
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Otimização de Esquemas NoSQL Orientado a
Documentos: Avaliação Baseada em Métricas e

Algoritmo VNS

Harley Vera Olivera

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Orientadora
Prof.a Dr.a Maristela Terto de Holanda

Brasília
2025

Ficha Catalográfica de Teses e Dissertações

Está página existe apenas para indicar onde a ficha catalográfica gerada para dissertações de
mestrado e teses de doutorado defendidas na UnB. A Biblioteca Central é responsável pela ficha,
mais informações nos sítios:

http://www.bce.unb.br
http://www.bce.unb.br/elaboracao-de-fichas-catalograficas-de-teses-e-dissertacoes

Esta página não deve ser inclusa na versão final do texto.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Otimização de Esquemas NoSQL Orientado a
Documentos: Avaliação Baseada em Métricas e

Algoritmo VNS

Harley Vera Olivera

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Prof.a Dr.a Maristela Terto de Holanda (Orientadora)
CIC/UnB

Prof. Dr. Daniel Cardoso Moraes de Oliveira Prof.a Dr.a Edna Dias Canedo
Universidade Federal Fluminense Universidade de Brasília

Prof. Dr. Ronaldo dos Santos Mello
Universidade Federal de Santa Catarina

Prof. Dr. Rodrigo Bonifácio Almeida
Coordenador do Programa de Pós-graduação em Informática

Brasília, 30 de maio de 2025

Dedicatória

A Nadia, Ruth, Lia Paola, Ivanna, Segundo e Hurley, por serem as pessoas mais impor-
tantes da minha vida.

iv

Agradecimentos

Agradeço, em primeiro lugar, à Prof.ª Dra. Maristela Terto de Holanda, cuja orientação
dedicada e incentivo constante acompanharam todo o meu percurso acadêmico, desde o
mestrado até a conclusão deste doutorado. Sua visão crítica, aliada a uma generosidade
intelectual incomparável, não apenas orientou meu trabalho, mas também moldou minha
formação como pesquisador. Nos momentos de dificuldade, seus conselhos certeiros foram
fundamentais para redefinir rumos; nas conquistas, seu entusiasmo renovou minha con-
fiança. Mais do que mentora, foi exemplo de ética, perseverança e paixão pela ciência,
oferecendo oportunidades de crescimento que ultrapassaram os limites da sala de aula,
seja em projetos, seminários ou interlocuções que ampliaram meu horizonte acadêmico.

Sou também profundamente grato ao corpo docente do Programa de Pós-Graduação
em Informática da Universidade de Brasília (PPGI/UnB). Seus ensinamentos rigorosos, as
discussões instigantes em sala de aula e a abertura para o diálogo científico foram decisivos
para a construção do meu pensamento crítico e para o aprimoramento das habilidades de
pesquisa que sustentam esta tese.

Por fim, agradeço aos colegas Helard Becerra, José Soncco, Pedro Garcia, Ruben
Cruz, Edwin Alvarez, Gabriela Zuñiga e Gerar Quispe pela camaradagem e pelo apoio
nos momentos decisivos, bem como pela constante troca de conhecimentos que tornou
esta jornada mais leve e enriquecedora.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES).

v

Resumo

Em bancos de dados NoSQL orientados a documentos, a definição do esquema influencia
diretamente o armazenamento, a velocidade das consultas e a escalabilidade do sistema.
No entanto, determinar a configuração ideal constitui um desafio significativo devido ao
elevado número de combinações possíveis entre coleções e suas relações. Cada uma dessas
combinações precisa ser avaliada individualmente para mensurar seu impacto sobre o de-
sempenho geral do sistema, o que torna inviável uma análise exaustiva devido ao alto custo
computacional e à complexidade envolvida. Neste trabalho, implementou-se o algoritmo
metaheurístico VNS (Variable Neighborhood Search) para identificar soluções eficientes a
partir de um conjunto de consultas e uma configuração inicial. Para tanto, definiram-
se métricas de avaliação que quantificam a qualidade dos esquemas, considerando os
relacionamentos referenciados e aninhados com uma ponderação específica. Integradas
como função objetivo no algoritmo, essas métricas permitem uma avaliação mais am-
pla, concentrando-se nos aspectos estruturais dos esquemas. Operações de perturbação
específicas foram projetadas para explorar eficientemente o espaço de busca, diversifi-
cando as soluções e prevenindo a convergência para mínimos locais. Assim, o algoritmo
analisa diferentes estruturas, otimiza a complexidade do esquema e garante suporte com-
pleto às consultas definidas, alcançando uma solução eficaz no nível lógico de modelagem.
Diferentemente dos trabalhos relacionados focados na representação conceitual e na adap-
tação de notações como UML e ER, este trabalho propõe uma abordagem automatizada de
otimização lógica com métricas quantitativas e meta-heurísticas, eliminando a necessidade
de avaliação física e facilitando o uso por projetistas com variados níveis de experiência.

Palavras-chave: Nosql, orientado a documentos, métricas de avaliação, coeficientes de
ponderação, algoritmos metaheurísticos, VNS, otmização esquemas.

vi

Abstract

In document-oriented NoSQL databases, schema definition directly impacts storage, query
speed, and system scalability. However, identifying the optimal configuration poses a
significant challenge due to the many possible combinations between collections and their
relationships. Each of these combinations must be individually evaluated to measure
their impact on overall system performance, making an exhaustive analysis infeasible due
to high computational costs and inherent complexity. In this study, the metaheuristic
algorithm VNS (Variable Neighborhood Search) was implemented to identify efficient solu-
tions based on a set of queries and an initial configuration. To achieve this, evaluation
metrics were defined to quantify schema quality, considering referenced and embedded
relationships with specific weightings. Integrated as the objective function of the algo-
rithm, these metrics enable a more comprehensive evaluation, focusing primarily on the
structural aspects of schemas. Specific perturbation operations were designed to explore
the search space effectively, diversify solutions, and prevent convergence to local minima.
Consequently, the algorithm examines various structures, optimizes schema complexity,
and ensures full support for the defined queries, thus achieving an effective solution at the
logical modeling level. Unlike related works focused on conceptual representation and the
adaptation of notations such as UML and ER, this study proposes an automated approach to
logical optimization using quantitative metrics and metaheuristics, eliminating the need
for physical evaluation and making the method accessible to designers with varying levels
of experience.

Keywords: NoSQL, document-oriented, evaluation metrics, weighting coefficients, meta-
heuristic algorithms, VNS, schema optimization.

vii

Sumário

1 Introdução 1
1.1 Problema de Pesquisa . 2
1.2 Justificativa . 3
1.3 Contribuição Original . 3
1.4 Objetivo Geral . 4

1.4.1 Objetivos específicos . 4
1.5 Metodologia . 4
1.6 Organização do Trabalho . 5

2 Estado da Arte 7
2.1 Modelagem em Banco de Dados NoSQL 7
2.2 Coeficientes de Ponderação . 12
2.3 Métricas de Avaliação . 14
2.4 Geração de Esquemas . 16
2.5 Considerações Finais . 17

3 Visualização de Esquemas 19
3.1 Notação Gráfica . 19

3.1.1 Representação de coleções e atributos 21
3.1.2 Relacionamentos e cardinalidades 21

3.2 Considerações Finais . 24

4 Coeficientes de Ponderação 26
4.1 Contextualização . 26
4.2 Ambiente Experimental . 27

4.2.1 Arquitetura de Implantação . 28
4.3 Banco de Dados Sintético . 29
4.4 Datasets . 30
4.5 Modelos de Regressão Múltipla . 33

4.5.1 Construção dos Modelos . 34

viii

4.5.2 Treinamento e Validação . 35
4.6 Determinação dos Coeficientes de Ponderação para Relacionamentos 36

4.6.1 Processo de Obtenção . 36
4.7 Determinação dos Coeficientes de Ponderação para Atributos Simples e

Complexos . 38
4.8 Cenário de Validação . 40
4.9 Considerações Finais . 43

5 Métricas de Avaliação 44
5.1 Definições Formais . 44
5.2 Métrica Completude . 47

5.2.1 Funcionamento . 48
5.2.2 Exemplo . 48
5.2.3 Interpretação dos Resultados . 49

5.3 Métrica Padrão de Acesso . 50
5.3.1 Funcionamento . 51
5.3.2 Exemplo . 51
5.3.3 Interpretação dos Resultados . 52

5.4 Métrica Custo de Recuperação . 52
5.4.1 Funcionamento . 53
5.4.2 Exemplo . 53
5.4.3 Interpretação de Resultados . 54

5.5 Métrica Redundância . 55
5.5.1 Funcionamento . 55
5.5.2 Exemplo . 55
5.5.3 Interpretação dos Resultados . 56

5.6 Cenários de Validação . 56
5.6.1 Primeiro Cenário de Avaliação . 56
5.6.2 Segundo Cenário de Avaliação . 61

5.7 Considerações Finais . 67

6 Otimização Heurística: Determinação da Melhor Solução Encontrada 69
6.1 Algoritmo VNS . 69

6.1.1 Pseudocódigo . 71
6.1.2 Regras de Validação . 76
6.1.3 Métricas de Avaliação . 78
6.1.4 Estrategias de Perturbação . 79

6.2 Cenários de Validação . 86

ix

6.2.1 Primeiro cenário . 86
6.2.2 Segundo Cenário . 92

6.3 Limitações . 99
6.4 Ameaças . 99
6.5 Considerações Finais . 100

7 Conclusões 101
7.1 Resultados Acadêmicos . 102
7.2 Trabalhos Futuros . 103

x

Lista de Figuras

2.1 Processo de mapeamento sistemático utilizado. 8
2.2 Níveis de representação por categorias NoSQL. 9

3.1 Exemplo esquema em formato JSON. 20
3.2 Notação gráfica para representar coleções. 21
3.3 Notação gráfica para representar atributos nas coleções. 22
3.4 Notação gráfica de relacionamentos por referência. 22
3.5 Notação gráfica de relacionamentos por aninhamento. 22
3.6 Notação gráfica aplicada ao dataset ENEM. 23
3.7 Notação gráfica aplicada a um sistema de software para revistas científicas. 24

4.1 Processo metodológico para obtenção de coeficientes de ponderação. 27
4.2 Arquitetura centralizada . 28
4.3 Arquitetura distribuída. 28
4.4 Esquema com coleções referenciadas. 29
4.5 Esquema com coleções aninhadas. 30
4.6 Processo de geração dos 16 datasets. 31
4.7 Execução dos modelos de regressão para obter as médias ref e emb. 37
4.8 Processo para obter as médias de tempo de resposta para atributos simples

e complexos. 39
4.9 Processo para obter os coeficientes de ponderação no cenário de validação. 40

5.1 Esquema e1 composto de duas coleções . 45
5.2 Esquema e1 e e2 composto de três coleções A, B e C. 46
5.3 Conjunto de esquemas . 46
5.4 Esquema e1 com atributos. 54
5.5 Esquemas para o primeiro cenário (link para os esquemas). 57
5.6 Esquemas para o segundo cenário (link para os esquemas). 63

6.1 Diagrama de fluxo do algoritmo VNS para obtenção da solução mais ótima. 71
6.2 Arquitetura do algoritmos VNS. 72

xi

https://acortar.link/QH7XUk
https://acortar.link/nDgpID

6.3 Representação das consultas. 73
6.4 Representação gráfica e matricial do esquema e1. 74
6.5 Representação gráfica e matricial do esquema e2 75
6.6 Representação gráfica e matricial do esquema e3 75
6.7 Representação da solução inicial. 76
6.8 Error referenciando uma coleção aninhada. 77
6.9 Solução E6 composta de três esquemas . 87
6.10 Consultas e esquemas referentes à solução inicial do cenário 1, apresentados

em formato codificado. 88
6.11 Antes e depois da solução otimizada. 89
6.12 Comparação da solução antes e depois da otimização. 90
6.13 Diagramas de convergência das soluções do cenário 1. 91
6.14 Diagramas de convergência das soluções do cenário 1. 92
6.15 Solução E1 do cenário de validação 2. 94
6.16 Representação matricial dos quatro esquemas da solução E1. 94
6.17 Consultas e esquemas referentes à solução inicial do cenário 2, apresentados

em formato codificado. 95
6.18 Antes e depois da solução otimizada cenário 2. 96
6.19 Comparação visual da solução antes e depois da otimização cenário 2. . . . 96
6.20 Diagramas de convergência das soluções do cenário 2. 98

xii

Lista de Tabelas

2.1 Modelos e formatos usados por categoria e níveis de representação. 9
2.2 Trabalhos acadêmicos detalhados pelos modelos utilizados nos níveis de

representação. 10
2.3 Estudos selecionados sobre modelagem de dados em bancos NoSQL, por

contexto. 12
2.4 Visão geral das propostas existentes para otimizar esquemas. 18

4.1 Equipamentos computacionais físicos e na nuvem utilizados. 27
4.2 Distribuição das arquiteturas implementadas. 29
4.3 Estrutura do dataset gerado. 33
4.4 Modelos de regressão múltipla obtidos no Eq1 para arquitetura centralizada. 35
4.5 Modelos de regressão múltipla obtidos no Eq1 para arquitetura distribuída. 35
4.6 Modelos de regressão múltipla obtidos no Eq2 para arquitetura distribuída. 36
4.7 Modelos de regressão múltipla obtidos no Eq3 para arquitetura distribuída. 36
4.8 Coeficientes de ponderação em modo centralizado no equipamento Eq1. . . 37
4.9 Coeficientes de ponderação em modo distribuído no equipamento Eq1. . . . 38
4.10 Coeficientes de ponderação em modo distribuído no equipamento Eq2. . . . 38
4.11 Coeficientes de ponderação em modo distribuído no equipamento Eq3. . . . 38
4.12 Coeficientes de ponderação obtidos nos modos centralizado e distribuído. . 40
4.13 Coeficientes de ponderação para o caso de validação no modo centralizado

no equipamento Eq1. 41
4.14 Coeficientes de ponderação para o caso de validação no modo distribuído

no equipamento Eq1. 41
4.15 Coeficientes de ponderação para o caso de validação no modo distribuído

no equipamento Eq2. 41
4.16 Coeficientes de ponderação para o caso de validação no modo distribuído

no equipamento Eq3. 42
4.17 Comparação de coeficientes do primeiro experimento com o caso de validação. 42

5.1 Consultas definidas envolvendo quatro coleções. 45

xiii

5.2 Consulta definida envolvendo duas coleções. 45
5.3 Consultas definidas envolvendo três coleções. 46
5.4 Verificação da existência das coleções de q1 nos esquemas e1 e e2. 49
5.5 Verificação da existência de relacionamentos que atendam as coleções de q1

nos esquemas e1 e e2. 49
5.6 Verificação da existência de relacionamentos que atendam as coleções de q1

nos esquemas e1 e e2. 49
5.7 Tabela de análise padrão de acesso. 51
5.8 Tabela de análise padrão de acesso. 53
5.9 Tabela de análise função contarAtr(). 54
5.10 Tabela de análise de redundância. 56
5.11 Consultas definidas para o primeiro cenário. 57
5.12 Análise de existeColecao(E, qi) e existeRelacionamento(E, qi) para cada

consulta nos nove esquemas. 58
5.13 Resultados da métrica completude para as nove soluções. 58
5.14 Análise de padrão de acesso primeiro cenário. 59
5.15 Análise de custo de recuperação primeiro cenário. 60
5.16 Análise de coleções repetidas em cada esquema. 60
5.17 Resultados final das métricas no primeiro cenário. 61
5.18 Consultas definidas para o segundo cenário. 64
5.19 Análise de existeColecao(E, qi) e existeRelacionamento(E, qi) para cada

consulta nos quatro esquemas. 64
5.20 Resultados da métrica completude para o segundo cenário. 64
5.21 Análise do padrão de acesso no segundo cenário. 65
5.22 Análise de custo de recuperação segundo cenário. 66
5.23 Análise da redundância. 66
5.24 Resultados final das métricas no segundo cenário. 67

6.1 Operações de perturbação usadas na atividade perturbar solução. 71
6.2 Consultas definidas para o primeiro cenário. 87
6.3 Comparação das métricas entre a solução original e a otimizada. 89
6.4 Comparação das métricas entre as soluções avaliadas. 90
6.5 Consultas definidas para o segundo cenário. 93
6.6 Comparação das métricas entre a solução original e a otimizada no cenário 2. 97
6.7 Comparação das métricas entre as soluções avaliadas no cenário 2. 97

xiv

Capítulo 1

Introdução

A modelagem de banco de dados constitui uma das etapas fundamentais no desenvolvi-
mento de sistemas de informação, pois permite compreender e abstrair a complexidade
inerente ao domínio do problema (Simsion & Witt, 2004). No contexto de bancos de
dados relacionais, o processo de modelagem é realizado em três níveis: conceitual, lógico
e físico, utilizando-se linguagens de modelagem como Entidade-Relacionamento (ER) ou
Unified Modeling Language (UML), de acordo com o nível de abstração requerido (Elmasri,
2008). No nível conceitual, não se exige conhecimento técnico sobre o sistema gerencia-
dor de banco de dados (SGBD), uma vez que o foco está na representação semântica dos
dados. No nível lógico, é necessário um conhecimento intermediário, dado que envolve a
estruturação dos dados conforme o modelo relacional. Já no nível físico, a modelagem
requer um conhecimento do SGBD específico, sendo recomendável experiência prévia na
administração e otimização de bancos de dados.

Em bancos de dados NoSQL, ainda não há padrões amplamente estabelecidos para a
modelagem; contudo, diversos contextos foram propostos, abrangendo os níveis concei-
tual, lógico e físico e utilizando-se ferramentas como ER, UML, Extensible Markup Language
(XML), XML Metadata Interchange (XMI), JavaScript Object Notation (JSON), Web On-
tology Language (OWL) e Formal Concept Analysis (FCA) (Vera-Olivera & et. al., 2021).
Além disso, na modelagem de esquemas orientados a documentos, devem ser consideradas
novas características, tais como a definição da quantidade de esquemas necessários con-
forme as consultas propostas; a escolha entre relacionamentos referenciados ou aninhados;
e a seleção de atributos simples ou compostos. Essas decisões impactam diretamente o
desempenho do banco de dados (Gómez et al., 2016; Reis et al., 2018; Vera-Olivera et al.,
2023). Ademais, a experiência do projetista desempenha também papel determinante na
otimização dessas escolhas técnicas.

No entanto, determinar a melhor solução de esquemas para um problema específico em
bancos de dados NoSQL não é trivial, dada a multiplicidade de possibilidades decorrentes

1

do número de coleções e das relações entre elas, tais como referenciadas, aninhadas ou
independentes (Vera-Olivera & Holanda, 2024). Para avaliar a eficiência dos esquemas
propostos, é necessário verificar o atendimento às consultas predefinidas e analisar sua
estrutura por meio de operações CRUD (Create, Read, Update, Delete), que permitem
identificar os impactos no desempenho operacional (Győrödi et al., 2022) (Llano-Ríos et
al., 2020) (Andor et al., 2019) (Carvalho et al., 2023).

A otimização de esquemas em bancos de dados NoSQL ocorre em diferentes contextos,
como transformação, migração, geração de esquemas e otimização multicritério (Hewa-
singhage et al., 2023; Vera-Olivera & et. al., 2021). Na transformação, esquemas são
convertidos de modelos conceituais (ER ou UML) para lógicos ou físicos, com validação por
operações CRUD, embora a exploração do espaço de busca seja limitada, comprometendo
a eficiência (Bansal et al., 2023; Muhammad & Azizah, 2022; Saha & Sachdeva, 2024).
Na migração, a otimização adapta dados a novas cargas de trabalho, utilizando técnicas
como programação linear inteira ou abstração temporal para reduzir custos, mas também
sofre com restrições na exploração do espaço de busca (Wakuta et al., 2023).

Na geração de esquemas, métodos automatizados, como Document Database Schema
Recommender (DBSR) (Reniers et al., 2020) e Dynamic Schema Proposition (DSP) (A. A.
Imam et al., 2020), processam modelos de dados e consultas, aplicando heurísticas para
criar esquemas otimizados com menor redundância e maior eficiência. Já na otimização
multicritério, algoritmos heurísticos, como os propostos por (Hewasinghage et al., 2023),
utilizam modelos canônicos e buscas locais guiadas por funções de perda, mas enfrentam
limitações devido à dependência de transformações fixas, avaliação em níveis lógico e
físico que exige conhecimento técnico, e falta de exploração dinâmica do espaço de busca,
restringindo a diversidade das soluções.

1.1 Problema de Pesquisa

O problema de pesquisa concentra-se na otimização de esquemas em bancos de dados
NoSQL orientados a documentos, visando atender às consultas definidas, ao mesmo tempo
em que se minimizam o padrão de acesso e a redundância. Essa otimização considera as
configurações possíveis exclusivamente no nível lógico, sem a necessidade de avaliação por
operações CRUD ou de conhecimentos técnicos relacionados ao nível físico.

O problema é agravado pelo crescimento não linear do espaço de busca, que se ex-
pande com o aumento de coleções e seus relacionamentos. Em cenários práticos, métodos
tradicionais tornam-se inviáveis, destacando a vantagem de algoritmos meta-heurísticos
(Naka & Guliashki, 2021). Para a utilização de algoritmos meta-heurísticos, três pilares
são essenciais (Mladenović & Hansen, 1997):

2

• Representação da solução (esquemas e consultas);

• Função objetivo (Métricas de avaliação);

• Operadores shaking

1.2 Justificativa

A relevância deste estudo é amplificada pela migração de banco de dados para a nuvem,
que evidenciou ineficiências decorrentes de esquemas mal estruturados, como redundân-
cias, alta latência e custos operacionais elevados (Abadi et al., 2022). A abordagem
proposta enfrenta esses desafios ao operar exclusivamente no nível lógico, utilizando mé-
tricas de avaliação e operações de perturbação para otimização. A adoção de métricas
de avaliação permite quantificar objetivamente aspectos críticos do esquema, como re-
dundância e padrão de acesso, viabilizando comparações entre diferentes alternativas de
modelagem. Já as operações de perturbação são fundamentais para explorar múltiplas
regiões do espaço de soluções, evitando estagnações em mínimos locais e promovendo a
descoberta de esquemas mais eficientes. Essa estratégia elimina a necessidade de opera-
ções CRUD no nível físico e reduz a dependência de conhecimentos especializados em SGBD,
democratizando o acesso a projetistas com diferentes níveis de experiência.

A ausência de padrões consolidados em NoSQL exige soluções que integrem rigor teórico
e exploração algorítmica. Ao focar no nível lógico, este trabalho oferece um método
replicável e acessível, apto a gerar esquemas otimizados mesmo em contextos dinâmicos,
onde cargas de trabalho e requisitos evoluem constantemente. Essa flexibilidade é crítica
em ambientes de nuvem, onde a escalabilidade e a eficiência operacional são prioritárias.

1.3 Contribuição Original

Este trabalho apresenta como contribuição original o desenvolvimento de um algoritmo
meta-heurístico baseado em VNS que realiza a otimização de esquemas em bancos de dados
NoSQL orientados a documentos exclusivamente no nível lógico, eliminando a necessidade
de avaliação por experimentos de leitura através de benchmarks e reduzindo a depen-
dência de conhecimento especializado no nível físico. O diferencial desta proposta reside
na integração de métricas quantitativas e coeficientes de ponderação. Neste contexto, os
coeficientes de ponderação são valores atribuídos aos diferentes tipos de relacionamentos
entre coleções — referenciados e aninhados — com o objetivo de quantificar seu impacto
no desempenho do esquema. Esses coeficientes influenciam diretamente no cálculo das mé-

3

tricas, permitindo ajustar a importância relativa de cada tipo de relacionamento durante
a busca por configurações mais eficientes.

1.4 Objetivo Geral

O objetivo geral desta tese de doutorado é desenvolver um algoritmo meta-heurístico para
otimizar esquemas em bancos de dados NoSQL orientados a documentos, garantindo o aten-
dimento às consultas definidas, com minimização do padrão de acesso e da redundância,
por meio de uma abordagem no nível lógico. O algoritmo deverá incorporar métricas
de avaliação que permitam quantificar objetivamente a qualidade dos esquemas e utilizar
operações de perturbação para explorar eficientemente o espaço de busca e evitar mínimos
locais. Este algoritmo deve explorar de forma eficiente o espaço de busca, sem depender
de operações CRUD nem de conhecimento técnico avançado do nível físico do SGBD.

1.4.1 Objetivos específicos

Os objetivos específicos definidos são:

• Estabelecer coeficientes de ponderação que atribuam valores numéricos representa-
tivos aos tipos de relacionamentos referenciados e aninhados de modo a quantificar
o custo relativo de cada tipo de relação;

• Desenvolver métricas quantitativas para avaliar a qualidade dos esquemas no nível
lógico;

• Adaptar e implementar o algoritmo de busca heurística para otimizar esquemas,
integrando as métricas de avaliação, coeficientes de ponderação e operadores de
perturbação

1.5 Metodologia

A metodologia deste trabalho foi estruturada em cinco etapas principais, descritas a seguir:

• Mapeamento Sistemático da Literatura: Realizou-se um mapeamento siste-
mático com base nas diretrizes de (Petersen et al., 2015) e (Kitchenham et al., 2010)
para revisar o estado da arte. Foram investigados quatro temas centrais: modela-
gem em bancos de dados NoSQL, coeficientes de ponderação, métricas de avaliação
e otimização heurística. Esta etapa permitiu identificar lacunas e fundamentar as
etapas subsequentes;

4

• Obtenção de Coeficientes de Ponderação: Foram gerados bancos de dados sin-
téticos para representar o comportamento de coleções relacionadas por referência e
por aninhamento. A partir desses bancos, criou-se datasets com os tempos de recu-
peração de consultas para coleções referenciadas e aninhadas. Esses datasets foram
utilizados para treinar modelos de regressão múltipla, que generalizaram o compor-
tamento das respostas às consultas. Os modelos resultantes foram empregados para
derivar os coeficientes de ponderação;

• Proposta de Métricas de Avaliação: Foram desenvolvidas métricas de avaliação
para quantificar o desempenho dos esquemas em relação às consultas e à estrutura
dos esquemas. Nesta etapa, os coeficientes de ponderação foram utilizados para
orientar a escolha entre relacionamentos referenciados e aninhados, considerando o
impacto no desempenho;

• Otimização com Algoritmo Variable Neighborhood Search (VNS): Utilizou-
se o algoritmo VNS para otimizar um conjunto de esquemas, integrando os coeficien-
tes de ponderação e as métricas de avaliação previamente definidas. O objetivo foi
atender completamente às consultas, minimizando métricas relacionadas ao padrão
de acesso e à redundância nos esquemas;

• Validação em Cenários: Por fim, foram definidos dois cenários de validação para
demonstrar a eficácia do algoritmo proposto. Esses cenários permitiram avaliar o
desempenho dos esquemas otimizados em condições práticas, verificando a aplica-
bilidade e a robustez da abordagem

1.6 Organização do Trabalho

Este trabalho está organizado nos seguintes capítulos, cada um abordando aspectos fun-
damentais da pesquisa realizada.

No Capítulo 2, é apresentado o estado da arte sobre bancos de dados NoSQL orientados
a documentos. São discutidos a modelagem de esquemas, a avaliação de coeficientes de
ponderação, o uso de métricas estruturais para avaliação de esquemas e as abordagens
existentes para a geração automática de esquemas otimizados, destacando as limitações
e lacunas na literatura atual.

No Capítulo 3, é apresentada uma notação gráfica específica para a visualização de
esquemas em bancos de dados NoSQL. A notação diferencia coleções, atributos simples
e complexos, além de representar relacionamentos referenciados e aninhados, permitindo
melhor compreensão das estruturas e das cardinalidades envolvidas.

5

No Capítulo 4, é descrito o processo de determinação dos coeficientes de ponderação
para relacionamentos referenciados e aninhados. Utilizando um ambiente experimental
com arquiteturas centralizadas e distribuídas, são construídos modelos de regressão múl-
tipla a partir de bancos de dados sintéticos, permitindo quantificar o impacto estrutural
dos diferentes tipos de relacionamento.

No Capítulo 5, são apresentadas quatro métricas desenvolvidas para a avaliação de
esquemas: completude, padrão de acesso, custo de recuperação e redundância. Essas mé-
tricas foram integradas à avaliação no nível lógico, dispensando a necessidade de operações
CRUD, e foram validadas em cenários experimentais.

No Capítulo 6, é detalhada a implementação do algoritmo VNS para a otimização
de esquemas. O capítulo inclui o pseudocódigo, as regras de validação, as estratégias de
perturbação aplicadas e a validação experimental em dois cenários distintos, comprovando
a eficácia da abordagem para encontrar soluções otimizadas.

Finalmente, no Capítulo 7, são apresentadas as conclusões da pesquisa, abordando o
cumprimento dos objetivos propostos, as contribuições obtidas, as limitações identificadas
e as direções sugeridas para trabalhos futuros na otimização de esquemas em bancos de
dados NoSQL orientados a documentos.

6

Capítulo 2

Estado da Arte

Este capítulo apresenta o estado da arte da pesquisa sobre bancos de dados NoSQL
orientados a documentos, organizado em quatro seções complementares. A primeira seção
realiza uma análise abrangente de modelagem por meio de um mapeamento sistemático.
Em seguida na segunda seção, discute-se a avaliação de coeficientes de ponderação para
relações e atributos, comparando abordagens de documentos referenciados e aninhados
em termos de desempenho. A terceira seção analisa estudos dedicados à avaliação de
esquemas, empregando métricas que mensuram a complexidade em diferentes níveis de
representação. Por fim, a quarta seção examina estratégias de otimização de esquemas.

2.1 Modelagem em Banco de Dados NoSQL

A modelagem de dados desempenha um papel fundamental no desenvolvimento de bancos
de dados, e sua aplicação em bancos de dados NoSQL ainda carece de um padrão consoli-
dado. Com essa finalidade foi realizada uma revisão sistemática, baseada nos protocolos
de (Petersen et al., 2015) e (Kitchenham et al., 2010), para responder a três questões
principais de pesquisa: (1) Quais níveis de representação são utilizados na modelagem de
bancos de dados NoSQL? (2) Quais modelos são empregados em cada nível de representa-
ção? (3) Em quais contextos ocorre o processo de modelagem? A metodologia adotada,
ilustrada na Figura 2.1, organiza o processo de mapeamento em duas etapas: planeja-
mento e execução. No planejamento, são definidos o escopo, os objetivos, as questões de
pesquisa, fontes de busca, estratégias de pesquisa, e os critérios de inclusão e exclusão.
Durante a execução, a busca de literatura é realizada, os estudos relevantes são selecio-
nados de acordo com os critérios, as informações são extraídas e classificadas, a análise e
síntese dos resultados são feitas. Para operacionalizar o protocolo, foi formulada uma es-
tratégia de busca estruturada com base nas questões de pesquisa, incluindo termos como
“model”, “NoSQL database”, “document”, “graph”, “column” e “key-value”, complemen-

7

tada por uma análise semântica com a ferramenta VOSviewer. A string de busca utilizada
foi:

((design OR model OR “data structure” OR “relational data”) AND nosql) OR (mo-
deling AND (Key-value OR column OR document OR graph) AND (nosql OR database
OR schema)

Essa string foi ajustada conforme as restrições das bases Scopus e Web of Science,
selecionadas por sua abrangência em ciência da computação. Os critérios de inclusão fo-
ram: IC-1) trabalhos acadêmicos que tratassem diretamente da modelagem de dados em
bancos NoSQL como tema principal; IC-2) artigos completos publicados em conferências
ou periódicos. Por outro lado, os critérios de exclusão compreenderam: EC-1) artigos
não disponíveis online; EC-2) trabalhos não redigidos em inglês; EC-3) artigos curtos ou
resumos estendidos; EC-4) revisões de literatura como surveys ou mapeamentos sistemá-
ticos; EC-5) estudos fora das áreas de computação, engenharia ou sistemas de informação;
EC-6) publicações sem revisão por pares; EC-7) trabalhos publicados fora do intervalo
entre 2008 e 2019. A aplicação rigorosa desse protocolo permitiu a seleção de 54 estudos
primários.

