
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Explorando Large Language Models para a Geração
de Requisitos de Software a partir de Issues em

Projetos de Código Aberto

Guilherme Pereira Paiva

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Orientadora
Prof.a Dr.a Edna Dias Canedo

Brasília
2025

Ficha catalográfica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

P149e
Paiva, Guilherme Pereira
 Explorando Large Language Models para a Geração de
Requisitos de Software a partir de Issues em Projetos de
Código Aberto / Guilherme Pereira Paiva; orientador Edna
Canedo. Brasília, 2025.
 56 p.

 Dissertação(Mestrado em Informática) Universidade de
Brasília, 2025.

 1. Engenharia de Requisitos. 2. Large Language Models. 3.
Engenharia de Prompt. 4. Análise de Qualidade Automatizada.
5. Software de Código Aberto. I. Canedo, Edna, orient. II.
Título.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Explorando Large Language Models para a Geração
de Requisitos de Software a partir de Issues em

Projetos de Código Aberto

Guilherme Pereira Paiva

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Prof.a Dr.a Edna Dias Canedo (Orientadora)
CIC/UnB

Prof. Dr. Geraldo Pereira Rocha Filho
Universidade Estadual do Sudoeste da

Bahia (UESB)

Prof. Dr. Rodrigo Pereira dos Santos
Universidade Federal do Estado do Rio de

Janeiro (UNIRIO)

Prof.a Dr.a Cláudia Nalon
Coordenadora do Programa de Pós-graduação em Informática

Brasília, 25 de Agosto de 2025

Dedicatória

À minha esposa, pelo amor, paciência e apoio incondicional em todos os momentos;

Aos meus pais e às minhas irmãs, pelo incentivo, confiança e carinho ao longo de toda a
jornada;

À minha orientadora, Edna Dias Canedo, pela sábia orientação, pelo comprometimento e
pelas valiosas contribuições que nortearam cada etapa deste trabalho.

iv

Agradecimentos

Agradeço a todos que, de alguma forma, contribuíram para a realização deste estudo:

À banca examinadora pelas valiosas sugestões que enriqueceram este trabalho;

Aos colegas e aos amigos do programa de pós-graduação pelo ambiente acolhedor e pelas
discussões enriquecedoras;

À Universidade de Brasília, por oferecer infraestrutura e apoio à pesquisa;

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo apoio
financeiro concedido para a realização desta pesquisa;

Por fim, registro minha gratidão a Deus, fonte de força e esperança em todos os momentos.

v

Resumo

Contexto: A Engenharia de Requisitos (ER) em projetos de Open-Source Software (OSS)
sofre com a informalidade e o grande volume de issues, gerando lacunas entre solicitações
de usuários e artefatos formais exigidos por normas como a ISO/IEC/IEEE 29148:2018.
Objetivo: Avaliar empiricamente a eficácia de Large Language Models (LLMs) — mod-
ulada por diferentes estratégias de engenharia de prompts — na geração automática de
requisitos de software a partir de títulos de issues. Método: Foram coletados 150 títu-
los de issues de cinco repositórios OSS altamente ativos; esses títulos foram processados
pelos LLMs o3-mini e DeepSeek R1, combinados com três estilos de prompt (Zero-shot,
Few-shot e Expert Identity), resultando em 900 requisitos avaliados por um LLM-juiz
(Qwen QwQ-32b) segundo as métricas Não Ambiguidade, Verificabilidade e Singularidade
derivadas da norma ISO/IEC/IEEE 29148. Resultados: Ambos os LLMs produziram
requisitos de alta qualidade (médias > 4,2 numa escala 1–5), mas com variação significa-
tiva; a estratégia Few-shot elevou consistentemente a Singularidade, enquanto a Expert
Identity melhorou a Verificabilidade ao custo de requisitos menos singulares, eviden-
ciando trade-offs dependentes do modelo e do prompt. Conclusão: LLMs são assistentes
promissores para automatizar etapas críticas da ER em OSS, porém sua eficácia exige
prompts cuidadosamente projetados e supervisão humana para balancear atributos de
qualidade concorrentes e assegurar requisitos claros, verificáveis e atômicos.

Palavras-chave: Engenharia de Requisitos, Large Language Models, Engenharia de
Prompt, Análise de Qualidade Automatizada, Software de Código Aberto

vi

Abstract

Context: Requirements Engineering (RE) in Open Source Software (OSS) projects suf-
fers from informality and a large volume of issues, creating gaps between user requests and
formal artifacts required by standards such as ISO/IEC/IEEE 29148:2018. Objective:
To empirically evaluate the effectiveness of Large Language Models (LLMs) — modu-
lated by different prompt engineering strategies — in automatically generating software
requirements from issue titles. Method: 150 issue titles were collected from five highly
active OSS repositories; these titles were processed by the LLMs o3-mini and DeepSeek
R1, combined with three prompt styles (Zero-shot, Few-shot, and Expert Identity), re-
sulting in 900 requirements evaluated by an LLM-judge (Qwen QwQ-32b) according to
the metrics Unambiguity, Verifiability, and Singularity, derived from the ISO/IEC/IEEE
29148 standard. Results: Both LLMs produced high-quality requirements (averages >
4.2 on a 1–5 scale), but with significant variation; the Few-shot strategy consistently in-
creased Singularity, while Expert Identity improved Verifiability at the cost of less singular
requirements, highlighting model and prompt dependent trade-offs. Conclusion: LLMs
are promising assistants for automating critical stages of RE in OSS, but their effective-
ness requires carefully designed prompts and human supervision to balance competing
quality attributes and ensure clear, verifiable, and atomic requirements.

Keywords: Requirements Engineering, Large Language Models, Prompt Engineering,
Automated Quality Assessment, Open Source Software

vii

Sumário

1 Introdução 1
1.1 Contextualização . 1
1.2 Problema de Pesquisa . 2
1.3 Justificativa . 3
1.4 Objetivos . 4

1.4.1 Objetivo Geral . 4
1.4.2 Objetivos Específicos . 5

1.5 Resultados Esperados e Contribuições . 5
1.6 Método de Pesquisa . 6
1.7 Estrutura do Trabalho . 6

2 Fundamentação 8
2.1 Fundamentação Teórica . 8

2.1.1 Requisitos de Software . 8
2.1.2 Qualidade em Requisitos de Software 11
2.1.3 Large Language Models . 12
2.1.4 Engenharia de Prompts . 14
2.1.5 LLM-as-a-Judge . 16

2.2 Trabalhos Relacionados . 17
2.2.1 Lacuna de Pesquisa e a Contribuição deste Trabalho 19

2.3 Síntese do Capítulo . 20

3 Configuração do Estudo 22
3.1 Desenho da Pesquisa . 22
3.2 Coleta de Dados . 22
3.3 Geração de Requisitos . 24

3.3.1 Configuração dos Prompts . 24
3.3.2 Execução dos Prompts . 26

3.4 Avaliação dos Requisitos . 27

viii

3.4.1 Métricas de Avaliação . 27
3.4.2 Avaliação Automatizada . 27
3.4.3 Prompt de Avaliação . 28

3.5 Estratégia de Análise dos Dados . 30
3.6 Síntese do Capítulo . 31

4 Resultados e Discussão 32
4.1 Visão Geral da Qualidade dos Requisitos Gerados 33
4.2 QP1: Análise da Eficácia dos Modelos de Linguagem 34
4.3 QP2: Influência das Estratégias de Engenharia de Prompts 35

4.3.1 Influência dos Prompts no Desempenho do o3-mini 36
4.3.2 Influência dos Prompts no Desempenho do DeepSeek R1 36

4.4 QP3: Características Qualitativas, Pontos Fortes e Fracos 38
4.5 Achados Adicionais e Implicações Metodológicas 40
4.6 Limitações e Ameaças à validade . 41

4.6.1 Limitações do Estudo . 41
4.6.2 Ameaças à Validade . 42

4.7 Síntese do Capítulo . 45

5 Conclusão 46
5.1 Síntese dos Resultados e Respostas às Questões de Pesquisa 46
5.2 Implicações do Estudo . 47

5.2.1 Implicações para a Pesquisa . 47
5.2.2 Implicações para a Prática . 48

5.3 Trabalhos Futuros . 49

Referências 51

ix

Lista de Figuras

3.1 Procedimentos Metodológicos . 23

4.1 Distribuição das Pontuações de Qualidade dos Requisitos por LLM 34
4.2 Distribuição das Pontuações de Qualidade dos Requisitos do o3-mini por

Estilo de Prompt . 36
4.3 Distribuição das Pontuações de Qualidade dos Requisitos do DeepSeek R1

por Estilo de Prompt . 37

x

Lista de Tabelas

2.1 Comparativo dos Trabalhos Relacionados 21

3.1 Amostra do Conjunto de Dados de Solicitações de Funcionalidades 24

4.1 Estatísticas Gerais para as Métricas de Qualidade dos Requisitos (N=900) 33
4.2 Estatísticas Descritivas das Métricas de Qualidade por LLM (N=450 por

LLM) . 34
4.3 Estatísticas Descritivas para as Pontuações do o3-mini por Estilo de Prompt

(N=150 por estilo) . 36
4.4 Estatísticas Descritivas para as Pontuações do DeepSeek R1 por Estilo de

Prompt (N=150 por estilo) . 37
4.5 Matriz de Correlação de Spearman para as Métricas de Qualidade (N = 900) 41

xi

Lista de Abreviaturas e Siglas

ER Engenharia de Requisitos.

IA Inteligência Artificial.

LLMs Large Language Models.

OSS Open-Source Software.

ZSL Zero-Shot Learning.

xii

Capítulo 1

Introdução

1.1 Contextualização

A Engenharia de Requisitos (ER) é reconhecida como uma fase fundamental e, simulta-
neamente, um dos principais gargalos no ciclo de vida do desenvolvimento de software. A
qualidade desta etapa é um fator determinante para o sucesso de um projeto, pois falhas
na elicitação, especificação ou gerenciamento de requisitos podem levar a atrasos, custos
excessivos e ao desenvolvimento de um produto que não atende às necessidades das partes
interessadas [1, 2].

Este desafio é particularmente amplificado no ecossistema dinâmico e distribuído do
Software de Código Aberto – Open-Source Software (OSS). Nesses projetos, a elicitação
de requisitos raramente segue processos formais. Em vez disso, ela depende massivamente
de sistemas de rastreamento de issues1 em plataformas como o GitHub, onde desenvolve-
dores e usuários reportam falhas, discutem melhorias e propõem novas funcionalidades de
maneira informal [3, 4]. Essa realidade cria uma lacuna significativa entre, de um lado,
um grande volume de solicitações concisas, ambíguas e não estruturadas e, de outro, a ne-
cessidade de requisitos de software claros, verificáveis e singulares, conforme preconizado
por normas como a ISO/IEC/IEEE 29148:2018 [5].

Neste cenário, os Large Language Models (LLMs) surgem como uma tecnologia pro-
missora. Com sua capacidade avançada de compreender e gerar texto de forma análoga
à humana [6], esses modelos de Inteligência Artificial (IA) oferecem um potencial sem
precedentes para automatizar a tarefa de “traduzir” as solicitações informais dos usuários
em artefatos de requisitos bem formados, um objetivo central para a modernização da
ER [7]. A capacidade dos LLMs de realizar tarefas complexas com pouca ou nenhuma
supervisão contorna a dependência de grandes conjuntos de dados rotulados, que eram
uma limitação de abordagens de IA anteriores [8].

1https://docs.github.com/pt/issues

1

https://docs.github.com/pt/issues

Contudo, a eficácia dos LLMs não é incondicional. A qualidade da saída gerada é
diretamente influenciada pela entrada fornecida, conhecida como prompt. A prática de
projetar e refinar esses prompts — a Engenharia de Prompts — tornou-se uma disciplina
crítica, pois funciona como uma “forma de programação” para guiar o comportamento
do modelo [9]. Diferentes estratégias de prompt podem levar a resultados drasticamente
distintos [10], tornando essencial a investigação sobre como otimizar essa interação para
tarefas específicas de ER.

Diante deste contexto, o presente trabalho se propõe a investigar a aplicação de LLMs
para a geração automática de requisitos de software a partir de uma das fontes mais desa-
fiadoras e realistas do mundo OSS: os títulos de issues do GitHub. Mais especificamente,
esta dissertação realiza uma avaliação empírica e comparativa para entender como dife-
rentes estratégias de engenharia de prompts e a escolha de distintos LLMs impactam a
qualidade dos requisitos gerados, oferecendo insights práticos para a automação de uma
das etapas mais críticas do desenvolvimento de software.

1.2 Problema de Pesquisa

A elicitação e especificação de requisitos são universalmente reconhecidas como ativida-
des cognitivamente desafiadoras e cruciais para o sucesso de um projeto. Uma pesquisa
recente com profissionais da área de desenvolvimento, conduzida por Mesquita et al. [11],
corrobora essa visão, indicando que a percepção de dificuldade está ligada a desafios de
comunicação, como gerenciar o relacionamento com as partes interessadas e compreen-
der processos de negócio complexos. Essa dificuldade inerente ao processo manual fre-
quentemente resulta em artefatos de requisitos iniciais que são informais, ambíguos ou
incompletos.

Essa fragilidade na criação dos artefatos de requisitos é corroborada por Canedo et al.
[12]. A pesquisa dos autores com equipes ágeis revelou que os desafios na documentação
são acentuados pela carência de profissionais com treinamento específico em requisitos e
pela falta de conhecimento sobre as técnicas e métodos da ER.

Este problema se manifesta de forma aguda no ecossistema de OSS. Nesses projetos,
as barreiras de comunicação são amplificadas pela natureza distribuída das equipes, e o
processo de elicitação depende de um fluxo contínuo de issues onde as solicitações de
funcionalidades são expressas de forma extremamente concisa, muitas vezes apenas em
um título [3]. Portanto, existe uma lacuna pragmática entre a forma como os requisitos
nascem no mundo OSS e a necessidade de artefatos que atendam a critérios de qualidade
rigorosos, como os da norma ISO/IEC/IEEE 29148:2018.

2

Embora a literatura demonstre o potencial dos LLMs para automatizar tarefas de ER
[13, 14], sua aplicação para transpor essa lacuna específica permanece pouco explorada.
O desempenho dos LLMs é altamente sensível às instruções recebidas, e a engenharia
de prompts emergiu como um fator crítico para o sucesso [9, 10]. Contudo, há pouca
evidência empírica sobre como diferentes estratégias de prompt influenciam a qualidade
dos requisitos gerados neste contexto.

A ausência de uma avaliação sistemática que compare o desempenho de diferentes
LLMs e estratégias de prompt, utilizando métricas de qualidade padronizadas para a
tarefa específica de gerar requisitos a partir de títulos de issues de OSS, configura o
principal problema de pesquisa a ser abordado. É preciso ir além da prova de conceito e
investigar a eficácia, a consistência e os trade-offs envolvidos nesta aplicação prática.

Portanto, esta dissertação é norteada por um objetivo central: avaliar empirica-
mente a eficácia de LLMs, modulada por diferentes estratégias de engenharia
de prompts, na geração de requisitos de software de alta qualidade a partir de
títulos de issues de projetos OSS.

Para alcançar este objetivo, o estudo busca responder às seguintes questões de pesquisa
(QPs):

• QP1: Qual a eficácia dos LLMs para gerar requisitos de software a partir de títulos
de issues de projetos OSS?

• QP2: Como diferentes estratégias de engenharia de prompts influenciam a qualidade
dos requisitos gerados?

• QP3: Quais são as características qualitativas, os pontos fortes e fracos dos requi-
sitos gerados por LLMs?

1.3 Justificativa

A relevância desta pesquisa ancora-se na intersecção de três pilares: um desafio prático
persistente na Engenharia de Software, uma lacuna acadêmica na aplicação de tecnologias
emergentes e uma necessidade metodológica de avaliação em larga escala.

Primeiramente, a relevância prática reside em abordar um dos gargalos mais críticos
do desenvolvimento de software: a Engenharia de Requisitos. Conforme apontado por
Arora et al. [7], a ER é frequentemente subdimensionada devido a restrições de tempo
e recursos, apesar de ser uma fonte conhecida de falhas e retrabalho [2]. Este desafio
é acentuado no contexto do Open-Source Software, onde a elicitação ocorre de forma
distribuída e informal, predominantemente através de um volume massivo de issues em
plataformas como o GitHub [3, 4]. A tarefa de transformar títulos de issues — que

3

são, por natureza, concisos e muitas vezes ambíguos — em requisitos de software claros,
verificáveis e singulares, alinhados com padrões como a ISO/IEC/IEEE 29148:2018 [5],
constitui um problema prático para a evolução de projetos OSS.

