
University of Brasília
Institute of Exact Sciences

Department of Computer Science

Assessing the Resilience of Popular Android Apps
Against Repackaging Using Controlled Variants and

Instrumentation

Leandro de Souza Oliveira

Dissertation submitted in partial fullfilment of
the requirements for the Master’s Degree in Informatics

Advisor
Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília
2025

University of Brasília
Institute of Exact Sciences

Department of Computer Science

Assessing the Resilience of Popular Android Apps
Against Repackaging Using Controlled Variants and

Instrumentation

Leandro de Souza Oliveira

Dissertation submitted in partial fullfilment of
the requirements for the Master’s Degree in Informatics

Prof. Dr. Rodrigo Bonifácio de Almeida (Advisor)
University of Brasília (UnB)

Prof. Dr. Eduardo James Pereira Souto Prof. Dr. Rui Rua
Federal University of Amazonas (UFAM) New York University of Abu Dhabi (NYU)

Prof. Dr. Cláudia Nalon
Coordinator of the Postgraduate Program in Informatics

Brasília, Setembro 08, 2025

Dedication

I dedicate this thesis to Brazilian software engineering researchers who continue to pursue
their work with determination despite the many challenges in obtaining adequate resources
for their experiments.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. Rodrigo Bonifácio de
Almeida, for his openness to my ideas, his guidance, and his constant support throughout
this journey. His efforts in fostering connections with other researchers greatly enriched
this work.

I am deeply thankful to my wife, Janaina Silva de Oliveira, for her unwavering support
and for the valuable insights she offered during the development of this thesis.

I also acknowledge the Computer Forensics Section of the Criminalistics Institute of
the Civil Police of the Federal District for their trust and support.

Finally, I extend my thanks to all who contributed, directly or indirectly, to the
completion of this research.

iv

Avaliando a Resiliência de Aplicativos Android
Populares contra Reempacotamento por meio de

Variantes Controladas e Instrumentação

Resumo

Contexto: O reempacotamento (ou repackaging) é uma técnica utilizada por atacantes
que consiste em obter aplicativos legítimos, descompilá-los, fazer modificações (geralmente
inserindo funcionalidades maliciosas) e redistribuí-los como se fossem os aplicativos origi-
nais. Esta prática representa uma ameaça significativa à segurança de aplicativos Android,
com potencial para impactar a receita de desenvolvedores e expor usuários a softwares
maliciosos. No entanto, o reempacotamento também é amplamente utilizado em técni-
cas de instrumentação que incorporam mecanismos de monitoramento aos aplicativos,
viabilizando pesquisas de segurança sobre seu comportamento. A taxa de sucesso de
técnicas de instrumentação varia consideravelmente e explicações genéricas para falhas
deixam em aberto a seguinte questão: até que ponto aplicativos populares são suscetíveis
ao reempacotamento?

Objetivo: O objetivo deste trabalho é identificar e analisar os fatores que levam ao
fracasso em técnicas que utilizam reempacotamento como etapa do processo de instru-
mentação.

Estrutura da Pesquisa: O presente estudo propõe uma abordagem sistemática para
a compreensão do problema baseada em uma infraestrutura específica capaz de autom-
atizar e monitorar o processo de reempacotamento. Essa infraestrutura foi desenvolvida
e aplicada a um conjunto curado de aplicativos da Google Play Store e, durante a ex-
ecução dos experimentos, foram coletados e analisados dados sobre o comportamento
desses aplicativos frente às diferentes etapas do processo de reempacotamento, oferecendo
subsídios para a identificação de defesas e falhas de instrumentação.

Resultados: Entre os resultados obtidos, apresentamos o InstruMate, uma abor-
dagem sistemática capaz de gerar aplicativos reempacotadas. Essa infraestrutura pode
ser utilizada para avaliar a resiliência de aplicativos ao reempacotamento, uma vez que
realiza modificações em artefatos sensíveis e utiliza um procedimento de verificação que
compara detalhadamente o comportamento de cada variante com sua versão original. Em
um conjunto curado de 156 aplicativos populares da Google Play Store, nosso estudo
empírico revelou que 86% não são resilientes ao reempacotamento básico (por exemplo,
alteração simples de assinatura), 81% permitem execução em modo de depuração, 83%

vi

toleram modificações superficiais e 65% são confirmadamente suscetíveis à adulteração de
código. De forma geral, nossas contribuições incluem a infraestrutura para reempacota-
mento e um procedimento aprimorado de verificação de variantes reempacotadas.

Conclusões: Os resultados obtidos evidenciam tanto a facilidade quanto os riscos
associados ao reempacotamento de aplicativos Android, além de validarem o InstruMate
como uma infraestrutura eficaz para avaliar a resiliência de apps frente a esse tipo de al-
teração. Analistas de segurança podem se beneficiar do teste de repackaging proposto, já
que as técnicas de instrumentação utilizadas têm como objetivo final simplesmente intro-
duzir um método de rastreio do código e proporcionar relatórios de cobertura. Caso um
aplicativo se mostre suscetível a essas abordagens, é provável que técnicas mais avançadas
também obtenham êxito.

Palavras-chave: Atestação de software, endurecimento (hardening) binário, engenharia
reversa, Android, reempacotamento, proteção contra reempacotamento.

vii

Resumo Expandido

Avaliando a Resiliência de Aplicativos Android Populares contra o
Reempacotamento por meio de Variantes Controladas e Instrumentação

Introdução

O reempacotamento (ou repackaging) é uma técnica utilizada por atacantes que consiste
em obter aplicativos legítimos, descompilá-los, fazer modificações (geralmente inserindo
funcionalidades maliciosas) e redistribuí-los como se fossem os aplicativos originais. Esta
prática representa uma ameaça significativa à segurança de aplicativos Android, com po-
tencial para impactar a receita de desenvolvedores e expor usuários a softwares maliciosos.
Embora as lojas de aplicativos implementem ativamente estratégias para detectar e re-
mover aplicativos reempacotados, o problema persiste, com a disseminação de ferramentas
automatizadas de reempacotamento como App Cloner Premium [1] e ModHeaven [2], que
alcançam milhões de downloads na Google Play Store. Curiosamente, o reempacotamento
também desempenha um papel legítimo na pesquisa em segurança, ao possibilitar a in-
strumentação de aplicativos para monitoramento do uso de APIs sensíveis, detecção de
bugs, entre outras funcionalidades. Estudos anteriores relatam taxas de sucesso variáveis
na geração de aplicativos reempacotados — com média em torno de 56% — e tendem a
focar nos resultados obtidos, sem explicar por que o reempacotamento falha em certos
casos. Essas falhas são geralmente atribuídas à complexidade do processo, porém, causas
mais específicas — como mecanismos de defesa contra reempacotamento embutidos nos
aplicativos — raramente são mencionadas. Essa ausência de uma análise detalhada so-
bre as falhas limita o escopo dos estudos e pode impactar negativamente a sua aplicação
prática em casos reais.

A presente pesquisa tem como objetivo avaliar como os aplicativos Android populares
reagem quando são reempacotados e explorar as razões por trás de falhas que ocorrem
nesse processo. Ela é guiada por três perguntas de pesquisa: quão suscetíveis a repackaging
são os aplicativos populares Android (RQ1), quais são os mecanismos de defesa comumente

viii

utilizados pelos aplicativos que não podem ser reempacotados (RQ2) e quais são as causas
fundamentais que levam a falhas de reempacotamento (RQ3).

Estrutura da Pesquisa

O presente estudo propõe uma abordagem sistemática para a compreensão do problema
observado em estudos relacionados a instrumentação de aplicativos. Uma infraestrutura
modular capaz de automatizar e monitorar o processo de reempacotamento é proposta.
Essa infraestrutura foi aplicada a um conjunto curado de aplicativos populares da Google
Play Store e, durante a execução dos experimentos, foram coletados e analisados dados
sobre o comportamento desses aplicativos frente às diferentes etapas do reempacotamento.
Os dados coletados ofereceram subsídios para a identificação de defesas e falhas de in-
strumentação. Um experimento prático foi utilizado para revisitar o problema teórico,
permitindo identificar falhas que são decorrentes de mecanismos de defesa, falhas no pro-
cesso de instrumentação que ocorrem durante a criação de variantes e falhas que ocorrem
somente em tempo de execução.

Resultados e Discussões

Destaca-se o InstruMate, uma infraestrutura capaz de gerar e avaliar variantes contro-
ladas de aplicativos Android. Essa infraestrutura é capaz de modularizar o processo de
reempacotamento e utiliza ferramentas especializadas para cada etapa. Para avaliar a re-
siliência de aplicativos Android ao reempacotamento, o estudo partiu dos 500 apps mais
populares da Google Play Store, excluindo aplicativos pré-instalados. Os apps estáveis
e livres de bugs serviram como base para gerar variantes controladas. Cada variante foi
avaliada em múltiplas rodadas para detectar alterações comportamentais, classificando os
apps originais como não resilientes ao reempacotamento, caso ao menos uma variante fosse
obtida e não apresentasse diferenças comportamentais em relação ao original. Em geral,
as chances de sucesso na produção de variantes foram maiores quando as modificações
foram na assinatura, no manifesto ou em recursos (arquivos de configuração, imagens,
entre outros). De outra forma, modificações baseadas em instrumentação apresentaram
taxas de falha mais elevadas. Foi observado que APKs mesclados (merged) melhoraram
levemente os resultados. O presente estudo também identificou mecanismos de defesa
contra reempacotamento e causas raiz de falhas, destacando que nenhuma técnica de
instrumentação se mostrou universalmente eficaz e evidenciando que diferentes técnicas
de instrumentação devem ser utilizadas de forma complementar, o que pode maximizar
as chances de sucesso. O presente trabalho revelou ainda que a maioria dos aplicativos
analisados é altamente vulnerável ao reempacotamento. A proposta aprimora trabalhos
anteriores ao impor critérios mais rigorosos para a avaliação de variantes.

ix

Conclusões

Este trabalho apresenta uma abordagem sistemática para avaliar aplicativos Android
frente a múltiplas técnicas de reempacotamento. O estudo também demonstra que mecan-
ismos de defesa contra reempacotamento são fatores impeditivos para o sucesso de técnicas
de instrumentação. Os resultados indicam que, quando o procedimento de reempacota-
mento interfere no código, os desafios se iniciam na construção do aplicativo reempacotado
e permanecem durante a execução do aplicativo, que muitas vezes falha abruptamente.
Argumenta-se que o InstruMate pode apoiar pesquisas futuras e ajudar desenvolvedores
a implementar estratégias de proteção contra reempacotamento já nas fases iniciais do
desenvolvimento de aplicativos Android.

Palavras-chave: Atestação de software, endurecimento (hardening) binário, engenharia
reversa, Android, reempacotamento, proteção contra reempacotamento.

x

Abstract

Context: Application repackaging refers to the process by which attackers acquire le-
gitimate mobile applications, reverse-engineer their code through decompilation, inject
malicious payloads or modify existing functionalities, and subsequently repackage and
distribute these tampered versions. The repackaging of applications poses a significant
security threat, with the potential to impact developer revenue and expose users to ma-
licious software. However, repackaging is also widely used in instrumentation techniques
that embed monitoring mechanisms into apps, enabling security research on their be-
havior. The success rate of instrumentation techniques varies considerably, and generic
explanations for failures leave the following question open: to what extent are popular
apps susceptible to repackaging?

Objective: Identify and analyze the factors that lead to the failure of various instru-
mentation techniques based on repackaging.

Research Structure: This study proposes a systematic approach to understand the
problem. To that end, a dedicated infrastructure was developed to automate and monitor
the repackaging process. Then, this infrastructure was applied to a curated set of popular
apps obtained from the Google Play Store. During the experiments, data was collected
and analyzed on how these apps behaved when subjected to various stages of repackaging,
providing insight for better understanding of the causes of repackaging failures.

Results: We present InstruMate, a systematic approach that generates controlled
repackaged variants by modifying sensitive Android artifacts. This infrastructure is able
to assess the resilience of the app to repackaging, using verification procedures that com-
pare the behavior of each variant with its original version. In a curated dataset of 156
popular Google Play apps, our empirical study revealed that 86% are not resilient to
basic repackaging (e.g., signature alteration), 81% allow execution in debug mode, 83%
tolerate superficial modifications, and 65% are susceptible to advanced code tampering,
while a small group actively deploys defenses against repackaging. In general, our contri-
butions include a new repackaging infrastructure and an improved verification procedure
for repackaged variants.

Conclusions: Overall, the findings highlight both the ease and the risks associated

xi

with Android app repackaging, while also validating InstruMate as an effective infrastruc-
ture for assessing app resilience to such modifications. Security analysts can benefit from
the proposed repackaging infrastructure. Since the instrumentation techniques used aim
at code coverage, if an app proves to be not resilient to these approaches, it is likely that
more advanced techniques will also succeed.

Keywords: Software attestation, binary hardening, reverse engineering, Android, Repack-
aging, Repackage-proofing

xii

Contents

1 Introduction 1
1.1 Research Problem . 1
1.2 Research Characterization . 2
1.3 Overview of the Contributions . 3
1.4 Manuscript Organization . 4

2 Background 6
2.1 Repackaging . 6
2.2 Architecture of Android Apps . 9
2.3 Android Repackaging . 12

2.3.1 Targeted Artifacts in Repackaging 12
2.3.2 Repackaging Android System Apps 13
2.3.3 Repackage Tools . 14
2.3.4 Defenses Against Repackaging . 14
2.3.5 Android Repackaging Examples . 18

2.4 Instrumentation . 19
2.5 Instrumentation for Security Assessment 21
2.6 Chapter Summary . 22

3 InstruMate 24
3.1 Static Analysis Stage . 24
3.2 Variant Maker Stage . 26
3.3 Health Check Procedures . 29
3.4 Usage Example . 30
3.5 Chapter Summary . 31

4 Empirical Assessment 36
4.1 Goal, Questions, and Metrics . 36
4.2 Experiment Overview . 37
4.3 Dataset Curation Procedures . 37

xiii

4.4 Classification of Original Apps Based on Repackaged Variants 41
4.5 Health Check Procedures for Variants . 41
4.6 A Note on Stress Testing . 41
4.7 Execution Environment . 42
4.8 Chapter Summary . 42

5 Results 44
5.1 (RQ1) How susceptible are the apps to repackaging? 45
5.2 (RQ2) Common Defenses Against Repackaging 47
5.3 (RQ3) Root Cause of Failures . 50
5.4 Identifying Defenses via Exception-Sites 52
5.5 Combined Results . 53
5.6 Chapter Summary . 53

6 Final Remarks 57
6.1 Answers to the Research Questions . 57
6.2 Implications . 58
6.3 Threats to Validity . 59
6.4 Reproducibility and Code Availability . 61
6.5 Future Work . 61
6.6 Conclusion . 62

Appendix 62

A Additional Figures 63

B Dataset 74

References 80

xiv

List of Figures

1.1 Research structure. 3

2.1 Repackaging threat model and redistribution. 8
2.2 The Android build process, emphasizing artifacts and tools. Source: [3]. . . 10
2.3 Shows an experimental app that was compiled, assembled, and later in-

spected using the 7-Zip tool [4]. 11
2.4 Suspected additional components added to an WhatsApp variant. Source: [5]. 19
2.5 Code that establishes communication with the C&C. Source: [5]. 19
2.6 Setup of background threads that exfiltrate sensitive data. Source: [5]. . . . 20
2.7 Binary instrumentation concepts. 21

3.1 InstruMate’s variant creation pipeline. 25
3.2 Baseline construction and health check pipeline. 30
3.3 InstruMate options. 32
3.4 Presents InstruMate’s output. 33
3.5 Presents a portion of the heatlh check procedures result containing a de-

scription of the exception-sites. This output is also mentioned at Sec-
tion 5.2. 34

3.6 Presents InstruMate orchestrating five emulators during the health check
procedures. 35

4.1 Experiment Setup . 38
4.2 Saturation of discovered UI elements and exception sites over increasing

iterations. 40

5.1 Messages observed only in variants (group G1). 50
5.2 Messages observed only in variants (group G4). 51
5.3 Possible concurrency bug in the Soot engine. 52
5.4 ACVTool’s registers management. 53
5.5 Failures during launching ApectJ instrumented apps. 54
5.6 Exception-site analysis . 55

xv

A.1 Tiktok APKs that are delivered to an emulator device for proper installation. 64
A.2 The contents of the Tiktok’s base APK. 65
A.3 The contents of the *arm64/v8a* split APK, which contains 155 non-DEX

shared objects (.so extension)—only a partial listing is shown. 66
A.4 The App Cloner Premium, available at the Google Play Store. URL:

https://play.google.com/store/apps/details?id=com.applisto.appcloner.
premium. 67

A.5 The ModHeaven App, available at the Google Play Store. URL: https:
//play.google.com/store/apps/details?id=com.modheaven. 67

A.6 Capabilities made available by the App Cloner Premium. URL: https:
//appcloner.app/. 68

A.7 Popular free tool for creating repackaged variants. URL: https://github.
com/AndnixSH/APKToolGUI. 69

A.8 Shows a listing of iOS apps available to be downloaded. The apps are
advertised as being already decrypted IPA (iOS App Package format). . . 70

A.9 In the initial stage, these variants display a logo and user interface ele-
ments identical to those of the official app. Additionally, they offer extra
functionalities. 71

A.10 Presents a portion of the static analysis result. This output is also men-
tioned at Section 5.2. 72

A.11 Presents a portion of the heatlh check procedures result, containing a de-
scription of the UI-Elements. This output is also mentioned at Section 5.2. 73

xvi

https://play.google.com/store/apps/details?id=com.applisto.appcloner.premium
https://play.google.com/store/apps/details?id=com.applisto.appcloner.premium
https://play.google.com/store/apps/details?id=com.modheaven
https://play.google.com/store/apps/details?id=com.modheaven
https://appcloner.app/
https://appcloner.app/
https://github.com/AndnixSH/APKToolGUI
https://github.com/AndnixSH/APKToolGUI

List of Tables

2.1 Android app repackaging detection mechanisms. 15
2.2 Sample of unofficial WhatsApp variants. 18
2.3 Summary of code instrumentation tools. 22

3.1 Features per group. 29
3.2 Variant makers per group. Items with (*) merge split apps to produce

single APK variants. 29

4.1 Distribution of the dataset by category. All values for average, smallest,
and largest app are in megabytes. 39

5.1 Summary of health check results per variant maker. Columns: B (Built
Variants), H (Healthy Compatible), F (Faulty), I (Healthy but Incompat-
ible), HVG (Healthy Variant Gap). All percentage values are calculated
with respect to the total of 156 apps. 45

5.2 Exception Sites in the G1 group linked to repackage defenses. 48
5.3 Exception Sites in the G4 group linked to repackage defenses. 49
5.4 Classification of the original apps per group. Columns: NR (Non-Resilient),

RD (Resilient/Divergent). In this table, the percentage values are calcu-
lated with respect to the number of apps indicated in the first column
(#Apps). 55

5.5 Apps that exposed defenses. The columns UI, ES, and K indicate de-
fense exposure through UI elements, exception-sites, and self-termination,
respectively. 56

B.1 Detailed listing of the apps in the dataset. 75

xvii

Abreviations and Acronyms

AAB Android App Bundle.

ADB Android Debug Bridge.

AOSP Android Open Source Project.

API Aplication Programing Interface.

APK Android Installation Package.

C&C Command and Controll.

DEX Dalvik Executable.

GUI Graphical User Interface.

MIME Multipurpose Internet Mail Extensions.

OEM Original Equipment Manufacturer.

xviii

Glossary

Activity A fundamental Android component that represents a single screen with a user
interface.

AndroidManifest.xml The primary configuration file in Android applications that pro-
vides essential information about the app to the Android system. This XML file
declares the app’s components (Activities, Services, Broadcast Receivers, and Con-
tent Providers), required permissions, minimum API level, hardware features, and
other metadata. The manifest file is required for every Android app and must be
located at the root of the app’s project directory.

AndroZoo A lresearch repository that continuously collects and archives Android appli-
cations from various sources for academic research purposes.

Apache Tika An open-source content analysis toolkit developed by the Apache Software
Foundation that detects and extracts metadata and text from various file formats.

ApkEditor An Android application that allows editing of APK files..

ApkTool A tool for reverse engineering Android apps..

AspectJ A programming language extension for Java that enables aspect-oriented pro-
gramming.