Protocolo de mapeamento
 sistemático

- Questões de pesquisa
- Fonte de busca
- Estratégia de pesquisa
- Critérios de
inclusão/exclusão

Busca

Fonte de
busca

Seleção de
artigos

Criterios de
inclusão/exclusão

Avaliação de
 qualidade

Extração de
 dados

Síntese de
dados

Planejamento Execução

Figura 2.1: Processo de mapeamento sistemático utilizado.

A análise dos 54 artigos primários selecionados revelou que, em relação aos níveis de
representação, os níveis conceitual e lógico receberam mais atenção do que o nível físico.
A Figura 2.2 apresenta os resultados detalhados por categoria de banco de dados NoSQL.

No que se refere à segunda questão de pesquisa, verificou-se que os modelos UML e ER,
bem como notações adaptadas derivadas desses paradigmas, foram amplamente empre-
gados na modelagem de bancos de dados NoSQL. Além disso, formatos como JSON, XML
e XMI foram utilizados para a definição de esquemas nos três níveis de representação. A
Tabela 2.1 sintetiza os resultados obtidos.

8

Figura 2.2: Níveis de representação por categorias NoSQL.

Tabela 2.1: Modelos e formatos usados por categoria e níveis de representação.
Tipo banco de dados Conceitual Logico físico

Orientado a documentos
Novas notações baseadas em ER e UML,

UML, OWL, FCA

JSON, XMI,
Novas notações baseadas em UML,

Modelo relacional

JSON, modelo generico,
modelo MongoDB

Grafo
EER, UML, modelo generico, RDF,

O-ER, Novas notações baseadas em ER,
ER, OWL

JSON, modelo generico, XMI,
Novas notações baseadas em ER, EER, and UML

JSON, XML, modelo Neo4j,
modelo generico, modelo OrientDB

Chave-valor
Novas notações baseadas em ER,

OWL, UML
JSON modelo Oracle NoSQL

Coluna
UML, Novas notações baseadas em ER,

OWL

JSON, Novas notações baseadas em UML,
modelo generico, XML,
modelo relacional, XMI

JSON, modelo generico, XML,
modelo Cassandra, modelo HBase,

modelo Amazon DynamoDB

A Tabela 2.2 apresenta uma visão geral dos artigos mapeados junto com o tipo de
banco de dados NoSQL e os modelos usados nos níveis conceitual, lógico e físico.

Para a terceira questão de pesquisa, foram identificados novos contextos de modela-
gem, incluindo avaliação de desempenho, processos de migração e geração de esquemas.
Adicionalmente, novas características relevantes para a modelagem de bancos de dados
NoSQL foram evidenciadas, como a quantidade de registros por entidade, operações CRUD
e requisitos do sistema (disponibilidade, consistência e escalabilidade). A Tabela 2.3
apresenta os artigos classificados nos diferentes contextos identificados. O benchmark é
utilizado para avaliar o desempenho de diferentes abordagens de modelagem sob cargas
específicas, enquanto a avaliação abrange análises qualitativas e quantitativas que conside-
ram critérios como expressividade e manutenibilidade. As diretrizes de projeto fornecem
recomendações práticas para orientar decisões de modelagem, especialmente em relação
à desnormalização e à escolha entre referências e aninhamento. O contexto de migração
refere-se à transição de modelos e dados entre bancos relacionais e bancos NoSQL. Essa

9

Tabela 2.2: Trabalhos acadêmicos detalhados pelos modelos utilizados nos níveis de re-
presentação.

Artigo Tipo NoSQL Conceitual Lógico Físico
(A. Imam et al., 2019) Documentos — — JSON
(Akintoye et al., 2019) Documentos, Grafo — — JSON
(Martins de Sousa & del Val Cura, 2018) Grafo ER modificado ER modificado —
(Vágner, 2018) Grafo EER — Neo4j
(Abdelhedi, Ait Brahim, & Zurfluh, 2018) Coluna — — Cassandra/HBase
(Nogueira et al., 2018) Documentos — — JSON
(Hamouda & Zainol, 2018) Documentos — UML modificado —
(Abdelhedi, Brahim, et al., 2018) Documentos, Grafo, Coluna — Genérico Genérico
(A. A. Imam & Basri, 2018) Documentos — UML modificado —
(Suárez-Otero et al., 2018) Coluna ERD UML modificado —
(Van Erven et al., 2018) Grafo UML — —
(Angles, 2018) Grafo Genérico — —
(Chis,-Rat, iu & Buchmann, 2018) Grafo RDF — —
(Villa et al., 2018) Grafo O-ER — —
(A. Imam et al., 2017) Documentos UML modificado — —
(Roy-Hubara et al., 2017) Grafo UML — —
(Zhang, 2017) Grafo Nova notação — —
(M. J. Mior et al., 2017) Coluna UML — Cassandra
(Banerjee & Sarkar, 2017) Documentos, Grafo, Coluna, KV ER modificado JSON —
(Shin et al., 2017) Documentos UML UML modificado —
(Chillón et al., 2017) — UML — —
(Orel et al., 2017) Grafo — — Neo4j
(Pokorný, 2016) Grafo ER — —
(Bermbach et al., 2016) Coluna ER — —
(Lima & Mello, 2016) Documentos — UML modificado —
(Banerjee & Sarkar, 2016) Documentos, Grafo, Coluna, KV OWL — —
(Abdelhedi et al., 2016) Coluna — XML —
(Varga et al., 2016) Documentos FCA — —
(M. Zhao et al., 2016) Grafo Nova notação — —
(De Lima & Dos Santos Mello, 2015) Documentos — UML modificado —
(Vera & et. al., 2015) Documentos UML modificado — —
(X. Li et al., 2014) — — UML modificado JSON
(M. Mior, 2014) Coluna — — Cassandra/HBase
(Y. Li et al., 2014) Coluna — — XML
(Sedlmeier & Gogolla, 2014) Grafo — UML modificado —
(Yoo et al., 2014) Grafo Nova notação — —
(G. Zhao et al., 2013) Documentos, Grafo — Relacional —
(Kaur & Rani, 2013) Documentos — UML modificado —
(Vajk et al., 2013) Coluna — — DynamoDB
(Schram & Anderson, 2012) Coluna — OWN —
(Santos & Costa, 2016) Coluna — Relacional —
(Hewasinghage et al., 2018) Documentos — HeRM —
(Santisteban & Ticona-Herrera, 2018) Grafo — ER modificado —
(De Virgilio et al., 2014) Grafo O-ER — —
(Daniel et al., 2016) Grafo — — Neo4j/OrientDB
(Abdelhedi, Brahim, et al., 2017) Documentos, Grafo, Coluna — UML MongoDB/Neo4j/Cassandra
(Abdelhedi, Ait Brahim, et al., 2017) Documentos, Grafo, Coluna — XMI MongoDB/Neo4j/Cassandra
(A. Imam et al., 2018) Documentos — — MongoDB
(Shoval, 2018) Grafo — UML —
(Roy-Hubara et al., 2018) Grafo — UML —
(Reniers et al., 2018) Documentos — Nova notação —
(la Vega et al., 2018) Documentos, Coluna — UML JSON
(Varga et al., 2018) Grafo ERD — XML
(Bugiotti et al., 2014) Chave-valor UML — Oracle NoSQL

10

transição exige a adaptação de esquemas, consultas e operações para preservar a semân-
tica e a integridade dos dados. O contexto de ontologias refere-se ao uso de representações
semânticas, como RDF e OWL, para modelar dados em bancos NoSQL de forma conceitual
e interoperável. A transformação de esquemas refere-se à conversão de modelos de dados
entre diferentes níveis de abstração ou entre diferentes formatos de representação como
ER. O contexto orientado a consultas foca na modelagem de dados com base nos padrões
de acesso e nas operações de leitura e escrita mais frequentes. O contexto de geração de
esquemas refere-se à criação automática ou assistida de estruturas de dados (como JSON,
XML ou XMI) a partir de modelos conceituais ou lógicos.

11

Tabela 2.3: Estudos selecionados sobre modelagem de dados em bancos NoSQL, por con-
texto.

Contexto Documentos
Benchmark (Nogueira et al., 2018)
Avaliação (Roy-Hubara et al., 2018)
Diretrizes (Akintoye et al., 2019), (Angles, 2018), (Banerjee & Sarkar, 2016),

(Bermbach et al., 2016), (Bugiotti et al., 2014), (Chillón et al., 2017),
(Chis,-Rat, iu & Buchmann, 2018), (De Virgilio et al., 2014), (Hewa-
singhage et al., 2018),
(A. Imam et al., 2017), (A. A. Imam & Basri, 2018), (Kaur & Rani,
2013),
(Pokorný, 2016), (Santisteban & Ticona-Herrera, 2018), (Shin et al.,
2017),
(Suárez-Otero et al., 2018), (Van Erven et al., 2018), (Varga et al.,
2016),
(Varga et al., 2018), (Vera & et. al., 2015), (Vágner, 2018),
(G. Zhao et al., 2013), (M. Zhao et al., 2016)

Migração (Hamouda & Zainol, 2018)
Ontologia (Banerjee & Sarkar, 2016)
Transformação de Esquemas (Abdelhedi, Ait Brahim, et al., 2017), (Abdelhedi, Ait Brahim, &

Zurfluh, 2018), (Abdelhedi et al., 2016),
(Abdelhedi, Brahim, et al., 2017), (Abdelhedi, Brahim, et al., 2018),
(Banerjee & Sarkar, 2017),
(Daniel et al., 2016), (la Vega et al., 2018), (De Lima & Dos Santos
Mello, 2015),
(Y. Li et al., 2014), (Lima & Mello, 2016), (Martins de Sousa &
del Val Cura, 2018),
(M. Mior, 2014), (Orel et al., 2017), (Reniers et al., 2018),
(Roy-Hubara et al., 2017), (Santos & Costa, 2016), (Schram & An-
derson, 2012),
(Shoval, 2018), (Vajk et al., 2013), (Villa et al., 2018),
(Yoo et al., 2014), (Zhang, 2017)

Orientado a Consultas (X. Li et al., 2014)
Geração de Esquemas (A. Imam et al., 2019), (A. Imam et al., 2018), (M. J. Mior et al., 2017)

2.2 Coeficientes de Ponderação

Os coeficientes de ponderação são valores numéricos atribuídos a diferentes elementos de
um sistema, com o objetivo de refletir seu impacto sobre um determinado resultado. No
contexto da modelagem e otimização de esquemas em bancos de dados NoSQL orientados
a documentos, os coeficientes de ponderação permitem quantificar de forma diferenciada
os custos e benefícios associados a diversas configurações de esquemas, como o uso de
relacionamentos referenciados ou aninhados.

12

Seguindo a mesma metodologia empregada na seção anterior, a análise dos trabalhos
relacionados aos coeficientes de ponderação foi conduzida com base no protocolo de ma-
peamento sistemático da literatura descrito por Petersen et al. (2015) e Kitchenham et al.
(2010), conforme ilustrado na Figura 2.1. Esse processo foi estruturado em duas etapas
principais: planejamento e execução.

Na fase de planejamento, foram definidas as seguintes questões de pesquisa: (1) Quais
estudos abordam diretamente ou indiretamente o uso de coeficientes de ponderação na
modelagem de relacionamentos entre coleções em bancos de dados NoSQL? (2) Quais
métricas ou abordagens quantitativas são utilizadas para comparar o desempenho entre
modelos de dados referenciados e aninhados? (3) Em quais contextos metodológicos
(avaliação de desempenho, transformação de esquemas, análise estrutural, etc.) ocorrem
essas comparações?

Com base nessas perguntas, elaborou-se uma cadeia de busca combinando os termos
“NoSQL”, “document database”, “embedding”, “referencing”, “nested model”, “perfor-
mance”, “join”, “query optimization”, “data modeling” e “weight coefficient”. A expressão
genérica utilizada foi:

((NoSQL AND “document database” AND embedding OR referencing OR “nested
model”)) AND (performance OR join OR “weight coefficient” OR “data modeling”)

Esse protocolo permitiu identificar uma lacuna significativa na literatura sobre com-
paração quantitativa entre modelos de dados em bancos NoSQL. Embora existam alguns
trabalhos relacionados, como os de (Shah et al., 2022), (Gómez et al., 2021), (la Vega
et al., 2020), (Hewasinghage et al., 2021) e (Kuszera et al., 2020), o estudo sobre a com-
paração quantitativa entre modelos de dados referenciados e aninhados permanece em
grande parte incipiente. Um dos poucos estudos que aborda diretamente esse tema é o
de Vera-Olivera et al. (2023), que propôs um índice de comparação para a recuperação
de dados envolvendo esses tipos de relacionamentos.

O trabalho de Shah et al. (2022) propôs esquemas alternativos utilizando padrões
específicos de estruturação em bancos de dados orientados a documentos. Eles realizaram
uma análise detalhada sobre os critérios de armazenamento e o desempenho de consultas
com e sem indexação, além de examinar operações de junção em nível de aplicação.
Embora tenham contribuído para a otimização de consultas, o estudo não aborda a criação
de um índice comparativo entre os diferentes modelos de dados.

Em um estudo paralelo, Gómez et al. (2021) desenvolveram o projeto SCORUS, que
utiliza automação para gerar alternativas de estruturas e avaliar métricas estruturais em
bancos de dados. Sua contribuição está na análise da complexidade estrutural, mas a
comparação de desempenho entre abordagens de modelagem referenciada e aninhada não
foi o foco principal de sua pesquisa.

13

Outro exemplo relevante é o trabalho de la Vega et al. (2020), que apresentaram o
Mortadelo, um processo automatizado para a geração de bancos de dados NoSQL a partir
de modelos conceituais. Embora o Mortadelo permita a criação de implementações auto-
máticas, a avaliação do sistema não inclui métricas específicas para comparar a eficiência
de diferentes esquemas de dados.

No estudo de Hewasinghage et al. (2021), os autores discutem a falta de frameworks
padronizados para a otimização de dados e consultas em bancos de dados NoSQL. Em-
bora tenham proposto um modelo de custo genérico para armazenamento e consulta,
sua pesquisa não aborda diretamente a comparação entre modelos de dados aninhados e
referenciados.

Em contraste, o trabalho de Vera-Olivera et al. (2023) representa uma das abordagens
mais próximas da análise de coeficientes de ponderação, ao desenvolver um índice de
comparação de desempenho entre modelos referenciados e aninhados em bancos de dados
NoSQL orientados a documentos. Nesse estudo, foi introduzido o conceito do Índice de
Desempenho (InD), uma métrica projetada para medir a eficiência relativa desses modelos
sob diferentes configurações e cargas de trabalho.

Os resultados obtidos por Vera-Olivera et al. (2023) indicaram que, em média, o acesso
a documentos aninhados é 2,20 vezes mais rápido com cache ativado e 1,74 vezes mais
rápido com cache desativado no modo replica set. No modo standalone, o desempenho foi
1,70 vezes superior com cache ativado e 1,24 vezes sem cache. Esses resultados foram ob-
tidos a partir de modelos sintéticos validados com datasets reais, oferecendo uma métrica
prática para orientar decisões no design de esquemas de bancos de dados NoSQL.

2.3 Métricas de Avaliação

De forma similar, foi aplicado um protocolo de mapeamento sistemático para avaliar as
métricas utilizadas na análise de esquemas em bancos de dados NoSQL orientados a docu-
mentos. O objetivo foi mapear o estado da arte e identificar as abordagens existentes que
propõem indicadores quantitativos para comparar esquemas sob diferentes aspectos fun-
cionais e estruturais. A aplicação rigorosa deste protocolo permitiu também estabelecer
conexões diretas entre essas métricas e fatores de ponderação que influenciam a eficácia
de um esquema.

Foram definidas as seguintes questões de pesquisa para orientar o levantamento: (1)
Quais métricas têm sido propostas para avaliar esquemas em bancos de dados NoSQL
orientados a documentos? (2) Quais aspectos dos esquemas são considerados por essas
métricas (ex.: estrutura, desempenho de consulta, redundância, completude)? (3) Que
abordagens metodológicas são utilizadas para validar ou aplicar essas métricas na prática?

14

A estratégia de busca foi construída com base nessas questões, integrando termos
técnicos relacionados aos objetivos do mapeamento. A string de busca genérica utilizada
foi:

NoSQL AND “document database” AND “schema evaluation” AND (metric OR per-
formance OR structure OR completeness OR redundancy OR “query pattern” OR “access
cost”)

Os trabalhos de (Kuszera et al., 2020), (Gómez et al., 2021) e (Vera-Olivera & Ho-
landa, 2024) estabeleceram bases importantes nesta área, embora apresentem abordagens
distintas e limitações específicas.

O estudo de Kuszera et al. (2020) concentra-se na avaliação de esquemas com base
na capacidade de responder a consultas predefinidas. Utilizam grafos acíclicos dirigidos
para modelar as consultas e os esquemas no formato JSON, avaliando caminhos e subcami-
nhos para determinar a cobertura das consultas. A métrica proposta atribui pontuações
aos esquemas com base em sua capacidade de suportar as consultas, mas não aborda
aspectos estruturais dos esquemas nem considera atributos complexos ou relacionamentos
aninhados. Essa limitação deixa uma lacuna na análise integral dos esquemas.

Por outro lado, o trabalho de Gómez et al. (2021) adota uma abordagem estrutural,
avaliando a qualidade do esquema em termos de consumo de memória, redundância e
custo de navegação. Utilizam diagramas UML para gerar esquemas potenciais no formato
JSON e avaliam sua complexidade por meio de métricas como profundidade e amplitude
dos documentos, bem como taxas de referência. No entanto, este estudo não leva em
consideração a capacidade do esquema para responder a consultas específicas, o que limita
sua aplicabilidade em contextos onde as consultas são um fator crítico.

O trabalho de Vera-Olivera and Holanda (2024), aborda essas limitações ao propor um
modelo de avaliação integral. São introduzidas quatro métricas principais: completude,
padrão de acesso, custo de recuperação e redundância. Essas métricas consideram tanto
a estrutura do esquema quanto a capacidade de responder a consultas específicas. Além
disso, o modelo permite a avaliação simultânea de múltiplos esquemas e emprega coefi-
cientes de ponderação para refletir a influência relativa de atributos e relacionamentos,
tanto referenciados quanto aninhados.

Nos estudos de caso apresentados por Vera-Olivera and Holanda (2024), a proposta
é validada ao demonstrar que os esquemas mais complexos tendem a obter pontuações
mais altas, enquanto os esquemas mais simples apresentam pontuações mais baixas. Isso
evidencia a capacidade do modelo para capturar a complexidade estrutural e a adequação
funcional dos esquemas, proporcionando uma solução mais holística em comparação com
as abordagens anteriores.

15

2.4 Geração de Esquemas

De forma consistente com as seções anteriores, a análise sobre geração automatizada de
esquemas para bancos de dados NoSQL adota a mesma metodologia de Revisão Sistemática
da Literatura detalhada na Figura 2.1. As seguintes questões de pesquisa foram definidas
para guiar a análise: (1) Quais métodos têm sido propostos para a geração automática
de esquemas em bancos de dados NoSQL? (2) Quais técnicas são utilizadas para adaptar
os esquemas às cargas de trabalho e padrões de acesso? (3) Quais são os critérios ou
métricas utilizadas para validar ou comparar esses métodos? A string de busca aplicada
combinou termos relacionados aos objetivos do estudo, estruturada da seguinte forma:

(NoSQL AND “schema generation” OR “automatic design”) AND (‘workload-driven
OR “schema optimization” OR “document database” OR “heuristic algorithm”)

O desenho automatizado de esquemas em bancos de dados NoSQL tem sido ampla-
mente estudado para otimizar o desempenho em sistemas que lidam com grandes volumes
de dados distribuídos. Diversas abordagens têm tratado dos desafios específicos desses
ambientes, destacando metodologias para bancos de dados orientados a documentos e
baseados em colunas amplas.

Mozaffari and Nazemi (2023) propõem uma abordagem para bancos de dados NoSQL
baseados em colunas amplas, utilizando um algoritmo “workload-driven” que analisa pa-
drões de acesso de leitura e escrita. Seu método emprega técnicas como desnormalização,
normalização parcial e fusão de tabelas, adaptando dinamicamente os esquemas em res-
posta a mudanças nas cargas de trabalho. Esta proposta melhora a eficiência em consultas
e reduz custos de armazenamento, estabelecendo bases aplicáveis também a bancos de da-
dos orientados a documentos devido às suas estruturas flexíveis.

Em um contexto diferente, A. A. Imam et al. (2020) introduzem o modelo Dyna-
mic Schema Proposition (DSP) focado em bancos de dados NoSQL. Sua estratégia utiliza
programação inteira binária e novas notações de cardinalidade para gerar esquemas otimi-
zados, priorizando eficiência em operações CRUD. Embora o DSP se destaque em sistemas
com dados estáticos e padrões previsíveis, sua abordagem determinística pode limitar a
adaptabilidade a ambientes dinâmicos em comparação com algoritmos heurísticos.

A. A. Imam et al. (2018) desenvolvem algoritmos heurísticos para bancos de dados
orientados a documentos, considerando parâmetros como operações CRUD, consistência,
disponibilidade e segurança. Sua metodologia gera esquemas iniciais equilibrados entre
relações incorporadas e referenciadas, otimizando escalabilidade e eficiência operacional.

Bansal et al. (2023) apresentam um modelo automatizado para bancos de dados ori-
entados a documentos, como MongoDB, baseado em cargas de trabalho. Sua abordagem
transforma esquemas conceituais em representações físicas otimizadas por meio de gráficos
de consulta e etiquetas, melhorando o desempenho e simplificando a administração de da-

16

dos. Este modelo prioriza a eficiência prática em relação aos algoritmos metaheurísticos,
tornando-o ideal para implementações rápidas.

Finalmente, Abdelhedi et al. (2021) desenvolvem o método ToNoSQLSchema, baseado
na Arquitetura Dirigida por Modelos (MDA). Seu processo utiliza transformações formais
em QVT (Query/View/Transformation) para extrair esquemas estruturados de bancos
de dados orientados a documentos sem esquema predefinido. Aplicado em contextos
médicos e jurídicos, essa abordagem se destaca por sua precisão e flexibilidade, facilitando
a consulta e gestão de dados complexos.

2.5 Considerações Finais

Este capítulo evidenciou que a modelagem de bancos de dados NoSQL ainda é um campo
em evolução, marcado pela predominância dos níveis conceitual e lógico sobre o físico,
com ampla utilização de modelos UML e ER adaptados. Os processos de modelagem es-
tão acontecendo sobre contextos como otimização de desempenho, migração de dados e
automação de esquemas.

Sobre comparação de desempenho entre relacionamentos referenciados e aninhados, es-
pecificamente no custo de recuperação de dados, a literatura indica que os relacionamentos
aninhados apresentam melhor eficiência. Contudo, não há evidências quantitativas que
demonstrem a magnitude dessa vantagem em relação aos relacionamentos referenciados.
A determinação dessa diferença de desempenho poderia embasar o desenvolvimento de
métricas para avaliação de esquemas, contribuindo para decisões mais fundamentadas no
projeto de banco de dados.

No que diz respeito a métricas, a literatura demonstra que alguns trabalhos dedicam-se
exclusivamente a análise de consultas, enquanto outros focam na estrutura do esquema,
sem abordar ambos os aspectos de forma integrada. Além disso, atributos simples e
complexos não são adequadamente explorados nos estudos existentes. Por fim, verifica-se
que soluções para um determinado problema podem envolver um ou múltiplos esquemas,
uma abordagem que ainda não foi suficientemente investigada em pesquisas anteriores.

A Tabela 2.4 resume a classificação dos trabalhos analisados sobre otimização de ban-
cos de dados orientados a documentos, organizados em três categorias principais: desenho
de esquemas, otimização de esquemas e abordagens híbridas (desenho-otimização). A li-
teratura revela que as abordagens mais recorrentes concentram-se na análise de operações
CRUD para refinar a estrutura de esquemas em níveis lógico e físico. No entanto, essa meto-
dologia mostra-se limitada para explorar o espaço de soluções possíveis, impossibilitando a
identificação de esquemas ótimos para um cenário determinado. Embora existam propos-
tas baseadas em modelos determinísticos e heurísticos, estas frequentemente negligenciam

17

métricas críticas que avaliam simultaneamente a qualidade estrutural dos esquemas e seu
desempenho em nível lógico. Adicionalmente, há uma lacuna prática relevante: a maioria
dos usuários (como desenvolvedores de aplicações) não possui conhecimento especializado
sobre otimizações em nível físico (ex.: armazenamento, indexação). Consequentemente,
suas intervenções restringem-se ao nível lógico, onde alterações são viáveis sem compre-
ensão profunda da implementação física.

Tabela 2.4: Visão geral das propostas existentes para otimizar esquemas.
Trabalho Enfoque Entrada Métricas Baseado em

Algoritmo
baseado em

Chen et al., 2022 desenho/otimização UML, frequência consultas custo consulta, armazenamento workload-driven regras

Reniers et al., 2020 desenho/otimização
ER, operações join,
frequência consultas

custo consulta, armazenamento
indices, frequência acesso

workload-driven regras

De Lima and dos Santos Mello, 2015 desenho/otimização
EER, frequência consultas
e volume

frequência acesso, volume dados workload-driven regras

la Vega et al., 2020 desenho
ER, UML,
frequência consultas

— model-driven regras

Hewasinghage et al., 2020 otimização Modelos, frequência consultas
custo armazenamento,
custo consulta

cost-based regras

Roy-Hubara et al., 2023 desenho UML, requisitos funcionais tempo consultas requisitos regras

Kuszera et al., 2022 otimização
modelo relacional, frequência
consultas, espaço disco

tempo consultas, espaço em disco
redundância

workload-driven regras

Hewasinghage et al., 2023 otimização
objetivos otimização,
frequência consultas

custo consultas, espaço em disco
profundidade documentos

workload-driven meta-heurística

Proposta atual otimização consultas, esquemas
completude, padrão acesso
e redundância

— meta-heurística

18

Capítulo 3

Visualização de Esquemas

Desde que o trabalho aborda o desenho de esquemas em bancos de dados NoSQL orientados
a documentos, é necessário contar com uma ferramenta que permita visualizar correta-
mente um esquema, incluindo suas coleções, atributos, relacionamentos e suas cardinali-
dades. Assim, este capítulo introduz a notação gráfica para a visualização de esquemas
de banco de dados, proporcionando uma representação das estruturas e interconexões
presentes nos esquemas definida em (Vera et al., 2015).

3.1 Notação Gráfica

Na metodologia clássica de banco de dados, existem métodos de desenho de esquemas
bem estabelecidos, como os diagramas ER e os diagramas UML, que permitem modelar a
estrutura e as relações dos dados de forma clara e padronizada. Essas ferramentas têm sido
amplamente adotadas e são consideradas essenciais no desenho de sistemas relacionais,
facilitando a compreensão das estruturas e dependências dos dados.

Por outro lado, no contexto dos bancos de dados NoSQL orientados a documentos,
essas ferramentas não estão bem definidas nem padronizadas. Bancos de dados NoSQL,
como MongoDB e CouchDB, geralmente representam dados nos formatos JSON (JavaScript
Object Notation), organizados em pares de chave-valor. Este formato permite uma grande
flexibilidade e suportam dados heterogêneos sem a necessidade de esquemas rígidos. Con-
tudo, esses formatos não facilitam a visualização das relações entre documentos, nem das
cardinalidades, e tampouco diferenciam de forma clara entre atributos simples e comple-
xos. Isso limita a compreensão do esquema e torna o desenho de sistemas NoSQL mais
desafiador.

Na Figura 3.1, identificam-se principalmente duas coleções: “emprego” e categorias
de pessoas como “adulto” e “crianca”. Contudo, as cardinalidades entre essas coleções
não são de fácil interpretação, e embora a relação seja estabelecida por aninhamento,

19

torna-se desafiador distinguir precisamente onde começa e termina cada coleção. Além
dessas, observam-se outras possíveis coleções, como “emprego_deteccao_pessoas”, mas
não se sabe com exatidão se estas foram intencionalmente projetadas como coleções pelos
modeladores de banco de dados. Adicionalmente, há a presença de atributos simples
e complexos que também são pouco distinguíveis em meio ao código JSON da figura,
dificultando a identificação clara da estrutura e dos tipos de dados. Essa falta de clareza
na representação compromete a compreensão da organização dos dados e das relações
entre as entidades envolvidas.

{
 "emprego": {
 "emprego_deteccao_pessoas": {
 "conteudo": {
 "categorias": {
 "adulto": {
 "criancas": [],
 "nome": "adulto",
 "color": "#733AFB",
 "id": "categoria47"
 },
 "crianca": {
 "criancas": [],
 "nome": "crianca",
 "color": "#8274c9",
 "id": "categoria48"
 }
 },
 "entrada": "radio"
 },
 "instrucao": "pessoas",
 "ehcrianca": false,
 "ferramentas": ["semantica"]
 }
 }
}

Figura 3.1: Exemplo esquema em formato JSON.

Diante dessa limitação, usamos uma notação gráfica de esquemas especificamente vol-
tada para bancos de dados NoSQL orientados a documentos. Essa notação baseia-se em
princípios de modelagem lógica do UML, introduzindo uma representação gráfica que fa-
cilita a visualização das relações, cardinalidades e tipos de atributos. Ao propor uma
notação padrão de visualização, o estudo visa simplificar a interpretação dos dados e
fornecer uma base visual que auxilie administradores e desenvolvedores na construção e

20

manutenção desses sistemas. Nesta notação, são abordados aspectos como a representação
de coleções, relacionamentos (referenciados ou aninhados), atributos simples e complexos
e cardinalidades.

3.1.1 Representação de coleções e atributos

Uma coleção corresponde a um agrupamento lógico de documentos, onde cada registro
pode possuir uma estrutura distinta, atuando como um contêiner flexível para dados rela-
cionados. Essa organização é visualizada na Figura 3.2, que exemplifica como documentos
heterogêneos são agrupados em uma mesma coleção.

coleção
_id

Figura 3.2: Notação gráfica para representar coleções.

Os atributos de um documento podem ser classificados em simples e complexos. Atri-
butos simples armazenam valores atômicos, como números, strings ou datas, sendo re-
presentados diretamente no documento, sem a necessidade de estrutura adicional. Já os
atributos complexos contêm coleções de dados ou outras estruturas, como vetores ou ob-
jetos aninhados, permitindo a representação de informações hierárquicas. Na Figura 3.3,
os atributos simples e complexos são representados utilizando a notação chave-valor, na
qual a chave corresponde ao nome do atributo e o valor indica o tipo de dado. Os atribu-
tos simples são apresentados diretamente, com o tipo de dado especificado (por exemplo,
string, número, data, etc.). Por sua vez, os atributos complexos são identificados pela
notação entre colchetes “[]”, podendo ser vetores ou objetos (estruturas compostas por
pares chave-valor aninhados). Essa notação visa fornecer uma visualização clara dos
dados, facilitando a compreensão das relações e hierarquias entre os atributos em cada
documento.

3.1.2 Relacionamentos e cardinalidades

Em bancos de dados NoSQL orientados a documentos, as relações entre coleções podem
ser configuradas de duas formas: por referência ou por aninhamento. A Figura 3.4 apre-
senta o relacionamento por referência entre seis coleções. Na proposta, as referências são
representadas por uma linha simples, e a direção da referência é indicado pelo _id do
documento referenciado dentro da coleção que faz a referência. Entre a linha simples é

21

 _id

 atr1 : string,

 atr2 : int,

 atr3 : double,

 atr4 : [array],
 atr5 : [obj],

 ...

 atrN: bool

coleção

Figura 3.3: Notação gráfica para representar atributos nas coleções.

mostrado o tipo de cardinalidade entre duas coleções podendo tomar valores entre: 1..1,
1..N e N..M. A interpretação correta da notação é a seguinte: “A Coleção B referencia
Coleção A com cardinalidade 1..1”, ou ainda, “A Coleção C referencia Coleção D com
cardinalidade 1..N” e “As coleções E e F referenciam-se mutuamente, apresentando uma
cardinalidade de N..M”.