Em segundo lugar, a relevância acadêmica emerge da necessidade de investigar
sistematicamente o potencial dos LLMs para solucionar o problema descrito. A literatura
recente já demonstrou que os LLMs são promissores para automatizar diversas tarefas
de ER [13, 8]. Contudo, persistem lacunas que este trabalho se propõe a preencher.
Estudos anteriores não focaram adequadamente no desafio de gerar requisitos a partir de
entradas tão restritas e informais como os títulos de issues de OSS. Além disso, embora
a importância da engenharia de prompts seja reconhecida [9, 10], falta uma avaliação
empírica comparativa em larga escala que investigue como diferentes estratégias de prompt
e a escolha de distintos LLMs influenciam atributos de qualidade específicos. Este estudo
avança ao investigar não apenas a eficácia dos modelos, mas também os trade-offs entre
as métricas de qualidade, um aspecto prático e pouco explorado.

Finalmente, a relevância metodológica desta dissertação está na adoção e validação
do paradigma LLM-as-a-Judge para a avaliação da qualidade dos artefatos gerados. A
avaliação manual de um grande volume de requisitos seria impraticável. A abordagem
LLM-as-a-Judge oferece uma alternativa escalável, consistente e de baixo custo [15]. Ao
empregar um LLM avaliador fundamentado em critérios explícitos da norma ISO 29148,
este trabalho não só viabiliza a análise em larga escala, mas também contribui com evi-
dências sobre a robustez desta metodologia para mitigar vieses conhecidos no domínio
específico da ER.

Portanto, esta dissertação justifica-se por fornecer evidências empíricas e insights prá-
ticos sobre a aplicação de LLMs a um problema real da ER em projetos OSS, avançando
o conhecimento sobre a interação entre modelos, prompts e qualidade dos requisitos, ao
mesmo tempo em que explora uma abordagem de avaliação automatizada promissora.

1.4 Objetivos

Com base no problema de pesquisa delineado, os objetivos deste trabalho foram estrutu-
rados da seguinte forma:

1.4.1 Objetivo Geral

O objetivo geral deste trabalho é avaliar empiricamente a eficácia de LLMs, modulada
por diferentes estratégias de engenharia de prompts, na geração de requisitos de software
de alta qualidade a partir de títulos de issues de projetos OSS.

4

1.4.2 Objetivos Específicos

Para alcançar o objetivo geral, os seguintes objetivos específicos foram definidos:

1. Coletar um conjunto de dados composto por títulos de issues de solicitações de
funcionalidades de repositórios OSS de alta atividade no GitHub.

2. Desenvolver estratégias de engenharia de prompts para guiar a geração de requisitos.

3. Gerar um corpus de requisitos de software utilizando LLMs distintos em combinação
com as estratégias de prompt.

4. Definir um protocolo de avaliação de qualidade baseado em métricas da norma
ISO/IEC/IEEE 29148:2018.

5. Avaliar a qualidade dos requisitos gerados de forma automatizada, utilizando um
modelo de LLM como avaliador.

6. Analisar os dados quantitativos e qualitativos para responder às questões de pes-
quisa, comparando a eficácia dos LLMs e das estratégias de prompt e identificando
os pontos fortes e fracos das saídas geradas.

1.5 Resultados Esperados e Contribuições

A execução desta pesquisa visa gerar um conjunto de contribuições teóricas, práticas e
metodológicas para a área de Engenharia de Software. Os principais resultados e contri-
buições esperados são:

1. Um conjunto de dados público e anotado: Disponibilização de um dataset
contendo 150 títulos de issues de projetos OSS e os 900 requisitos de software gera-
dos. Cada requisito é acompanhado por pontuações de qualidade e pela justificativa
textual do LLM-juiz, servindo como um recurso valioso para futuras pesquisas.

2. Evidência empírica sobre a eficácia de LLMs: Uma avaliação quantitativa e
qualitativa que responde à questão de quão eficazes são os LLMs para a tarefa de
gerar requisitos a partir de entradas concisas, oferecendo uma visão realista de suas
capacidades e limitações atuais.

3. Análise comparativa de estratégias de prompt: Um estudo aprofundado sobre
como diferentes estratégias de engenharia de prompts impactam a qualidade dos
requisitos. A pesquisa identifica os trade-offs gerados por cada estratégia, fornecendo
orientações práticas para a escolha do prompt mais adequado.

5

4. Validação de uma metodologia de avaliação escalável: Demonstração e va-
lidação do uso do paradigma LLM-as-a-Judge para avaliação de qualidade em ER,
incluindo evidências de sua robustez contra vieses conhecidos e sua utilidade para
análises em larga escala.

1.6 Método de Pesquisa

Para alcançar os objetivos propostos, esta pesquisa adota um desenho empírico e quanti-
tativo, aderindo a padrões para pesquisa em Engenharia de Software definidos pela ACM
SIGSOFT [16]. Especificamente, o trabalho combina os padrões:

• Mineração de Repositórios2: Para a extração sistemática de solicitações de fun-
cionalidades (issues) de repositórios de software de código aberto no GitHub, for-
mando a base de dados para o estudo.

• Ciência de Dados3: Para o desenho, condução e avaliação dos experimentos de ge-
ração automática de requisitos, incluindo a aplicação de modelos, análise estatística
e interpretação dos resultados.

O fluxo metodológico, detalhado no Capítulo 3, foi executado em três fases principais.
Na Coleta de Dados, foram minerados 150 títulos de issues de cinco repositórios OSS
de alta relevância. Na Geração de Requisitos, estes títulos foram processados por dois
LLMs (o3-mini e DeepSeek R1) com três estratégias de prompt distintas, resultando em
900 requisitos. Finalmente, na Avaliação de Qualidade, foi empregado o paradigma
LLM-as-a-Judge com o modelo Qwen QwQ-32b para avaliar cada requisito segundo as
métricas de Não Ambiguidade, Verificabilidade e Singularidade da norma ISO/IEC/IEEE
29148:2018.

Os resultados obtidos a partir do processo de geração de requisitos, bem como os
scripts utilizados, foram disponibilizados publicamente na plataforma de arquivamento e
versionamento Zenodo4. Essa iniciativa visa garantir a transparência, a disponibilidade e
a replicabilidade das etapas realizadas.

1.7 Estrutura do Trabalho

Esta dissertação está organizada em cinco capítulos, além deste, que se desdobram da
seguinte forma:

2https://www2.sigsoft.org/EmpiricalStandards/docs/standards?standard=RepositoryMining
3https://www2.sigsoft.org/EmpiricalStandards/docs/standards?standard=DataScience
4https://zenodo.org/records/13655334

6

https://zenodo.org/records/13655334

• Capítulo 2: Fundamentação Teórica — Revisa os conceitos essenciais de En-
genharia de Requisitos, qualidade de requisitos segundo a norma ISO/IEC/IEEE
29148:2018, LLMs, engenharia de prompts e o paradigma LLM-as-a-Judge. Tam-
bém analisa os trabalhos relacionados para posicionar esta pesquisa na literatura
atual;

• Capítulo 3: Configuração do Estudo — Descreve em detalhes o método ado-
tado, incluindo os procedimentos para coleta de dados, a configuração dos LLMs e
prompts para a geração de requisitos, e o protocolo de avaliação automatizada da
qualidade;

• Capítulo 4: Resultados e Discussão — Apresenta e analisa os resultados quan-
titativos e qualitativos obtidos. Cada questão de pesquisa é abordada, discutindo a
eficácia dos LLMs, a influência dos prompts e as características dos requisitos gera-
dos. Também analisa criticamente as limitações do estudo e as potenciais ameaças
à sua validade, com o objetivo de contextualizar o alcance dos resultados;

• Capítulo 5: Conclusão — Recapitula as contribuições da dissertação, sintetiza
as conclusões em resposta às questões de pesquisa, e delineia as implicações dos
resultados e as direções para trabalhos futuros.

7

Capítulo 2

Fundamentação

Este capítulo estabelece as bases teóricas para a presente dissertação. Inicia-se discu-
tindo a extração de requisitos a partir de artefatos de software em projetos de código
aberto, definindo em seguida os critérios de qualidade para requisitos com base na norma
ISO/IEC/IEEE 29148:2018 [5]. Subsequentemente, são apresentados LLMs, com foco em
técnicas de engenharia de prompts. Por fim, aborda-se o paradigma emergente LLM-
as-a-Judge para avaliação em larga escala e analisam-se os trabalhos relacionados para
identificar a lacuna de pesquisa que este trabalho se propõe a preencher.

2.1 Fundamentação Teórica

2.1.1 Requisitos de Software

A ER é um processo sistemático e disciplinado fundamental no ciclo de vida do desenvol-
vimento de software. Ela abrange o conjunto de atividades focadas em descobrir, analisar,
documentar e verificar as funcionalidades e restrições de um sistema [1]. Uma ER eficaz
é crucial para o sucesso de um projeto, pois estabelece uma base sólida que alinha as
expectativas das partes interessadas (stakeholders) com o produto final, mitigando riscos
de falhas, atrasos e custos excessivos [2].

O processo de ER é composto por um conjunto de atividades inter-relacionadas e
iterativas. Embora possam ser apresentadas de forma sequencial para fins didáticos, na
prática, essas atividades são frequentemente sobrepostas e revisitadas ao longo do projeto,
em um ciclo contínuo de refinamento [1]. As principais atividades incluem:

• Elicitação e Análise: A fase de descoberta, onde os requisitos são identificados
por meio da interação com stakeholders e da análise do domínio do problema. Esta é
uma das fases mais críticas e desafiadoras, pois envolve a tradução de necessidades,
muitas vezes vagas ou implícitas, em conceitos concretos [1, 2];

8

• Especificação: A atividade de converter os requisitos elicitados em um formato
padronizado, claro e inequívoco. O resultado é um documento de requisitos que
serve como um contrato entre clientes e desenvolvedores, guiando o projeto, desen-
volvimento e testes subsequentes [1];

• Validação: O processo de verificação para garantir que os requisitos especificados
realmente definem o sistema que o cliente deseja e necessita. Esta fase busca iden-
tificar problemas como omissões, inconsistências e ambiguidades antes que eles se
propaguem para as fases posteriores do desenvolvimento [1];

• Gerenciamento de Requisitos: Dado que os requisitos são raramente estáticos,
esta atividade lida com as mudanças inevitáveis que ocorrem durante o ciclo de vida
do projeto. Inclui o controle de alterações, a análise de impacto e a manutenção da
rastreabilidade entre os requisitos e outros artefatos do sistema [1].

Desafios na Engenharia de Requisitos

A elicitação e a especificação de requisitos são processos inerentemente complexos e reple-
tos de desafios. Um dos obstáculos mais significativos reside na comunicação e na própria
natureza da linguagem natural. Requisitos são frequentemente expressos de forma vaga,
ambígua, inconsistente ou incompleta, o que pode levar a múltiplas interpretações e, con-
sequentemente, a falhas no desenvolvimento [2].

Outros desafios importantes incluem [1, 2]:

• Dificuldade na Articulação: Muitas vezes, os stakeholders não sabem exatamente
o que querem de um sistema ou têm dificuldade em articular suas necessidades de
forma clara e precisa.

• Requisitos Conflitantes: Diferentes stakeholders podem ter necessidades e prio-
ridades divergentes, resultando em requisitos que entram em conflito entre si.

• Conhecimento Implícito: Especialistas de domínio possuem conhecimento tácito
sobre seus processos de trabalho, que consideram tão fundamental a ponto de não
o mencionarem, levando a omissões críticas.

• Ambiente Dinâmico: Fatores de negócio, econômicos e políticos podem mudar
durante o processo de análise, alterando a importância de certos requisitos ou in-
troduzindo novos.

Essas dificuldades ressaltam a importância de técnicas e ferramentas que possam auxiliar
na transformação de entradas informais e ambíguas em requisitos bem definidos.

9

Além disso, a Engenharia de Requisitos enfrenta desafios como tempo, restrições or-
çamentárias, ferramentas inadequadas e uma abordagem que prioriza especialmente a
implementação, levando a problemas como requisitos inconsistentes, incompletos e incor-
retos em estágios posteriores de desenvolvimento [7].

Elicitação de Requisitos em Projetos OSS

Os desafios da ER são particularmente amplificados no contexto de projetos OSS. Estes
projetos são caracterizados por um desenvolvimento distribuído, colaborativo e, muitas
vezes, menos formal, onde a comunidade de desenvolvedores e usuários desempenha um
papel central [3]. Nesses ambientes, a elicitação de requisitos raramente segue um processo
estruturado de entrevistas ou workshops.

Em vez disso, a elicitação em projetos OSS depende fortemente de ferramentas de co-
municação e documentação online, principalmente dos sistemas de rastreamento de issues
(issue trackers), como os encontrados em plataformas como GitHub, Jira e Bugzilla [4].
Um issue tracker é um sistema que permite aos usuários e desenvolvedores reportar bugs,
solicitar novas funcionalidades, fazer perguntas e discutir aspectos técnicos do projeto.
Cada entrada (issue) funciona como um tópico de discussão que pode evoluir para um
requisito de software [3, 4].

O uso de issue trackers como principal fonte de requisitos introduz um conjunto único
de desafios:

• Grande Volume de Entradas: Projetos OSS populares recebem um volume mas-
sivo de issues e pedidos de funcionalidades, tornando difícil para os desenvolvedores
gerenciar, classificar e priorizar essas solicitações de forma eficaz [3].

• Informalidade e Falta de Estrutura: As issues são frequentemente escritas em
linguagem natural informal, com vocabulário e estrutura sintática muito diferentes
dos requisitos formais. Títulos de issues, em particular, podem ser extremamente
concisos, ambíguos ou incompletos [17].

• Comunicação Distribuída: A natureza distribuída e assíncrona da comunicação
em issue trackers dificulta a obtenção de esclarecimentos e a resolução de conflitos
entre os interesses dos diversos stakeholders [3].

Essa lacuna entre a natureza informal e massiva das solicitações em issue trackers
de OSS e a necessidade de requisitos de software claros, singulares e verificáveis cria
uma oportunidade significativa para a automação. A capacidade de transformar auto-
maticamente entradas concisas e informais, como os títulos de issues, em requisitos bem
formados poderia otimizar drasticamente o processo de ER em projetos OSS, motivando
a exploração de tecnologias como LLMs para esta tarefa.

10

2.1.2 Qualidade em Requisitos de Software

A norma ISO/IEC/IEEE 29148:2018 [5] é o padrão internacional que estabelece dire-
trizes para os processos e produtos da Engenharia de Requisitos. Ela fornece um arca-
bouço robusto para a definição da qualidade de um requisito, detalhando um conjunto de
características que cada declaração deve possuir para ser considerada apropriadamente
elaborada.

Segundo a norma, um requisito bem escrito deve, primeiramente, seguir boas práticas
de redação. Ele deve ser expresso em voz ativa e utilizar declarações positivas, evitando
negações como “o sistema não deve”. O uso de termos vagos deve ser evitado, e a ter-
minologia específica do domínio deve ser formalmente definida e aplicada de maneira
consistente. Estruturalmente, uma declaração de requisito deve conter um sujeito claro
(por exemplo, “o sistema”, “o compilador”), um verbo modal que indique obrigatoriedade:
tipicamente “deve” (shall), e uma descrição da funcionalidade ou restrição a ser atendida.

Além dessas diretrizes de estilo, a ISO/IEC/IEEE 29148:2018 define que cada requisito
individual deve possuir um conjunto de atributos essenciais de qualidade:

• Necessário: O requisito define uma funcionalidade, característica ou restrição es-
sencial. Sua ausência resultaria em uma deficiência no sistema que não poderia ser
suprida por outros requisitos.

• Apropriado: O nível de detalhe do requisito é adequado ao nível de abstração da
entidade a que se refere. Ele deve evitar impor restrições de design desnecessárias,
permitindo liberdade na implementação.

• Não Ambíguo: O requisito é redigido de forma que só possa ser interpretado de
uma única maneira. A declaração deve ser simples e de fácil compreensão para todas
as partes interessadas.

• Completo: O requisito descreve suficientemente a funcionalidade necessária, sem
que informações adicionais sejam precisas para seu entendimento. Ele deve conter
toda a informação necessária para que seja possível projetá-lo e testá-lo.

• Singular: O requisito expressa uma única funcionalidade, característica, restrição
ou fator de qualidade. Ele deve ser atômico, evitando a combinação de múltiplas
necessidades em uma única declaração para facilitar o rastreamento e a verificação.

