Lβ
m(x) +mLβ

m(x) = 0 . (2.58)

Upon a series of substitutions and and using x = 2ℓr/α and β = −2k−1 it is not hard to find that(
α(k + 1

2 )
2

2ℓr
+
ℓr

2α
+
α(m− k)

2ℓ
− d

dr

(αr
2ℓ

d

dr

))
u+k,m(r) = 0 . (2.59)

Now if we compare the eigenvalue equation (2.45) for X̂2 with (2.59) we conclude that this is the

differential representation πk of X̂2 on L2(R+, dr) simply by multiplying the equation (2.59) by

−α. To find the representations of the other operators lets calculate πk([r̂, X̂2])(
rπk(X̂2)− πk(X̂2)r

)
[ψ(r)] = πk([r̂, X̂2])[ψ(r)] , (2.60)

using [r̂, X̂2] = 1
ℓ [X̂

1, X̂2] = iα
ℓ we find that

α2

2ℓ

(
r
d

dr

[
r
dψ

dr

]
− d

dr

[
rψ + r2

dψ

dr

])
=
iα

ℓ
πk(X̂0)[ψ(r)] . (2.61)

which simplifies to

πk(X̂0) = iα

(
r
d

dr
+

1

2

)
. (2.62)

doing the same procedure for X̂1 using the commutator between X2 and X0 we finnaly obtain

πk(X̂2) = −α
2

2ℓ

(
(k + 1

2 )
2

r
+
ℓ2r

α2
− d

dr

(
r
d

dr

))
, (2.63)

πk(X̂1) = −α
2

2ℓ

(
(k + 1

2 )
2

r
− ℓ2r

α2
− d

dr

(
r
d

dr

))
. (2.64)

These operators act on L2(R+, dr), the space of square-integrable functions on the half real line.

Replacing r = ex we can recover the linear operators π̃(X̂µ) that act on L2(R, dx) spanned by

functions of the set {f(x) = ex/2ψ(ex)}. In terms of the self-adjoint operators x̂ and ŷ, that act

as x̂f(x) = xf(x) and ŷ = −iαf ′(x) clearly satisfying

[x̂, ŷ] = iα1 . (2.65)

Representing the operators X̂µ with respect to the new operators x̂ and ŷ acting on L(R, dx), we

have

π̃k(X̂0) = −ŷ , (2.66)
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π̃k(X̂1) = − 1

2ℓ
ŷex̂ŷ − α2

2ℓ
k(k + 1)e−x̂ +

ℓ

2
ex̂ , (2.67)

π̃k(X̂2) = − 1

2ℓ
ŷex̂ŷ − α2

2ℓ
k(k + 1)e−x̂ − ℓ

2
ex̂ . (2.68)

Since the operators x̂ and ŷ satisfy the canonical commutation relations they can be

mapped to their respective symbols on the Moyal-Weyl plane spanned by coordinates (x, y). This

mapping is an isomorphism and by the Weyl correspondence, the product of functions of the

operators FG(x̂, ŷ) is mapped to the star product on the Moyal-Weyl plane F(x, y)⋆G(x, y) defined

by (2.17) with α→ ℏ. The symbols of π̃k(X̂µ) are denoted by X µ and take the following form

X 0 = −y , (2.69)

X 1 = − 1

2ℓ
y ⋆ e−x ⋆ y − α2

2ℓ
k(k + 1)e−x +

ℓ

2
ex , (2.70)

X 2 = − 1

2ℓ
y ⋆ e−x ⋆ y − α2

2ℓ
k(k + 1)e−x − ℓ

2
ex . (2.71)

Of course, these functions satisfy the same defining relations of the embedding coordinates of

EAdS2 when mapping the usual point-wise product to the star product on the Moyal-Weyl plane.

X µ ⋆ Xµ = −ℓ2 , (2.72)

[X µ,X ν ]⋆ = X µ ⋆ X ν −X ν ⋆ X µ = iαϵµνρXρ . (2.73)

Clearly, taking α→ 0 we recover the point-wise product and, as explained before, the leading term

of the α expansion in the star commutator is the Poisson bracket for (x, y) coordinates. For some

calculations we will need to to introduce the non-commutative analogue of the FG coordinates, see

section 2.1. Starting with [x̂, ŷ] = iαÎ, we want to define new operators as functions of x̂ and ŷ in

parallel with (2.8) satisfying the ordering prescription as follows:

t̂ =
1

2ℓ

(
ŷe−x̂ + e−x̂ŷ

)
, ẑ = e−x̂ . (2.74)

We can calculate the commutator of the new operators using the fact that x and y are canonically

conjugate. One can easily find by induction

[x̂n, ŷ] = nx̂n−1[x̂, ŷ] , (2.75)

by expanding in Taylor’s series

[f(x̂), ŷ] =

[ ∞∑
n=1

∂nf

∂xn
x̂n−1iα

(n− 1)!
, ŷ

]
= iα

∂f

∂x
(x)
∣∣∣
x=x̂

. (2.76)

With this useful result, we can calculate the commutator of ẑ and t̂. Using [f(x̂), g(x̂)] = 0 we get

[ẑ, t̂] =
1

2l0
([e−x̂, ŷe−x̂] + [e−x̂, e−x̂ŷ]) = − iαẑ

2

ℓ
. (2.77)
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In order to verify if the mapping to the Moyal-Weyl plane preserves this commutator, we

must calculate the Moyal-commutator of the symbols z and t. Denoting as ⋆x,y the star product

for the canonical coordinates and ⋆z,t the transformed star product, one can calculate

[z, t]⋆x,y
(x, y) = z(x, y) ⋆x,y t(x, y)− t(x, y) ⋆x,y z(x, y) , (2.78)

applying the definition of the star product

[z, t]⋆x,y
(x, y) =

∞∑
n=1

1

n!

(
iα

2

)n

ϵi1j1 . . . ϵinjn(∂i1 . . . ∂in)e
−x(∂j1 . . . ∂jn)

(y
ℓ
e−x

)
, (2.79)

and calculating up to O(1)

[z, t]⋆x,y
(x, y) ≃ e−2xy − e−2xy = 0 , (2.80)

the term proportional to α is

[z, t]⋆x,y
(x, y) ≃ iα

2

[
∂x(e

−x)∂y

(e−xy

ℓ

)
+ ∂y

(e−xy

ℓ

)
∂x(e

−x)

]
= −e

−2xiα

ℓ
, (2.81)

the term proportional to α2 consist in products of two derivatives acting on z and t, clearly for

any y-derivative acting on z the respective term will be zero. Since all terms have at least one

y derivative on z, all of them are zero except the term that has two x-derivatives on z, but it’s

clear that ∂2yt(x, y) = 0. With this analysis, it’s clear that the only non-vanishing term of the

commutator is

[z, t]⋆x,y
(x, y) = −e

−2xiα

ℓ
= − iα

ℓ
z2 , (2.82)

which is equivalent to (2.77). One can easily write ⋆z,t in terms of (z, t) (see [18]). Up to O(α) the

result is

⋆z,t = 1− iα

2

(←−
∂zz

2−→∂t −
←−
∂tz

2−→∂z
)
+O

(
α2
)
. (2.83)

Now we proceed to construct the Killing vectors of the theory. From (3.21) the action of the

isometries of AdS2 on a scalar field can be obtained by taking the Poisson bracket of this field with

respect to the embedding coordinates. In the non-commutative case for a function Φ̂ the action of

the SO(2, 1) isometry group will induce an infinitesimal variation of the form

δncΦ̂ = ϵµ(K̂
µΦ̂) = iϵµ[X̂

µ, Φ̂] , (2.84)

for some infinitesimal parameter ϵµ. A natural step is map these Killing vectors to the Moyal-Weyl

plane. From now on, the functions without ∧ will denote the symbols of the Killing vectors. Then,

the equation above becomes

δncΦ = ϵµ(K
µ
⋆Φ) = iϵµ[X µ,Φ]⋆ , (2.85)

where (Kµ
⋆Φ) is the symbol of (K̂µΦ̂). Following some straightforward calculations (see [18]) we

get to the deformed Killing vectors

K−
⋆ = −ℓex∆y , K0

⋆ = ∂x

K+
⋆ =

e−x

ℓ

(
2y∂xSy +

(
y2 + ℓ2 +

α2

4
(1− ∂2x)

))
,

(2.86)
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for

∆yΦ(x, y) =
2

α
sin
(α
2
∂y

)
Φ(x, y) ,

SyΦ(x, y) = cos
(α
2
∂y

)
Φ(x, y) .

(2.87)

In the commutative limit, these differential operators agree with (2.39) and they indeed satisfy

the so(2, 1) algebra. K0
⋆ is the same as K0, while the others are deformations containing infinite

polynomials in ∂y. Writing the equations above in terms of FG coordinates we get

K−
⋆ = − ℓ

z
∆t , K0

⋆ = −t∂t − z∂z

K+
⋆ = −2t(t∂t + z∂z)St +

ℓ

z

(
t2 +

(
1 +

α2

4ℓ2

)
z2

)
∆t −

α2z

4ℓ
(t∂t + z∂z)

2∆t .

(2.88)

In the near boundary limit, z → 0+, (2.88) gives exactly the commutative expressions

for the conformal generators (2.41). This shows that the ncAdS2 is asymptotically AdS2. Now we

may try, in principle, to apply the AdS/CFT correspondence. In the next sections we will explore

briefly the massless, massive and interacting non-commutative scalar fields, since these cases are

deeply discussed in [4], [6], [7] and [18] we will not derive all equations and just proceed to analyse

the main results of these papers.

2.5 The non-commutative correspondence - Massless case

We obtain the field equation from the action principle imposing Dirichlet boundary conditions25.

By writing the commutative action in terms of Poisson brackets we get

S[Φ(0)] =
1

2ℓ

∫
AdS2

dµ{XµΦ(0)}{XµΦ
(0)} , (2.89)

where dµ is the invariant integration measure on AdS2. In our current work we will give a direct

proof that the natural generalization of the action written above is given by

Snc[Φ̂] =
1

2ℓ
Tr[X̂µ, Φ̂][X̂µ, Φ̂] , (2.90)

where Tr denotes the trace operation. Mapping this action to the Moyal-Weyl plane gives

Snc[Φ] =
1

2ℓα2

∫
R2

[X µ,Φ]⋆ ⋆ [Xµ,Φ]⋆dx dy . (2.91)

Now we choose the set of coordinates in which the action above will be written. As we discussed

above in the FG coordinates, as one approaches the boundary, the Lagrangian loses all the non-

commutative corrections26 but retains a scaling factor in the coordinate t

Lnc|z→0= k(α)2(∂tΦ)
2 + (∂zΦ)

2 , (2.92)

25This can be done because it is proven that there isn’t any non-commutative correction to the boundary term

from the variations of the action (see [6] and [7]).
26This can be easily seen by noting that ∆tΦ → z

ℓ
∂tΦ|z=0 and StΦ → Φ|z=0.
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for k(α) =
√
1 + α2

4ℓ2 . This k(α) term will reappear from various different considerations through

our study and its meaning will be clear after some insightful considerations. From now it suffices to

see that Φ satisfies the equation for a massless scalar field on an asymptotically AdS2 space. Upon

taking the variation of the action all the boundary terms vanish (see [6]) and the field equation in

the bulk reduces to

[X µ, [Xµ,Φ]⋆]⋆ = 0 . (2.93)

The first result we analyze can be found in [6], after applying some standard techniques to solve

the field equations up to the leading order in O(α2) and after the application of the prescription

for the AdS2/CFT1 correspondence the conclusion is that the n-point correlation functions of

quantum mechanical operators O(t) on the one-dimensional boundary remain conformal and just

get rescaled, at least in the leading order in α2. For the two-point function we get

⟨O(t)O(t′)⟩ = − 1

π

(
1 +

α2

8ℓ2

)
1

(t− t′)2
+O(α4) . (2.94)

Moreover, in a subsequent paper (see [4]) the authors of [6] find an exact solution to the field

equations by quantizing the expressions of the coordinates27 z and t in terms of the embedding

coordinates Xµ as shown below

ẑ = (X̂2 − X̂0)−1 , t̂ = −1

2
[ẑ, X̂1]+ . (2.95)

where [−,−]+ stands for the anti-commutator. They also conclude that the appearance of the

non-trivial deformation factor k(α) is of utmost importance for the consistency of the algebraic

relations defining the isometries of the embedding coordinates. This factor can be derived also

by the use of the approach presented further, which relies on a completely different formalism to

achieve the construction of the quantum AdS2 surface. Following [4] and applying the prescription

of the correspondence one can show

⟨O(t)O(t′)⟩ = −k(α)
π

1

(t− t′)2
= − 1

π

(
1 +

α2

8ℓ2

)
1

(t− t′)2
+O(α4) . (2.96)

which completely agrees28 (up to order α2) with the results obtained in [6], [7] and [18].

27In [4] the authors use a different signature for the ambient metric tensor ηab which is diag(−, +, +). This

detail doesn’t change any important fact since the groups SO(2, 1) and SO(1, 2) are isomorphic, but it changes signs

in some equations and could be rather cumbersome to find such small differences in both works.
28One should note that there is a small mistake in the derivation of the two-point function in [6] which is addressed

in [7].
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2.6 The non-commutative correspondence - Massive case

One of the key features of the approach is that we are interested in preserving all isometries29 of

AdS2 undeformed, i. e. when making the transition to the non-commutative setup we want to

keep all so(2, 1) isometries untouched and this is important since it allows us to aim at a purely

algebraic approach. In [7] we start by the natural assumption that the action can be written as

Snc[Φ̂] = −
1

2ℓ
Tr
{
[X̂µ, Φ̂][X̂µ, Φ̂]− (αℓm0Φ̂)

2
}
, (2.97)

where m0 stands for the mass of the scalar field and we assume that the mass doesn’t undergo any

deformation in the quantization process. Upon quantization the field equation obtained from the

variation of the action is

Kµ
⋆K⋆µΦ :=

1

α2
[X µ, [Xµ, Φ]⋆]⋆ = (m0ℓ)

2Φ . (2.98)

These non-commutative Killing vectors are exactly the ones in (2.88) and, as we know, they

preserve the so(2, 1) symmetry and two of them get deformed on passing to the quantum case.

In order to simplify finding perturbative (first order in α2

ℓ2 ) solutions to the field equation we

constructed an operator U(α) which maps the set of commutative Killing vectors on its non-

commutative counterpart modulo some corrections (see [7]). After writing the field equation in

terms of FG coordinates and doing the similarity transformation U(α)LU−1(α) where L is the

non-commutative Laplacian, we get the following(
L(0) − α2

8ℓ2
z4∂4t +O

(α4

ℓ4

))
ΦU (z, t) = (mℓ)2ΦU (z, t), (2.99)

where L(0) is the commutative Laplacian and ΦU (z, t) = U(α)Φ(z, t) is the transformed scalar

field. Using some of the results from [32] and using some facts already used in the massless case

the on-shell action takes the following form

Snc[Φ[ϕ0]] =−
1

2

(
1 +

3α2

32ℓ2

)∫
R3

dt dt′ dt′′KU
nc(z, t; t

′)∂zK
U
nc(z, t; t

′′)|z=0ϕ0(t
′)ϕ0(t

′′)

+ O
(α4

ℓ4

)
,

(2.100)

where KU
nc is the non-commutative boundary-to-bulk propagator defined as

KU
nc(z, t; t

′) = UKnc(z, t; t
′) .

In order to find the two-point function one must expand it in powers of
(
α
ℓ

)2
⟨O(t)O(t′)⟩ = ⟨O(t)O(t′)⟩(0) + α2

ℓ2
⟨O(t)O(t′)⟩(1) +O

(α4

ℓ4

)
, (2.101)

29Since all the derivations done in [6] and [7] are carried over perturbative methods one could argue that all

the findings are just artifacts coming from the first order approximations. By assuring that the full symmetries go

undeformed after the quantization we can suppose that might exist a way of constructing exact solutions for this

problem, and this is done in [4] as discussed before.
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and in order to determine the first order correction we can evaluate all the integrals coming from

the on-shell action (see [33] for some additional techiniques). Finally we find that

⟨O(t)O(t′)⟩(1) = Γ(∆+)

32
√
πΓ(∆+ − 1

2 )

{
8

3

(
∆2

+ −
1

4

)(
∆+ −

3

2

)
− 3∆+

}
1

|t− t′|2∆+
, (2.102)

and for the special case of a massless scalar field we have ∆+ = 1 which reduces the equation above

to

⟨O(t)O(t′)⟩(1) = − 1

8π

1

|t− t′|2
, (2.103)

in conformity with (2.96).

2.7 The non-commutative correspondence - Interacting case

Now we analyze the correspondence for the interacting case and the first step to achieve this goal

is to generalize the equation (2.34). Using our standard strategy and after mapping the trace to

the integral on the Moyal-Weyl plane, we find that the non-commutative interacting action is

Snc[Φ] = −
1

2ℓα2

∫
R2

dx dy
{
[X µ,Φ]⋆ ⋆ [Xµ,Φ]⋆ − (αℓm0)Φ ⋆ Φ− 2

3
α2λΦ ⋆ Φ ⋆ Φ

}
(2.104)

which gives the following field equation

LΦ− (ℓm)2Φ = λΦ ⋆ Φ . (2.105)

We already solved the free commutative (and non-commutative) theory given by λ = 0, now we

apply the same perturbative procedure assuming that λ is small and substituting the commutative

Green’s functions by their non-commutative analogues. For the non-commutative boundary-to-

bulk and bulk-to-bulk propagators we have for K(z, t; t′) the commutative propagator

Knc(z, t; t
′) = KU

nc(z, t; t
′) +

α2

ℓ2
Dz,tK(z, t; t′) +O(α4) ,[

(ULU−1 − (ℓm)2)
]
GU

nc = −z2δ(z − z′)δ(t− t′)
(2.106)

for Dz,t =
z2

96 (9+ 4t∂t +6z∂z)∂
2
t +

3
32z∂z and the bulk-to-bulk propagator is determined perturva-

tively as a solution of the differential equation denoted above. The perturbative solution for Φ of

first order in λ is

Φ(z, t) =

∫
R

Knc(z, t; t
′)ϕ0(t

′)dt′ − λ
∫
R3×R+

dz′dt′dt1dt2
z′2

U−1
z,tG

U
nc(z, t; z

′, t′)Uz′,t′

× [Knc(z
′, t′; t1) ⋆ Knc(z

′, t′; t2)]ϕ0(t1)ϕ0(t2) +O(λ2) .

(2.107)

After substituting this solution in (2.104) we get the on-shell action and in this case, as in the

commutative one in (2.38), we find two terms, a boundary one and a bulk one. After applying the
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prescription for the correspondence we find the perturbative expression for the three-point function

⟨O(t1)O(t2)O(t3)⟩ =
λ

2

∫
R2

dz dt

z2

{
1

2∆+ − 1

(
1 +

3α2

32ℓ2

)
Uz,tK

(1)
nc (z, t)

×Uz,t[K
(2)
nc ⋆ K

(3)
nc ](z, t) +

2

3
[K(1) ⋆ K(2)

nc ⋆ K
(3)
nc ](z, t)

}
+ permutations +O(α4) ,

(2.108)

for Knc(z, t) = Knc(z, t; ti). Since the last integral is very hard to calculate explicitly, we verified if

the three-point function for ncAdS2 preserves the same set of undeformed conformal invariances30

found in the commutative case. It was easy to show that the non-commutative three-point function

transforms as the commutative one for silmultaneous scalings on ti’s i.e.

⟨O(µt1)O(µt2)O(µt3)⟩ = µ−3∆+⟨O(t1)O(t2)O(t3)⟩ . (2.109)

As a final step we demonstrated the invariance of the three-point function under simultaneous

translations. We reffer to [7] and [18] for a deeper analysis of the calculations done in order to find

the final result. Under translations of the type ti+a most of the terms in (2.108) present non-trivial

transformations. After the use of some standard techniques (see [18]) we showed that all terms

in (2.108) are translationally invariant. So we can conclude that the non-commutative three-point

function shares the symmetries of its commutative counterpart and, as the consequence, it should

have the following form

⟨O(t1)O(t2)O(t3)⟩ =

(
1 + cα2

)
λΓ(∆+/2)

3Γ
(
(3∆+ − 1)/2

)
2πΓ(ν)3|t1 − t2|∆+ |t1 − t3|∆+ |t2 − t3|∆+

(
3∆+

2ν
+ 2

)
+O(α3). (2.110)

where the coefficient c can be calculated by solving (2.108), which is a non-trivial task and imposed

technical constraints to our final conclusion. By the implicit study of the transformation properties

of (2.108) we verified that its conformal behavior is retained after the quantization and it points

out to a possible continuation of this project by the explicit calculation of the coefficient c. This

result also motivated us to try to find another way of quantizing the AdS2 that could lead to an

exact solution of the proposed problem. This was done in [4] and in the next chapter we will

develop a method that will yield the same result and expand the possible applications of it.