 _idA

BA

1..1

D

 _idD

C

1..N

F

_idE _idF

E

N..M

Figura 3.4: Notação gráfica de relacionamentos por referência.

Da mesma forma, a Figura 3.5 ilustra as relações por aninhamento entre duas cole-
ções. Nesta figura, observa-se que a Coleção B está aninhada dentro da Coleção A, com
uma cardinalidade de 1..1, conforme indicado no canto superior direito da Coleção B. A
interpretação correta da notação é a seguinte: “A Coleção A aninha a Coleção B com
cardinalidade 1..1”.

A

B
1..1

C

D
1..N

E

F
N..M

Figura 3.5: Notação gráfica de relacionamentos por aninhamento.

22

Um exemplo da aplicação da notação gráfica é apresentado na Figura 3.6, utilizando
o dataset do ENEM (Exame Nacional do Ensino Médio) do ano 2021 como estudo de
caso. O ENEM é uma avaliação educacional aplicada anualmente pelo INEP, vinculado ao
MEC, que tem como objetivo avaliar o desempenho dos estudantes do ensino médio em
diferentes áreas do conhecimento e verificar a proficiência em redação. Os dados contidos
no dataset são relativos a: dados da escola, dados do questionário socioeconômico e dados
da prova. Na Figura 3.6 são apresentadas duas coleções: “ALUNO” e “PROVA”, ambas
com atributos simples. A coleção “ALUNO” está relacionada à coleção “PROVA” por
meio de um relacionamento por referencia, com cardinalidade 1..1.

1..1

ALUNO

PROVA
_id:object,

 CO_UF_PROVA:string,

 SG_UF_PROVA:string,

 TX_RESPOSTAS_CN:string

 TX_RESPOSTAS_CH:string

 TX_RESPOSTAS_LC:string

 TX_RESPOSTAS_MT:string

...

 TX_GABARITO_CN:string,

 TX_GABARITO_CH:string,

 TX_GABARITO_LC:string,

 TX_GABARITO_MT:string

_id:object,

 TP_SEXO:string,

 SG_UF_ESC:string,

 Q001:string,

 Q002:string,

 Q003:string,

 Q004:string,

 Q006:string,

 Q007:string,

 ...

 Q020:string,

 Q021:string,

 Q022:string,

 Q023:string,

 Q024:string,

 Q025:string,

 id_prova

Figura 3.6: Notação gráfica aplicada ao dataset ENEM.

Outro exemplo de aplicação da notação gráfica é apresentada na Figura 3.7. Nesta
figura apresenta-se um sistema de software para revistas científicas. Neste desenho de
esquema, é possível identificar claramente quatro coleções: Author, Article, Comments
e Journal. Além disso, observa-se que existe um único atributo complexo, denominado
idAuthors, na coleção Article. Também é evidente como as quatro coleções estão relacio-
nadas entre si por meio de duas relações por referência e uma por aninhamento, com suas
respectivas cardinalidades claramente definidas.

23

 _id : ObjectId
 name: string
 affiliation : string
 email : string

Author

1..N

Article

 _id : ObjectId
 title : string
 idAuthors : [array]

Journal

 _id : ObjectId
 title : string
 ISSN : string

1..1
 _id : ObjectId
 comment : string
 idArticle : ObjectId

Comments

N..M

Figura 3.7: Notação gráfica aplicada a um sistema de software para revistas científicas.

3.2 Considerações Finais

A modelagem de dados é um elemento essencial no desenvolvimento de sistemas de in-
formação, pois fornece uma estrutura organizada para armazenar, gerenciar e recuperar
dados de forma eficiente (Simsion & Witt, 2004). Assim como um mapa ou diagrama faci-
lita a compreensão de um território complexo, a modelagem permite visualizar e entender
o problema mediante representações gráficas que mostram entidades, relacionamentos e
regras de negócio de maneira clara e não ambígua. No entanto, em bancos de dados
NoSQL, onde não há um padrão de modelagem aceito pela comunidade acadêmica e em-
presaria, os usuários frequentemente adotam estruturas flexíveis como documentos JSON
ou XML sem uma abordagem sistemática, o que pode comprometer os princípios da mo-
delagem ao não visualizar adequadamente o contexto do problema, os relacionamentos
entre coleções, as cardinalidades ou os tipos de atributos. Essa falta de estrutura pode
levar a redundâncias, inconsistências e dificuldades para manter a integridade dos dados
em cenários complexos. A notação gráfica deste capítulo aborda essas lacunas na etapa
de modelagem lógica, oferecendo uma metodologia que torna explícitos os relacionamen-
tos e restrições entre coleções mesmo em bancos NoSQL, facilita a compreensão visual
do problema mediante diagramas adaptados a modelos não relacionais, e define limites
claros para o domínio dos dados, evitando armazenamento desorganizado ou semântica
ambígua. Dessa forma, mesmo em ambientes flexíveis, é possível alcançar a clareza dos
modelos relacionais tradicionais, garantindo que a qualidade dos dados não seja sacri-
ficada pela ausência de esquemas rígidos. Diferentemente da nossa notação proposta,
que prioriza a padronização visual e a clareza estrutural, De Lima and dos Santos Mello
(2015) concentram-se na eficiência de acesso e no ajuste dos esquemas conforme a carga
de trabalho da aplicação. Assim, enquanto nossa proposta fornece uma notação orientada
à compreensão e documentação, De Lima and dos Santos Mello (2015) entregam uma

24

modelagem voltada à otimização operacional, embora ambas as contribuições avancem
significativamente no desenvolvimento de notações especializadas para ambientes NoSQL.
A notação gráfica apresentada neste capítulo é adotada como padrão nos demais capítulos
deste trabalho.

25

Capítulo 4

Coeficientes de Ponderação

Este capítulo descreve a obtenção de coeficientes de ponderação para relacionamentos
de referência e aninhamento, aplicando modelos de regressão múltipla a bases de dados
sintéticas em cenários distribuídos e centralizados. Este capítulo estrutura-se em sete
seções: na Seção 4.1 contextualização da obtenção dos coeficientes de ponderação; na
Seção 4.2 é descrito o ambiente experimental; na Seção 4.3 é caracterizado o banco de
dados sintético gerado; na Seção 4.4 a metodologia de geração dos datasets é apresentado;
na Seção 4.5 é especificado os modelos de regressão múltipla empregados; na Seção 4.6
é apresentado o processo de obtenção dos coeficientes de ponderação; e na Seção 4.8 o
cenário de validação adotado é mostrado.

4.1 Contextualização

Em bancos de dados NoSQL orientados a documentos, os relacionamentos entre coleções
e, por extensão, as estratégias de recuperação de dados manifestam-se de duas formas
principais: por referência ou por aninhamento. Embora se reconheça que o acesso a
informações em estruturas aninhadas tende a ser mais ágil, ainda não se comprovaram,
de forma quantitativa, os ganhos de desempenho em relação às coleções referenciadas. Por
isso, torna-se essencial definir coeficientes de ponderação que representem adequadamente
cada tipo de vínculo, permitindo avaliar com maior precisão o impacto dessas escolhas no
tempo de resposta do sistema.

O processo metodológico aplicado para a determinação dos coeficientes é mostrado
na Figura 4.1 e consiste em quatro etapas. Na primeira etapa, foram criados bancos de
dados sintéticos nos modos centralizados e distribuídos em diferentes equipamentos de
computação. Em seguida, conjuntos de dados foram gerados a partir de consultas feitas
nos bancos de dados. Na etapa seguinte, construímos modelos de regressão múltipla a
partir dos conjuntos de dados. Finalmente, na quarta etapa, obtivemos coeficientes de

26

ponderação associados aos documentos referenciados e aninhados usando os modelos de
regressão múltipla.

Obtenção de coeficientes
de ponderação

Obtenção dos modelos
de regressão múltipla (RM)

Geração de
datasets

Criação de
 banco de dados

Centralizado

Distribuido

Datasets
centralizado

Centralizado RM
Centralizado

Datasets
distribuido

Distribuido RM

Distribuido

Figura 4.1: Processo metodológico para obtenção de coeficientes de ponderação.

4.2 Ambiente Experimental

O ambiente experimental consistiu em uma infraestrutura híbrida, compreendendo equi-
pamentos físicos e instâncias virtuais em nuvem. A configuração detalhada dos recursos
computacionais está apresentada na Tabela 4.1, enquanto os principais aspectos são dis-
cutidos a seguir.

Tabela 4.1: Equipamentos computacionais físicos e na nuvem utilizados.
Equipamento CPU RAM Armazenamento S.O. Tipo Quantidade

Eq1 Intel Xeon 32 núcleos 128 GB HDD 1,82 TB Ubuntu 22.04 físico 1
Eq2 Intel Core i7 16 núcleos 16 GB HDD 500 GB Ubuntu 22.04 físico 3
Eq3 Intel Cascade Lake 2 núcleos 4 GB HDD 250 GB Ubuntu 20.04 nuvem 3

No ambiente físico, foi empregado um servidor identificado como Eq1, com as seguintes
características: CPU Intel Xeon de 32 núcleos, 128 GB de RAM, e armazenamento HDD
de 1,82 TB, rodando o sistema operacional Ubuntu 22.04. Além disso, foram utilizadas
três estações de trabalho, identificadas como Eq2, cada uma equipada com um processador
Intel Core i7 de 16 núcleos, 16 GB de memória RAM e armazenamento HDD de 500 GB,
também com sistema operacional Ubuntu 22.04.

Por outro lado, no ambiente virtual, foram utilizados três equipamentos na nuvem,
identificados como Eq3. Cada um deles possui processador Intel Cascade Lake de dois
núcleos, 4 GB de memória RAM e armazenamento HDD de 250 GB. Esses equipamentos
operam com o sistema operacional Ubuntu 22.04 e foram implementados na plataforma
Google Cloud, permitindo a execução de experimentos em ambientes distribuídos.

27

4.2.1 Arquitetura de Implantação

As arquiteturas de implantação utilizadas neste capítulo foram baseadas nas configurações
centralizadas (standalone) e distribuídas (replica set) do MongoDB, com o objetivo de
avaliar o desempenho em diferentes cenários operacionais. No modo centralizado (Figura
4.2), o banco de dados é configurado em uma única instância, centralizando todas as
operações de leitura e escrita em um único nó, o que permite uma análise controlada do
impacto das consultas sobre os recursos físicos disponíveis. Já no modo distribuído (Figura
4.3), o MongoDB foi configurado para operar em um ambiente distribuído, composto por
um nó primário e dois nós secundários. Essa configuração habilita a replicação de dados,
melhorando a resiliência e a disponibilidade do sistema, além de permitir a execução de
leituras em nós secundários para reduzir a carga no nó primário.

Instância MongoDBCliente

escrita
leitura

Figura 4.2: Arquitetura centralizada

Primário

Secundário Secundário

 replicação replicação

Cliente

escrita
leitura

Instâncias MongoDB

Figura 4.3: Arquitetura distribuída.

O sistema de banco de dados usado foi o MongoDB 6.0 com as configurações padrões
de instalação. Em particular, as funcionalidades read concern e write concern foram exe-
cutadas com suas configurações padrão, sendo “local” para read concern e “acknowledge”
para write concern. Adicionalmente, o modo de preferência de leitura (read preference
mode) foi estabelecido com a configuração padrão “primary”.

28

Finalmente, no equipamento Eq1, foram implementadas as arquiteturas centralizada e
distribuída. Para a arquitetura distribuída, especificamente, foi utilizado o Docker na ver-
são 23.0 para virtualizar três instâncias do MongoDB, configuradas de forma a simular um
ambiente distribuído. Adicionalmente, a arquitetura distribuída também foi implemen-
tada nos equipamentos Eq2 e Eq3, garantindo a avaliação do desempenho em diferentes
configurações físicas e virtuais.

A Tabela 4.2 apresenta um resumo detalhado da distribuição das arquiteturas imple-
mentadas nos diferentes equipamentos utilizados durante os experimentos.

Tabela 4.2: Distribuição das arquiteturas implementadas.
Equipamento Centralizado Distribuído

Eq1 X X
Eq2 X
Eq3 X

4.3 Banco de Dados Sintético

Nesta subseção, será apresentado o processo de desenvolvimento do banco de dados sinté-
tico, criado com o objetivo de possibilitar a execução de consultas específicas voltadas à
análise de desempenho. A Figura 4.4 apresenta o esquema do banco de dados baseado em
referência, enquanto a Figura 4.5 ilustra o esquema aninhado. Para isso, foram desenvol-
vidos dois esquemas distintos envolvendo duas coleções, denominadas A e B. No primeiro
esquema, as duas coleções estão relacionadas por referência, indicada na coleção A pelo
atributo b_Id. Essa relação apresenta uma cardinalidade de 1 para 1, garantindo que
cada documento na coleção A esteja associado a exatamente um documento na coleção B.
Por outro lado, no segundo esquema, foi implementado um esquema aninhado em que a
coleção A contém a coleção B como um documento aninhado, também com cardinalidade
de 1 para 1.

 _id,
 a1,
 a2,
 a3,
 ...
 a50,
 b_Id

A
 _id,
 b1,
 b2,
 b3,
 ...
 b50

B

1..1

Figura 4.4: Esquema com coleções referenciadas.

29

A

 _id,
 a1,
 a2,
 ...
 a50

B

 _id,
 b1,
 b2,
 ...
 b50

1..1

Figura 4.5: Esquema com coleções aninhadas.

Ambas coleções possuem um identificador único no atributo _id, e os demais atributos
das coleções foram gerados de forma aleatória, com valores do tipo string e comprimento
variando entre 10 e 50 caracteres. Esses atributos foram projetados para simular cenários
reais de consulta.

Os dois esquemas foram implementados nas arquiteturas centralizada e distribuída,
utilizando os equipamentos descritos na Tabela 4.1, conforme a distribuição apresentada
na Tabela 4.2. Como apresentado o equipamento Eq1 foi utilizado de modo centralizado
e distribuído e os equipamentos Eq2 e Eq3 de forma distribuído. Esses esquemas foram
configurados no banco de dados MongoDB 6.0 e populados com 10 milhões de documentos.

4.4 Datasets

Para realizar uma avaliação abrangente e comparável do desempenho de bancos de dados
NoSQL, é fundamental dispor de um conjunto de dados que generalize comportamentos
típicos desses sistemas. O uso de datasets reais, embora possa refletir cenários específicos,
geralmente está vinculado a aplicações particulares e limita a possibilidade de replicar
experimentos em diferentes contextos. Por esse motivo, optou-se pela construção de um
dataset baseado no banco de dados sintético, cuidadosamente projetado para abstrair
padrões de uso comuns e representar estruturas e operações genéricas encontradas em
bancos de dados NoSQL.

Os datasets foram criados com base no banco de dados sintético previamente imple-
mentado, considerando os dois esquemas de dados (referenciado e aninhado) e os cenários
de configuração centralizado e distribuído. Essa abordagem foi essencial para garantir a
coleta de dados estruturados e consistentes, permitindo uma análise detalhada do desem-
penho das consultas em diversas configurações e topologias.

30

Eq2

Eq1

Eq3

Distribuido

Centralizado

Distribuido

Distribuido

Aninhado

Referenciado

Com
cache

Sem
cache

Equipamentos Modos
Configuração Esquemas MongoDB

Cache

Figura 4.6: Processo de geração dos 16 datasets.

Para cada consulta, foram definidos múltiplos cenários de consultas, começando com
200.000 documentos e aumentando progressivamente até 5 milhões. Em cada cenário, o
número de atributos por documento variou de 5 a 50, permitindo avaliar como a quan-
tidade de informações impacta o desempenho das consultas. A consulta preparada para
os experimentos, denominada Q1, foi projetada para recuperar a mesma quantidade de
atributos dos documentos A e B.

Código 4.1: Consulta Q1 implementada no esquema referenciado e aninhado

Modelo Referenciado
consu l ta = [

{ ' $ l i m i t ' : n} , # Limitar a quant idade de documentos a ob t e r
.

{ ' $sample ' : { ' s i z e ' : n}} , # Obter n documentos a l e a t o r i o s
da co l ecao A

{
' $lookup ' : {

' from ' : 'B ' ,
' l o c a l F i e l d ' : ' id_B ' ,
' f o r e i g n F i e l d ' : ' _id ' ,
' as ' : ' documentosB '

}
} ,
{

31

' $p r o j e c t ' : {
' _id ' : 1 , # I n c l u i r o campo _id da co l ecao A
∗∗ proyeccion_a , # Se l e c i onar os a t r i b u t o s de A de

forma dinamica
' documentosB ' : {

' _id ' : ' $documentosB . _id ' , # I n c l u i r o campo
_id da co l ecao B

∗∗ proyeccion_b # Se l e c i onar os a t r i b u t o s de B
de forma dinamica

}
}

}
]

Modelo Aninhado
consu l ta = [

{ ' $ l i m i t ' : n} ,
{ ' $sample ' : { ' s i z e ' : n}} ,
{ ' $p ro j e c t ' : {

' _id ' : 1 , # I n c l u i r o _id de A
∗∗{ f ' a{ i } ' : f ' $a{ i } ' for i in range (1 , x+1)} ,
'B ' : {

' _id ' : '$B . _id ' ,
∗∗{ f 'b{ i } ' : f '$B . b{ i } ' for i in range (1 , y+1)}

}
}}

]

No modelo referenciado, a consulta Q1 foi implementada utilizando o pipeline de agre-
gação do MongoDB, um framework para processamento de dados que transforma documen-
tos por meio de uma sequência de operações. Especificamente, empregou-se o método
aggregate com três estágios principais: (1) lookup, que realiza junções entre coleções; (2)
project, que seleciona campos específicos; e (3) limit, que restringe o número de docu-
mentos retornados. No modelo aninhado, a mesma consulta Q1 pode ser simplificada
para apenas os estágios project e limit, aproveitando a estrutura dos documentos aninha-
dos que já incorporam os relacionamentos. Ambas implementações foram executadas nas
arquiteturas centralizada e distribuída, utilizando a infraestrutura descrita na Tabela 4.1.

Para assegurar uma análise abrangente, as consultas foram executadas com e sem o

32

cache do MongoDB. O processo de geração dos datasets, ilustrado na Figura 4.6, resultou em
dados cuja estrutura, apresentada na Tabela 4.3, é composta por três colunas principais:

• Número documentos: representa a quantidade de documentos recuperados por con-
sulta;

• Número atributos: indica a quantidade de atributos por documento incluídos no
resultado;

• Tempo resposta: registra o tempo necessário para executar cada consulta

Tabela 4.3: Estrutura do dataset gerado.
Número

Documentos
Número
atributos

Tempo
resposta

200 000 5 t1

200 000 10 t11

...
200 000 50 t91

400 000 5 t101

400 000 10 t111

...
400 000 50 t191

...
5 000 000 5 t2401

5 000 000 10 t2411

...
5 000 000 50 t2500

Todas as consultas foram executadas com e sem a influência do cache, assegurando
a coleta de dados que refletem o desempenho em diversas condições operacionais e con-
figurações de hardware. Essa metodologia permitiu capturar, de maneira abrangente, as
variações de desempenho em cada cenário avaliado.

4.5 Modelos de Regressão Múltipla

Os modelos de regressão múltipla (scikit-learn, 2024) foram desenvolvidos com o objetivo
de analisar o comportamento do tempo de resposta das consultas em função de variáveis
independentes, como o número de documentos recuperados e a quantidade de atributos
por documento. Modelos de regressão múltipla demonstram utilidade na predição, es-
pecialmente quando os dados apresentam relações lineares e a quantidade disponível do

33

dataset é limitada (James et al., 2013). Esta abordagem permitiu a criação de modelos
estatísticos que representam o desempenho dos dois esquemas de modelagem de dados
(referenciado e aninhado) em diferentes cenários de configuração.

4.5.1 Construção dos Modelos

Os modelos de regressão múltipla foram construídos com base nos datasets gerados, des-
critos na Seção 4.4, e foram ajustados separadamente para cada uma das combinações de
fatores:

• Modelos de dados: referenciado e aninhado;

• Arquiteturas: centralizada e distribuída;

• Estados de cache: com e sem;

• Equipamentos: Eq1, Eq2, e Eq3

Cada modelo foi treinado considerando duas variáveis independentes:

• Número de documentos recuperados (X1): indica a quantidade de documentos in-
cluídos na consulta;

• Número de atributos por documento (X2): representa a complexidade das consultas
em termos de informações solicitadas (atributos)

A variável dependente (Y) foi definida como o tempo de resposta das consultas, medido
em milissegundos. A relação entre essas variáveis foi modelada pela equação geral da
regressão múltipla:

Y = β0 + β1X1 + β2X2 + ϵ

onde:

Y : Tempo de resposta das consultas

β0 : Intercepto

β1 : Coeficiente associado ao número de documentos recuperados

β2 : Coeficiente associado ao número de atributos por documento

ϵ : Termo de erro

34

4.5.2 Treinamento e Validação

O processo de geração dos modelos de regressão múltipla foi conduzido com base no
mesmo procedimento utilizado para estruturar os experimentos descritos na Figura 4.6.
Como resultado dos 16 datasets gerados nesse processo, foram criados 16 modelos de
regressão múltipla, cada um correspondendo a uma combinação específica de arquitetura,
equipamento, esquema de modelagem de dados e estado do cache.

Os modelos foram treinados utilizando os datasets correspondentes a cada combinação
de fatores. O ajuste dos modelos foi avaliado pela métrica R2score para entender o quão
bem o modelo explica a variabilidade nos dados. O dataset foi dividido em 70% para
treinamento e 30% teste.

A ferramenta utilizada para a obtenção dos modelos foi o Scikit − learn (scikit-
learn, 2024), com os parâmetros fit_intercept, copy_X, n_jobs e positive configurados
com seus valores padrão. O parâmetro fit_intercept garantiu que o modelo calculasse
o intercepto durante o ajuste, enquanto copy_X assegurou que os dados originais não
fossem alterados durante o processamento. O parâmetro n_jobs, ao permanecer em seu
valor padrão, utilizou um único núcleo de processamento para a execução do modelo, e
o parâmetro positive permitiu a geração de coeficientes positivos, embora não tenha sido
aplicado neste caso específico devido à configuração padrão.

A Tabela 4.4 apresenta os resultados dos modelos de regressão múltipla obtidos para
o equipamento Eq1 no modo centralizado. Esses resultados destacam os coeficientes ajus-
tados, o intercepto, e os valores do R2 tanto para o conjunto de treinamento quanto para
o de teste. De forma semelhante, as Tabelas 4.5, 4.6 e 4.7 apresentam os modelos de
regressão múltipla gerados para o modo replica set nos ambientes Eq1, Eq2 e Eq3.

Tabela 4.4: Modelos de regressão múltipla obtidos no Eq1 para arquitetura centralizada.
Esquema Cache β1 β2 β0 R2 Treinamento R2 Teste

Referenciado
Com cache 1.02472334 0.21763937 -3.017720709513224 0.99 0.99
Sem cache 0.99698879 0.14871953 -2.551136584402331 0.99 0.99

Aninhado
Com cache 1.04980047 -0.00863899 -3.1112693442386834 0.97 0.97
Sem cache 1.0035651 -0.01104212 -2.477332503137232 0.99 0.99

Tabela 4.5: Modelos de regressão múltipla obtidos no Eq1 para arquitetura distribuída.
Esquema Cache β1 β2 β0 R2 Treinamento R2 Teste

Referenciado
Com cache 1.02265971 0.19742946 -2.9585879035633367 0.97 0.97
Sem cache 1.029068 0.20535015 -3.017058594187399 0.99 0.99

Aninhado
Com cache 1.05163906 -0.01738922 -3.130097427002466 0.97 0.97
Sem cache 1.01645005 -0.01997622 -2.9198769723630726 0.98 0.98

35

Tabela 4.6: Modelos de regressão múltipla obtidos no Eq2 para arquitetura distribuída.
Esquema Cache β1 β2 β0 R2 Treinamento R2 Teste

Referenciado
Com cache 1.04713869 0.20608861 -3.1017870609811835 0.97 0.97
Sem cache 1.02776791 0.19461247 -2.978403725711111 0.98 0.98

Aninhado
Com cache 1.01856333 -0.03465397 -2.9172136708137346 0.97 0.97
Sem cache 1.0129133 -0.00998741 -2.903627613427707 0.97 0.96

Tabela 4.7: Modelos de regressão múltipla obtidos no Eq3 para arquitetura distribuída.
Esquema Cache β1 β2 β0 R2 Treinamento R2 Teste

Referenciado
Com cache 2.51495792 0.07972045 -11.301507836259296 0.84 0.84
Sem cache 1.89948341 0.0667366 -7.50971984432025 0.74 0.73

Aninhado
Com cache 2.45338698 -0.03287923 -11.112852953364289 0.82 0.83
Sem cache 1.72818948 -0.01729218 -6.564202672819475 0.67 0.67

4.6 Determinação dos Coeficientes de Ponderação para
Relacionamentos

Nesta seção, descreve-se o processo de determinação dos coeficientes de ponderação, os
quais foram calculados mediante aplicação dos modelos de regressão múltipla apresenta-
dos anteriormente. Estes coeficientes quantificam a intensidade relativa das relações por
referência e por aninhamento em bancos de dados documentais. Os coeficientes obtidos
variam em uma escala de 0 a 1.

4.6.1 Processo de Obtenção

As fórmulas utilizadas para obter os coeficientes de ponderação são apresentadas a seguir:

coefref = ref
ref + emb (4.1)

coefemb = emb
ref + emb (4.2)

Onde:

• coefref : Coeficiente de ponderação para relações por referência;

• coefemb: Coeficiente de ponderação para relações por aninhamento;

• ref: Média dos tempos de resposta calculados para as relações por referência;

• emb: Média dos tempos de resposta calculados para as relações por aninhamento

36

No entanto, os valores de ref e emb, que correspondem às médias dos tempos de
resposta dos relacionamentos por referência e por aninhamento, respectivamente, precisam
ser calculados previamente. A Figura 4.7 apresenta o processo detalhado para a obtenção
desses valores, descrito a seguir:

1. Foram preparadas consultas Q, variando aleatoriamente o número de documentos
“d” (de 1 a 10 milhões) e o número de atributos “a” por documento (de 1 a 50);

2. Cada consulta foi processada pelos modelos de regressão múltipla para gerar tempos
de resposta estimados para os esquemas referenciado (ref) e aninhado (emb);

3. Após 1000 iterações para cada configuração experimental (centralizado, distribuído
e equipamentos Eq1, Eq2 e Eq3), foram calculadas as médias dos tempos de resposta
para cada tipo de relação, gerando os valores de ref e emb

Modelos
regressão

Tempo resposta
Q

Q(d,a)

1000 vezes

Figura 4.7: Execução dos modelos de regressão para obter as médias ref e emb.

Os valores de ref e emb foram, então, inseridos nas Fórmulas 4.1 e 4.2 apresentadas
anteriormente para calcular os coeficientes de ponderação (coefref , coefemb), que repre-
sentam a intensidade relativa de cada tipo de relação no desempenho do banco de dados.

A Tabela 4.8 detalha os coeficientes obtidos no modo centralizado no dispositivo Eq1.
Com a memória cache ativada, o coeficiente de referência é de 0.51, enquanto o coeficiente
de aninhamento assume o valor de 0.49. Quando a memória cache está desativada, os
coeficientes permanecem os mesmos. Esses resultados indicam um leve favorecimento das
relações por referência nesse modo de configuração.

Tabela 4.8: Coeficientes de ponderação em modo centralizado no equipamento Eq1.
Com cache Sem cache

coefref 0.51 0.51
coefemb 0.49 0.49

37

As Tabelas 4.9, 4.10 e 4.11 mostram os coeficientes para o modo distribuído nos
dispositivos Eq1, Eq2, e Eq3. Em geral, os coeficientes de referência são consistentemente
superiores aos coeficientes de aninhamento em todas as configurações.

Tabela 4.9: Coeficientes de ponderação em modo distribuído no equipamento Eq1.
Com cache Sem cache

coefref 0.52 0.52
coefemb 0.48 0.48

Tabela 4.10: Coeficientes de ponderação em modo distribuído no equipamento Eq2.
Com cache Sem cache

coefref 0.52 0.52
coefemb 0.48 0.48

Tabela 4.11: Coeficientes de ponderação em modo distribuído no equipamento Eq3.
Com cache Sem cache

coefref 0.52 0.51
coefemb 0.48 0.49

Os resultados indicam que as relações por referência apresentam maior impacto no
desempenho, independentemente da configuração do sistema (centralizado ou distribuído)
ou do equipamento utilizado. Essa tendência é evidente tanto com a memória cache
ativada quanto desativada. Embora as diferenças entre os coeficientes sejam sutis, elas
podem ter implicações significativas no desempenho geral do modelo, especialmente ao
decidir entre o uso de relações por referência ou aninhamento em cenários específicos.

4.7 Determinação dos Coeficientes de Ponderação para
Atributos Simples e Complexos

Para determinar os coeficientes de ponderação dos atributos simples e complexos, seguiu-se
a metodologia apresentada na Figura 4.8. Foi utilizado o mesmo banco de dados sintético
descrito na Seção 4.3, implementado nos equipamentos Eq1 no modo centralizado e Eq2

no modo distribuído. Uma consulta Q2 foi preparada para selecionar aleatoriamente um
único atributo de um esquema, medir o tempo de resposta para a recuperação desse
atributo e registrar as informações no dataset correspondente. Esse dataset armazena
o tipo de atributo, o tipo de dado e o tempo de recuperação, utilizando a estrutura
“attrType, dataType, time”. Com base nos datasets obtidos tanto no modo centralizado

38

quanto no modo distribuído, foram calculadas as médias dos tempos de recuperação para
atributos simples e complexos.

BD

Centralizado

Distribuido

Q2

Atr.simples

Atr.complexos

1 000 000 vezes

Figura 4.8: Processo para obter as médias de tempo de resposta para atributos simples e
complexos.

Assim, com as médias Atr.simples e Atr.complexos, foram determinados os coefi-
cientes de ponderação para atributos simples (coefs) e complexos (coefc), conforme as
Equações 4.3 e 4.4.

coefs = Atr.simples

Atr.simples + Atr.complexos

(4.3)

coefc = Atr.complexos

Atr.simples + Atr.complexos

(4.4)

A Tabela 4.12 apresenta os coeficientes de ponderação obtidos para atributos simples e
complexos em dois modos operacionais: centralizado e distribuído, avaliados nas condições
com e sem cache. Os resultados mostram que, no modo centralizado, os coeficientes
mantêm valores muito próximos entre si, indicando baixa variação tanto para atributos
simples (0,51 com cache e 0,51 sem cache) quanto para atributos complexos (0,49 com
cache e 0,49 sem cache). Por outro lado, no modo distribuído, observa-se uma maior
variação entre os coeficientes obtidos, especialmente para atributos simples (0,53 com
cache e 0,49 sem cache) e complexos (0,51 com cache e 0,47 sem cache). Este resultado
sugere que, em ambientes distribuídos, o cache exerce um impacto mais significativo,
promovendo diferenças notáveis no comportamento de recuperação de dados conforme
a configuração adotada. Além disso, a variação acentuada nos coeficientes distribuídos
pode ser atribuída à latência e à dispersão física dos dados entre múltiplos nós, o que
potencializa o benefício do cache no acesso eficiente às informações.