• Viável: O requisito pode ser implementado dentro das restrições do sistema (como
custo, prazo e tecnologia) com um nível de risco aceitável.

• Verificável: O requisito é estruturado e redigido de modo que sua implementação
no sistema possa ser verificada de forma objetiva, seja por meio de testes, inspeção,

11

análise ou demonstração. A verificabilidade é aprimorada quando o requisito é
mensurável.

• Correto: O requisito representa com precisão a necessidade da entidade (cliente,
usuário) da qual foi derivado.

• Conforme: O requisito individual segue um modelo ou estilo de escrita padronizado
e aprovado pela organização ou pelo projeto, quando aplicável.

No contexto deste trabalho, a avaliação da qualidade concentra-se em um subconjunto
pragmático dessas características: Não Ambiguidade, Verificabilidade e Singularidade.
Essa seleção é justificada pois tais atributos podem ser avaliados de forma mais objetiva em
requisitos isolados, sem a necessidade do contexto completo do projeto, como cronogramas,
orçamentos e detalhes de arquitetura, que muitas vezes estão ausentes ou são pouco
explícitos nos ambientes de OSS. A capacidade de gerar requisitos de qualidade é um
passo fundamental para automatizar e otimizar a ER nesses ecossistemas dinâmicos [3].

2.1.3 Large Language Models

Large Language Models representam um avanço significativo no campo da Inteligência
Artificial, caracterizados pela sua capacidade de compreender, gerar e interagir utilizando
linguagem natural de forma sofisticada. São modelos de redes neurais com bilhões de
parâmetros, treinados em vastos volumes de dados textuais, o que lhes confere uma pro-
ficiência em uma ampla gama de tarefas linguísticas [6, 18].

A principal vantagem dos LLMs reside em sua versatilidade. Eles podem atuar como
“solucionadores de tarefas de propósito geral”, capazes de seguir instruções humanas para
executar tarefas complexas e novas, muitas vezes sem a necessidade de exemplos explícitos
[18]. Essa capacidade, conhecida como “seguimento de instruções”, é uma das habilidades
emergentes que os distinguem de modelos de IA anteriores. Outra habilidade crucial é
o raciocínio em múltiplos passos, que permite aos LLMs decompor problemas complexos
em etapas intermediárias para derivar uma solução, tornando-os blocos de construção
fundamentais para o desenvolvimento de agentes de IA mais gerais [18].

A Arquitetura Transformer

A viabilidade e o sucesso dos LLMs modernos são intrinsecamente ligados à arquitetura
Transformer, introduzida por Vaswani et al. em 2017 [19]. Antes de sua criação, mo-
delos de Redes Neurais processavam os dados sequencialmente, o que criava um gargalo
computacional e dificultava a captura de dependências de longo prazo no texto.

12

O Transformer revolucionou o campo ao propor uma arquitetura que dispensa com-
pletamente a recorrência, baseando-se exclusivamente em mecanismos de atenção [19]. O
coração do Transformer é o mecanismo de auto-atenção, que permite ao modelo ponde-
rar a importância de todas as palavras em uma sequência em relação umas às outras,
capturando o contexto de forma muito mais eficaz. Crucialmente, esse processo pode ser
executado em paralelo para cada palavra, o que tornou o treinamento em hardware mo-
derno muito mais eficiente. Essa característica foi o que permitiu escalar os modelos de
linguagem para centenas de bilhões de parâmetros, tornando o Transformer a arquitetura
padrão para o desenvolvimento de LLMs [6, 18].

Em sua forma original, a arquitetura consiste em um encoder (codificador) e um
decoder (decodificador). O codificador é responsável por processar a sequência de entrada
e criar uma representação numérica rica em contexto. O decodificador, por sua vez,
utiliza essa representação para gerar a sequência de saída, um token de cada vez, de
forma autorregressiva [19]. O desenvolvimento de um LLM segue um paradigma de duas
etapas principais: pré-treinamento e ajuste fino [6, 18].

Na fase de pré-treinamento, o modelo é treinado em um corpus massivo e não rotulado
de texto, extraído da internet e de outras fontes. O treinamento é auto-supervisionado, ge-
ralmente com objetivos como prever a próxima palavra em uma sentença. É nesta fase que
o modelo adquire seu conhecimento fundamental sobre a linguagem, incluindo gramática,
fatos, capacidade de raciocínio e compreensão semântica. Esse conhecimento generalista
é o que permite que os LLMs executem tarefas para as quais não foram explicitamente
treinados [18, 6].

Após o pré-treinamento, o modelo passa pela fase de ajuste fino. Nela, o LLM, já do-
tado de conhecimento geral, é treinado em um conjunto de dados menor e mais específico
para aprimorar suas capacidades em tarefas particulares ou para se alinhar com as expec-
tativas humanas. Uma forma proeminente de ajuste fino é o “ajuste de instrução”, onde
o modelo é treinado com exemplos de instruções e as respostas desejadas. Esse processo
é fundamental para aprimorar a capacidade de seguir instruções complexas e produzir
respostas mais úteis e seguras [6, 18].

As variações na arquitetura Transformer levaram a diferentes famílias de LLMs. As
principais são:

• Encoder-Decoder : Utilizam tanto o codificador quanto o decodificador. São co-
muns em tarefas de tradução ou sumarização.

• Decoder-Only: Utilizam apenas uma pilha de decodificadores com uma máscara
de atenção que garante que cada token só possa “ver” os tokens anteriores. Essa
arquitetura, chamada de “decoder causal”, é a base de modelos focados em geração
de texto, como a série GPT [20].

13

• Encoder-Only: Modelos como o BERT [21] utilizam apenas o codificador para
criar representações profundas do texto, sendo altamente eficazes em tarefas de
compreensão de linguagem, como classificação de texto e análise de sentimento [6].

Limitações e Considerações Éticas

Apesar de suas capacidades, os LLMs possuem limitações significativas. Eles podem gerar
informações factualmente incorretas (fenômeno conhecido como “alucinação”), reprodu-
zir vieses presentes nos dados de treinamento e produzir respostas tóxicas ou prejudiciais
[18]. Esforços para alinhar os modelos aos valores humanos, por meio de técnicas como o
Aprendizado por Reforço com Feedback Humano (Reinforcement Learning from Human
Feedback - RLHF) [22], buscam mitigar esses problemas, mas podem introduzir um “im-
posto de alinhamento”, onde a melhoria na segurança e conformidade pode levar a uma
ligeira perda de capacidade em outras áreas [6].

As preocupações éticas e sociais incluem o potencial de uso indevido para desinforma-
ção, a perpetuação de estereótipos, questões de privacidade de dados e o considerável custo
computacional e ambiental associado ao treinamento desses modelos massivos. Portanto,
o desenvolvimento e a aplicação de LLMs exigem uma abordagem crítica e responsável
[18].

2.1.4 Engenharia de Prompts

A interação com LLMs é mediada por instruções em linguagem natural conhecidas como
prompts. A prática de projetar, refinar e implementar sistematicamente esses prompts
para guiar o comportamento de um LLM e otimizar seus resultados em tarefas específicas
é denominada Engenharia de Prompts [23]. Essa disciplina é importante, pois a qualidade,
precisão e relevância da resposta de um LLM estão diretamente condicionadas à clareza e
eficácia da instrução recebida. De acordo com White et al. [9], os prompts funcionam como
uma “forma de programação” para instruir um LLM a executar tarefas de engenharia de
software.

A necessidade dessa engenharia surge da própria natureza da linguagem natural, que
pode ser inerentemente ambígua. Um prompt mal formulado pode levar a interpretações
equivocadas por parte do modelo, resultando em saídas indesejadas ou desalinhadas com a
intenção do usuário [10]. Portanto, a engenharia de prompts visa mitigar essa ambiguidade
e a “dirigir o comportamento do modelo para os resultados desejados” [23].

14

Estratégias Fundamentais de Prompt

A literatura estabeleceu diversas técnicas para estruturar prompts, que variam em com-
plexidade e na quantidade de contexto fornecido ao modelo [23, 24, 25]. Essas estratégias
são frequentemente categorizadas com base no conceito de aprendizagem em contexto,
onde o modelo adapta seu comportamento com base nas informações contidas no próprio
prompt, sem a necessidade de re-treinamento ou ajuste fino de seus parâmetros [24].

Zero-shot Prompting É a abordagem mais direta, na qual o LLM recebe apenas uma
instrução em linguagem natural descrevendo a tarefa, sem nenhum exemplo de como
executá-la [24, 10]. Essa técnica depende inteiramente do conhecimento pré-treinado
do modelo para interpretar a solicitação e gerar uma resposta adequada. Embora
seja a mais simples de implementar, sua eficácia pode ser limitada em tarefas com-
plexas ou que exigem um formato de saída muito específico.

Few-shot Prompting Para aprimorar a precisão e guiar o modelo de forma mais eficaz,
a técnica de few-shot prompting é empregada. Ela consiste em incluir no prompt,
além da instrução, alguns exemplos de pares “entrada-saída” que demonstram a
tarefa a ser realizada [24]. Esses exemplos servem como um condicionamento, per-
mitindo que o modelo infira o padrão e o formato esperados para a resposta. A
eficácia dessa abordagem pode ser tão sensível que até mesmo a ordem dos exem-
plos no prompt pode influenciar significativamente o desempenho do modelo [10].

Além das estratégias básicas, técnicas mais sofisticadas foram desenvolvidas para lidar
com problemas complexos e para sistematizar a interação com os LLMs.

Expert Identity Prompting Uma estratégia poderosa é a de atribuir uma persona ou
identidade de especialista ao LLM. A técnica ExpertPrompting, proposta por Xu et
al. [25], é uma estratégia de prompt aumentada que instrui o modelo a responder
como um especialista em um determinado domínio. Ao condicionar a resposta a
uma identidade detalhada (por exemplo, “Você é um Engenheiro de Requisitos
de Software com vasta experiência...”), o objetivo é extrair o potencial latente do
modelo para gerar respostas mais abrangentes, detalhadas e de maior qualidade,
especialmente em tarefas que requerem conhecimento aprofundado.

Chain-of-Thought Prompting Para problemas que exigem raciocínio complexo em
múltiplas etapas, a técnica de Chain-of-Thought (Cadeia de Pensamento) se mostrou
eficaz. Ela consiste em instruir o modelo a “gerar uma série coerente de passos de
raciocínio intermediários que levam à resposta final” [10]. Ao externalizar o processo
de raciocínio, o LLM tende a cometer menos erros em tarefas lógicas e matemáticas,
melhorando sua capacidade de resolução de problemas.

15

2.1.5 LLM-as-a-Judge

A avaliação da qualidade de textos gerados por LLMs, especialmente em tarefas abertas
como a geração de requisitos, apresenta desafios significativos. Métricas tradicionais base-
adas em correspondência, como ROUGE [26] e BLEU [27], são frequentemente inadequa-
das, pois não conseguem capturar atributos sutis como clareza, relevância ou adequação
ao contexto [28]. Em resposta a essa lacuna, emergiu um novo paradigma de avaliação
conhecido como LLM-as-a-Judge (LLM como Juiz), proposto por Zheng et al. [15]. A
premissa central é utilizar LLMs de ponta como substitutos de avaliadores humanos para
julgar a qualidade dos resultados de outros modelos [15, 29]. Essa abordagem aproveita a
capacidade dos LLMs de compreender instruções complexas e raciocinar de forma análoga
à humana para realizar avaliações detalhadas e contextuais, superando as limitações dos
métodos de avaliação automática tradicionais [28].

A adoção do LLM-as-a-Judge oferece vantagens substanciais, principalmente em ter-
mos de escalabilidade, custo e consistência. A avaliação humana, embora considerada o
padrão-ouro, é um processo caro, demorado e difícil de escalar, especialmente para gran-
des volumes de dados, como os requisitos gerados neste estudo [15]. O LLM-as-a-Judge
automatiza esse processo, oferecendo uma alternativa econômica e ágil [29]. Além disso,
um LLM-juiz é menos suscetível a fatores como fadiga ou variabilidade subjetiva que
podem afetar a consistência entre múltiplos avaliadores humanos [29]. Outro benefício
chave é a explicabilidade: LLMs podem ser instruídos a fornecer não apenas uma pontu-
ação, mas também uma justificativa textual detalhada para suas avaliações, tornando o
processo mais transparente e interpretável, uma capacidade que foi fundamental para a
análise qualitativa realizada nesta pesquisa [15].

Quando comparado à avaliação humana, o paradigma LLM-as-a-Judge demonstra
uma notável convergência. Estudos mostram que LLMs robustos, como o GPT-4, po-
dem atingir níveis de concordância com as preferências humanas superiores a 80%, um
patamar comparável ao nível de concordância entre os próprios humanos [15]. Essa alta
correlação com o julgamento humano valida seu uso como uma alternativa eficaz para
avaliar atributos complexos e subjetivos, como a qualidade de um requisito de software.
Ao mimetizar o raciocínio humano e alinhar-se com suas preferências, os LLMs-juízes
combinam a profundidade da avaliação especializada com a escalabilidade dos métodos
automáticos [29].

Apesar de seu potencial, a abordagem LLM-as-a-Judge não está isenta de limitações.
Uma das principais preocupações é a suscetibilidade a vieses inerentes aos modelos. Entre
os mais documentados estão:

• Viés de Posição: A tendência de favorecer a primeira resposta apresentada em
uma comparação pareada [15].

16

• Viés de Verbosidade: A propensão a atribuir pontuações mais altas a respostas
mais longas, independentemente da qualidade do conteúdo [15].

• Viés de Auto-aprimoramento: A tendência de um LLM-juiz favorecer respostas
geradas por si mesmo ou por modelos com arquitetura similar [15, 29].

Adicionalmente, os LLMs podem apresentar alucinações ou limitações em domínios
de raciocínio muito específicos, o que pode levar a julgamentos incorretos [15, 29]. Para
mitigar esses riscos, é necessário adotar estratégias como a randomização da ordem das
respostas, o uso de prompts de avaliação claros e baseados em critérios bem definidos,
como os da norma ISO/IEC/IEEE 29148:2018 [5] utilizados neste trabalho, e a seleção de
um LLM-juiz arquitetonicamente distinto dos modelos avaliados. A supervisão humana,
mesmo que em uma amostra, continua sendo indispensável para validar e calibrar os
resultados da avaliação automatizada [29].

2.2 Trabalhos Relacionados

A aplicação de LLMs tem se expandido rapidamente na Engenharia de Software, com a
ER emergindo como um campo de grande potencial. A capacidade desses modelos de
compreender e gerar linguagem natural oferece soluções promissoras para automatizar ta-
refas tradicionalmente manuais, trabalhosas e propensas a ambiguidades [7]. Uma revisão
sistemática da literatura recente confirma o crescente interesse na área, destacando que
atividades como especificação, elicitação e análise de requisitos são as mais exploradas,
enquanto a priorização e a rastreabilidade ainda carecem de atenção [30]. Neste contexto,
a literatura tem abordado o uso de LLMs em ER a partir de diversas perspectivas, que
podem ser agrupadas em automação de tarefas fundamentais, exploração da elicitação,
desenvolvimento de frameworks integrados e o papel crucial do prompt engineering.

Uma vertente significativa da pesquisa foca em validar a capacidade dos LLMs para
automatizar tarefas centrais de ER. No que tange à geração de artefatos, Krishna et al.
[13] demonstraram empiricamente que LLMs como GPT-4 e CodeLlama podem gerar
rascunhos de Documentos de Especificação de Requisitos de Software (Software Require-
ment Specifications - SRS) com qualidade comparável à de um engenheiro júnior, resul-
tando em uma economia de tempo substancial. De forma complementar, Almonte et al.
[14] investigaram a geração de Requisitos Não-Funcionais a partir de Requisitos Funcio-
nais, concluindo, através de uma avaliação com múltiplos especialistas, que os Requisitos
Não-Funcionais gerados por LLMs possuem alta validade e aplicabilidade. Outra tarefa
fundamental é a classificação de requisitos. Nesse âmbito, Alhoshan et al. [8] explora-
ram a abordagem de Zero-Shot Learning (ZSL), mostrando que LLMs podem classificar

17

requisitos (por exemplo, funcional vs. não funcional) com desempenho aceitável sem a
necessidade de grandes volumes de dados rotulados, o que representa uma alternativa
escalável aos métodos supervisionados tradicionais. Esses estudos estabelecem coletiva-
mente que LLMs são ferramentas viáveis para a produção e organização de artefatos de
requisitos.