30We will not demonstrate that the invariance under special conformal transformations holds in this case. One

could argue that since we are analysing the correlator of the same fields, which has the same conformal dimension,

it suffices to show that the three-point function is well behaved for scalings and translations.
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3 The geometry of the Quantum AdS2

The previous chapter provides a comprehensive summary of the results obtained so far. We pre-

sented a concrete method for the study of the main properties of the AdS2/CFT1 correspondence

for scalar fields and studied the massless, massive and interacting theory on a non-commutative

background. In this context, our quantization was designed to preserve all symmetries of the

embedding keep the algebra of Killing vector fields undeformed. This requirement enables us to

extend all crucial findings from the commutative theory to our non-commutative setup.

In this part of the thesis we want to generalize the example of the non-commutative

Catenoid studied in section 1.3.1. example of this formalism for a simple classical surface. We

apply the same formalism to construct Quantum AdS2. This nomenclature is justified because

we require that the generators of the algebra, employed to define our embedding coordinates, are

elements of a Weyl algebra for some set of commutation relations. Consequently, the surface is

inherently quantum by the construction. We define the Lie algebra of derivations on this space and

introduce the concept of basis vectors, inverse elements, and positive elements. Additionally, we

establish a homeomorphism that allows us to represent certain functions in this algebra as formal

power series.31 Subsequently, we construct all geometric entities necessary for defining a concrete

quantum manifold, establishing a module over this manifold and proving the linear independence of

its basis elements. Various sets of coordinates are introduced to verify the consistency of our setup.

Following comprehensive consistency checks, we proceed to define the non-commutative analogue

of a metric on both the ambient space and the manifold itself. We demonstrate that most metric

coefficients undergo quantum corrections, reducing to the commutative metric as ℏ → 0. One

interesting detail is that when we apply this procedure, the resulting metric is Hermitian, which

brings another layer of complexity to future calculations as we will discuss in following sections.

After these steps we apply our setup to alternative coordinate systems, providing some examples

of how we can construct metric coefficients in these situations.

As a concluding step, we construct the tangent space of the quantum AdS2 as a module

structure of our non-commutative algebra. Using the Fefferman-Graham coordinates as our local

set of coordinates, and the ambient coordinates to construct the surface itself, we define the non-

commutative covariant derivative and Christoffel symbols, which are then used to calculate the

non-commutative Riemann tensor in these coordinates. Following this, we rigorously study the

Ricci scalar within our framework, justifying the need for some caution to avoid ambiguities that

are expected to arise when analyzing quantum surfaces. We prove a theorem relating the Laplace

operator found in this new formalism to another operator derived using a different approach used

31We define these series this way because we are not worried about any notion of convergence.
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in the previous chapter. Additionally, we construct the non-commutative analogue of the Killing

equation to verify whether the Killing vector fields preserve the symmetries of the EAdS after

quantization. We also discuss the existence of non-commutative integration using eigenfunctions,

showing that by solving the Laplace equation in this setting, one could find non-commutative

functions that satisfy this requirement. We conclude this chapter by discussing some unfinished

steps and potential further developments that could be pursued using the framework introduced

in this thesis.

3.1 The Quantum AdS2

As we saw in the catenoid example, much of the formalism introduced by the non-commutative

calculus can be applied to a class of surfaces and in this section we will try apply it without

initially worrying about the details regarding the module structure that we will define soon, but in

the following subsections we will discuss a more rigorous way of obtaining these results. In order

to differentiate this approach from the Poisson quantization employed in the previous chapter we

will denote the non-commutative parameter as ℏ, which should not be confused with the Planck’s

constant.

3.1.1 Parametrization

Recall the section 2.1, where we defined the commutative Euclidean AdS2 in terms of embedding

coordinates Xµ, µ = 1, 2, 3, spanning the three-dimensional Minkowski space with the ambient

metric tensor η = diag(1, 1,−1). The constraint equation was

XµXµ = (X1)2 + (X2)2 − (X3)2 = −ℓ20 , (3.1)

with ℓ20 > 0 being a scale parameter. One of the parametrizations for the hyperboloid, which will

be useful, is given by

−→
X =

(
− v, − 1

2ℓ0
e−uv2 + ℓ0 sinhu, −

1

2ℓ0
e−uv2 − ℓ0 coshu

)
, (3.2)

where (u, v) ∈ R2. As before, we attach a Poisson bracket to the AdS manifold respecting the

expected relations of the isometry group SO(2, 1), which can be related to the global conformal

symmetry on the boundary of this space. For the canonically conjugate coordinates32 u, v the

32This set of coordinates has the following property {u, v} = 1. This pair of coordinates have the same properties

of the set (x, y) introduced in the section 2.1.
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Poisson bracket can be expressed by the following relation

{Xµ, Xν} = ϵµνρXρ ,

which can be readly demonstrated

{X0, X1} = ∂uX
0∂vX

1 − ∂vX0∂uX
1 = ∂u

(
− 1

2ℓ0
e−uv2 + ℓ0 sinhu

)
=

1

2ℓ0
e−uv2 + ℓ0 coshu

= −X2 = ϵ012η22X
2 ,

{X1, X2} = ∂uX
1∂vX

2 − ∂vX1∂uX
2 =

(
− 1

2ℓ0
e−uv2 + ℓ0 coshu

)(
− 1

ℓ0
e−uv

)
−(

− 1

ℓ0
e−uv

)(
− 1

2ℓ0
e−uv2 − ℓ0 sinhu

)
= −e−uv(sinhu+ coshu) = −v

= X0 = ϵ120η00X
0 ,

{X2, X0} = ∂uX
2∂vX

0 − ∂vX2∂uX
0 = −∂u

(
− 1

2ℓ0
e−uv2 − ℓ0 coshu

)
= − 1

2ℓ0
e−uv2 + ℓ0 sinhu ,

= X1 = ϵ201η11X
1 ,

Here η and ϵ are defined as η = diag(1, 1,−1) and ϵ012 = 1. Now we start from the Weyl algebra

Wℏ (see the discussion in section 1.1) consisting of Hermitian generators U and V satisfying

[U, V ] = iℏ1 .

We construct an algebra generated by V , eU and e−U , denoting them by V , Y and Y −1 respectively.

The generators of this algebra represent the set of non-commutative local coordinates that will be

used to construct a non-commutative differential calculus over the ncAdS2. In order to ensure the

cannonical commutation relations we form a two-sided ideal I generated by the following relations:

Y Y −1 = 1 ,

Y V = V Y + iℏY ,
(3.3)

where the second relation in (3.3) is clearly corresponding to the canonical commutation relation.

Now we define

Definition 3.1. Let us denote by C[V, Y, Y −1] the free associative unital algebra on the letters

V, Y, Y −1 and let I be the two-sided ideal generated by the relations (3.3). We define the algebra

Cℏ as the quotient algebra

Cℏ = C[V, Y, Y −1]/I . (3.4)

If one uses the Diamond lemma [39] and the reduction system employed in [2] in order to remove

any ambiguity in the system, one can define a basis for Cℏ as

Eij = V iY j , (3.5)

with i ∈ N0, j ∈ Z, and (Y −1)j = Y −j . Clearly we can turn Cℏ into a *-algebra by defining an

involution operation by requiring the Hermiticity of V, Y and Y −1. Clearly, the set of relations
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generating I is invariant under involution. To check the existence of derivations in Cℏ, we must

find linear derivative33 operators that satisfy: i) the Leibnitz rule, ii) preserves the relations that

generate the two-sided ideal I. For our purposes it suffices that the derivations satisfy

∂V V = 1 , ∂V Y = 0 ,

∂UV = 0 , ∂UY = Y .

The extension to a general element of the algebra is given by the Leibnitz rule. One can check the

consistency of this definition applying the derivation defined above to the expressions (3.3). For

instance

∂U (Y V − V Y − iℏY ) = ∂U (Y )V − V ∂U (Y )− iℏ∂U (Y ) = Y V − V Y − iℏY = 0 ,

∂V (Y V − V Y − iℏY ) = Y ∂V (V )− ∂V (V )Y − iℏ∂V (Y ) = Y − Y = 0 ,

while requiring that ∂u(Y Y
−1) = ∂u(Y

−1Y ) = 0 gives: ∂UY
−1 = −Y −1∂V Y

−1 = 0. We now state

a series of propositions and lemmas following [2], the proofs can be found there.

Proposition 3.1. The algebra Cℏ has no zero divisors.

Proposition 3.2. For every a, b ∈ Cℏ there exists p, q ∈ Cℏ such that

ap = bq ,

and at least one of p and q is non-zero.

Proposition 3.3. Let Zℏ(V ) be the commutative sub-algebra of Cℏ generated by 1 and V and

define a homeomorphism of commutative algebras ψ : Zℏ(V )→ C∞(C) via

ψ(1) = 1 , ψ(V ) = v .

The subset Z+
ℏ = {x[V ] ∈ Zℏ(V ) : |ψ(x)[v]|> 0 ∀ v ∈ C} is a multiplicative set.

In order to construct an sub-algebra where all elements are invertible, we must guarantee the

existence of a non-trivial localization by means of the universal property. This is done in [2] and

we will refer to this paper for any additional information regarding the details of some definitions

and propositions used here. The notation for the aforementioned localization is (Cℏ)Z+
ℏ (V ), and we

will denote it as Cℏ in future sections. We will make the distinction if needed in order to avoid any

confusion. Now it is easy to show that for every x ∈ Z+
ℏ (V ) and xi ∈ C satisfying

x[V ] =
∑

xiV
i ,

33We are more interested in the inner derivations Inn(Wℏ), which come from adg(f) = [f, g] for [ , ] being the

abstract Lie bracket from the algebra. Since in the commutative case the adjoint action always yields zero, we have

in this case only the outer derivations, which are defined as Out(Wℏ) := L(Wℏ)/Inn(Wℏ) where L(Wℏ) stands for

the space of all linear endomorphism of Wℏ satisfying the Leibnitz rule.
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we have

Y x[V ] =
∑

xiY V
i =

∑
xi(V + iℏ1)iY = x[V + iℏ1]Y ,

x[V + iℏ1] clearly belongs to Z+
ℏ (V ). One can show the same for Y x−1[V ], thus with these results

we conclude that any element a ∈ Cℏ can always be written as

a[U ] =
∑
k∈Z

ak[V ]Y k ,

with ak ∈ F+
ℏ (V ) ⊂ (Cℏ)Z+

ℏ
being generated by Zℏ(V ) and the inverses of the elements from

Z+
ℏ (V ).

In the next subsection we will construct the Riemannian geometry over the non-commutative

AdS2 using a module structure for it.

3.1.2 The module structure

We start this subsection by defining the non-commutative manifolds that are determined by our

choice of embedding coordinates Xµ. Then we apply this to the construction of the ncAdS2.

Definition 3.2. Let {Xµ} be a set of n elements Xµ ∈ A. A triple Σ = (A, g, {X1, . . . , Xn})

where (A, g) is a Lie pair with all elements of the set {Xµ} being hermitian, is called an embedded

non-commutative manifold.

Now we introduce a free right Cℏ-moduleM by defining it to beM = (Cℏ)3 and we will set up the Lie

pair structure in later steps. Now to define the quantum AdS2 as an embedded non-commutative

manifold we can use the classical AdS embedding coordinates promoting the commuting canonical

coordinates to the non-commutative ones and imposing the symmetric ordering for V

−→
X =

(
−V , − 1

2ℓ0
V Y −1V +

ℓ0
2
(Y − Y −1) , − 1

2ℓ0
V Y −1V − ℓ0

2
(Y + Y −1)

)
. (3.6)

To see if this embedding satisfies (3.1), we calculate, for µ = 0, 2

XµXνηµν = (X0)2 + (X1)2 − (X2)2 ,

= V 2 +

(
1

4
(V Y −1V )2 − 1

4

(
V Y −1V Y − (V Y −1)2 + Y V Y −1V − (Y −1V )2

))
− 1

4

(
(V Y −1V )2 +

1

4

(
V Y −1V Y + (V Y −1)2 + Y V Y −1V + (Y −1V )2

))
+

+
ℓ20
4

((
Y + Y −1

)2
−
(
Y + Y −1

)2)
,

= V 2 − 1

2

(
V (V Y −1 − iℏY −1)Y + (V Y + iℏY )Y −1V

)
− ℓ201 ,

= −1ℓ20 ,
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which implies that

XµXµ = −ℓ201 , (3.7)

for η = diag(+,+,−). We also must verify if this set of coordinates has the su(1, 1) Lie bracket

structure. For instance, one can directly calculate

[X0, X1] =
[
− V, 1

2ℓ0
V Y −1V +

ℓ0
2
(Y + Y −1)

]
= iℏϵ012η22X2 = −iℏX2 .

After some straightforward calculations is trivial to verify that in general

[Xµ, Xν ] = iℏϵµνρXρ ,

as expected. Returning to the classical case one can verify that the commutative vectors that span

the tangent space of AdS2 are

ϕu = ∂u
−→
X =

(
0 ,

1

2ℓ0
e−uv2 + ℓ0 cosh(u) ,

1

2ℓ0
e−uv2 − ℓ0 sinh(u)

)
,

ϕv = ∂v
−→
X =

(
−1 , − 1

ℓ0
e−uv , − 1

ℓ0
e−uv

)
.

(3.8)

In order to obtain the non-commutative analogues we should apply the derivative operators defined

previously to the embedding operators X. For our choice of ordering, the only term that slightly

changes its structure is
1

2ℓ0
∂V (V Y

−1V ) =
1

2ℓ0

(
V Y −1 + Y −1V

)
.

From now on, we will use the greek indices for µ = 0, 1, 2 to denote the module indices and the

roman i = U, V denote the local coordinates. We will also denote the basis of the right free module

X (Cℏ)34 of rank 2 by {Φi} and a tangent vector can be obtained as the linear combination

Φi = êµΦ
µ
i , (3.9)

where Φµ
i ∈ Cℏ and êµ is the natural basis of (Cℏ)3 defined as

ê0 = (1, 0, 0) ,

ê1 = (0,1, 0) ,

ê2 = (0, 0,1) .

Φµ
i can be obtained by the direct calculation from the embedding coordinates from (3.6)

Φµ
i = ∂iX

µ . (3.10)

34This module can be thought as the tangent space of the non-commutative AdS2.
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Doing the direct computation we finally obtain

Φ0
U = 0 ,

Φ1
U =

1

2ℓ0
(V Y −1V ) +

ℓ0
2
(Y + Y −1) ,

Φ2
U =

1

2ℓ0
(V Y −1V )− ℓ0

2
(Y − Y −1) ,

Φ0
V = −1 ,

Φ1
V = Φ2

V = − 1

2ℓ0
(Y −1V + V Y −1) .

(3.11)

In order to prove that {Φi} is a basis we must show that for a, b ∈ Cℏ the expression aΦU+bΦV = 0

implies that a and b are equal to zero, but it is easily shown by noting that aΦ0
U + bΦ0

V = 0 implies

that b = 0, since b vanishes using any of the remaining relations one can show that a = 0. Now we

introduce the Lie algebra g generated by the set of the inner hermitian derivations

∂0(F ) =
1

iℏ
[X0, F ] , ∂1(F ) =

1

iℏ
[X1, F ] , ∂2(F ) =

1

iℏ
[X2, F ] , (3.12)

for F ∈ Cℏ and we will use ηµν and its inverse to raise and lower the greek indices. We can also

use complex coordinates Λ and Λ∗ (see [40]) to define a new set of complex derivations, as done in

(1.13), and proceed with the previous construction. In order to define the abstract Lie bracket in

g one should observe that

∂µ

(
∂ν(F )

)
=

1

(iℏ)2
[Xµ , [Xν , F ]] , (3.13)

for an arbitrary differentiable function F in Cℏ. Using the fact that the operator commutator

should satisfy the Jacobi identity, we get

∂µ

(
∂ν(F )

)
= − 1

(iℏ)2
(
[F , [Xµ, Xν ]] + [Xµ [F,Xν ]]

)
=

1

iℏ
ϵµν

ρ[Xρ, F ] + ∂ν(∂µ(F )) ,

which trivially gives the Lie bracket structure for g

[∂µ , ∂ν ]g = ϵµν
ρ∂ρ . (3.14)

We can also introduce a Lie algebra h generated by the ∂U and ∂V .With it we define the associated

Lie pair (Cℏ, h) to our non-commutative manifold and we will define a map φ : h→ (Cℏ)3 as

φ(∂i) = ∂i
−→
X = êµ∂iX

µ = êµΦ
µ
i (3.15)

for ∂i ∈ h and note that we could apply this map to any element of h and obtain a representation of it

in the module (Cℏ)3. Clearly the right module generated by the image of φ has the aforementioned

X (Cℏ) as its submodule and will be called the module of vector fields on our embedded non-

commutative manifold, denoted by TΣ. We state some useful definitions from [45]

Definition 3.3. An embedded non-commutative manifold Σ is called regular if (TΣ, h) is a

regular hermitian module, where h is a hermitian form from definition 1.15.
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In view of some propositions and theorems from [45] we aim to demonstrate that TΣ is regular by

asserting the existence of an hermitian form h such that eµh
µνhνβ = eβ which implies that should

exist a hermitian connection on (TΣ, h). In the following section we will define the dual-module

structure and a hermitian form that will play the role of the metric tensor in our setting.

3.2 The non-commutative metric

Using the algebraic gadgets introduced in the first chapter we will define a hermitian form that

plays the role of the quantum AdS2 metric. Firstly let M∗ be the dual module of M = (Cℏ)3.

For a canonically right Cℏ-module M its dual is a canonically left Cℏ-module M by means of the

following property

(a ·W )[mb] = aW [m]b ,

where a, b ∈ Cℏ, W ∈M∗, the element inside the square bracket refer to the functional property of

W over an element m ∈ M and the multiplication by juxtaposition in the right side is the usual

Cℏ multiplication. In our case, M is a free module of rank 3 and its dual space will also be a

free module of rank 3 with a set of basis dual-vectors {ω̂µ} with µ = 0, 2. Now we introduce a

hermitian form g :M ×M → Cℏ satisfying

(1) g(m,n) = g(n,m)∗

(2) g(m1a+m2, nb) = a∗g(m1, n)b+ g(m2, n)b ,
(3.16)

for a, b ∈ Cℏ and m,m1,m2, n ∈M . In order to have a concrete realisation of g we must determine

its coefficients gµν and we will do it as follows

gµν = g(êµ, êν) = ηµν1 .

With this we have our hermitian form g as

g(U, V ) = g(êµU
µ , êνV

ν) = (Uµ)∗ηµνV
ν = (Uµ)∗Vµ , (3.17)

for U, V ∈M (not to be confused with the coordinates U, V from the last section). Let ĝ :M →M∗

be an associate map given by

ĝ(m)[n] = g(m,n) ,

for m,n ∈M . We construct ĝ explicitly by defining

ĝ(U) = ĝ(êµU
µ) = (Uµ)∗ηµν ω̂

ν . (3.18)

Following the construction done in [45] we can use the inverse of ĝ to define g−1. First, define the

inverse of ĝ as

ĝ−1(W ) = ĝ−1(Wµω̂
µ) = êµη

µν(Wν)
∗ ,
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for W ∈ M∗. Using the properties of the involution one could easily verify that the definition

above yields the correct result, by direct inspection we get to the following

ĝ−1
(
ĝ(êµU

µ)
)
= ĝ−1

(
(Uµ)∗ηµν ω̂

ν
)
= êρη

ρνηµν(U
µ)∗∗ = êρδ

ρ
µU

µ = U ,

for U = êµU
µ. Now we define g−1 :M∗ ×M∗ → Cℏ as

g−1(W,T ) =W
(
ĝ−1(T )

)
=W

(
êµη

µν(Tν)
∗
)
=Wρω̂

ρ(êµ)η
µν(Tν)

∗ =Wµη
µν(Tν)

∗ , (3.19)

where we used the dual basis property ω̂µ(êν) = δµν . One can easily check that g−1 is a hermitian

form on the left module M and on the right module M∗. We can also calculate g explicitly as a

function of the local coordinates U and V by direct substitution of the basis elements Φi ∈ X (Cℏ)

of the last subsection, we get to the following after some straightforward calculations

g(ΦU ,ΦV ) = −V −
iℏ
2
1 , (3.20)

g(ΦV ,ΦU ) = −V +
iℏ
2
1 , (3.21)

g(ΦV ,ΦV ) = 1 , (3.22)

g(ΦU ,ΦU ) = V 2 + ℓ201, (3.23)

in terms of coordinates u, v comparing this with the commutative metric tensor induced on the

surface, which is given by

ds2 = dxµdxµ = (ℓ20 + v2)du2 + dv2 − 2vdudv ,

shows us that only cross terms of the non-commutative analogue of the metric receive a non-

commutative correction. In the last calculation we used the vector fields defined in (3.2). One can

also verify that g and g−1 are in fact Hermitian if we treat g as a classical metric tensor since it

only depends on functions of V and the operations can be carried as in the commutative case. In

the following subsection we will introduce a new set of local coordinates in which the metric takes

a simple form, enabling us to write the non-commutative covariant derivatives in a compact and

simple way.