39

Tabela 4.12: Coeficientes de ponderação obtidos nos modos centralizado e distribuído.
Simples Complexos

Com Cache Sem Cache Com Cache Sem Cache
centralizado 0.51 0.51 0.49 0.49
distribuído 0.53 0.49 0.51 0.47

De forma geral, os atributos simples mantêm um peso médio superior (0,51) em compa-
ração aos atributos complexos (0,49), conforme estabelecido nos critérios iniciais. Estes
valores médios serão usados em capítulos posteriores como uma forma de ponderar os
atributos.

4.8 Cenário de Validação

A Figura 4.9 apresenta o processo de obtenção dos coeficientes de ponderação no cenário
de validação. Para avaliar a aplicabilidade dos coeficientes de ponderação obtidos pelos
modelos de regressão múltipla, foi desenvolvida uma nova base de dados sintética, se-
guindo os critérios estabelecidos na Seção 4.3. Essa base de dados foi estruturada em
dois esquemas principais: um esquema com relações referenciadas e outro com relações
aninhadas. Cada documento foi projetado com 50 atributos simples do tipo string, com
tamanhos variando entre 10 e 50 caracteres.

BD

Referenciado

Aninhado

tempo_reposta_ref(Q1)
Q1(d,a)

Q1(d,a)
tempo_respota_ani(Q1)

média(tempo_reposta_ref)

média(tempo_respota_ani)

5 milhões vezes

Coefref

Coefemb

Figura 4.9: Processo para obter os coeficientes de ponderação no cenário de validação.

O banco de dados foi populado com 10 milhões de documentos para cada modelo. Esse
volume de dados foi definido a fim de garantir que os experimentos fossem conduzidos
em condições similares às utilizadas durante o treinamento dos modelos de regressão,
assegurando consistência entre os cenários de treinamento e validação.

O objetivo principal dessa nova base de dados sintética foi verificar a precisão dos
coeficientes de ponderação ao aplicar os modelos em um contexto prático. Além disso,
o estudo buscou explorar o comportamento dos modelos em diferentes configurações de

40

consulta, variando o número de documentos recuperados e a quantidade de atributos
processados por consulta.

A consulta Q1, definida na Seção 4.4, foi executada mantendo os mesmos parâmetros
estabelecidos, porém com uma variação controlada: cada execução processou um conjunto
aleatório de d documentos e projetou um subconjunto aleatório de a atributos (Q1(d, a)).
Esta operação foi repetida sistematicamente 5 milhões de vezes tanto para o modelo
referenciado quanto para o modelo aninhado, seguindo o fluxo experimental ilustrado na
Figura 4.9.

Os tempos de resposta das consultas foram registrados ao longo das execuções e uti-
lizados para calcular as médias dos tempos de resposta. Essas médias são representadas
como:

• média(tempo_resposta_ref) ou ref para o esquema referenciado;

• média(tempo_resposta_ani) ou emb para o esquema aninhado

Por fim, os valores médios ref e emb foram utilizados para derivar os coeficientes de
ponderação (coefref e coefemb) conforme as Equações 4.1 e 4.2. Os resultados obtidos
para os coeficientes no caso de validação estão apresentados nas Tabelas 4.13, 4.14, 4.15
e 4.16.

Tabela 4.13: Coeficientes de ponderação para o caso de validação no modo centralizado
no equipamento Eq1.

Com cache Sem cache
coefref 0.67 0.56
coefemb 0.33 0.44

Tabela 4.14: Coeficientes de ponderação para o caso de validação no modo distribuído no
equipamento Eq1.

Com cache Sem cache
coefref 0.65 0.66
coefemb 0.35 0.34

Tabela 4.15: Coeficientes de ponderação para o caso de validação no modo distribuído no
equipamento Eq2.

Com cache Sem cache
coefref 0.60 0.57
coefemb 0.40 0.43

41

Tabela 4.16: Coeficientes de ponderação para o caso de validação no modo distribuído no
equipamento Eq3.

Com cache Sem cache
coefref 0.64 0.60
coefemb 0.36 0.40

Os valores de coefref são consistentemente maiores em todos os experimentos (Tabelas
4.13, 4.14, 4.15, 4.16). Essa diferença é especialmente evidente no modo centralizado e
nos equipamentos com maior capacidade de processamento, como o Eq1.

O impacto do cache é um fator determinante para o desempenho das relações refe-
renciadas. No modo centralizado, particularmente no equipamento Eq1, o cache favorece
significativamente as relações referenciadas, ampliando a diferença em relação às relações
aninhadas. Por outro lado, nos equipamentos distribuídos (Eq2 e Eq3), a influência do
cache é menos pronunciada, resultando em coeficientes mais equilibrados entre coefref e
coefemb.

Tabela 4.17: Comparação de coeficientes do primeiro experimento com o caso de validação.

Equipamento
Com cache Sem cache

coefref coefemb coefref coefemb

Estimado Validado Estimado Validado Estimado Validado Estimado Validado
Eq1 centralizado 0.51 0.67 0.49 0.33 0.51 0.56 0.49 0.44
Eq1 distribuído 0.52 0.65 0.48 0.35 0.52 0.66 0.48 0.34
Eq2 distribuído 0.52 0.60 0.48 0.40 0.52 0.57 0.48 0.43
Eq3 distribuído 0.52 0.64 0.48 0.36 0.51 0.60 0.49 0.40

A Tabela 4.17 mostra uma análise comparativa dos coeficientes de ponderação em
diferentes configurações e equipamentos. Destacam-se a predominância das relações refe-
renciadas em cenários de validação. Os valores de coefref são consistentemente maiores
em quase todos os experimentos. Isso sugere uma associação clara entre valores mais altos
de coeficientes e as relações referenciadas, enquanto valores menores estão associados às
relações aninhadas. No entanto, essa observação não permite concluir que as relações
referenciadas sejam, de fato, mais eficientes do que as aninhadas em todos os cenários.

Os coeficientes de ponderação coefref e coefemb, obtidos a partir dos modelos de regres-
são múltipla, fornecem uma indicação da associação entre o desempenho e os esquemas
de modelagem referenciado e aninhado. Eles representam apenas associações observadas
entre os tempos de resposta e os tipos de relação avaliados nos experimentos. Assim, o
usuário deve interpretar os coeficientes como uma ferramenta de apoio à decisão, con-
siderando cuidadosamente as características do ambiente, o padrão de consultas e as
necessidades específicas do sistema.

42

4.9 Considerações Finais

Experimentos realizados confirmaram que a recuperação de dados em relacionamentos
aninhados é mais rápida do que em relacionamentos referenciados, resultado corroborado
pelos modelos de regressão múltipla. Esses resultados estão alinhados com a literatura
(Reis et al., 2018)(Gómez et al., 2016)(Shah et al., 2022), que destaca a eficiência de estru-
turas aninhadas devido à co-localização de dados relacionados em um único documento,
reduzindo a necessidade de operações de união ou consultas múltiplas.

Para quantificar a diferença de desempenho e apoiar decisões na etapa de modelagem,
foram calculados coeficientes de ponderação baseados nos tempos médios de recuperação
de dados para relacionamentos referenciados (ref) e aninhados (emb). Esses tempos foram
submetidos à descomposição porcentual normalizada, gerando os coeficientes coefref e
coefemb.

Esses coeficientes representam pesos relativos que refletem a contribuição de cada tipo
de relacionamento para o tempo total de recuperação de dados. A interpretação desses
coeficientes é crucial. Um valor menor para coefemb indica maior eficiência das estruturas
aninhadas em termos de velocidade de consulta, enquanto um coefref mais elevado reflete
o maior custo temporal associado às relações referenciadas.

A partir dos experimentos realizados, os valores médios de coefref = 0,6 e coefemb = 0,4
foram estabelecidos como coeficientes de ponderação para relacionamentos referenciados
e aninhados, respectivamente. Esses valores foram obtidos como a média de todos os
coefref e coefemb calculados em diferentes equipamentos e arquiteturas utilizadas, com e
sem uso de cache (Tabela 4.2). No capítulo subsequente, esses coeficientes serão aplicados
como ponderações de relacionamentos na avaliação de diferentes esquemas.

Foram determinados coeficientes de ponderação para atributos simples coefs (0.51) e
complexos coefc (0.49) a partir de consultas diretas sobre esquemas nos modos centrali-
zado e distribuído, medindo os tempos de resposta. Cada atributo foi classificado como
simples ou complexo e os tempos médios de recuperação foram calculados e normalizados
para obter os coeficientes. No entanto, é necessário aprofundar a análise para definir
coeficientes específicos para cada tipo de dado simples (inteiro, double, float, string, data,
etc.), pois cada um possui tempos distintos de recuperação. O mesmo ocorre com atribu-
tos complexos, cujo tamanho variável também influencia no tempo de resposta. Portanto,
uma análise mais detalhada é essencial para melhorar a precisão dos coeficientes.

43

Capítulo 5

Métricas de Avaliação

Neste capítulo, as métricas de avaliação que são usados para encontrar o modelo de
dados ótimos são descritos. São apresentadas quatro métricas específicas para a avaliação
de esquemas (Gómez et al., 2021) (Kuszera et al., 2020): completude, que verifica se os
esquemas satisfazem as consultas estabelecidas; padrão de acesso, que avalia a organização
dos relacionamentos, diferenciando entre referenciados e aninhados; custo de recuperação,
que mede o impacto da estrutura dos relacionamentos e atributos no desempenho; e
redundância, que identifica a duplicação de dados entre esquemas. Essas métricas utilizam
coeficientes de ponderação para capturar a complexidade real, considerando tanto os
aspectos estruturais quanto as interações entre consultas e esquemas.

A Seção 5.1 apresenta as definições formais necessárias para o entendimento das mé-
tricas propostas. Na Seção 5.2, é apresentada a definição da métrica de completude. A
Seção 5.3 descreve a métrica de padrão de acesso. Na Seção 5.4, é definida a métrica
de custo de recuperação dos esquemas. A Seção 5.5 apresenta a métrica de redundância,
explicando seu funcionamento e a interpretação dos resultados. Finalmente, a Seção 5.6
apresenta dois cenários de validação das métricas propostas.

5.1 Definições Formais

No contexto dos sistemas de bancos de dados NoSQL orientados a documentos a ausência
de um esquema ideal pode levar a problemas como redundância de dados, alto custo de
recuperação de informações e dificuldade de acessibilidade. Para enfrentar esses desafios,
as métricas desempenham um papel central ao possibilitar a avaliação, comparação e
otimização de esquemas com base em características fundamentais, incluindo a estrutura
dos relacionamentos e a natureza dos atributos, bem como a capacidade de atender às
consultas definidas.

44

A avaliação de esquemas requer uma definição de elementos fundamentais que com-
põem o cenário de análise. Para este propósito, considera-se um modelo baseado em três
conjuntos principais: coleções, esquemas e consultas. Esses conjuntos são formalmente
descritos a seguir.

O conjunto das coleções C é composto por todas as coleções envolvidas no caso de
uso analisado, abrangendo tanto aquelas utilizadas nas consultas quanto as presentes nos
esquemas. Formalmente, C = {c1, c2, ..., ck}, onde k ≥ 1 representa o número de coleções
existentes.

A Tabela 5.1 e a Figura 5.1 descrevem um cenário composto por quatro consultas
distintas atuando sobre o esquema e1. O conjunto completo de coleções C é definido
como C = {A, B, C, D}. Ressalta-se que, embora o esquema e1 este composto apenas
pelas coleções A e B, o conjunto C mantém sua cardinalidade original (|C| = 4), pois as
consultas formuladas exigem o acesso às quatro coleções para seu processamento integral.

Tabela 5.1: Consultas definidas envolvendo quatro coleções.
No Descrição
1 consulta envolvendo as coleções A e B
2 consulta envolvendo as coleções B e C
3 consulta envolvendo as coleções A e C
4 consulta envolvendo as coleções B, C e D

A

B

e1

Figura 5.1: Esquema e1 composto de duas coleções

No cenário apresentado na Tabela 5.2, que contém apenas uma consulta, e na Figura
5.2, observa-se que a consulta envolve apenas duas coleções. No entanto, os esquemas e1

e e2 consideram o uso de três coleções: A, B e C. Dessa forma, o conjunto C é definido
como: C = {A, B, C}.

Tabela 5.2: Consulta definida envolvendo duas coleções.
No Descrição
1 consulta envolvendo as coleções A e B

45

A

B

B C

e1 e2

Figura 5.2: Esquema e1 e e2 composto de três coleções A, B e C.

O conjunto de esquemas E representa os esquemas utilizados para dar suporte às con-
sultas, sendo definido como E = {e1, e2, ..., em}. Cada esquema ej ∈ E é um subconjunto
não vazio de C, ou seja, ej ⊆ C e |ej| ≥ 1 para j = 1, 2, ..., m com m ≥ 1, onde m indica o
número total de esquemas.

A Tabela 5.3 e a Figura 5.3 apresentam um cenário composto por três esquemas, e1,
e2 e e3, e por duas consultas. Assim, o conjunto E é definido como: E = e1, e2, e3. Cada
um desses esquemas é formado por coleções que pertencem ao conjunto C = A, B, C.

Tabela 5.3: Consultas definidas envolvendo três coleções.
No Descrição
1 consulta envolvendo as coleções A e B
2 consulta envolvendo as coleções B e C

A

B

B C C
A

B

e1 e2 e3

Figura 5.3: Conjunto de esquemas

O conjunto de consultas Q, definido como Q = {q1, q2, ..., qn}, contém as consultas
previamente definidas que devem ser atendidas pelos esquemas. Cada consulta qi ∈ Q é
também um subconjunto não vazio de C, ou seja qi ⊆ C e |qi| ≥ 1 para i = 1, 2, ..., n com
n ≥ 1 representando o número total de consultas.

A interação entre os conjuntos C, E e Q define o escopo de análise das métricas pro-
postas. Cada esquema ej é formado por coleções pertencentes ao conjunto C e deve ser
capaz de suportar um ou mais subconjuntos dessas coleções definidas pelas consultas qi.

46

5.2 Métrica Completude

A métrica completude é responsável por avaliar se um conjunto de esquemas de E é capaz
de atender a todas as consultas definidas no conjunto Q. Essa métrica é fundamental para
garantir que as consultas previstas possam ser processadas corretamente pelos esquemas
disponíveis, considerando a existência das coleções e a definição de seus relacionamentos
(esquemas).

A completude é uma métrica que assume valores no intervalo de 0 a 1, conforme o
grau de atendimento às consultas definidas. Quando todas as consultas do conjunto Q são
atendidas pelos esquemas E, a métrica retorna 1, indicando cobertura integral. Quando
nenhuma consulta é atendida, o valor é 0, refletindo ausência de cobertura. Nos demais
casos, retorna um valor intermediário entre 0 e 1, representando a proporção de consultas
atendidas. Essa abordagem permite avaliar tanto a aderência total quanto parcial dos
esquemas às necessidades do sistema.

A completude é calculada considerando a correspondência entre as consultas qi ∈ Q e
os esquemas ej ∈ E. Formalmente, a métrica completude para um conjunto de esquemas
E é definida como:

completude(E) = Qa

m
(5.1)

Onde:

• Qa (consultas atendidas): é o número de consultas qi ∈ Q que são atendidas por
pelo menos um esquema ej ∈ E;

• m: é o número total de consultas no conjunto Q;

A função que verifica se uma consulta qi é atendida é dada por:

atende(E, qi) = existeColecao(E, qi)× existeRelacionamento(E, qi) (5.2)

Aqui:

• existeColecao(E, qi): Verifica se todas as coleções que compõem qi estão presentes
em pelo menos um esquema ej ∈ E. Retorna 1 se as coleções existem e 0 caso
contrário;

• existeRelacionamento(E, qi): Verifica se os relacionamentos entre as coleções de qi

estão definidos em ej. Retorna 1 se os relacionamentos existem e 0 caso contrário

A soma de todas as chamadas de atende(E, qi) para qi ∈ Q resulta no valor Qa. É
formalmente representada pela equação:

47

Qa =
∑

atende(E, qi), ∀qi ∈ Q (5.3)

5.2.1 Funcionamento

O funcionamento do processo de avaliação de esquemas para atender às consultas é deta-
lhado nos seguintes passos:

• Para cada consulta qi, verifica-se se as coleções requeridas {c1, c2, ..., ck} ⊆ C estão
presentes nos esquemas E. Essa avaliação é essencial para garantir que os dados
exigidos pela consulta estejam disponíveis;

• Além da presença das coleções, é imprescindível confirmar que os relacionamentos
entre elas, sejam referenciados ou aninhados, estejam devidamente definidos nos
esquemas. A existência das coleções não é suficiente para garantir o suporte às
consultas, pois, para que uma consulta seja efetivamente atendida, deve haver um
caminho válido que conecte as coleções envolvidas. Esse caminho é essencial para
permitir que os dados possam ser acessados e combinados conforme necessário para
produzir a resposta esperada. Assim, após verificar a presença das coleções reque-
ridas, é fundamental garantir que os relacionamentos entre elas estejam definidos;

• Para cada consulta qi, calcula-se se ela foi atendida (atende(E, qi) = 1) e, ao final,
soma-se o número de consultas definidas (Qa). A métrica de Completude é, então,
derivada como uma proporção do número de consultas atendidas pelo número total
de consultas definidas

5.2.2 Exemplo

Considerando o cenário apresentado na Tabela 5.2 e na Figura 5.2, definem-se os conjuntos
C, E e Q. O conjunto C é composto pelas coleções participantes do cenário, sendo definido
como C = {A, B, C}, uma vez que há três coleções envolvidas tanto nos esquemas e
nas consultas definidas. O conjunto E é definido como E = {e1, e2}, dado que o cenário
apresenta apenas dois esquemas distintos. Por fim, o conjunto Q é estabelecido como
Q = {q1}, onde q1 representa a consulta 1 especificada na Tabela 5.2.

Para calcular a completude do cenário, é necessário inicialmente determinar os valores
das funções existeColecao() e existeRelacionamento(). A Tabela 5.4 apresenta a análise
de existência das coleções da consulta q1 nos esquemas definidos no cenário. Observa-se
que as coleções acessadas pela consulta q1 estão presentes no esquema e1, porém não
estão totalmente disponíveis no esquema e2. Contudo, considerando que a consulta pode
ser analisada desde que pelo menos um dos esquemas contenha as coleções requeridas, é

48

possível prosseguir para a próxima etapa da avaliação. Finalmente, o valor retornado pela
função existeColeção() será 1.

Tabela 5.4: Verificação da existência das coleções de q1 nos esquemas e1 e e2.
e1 e2

q1
A ✓

B ✓ ✓

Tabela 5.5: Verificação da existência de relacionamentos que atendam as coleções de q1

nos esquemas e1 e e2.
e1 e2

q1
A ✓

B ✓ ✓

A Tabela 5.6 apresenta a análise da existência de relacionamentos que suportam as
coleções A e B da consulta q1. Observa-se que apenas o esquema e1 possui um relaciona-
mento aninhado entre as coleções mencionadas. No entanto, considerando que a consulta
q1 é atendida por pelo menos um dos esquemas pertencentes ao conjunto analisado, a
função existeRelacionamento() assume o valor 1, indicando a viabilidade da execução da
consulta no cenário avaliado.

Tabela 5.6: Verificação da existência de relacionamentos que atendam as coleções de q1

nos esquemas e1 e e2.
e1 e2

q1 (A,B) ✓

Finalmente, como as funções existeColecao() e existeRelacionamento() retornam o
valor 1, a métrica de completude também assume o valor 1. Esse resultado indica que
o conjunto de esquemas avaliados é capaz de suportar plenamente as consultas definidas
pelo usuário no cenário considerado.

5.2.3 Interpretação dos Resultados

A interpretação dos valores da métrica de completude obtidos na avaliação dos esquemas
E em relação ao conjunto de consultas Q é resumida da seguinte forma:

• Um valor de completude igual a 1 indica que todos os esquemas em E são capazes
de atender a 100% das consultas em Q. Esse é o cenário ideal, demonstrando que o
conjunto de esquemas é completamente funcional para o caso de uso especificado;

49

• Quando o valor de completude está entre 0 e 1, significa que algumas consultas
em Q não podem ser atendidas pelos esquemas disponíveis. Isso pode ser causado
pela ausência de coleções, falta de relacionamentos ou definições incompletas nos
esquemas;

• Um valor de completude igual a 0 reflete que nenhuma consulta em Q é suportada
pelos esquemas E. Esse cenário é crítico e indica falhas no desenho ou incompatibi-
lidades entre os esquemas e as consultas

5.3 Métrica Padrão de Acesso

A métrica padrão de acesso é projetada para avaliar como as coleções estão organizadas
dentro dos esquemas em relação aos seus relacionamentos, sejam eles referenciados ou ani-
nhados. Essa métrica é especialmente importante em bancos de dados NoSQL orientados
a documentos, onde a estrutura dos relacionamentos impacta diretamente o desempenho
das consultas, a escalabilidade e o custo de recuperação de dados.

O objetivo do padrão de acesso é medir a eficiência estrutural dos esquemas com base
na forma como os relacionamentos entre as coleções são definidos. A métrica considera
os dois tipos principais de relacionamentos referenciados e aninhados. Cada tipo de rela-
cionamento possui implicações diferentes em termos de desempenho e complexidade, e a
métrica utiliza coeficientes de ponderação para capturar essas diferenças.

A métrica padrão de acesso para um conjunto de esquemas E é definida como:

padraoAcesso(E) = contarRel(E) (5.4)

Onde padraoAcesso(E) é o somatório dos relacionamentos ponderados em todos os
esquemas ej ∈ E:

contarRel(E) =
∑

contar(ej), ∀ej ∈ E (5.5)

Para cada esquema ej, a função contar(ej) contabiliza os relacionamentos referenciados
(relref) e aninhados (relani), aplicando os respetivos coeficientes de ponderação coefref e
coefemb:

contar(ej) =
∑

relref × coefref +
∑

relani × coefemb (5.6)

50

5.3.1 Funcionamento

O processo para determinar o padrão de acesso do conjunto de esquemas E envolve os
seguintes passos:

• Cada esquema ej é analisado para identificar todos os relacionamentos definidos
entre suas coleções, categorizando-os como referenciados ou aninhados;

• Cada tipo de relacionamento recebe um peso específico, determinado pelos coefi-
cientes de ponderação coefref para relacionamentos referenciados e coefemb para
relacionamentos aninhados, previamente calculados e definidos na Seção 4.6. Es-
ses coeficientes refletem o custo relativo de acesso a cada tipo de relacionamento,
comumente baseado em análises de tempo de resposta e eficiência;

• O número total de relacionamentos ponderados é calculado para cada esquema ej,
e os resultados são somados para obter o padrão de acesso do conjunto E

5.3.2 Exemplo

Considerando o cenário apresentado na Tabela 5.3 e na Figura 5.3, são definidos os con-
juntos C, E e Q. O conjunto C é composto pelas coleções envolvidas nas consultas e nos
esquemas analisados, sendo definido como C = {A, B, C}. O conjunto E representa os
esquemas do cenário e é definido como E = {e1, e2, e3}. Por fim, o conjunto Q é com-
posto pelas consultas consideradas e é definido como Q = {q1, q2}, onde q1 corresponde à
consulta 1 e q2 à consulta 2, respectivamente.

A Tabela 5.7 apresenta a análise do padrão de acesso para os esquemas e1, e2 e e3.
Inicialmente, foram contabilizados os relacionamentos referenciados e aninhados presentes
em cada esquema. Em seguida, foi realizado o cálculo ponderado utilizando os coeficientes
de relacionamento coefref (0,6) e coefemb (0,4) aplicados a cada esquema individualmente.
O valor total da métrica corresponde à soma dos subtotais obtidos para cada esquema,
resultando, conforme indicado na Tabela 5.7, em um total de 2 unidades.

Tabela 5.7: Tabela de análise padrão de acesso.
Referenciado Aninhado Cálculo Sub total

e1 0 1 0× 0.6 + 1× 0.4 0.4
e2 1 0 1× 0.6 + 0× 0.4 0.6
e3 1 1 1× 0.6 + 1× 0.4 1

51

5.3.3 Interpretação dos Resultados

A seguir, detalha-se a interpretação dos diferentes valores que podem ser observados para
o padrão de acesso dos esquemas:

• Valores mais altos indicam esquemas mais complexos, com um número elevado de
relacionamentos, especialmente referenciados. Embora possam suportar estruturas
de dados mais ricas, esses esquemas tendem a apresentar maior custo de navegação
e recuperação de dados;

• Valores mais baixos representam esquemas mais simples, geralmente com menos
relacionamentos ou predominância de relacionamentos aninhados. Esses esquemas
podem ser mais rápidos para recuperar dados, mas podem ter limitações em termos
de flexibilidade para consultas complexas

5.4 Métrica Custo de Recuperação

A métrica de custo de recuperação avalia o impacto da estrutura e do tamanho das coleções
no esforço necessário para acessar os dados. Considera os relacionamentos (referenciados
e aninhados) e os atributos (simples e complexos) definidos nos esquemas, utilizando
coeficientes de ponderação que refletem a influência de cada componente na recuperação
de informações.

O objetivo é quantificar o custo associado à navegação e ao acesso a dados em esquemas
de bancos de dados NoSQL orientados a documentos, permitindo identificar estruturas
que podem introduzir latência ou complexidade desnecessária em operações frequentes e
fornecendo bases para otimizações.

O custo de recuperação para um conjunto de esquemas E é calculado como a soma do
custo dos relacionamentos e dos atributos em todos os esquemas ej ∈ E. Formalmente:

custoRecuperacao(E) = contarRel(E) + contarAtr(E) (5.7)

Onde:

• contarRel(E), conta os relacionamentos do esquema E (Equação 5.5);

• contarAtr(E): Soma dos atributos ponderados em todos os esquemas ej

A função contarAtr(E) é definida como:

contarAtr(E) =
∑

contarAtributos(ej), ∀ej ∈ E (5.8)

52

Para cada esquema ej, a função contarAtributos(ej) contabiliza os atributos simples
e complexos utilizando coeficientes de ponderação coefs e coefc (definidos na Seção 4.7),
respectivamente:

contarAtr(ej) =
∑

attrsimple × coefs +
∑

attrcomplexo × coefc (5.9)

5.4.1 Funcionamento

O cálculo do custo recuperação para o conjunto de esquemas E é realizado seguindo os
seguintes passos:

• Os relacionamentos entre as coleções são contabilizados, conforme definido na mé-
trica padrão de acesso (Equação 5.5). Essa etapa reflete o custo estrutural associado
à navegação entre documentos referenciados ou aninhados;

• Para cada esquema ej, os atributos simples e complexos são identificados e pondera-
dos de acordo com os coeficientes coefs e coefc, que refletem a diferença no esforço
de processamento entre os dois tipos de atributos;

• Os custos de relacionamentos e atributos são somados para cada esquema, e o valor
resultante é utilizado para calcular o custo total de recuperação do conjunto E

5.4.2 Exemplo

Com base no cenário apresentado na Tabela 5.1 e na Figura 5.1, posteriormente atualizada
com atributos na Figura 5.4, definem-se os conjuntos C, E e Q. O conjunto C é composto
pelas coleções envolvidas nas consultas e nos esquemas do cenário, sendo definido como
C = {A, B, C, D}. O conjunto E corresponde aos esquemas considerados e é definido como
E = {e1}. Por fim, o conjunto Q representa as consultas analisadas, sendo estabelecido
como Q = {q1, q2, q3, q4}.

Para determinar a métrica de custo de recuperação, é necessário calcular as funções
contarRel() e contarAtr(). A função contarRel() é obtida de forma equivalente ao cálculo
realizado na métrica de padrão de acesso. A Tabela 5.8 apresenta os resultados obtidos
para a função contarRel() no cenário analisado.

Tabela 5.8: Tabela de análise padrão de acesso.
Referenciado Aninhado Cálculo Sub total

e1 0 1 0× 0.6 + 1× 0.4 0.4

53

A

B

e1

b1: int,

b2: double,

b3: [b4, b5, b6],

b4: string

a1: string,

a2: bool,

a3: int,

a4: string

Figura 5.4: Esquema e1 com atributos.

A Tabela 5.9 apresenta os resultados obtidos a partir do cálculo da função contarAtr().
Conforme indicado, foram contabilizados sete atributos simples distribuídos entre as co-
leções A e B, além de um atributo complexo, denominado “b3”, presente na coleção B. O
cálculo totaliza 4,06 unidades para essa função. Considerando os resultados anteriores, o
valor final da métrica de custo de recuperação é obtido pela soma dos valores das funções
contarRel() (0,4) e contarAtr() (4,06), resultando em um custo total de 4,46 unidades.

Tabela 5.9: Tabela de análise função contarAtr().
Simples Complexo Cálculo Sub total

e1 7 1 7× 0.51 + 1× 0.49 4.06

5.4.3 Interpretação de Resultados

A seguir, apresenta-se a interpretação dos valores calculados para o custo de recuperação:

• Valores mais altos indicam esquemas mais complexos, com um grande número de
relacionamentos e/ou atributos complexos. Esquemas com valores elevados podem
apresentar maior latência e custo computacional para recuperar dados;

• Valores mais baixos representam esquemas mais simples, geralmente com menos
relacionamentos ou predominância de atributos simples. Esses esquemas tendem a
ser mais eficientes em termos de custo de recuperação, mas podem ter limitações na
modelagem de dados complexos

54

5.5 Métrica Redundância

A métrica de redundância quantifica a duplicação de dados entre coleções nos esquemas
de um banco de dados NoSQL orientado a documentos. Esta métrica identifica coleções
repetidas em diferentes esquemas, fornecendo uma medida objetiva da replicação de dados.
Essa métrica é essencial, pois a redundância pode aumentar o consumo de armazenamento,
impactar negativamente o desempenho e comprometer a integridade dos dados.

A métrica de redundância para um conjunto de esquemas E é calculada como a soma
das coleções repetidas entre cada esquema ej e os demais esquemas (E−{ej}) do conjunto
E. Formalmente:

redundancia(E) =
∑

repetidas(E− {ej}, ej), ∀ej ∈ E (5.10)

Onde:

• repetidas(E− {ej}, ej) conta as coleções repetidas do esquema ej em E.

5.5.1 Funcionamento

A metodologia para calcular a redundância de coleções no conjunto de esquemas E envolve
os seguintes passos:

• Para cada esquema ej, identifica-se o conjunto de coleções que o compõem;

• As coleções de ej são comparadas com as coleções presentes nos demais esquemas
(E− {ej}, ej) verificando duplicações exatas;

• O número de coleções duplicadas para cada esquema é somado, resultando no valor
total da métrica para o conjunto E

5.5.2 Exemplo

Considerando o cenário apresentado na Tabela 5.3 e na Figura 5.3, são definidos os con-
juntos C, E e Q. O conjunto C representa as coleções envolvidas no cenário e é definido como
C = {A, B, C}. O conjunto E corresponde aos esquemas analisados, sendo definido como
E = {e1, e2, e3}. Por fim, o conjunto Q, que reúne as consultas consideradas, é definido
como Q = {q1, q2}.

A Tabela 5.10 apresenta os resultados do cálculo da redundância no conjunto de es-
quemas E. Conforme indicado, as coleções A e C apresentam uma ocorrência redundante
cada, enquanto a coleção B se repete duas vezes. O valor da métrica de redundância é
obtido pela soma das repetições identificadas, resultando em um total de 4 unidades.