Outra área de investigação se concentra na fase inicial e interativa da ER: a elicitação
de requisitos. Diversos trabalhos comparam o desempenho de LLMs com o de especialis-
tas humanos. Hymel et al. [31] conduziram um estudo comparativo no qual os requisitos
gerados por um LLM foram considerados mais alinhados e completos pelos stakeholders do
que aqueles produzidos por especialistas humanos em uma sessão de tempo limitado, além
de serem drasticamente mais rápidos e baratos de obter. De maneira similar, Ronanki et
al. [32] avaliaram a qualidade de requisitos para sistemas de IA confiáveis e descobriram
que os requisitos gerados pelo ChatGPT superaram os formulados por humanos em atri-
butos como consistência e correção, apesar de não atenderem às expectativas em termos
de viabilidade e clareza. Indo além da simples geração, Ataei et al. [33] propuseram o
Elicitron, um framework que utiliza agentes de IA simulados para descobrir necessidades
dos usuários, demonstrando um potencial para explorar casos de uso não previstos que
seriam difíceis de capturar em entrevistas convencionais.

Visando uma automação mais completa, alguns pesquisadores têm proposto frameworks
que orquestram LLMs para cobrir múltiplas fases da ER. Um exemplo proeminente é o
MARE, de Jin et al. [34], um framework de colaboração multiagente que simula uma
equipe de ER, dividindo tarefas como elicitação, modelagem, verificação e especificação
entre diferentes agentes de LLM. Seus resultados indicam que essa abordagem colabo-
rativa supera o desempenho de um único LLM. Em paralelo à geração, a avaliação da
qualidade dos requisitos também tem sido automatizada. Lubus et al. [35] demonstra-
ram que um LLM pode avaliar características de qualidade de requisitos de acordo com a
norma ISO/IEC/IEEE 29148:2018 [5], identificar falhas, fornecer explicações plausíveis e
sugerir melhorias. Este trabalho é particularmente relevante, pois introduz a ideia de usar
um LLM não apenas como um gerador, mas também como um avaliador, um conceito
alinhado à metodologia LLM-as-a-Judge.

Um tema transversal e crítico em toda a literatura é a importância do prompt engine-
ering para otimizar o desempenho dos LLMs. A forma como as instruções são fornecidas
ao modelo impacta diretamente a qualidade da saída. Ronanki et al. [10] abordaram essa
questão de forma sistemática, avaliando a eficácia de cinco padrões de prompt em tarefas
de classificação e rastreabilidade de requisitos. Eles concluíram que diferentes padrões
são mais adequados para tarefas distintas e que a escolha do prompt é fundamental para
a confiabilidade dos resultados. Este estudo estabelece um precedente metodológico im-

18

portante ao focar não apenas em se LLMs podem realizar tarefas de ER, mas em como
otimizar sua performance através de estratégias de prompt.

2.2.1 Lacuna de Pesquisa e a Contribuição deste Trabalho

A literatura existente estabelece de forma robusta que os LLMs são capazes de executar
diversas tarefas de ER, desde a classificação [8] e geração de especificações completas
[13], até a elicitação de necessidades latentes [33]. Ficou claro também que o prompt
engineering é um fator determinante para o sucesso [10] e que a avaliação automatizada
da qualidade é uma área emergente e promissora [35].

Contudo, algumas lacunas persistem. Primeiramente, um diferencial crucial, que de-
fine o escopo do nosso trabalho, é o foco no ecossistema de Software de Código Aberto.
Conforme detalhado na Subseção 2.1.1, o processo de ER em projetos OSS é caracterizado
por um grande volume de entradas informais, não estruturadas e concisas provenientes de
issue trackers. Enquanto os trabalhos revisados utilizam descrições de projetos controla-
dos [13, 31] ou datasets de benchmark [8, 10], eles não enfrentam diretamente o desafio de
processar a matéria-prima da elicitação em OSS. Nossa pesquisa ataca esse problema cen-
tral: a transformação de títulos de issues em requisitos bem escritos, um cenário prático
e pouco explorado.

Além disso, enquanto o trabalho de Ronanki et al. [10] avaliou padrões de prompt,
falta um estudo empírico comparativo em larga escala que meça como estratégias de
prompt distintas influenciam atributos de qualidade específicos e padronizados. O efeito
interativo entre a escolha do LLM e a estratégia de prompting também permanece uma
área pouco explorada, assim como a validação da abordagem LLM-as-a-Judge para a
avaliação escalável de artefatos de requisitos neste contexto.

Este trabalho se posiciona diretamente para preencher essas lacunas. Realizamos uma
avaliação empírica sistemática no contexto específico de OSS, transformando títulos de
issues em requisitos de software. Comparamos explicitamente três estratégias de prompt
em dois LLMs distintos e medimos seu impacto em três atributos de qualidade da norma
ISO/IEC/IEEE 29148:2018 [5]. Ao fazer isso, não apenas demonstramos a eficácia dos
LLMs, mas também revelamos os trade-offs dependentes do modelo e do prompt entre
esses atributos, validando a metodologia LLM-as-a-Judge como uma abordagem escalável
e consistente para a avaliação de qualidade em larga escala neste domínio. Dessa forma,
nossa pesquisa avança a literatura de uma demonstração de potencial para o fornecimento
de evidências documentadas sobre desempenho, efeitos colaterais e considerações práticas
para a aplicação de LLMs na geração de requisitos.

19

2.3 Síntese do Capítulo

Este capítulo estabeleceu a fundamentação teórica que sustenta a pesquisa. Iniciou-se com
a definição da Engenharia de Requisitos, detalhando suas atividades, desafios e as parti-
cularidades do processo em ambientes de Software de Código Aberto, onde a elicitação
informal via issue trackers cria uma oportunidade para a automação. Em seguida, foram
apresentados os critérios de qualidade para requisitos de software, com base na norma
ISO/IEC/IEEE 29148:2018 [5], justificando a escolha das métricas de Não Ambiguidade,
Verificabilidade e Singularidade para o escopo deste trabalho.

A discussão prosseguiu com a introdução aos LLMs, abordando a arquitetura Trans-
former, suas capacidades e limitações. Foi dado destaque à Engenharia de Prompts como
uma disciplina crucial para otimizar a interação com esses modelos, descrevendo estra-
tégias fundamentais. Subsequentemente, foi apresentado o paradigma LLM-as-a-Judge
como uma solução escalável para a avaliação da qualidade de artefatos gerados, deta-
lhando seus benefícios e vieses potenciais.

Por fim, uma análise dos trabalhos relacionados na Tabela 2.1 revela o panorama atual
da aplicação de LLMs em ER, identificando a lacuna de pesquisa que esta dissertação se
propõe a preencher: a avaliação empírica e comparativa de estratégias de prompt e de
diferentes LLMs na tarefa de gerar requisitos a partir de entradas concisas no contexto
específico de projetos OSS, utilizando uma metodologia de avaliação automatizada e es-
calável.

20

Tabela 2.1: Comparativo dos Trabalhos Relacionados
Referência Tecnologia utilizada Etapas de ER

abordadas
Base de dados

Alhoshan et al. [8] Sentence-BERT, ZSL Classificação PROMISE NFR,
SecReq

Krishna et al. [13] GPT-4, CodeLlama Geração,
Validação e
Retificação de
SRS

Benchmark humano
(portal
universitário)

Almonte et al. [14] Múltiplos LLMs (GPT,
Claude, Gemini, Llama)

Geração de
NFRs, Validação

FR NFR Dataset
(derivado do
PURE)

Hymel et al. [31] GPT-4 Elicitação
(geração inicial
de
épicos/histórias)

Entradas de
stakeholders,
especialistas
humanos

Ronanki et al. [32] ChatGPT Elicitação de
requisitos

Especialistas
humanos

Ataei et al. [33] Multi-agentes LLM
(GPT-4-Turbo)

Elicitação de
necessidades
latentes

Entrevistas
humanas (para
comparação)

Jin et al. [34] Multi-agentes LLM
(GPT-3.5)

Elicitação,
Modelagem,
Verificação,
Especificação

Datasets públicos e
casos de avaliação
próprios

Lubus et al. [35] LLaMA 2 como avaliador Qualidade,
Validação,
Melhoria

Projeto hipotético e
dataset PURE

Ronanki et al. [10] GPT-3.5 turbo, Padrões
de Prompt

Classificação e
Rastreabilidade
de requisitos

PROMISE NFR,
PURE

Trabalho
Proposto

LLMs (o3-mini,
DeepSeek R1),
LLM-as-a-Judge
(Qwen)

Geração de
requisitos,
Avaliação de
Qualidade

Títulos de issues
de repositórios
OSS (GitHub)

21

Capítulo 3

Configuração do Estudo

Este capítulo detalha a configuração metodológica adotada para responder às questões de
pesquisa desta dissertação. Assumindo os conceitos apresentados no Capítulo 2, o foco
aqui reside em descrever os procedimentos técnicos e as decisões operacionais tomadas
em cada fase do estudo. O objetivo é fornecer uma descrição transparente e sistemática
do processo, garantindo a validade, a replicabilidade e a confiabilidade dos resultados.

A pesquisa foi estruturada em três estágios principais, conforme ilustrado na Figura
3.1: (1) coleta de dados, (2) geração de requisitos e (3) avaliação de requisitos. Cada
etapa foi executada de forma rigorosa, desde a extração de solicitações de funcionalidades
(feature requests) de repositórios de software de código aberto até a análise quantitativa
e qualitativa dos requisitos gerados por LLMs.

3.1 Desenho da Pesquisa

O presente estudo emprega um desenho de pesquisa empírico e quantitativo para avaliar
a eficácia de técnicas de engenharia de prompts na geração de requisitos de software por
LLMs. A metodologia foi concebida para examinar como diferentes estratégias de prompt
e a escolha do LLM influenciam a qualidade dos artefatos de requisitos gerados a partir
de solicitações de funcionalidades extraídas de projetos de software de código aberto.

A Figura 3.1 apresenta uma visão geral do fluxo metodológico, que se desdobra nas
três fases sequenciais que serão detalhadas nas seções subsequentes deste capítulo.

3.2 Coleta de Dados

A primeira etapa da metodologia, conforme indicado na Figura 3.1, consistiu na constru-
ção de um conjunto de dados abrangente e relevante para a tarefa de geração de requisitos.
Para isso, realizou-se a extração de solicitações de funcionalidades dos cinco projetos de

22

Figura 3.1: Procedimentos Metodológicos

código aberto com maior número de issues no GitHub: Pytorch, Flutter, Godot En-
gine1, Rust e Golang2. A escolha desses repositórios foi baseada em seu elevado nível de
atividade e relevância para a comunidade de OSS.

O processo de coleta de dados seguiu os seguintes passos:

1. Critérios de Seleção das issues: Para garantir a inclusão de solicitações de fun-
cionalidades genuínas e com alto engajamento da comunidade, foram selecionadas
as 30 issues abertas mais ativas3 de cada repositório. Esta abordagem foi necessária
devido à inexistência de um método programático consistente para identificar is-
sues que foram fechadas por motivos de classificação incorreta, spam ou duplicação
entre diferentes repositórios. As issues foram filtradas para incluir apenas aquelas
com o rótulo de feature request (solicitação de funcionalidades) ou equivalente. Este
processo de filtragem foi fundamental para garantir que o conjunto de dados perma-
necesse focado em conteúdo prático e relacionado a requisitos, eliminando discussões
irrelevantes ou tarefas menos significativas.

2. Extração e Formatação dos Dados: Utilizando a API do GitHub, os títulos
e os rótulos das issues foram extraídos e estruturados em um conjunto de dados
padronizado. Cada registro continha metadados (ex: nome do repositório, ID da
issue), juntamente com o conteúdo textual necessário para a geração de requisitos.
Este passo visou facilitar a consistência em todo o conjunto de dados, o que foi
fundamental para a etapa de engenharia de prompts e para a análise subsequente,
além de garantir a reprodutibilidade dos experimentos.

1O projeto Godot Engine possui um repositório específico para solicitações de funcionalidades, deno-
minado godot-proposals.

2Dados coletados em 22 de março de 2025, a partir do repositório https://github.com/EvanLi/
Github-Ranking

3Ordenadas por reactions na API do GitHub: https://docs.github.com/en/rest/reactions/
reactions?apiVersion=2022-11-28

23

https://github.com/EvanLi/Github-Ranking
https://github.com/EvanLi/Github-Ranking
https://docs.github.com/en/rest/reactions/reactions?apiVersion=2022-11-28
https://docs.github.com/en/rest/reactions/reactions?apiVersion=2022-11-28

Dessa forma, o conjunto de dados final foi composto por 150 solicitações de funcionali-
dades, coletadas igualmente dos cinco repositórios mencionados. Para a fase subsequente
de geração de requisitos, o título da issue extraído de cada solicitação serviu como dado de
entrada principal. Esta coleção curada apresenta uma gama diversificada de entradas para
os LLMs, abrangendo solicitações de domínios de software variados (como aprendizado
de máquina, frameworks de interface de usuário, desenvolvimento de jogos e programação
de sistemas) e exibindo variações naturais na formulação, especificidade técnica e compri-
mento do título. Um excerto que ilustra a estrutura dos dados coletados é apresentado
na Tabela 3.1.

Tabela 3.1: Amostra do Conjunto de Dados de Solicitações de Funcionalidades
Repositório Número da issue Título da issue
pytorch/pytorch 16897 Implement

numpy.random.choice equi-
valent

flutter/flutter 46789 Improve the indexability (SEO) of
Flutter apps on the web

godotengine/godot-proposals 6416 Add a Trait system for GDScript
rust-lang/rust 39915 Linking with LLD
golang/go 32204 net/http: support HTTP/3

3.3 Geração de Requisitos

Na segunda etapa da metodologia, foram preparados os prompts e executados dois LLMs
distintos para gerar os requisitos a partir do conjunto de dados construído na fase anterior.
Motivados por estudos prévios em engenharia de prompts, como os discutidos na Seção
2.1.4, os prompts foram elaborados com base em algumas das técnicas mais conhecidas,
com o objetivo de avaliar seu papel na melhoria da qualidade das respostas dos LLMs.

3.3.1 Configuração dos Prompts

Foram desenvolvidos três prompts distintos, cada um baseado em uma conhecida técnica
de engenharia de prompts, para investigar como diferentes abordagens afetam a qualidade
e a clareza dos requisitos produzidos: Zero-shot, Few-shot e Expert Identity. Cada método
representa uma estratégia diferente na forma como o modelo é preparado para interpretar
e responder à entrada.

Zero-shot Este método, baseado na abordagem de zero-shot prompting (descrita na
Seção 2.1.4), consistiu em fornecer diretamente os títulos das issues ao modelo,

24

sem detalhes ou exemplos adicionais. A estratégia baseia-se no conhecimento geral
do modelo para executar a tarefa. Conforme explorado por Alhoshan et al. [8],
esta técnica mostrou-se eficaz em tarefas de classificação de requisitos sem dados de
treinamento rotulados. Neste trabalho, ela foi utilizada para testar o conhecimento
inerente e a adaptabilidade do modelo sem contexto adicional.

Prompt - Zero-shot

You are given a feature request from an open-source software project’s issue tracker.
Generate a clear, concise, and self-contained software requirement statement that
captures the intended feature.
Output only the finalized requirement statement. Do not include explanations or
commentary.

Few-shot Nesta abordagem (descrita na Seção 2.1.4), alguns exemplos de requisitos
previamente gerados foram incluídos no prompt para guiar o modelo. Essa técnica
ajuda o modelo a inferir os requisitos da tarefa a partir de um número mínimo de
exemplos, melhorando sua precisão e relevância [24, 10]. O objetivo deste prompt
foi fornecer uma orientação mínima ao modelo para obter uma maior precisão com
base em padrões de exemplos anteriores.

Prompt - Few-Shot

Here are examples of feature requests from an open-source software project’s issue
tracker along with their corresponding software requirements.
Based on these examples, analyze new feature requests and generate the require-
ment.
Output only the finalized requirement statement. Do not include explanations or
commentary.

Feature request: Limit GPU memory usage during prediction.
Requirement: The system shall provide an option to limit GPU memory usage
during prediction.

Feature request: Reset password
Requirement: The system must provide a functional “forgot password” link that
allows users to reset their passwords securely.

Feature request: Make the application use vector search.
Requirement: The system shall use vector search to improve search performance.