Bytecode An intermediate representation that is more abstract than machine code, de-
signed for execution by virtual machines.

Debian Package (DEB) A file format used by Debian-based Linux distributions (in-
cluding Ubuntu, Mint, and others) for software installation packages.

Dynamic Delivery The process used by the Google Play Store for generating device-
specific APKs from Android App Bundles.

xix

Dynamic Instrumentation A software analysis technique that modifies program be-
havior at runtime by injecting or altering code without permanently changing the
original binary or source code .

Frida A dynamic instrumentation toolkit that allows injection of code into running pro-
cesses for analysis and modification.

Intent An Android messaging object used to request an action from another app com-
ponent.

Java Native Interface (JNI) A programming framework that enables Java code to
call and be called by native applications and libraries.

Jimple An intermediate representation used by the Soot framework for analyzing and
transforming bytecode.

Malware Malicious software designed to damage computer systems.

Manifest File A configuration file in Android apps that declares essential information
about the app, including permissions and components.

Microsoft Installer (MSI) A file format used by Microsoft Windows for software in-
stallation packages.

MIME Types A standard way of classifying file types on the Internet by specifying the
nature and format of documents, files, or assortments of bytes.

Notepad++ A free, open-source text editor and source code editor for Microsoft Win-
dows..

Obfuscation The practice of making code difficult to understand to prevent reverse
engineering.

Piggybacked Apps Repackaged applications that carry malicious payloads alongside
the original functionality.

Protocol Buffers (Protobuf) A language-neutral, platform-neutral extensible mecha-
nism developed by Google for serializing structured data.

Repackage-proofing Security mechanisms embedded in applications to detect and pre-
vent execution of tampered versions.

xx

Repackaging The process of modifying an existing application, typically by altering its
code or resources, and redistributing it.

Reverse Engineering The process of analyzing software to understand its design, func-
tionality, and implementation.

SHA-1/SHA-256 Cryptographic hash functions used to verify data integrity and gen-
erate unique identifiers.

Signature A cryptographic mechanism used to verify the authenticity and integrity of
Android applications.

SMALI An assembler/disassembler for Android’s DEX bytecode format.

SOCKS Proxy A SOCKS (Socket Secure) proxy is a network protocol that routes
network packets between a client and server through a proxy server..

Soot A framework for analyzing and transforming Java bytecode.

Split APKs Multiple APK files generated from an Android App Bundle, each containing
specific resources or code for different device configurations.

Static Analysis Examination of program code without executing it, used to understand
structure.

Static Instrumentation A software analysis technique in which additional code, tracing
instructions, or probes are inserted into a program’s binary or source code before
execution.

UI Automator Android’s testing framework for automating user interface interactions.

View Views are rectangular areas on the screen that handle drawing and event handling.

Watermarking The practice of embedding identifiable markers within software to es-
tablish ownership and detect unauthorized copies.

Weaving In aspect-oriented programming, the process of integrating aspects (cross-
cutting concerns) with the main program code.

xxi

Chapter 1

Introduction

Application repackaging refers to the process by which attackers acquire legitimate ap-
plications (or “app” for short), unpack them, reverse-engineer their code through decom-
pilation, inject malicious payloads or modify existing functionalities, and subsequently
repackage and distribute these tampered versions. The repackaging of Android apps
poses a significant security threat, with the potential to impact developer revenue and
expose users to malicious software.

Malicious actors exploit repackaging as a tool to spread malware, commit plagiarism,
and exfiltrate sensitive information [6, 7, 8, 9, 10, 11, 12, 13, 14]. To mitigate this threat,
software marketplace operators implement diverse strategies to identify and eliminate
repackaged apps from their platforms [15, 16, 11, 17, 7].

Despite significant initiatives to combat the growing threat of repackaging, the problem
continues to escalate. For instance, at the time of this research, repackaging Android apps
remains easily accessible to general users. Popular automated repackaging tools, such as
App Cloner Premium [1] and ModHeaven [2], are gaining traction on the Google Play
Store, each surpassing five million downloads.

Repackaging is also widely used in instrumentation techniques [18, 19, 20, 21] that em-
bed monitoring mechanisms into apps, enabling security research on their behavior. The
success rate of instrumentation techniques varies considerably, and generic explanations
for failures are often provided, limiting the scope and applicability of such techniques.

1.1 Research Problem

Previous research [18, 22, 20, 23] reports varying success rates in generating repackaged
apps, with an average success rate of around 56% (as detailed in Chapter 2.3). Since these
research studies treat repackaging as a preliminary step toward more advanced forms of
analysis, they primarily emphasize the outcomes of the applied techniques, often overlook-

1

ing a detailed explanation of why the creation of certain repackaged apps fails. Among
the scarce reasons cited, broad explanations are provided, typically attributed to factors
such as the complexity and intrusiveness of the repackaging process [18]. Furthermore,
potential failures caused by repackage-proofing [14] mechanisms possibly present in the
apps are often overlooked.

Regardless of the perspective—whether to understand the threat posed by Android
app repackaging or to evaluate the effectiveness of repackaging-based techniques—there
remains a gap in the literature regarding systematic evaluations of the chal-
lenges involved in repackaging apps.

As detailed in Chapter 2, this study focuses on mobile apps, specifically those de-
veloped for the Android platform, with the primary objective of evaluating the extent
to which they can be successfully repackaged and examining the feasibility of detecting
repackaging failures. To guide this investigation, the following research questions are
proposed.

(RQ1) How susceptible are popular Android apps to repackaging?

(RQ2) What are the common defenses Android apps leverage against repackaging?

(RQ3) What are the root causes that lead to repackaging failures?

This research examines a critical issue: instrumentation techniques that rely on repack-
aging often exhibit varying success rates and frequently fail, without providing clear di-
agnostic feedback. For the research community, this hampers the practical application of
such techniques and limits their potential for broader adoption. For security analysts, it
may obscure the true extent of the threat posed by repackaging.

1.2 Research Characterization

This study originates from the identification of a theoretical gap in the literature, namely
the lack of explanations for why repackaging attempts fail. This gap is particularly
relevant given that prior research consistently highlights the security threats posed by
repackaging.

To address this issue, we propose the development of a repackaging infrastructure
designed to decompose the repackaging procedure into discrete steps while generating fine-
grained analytical reports. Framed under the Design Science Research (DSR) paradigm,
this work implements a cycle in which the proposed infrastructure is evaluated through
an empirical assessment involving a curated set of highly popular Android apps. The
knowledge produced through this process contributes to explaining the underlying reasons

2

for repackaging failures, as detailed in Chapter 5. For example, our findings show that
some failures are attributable to explicit repackaging defenses intentionally embedded in
apps, while others arise from issues in the construction process of repackaged variants.

The empirical assessment focused on apps that have been installed more than 50
million times, including Facebook, Instagram, WhatsApp Messenger, and Facebook Mes-
senger — each one exceeding 5 billion installations. This selection was motivated by
two factors: (i) such apps represent more attractive targets for malicious actors seeking
monetization through repackaging, and (ii) they are more likely to incorporate advanced
security mechanisms. To operationalize the study, the research goal was translated into
a set of research questions, which were subsequently refined into measurable metrics, an
application of the GQM approach, as outlined in Section 4.1. The research structure is
shown in Figure 1.1.

Figure 1.1: Research structure.

1.3 Overview of the Contributions

In summary, this research makes the following contributions:

• We introduce a new repackaging infrastructure designed to build controlled repack-
aged variants (Chapter 3)

3

• We propose novel health check procedure (Section 3.3) that classifies repackaged
apps as healthy (fully compatible with the original); healthy but incompatible (func-
tional, but with unintended differences); or faulty (non-functional). This represents
an advancement over previous research in the field. Earlier studies [22], considered
a repackaged variant to be healthy if it executed without crashing for a duration of
only three seconds.

• We highlight that some apps implement defenses against repackaging by actively
preventing execution. This observation is relevant for refining datasets used in
scientific research on repackaging and instrumentation.

• We report the results of an empirical study showing that popular Android apps are
susceptible to repackaging: 81% of the apps can be modified to run in debug mode,
while 65% are vulnerable to code tampering using various techniques. Our study
also reveals common practices employed by apps to prevent repackaging, as well as
root causes of failures observed when using code instrumentation tools. The details
of the empirical study are provided in Chapter 4 and Chapter 5.

1.4 Manuscript Organization

In the list below, we present the chapters and a summarized description.

• Chapter 2 — Background: introduces fundamental concepts of the Android platform
relevant to this study, including the structure of installation packages and the app
distribution process, repackaging, and code instrumentation.

• Chapter 3 — InstruMate: this chapter presents the design and implementation
details of the proposed infrastructure. It outlines key aspects such as the pipeline
used to create repackaged variants and the procedures employed to verify their
integrity and functionality.

• Chapter 4 — Empirical Assessment: our systematic approach to evaluating the
resilience of Android apps against repackaging is applied to a curated subset of
the most popular apps from the Google Play Store. This selection ensures that
the analysis targets modern, actively maintained apps, thereby offering a realistic
assessment of their robustness to repackaging attempts. This chapter presents de-
tailed information about the curated dataset and the methodology employed in the
evaluation.

• Chapter 5 — Results: the selected set of original apps was subjected to a controlled
repackaging process, resulting in the generation of modified variants. These variants

4

were subsequently verified for health and functionality. This chapter presents the
success rates associated with variant creation, along with key findings that address
the stated research questions.

• Chapter 6 — Final Remarks: this chapter discusses the implications of the findings,
and highlight potential threats to the validity of the research.

• Appendix A — Additional Figures: presents supplementary figures that illustrate
the repackaging process and provide visual documentation of the experiments con-
ducted in this study.

• Appendix B — Apps: provides the complete listing of the apps selected to compose
the dataset used in this study.

5

Chapter 2

Background

This chapter provides the background necessary to understand the technical concepts
underlying this research.

Section 2.1 introduces the concept of repackaging, highlighting its relevance as a chal-
lenge that spans multiple platforms. Since the focus of this study is on the Android
platform, Section 2.2 presents this architecture, and justifiy this choice. To contextualize
repackaging within the Android ecosystem, Section 2.3 examines characteristics specific
to the Android platform. Finally, Sections 2.4 and 2.5 present static and dynamic instru-
mentation.

2.1 Repackaging

To understand repackaging, it is necessary first to contextualize the notion of a software
package. A package typically contains software along with metadata that specifies de-
pendencies, shared libraries, versioning constraints, and installation requirements [24, 25].
Packaging systems facilitate software distribution and updating, ensuring that users re-
ceive bug fixes, security patches, and functional enhancements.

Examples of such systems include the Microsoft Installer (MSI) package format
in Microsoft Windows [26] and the Debian Package (DEB) format used in Debian-based
Linux distributions [27]. The success of platforms such as Debian is closely related to the
robustness of their software packaging infrastructure [27], which allows efficient depen-
dency management and large-scale software distribution.

Repackaging refers to the process of obtaining a legitimate software package, unpack-
ing it, decoding, decompiling, and subsequently modifying and reassembling it into a
redistributable form. Repackaging is often used for malicious purposes [28, 15, 11], and
a common motivation is to redistribute commercial software without authorization, thus
violating intellectual property rights. In addition, attackers can inject malicious compo-

6

nents that execute without user knowledge, enabling activities such as data exfiltration,
privilege escalation, or persistence within enterprise environments.

High-profile incidents illustrate the severity of this threat. An example was the com-
promised redistribution of Notepad++ [29], where attackers delivered a trojanized variant
of the widely used text editor. Given that Notepad++ is popular among system adminis-
trators and developers, the malicious version infiltrated enterprise networks and operated
covertly as both a keylogger and a data exfiltration tool. Remaining undetected until
actively exploited, it significantly amplified its impact across multiple organizations.

In the Notepad++ case, the attacker had to create a malicious variant and redistribute
it to the end users. This approach inherently limited the attack surface to those who were
persuaded to install the weaponized version. In contrast, a far more dangerous strategy
is the compromise of the software supply chain, which allows malicious code to be em-
bedded directly into trusted distribution channels. In the SolarWinds case [30], attackers
interfered with the build process itself, injecting malicious instructions that became part
of the final compiled software. By compromising the system responsible for compiling and
signing updates, attackers ensured that malicious code was propagated through trusted
distribution channels. The scale of the breach affected critical organizations worldwide,
including several branches of the U.S. government, underscoring the systemic risks of
supply-chain attacks.

Repackaging of mobile apps can impact a large number of users, particularly given
the scale of modern app market repositories. Figure 2.1 illustrates the redistribution flow
of repackaged Android apps. Initially, developers publish legitimate apps to official and
third-party marketplaces, including the Google Play Store (Step 1). End users typically
access these marketplaces to download authentic versions of the apps (Step 2). However,
this standard distribution pathway can also be exploited by malicious actors, who obtain
the official app packages (Step 3), apply repackaging techniques to modify them (Step
4), and subsequently redistribute the tampered versions through the same channels or
unofficial channels (Step 5). The possibility that repackaged Android apps may reach
official marketplaces is particularly noteworthy, given that a broad user base relies on
these markets as trusted repositories for software distribution. The presence of malicious
apps in such markets poses significant risks, potentially affecting a large number of users.
This situation parallels supply chain compromises, such as the SolarWinds incident [30].

Beyond its malicious applications, repackaging also plays a constructive role in the
software engineering process. Security professionals frequently employ repackaging to
perform tests [22, 21, 18] and vulnerability assessments [19, 31, 23, 32]. By modifying
apps in a controlled manner, they can uncover potential weaknesses and design flaws. For
example, by instrumenting repackaged apps with monitoring code, it becomes possible

7

Figure 2.1: Repackaging threat model and redistribution.

to profile sensitive Aplication Programing Interface (API) calls, observe execution flows,
and detect potential data leaks. Such modifications, though similar in mechanism to
those performed by adversaries, are executed in ethical contexts to strengthen software
resilience and guide secure system design.

There are multiple smartphone platforms, with Android maintaining a significantly
larger market share than iOS—approximately 72% and 26%, respectively [33]. Beyond its
market dominance, Android’s open-source nature is particularly valuable for academic re-
search, as it enables the development, customization, and dissemination of analysis tools,
thereby fostering a collaborative environment for experimentation and reproducibility [34].
In contrast, iOS research often relies on physical devices due to the limited availability
of robust emulator support, which significantly restricts both flexibility and reproducibil-
ity [35]. For these reasons, this study focuses on Android apps, even though iOS is
also subject to repackaging threats, albeit to a lesser extent [36] due to built-in security
mechanisms.

Repackaging has also become increasingly accessible to a wider range of users, includ-
ing those without formal computer science training but with basic knowledge of computers
and programming. Two apps available on the Google Play Store enable users to clone other
apps: App Cloner Premium [1] and ModHeaven [2]. The use case scenario is straightfor-
ward: it involves selecting an official app as the target for repackaging and a set of features
to be included. The premium features of the App Cloner Premium explicitly demonstrate
its capability to modify specific components of apps subjected to the cloning process. In
particular, the feature set includes the use of a SOCKS Proxy, which redirects traffic
to potentially facilitate the exfiltration of sensitive data; audio playback capture, which
can record all audio played within the cloned app; and the ability to automate tasks or

8

simulate button presses, which could potentially introduce malicious behaviors into the
cloned app. More advanced users may employ free tools, such as APKTool-GUI [37],
which presents a Graphical User Interface (GUI) for the ApkTool [38] repackaging toolkit
and facilitates both the decoding and rebuilding of Android apps.

Currently, Google does not verify the identities of Android app developers. However,
the scale of malicious app distribution has become so critical that Google has announced
plans to introduce a comprehensive developer verification process in the future, as detailed
in Subsection 2.3.4.

2.2 Architecture of Android Apps

Android apps are predominantly GUI components (named as Activity), that combine
user interface elements (the View) to perform tasks. To transition to a different GUI,
the a message mechanism (named as the Intent mechanism) takes place, stopping the
current activity and launching the new one. The Intent message may be explicit, pro-
viding the target activity’s class name, or implicit, which declares a general action to be
performed, allowing the intent filters to take place. If a component’s intent filter matches
the implicit intent, it becomes eligible to handle it, enabling dynamic interaction between
different components. Android apps may initiate broadcast receivers, start background,
foreground, or bounded services, the last one bounded to the lifecycle of the initiator com-
ponent. While broadcast receivers are components that respond to messages from other
apps or from the system, content providers serve as a standardized interface to man-
age and share structured data, facilitating both intra-application and inter-application
communication[39, 40]. The main components of Android’s application model can be
summarized as follows:

• Activity: Provides the foundation of the user interface, representing different
screens of the app.

• Service: Offers background processing capabilities without a user interface.

• Broadcast Receiver: Responds asynchronously to system broadcast messages.

• Content Provider: Provides data repository capabilities to other components.

Android apps are commonly delivered to users as an Android Installation Package
(APK) file that contains the installation-related components necessary for an app to
function properly, including:

• Precompiled Dalvik Executable (DEX) bytecode stored in single or multidex files.

9

• Resources such as images, strings, layouts, etc.

• Precompiled code for different CPU architectures that can be loaded through Java
Native Interface (JNI);

• Meta-data information such as the app’s certificate for verifying the signature, ver-
sioning information, app permissions, entry points, and references to main compo-
nents used by the app.

Figure 2.2, adapted from [3], illustrates the Android build process. As shown, Java
source code is compiled to bytecode, and Java bytecode is then compiled into the DEX
format, while resources and configuration files are also transformed to an encoded format.
These components are subsequently packaged and signed to generate the final APK file,
which is essentially a compressed archive that can be opened using standard compression
tools available on the market. Figure 2.3 illustrates the assembled APK file of a sim-
ple experimental app that was compiled, assembled, and later inspected using the 7-Zip
tool [4]. The first column shows the name of the archived item with its size in bytes on
the right.

Figure 2.2: The Android build process, emphasizing artifacts and tools. Source: [3].

Although single APK files are still used for app distribution, they are no longer the
standard file format used by the Google Play Store [41]. Since 2021, Android App Bundle
(AAB) have been the standard format used by Google Play. Unlike traditional APKs,
an App Bundle contains the code and resources for multiple device configurations but
defers the APK generation to Google Play, a process known as Dynamic Delivery[42,
43]. This means that apps, especially those distributed on the Google Play Store, can
exhibit significant variations on different devices due to the adoption of the AAB format.
Google Play generates optimized APKs tailored to the specific configurations of individual

10

Figure 2.3: Shows an experimental app that was compiled, assembled, and later inspected
using the 7-Zip tool [4].

devices. This optimization results in device-specific APKs that can be classified into the
following types [42]:

• Base APK: contains core functionality.

• Feature APK: which contains code and resources related to a specific feature.

• Configuration APK: which contains specific device configurations, such as screen
density, CPU architecture, and language resources.

Despite the fact that the Google Play Store uses Dynamic Delivery for app distribution,
there are several single APK repositories, one of which is the AndroZoo project [10], a
continuously growing dataset that aggregates Android apps from various sources. To
collect apps from the Google Play Store, AndroZoo employs a custom crawler that utilizes
a reverse-engineered client of the Protocol Buffers (Protobuf)1 protocol and a valid Google
account linked to a specific device. Allix et al. [10] and Alecci et al. [44] did not indicate
whether Androzoo collects dynamically delivered apps (or split apps for short), and if so,
to which device the account is linked and how split apps could be converted into a single
APK file, raising questions about the completeness and representativeness of the dataset
with respect to split apps.

Split apps can potentially influence the repackaging process in several ways. For
example, all parts must share the same signature. Additionally, resources or code present
in one split may be overridden by elements from another. During repackaging, adding

1https://protobuf.dev/

11

https://protobuf.dev/

new components to one split can result in unintended duplications if the same additions
are made to other splits. Finally, the repackaged apps, as a consequence, can also be
device-specific. Few studies [45, 42] mention the repackaging of split apps. However, in
the gray literature [46, 47, 48], there is a growing adoption of a process for merging parts,
where multiple split APKs are combined into a single APK.

2.3 Android Repackaging

To gain a deeper understanding of the repackaging process within the Android ecosystem,
Li et al. [11] dissected piggybacked apps, a term used to refer to repackaged apps that
include malicious payloads [15]. Piggybacked apps include modifications to key compo-
nents such as activities, broadcast receivers, services, permission settings, and content
providers. Piggybacked apps act as a carrier for a malicious payload, referred to as the
rider. The malicious behavior is activated through hooks, which can take the form of ex-
plicit method calls that connect the carrier to the rider or through a registered component
that can be launched independently to initiate the rider.