55

Tabela 5.10: Tabela de análise de redundância.
A B C Sub total
1 2 1 4

5.5.3 Interpretação dos Resultados

A análise dos valores obtidos para a métrica de redundância de coleções no conjunto de
esquemas E permite as seguintes interpretações:

• Valores mais altos indicam um alto nível de redundância, com muitas coleções du-
plicadas entre os esquemas. Esse cenário pode causar desperdício de recursos e
dificuldade na manutenção de dados consistentes;

• Valores mais baixos representam esquemas mais eficientes em termos de armazena-
mento, com baixa ou nenhuma redundância

5.6 Cenários de Validação

Nesta seção, são apresentados dois estudos de caso para validar as métricas propostas. O
objetivo é demonstrar a aplicabilidade das métricas em diferentes cenários de avaliação
de esquemas de bancos de dados NoSQL orientados a documentos. Cada cenário aborda
conjuntos específicos de coleções, consultas e esquemas, possibilitando uma análise prática
das métricas de completude, padrão de acesso, custo de recuperação e redundância.

Para analisar cada cenário, segue-se o seguinte processo: primeiro, são analisadas as
consultas para calcular a métrica da completude, utilizando a Equação 5.1. Em seguida,
são analisados os esquemas para calcular as métricas de padrão de acesso, custo de recu-
peração e redundância. Uma vez que as métricas que avaliam os esquemas estão baseadas
na análise dos relacionamentos, atributos e coleções, uma análise prévia é realizada para o
cálculo de contarRel(E), contarAtr(E) e repetidas(E−{ej}, ej). Os valores dos coeficien-
tes foram obtidos através de uma análise de tempos de resposta com regressão múltipla,
aplicando o método proposto na Seção 4.6. Assim, considera-se coefref com o valor de
0.6 e o valor de 0.4 para o coefemb. Enquanto isso, os valores para os coeficientes de
ponderação de atributos foram 0.51 para coefs e 0.49 para coefc.

5.6.1 Primeiro Cenário de Avaliação

O primeiro estudo de caso é baseado no cenário descrito por Gómez et al. (2018) e consiste
em três coleções: empresa, departamento e funcionário. A escolha desse caso de uso não

56

foi aleatória, pois trata-se de um cenário já consolidado na literatura, no qual os autores
também aplicam métricas para avaliar diferentes alternativas de modelagem em bancos
de dados NoSQL. Por esse motivo, esse caso se mostrou particularmente relevante para o
presente trabalho, ao permitir a replicação e a comparação direta dos resultados obtidos,
validando a eficácia da abordagem proposta com base em um referencial comum.

São definidas sete consultas apresentadas na Tabela 5.11, cujos objetivos variam desde
a busca por atributos específicos até a agregação de informações entre as coleções. Nove
soluções foram geradas para suportar essas consultas, cada solução contém, no mínimo,
um esquema, sendo que algumas podem incluir mais de um, conforme ilustrado na Figura
5.5. Por exemplo, a solução E6 é composta por três esquemas distintos (e1, e2, e3).

Tabela 5.11: Consultas definidas para o primeiro cenário.
No Consulta Coleções
q1 Funcionários com um salário igual a $1000 funcionário
q2 Funcionários com um salário superior a $1000 funcionário
q3 Funcionários com o maior salário funcionário
q4 Funcionários com o maior salário por empresa e o ID da empresa funcionário, empresa
q5 Funcionários com o maior salário por empresa e o nome da empresa funcionário, empresa
q6 O salário mais alto funcionário
q7 Informações das empresas, incluindo o nome de seus departamentos empresa, departamento

 _id : integer,
 nome : string,
 salario : double,
 idDept : integer

funcionario
 _id : integer,
 nome : string,
 idEmp : integer

departamento

 _id : integer,
 nome : string

empresa

 _id : integer,
 nome : string,
 idEmp : integer

departmento

 _id : integer,
 nome : string,
 salario : double

funcionario

 _id : integer,
 nome : string

empresa
 _id : integer,
 nome : string,
 salario : double,

funcionario

 _id : integer,
 nome : string,

departmento

 _id : integer,
 idFunc : integer,
 idDept : integer,
 idEmp : integer

CDE

 _id : integer,
 nome : string

funcionario

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,
 salario : double

empresa

 _id : integer,
 nome : string

empresa
 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,

empresa

 _id : integer,
 nome : string

funcionario

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,
 salario : double

empresa

 _id : integer,
 nome : string

departmento

 _id : integer,
 nome : string,

empresa

 _id : integer,
 nome : string,
 salario : double

funcionario

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,

empresa
 _id : integer,
 nome : string,
 salario : double,
 idDept : integer

funcionario

 _id : integer,
 nome : string,

empresa

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,
 idDept : integer

funcionario
 _id : integer,
 nome : string

empresa

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,
 salario : double

funcionario

E3 E5 E9

E6

E2 E7 E8

E4

 _id : integer,
 nome : string

empresa

E1

 _id : integer,
 nome : string,

departmento

Figura 5.5: Esquemas para o primeiro cenário (link para os esquemas).

57

https://acortar.link/QH7XUk

Avaliação da métrica completude

A Tabela 5.12 apresenta os resultados da análise da métrica completude para cada consulta
qi nas nove soluções definidas no primeiro cenário. A coluna “eC” avalia a existência
das coleções que participam de uma consulta qi em pelo menos um esquema ej de E
(existeColecao(E, qi)), enquanto a coluna “eR” avalia a existência de um relacionamento
entre as coleções de uma consulta qi em pelo menos um esquema ej de E. Na coluna “R”,
é avaliado atende(E, qi) = existeColecao(E, qi)× existeRelacionamento(E, qi).

A Tabela 5.13 apresenta os resultados da métrica completude para cada esquema. Os
resultados mostram que os esquemas e1 a e8 atendem integralmente a todas as consultas
definidas. Por outro lado, o esquema e9 apresenta limitações ao não atender às consultas
q4 e q5. Essa falha decorre da ausência de um relacionamento que conecte adequadamente
as coleções envolvidas nessas consultas.

Tabela 5.12: Análise de existeColecao(E, qi) e existeRelacionamento(E, qi) para cada
consulta nos nove esquemas.

E1 E2 E3 E4 E5 E6 E7 E8 E9
eC eR R eC eR R eC eR R eC eR R eC eR R eC eR R eC eR R eC eR R eC eR R

q1 1
q2 1
q3 1
q4 1 0 0
q5 1 0 0
q6 1
q7 1

Tabela 5.13: Resultados da métrica completude para as nove soluções.
E1 E2 E3 E4 E5 E6 E7 E8 E9
1 1 1 1 1 1 1 1 0.7

Avaliação da métrica padrão de acesso

Para calcular o da métrica padrão de acesso, analisamos inicialmente os relacionamentos
de cada esquema ej da solução E. A Tabela 5.14 apresenta a análise dos relacionamentos
referenciados e aninhados. Por exemplo, a solução E1 possui um único esquema, com dois
relacionamentos referenciados e nenhum aninhado. Para o modelo E1, ao aplicar os coe-
ficientes de ponderação para cada tipo de relacionamento, obtém-se um valor final para
o padrão de acesso de 1.2. Por outro lado, a solução E6 é composta por três esquemas(e1,
e2 e e3). O esquema e1 não apresenta relacionamentos, enquanto e2 e e3 possuem, res-
pectivamente, um e dois relacionamentos aninhados. Após a aplicação dos coeficientes de
ponderação, o valor total do padrão de acesso para a solução E6 também é de 1.2. Esse

58

procedimento de análise e cálculo foi realizado para todas as soluções, permitindo uma
comparação quantitativa da métrica padrão de acesso entre elas.

Tabela 5.14: Análise de padrão de acesso primeiro cenário.
Soluções Esquemas Relacionamentos

referenciados
Relacionamentos

Aninhados
Cálculo com
coeficientes Total

E1 e1 2 0 2× 0.6 + 0× 0.4 = 1.2 1.2
E2 e1 1 1 1× 0.6 + 1× 0.4 = 1 1
E3 e1 0 2 0× 0.6 + 2× 0.4 = 0.8 0.8
E4 e1 3 0 3× 0.6 + 0× 0.4 = 1.8 1.8
E5 e1 0 2 0× 0.6 + 2× 0.4 = 0.8 0.8

E6

e1 0 0 0× 0.6 + 0× 0.4 = 0
1.2e2 0 1 0× 0.6 + 1× 0.4 = 0.4

e3 0 2 0× 0.6 + 2× 0.4 = 0.8
E7 e1 0 2 0× 0.6 + 2× 0.4 = 0.8 0.8
E8 e1 1 1 1× 0.6 + 1× 0.4 = 1 1

E9
e1 0 1 0× 0.6 + 1× 0.4 = 0.4 1
e2 1 0 1× 0.6 + 0× 0.4 = 0.6

A solução E4 apresenta o maior valor total, com 1.8. Isso ocorre porque o esquema
e1 de E4 contém três relacionamentos referenciados, cada um ponderado pelo coeficiente
0.6. Esse tipo de relacionamento geralmente implica maior complexidade, pois requer
múltiplas operações para acessar os dados, aumentando o custo estrutural e a dificuldade
de navegação. As soluções E3, E5 e E7 têm a menor pontuação total, com 0.8 cada. Essas
soluções possuem esquemas com dois relacionamentos aninhados, cada um com peso de
0.4. Relacionamentos aninhados tendem a ser mais simples, pois os dados estão embutidos
em um único documento, reduzindo o custo de navegação e tornando os esquemas menos
complexos.

Avaliação da métrica custo de recuperação

Para o cálculo da métrica custo de recuperação no primeiro cenário, é necessário obter os
valores de contarRel(E) e contarAtr(E) (Equação 5.7). Os valores de contarRel(E), que
avaliam os relacionamentos referenciados e aninhados, já foram calculados na etapa ante-
rior durante a análise do padrão de acesso. Assim, nesta etapa, calcula-se exclusivamente
contarAtr(E), que considera os atributos simples e complexos definidos em cada esquema.

A Tabela 5.15 apresenta os resultados detalhados do cálculo de contarAtr(E) para cada
solução E, utilizando os coeficientes de ponderação previamente definidos: coefs = 0.51
para atributos simples e coefc = 0.49 para atributos complexos. O custo de recuperação
total é então obtido somando contarRel(E) e contarAtr(E).

Os resultados mostram que E4 apresenta o maior custo de recuperação total (7.41),
devido ao maior número de relacionamentos referenciados e à predominância de atributos

59

Tabela 5.15: Análise de custo de recuperação primeiro cenário.
Soluções Esquemas Atributos

simples
Atributos
complexos

Cálculo com
coeficientes contarAtr(E) contarRel(E) Total

E1 e1 9 0 9× 0.51 + 0× 0.49 = 4.59 4.59 1.2 5.79
E2 e1 8 1 8× 0.51 + 1× 0.49 = 4.57 4.57 1.0 5.57
E3 e1 7 2 7× 0.51 + 2× 0.49 = 4.55 4.55 0.8 5.35
E4 e1 11 0 11× 0.51 + 0× 0.49 = 5.61 5.61 1.8 7.41
E5 e1 7 2 7× 0.51 + 2× 0.49 = 4.55 4.55 0.8 5.35

E6

e1 2 0 2× 0.51 + 0× 0.49 = 1.02
8.1 1.2 9.3e2 4 1 4× 0.51 + 1× 0.49 = 2.53

e3 7 2 7× 0.51 + 2× 0.49 = 4.55
E7 e1 7 2 7× 0.51 + 2× 0.49 = 4.55 4.55 0.8 5.35
E8 e1 8 1 8× 0.51 + 1× 0.49 = 4.57 4.57 1.0 5.57

E9
e1 4 1 4× 0.51 + 1× 0.49 = 2.53 5.08 1.0 6.08
e2 5 0 5× 0.51 + 0× 0.49 = 2.55

simples. Por outro lado, E3, E5 e E7 têm valores mais baixos (5.35), devido à combinação
equilibrada de relacionamentos aninhados e atributos complexos.

Avaliação da métrica redundância

A Tabela 5.16 apresenta a análise da métrica redundância no primeiro cenário, calculando
o número de coleções repetidas em cada solução E. A redundância ocorre quando uma
mesma coleção aparece em mais de um esquema ej dentro de uma solução E, o que pode
aumentar o consumo de armazenamento e comprometer a eficiência da gestão dos dados.

Tabela 5.16: Análise de coleções repetidas em cada esquema.
E1 E2 E3 E4 E5 E6 E7 E8 E9
0 0 0 0 0 3 0 0 1

As soluções E1, E2, E3, E4, E5, E7 e E8 apresentam valor 0 na contagem de coleções
repetidas, indicando que seus esquemas não compartilham coleções duplicadas. Essa
característica é desejável, pois minimiza o consumo de recursos e reduz o risco de incon-
sistências entre dados duplicados. A solução E6 possui 3 coleções repetidas, sendo a mais
redundante entre todas. Essa repetição pode indicar um desenho que privilegia a dupli-
cação para facilitar consultas específicas, mas com o custo de maior armazenamento e
complexidade de manutenção. A solução E9 apresenta 1 coleção repetida. Embora menos
redundante que E6, essa repetição ainda pode representar um uso ineficiente de recursos,
especialmente se as consultas relacionadas puderem ser atendidas sem a duplicação.

Finalmente, a Tabela 5.17 apresenta os resultados consolidados das métricas para cada
solução no primeiro cenário. As métricas avaliadas incluem padrão de acesso, custo de
recuperação, redundância e completude, além de um valor total que combina os resultados
das três primeiras métricas.

60

Tabela 5.17: Resultados final das métricas no primeiro cenário.
Soluções Padrão

acesso
Custo

recuperação Redundância Total Completude

E1 1.2 5.79 0 6.99 1
E2 1 5.57 0 6.57 1
E3 0.8 5.35 0 6.15 1
E4 1.8 7.41 0 9.21 1
E5 0.8 5.35 0 6.15 1
E6 1.2 9.3 3 13.5 1
E7 0.8 5.35 0 6.15 1
E8 1 5.57 0 6.57 1
E9 1 6.08 1 8.08 0.7

A métrica padrão de acesso varia entre 0.8 e 1.8, com E4 apresentando o maior valor
(1.8) devido ao maior número de relacionamentos referenciados, o que aumenta a comple-
xidade estrutural. Soluções como E3, E5 e E7 possuem os menores valores (0.8), refletindo
maior simplicidade com predominância de relacionamentos aninhados.

A métrica custo de recuperação é mais elevado em E6 (9.3), consequência de múltiplos
esquemas com alta presença de atributos simples e complexos. Em contrapartida, soluções
como E3, E5 e E7 apresentaram o menor custo (5.35), indicando um equilíbrio entre os tipos
de atributos.

A métrica redundância é nula na maioria das soluções, com exceção de E6 e E9. E6

é a solução mais redundante (3), enquanto E9 apresenta uma redundância moderada
(1), sugerindo a necessidade de otimizações no desenho estrutural para evitar coleções
repetidas.

A métrica completude foi plenamente atingida (1) por quase todas as soluções, exceto
E9, que obteve um valor de 0.7. Essa limitação ocorre devido à falta de relacionamentos
necessários para atender a todas as consultas E4 e E5.

O valor total é uma soma da métrica padrão de acesso, custo de recuperação e redundân-
cia, destacando-se E6 como a solução com maior valor (13.5), devido à alta redundância
e custo de recuperação. Em contrapartida, E3, E5 e E7 apresentam os menores valores
(6.15).

5.6.2 Segundo Cenário de Avaliação

Nesta seção, são apresentados os resultados da aplicação das métricas de análise no se-
gundo cenário, descrito em Kuszera et al. (2020), que inclui quatro coleções: cliente,
pedido, linha_pedido e produto. A escolha desse estudo de caso se justifica pelo fato de
que o autor também utiliza métricas para comparar diferentes esquemas de modelagem em

61

bancos de dados NoSQL, com foco específico em cenários de consultas. Isso torna o cenário
especialmente apropriado para este trabalho, pois possibilita uma análise comparativa dos
resultados obtidos a partir de um caso já discutido na literatura.

A Figura 5.6 mostra quatro esquemas gerados para a análise. Foram definidas sete
consultas específicas para avaliação, conforme a Tabela 5.18. É importante destacar que
os cenários de validação foram mantidos em sua forma original, conforme apresentados nos
artigos fontes, garantindo a fidelidade aos contextos de estudo propostos pelos autores.
Por esse motivo, os termos em inglês foram preservados nas figuras.

62

 _id : integer,
 categoria : integer,
 titulo : string,
 actor : string,
 preco : double,
 especial : integer,
 common_prod_id : integer,

produto

 _id : integer,
 quan_stock : int,
 vendas : integer

estoque

 _id : integer,
 dataminima : date,
 quan_min : integer,
 daa : date,
 quantidade : integer,
 dataprevista: date

 _id : integer,
 categoria : integer,
 titulo : string,
 actor : string,
 preco : double,
 especial : integer,
 common_prod_id : integer,
 linhapedidos : array
 reordem : array,

produto

 _id : integer,
 data : date,
 valorliquido : double,
 imposto : double,
 valortotal : double,
 linhapedidos : array

pedido

 _id : integer,
 nome : string,
 sobrenome : string,
 endereco1 : string,
 endereco2 : string,
 cidade : string,
 estado : string,
 zip : string,
 pais : string,
 regiao : int,
 email : string,
 tipocartaocredito : int,
 cartaocredito : string
 expiracaocartao : string,
 username : string,
 password : string,
 renda : int,
 genero : string

cliente

 _id : integer,
 quan_stock : int,
 vendas : integer

estoque

 _id : integer,
 nome : string

categoria

 _id : integer,
 nome : string,
 sobrenome : string,
 endereco1 : string,
 endereco2 : string,
 cidade : string,
 estado : string,
 zip : string,
 pais : string,
 regiao : integer,
 email : string,
 tipocartaocredito : int,
 cartaocredito : string
 expiracaocartao : string,
 username : string,
 password : string,
 renda : integer,
 genero : string,
 pedidos : array,
 linhapedidos : array

 _id : integer,
 data : date,
 valorliquido : double,
 imposto : double,
 valortotal : double,
 linhapedido : array

pedido

 _id : integer,
 quantidade : string,
 data : integer

linhapedido

 _id : integer,
 categoria : int,
 titulo : string,
 actor : string,
 preco : double,
 especial : int
 common_prod_id : int

produto

 _id : integer,
 nome : string

categoria

 _id : integer,
 nome : string

categoria
 _id : integer,
 nome : string,
 sobrenome : string,
 endereco1 : string,
 endereco2 : string,
 cidade : string,
 estado : string,
 zip : string,
 pais : string,
 regiao : integer,
 email : string,
 tipocartaocredito : integer,
 cartaocredito : string
 expiracaocartao : string,
 username : string,
 password : string,
 renda : integer,
 genero : string

cliente

 _id : integer,
 categoria : integer,
 titulo : string,
 actor : string,
 preco : double,
 especial : integer,
 common_prod_id : int,
 reordenar : array,
 linhapedido : array

produto

 _id : integer,
 quan_stock : int,
 vendas : int

estoque

 _id : integer,
 data : date,
 valorliquido : double,
 imposto : double,
 valortotal : double,
 linhapedido : array

pedido

 _id : integer,
 data : date,
 valorliquido : double,
 imposto : double,
 valortotal : double,
 linhapedido : array

pedido

 _id : integer,
 nome : string,
 sobrenome : string,
 endereco1 : string,
 endereco2 : string,
 cidade : string,
 estado : string,
 zip : string,
 pais : string,
 regiao : int,
 email : string,
 tipocartaocredito : int,
 cartaocredito : string
 expiracaocartao : string,
 username : string,
 password : string,
 renda : int,
 genero : string

cliente

 _id : integer,
 dataminima : date,
 quantminima : integer,
 datareordem : date,
 quantreordem: integer,
 data : date

reordem

 _id : integer,
 categoria : integer,
 titulo : string,
 actor : string,
 preco : double,
 especial : integer,
 common_prod_id : int

produto

 _id : integer,
 nome : string

categoria

 _id : integer,
 categoria : integer,
 titulo : string,
 actor : string,
 preco : double,
 especial : integer,
 common_prod_id : integer,
 reordem : array,

produto

 _id : integer,
 quan_stock : int,
 vendas : integer

estoque

 _id : integer,
 nome : string

categoria

 _id : integer,
 nome : string,
 sobrenome : string,
 endereco1 : string,
 endereco2 : string,
 cidade : string,
 estado : string,
 zip : string,
 pais : string,
 regiao : integer,
 email : string,
 tipocartaocredito : integer,
 cartaocredito : string
 expiracaocartao : string,
 username : string,
 password : string,
 renda : integer,
 genero : string

cliente

 _id : integer,
 categoria : integer,
 titulo : string,
 actor : string,
 preco : double,
 especial : integer,
 common_prod_id : integer,
 reordem : array,

produto

 _id : integer,
 quan_stock : int,
 vendas : integer

estoque

 _id : integer,
nome : string

categoria

cliente

 _id : integer,
nome : string

categoria

reordem

 _id : integer,
 nome : string,
 sobrenome : string,
 endereco1 : string,
 endereco2 : string,
 cidade : string,
 estado : string,
 zip : string,
 pais : string,
 regiao : integer,
 email : string,
 tipocartaocredito : integer,
 cartaocredito : string
 expiracaocartao : string,
 username : string,
 password : string,
 renda : integer,
 genero : string,
 pedido : array,
 linhapedido : array

cliente

E1 E2

E4

E3

 _id : integer,
 quan_stock : int,
 vendas : int

estoque

_id : integer,
 categoria : int,
 titulo : string,
 actor : string,
 preco : double,
 especial : int
 common_prod_id : int,

produto

 _id : integer,
 nome : string

categoria

Figura 5.6: Esquemas para o segundo cenário (link para os esquemas).

63

https://acortar.link/nDgpID

Tabela 5.18: Consultas definidas para o segundo cenário.
No Consulta Coleções
q1 Selecionar todos os dados dos clientes onde o id do cliente é igual a

1.
cliente

q2 Selecionar todos os dados dos produtos juntamente com o inventário,
e onde o identificador do produto é igual a 1

produto, estoque

q3 Selecionar todos os dados dos pedidos juntamente com as linhas de
pedido, onde o id do pedido é igual a 1

pedido, linha_pedido

q4 Selecionar todos os dados dos clientes juntamente com os pedidos,
linhas de pedidos e produtos, e a data do pedido está entre ’2009-01-
01’ e ’2009-01-02’

cliente, pedido, li-
nha_pedido, produto

q5 Selecionar todos os dados dos produtos juntamente com as linhas de
pedidos, os pedidos e os clientes, e onde o preço do produto está entre
29 e 30

produto, linha_pedido, pe-
dido, cliente

q6 Selecionar todos os dados dos pedidos juntamente com os clientes, e
as linhas de pedidos, onde a data do pedido está entre ’2009-01-01’ e
’2009-01-02’

pedido, cliente, linha_pedido

q7 Selecionar todos os dados do inventário juntamente com as linhas de
pedido, onde o identificador do pedido é igual a 1

linha_pedido, estoque

Avaliação da métrica completude

A análise da métrica completude foi realizada para verificar o suporte das consultas por
cada esquema. A Tabela 5.19 apresenta os resultados da análise de existência de coleções
e relacionamentos.

Tabela 5.19: Análise de existeColecao(E, qi) e existeRelacionamento(E, qi) para cada
consulta nos quatro esquemas.

E1 E2 E3 E4
eC eR R eC eR R eC eR R eC eR R

q1 1 1 1 1 1 1 1 1 1 1 1 1
q2 1 1 1 1 1 1 1 1 1 1 1 1
q3 0 0 0 1 1 1 0 0 0 0 0 0
q4 0 0 0 1 1 1 0 0 0 0 0 0
q5 0 0 0 1 1 1 0 0 0 0 0 0
q6 0 0 0 1 1 1 0 0 0 0 0 0
q7 0 0 0 1 0 0 0 0 0 0 0 0

Tabela 5.20: Resultados da métrica completude para o segundo cenário.
E1 E2 E3 E4
0.3 0.9 0.3 0.3

64

Dos resultados observa-se, que E2 é o único esquema que atende a 90% das consultas,
enquanto os demais esquemas oferecem suporte a apenas 30%. Essa limitação decorre
da ausência de coleções ou relacionamentos necessários para responder às consultas mais
complexas.

Avaliação da métrica padrão de acesso

De maneira análoga ao primeiro cenário, o cálculo da métrica padrão de acesso foi realizado
com base na análise dos relacionamentos presentes nos esquemas. A Tabela 5.21 apresenta
os resultados obtidos. Observa-se que a solução E3 possui o maior valor (4.4), refletindo a
maior complexidade estrutural devido ao elevado número de relacionamentos aninhados.
Em contrapartida, as soluções E1 e E4 exibem os menores valores (0.4), caracterizando
esquemas com estruturas mais simples.

Tabela 5.21: Análise do padrão de acesso no segundo cenário.

Soluções Esquemas
Relacionamentos

referenciados
Relacionamentos

aninhados
Cálculo com
coeficientes

Total

E1

e1 0 0 0× 0.6 + 0× 0.4 = 0

0.4
e2 0 0 0× 0.6 + 0× 0.4 = 0
e3 0 1 0× 0.6 + 1× 0.4 = 0.4
e4 0 0 0× 0.6 + 0× 0.4 = 0

E2

e1 0 4 0× 0.6 + 4× 0.4 = 1.6
3.2e2 0 2 0× 0.6 + 2× 0.4 = 0.8

e3 0 2 0× 0.6 + 2× 0.4 = 0.8

E3

e1 0 4 0× 0.6 + 4× 0.4 = 1.6
4.4e2 0 3 0× 0.6 + 3× 0.4 = 1.2

e3 0 4 0× 0.6 + 4× 0.4 = 1.6

E4

e1 0 0 0× 0.6 + 0× 0.4 = 0

0.4
e2 0 0 0× 0.6 + 0× 0.4 = 0
e3 0 1 0× 0.6 + 1× 0.4 = 0.4
e4 0 0 0× 0.6 + 0× 0.4 = 0

Avaliação da métrica custo de recuperação

De forma análoga ao primeiro cenário, o cálculo da métrica custo de recuperação requer
a determinação de contarAtr(E) e contarRel(E). No entanto, os valores de contarRel(E)
para todas as soluções já foram previamente calculados. Assim, procede-se apenas ao
cálculo de contarAtr(E).

65

A Tabela 5.22 apresenta os resultados obtidos. A solução E3 apresenta o maior custo
total (64.09), devido à elevada quantidade de atributos simples e complexos em seus es-
quemas, além do alto valor de contarRel(E) (4.4). Por outro lado, E4 possui o menor custo
total (19.74), destacando-se pela simplicidade de seus esquemas e pela baixa contribuição
de contarRel(E) (0.4).

Quanto à análise dos atributos (contarAtr(E)) a solução E3 apresenta o maior valor
(59.69), evidenciando o impacto significativo de seus atributos simples e complexos. Por
outro lado, E4 possui o menor valor (19.34), devido ao menor número de atributos definidos
em seus esquemas. Os valores consolidados de contarAtr(E) para cada solução mostra
como a distribuição de atributos simples e complexos impacta o custo.

Tabela 5.22: Análise de custo de recuperação segundo cenário.
Soluções Esquemas Atributos

simples
Atributos
complexos

Cálculo com
coeficientes contarAtr(E) contarRel(E) Total

E1

e1 6 1 6× 0.51 + 1× 0.49 = 3.55

20.32 0.4 20.72e2 2 0 2× 0.51 + 0× 0.49 = 1.02
e3 10 3 10× 0.51 + 3× 0.49 = 6.57
e4 18 0 18× 0.51 + 0× 0.49 = 9.18

E2

e1 38 0 38× 0.51 + 0× 0.49 = 19.38
33.15 3.2 36.35e2 12 0 12× 0.51 + 0× 0.49 = 6.12

e3 15 0 15× 0.51 + 0× 0.49 = 7.65

E3

e1 36 5 36× 0.51 + 5× 0.49 = 20.81
59.69 4.4 64.09e2 30 5 30× 0.51 + 5× 0.49 = 17.75

e3 36 6 36× 0.51 + 6× 0.49 = 21.13

E4

e1 2 0 2× 0.51 + 0× 0.49 = 1.02

19.34 0.4 19.74e2 18 2 18× 0.51 + 2× 0.49 = 10.16
e3 10 0 10× 0.51 + 0× 0.49 = 5.1
e4 6 0 6× 0.51 + 0× 0.49 = 3.06

A análise evidencia que E4 é a solução mais eficiente em termos de custo de recuperação,
enquanto E3 é a mais complexa, com custos elevados devido à alta presença de atributos
e relacionamentos. E1 oferece um equilíbrio entre simplicidade e custo, e E2 pode ser
considerado um intermediário, apresentando maior custo do que E1 e E4, mas ainda inferior
ao de E3.

Avaliação da métrica redundância

Os resultados da análise da métrica redundância no segundo cenário estão apresentados
na Tabela 5.23.

Tabela 5.23: Análise da redundância.
E1 E2 E3 E4
0 4 9 0

E3 apresentou o maior número de coleções repetidas (9), evidenciando um desenho que
privilegia a duplicação de dados. Apesar de facilitar certas operações, essa abordagem

66

resulta em maior consumo de armazenamento e maior complexidade de manutenção.
E2 registrou 4 coleções repetidas, representando um nível intermediário de redundância.
Embora menos eficiente que E1 e E4 ainda é menos impactante que E3. E1 e E4 não possuem
coleções repetidas (0), indicando desenhos mais otimizados e eficientes.

A redundância em E3 reflete um desenho que pode ser adequado para cenários de
consulta intensiva, mas apresenta desafios em termos de armazenamento e consistência
de dados. Esse nível de duplicação requer maior atenção para evitar inconsistências em
operações de atualização. E2, apesar de apresentar redundância moderada, ainda pode
ser otimizado para reduzir a duplicação de dados sem comprometer o desempenho nas
consultas. E1 e E4 destacam-se como soluções mais equilibradas, com estruturas otimizadas
que evitam duplicações.

Tabela 5.24: Resultados final das métricas no segundo cenário.
Soluções Padrão

acesso
Custo

recuperação Redundância Total Completude

E1 0.4 20.72 0 21.12 0.3
E2 3.2 36.35 4 43.55 0.9
E3 4.4 64.09 9 77.49 0.3
E4 0.4 19.74 0 20.14 0.3

A Tabela 5.24 apresenta os resultados finais. Apesar da simplicidade de E1 e do seu
baixo custo de recuperação (20.72), a sua baixa completude (0.3) limita seu uso em ce-
nários onde é necessário suporte abrangente às consultas. E2 Combina alta completude
(0.9) com um custo de recuperação intermediário (36.35), sendo uma solução balanceada,
embora apresente redundância moderada (4). E3 é a solução mais complexa e redun-
dante, com altos custos (64.09) e completude limitada (0.3). E4 destaca-se como a solução
mais eficiente em termos de custo (19.74) e ausência de redundância (0), mas sua baixa
completude (0.3) restringe sua aplicabilidade.

5.7 Considerações Finais

Este capítulo descreve quatro métricas de avaliação: completude, padrão de acesso, custo
de recuperação e redundância. Essas métricas foram selecionadas por capturarem aspectos
complementares e essenciais da qualidade dos esquemas. A completude assegura que todas
as informações necessárias estejam disponíveis nas consultas, o padrão de acesso reflete
a complexidade de navegação entre coleções, o custo de recuperação estima o volume de
dados transferidos durante uma consulta, e a redundância avalia a duplicação de dados no
armazenamento. Juntas, essas métricas fornecem uma visão abrangente sobre a eficiência
e a adequação dos esquemas modelados para diferentes cenários de uso.

67

As métricas propostas possibilitam uma avaliação comparativa e quantitativa, permi-
tindo a distinção entre diferentes esquemas com base em sua complexidade estrutural.
Conforme observado, menores valores das métricas estão associados a esquemas mais sim-
ples, enquanto valores mais elevados correspondem a esquemas de maior complexidade.
Tais métricas são fundamentais no capítulo subsequente, onde serão incorporadas como
parte da função objetivo de um algoritmo meta-heurístico, contribuindo para a otimização
e seleção de esquemas mais adequados.