25

Expert Identity A técnica de Expert Prompting (apresentada na Seção 2.1.4) instrui
os LLMs a agirem como especialistas distintos para resolver problemas complexos,
fornecendo uma Expert Identity e instruções específicas para seu domínio. Isso tende
a levar a um melhor desempenho e a respostas de maior qualidade, especialmente
em tarefas que exigem uma compreensão aprofundada [25].

Prompt - Expert Identity

You are a Software Requirements Engineer with deep expertise in analyzing feature
requests in open-source software projects. Your task is to generate a clear, complete,
and actionable software requirement from informal feature requests found in OSS
issue trackers.
Output only the finalized requirement statement. Do not include explanations or
commentary.

3.3.2 Execução dos Prompts

A geração dos requisitos foi realizada utilizando os modelos de raciocínio OpenAI o3-mini4

e DeepSeek-R1-Distill-Llama-70B5 [36]. Os modelos foram selecionados com base em
seu desempenho médio em múltiplos benchmarks. O OpenAI o3-mini foi escolhido por
sua superior relação custo-benefício entre os modelos de raciocínio de código fechado:
seu custo é inferior a 10% do OpenAI o1, o modelo de melhor desempenho, enquanto
entrega resultados comparáveis. Da mesma forma, o DeepSeek-R1-Distill-Llama-70B
foi selecionado como o modelo de raciocínio de código aberto com a melhor relação custo-
benefício, com base no tamanho de suas variantes destiladas e em métricas de desempenho
de benchmarks6 [37].

Para garantir um grau de reprodutibilidade, permitindo ao mesmo tempo uma diversi-
dade na formulação das saídas, os LLMs foram configurados com parâmetros específicos.
A semente aleatória (random seed) foi fixada em 42 para todas as tarefas de geração.
Foi empregada uma temperatura de 1.0; embora temperaturas mais altas aumentem a
aleatoriedade, este valor foi escolhido para encorajar os modelos a explorarem uma gama
um pouco mais ampla de formulações de requisitos potenciais, com base nas diferentes
solicitações de entrada e estilos de prompt, em vez de produzirem saídas excessivamente
determinísticas. É importante notar que as respostas de LLMs podem exibir comporta-
mento não determinístico mesmo com uma semente fixa, devido a fatores como otimi-
zações subjacentes do modelo ou atualizações da API ao longo do tempo. No escopo e

4https://openai.com/index/openai-o3-mini/
5https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
6Métricas coletadas em 22 de março de 2025

26

https://openai.com/index/openai-o3-mini/
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B

cronograma deste estudo, execuções repetidas do pipeline de geração sob configurações
idênticas produziram saídas altamente consistentes, demonstrando a reprodutibilidade
prática de nossos resultados.

Ambos os LLMs foram avaliados utilizando todas as variantes de prompt como prompts
de sistema e os títulos das issues como prompts de usuário. Cada variante de prompt foi
pareada com cada título de issue e submetida a ambos os modelos, resultando em três
requisitos distintos por issue. Este processo gerou um total de 450 requisitos por LLM,
somando 900 requisitos no geral.

3.4 Avaliação dos Requisitos

3.4.1 Métricas de Avaliação

No campo da engenharia de sistemas e software, requisitos bem formulados são cruciais
para o sucesso dos projetos. Conforme a norma ISO/IEC/IEEE 29148:2018 [5], os re-
quisitos individuais devem ser: (1) necessários; (2) apropriados; (3) não ambíguos; (4)
completos; (5) singulares; (6) viáveis; (7) verificáveis; (8) corretos; e (9) conformes. Uma
análise mais detalhada da descrição dessas características leva à conclusão de que a Não
Ambiguidade, a Singularidade e a Verificabilidade podem ser mais facilmente ava-
liadas ao se analisar requisitos de forma isolada, especialmente no contexto de OSS, onde
detalhes específicos do projeto, como partes interessadas, prazos e restrições, são fre-
quentemente ausentes. As demais características necessitam de uma compreensão mais
aprofundada do contexto e das restrições específicas do projeto.

A seleção dessas três métricas é útil para avaliar os requisitos gerados e sua conformi-
dade com a norma, pois elas representam qualidades intrínsecas de requisitos individuais
e podem ser avaliadas sem o contexto completo do projeto. Cada métrica foi avaliada uti-
lizando uma escala Likert de 1 a 5, onde 1 representa baixa qualidade e 5, alta qualidade.
Para garantir uma métrica padronizada de comparação, foi adotada a escala de avaliação
presente em outros estudos [13, 14].

3.4.2 Avaliação Automatizada

Para avaliar o grande volume de requisitos de software gerados neste estudo, foi adotado o
paradigma LLM-as-a-Judge, discutido na Seção 2.1.5, utilizando o modelo Qwen QwQ-32b
[38, 39] como avaliador. Esta metodologia oferece uma alternativa escalável e de baixo
custo à avaliação humana extensiva, que seria impraticável para o grande número de
saídas geradas [15].

27

Empregar um LLM como juiz neste contexto oferece vantagens distintas. Primeiro,
promove uma consistência superior nas 900 avaliações, pois o LLM não é suscetível a
fatores como fadiga ou variabilidade subjetiva que podem afetar avaliadores humanos
[29]. Segundo, a abordagem oferece explicabilidade. Conforme destacado na literatura,
uma vantagem chave é a capacidade de configurar o juiz para fornecer justificativas para
suas avaliações [15]. Nossa implementação foi projetada para explorar essa capacidade,
operacionalizando a avaliação com base nos critérios da norma ISO/IEC/IEEE 29148:2018
[5]. O juiz foi instruído a retornar uma resposta estruturada, contendo não apenas uma
pontuação para cada atributo, mas também uma explicação textual. Essa justificativa é
essencial para nossa análise, fornecendo os dados qualitativos necessários para interpretar
os escores quantitativos.

Embora vantajosa, é essencial reconhecer e mitigar as limitações potenciais da aborda-
gem. Juízes LLM podem exibir vieses inerentes, como o de auto-aprimoramento (favorecer
saídas de modelos com arquitetura similar) [29, 15]. Para mitigar esse risco, seleciona-
mos deliberadamente um avaliador (Qwen QwQ-32b) que é arquitetonicamente distinto dos
LLMs testados (OpenAI o3-mini e DeepSeek R1). Adicionalmente, ao fornecer ao juiz
definições claras e baseadas na norma em seu prompt, buscamos restringir seu processo
de tomada de decisão e aprimorar a precisão avaliativa.

3.4.3 Prompt de Avaliação

Para guiar o LLM em seu papel de avaliador, foi elaborado um prompt específico que
descreve a tarefa, os critérios e o formato de saída desejado. O prompt instrui o LLM
a avaliar um requisito de software com base nos atributos de qualidade selecionados da
norma ISO/IEC/IEEE 29148:2018 [5]: Não Ambiguidade, Verificabilidade e Singulari-
dade. Para garantir a coleta sistemática de dados e facilitar a análise automatizada, o
prompt instruiu explicitamente o LLM a estruturar sua resposta como uma instância
JSON em conformidade com um esquema específico. Esse esquema inclui campos para as
pontuações numéricas de cada atributo e um campo dedicado para a “explicação” textual
do avaliador. O prompt completo fornecido ao LLM avaliador foi o seguinte:

Prompt - Avaliador LLM

As an experienced requirements engineer, your task is to evaluate the quality of a
given software requirement based on the following criteria:

Unambiguity: The requirement is stated in such a way so that it can be interpreted
in only one way. The requirement is stated simply and is easy to understand. Score

28

1 if the requirement is highly ambiguous and 5 if there is no room for multiple
interpretations.

Verifiability: The requirement is structured and worded such that its realization
can be proven (verified) to the customer’s satisfaction at the level the requirements
exists. Verifiability is enhanced when the requirement is measurable. Score 1 if the
requirement is difficult to verify, and 5 if it is easily measurable.

Singularity: The requirement states a single capability, characteristic, constraint or
quality factor. Score 1 if the requirement includes several needs or is unclear in its
focus, and 5 if it is entirely singular in nature.

For each criterion, provide a score from 1 to 5, with 1 being the lowest (poor) and
5 being the highest (excellent). Structure your output as a JSON object containing
the scores and a combined explanation for your ratings.

O esquema JSON que o modelo foi instruído a seguir está detalhado abaixo:

1 {
2 "properties": {
3 "unambiguity": {
4 "description": "1-5 score for unambiguity",
5 "title": "Unambiguity",
6 "type": "integer"
7 },
8 "verifiability": {
9 "description": "1-5 score for verifiability",

10 "title": "Verifiability",
11 "type": "integer"
12 },
13 "singularity": {
14 "description": "1-5 score for singularity",
15 "title": "Singularity",
16 "type": "integer"
17 },
18 "explanation": {
19 "description": "Combined textual explanation for the scores",
20 "title": "Explanation",

29

21 "type": "string"
22 }
23 },
24 "required": [
25 "unambiguity",
26 "verifiability",
27 "singularity",
28 "explanation"
29]
30 }

3.5 Estratégia de Análise dos Dados

Para abordar as questões de pesquisa, foi utilizada uma abordagem de métodos mistos
para examinar a coleção de 900 requisitos gerados, cada um anotado com as pontuações
da escala Likert para Não Ambiguidade, Verificabilidade e Singularidade, juntamente com
a justificativa qualitativa do LLM juíz.

Quantitativamente, serão calculadas estatísticas descritivas (médias, medianas, desvios
padrão e distribuições de frequência) e visualizadas as distribuições das pontuações, tanto
de forma geral quanto dentro dos grupos experimentais definidos pelo LLM, estilo de
prompt e repositório. Como os dados são ordinais e podem violar os pressupostos de
normalidade, serão aplicados testes não paramétricos: o teste U de Mann-Whitney [40]
para comparações entre pares e o teste de Kruskal-Wallis [41], seguido pelo procedimento
post-hoc de Dunn [42] quando apropriado (ex: entre os estilos de prompt). O coeficiente
de correlação de Spearman [43] será calculado para avaliar as associações entre as três
métricas de qualidade.

Qualitativamente, será realizada uma análise temática do feedback narrativo do juiz,
registrado no campo explanation, suplementada com amostras dos requisitos gerados,
para descobrir pontos fortes, fracos e padrões recorrentes ligados a combinações especí-
ficas de LLM e prompt. A integração dessas percepções qualitativas com os resultados
quantitativos fornecerá uma explicação mais rica dos fatores que influenciam a qualidade
dos requisitos.

30

3.6 Síntese do Capítulo

Neste capítulo, foi detalhado o desenho metodológico da pesquisa. Iniciou-se com a des-
crição da arquitetura geral do estudo, fundamentada em três estágios: coleta, geração e
avaliação. A etapa de coleta de dados foi descrita, especificando a seleção de cinco re-
positórios de OSS de alta atividade e o critério de extração de 150 títulos de issues que
serviram como matéria-prima. Em seguida, o processo de geração de requisitos foi por-
menorizado, incluindo a configuração de três estratégias de prompt (Zero-shot, Few-shot,
Expert Identity) e a execução em dois LLMs distintos (OpenAI o3-mini e DeepSeek R1)
com parâmetros controlados. A metodologia de avaliação foi apresentada, justificando
a escolha das métricas da norma ISO/IEC/IEEE 29148:2018 e detalhando a implemen-
tação da abordagem LLM-as-a-Judge, incluindo o prompt de avaliação e o esquema de
saída estruturada. Por fim, foi delineada a estratégia de análise de dados de métodos
mistos, combinando testes estatísticos não paramétricos com análise temática para uma
interpretação robusta dos resultados.

31

Capítulo 4

Resultados e Discussão

Este capítulo apresenta e discute os resultados obtidos a partir da avaliação de LLMs para
a geração automática de requisitos de software a partir de títulos de issues do GitHub. O
objetivo é responder às questões de pesquisa que nortearam este estudo, fornecendo uma
análise aprofundada tanto quantitativa quanto qualitativa dos dados coletados.

Para responder a estas questões, foi empregada a metodologia empírica detalhada no
Capítulo 3. O processo envolveu a coleta de dados de repositórios de código aberto, a
geração de 900 requisitos candidatos utilizando dois LLMs e três estratégias de prompt,
e a subsequente avaliação da qualidade desses requisitos através do paradigma LLM-as-
a-Judge.

As questões de pesquisa que direcionam este trabalho são:

• QP1: Qual a eficácia dos LLMs para gerar requisitos de software a partir de títulos
de issues de projetos OSS?

• QP2: Como diferentes estratégias de engenharia de prompts influenciam a quali-
dade dos requisitos gerados?

• QP3: Quais são as características qualitativas, os pontos fortes e fracos dos requi-
sitos gerados pelos LLMs?

O capítulo está estruturado da seguinte forma: a Seção 4.1 oferece uma visão pa-
norâmica da qualidade geral dos requisitos gerados. As seções subsequentes abordam
cada questão de pesquisa individualmente, integrando a apresentação dos resultados com
uma discussão aprofundada. A Seção 4.2 avalia a eficácia geral dos LLMs. A Seção 4.3
investiga a influência das estratégias de prompt. A Seção 4.4 explora as características
qualitativas dos requisitos através de exemplos ilustrativos. A Seção 4.5 apresenta achados
suplementares e suas implicações. Por fim, a Seção 4.7 sintetiza as principais conclusões
do capítulo.

32

4.1 Visão Geral da Qualidade dos Requisitos Gera-
dos

Uma análise inicial de todos os 900 requisitos gerados estabeleceu uma base para a com-
preensão da qualidade geral alcançada pelos LLMs. As principais estatísticas descritivas
para os atributos de Não Ambiguidade, Verificabilidade e Singularidade estão sumarizadas
na Tabela 4.1.

De modo geral, os requisitos gerados foram avaliados favoravelmente pelo LLM-juiz,
com pontuações médias superiores a 4.25 e medianas de 4 ou 5 em todas as métricas. Este
resultado sugere que os LLMs são frequentemente capazes de produzir requisitos perce-
bidos como largamente não ambíguos, verificáveis e singulares, indicando uma aderência
geral aos atributos de qualidade definidos pela norma ISO/IEC/IEEE 29148:2018. Este
potencial alinha-se com as conclusões de trabalhos como [7, 44].

Tabela 4.1: Estatísticas Gerais para as Métricas de Qualidade dos Requisitos (N=900)
Estatística Não Ambiguidade Verificabilidade Singularidade
Média 4.34 4.25 4.38
Desvio Padrão 0.69 0.84 1.15
Mínimo 2.00 1.00 1.00
Mediana 4.00 4.00 5.00
Máximo 5.00 5.00 5.00

Contudo, a variabilidade notável, especialmente no atributo de Singularidade (DP =
1.15), e as pontuações mínimas (2.0, 1.0, e 1.0) indicam deficiências ocasionais e uma
inconsistência significativa. Este achado corrobora os desafios inerentes à Engenharia de
Requisitos, como a dificuldade de se obter qualidade consistente, discutidos no Capítulo
2 e amplificados em ambientes OSS pela informalidade das issues, como apontado na
Subseção 2.1.1.

A distribuição das pontuações, ilustrada na Figura 4.1, confirma essa observação. Em-
bora as pontuações altas (4 e 5) predominem, existe uma cauda não trivial de pontuações
mais baixas, especialmente para Verificabilidade e Singularidade. Isso sugere que, em-
bora os LLMs sejam promissores, alcançar uma geração de requisitos de alta qualidade de
forma consistente continua a ser um desafio, influenciado por fatores que serão explorados
nas seções seguintes.

33

Figura 4.1: Distribuição das Pontuações de Qualidade dos Requisitos por LLM

4.2 QP1: Análise da Eficácia dos Modelos de Lingua-
gem

Nesta seção, abordamos a primeira questão de pesquisa: QP1: Qual a eficácia dos
LLMs para gerar requisitos de software a partir de títulos de issues de projetos
OSS?

A comparação da eficácia dos dois LLMs avaliados, o3-mini e DeepSeek, revelou capa-
cidades comparáveis na geração de requisitos de alta qualidade, como detalhado na Tabela
4.2. Ambos os modelos alcançaram medianas de 4 para Não Ambiguidade e Verificabi-
lidade, e de 5 para Singularidade, reforçando a conclusão geral de que são ferramentas
eficazes para esta tarefa.