3.3 The Fefferman-Graham coordinates

Now we introduce the last set of coordinates we will analyze, they are the non-commutative ana-

logues to the FG coordinates for AdS2, and they are obtained for the commutative case by making

z = e−u and t =
1

ℓ0
ve−u with {z, t} = z2

ℓ0
, (3.24)

which gives a new set of derivations

∂u = −z∂z − t∂t , and ∂v =
z

ℓ0
∂t . (3.25)
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From now on we will denote

R = Y , Z = Y −1 = R−1 , and T =
1

2ℓ0

(
V Y −1 + Y −1V

)
(3.26)

and assume that the ideal generated by the relations (3.3) also has a new set of relations

TZ = ZT +
iℏ
ℓ0
Z2 , ZR = 1 , RT = TR+

iℏ
ℓ0
1 . (3.27)

Using this new set of generators, we define the derivatives under respect to R and T

∂T (A) = −
ℓ0
iℏ

[A,R],

∂R(A) =
ℓ0
iℏ

[A, T ] .

(3.28)

In order to verify the consistency of the definition above, one should show that the set of derivatives

respects the ideal generated by the relations (3.27), from (3.27) and (3.28), one immediately has

∂T (T ) = 1 , ∂T (R) = 0 ,

∂R(T ) = 0 , ∂R(R) = 1 .
(3.29)

Checking the relations defining the ideal we can get, for instance

∂T

(
TZ − ZT − iℏ

ℓ0
Z2
)
= Z − Z = 0 ,

∂R

(
TZ − ZT − iℏ

ℓ0
Z2
)
= Z[Z, T ] + [Z, T ]Z +

2iℏ
ℓ0
Z3 = −2iℏ

ℓ0
Z3 +

2iℏ
ℓ0
Z3 = 0 ,

and the other relations can be easily verified. It is also easy to see that these derivatives are indeed

Hermitian. In order to write the coordinates Xµ of the ncAdS2 in the coordinates R and T we

first note that

V =
ℓ0
2

(
TR+RT

)
,

and we use it to construct

X0 = −V = −ℓ0
2

(
TR+RT

)
. (3.30)

Now taking the previously constructed X1 and X2 in coordinates U, V one can obtain the embed-

ding in terms of the new coordinates. Firstly note that

V Y −1V =
ℓ20
4

(
T 2R+ TRT +RTZTR+RT 2

)
,

RTZTR =
ℏ2

ℓ20
Z +

iℏ
ℓ0
T + T 2R =

ℏ2

ℓ20
Z + TRT .

With these results, one can show that

− 1

2ℓ0
V Y −1V = − 1

2ℓ0

(
ℓ20TRT +

ℏ2

4
Z
)
,

where we used

T 2R = TRT − iℏ
ℓ0
T and RT 2 = TRT +

iℏ
ℓ0
T .
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Now we apply these results on the coordinates X1 and X2, which gives

X0 =− ℓ0
2

(
TR+RT

)
,

X1 =− ℓ0
2

(
TRT +

(
1 +

ℏ2

4ℓ20

)
Z −R

)
,

X2 =− ℓ0
2

(
TRT +

(
1 +

ℏ2

4ℓ20

)
Z +R

)
.

(3.31)

We can now calculate the vector fields on the free right module (Ĉℏ)3 generated by the derivatives of
−→
X with respect to R and T . Applying the derivative operators defined in (3.28) in the coordinates

(3.31) we get to the following

Φ0
T = −ℓ0R ,

Φ1
T = Φ2

T = −ℓ0
2

(
TR+RT

)
,

Φ0
R = −ℓ0T ,

Φ1
R = −ℓ0

2

(
−
(
1 +

ℏ2

4ℓ20

)
Z2 + T 2 − 1

)
,

Φ2
R = −ℓ0

2

(
−
(
1 +

ℏ2

4ℓ20

)
Z2 + T 2 + 1

)
.

(3.32)

To further construct the geometrical objects over the non-commutative AdS2 one could analyse

the full set of coordinates by adding the elements WandJ to the set of generators, with the set of

commutation relations satisfying

[T,Z] =
iℏ
ℓ0
Z2 , [R, T ] =

iℏ
ℓ0
1 ,

[W,R] =
iℏ
ℓ0
W 2 , [Z,W ] =

iℏ
ℓ0
WZ2W ,

(3.33)

with the inverse35 elements R = Z−1 and W = T−1 as well as one could construct J , that is

canonically conjugate to Z satisfying

[J, Z] =
iℏ
ℓ0
1 , (3.34)

for J = RTR. We will not follow this path because, in order to define a proper affine connection,

we would have to use the Lie algebra of derivations g for our full set of coordinates, which would

lead to some ambiguities, in order to avoid this we will only use the complex algebra C[Z,R, T ]

modulo the ideals defined by the relations in (3.27) to construct Cℏ. Clearly with the full set of

local coordinates we can define the set of inner derivations I ⊂ der(Cℏ) for some function A ∈ Cℏ
as follows:

∂T (A) = −
ℓ0
iℏ

[A,R] , ∂R(A) =
ℓ0
iℏ

[A, T ] ,

∂Z(A) = −
ℓ0
iℏ

[A, J ] , ∂J(A) =
ℓ0
iℏ

[A,Z],

(3.35)

note that the relation for the derivative with respect to Z follows from the derivative of a function

with respect to the inverse variable, for instance ∂AF (A
−1) = −A−1F ′(A−1)A−1. Recovering the

35In order to have well defined inverse elements in the algebra, we should make sure to add to the ideal (3.27)

the relations AB − 1 = 0, for any pair of inverse elements A and B.
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parametric equation for the ncAdS2 written with respect to R and T we can write it compactly as

−→
X = −ℓ0

2

(
TR+RT, TRT + k2Z −R, TRT + k2Z +R

)
, (3.36)

for k =
√
1 + ℏ2

4ℓ20
, and denote the tangent vectors to the ncAdS2 surface in a similar way

Φ̂T = êαΦ
α
T = −ℓ0

2

(
2R, TR+RT, TR+RT

)
,

Φ̂R = êαΦ
α
R = −ℓ0

2

(
2T, −k2Z2 + T 2 − 1, −k2Z2 + T 2 + 1

)
.

(3.37)

Using the formalism above we are able to directly calculate from the definitions established earlier

the matrix elements of g with respect to the coordinates Z, T,R:

g(Φ̂R, Φ̂R) = k2ℓ20Z
2,

g(Φ̂R, Φ̂T ) = g(Φ̂T , Φ̂R)
∗ = − iℏℓ0

2
1 ,

g(Φ̂T , Φ̂T ) = ℓ20R
2.

(3.38)

This shows explicitly that our metric isn’t only symmetric but Hermitian, as expected. When

we constructed the metric for the coordinates U and V , as well as to the other set R, Z and

T , it was easy to note that g was defined for a canonically right Cℏ-module M for the first and

the second entries. We now introduce the elements of the opposite algebra Copℏ in which the

module construction implied earlier would have a swap from right to left and vice versa. The sided

multiplication properties of some arbitrary elements A,B ∈ Cℏ are defined by

Al(B) = AB , Al ∈ Cℏ ,

Ar(B) = BA , Ar ∈ Copℏ .
(3.39)

One can also note that (BC)rF = FBC = Cr(FB) = CrBrF which implies that the opposite

algebra acts as an anti-involution and for real elements it is equivalent to the usual involution. In

order to define the relations between the algebra and its opposite in a more rigorous way we will

use the notion of enveloping algebra that is introduced in [47]. For any algebra A we define the

enveloping algebra Ae as

Ae = A⊗C Aop , (3.40)

it is easy to see that a A-bimodule Mb can be considered a left Ae-module. There are natural

homomorphisms from A and Aop to Ae if we take

Al ∈ A 7→A⊗C 1Aop ∈ Ae ,

Br ∈ Aop 7→1A ⊗C B ∈ Ae ,

where the subscript of the tensor product symbol denotes the common subfield or algebra that

the product is taken over. As an simple example consider the set of derivations (3.35) written as

elements of Ae

∂TF = − ℓ0
iℏ

Θ
(
(1⊗R−R⊗ 1)F

)
, ∂RF =

ℓ0
iℏ

Θ
(
(1⊗ T − T ⊗ 1)F

)
,

∂ZF = − ℓ0
iℏ

Θ
(
(1⊗ J − J ⊗ 1)F

)
, ∂JF =

ℓ0
iℏ

Θ
(
(1⊗ Z − Z ⊗ 1)F

)
.

(3.41)
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where we treated Ae as a right A-module and we also introduced a non-linear36 map Θ : Ae → A

that takes an element of Ae and associates it with an element in A that carries the information

of the specific multiplication order, for instance, using n = A ⊗C B and C ∈ A the map do the

following

nC = (A⊗C B)C 7→ ACB ∈ A .

The differential calculus Ω∗(A) can be extended in a natural way to the enveloping algebra by

taking

Ω∗(Ae) = Ω∗(A)⊗A Ω∗(Aop) =
(
Ω∗(A)

)e
, (3.42)

where the exterior derivative satisfy d(A ⊗ B) = dA ⊗ B + A ⊗ dB for A ∈ A and B ∈ Aop.

Now we introduce a identification that will be useful: (1 ⊗C ξ) ⊗C η 7→ η ⊗A ξ which implies

that (A ⊗C Ω1(Aop)) ⊗Ae M ≃ M ⊗A Ω1(A) for a A-bimodule M and with these results we can

construct a suitable space to define our connections and covariant derivatives

Ω1(Ae)⊗Ae M = (Ω(A)⊗A M)⊕ (M ⊗A Ω(A)) . (3.43)

We will use this space when we define the non-commutative connection in AdS2 and the non-

commutative Killing vector fields. If we define as gr metric for the right A-module structure and

as gl the metric for the left A-module structure, it is easy to show that gl(ΦR,ΦT ) = gr(ΦT ,ΦR) as

elements of A and in order to obtain a symmetric g without the complex off-diagonal terms we can

define gs :=
1
2 (gr+gl) where gs stands for the symmetric one with zero off-diagonal terms. Clearly

det(g) = ℓ401 and since all elements of the metric are R dependent we can treat it commutatively,

note also that the determinant of gs receive a quantum correction since the off-diagonal terms

cancel and we carry the O(ℏ2) correction inside k(ℏ). As g can act by the left over some element A

of the algebra, we must guarantee that the metric action transforms correctly. If we remember that

when changing the side of the action we get some extra terms with derivatives now we must impose

a specific ordering to fulfill our purposes in constructing such geometrical formalism. The chosen

ordering will be the symmetric one for any quadratic term in the polynomial ring which has only

one dependence in the generators Z, R and T . For the odd terms or cross terms in the polynomial

ring we use the symmetrization of such element. The formal definition of the symmetric mapping

S : A → Ae is the following

S(A1A2 . . . An) =
1

n

n∑
σ(AI)

τ l(Ai, . . . , Aj)⊗ τ r(Ak, . . . , Al) , (3.44)

where the τ function refer to the specific symmetrization of the Ai’s in a such way that we don’t get

elements of the form
∏

I AI ⊗ 1 or 1⊗
∏

I AI for the quadratic terms also obeying the symmetric

property for the odd ones, and this specific symmetrization guarantees the hermiticity of a general

element obtained from the action of S overA. The function σ is just the set of possible permutations

36This map distributes over addition but in general Θ
(
(mB)C

)
̸= Θ(mB)C for B,C ∈ A and m ∈ Ae.
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in some index set I. For instance we apply this mapping in some terms that will appear in the

following sections

S(TR) = 1

2

(
(TR)l + (TR)r

)
=

1

2
(TR⊗ 1+ 1⊗RT ) , S(T 2) = T ⊗ T .

Applying this map to the components of gs we get

S
(
gs(ΦR, ΦR)

)
= k2ℓ20Z

lZr = k2ℓ20(Z ⊗ Z) ,

S
(
gs(ΦR, ΦT )

)
= S

(
gs(ΦT , ΦR)

∗
)
= 0 ,

S
(
gs(ΦT , ΦT )

)
= ℓ20R

rRl = ℓ20(R⊗R) .

(3.45)

For g we can note also that most of the coefficients got a non-commutative correction and we

recover the usual AdS2 metric when we take ℏ → 0. Since we defined the field of functions with

inverses, we can also denote the metric and its inverse in the following way37

g(Φa,Φb) =


ℓ20k

2Z2 − iℏℓ0
2

iℏℓ0
2 ℓ20R

2

 , (3.46)

and

g−1(Φa,Φb) =
1

ℓ40


ℓ20R

2 iℏℓ0
2

− iℏℓ0
2 ℓ20k

2Z2

 . (3.47)

It is easy to see that gs is obtained by doing the following

gs(Φa,Φb) =
1

2

(
gr(Φa,Φb) + gl(Φa,Φb)

)
=


ℓ20k

2Z2 0

0 ℓ20R
2

 . (3.48)

Now we are ready to construct the covariant derivative and the connection coefficients for the

Quantum AdS2.

3.4 The Levi-Civita Connection

In this section we will derive the non-commutative connection using two strategies that should

yield the same result. Firstly, we will introduce some definitions and from now on we denote as g

as the complex Lie algebra generated inner derivations ∂ ∈ Der(Ĉℏ).

37The precise definition of the determinant of the metric can be derived from the fact that the matrix algebra of

commutative functions in Cℏ(R) have the usual determinant 2-form well defined, with this property one can easily

show that det[g] = ℓ401, by applying the usual definition of determinant, since all metric coefficients are functions

of R, Z and 1 and hence commutative, making the metric non-singular in the whole ncAdS2.
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Definition 3.4. Let (A, g) be a Lie pair and let M be a right A-module. A connection on M is

a map g×M →M such that

(1) ∇∂(m+ n) = ∇∂m+∇∂n ,

(2) ∇λ∂1+β∂2
m = λ∇∂1

m+ β∇∂2
m ,

(3) ∇∂(ma) = (∇∂m)a+m∂(a) ,

for m,n ∈M ; ∂, ∂1, ∂2 ∈ g; λ, β ∈ C and a ∈ A.

Definition 3.5. A connection ∇ on a right hermitian A-module is called hermitian if

∂h(m,n) = h(∇∂m,n) + h(m,∇∂n) ,

for all m,n ∈ M and ∂, ∂ ∈ g. We say that an hermitian connection is compatible with the

hermitian form h.

The notion of torsion freeness will be introduced utilizing the map from (3.15), as the following

definition states

Definition 3.6. A connection ∇ in a non-commutative embedded manifold is called torsion free

if for the map from (3.15) the connection satisfy the following

∇∂αφ(∂β)−∇∂β
φ(∂α) = φ([∂α, ∂β ]) , (3.49)

for all ∂α, ∂β ∈ g and if the connection is compatible with an hermitian form h we call it a Levi-

Civita connection.

It is proven in [45] that given a free hermitian module with an orthogonal projection

defined in it, any hermitian connection of the free module induces a hermitian connection on

the corresponding projective module, which implies that every regular hermitian module has a

hermitian connection and therefore, from the theorem (4.6), it is guaranteed that exists a Levi-

Civita connection on every regular embedded manifold. Following this procedure we will define a

projection for the ncAdS2 and after this we will verify the properties of this projection and use it

to construct our connection for the ambient coordinates and the local coordinates. It is necessary

to stress out that for each case we will use a different Lie algebra of derivations g which will result

in a different construction for the connection coefficients. As a final step we will compare both

results with its commutative counterparts.

3.4.1 Connection in ambient coordinates

One of our objectives in this chapter is to find an analogue to the non-commutative Ricci scalar.

If we remember the commutative case, following [44] one can find that the Poisson structure
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introduced in the 2-Riemannian manifold (Σ, g) embedded in the m-dimensional Riemannian

manifold (M, g), allow us to construct38 a pair of orthogonal projections Πi
j = δij − P i

j for

P i
j = {xi, xk}gkl{xm, xl}gmj satisfying P,Π ∈ End(TpM). In this setting the Ricci scalar R is

obtained from the equation R = P jlP ikRijkl, we will find two non-commutative analogues of this

equation. We start by constructing the endomorphisms P and Π directly from the commutative

definition

Pµ
ν = − 1

ℓ20ℏ2
[Xν , Xγ ][X

µ, Xγ ] = − 1

ℓ20ℏ2
(
XνXγ −XγXν

)(
XµXγ −XγXµ

)
= − 1

ℓ20

(
δµν δ

σ
ρ − δµρ δσν

)
XρXσ = δµν1+

1

ℓ20
XµXν ,

now we must define them properly from the strategy employed in the commutative case and show

that they are indeed projectors, we do this in the following

Proposition 3.4. The endomorphism Π of (Cℏ)3 is a projector and it is defined as

Π(U) = êµΠ
µ
νU

ν = − 1

ℓ20
êµX

µXνU
ν , (3.50)

for U ∈ (Cℏ)3 and Xµ the embedding coordinates defined in (3.7).

Proof: We can easily prove that Π is indeed a projector by applying it twice over U ∈ (Cℏ)3

Π2(U) = êµΠ
µ
νΠ

ν
ρU

ρ =
1

ℓ40
êµX

µ(XνX
ν)XρU

ρ = − 1

ℓ20
êµX

µXρU
ρ = êµΠ

µ
ρU

ρ = Π(U) ,

where we used (3.7). □

We can construct Π explicitly as a formal matrix

(Πµ
ν) = −

1

ℓ20


(X0)2 X0X1 −X0X2

X1X0 (X1)2 −X1X2

X2X0 X2X1 −(X2)2

 . (3.51)

It is easy to see that Πµ
ν = (Πν

µ)∗ and we can apply the projector over the basis elements

{êµ} which gives Π(êµ) =
−→
XXµ, hinting to the fact that the projection yields as image a rank 1

module. In the classical geometry the complementary projection of Π, that is defined as P = 1−Π,

characterizes the module of sections of the tangent bundle, we will refer to it as TCℏ = P
(
(Cℏ)3

)
and this allow us to define a finitely generated projective module given by

(Cℏ)3 = TCℏ ⊕Nℏ ,

where Nℏ = Π
(
(Cℏ)3

)
. One could try to identify X (Cℏ) with TCℏ but we should verify if TCℏ is

38In the following construction we are considering that
√
g/ρ2 = 1. The full construction can be found in [44]

and one can find a little mistake in the indices at the definition of Di
j . Here in my construction we consider the

corrected case.
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spanned by Φi given in (3.37). We can write it explicitly as

(Pµ
ν) =

1

ℓ20


ℓ201+ (X0)2 X0X1 −X0X2

X1X0 ℓ201+ (X1)2 −X1X2

X2X0 X2X1 ℓ201− (X2)2

 . (3.52)

Proposition 3.5. The endomorphisms Π and P are orthogonal projectors in the sense of (1.19)

with respect to the hermitian form g from (3.18).

Proof: One easily checks that

g(Π(U), V ) =− 1

ℓ20
g(êµX

µXνU
ν , êρV

ρ) = − 1

ℓ20
(Uν)∗XνX

µV ρηµρ = − 1

ℓ20
(Uν)∗ηνλ(X

λXρV
ρ) ,

g(Π(U), V ) = g(êνU
ν ,− 1

ℓ20
êλX

λXρV
ρ) = g(U,Π(V )) ,

for U, V ∈ (Cℏ)3 and by the right-linearity of g it is easy to show that P is also orthogonal. □

Using the proposition (2.9) from [45] it is guaranteed that (TCℏ, g|TCℏ) is a regular hermitian

module. It is clear that we can generate TCℏ with the vectors ẽν = êµP
µ
ν and the space Nℏ is

the equivalent of the classical normal subspace and analogously it is simple39 to prove that Nℏ is

generated by
−→
X = (X0, X1, X2) with Π(

−→
X ) =

−→
X . Now we write explicitly the basis {ẽµ}

ẽ0 =
1

ℓ20

(
ℓ201+ (X0)2, X1X0, X2X0

)
,

ẽ1 =
1

ℓ20

(
X0X1, ℓ201+ (X1)2, X2X1

)
,

ẽ2 =
1

ℓ20

(
−X0X2,−X1X2, ℓ201− (X2)2

)
,

(3.53)

Following the proposition (3.8) from [45] we will show that the non-commutative analogue of

the tangent space of the hyperboloid, that can be generated by e0 = (0,−z,−y), e1 = (z, 0, x)

and e2 = (−y, x, 0), receive a non-comutative correction. First we define the non-commutative

elements that generate the module TCℏ by eλ = 1
ℓ0
ϵλ

νρẽνXρ, these elements carry the su(1, 1)

symmetry which can be seen easily using the map defined in (3.15) for the embedding coordinates

that obey the same Lie algebra structure, as one could also use the so(3) symmetry to construct

the tangent space of the classical sphere. It is obvious that {eµ} ∈ TCℏ since these elements are

linear combinations of the projected basis {ẽµ} which belongs to the tangent space by definition.