68

Capítulo 6

Otimização Heurística:
Determinação da Melhor Solução
Encontrada

Neste capítulo, é apresentada a forma pela qual o algoritmo meta heurístico Variable
Neighborhood Search (VNS) é empregado para encontrar a solução mais eficiente, levando
em consideração as consultas e coleções envolvidas em determinado modelo. Para tanto,
o VNS utiliza as métricas e coeficientes de ponderação estabelecidos ao longo dos capítulos
anteriores. Este capítulo está dividido em duas seções. Na Seção 6.1, é apresentado o
pseudocódigo do algoritmo VNS, juntamente com as regras de validação, as métricas de
avaliação integradas ao algoritmo e os operadores de perturbação utilizados. Na Seção
6.2, são descritos dois cenários de validação.

6.1 Algoritmo VNS

O algoritmo VNS é um algoritmo meta-heurístico utilizado para resolver problemas de
otimização combinatória e contínua (Mladenović & Hansen, 1997). Ele opera explorando
sistematicamente diferentes estruturas de vizinhança de uma solução inicial, alternando
entre busca local e perturbações para escapar de ótimos locais e buscar soluções globais
de melhor qualidade.

No tratamento de problemas de otimização, pode-se optar por meta-heurísticas base-
adas em uma única solução ou em uma população de soluções, conforme Abualigah et al.
(2021). A preferência por uma abordagem de solução única, como o VNS, simplifica o
processo de análise ao focar na evolução de uma única configuração ao longo da execução,
em vez de gerenciar uma população de soluções potenciais. Dentre as meta-heurísticas
de solução única, como Tabu Search, Simulated Annealing, Iterated Local Search,

69

Variable Space Search e Guided Local Search, o VNS destaca-se por sua estrutura
conceitualmente simples e pela menor demanda de ajuste de parâmetros (Hansen & Mla-
denović, 2001). Esses atributos facilitam sua aplicação em experimentos iniciais para
identificar a melhor solução, tornando-o uma escolha prática e eficiente para o problema
em questão.

A escolha do VNS como meta-heurística justifica-se por sua capacidade de explorar efici-
entemente espaços de busca combinatórios complexos, conforme demonstrado por Hansen
et al. (2019). No contexto deste estudo, onde o espaço de soluções corresponde ao con-
junto de todas as configurações possíveis de relacionamentos (referência, aninhamento ou
ausência) entre coleções em bancos de dados NoSQL (formalizado na Equação 6.1), o VNS
destaca-se por superar dois desafios críticos: a natureza exponencial do espaço de busca,
cujo tamanho cresce com o número de coleções, inviabilizando métodos exaustivos; a ne-
cessidade de equilibrar adequadamente a diversificação, explorando novas regiões, com a
intensificação por meio de refinamento local, estratégia intrínseca à alternância sistemá-
tica de vizinhanças que caracteriza o VNS. Essa dupla capacidade torna-o particularmente
adequado para otimizar esquemas documentais, onde operações de CRUD convencionais
mostram-se computacionalmente proibitivas frente à complexidade combinatória do pro-
blema.

|S| = 3n(n−1) (6.1)

A Figura 6.1 descreve, em termos gerais, o funcionamento do algoritmo VNS, cujo
objetivo é determinar a solução mais ótima a partir de qualquer solução inicial, ou seja,
de qualquer conjunto de esquemas previamente definido. No diagrama de fluxo, destacam-
se três módulos principais: avaliar solução, perturbar solução e validar solução.

A atividade avaliar solução tem como objetivo realizar uma avaliação quantitativa
dos esquemas da solução, empregando as métricas completude, padrão de acesso e redun-
dância, conforme definidas no Capítulo 5. A atividade perturbar solução é responsável
por realizar modificações nos esquemas para explorar o espaço de busca com todas as
possíveis soluções, sendo que a Tabela 6.1 apresenta detalhadamente as sete operações de
perturbação estabelecidas para essa finalidade. Por fim, a atividade validar solução aplica
doze regras de validação para assegurar a consistência e coerência dos esquemas.

70

Inicio

Solução Inicial

Avaliar
Solução

 SIM NÃO Condição
parada

Melhor
Solução

Perturbar
Solução

Validar
Solução

SIM

NÃOSolução
valida?

Fim

Figura 6.1: Diagrama de fluxo do algoritmo VNS para obtenção da solução mais ótima.

Tabela 6.1: Operações de perturbação usadas na atividade perturbar solução.
Operações Perturbação Objetivo Algoritmo
Modificar relacionamentos Altera os relacionamentos em um esquema, alternando entre os tipos referenciado e aninhado. 3
Adicionar Relacionamentos Insere um relacionamento (referenciado ou aninhado) em um esquema. 4
Adicionar coleções Adiciona uma coleção ao esquema e estabelece uma relação aleatória com uma coleção existente. 5
Eliminar coleções Remove uma coleção extrema do esquema e desfaz suas relações. 6
Gerar esquemas Constrói um esquema válido com n coleções. 7
Eliminar esquemas Remove aleatoriamente um esquema de um conjunto de esquemas. 8
Reinicializar esquemas Cria um novo esquema do mesmo tamanho e substitui o anterior. 9

Adicionalmente, a Figura 6.2 apresenta a arquitetura funcional do algoritmo VNS, des-
tacando suas principais entradas, os módulos centrais — avaliar solução, perturbar solução
e validar solução — bem como a saída gerada pelo processo. A Figura 6.2 evidencia ainda
a distribuição dos algoritmos entre os respectivos módulos, permitindo uma visualização
clara da organização interna e do fluxo de execução do método proposto.

6.1.1 Pseudocódigo

O Algoritmo 1 descreve o procedimento para determinar a melhor solução possível para um
determinado problema. Esse processo utiliza como entrada uma solução inicial (formada
por um conjunto de esquemas), as consultas que devem ser atendidas e o número total

71

 Entrada:
 - Solução inicial
 - Consultas
 - max_iter

Avaliar Solução
(Algoritmo 2)

Perturbar Solução
(Algoritmos 3 ao 9)

Validar Solução
Função validar_funcao()

Algoritmo 1 max_iter = 1000

Saída:
- Solução ótima

Figura 6.2: Arquitetura do algoritmos VNS.

de iterações a ser executado. Como saída, o algoritmo gera uma solução otimizada. Para
gerar a solução final, o algoritmo fundamenta-se em três módulos principais: o módulo
funcao_objetivo(), responsável por avaliar o fitness (ou custo) de cada solução; o módulo
perturbar_solucao(), que introduz pequenas modificações à solução atual para explorar
novas possibilidades; e o módulo validar_solucao(), encarregado de verificar se a solução
resultante é coerente e consistente. Na sequência, cada um desses elementos é explicado
em detalhe.

Algoritmo 1: VNS para determinar o esquema mais ótimo
Entrada: Consultas consultas, Solução inicial solucao_inicial e número

iterações max_iter=1 000
Saída: Solução mais otimizada
melhor_solucao← solucao_inicial;
melhor_fitness← funcao_objetivo(consultas, melhor_solucao);
iteracoes← 0;
Enquanto iteracoes < max_iter Fazer

op← operação aleatória de {0, 1, 2, 3, 4, 5, 6};
nova_solucao← perturbar_solucao(melhor_solucao, op);
Se ¬validar_solucao(nova_solucao) Então

iteracoes← iteracoes + 1;
Continuar

novo_fitness← funcao_objetivo(consultas, nova_solucao);
Se novo_fitness < melhor_fitness Então

melhor_solucao← nova_solucao;
melhor_fitness← novo_fitness;

iteracoes← iteracoes + 1;

Retornar melhor_solucao;

Entradas e saída do algoritmo

As entradas do algoritmo são compostas pelas consultas, pela solução inicial e pelo nú-
mero de iterações. Em particular, tanto as consultas quanto a solução foram definidas

72

formalmente no Capítulo 5, sendo representadas pelos conjuntos Q e E respectivamente,
juntamente com o conjunto de coleções C.

Cada consulta qi ∈ Q pode ser associada a um subconjunto de coleções do conjunto
C. Em termos de implementação, uma consulta qi pode ser representada por um par
chave-valor em um dicionário, onde a chave corresponde à consulta e o valor é uma lista
das coleções necessárias para responder a consulta. A Figura 6.3 ilustra um exemplo de
representação das consultas que a solução deve atender. No exemplo, a variável Q contém
três consultas, cada qual associada a um subconjunto do conjunto de coleções C = {1, 2,
3, 4}. Em particular, a chave q1 e os valores associados [1, 2, 3] indica que a consulta q1

requer as coleções 1, 2 e 3 para ser atendida; a consulta q2 requer as coleções 1 e 3; e a
consulta q3 requer as coleções 1, 3 e 4.

Q = {
 'q1': [1, 2, 3],
 'q2': [1, 3],
 'q3': [1, 3, 4]
}

Figura 6.3: Representação das consultas.

Por outro lado, uma solução E é um conjunto de esquemas que devem atender as
consultas definidas em Q. Em termos formais, se E é uma solução, então E = {e1, e2, ..., em}
com m ≥ 1. Cada esquema ej (1 ≥ j ≥ m) satisfaz ej ⊆ C e ej ̸= ∅. Em termos de
implementação, um esquema ej ∈ E, é definido mediante uma matriz M (j) de dimensão
k × k, onde k é o numero de coleções de C. Cada linha e cada coluna dessa matriz
correspondem, respectivamente, a uma das coleções em C. Formalmente tem-se:

M (j) =


m

(j)
1,1 m

(j)
1,2 · · · m

(j)
1,k

m
(j)
2,1 m

(j)
2,2 · · · m

(j)
2,k

...
m

(j)
k,1 m

(j)
k,2 · · · m

(j)
k,k

 , onde 0 ≤ l1, l2 < k.

Nessa matriz, cada elemento
(
m

(j)
l1,l2

)
descreve o valor associado à coleção cl1 (linha) e

a coleção cl2 (coluna). Os valores possíveis para cada posição na matriz são 0, 1, 2, 3 e 4.
A seguir, apresenta-se a codificação de cada um desses valores.

A diagonal principal da matriz M (j)
(
m

(j)
l,l

)
indica se a coleção cl participa ou não do

esquema ej. Então adota-se:

73

m
(j)
l,l =

1, se a coleção cl participa de ej,

2, se a coleção cl não participa de ej.

Os elementos fora da diagonal principal da matriz ej podem assumir apenas os valores
0, 3 ou 4. Os valores 3 e 4 representam relacionamentos direcionados entre coleções que
efetivamente participam de ej. O valor 3 indica referência (relação referenciada) e o valor
4 indica aninhamento (relação aninhada). Esses relacionamentos são unidirecionais, de
modo que m

(j)
l1,l2 ∈ {3, 4} não implica necessariamente o mesmo valor em m

(j)
l2,l1 . Caso

contrário, se não há relacionamento ou se ao menos uma das coleções não participa do
esquema, o valor atribuído é 0. Então adota-se:

m
(j)
l1,l2 =


3, se a coleção cl1 referencia cl2 ,

4, se a coleção cl1 aninha a cl2 ,

0, não existe relacionamento entre as coleções.

Para ilustrar como a matriz representa diferentes cenários de relacionamento entre
coleções, considere-se a solução E, formada pelos três esquemas e1, e2 e e3, ou seja E =
{e1, e2, e3}. As Figuras 6.4, 6.5 e 6.6 mostram cada esquema individualmente. Na Figura
6.4, à esquerda, visualiza-se o esquema e1 com três coleções (A, B e C), utilizando a
notação gráfica descrita no Capítulo 3. Nesse diagrama, a coleção A referencia a coleção
B, enquanto B aninha C. À direita, exibe-se a matriz correspondente a e1. Observa-se
que todas as posições na diagonal principal são iguais a 1, sinalizando a participação de
A, B e C no esquema. A posição [0,1] tem o valor 3, pois A referencia B, e a posição [1,2]
possui o valor 4, representando o aninhamento de C em B. As demais posições recebem o
valor 0, indicando ausência de outros relacionamentos.

A
B

C
A
B
C

A B C
1

1
1

3 0
40

0 0
_idB

e1 matriz e1

Figura 6.4: Representação gráfica e matricial do esquema e1.

Na Figura 6.5, observa-se o esquema e2, no qual apenas as coleções A e C participam
efetivamente, enquanto B está presente no conjunto completo de coleções mas não integra

74

este esquema. Ainda assim, a matriz permanece com dimensão 3×3, mantendo a posição
correspondente a B na diagonal com o valor 2, para indicar sua não participação. As
coleções A e C aparecem com o valor 1 na diagonal principal, assinalando que participam
de e2. Fora da diagonal, a entrada [0,2] igual a 3 representa a referência de A para C,
enquanto as demais posições são 0, indicando ausência de outros relacionamentos. Assim,
a matriz codifica tanto a presença de A e C no esquema quanto a ausência de B e o
relacionamento de referência unidirecional de A para C.

A C
A
B
C

A B C
1

2
1

0 3
00

0 0_idC

e2 matriz e2

Figura 6.5: Representação gráfica e matricial do esquema e2

Na Figura 6.6, observa-se o esquema e3 envolvendo as coleções A, B e C. À esquerda,
o diagrama mostra que A referencia C (indicando um atributo _idC em A) e que C
referencia B (indicando um atributo _idB em C), enquanto B não referencia nenhuma
das outras coleções. À direita, a matriz de e3 confirma essa configuração: todas as
coleções participam (valor 1 na diagonal principal) e as posições [0,2] e [2,1] são iguais
a 3, sinalizando relações de referência unidirecionais. O restante das posições fora da
diagonal são 0, indicando ausência de outras conexões. Desse modo, a matriz retrata de
forma clara os relacionamentos definidos no esquema, assim como a participação de A, B
e C.

A C B
A
B
C

A B C
1

1
1

0 3
00

0 3_idC _idB

e3 matriz e3

Figura 6.6: Representação gráfica e matricial do esquema e3

A Figura 6.7 apresenta a variável solucao_inicial, que contém três esquemas: e1, e2

e e3. Assim, tanto a Figura 6.7 quanto a Figura 6.3 ilustram as entradas formatadas em
estrutura de dados para o Algoritmo 1.

75

e_1 = [
 [1, 3, 0],
 [0, 1, 4],
 [0, 0, 1]
]

e_2 = [
 [1, 0, 3],
 [0, 2, 0],
 [0, 0, 1]
]

e_3 = [
 [1, 0, 3],
 [0, 1, 0],
 [0, 3, 1]
]

solucao_inicial = [e_1, e_2, e_3]

Figura 6.7: Representação da solução inicial.

6.1.2 Regras de Validação

A representação matricial de uma solução viabiliza uma manipulação computacional ágil
e eficiente. No entanto, tais operações podem comprometer a consistência e a coerência
lógica dos esquemas. Com o intuito de preservar a integridade estrutural da represen-
tação, foram definidas regras formais empregadas pela função validar_esquema()1, no
Algoritmo 1, para assegurar a validade dos esquemas gerados:

• Os únicos valores válidos que a matriz pode assumir são 0, 1, 2, 3 e 4. Os valores
1 e 2 são usados para representar a participação ou não das coleções no esquema.
Os valores 3 e 4 são utilizados para representar relações referenciadas e aninhadas,
respectivamente. Os demais elementos devem conter o valor 0;

• Uma coleção aninhada não pode ser referenciada por uma coleção externa, e vice-
versa, conforme ilustrado na Figura 6.8, onde a coleção A tenta referenciar dire-
tamente o documento C, o que não é possível porque C está aninhado dentro do
documento B;

• Um esquema deve conter, no mínimo, uma coleção. Assim, é obrigatório que a
diagonal da matriz possua pelo menos um elemento com valor igual a 1;

• Considera-se, no máximo, um aninhamento de 2 níveis em um esquema;

• Os relacionamentos, sejam referenciados ou aninhados, entre duas coleções são di-
recionais. Isso quer dizer que a relação tem um sentido: de uma coleção para outra,
mas não necessariamente o contrário;

• Se duas coleções estão relacionadas por referência ou aninhamento, os valores cor-
respondentes na diagonal dessas coleções devem ser iguais a 1;

1https://tinyurl.com/2k2b8bfh

76

https://tinyurl.com/2k2b8bfh

• Não é permitido que uma coleção estabeleça uma autorreferência, ou seja, uma
relação consigo mesma;

• Se uma coleção faz parte de um esquema, ela deve estar relacionada a pelo menos
outra coleção, salvo no caso de ser a única coleção presente no esquema. Essa con-
dição garante que o esquema represente um conjunto de coleções inter-relacionadas,
alinhado ao objetivo de otimizar o agrupamento de dados com interações significati-
vas. Caso uma coleção permaneça isolada, sem qualquer relação com as demais, ela
é considerada, no contexto deste trabalho, como um esquema independente. Isso
ocorre porque, do ponto de vista de desempenho e padrão de acesso, coleções isola-
das não contribuem para os benefícios estruturais esperados dentro de um esquema
compartilhado. Operacionalmente, essa regra é verificada na matriz de relaciona-
mento, onde a linha ou a coluna correspondente à coleção deve conter ao menos um
valor igual a 3 ou 4, indicando a existência de uma relação com outra coleção;

• Se uma coleção não participa do esquema (representada pelo valor 2 na diagonal),
a linha e a coluna associadas a essa coleção devem conter exclusivamente valores
iguais a 0. Isso indica que a coleção não faz parte do esquema e não possui relações
com nenhuma outra coleção do mesmo;

• Cada coleção pode participar de um esquema apenas uma única vez;

• Não podem existir ciclos nos esquemas, ou seja, a estrutura resultante deve ser
acíclica;

• Todas as coleções que participam de um esquema (diagonal = 1) devem estar di-
retamente conectadas por meio de relações, garantindo a coesão da estrutura. Isso
implica que não pode haver subconjuntos isolados de coleções participantes

A
B

C

_idC

Figura 6.8: Error referenciando uma coleção aninhada.

Todas as regras de validação descritas foram implementadas na função validar_esquema().
Além disso, essa função é empregada na geração de validar_solucao(), a qual é respon-
sável por validar um conjunto de esquemas utilizado no Algoritmo 1. O objetivo dessa

77

validação é assegurar que a estrutura matricial do esquema esteja em conformidade com
os critérios de consistência e coerência previamente estabelecidos.

6.1.3 Métricas de Avaliação

O cálculo da função fitness, representada no Algoritmo 1 como funcao_objetivo(), uti-
liza três métricas fundamentais para avaliar soluções: completitude, padrão de acesso e
redundância. Essas métricas, definidas no Capítulo 5, são combinadas de forma estru-
turada no Algoritmo 2 para quantificar a qualidade da solução proposta. O algoritmo
incorpora uma penalização proporcional à incompletude. A seguir, detalham-se as métri-
cas utilizadas:

• Pontuação completitude (p_c): calcula a proporção de consultas atendidas pela
solução, por meio da função completitude();

• Pontuação de padrão de Acesso (p_p_a): quantifica as relações referenciadas e
aninhadas nos esquemas de uma solução, utilizando a função padrao_acesso();

• Pontuação de redundância (p_r): quantifica a repetição de coleções, através da
função redundancia();

• Penalização de completitude (pen_completitude): calcula uma penalização propor-
cional à incompletude da solução, ou seja, à proporção de consultas não atendidas.
Essa penalização é obtida multiplicando o valor da incompletude (1 - p_c) por um
fator de escala (1000), garantindo que soluções com baixa cobertura de consultas
sejam fortemente penalizadas

Algoritmo 2: Avaliar Solução (função_objetivo())
Entrada: Conjunto de consultas consultas, Solução solucao

Saída: Pontuação total da solução
p_c← completitude(consultas, solucao);
p_p_a← padrao_acesso(solucao);
p_r ← redundancia(solucao);
pen_completitude← (1− p_c)× 1000;
p_total← p_c + p_p_a + p_r + pen_completitude;
Retornar p_total;
O resultado quantitativo da função_objetivo() (p_total) é definida como a soma dos

componentes p_c, p_p_a e p_r, acrescida de um termo de penalização por incompletude,
pen_completitude. Dessa forma, o algoritmo VNS direciona sua busca minimizando a

78

função de fitness, utilizando estratégias de intensificação e diversificação para explorar
o espaço de soluções e aprimorar iterativamente a solução candidata.

A métrica de custo de recuperação não foi considerada nesta etapa, pois seu cálculo
exige um processamento computacional elevado, já que seria necessário adicionar os atri-
butos de cada coleção para realizar cálculos detalhados sobre os tempos de recuperação.
Além disso, é necessário contar com coeficientes de recuperação ajustados para cada tipo
de dado simples (como inteiros, floats, strings, datas, etc.) e para diferentes tamanhos
e estruturas de dados complexos, o que demandaria uma análise ainda mais granular e
específica que está fora do escopo desta fase. Por essas razões, optou-se por focar nas
métricas que garantem uma avaliação da qualidade estrutural das soluções, mantendo a
viabilidade computacional do processo de otimização.

6.1.4 Estrategias de Perturbação

A perturbação desempenha um papel crucial no algoritmo VNS, atuando como o meca-
nismo que possibilita escapar de mínimos locais e explorar novas regiões do espaço de
soluções. Neste contexto, foram definidas sete estratégias de perturbação, a saber: mo-
dificar relacionamentos, adicionar relacionamentos, adicionar coleção, eliminar coleção,
gerar esquema, eliminar esquema e reiniciar esquema. Essas estratégias foram implemen-
tadas na função perturbar_solucao(), utilizada no Algoritmo 1 para aplicar a perturbação
sobre as soluções.

Modificar relacionamentos

O Algoritmo 3 tem como objetivo alterar os relacionamentos presentes em um esquema,
com a finalidade de explorar novas configurações que possam melhorar a qualidade da so-
lução. Para tanto, a entrada do algoritmo consiste em uma matriz denominada esquema,
na qual cada elemento representa um relacionamento entre coleções, com especial atenção
aos valores 3 e 4, que indicam os tipos de relacionamento suscetíveis à modificação. Para
isso, o algoritmo identifica, de forma sistemática, os pares de índices (i, j) nos quais o
valor presente corresponde a 3 ou 4. Em seguida, seleciona aleatoriamente um desses
pares e procede com a troca do valor alternando entre 3 e 4 de modo a modificar a re-
lação existente. Após a modificação, o algoritmo valida o esquema; se o novo esquema
for considerado válido, a alteração é mantida e o esquema modificado é retornado. Caso
contrário, o algoritmo reverte a modificação, restabelecendo o valor original, e retorna o
esquema inalterado. Dessa forma, a saída do algoritmo é o esquema resultante do pro-
cesso de modificação e validação, contribuindo para a diversificação da busca e evitando
a convergência prematura para mínimos locais.

79

Algoritmo 3: Modificar relacionamentos
Entrada: Matriz do esquema esquema

Saída: esquema modificado se válido; caso contrário o esquema original
relacionamentos← {(i, j) | i ̸= j e esquema[i][j] ∈ {3, 4}};
Se relacionamentos ̸= ∅ Então

(i, j)← escolha aleatória de relacionamentos;
anterior ← schema[i][j];
esquema[i][j]← se esquema[i][j] = 4 então 3 senão 4;
Se validar_esquema(esquema) Então

Retornar esquema;

Senão
esquema[i][j]← anterior;

Retornar esquema;

Adicionar relacionamentos

O Algoritmo 4 tem como objetivo inserir um novo relacionamento em um esquema, de
modo a explorar configurações alternativas que possam aprimorar a solução. Para tanto, o
algoritmo inicia identificando todas as posições candidatas, isto é, todos os pares de índices
(i, j) tais que i ̸= j e o valor presente em esquema[i][j] seja 0, indicando a ausência de
um relacionamento.

Em seguida, a partir do conjunto de candidatos, é realizada uma seleção aleatória de
um par (i, j). Após a seleção, o algoritmo determina, também de forma aleatória, um novo
valor a ser atribuído à posição escolhida, optando entre os valores 3 e 4, que representam
os tipos de relacionamento admissíveis. Essa alteração é aplicada ao esquema, e o novo
estado é submetido a uma validação por meio da função validar_esquema(), que verifica
se a modificação resulta em uma configuração viável do esquema.

Caso o esquema modificado seja validado com sucesso, o algoritmo retorna o esquema
atualizado, consolidando a inserção do relacionamento. Por outro lado, se a validação não
for satisfatória, o algoritmo reverte a modificação, restaurando o valor 0 na posição afe-
tada, e retorna o esquema original. Esse procedimento assegura que apenas as alterações
que conduzam a soluções válidas sejam mantidas, contribuindo para a robustez e eficácia
do processo de busca no espaço de soluções.

80

Algoritmo 4: Adicionar Relacionamento
Entrada: Matriz do esquema esquema

Saída: esquema modificado se válido; caso contrário, o original
candidatos← {(i, j) | i ̸= j e esquema[i][j] = 0};
Se candidatos ̸= ∅ Então

(i, j)← escolha aleatória de candidatos;
novo_valor ← escolha aleatória entre {3, 4};
esquema[i][j]← novo_valor;
Se validar_esquema(esquema) Então

Retornar esquema;

Senão
esquema[i][j]← 0;

Retornar esquema;

Adicionar coleção

O Algoritmo 5 tem como objetivo incorporar uma nova coleção ao esquema, de modo
a ampliar as possibilidades de relações entre os elementos. Inicialmente, o algoritmo
identifica quais coleções já estão presentes—determinadas pelo valor 1 na diagonal da
matriz— e quais estão faltando, indicadas pelos valores 2. Caso existam coleções faltantes,
procede-se à seleção aleatória de uma coleção faltante e de uma coleção já existente. Em
seguida, escolhe-se, de forma aleatória, um novo tipo de relação, representado pelos valores
3 ou 4, que será estabelecido entre a nova coleção e a coleção existente. Dependendo de
outra escolha aleatória, a relação é criada tanto da nova coleção para a existente quanto
na direção inversa. Após a inserção do relacionamento, o esquema modificado é validado
pela função validar_esquema(). Se a validação for satisfatória, a alteração é mantida e
o esquema atualizado é retornado; caso contrário, a modificação é revertida, restaurando
os valores originais, e o esquema inalterado é devolvido.

81

Algoritmo 5: Adicionar Coleção
Entrada: Matriz do esquema esquema

Saída: esquema modificado se válido; caso contrário, o original
presentes← { i | esquema[i][i] = 1 };
faltantes← { i | esquema[i][i] = 2 };
Se faltantes ̸= ∅ Então

nova_colecao← escolha aleatória entre faltantes;
colecao_existente← escolha aleatória entre presentes;
nova_relacao← escolha aleatória entre {3, 4};
Se escolha aleatória entre {True, False} Então

esquema[nova_colecao][nova_colecao]← 1;
esquema[nova_colecao][colecao_existente]← nova_relacao;

Senão
esquema[nova_colecao][nova_colecao]← 1;
esquema[colecao_existente][nova_colecao]← nova_relacao;

Se validar_esquema(esquema) Então
Retornar esquema;

esquema[nova_colecao][nova_colecao]← 2;
esquema[nova_colecao][colecao_existente]← 0;
esquema[colecao_existente][nova_colecao]← 0;

Retornar esquema;

Eliminar coleção

O Algoritmo 6 tem como objetivo remover uma coleção extrema — definida como uma
coleção ativa que não possui relacionamentos de saída, mas recebe relacionamentos de en-
trada no esquema representado por uma matriz — com o intuito de otimizar a estrutura
relacional. Para isso, o algoritmo percorre todas as coleções (representadas pelos índices
da matriz) aplicando os critérios de seleção predefinidos para identificar as coleções clas-
sificadas como “extremos”. Essas coleções que satisfazem os critérios estabelecidos são
então agrupadas no conjunto denominado “extremos”.

Caso o conjunto de extremos não esteja vazio, o algoritmo seleciona aleatoriamente
uma coleção a ser eliminada. Para essa coleção selecionada, todas as relações horizontais
e verticais (ou seja, os elementos da linha e da coluna correspondentes) que possuem
os valores 3 ou 4 são removidas, sendo substituídos por 0, o que indica a ausência de
relacionamento. Em seguida, a diagonal da coleção eliminada é alterada para o valor 2,
sinalizando sua exclusão do conjunto de coleções ativas.

82

Por fim, o esquema modificado é validado por meio da função validar_esquema(). Se
o esquema atender aos critérios estabelecidos pela validação, a modificação é mantida e o
esquema atualizado é retornado; caso contrário, o algoritmo retorna o esquema original.
Esse procedimento assegura que apenas alterações que resultem em uma configuração
válida do esquema sejam efetivadas.

Algoritmo 6: Eliminar coleção
Entrada: Matriz do esquema esquema

Saída: esquema modificado se válido; caso contrário, o original
extremos← {};
para i← 0 até tamanho(esquema)− 1 faça

referencia_a_outras← existe algum j, com j ̸= i, tal que
esquema[i][j] ∈ {3, 4};

referenciado_por_outras← existe algum j, com j ̸= i, tal que
esquema[j][i] ∈ {3, 4};

Se (não referencia_a_outras) e (referenciado_por_outras) e
(esquema[i][i] = 1) Então

Adicione i a extremos;

Se extremos ̸= ∅ Então
colecao_a_eliminar ← escolha aleatória entre extremos;
para j ← 0 até tamanho(esquema)− 1 faça

Se esquema[colecao_a_eliminar][j] ∈ {3, 4} Então
esquema[colecao_a_eliminar][j]← 0;

Se esquema[j][colecao_a_eliminar] ∈ {3, 4} Então
esquema[j][colecao_a_eliminar]← 0;

esquema[colecao_a_eliminar][colecao_a_eliminar]← 2;
Se validar_esquema(esquema) Então

Retornar esquema;

Retornar esquema

Gerar esquema

O Algoritmo 7 tem como objetivo construir um esquema válido a partir de um número n

de coleções, em que todas as coleções participam ativamente. Inicialmente, o algoritmo
gera uma matriz n × n preenchida com zeros e, em seguida, atribui o valor 1 à diagonal
da matriz, indicando a presença de cada coleção.

Posteriormente, são definidas as relações habilitadas entre as coleções, considerando
todos os pares ordenados (i, j) com i ̸= j. A partir desse conjunto, o algoritmo seleciona

83

de forma aleatória relações unidirecionais. Para cada par selecionado, é verificado se
não há relações já existentes nos sentidos opostos, isto é, se as posições esquema[i][j] e
esquema[j][i] estão ambas com valor zero. Quando essa condição é satisfeita, um tipo de
relação (valor 3 ou 4) é escolhido aleatoriamente e atribuído à posição (i, j) da matriz,
registrando-se a relação na lista de relações selecionadas.

Além disso, se o tipo de relação escolhido for 4, o algoritmo impõe uma restrição
adicional: garante-se que a coleção destino, representada pelo índice j, não possua outras
relações de saída. Para isso, todas as demais posições da linha j, exceto a coluna j

(diagonal), são zeradas.
O processo de seleção continua até que o número de relacionamentos definidos seja igual

a n− 1. Ao final, o esquema gerado é submetido a uma validação, realizada pela função
validar_esquema(). Se o esquema atender aos critérios de validade, ele é retornado; caso
contrário, o algoritmo retorna a mensagem “Esquema inválido”.

Algoritmo 7: Gerar Esquema Válido
Entrada: Inteiro n representando o número de coleções
Saída: Matriz esquema válido

esquema← matriz n× n preenchida com 0;
para i← 0 é n− 1 faça

esquema[i][i]← 1;

relacoes_habilitadas← {(i, j) | i, j ∈ {0, . . . , n− 1} e i ̸= j};
relacoes_selecionadas← [];
Enquanto |relacoes_selecionadas| < n− 1 Fazer

(i, j)← escolha aleatória de relacoes_habilitadas;
Se esquema[i][j] = 0 e esquema[j][i] = 0 Então

tipo_relacao← escolha aleatória entre {3, 4};
esquema[i][j]← tipo_relacao;
Adicione (i, j) a relacoes_selecionadas;
Se tipo_relacao = 4 Então

para k ← 0 é n− 1 faça
Se k ̸= j Então

esquema[j][k]← 0;

valido← validar_esquema(esquema);
Se valido Então

Retornar esquema;

84

Eliminar esquema

O Algoritmo 8 tem como finalidade remover um dos esquemas presentes em uma solução
composta por múltiplos esquemas, contribuindo para a diversificação ou o refinamento da
solução. A entrada do algoritmo é uma lista denominada solucao, que contém um ou mais
esquemas, e a saída é a própria lista modificada após a remoção de um dos esquemas.