Tabela 4.2: Estatísticas Descritivas das Métricas de Qualidade por LLM (N=450 por
LLM)

o3-mini DeepSeek
Métrica Média Mediana DP Média Mediana DP
Não Ambiguidade 4.34 4 0.72 4.35 4 0.67
Verificabilidade 4.29 4 0.83 4.21 4 0.86
Singularidade 4.48 5 1.06 4.28 5 1.23

Apesar das médias similares, a aplicação de testes U de Mann-Whitney revelou uma
vantagem estatisticamente significativa para o o3-mini na geração de requisitos com maior
Singularidade (U = 108009.5, p = 0.023). Na prática, isso sugere que o o3-mini de-
monstrou uma tendência ligeiramente maior a gerar requisitos atômicos, que se concen-
tram em uma única funcionalidade. Para os atributos de Não Ambiguidade (p = 0.967) e
Verificabilidade (p = 0.156), não foram encontradas diferenças significativas. Os desvios

34

padrão substanciais observados em ambos os modelos, no entanto, reforçam que a escolha
do LLM é apenas um dos fatores que influenciam o resultado final.

Para contextualizar estes achados, é útil compará-los com as conclusões de outros es-
tudos relevantes. Nossos resultados convergem conceitualmente com a literatura em dois
pontos principais. Primeiro, os LLMs demonstram uma promessa significativa como as-
sistentes capazes para a elaboração de artefatos de ER. Nossas altas pontuações médias
alinham-se com os resultados favoráveis reportados por Krishna et al. [13], onde o CodeL-
lama produziu saídas comparáveis a um benchmark humano, e por Almonte et al. [14],
onde os NFRs gerados alcançaram uma pontuação mediana de validade de 5.0/5.0. Em
segundo lugar, e de forma crucial, todos os estudos relatam uma variabilidade significativa
e fraquezas notáveis nas saídas geradas. Os desvios padrão substanciais em nossos resul-
tados e a presença de requisitos com baixa pontuação espelham os achados de Krishna
et al. [13], que notaram problemas com verbosidade e formatação, e Almonte et al. [14],
que descobriram que quase 20% dos NFRs gerados tinham atributos de qualidade incom-
patíveis. Esta conclusão compartilhada ressalta que, embora os LLMs sejam eficazes, sua
saída não é uniformemente perfeita, reforçando a necessidade de avaliação e refinamento
cuidadosos.

Sumário da QP1

Os LLMs são geralmente eficazes na geração de requisitos de software a partir de tí-
tulos de issues de OSS, alcançando altas pontuações médias de qualidade (> 4.2/5)
para Não Ambiguidade, Verificabilidade e Singularidade. No entanto, essa eficácia
apresenta uma variabilidade significativa nas pontuações, indicando que a alta qua-
lidade não é garantida e depende de outros fatores, como a clareza da entrada. Os
dois modelos testados tiveram desempenho geral comparável, embora o o3-mini
tenha apresentado uma vantagem pequena, mas estatisticamente significativa, na
produção de requisitos com maior Singularidade.

4.3 QP2: Influência das Estratégias de Engenharia
de Prompts

Esta seção investiga a segunda questão de pesquisa: QP2: Como diferentes estraté-
gias de engenharia de prompts influenciam a qualidade dos requisitos gerados?
A análise confirmou que a engenharia de prompts tem um impacto significativo, embora
os efeitos tenham sido notavelmente dependentes do modelo, reforçando as conclusões de

35

[9, 10] sobre a importância do design do prompt e adicionando nuances sobre as respostas
específicas de cada modelo.

4.3.1 Influência dos Prompts no Desempenho do o3-mini

Para o modelo o3-mini (Tabela 4.3, Figura 4.2), testes de Kruskal-Wallis indicaram
efeitos significativos do prompt sobre a Não Ambiguidade (H = 12.50, p = 0.002) e
a Singularidade (H = 30.08, p < 0.001). A estratégia Few-shot produziu os melhores
resultados para ambos, alcançando a mediana mais alta (5) em todas as métricas e a média
mais alta para Singularidade e Não Ambiguidade. Em contrapartida, o prompt Expert
Identity, apesar de sua intenção de explorar um conhecimento de domínio simulado,
teve um desempenho inferior, degradando particularmente a Singularidade (média 4.11).
Isso sugere que, para o o3-mini, fornecer exemplos concretos (Few-shot) foi mais eficaz
do que atribuir uma persona.

Tabela 4.3: Estatísticas Descritivas para as Pontuações do o3-mini por Estilo de Prompt
(N=150 por estilo)

Zero-Shot Few-shot Expert

Métrica Média Mediana DP Média Mediana DP Média Mediana DP

Não Ambiguidade 4.37 4 0.70 4.43 5 0.76 4.21 4 0.67
Verificabilidade 4.21 4 0.82 4.29 5 0.97 4.36 4 0.67
Singularidade 4.56 5 0.97 4.77 5 0.75 4.11 5 1.29

Figura 4.2: Distribuição das Pontuações de Qualidade dos Requisitos do o3-mini por
Estilo de Prompt

4.3.2 Influência dos Prompts no Desempenho do DeepSeek R1

Para o modelo DeepSeek R1 (Tabela 4.4, Figura 4.3), efeitos significativos do prompt
foram encontrados para Verificabilidade (H = 7.84, p = 0.020) e Singularidade (H =

36

29.00, p < 0.001). Neste caso, o prompt Expert Identity melhorou significativamente
a Verificabilidade (mediana 5, média 4.37). No entanto, de forma análoga aos resultados
do o3-mini, o prompt Expert Identity levou à menor média de Singularidade (3.95) e
à maior variabilidade (DP 1.37). Novamente, o prompt Few-shot foi o mais eficaz para
aprimorar a Singularidade (média 4.69).

Este resultado evidencia um balanceamento crítico, particularmente com o prompt
Expert Identity: tentativas de aumentar o detalhe para melhorar a Verificabilidade
podem encorajar o modelo a combinar múltiplas facetas, reduzindo a Singularidade. Este
fenômeno pode ser explicado pela tensão entre a instrução do prompt (atuar como um
especialista para gerar um requisito “completo e prático”), e o princípio de atomicidade
(Singularidade) da engenharia de requisitos.

Tabela 4.4: Estatísticas Descritivas para as Pontuações do DeepSeek R1 por Estilo de
Prompt (N=150 por estilo)

Zero-shot Few-shot Expert

Métrica Média Mediana DP Média Mediana DP Média Mediana DP

Não Ambiguidade 4.31 4 0.65 4.33 4 0.74 4.42 4 0.59
Verificabilidade 4.18 4 0.79 4.07 4 0.98 4.37 5 0.76
Singularidade 4.20 5 1.27 4.69 5 0.86 3.95 5 1.37

Figura 4.3: Distribuição das Pontuações de Qualidade dos Requisitos do DeepSeek R1
por Estilo de Prompt

37

Sumário da QP2

A engenharia de prompts influencia significativamente a qualidade dos requisitos
gerados, mas seus efeitos são dependentes do modelo e podem introduzir trade-offs
críticos entre atributos de qualidade. A estratégia Few-shot melhorou de forma
consistente e significativa a Singularidade para ambos os LLMs, provando ser eficaz
para gerar requisitos atômicos e focados. Em contrapartida, o prompt Expert
Identity criou uma troca: por vezes, melhorou a Verificabilidade ao adicionar
detalhes (notavelmente para o DeepSeek R1), mas frequentemente o fez ao custo
de degradar a Singularidade para ambos os modelos.

4.4 QP3: Características Qualitativas, Pontos Fortes
e Fracos

A análise qualitativa dos requisitos gerados e das explicações do juiz forneceu percepções
mais profundas, respondendo à terceira questão de pesquisa: QP3: Quais são as ca-
racterísticas qualitativas, os pontos fortes e fracos dos requisitos gerados pelos
LLMs? Os achados qualitativos corroboram amplamente os resultados quantitativos.

Um ponto forte recorrente dos LLMs é a sua capacidade de capturar a intenção cen-
tral de títulos de issues claros e produzir declarações sintaticamente corretas que seguem
a estrutura básica de um requisito. No entanto, sua principal fraqueza é uma forte de-
pendência da clareza da entrada, ecoando o princípio “garbage-in, garbage-out” [10] e os
desafios da linguagem natural na ER discutidos no Capítulo 2. Títulos vagos ou excessi-
vamente amplos invariavelmente levaram a requisitos com baixa Verificabilidade.

A seguir, exemplos extraídos do conjunto de dados ilustram essas observações.

• Exemplo 1 (Boa Singularidade — o3-mini, Few-shot):

– Título da issue: Add support for nullable static types in GDScript
(godotengine/godot-proposals, 162)

– Requisito: O sistema deve oferecer suporte a tipos estáticos anuláveis no
GDScript.

– Pontuações (N, V, S): 5, 5, 5

– Justificativa do Juiz: O requisito especifica claramente o suporte para tipos
estáticos anuláveis em GDScript sem ambiguidade. É uma solicitação de fun-
cionalidade singular e pode ser verificada através de testes de implementação.

38

– Observação: Este caso exemplifica como a combinação de uma entrada clara e
uma estratégia de prompt eficaz, como a Few-shot, pode produzir um resultado
ideal. O prompt guia o modelo para manter o foco, evitando elaborações
desnecessárias que comprometeriam a Singularidade.

• Exemplo 2 (Baixa Singularidade — DeepSeek R1, Expert Identity):

– Título da issue: Implement Terrain (godotengine/godot-proposals, 6121)

– Requisito: O sistema deve fornecer um sistema de terreno integrado que
permita aos usuários criar, modificar e gerenciar paisagens 3D dentro do meca-
nismo Godot. O sistema de terreno deve oferecer suporte à geração de terreno
baseado em mapa de altura, pintura de textura com várias camadas e integra-
ção com os sistemas de física, iluminação e material do Godot. Deve incluir
recursos para pintura de vegetação, colocação de água e manipulação de nível
de detalhe (LOD) para otimização do desempenho. O sistema também deve
fornecer uma ferramenta de edição de terreno com uma interface amigável para
ajustes de altura, textura e material, e garantir a compatibilidade com os re-
cursos existentes do Godot, como iluminação e sombras dinâmicas. Além disso,
o sistema de terreno deve ser projetado para ser eficiente, dimensionável e ex-
tensível para acomodar grandes ambientes de mundo aberto e personalizações
definidas pelo usuário.

– Pontuações (N, V, S): 3, 3, 2

– Justificativa do Juiz: O requisito especifica um sistema de terreno com re-
cursos claros (gerenciamento de LOD, streaming dinâmico, integração de física,
ferramentas de editor, extensibilidade). Entretanto, termos como “eficiente”,
“dimensionável” e “extensível” introduzem ambiguidade. A verificabilidade é
possível para a maioria dos recursos (por exemplo, presença de ferramentas,
integração compartilhada), mas termos subjetivos complicam os testes. O re-
quisito se concentra apenas no sistema de terreno, abrangendo seus aspectos
técnicos e de ferramentas sem misturar preocupações não relacionadas.

– Observação: Este exemplo é uma ilustração qualitativa clara do trade-off
identificado na análise quantitativa da Seção 4.3. O prompt Expert Identity
incentiva o modelo a ser abrangente, resultando em uma declaração detalhada
que, embora potencialmente mais informativa, viola diretamente o princípio da
Singularidade ao agrupar múltiplas sub-funcionalidades.

• Exemplo 3 (Requisito vago a partir de título vago — o3-mini, Zero-shot):

39

– Título da issue: Reusing state logic is either too verbose or too
difficult (flutter/flutter, 51752)

– Requisito: O sistema deve incluir um mecanismo que simplifica a reutilização
da lógica de estado, minimizando a verbosidade e reduzindo a complexidade
da implementação.

– Pontuações (N, V, S): 3, 2, 5
– Justificativa do Juiz: O requisito especifica um mecanismo para simplificar

a reutilização da lógica de estado com clareza de propósito, mas usa termos
vagos como ‘minimizando’ e ‘reduzindo’ sem métricas quantificáveis.

– Observação: Este resultado demonstra que o princípio “garbage-in, garbage-
out” é amplificado pela estratégia de prompt Zero-shot. A falha aqui não
está apenas na entrada, mas na incapacidade da estratégia zero-shot de guiar
o modelo do espaço do problema para o espaço da solução, um passo crucial
na especificação de requisitos.

Sumário da QP3

Qualitativamente, um ponto forte chave dos LLMs é sua capacidade de capturar
a intenção central de títulos de entrada claros e produzir requisitos sintaticamente
corretos. Sua principal fraqueza é uma forte dependência da clareza da entrada;
títulos vagos ou excessivamente amplos invariavelmente produzem requisitos que
carecem de verificabilidade. Uma característica recorrente é um trade-off funda-
mental entre detalhe e foco; prompts projetados para obter conteúdo abrangente
(ex: Expert Identity) frequentemente produzem declarações mais descritivas que
violam o princípio da singularidade ao agrupar múltiplas capacidades distintas.

4.5 Achados Adicionais e Implicações Metodológicas

Análises suplementares revelaram outros insights relevantes. Foi encontrada uma varia-
ção estatisticamente significativa na qualidade dos requisitos para todas as três métricas
(p < 0.001, via Kruskal-Wallis), o que reforça o papel crítico da qualidade dos dados de
entrada. Adicionalmente, a análise de correlação de Spearman (Tabela 4.5) mostrou uma
forte relação positiva entre Não Ambiguidade e Verificabilidade (ρ = 0.69). Este resultado
é teoricamente esperado, pois, conforme a norma ISO/IEC/IEEE 29148:2018, a clareza
de um requisito é um pré-requisito para que sua implementação possa ser verificada ob-
jetivamente.

Uma implicação metodológica importante de nossos achados refere-se à validade da
abordagem LLM-as-a-Judge. Conforme discutido na Seção 3.4, um dos vieses conhecidos

40

Tabela 4.5: Matriz de Correlação de Spearman para as Métricas de Qualidade (N = 900)
Métrica Não Ambiguidade Verificabilidade Singularidade
Não Ambiguidade 1.00 0.69 0.37
Verificabilidade 0.69 1.00 0.30
Singularidade 0.37 0.30 1.00

desta metodologia é o “viés de verbosidade”, onde juízes LLM tendem a favorecer respos-
tas mais longas. Curiosamente, nossos resultados indicam que o protocolo de avaliação
resistiu a esse viés no que tange à métrica de Singularidade. O prompt Expert Identity
encorajou a geração de requisitos mais verbosos e elaborados, que, por sua vez, receberam
pontuações mais baixas de Singularidade. Em vez de recompensar a verbosidade, nosso
juiz penalizou corretamente os requisitos menos focados e multifacetados.

Essa robustez provavelmente se deve ao embasamento do prompt de avaliação em
critérios explícitos e decompostos, derivados da norma ISO 29148. A instrução clara
para avaliar se o requisito declarava uma “única funcionalidade”, fornecida no prompt
de avaliação, parece ter sido crucial. Isso sugere que fundamentar avaliações LLM-as-
a-Judge em critérios claros de padrões estabelecidos é uma estratégia vital para mitigar
vieses conhecidos e aumentar a validade de construto de avaliações automatizadas em
Engenharia de Requisitos.

4.6 Limitações e Ameaças à validade

Para garantir a transparência e o rigor científico, esta seção aborda as limitações inerentes
ao estudo e discute as potenciais ameaças à validade dos resultados apresentados. O
reconhecimento explícito dessas questões é fundamental para contextualizar as conclusões,
orientar a interpretação dos achados e sugerir caminhos para pesquisas futuras que possam
superar tais restrições.

4.6.1 Limitações do Estudo

Além das ameaças formais à validade, que serão detalhadas na seção seguinte, é importante
reconhecer algumas limitações de escopo que definem as fronteiras desta pesquisa.

Uma primeira limitação reside no escopo dos modelos de linguagem avaliados. O
estudo concentrou-se em dois LLMs para geração (o3-mini e DeepSeek R1) e um para
avaliação (Qwen QwQ-32b). Embora a seleção tenha sido justificada com base em critérios
de desempenho e custo-benefício (conforme detalhado na Seção 3.3.2), o ecossistema de
LLMs é vasto e está em constante evolução. Modelos com arquiteturas, dados de treina-

41

mento ou métodos de ajuste fino distintos poderiam apresentar sensibilidades diferentes
às estratégias de prompt e exibir outros padrões de desempenho.

Em segundo lugar, a generalização dos achados é condicionada pela natureza dos
dados de entrada. A pesquisa focou-se exclusivamente na geração de requisitos a partir
de títulos de issues de cinco repositórios de software de código aberto de grande porte.
Embora essa escolha represente um cenário prático e desafiador, as conclusões podem
não ser diretamente aplicáveis a outros contextos, como projetos comerciais de código
fechado, domínios com requisitos de segurança críticos, ou fontes de entrada mais ricas
(por exemplo, transcrições de reuniões ou descrições completas de issues).