Calculating {eµ} explicitly we get

e0 = − 1

ℓ0

(
ẽ2X

1 + ẽ1X
2
)
= − 1

ℓ0

(
ê2X

1 + ê1X
2
)
− iℏ
ℓ30

−→
XX0 ,

e1 =
1

ℓ0

(
ẽ0X

2 + ẽ2X
0
)
=

1

ℓ0

(
ê0X

2 + ê2X
0
)
− iℏ
ℓ30

−→
XX1 ,

e2 = − 1

ℓ0

(
ẽ0X

1 − ẽ1X0
)
= − 1

ℓ0

(
ê0X

1 − ê1X0
)
− iℏ
ℓ30

−→
XX2 ,

(3.54)

39The proof follows a similar path as is done in [45] p.12.
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Proposition 3.6. The transformation rules between the sets of basis vectors {eµ} and {ẽµ} are

ẽµ = − 1

ℓ0

(
ϵµ

νρeνXρ + iℏeµ
)
, eµ =

1

ℓ0
ϵµ

νρẽνXρ . (3.55)

Proof: The second relation follow from the definition of {e}. The first one can be obtained when

we calculate

1

ℓ0
ϵµ

νρeνXρ =
1

ℓ20
ϵµ

νρ(ϵν
σβ ẽσXβ)Xρ =

1

ℓ20

(
δσµη

ρβ − δβµηρσ
)
ẽσXβXρ

=
1

ℓ20

(
ẽµη

ρβXβXρ − ẽσXµX
σ
)
= −ẽµ + êαP

α
ρΠ

ρ
µ −

iℏ
ℓ20
ϵµ

σγ ẽσXγ ,

where we used the bracket of Xµ and Xρ and by applying the orthogonality of P and Π the last

expression implies that the first relation is true. □

The last proposition means that, as in the fuzzy sphere case, the tangent space for ncAdS2

has 3 generators which are mapped to 2 if we take ℏ → 0 in the commutative limit, as expected.

In order to calculate the metric coefficients for the basis {eµ} we must know its action over {ẽµ}

since

g(eµ, eν) =
1

ℓ20
ϵµ

ρσϵν
αβXσg(ẽρ, ẽα)Xβ ,

and we calculate it directly using Pρ
γ =

(
δγρ + 1

ℓ20
XρX

γ
)
=
(
P γ

ρ

)∗
g̃ρα = g(ẽρ, ẽα) = Pρ

γηγλP
λ
α = Pρα .

Proposition 3.7. The hermitian form g applied in the basis elements {eµ} yields the respective

restriction of g in TCℏ and gives as result

g(eµ, eν) = Pνµ −
ℏ2

ℓ20
Πµν . (3.56)

satisfying (gµν)
∗ = gνµ.

Proof: By direct inspection and using

ϵµ
ρσϵν

αβ = ηµνη
ρβηασ − ηµνηαρησβ + δρνδ

α
µη

βσ − δρνδβµηασ − ηρβδαµδσν + ηραδβµδ
σ
ν ,

we get the following expression for the components of g in the new basis

g(eµ, eν) =
1

ℓ20

[
ηµν

(
XσPβσX

β −XσPρ
ρXσ

)
+XβPνµXβ −XαPναXµ−XνPβµX

β +XνPρ
ρXµ

]
,

note that if you commute the projector with the embedding coordinates with lower indices, which

gives [Xα, Pβγ ] =
iℏ
ℓ20

(
ϵαβ

λXλXγ + ϵαγ
λXβXλ

)
= −iℏ(ϵαβλΠλγ + ϵαγ

λΠβλ), you can get some

elements that simplify by the orthogonality of Π and P . We show below the explicit calculations

for every term separately

i)
1

ℓ20
ηµνX

αPβαX
β = −ηµνΠαβPβα +

1

ℓ20
Xαηµν [Pβα , Xβ ] =

iℏ
ℓ40
ηµνX

αϵα
βσXβXσ ,

=
ℏ2

ℓ40
ηµνX

αXα = −ℏ2

ℓ20
ηµν .
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Following the last step, we can calculate each term individually as follows

ii) − 1

ℓ20
XσPρ

ρXσηµν = − 2

ℓ20
ηµνX

σXσ = 2ηµν ,

iii)
1

ℓ20
XβPνµXβ =

1

ℓ20
PνµX

βXβ +
1

ℓ20
[Xβ , Pνµ]Xβ = −Pνµ +

ih

ℓ40

(
ϵβν

σXσXµ + ϵβµ
σXνXσ

)
Xβ ,

= −Pνµ +
iℏ
ℓ40

(
ϵν

σβXσ

(
XβXµ + iℏϵµβρXρ

)
+Xν

(
ϵµ

σβXσXβ

))
,

= −Pνµ +
ℏ2

ℓ40

(
2XνXµ + ηνγη

ραδγσβµβαXσXρ

)
,

= −Pνµ −
2ℏ2

ℓ20
Πνµ −

ℏ2

ℓ40

(
ηµνη

ρσ − δρνδσµ
)
XσXρ ,

= −Pνµ −
ℏ2

ℓ20

(
2Πνµ +Πµν − ηµν

)
,

iv) − 1

ℓ20
XαPναXµ = − 1

ℓ20
[Xα, Pνα]Xµ = − iℏ

ℓ40
ϵαν

σXσXαXµ = −ℏ2

ℓ40
XνXµ =

ℏ2

ℓ20
Πνµ ,

v) − 1

ℓ20
XνPβµX

β = − 1

ℓ20
Xν [Pβµ, X

β ] = − iℏ
ℓ40
Xνϵµ

βσXβXσ = −ℏ2

ℓ40
XνXµ =

ℏ2

ℓ20
Πνµ ,

vi)
1

ℓ20
XνPρ

ρXµ = − 2

ℓ20
XνXµ = 2Πνµ ,

canceling all terms and simplifying the resulting expression we prove (3.56) and gµν is

gµν = 2ηµν − Pνµ −
ℏ2

ℓ20
Πµν − 2Πνµ = Pνµ −

ℏ2

ℓ20
Πµν .

If we use the fact40 that Πµν = (Πνµ)
∗ with the same holding for P it is easy to verify that(

g(eµ, eν)
)∗

= (gµν)
∗ = gνµ □

The last proposition shows that if we want an orthogonal projector in order to define the connection

properly, we should make it using some linear combination of Π’s and P ’s, but before doing it, we

will show in the next proposition that exists an suitable inverse metric which is also orthogonal

and can be written with respect to the projectors.

Proposition 3.8. The hermitian form g−1 restricted to TCℏ can be indirectly constructed and

has the following form gµν =
(
1 + ℏ2

ℓ20

)
ηµν + Πνµ satisfying the equation eρ = eµg

µνgνρ where it

can be considered the inverse of the metric gµν in the projection space.

Proof: In order to prove the proposition, one can verify these relations using (3.55)

eµΠ
νµ = − iℏ

ℓ20
eµϵ

νµσXσ =
iℏ
ℓ0
ηµν
(
ẽµ +

iℏ
ℓ0
eµ

)
,

eµP
νµ =

(
1 +

ℏ2

ℓ20

)
ηµνeµ −

iℏ
ℓ0
ηµν ẽµ ,

ẽµΠ
νµ = − iℏ

ℓ0
ηµνeµ ,

ẽµP
νµ = ηµν

(
ẽµ +

iℏ
ℓ0
eµ

)
,

(3.57)

40This is a fact only for projectors with indices in same level, both up or down.
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with the relations above we will show that the operator gµν =
(
1 + ℏ2

ℓ20

)
ηµν + Πνµ satisfies the

following equation eµg
µνgνρ = eρ. Since eµ and ẽµ belong to TCℏ the action of Π over them is zero

and we used this fact to calculate the relations in (3.57), using this we first show that

eµg
µν = eµ

(
1 +

ℏ2

ℓ20

)
ηµν +

iℏηµν

ℓ0

(
ẽµ +

iℏ
ℓ0
eµ

)
= eν +

iℏ
ℓ0
ẽν ,

applying it to gµν one get(
eν +

iℏ
ℓ0
ẽν
)
gνρ =

(
1 +

ℏ2

ℓ20

)
eρ −

iℏ
ℓ0
ẽρ +

( iℏ
ℓ0
ẽρ −

ℏ2

ℓ20
eρ

)
= eρ ,

as we intended to show. To show the reasoning behind this result we write explicitly the product

of the restriction of the metric and its inverse

gµνgνρ =
[(

1 +
ℏ2

ℓ20

)
ηµν1+Πνµ

](
Pρν −

ℏ2

ℓ20
Πνρ

)
,

now we just simplify further the expression obtained and in order to help the reader to verify some

intermediate steps we write the expression below which is obtained after some straightforward

calculations

gµνgνρ =
(
1 +

ℏ2

ℓ20

)
Pρ

µ − ℏ2

ℓ20

(
1 +

ℏ2

ℓ20

)
Πµ

ρ +
1

ℓ20
[Xµ, Xρ]−

ℏ2

ℓ20
Pρ

µ +
ℏ2

ℓ20

(
1 +

ℏ2

ℓ20

)
Πµ

ρ

and after some simple algebra we get to the following

gµνgνρ = Pρ
µ +

1

ℓ20
[Xµ, Xρ] = Pµ

ρ ,

and this is expected because the projector act as an identity operator over the generators of the

projected space giving trivially eµP
µ
ρ = eρ as was shown previously. □

Now we turn our attention to the connection in TCℏ and verify how it compose with the projectors

Π and P , the following proposition (see [45]) elucidates this.

Proposition 3.9. Let (A, g) be a Lie pair and let ∇ be a hermitian connection on the free hermitian

module (An, h). If P : An → An is an orthogonal projection, then P ◦∇ is a hermitian connection

on
(
p(An), g|P (An)

)
.

Now we will explicitly construct the hermitian right connection and with this goal we start by

defining its coefficients

∇∂µ
êν = êρΓ

ρ
µν , (3.58)

for our case Γρ
µν ∈ Cℏ and ê some basis for (Cℏ)3. The action of the connection defined previously

in an arbitrary element of (Cℏ)3 is

∇µ

(
êνU

ν
)
= êρΓ

ρ
µνU

ν + êν∂µU
ν , (3.59)
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for ∇µ = ∇∂µ
and Uν ∈ Cℏ. Using the fact that for our case all the elements of g are hermitian

we can apply the hermiticity condition to our connection and obtain

∂αg(êµ, êν) = g(∇αêµ, êν) + g(êµ,∇αêν) =
(
gνρΓ

ρ
αµ

)∗
+ gµρΓ

ρ
αν , (3.60)

for the general case gµρΓ
ρ
αν could have real and imaginary parts, if we denote41 ℑ(gµρΓρ

αν) as γ(α)µν

it is easy to see that if use the hermiticity of g to show that ℜ(gµρΓρ
αν) = ℜ(gνρΓρ

αµ) = 1
2∂αgµν

one get to the following

∂αgµν = 2ℜ(gνρΓρ
αµ) + i

(
γ(α)µν − γ∗(α)νµ

)
,

and in order to cancel the imaginary part we can impose that γ∗(α)νµ = γ(α)µν as well as define the

connection coefficients using the inverse of g giving as result

Γρ
αµ =

1

2
gρλ∂αgλµ + igρλγ(α)λµ . (3.61)

Upon setting a suitable γ(α)ρµ ∈ Cℏ we should have a well defined metric connection ∇γ , where for

a different choice of γ one get a different connection. Using the corollary (3.7) from [45] we can

construct explicitly an hermitian connection for the tangent space TCℏ as the composition of the

projector P and the connection ∇γ as can be seen below

∇αẽµ = P ◦ ∇γ
α(ẽµ) = ∇γ

α

(
êρP

ρ
µ

)
= ẽρ∂αP

ρ
µ + ẽρg̃

ρλ
(1
2
∂αg̃λσ + iγ(α)λσ

)
Pσ

µ , (3.62)

where P is the projector defined in (3.52) and metric g̃µν = g(ẽµ, ẽν) which is the respective

hermitian form that turns the projected space defined by Pµ
ν into an hermitian module.

Proposition 3.10. The projected connection ∇γ acting upon the basis sets {eµ} and {ẽν} of TCℏ
gives

∇αẽν =
1

ℓ0
eαXν + iẽρη

ρλ
(
γ(α)λν +

1

ℓ20
γ(α)λσX

σXν

)
,

∇αeµ =
1

ℓ0
ẽαXµ +

i

ℓ0
ϵµ

λρẽβγ(α)
β
λXρ +

iℏ
ℓ30
ẽβ

(
iγ(α)

βσ + ϵα
βσ
)
XσXµ ,

for e and ẽ from (3.55).

Proof: We start calculating the first term from the upper expression

ẽρ∂αP
ρ
µ =

ẽρ
iℓ20ℏ

(
Xρ[Xα, Xµ] + [Xα, X

ρ]Xµ

)
=

1

ℓ20
ẽρϵα

ρσXσXµ =
1

ℓ0
eαXµ ,

where we used (3.55) and the fact that

ẽρX
ρ = êβ

(
δβρ +

1

ℓ20
XβXρ

)
Xρ = ê(Xβ −Xβ) = 0 ,

41The index (α) inside parenthesis is to emphasize that it carry different symmetry properties in comparison to

the other pair of indices.
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simillarly one can show that the same is valid for {eµ}. Applying g̃µν = Pµν and g̃µν = Pµν one

get to the following expression

∇γ
αẽµ =

1

ℓ0
eαXµ + ẽρP

ρλ
( 1

2ℓ20
(ϵαλ

θXθXσ + ϵασ
θXλXθ) + iγ(α)λσ

)
Pσ

µ ,

=
1

ℓ0
eαXµ +

(
− 1

2
ηλρẽρϵαλ

θΠθσ + iẽργ(α)
ρ
σ

)(
δσµ −Πσ

µ

)
,

=
1

ℓ0
eαXµ + iẽρ

(
γ(α)

ρ
µ − γ(α)ρσΠσ

µ

)
,

using that ẽρP
ρλ = ẽρη

ρλ and the orthogonality of Π and P . To calculate the remaining expression

we must use the result of the first one, we start by writing the full expression as

∇γ
αeµ = ∇γ

α

( 1

ℓ0
ϵµ

λρẽλXρ

)
=

1

ℓ0
ϵµ

λρ
[
(∇γ

αẽλ)Xρ + ẽλ∂αXρ

]
,

=
1

ℓ0
ϵµ

λρ

[[ 1
ℓ0
eαXλ + iẽθη

θβ
(
γ(α)βλ − γ(α)βσΠσ

λ

)]
Xρ + ẽλϵαρ

σXσ

]
,

= − 1

ℓ0
ẽαXµ −

iℏẽβ
ℓ0

ϵα
βθΠθµ +

iẽβ
ℓ0
ϵµ

λργ(α)
β
σXρ − iẽβ

iℏ
ℓ0
γ(α)

β
σΠ

σ
µ ,

= − 1

ℓ0
ẽαXµ +

iẽβ
ℓ0
ϵµ

λργ(α)
β
λXρ −

iℏ
ℓ0
ẽβ

(
iγ(α)

βσ + ϵα
βσ
)
Πσµ ,

which finishes the proof. □

Using the results from the last proposition, we have two natural choices for γ(α)βσ in order to

simplify the expressions obtained. The first choice is the trivial γ(α)βσ = 0 and the second is

γ(α)βσ = iϵαβσ which clearly satisfies (γ(α)βσ)
∗ = −iϵαβσ = iϵασβ = γ(α)σβ in order to fulfill the

construction employed earlier. Setting γ = 0 and acting upon an arbitrary U = êνU
ν ∈ (Cℏ)3 we

get to the following

∇0
α

(
êνU

ν
)
= êρ

1

2

( iℏ
ℓ40
XρXαXν − ϵαρθΠθν

)
Uν + êν∂αU

ν , (3.63)

where we substituted (3.61) in (3.59) and obtained for γ = 0

Γρ
αν =

1

2
P ρλ(∂αPλν) = −

1

2

(
ϵα

ρθΠθν −
iℏ
ℓ40
XρXαXν

)
.

Doing the same calculation for γ(α)βσ = iϵαβσ we obtain

∇ϵ
α

(
êνU

ν
)
= êρ

1

2

[( iℏ
ℓ40
XρXαXν − ϵαρθΠθν

)
− P ρλϵαλν

]
+ êν∂αU

ν ,

with

Γρ
αν =

1

2
P ρλ(∂αPλν) + iP ρλγ(α)λν = −1

2

(
ϵα

ρθΠθν −
iℏ
ℓ40
XρXαXν

)
− P ρλϵαλν .

In the upcoming section of this work, we will apply a similar procedure to identify a well-

suited connection for local coordinates. Additionally, our aim is to establish correlations between

the results obtained in this section and the new ones, comparing the equivalence of the connections.

Following this, we will utilize the definition of an embedded non-commutative manifold and leverage
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findings from [45] to formulate our Levi-Civita connection. The primary objective is to define the

curvature tensor for both sets of coordinates and calculate the Ricci scalar, subsequently comparing

the results from these two approaches.

3.4.2 Connection in local coordinates

Building on the groundwork explored in the previous section, our focus now shifts towards con-

structing a connection for the space X (Cℏ). This connection will be expressed with respect to the

basis Φα
i utilizing the hermitian right metric constructed in (3.46). To achieve this, we commence

defining a set of arbitrary Christoffel symbols that will properly characterize the connection. Firstly

we define the action of the connection over a right Cℏ-module explicitly for a element A ∈ (Cℏ)3

such that A = êαA
α for Aα = Φα

i A
i, with Ai ∈ Cℏ and êαΦ

α
i = Φ̂i a basis of X (Ĉℏ)

∇∂a
A = ∇a(êαΦ

α
i A

i) = êαΦ
α
i

(
∂aA

i + Γi
ajA

j
)
, (3.64)

where we used the image of the homeomorphism φ from (3.15) in order to define properly the

action of the connection over the vector êαΦ
α
i as our connection coefficients. Returning to the co-

ordinates R, T and Z, we will try to construct the relations for Γa
bc following the usual commutative

construction. We will take for granted the following properties for ∇ assuming it to be i) metric

compatible and ii) torsion-free which is a reasonable ansatz for the structure of the connection

coefficients. These properties can be translated to the following equations

i) ∂ig(Φa, Φb) = g(∇iΦa, Φb) + g(Φa, ∇iΦb) ,

ii) ∇∂αφ(∂β)−∇∂β
φ(∂α) = φ([∂α, ∂β ]) ,

(3.65)

as we will see below, some of these properties will imply a different structure for the connection

coefficients. Using the map φ we can calculate the hermitian form gab

gab = g(φ(∂a), φ(∂b)) = g(êαΦ
α
a , êβΦ

β
b ) = g

(
êα(∂aX

α), êβ(∂bX
β)
)
= (∂aX

α)∗g(êα, êβ)(∂bX
β) ,

for
−→
X = êαX

α being the ambient coordinates of the ncAdS2. Following the last construction one

can use the hermiticity of gab to construct the connection coefficients directly from the action of

the elements of g in the hermitian form g as follows

∂ag(Φb,Φc) = g(Φb, Φd)Γ
d
ac +

(
g(Φc, Φd)Γ

d
ab

)∗
,

in the following calculations we will denote g(φ(∂a), φ(∂b)) as gab. Using the hermiticity of g and

defining Γ̃(a)ij = gikΓ
k
aj =

1
2∂agij + iσ(a)ij , one can find that if

∂agij = Γ̃(a)ij + Γ̃∗
(a)ji =⇒ σ(a)ij = σ∗

(a)ji ,
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additionally in light of the theorem (4.6) from [45] implying that σ(a)bc must have some inner

symmetry in its indices in order to define a Levi-Civita connection, for instance, taking all σ(a)bc = 0

one gets

Γc
ab =

1

2
gcd∂agdb . (3.66)

If we try to calculate explicitly each Γc
ab for this case we find the following set of equations, for

instance

∂T

(
gRR

)
=⇒ 0 = ℜ

(
gRRΓ

R
TR + gRTΓ

T
TR

)
,

and it is straightforward to show that

∂R

(
gRR

)
=⇒ −ℓ20k2Z3 = ℜ

(
gRRΓ

R
RR + gRTΓ

T
RR

)
,

∂T

(
gTT

)
=⇒ 0 = ℜ

(
gTRΓ

R
TT + gTTΓ

T
TT

)
,

∂R

(
gTT

)
=⇒ ℓ20R = ℜ

(
gTRΓ

R
RT + gTTΓ

T
RT

)
,

∂R

(
gTR

)
=⇒ 0 = gTRΓ

R
RR + gTTΓ

T
RR +

(
gRRΓ

R
RT + gRTΓ

T
RT

)∗
,

∂T

(
gTR

)
=⇒ 0 = gTRΓ

R
TR + gTTΓ

T
TR +

(
gRRΓ

R
TT + gRTΓ

T
TT

)∗
.