2.3.1 Targeted Artifacts in Repackaging

When analyzing repackaging practices, several key artifacts within Android apps are
commonly targeted for modification.

Signature Artifacts

This is the most fundamental change introduced during repackaging. Any alteration
to the app package invalidates the original cryptographic signature, necessitating the
generation of a new one. Signature replacement is therefore inherent to any repackaging
attempt, as unsigned modifications would trigger verification errors during installation or
execution [22]. If someone alters and redistributes an app with a different signature, future
updates must be signed with the same certificate. This can negatively impact the original
app’s revenue [28] and potentially introduce malware in future updates. Furthermore,
merely changing the signature is a practice known as Lazy Cloning [28], which may be
done for fun or fame [14]

Manifest file

The manifest file is a frequent target due to its central role in defining critical app at-
tributes. It specifies the app’s components (e.g., activities, services, broadcast receivers),
requested permissions, and configurations such as whether the app allows debugging or

12

permits cleartext traffic. Modifying this file can significantly alter the app’s behavior and
security. By altering this file, an attacker can add, remove, or modify advertising IDs or
request additional permissions [28]. Furthermore, modifying the manifest can enable the
debuggable flag, allowing the use of profiling tools for inspection [49, 50], while also slow-
ing the app during execution. The manifest file can also be configured to export sensitive
data during backups or, in some cases, weaken the app’s network security by crafting a
weakened network configuration profile [51].

Resource and Asset Files

Although these files do not contain executable code, they can influence the app’s ap-
pearance and runtime behavior, particularly when configuration files store parameterized
variables. Resource files include user interfaces, strings, and images, while asset files may
contain auxiliary content loaded at runtime. According to [11], 91% of piggybacked apps
have modified resources compared to the original implementation.

Executable Code Sections

Both security analysts and malware developers frequently target the app’s compiled code.
Analysts typically inject instrumentation probes to enable behavioral monitoring and se-
curity assessments [18, 19, 22, 45]. In contrast, attackers may tamper with the code to
bypass security checks, insert malicious payloads, or activate dormant malware functional-
ities [11, 15]. Code tampering can significantly impact an app’s functionality, potentially
introducing new features, altering existing behaviors, disabling security mechanisms, or
exfiltrating sensitive user data. Such changes compromise the app’s integrity and may
lead to malicious outcomes.

2.3.2 Repackaging Android System Apps

Repackaging firmware-provided apps—typically pre-installed system apps—requires spe-
cial consideration due to their reliance on custom framework resources not present in the
standard Android Open Source Project (AOSP). These dependencies can lead to failures
during the repackaging process unless properly addressed. A critical first step involves
identifying the specific framework components required by the target app, which varies
across Original Equipment Manufacturer (OEM) such as Samsung, Xiaomi, and others.
Once identified, these framework files must be incorporated during the decoding phase,
as they contain essential resources referenced by the app. If modifications to the frame-
work itself are necessary, successful deployment may require replacing the framework on

13

the target device—a task that typically demands root access and introduces additional
complexity.

Beyond the static repackaging stage, runtime execution of the modified app presents
additional challenges. For example, non-rooted environments prevent the overwriting of
pre-installed system apps, particularly if the modified APK is signed with a different
key. Additionally, the system does not permit multiple apps with the same package
identifier. While altering the package ID may allow installation, it may also lead to
reduced functionality, as system apps often rely on privileged permissions that are not
granted to regular user-installed apps.

Finally, much of the practical knowledge surrounding the repackaging of firmware
apps stems from gray literature, such as community forums, tutorials, and tool-specific
documentation (e.g. [52] and [38]). These sources often lack the rigor and completeness
required for reproducibility and fail to comprehensively address the limitations and pitfalls
associated with this complex process.

2.3.3 Repackage Tools

Several studies [53, 22, 54, 45, 18, 55, 56, 14, 6] have relied on ApkTools and ApkEdi-
tors to perform essential operations involved in the repackaging process. ApkTool and
ApkEditor support unpacking, modifying, and reassembling Android apps, each utilizing
different underlying infrastructures: ApkTool relies on the Android Asset Packaging Tool
(aapt/aapt2), a core component of the Android build system, while ApkEditor employs
ARSCLib, a reverse-engineered library developed to parse and modify Android resource
files without depending on aapt/aapt2. Resources and configurations are stored in a bi-
nary format, which must be decoded and converted to an editable format. The app’s
compiled code can also be decompiled into Smali, converted from DEX bytecode to Java
bytecode, or to an intermediary representation such as Jimple, with the Soot framework
(see Section 2.4, for more information on this topic). After modifications to the resources
or code are made, the app is re-assembled into a repackaged version, signed, and ready
to be redistributed. This signing mechanism ensures the integrity of the APK, as any
modification to the package would render the signature invalid.

2.3.4 Defenses Against Repackaging

Several strategies have been proposed to detect repackaged apps, and representative state-
of-the-art mechanisms are summarized in Table 2.1. In general, these detection techniques
can be classified into four main categories [15]: (i) static similarity-based pairwise
comparison, which examines whether two apps share sufficient similarities to be consid-

14

ered variants of the same original app; (ii) machine learning-based techniques, which
are trained to extract relevant features from apps under investigation and infer whether
they have been repackaged; (iii) runtime monitoring approaches, which observe
app behavior during execution to identify anomalous activities indicative of repackaging;
and (iv) symptom discovery methods, which operate under the premise that the
repackaging process introduces specific, detectable anomalies or “symptoms” within the
repackaged app.

Table 2.1: Android app repackaging detection mechanisms.

Tool Name Detection Mechanism

Androguard [56] Similarity Comparison
DNADroid [12] Similarity Comparison
DroidSim [57] Similarity Comparison

DroidMarking [58] Runtime Monitoring
ResDroid [59] Unsupervised Learning

DR-Droid2 [60] Supervised Learning
AndroidSOO [61] Symptom Discovery

Despite the availability of these techniques, accurately identifying repackaged apps
remains a challenging task. Even when two highly similar apps are detected, determining
which version represents the original and which constitutes the repackaged variant is
inherently tricky, especially in the absence of a definitive repository of original apps for
comparison. In addition, none of those above strategies scale effectively to the real-world
scenario of multiple app stores, each hosting numerous versions of thousands to millions
of apps [15].

Considering the current scale of the Google Play Store, which hosts approximately
1.6 million apps [62], even under highly optimistic conditions, the task of identifying
repackaged apps remains a challenge. Assuming the existence of an algorithm capable
of comparing two apps within one millisecond, and a computing environment capable
of executing 100 parallel comparisons simultaneously, it would still require approxi-
mately 148 days of continuous computation to exhaustively compare each pair among
the

(
1.6×106

2

)
possible combinations in search of repackaged variants. Moreover, the pres-

ence of multiple alternative app stores, each distributing numerous versions of the same
app over time—including outdated versions that remain susceptible to repackaging—
further exacerbates the challenge. These factors collectively illustrate the considerable
complexity and difficulty inherent in accurately identifying repackaged apps. This line
of reasoning is rigorously articulated by Li et al. [15], who describe the phenomenon as
a combinatorial explosion. In their work, Li et al. advocate for a renewed research
effort within the scientific community to address the challenges posed by repackaging.

15

Other techniques can also be used to protect against repackaging, including obfusca-
tion and watermarking:

Obfuscation is a technique employed by legitimate developers to increase the difficulty
of reverse engineering by making the code harder to interpret, forcing attackers
to invest more time and effort to understand the app [63]. Obfuscation applies
transformations that can be broadly categorized as layout obfuscation, which
alters the layout and structure of compiled code, control-flow obfuscation, which
alters the program’s control-flow structure, or data obfuscation, which modifies
data structures and variables [64]. More sophisticated techniques may also involve
self-modifying code, in which the program alters its own instructions at runtime to
hinder the analysis [63].

Watermarking serves to distinguish legitimate ownership by embedding identifiable
markers within the app [65] that should survive the repackaging process. Birfth-
marking refers to the technique of extracting unique characteristics from a software
application to facilitate its identification. Birthmarks can be derived from various
aspects of an app, including its opcode sequence, third-party library dependency
graph, control-flow graph, or user interface components [17]. Although watermark-
ing is generally not designed to prevent the execution of repackaged apps, it may
serve this purpose if a trusted third party can detect and verify the presence of the
watermark [45].

Although the defense techniques mentioned can discourage attackers, they do not
provide a failsafe solution, as if these security mechanisms are bypassed, they cannot
prevent repackaged apps from being distributed [14]. In contrast, repackage-proofing
offers a more proactive approach by embedding defense mechanisms directly into the
app [14]. This strategy detects repackaging when it occurs by introducing intentional
code designed to trigger failures exclusively in repackaged variants, without affecting the
original app’s functionality.

Robust repackage-proofing techniques [14, 53] embed a network of integrity checkers
(guards) that monitor integrity and trigger alerts, resulting in failures distant from the
point of detection, leading to sporadic or buggy behaviors. This approach not only com-
plicates the attackers’ task of identifying and disabling the mechanisms but also creates an
illusion of unpredictable behavior. An app that is embedded with these security schemes
may also detect tampering and cooperate with a remote entity to deny service, simply
identify the presence of the repackaged app, or immediately initiate code repair.

Repackage-proofing mechanisms may include specific routines, such as signature val-
idation, code integrity verification, resource integrity checks, and installer verification,

16

that confirm if the app was not modified and was installed through any authorized app
store, denying execution otherwise. Although these measures increase the difficulty for
adversaries to compromise the app, it is important to note that software-based protec-
tions can ultimately be bypassed if an adversary is determined to invest the necessary time
and resources [66]. Examples of repackage-proofing schemes include Droidmarking [58],
SSN-Stochastic Stealthy Network [14], and AppWarder[66].

The Google and Apple Strategies for Preventing Repackaging

Google provides the Play Integrity API [67], which enables apps and their corresponding
backend services to verify whether a request originates from an unmodified app binary
that was legitimately installed via Google Play. However, the use of this API is optional
and must be explicitly integrated by developers to protect against unauthorized access
from compromised or repackaged apps.

Additionally, Google offers an automatic integrity protection mechanism that injects
runtime verification code to detect signs of repackaging. This mechanism is available only
when developers adopt the AAB. When enabled, the default behavior upon detecting a
repackaged app is to redirect the user to the official app page on the Google Play Store.
Importantly, this protection is opt-in and must be explicitly activated by developers during
the app publishing process.

At the time of this research, an Android app’s signature does not inherently indicate
that a trusted third party issued the certificate. This design choice lowers the barrier for
the distribution of repackaged apps, as any entity can sign an APK with a self-generated
certificate. Consequently, malicious or unauthorized app modifications may be more easily
introduced into the ecosystem. To address this limitation, Google has announced plans
to introduce a verification process for both developers and their signing certificates in the
future [68].

Although iOS is less susceptible to repackaging attacks compared to Android, it is
not entirely immune to them. iOS apps must be signed using a valid developer or distri-
bution certificate, and the integrity of this signature is verified by the operating system
both at installation and at runtime [69]. Furthermore, the Apple App Store enforces a
stringent app review process that all apps must undergo before distribution. This review
extends beyond superficial code or interface analysis, encompassing evaluations of the
app’s business model, minimum functionality, and overall uniqueness [70].

In contrast to Android, signature verification on iOS devices is conducted within the
Secure Enclave—a dedicated, tamper-resistant processor designed to ensure the security of
cryptographic operations. As a result of these protections, repackaged iOS apps typically

17

require physical access to the target device for sideloading, which significantly restricts
the potential attack surface.

Nonetheless, repackaging remains a significant threat within the iOS ecosystem. De-
crypted apps can be obtained from websites [71] that facilitate the redistribution of repack-
aged iOS apps, underscoring the persistence of this issue despite Apple’s more restrictive
environment.

2.3.5 Android Repackaging Examples

To further illustrate Android repackaging, four popular unofficial WhatsApp variants are
presented in Table 2.2. The table lists their names, package identifiers, versions, and the
first ten digits of their respective SHA-1 hash values. In the initial stage, these variants
display a logo and user interface elements identical to those of the official app. Addi-
tionally, these variants provide extended functionalities not available in the official app,
including the ability to hide online status, conceal typing and recording indicators, selec-
tively disable read receipts for groups or individual contacts, view deleted messages, and
prevent other users from deleting previously sent messages. Despite the benefits, several
sources have explicitly associated these variants with malicious or suspected activities,
including account theft, exfiltration of sensitive data, and exposure of users to unwanted
or harmful content [72, 73, 74, 75].

Table 2.2: Sample of unofficial WhatsApp variants.

App Name App ID Version SHA1

FMWhatsApp [76] com.wkfmwaapphfm.messenger 2.25.11.75 e70965bf40767aee
GBWhatsApp [77] com.whatsapp.Main 2.25.9.78 832c7d5999d9e5c8
WhatsAppPlus [78] app.executorsenderl.sko 2.25.9.78 52a63dc9ccf40bd2
YoWhatsApp [79] com.exchanget.processorka 2.25.9.78 5ba234790dab729a

Kaspersky published a report [5] confirming the presence of spyware embedded within
one modified variant of WhatsApp. The variant included suspicious additional compo-
nents that, upon reverse engineering, was found to contain code explicitly designed to
communicate with a Command and Controll (C&C) server.

Once activated, the spyware initiates periodic POST requests—transmitting informa-
tion about the infected device and its contact list at five-minute intervals [5]. Additionally,
it is configured to receive commands from the C&C server at pre-defined intervals, with
a default polling frequency of one minute [5].

Further analysis confirmed that the spyware is capable of listing files on the device
and exfiltrating sensitive data, including images, videos, and audio recordings—whether
captured via the device’s camera or stored in external memory.

18

Figure 2.4 illustrates the suspicious components embedded in the repackaged app
added in the form of a Broadcast Recieiver, defined by the tag receiver. Figure 2.5
presents the code segment responsible for establishing communication with the C&C
server. Note that the code is obfuscated and uses Application_DM constant in the mal-
ware code to select the C&C server. Figure 2.6 depicts the logic responsible for initializing
threads that transmit contact information and receive remote commands.

Figure 2.4: Suspected additional components added to an WhatsApp variant. Source: [5].

Figure 2.5: Code that establishes communication with the C&C. Source: [5].

2.4 Instrumentation

Instrumentation refers to the process of inserting additional code into a program for a
specific purpose. A common objective is to embed instructions that trace code execution
at runtime [80]. During dynamic analysis, these traces, together with a collection engine
that records their execution, provide detailed statistics on which part of the code is being

19

Figure 2.6: Setup of background threads that exfiltrate sensitive data. Source: [5].

executed. This information supports systematic testing procedures that exercise different
parts of an app and capture potential errors. Code coverage is a widely used metric in
the field of software testing that measures the extent to which a program’s source code is
dynamically executed and monitored. It can be assessed at different levels of granularity,
such as class, method, or instruction. Static instrumentation is a common approach to
modifying already compiled programs for the purpose of calculating this metric [18].

When source code is available, static code instrumentation is typically employed, al-
lowing modifications directly in the program’s source [80]. In cases where the source is
unavailable, binary (or black-box) code instrumentation is used to alter compiled code
and insert probes (trace statements). The ability to perform it in a black-box manner
is crucial for analyzing apps in security-related scenarios, such as the two-phase Android
Mining Sandbox approach proposed by Jamrozik et al. [31]. In the first phase, Android
apps are monitored using a setup designed to systematically explore program behavior,
recording access to sensitive APIs. The data collected are then used to build a sandbox
that restricts access to APIs only seen in the exploration phase. One common way to
implement this concept is through black-box instrumentation. To assess the applicability
of the Mining Sandbox approach for malware classification, Bao et al. [23] conducted a
large experiment using DroidFax [32] to embed monitors into repackaged apps that could
trace calls to sensitive APIs. This form of instrumentation is similar to black-box code
coverage, but adapted to the specific context of monitoring sensitive API calls.

These modifications can be classified as either static or dynamic. Static instrumen-
tation permanently alters the app’s code prior to execution, whereas dynamic instru-
mentation applies changes only at runtime, leaving the original codebase intact. Similar
to static instrumentation, dynamic instrumentation also enables the transformation of
specific instructions, arguments and return values, or even functions can be entirely mod-
ified, allowing the modifications to existing logic [81]. Instrumentation strategies vary.
One common approach involves translating the target code into an intermediate rep-
resentation, where transformations are applied before converting it back to the original

20

format. Alternatively, modifications can be made directly within the program’s code
sections, as illustrated in Figure 2.7.

Frida2 is a widely used dynamic instrumentation framework, with repackaging com-
monly used to embed it directly in the app for redistribution. In this mode, Frida can
either inject predefined instrumentation logic at startup or dynamically retrieve the in-
strumentation script from an external server [81, 82]. Frameworks such as Soot [83]
implement instrumentation by converting Android application code to the Jimple [84]
intermediate language, applying the desired changes, and then converting the modified
code back to DEX format. Another approach transitions the code from DEX to Java
bytecode [64], performs the required transformations, and subsequently converts it back
to DEX. Additionally, instrumentation can be performed directly at the opcode level,
enabling modifications without the need for an intermediate representation.

Figure 2.7: Binary instrumentation concepts.

2.5 Instrumentation for Security Assessment

Black-box app assessment techniques, such as Mining Sandbox [31], Joe Sandbox Mo-
bile [85], and RV-Android[19], often rely on underlying instrumentation infrastructure
such as DroidFax [32], COSMO [20], ACVTool [22], Androlog [18], or Frida [81]. COSMO
Black-box approach[20] transforms Dalvik bytecode to Java bytecode and applies JaCoCo
offline instrumentation which adds an array of probes and opcodes to the Java bytecode,
capturing when code is executed. The Java bytecode is converted back to Dalvik and
integrated into a repackaged app. ACVTool[22] instruments the Dalvik bytecode in its
Smali representation. It uses instructions available on Android platforms to capture code

2https://frida.re/

21

https://frida.re/

coverage. ACVTool uses ApkTool to make changes to the AndroidManifest.xml file,
transforming the app to require permission to write to the external storage, where cov-
erage data are saved. DroidFax [32] and AndroLog [18] transform Dalvik bytecode into
Jimple [84] intermediary representation using the Soot framework [83]. DroidFax in-
jects coverage statements into sensitive APIs and AndroLog injects a new class named
LogCheckerClass that prints only a log if it was not previously logged, to not slow down
the app. Any other instrumentation consists of calling this class to produce coverage.
Then, Jimple is used to generate the DEX instrumented code. RV-Android [19] con-
verts the DEX file into a JAR and applies Java Aspect-Oriented Programming, similar to
COSMO, but it also extends beyond that by enabling integration with a Monitor-Oriented
Programming framework. Once the transformation and weaving are complete, the instru-
mented JAR is transformed to DEX, and the app is repackaged with the instrumented
code.

Existing tools demonstrate a varying success rate in instrumenting apps [22], with
average estimated to be around 56%. For instance, Samhi et al. [18] reported that ACV-
Tool could instrument 48% of the selected apps, COSMO[20] 79%, Androlog 98%, and
Bao et al. [23] conducted a large experiment using DroidFax [32], which showed that out
of 2,750 apps, only 844 (31%) could be successfully instrumented. This information is
summarized in Table 2.3.

Table 2.3: Summary of code instrumentation tools.

Tool Representation Success Rate Additional Requirements

ACV-Tool [22] direct/SMALI 48% ApkTools
COSMO [20] intermediary/Java bytecode 79% Jar2Dex/Dex2Jar
Androlog [18] intermediary/Jimple 98% Soot
DroidFax [32] intermediary/Jimple 31% Soot

2.6 Chapter Summary

This chapter presented concepts underlying the study, with emphasis on repackaging and
its implications in the Android ecosystem. It defined software packaging and repackaging,
illustrated real-world risks, and justified Android as the focal platform due to its market
share and open tooling. The chapter detailed Android’s application model and packaging
formats (APK and AAB), including the practical complications introduced by split APKs
for analysis and repackaging workflows.

The chapter examined Android repackaging in depth: typical targets of modifica-
tion (signatures, manifests, resources, and executable code), the particular challenges of

22

repackaging system apps, and the tooling commonly used to decode, modify, and re-
build apps. It reviewed detection and defense strategies—similarity analysis, machine
learning-based approaches, runtime monitoring, symptom discovery, obfuscation, water-
marking/birthmarking, and repackage-proofing—and highlighted scalability limits such
as combinatorial explosion.