Finalmente, a própria metodologia de avaliação, baseada no paradigma LLM-as-a-
Judge, constitui uma limitação importante. Embora justificada pela escalabilidade e con-
sistência, e tendo seus viéses conhecidos mitigados por estratégias como a seleção de um
juiz arquitetonicamente distinto, a avaliação automatizada permanece uma aproximação
da avaliação por especialistas humanos. A subjetividade e a profundidade do julgamento
humano não podem ser totalmente replicadas, e os vieses inerentes aos LLMs, mesmo que
controlados, ainda representam uma restrição.

4.6.2 Ameaças à Validade

Para uma análise mais sistemática, as ameaças à validade são discutidas a seguir, seguindo
as categorias estabelecidas por Wohlin et al. [45].

Ameaças à Validade de Construto

A validade de construto refere-se à correspondência entre os construtos teóricos da pes-
quisa e suas medições operacionais.

• Medição da Qualidade dos Requisitos: A qualidade foi medida utilizando os
atributos de Não Ambiguidade, Verificabilidade e Singularidade, derivados da norma
ISO/IEC/IEEE 29148:2018. Conforme justificado na Seção 3.4.1, essa seleção se
baseou na sua avaliabilidade isolada para dados de OSS. Contudo, esses atributos
representam apenas um subconjunto das características definidas pela norma (omi-
tindo, por exemplo, Viabilidade, Completude e Correção). Portanto, nossos achados
refletem a qualidade primordialmente sob essa ótica específica.

• LLM-as-a-Judge como Proxy de Qualidade: A avaliação dependeu de um
LLM (Qwen QwQ-32b) como juiz. Embora essa abordagem ofereça escalabilidade e
consistência, e trabalhos anteriores sugiram alta concordância com humanos [15, 29],
a interpretação dos critérios de qualidade pelo juiz LLM pode diferir sutilmente da de

42

especialistas humanos ou exibir vieses inerentes. Mitigamos essa ameaça fornecendo
definições claras baseadas na norma e capturando a justificativa do juiz, mas a
avaliação permanece uma aproximação da “verdadeira” qualidade.

• Representação de Solicitações de Funcionalidades por Títulos: Utilizamos
apenas os títulos das issues do GitHub como entrada para a geração de requisitos.
Os títulos podem não capturar todo o contexto ou as nuances presentes no corpo
da issue ou nos comentários. Essa simplificação, feita em prol da consistência e
viabilidade, significa que nossos resultados refletem a capacidade dos LLMs de gerar
requisitos a partir de declarações concisas e potencialmente incompletas, e não de
solicitações totalmente detalhadas.

Ameaças à Validade Interna

A validade interna aborda fatores que poderiam ter influenciado os resultados observados
além das manipulações experimentais.

• Efeito de Confusão da Qualidade da Entrada: A clareza, complexidade e es-
pecificidade de domínio inerentes aos títulos das issues variaram significativamente,
influenciando a qualidade dos requisitos gerados independentemente do LLM ou
do prompt utilizado. Embora tenhamos analisado o efeito do repositório como um
proxy, controlar precisamente a qualidade da entrada em todos os 150 títulos diver-
sos foi inviável.

• Não Determinismo dos LLMs: Embora tenhamos utilizado sementes (seeds) e
configurações de temperatura fixas, o não determinismo inerente às APIs dos LLMs
ou otimizações subjacentes poderia, potencialmente, introduzir pequenas variações.
Observamos reprodutibilidade prática durante nossos experimentos, mas não pode-
mos garantir saídas idênticas em uma replicação exata.

Ameaças à Validade Externa

A validade externa refere-se à generalização de nossos achados para outros contextos.

• Seleção Limitada de LLMs: Avaliamos apenas dois LLMs (o3-mini e DeepSeek
R1). Os achados relativos ao desempenho e à sensibilidade aos estilos de prompt
podem não se generalizar diretamente para outros modelos, tais como: modelos
maiores da OpenAI, Claude e variantes do Llama com diferentes arquiteturas, dados
de treinamento ou ajustes finos.

43

• Técnicas de Prompt Específicas: Testamos três estilos de prompt específicos. A
eficácia relativa pode diferir com outras técnicas como Chain-of-Thought, templates
complexos ou geração aumentada por recuperação de informação.

• Especificidade da Tarefa e da Entrada: Nosso estudo focou na geração de uma
única declaração de requisito a partir de títulos de issues. Os resultados podem não
ser relevantes para a geração de requisitos a partir de diferentes tipos de entradas,
como histórias de usuário, descrições detalhadas e atas de reunião, ou para outras
etapas da ER, como classificação, rastreamento ou refinamento.

• Contexto dos Repositórios OSS: Os dados originaram-se de cinco repositórios
de código aberto específicos e ativos. As práticas para escrever solicitações de fun-
cionalidades e a natureza dos requisitos podem diferir em outros projetos OSS,
projetos menores, domínios diferentes (por exemplo, sistemas de segurança crítica)
ou ambientes de desenvolvimento comercial de código fechado.

Ameaças à Validade de Conclusão e Confiabilidade

Esta categoria relaciona-se à capacidade de tirar conclusões corretas e à reprodutibilidade
do estudo.

• Confiabilidade do Juiz LLM: Além das preocupações de validade de construto,
a consistência do juiz na aplicação dos critérios de pontuação ao longo dos 900
requisitos pode ser questionada. Efeitos de fadiga são minimizados em comparação
com humanos [15], mas a consistência interna do modelo não é garantida. Utilizamos
saídas JSON estruturadas para garantir que as classificações fossem capturadas
sistematicamente.

• Poder Estatístico e Testes: Utilizamos testes não paramétricos apropriados para
dados ordinais, conforme descrito na Seção 3.5. Embora o tamanho da amostra
(N=900) forneça um poder estatístico razoável, a possibilidade de erros do Tipo
II (não detectar pequenos efeitos verdadeiros) existe, como em qualquer análise
estatística.

• Extração e Processamento de Dados: Erros potenciais no uso da API do
GitHub ou nos scripts de processamento poderiam afetar o conjunto de dados. O
uso padrão da API e a verificação dos scripts foram empregados para minimizar esse
risco.

• Reprodutibilidade: Conforme observado na Validade Interna, o não determinismo
dos LLMs representa um desafio. Além disso, a rápida evolução dos LLMs signi-
fica que as versões específicas dos modelos utilizados (o3-mini, DeepSeek R1, Qwen

44

QwQ-32b) podem ser atualizadas ou descontinuadas, afetando potencialmente futu-
ras tentativas de replicação. Documentamos claramente os modelos e parâmetros
utilizados para mitigar essa ameaça.

4.7 Síntese do Capítulo

Este capítulo apresentou e discutiu os resultados da avaliação empírica da geração de
requisitos de software por LLMs. Foi demonstrado que, embora os modelos sejam geral-
mente eficazes, sua performance é fortemente modulada pela qualidade da entrada e pela
estratégia de engenharia de prompts.

Em resposta à QP1, os resultados indicam que LLMs são ferramentas capazes, mas
a qualidade da saída varia significativamente. No que tange à QP2, foi revelado que a
engenharia de prompts é um fator determinante, com a estratégia Few-shot se mostrando
robusta para melhorar a Singularidade, enquanto a estratégia Expert Identity introdu-
ziu um trade-off entre Verificabilidade e Singularidade. Finalmente, a análise qualitativa
da QP3 ilustrou esses padrões com exemplos concretos, destacando a dependência da
clareza da entrada e o conflito entre detalhe e foco.

Os achados reforçam a visão de que os LLMs funcionam melhor como assistentes po-
derosos que exigem projeto de prompt cuidadoso e supervisão humana para refinar as
saídas, garantindo Verificabilidade e Singularidade adequadas. Esses resultados formam a
base para as conclusões gerais da dissertação, as implicações para a prática da Engenha-
ria de Requisitos e as direções para trabalhos futuros, que serão detalhados no capítulo
seguinte.

45

Capítulo 5

Conclusão

Esta dissertação propôs-se a investigar a aplicação de LLMs na automação de uma ta-
refa fundamental e desafiadora da ER: a geração de requisitos de software a partir de
solicitações de funcionalidades informais. Conforme discutido no Capítulo 2, o contexto
dos projetos de OSS intensifica esse desafio, devido ao grande volume e à natureza não
estruturada das entradas provenientes de sistemas de rastreamento de issues. O objetivo
central foi avaliar empiricamente não apenas a eficácia dos LLMs nessa tarefa, mas tam-
bém como sua performance é modulada por diferentes modelos e estratégias de engenharia
de prompts.

Para alcançar esse objetivo, foi implementada a metodologia detalhada no Capítulo
3, que envolveu a coleta de dados de repositórios OSS proeminentes, a geração de 900
requisitos e sua subsequente avaliação automatizada através do paradigma LLM-as-a-
Judge, com base em atributos de qualidade da norma ISO/IEC/IEEE 29148:2018. Este
capítulo final sintetiza os resultados obtidos, discute suas implicações teóricas e práticas,
reconhece as limitações do estudo e aponta direções para pesquisas futuras.

5.1 Síntese dos Resultados e Respostas às Questões
de Pesquisa

A análise dos dados, apresentada no Capítulo 4, forneceu respostas claras às questões de
pesquisa que nortearam este trabalho.

Em resposta à QP1 (Qual a eficácia dos LLMs para gerar requisitos de soft-
ware a partir de títulos de issues de projetos OSS?), o estudo concluiu que os
LLMs são, de modo geral, eficazes. As pontuações médias para os atributos de Não Am-
biguidade, Verificabilidade e Singularidade foram consistentemente altas (superiores a 4.2
em uma escala de 5), indicando que os modelos são capazes de produzir saídas de quali-

46

dade. Contudo, essa eficácia é marcada por uma inconsistência significativa, evidenciada
pelos altos desvios padrão e pela presença de requisitos com baixa pontuação. Portanto,
embora promissores, os LLMs não garantem a geração de requisitos de alta qualidade de
forma uniforme, sendo sua performance fortemente dependente de outros fatores.

No que tange à QP2 (Como diferentes estratégias de engenharia de prompts
influenciam a qualidade dos requisitos gerados?), os resultados revelaram que a
engenharia de prompts é um fator determinante, mas seus efeitos são dependentes do mo-
delo e podem introduzir trade-offs entre os atributos de qualidade. A estratégia Few-shot
destacou-se por melhorar de forma robusta e estatisticamente significativa a Singulari-
dade em ambos os modelos. Em contrapartida, a estratégia Expert Identity, embora
concebida para gerar saídas mais completas, frequentemente degradou a Singularidade
ao mesmo tempo que, em um dos modelos, melhorou a Verificabilidade. Este achado,
detalhado na Seção 4.3, expõe uma tensão fundamental entre a geração de requisitos
detalhados e o princípio da atomicidade.

Finalmente, para a QP3 (Quais são as características qualitativas, os pontos
fortes e fracos dos requisitos gerados pelos LLMs?), a análise qualitativa da Seção
4.4 corroborou os achados quantitativos. Um ponto forte recorrente foi a capacidade dos
modelos de produzir declarações sintaticamente corretas que capturam a intenção de en-
tradas claras. A principal fraqueza foi a extrema dependência da qualidade da entrada,
aderindo ao princípio “garbage-in, garbage-out”, onde títulos vagos invariavelmente leva-
ram a requisitos não verificáveis. A análise qualitativa também ilustrou o trade-off entre
detalhe e foco, mostrando como prompts que incentivam a completude podem resultar
em requisitos que, embora mais ricos em informação, violam a Singularidade.

5.2 Implicações do Estudo

Os resultados desta dissertação oferecem contribuições tanto para o campo acadêmico da
Engenharia de Software quanto para a prática profissional da Engenharia de Requisitos.

5.2.1 Implicações para a Pesquisa

Este trabalho avança o estado da arte da aplicação de LLMs em ER de várias maneiras.
Enquanto estudos anteriores, como os de Krishna et al. [13] e Almonte et al. [14], estabe-
leceram a viabilidade dos LLMs para gerar artefatos de requisitos, nossa pesquisa fornece
uma análise mais granular. Demonstramos empiricamente os trade-offs que surgem en-
tre diferentes atributos de qualidade (notavelmente, Verificabilidade vs. Singularidade)
como consequência de estratégias de prompt específicas. Essa descoberta adiciona uma

47

camada de complexidade à compreensão de como otimizar a geração de requisitos, suge-
rindo que não existe uma “melhor estratégia” universal, mas sim uma escolha dependente
dos objetivos de qualidade priorizados.

Adicionalmente, ao comparar dois LLMs distintos, mostramos que a resposta às es-
tratégias de prompt não é uniforme, reforçando a necessidade de estudos que considerem
a interação entre modelo e prompt, uma área pouco explorada por trabalhos como o de
Ronanki et al. [10].

Metodologicamente, este estudo contribui para a validação do paradigma LLM-as-a-
Judge no domínio da ER. Conforme discutido na Seção 4.5, nosso protocolo de avaliação,
fundamentado em critérios explícitos da norma ISO/IEC/IEEE 29148:2018, demonstrou
ser capaz de mitigar o conhecido “viés de verbosidade” [15]. Ao penalizar corretamente os
requisitos mais longos, porém menos singulares, gerados pelo prompt Expert Identity,
o juiz LLM demonstrou uma aderência aos critérios definidos, o que fortalece a validade
de construto de avaliações automatizadas e escaláveis quando estas são rigorosamente
fundamentadas em padrões estabelecidos.

5.2.2 Implicações para a Prática

Para os profissionais de Engenharia de Software, a principal implicação é que os LLMs
devem ser vistos como assistentes poderosos, e não como substitutos autônomos para
engenheiros de requisitos. A forte dependência da clareza da entrada significam que a
supervisão humana permanece indispensável.

Com base nos achados, podem-se extrair as seguintes recomendações práticas:

• Para gerar uma lista inicial de requisitos atômicos e focados, que podem servir como
base para decomposição e refinamento, a estratégia Few-shot é a mais recomendada,
pois demonstrou ser a mais eficaz para garantir a Singularidade.

• Ao utilizar estratégias que visam gerar conteúdo mais detalhado, como a Expert
Identity, os profissionais devem estar cientes do risco de produzir requisitos não
singulares. Embora possam conter informações úteis para melhorar a Verificabili-
dade, essas saídas devem ser tratadas como especificações que requerem decomposi-
ção manual em múltiplos requisitos atômicos antes de serem integradas ao processo
de desenvolvimento.

• A qualidade da entrada é primordial. Investir tempo na clarificação de títulos de
issues ou na elaboração de descrições mais detalhadas antes de alimentar um LLM
provavelmente resultará em uma economia de esforço significativa no refinamento
posterior dos requisitos gerados.

48

5.3 Trabalhos Futuros

Conforme detalhado na Seção 4.6.1, este estudo possui limitações que definem as fronteiras
de suas conclusões e abrem caminhos para pesquisas futuras. As principais limitações
incluem a avaliação de um número restrito de LLMs e estratégias de prompt, o foco
exclusivo em títulos de issues como fonte de entrada, e a dependência de um juiz LLM para
a avaliação, cujos vieses, embora mitigados, não podem ser completamente eliminados.

Com base nessas limitações e nos achados do estudo, as seguintes direções para tra-
balhos futuros são propostas:

• Explorar Entradas Mais Ricas: Investigar a geração de requisitos utilizando não
apenas o título, mas o corpo completo da issue, incluindo comentários. Isso exigiria
técnicas para sumarizar e extrair as informações mais relevantes de longas discus-
sões. A Geração Aumentada por Recuperação (RAG) poderia ser uma abordagem
promissora para fornecer contexto relevante ao LLM.

• Sofisticação das Estratégias de Prompt: Avaliar técnicas mais avançadas, como
Chain-of-Thought (CoT), para incentivar o LLM a “raciocinar” sobre o requisito
antes de gerá-lo, potencialmente melhorando a qualidade de requisitos derivados de
entradas ambíguas.

• Decomposição Automatizada de Requisitos: Dado que o prompt Expert
Identity tende a gerar saídas detalhadas, mas não singulares, uma linha de pes-
quisa promissora seria desenvolver um segundo estágio no pipeline, onde outro LLM
é encarregado de decompor automaticamente esses requisitos complexos em um con-
junto de requisitos atômicos e singulares.

• Validação Humana e Comparativa: Realizar um estudo comparativo envol-
vendo especialistas humanos para avaliar os requisitos gerados. Isso permitiria não
apenas validar os resultados do LLM-as-a-Judge em maior profundidade, mas tam-
bém quantificar o nível de concordância entre o julgamento humano e o automati-
zado no contexto específico da ER.