(3.67)

The solution to the system of non-commutative equations above is equivalent to apply (3.66) to

each combination of indices as we do below

ΓR
RR =

1

2

(
gRR∂RgRR + gRT∂RgTR

)
= −k2Z ,

ΓR
RT =

(
gRR∂RgRT + gRT∂RgTT

)
=

iℏ
2ℓ0

R ,

ΓR
TR =

(
gRR∂T gRR + gRT∂T gTR

)
= 0 ,

ΓR
TT =

(
gRR∂T gRT + gRT∂T gTT

)
= 0 ,

ΓT
TT =

(
gTR∂T gRT + gTT∂T gTT

)
= 0 ,

ΓT
RT =

(
gTR∂RgRT + gTT∂RgTT

)
= k2Z ,

ΓT
RR =

(
gTR∂RgRR + gTT∂RgTR

)
=
iℏk2

2ℓ0
Z3 ,

ΓT
TR =

(
gTR∂T gRR + gTT∂T gTR

)
= 0 .

(3.68)

Plugging the set of Christoffel Symbols above in (3.67) satisfy the full set of equations, as expected.

If we compare the non-commutative set of connection coefficients with the non-zero commutative

analogues Γr
rr = −Γt

rt = −Γt
tr = −z and Γr

tt = −r3, we observe that the set of coefficients obtained

above does not converge to the commutative limit as we take ℏ → 0, this can be explained by

remembering that we have a family of Levi-Civita connections associated with an non-commutative

manifold, we can also consider the fact that we haven’t used yet the torsion free condition in our

setup. Since we know the symmetry properties of σ(a),bc we must modify slightly these coefficients

in order to obtain the correct commutative limit. Writing the coefficients for σ ̸= 0

Γc
ab =

1

2
gcd∂agdb + igcdσ(a)db , (3.69)
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implying that we must choose wisely eight hermitian elements of Cℏ. Analyzing the non-converging

coefficient ΓR
TT we can impose to it the following form

(
α(ℏ)− 1

)
R3 for some real valued function

α(ℏ), this imposition will guarantee the correct commutative limit implying that

ΓR
TT = i

R2

ℓ20
σ(T )RT −

ℏ
2ℓ30

σ(T )TT =
(
α(ℏ)− 1

)
R3 ,

And from this equation, we can use the torsion free condition and solve the system of sixteen

equations and unknowns to find the correct converging set of Christoffel Symbols. This would be

clearly a cumbersome task and we will not follow this path, we instead rewrite our objects using

a projector defined as an endomorphism p : (Cℏ)3 → (Cℏ)3 which satisfies p
(
(Cℏ)3

)
= X (Cℏ), this

will prove to be very useful to circumvent the aforementioned nuisance. We will also denote the

projector as

p(A) = p(êνA
ν) = êµp

µ
νA

ν = êµΦ
µ
ag

ab(Φβ
b )

∗ηβνA
ν , (3.70)

for gab the inverse of the hermitian metric constructed for X (Cℏ). The coefficients pµν can be

calculated directly from

pµν = Φµ
ag

ab(Φβ
b )

∗ηβν , (3.71)

and can be used to prove that p is indeed a projector, namely

p2(U) = êµp
µ
νp

ν
αU

α = êµΦ
µ
ag

ab(Φβ
b )

∗ηβνΦ
ν
cg

cd(Φσ
d )

∗ησαU
α = êµΦ

µ
ag

abgbcg
cd(Φσ

d )
∗ησαU

α ,

= Φµ
aδ

a
c g

cd(Φσ
d )

∗ησα = êµΦ
µ
ag

ad(Φσ
d )

∗ησαU
α = êµp

µ
αU

α = p(U) .

As an example solving for µ = ν = 0 we obtain

p00 = Φ0
bg

ab(Φb0)
∗ = Φ0

Rg
RR(ΦR0)

∗ +Φ0
Rg

RT (ΦT0)
∗ +Φ0

T g
TR(ΦR0)

∗ +Φ0
T g

TT (ΦT0)
∗ ,

= TR2T +
(
1 +

3h2

4ℓ20

)
,
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where we used the program from the appendix A to help in the long calculations. Doing the same

for the other combination of indices we get

p01 =
1

2

[
TRTRT −RTR+

iℏ
2ℓ0

TRT +
(
1 +

5ℏ2

4ℓ20

)
T +

3iℏk2

2ℓ0
Z +

iℏ
2ℓ0

R

]
,

p02 =
1

2

[
− TRTRT −RTR− iℏ

2ℓ0
TRT −

(
1 +

5ℏ2

4ℓ20

)
T − 3iℏk2

2ℓ0
Z +

iℏ
2ℓ0

R

]
,

p10 =
1

2

[
TRTRT −RTR− iℏ

2ℓ0
TRT +

(
1 +

7ℏ2

4ℓ20

)
T +

iℏk2

2ℓ0
Z − iℏ

2ℓ0
R

]
,

p20 =
1

2

[
− TRTRT −RTR+

iℏ
2ℓ0

TRT −
(
1 +

7ℏ2

4ℓ20

)
T − iℏk2

2ℓ0
Z − iℏ

2ℓ0
R

]
,

p11 =
1

2

[
T 2R2T 2

2
− TR2T +

(
1 +

5ℏ2

4ℓ20

)
T 2 +

(1
2
− ℏ2

4ℓ20
− ℏ4

32ℓ40

)
Z2 +

R2

2
+

+
( iℏ
2ℓ0

+
iℏ3

4ℓ30

)
(ZT + TZ)− iℏ

ℓ0
(RT + TR) +

(
1− ℏ2

4ℓ20

)
1

]
,

p12 =
1

2

[
− T 2R2T 2

2
−
(1
2
+

5ℏ2

4ℓ20

)
T 2 +

(
− 1

2
+

ℏ2

4ℓ20
+

3ℏ4

32ℓ40

)
Z2 +

R2

2
+
iℏ
ℓ0
ZT+

+
3iℏ
ℓ0
TR− iℏ3

4
ℓ30ZT −

3ℏ2

2ℓ20
1

]
,

p21 =
1

2

[
T 2R2T 2

2
+
(
1 +

5ℏ
4ℓ20

)
T 2 +

(1
2
− ℏ2

4ℓ20
− 3ℏ4

32ℓ40

)
Z2 − R2

2
− iℏ
ℓ0
ZT+

+
iℏ3

4ℓ30
+

3iℏ
ℓ0
TR− 3ℏ2

2ℓ20

]
,

p22 =
1

2

[
− T 2R2T 2

2
− TR2T −

(
1 +

5ℏ2

4ℓ20

)
T 2 −

(1
2
− ℏ2

4ℓ20
− 3ℏ4

32ℓ40

)
Z2 − R2

2
−

−
( iℏ
ℓ0

+
iℏ3

4ℓ30

)
ZT − iℏ

ℓ0
(RT + TR) + k21

]
,

(3.72)

We can also show that the projector p is orthogonal with respect to the hermitian form g from

(3.18) by direct inspection

g(p(U), V ) = g
(
êσΦag

ab(Φβ
b )

∗ηαβU
α, êγV

γ
)
= (Uα)∗Φβ

b g
ba(Φσ

a)
∗ηαβηγσV

γ ,

= (Uα)∗ηαβ

(
Φβ

b g
ba(Φσ

a)
∗ησγ

)
V γ = g(êαU

α, êβΦ
β
b g

ba(Φσ
a)

∗ησγV
γ) = g(U, p(V )) .

If we compose the projection p with the connection from (3.69), denoting it by ∇ = p ◦ ∇̃ where

∇̃ refer to the connection defined in (3.69), and impose the torsion free condition, we can finally

define a Levi-Civita connection on X (Cℏ) starting from

∇aU = (p ◦ ∇̃a)U = p
(
êα∂aU

α + êµ

(1
2
ηµν∂aηνρ + iηµνσ(a)νρ

)
Uρ
)
,

using ∂aηµν = 0 and applying the projected connection to the basis of X (Cℏ), we get to the

following

∇aΦ̂d = Φ̂bg
bc
(
ηαβ(Φ

α
c )

∗∂aΦ
β
d + i(Φγ

c )
∗σ(a)γλΦ

λ
d

)
,

where from now on we will denote (Φγ
c )

∗σ(a)γλΦ
λ
d as σ̃(a)cd. Now we apply the torsion free condition

using [∂R, ∂T ] = 0 and ∂aX
α = Φα

a(
∇aφ(∂b)−∇bφ(∂a)

)
êαX

α = Φ̂cg
cd
(
ηαβ(Φ

α
d )

∗∂aΦ
β
b + iσ̃(a)db − ηαβ(Φα

d )
∗∂bΦ

β
a − iσ̃(b)da

)
,

= Φ̂cg
cd
(
ηαβ(Φ

α
d )

∗[∂a, ∂b]X
β + i(σ̃(a)db − σ̃(b)da)

)
= 0
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since the commutator of derivatives is zero, this implies an additional constraint in the indices

of σ̃ meaning that σ̃(a)bc = σ̃(c)ab and considering the following σ(a)ij = σ∗
(a)ji, we conclude that

σ̃(a)bc must be symmetric in all three indices, giving 4 choices for our case. In particular, one could

choose σ̃ = 0 for all combinations of indices, it would still be a Levi-Civita connection. Calculating

for this case we get

∇a(Φ̂bU
b) = Φ̂b∂aU

b + Φ̂cg
cd(Φα

d )
∗ηαβ∂aΦ

β
b U

b , (3.73)

for Γc
ab = gcd(Φα

d )
∗ηαβ∂aΦ

β
b . Calculating each coefficient directly one gets to the following

ΓR
RR =

(
gRR(Φα

R)
∗ + gRT (Φα

T )
∗
)
ηαβ∂RΦ

β
R = −k2Z ,

ΓR
RT =

(
gRR(Φα

R)
∗ + gRT (Φα

T )
∗
)
ηαβ∂RΦ

β
T =

iℏ
2ℓ0

R ,

ΓR
TT =

(
gRR(Φα

R)
∗ + gRT (Φα

T )
∗
)
ηαβ∂TΦ

β
T = −R3 ,

ΓR
TR =

(
gRR(Φα

R)
∗ + gRT (Φα

T )
∗
)
ηαβ∂TΦ

β
R =

iℏ
2ℓ0

R ,

ΓT
TR =

(
gTR(Φα

R)
∗ + gTT (Φα

T )
∗
)
ηαβ∂TΦ

β
R = k2Z ,

ΓT
RT =

(
gTR(Φα

R)
∗ + gTT (Φα

T )
∗
)
ηαβ∂RΦ

β
T = k2Z ,

ΓT
RR =

(
gTR(Φα

R)
∗ + gTT (Φα

T )
∗
)
ηαβ∂RΦ

β
R =

iℏ
2ℓ0

k2Z3 ,

ΓT
TT =

(
gTR(Φα

R)
∗ + gTT (Φα

T )
∗
)
ηαβ∂TΦ

β
T =

iℏ
2ℓ0

R ,

and can be easily seen by the expressions above that this set of Christoffel symbols have the correct

commutative limit. Choosing another hermitian elements for σ̃ satisfying the symmetry of indices,

one could find another Levi-Civita connection. We will use σ̃ = 0 in order to calculate the Ricci

Scalar. As a last consideration, if one wants to use the opposite algebra to define the connection

for the left module of X (Cℏ) the natural way of doing it is just defining the left connection as

(
∇∂a

X
)l

=

[(
∂aX

d + Γd
abX

b
)
Φd

]l
, (3.74)

with the right analogue being all connections we defined before belonging to the opposite algebra.

We can also define the symmetric connection over Ae, seeing it as an left module, following the

same procedure we employed to construct the symmetric hermitian form gs

∇s
∂a
X =

1

2

(
∇r

∂a
+∇l

∂a

)
X .

Additionally we can generalize the usual definition of the Laplace-Beltrami operator for a Levi-

Civita connection ∆(F ) = |g|−1/2∂µ

(
|g|1/2gµν∂νF

)
by using |g|= ℓ401 for the non-commutative

case and applying the symmetric mapping to the metric. This must be done because when we define

the Laplacian one should raise the index in one of the covariant derivatives, and in order to fulfill

our construction of the dual moduli for differential forms, it must act from the left instead, making
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necessary the use of right and left algebra simultaneously to guarantee the correct transformation

property of the resulting Laplacian. This can be translated as

∆(F ) := ∂a

(
gab∂b(F )

)
, (3.75)

for F ∈ Ĉℏ , gab = (gab)
−1 the inverse metric constructed in (3.47) and a, b being the coordinates

R and T . Now we apply the symmetric mapping to the inverse metric following the procedure we

did for gs

S
(
g−1(ΦR,ΦR)

)
=

1

ℓ20
R⊗R =

1

ℓ20
RlRr ,

S
(
g−1(ΦT ,ΦT )

)
=
k(ℏ)2

ℓ20
Z ⊗ Z =

k(ℏ)2

ℓ20
ZlZr .

(3.76)

It is easy to see that the cross terms vanish since they are proportional to the identity and from the

commutator of the generators of g we get ∂R(∂TF ) = ∂T (∂RF ). In order to differentiate elements

of Ceℏ we use the function Θ to define how to do it

∂A[(B ⊗ C)F ] := ∂AΘ
(
(B ⊗ C)F

)
= Θ

(
((∂AB)⊗ C +B ⊗ (∂AC) +B ⊗ C∂A)F

)
,

which implies that ∂A(B ⊗ C) := (∂AB) ⊗ C + B ⊗ (∂AC) + (B ⊗ C)∂A when considering the

enveloping algebra as a left module with the map Θ to Cℏ. Now we can explicitly calculate the

non-zero terms of (3.75)

∂R

(
g−1(ΦR,ΦR)∂RF

)
=

1

ℓ20

(
RlRr∂2RF + (Rl +Rr)∂RF

)
,

∂T

(
g−1(ΦT ,ΦT )∂RF

)
=

1

ℓ20
k(ℏ)2ZlZr∂2TF .

(3.77)

With these tools we will prove the following theorem that relates the Laplacian in both ambient

and local coordinates, giving us the possibility of defining the integration over (Cℏ)3 by using the

analogues of eigenfunctions of the surface.

Theorem 3.1. The non-commutative Laplacian defined in (3.75) acting on an arbitrary func-

tion F ∈ Cℏ satisfies the following equation

∆(F ) := ∂a

(
S
(
gab∂b(F )

))
=

2

ℏ2
( 1

ℓ20
(Xν)l(Xµ)rηµν + 1

)
F , (3.78)

for Xµ the ambient coordinates of the ncAdS2 and ηµν = diag(1, 1,−1).

Proof: We will try to show that the Laplacian (3.75) constructed using the coordinates (3.2) can

be written as

(Xµ)l(Xν)rηµνF =
ℏ2ℓ20
2

(
∆(F )− 2

ℏ2
F
)
. (3.79)

The proof for this claim will be provided in the following steps. First we directly calculate the

Laplacian using the metric elements, for instance, as said before the cross terms vanish since

∂R

(
g−1(ΦR,ΦT )∂T (F )

)
+ ∂T

(
g−1(ΦT ,ΦR)∂R(F )

)
= F [T,R] + [R, T ]F = 0 ,
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which is expected since the derivatives commute. For the other terms we get

∂R

(
g−1(ΦR,ΦR)∂R(F )

)
=

1

ℓ20
∂R

(
RlRr∂R(F )

)
,

∂T

(
g−1(ΦT ,ΦT )∂T (F )

)
=
k2

ℓ20
ZlZr∂2T (F ) .

Expanding this we get a messy expression that can be further simplified using (3.33)

∆(F ) = − 1

ℏ2
[
R[F, T ]R, T

]
− k2

ℏ2
Z
[
[F, R], R

]
Z = − 1

ℏ2

(
k2
(
Z[F,R]

− [F,R]Z
)
+R[F, T ]RT − TR[F, T ]R

)
= − 1

ℏ2

(
k2
(
ZFR− 2F −RFZ

)
+
(
RFTRT −RTFRT − TRFTR+ TRTFR

))
,

reordering the symmetric terms of type RTFRT we obtain a simplification

1

2

(
RT + TR

)
F
(
RT + TR

)
=

1

2

(
RTFRT + TRFTR+RTFTR+ TRFRT

)
=

1

2

(
2RTFRT + 2TRFTR+

iℏ
ℓ0

(
FTR− FRT

))
= RTFRT + TRFTR+

ℏ2

2ℓ20
F .

Substituting the above expression in the main one and multiplying the Laplacian by 2ℏ2, we get

to the following

2ℏ2∆(F ) = −2k2
(
ZFR−RFZ

)
+ 4k2F − 2(RFTRT + TRTFR)

+
(
RT + TR

)
F
(
RT + TR

)
− ℏ2

ℓ20
F .

(3.80)

One can also verify(
(X1)l(X1)r − (X2)l(X2)r

)
F =− ℓ20k

2

2

(
ZFR−RFZ − 2F

)
−ℓ

2
0

2

(
TRTFR+RFTRT

)
,

and also

(X0)l(X0)rF =
ℓ20
4
(RT + TR)F (RT + TR) .

If we use the fact that (Xν)l(Xµ)rηµνF =
(
(X0)l(X0)r+(X1)l(X1)r−(X2)l(X2)r

)
F and dividing

the whole equation (3.80) by 4
ℓ20

we get

ℏ2ℓ20
2

∆(F ) =
(
(Xν)l(Xµ)rηµν + ℓ201

)
F ,

which can be rearranged and yelds the final result

∆(F ) =
2

ℏ2
( 1

ℓ20
(Xν)l(Xµ)rηµν + 1

)
F . (3.81)

This expression for the quantum Laplacian agrees with [4] where it is obtained by a different

approach. □

The previous step is of big importance in our work since it connects the two different

formalisms employed, one from my work defining the whole differential calculus over the ncAdS in
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order to construct an well suited Laplacian and the other formalism coming from [4] where they

use the construction that comes from the deformation of the Poisson structure of the Euclidean

AdS. Now that we have our first important theorem we will use the Levi-Civita connections for

both local and ambient coordinates to pursuit a natural following step that is to define a curvature

following the usual relations from the commutative differential geometry. We will start by giving

a simple definition to it and we will proceed calculating it until we find the Ricci Scalar for the

ncAdS2.