Finally, the chapter introduced instrumentation as both a research and security assess-
ment technique, contrasting static vs. dynamic approaches and summarizing representa-
tive frameworks (e.g., Soot/Jimple, Frida, ACV-Tool, COSMO, DroidFax, Androlog) and
their reported success rates.

23

Chapter 3

InstruMate

This chapter describes the repackaging infrastructure named InstruMate, a repackaging
infrastructure that decomposes the repackaging process into smaller, monitorable steps,
facilitating the extraction of detailed information about potential failures that may occur
during app repackaging. The design rationale for InstruMate is that the literature under-
scores considerable variation in the success rates of instrumentation applied to Android
applications.

InstruMate’s approach separates unpacking and repacking steps from instrumentation,
allowing the use of specialized tools optimized for each phase. The suite of strategies
used to generate variants is centralized into a component, which we call Variant Maker.
Different issues may arise during the construction of a variant, and even if the building
process is completed without errors, the variant may encounter runtime problems that
render it non-functional.

We first detail the InstruMate’s variant creation pipeline, which is composed of a
two-stage pipeline, as illustrated on Figure 3.1: the static analysis stage and the variant
maker stage. As input, InstruMate accepts an app as input, along with a specification
of the desired features to be included in the variant, and then InstruMate outputs either
a repackaged app that meets the specifications provided or an error report. Section 3.1
explains the static analysis stage, and Section 3.2 explains the variant maker stage. Then
we describe the procedures for verifying the health and functionality of the generated
variants (Section 3.3), and Section 3.4 presents a usage scenario of InstruMate.

3.1 Static Analysis Stage

In the first stage of the variant creation pipeline, InstruMate executes a set of static
analysis tasks of a given app, involving an app analyzer, a content analyzer, and a binary
analyzer.

24

Figure 3.1: InstruMate’s variant creation pipeline.

25

During the app analyzer task, InstruMate leverages Androguard [56] to collect key
app characteristics including activity and service listings, permissions, package ID, ver-
sion, signature information, and split count. Next, during the content analyzer task,
InstruMate computes the SHA-256 hash of each individual file within the app. In ad-
dition, it uses Apache Tika1 to determine the Multipurpose Internet Mail Extensions
(MIME) type of each file within the app. This process uniquely identifies each file by its
hash and provides essential metadata for variant makers.

Typically, Android apps store their compiled code within multiple DEX files included
in the APK. However, they may also contain additional compiled code as assets or in
the form of native code (files usually with the .so extension), which is accessed through
the Java Native Interface (JNI). During the binary-analyzer task, InstruMate leverages
Radare22 to analyze the binary files identified by Apache Tika as: application/x-dex,
application/x-executable, or application/ x-sharedlib, and thus verify whether
these files contain structures typically found in compiled code. This task provides ad-
ditional information to the variant maker, including a detailed report on compiled code
that covers symbols, imports, exports, library dependencies, function names, and strings.

The static analysis stage plays a crucial role in extracting useful information for variant
makers, which leverage this data to optimize the variant creation process. For example,
if a split APK contains confirmed DEX code identified during the static analysis phase,
the variant maker can apply a specialized handling strategy for that particular split. Fur-
thermore, a detailed analysis of the produced package contents enables a more thorough
comparison between the original app and its variants, particularly aiding in the identifi-
cation of repackage failures. For this reason, the same static analysis procedures are also
performed on the resulting variant (Step 3 in Figure 3.1).

3.2 Variant Maker Stage

Variant makers are currently configured to generate repackaged variants with controlled
modifications that preserve the original program logic. These modifications are designed
to exercise a range of app transformations, beginning with trivial changes—such as mod-
ifying the app’s digital signature, altering the manifest file, or changing resource elements
like the app’s name—changes for which any app should be prepared. The process then
extends to more sophisticated transformations, including those introduced by static and
dynamic instrumentation techniques. To facilitate analysis, the modifications were cate-

1https://tika.apache.org/
2https://rada.re/

26

https://tika.apache.org/
https://rada.re/

gorized into four groups: Signature Modifications, Manifest File Modifications, Resource
Modifications, and Code Modifications.

(G1) Signature Modification

The Android platform requires that any update to an app must be signed with the same
key as the version already installed. This ensures that updates originate from the same
developer [22]. If someone alters and redistributes an app with a different signature, future
updates must be signed with the same certificate. This can negatively impact the original
app’s revenue [28] and potentially introduce malware in future updates. Furthermore,
merely changing the signature is a practice known as Lazy Cloning [28], which may be done
for fun or fame [14]. It also serves as a prerequisite for more sophisticated modifications,
such as those expected in the G2, G3, and G4 groups (detailed below). The proposed
implementation generates variants in this group by replacing the signature of the original
apps. The procedure for generating G1 variants consists of unpacking the APK archive,
removing the original signature metadata, generating new signature files, and reassembling
the modified package into a valid APK. To achieve this, two main variant makers were
configured: Me, which uses ApkEditor; and Mz, which relies solely on standard ZIP
operations. These variant makers operate on a per-APK basis, generating split variants
for apps originally delivered as split APKs. Additionally, the variant maker MeM was
developed to create merged variants by utilizing InstruMate’s merging capabilities. Since
Mz lacks decoding capabilities, it was exclusively used to generate variants within the G1
group.

(G2) Manifest File Modifications

The manifest file is the primary configuration file for an Android app. By altering this
file, an attacker can add, remove, or modify advertising IDs or request additional permis-
sions [28]. Furthermore, modifying the manifest can enable the debuggable flag, allowing
the use of profiling tools for inspection [49, 50], albeit at the cost of slightly reducing
the app’s performance. The manifest file can also be configured to export sensitive data
during backups or, in some cases, weaken the app’s network security by crafting a vulner-
able network configuration profile [51]. The proposed implementation generates variants
in this group by changing the manifest file of an original app to enable debugging capa-
bilities. If the variant configuration specification required enabling the app’s debuggable
mode, Me and MeM are then configured to decode the AndroidManifest.xml in the
base APK, activate the debuggable flag, and generate outputs with this modification in

27

addition to the signature change, thus producing split and merged variants within the G2
group.

(G3) Resource Modifications

Changes applied exclusively to the resource files can alter an app’s name if it is stored
in a resource string, modify the app’s appearance, or adjust settings in configuration
files, potentially impacting the app’s behavior. According to [11], 91% of piggy-backed
(repackaged) apps have modified resources compared to the original implementation. The
generated variants in this group are configured to change the name of the app if its name
is stored in a string resource item. Otherwise, it replaces a randomly selected string. To
generate G3 group variants, InstruMate also leverages the variant makers Me and MeM,
configured to change the app’s name referenced in string resources.

(G4) Code Modifications

Code tampering can significantly impact an app’s functionality, potentially introducing
new features, altering existing behaviors, disabling security mechanisms, or exfiltrating
sensitive user data. Such changes compromise the app’s integrity and may lead to mali-
cious outcomes. To simulate both static and dynamic code tampering, InstruMate was
configured to modify the original app’s code using state-of-the-art techniques that rely on
static and dynamic instrumentation. Static instrumentation was performed using three
black-box coverage engines: Androlog [18], Aspect-based [19], and ACVTool [22]. Each
of these engines operates at different abstraction levels commonly found in the literature:
the Jimple intermediate representation, the Java bytecode intermediate representation, or
directly at the SMALI code level. Dynamic instrumentation is achieved by injecting the
Frida engine in embedded mode [45] with predefined instrumentation that simply con-
firms the injection at run time. To produce G4 variants, variant makers Mand, Macv,
MaspE, and simply applied, respectively, Androlog, ACVTool, and AspectJ-based instru-
mentation, all configured to produce method coverage. Variant maker MfriE injected
Frida in embedded mode. These variant makers operate on per split basis, while variant
makers MandM, MacvM, MaspEM, and MfriEM applied these techniques to the
merged variants. The instrumentation was carefully configured to avoid altering any of
the existing program’s variables, serving only to capture coverage, in the case of static
instrumentation, or, in Frida’s case, to inject into the process and gain access to the app’s
internal memory.

Table 3.1 summarizes the modifications (features) that each variant is expected to
have per group. Table 3.2 summarizes the current InstruMate’s variant makers. In this

28

table, items with (*) indicate variant makers that leverage merging capability to produce
a single merged APK.

Table 3.1: Features per group.

Group Modifications (Features)

G1-Signature Variants must have different signatures
G2-Manifest Variants must have different signatures and also must have the

debuggable flag turned on
G3-Resources Variants must have different signatures and also must have

changes in string resources
G4-Instrumentation Variants must have different signatures and be modified to

simulate code tampering

Table 3.2: Variant makers per group. Items with (*) merge split apps to produce single
APK variants.

Group Variant Makers

G1 Me, Mz, MeM*
G2 Me, MeM*
G3 Me, MeM*
G4 Mand, Macv, MaspE, MfriE, MandM*, MacvM*, MaspEM*, MfriEM*

3.3 Health Check Procedures

As shown in Figure 3.2, for each app or variant, the health check procedure consists of
installing the app, granting the necessary permissions, and allowing it to complete its
initial setup. The app is then launched and monitored over a time frame, during which
UI elements and exception-sites—the exact points where exceptions are thrown—are
recorded. This process can be repeated for an arbitrary number of iterations, with both
the time window and the iteration count defined as configurable parameters. InstruMate
uses UI automator to access the view representation and Logcat to monitor stack traces.
When applied to the original apps, the user-defined number of pipeline executions estab-
lishes a baseline for comparison. When applied to the variants, it evaluates their health
status by comparing the collected data with this baseline, subsequently determining their
classification, which may result in one of the following outcomes.

• Healthy and compatible with the baseline: it means that no changes were
observed between the original and variant versions of an app.

29

• Healthy but incompatible with the baseline: it means that a variant presents
differences in terms of UI elements presented or exceptions thrown, but did not
crash.

• Faulty: it means that the app crashed, failed to launch, or failed to function prop-
erly.

It is important to note that this procedure includes several checks not considered in
previous research. Earlier studies considered a repackaged variant healthy if it could run
without crashing for three seconds [22]. In fact, as described in Section 4.3, some Google
Play Store apps require more than one minute to launch.

Figure 3.2: Baseline construction and health check pipeline.

3.4 Usage Example

InstruMate is a command-line framework that supports multiple operational modes, each
designed to perform a specific task in the app analysis and instrumentation pipeline. The
available modes are as follows:

• Install from Google Play (install_from_gp): This mode takes a list of app iden-
tifiers (IDs) and uses a properly configured, connected device with access to the

30

Google Play Store to obtain the apps. InstruMate automates the navigation and
download of each specified app.

• Download from Device (download_device_apps): Given a list of app IDs, this
mode retrieves all corresponding installation packages directly from the connected
Android device.

• Analyze Mode (analyze): This mode performs static analysis on a provided set of
directories, where each directory contains the installation package of an app. The
output is a detailed static analysis report. No instrumentation is applied in this
mode.

• Instrumate Mode (instrumate): In this mode, the framework first performs static
analysis, then applies the instrumentation process, followed by a second round of
static analysis—this time on the instrumented apps.

• Health Check Mode (healthcheck): This mode receives a set of applications as
input, executes health check procedures, and generates corresponding diagnostic
reports.

• Create Databases (create_databases): This mode processes previously generated
reports to build a consolidated database, facilitating comparison and further analysis
across multiple apps.

Figure 3.3 presents other options provided by the framework. Figure 3.4 presents the
output of InstruMate’s static analysis phase for a single app. For each app, the tool
generates a structured folder that includes the installation files, a comprehensive app
report (stored in app.json), and individual reports for each compiled binary file. The
results of the content-type analysis are provided in a CSV file, listing each file along with
its hash and the identified content type. Similarly, Figure 3.5 depicts how exception sites
are reported by InstruMate. This figure also exemplifies a scenario of repackage-proofing,
as discussed in Section 5.2. Figure 3.6 depicts InstruMate coordinating parallel health
check operations on different apps, each executed within its own emulator instance.

3.5 Chapter Summary

This chapter introduces InstruMate, a repackaging infrastructure designed to generate
and evaluate controlled variants of Android apps. InstruMate separates the unpack-
ing/repacking stages from instrumentation tasks, enabling the integration of specialized
tools for each phase. Its core component, the Variant Maker, orchestrates the creation
of repackaged variants based on specified modification groups: signature changes (G1),

31

Figure 3.3: InstruMate options.

manifest file alterations (G2), resource modifications (G3), and simulated code tampering
via instrumentation (G4). The infrastructure includes a comprehensive static analysis
stage that extracts detailed metadata using tools such as Androguard, Apache Tika, and
Radare2, facilitating informed and traceable modifications. To ensure robustness, multiple
variant makers are employed—some operating at the APK level, while others merge split
APKs to create unified packages. Code instrumentation in the G4 group leverages both
static (e.g., Androlog, ACVTool, AspectJ) and dynamic (e.g., Frida) techniques. Follow-
ing variant creation, InstruMate performs automated health checks to evaluate runtime
behavior. This includes app installation, permission granting, execution monitoring, UI
element inspection, and exception-site tracking, all benchmarked against a baseline con-
structed from the original app. Variants are then classified as healthy and compatible
with the base line (no differences are observed), healthy but incompatible (behaviorally
divergent), or faulty. This multi-stage process, incorporating both fine-grained analysis
and execution monitoring, addresses limitations in previous work by adopting stricter
health criteria.

32

Figure 3.4: Presents InstruMate’s output.

33

Figure 3.5: Presents a portion of the heatlh check procedures result containing a descrip-
tion of the exception-sites. This output is also mentioned at Section 5.2.

34

Figure 3.6: Presents InstruMate orchestrating five emulators during the health check
procedures.

35

Chapter 4

Empirical Assessment

According to Khanmohammadi et. al.[8] and Li et. al.[11], popularity is the main cri-
terion for an app being chosen for repackaging by malicious actors. Popular apps, by
definition, have large user bases, significantly amplifying the potential impact of malware
distribution. Additionally, users are more likely to install apps they already recognize and
trust, making popular apps desirable targets for monetization through repackaged vari-
ants. At the same time, such apps might be more likely to incorporate advanced security
mechanisms, as developers of widely used software have stronger incentives to implement
protective measures.

This chapter presents the design of the empirical assessment. Sections 4.1 to 4.7
outline the objectives of the experiment and describe the curated dataset constructed to
address these objectives. The specific procedures employed in the study are also explained
in detail in these sections.

4.1 Goal, Questions, and Metrics

The primary goal of this empirical study is to employ InstruMate to evaluate the extent
to which popular Android apps can be successfully repackaged, as well as to examine
the feasibility of detecting repackaging failures. To guide our analysis, we formulate the
following research questions.

(RQ1) How susceptible are popular Android apps to repackaging?

(RQ2) What are the common defenses Android apps leverage against repackaging?

(RQ3) What are the root causes that lead to repackaging failures?

The primary metric we use to address these questions is an indicator of whether a given
variant maker successfully produced a repackaged variant. From this measure, we derive

36

the total number of apps that are not resilient to repackaging, addressing RQ1. We also
derive (a) the number of successfully built variants per variant maker, (b) the number of
healthy variants per variant maker, (c) the number of faulty variants per variant maker,
and (d) the number of healthy but incompatible variants per variant maker. Finally,
in this work, we introduce the Healthy Variant Gap (HVG). This metric captures the
number of healthy variants a given variant maker failed to produce, even though others
in the same group succeeded.

This metric is primarily employed to address research questions RQ2 and RQ3. In
particular, instances where one strategy fails while others succeed provide valuable insights
for further investigation into potential underlying bugs, whereas scenarios in which no
strategy succeeds serve as indicators of possible defense mechanisms embedded within
the app.

4.2 Experiment Overview

Figure 4.1 shows an overview of the experiment in six steps. An initial dataset comprising
the 500 most popular apps from the Google Play Store was selected. In the first step,
apps unsuitable for the study were excluded. The remaining apps underwent health check
procedures, during which 200 observations were conducted; apps that failed at least once
were removed, resulting in a curated dataset (step 3). From this curated set, repackaged
variants were generated (step 4). Each variant was then subjected to three rounds of
health checks (step 5), and the results were compared against those of the original apps
(step 6).

The rigor imposed by the 200 observations ensures that the dataset consists of bug-
free apps, such that any subsequent failure can be reliably attributed to the repackaging
procedures, as detailed in Section 4.3.

The procedure used to compare the variants and classify the apps in the dataset as
resilient or non-resilient to repackaging is detailed in Section 4.4.

The health check procedures applied to the variants were configured as detailed in
Section 4.5. Sections 4.6 and 4.7 explain why we decided not to use stress testing in our
experiments and the environment configuration we used to execute them.

4.3 Dataset Curation Procedures

To curate the dataset used in our study, we first selected the 500 most popular apps
from the Google Play Store, as reported by the Android Rank project [86] on October
21, 2024. Subsequently, we excluded apps that are often pre-installed by vendors (e.g.,

37

Figure 4.1: Experiment Setup

default apps from Google and Samsung) 1. The rationale for this exclusion criterion is that
this category of apps is pre-installed on numerous devices as part of the vendor firmware,
meaning that the end user typically cannot uninstall them. Furthermore, attempting
to repackage these apps would require a mandatory change to the app’s package ID so
that it could be installed on the testing devices that contain preexisting installations, a
modification we deliberately sought to avoid to ensure consistent conditions across all
tested apps. In addition, repackaging system apps presents a fundamentally different
scenario, as discussed in Subsection 2.3.2. The remaining apps were subjected to the
health check procedures (see Section 3.3). We configured our health checker to observe
each app for a one-minute time window and record 200 observations. Only the original
apps that completed all 200 iterations without crashing were included in the final dataset.

It is important to mention that the filtering applied was a deliberate choice rather
than the outcome of a technical limitation. Robust repackage-proofing techniques [53, 14]
commonly embed a network of integrity checkers (guards) that continuously monitor
the integrity of the app. These mechanisms are designed to induce failures at points
distant from the actual detection site, thereby manifesting as sporadic malfunctions or
random buggy behaviors. To establish a reliable baseline, each app was executed 200

1Removed packages initiated with com.android, com.sec, com.google, com.samsung, com.lenovo,
com.motorola, com.miui, com.xiaomi, com.vivo and com.mi

38

times, and any original app that exhibited bugs or crashes upon launch was excluded
from the dataset. This procedure ensured that the dataset was composed exclusively of
stable apps, thereby increasing confidence that any deviations observed in the repackaged
variants could be directly attributed to the repackaging process.

As a result of the filtering process, nine apps remained in a loading state without
resolving within one minute time frame. Three apps were identified as background services
and therefore could not be directly launched. Nineteen apps redirected execution to
other apps upon launch, representing a flow that could not be accommodated in the
experimental setup. In addition, 105 apps were classified as firmware apps, while 208 failed
to complete 200 iterations without crashes—of which 103 were games. The latter case
is noteworthy, as games often impose specific hardware requirements that are difficult to
emulate, which likely contributed to their sporadic failures. After applying these filtering
criteria, a total of 156 apps remained stable and did not crash during any of the 200
observation cycles. Consequently, they were included in our final dataset. Table 4.1
characterizes the dataset by market categories. From the remaining 156 stable apps, 43
were games, making this still the largest category (Table 4.1).

Figure 4.2 shows the UI elements and exeptions discovery process observed during
the generation of the baseline for health check assessment, established by the original
versions. In the top chart, the plot illustrates the relationship between the number of
new UI elements discovered and the total number of cumulative UI elements observed.
Similarly, in the bottom chart, the plot shows the discovery of new exception sites and
the cumulative number of exception sites previously observed. This saturation process
shows the completeness of the baseline, indicating that a sufficient number of observations
have been conducted to capture all original apps’ UI elements and exception sites during
the 200 observations. Since each of the 200 observations lasts one minute, the total
observation time per app exceeds three hours and is aligned with the practice of previous
studies [87, 88].

Table 4.1: Distribution of the dataset by category. All values for average, smallest, and
largest app are in megabytes.