Inicialmente, o algoritmo verifica se a lista solucao possui mais de um esquema. Caso
a lista contenha apenas um esquema, o algoritmo retorna imediatamente a lista sem
realizar qualquer modificação, assegurando a integridade da solução. Se houver mais de
um esquema, o algoritmo seleciona aleatoriamente um índice, correspondendo ao esquema
a ser eliminado. Em seguida, esse esquema é removido da lista solucao e a lista atualizada
é retornada.

Algoritmo 8: Eliminar esquema
Entrada: Solução solucao

Saída: solucao

Se tamanho(solucao) ≥ 1 Então
eliminar_esquema← escolha aleatória entre 0 e tamanho(solucao)− 1;
Remova o esquema na posição eliminar_esquema de solucao;

Retornar solucao;

Reinicializar esquema

A reinicialização de esquemas tem como objetivo evitar que o Algoritmo 1 fique preso
em mínimos locais, um fenômeno comum em problemas de otimização (Hansen et al.,
2019). Isso ocorre porque o espaço de busca pode conter várias soluções locais ótimas,
onde perturbações não geram melhorias significativas. Quando o algoritmo depende ex-
clusivamente de modificações incrementais, ele pode ficar restrito a uma região subótima
sem explorar outras possibilidades com potencial de melhor desempenho. Para superar
essa limitação, a reinicialização busca gerar um novo esquema válido, permitindo escapar
de mínimos locais e ampliando a exploração do espaço de busca.

Para isso, o Algoritmo 9 recebe um esquema pertencente a uma solução e gera um
novo esquema de mesmo tamanho. Em seguida, verifica se o novo esquema é válido
mediante a função validar_esquema(). Caso seja válido, ele é retornado como resultado;
caso contrário, o algoritmo mantém e retorna o esquema original de entrada.

85

Algoritmo 9: Reinicializar esquema
Entrada: esquema

Saída: esquema

n← tamanho(esquema);
novo_esquema← gerar_esquema_valido(n);
valido← validar_esquema(novo_esquema);
Se valido Então

Retornar novo_esquema;

Senão
Retornar esquema;

6.2 Cenários de Validação

Nesta seção, são apresentados dois cenários de validação, ambos correspondentes aos
descritos no Capítulo 5. O processo de validação consiste em definir as consultas que
deverão ser suportadas e preparar uma solução inicial, a qual servirá como entrada para
o algoritmo. Como resultado, o algoritmo deverá retornar uma solução otimizada para
atender às consultas definidas.

6.2.1 Primeiro cenário

No primeiro cenário, o conjunto de coleções C é composto pelas coleções funcionario,
departamento e empresa. Para facilitar o processamento, as coleções são codificadas da
seguinte forma: funcionario=1, departamento=2 e empresa=3. Dessa forma, o conjunto
C é definido como:

C = {1, 2, 3}

As consultas que devem ser atendidas estão especificadas na Tabela 6.2. Observa-se
que as consultas 1, 2, 3 e 6 utilizam apenas a coleção funcionario. Já as consultas 4 e 5
requerem as coleções funcionario e empresa. Por fim, a consulta 7 depende das coleções
empresa e departamento. Assim, definimos o conjunto Q, segundo as dependências das
consultas, como:

Q = {q1, q2, q3}

Onde, q1 corresponde às consultas que dependem exclusivamente da coleção funcionario

para serem atendidas (consultas 1, 2, 3 e 6); q2 engloba as consultas que exigem as coleções

86

funcionario e empresa (consultas 4 e 5); e q3 representa as consultas que necessitam das
coleções empresa e departamento (consulta 7).

Tabela 6.2: Consultas definidas para o primeiro cenário.
No Consulta Coleções
1 Funcionários com um salário igual a $1000 funcionário
2 Funcionários com um salário superior a $1000 funcionário
3 Funcionários com o maior salário funcionário
4 Funcionários com o maior salário por empresa e o ID da empresa funcionário, empresa
5 Funcionários com o maior salário por empresa e o nome da empresa funcionário, empresa
6 O salário mais alto funcionário
7 Informações das empresas, incluindo o nome de seus departamentos empresa, departamento

Por outro lado, as soluções que deveriam fornecer suporte às consultas estão detalhadas
na Figura 5.5. Das nove propostas, apenas oito serão consideradas, uma vez que a solução
E4 introduz a coleção (CDE) que não corresponde ao conjunto das coleções C analisado.
A seguir, é detalhada a solução E6 como exemplo ilustrativo.

A Figura 6.9 apresenta a solução E6 composta por três esquemas. Assim, definimos o
conjunto E6 como E6 = {e1, e2, e3}.

 _id : integer,
 nome : string

empresa

E6

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,

empresa

 _id : integer,
 nome : string

funcionario

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,
 salario : double

empresa

e1 e2 e3

Figura 6.9: Solução E6 composta de três esquemas

A Figura 6.10 apresenta a representação matricial dos esquemas e1, e2 e e3. A matriz
do esquema e1 contém apenas uma coleção, representada pelo número 1 no terceiro valor
da diagonal principal, correspondente à coleção empresa. As coleções funcionario e
departamento não fazem parte do esquema, razão pela qual o primeiro e segundo valor na
diagonal principal foram atribuídos como 2. Por ser empresa a única coleção participante,
não há relacionamentos no esquema, resultando no preenchimento do restante da matriz
com zeros.

87

Q = {
 'q1': [1],
 'q2': [1, 2],
 'q3': [2, 3]
}

e_1 = [
 [2, 0, 0],
 [0, 2, 0],
 [0, 0, 1]
]

e_2 = [
 [2, 0, 0],
 [0, 1, 4],
 [0, 0, 1]
]

e_3 = [
 [1, 4, 0],
 [0, 1, 4],
 [0, 0, 1]
]

solucao_inicial = [e_1, e_2, e_3]Q

Figura 6.10: Consultas e esquemas referentes à solução inicial do cenário 1, apresentados
em formato codificado.

Na matriz do esquema e2, participam duas coleções: departamento e empresa. Por
essa razão, os valores na segunda e terceira diagonais são 1, enquanto o valor 2 na primeira
diagonal indica que a coleção funcionario não faz parte do esquema. Em relação aos
relacionamentos, o esquema apresenta um aninhamento entre as coleções departamento e
empresa, representado pelo valor 4 na posição [2,3], indicando que empresa está aninhado
dentro de departamento. O restante da matriz é preenchido com zeros, evidenciando a
ausência de outras relações diretas entre as coleções.

De forma similar, na matriz do esquema e3, participam três coleções: funcionario,
departamento e empresa, cada uma representada pelo valor 1 em sua respectiva posição
na diagonal principal, indicando sua presença no esquema. Além disso, a matriz apresenta
relações por aninhamento entre as coleções departamento e empresa, bem como entre
funcionario e departamento, ambas indicadas pelo valor 4 nas posições correspondentes.
Isso significa que os documentos da coleção departamento estão incorporados dentro da
coleção funcionario, enquanto os documentos de empresa estão aninhados dentro de
departamento. O restante da matriz é preenchido com zeros, evidenciando a ausência de
outras relações diretas entre as coleções.

Finalmente, a entrada para o algoritmo VNS é composta pelas consultas codificadas
(Q), pela solução inicial codificada (solucao_inicial) e pelo número máximo de iterações
(max_iter = 1000), conforme apresentado na Figura 6.10. A variável Q representa o
conjunto de consultas utilizadas, sendo que q1 depende da coleção 1 (funcionario); q2

depende das coleções 1 e 2 (funcionario e departamento); e q3 depende das coleções
2 e 3 (departamento e empresa). A variável solucao_inicial corresponde à solução
de partida para o processo de busca, enquanto max_iter determina o limite superior de
iterações permitidas para a execução do algoritmo.

A Figura 6.11 apresenta a solução inicial antes e após a otimização pelo algoritmo VNS.
A solução otimizada contém apenas dois esquemas, resultantes da eliminação de um dos
esquemas presentes na estrutura original. Além disso, os dois esquemas remanescentes
apresentam uma estrutura distinta em relação à original.

88

2

2

1

0 0

0

00

0

e1

2

1

1

0 0

4

00

0

e2

1

1

1

4 0

4

00

0

e3

2

1

1

0 0

4

00

0

ea

1

1

2

4 0

0

00

0

eb

Antes

Depois

Figura 6.11: Antes e depois da solução otimizada.

A Tabela 6.3 apresenta a comparação das métricas entre a solução original (E6) e a
solução otimizada (E novo). Os resultados evidenciam que a otimização impactou princi-
palmente as métricas de padrão de acesso e redundância, reduzindo seus valores na solução
final. Essa redução indica uma melhoria na estrutura dos esquemas, tornando a solução
mais eficiente em termos de acessibilidade e minimização de redundâncias, sem compro-
meter a completude das consultas. Adicionalmente, a Figura 6.12 ilustra a diferença entre
as soluções E6 e E novo.

Tabela 6.3: Comparação das métricas entre a solução original e a otimizada.
Solução Completude Padrão de acesso Redundância Total

E6 1 1.2 3 5.2
E novo 1 0.8 1 2.8

Apesar das modificações, a nova solução atende a todas as consultas definidas no
conjunto Q e apresenta as seguintes pontuações nas métricas avaliadas: completude =
1, padrão de acesso = 0.8, redundância = 1 e penalização = 0. A métrica completude

possui valor 1 porque todas as consultas são satisfeitas. O padrão de acesso recebe a
pontuação 0.8, calculada com base na soma dos relacionamentos referenciados e aninhados,
ponderados por seus respectivos coeficientes. Por fim, a métrica redundância atinge o
valor 1, pois a coleção empresa se repete uma vez na nova solução. O valor total da
métrica da nova solução é 2.8 que é o valor obtido da soma da completude, padrão de
acesso, redundância e penalização. A análise para o restante das soluções do cenário 1 é
apresentado na Tabela 6.4.

89

 _id : integer,
 nome : string

empresa

E6

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,

empresa

 _id : integer,
 nome : string

funcionario

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,
 salario : double

empresa

e1 e2 e3

 _id : integer,
 nome : string,

departmento

 _id : integer,
 nome : string,

empresa

 _id : integer,
 nome : string,

funcionario

 _id : integer,
 nome : string,

departamento

ea eb

E novo

Figura 6.12: Comparação da solução antes e depois da otimização.

De forma análoga, analisaram-se os demais esquemas das soluções E1, E2, E3, E5, E7,
E8 e E9. A Tabela 6.4 apresenta as métricas antes e depois da aplicação do algoritmo VNS
para cada solução. O algoritmo conseguiu otimizar em 0,2 unidades na métrica total das
soluções E1, E2 e E9, com redução observada apenas na métrica padrão de acesso. Nas
soluções E3, E5, E7 e E8, o algoritmo não obteve melhorias adicionais, possivelmente devido
à simplicidade dessas soluções, compostas por um único esquema, tornando a redução das
métricas uma tarefa mais complexa.

Tabela 6.4: Comparação das métricas entre as soluções avaliadas.
Solução original Solução otimizada

Solução Compl. Padrão Redun. Total Compl. Padrão Redun. Total
E1 1 1.2 0 2.2 1 1 0 2
E2 1 1 0 2 1 0.8 0 1.8
E3 1 0.8 0 1.8 1 0.8 0 1.8
E5 1 0.8 0 1.8 1 0.8 0 1.8
E7 1 0.8 0 1.8 1 0.8 0 1.8
E8 1 1 0 2 1 1 0 2
E9 1 1 1 3 1 0.8 1 2.8

A Figura ?? apresenta a convergência do algoritmo VNS para oito soluções distintas,
numeradas de E1 a E9, com exceção da solução E4, que não foi considerada. Em geral,
observa-se que o algoritmo demonstrou rápida convergência para a maioria das soluções,
com variações discretas nos valores finais de fitness. A solução E1, por exemplo, atingiu
a convergência na 24ª iteração. A solução E2 apresentou uma convergência ainda mais
precoce, ocorrendo na 8ª iteração, com resultado semelhante. As soluções E3, E5 e E7

exibem um comportamento distinto, caracterizado pela ausência de variação no valor de
fitness ao longo das iterações, o que pode indicar uma convergência imediata ou uma
estagnação em um ótimo local, sugerindo que o algoritmo não obteve melhoria ao longo
do processo de busca.

90

A solução E6 se destaca por apresentar o maior valor inicial de fitness (acima de
5.0), demonstrando um processo de otimização mais expressivo. Esta solução convergiu
na 23ª iteração. A solução E8 apresentou a convergência mais rápida entre todas as anali-
sadas, ocorrendo já na 3ª iteração, o que demonstra alta eficiência, embora com resultado
final próximo ao das demais soluções. Por fim, a solução E9 atingiu a convergência na
10ª iteração, alcançando um valor de fitness de aproximadamente 2.8, sendo uma das
melhores soluções em termos de qualidade final da função objetivo.

0 25 50 75 100
Iterações

1.8

1.9

2.0

2.1

2.2

Fit
ne

ss

Convergência: iter 18

Fitness

a) Solução E1

0 50 100
Iterações

1.80

1.85

1.90

1.95

2.00

Fit
ne

ss

Convergência: iter 4

Fitness

b) Solução E2

0 50 100
Iterações

1.725
1.750
1.775
1.800
1.825
1.850
1.875

Fit
ne

ss

No hubo mejora

Fitness

c) Solução E3

0 50 100
Iterações

1.725
1.750
1.775
1.800
1.825
1.850
1.875

Fit
ne

ss

No hubo mejora

Fitness

d) Solução E5

Figura 6.13: Diagramas de convergência das soluções do cenário 1.

91

0 25 50 75 100
Iterações

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fit
ne

ss

Convergência: iter 13

Fitness

a) Solução E6

0 50 100
Iterações

1.725
1.750
1.775
1.800
1.825
1.850
1.875

Fit
ne

ss

No hubo mejora

Fitness

b) Solução E7

0 50 100
Iterações

1.80

1.85

1.90

1.95

2.00

Fit
ne

ss

Convergência: iter 8

Fitness

c) Solução E8

0 50 100
Iterações

2.80

2.85

2.90

2.95

3.00
Fit

ne
ss

Convergência: iter 14

Fitness

Convergência: iter 14

d) Solução E9

Figura 6.14: Diagramas de convergência das soluções do cenário 1.

6.2.2 Segundo Cenário

No segundo cenário, analisa-se um sistema de gestão de vendas. Para isso, são apresen-
tadas quatro soluções, conforme ilustrado na Figura 5.6. As coleções envolvidas neste
cenário são: cliente, produto, pedido, estoque e categoria. De modo análogo ao cenário 1,
as coleções foram codificadas da seguinte forma: cliente = 1, produto = 2, pedido = 3,

92

estoque = 4 e categoria = 5. Assim, o conjunto C das coleções é definido como:

C = {1, 2, 3, 4, 5}

As consultas que devem ser atendidas estão detalhadas na Tabela 6.5. A partir da
análise da tabela, observa-se que as consultas 4 e 5 requerem as mesmas coleções. Dessa
forma, é possível codificar essas duas consultas em uma única, simplificando a implemen-
tação. Assim, o conjunto Q é definido com base nas dependências entre as consultas e as
coleções, conforme a seguinte representação:

Q = {q1, q2, q3, q4, q5, q6}

Onde, q1 corresponde à consulta que depende exclusivamente da coleção cliente (con-
sulta 1); q2 refere-se à consulta que depende das coleções produto e estoque (consulta
2); q3 está associada à coleção pedido (consulta 3); q4 engloba as coleções cliente, pro-
duto e pedido (consultas 4 e 5); q5 abrange as coleções cliente e pedido (consulta 6); e q6

corresponde à coleção estoque (consulta 7).

Tabela 6.5: Consultas definidas para o segundo cenário.
No Consulta Coleções
1 Selecionar todos os dados dos clientes onde o id_cliente é igual a 1. cliente

2
Selecionar todos os dados dos produtos juntamente com o inventário, e onde o identificador
do produto é igual a 1

produto, estoque

3
Selecionar todos os dados dos pedidos juntamente com as linhas de pedido,
onde o id do pedido é igual a 1

pedido

4
Selecionar todos os dados dos clientes juntamente com os pedidos, linhas de pedidos e produtos,
e a data do pedido está entre ’2009-01-01’ e ’2009-01-02’

cliente, pedido, produto

5
Selecionar todos os dados dos produtos juntamente com as linhas de pedidos,
os pedidos e os clientes, e onde o preço do produto está entre R$29 e R$30

cliente, pedido, produto

6
Selecionar todos os dados dos pedidos juntamente com os clientes
, e as linhas de pedidos, onde a data do pedido está entre ’2009-01-01’ e ’2009-01-02’

pedido, cliente

7
Selecionar todos os dados do inventário juntamente com as linhas de pedido,
onde o identificador do pedido é igual a 1

estoque

As soluções que atendem às consultas estão detalhadas na Figura 5.6. Dentre essas,
analisaremos a solução E1 como exemplo ilustrativo, de forma análoga ao que foi realizado
no Cenário 1.

A Figura 6.15 apresenta a solução E1 de forma simplificada, com a omissão dos atri-
butos para facilitar a visualização e destacar apenas a estrutura das coleções. Essa sim-
plificação visa proporcionar uma melhor compreensão da organização dos esquemas, sem
detalhar os atributos específicos. A solução é composta por quatro esquemas, e, com base
nisso, definimos o conjunto E1 da solução como E1 = {e1, e2, e3, e4}.

93

cliente

E1

categorias

pedido

e1
produto

estoque
e2

e3
e4

Figura 6.15: Solução E1 do cenário de validação 2.

A representação matricial dos esquemas e1, e2, e3, e4 é mostrada na Figura 6.16. O
esquema e1 contempla exclusivamente a coleção categoria como componente do esquema,
cuja participação é indicada pelo valor 1 no quinto elemento da diagonal principal da
matriz.

De forma análoga, os esquemas e2 e e3 são constituídos exclusivamente por uma única
coleção: pedido e cliente, respectivamente. A participação dessas coleções é representada
pelos valores 1 no terceiro e no primeiro elemento da diagonal principal, respectivamente.
O esquema e4 é composto por duas coleções: produto e estoque, cuja participação é indi-
cada pelo valor 1 no segundo e no quarto elemento da diagonal principal, respectivamente.
Além disso, esse esquema apresenta um relacionamento de aninhamento, na qual a cole-
ção produto aninha a coleção estoque. Esse relacionamento é representada na matriz pelo
valor 4 na posição [1,3]. Em todos os casos, o restante da matriz é preenchido com zeros,
evidenciando a ausência de outras relações entre as coleções.

2
2
0 0

0

00

0

e1e1
categoria 0 0

2
2

1

0 0

0

0
0000

0

000

pedido 2
2
0 0

0

00

0

e2

0 0

1
2

2

0 0

0

0
0000

0

000

e2

1
2
0 0

0

00

0

e3e3

cliente 0 0

2
2

2

0 0

0

0
0000

0

000

produto

estoque

e4

2
1
0 0

0

00

0

e4

0 0

2
1

2

4 0
0

0
0000

0

000

Figura 6.16: Representação matricial dos quatro esquemas da solução E1.

94

A entrada do algoritmo VNS para o Cenário 2 é composta pelo conjunto de consultas
codificadas (Q), pela solução inicial codificada (solucao_inicial) e pelo número máximo
de iterações definido como max_iter = 1000, conforme ilustrado na Figura 6.17. As
consultas apresentam diferentes dependências em relação às coleções: q1 está vinculada
à coleção 1; q2, às coleções 2 e 4 (produto e estoque); q3, à coleção 3 (pedido); q4, às
coleções 1, 2 e 3 (cliente, produto e pedido); q5, às coleções 1 e 3 (cliente e pedido);
e q6, à coleção 5 (categoria).

Q = {
 'q1': [1],
 'q2': [2, 4],
 'q3': [3],
 'q4': [1, 2, 3],
 'q5': [1, 3],
 'q6': [4]
}

e_1 = [
 [2, 0, 0, 0, 0],

 [0, 2, 0, 0, 0],
 [0, 0, 2, 0, 0],
 [0, 0, 0, 2, 0],
 [0, 0, 0, 0, 1]
]

e_2 = [
 [2, 0, 0, 0, 0],

 [0, 2, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 2, 0],
 [0, 0, 0, 0, 2]
]

e_3 = [
 [1, 0, 0, 0, 0],

 [0, 2, 0, 0, 0],
 [0, 0, 2, 0, 0],
 [0, 0, 0, 2, 0],
 [0, 0, 0, 0, 2]
]

e_4 = [
 [2, 0, 0, 0, 0],

 [0, 1, 0, 4, 0],
 [0, 0, 2, 0, 0],
 [0, 0, 0, 1, 0],
 [0, 0, 0, 0, 2]
]

solucao_inicial = [e_1, e_2, e_3, e_4]

Figura 6.17: Consultas e esquemas referentes à solução inicial do cenário 2, apresentados
em formato codificado.

Após a execução do algoritmo, a solução inicial, composta por quatro esquemas, foi
reduzida a dois esquemas. A Figura 6.18 ilustra a diferença entre a configuração antes
e depois da execução do algoritmo na representação matricial. Na solução resultante,
apenas o esquema e4 foi mantido da versão anterior, sendo renomeado como ey no novo
arranjo. Por outro lado, os esquemas e1, e2 e e3 foram eliminados, e um novo esquema,
denominado ex, foi gerado. Na configuração final, as consultas q1, q3, q4 e q5 são atendidas
pelo esquema ex, enquanto as consultas q2 e q6 são atendidas pelo esquema ey. A Figura
6.19 apresentá a diferença visual da solução antes e depois da execução do algoritmo.

95

2
2
0 0

0

00

0

e1
0 0

2
2

1

0 0

0

0
0000

0

000

2
2
0 0

0

00

0

e2

0 0

1
2

2

0 0

0

0
0000

0

000

1
2
0 0

0

00

0

e3

0 0

2
2

2

0 0

0

0
0000

0

000

2
1
0 0

0

00

0

e4

0 0

2
1

2

4 0
0

0
0000

0

000

1
1
0 0

3

00

3
0 0

1
2

2

0 0

0

0
0000

0

003

ex
2

1
0 0

0

00

0
0 0

2
1

2

4 0

0

0
0000

0

000

ey

Antes

Depois

Figura 6.18: Antes e depois da solução otimizada cenário 2.

cliente

E1

categorias

pedido

e1

produto

idPedido
idCliente

pedido

idCliente

cliente

ex

produto

ey

estoque

E novo

produto

estoque
e2

e3
e4

Figura 6.19: Comparação visual da solução antes e depois da otimização cenário 2.

A Tabela 6.6 apresenta a análise das métricas da solução antes e depois da execução
do algoritmo. Inicialmente, a solução E1 é composta por quatro esquemas, sendo que três
deles contêm apenas uma única coleção. Esses três esquemas atendem exclusivamente
às consultas cuja dependência está limitada a uma única coleção (q1, q3), o que impede
o atendimento de consultas que requerem acesso a múltiplas coleções. Por outro lado,
o esquema e4, formado pelas coleções produto e estoque, atende às consultas q2 e q6.
Como consequência, a métrica de completude da solução inicial assume um valor de 0.6,
indicando que nem todas as consultas são atendidas. Além disso, a métrica de padrão de
acesso é de 0.4, pois em toda a solução apenas o esquema e4 utiliza relacionamento por
aninhamento, sem apresentar redundância de coleções. A métrica total para essa solução
é de 1 unidade, evidenciando que, embora eficiente em termos de estrutura, a solução não
é capaz de atender a todas as consultas. Após a execução do algoritmo, uma nova solução
é gerada, composta por dois esquemas: ex e ey. O esquema ey permanece idêntico ao
esquema e4 da solução original, enquanto os esquemas e1, e2 e e3 são eliminados, dando

96

origem ao novo esquema ex. A nova configuração permite o atendimento de todas as
consultas, resultando em um valor de completude igual a um. No entanto, o padrão de
acesso e a redundância aumentam, elevando a métrica total para 4.8.

Tabela 6.6: Comparação das métricas entre a solução original e a otimizada no cenário 2.
Solução Completude Padrão de Acesso Redundância Total

E1 0.6 0.4 0 1
E novo 1 2.8 1 4.8

De maneira análoga, foram analisados os demais esquemas das soluções E2, E3 e E4.
A Tabela 6.7 apresenta um resumo das métricas antes e depois da execução do algoritmo
para cada uma dessas soluções. Dessa forma, as métricas de completude, padrão de acesso
e redundância são calculadas tanto na solução inicial quanto após a aplicação do algoritmo.

No caso da solução E2, tanto a métrica de completude quanto a de redundância foram
otimizadas. A completude foi aprimorada ao garantir o atendimento de todas as consultas,
enquanto a redundância foi reduzida em relação à solução inicial. Embora a métrica de
padrão de acesso tenha aumentado ligeiramente, esse acréscimo é justificado pelo ganho
significativo em termos de cobertura das consultas. Para a solução E3, a métrica total
foi reduzida de 14.4 para 7.8, representando uma melhoria substancial nas métricas de
padrão de acesso, e redundância, ao mesmo tempo em que a completude foi mantida. Por
fim, na solução E4, a métrica total aumentou de 0.9 para 2.2. No entanto, a completude foi
aprimorada, garantindo o atendimento de 100% das consultas, o que justifica a alteração
nos demais parâmetros.

Tabela 6.7: Comparação das métricas entre as soluções avaliadas no cenário 2.
Solução Inicial Solução Otimizada

Solução Compl. Padrão de Acesso Redun. Total Compl. Padrão de Acesso Redun. Total
E2 0.83 1.2 1 3.03 1 1.4 0 2.4
E3 1 4.4 9 14.4 1 2.8 4 7.8
E4 0.5 0.4 0 0.9 1 1.2 0 2.2

A Figura 6.20 apresenta os diagramas de convergência das soluções E1, E2, E3 e E4

obtidas na execução do algoritmo VNS aplicadas ao cenário 2. Cada subgráfico ilustra a
evolução do valor de fitness ao longo de 1000 iterações, permitindo analisar o compor-
tamento e a eficiência do algoritmo em cada instância do problema.

Observa-se que todas as soluções convergem rapidamente nas primeiras iterações, com
a estabilização dos valores de fitness ocorrendo antes da centésima iteração. Especifi-
camente, as soluções E1, E2, E3 e E4 convergiram nas iterações 46, 35, 34 e 51, respectiva-
mente, conforme indicado pelas linhas tracejadas em azul. Este comportamento evidencia

97

a capacidade do algoritmo VNS de encontrar soluções ótimas ou próximas do ótimo em
um número reduzido de iterações, o que demonstra sua eficiência computacional.

Entretanto, nota-se uma variação considerável nos valores iniciais de fitness entre as
soluções. Por exemplo, a solução E4 apresenta um valor inicial significativamente mais alto
(acima de 400), enquanto a solução E3 inicia com um valor inferior a 15. Essa diferença
sugere que a complexidade ou a natureza das instâncias pode influenciar o desempenho
inicial do algoritmo, embora todas alcancem uma estabilização próxima ao zero, indicando
convergência para soluções de boa qualidade.

0 50 100
Iterações

0

100

200

300

Fit
ne

ss

Convergência: iter 39

Fitness

a) Solução E1

0 50 100
Iterações

0

25

50

75

100

125

150

175

Fit
ne

ss

Convergência: iter 26

Fitness

b) Solução E2

0 25 50 75 100
Iterações

6

8

10

12

14

Fit
ne

ss

Convergência: iter 35

Fitness

c) Solução E3

0 50 100
Iterações

0

100

200

300

400

500

Fit
ne

ss

Convergência: iter 32

Fitness

d) Solução E4

Figura 6.20: Diagramas de convergência das soluções do cenário 2.

98

6.3 Limitações

Apesar dos avanços alcançados, este estudo apresenta limitações técnicas que devem ser
consideradas para futuras investigações no domínio de bancos de dados NoSQL orientados
a documentos. Essas restrições, descritas a seguir, refletem escolhas metodológicas e deli-
mitações de escopo, mas não comprometem a validade dos resultados obtidos, indicando
direções para refinamentos e extensões:

• Os coeficientes de ponderação foram calibrados exclusivamente com base em opera-
ções de leitura, conforme Vera-Olivera et al. (2023). Consequentemente, as métricas
de avaliação (completude, padrão de acesso, custo de acesso e redundância) e sua
integração na função objetivo do algoritmo VNS também se restringem a esse tipo
de operação. Essa limitação exclui a consideração de operações de escrita, atua-
lização e exclusão, potencialmente subestimando o impacto de cargas de trabalho
heterogêneas no desempenho dos esquemas otimizados;

• A análise de coleções aninhadas foi limitada a uma profundidade máxima de dois
níveis de aninhamento. Essa restrição simplifica a modelagem e a manipulação
algorítmica, mas pode não refletir cenários reais em bancos de dados NoSQL. Essa
delimitação pode reduzir a aplicabilidade dos esquemas otimizados em casos que
demandem maior flexibilidade estrutural;

• O operador de perturbação “Eliminar Coleção” foi projetado para remover apenas
coleções “extremas” (i.e., aquelas nas extremidades de um relacionamento), devido
à complexidade computacional de eliminar coleções intermediárias. Essa operação
exige decisões adicionais sobre a reconfiguração de relacionamentos e a fusão de
coleções adjacentes, o que aumenta o custo algorítmico e foi evitado para manter a
eficiência do VNS;

• Cada esquema individual admite apenas uma instância de cada coleção, embora a
mesma coleção possa reaparecer em diferentes esquemas de uma solução

6.4 Ameaças

O presente trabalho, embora cuidadosamente conduzido, está sujeito a algumas ameaças
que devem ser consideradas ao interpretar os resultados obtidos.

Uma possível ameaça reside na definição e operacionalização das métricas utilizadas.
Embora as quatro métricas escolhidas (completude, padrão de acesso, custo de recupe-
ração e redundância) sejam fundamentadas na literatura, a forma como foram aplicadas

99

pode variar em relação a outras abordagens. Além disso, a construção do banco de dados
sintético, embora cuidadosamente projetada para generalizar comportamentos, ainda é
uma abstração da realidade e pode não capturar todas as nuances dos dados reais.

A escolha dos cenários de estudo pode influenciar os resultados. Ainda que os casos
de uso de Gómez et al. (2018) e Kuszera et al. (2020) tenham sido selecionados por
já aplicarem métricas em seus experimentos, a forma como os dados foram gerados ou
como os esquemas foram implementados neste trabalho pode introduzir vieses. Também
é possível que ajustes manuais ou decisões de modelagem específicas tenham impactado
a execução das consultas ou os resultados das métricas.

Os resultados obtidos são baseados em dados sintéticos e em cenários específicos.
Portanto, a generalização para outros domínios de aplicação ou cargas de trabalho reais
deve ser feita com cautela. Ainda que o banco de dados sintético tenha sido projetado para
simular padrões comuns em NoSQL, ele pode não refletir com exatidão os comportamentos
de sistemas em produção com dados altamente heterogêneos e dinâmicos.