3.5 Non-commutative curvature

We will define the non-commutative curvature R : g2×X (Ĉℏ) −→ X (Ĉℏ) as a right acting operator

using the Levi-Civita connection constructed in the last section. The expressions for the Riemann

curvature in ambient and local coordinates, respectively, and their components are

R(∂µ, ∂ν)eα =
(
∇µ∇ν −∇ν∇µ −∇[∂µ,∂ν ]

)
eα = eλRλ

αµν ,

R(∂a, ∂b)Φc = (∇∂a
∇∂b
−∇∂b

∇∂a
)Φc = ΦdRd

cab ,

(3.82)

the derivatives used belong to g and depend of the choice of coordinates, we also considered that

ẽρ is the basis of TCℏ coming from its Lie algebra properties and lastly Φc ∈ X (Ĉℏ) and a, b, c

and d being the coordinates R and T . Note that from the definition above it is easy to see that

R(∂µ, ∂ν)eα = −R(∂ν , ∂µ)eα and from the torsion free condition, we can show that

R(∂µ, ∂ν)eα +R(∂α, ∂µ)eν +R(∂ν , ∂α)eµ = ∇µφ([∂ν , ∂α]) +∇νφ([∂α, ∂µ]) +∇αφ([∂µ, ∂ν ])−

∇[∂µ,∂ν ]eα −∇[∂ν ,∂α]eµ −∇[∂α,∂µ]eν = φ([∂µ, [∂ν , ∂α]]) + φ([∂ν , [∂α, ∂µ]]) + φ([∂α, [∂µ, ∂ν ]]) = 0 ,

where we used the Jacobi identity and the fact that eµ = φ(∂µ) from (3.15), leading us to the

conclusion that the first Bianchi identity holds for the non-commutative case. The last result

shows that In the first part of this section we will state some useful propositions in order to prove

the main result of this chapter. After we introduce all small results we will show that these two

constructions are equivalent. To start our endeavor we consider γ(α)βλ = 0 and we analyze the

curvature for the ambient coordinates showing that

∇0
αeµ = ∇αeµ =

1

ℓ0

(
ϵµ

ρσ(∇αẽρ)Xσ + ϵµ
ρσϵασ

γ ẽρXγ

)
= − 1

ℓ0

(
ẽα +

iℏ
ℓ0
eα

)
Xµ =

1

ℓ20
ϵα

ρσeρXσXµ ,

with this we can calculate separately each term of the Riemann curvature

∇µ(∇νeα) =
1

ℓ40

[
ϵν

γρϵµ
βθeβXθXγXρXα + ℓ20ϵν

γρeγ

(
ϵµρ

σXσXα + ϵµα
σXρXσ

)]
,

∇ν(∇µeα) =
1

ℓ40

[
ϵµ

γρϵν
βθeβXθXγXρXα + ℓ20ϵµ

γρeγ

(
ϵνρ

σXσXα + ϵνα
σXρXσ

)]
,

∇[∂µ,∂ν ]eα =
1

ℓ20
ϵµν

ρϵρ
γσeγXσXα ,

(3.83)
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and after some straightforward calculations we get to the following expression

R(∂µ, ∂ν)eα =
1

ℓ40

[
iℏeβ

(
ϵν

βσXσXµ + ϵµν
σXσX

β − ϵµβσXσXν

)
Xα + eν

(
− ℓ20XµXα

+ ℓ40ηµα1+ iℏϵµσρXσXρXα + iℏℓ20ϵαµσXσ

)
− eµ

(
ℓ20XνXα − ℓ40ηνα1

+ iℏϵνσρXσXρXα + iℏℓ20ϵανσXσ

)
+ iℏℓ20

(
ϵµ

βσeβXσηνα − ϵνβσeβXσηµα

+ ϵµν
σeαXσηνα

)]
,

(3.84)

which can be further simplified to

R(∂µ, ∂ν)eα =
1

ℓ20

(
eν

(
ηµα +

1

ℓ20
XαXµ +

ℏ2

ℓ40
XµXα

)
− eµ

(
ηνα +

1

ℓ20
XαXν +

ℏ2

ℓ40
XνXα

))
,

and using the definition of g(eµ, eν) from the proposition (3.7) we find that the curvature has the

following form

R(∂µ, ∂ν)eα = − 1

ℓ20

(
eµg(eν , eα)− eνg(eµ, eα)

)
=

1

ℓ20
(eνgµα − eµgνα) , (3.85)

in order to write it as (3.82) we use the fact that eµ = eλP
λ
µ which allows us to rewrite the

expression

eλR
λ
αµν =

1

ℓ20
eλ

(
Pλ

νgµα − Pλ
µgνα

)
,

and upon setting Rραµν = g(eρ,R(∂µ, ∂ν)eα) we get to the expression

Rραµν =
1

ℓ20
(gρνgµα − gρµgνα) , (3.86)

which is the non-commutative analogue of the Riemann curvature tensor, keeping the same symme-

tries and structure of the commutative counterpart42. Now we turn our attention to the curvature

tensor calculated in the local coordinates. Since the generators of the Lie algebra for local coor-

dinates commutes with each other the term ∇[∂a,∂b] will be zero and the curvature will take the

simpler form seen in (3.82). Now we proceed to calculate all non-zero terms of the non-commutative

right acting Riemann tensor Rd
cab using

∇a(∇bΦ̂c) = ∇a

(
Φ̂eΓ

e
bc

)
= Φ̂d

(
∂aΓ

d
bc + Γd

aeΓ
e
bc

)
,

∇b(∇aΦ̂c) = ∇b

(
Φ̂eΓ

e
ac

)
= Φ̂d

(
∂bΓ

d
ac + Γd

beΓ
e
ac

)
,

where we impose that σ̃(a)bc = 0 for all combinations of a, b and c clearly satisfying the symmetry

constraint for this set of indices. Now by direct inspection we find the non-zero elements

RR
TTR = −RR

TRT = R2
(
1− ℏ2

2ℓ20

)
,

RR
RRT = −RR

RTR =
iℏ1
ℓ0

(1
2
+ k(ℏ)2

)
,

RT
TRT = −RT

TTR =
iℏ1
ℓ0

(
− 1

2
+ k(ℏ)2

)
,

RT
RRT = −RT

RTR = Z2k(ℏ)2
(
1 +

ℏ2

2ℓ20

)
.

(3.87)

42We use the program constructed in the appendix (A.1) to explicitly calculate each of the 81 terms of this tensor

in order to verify these properties. The full construction can be found in the github file provided there.
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Now that we have the whole set of ingredients that will be needed to prove the main theorem of

this section, we state it below.

Theorem 3.2. The non-commutative Ricci scalar will be denoted as R and can be calculated

for the ambient and local coordinates, respectively, using the following expressions

R := gµρ
(
Rραµν

)
gαν = Rρ

αρνg
αν ,

R := gab
(
Rc

acb

)
,

yielding the same result for the non-commutative Ricci scalar R = −
(

2
ℓ20

+ ℏ2

ℓ40

)
1 showing that the

curvature scalar receive a non-commutative correction for these specific ordering choices.

Proof : To prove this result we already have the most important tools calculated, we just need

to explicit calculate the Ricci scalar from the definitions above. We start calculating it for the

ambient coordinates

R =
1

ℓ20
gµρ
(
gρνgµα − gρµgνα

)
gαν =

1

ℓ20

(
Pµ

νPµ
ν − Pµ

µPν
ν
)
= Rµ

αµνg
αν ,

to progress in the demonstration we must use that the trace Pα
α is 2 from the definition of Pµν

and using Pµ
νPµ

ν = PµνPµν we simplify the expression above finding that

R =
1

ℓ20

(
− 4 +

(
ηµν +

1

ℓ20
XµXν

)(
ηµν +

1

ℓ20
XµXν

))
=
1

ℓ20

(
− 6 + δµµ +

1

ℓ40
XµXνXµXν

)
,

= − 3

ℓ20
1+

1

ℓ60

(
XνXµ + iℏϵµνρXρ

)
XµXν = − 2

ℓ20
1+

iℏ
ℓ60
ϵρµνXρXµXν ,

using ϵρµνXρXµXν = −iℏXνXν = iℏℓ201 we can finnaly calculate the non-commutative Ricci

scalar for the ambient coordinates

R = − 2

ℓ20
1− ℏ2

ℓ40
1

Now we calculate the Ricci scalar for the local coordinates. Using (3.47) and (3.87) we get to the

following

R = gRRRc
RcR + gRTRc

RcT + gTRRc
TcR + gTTRc

TcT ,

by direct inspection it is easy to show that for the ambient coordinates we also have that

R = − 2

ℓ20
1− ℏ2

ℓ40
1 ,

this result is expected since in [44] the author obtain an non-commutative correction for the Ricci

scalar of the fuzzy sphere, when analysing the ncAdS2 we see that there are a lot of similarities

between these two non-commutative spaces and this is seen in the fact that we get also a non-

commutative correction here. □

Using the opposite algebra we could define the analogue left acting Differential geometry,

doing the same calculations it is not hard to show that the Ricci scalar for the left-module structure
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is

Rl = − 1
ℓ20

(
2− ℏ2

ℓ20

)
.

Introducing the enveloping algebra structure and the symmetric mapping from (3.44) we find that

the symmetric Ricci Scalar doesn’t receive any non-commutative correction

Rs =
1

2
S
(
Rl +Rr

)
= S

(
− 2

ℓ20
1⊗ 1

)
which is the result we would obtain if we used the metric gs to calculate R. We can also note

that, for the local coordinates, if we change ordering we use to define the Ricci scalar, for instance

R = gba
(
Rc

acb

)
the Ricci scalar for this specific ordering doesn’t receive a non-commutative

correction, implying that in the construction of our mathematical structure over the ambient

coordinates we could define these objects in such a way that they relate to the symmetric map

construction without the use of the left module structure. At first glance this result could sound

strange, but it is a well known fact that when calculating the non-commutative scalar curvature

one expect to find non-unique results that depends on the choice of ordering in the definition of

the geometrical objects used (see [51]), and since these ambiguites are expected to arise, our work

is successful in explaining what is the correct ordering prescription in order to remove the non-

commutative correction found in the result for the local coordinates. For the ambient coordinates

we analyse the result obtained in [49] for a pseudo-Riemannian calculi, as defined in the paper

itself, we conclude that the non-uniqueness of the Ricci scalar is a direct consequence of the fact

that we haven’t restricted our definitions to the real case, as is done in [49]. In addition to this,

we also must find an pseudo-inverse metric ĝab of gab such that, for a Hermitian element H ∈ Cℏ
this inverse metric satisfies ĝabgbc = gcbĝ

ba = δacH, and following this definition, it is not hard to

prove that the unique scalar curvature R is obtained from the following equation

R = H−1ĝρµRραµν ĝ
ανH−1 .

We will not find this pseudo-inverse in my thesis, but I intend to further investigate the existence of

it in future developments from our current work. In the next section we proceed in our construction

of the Riemmanian geometry of the ncAdS2 by defining the Killing vector fields for the metric we

found and used so far. In conclusion, we demonstrate that the Killing vector fields in our formalism

are related to those in references [4], [6], [7], and [48]. The underlying Lie algebra symmetry is

crucial in connecting these two seemingly different approaches.

3.6 Killing Vector Fields

A natural first step in the construction of a non-commutative Killing vector field is the definition

of a Lie derivative written with respect to the local coordinates. From now on, we will perform
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all calculations for the left-acting Killing vector field, utilizing the suitable left-module structure

employed earlier. Similarly, one can perform the same calculations analogously for the right-acting

Killing vector field.

Definition 3.7. Let T be a non-commutative left-tensor field over the algebra Cℏ, we define the

non-commutative Lie derivative operator for the local coordinates (R, T, Z) as
(
L(nc)
X T

)a1 ··· an

b1 ··· bm

as the symmetrization of the left and right acting Lie derivatives

L(nc)(T ) := 1

2

(
Lr(T ) + Ll(T )

)
,

where we follow the usual left/right distinction and use the The left(right) Lie derivative defined

below

LX

(
T a1 ··· an

b1 ··· bm

)
:= Xc

(
∂cT a1 ··· an

b1 ··· bm

)
− (∂cX

a1)T c ··· an

b1 ··· bm
− . . .

−(∂cXan)T a1 ··· c
b1 ··· b1

+ (∂b1X
c)T a1 ··· an

c ··· bm
+ . . .+ (∂bmX

c)T a1 ··· an

b1 ··· c .

(3.88)

for X = Xc∂c an general element of the left g-module.

Applying the Lie derivative defined above to the metric written with respect to the local coordinates

yields the non-commutative Killing equation LK

(
gµν

)
= 0 that can be explicitly written as

Xa
(
∂ag(Φb,Φc)

)
+
(
∂bX

a
)
g(Φa,Φc) +

(
∂cX

a
)
g(Φb,Φa) = 0 , (3.89)

for the left Killing vector field satisfying K = XR∂R+XT∂T . Now we state the following theorem

about Killing vectors

Theorem 3.3. The symmetric map applied to the solution of the Killing vector field equation

(3.89) satisfies the following relation

Kµ(F ) = −
1

iℏ
[Xµ, F ] ,

for F ∈ Cℏ, Kµ the Killing vector field and Xµ = Xνηµν the ambient coordinates for the metric

ηµν = diag(1, 1,−1).

Proof : Our objective is to find the elements XR and XT of K = XR∂R +XT∂T , we start solving

(3.89) making b = c = R

Xa
(
∂ag(ΦR,ΦR)

)
+
(
∂RX

a
)
g(Φa,ΦR) +

(
∂RX

a
)
g(ΦR,Φa) = 0 ,

which gives as result the equation XRZ = ∂RX
R, now we add the equations for the cross terms

a ̸= b

Xa
(
∂ag(ΦR,ΦT )

)
+
(
∂RX

a
)
g(Φa,ΦT ) +

(
∂TX

a
)
g(ΦR,Φa) = 0 ,

Xa
(
∂ag(ΦT ,ΦR)

)
+
(
∂TX

a
)
g(Φa,ΦR) +

(
∂RX

a
)
g(ΦT ,Φa) = 0 ,
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to get to the second equation ∂RX
TR2 + k2∂TX

RZ2 = 0 and lastly for a = b = T we find the

third equation for our system

Xa
(
∂ag(ΦT ,ΦT )

)
+
(
∂TX

a
)
g(Φa,ΦT ) +

(
∂TX

a
)
g(ΦT ,Φa) = 0 ,

giving as result XR + ∂TX
TR = 0.Now in order to solve the following system of equations

XRZ − ∂RXR = 0 ,

∂RX
TR2 + k2∂TX

RZ2 = 0 ,

XR + ∂TX
TR = 0 ,

we can use the ansatz coming from the commutative case, we will show that the following operators

satisfy the set of equations

XR = R+ 2TR ,

XT = −T + k2Z2 − T 2 .
(3.90)

First we apply the ansatz for XR in the first equation, which gives

∂RX
R = 1+ 2T = (R+ 2TR)Z = XRZ ,

clearly satisfying it. For the second equation we calculate separately the following terms

∂RX
T = −2k2Z3 ,

∂TX
R = 2R ,

now we apply these results to the second equation of the system to get

∂RX
TR2 = −2k2Z = −(2k2R)Z2 = −k2∂TXRZ2

which satisfies the second equation of the system. The last equation is easily satisfied as can be

seen by taking the derivative

(∂TX
T )R = −(1+ 2T )R = −(R+ 2TR) = −XR .

We can do solve the right acting Killing vector equation by using the adjoint of the ansatz above.

Now we join both the left and right parts getting as result a candidate for non-commutative Killing

vector field

K(nc) = XR∂R +XT∂T , (3.91)

with XR and XT expressed as

XR =
1

2

[(
Rl +Rr

)
+ 2
(
T lRl + T rRr

)]
,

XT =− 1

2

[(
T r + T l

)
− k2

(
(Z2)l + (Z2)r

)
+
(
(T 2)l + (T 2)r

)]
.

(3.92)

Now, as the last step, we must verify if K transforms correctly with the choice of ordering for the

quadratic terms. It is easy to see if we act (multiply as an element of Ceℏ) K over some element
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A ∈ Cℏ without considering the symmetric map the manipulation of the terms will give raise to

an additional term proportional to − ℓ20
ℏ2 (∂

2
J − ∂2R)A and it will cause K to not transform correctly.

To avoid this we apply the symmetric map S over XT and XR getting the final form for the

non-commutative Killing vector field

XR =
1

2

[(
Rl +Rr

)
+ 2
(
T lRl + T rRr

)]
,

XT =− 1

2

[(
T r + T l

)
− 2k2ZlZr + 2T lT r

]
.

(3.93)

Now we introduce a new set of operators K = K0 +K1 +K2 defined as

K0 =
1

2

[(
Rl +Rr

)
∂R −

(
T r + T l

)
∂T

]
,

K1 =
1

2

[(
T lRl + T rRr

)
∂R +

(
k2ZlZr − T rT l + 1

)
∂T

]
,

K2 =
1

2

[(
T lRl + T rRr

)
∂R +

(
k2ZlZr − T rT l − 1

)
∂T

]
,

(3.94)

and upon acting them over a function F (R, T ) = F we find that, for K0 as an simple example

K1(F ) =
ℓ0
2iℏ

(
R[F, T ] + [F, T ]R+ T [F,R] + [F,R]T

)
,

=
ℓ0
2iℏ

(
[F, TR+RT ]

)
= − 1

iℏ
[F,X0] .

The same calculation can be done for K2 and K3 and they will therefore lead us to the conclusion

that, in fact, the Killing vectors found by our formalism are directly associated with the ones found

in [4] using the quantization of the Poisson algebraic structure, namely

Kµ(F ) = −
1

iℏ
[F,Xµ] , (3.95)

which is the result we intended to prove. □

If we remember that the map defined in (3.15) uses the Lie algebra underlying the symmetry of the

ncAdS2, the expression obtained above can be interpreted as the direct consequence of fact that

Killing vector fields are the manifestation of symmetries in the context of the non-commutative

surfaces. With this result could also try to verify the non-commutative AdS/CFT correspondence

for the massive and interacting case writing the desired action with respect to the local coordinates

since we have an exact form for the Killing vector fields. In the next section we will finish our

analysis of the geometry of the ncAdS2 as a quantum surface finding a way to integrate functions

defined over it using the non-commutative eigenfunctions that we will define, we will also show

that it is possible to decompose the functions over ncAdS2 as linear combinations of this kind of

eigenfunctions.
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3.7 Euclidean AdS2 surface eigenfunctions and non-commutative inte-

gration

In this section I try to construct a well defined way of integrating functions over the quantum

AdS2 following a simmilar path as found in [48], we will define functional that should map the

zeroth term of the formal power expansion of the functions F in Cℏ as a linear combination of

non-commutative eigenfunctions. As a starting point, one could try to solve the action for the

commutative Laplacian in a arbitrary function defined on EAdS2

∆f(r, t) =
1
√
g
∂i

(
gij
√
g ∂jf(r, t)

)
=

1

ℓ20

[
∂r

(
r2∂rf(r, t)

)
+ r−2∂2t f(r, t)

]
,

∆f(r, t) =
r2

ℓ20
∂2rf(r, t) +

2r

ℓ20
∂rf(r, t) + (rℓ0)

−2∂2t f(r, t) ,

(3.96)

where we used that

gij =
1

ℓ20

r2 0

0 r−2

 ,
√
g = ℓ20 .

we can assume that the solution for the equation ∆f(r, t) = 0 have the form

f(r, t) = rαR(rβ)T (t) , (3.97)

for arbitrary α and β we could impose some restrictions to these coefficients in order to find a

simple solution. Setting them to α = 0 and β = −1 we find a simple set of solutions for the

separeted ODE’s. For the coordinate t we get as a solution the superposition of all plane waves

for the parameter λ2 > 0, showing explicitly the translation invariance in the t direction

f(r, t) =
1

2π

∫
R

Rλ

(
1

r

)
eiλtdλ , (3.98)

with Rλ(
1
r ) being the solution in ”momentum” space. Solving for Rλ

(
1
r

)
one can get to the

following

r4R′′
λ

(
1

r

)
+ 2r3R′

λ

(
1

r

)
− λ2Rλ

(
1

r

)
= 0 =⇒ Rλ(r) = aλ cosh

(
λ

r

)
+ ibλ sinh

(
λ

r

)
, (3.99)

to have well behaved solutions in the limits r → 0 and r →∞ we must impose some conditions in

the constants aλ and bλ. If we define

αλ =
aλ + ibλ

2
,

it is easy to see that the general solution for ∆f(r, t) is of the type

f(r, t) = A

(
1

r
+ it

)
+B

(
1

r
− it

)
(3.100)

with A(ξ) and B(ξ∗) for ξ = 1
r + it and

A(ξ) =
1

2π

∫
R

αλ exp

[
λ
(1
r
+ it

)]
dλ ,

B(ξ∗) =
1

2π

∫
R

α∗
λ exp

[
−λ
(1
r
− it

)]
dλ .

(3.101)
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One can also verify that the solution to the Laplacian (3.96) is (3.97) if one rewrites it as

∂ξ∂ξ∗f(ξ, ξ
∗) = 0 =⇒ f(ξ, ξ∗) = A(ξ) +B(ξ∗) .

Now we introduce the total integral of a function F (r, t) on EAdS2 with respect to the induced

metric gij as

I(F ) =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

ℓ20
2π
Fλ

(
1

r

)
eiλtdλdrdt . (3.102)

We say that a function F (r, t) is integrable if I(F ) exists, where we used (3.97) to write F (r, t) as

an integral. Now we turn our attention to the non-commutative case and prove the last theorem

of this thesis.

Theorem 3.4. A function F (R, T ) ∈ Cℏ will be called integrable over the ncAdS2 if F (R, T ) can

be written as F (R, T ) = F+(R, T ) + F−(R, T ) for

F±(R, T ) =
ξ±
2π

∫
R

exp
(
± iλT

2

)(± ℏλ
2ℓ0

+R

± ℏλ
2ℓ0
−R

) kℓ0
ℏ

exp
(
± iλT

2

)
dλ ,

for some real parameter λ, k2 = k(ℏ)2 = 1 + ℏ2

4ℓ20
and ξ± being some complex coefficients.

Proof : First we will assume that the solution can be expressed as a superposition of the analogues

of plane waves in the quantum surface by defining the non-commutative Fourier transform as

follows

F (R, T ) =
1

2π

∫
R

Tλ(T )Rλ(R)Tλ(T )dλ (3.103)

for some real parameter λ and for T (T ) = exp(iλT/2). Now we start solving the non-commutative

Laplace equation

∆(F (R, T )) =
1

ℓ20

(
∂R

(
R∂R(F )R

)
+ k2Z∂2T (F )Z

)
, (3.104)

to simplify the expression above we must use the following properties

RTλ = TλR+
iℏ
ℓ0
∂T (Tλ) = Tλ

(
R− ℏλ

2ℓ0
1

)
,

ZTλ = TλZ + [Z, Tλ] = TλZ
(
1− ℏλ

2ℓ0
Z
)−1

,

where the last step can be calculated using [Z, Tλ] = − iℏ
ℓ0
Z∂T (Tλ)Z = ℏλ

2ℓ0
ZTλZ. Organizing these

terms we rewrite the non-commutative Laplacian as

∂R

(
R∂R(F )R

)
= Tλ∂R

((
R− ℏλ

2ℓ0
1

)
∂R(Rλ)

(
R+

ℏλ
2ℓ0
1

))
Tλ ,

where the exponents in Tλ could be moved to the outer parts of the expression since they commute

with the derivative with respect to R. One can note that the inner terms are all R dependent we

then could merge the inner terms of this expression to get

∂R

(
R∂R(F )R

)
= Tλ∂R

((
R2 − ℏ2λ2

4ℓ20
1

)
∂R(Rλ)

)
Tλ . (3.105)
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For the other term we use the remaining properties

Z∂2T (F )Z = −k2λ2Tλ
(
1− ℏ2λ2

4ℓ20
Z2
)−1

RλTλ .