Category. Avg Smallest Largest #Apps

Games 273 27 3.263 43
Productivity & Tools 111 4 370 33
Social & Communication 103 2 245 24
Media & Entertainment 101 6 261 20
Finance & Shopping 72 19 150 16
Travel & Navigation 117 30 282 10
Health & Lifestyle 89 67 124 5
Education 90 17 182 5

39

0 25 50 75 100 125 150 175 200
Iteration Number

0

200

400

600

800

1000

1200

O
bs

er
ve

d
ite

m
s

Discovered UI-Elements

UI-components discovered
UI-components seen before

(a) UI-componentes saturation

0 25 50 75 100 125 150 175 200
Iteration Number

0

100

200

300

400

500

O
bs

er
ve

d
ite

m
s

Discovered Exception-sites

Exception-Sites discovered
Exception-Sites seen before

(b) Exception-sites saturation

Figure 4.2: Saturation of discovered UI elements and exception sites over increasing iter-
ations.

40

4.4 Classification of Original Apps Based on Repack-
aged Variants

The proposed experiment utilizes multiple variant makers to produce redundant variants—
for instance, Me and MeM generate split and merged variants of the same app—thereby
aiming to increase the likelihood of obtaining at least one healthy variant. Likewise, the
use of various instrumentation techniques follows a similar strategy that is designed to
increase the probability of obtaining at least one code-tampered variant. After evaluating
each variant created by all variant makers, the entire app is classified as non-resilient
to repackaging if at least one variant is found to be healthy and compatible with the
baseline.

Conversely, the app is considered resilient or divergent if none of the variant makers
could generate a healthy variant or if the variants exhibit sporadic failures, introduce
new exception sites, or display unseen UI elements. This indicates that the repackaging
procedures applied to a particular app have resulted in unintended behavioral differences
from the original one. The final set of apps classified as non-resilient to repackaging is used
retrospectively to guide the identification of possible repackaging failures in individual
variant makers that failed to process them, while others succeeded.

It is also important to clarify that the successful generation of a healthy variant—
despite the inherently positive connotation of the term—actually reflects a negative out-
come from a security standpoint, as it indicates that the original app is non-resilient to
repackaging.

4.5 Health Check Procedures for Variants

Since the selected instrumentation techniques may introduce additional code, resulting in
increased execution overhead, InstruMate was configured to monitor variants for a time
frame twice as long as its original counterpart. Specifically, each variant was observed
for two minutes to allow any existing security mechanism to activate. In addition, each
variant underwent the health check procedures three times to ensure that any potential
security mechanisms requiring a restart of the app could be properly triggered.

4.6 A Note on Stress Testing

During the establishment of the baseline for the original apps, each app underwent stress
testing using Monkey [89] to evaluate whether such testing would contribute meaning-
fully to the experiment. Preliminary results indicated that stress testing could lead to

41

various app behaviors, such as crashes, unexpected closures, or unintended navigation to
other apps. To accurately distinguish these behaviors from those potentially caused by
a reaction to repackaging or tampering, it would be essential to extend InstruMate to
capture not only UI elements and exception sites but also correlate these events with the
input sequences generated by the testing engine. Therefore, excluding integration with
a stress testing engine is considered a favorable initial configuration for our experiment,
as it helps eliminate the aforementioned noise. Moreover, the following considerations
further support the relevance of the experiment as designed: 1) If a repackaged app suc-
cessfully launches, it already poses a significant threat, as the variant could be exploited
to distribute malware or exfiltrate sensitive data; 2) The current health check procedure
provides a uniform input—the launch command—and aims to exercise each app’s main
Activity. Future research could explore the impact of stress testing on identifying failures
and exposed defenses, using the simple launch as a foundational starting point.

4.7 Execution Environment

Each original app and the produced variants are tested on a freshly wiped emulator device
with no prior usage. The emulator is configured as a Google Pixel 7 Pro AVD, with a
portrait orientation, running Android 15 (API 35, x86_64), non-rooted, equipped with
20 GB of RAM and 20 GB of internal storage.

4.8 Chapter Summary

To empirically assess app resilience to repackaging, the study curated a dataset starting
from the 500 most popular Android apps on the Google Play Store, as identified by the
Android Rank project. Pre-installed vendor apps were excluded to ensure installation
consistency and avoid altering package identifiers. Health check procedures were applied
to all remaining apps using a one-minute observation window repeated across 200 iter-
ations. Apps that crashed, failed to initialize, or triggered specific behaviors—such as
redirects to the Play Store—were filtered out, resulting in a final dataset of 156 stable
apps. Baseline completeness was validated through saturation analysis of UI elements
and exception sites. Each app was subjected to repackaging via multiple variant makers,
producing variants with modifications to signatures, manifest files, resources, and code.
Health checks were then conducted on each variant for two minutes across three itera-
tions, allowing sufficient time for latent defenses to activate. An app was classified as
non-resilient if at least one variant maintained behavioral consistency with the original;
otherwise, it was deemed resilient or divergent. Stress testing was deliberately excluded to

42

avoid noise and preserve attribution of failures to repackaging rather than random input.
All tests were conducted on a consistent and emulator environment configured as a clean
Google Pixel 7 Pro running Android 15, ensuring uniformity across executions.

43

Chapter 5

Results

We executed InstruMate on the 156 original apps, resulting in the successful generation
of 1,693 variants, which corresponds to 72% of the expected total of 2,340. A significant
portion of the creation failures was concentrated in the G4 group. Following their creation,
each variant was subjected to the health check procedures described in Section 4.5.

A detailed summary of both the creation results and the subsequent verification results
is presented in Table 5.1. Column B indicates the number of successfully built variants
per variant maker, while column H represents the number of healthy variants. Similarly,
column F denotes the faulty variants, and column I contains the number of healthy but
incompatible variants. The data on the success rates of other variant makers in producing
healthy repackaged apps in the same group serve as the basis for calculating the HVG
column (Healthy Variant Gap). This column quantifies the number of healthy variants
that a specific variant maker failed to produce while others in the same group succeeded.
At the end of each group in Table 5.1, a special row indicates the number of apps that were
built by all variant makers and classified as healthy and compatible with the baseline.

As a general assessment of the results presented in this Table 5.1, it is clear that the
build process becomes significantly more problematic when instrumentation is applied.

The Sections 5.1 to 5.3 present findings related to the research questions. As dis-
cussed in Section 5.2 (RQ2), 17 apps exhibited defense mechanisms triggered either by
signature modification or by the instrumentation process itself. The results also indicate
that changes performed prior to code instrumentation tend to present fewer implementa-
tion challenges, whereas instrumentation introduces substantial complexity.

44

Table 5.1: Summary of health check results per variant maker. Columns: B (Built Vari-
ants), H (Healthy Compatible), F (Faulty), I (Healthy but Incompatible), HVG (Healthy
Variant Gap). All percentage values are calculated with respect to the total of 156 apps.

Group Variant Maker B H F I HVG

G1 Me - ApkEditor 156 100% 132 85% 21 13% 3 2% 2 1%
Mz - Naive Zip 156 100% 117 75% 36 23% 3 2% 17 13%

MeM - ApkEditor, Merged 156 100% 129 83% 25 16% 2 1% 5 4%
Me + Mz + MeM 134 86%

G2 Me - ApkEditor 130 83% 120 77% 10 6% 0 0% 7 6%
MeM - ApkEditor, Merged 134 86% 127 81% 7 4% 0 0% 0 0%

Me + MeM 127 81%
G3 Me - ApkEditor 130 83% 125 80% 5 3% 0 0% 5 4%

MeM - ApkEditor, Merged 134 86% 129 83% 5 3% 0 0% 1 1%
Me + MeM 130 83%

G4 Mand - Androlog 78 50% 45 29% 30 19% 3 2% 57 56%
Macv - ACVTool 111 71% 24 15% 85 54% 2 1% 78 76%

MaspE - ApkEditor, AspectJ 65 42% 14 9% 43 28% 8 5% 88 86%
MfriE - ApkEditor, Frida 126 81% 51 33% 74 47% 1 1% 51 50%

MandM - ApkEditor, Merged, Androlog 16 10% 9 6% 7 4% 0 0% 93 91%
MacvM - Merged, ACVTool 106 68% 25 16% 81 52% 0 0% 77 75%

MaspEM - ApkEditor, Merged, AspectJ 65 42% 14 9% 44 28% 7 4% 88 86%
MfriEM - ApkEditor, Merged, Frida 130 83% 51 33% 79 51% 0 0% 51 50%

Mand + Macv + . . . + MfriEM (all G4) 102 65%

5.1 (RQ1) How susceptible are the apps to repack-
aging?

We successfully built all variants using the G1 group of variant makers. Among these,
Me produced 132 healthy and compatible variants, 13 faulty variants, and one healthy but
incompatible variant, achieving a higher success rate compared to the variant makers Mz
and MeM. Still focusing on the G1 group, out of the 156 apps, 134 (86%) were classified
as non-resilient to signature modification. Note that this information is presented in
Table 5.1, in the last row of the G1 group, and is obtained by counting the number of
apps for which at least one healthy and compatible variant was successfully generated.
Since signature modification is a prerequisite for producing variants from G2, G3, and G4
groups, these 134 apps, marked as non-resilient in G1, were selected for further evaluation
by the other groups.

Concerning Manifest File Modifications (group G2), the variant makers Me and

45

MeM successfully built 130 and 134 variants, respectively. Among these, Me produced
120 healthy and compatible variants and 10 faulty ones, while MeM produced 127 healthy
and compatible and seven faulty variants. MeM achieved a 86% success rate in producing
healthy and compatible variants in group G2. No variant generated in group G2 was
classified as healthy but incompatible.

We observed similar results for group G3, where neither Me nor MeM produced
any healthy but incompatible variants. Me and MeM together achieved a 83% success
rate in producing healthy and compatible variants in the group G3. Out of the 134 apps,
127 (81%) apps were classified as non-resilient to modifications in the G2 group and
allowed execution in debug mode, and 130 apps (83%) were classified as non-resilient to
modifications to resources stored in string files.

Finding 1. The lower HVG observed for MeM in the G2 and G3 groups suggests
that minor decoding issues were mitigated by the merging process.

Finally, the variant makers in group G4 demonstrated the lowest overall success
rates, accompanied by high variability. Within this group, MfriE and MfriEM achieved
the highest numbers of healthy and compatible variants, each producing 51. They were
followed by Mand, which generated 45 such variants. MaspE and MaspEM were the
lowest ranked, each producing 14 healthy and compatible AspectJ-instrumented variants.

No clear benefit was observed from the application of the merging process; conversely,
its application in the case of Androlog resulted in decreased performance, with the number
of healthy and compatible variants dropping to just nine. Macv and MacvM exhibited
high construction rates; however, a substantial proportion of the repackaged variants they
produced were faulty—54% and 52%, respectively. On average, within the G4 group, the
success rate for generating repackaged variants was 56%, while the success rate for pro-
ducing healthy and compatible variants dropped to 19%. These numbers are significantly
lower than those reported in the literature [18, 22, 20, 23].

Finding 2. Modifications performed before code instrumentation tend to present fewer
implementation challenges. In contrast, code instrumentation techniques encounter
difficulties not only during the creation process but also frequently result in variants
that malfunction or fail to launch altogether.

However, such a reduction was expected, since our dataset contains complex split
apps—an app type against which these tools had not been previously evaluated. Moreover,

46

the health check procedures introduced an additional layer of rigor, imposing stricter
validation criteria that further reduced the number of resulting healthy and compatible
variants. It is important to emphasize that the instrumentation applied in this study was
deliberately kept simple. This suggests that more invasive instrumentation techniques are
likely to yield even lower success rates. Of the 156 apps in the initial dataset, 102 (65%)
were classified as non-resilient to code modifications.

Finding 3. No single instrumentation approach proved universally effective. Among
the most successful variant makers, Frida-based instrumentation with merging (MFriEM)
and Androlog-based instrumentation without merging (Mand) yielded better results,
each producing 33% and 29% of healthy variants.

Finding 4. Code instrumentation often fails during the variant creation process or
produces non-functional variants that cannot be launched. However, when multiple
techniques are combined, instrumentation succeeded in 65% of the apps, suggesting
that employing diverse methods can maximize the number of successfully instrumented
variants.

5.2 (RQ2) Common Defenses Against Repackaging

During the experiments with variant makers in Groups G1 and G4, the following repack-
aging defenses were observed.

Signature Modification (G1)

Variants derived from two apps (Microsoft OneNote and Microsoft 365) displayed the
message “This app may not be from a trusted source” and variants derived from one
app (CamScanner) displayed the message “This copy is not genuine” (Figure 5.1). A
manual inspection revealed a recurring pattern of exception sites originating from the
same shared library (libplat.so) across five Android apps: Microsoft Excel, Microsoft
365, Microsoft OneNote, Microsoft PowerPoint, and Microsoft Word. Some variants of
these apps displayed a modified user interface, while others simply closed upon launch.
However, all variants exhibited exception sites that were traced back to libplat.so,
suggesting that this library implements a recurring mechanism to prevent repackaging.
Other three non-healthy variants (apps: Carrom Pool Disc Game, Roblox and Beach

47

Buggy Racing) produced IO exceptions1 that were traced back to libpairipcore.so,
which is publicly known to be a repackage-proofing solution2. One faulty variant (app:
HP Printer Setup) reported no new exception site, but simply invoked System.exit, af-
ter loading the library libfusg.so. There is no public information about libfusg.so,
however, InstruMate’s static analysis found string symbols possibly related to repackag-
ing defenses, and that could be revealed in certain circumstances: “Stop poking around
my nether bits you cretin!”, “And you keep wondering why nobody likes you?” and “Go
pound bits!”. Table 5.2 provides a detailed information of the exception-sites which con-
tributed to detecting repackaging defense mechanisms. It is important to mention that
each exception-site was thoroughly examined through manual inspection, as detailed in
Section 5.4.

Table 5.2: Exception Sites in the G1 group linked to repackage defenses.

ID Exception-sites
com.microsoft.office.excel {(’java.lang.NullPointerException’,

’com.microsoft.office.plat.archiveextraction.c.b’)}
com.microsoft.office.officehubrow {(’java.lang.NullPointerException’,

’com.microsoft.office.plat.archiveextraction.b.b’)}
com.microsoft.office.onenote {(’java.lang.NullPointerException’,

’com.microsoft.office.plat.archiveextraction.c.b’)}
com.microsoft.office.powerpoint {(’java.lang.NullPointerException’,

’com.microsoft.office.plat.archiveextraction.c.b’)}
com.microsoft.office.word {(’java.lang.NullPointerException’,

’com.microsoft.office.plat.archiveextraction.c.b’)}
com.miniclip.carrom {(’java.io.IOException’,

’com.pairip.VMRunner.readByteCode’)}
com.roblox.client {(’java.io.IOException’,

’com.pairip.VMRunner.readByteCode’)}
com.vectorunit.purple.googleplay {(’java.io.IOException’,

’com.pairip.VMRunner.readByteCode’)}

Code Modifications (G4)

Variants derived from one app (Game Pooking Billiards City) generated new UI elements
displaying intimidating messages that prompt the user to grant the app permission to cap-
ture sensitive data (“Allow Billards-mate to access all device logs”) and variants derived
from another app (MyJio) exposed an indication of repackaging detection, showing the
message “Rooted device detected”, despite the fact that the emulator device was not rooted
(Figure 5.2). Other variants derived from two apps (Score! Hero and YouCam Makeup)

1java.io.IOException at c.p.VMRunner.readByteCode
2https://github.com/Solaree/pairipcore

48

https://github.com/Solaree/pairipcore

presented the messages “Your device may not be compatible” and “Your installation is
corrupted” and prompted the user to reinstall the app. One exception site3 appeared in
three non-healthy variants. This exception site was traced back to the Google Dyna-
mite library, which forced the app to restart. In such cases, the Logcat message “Module
config changed, forcing restart due to module ads.dynamite” was observed. Although pub-
lic information about this proprietary library is limited and does not confirm whether the
observed behavior is intentional, it effectively prevented the completion of the health
check procedures on the generated variants. Table 5.3 provides a detailed information
of the exception-sites which contributed to detecting repackaging defense mechanisms.
Each exception-site was thoroughly examined through manual inspection, as detailed in
Section 5.4.

Table 5.3: Exception Sites in the G4 group linked to repackage defenses.

ID Exception-sites
com.myntra.android {(’java.lang.VerifyError’,

’com.cyberfend.cyfsecurity.CYFMonitor.a’),
(’java.lang.Exception’,
’com.appsflyer.internal.AFg1xSDK.AFInAppEventType’),
(’android.os.DeadObjectException’, ’m.ct.a’),
(’java.lang.ExceptionInInitializerError’,
’com.appsflyer.internal.AFg1xSDK.AFInAppEventType’),
(’java.io.IOException’, ’m.ct.a’)}

com.utorrent.client {(’android.os.Parcel.readException’, ’asdf.a’),
(’java.lang.VerifyError’, ’Companion.scheduleTimeout’),
(’android.os.Parcel.readException’, ’armj.a’),
(’android.os.DeadObjectException’, ’m.ct.a’),
(’android.os.Parcel.readException’, ’arrj.a’),
(’java.io.IOException’, ’m.ct.a’)}

com.vkontakte.android {(’android.os.DeadObjectException’, ’m.ct.a’),
(’java.lang.UnsatisfiedLinkError’, ’J.N.M6xubM8G’),
(’java.io.IOException’, ’m.ct.a’)}

Finding 5. The results of our assessment reveal recurrent approaches that prevent the
execution of repackaged apps, produce user interface alerts, trigger privilege-escalation
attempts, or induce restart loops.

3java.io.IOException at m.ct.a

49

Figure 5.1: Messages observed only in variants (group G1).

5.3 (RQ3) Root Cause of Failures

In addition to repackage-proofing measures, we also identified other likely root causes of
repackaging failures. As shown in Table 5.1, Mz (the naive ZIP-based variant maker)
participated in the generation of 117 healthy and compatible variants, but 134 were clas-
sified as non-resilient to signature modifications. To account for the increase to 134, other
variant makers successfully generated healthy and compatible variants for apps that Mz
could not produce. This gap is represented in the HVG column of Table 5.1. Variant
maker Mz failed to generate variants because certain files within the APKs are required
to be stored uncompressed in the ZIP archive. An example is the shared object file, which
has the .so extension, and is read directly from the APK and mapped to memory for
execution. Analysis of Mz’s HVG revealed IO exceptions during access of files directly
stored in the APK, expecting them to be uncompressed and ready to be mapped to RAM
memory at runtime, a technique which is particularly useful for large apps, such as games.

50

Figure 5.2: Messages observed only in variants (group G4).

With respect to code instrumentation, some variant makers failed during the build
process, and others generated APKs that could not be installed. While many of the
issues require in-depth, app-specific investigation—beyond the scope of this experiment—
some failures were consistent and could be isolated. For instance, failures affecting variant
creation for 33 apps were traced to potential issues such as concurrency bugs and misin-
terpretations of DEX opcodes in the Soot engine, which is used by Androlog. ACVTool
failed to instrument certain methods due to register management issues, which triggered
a Python KeyError in its register map. Additionally, it encountered a “list index out of
range” error in insn3rc.py, suggesting the presence of a potential bug. Dex2jar failed to
generate the expected JAR file from the provided DEX file for 26 apps, while Frida, in
embedded mode, encountered issues when loading pre-existing shared objects in 10 apps.
Figures 5.3 to 5.5 show snippets of these issues.

51

Finding 6. We observed significant failures in instrumentation tools consistent with
underlying bugs, affecting at least 69 apps.

Figure 5.3: Possible concurrency bug in the Soot engine.

5.4 Identifying Defenses via Exception-Sites

All possible evidence indicating that the app includes defenses against repackaging is
analyzed through a sequence of steps: 1) first, the exception-site is identified; 2) next,
we parse the log to locate the exception-site; 3) attempt to establish a relation between
the exception-site and a broader component, such as a shared object library or a specific
component responsible for the exception. 4) Finally, these findings are related to the
results of the static analysis phase, including indicators such as string literals, function
names, and the presence or usage of cryptographic algorithms.

52

Figure 5.4: ACVTool’s registers management.

Figure 5.6 illustrates this process using the example of the PairipCore4 library, which
was exposed in three apps. In this figure, the box labeled with number four (4) contains
symbols that were extracted through InstruMate’s static analysis and are used as an
additional source of information about the component that produced evidence of the
repackaging defense.

5.5 Combined Results

Table 5.4 presents a summary of the apps, categorized according to their classification
groups. In this table, column NR denotes the number of apps in each group that were
deemed non-resilient to repackaging. This classification indicates that at least one of
the variant makers succeeded in producing a repackaged variant that exhibited behavior
consistent with the original app in terms of both UI Elements and exception-sites.