6.5 Considerações Finais

Para implementar o VNS, foi necessário representar os esquemas como matrizes e as con-
sultas como dicionários, tornando-os adequados às operações do algoritmo. Assim, o VNS
recebe como entrada uma solução inicial (conjunto de esquemas) e um conjunto de con-
sultas. A avaliação quantitativa das soluções é feita aplicando coeficientes de ponderação
às métricas de avaliação, integradas à funcao_objetivo() do algoritmo, o que possibi-
lita uma análise robusta do desempenho das soluções geradas. A exploração e análise
das possibilidades de soluções foram realizadas exclusivamente no nível lógico, sem a ne-
cessidade de considerar aspectos do nível físico, como frequência de acesso às consultas,
índices ou espaço de armazenamento. Essa abordagem proporcionou maior flexibilidade
e independência na geração e avaliação dos esquemas, focando na otimização lógica das
soluções. Além disso, o algoritmo busca otimizar a solução tendo como objetivo principal
a maximização da eficiência dos esquemas enquanto garante o atendimento total a todas
as consultas.

100

Capítulo 7

Conclusões

O projeto de esquemas em bancos de dados NoSQL orientados a documentos ainda carece
de um padrão consolidado. Na prática, os projetistas recorrem a diagramas ER, UML, XML,
JSON e outras notações nos níveis conceitual e lógico para desenhar esquemas. Mesmo
assim, os esquemas resultantes nem sempre são os mais ótimos, pois a qualidade final de-
pende da experiência do projetista e da própria complexidade combinatória do problema,
que cresce exponencialmente com o número de coleções e com os tipos de relacionamentos.
A abordagem proposta prioriza o atendimento integral da métrica de completitude, as-
segurando que todas as consultas predefinidas sejam plenamente atendidas. Além disso,
busca, sempre que possível, minimizar as métricas de padrão de acesso e redundância,
concentrando-se exclusivamente no nível lógico. Para isso, adotou-se uma estratégia ba-
seada em meta-heurística, utilizando o algoritmo VNS.

O objetivo geral desta tese foi apresentado mediante a implementação do VNS. Essa
estratégia permitiu gerar esquemas otimizados que atendem integralmente ao conjunto
de consultas, com redução significativa da métrica redundância e padrão de acesso da
solução. A abordagem no nível lógico eliminou a dependência de avaliações custosas no
nível físico, tornando o método acessível a projetistas com diferentes níveis de experiência
técnica.

Os objetivos específicos foram atendidos, contribuindo para a robustez da solução
proposta:

• As relações aninhadas permitem uma recuperação de dados mais rápida, pois todos
os dados necessários estão contidos em um único documento, eliminando a necessi-
dade de consultas adicionais para obter dados referenciados. No entanto, embora a
recuperação de dados seja mais rápida em relacionamentos aninhados, a literatura
não menciona precisamente o quão rápida é essa recuperação em comparação a uma
relação por referência. É por isso foram estabelecidos coeficientes de ponderação
para os relacionamentos referenciados e aninhados, permitindo uma avaliação do

101

impacto dessas relações na eficiência dos esquemas, conforme publicado em (Vera-
Olivera et al., 2023). Esses coeficientes enriqueceram a função objetivo do VNS,
garantindo avaliações alinhadas aos requisitos de desempenho;

• As métricas de completude, padrão de acesso, custo de acesso e redundância foram
desenvolvidas e integradas ao algoritmo, possibilitando a quantificação objetiva da
qualidade dos esquemas sem recorrer a operações CRUD. Essas métricas, validadas
em cenários experimentais, demonstraram ser robustas e adequadas para o contexto
NoSQL (Vera-Olivera & Holanda, 2024);

• Operadores de perturbação foram projetados para alterar sistematicamente as so-
luções, promovendo uma exploração diversificada do espaço de busca e evitando a
convergência para mínimos locais. Esses operadores foram cruciais para a eficácia
do VNS, garantindo a descoberta de soluções próximas do ótimo global;

• O VNS foi implementado integrando as métricas de avaliação, coeficientes de ponde-
ração e operadores de perturbação

Em síntese, os resultados obtidos confirmam que a combinação de métricas, coeficientes
de ponderação e busca guiada por meta-heurística constitui uma alternativa viável e eficaz
para o projeto de esquemas em bancos de dados NoSQL orientados a documentos. A
estratégia proposta não apenas reduz o esforço manual e a dependência da experiência do
projetista, como também oferece um processo de modelagem sistemático e reproduzível,
capaz de se adaptar a diferentes conjuntos de consultas e requisitos. Além de validar a
pertinência do VNS para problemas de otimização de esquemas, esta tese estabelece um
referencial metodológico que pode ser estendido a outras métricas, a cenários de avaliação
em nível físico ou a diferentes paradigmas NoSQL. Dessa forma, contribui-se para o avanço
do estado da arte e cria-se uma base sólida para investigações futuras voltadas à automação
do desenho de bancos de dados em ambientes dinâmicos e orientados a grandes volumes
de dados.

7.1 Resultados Acadêmicos

Durante o desenvolvimento desta tese, foram obtidas as seguintes publicações relacionadas
diretamente à pesquisa:

• “Métricas para Análise de Esquemas em Banco de Dados NoSQL Orientado a Do-
cumentos.” Simpósio Brasileiro de Banco de Dados (SBBD). SBC, 2024;

102

• “Análise de desempenho em banco de dados nosql orientado a documentos: Um
Índice para comparação de modelos de dados.” Simpósio Brasileiro de Banco de
Dados (SBBD). SBC, 2023;

• “Data modeling and nosql databases-a systematic mapping review.” ACM Compu-
ting Surveys (CSUR) 54.6 (2021): 1-26

7.2 Trabalhos Futuros

Para trabalhos futuros que podem ampliar a robustez, generalização e aplicabilidade prá-
tica da abordagem proposta para otimização de esquemas em bancos de dados NoSQL
orientados a documentos:

• Este trabalho calibrou coeficientes de ponderação e métricas de avaliação com base
exclusivamente em operações de leitura. Pesquisas futuras podem incorporar ope-
rações de escrita, atualização e exclusão na definição de métricas e coeficientes,
permitindo uma avaliação mais abrangente do desempenho dos esquemas otimiza-
dos. Essa extensão exigirá a reformulação da função objetivo do algoritmo VNS
para refletir o impacto de diferentes tipos de operações, potencialmente utilizando
técnicas de aprendizado de máquina para modelar padrões de acesso dinâmicos;

• O trabalho focou exclusivamente no paradigma orientado a documentos. Estudos fu-
turos podem adaptar a abordagem para outros paradigmas NoSQL, como chave-valor,
colunar ou de grafos, que apresentam desafios distintos na modelagem e otimização
de esquemas. Essa extensão exigirá a reformulação das métricas e operadores de
perturbação para refletir as características específicas de cada paradigma, bem como
a avaliação da transferibilidade do VNS em diferentes contextos de dados;

• A autorreferência entre coleções, o aninhamento com profundidade superior a dois
níveis e a presença de atributos internos nas coleções não foram considerados no es-
copo deste trabalho, uma vez que esses elementos aumentam a complexidade com-
putacional do problema. No entanto, reconhece-se que esses três fatores podem
impactar significativamente o desempenho da modelagem e a eficiência dos esque-
mas gerados. Assim, tais aspectos são apontados como relevantes e promissores
para investigações futuras, visando uma abordagem mais abrangente e aderente à
complexidade dos cenários encontrados em bancos de dados NoSQL do mundo real;

• Propõe-se como trabalho futuro a exploração de diferentes configurações do sistema
gerenciador de banco de dados MongoDB, considerando aspectos como particiona-

103

mento, replicação, índices compostos e compactação de dados, com o objetivo de
avaliar como essas opções influenciam a eficiência dos esquemas no nível físico;

• Embora as métricas propostas neste trabalho tenham sido aplicadas no contexto de
bancos de dados orientados a documentos, seu potencial de generalização permite
a extrapolação para outros paradigmas NoSQL, como bancos de dados em grafos,
chave-valor e orientados a colunas. Dessa forma, futuras pesquisas podem estender
e especializar essas métricas para diferentes modelos, respeitando as particularidades
de cada paradigma e ampliando a aplicabilidade da abordagem

104

Referencias

Abadi, D., Ailamaki, A., Andersen, D., Bailis, P., Balazinska, M., Bernstein, P. A., Boncz,
P., Chaudhuri, S., Cheung, A., Doan, A., et al. (2022). The seattle report on
database research. Communications of the ACM, 65 (8), 72–79.

Abdelhedi, F., Ait Brahim, A., Atigui, F., & Zurfluh, G. (2017). MDA-based approach for
NoSQL databases modelling. Lecture Notes in Computer Science (including subse-
ries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
10440 LNCS, 88–102. https://doi.org/10.1007/978-3-319-64283-3_7

Abdelhedi, F., Ait Brahim, A., & Zurfluh, G. (2018). Formalizing the mapping of UML
conceptual schemas to column-oriented databases. International Journal of Data
Warehousing and Mining, 14 (3), 44–68. https : / / doi . org / 10 . 4018 / IJDWM .
2018070103

Abdelhedi, F., Brahim, A., Atigui, F., & Zurfluh, G. Big data and knowledge management:
How to implement conceptual models in NoSQL systems’. In: 3. 2016, 235–240.

Abdelhedi, F., Brahim, A., Atigui, F., & Zurfluh, G. Logical unified modeling for NoSQL
databases. In: 1. 2017, 249–256.

Abdelhedi, F., Brahim, A., Atigui, F., & Zurfluh, G. UMLtoNoSQL: Automatic transfor-
mation of conceptual schema to NoSQL databases. In: 2017-October. 2018, 272–
279. https://doi.org/10.1109/AICCSA.2017.76

Abdelhedi, F., Brahim, A. A., Rajhi, H., Ferhat, R. T., & Zurfluh, G. (2021). Automatic
Extraction of a Document-oriented NoSQL Schema. ICEIS (1), 192–199.

Abualigah, L., Elaziz, M. A., Hussien, A. G., Alsalibi, B., Jalali, S. M. J., & Gandomi,
A. H. (2021). Lightning search algorithm: a comprehensive survey. Applied Intelli-
gence, 51 (4), 2353–2376.

Akintoye, S., Bagula, A., Isafiade, O., Djemaiel, Y., & Boudriga, N. (2019). Data model
for cloud computing environment. Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 275,
199–215. https://doi.org/{10.1007/978-3-030-16042-5_19}

105

https://doi.org/10.1007/978-3-319-64283-3_7
https://doi.org/10.4018/IJDWM.2018070103
https://doi.org/10.4018/IJDWM.2018070103
https://doi.org/10.1109/AICCSA.2017.76
https://doi.org/{10.1007/978-3-030-16042-5_19}

Andor, C., Pârv, B., & Suciu, D. (2019). Using Latency Metrics in NoSQL Database
Performance Benchmarking. Studia Universitatis Babeş-Bolyai Informatica, 64 (1),
39–50.

Angles, R. The property graph database model. In: 2100. 2018.
Banerjee, S., & Sarkar, A. (2016). Ontology Driven Meta-Modeling for NoSQL Databases:

A Conceptual Perspective. International Journal of Software Engineering and its
Applications, 10 (12), 41–64. https://doi.org/10.14257/ijseia.2016.10.12.05

Banerjee, S., & Sarkar, A. Logical level design of NoSQL databases. In: 2017, 2360–2365.
https://doi.org/10.1109/TENCON.2016.7848452

Bansal, N., Sachdeva, S., & Awasthi, L. K. (2023). A workload-driven approach for auto-
matic schema generation for document stores. Proceedings of the 6th Joint Inter-
national Conference on Data Science & Management of Data (10th ACM IKDD
CODS and 28th COMAD), 133–133.

Bermbach, D., Müller, S., Eberhardt, J., & Tai, S. Informed Schema Design for Column
Store-Based Database Services. In: 2016, 163–172. https://doi.org/10.1109/SOCA.
2015.29

Bugiotti, F., Cabibbo, L., Atzeni, P., & Torlone, R. (2014). Database design for NoSQL
systems. International Conference on Conceptual Modeling, 223–231.

Carvalho, I., Sá, F., & Bernardino, J. (2023). Performance evaluation of NoSQL document
databases: couchbase, CouchDB, and MongoDB. Algorithms, 16 (2), 78.

Chen, L., Davoudian, A., & Liu, M. (2022). A workload-driven method for designing
aggregate-oriented NoSQL databases. Data & Knowledge Engineering, 142, 102089.

Chillón, A., Morales, S., Ruiz, D., & Molina, J. Exploring the visualization of schemas for
aggregate-oriented nosql databases? In: 1979. 2017, 72–85.

Chis, -Rat, iu, A., & Buchmann, R. Design and implementation of a diagrammatic tool for
creating RDF graphs. In: 2238. 2018, 37–48.

Daniel, G., Sunyé, G., & Cabot, J. (2016). UMLtographDB: Mapping conceptual sche-
mas to graph databases. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9974
LNCS, 430–444. https://doi.org/10.1007/978-3-319-46397-1_33

De Lima, C., & Dos Santos Mello, R. A workload-driven logical design approach for
NoSQL document databases. In: 2015. https://doi.org/10.1145/2837185.2837218

De Lima, C., & dos Santos Mello, R. (2015). A workload-driven logical design approach
for NoSQL document databases. Proceedings of the 17th international conference
on information integration and web-based applications & services, 1–10.

106

https://doi.org/10.14257/ijseia.2016.10.12.05
https://doi.org/10.1109/TENCON.2016.7848452
https://doi.org/10.1109/SOCA.2015.29
https://doi.org/10.1109/SOCA.2015.29
https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1145/2837185.2837218

De Virgilio, R., Maccioni, A., & Torlone, R. (2014). Model-driven design of graph data-
bases. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 8824, 172–185.

Elmasri, R. (2008). Fundamentals of database systems. Pearson Education India.
Gómez, P., Casallas, R., & Roncancio, C. (2016). Data schema does matter, even in NoSQL

systems! 2016 IEEE Tenth International Conference on Research Challenges in
Information Science (RCIS), 1–6.

Gómez, P., Roncancio, C., & Casallas, R. (2018). Towards quality analysis for document
oriented bases. International Conference on Conceptual Modeling, 200–216.

Gómez, P., Roncancio, C., & Casallas, R. (2021). Analysis and evaluation of document-
oriented structures. Data & Knowledge Engineering, 134, 101893.

Győrödi, C. A., Dumşe-Burescu, D. V., Zmaranda, D. R., & Győrödi, R. Ş. (2022). A com-
parative study of MongoDB and document-based MySQL for big data application
data management. Big Data and Cognitive Computing, 6 (2), 49.

Hamouda, S., & Zainol, Z. Document-Oriented Data Schema for Relational Database
Migration to NoSQL. In: 2018-January. 2018, 43–50. https://doi.org/10.1109/
Innovate-Data.2017.13

Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and ap-
plications. European Journal of Operational Research, 130 (3), 449–467. https://
doi.org/https://doi.org/10.1016/S0377-2217(00)00100-4

Hansen, P., Mladenović, N., Brimberg, J., & Pérez, J. A. M. (2019). Variable neighborhood
search. Springer.

Hewasinghage, M., Seghouani, N., & Bugiotti, F. (2018). Modeling strategies for storing
data in distributed heterogeneous NoSQL databases. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11157 LNCS, 488–496. https://doi.org/10.1007/978-3-
030-00847-5_35

Hewasinghage, M., Abelló, A., Varga, J., & Zimányi, E. (2020). DocDesign: cost-based
database design for document stores. Proceedings of the 32nd International Con-
ference on Scientific and Statistical Database Management, 1–4.

Hewasinghage, M., Abelló, A., Varga, J., & Zimányi, E. (2021). A cost model for random
access queries in document stores. The VLDB Journal, 30 (4), 559–578.

Hewasinghage, M., Nadal, S., Abelló, A., & Zimányi, E. (2023). Automated database
design for document stores with multicriteria optimization. Knowledge and Infor-
mation Systems, 65 (7), 3045–3078.

107

https://doi.org/10.1109/Innovate-Data.2017.13
https://doi.org/10.1109/Innovate-Data.2017.13
https://doi.org/https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1007/978-3-030-00847-5_35
https://doi.org/10.1007/978-3-030-00847-5_35

Imam, A., Basri, S., Ahmad, R., Aziz, N., & Gonzalez-Aparicio, M. New cardinality
notations and styles for modeling NoSQL document-store databases. In: 2017-
December. 2017, 2765–2770. https://doi.org/10.1109/TENCON.2017.8228332

Imam, A., Basri, S., Ahmad, R., & González Aparicio, M. T. (2019). Schema proposition
model for NoSQL applications. Recent Trends in Data Science and Soft Computing.

Imam, A., Basri, S., Ahmad, R., Watada, J., & González-Aparicio, M. (2018). Automatic
schema suggestion model for NoSQL document-stores databases. Journal of Big
Data, 5 (1). https://doi.org/10.1186/s40537-018-0156-1

Imam, A. A., & Basri, e. a. (2018). Data modeling guidelines for NoSQL document-store
databases. International Journal of Advanced Computer Science and Applications,
9.

Imam, A. A., Basri, S., Ahmad, R., Wahab, A. A., González-Aparicio, M. T., Capretz,
L. F., Alazzawi, A. K., & Balogun, A. O. (2020). Dsp: Schema design for non-
relational applications. Symmetry, 12 (11), 1799.

Imam, A. A., Basri, S., Ahmad, R., Watada, J., & González-Aparicio, M. T. (2018). Au-
tomatic schema suggestion model for NoSQL document-stores databases. Journal
of Big Data, 5, 1–17.

James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statis-
tical learning (Vol. 112). Springer.

Kaur, K., & Rani, R. Modeling and querying data in NoSQL databases. In: 2013, 1–7.
https://doi.org/10.1109/BigData.2013.6691765

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., &
Linkman, S. (2010). Systematic literature reviews in software engineering–a terti-
ary study. Information and software technology, 52 (8), 792–805.

Kuszera, E. M., Peres, L. M., & Didonet Del Fabro, M. (2020). Query-based metrics for
evaluating and comparing document schemas. International Conference on Advan-
ced Information Systems Engineering, 530–545.

Kuszera, E. M., Peres, L. M., & Del Fabro, M. D. (2022). Exploring data structure al-
ternatives in the RDB to NoSQL document store conversion process. Information
Systems, 105, 101941.

la Vega, A., García-Saiz, D., Blanco, C., Zorrilla, M., & Sánchez, P. (2018). Mortadelo: A
model-driven framework for NoSQL database design. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11163 LNCS, 41–57. https://doi.org/10.1007/978-3-
030-00856-7_3

108

https://doi.org/10.1109/TENCON.2017.8228332
https://doi.org/10.1186/s40537-018-0156-1
https://doi.org/10.1109/BigData.2013.6691765
https://doi.org/10.1007/978-3-030-00856-7_3
https://doi.org/10.1007/978-3-030-00856-7_3

la Vega, A., García-Saiz, D., Blanco, C., Zorrilla, M., & Sánchez, P. (2020). Mortadelo:
Automatic generation of NoSQL stores from platform-independent data models.
Future Generation Computer Systems, 105, 455–474.

Li, X., Ma, Z., & Chen, H. QODM: A query-oriented data modeling approach for NoSQL
databases. In: 2014, 338–345. https://doi.org/10.1109/WARTIA.2014.6976265

Li, Y., Gu, P., & Zhang, C. (2014). Transforming UML class diagrams into HBase based
on meta-model. 2014 International Conference on Information Science, Electronics
and Electrical Engineering, 2, 720–724.

Lima, C., & Mello, R. (2016). On proposing and evaluating a NoSQL document database
logical approach. International Journal of Web Information Systems, 12 (4), 398–
417. https://doi.org/10.1108/IJWIS-04-2016-0018

Llano-Ríos, T. F., Khalefa, M., & Badia, A. (2020). Evaluating NoSQL systems for deci-
sion support: An experimental approach. 2020 IEEE International Conference on
Big Data (Big Data), 2802–2811.

Martins de Sousa, V., & del Val Cura, L. Logical design of graph databases from an
entity-relationship conceptual model. In: 2018, 183–189. https : //doi . org/{10 .
1145/3282373.3282375}

Mior, M. J., Salem, K., Aboulnaga, A., & Liu, R. (2017). NoSE: Schema design for NoSQL
applications. IEEE Transactions on Knowledge and Data Engineering, 29 (10),
2275–2289.

Mior, M. Automated schema design for NoSQL databases. In: 2014, 41–45. https://doi.
org/10.1145/2602622.2602624

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & ope-
rations research, 24 (11), 1097–1100.

Mozaffari, M., & Nazemi, E. (2023). Automatic NoSQL Schema Design: A Workload-
Driven Schema Design Approach for NoSQL Wide Column Stores. Journal of Soft
Computing and Information Technology, 11 (4), 19–35.

Muhammad, A. Y., & Azizah, F. N. (2022). Conversion of entity-relationship model to
NoSQL document-oriented database logical model using workload information and
entity update frequency. 2022 9th International Conference on Advanced Informa-
tics: Concepts, Theory and Applications (ICAICTA), 1–6.

Naka, E., & Guliashki, V. (2021). Optimization techniques in data management: a sur-
vey. Proceedings of the 2021 7th International Conference on Computing and Data
Engineering, 8–13.

Nogueira, I., Romdhane, M., & Darmont, J. Modeling data lake metadata with a data
vault. In: 2018, 253–261. https://doi.org/10.1145/3216122.3216130

109

https://doi.org/10.1109/WARTIA.2014.6976265
https://doi.org/10.1108/IJWIS-04-2016-0018
https://doi.org/{10.1145/3282373.3282375}
https://doi.org/{10.1145/3282373.3282375}
https://doi.org/10.1145/2602622.2602624
https://doi.org/10.1145/2602622.2602624
https://doi.org/10.1145/3216122.3216130

Orel, O., Zakošek, S., & Baranović, M. (2017). Property oriented relational-to-graph da-
tabase conversion [Konverzija relacijskih u grafovske baze podataka orijentirana
na svojstva]. Automatika, 57 (3), 836–845. https://doi.org/10.7305/automatika.
2017.02.1581

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology, 64, 1–18.

Pokorný, J. Conceptual and database modelling of graph databases. In: 11-13-July-2016.
2016, 370–377. https://doi.org/10.1145/2938503.2938547

Reis, D. G., Gasparoni, F. S., Holanda, M., Victorino, M., Ladeira, M., & Ribeiro, E. O.
(2018). An evaluation of data model for NoSQL document-based databases. Trends
and Advances in Information Systems and Technologies: Volume 1 6, 616–625.

Reniers, V., Van Landuyt, D., Rafique, A., & Joosen, W. Schema design support for semi-
structured data: Finding the sweet spot between NF and De-NF. In: 2018-January.
2018, 2921–2930. https://doi.org/10.1109/BigData.2017.8258261

Reniers, V., Van Landuyt, D., Rafique, A., & Joosen, W. (2020). A workload-driven
document database schema recommender (DBSR). International Conference on
Conceptual Modeling, 471–484.

Roy-Hubara, N., Rokach, L., Shapira, B., & Shoval, P. (2017). Modeling Graph Database
Schema. IT Professional, 19 (6), 34–43. https ://doi .org/10.1109/MITP.2017.
4241458

Roy-Hubara, N., Rokach, L., Shapira, B., & Shoval, P. (2018). Evaluation of a design
method for graph database. Lecture Notes in Business Information Processing,
318, 291–303. https://doi.org/10.1007/978-3-319-91704-7_19

Roy-Hubara, N., Sturm, A., & Shoval, P. (2023). Designing NoSQL databases based on
multiple requirement views. Data & knowledge engineering, 145, 102149.

Saha, S., & Sachdeva, S. (2024). Designing Document stores using Feature Model and
Application Workload. 2024 Third International Conference on Electrical, Elec-
tronics, Information and Communication Technologies (ICEEICT), 1–5.

Santisteban, J., & Ticona-Herrera, R. Modeling a persistent graph. In: 2018, 15–22. https:
//doi.org/10.1109/MICAI-2017.2017.00011

Santos, M., & Costa, C. (2016). Data models in NoSQL databases for big data contexts.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 9714 LNCS, 475–485. https :
//doi.org/10.1007/978-3-319-40973-3_48

Schram, A., & Anderson, K. MySQL to NoSQL data modeling challenges in supporting
scalability. In: 2012, 191–202. https://doi.org/10.1145/2384716.2384773

110

https://doi.org/10.7305/automatika.2017.02.1581
https://doi.org/10.7305/automatika.2017.02.1581
https://doi.org/10.1145/2938503.2938547
https://doi.org/10.1109/BigData.2017.8258261
https://doi.org/10.1109/MITP.2017.4241458
https://doi.org/10.1109/MITP.2017.4241458
https://doi.org/10.1007/978-3-319-91704-7_19
https://doi.org/10.1109/MICAI-2017.2017.00011
https://doi.org/10.1109/MICAI-2017.2017.00011
https://doi.org/10.1007/978-3-319-40973-3_48
https://doi.org/10.1007/978-3-319-40973-3_48
https://doi.org/10.1145/2384716.2384773

scikit-learn. (2024). sklearn.linearmodel.LinearRegression−scikit−learndocumentation

[Accessed: 2025-04-30]. scikit-learn. https : / / scikit - learn . org/ stable /modules /
generated/sklearn.linear_model.LinearRegression.html

Sedlmeier, M., & Gogolla, M. (2014). Design and prototypical implementation of an inte-
grated graph-based conceptual data model. Frontiers in Artificial Intelligence and
Applications, 272, 376–395. https://doi.org/10.3233/978-1-61499-472-5-376

Shah, M., Kothari, A., & Patel, S. (2022). Influence of schema design in nosql document
stores. Mobile Computing and Sustainable Informatics: Proceedings of ICMCSI
2021, 435–452.

Shin, K., Hwang, C., & Jung, H. (2017). NoSQL database design using UML conceptual
data model based on peter chen’s framework. International Journal of Applied
Engineering Research, 12 (5), 632–636.

Shoval, P. A method for modeling a schema for graph databases. In: 8. 2018, 99–104.
Simsion, G., & Witt, G. (2004). Data modeling essentials. Elsevier.
Suárez-Otero, P., Suárez-Cabal, M., & Tuya, J. Leveraging conceptual data models for

keeping cassandra database integrity. In: 2018, 398–403.
Vágner, A. Store and visualize EeR in Neo4j. In: 2018. https://doi.org/10.1145/3284557.

3284694
Vajk, T., Deák, L., Fekete, K., & Mezei, G. (2013). Automatic NoSQL schema develop-

ment: A case study. Artificial Intelligence and Applications, 656–663.
Van Erven, G., Silva, W., Carvalho, R., & Holanda, M. (2018). GRAPHED: A graph des-

cription diagram for graph databases. Advances in Intelligent Systems and Com-
puting, 745, 1141–1151. https://doi.org/10.1007/978-3-319-77703-0_111

Varga, V., Jánosi-Rancz, K., & Kálmán, B. (2016). Conceptual design of document NoSQL
database with formal concept analysis. Acta Polytechnica Hungarica, 13 (2), 229–
248.

Varga, V., Săcărea, C., & Molnar, A. (2018). Conceptual Graphs Based Modeling of Semi-
structured Data. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10872 LNAI,
167–175. https://doi.org/10.1007/978-3-319-91379-7_13

Vera, H., & et. al. Data modeling for NoSQL document-oriented databases. In: 1478. 2015,
129–135.

Vera, H., Boaventura, W., Holanda, M., Guimaraes, V., & Hondo, F. (2015). Data mode-
ling for NoSQL document-oriented databases. CEUR Workshop Proceedings, 1478,
129–135.

Vera-Olivera, H., Alvarez-Mamani, E., & Holanda, M. (2023). Análise de Desempenho em
Banco de Dados NoSQL Orientado a Documentos: Um Índice para Comparação de

111

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://doi.org/10.3233/978-1-61499-472-5-376
https://doi.org/10.1145/3284557.3284694
https://doi.org/10.1145/3284557.3284694
https://doi.org/10.1007/978-3-319-77703-0_111
https://doi.org/10.1007/978-3-319-91379-7_13

Modelos de Dados. Anais do XXXVIII Simpósio Brasileiro de Bancos de Dados,
26–38. https://doi.org/10.5753/sbbd.2023.231721

Vera-Olivera, H., & et. al. (2021). Data Modeling and NoSQL Databases - A Systematic
Mapping Review. ACM Comput. Surv., 54 (6). https://doi.org/10.1145/3457608

Vera-Olivera, H., & Holanda, M. (2024). Métricas para Análise de Esquemas em Banco
de Dados NoSQL Orientado a Documentos. Anais do XXXIX Simpósio Brasileiro
de Bancos de Dados, 381–393. https://doi.org/10.5753/sbbd.2024.240646

Villa, F., Moreno, F., & Guzmán, J. (2018). An Analysis of a Methodology that Trans-
forms the Entity-Relationship Model into a Conceptual Model for a Graph Data-
base. International Conference for Emerging Technologies in Computing, 70–83.

Wakuta, Y., Mior, M., Zenmyo, T., Sasaki, Y., & Onizuka, M. (2023). NoSQL Schema
Design for Time-Dependent Workloads. arXiv preprint arXiv:2303.16577.

Yoo, K., Park, S., & Lee, S.-G. RDB2Graph: A generic framework for modeling relational
databases as graphs. In: 1312. 2014, 148–151.

Zhang, Z. (2017). Graph Databases for Knowledge Management. IT Professional, 19 (6),
26–32. https://doi.org/10.1109/MITP.2017.4241463

Zhao, G., Huang, W., Liang, S., & Tang, Y. (2013). Modeling MongoDB with relational
model. 2013 Fourth International Conference on Emerging Intelligent Data and
Web Technologies, 115–121.

Zhao, M., Liu, Y., & Zhou, P. Towards a systematic approach to graph data modeling:
Scenario-based design and experiences. In: 2016-January. 2016, 634–637. https :
//doi.org/10.18293/SEKE2016-119

112

https://doi.org/10.5753/sbbd.2023.231721
https://doi.org/10.1145/3457608
https://doi.org/10.5753/sbbd.2024.240646
https://doi.org/10.1109/MITP.2017.4241463
https://doi.org/10.18293/SEKE2016-119
https://doi.org/10.18293/SEKE2016-119

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Problema de Pesquisa
	Justificativa
	Contribuição Original
	Objetivo Geral
	Objetivos específicos

	Metodologia
	Organização do Trabalho

	Estado da Arte
	Modelagem em Banco de Dados NoSQL
	Coeficientes de Ponderação
	Métricas de Avaliação
	Geração de Esquemas
	Considerações Finais

	Visualização de Esquemas
	Notação Gráfica
	Representação de coleções e atributos
	Relacionamentos e cardinalidades

	Considerações Finais

	Coeficientes de Ponderação
	Contextualização
	Ambiente Experimental
	Arquitetura de Implantação

	Banco de Dados Sintético
	Datasets
	Modelos de Regressão Múltipla
	Construção dos Modelos
	Treinamento e Validação

	Determinação dos Coeficientes de Ponderação para Relacionamentos
	Processo de Obtenção

	Determinação dos Coeficientes de Ponderação para Atributos Simples e Complexos
	Cenário de Validação
	Considerações Finais

	Métricas de Avaliação
	Definições Formais
	Métrica Completude
	Funcionamento
	Exemplo
	Interpretação dos Resultados

	Métrica Padrão de Acesso
	Funcionamento
	Exemplo
	Interpretação dos Resultados

	Métrica Custo de Recuperação
	Funcionamento
	Exemplo
	Interpretação de Resultados

	Métrica Redundância
	Funcionamento
	Exemplo
	Interpretação dos Resultados

	Cenários de Validação
	Primeiro Cenário de Avaliação
	Segundo Cenário de Avaliação

	Considerações Finais

	Otimização Heurística: Determinação da Melhor Solução Encontrada
	Algoritmo VNS
	Pseudocódigo
	Regras de Validação
	Métricas de Avaliação
	Estrategias de Perturbação

	Cenários de Validação
	Primeiro cenário
	Segundo Cenário

	Limitações
	Ameaças
	Considerações Finais

	Conclusões
	Resultados Acadêmicos
	Trabalhos Futuros