By taking ∆
(
F (R, T )

)
= 0 the radial equation becomes

d

dR

((
R2 − ℏ2λ2

4ℓ20
1

)
R

′

λ(R)

)
− k2λ2Z

(
1− ℏ2λ2

4ℓ20
Z2
)−1

ZRλ = 0 , (3.106)

and after some manipulations43 we finally get to

d

dr

((
R2 − ℏ2λ2

4ℓ20

)
R

′

λ

)
− k2λ2

R2 − ℏ2λ2

4ℓ20

Rλ = 0 . (3.107)

If one look carefully, the equation above resembles the general Legendre equation for the commu-

tative case. We write it below

(1− x2)y′′ − 2xy′ +
(
ν(ν + 1)− µ2

1− x2
)
y = 0 (3.108)

and its solution can be expressed in terms of the hypergeometric function for |1− z|< 2

Pµ
ν (z) =

1

Γ(1− µ)

(1 + z

1− z

)µ/2
2F1

(
− ν, ν + 1 ; 1− µ; 1− z

2

)
. (3.109)

For the case when ν = 0 the hypergeometric function becomes 1 and the legendre equation yelds

eight different solutions. If we extend this analysis to the non-commutative case, we must choose

the solution that have the correct commutative limit and as done in [48] which gives as a final

result

P−µ
0 (z) =

1

Γ(1 + µ)

(1− z
1 + z

)
. (3.110)

In order to show this using another approach, we will solve the equation (3.107) directly as we did

in the commutative case. First consider the EDO

d

dx

(
(x2 − a2)y′(x)

)
− b2

x2 − a2
y(x) = 0

now we do a change of variables and apply the same strategy used in (3.96) to achieve the solution

y(x) = C1 cosh
( b
a
tanh−1

(x
a

))
+ iC2 sinh

( b
a
tanh−1

(x
a

))
. (3.111)

Using the logarithm form of the inverse hyperbolic tangent function as tanh−1(x) = 1
2 ln

(
1+x
1−x

)
and expressing ξ = C1+iC2

2 we get to the following

y(x) = ξ

(
a+ x

a− x

) b
2a

+ ξ∗
(
a− x
a+ x

) b
2a

, (3.112)

for some coefficients ξ and ξ∗, we can also apply the solution written above to (3.107) because

all the functions and steps used in solving the EDO are well defined in our setting and by simply

43The inversion of the terms is well defined because we constructed the whole field of fractions and functions

with inverses in the previous section and it guarantee the existence of an inverse term.
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taking x = R, b = ±kλ and a = ± ℏλ
2ℓ0

where the choice of sign is related to the sign of λ one get

two distinct solutions that have the form

R±λ(R) = ξ±

(
± ℏλ

2ℓ0
+R

± ℏλ
2ℓ0
−R

) kℓ0
ℏ

. (3.113)

where ξ± are the respective coefficients obtained from the manipulations of ξ and ξ∗ in (3.112) .

Now we can write the full solution for F (R, T )

F (R, T ) = F+(R, T ) + F−(R, T ) , (3.114)

for

F±(R, T ) =
ξ±
2π

∫
R

e±iλT/2

(
± ℏλ

2ℓ0
+R

± ℏλ
2ℓ0
−R

) kℓ0
ℏ

e±iλT/2dλ . (3.115)

This final solution resembles the commutative one and is equal to the solution found in [48]. With

this last construction we finish our construction of the Riemannian geometry of the quantum AdS2

adding to its analysis a wide range of tools that will help us to formalize some results obtained

in [4], [6], [7], [18] and [48] justifying why some steps of these papers following a more rigorous

approach. In the next chapter, we will discuss potential future developments that could arise from

the results obtained in this thesis, presented in a simple and non rigorous manner.
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4 Future developments from this work

This chapter provides a final disccussion on the possible topics one could try to analyse using the

techniques and tools provided by our work on the geometry of quantum surfaces. We expose a

concrete and solid method for the study of the main properties of the AdS2 as a quantum surface

and we think that this can be extrapolated to other surfaces as the Fuzzy sphere (see [43], [44],

[45] for some examples of applications) and to the study of field equations and field theories over

these surfaces. We start by discussing the possibility of expanding our analysis to an analogue of

the Einstein-Hilbert equation, exposing some questions about the well definiteness of the integral,

the choice for some of the objects in the integral and the meaning of the result obtained in our

setting. If we achieve a consistent definition for the non-commutative analogue of the Einstein-

Hilbert action we could also consider the possibility of applying it in the construction of the

Jackiw-Teitelboim gravity upon assuming that the scalar field considered is a non-commutative

one, and if we follow the steps we took in order to calculate the fields for the non-commutative

AdS2/CFT1 correspondence, as shown in the chapter 2, we could verify if the non-commutative

field equations have some additional properties or quantum corrections. After we also discuss the

application of the framework constructed in this thesis to the case of a spinor field, we do this in

unrigorously but from this discussion we will observe a lot of details that we could explore in other

papers in the future.

4.1 Einstein-Hilbert Action

We could try to define a non-commutative analogue for the Einstein-Hilbert action SEH using

the commutative analogue as an educated guess and for this we will define all its constituents

individually. Firstly consider the determinant of an non-commutative metric. There is no unique-

way of defining what is an suitable non-commutative determinant and simultaneously guarantee

that it obeys all laws regarding determinants of commuting variables. As our candidate consider

the definition below for the non-commutative left acting determinant, for A ∈ GL(Cℏ, n)

detl(A) =
1

n!
ϵi1 ... inϵj1 ... jnSym

( n∏
k=1

aikjk

)
, (4.1)

where aij are the matrix elements of A and the Sym operation is defined by

Sym(A1 . . . An) =
1

n!

n∑
k=1

Perm
(
A1 . . . An

)
,

and can be understood as the sum of all permutations over the generators producing all Ai elements.

The determinant defined above doesn’t obey the usual rule det(AB) = det(A)det(B), but it obey
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an slightly different version of this property

Sym
(
det(AB)

)
[F ] = Sym

(
det(A)det(B)

)
[F ] , (4.2)

for F some element of Cℏ and the square bracket means that the action over F is done after the

permutation. We should take into account two aspects of this definition, the first one is that as

we will be using the determinant inside a continuous function and this function will be inside a

trace that will make the role of a non-commutative integration we expect that the symmetrization

and other ordering problems regarding to action elements will not be so annoying. The second

aspect is that the non-commutative entrys of our metric are all R-dependent, so we could treat it

commutatively without much to concern, but as we want to give a rigorous prescription for other

types of surfaces we will consider the general case instead.

Our square-root function would obey the properties below for A,B ∈ Cℏ and α ∈ C

(i)
√
αAB =

√
α
√
A
√
B ,

(ii)
√
A
√
A = A ,

(iii)
d

dA

(√
A
)
=

1

2

(√
A
)−1

,

(4.3)

using the definition for the derivative of the inverse function constructed in [1] one can calculate

the derivatives of the square-root up to an arbitrary order and define a suitable formal Taylor

series expansion. With all of this we will define the Einstein-Hilbert Action for the quantum AdS2

as follows

SEH :=
c4

16πG
Tr
[(
R− 2Λ

)√
detl(gs)

]
, (4.4)

We can also consider another strategy to verify what is the non-commutative analogue of the field

equations, if we construct a non-commutative contracted Bianchi identity, using the first identity

we obtained when we defined the non-commutative curvature tensor, we could explore a rigorous

way to make the following contraction

∇µRµ
ναβ +∇νRαβ −∇αRνβ = 0 ,

following the fact that, for a pseudo-Riemannian real calculus over ncAdS2, one would expect the

scalar curvature R to be Hermitian (see [49]), we can extrapolate from the equation above and

attempt to find the non-commutative Einstein tensor arising from the modified contracted identity.

Several questions emerge: Should the trace here have the same structure as the one defined in the

Arlind paper? Should we construct it directly from the eigenfunctions? Since, within the trace,

we can swap the order of elements in our non-commutative algebra while varying the action, the

ordering will be ignored. Another crucial question is: What is the interpretation of the surface

elements of this integral in the non-commutative setting? If we aim to derive the non-commutative

Einstein field equations from this action, we must first address these questions. Furthermore, we
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intend to apply this formalism to Jackiw-Teitelboim gravity, a solvable model for quantum black

holes that is well understood in the commutative case, as seen in [50]. This model should be the

natural next step to verify the consistency of the framework developed in my thesis.

4.2 The Spin connection and the Dirac operator

As a naive tentative I will try to define not too rigorously the volume form44, the spin connection

and the Dirac operator in the quantum AdS2. We start by denoting as T (g) =
⊕∞

k=0 T
kg for

T kg =
⊗k

i=1 g being the k-th tensor power of the algebra g seen as a vector field over Ĉℏ spanned

by the derivations ∂R and ∂T . We introduce the exterior algebra by considering the two sided ideal

IT defined by the following relation

a⊗ b+ b⊗ a+ a⊗ a+ b⊗ b− (a+ b)⊗ (a+ b) ,

for a and b ∈ g. Now we define the exterior algebra45 Λ(g)

Λ(g) = T (g)/IT .

With these definitions we introduce the exterior derivative d of elements F ∈ Ĉℏ

dF =
ℓ0
iℏ

(
[F, T ]dR− [F,R]dT

)
, (4.5)

for dR, dT ∈ Λ1(g) the space of 1-forms over g satisfying the duality condition dI(∂J) = δIJ with

the indices I, J being the coordinates R and T . Now we rewrite the metric g(Φa,Φb) as

g = ℓ20k(ℏ)2R−2dR⊗ dR+
iℏℓ0
2

(
dT ⊗ dR− dR⊗ dT

)
+ ℓ20R

2dT ⊗ dT .

Now consider the bi-linear form h : Λ1(g)× Λ1(g) −→ Ĉℏ defined as

habcd(Ω
c
idX

i,Ξd
jdX

j) = (Ωc
a)

∗Ξd
bδcd, (4.6)

for Ω, Ξ ∈ Λ1(g), a and b being the indices in Λ1(g). Now we introduce the non-commutative dual

basis {Θa} satisfying

Θa = Ea
c dX

c , (4.7)

44I know that there is a formalization of this construction following the universal calculus discussed in the chapter

6 of [8], but in these sections I’m trying to follow closely the formalism introduced in [1-3] and see if we can generalize

some steps that are well known from commutative Riemannian geometry.
45We can also define the product ∧ induced by the tensor product ⊗ satisfying the following relation for the

canonical surjection π : T (g) −→ Λ(g)

a ∧ b = π(x⊗ y) ,

for a, b ∈ Λ(g), x, y ∈ T (g) and π(x) = a and π(y) = b. This will be the usual exterior product.
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for c being the coordinates R and T and Ec
a ∈ Ĉℏ the non-commutative vielbein. We proceed to

construct the vielbeins by using the following relation

g(Φa,Φb) := gab = habcd(Θ
c,Θd) = (Ec

a)
∗Ed

b δcd , (4.8)

which gives the following system of equations

ℓ20k(ℏ)2R−2 = |E1
R|2+|E2

R|2 ,

ℓ20R
2 = |E1

T |2+|E2
T |2 ,

iℏℓ0
2

= (E1
T )

∗E1
R + (E2

T )
∗E2

R ,

− iℏℓ0
2

= (E1
R)

∗E1
T + (E2

R)
∗E2

T .

(4.9)

The solution for the system above is then given by

E1
R = ℓ0R

−1 , E2
R =

iℏ
2
R−1 , E1

T = 0 , E2
T = ℓ0R . (4.10)

We can also verify the converse, for eab the inverse of Eb
a

gab(e
a
c )

∗ebd = δcd (4.11)

which gives

eR1 =
R

ℓ0
, eR2 = 0 , eT1 = − iℏ

2ℓ20
R−1 , eT2 =

R−1

ℓ0
. (4.12)

Now we can construct explicitly the dual basis

Θ1 = E1
RdR+ E1

T dT = ℓ0R
−1dR ,

Θ2 = E2
RdR+ E2

T dT =
iℏ
2
R−1dR+ ℓ0RdT .

(4.13)

which satisfies

gijdX
i ⊗ dXj = δab(Θ

a)∗ ⊗Θb . (4.14)

Now we introduce the set of gamma matrices {γa} that satisfies the twisted anti-commutator

defined below

[γa, γb]+ = (γa)∗γb + γb(γa)∗ = 2gab1 (4.15)

where they should be explicitly46

γR =
R

ℓ0
σ1 , γT = −R

−1

ℓ0

(
iℏ
2ℓ0

σ1 − σ2
)
, (4.16)

these matrices satisfies the following commutation relations

[γR, γR] = [γT , γT ] = 0 , [γR, γT ] = −[γT , γR] = 2i

ℓ20
σ3 (4.17)

46One can directly verify (2.72) for these gamma matrices. The conjugation in the definition of the anti-

commutator is needed to guarantee the correct anti-commutation relations.
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for [γa, γb] := γaγb − γbγa. Since we are considering the Euclidean case we can obtain the local

gamma matrices γ̂ which are transformed by the vielbein fields Ea
b . These gamma matrices satisfy

[γ̂i, γ̂j ]+ = 2δij1 and can be explicitly constructed as

γ̂1 = γ̂1 = E1
Rγ

R + E1
T γ

T = σ1 ,

γ̂2 = γ̂2 = E2
Rγ

R + E2
T γ

T = σ2 .
(4.18)

We proceed to calculate the vielbein one-form

e = eadX
a = σiE

i
adX

a =
(
σ1E

1
R + σ2E

2
R

)
dR+

(
σ1E

1
T + σ2E

2
T

)
dT ,

e = ℓ0R
−1

(
σ1 +

iℏ
2ℓ0

σ2

)
dR+ ℓ0Rσ2dT .

(4.19)

Calculating the exterior derivative of the vielbein one-form we obtain

de = ℓ0σ2dR ∧ dT . (4.20)

Now we apply the no-torsion condition to find the spin connection one-form ω = ωadX
a

de+ ω ∧ e+ e ∧ ω = 0 ,

ℓ0σ2dR ∧ dT =
(
[ωT , eR] + [eT , ωR]

)
dR ∧ dT

(4.21)

Since de depends on σ2 and the right hand side of the equation above depends on the commutators

with eR and eT , this implies that

ω =
ℏR−1

4ℓ0
σ3dR+

R

2i
σ3dT (4.22)

Now we find a candidate for the Dirac Operator

D = γi(∂i + ωi) = γR(∂R + ωR) + γT (∂T + ωT ) ,

D =

(
R

ℓ0
∂R +

1

2ℓ0
− iℏ

2ℓ20
R−1∂T

)
σ1 +

(
1

ℓ0
R−1∂T +

iℏ
4ℓ20

)
σ2 .

(4.23)

As a next step, we must verify the consistency of the Dirac operator obtained above

and find a proper chirality operator that commutes with it. There are numerous details and

definitions that need to be provided to make the construction rigorous. However, before delving

into these details, we should address certain questions. For example, why do we obtain a twisted

anticommutator relation? We suspect that this arises because our metric is not only symmetric

but also Hermitian. Would this issue persist if we consider using the metric gs? Utilizing gs would

clearly add an overall scale factor to some terms of the dual basis, but it would significantly simplify

our calculations. The final point to consider is whether the properly defined Dirac operator would

agree with the operator found in [4], for example. By comparing with their approach, we can verify

the consistency of the prescription applied above. These are some ideas and results that I might

pursue in future papers, expanding on the findings of this thesis.
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5 Conclusion

As discussed in the introduction of this thesis, the primary goal of this research is to explore an

alternative approach to constructing the geometric properties of the ncAdS2 as a quantum surface.

This involves analyzing its commutative limit, symmetries, and other attributes that could shed

light on the results obtained through deformation quantization and various perturbative methods.

During the development of the mathematical framework necessary for this endeavor, we applied

the methods from [1], [2], [43], [49] to the ncAdS2 and extended our investigation to include

structures such as Killing vector fields and potential non-commutative eigenfunctions. In recent

years, numerous topological and geometric aspects of quantum surfaces have been studied, with

some properties of classical surfaces being either generalized or not to the non-commutative setting

using advanced analytical tools from pseudo-Riemannian calculus (e.g., [49]). Several papers ([52]

- [55]) have calculated the scalar curvature for certain non-commutative surfaces, defining it as

a specific term in the asymptotic expansion of the heat kernel, similar to classical Riemannian

geometry. However, these works typically start with a spectral triple, where the metric is implicitly

defined by the Dirac operator. This approach does not clarify whether a bilinear form representing

the metric corresponding to the Dirac operator exists, nor does it address the existence of structures

like the Levi-Civita connection.

Given this context, a simpler approach becomes appealing, one that defines a module

along with a bilinear form and develops the necessary conditions to make this framework both

well-defined and comprehensible. While the existence of a Levi-Civita connection is not always

assured in this setup, the original authors have established the conditions for its uniqueness, as

well as for the existence of curvature and the Ricci scalar. Utilizing this framework, I constructed a

suitably structured module over a non-commutative unital algebra that could represent the ncAdS2

and examined the geometric aspects of this surface.

Using the metric found and applying the pseudo-Riemannian formalism to our case I found

the Levi-Civita connection, which is non-unique in our setting, and without loss of generality, we

choose the simpler one where we set the respective coefficients γ(α)µν and σ(a)ij equal to zero,

giving the following non-commutative Christoffel symbols as result

Γρ
αν =

1

2
P ρλ(∂αPλν) = −

1

2

(
ϵα

ρθΠθν −
iℏ
ℓ40
XρXαXν

)
,

Γc
ab = gcd(Φα

d )
∗ηαβ∂aΦ

β
b .

Using the metric we defined we determined the correct braiding function that would have to be

imposed over the ordering of elements of the metric in order to have objects that transform correctly

for our case. This is a well known fact, that some ambiguites arise in the ordering implied and
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one should set a suitable braiding function in order to remove some of these ambiguities. In our

case, the chosen function was the symmetric mapping defined in (3.44) and when applied to our

calculations it gives as consequence results that agree with the ones found in [4], [7] and [48]. One

of this results is proven in the theorem (3.1) which shows that the non-commutative Laplacian

satisfies the following equation

∆(F ) := ∂a

(
S
(
gab∂b(F )

))
=

2

ℏ2
( 1

ℓ20
(Xν)l(Xµ)rηµν + 1

)
F .

Subsequently, I focused on the curvature and the Ricci scalar. Utilizing the developed

framework, we proved the first Bianchi identity and established several symmetry properties of the

Riemann tensor. We derived a closed form for the tensor, demonstrating that when expressed in a

specific basis, it retains the form of the commutative Riemann tensor in the ambient coordinates.

This result was also extended to local coordinates. Based on these findings, we defined the Ricci

scalar with a particular ordering and discovered that by altering this ordering, we could avoid

introducing any non-commutative corrections

R = − 1
ℓ20

(
2− ℏ2

ℓ20

)
.

As can be found in [44], the author defined the Ricci scalar in such a way that it showed non-

commutative corrections up to the fourth power of the non-commutative parameter. This suggests

that similar corrections might be expected in our case. However, we also found that applying the

same construction to the right module structure and symmetrizing it yields a Ricci scalar that

matches its commutative counterpart, as one can see below

R =
1

2

(
Rl +Rr

)
= gba

(
Rc

acb

)
= − 2

ℓ20
S(1⊗ 1) ,

This indicates that an appropriate ordering prescription can be applied to the Ricci scalar, as

defined with respect to the ambient coordinates, to eliminate these corrections. Moreover, by

altering the ordering of indices in the definition of the Ricci scalar in local coordinates, we obtained

a scalar devoid of non-commutative corrections. These ambiguities arise from the fact that we

haven’t constructed a real pseudo-Riemannian calculus on the ncAdS surface, leading to some

results being unclear. This issue will be addressed in future work, as outlined in the concluding

section of this thesis.

Building on the possibilities introduced by applying the framework developed in this thesis

to classical geometric objects, we sought to define a Killing vector field using the previously defined

metric. By employing the symmetric map, we demonstrated that the Killing vector field, which

solves the Killing equation (3.89), is equivalent to the traditional construction that relates the

action of classical Killing vectors to the Poisson bracket with respect to the ambient coordinates.
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In the non-commutative setting, this yields the expression:

Kµ(F ) = −
1

iℏ
[F,Xµ] .