Conversely, column RD identifies apps that demonstrated resilent or divergent behav-
ior after repackaging. These variants exhibited differences in UI Elements or exception-
sites, indicating a disruption in functionality or intentional defense.

Apps that exposed identifiable defenses against repackaging—traceable through the
process outlined in Section 5.4—are summarized in Table 5.5.

5.6 Chapter Summary

The evaluation of InstruMate on a curated dataset of 156 Android apps resulted in the
successful generation of 1,693 repackaged variants—72% of the expected total. While

4https://github.com/Solaree/pairipcore

53

https://github.com/Solaree/pairipcore

Figure 5.5: Failures during launching ApectJ instrumented apps.

Groups G1 to G3 (signature, manifest, and resource modifications) achieved high success
rates in producing healthy and compatible variants, instrumentation-based variants in
Group G4 encountered significantly more failures. The Healthy Variant Gap (HVG)
metric was introduced to assess variant maker performance relative to peers, revealing
that merged APKs slightly mitigated decoding issues in G2 and G3, but offered limited
benefit in G4. The experiment identified specific anti-repackaging defenses embedded in
apps, misleading UI elements, as well as spotted root causes of failure. Notably, no single
instrumentation technique proved universally effective.

54

Figure 5.6: Exception-site analysis

Table 5.4: Classification of the original apps per group. Columns: NR (Non-Resilient),
RD (Resilient/Divergent). In this table, the percentage values are calculated with respect
to the number of apps indicated in the first column (#Apps).

#Apps NR RD
G1 156 100% 134 86% 22 14%
G2 134 100% 127 95% 7 5%
G3 134 100% 130 97% 4 3%
G4 134 100% 102 76% 32 24%

55

Table 5.5: Apps that exposed defenses. The columns UI, ES, and K indicate defense
exposure through UI elements, exception-sites, and self-termination, respectively.

Package ID G UI ES K

com.hp.android.printservice G1 ✓

com.intsig.camscanner G1 ✓

com.microsoft.office.excel G1 ✓

com.microsoft.office.officehubrow G1 ✓ ✓

com.microsoft.office.onenote G1 ✓ ✓

com.microsoft.office.powerpoint G1 ✓

com.microsoft.office.word G1 ✓

com.miniclip.carrom G1 ✓

com.roblox.client G1 ✓

com.vectorunit.purple.googleplay G1 ✓

com.billiards.city.pool.nation.club G4 ✓

com.jio.myjio G4 ✓

com.firsttouchgames.story G4 ✓

com.cyberlink.youcammakeup G4 ✓

com.myntra.android G4 ✓

com.utorrent.client G4 ✓

com.vkontakte.android G4 ✓

56

Chapter 6

Final Remarks

In this chapter, we answer our research questions, present some implications of our re-
search, and highlight some threats to the validity of our study.

6.1 Answers to the Research Questions

Out of the 156 initial apps, 134 (86%) were found to be non-resilient to the simplest
form of repackaging—merely changing the app’s signature. Our analysis also revealed
that 127 apps (81%) permitted execution in debug mode, enabling reverse engineering
techniques that attackers could potentially exploit. Additionally, 130 apps (83%) offered
no resistance to superficial modifications, such as changes to the app name. Attackers can
leverage these basic modifications to undermine developer revenue or redirect user traffic
for data exfiltration. These findings provide critical insights toward answering our first
research question.

Answer to RQ1: The variant makers successfully repackaged 86% of the apps in
our curated dataset, revealing that popular Android apps remain highly susceptible to
repackaging.

Furthermore, using black-box static and dynamic instrumentation techniques, it was
confirmed that 102 apps (65%) were susceptible to modifications in their code sections.
Although no extensive stress testing was performed to determine if other parts of the
selected apps were protected, the presence of healthy variants that remain compatible
with their original counterparts at initial launch presents a significant security risk, as
they could serve as a vehicle for malware distribution. From those apps that InstruMate
failed to repackage, we found a few recurrent patterns of defense mechanisms that prevent

57

the execution of repackaged apps, produce user interface alerts, trigger privilege-escalation
attempts, or induce restart loops.

Answer to RQ2: A small number of apps use libraries such as libplat.so and
libpairipcore.so to detect repackaging attempts and prevent app variants from run-
ning, even when only simple modifications are applied. InstruMate proved effective in
collecting evidence of UI modifications and new exception sites through its health check
procedures. Some of these modifications can be attributed to the repackage proofing
mechanisms implemented by a subset of the apps.

Besides defense mechanisms, the variant makers also failed to instrument several apps.
For example, only 14 apps were successfully repackaged using aspect-oriented instrumen-
tation, whereas Frida and Androlog (without merging) were able to instrument 51 and 45
apps, respectively. We identified several factors that prevented variant makers from pro-
ducing working variants, including the internal structure of APKs, potential concurrency
bugs, and the misinterpretation of DEX opcodes.

Answer to RQ3: Variant makers in group G4 struggle to build working variants due
to the internal structure of the APKs, potential bugs in the tools, and misinterpretation
of DEX opcodes.

6.2 Implications

No single instrumentation approach proved universally effective, as different strategies
succeeded in instrumenting apps where others failed. Consequently, employing multiple
strategies through InstruMate offers a practical means of maximizing the likelihood of
successfully instrumenting Android apps—a valuable approach for researchers seeking in-
depth analyses, such as those aimed at identifying cryptographic API misuses or other
blackbox reasearch on Android apps. In addition, software engineers who rely on repack-
aging should be mindful of the possibility of unintended behavioral modifications in the
monitored app, which could be classified as healthy, but incompatible with its original
counterpart.

Although this research does not compare coverage between the original and repackaged
versions, variants that report unseen exception sites or unseen UI elements exercise differ-
ent code sections when compared to their original, indicating that the program followed
a different execution path.

58

6.3 Threats to Validity

Our empirical assessment relies on several assumptions that could potentially threaten
the validity of our results. Regarding external validity, one might argue that our curated
dataset of 156 apps is insufficient to support broad generalizations. However, our initial
dataset consisted of the 500 most popular Android apps, and we applied a rigorous filtering
procedure. Specifically, we excluded pre-installed vendor apps and those that did not crash
during a set of 200 one-minute health check procedures. This exclusion process, together
with the extensive set of observations that formed the baseline, as detailed in Section 4.3,
provides strong evidence that any deviations in user interface elements or exceptions could
be attributed to the repackaging process. Importantly, we did not apply any arbitrary
selection criteria that might have favored certain apps over others. Therefore, we believe
that increasing the number of apps in our dataset would not significantly alter our main
findings—such as the success rates achieved by the variant makers.

It is noteworthy that recent research on Google Play often relies on AndroZoo as the
primary source of samples. For example, studies such as [90] and [91] analyzed millions of
Google Play apps archived by AndroZoo. The AndroZoo project is a repository of single-
APK packages, collected via a reverse-engineered Protobuf client associated with a specific
(undisclosed) device configuration. However, single-APK packages no longer reflect the
current state of popular apps. To ensure that our analysis focused on real-world apps, we
chose to obtain them directly from Google Play which imposes an additional challenge
related to app download restrictions: per account and per IP address, as also noted by
AndroZoo [10].

We conducted an investigation to source the identical 156 apps utilized in our study
from AndroZoo. Through package name and version number searches, 107 were success-
fully identified. However, only 31 of these exhibited partial matches with the base APK
hash. Our analysis indicates that AndroZoo maintains solely the primary APK, evidenced
by the absence of splits for these 31 apps and the presence of divergent hashes in 76 ad-
ditional cases compared to those acquired via direct Google Play downloads. Moreover,
among the 107 retrieved packages, merely 69 demonstrated successful launch capabilities,
suggesting that AndroZoo’s collection methodology yields device-specific implementations
tied to its particular hardware configuration. These empirical findings substantiate our
methodological decision to procure apps directly from the Google Play Store, pending
AndroZoo’s adaptation of its collection framework to accommodate dynamic delivery
mechanisms inherent in the AAB format.

Although our variant construction and health check pipelines are largely automated,
the number of generated variants increases linearly with the number of original apps. This
growth poses challenges to the experiment’s scalability.

59

Another decision that may threaten the validity of our work is the choice of the In-
struMate variant makers already integrated into the framework. For the variant maker
groups G1–G3, we use two widely adopted tools in Android research involving repack-
aging: ApkEditor and scripts for unpacking and repacking APKs using standard Zip
utilities. For group G4, we explored a variety of tools for static and dynamic code instru-
mentation, ranging from general-purpose solutions such as AspectJ to more specialized
tools such as Androlog [18], ACVTool [22], and the Frida dynamic instrumentation toolkit.
Androlog is a recently published instrumentation and code coverage analysis tool, while
Frida is a powerful toolkit commonly used by security experts [81]. Rather than repre-
senting a limitation, we argue that these pre-integrated variant makers explore distinct
abstraction levels commonly discussed in the instrumentation literature: dynamic instru-
mentation, the Jimple [84] intermediate representation, the Java bytecode level, and direct
manipulation of SMALI code.

Some might argue that our health check procedures are too weak. While we could
have employed UI test generation tools—such as Monkey or DroidBot [49]—to explore
apps more deeply, preliminary studies we conducted revealed that such approaches often
introduce unnecessary noise, potentially compromising the effectiveness of the InstruMate
health checker procedures. Moreover, as discussed in Chapter 6, if a repackaged app
launches successfully, it already poses a significant security risk, as the variant could be
used to distribute malware or exfiltrate sensitive data. We, therefore, conjecture that
exploring deeper application states is not necessary to demonstrate that a repackaged
Android app poses a risk to end users. Additionally, we argue that our health check
procedures are more robust than those used in previous research that classified variants as
healthy if they successfully launched and did not crash within a three-second window [22].

In this study, we use the term “healthy but incompatible” to describe a repackaged
variant that remains functional but exhibits user interface elements or exceptions not
present in the original counterpart. Although such cases were deemed unsuitable within
the scope of our repackaging attempt, leading us to classify the corresponding app as
resilient to repackaging, it is important to acknowledge that these variants may hold
value in other contexts. For example, studies focusing on specific functionalities of an app
could potentially make use of such variants. This reflects the fact that our terminology is
somewhat specific to the goals of this research. Nevertheless, we argue that our definitions
remain aligned with terminology already established in the instrumentation literature [18,
22, 20], with the deliberate introduction of the “incompatible” qualifier. This qualifier was
adopted with the explicit purpose of drawing attention to differences between variants
and their original counterparts, thereby raising awareness for future research to properly
address these discrepancies.

60

Finally, our exception site identification mechanism relies on exceptions that are ex-
plicitly thrown and recorded. Consequently, apps with security mechanisms that silently
log repackaging attempts—without raising exceptions or modifying the user interface—
would go undetected in our experiment. While this limitation affects the precision of
resiliency classification, such silent variants still pose a significant security threat.

6.4 Reproducibility and Code Availability

Reproducibility is a fundamental principle of scientific research. To support the validation
and extension of our findings, we make InstruMate code and associated dataset available
upon request to members of the scientific community conducting research in this domain.
While the code is not openly published at this time, access can be granted for non-
commercial, academic purposes, particularly to researchers aiming to replicate or build
upon the work presented in this study.

Comprehensive descriptions of the selected apps, including version information and
integrity hashes, are thoroughly documented and included within the codebase.

Researchers interested in accessing the implementation are encouraged to contact the
authors directly. We are committed to fostering transparency and collaboration within
the academic community and will make every effort to support reproducibility in line with
ethical and responsible research practices.

6.5 Future Work

This Section outlines potential directions that could extend and enhance current work.

• Stress testing: Future work could explore instrumentation approaches in combina-
tion with stress testing engines such as Droidbot [49] or Google Monkey.

• Machine Learning-Enhanced Instrumentation: use machine learning to predict op-
timal instrumentation techniques based on app characteristics. This approach could
learn from failed instrumentation attempts to identify patterns and automatically
adjust strategies.

• Large-Scale Dataset Analysis: Conducting experiments on larger datasets (1000+
apps) would strengthen the generalizability of findings.

• Defense Mechanism Classification: Developing machine learning models to auto-
matically classify and categorize different types of repackage-proofing mechanisms
based on behavioral patterns, exception sites, and UI responses.

61

• User Guide: Develop a guide to help end users identify when they have been lured
into installing repackaged apps. This would include creating instructions on recog-
nizing warning signs such as unofficial app sources, suspicious permission requests,
unexpected behavior changes, and security alerts. The guide should also provide
step-by-step instructions for verifying app authenticity through official channels and
recovering from potential incidents.

• Developer Guide: Develop a guide to help developers assess their apps’ susceptibility
to repackaging. This would involve developing a simplified version of InstruMate’s
assessment flow that developers can integrate into their development and testing
workflows. The guide should include automated scanning procedures, best practice
recommendations for implementing repackage-proofing mechanisms, and guidance
on monitoring for unauthorized versions of their apps in the wild.

• Hybrid Instrumentation: Combining multiple instrumentation strategies such as
Androlog and Frida to develop a fully-fledged sandbox capable of tracing both DEX
and native code execution. This integrated approach would leverage the strengths of
static instrumentation (Androlog) for DEX coverage and dynamic instrumentation
(Frida) for runtime native code analysis.

6.6 Conclusion

This work presented and evaluated InstruMate, a systematic approach for repackaging
Android apps by integrating multiple variant makers that apply transformations ranging
from APK signature changes to static and dynamic code instrumentation. We evaluated
InstruMate on a curated dataset of 156 Android apps, generating 1,693 repackaged vari-
ants, which were evaluated through a novel health check procedure. The results show that
86% of the apps were susceptible to repackaging, from basic modifications to advanced
code tampering. Our empirical assessment also demonstrates that InstruMate and its
health check procedures effectively detect common repackaging defenses by capturing
traces detectable on any Android device. The only requirements are Android Debug
Bridge (ADB) and UI Automator. For security-focused apps, it may be critical to conceal
the specific components responsible for repackaging detection. We believe that Instru-
Mate can foster further research in the area of repackaging, and that our findings can
assist development teams in incorporating effective anti-repackaging defenses early in the
design and development of Android applications.

62

Appendix A

Additional Figures

This appendix contains the following additional figures:

• Figure A.1 presents the set of APKs related to the TikTok app, as installed in an
emulator device.

• Figure A.2 presents the items that are present in the root of the base APK.

• Figure A.3 presents the content of the arm64/v8a split APK, which contains 155
non-DEX shared objects.

• Figure A.4 presents the Cloner Premium app as shown in the Google Play Store.

• Figure A.5 presents the Mod Heaven app as shown in the Google Play Store.

• Figure A.6 presents the set of modifications that can be performed with the Cloner
Premium app.

• Figure A.7 presents the ApkTool GUI, a tool that interacts with the ApkTool com-
mand line interface.

• Figure A.8 presents part of the interface of a website that enables the download of
decrypted iOS apps.

• Figure A.9 presents two unofficial WhatsApp variants.

• Figure A.10 illustrates a report containing string resources that were referenced
within binary files. This example demonstrates how strings such as "Go Pound
Bits", discussed in Section 5.2, are extracted and reported by the tool.

• Figure A.11 shows a report related to the app’s user interface. It also highlights how
specific content described in Section 5.2 is identified and documented by InstruMate.
Notably, the message "This CamScanner copy is not genuine", which is associated
with repackaging defenses, is extracted along with its internal attributes.

63

Figure A.1: Tiktok APKs that are delivered to an emulator device for proper installation.

64

Figure A.2: The contents of the Tiktok’s base APK.

65

Figure A.3: The contents of the *arm64/v8a* split APK, which contains 155 non-DEX
shared objects (.so extension)—only a partial listing is shown.

66

Figure A.4: The App Cloner Premium, available at the Google Play Store. URL: https:
//play.google.com/store/apps/details?id=com.applisto.appcloner.premium.

Figure A.5: The ModHeaven App, available at the Google Play Store. URL: https:
//play.google.com/store/apps/details?id=com.modheaven.

67

https://play.google.com/store/apps/details?id=com.applisto.appcloner.premium
https://play.google.com/store/apps/details?id=com.applisto.appcloner.premium
https://play.google.com/store/apps/details?id=com.modheaven
https://play.google.com/store/apps/details?id=com.modheaven

Figure A.6: Capabilities made available by the App Cloner Premium. URL: https:
//appcloner.app/.

68

https://appcloner.app/
https://appcloner.app/

Figure A.7: Popular free tool for creating repackaged variants. URL: https://github.
com/AndnixSH/APKToolGUI.

69

https://github.com/AndnixSH/APKToolGUI
https://github.com/AndnixSH/APKToolGUI

Figure A.8: Shows a listing of iOS apps available to be downloaded. The apps are
advertised as being already decrypted IPA (iOS App Package format).

70

Figure A.9: In the initial stage, these variants display a logo and user interface elements
identical to those of the official app. Additionally, they offer extra functionalities.

71

Figure A.10: Presents a portion of the static analysis result. This output is also mentioned
at Section 5.2.

72

Figure A.11: Presents a portion of the heatlh check procedures result, containing a
description of the UI-Elements. This output is also mentioned at Section 5.2.

73

Appendix B

Dataset

74

Table B.1: Detailed listing of the apps in the dataset.

Package ID Name Category Installs Rating Splits Size (MB) DEX Native

com.facebook.katana Facebook SOCIAL 5000000000 4.25 1 81.74 1 14
com.facebook.orca Messenger COMMUNICATION 5000000000 4.07 1 75.74 10 14
com.instagram.android Instagram SOCIAL 5000000000 4.01 1 88.76 12 13
com.whatsapp WhatsApp Messenger COMMUNICATION 5000000000 4.3 2 85.59 6 2
com.facebook.lite Facebook Lite SOCIAL 1000000000 3.73 1 2.53 1 4
com.fingersoft.hillclimb Hill Climb Racing GAME_RACING 1000000000 4.42 1 104.03 6 4
com.imo.android.imoim imo-International Calls COMMUNICATION 1000000000 4.22 10 85.93 14 53
com.lemon.lvoverseas CapCut - Video Editor VIDEO_PLAYERS 1000000000 4.32 4 150.72 24 139
com.linkedin.android LinkedIn BUSINESS 1000000000 4.11 4 112.95 8 10
com.microsoft.appmanager Link to Windows PRODUCTIVITY 1000000000 3.97 1 104.21 11 22
com.microsoft.office.excel Microsoft Excel: Spreadsheets PRODUCTIVITY 1000000000 4.78 1 231.67 4 76
com.microsoft.office.officehubrow Microsoft 365 (Office) PRODUCTIVITY 1000000000 4.71 5 370.76 8 101
com.microsoft.office.powerpoint Microsoft PowerPoint PRODUCTIVITY 1000000000 4.75 1 227.47 4 79
com.microsoft.office.word Microsoft Word: Edit Documents PRODUCTIVITY 1000000000 4.78 1 249.08 4 84
com.outfit7.mytalkingtomfree My Talking Tom GAME_CASUAL 1000000000 4.3 2 162.21 7 20
com.picsart.studio Picsart: AI Photo Video Editor PHOTOGRAPHY 1000000000 4.05 4 97.7 8 15
com.pinterest Pinterest LIFESTYLE 1000000000 4.51 4 69.12 6 11
com.roblox.client Roblox GAME_ADVENTURE 1000000000 4.44 2 163.81 2 9
com.skype.raider Skype COMMUNICATION 1000000000 4.27 1 75.2 5 82
com.snapchat.android Snapchat COMMUNICATION 1000000000 4.09 4 157.77 9 13
com.touchtype.swiftkey Microsoft SwiftKey AI Keyboard PERSONALIZATION 1000000000 4.5 7 37.04 6 5
com.twitter.android X SOCIAL 1000000000 3.69 4 105.55 8 13
com.whatsapp.w4b WhatsApp Business COMMUNICATION 1000000000 4.4 1 65.8 7 2
com.zhiliaoapp.musically TikTok SOCIAL 1000000000 4.19 14 125.95 9 155
org.telegram.messenger Telegram COMMUNICATION 1000000000 4.3 4 69.26 4 2
us.zoom.videomeetings Zoom Workplace BUSINESS 1000000000 4.11 3 138.5 33 85
air.com.hypah.io.slither slither.io GAME_ACTION 500000000 3.94 1 51.29 2 3
cn.wps.moffice_eng WPS Office-PDF,Word,Sheet,PPT PRODUCTIVITY 500000000 4.59 4 145.17 16 37
cn.xender Xender - Share Music Transfer TOOLS 500000000 4.4 1 31.21 6 4
com.amazon.mShop.android.shopping Amazon Shopping SHOPPING 500000000 4.4 3 126.6 8 47
com.booking Booking.com: Hotels TRAVEL_AND_LOCAL 500000000 4.51 3 161.84 12 5
com.ea.game.pvzfree_row Plants vs. Zombies™ GAME_STRATEGY 500000000 4.17 2 127.01 6 10
com.fgol.HungrySharkEvolution Hungry Shark Evolution GAME_ARCADE 500000000 4.46 2 199.85 4 5

Continued on next page

75

Table B.1 – continued from previous page

Package ID Name Category Installs Rating Splits Size (MB) DEX Native

com.flipkart.android Flipkart Online Shopping App SHOPPING 500000000 4.3 3 32.23 4 35
com.gameloft.android.ANMP.GloftDMHM Minion Rush: Running Game GAME_CASUAL 500000000 4.38 4 163.52 7 16
com.heytap.browser Internet Browser TOOLS 500000000 3.71 2 155.01 15 11
com.hp.android.printservice HP Print Service Plugin PRODUCTIVITY 500000000 4.15 1 60.86 3 68
com.innersloth.spacemafia Among Us GAME_ACTION 500000000 3.85 3 720.47 2 8
com.jio.myjio MyJio: For Everything Jio PRODUCTIVITY 500000000 4.3 3 215.33 15 65
com.king.candycrushsodasaga Candy Crush Soda Saga GAME_CASUAL 500000000 4.61 4 132.33 4 3
com.kwai.video Kwai - download VIDEO_PLAYERS 500000000 4.48 6 6.09 5 2
com.meesho.supply Meesho: Online Shopping App SHOPPING 500000000 4.15 3 27.6 3 1
com.microsoft.office.onenote Microsoft OneNote: Save Notes PRODUCTIVITY 500000000 4.66 3 167.47 4 34
com.nianticlabs.pokemongo Pokémon GO GAME_ADVENTURE 500000000 3.97 2 203.51 3 24
com.opera.mini.native Opera Mini: Fast Web Browser COMMUNICATION 500000000 4.54 7 42.83 5 17
com.outfit7.mytalkingangelafree My Talking Angela GAME_CASUAL 500000000 3.93 2 143.32 7 20
com.outfit7.mytalkingtom2 My Talking Tom 2 GAME_CASUAL 500000000 4.24 2 160.54 9 12
com.outfit7.mytalkingtomfriends My Talking Tom Friends GAME_CASUAL 500000000 4.24 2 154.74 7 13
com.outfit7.talkingtom Talking Tom Cat GAME_CASUAL 500000000 4.01 3 91.88 7 13
com.outfit7.talkingtomgoldrun Talking Tom Gold Run GAME_ACTION 500000000 4.27 2 162.44 7 19
com.phonepe.app PhonePe UPI, Payment, Recharge FINANCE 500000000 4.37 3 150.53 10 26
com.playit.videoplayer PLAYit-All in One Video Player VIDEO_PLAYERS 500000000 4.46 4 44.74 5 20
com.quvideo.xiaoying VivaVideo - Video Editor VIDEO_PLAYERS 500000000 4.41 4 128.77 15 74
com.rubygames.assassin Hunter Assassin GAME_ACTION 500000000 4.27 4 124.1 10 15
com.transsion.filemanagerx File Manager TOOLS 500000000 4.33 1 8.27 2 0
com.transsion.magicshow Visha-Video Player All Formats VIDEO_PLAYERS 500000000 4.45 4 67.1 6 29
com.waze Waze Navigation MAPS_AND_NAVIGATION 500000000 4.35 2 106.22 7 8
com.zaz.translate Hi Translate - Chat translator TOOLS 500000000 4.42 4 35.5 4 6
com.zzkko SHEIN-Shopping Online SHOPPING 500000000 4.28 3 126.9 8 31
flipboard.app Flipboard: The Social Magazine NEWS_AND_MAGAZINES 500000000 3.59 4 39.28 5 3
jp.naver.line.android LINE: Calls COMMUNICATION 500000000 3.86 3 245.24 10 84
me.pou.app Pou GAME_CASUAL 500000000 4.33 1 27.79 2 0
sg.bigo.live Bigo Live - Live Streaming App SOCIAL 500000000 4.47 4 85.36 18 54
air.com.lunime.gachalife Gacha Life GAME_CASUAL 100000000 4.43 1 99.56 2 3
app.source.getcontact Getcontact COMMUNICATION 100000000 3.9 3 90.65 14 20
br.com.gabba.Caixa CAIXA FINANCE 100000000 4.58 4 70.86 6 11
br.gov.caixa.fgts.trabalhador FGTS FINANCE 100000000 3.45 1 30.75 2 19

Continued on next page

76

Table B.1 – continued from previous page

Package ID Name Category Installs Rating Splits Size (MB) DEX Native

br.gov.caixa.tem CAIXA Tem FINANCE 100000000 3.81 1 19.23 3 14
co.brainly Brainly: AI Homework Helper EDUCATION 100000000 4.46 4 81.41 9 9
com.adobe.scan.android Adobe Scan: PDF Scanner, OCR BUSINESS 100000000 4.75 4 102.61 2 26
com.amazon.kindle Amazon Kindle BOOKS_AND_REFERENCE 100000000 4.73 1 119.12 10 44
com.antivirus AVG AntiVirus TOOLS 100000000 4.71 4 72.73 8 6
com.application.zomato Zomato: Food Delivery FOOD_AND_DRINK 100000000 4.51 2 83.64 8 10
com.apusapps.launcher APUS System: Theme Launcher PERSONALIZATION 100000000 4.47 1 31.82 5 46
com.bigwinepot.nwdn.international Remini - AI Photo Enhancer PHOTOGRAPHY 100000000 4.04 4 261.95 10 7
com.billiards.city.pool.nation.club Pooking - Billiards City GAME_SPORTS 100000000 4.55 1 83.33 5 19
com.bradesco Bradesco: Conta, Cartão e Pix! FINANCE 100000000 4.51 3 102.67 15 32
com.canva.editor Canva: Design, Art ART_AND_DESIGN 100000000 4.81 3 27.11 4 4
com.cyberlink.youcammakeup YouCam Makeup - Selfie Editor PHOTOGRAPHY 100000000 4.32 3 113.71 6 16
com.daraz.android Daraz Online Shopping App SHOPPING 100000000 4.17 3 69.43 6 46
com.devuni.flashlight Tiny Flashlight + LED TOOLS 100000000 4.58 4 6.32 2 0
com.discord Discord - Talk, Play, Hang Out COMMUNICATION 100000000 3.13 4 133.66 4 66
com.dubox.drive TeraBox: Cloud Storage Space TOOLS 100000000 4.51 4 79.0 10 34
com.dvloper.granny Granny GAME_ARCADE 100000000 4.27 2 164.84 2 3
com.dywx.larkplayer Lark Player:Music Player MUSIC_AND_AUDIO 100000000 4.5 1 20.37 6 19
com.ea.game.nfs14_row Need for Speed™ No Limits GAME_RACING 100000000 4.43 3 186.77 5 10
com.ea.game.simcitymobile_row SimCity BuildIt GAME_SIMULATION 100000000 4.25 5 205.67 7 26
com.ea.games.simsfreeplay_row The Sims™ FreePlay GAME_SIMULATION 100000000 4.13 1 70.26 5 20
com.ebay.mobile eBay online shopping SHOPPING 100000000 4.7 4 139.73 7 8
com.fdgentertainment.bananakong Banana Kong GAME_ACTION 100000000 4.62 2 121.67 4 3
com.firsttouchgames.story Score! Hero - Soccer Games GAME_SPORTS 100000000 4.36 7 243.83 5 8
com.frontrow.vlog VN - Video Editor VIDEO_PLAYERS 100000000 4.72 4 223.82 11 42
com.gameloft.android.ANMP.GloftA9HM Asphalt Legends Unite GAME_RACING 100000000 4.42 14 3263.62 6 17
com.global.foodpanda.android foodpanda: food FOOD_AND_DRINK 100000000 4.02 4 67.63 7 1
com.gojek.app Gojek - Food TRAVEL_AND_LOCAL 100000000 4.34 3 87.07 13 10
com.grabtaxi.passenger Grab - Taxi TRAVEL_AND_LOCAL 100000000 4.81 4 282.96 21 23
com.indeed.android.jobsearch Indeed Job Search BUSINESS 100000000 4.68 4 68.8 3 55
com.instabridge.android Instabridge: WiFi Map PRODUCTIVITY 100000000 4.16 4 175.3 17 26
com.intsig.camscanner CamScanner- scanner, PDF maker PRODUCTIVITY 100000000 4.79 3 174.09 11 49
com.ismaker.android.simsimi SimSimi ENTERTAINMENT 100000000 4.29 3 95.45 4 70
com.ixigo.train.ixitrain ixigo Trains: Ticket Booking TRAVEL_AND_LOCAL 100000000 4.57 3 30.77 8 2

Continued on next page

77

Table B.1 – continued from previous page

Package ID Name Category Installs Rating Splits Size (MB) DEX Native

com.joeware.android.gpulumera Candy Camera - photo editor PHOTOGRAPHY 100000000 4.47 2 203.81 3 24
com.kakao.talk KakaoTalk : Messenger COMMUNICATION 100000000 4.06 4 193.15 22 27
com.king.petrescuesaga Pet Rescue Saga GAME_CASUAL 100000000 4.48 4 159.87 4 3
com.lazada.android Lazada 8.8 SHOPPING 100000000 4.7 3 66.13 6 41
com.mediocre.smashhit Smash Hit GAME_ARCADE 100000000 4.45 1 80.7 3 20
com.melesta.coffeeshop My Cafe — Restaurant Game GAME_CASUAL 100000000 4.54 1 81.8 7 12
com.mercadolibre Mercado Libre: Compras online SHOPPING 100000000 4.57 3 43.9 8 6
com.mercadopago.wallet Mercado Pago: cuenta digital FINANCE 100000000 4.73 5 68.88 24 12
com.microblink.photomath Photomath EDUCATION 100000000 4.44 3 17.31 2 5
com.microsoft.teams Microsoft Teams BUSINESS 100000000 4.6 4 166.49 8 63
com.midasplayer.apps.bubblewitchsaga2 Bubble Witch 2 Saga GAME_CASUAL 100000000 4.59 4 100.1 4 3
com.miniclip.carrom Carrom Pool: Disc Game GAME_SPORTS 100000000 4.54 2 144.4 13 17
com.mojang.minecrafttrialpe Minecraft Trial GAME_ARCADE 100000000 4.0 5 422.4 2 4
com.myairtelapp Airtel Thanks: Recharge FINANCE 100000000 4.13 3 45.49 5 45
com.myntra.android Myntra - Fashion Shopping App SHOPPING 100000000 4.37 3 39.59 2 57
com.netmarble.mherosgb MARVEL Future Fight GAME_ROLE_PLAYING 100000000 3.92 2 103.54 2 11
com.nexstreaming.app.kinemasterfree KineMaster-Video Editor VIDEO_PLAYERS 100000000 4.22 4 124.18 6 16
com.opera.browser Opera browser with AI COMMUNICATION 100000000 4.64 6 139.23 6 11
com.piriform.ccleaner CCleaner – Phone Cleaner TOOLS 100000000 4.6 4 54.02 6 2
com.pixonic.wwr War Robots Multiplayer Battles GAME_ACTION 100000000 4.27 2 158.58 11 21
com.playmini.miniworld Mini World: CREATA GAME_ADVENTURE 100000000 4.11 5 1138.97 9 29
com.playrix.township Township GAME_CASUAL 100000000 4.74 5 250.11 5 5
com.radio.pocketfm Pocket FM: Audio Series MUSIC_AND_AUDIO 100000000 4.53 4 105.15 12 10
com.reddit.frontpage Reddit SOCIAL 100000000 4.05 4 109.61 11 5
com.robtopx.geometryjumplite Geometry Dash Lite GAME_ARCADE 100000000 4.32 6 202.89 7 3
com.sandboxol.blockymods Blockman Go GAME_ARCADE 100000000 4.24 4 660.34 9 28
com.sega.sonicdash Sonic Dash - Endless Running GAME_ARCADE 100000000 4.65 3 258.92 7 5
com.sirma.mobile.bible.android YouVersion Bible App + Audio BOOKS_AND_REFERENCE 100000000 4.92 4 52.39 2 4
com.smule.singandroid Smule: Karaoke Songs MUSIC_AND_AUDIO 100000000 3.85 3 74.25 7 8
com.socialnmobile.dictapps.notepad.color.note ColorNote Notepad Notes PRODUCTIVITY 100000000 4.87 1 4.21 1 0
com.superking.parchisi.star Parchisi STAR Online GAME_BOARD 100000000 4.4 3 136.71 6 9
com.taxis99 99 - Private Driver and Taxi MAPS_AND_NAVIGATION 100000000 4.21 3 111.14 11 62
com.teacapps.barcodescanner QR PRODUCTIVITY 100000000 4.57 3 7.7 2 0
com.tumblr Tumblr—Fandom, Art, Chaos SOCIAL 100000000 4.0 3 59.12 9 12

Continued on next page

78

Table B.1 – continued from previous page

Package ID Name Category Installs Rating Splits Size (MB) DEX Native

com.ubercab.driver Uber - Driver: Drive BUSINESS 100000000 4.57 6 162.78 34 17
com.utorrent.client µTorrent®- Torrent Downloader VIDEO_PLAYERS 100000000 4.57 4 72.67 7 14
com.vectorunit.purple.googleplay Beach Buggy Racing GAME_RACING 100000000 4.47 4 116.96 7 17
com.vkontakte.android VK: music, video, messenger SOCIAL 100000000 3.79 3 175.24 20 35
com.weather.Weather The Weather Channel - Radar WEATHER 100000000 4.66 1 85.23 4 18
com.xvideostudio.videoeditor Video Editor VIDEO_PLAYERS 100000000 4.55 1 133.34 6 32
com.yahoo.mobile.client.android.mail Yahoo Mail – Organized Email COMMUNICATION 100000000 4.54 4 61.94 6 4
com.zeptolab.ctr.ads Cut the Rope GAME_PUZZLE 100000000 4.48 4 122.09 7 10
cris.org.in.prs.ima IRCTC Rail Connect TRAVEL_AND_LOCAL 100000000 3.62 1 42.38 4 8
ee.mtakso.client Bolt: Request a Ride MAPS_AND_NAVIGATION 100000000 4.74 4 79.26 9 9
fb.video.downloader Video Downloader For Facebook TOOLS 100000000 4.14 1 11.16 2 4
free.vpn.unblock.proxy.turbovpn Turbo VPN - Secure VPN Proxy TOOLS 100000000 4.73 1 27.54 4 15
in.swiggy.android Swiggy: Food Instamart Dineout FOOD_AND_DRINK 100000000 4.33 3 100.56 11 55
io.wifimap.wifimap WiFi Map®: Internet, eSIM, VPN PRODUCTIVITY 100000000 4.46 3 194.94 19 29
jp.garud.ssimulator SAKURA School Simulator GAME_SIMULATION 100000000 4.28 3 289.41 4 13
org.iggymedia.periodtracker Flo Period HEALTH_AND_FITNESS 100000000 4.68 4 124.34 7 7
org.mozilla.firefox Firefox Fast COMMUNICATION 100000000 4.57 3 118.2 3 18
ru.yandex.taxi Yandex Go: Taxi Food Delivery MAPS_AND_NAVIGATION 100000000 0.0 3 185.32 9 15
videoeditor.videorecorder.screenrecorder Screen Recorder - XRecorder VIDEO_PLAYERS 100000000 4.76 4 35.96 2 18
wp.wattpad Wattpad - Read BOOKS_AND_REFERENCE 100000000 4.11 4 182.47 17 11
br.gov.serpro.cnhe Carteira Digital de Trânsito TOOLS 50000000 4.73 6 49.27 2 2

79

References

[1] Sep 2024. https://play.google.com/store/apps/details?id=com.applisto.
appcloner.premium. viii, 1, 8

[2] Sep 2024. https://play.google.com/store/apps/details?id=com.modheaven.
viii, 1, 8

[3] Jung, Jin Hyuk, Ju Young Kim, Hyeong Chan Lee, and Jeong Hyun Yi: Repackaging
attack on android banking applications and its countermeasures. Wireless Personal
Communications, 73(4):1421–1437, 2013. xv, 10

[4] I, Pavlov, Oct 2025. https://www.7-zip.org/. xv, 10, 11

[5] Kalinin, Dmitry: Analysis of a spy module inside a whatsapp mod, Nov 2023. https:
//securelist.com/spyware-whatsapp-mod/110984/. xv, 18, 19, 20

[6] Lyu, Fang, Yapin Lin, Junfeng Yang, and Junhai Zhou: Suidroid: An efficient
hardening-resilient approach to android app clone detection. In 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 511–518. IEEE, 2016. 1, 14

[7] Shen, Yun, Pierre Antoine Vervier, and Gianluca Stringhini: A large-scale temporal
measurement of android malicious apps: Persistence, migration, and lessons learned.
In 31st USENIX Security Symposium (USENIX Security 22), pages 1167–1184, 2022.
1

[8] Khanmohammadi, Kobra, Neda Ebrahimi, Abdelwahab Hamou-Lhadj, and Raphaël
Khoury: Empirical study of android repackaged applications. Empirical Software En-
gineering, 24:3587–3629, 2019. 1, 36

[9] Zhou, Yajin and Xuxian Jiang: Dissecting android malware: Characterization and
evolution. In 2012 IEEE symposium on security and privacy, pages 95–109. IEEE,
2012. 1

[10] Allix, Kevin, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon: Androzoo:
Collecting millions of android apps for the research community. In Proceedings of the
13th international conference on mining software repositories, pages 468–471, 2016. 1,
11, 59

[11] Li, Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo,
and Lorenzo Cavallaro: Understanding android app piggybacking. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C), pages
359–361. IEEE, 2017. 1, 6, 12, 13, 28, 36

80

https://play.google.com/store/apps/details?id=com.applisto.appcloner.premium
https://play.google.com/store/apps/details?id=com.applisto.appcloner.premium
https://play.google.com/store/apps/details?id=com.modheaven
https://www.7-zip.org/
https://securelist.com/spyware-whatsapp-mod/110984/
https://securelist.com/spyware-whatsapp-mod/110984/

[12] Crussell, Jonathan, Clint Gibler, and Hao Chen: Attack of the clones: Detecting
cloned applications on android markets. In Computer Security–ESORICS 2012: 17th
European Symposium on Research in Computer Security, Pisa, Italy, September 10-12,
2012. Proceedings 17, pages 37–54. Springer, 2012. 1, 15

[13] Crussell, Jonathan, Clint Gibler, and Hao Chen: Scalable semantics-based detection
of similar android applications. In Proc. of ESORICS, volume 13. Citeseer, 2013. 1

[14] Luo, Lannan, Yu Fu, Dinghao Wu, Sencun Zhu, and Peng Liu: Repackage-proofing
android apps. In 2016 46th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pages 550–561. IEEE, 2016. 1, 2, 12, 14, 16, 17,
27, 38

[15] Li, Li, Tegawendé F Bissyandé, and Jacques Klein: Rebooting research on detecting
repackaged android apps: Literature review and benchmark. IEEE Transactions on
Software Engineering, 47(4):676–693, 2019. 1, 6, 12, 13, 14, 15

[16] Zhou, Wu, Yajin Zhou, Xuxian Jiang, and Peng Ning: Detecting repackaged smart-
phone applications in third-party android marketplaces. In Proceedings of the second
ACM conference on Data and Application Security and Privacy, pages 317–326, 2012.
1

[17] Ma, Jun, Qing Wei Sun, Chang Xu, and Xian Ping Tao: Griddroid—an effective and
efficient approach for android repackaging detection based on runtime graphical user
interface. Journal of Computer Science and Technology, 37(1):147–181, 2022. 1, 16

[18] Samhi, Jordan and Andreas Zeller: Androlog: Android instrumentation and code cov-
erage analysis. In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, pages 597–601, 2024. 1, 2, 7, 13, 14, 20,
21, 22, 28, 46, 60