This result represents an advancement over previous findings, such as those in [18], as it explicitly

describes the Killing vectors with respect to local non-commutative coordinates. This explicit

formulation enables the determination of additional related objects and opens up new avenues for

exploration. As a further demonstration of the efficacy of this formalism, we utilized the Laplacian

constructed earlier to identify the non-commutative functions that solve the homogeneous case.

These functions were associated with non-commutative eigenfunctions, which can be employed to

integrate functions over the ncAdS2

F (R, T ) =
ξ+
2π

∫
R

eiλT/2

( ℏλ
2ℓ0

+R
ℏλ
2ℓ0
−R

) kℓ0
ℏ

eiλT/2dλ+
ξ−
2π

∫
R

e−iλT/2

(
− ℏλ

2ℓ0
+R

− ℏλ
2ℓ0
−R

) kℓ0
ℏ

e−iλT/2dλ .

In conclusion, the developments and discoveries presented in this thesis provide a founda-

tion for investigating how classical gauge and field theories behave over non-commutative surfaces.

Additionally, they offer insights into potential non-commutative corrections that could arise from

the application of this specific mathematical framework.
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Appendix

A Non-commutative Calculator

In this appendix, we explain how the non-commutative calculator works. The calculator was sent

together with the main text of this thesis to the evaluation committee, it will be made avaliable

on github as soon as all intended updates are applied to the main program. We also discuss how

to configure it for use on your PC. When performing extensive calculations in non-commutative

algebraic settings, small mistakes in manipulations can turn a simple commutative calculation into

a complex and error-prone task. To address this, I have initiated the development of a program

with a specific data structure that will enable the use of this tool for calculations involving algebraic

elements, functions, and vectors being also possible to extend it to tensors. This will provide an

invaluable tool for verifying the accuracy of the results obtained.

We begin this appendix by explaining the main functions of this tool and how to set up

the algebra in the program, including the necessary information to ensure it works correctly. In the

second part, we describe how we used the calculator in this work, providing examples and presenting

additional results not explicitly included in this thesis. These results can be demonstrated directly

using the provided tool.

A.1 Data Structure and Useful Functions

The objective of the program is to explicitly calculate the steps of a calculation, perform necessary

simplifications, and save these steps in a LaTeX file. This file can then be copied into a user’s main

LaTeX document for further use. With this goal in mind, we begin by defining the main Algebra

(as a class) and introducing the fundamental elements of our data structure, the Monomial.

The elements of the Algebra class are the foundation of our data structure. We initialize

an algebra by setting its main attributes at the beginning of the program. Below, we outline the

most important attributes required for proper initialization:

• To initialize an Algebra, we need to specify the list of algebra elements. These elements,

represented as strings in a list, are the symbols that generate the algebra. We also need to

declare the dimension of the algebra.
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• If we want to define a module structure using copies of the algebra, we must declare the

signature. This is done by setting ALGEBRA.signature = [], where the list contains the

chosen signature for our algebra. In our case, we used the list [1, 1, -1].

• We must also define the pairs of inverse elements, if they exist, using the method definverses.

We have to set the commutation relations between generators of the algebra we declared

using the method set commutation relation. In this method, we have to input the order in

which we are calculating the commutator as the first entry. For example, if we want to

declare [T,Z], we must input "TZ" as the first entry. The second entry should be a list with

the elements of the monomial that is the result of the commutator. As a last step, we declare

the derivatives using the method set derivative, where the first entry is the variable in which

the derivative is being calculated and the second entry is the resulting monomial.

As an example, we provide a fragment of the main Python file used in this thesis. Here

we declare the algebra of elements R, T , Z, W , x, y, z, where x, y, and z stand for X0, X1, X2,

and T is the inverse of W .

1

2 # Inicialization - Declaring elements , algebra , inverses and commutation relations.

3 elements = ["R", "T", "Z", "W","x","y","z"]

4 dimension = 3

5 algebra = Algebra(elements , dimension)

6 algebra.signature = [1,1,-1]

7 algebra.definverses("R", "Z")

8 algebra.definverses("T", "W")

9 algebra.set_commutation_relation("TZ", monomial_to_list(Monomial("ZZ", 1, 1, -1, 1,

1)))

10 algebra.set_commutation_relation("RY", monomial_to_list(Monomial("ZZ", 1, 1, -1, 1,

1)))

11 algebra.set_commutation_relation("WR", monomial_to_list(Monomial("WW", 1, 1, -1,

-1, 1)))

12 algebra.set_commutation_relation("WZ", monomial_to_list(Monomial("WZZW", 1, 1, -1,

-1, 1)))

13 algebra.set_commutation_relation("RT", monomial_to_list(Monomial("", 1, 1, -1, 1,

1)))

14 algebra.set_commutation_relation("xy", monomial_to_list(Monomial("z", 1, 1, 0, -1,

1)))

15 algebra.set_commutation_relation("yz", monomial_to_list(Monomial("x", 1, 1, 0, 1,

1)))

16 algebra.set_commutation_relation("zx", monomial_to_list(Monomial("y", 1, 1, 0, 1,

1)))

17 algebra.set_derivative("R", Monomial("T", -1, -1, 1, 1, 1))

18 algebra.set_derivative("T", Monomial("R", -1, -1, 1, -1, 1))

19 algebra.set_derivative("x", Monomial("x", -1, -1, 0, -1, 1))
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20 algebra.set_derivative("y", Monomial("y", -1, -1, 0, -1, 1))

21 algebra.set_derivative("x", Monomial("z", -1, -1, 0, 1, 1))

Now we outline how the calculations are made and the data structure we used to create this

calculator. A monomial is an element of the Monomial class and has the following attributes:

• The ”words” associated with elements from the algebra are registered as a string and declared

as the first initialization parameter of a Monomial element. This is because we are working

with elements from a non-commutative algebra, and the string data type is non-commutative

by definition. Each letter of a word is taken from the set of generators of the algebra associated

with the monomial. For an arbitrary monomial MONO, the command MONO.monomial refers

to the string associated with the generators of an algebra element.

• The second parameter required to initialize aMonomial element is the power of the imaginary

unit. In all calculations, this will be taken modulo 4, and its power needs to be set initially.

For an arbitrary monomial MONO, the power of the imaginary unit is referred to as MONO.im

and can yield any integer between 0 and 3.

• The third parameter required for the initialization of a monomial is the power of the ℏ

constant. In the first version of the calculator, I defined the Monomial class using only ℏ

and ℓ0 as the constants of our theory. This imposed a constraint if we wanted to track what

happens with other constants in the calculation, and it prevented us from using these new

constants in future calculations. To solve this problem, in the second version, I added a list to

the third entry. This list of constants should be defined where we declare the ALGEBRA we are

using. This list also includes constants, symbols, scale factors, and other relevant elements for

our calculations. These symbols will appear explicitly in all calculations. For an arbitrary

monomial MONO, the list of symbols can be obtained using the command MONO.sym list,

with each entry referring to the power of each constant declared in the definition of the main

algebra we are working with. In the old version, the third entry only referred to the power

of ℏ and the fourth entry to the power of the scaling factor ℓ0.

• The last two parameters of our object MONOMIAL are the numerator and the denominator of

a possible fraction we could obtain in some calculations.

Consider, as an example of the construction above, the monomial defined in the older ver-

sion of the calculator47 as MONO1 = Monomial(’T’, 1, 2, -2, 1, 2), this monomial is equivalent

47From this point forward, whenever we refer to a monomial in this appendix, we are referring to the older

version, as it was predominantly used in my work.
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to MONO1 = iℏ2

2ℓ20
T , and as a last example, MONO2 = Monomial(’ ’, -1, -1, 2, 4, 3) =

4ℓ20
3iℏ1,

where we used the empty string as the unit of our algebra.

In the main file, we defined the multiplication from the right and from the left between

elements of the class Monomial. The sum of monomials gives rise to an element of the class

Expression. An element of the Expression class has only two needed parameters: the first one is

a list of monomials in which the sum is applied between them, and the second is the line index,

which starts at 0 by default and will be used to track how many operations are executed in the

expression between lines of the calculations. This will only be functional in the newer version of the

code. As an example, if we execute the sum of MONO1 with MONO2 from the last example, we should

obtain the following set of outputs: MONO1 + MONO2 = Expression([Monomial(’T’, 1, 2, -2,

1, 2), Monomial(’ ’, -1, -1, 2, 4, 3)], 0) =
(

iℏ2

2ℓ20
T +

4ℓ20
3iℏ1

)
. The parentheses are implied

since we also defined the multiplication of an Expression by elements of the class Monomial, by

constants, and by other elements of the class Expression.

When working with the module structure introduced in the main text of the thesis, we

should use the elements of the class Vector. To define an element of this class, we should declare

as the first parameter the algebra we are using for our calculations and as the second parameter

a list of elements. In our case, this list has a length of 3 since the rank of our module is also 3.

To demonstrate this structure, we declare here some objects of the thesis in the data structure we

chose:

1 # Defining some elements of the thesis in the data structure we choose

2

3 X0 = Expression ([ Monomial("TR" ,0,0,1,-1,2),Monomial("RT" ,0,0,1,-1,2)],0)

4 X1 = Expression ([ Monomial("TRT" ,0,0,1,-1,2),Monomial("Z" ,0,0,1,-1,2),Monomial("Z"

,0,2,-1,-1,8),Monomial("R" ,0,0,1,1,2)],0)

5 X2 = Expression ([ Monomial("TRT" ,0,0,1,-1,2),Monomial("Z" ,0,0,1,-1,2),Monomial("Z"

,0,2,-1,-1,8),Monomial("R" ,0,0,1,-1,2)],0)

6 R0 = differentiate(algebra , "R", X0)

7 R1 = differentiate(algebra , "R", X1)

8 R2 = differentiate(algebra , "R", X2)

9 T0 = differentiate(algebra , "T", X0)

10 T1 = differentiate(algebra , "T", X1)

11 T2 = differentiate(algebra , "T", X2)

12 X = Vector(algebra ,[X0,X1,X2])

13 X_R = Vector(algebra ,[R0,R1 ,R2])

14 X_T = Vector(algebra , [T0 ,T1,T2])

In this last fragment of code, we first introduced the components of the vector
−→
X . After

this, we differentiated them with respect to R and T , respectively, and defined the vectors from
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these components. One can find these objects in the equations (3.2) and (3.32) of the main text.

We finish this subsection by explaining the most useful function of this program, the func-

tion solve(ALGEBRA, EXPRESSION). This function is mainly used to simplify an Expression by

finding some anagrams between the words of the monomials contained in it, applying the rules

defined in the main ALGEBRA, and executing the simplification of terms that have the same powers

of the constants and the same combinations of letters. For instance, if an element has the word

"RTR" in its defining monomial and another element has the word "RRT", the function solve() will

swap the second and third letters of the monomial using the built-in function swap(), resulting in

an expression with the simplification of the terms with the same word "RTR" and the remaining

terms coming from the commutation of the elements T and R. As a concrete example, suppose we

define the following expressions

EX1=Expression([Monomial("TTR", 0, 0, 0, 1, 1), Monomial("T", 1, 1, -1, -1, 2)], 0)

EX2=Expression([Monomial("TRT", 0, 0, 0, 1, 1), Monomial("T", 1, 1, -1, 1, 3)], 0)

If we execute the command solve(ALGEBRA, EX1+EX2), the program will simplify the expression

through the following steps: (
TTR− iℏ

2ℓ0
T
)
+
(
TRT +

iℏ
3ℓ0

T
)
,(

TTR+ T (TR+ [R, T ])− iℏ
6ℓ0

T
)
,(

2TTR+
iℏ
ℓ0
T − iℏ

6ℓ0
T
)
,(

2TTR+
5iℏ
6ℓ0

T
)

If we execute the command print(solve(ALGEBRA, EX1 + EX2)), we get as our output the sim-

plified expression for the set of operations above, explicitly:

Expression = [Monomial("TTR", 0, 0, 0, 2.0, 1.0), Monomial("T", 1, 1, -1, 5.0, 6.0)]

where the numerator and denominator in the monomials are converted to the type float to avoid

some problems.

In the next subsection, we will demonstrate how to perform direct calculations using the

provided tool. We will verify some results found in the main text of this thesis.
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A.2 Examples of Application

We start this subsection by demonstrating equation (3.1). In the following calculations, we will

omit the quotation marks around the strings defining the word in elements of the Monomial class.

Using the vectors declared in the last subsection, we also introduce the function inprod(ALGEBRA,

VECTOR1, VECTOR2), which calculates the inner product between two vectors defined using the

signature declared when we initialize the main ALGEBRA. From the code

1 #Calculating the inner product X^\mu X_\mu

2 XX = inprod(algebra , X,X)

3 print("XX = ",XX)

the output is:

XX = Expression = [Monomial( ,0,0,2,-1.0,1.0), Monomial(ZT,1,1,1,-1.0,4.0),

Monomial(ZT,1,3,-1,-1.0,16.0), Monomial(RTZZ,1,1,1,1.0,4.0),

Monomial(RTZZ,1,3,-1,1.0,16.0), Monomial(ZZ,0,2,0,1.0,2.0),

Monomial(ZZ,0,4,-2,1.0,8.0)]

The output provided isn’t fully simplified. To manipulate further the elements from the expression,

we can use the method EXPRESSION.swap(ALGEBRA, MONOMIAL, INDEX1, INDEX2), which swaps

two neighboring indices in some MONOMIAL that belongs to the list of monomials of an element of

the class EXPRESSION. The first step of the calculation is:

XµXµ = X0X0 +X1X1 −X2X2 ,

=
(
− ℓ201−

iℏℓ0
4
ZT − iℏ3

16ℓ0
ZT +

iℏℓ0
4
RTZZ +

iℏ3

16ℓ0
RTZZ +

ℏ2

2
ZZ +

ℏ4

8ℓ20
ZZ
)
,

Now we use the commutation relation of [R, T ] in the fourth and fifth elements of the expression

above with the following code:

1 #Swaping the first two letters of the fourthand fifth elements from the last

expression

2

3 XX.swap(algebra , 3, 0, 1)

4 XX.swap(algebra , 4, 0, 1)

5 print("XX = ",XX)

which gives as output:

XX = Expression = [Monomial( ,0,0,2,-1.0,1.0), Monomial(ZT,1,1,1,-1.0,4.0),
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Monomial(ZT,1,3,-1,-1.0,16.0), Monomial(TRZZ,1,1,1,1.0,4.0),

Monomial(TRZZ,1,3,-1,1.0,16.0), Monomial(ZZ,0,2,0,1.0,2.0),

Monomial(ZZ,0,4,-2,1.0,8.0), Monomial(ZZ,2,2,0,1.0,4.0),

Monomial(ZZ,2,4,-2,1.0,16.0)]

The operations employed were:

=
(
− ℓ201−

iℏℓ0
4
ZT − iℏ3

16ℓ0
ZT +

iℏℓ0
4
RTZZ +

iℏ3

16ℓ0
RTZZ +

ℏ2

2
ZZ +

ℏ4

8ℓ20
ZZ
)
,

=
(
− ℓ201−

iℏℓ0
4
ZT − iℏ3

16ℓ0
ZT +

iℏℓ0
4

(
TR+

iℏ
ℓ0
1

)
ZZ +

iℏ3

16ℓ0

(
TR+

iℏ
ℓ0
1

)
ZZ +

ℏ2

2
ZZ +

ℏ4

8ℓ20
ZZ
)
,

It is easy to see that the calculator applied the distributive rule and gathered all elements together.

To finish the calculation, we just apply the function solve() to the last expression.

1 #Using the function ’solve’ to simplify the last expression

2

3 print("XX = ", solve(algebra , XX))

The output of this query is: XX = Expression = [Monomial ( ,0,0,2,-1.0,1.0)], which is the

expected result. The set of operations done in the last step were:

=
(
− ℓ201+

iℏ
4ℓ0

[T,Z] +
iℏ3

16ℓ0
[T,Z] +

ℏ2

4
ZZ +

ℏ4

16ℓ20
ZZ
)
,

=
(
− ℓ201−

ℏ2

4
ZZ − ℏ4

16ℓ20
ZZ +

ℏ2

4
ZZ +

ℏ4

16ℓ20
ZZ
)
,

=
(
− ℓ201

)
.

We write below the full code needed for this specific calculation:

1 #The set of operations needed to obtain the final result

2

3 XX = inprod(algebra , X,X)

4 XX.swap(algebra , 3, 0, 1)

5 XX.swap(algebra , 4, 0, 1)

6 solve(algebra , XX)

7 print("XX = ",XX)

As a final example, we demonstrate how one can use the provided program to easily calculate the

non-commutative Christoffel Symbol ΓR
TR using the formula (3.73). I will not write explicitly all

the steps needed to calculate it manually; only the important steps will be considered. First, note

that:

ΓR
TR =

(
gRR(Φα

R)
∗ + gRT (Φα

T )
∗
)
ηαβ∂TΦ

β
R = (Φα

ag
aR)∗ηαβ∂TΦ

β
R = g(êαΦ

α
ag

aR, êβ∂TΦ
β
R) ,

now we declare all variables using the definitions from the thesis and run the following script:
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1 #The full script to calculate the desired Christoffel Symbol

2

3 GRR = Monomial("RR" ,0,0,-2,1,1)

4 GTR = Monomial("" ,1,1,-3,-1,2)

5 V1 = Vector(algebra ,[R1*GRR+T1*GTR , R2*GRR+T2*GTR , R3*GRR+T3*GTR])

6 V2 = Vector(algebra , [differentiate(algebra ,"T",R1), differentiate(algebra ,"T",R2),

differentiate(algebra ,"T",R3)])

7 Cris = inprod(algebra , V1, V2)

8 print(solve(algebra , Cris))

Where the counting for the ambient indices is not 0, 2, it is 1, 3 instead. GRR and GTR are the

coefficients from the metric for local coordinates, Rµ and Tµ are Φµ
R and Φµ

T respectively, and the

vectors V 1 and V 2 are the vectors from the main expression that we are taking the inner products

of. The output of the last script is: Expression = [Monomial (R,1,1,-1,1.0,2.0)], which gives

the correct result ΓR
TR = iℏ

2ℓ0
R. Here it wasn’t necessary to swap any index or execute other cal-

culations before running the solve operation, but we used the function differentiate(ALGEBRA,

VARIABLE, TERM) which differentiates the TERM with respect to VARIABLE using the rules from

the ALGEBRA.

Lastly, I want to point out that these examples are just a small part of all the functions

implemented in the calculator I created to verify some lengthy equations encountered during the

writing of this thesis. In the provided link, I have posted the main file, which can be run on any

PC, and I have explained there all the functionalities not presented here.

A.3 Future Upgrades

As a natural addition to the functionalities of the non-commutative calculator, one should consider

adding tensorial operations. Before doing this, I will list below all the upgrades intended to be

added to the program to make it more suitable for the analysis of non-commutative surfaces.

• Add the functionality of the module structure as a specific class type.

• Add more sets of possible manipulations for each term.

• Add the differentiation of the algebra and its opposite counterpart. This will likely be added

as a boolean variable, which will be verified before any calculation.

• Add the tensor product structure as a class type.
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• Add the possibility to operate the indices following the set of rules from the algebra.

• Create a function that converts all steps used by the solve function to a LATEX file.

• Generalize the structure developed here to apply to any non-commutative surface we wish

to analyze further.

In this appendix, we have developed and utilized a non-commutative calculator to per-

form and verify complex algebraic computations within non-commutative algebraic settings. This

tool has been instrumental in reducing errors in manual calculations and providing a structured

approach to handle algebraic manipulations involving non-commutative elements. We started by

discussing the core functionalities of the non-commutative calculator, including the data struc-

tures and functions that form its foundation. The Algebra class and its associated elements, such

as the Monomial, Expression, and Vector classes, were defined and their roles in the calculator

explained in detail. The initialization process for these structures, including the specification of

algebra elements, dimensions, commutation relations, and derivatives, was elaborated upon to give

a comprehensive understanding of how to set up and use the calculator.

Through several examples, we demonstrated the practical applications of this tool. We

showed how to define algebraic structures, perform operations, and simplify expressions. The

step-by-step breakdown of calculations highlighted the efficacy of the calculator in managing non-

commutative terms and ensuring accurate results. By utilizing functions such as solve() and swap(),

we showcased the ability to automate and verify intricate algebraic processes. The examples

provided, such as the combination of expressions and the inner product calculations, also with the

operations showcased in the main file provided illustrates the robustness of the calculator. We

verified results found in the main text of the thesis, reinforcing the validity and reliability of the

computational tool developed.

In conclusion, the non-commutative calculator represents now an small advancement in

computational algebra, but with further development, it has the potential to become a highly

robust tool for solving complex problems. It provides a powerful means to manage the intricacies

of non-commutative algebraic calculations, ensuring both accuracy and efficiency. This tool not

only supports current research but also paves the way for future explorations and applications in

the study of non-commutative surfaces.
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