[19] Daian, Philip, Ylies Falcone, Patrick Meredith, Traian Florin Şerbănuţă, Shin’ichi
Shiriashi, Akihito Iwai, and Grigore Rosu: Rv-android: Efficient parametric android
runtime verification, a brief tutorial. In Runtime Verification: 6th International Con-
ference, RV 2015, Vienna, Austria, September 22-25, 2015. Proceedings, pages 342–
357. Springer, 2015. 1, 7, 13, 21, 22, 28

[20] Romdhana, Andrea, Mariano Ceccato, Gabriel Claudiu Georgiu, Alessio Merlo, and
Paolo Tonella: Cosmo: Code coverage made easier for android. In 2021 14th IEEE
conference on software testing, verification and validation (ICST), pages 417–423.
IEEE, 2021. 1, 21, 22, 46, 60

[21] Pilgun, Aleksandr, Olga Gadyatskaya, Stanislav Dashevskyi, Yury Zhauniarovich,
and Artsiom Kushniarou: An effective android code coverage tool. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages
2189–2191, 2018. 1, 7

[22] Pilgun, Aleksandr, Olga Gadyatskaya, Yury Zhauniarovich, Stanislav Dashevskyi,
Artsiom Kushniarou, and Sjouke Mauw: Fine-grained code coverage measurement in
automated black-box android testing. ACM Transactions on Software Engineering and

81

Methodology (TOSEM), 29(4):1–35, 2020. 1, 4, 7, 12, 13, 14, 21, 22, 27, 28, 30, 46,
60

[23] Bao, Lingfeng, Tien Duy B Le, and David Lo: Mining sandboxes: Are we there yet?
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 445–455. IEEE, 2018. 1, 7, 20, 22, 46

[24] Kelty, Christopher M: Two bits: The cultural significance of free software. Duke
University Press, 2020. 6

[25] Caneill, Matthieu and Stefano Zacchiroli: Debsources: Live and historical views on
macro-level software evolution. In Proceedings of the 8th ACM/IEEE international
symposium on empirical software engineering and measurement, pages 1–10, 2014. 6

[26] Kim, Dongjin, Yesol Kim, Jeongoh Moon, Seong Je Cho, Jinwoon Woo, and Ilsun
You: Identifying windows installer package files for detection of pirated software. In
2014 Eighth International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, pages 287–290. IEEE, 2014. 6

[27] Claes, Maelick, Tom Mens, Roberto Di Cosmo, and Jérôme Vouillon: A historical
analysis of debian package incompatibilities. in 2015 ieee/acm 12th working conference
on mining software repositories (pp. 212-223), 2015. 6

[28] Gibler, Clint, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook
Choi: Adrob: Examining the landscape and impact of android application plagiarism.
In Proceeding of the 11th annual international conference on Mobile systems, applica-
tions, and services, pages 431–444, 2013. 6, 12, 13, 27

[29] Broadcom: Trojanized notepad++ installer delivers malware., Dec 2021.
https://www.broadcom.com/support/security-center/protection-bulletin/
trojanized-notepad-installer-delivers-malware. 7

[30] Wolff, Evan D, KatE M GroWlEy, Maida O Lerner, Matthew B Welling, Michael G
Gruden, and Jacob Canter: Navigating the solarwinds supply chain attack. Procure-
ment Law., 56:3, 2021. 7

[31] Jamrozik, Konrad, Philipp von Styp-Rekowsky, and Andreas Zeller: Mining sand-
boxes. In Proceedings of the 38th International Conference on Software Engineering,
pages 37–48, 2016. 7, 20, 21

[32] Cai, Haipeng and Barbara G Ryder: Droidfax: A toolkit for systematic characteri-
zation of android applications. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 643–647. IEEE, 2017. 7, 20, 21, 22

[33] Garg, Shivi and Niyati Baliyan: Comparative analysis of android and ios from security
viewpoint. Computer Science Review, 40:100372, 2021. 8

[34] Soares, Alberto Magno Muniz: Análise de objetos a partir da extração da memória
ram de sistemas sobre android run-time (art). 2017. 8

82

https://www.broadcom.com/support/security-center/protection-bulletin/trojanized-notepad-installer-delivers-malware
https://www.broadcom.com/support/security-center/protection-bulletin/trojanized-notepad-installer-delivers-malware

[35] Nguyen, Trung, Kyungtae Kim, Antonio Bianchi, and Dave Jing Tian: Truemu: an
extensible, open-source, whole-system ios emulator. Blackhat USA’22, 2022. 8

[36] Schütte, Julian and Dennis Titze: lios: Lifting ios apps for fun and profit. In 2019
International Workshop on Secure Internet of Things (SIOT), pages 1–10. IEEE, 2019.
8

[37] AndnixSH, Oct 2025. https://github.com/AndnixSH/APKToolGUI. 9

[38] Android Penetration Tools Walkthrough Series: Apktool. https:
//www.infosecinstitute.com/resources/penetration-testing/
android-penetration-tools-walkthrough-series-apktool/. [Accessed 03-
07-2025]. 9, 14

[39] Giedrimas, Vaidas and Samir Omanovič: The impact of mobile architectures on
component-based software engineering. In 2015 IEEE 3rd Workshop on Advances in
Information, Electronic and Electrical Engineering (AIEEE), pages 1–6. IEEE, 2015.
9

[40] Yan, Jiwei, Shixin Zhang, Yepang Liu, Xi Deng, Jun Yan, and Jian Zhang: A com-
prehensive evaluation of android icc resolution techniques. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering, pages 1–
13, 2022. 9

[41] Anonymous: About Android App Bundles | Android Developers — devel-
oper.android.com. https://developer.android.com/guide/app-bundle, 2021. [Ac-
cessed 08-06-2024]. 10

[42] Bagheri, Hamid, Jianghao Wang, Jarod Aerts, Negar Ghorbani, and Sam Malek:
Flair: efficient analysis of android inter-component vulnerabilities in response to in-
cremental changes. Empirical Software Engineering, 26:1–37, 2021. 10, 11, 12

[43] Liu, Yi, Yun Ma, Xusheng Xiao, Tao Xie, and Xuanzhe Liu: Legodroid: flexible an-
droid app decomposition and instant installation. Science China Information Sciences,
66(4):142103, 2023. 10

[44] Alecci, Marco, Pedro JR Jiménez, Kevin Allix, Tegawendé F Bissyandé, and Jacques
Klein: Androzoo: A retrospective with a glimpse into the future. in 2024 ieee/acm
21st international conference on mining software repositories (msr). IEEE Computer
Society, 2024. 11

[45] Merlo, Alessio, Antonio Ruggia, Luigi Sciolla, and Luca Verderame: You shall
not repackage! demystifying anti-repackaging on android. Computers & Security,
103:102181, 2021. 12, 13, 14, 16, 28

[46] How to merge splited apk files, November 2022. https://xdaforums.com/t/
how-to-merge-splited-apk-files.4529011/, visited on 2024-11-27. 12

[47] AndnixSH: How to merge split apk’s into standalone apk, February 2024. https:
//platinmods.com/threads/how-to-merge-split-apks-into-standalone-apk.
188936/, visited on 2024-11-27. 12

83

https://github.com/AndnixSH/APKToolGUI
https://www.infosecinstitute.com/resources/penetration-testing/android-penetration-tools-walkthrough-series-apktool/
https://www.infosecinstitute.com/resources/penetration-testing/android-penetration-tools-walkthrough-series-apktool/
https://www.infosecinstitute.com/resources/penetration-testing/android-penetration-tools-walkthrough-series-apktool/
https://developer.android.com/guide/app-bundle
https://xdaforums.com/t/how-to-merge-splited-apk-files.4529011/
https://xdaforums.com/t/how-to-merge-splited-apk-files.4529011/
https://platinmods.com/threads/how-to-merge-split-apks-into-standalone-apk.188936/
https://platinmods.com/threads/how-to-merge-split-apks-into-standalone-apk.188936/
https://platinmods.com/threads/how-to-merge-split-apks-into-standalone-apk.188936/

[48] LuigiVampa92: Github - luigivampa92/merge-apks: Simple python script that merges
multiple "splitted" apk files into a single universal "fat" apk file that contains all native
libraries for all architectures, all dpi-dependent resources, strings, etc, 2023. https:
//github.com/LuigiVampa92/merge-apks, visited on 2024-11-27. 12

[49] Li, Yuanchun, Ziyue Yang, Yao Guo, and Xiangqun Chen: Droidbot: a lightweight
ui-guided test input generator for android. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), pages 23–26. IEEE, 2017.
13, 27, 60, 61

[50] Berlato, Stefano and Mariano Ceccato: A large-scale study on the adoption of anti-
debugging and anti-tampering protections in android apps. Journal of Information
Security and Applications, 52:102463, 2020. 13, 27

[51] Wang, Xueqiang, Yifan Zhang, XiaoFeng Wang, Yan Jia, and Luyi Xing: Union
under duress: understanding hazards of duplicate resource mismediation in android
software supply chain. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 3403–3420, 2023. 13, 27

[52] Pushing Modified framework-res.apk? https://xdaforums.com/t/
q-pushing-modified-framework-res-apk.3892218/. [Accessed 03-07-2025].
14

[53] Ma, Haoyu, Shijia Li, Debin Gao, Daoyuan Wu, Qiaowen Jia, and Chunfu Jia: Active
warden attack: On the (in) effectiveness of android app repackage-proofing. IEEE
Transactions on Dependable and Secure Computing, 19(5):3508–3520, 2021. 14, 16,
38

[54] Wang, Yan and Atanas Rountev: Who changed you? obfuscator identification for
android. In 2017 IEEE/ACM 4th International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft), pages 154–164. IEEE, 2017. 14

[55] Salem, Aleieldin, F Franziska Paulus, and Alexander Pretschner: Repackman: A tool
for automatic repackaging of android apps. In Proceedings of the 1st International
Workshop on Advances in Mobile App Analysis, pages 25–28, 2018. 14

[56] Desnos, Anthony and Geoffroy Gueguen: Android: From reversing to decompilation.
Proc. of Black Hat Abu Dhabi, 1:1–24, 2011. 14, 15, 26

[57] Sun, Xin, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie: Detecting code reuse in
android applications using component-based control flow graph. In IFIP international
information security conference, pages 142–155. Springer, 2014. 15

[58] Ren, Chuangang, Kai Chen, and Peng Liu: Droidmarking: resilient software wa-
termarking for impeding android application repackaging. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, pages 635–
646, 2014. 15, 17

84

https://github.com/LuigiVampa92/merge-apks
https://github.com/LuigiVampa92/merge-apks
https://xdaforums.com/t/q-pushing-modified-framework-res-apk.3892218/
https://xdaforums.com/t/q-pushing-modified-framework-res-apk.3892218/

[59] Shao, Yuru, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang: Towards a
scalable resource-driven approach for detecting repackaged android applications. In
Proceedings of the 30th Annual Computer Security Applications Conference, pages
56–65, 2014. 15

[60] Tian, Ke, Danfeng Yao, Barbara G Ryder, Gang Tan, and Guojun Peng: Detection
of repackaged android malware with code-heterogeneity features. IEEE Transactions
on Dependable and Secure Computing, 17(1):64–77, 2017. 15

[61] Gonzalez, Hugo, Andi A Kadir, Natalia Stakhanova, Abdullah J Alzahrani, and Ali
A Ghorbani: Exploring reverse engineering symptoms in android apps. In Proceedings
of the Eighth European Workshop on System Security, pages 1–7, 2015. 15

[62] Sep 2024. https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/. 15

[63] Protsenko, Mykola, Sebastien Kreuter, and Tilo Müller: Dynamic self-protection and
tamperproofing for android apps using native code. In 2015 10th International Con-
ference on Availability, Reliability and Security, pages 129–138. IEEE, 2015. 16

[64] Huang, Heqing, Sencun Zhu, Peng Liu, and Dinghao Wu: A framework for evaluating
mobile app repackaging detection algorithms. In Trust and Trustworthy Computing:
6th International Conference, TRUST 2013, London, UK, June 17-19, 2013. Proceed-
ings 6, pages 169–186. Springer, 2013. 16, 21

[65] Collberg, Christian S. and Clark Thomborson: Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Transactions on software engineering,
28(8):735–746, 2002. 16

[66] Ma, Haoyu, Shijia Li, Debin Gao, and Chunfu Jia: Secure repackage-proofing frame-
work for android apps using collatz conjecture. IEEE Transactions on Dependable and
Secure Computing, 19(5):3271–3285, 2021. 17

[67] Inc., Google: Play integrity and signing services. https://developer.android.com/
google/play/integrity?hl=en. 17

[68] Lakshmanan, Ravie, Oct 2025. https://thehackernews.com/2025/08/
google-to-verify-all-android-developers.html. 17

[69] Inc., Apple: App code signing process in ios, ipados, tvos, watchos, and visionos.
https://support.apple.com/en/guide/security/sec7c917bf14/web. 17

[70] Inc., Apple: App review - distribute. https://developer.apple.com/distribute/
app-review/. 17

[71] Anonymous: Decrypted ios ipa app store, 2025. https://armconverter.com/
decryptedappstore/us, Accessed: 11 May 2025. 18

[72] Merali, Alameen Karim: Malware analysis of gbwhat-
sapp, Nov 2023. https://medium.com/@brotheralameen/
malware-analysis-of-gbwhatsapp-21e4b70c7bb2. 18

85

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/google/play/integrity?hl=en
https://developer.android.com/google/play/integrity?hl=en
https://thehackernews.com/2025/08/google-to-verify-all-android-developers.html
https://thehackernews.com/2025/08/google-to-verify-all-android-developers.html
https://support.apple.com/en/guide/security/sec7c917bf14/web
https://developer.apple.com/distribute/app-review/
https://developer.apple.com/distribute/app-review/
https://armconverter.com/decryptedappstore/us
https://armconverter.com/decryptedappstore/us
https://medium.com/@brotheralameen/malware-analysis-of-gbwhatsapp-21e4b70c7bb2
https://medium.com/@brotheralameen/malware-analysis-of-gbwhatsapp-21e4b70c7bb2

[73] Avelino, Yan: Yowhatsapp, cópia maliciosa do whatsapp, É pego roubando con-
tas de usuários • tecnoblog, Oct 2022. https://tecnoblog.net/noticias/
yowhatsapp-copia-maliciosa-do-whatsapp-e-pego-roubando-contas-de-usuarios/.
18

[74] Wahaz, Rizaldi, Rakha Nadhifa Harmana, Amiruddin Amiruddin, and Ardya
Suryadinata: Is whatsapp plus malicious? a review using static analysis. In 2021
6th International Workshop on Big Data and Information Security (IWBIS), pages
91–96. IEEE, 2021. 18

[75] Mussolino, Domenico: Fouad whatsapp, scraping through in-
novation, Apr 2023. https://www.cybercrimeclues.com/
fouad-whatsapp-scraping-through-innovation/. 18

[76] Anonymous: Fouad wa e fm whatsapp (fmwa) versão mais recente do apk (ofi-
cial) abril de 2025 [anti-ban] - fouad whatsapp, 2025. https://fouadmods.net/pt/
fouad-whatsapp-pt/#fouad-wa, Accessed: 11 May 2025. 18

[77] Anonymous: Download gbwhatsapp apk latest version (virus free) 2025, 2025. https:
//gbappsz.com.pk/download-gbwhatsapp/, Accessed: 11 May 2025. 18

[78] Anonymous: Whatsapp plus apk download (official) latest version may 2025 (up-
dated), 2025. https://gbappsz.com.pk/whatsapp-plus-apk/, Accessed: 11 May
2025. 18

[79] Anonymous: Yo whatsapp apk download latest for android (updated) may 2025, 2025.
https://gbappsz.com.pk/yo-whatsapp/, Accessed: 11 May 2025. 18

[80] Tikir, Mustafa M and Jeffrey K Hollingsworth: Efficient instrumentation for code
coverage testing. ACM SIGSOFT Software Engineering Notes, 27(4):86–96, 2002. 19,
20

[81] Császár, István Attila and Radu Razvan Slavescu: Building fast and reliable reverse
engineering tools with frida and rust. In 2022 IEEE 18th International Conference on
Intelligent Computer Communication and Processing (ICCP), pages 289–294. IEEE,
2022. 20, 21, 60

[82] Bellizzi, Jennifer, Mark Vella, Christian Colombo, and Julio Hernandez-Castro: Re-
sponding to targeted stealthy attacks on android using timely-captured memory dumps.
IEEE Access, 10:35172–35218, 2022. 21

[83] Vallée-Rai, Raja, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan: Soot: A java bytecode optimization framework. In CASCON First
Decade High Impact Papers, pages 214–224. 2010. 21, 22

[84] Vallee-Rai, Raja and Laurie J Hendren: Jimple: Simplifying java bytecode for analyses
and transformations. Technical report, Technical report, McGill University, 1998. 21,
22, 60

86

https://tecnoblog.net/noticias/yowhatsapp-copia-maliciosa-do-whatsapp-e-pego-roubando-contas-de-usuarios/
https://tecnoblog.net/noticias/yowhatsapp-copia-maliciosa-do-whatsapp-e-pego-roubando-contas-de-usuarios/
https://www.cybercrimeclues.com/fouad-whatsapp-scraping-through-innovation/
https://www.cybercrimeclues.com/fouad-whatsapp-scraping-through-innovation/
https://fouadmods.net/pt/fouad-whatsapp-pt/#fouad-wa
https://fouadmods.net/pt/fouad-whatsapp-pt/#fouad-wa
https://gbappsz.com.pk/download-gbwhatsapp/
https://gbappsz.com.pk/download-gbwhatsapp/
https://gbappsz.com.pk/whatsapp-plus-apk/
https://gbappsz.com.pk/yo-whatsapp/

[85] Neuner, Sebastian, Victor Van der Veen, Martina Lindorfer, Markus Huber, Georg
Merzdovnik, Martin Mulazzani, and Edgar Weippl: Enter sandbox: Android sandbox
comparison. arXiv preprint arXiv:1410.7749, 2014. 21

[86] Android Market data, History, Rankings. https://www.androidrank.org/. [Ac-
cessed 21-08-2024]. 37

[87] Wang, Wenyu, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng,
and Tao Xie: An empirical study of android test generation tools in industrial cases. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 738–748, 2018. 39

[88] Riganelli, Oliviero, Simone Paolo Mottadelli, Claudio Rota, Daniela Micucci, and
Leonardo Mariani: Data loss detector: automatically revealing data loss bugs in android
apps. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 141–152, 2020. 39

[89] Patel, Priyam, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu: On the ef-
fectiveness of random testing for android: or how i learned to stop worrying and love
the monkey. In Proceedings of the 13th International Workshop on Automation of
Software Test, pages 34–37, 2018. 41

[90] Nguyen, Trung Tin and Ben Stock: Open access alert: Studying the privacy risks in
android webview’s web permission enforcement. 2025. 59

[91] Jiménez, Pedro Jesús Ruiz, Jordan Samhi, Tegawendé F Bissyandé, and Jacques
Klein: Dissecting apks from google play: Trends, insights and security implications.
In 2025 IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 728–739. IEEE, 2025. 59

87

https://www.androidrank.org/

	Dedication
	Acknowledgements
	Resumo
	Resumo Expandido
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Glossary
	Introduction
	Research Problem
	Research Characterization
	Overview of the Contributions
	Manuscript Organization

	Background
	Repackaging
	Architecture of Android Apps
	Android Repackaging
	Targeted Artifacts in Repackaging
	Repackaging Android System Apps
	Repackage Tools
	Defenses Against Repackaging
	Android Repackaging Examples

	Instrumentation
	Instrumentation for Security Assessment
	Chapter Summary

	InstruMate
	Static Analysis Stage
	Variant Maker Stage
	Health Check Procedures
	Usage Example
	Chapter Summary

	Empirical Assessment
	Goal, Questions, and Metrics
	Experiment Overview
	Dataset Curation Procedures
	Classification of Original Apps Based on Repackaged Variants
	Health Check Procedures for Variants
	A Note on Stress Testing
	Execution Environment
	Chapter Summary

	Results
	(RQ1) How susceptible are the apps to repackaging?
	(RQ2) Common Defenses Against Repackaging
	(RQ3) Root Cause of Failures
	Identifying Defenses via Exception-Sites
	Combined Results
	Chapter Summary

	Final Remarks
	Answers to the Research Questions
	Implications
	Threats to Validity
	Reproducibility and Code Availability
	Future Work
	Conclusion

	Appendix
	Additional Figures
	Dataset
	References