• Generalização para Outros Contextos: Replicar o estudo em diferentes domí-
nios, como projetos comerciais de código fechado ou sistemas de segurança crítica,
para verificar se os padrões de desempenho e os trade-offs observados se mantêm
em ambientes com processos de ER mais formais.

A automação da Engenharia de Requisitos, um dos gargalos mais persistentes no de-
senvolvimento de software, deu um passo significativo com o advento de LLMs. Esta
dissertação demonstrou que, embora a promessa de uma automação completa ainda não

49

tenha sido alcançada, os LLMs são ferramentas de imenso potencial, capazes de transfor-
mar entradas informais em artefatos de requisitos estruturados com um nível de qualidade
notável.

A principal contribuição deste trabalho é a evidência empírica de que a eficácia dessa
transformação não é absoluta, mas sim uma função complexa da clareza da entrada, da
escolha do modelo e, crucialmente, da estratégia de interação empregada. A descoberta
de trade-offs explícitos entre atributos de qualidade fundamentais, como Verificabilidade e
Singularidade, sublinha a necessidade de uma abordagem estratégica e consciente ao apli-
car essas tecnologias. Em última análise, o futuro da Engenharia de Requisitos assistida
por IA reside não na substituição da perícia humana, mas em uma colaboração sinérgica,
onde a capacidade de geração dos LLMs é guiada e refinada pela intuição, conhecimento
de domínio e julgamento crítico dos engenheiros de software.

50

Referências

[1] Sommerville, Ian: Software engineering. Pearson, Boston, 10a edição, 2016,
ISBN 9780133943030. 1, 8, 9

[2] Attanayaka, Buddhima, Dasuni Nawinna, Kalpani Manathunga e Pradeep K.W.
Abeygunawardhana: Success factors of requirement elicitation in the field of software
engineering. Em 2022 4th International Conference on Advancements in Computing
(ICAC), páginas 240–245, 2022. 1, 3, 8, 9

[3] Tasnim, Maliha, Maruf Rayhan, Zheying Zhang e Timo Poranen: A systematic lit-
erature review on requirements engineering practices and challenges in open-source
projects. Em 2023 49th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), páginas 278–285, 2023. 1, 2, 3, 10, 12

[4] Lim, Sachiko, Aron Henriksson e Jelena Zdravkovic: Data-driven requirements elic-
itation: A systematic literature review. SN Comput. Sci., 2(1):16, 2021. https:
//doi.org/10.1007/s42979-020-00416-4. 1, 3, 10

[5] IEEE: ISO/IEC/IEEE International Standard - systems and software engineering
– life cycle processes – requirements engineering. ISO/IEC/IEEE 29148:2018(E),
páginas 1–104, 2018. 1, 4, 8, 11, 17, 18, 19, 20, 27, 28

[6] Zhao, Wayne Xin, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie e Ji-Rong Wen: A survey of large language
models. CoRR, abs/2303.18223, 2023. https://doi.org/10.48550/arXiv.2303.
18223. 1, 12, 13, 14

[7] Arora, Chetan, John Grundy e Mohamed Abdelrazek: Advancing requirements en-
gineering through generative AI: assessing the role of llms. CoRR, abs/2310.13976,
2023. https://doi.org/10.48550/arXiv.2310.13976. 1, 3, 10, 17, 33

[8] Alhoshan, Waad, Alessio Ferrari e Liping Zhao: Zero-shot learning for requirements
classification: An exploratory study. Inf. Softw. Technol., 159:107202, 2023. https:
//api.semanticscholar.org/CorpusID:256697343. 1, 4, 17, 19, 21, 25

[9] White, Jules, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith e Douglas C. Schmidt: A prompt pattern cat-
alog to enhance prompt engineering with chatgpt. ArXiv, abs/2302.11382, 2023.
https://api.semanticscholar.org/CorpusID:257079092. 2, 3, 4, 14, 36

51

https://doi.org/10.1007/s42979-020-00416-4
https://doi.org/10.1007/s42979-020-00416-4
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2310.13976
https://api.semanticscholar.org/CorpusID:256697343
https://api.semanticscholar.org/CorpusID:256697343
https://api.semanticscholar.org/CorpusID:257079092

[10] Ronanki, Krishna, Beatriz Cabrero Daniel, Jennifer Horkoff e Christian Berger: Re-
quirements engineering using generative ai: Prompts and prompting patterns. ArXiv,
abs/2311.03832, 2023. https://api.semanticscholar.org/CorpusID:265043266.
2, 3, 4, 14, 15, 18, 19, 21, 25, 36, 38, 48

[11] Mesquita, Rodrigo, Geovana Ramos Sousa Silva e Edna Dias Canedo: On the ex-
periences of practitioners with requirements elicitation techniques. Proceedings of
the XXXVII Brazilian Symposium on Software Engineering, 2023. https://api.
semanticscholar.org/CorpusID:262467959. 2

[12] Canedo, Edna Dias, Angélica Toffano Seidel Calazans, Geovana Ramos Sousa Silva,
Eloisa Toffano Seidel Masson e Isabel Sofia Brito: On the challenges to documenting
requirements in agile software development: A practitioners’ perspective. Anais do
XXVII Congresso Ibero-Americano em Engenharia de Software (CIbSE 2024), 2024.
https://api.semanticscholar.org/CorpusID:270177412. 2

[13] Krishna, Madhava, Bhagesh Gaur, Arsh Verma e Pankaj Jalote: Using llms in soft-
ware requirements specifications: An empirical evaluation. Em 2024 IEEE 32nd
International Requirements Engineering Conference (RE), páginas 475–483, 2024. 3,
4, 17, 19, 21, 27, 35, 47

[14] Almonte, Jomar Thomas, Santhosh Anitha Boominathan e Nathalia Nascimento:
Automated non-functional requirements generation in software engineering with large
language models: A comparative study, 2025. https://arxiv.org/abs/2503.15248.
3, 17, 21, 27, 35, 47

[15] Zheng, Lianmin, Wei Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yong-
hao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E.
Gonzalez e Ion Stoica: Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.
https://arxiv.org/abs/2306.05685. 4, 16, 17, 27, 28, 42, 44, 48

[16] Ralph, Paul, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz,
Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri, Breno
Bernard Nicolau de França, Carlo Alberto Furia, Greg Gay, Nicolas Gold, Daniel
Graziotin, Pinjia He, Rashina Hoda, Natalia Juristo, Barbara Kitchenham, Valentina
Lenarduzzi, Jorge Martínez, Jorge Melegati, Daniel Mendez, Tim Menzies, Jefferson
Molleri, Dietmar Pfahl, Romain Robbes, Daniel Russo, Nyyti Saarimäki, Federica
Sarro, Davide Taibi, Janet Siegmund, Diomidis Spinellis, Miroslaw Staron, Klaas
Stol, Margaret Anne Storey, Davide Taibi, Damian Tamburri, Marco Torchiano,
Christoph Treude, Burak Turhan, Xiaofeng Wang e Sira Vegas: Empirical standards
for software engineering research, 2021. https://arxiv.org/abs/2010.03525. 6

[17] Pérez-Verdejo, J. Manuel, Á. J. Sánchez-García, J. O. Ocharán-Hernández, E.
Mezura-Montes e K. Cortés-Verdín: Requirements and github issues: An auto-
mated approach for quality requirements classification. Programming and Com-
puter Software, 47(8):704–721, dezembro 2021, ISSN 0361-7688, 1608-3261. https:
//link.springer.com/10.1134/S0361768821080193. 10

52

https://api.semanticscholar.org/CorpusID:265043266
https://api.semanticscholar.org/CorpusID:262467959
https://api.semanticscholar.org/CorpusID:262467959
https://api.semanticscholar.org/CorpusID:270177412
https://arxiv.org/abs/2503.15248
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2010.03525
https://link.springer.com/10.1134/S0361768821080193
https://link.springer.com/10.1134/S0361768821080193

[18] Minaee, Shervin, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain e Jianfeng Gao: Large language models: A survey. 2024.
https://arxiv.org/abs/2402.06196. 12, 13, 14

[19] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Łukasz Kaiser e Illia Polosukhin: Attention is all you need. Advances in
neural information processing systems, 30, 2017. 12, 13

[20] Radford, Alec, Karthik Narasimhan, Tim Salimans, Ilya Sutskever et al.: Improving
language understanding by generative pre-training. 13

[21] Devlin, Jacob, Ming Wei Chang, Kenton Lee e Kristina Toutanova: Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 14

[22] Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike e Ryan Lowe: Training language models
to follow instructions with human feedback, 2022. https://arxiv.org/abs/2203.
02155. 14

[23] Schulhoff, Sander, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda
Liu, Chenglei Si, Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff et al.:
The prompt report: A systematic survey of prompting techniques. arXiv preprint
arXiv:2406.06608, 2024. 14, 15

[24] Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever e
Dario Amodei: Language models are few-shot learners. ArXiv, abs/2005.14165, 2020.
https://api.semanticscholar.org/CorpusID:218971783. 15, 25

[25] Xu, Benfeng, An Yang, Junyang Lin, Quang Wang, Chang Zhou, Yongdong Zhang
e Zhendong Mao: Expertprompting: Instructing large language models to be distin-
guished experts. ArXiv, abs/2305.14688, 2023. https://api.semanticscholar.
org/CorpusID:258865458. 15, 26

[26] Lin, Chin Yew: ROUGE: A package for automatic evaluation of summaries. Em
Text Summarization Branches Out, páginas 74–81, Barcelona, Spain, julho 2004. As-
sociation for Computational Linguistics. https://aclanthology.org/W04-1013/.
16

[27] Papineni, Kishore, Salim Roukos, Todd Ward e Wei Jing Zhu: Bleu: a method for
automatic evaluation of machine translation. Em Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL ’02, página 311–318,

53

https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:258865458
https://api.semanticscholar.org/CorpusID:258865458
https://aclanthology.org/W04-1013/

USA, 2002. Association for Computational Linguistics. https://doi.org/10.3115/
1073083.1073135. 16

[28] Li, Dawei, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao,
Zhen Tan, Amrita Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, Kai Shu,
Lu Cheng e Huan Liu: From generation to judgment: Opportunities and challenges
of llm-as-a-judge, 2025. https://arxiv.org/abs/2411.16594. 16

[29] Gu, Jiawei, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei
Li, Yinghan Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo
Wang, Wen Gao, Lionel Ni e Jian Guo: A survey on llm-as-a-judge, 2024. https:
//arxiv.org/abs/2411.15594. 16, 17, 28, 42

[30] Khan, Javed Ali, Shamaila Qayyum e Hafsa Shareef Dar: Large language model
for requirements engineering: A systematic literature review. março 2025. https:
//www.researchsquare.com/article/rs-5589929/v1. 17

[31] Hymel, Cory e Hiroe Johnson: Analysis of llms vs human experts in requirements
engineering, 2025. https://arxiv.org/abs/2501.19297. 18, 19, 21

[32] Ronanki, Krishna, Christian Berger e Jennifer Horkoff: Investigating chatgpt’s poten-
tial to assist in requirements elicitation processes, 2023. https://arxiv.org/abs/
2307.07381. 18, 21

[33] Ataei, Mohammadmehdi, Hyunmin Cheong, Daniele Grandi, Ye Wang, Nigel Morris
e Alexander Tessier: Elicitron: An llm agent-based simulation framework for design
requirements elicitation, 2024. https://arxiv.org/abs/2404.16045. 18, 19, 21

[34] Jin, Dongming, Zhi Jin, Xiaohong Chen e Chunhui Wang: Mare: Multi-agents col-
laboration framework for requirements engineering. ArXiv, abs/2405.03256, 2024.
https://api.semanticscholar.org/CorpusID:269605506. 18, 21

[35] Lubos, Sebastian, Alexander Felfernig, Thi Ngoc Trang Tran, Damian Garber, Mer-
fat El Mansi, Seda Polat Erdeniz e Viet Man Le: Leveraging llms for the quality
assurance of software requirements. Em 2024 IEEE 32nd International Requirements
Engineering Conference (RE), páginas 389–397, 2024. 18, 19, 21

[36] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,
Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai
Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu,
Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Er-
hang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin
Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia,

54

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://www.researchsquare.com/article/rs-5589929/v1
https://www.researchsquare.com/article/rs-5589929/v1
https://arxiv.org/abs/2501.19297
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2404.16045
https://api.semanticscholar.org/CorpusID:269605506

Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Ming-
ming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou,
Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding
Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun,
Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun,
Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yud-
uan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang
You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li,
Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren,
Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang e
Zhen Zhang: Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. https://arxiv.org/abs/2501.12948. 26

[37] White, Colin, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha
Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chin-
may Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger e Micah Goldblum:
Livebench: A challenging, contamination-free llm benchmark, 2024. https://arxiv.
org/abs/2406.19314. 26

[38] Yang, An, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai
Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang,
Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang e Zihan Qiu: Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024. 27

[39] Qwen Team: QwQ-32B: Embracing the power of reinforcement learning, March 2025.
https://qwenlm.github.io/blog/qwq-32b/. 27

[40] Mann, H. B. e D. R. Whitney: On a test of whether one of two random vari-
ables is stochastically larger than the other. The Annals of Mathematical Statistics,
18(1):50–60, março 1947, ISSN 0003-4851. http://projecteuclid.org/euclid.
aoms/1177730491. 30

[41] Kruskal, William H. e W. Allen Wallis: Use of ranks in one-criterion variance anal-
ysis. Journal of the American Statistical Association, 47(260):583–621, dezem-

55

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://qwenlm.github.io/blog/qwq-32b/
http://projecteuclid.org/euclid.aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491

bro 1952, ISSN 0162-1459, 1537-274X. http://www.tandfonline.com/doi/abs/
10.1080/01621459.1952.10483441. 30

[42] Dunn, Olive Jean: Multiple comparisons using rank sums. Technometrics,
6(3):241–252, agosto 1964, ISSN 0040-1706, 1537-2723. http://www.tandfonline.
com/doi/abs/10.1080/00401706.1964.10490181. 30

[43] Spearman, C.: The proof and measurement of association between two things. The
American Journal of Psychology, 15(1):72, janeiro 1904, ISSN 00029556. https:
//www.jstor.org/stable/1412159?origin=crossref. 30

[44] Marques, Nuno, Rodrigo Rocha Silva e Jorge Bernardino: Using chatgpt in software
requirements engineering: A comprehensive review. Future Internet, 16(6):1–21, 2024,
ISSN 1999-5903. 33

[45] Wohlin, Claes, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell e
Anders Wesslen: Experimentation in software engineering, 2012. https://link.
springer.com/book/10.1007/978-3-662-69306-3. 42

56

http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
http://www.tandfonline.com/doi/abs/10.1080/00401706.1964.10490181
http://www.tandfonline.com/doi/abs/10.1080/00401706.1964.10490181
https://www.jstor.org/stable/1412159?origin=crossref
https://www.jstor.org/stable/1412159?origin=crossref
https://link.springer.com/book/10.1007/978-3-662-69306-3
https://link.springer.com/book/10.1007/978-3-662-69306-3

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Contextualização
	Problema de Pesquisa
	Justificativa
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Resultados Esperados e Contribuições
	Método de Pesquisa
	Estrutura do Trabalho

	Fundamentação
	Fundamentação Teórica
	Requisitos de Software
	Qualidade em Requisitos de Software
	Large Language Models
	Engenharia de Prompts
	LLM-as-a-Judge

	Trabalhos Relacionados
	Lacuna de Pesquisa e a Contribuição deste Trabalho

	Síntese do Capítulo

	Configuração do Estudo
	Desenho da Pesquisa
	Coleta de Dados
	Geração de Requisitos
	Configuração dos Prompts
	Execução dos Prompts

	Avaliação dos Requisitos
	Métricas de Avaliação
	Avaliação Automatizada
	Prompt de Avaliação

	Estratégia de Análise dos Dados
	Síntese do Capítulo

	Resultados e Discussão
	Visão Geral da Qualidade dos Requisitos Gerados
	QP1: Análise da Eficácia dos Modelos de Linguagem
	QP2: Influência das Estratégias de Engenharia de Prompts
	Influência dos Prompts no Desempenho do o3-mini
	Influência dos Prompts no Desempenho do DeepSeek R1

	QP3: Características Qualitativas, Pontos Fortes e Fracos
	Achados Adicionais e Implicações Metodológicas
	Limitações e Ameaças à validade
	Limitações do Estudo
	Ameaças à Validade

	Síntese do Capítulo

	Conclusão
	Síntese dos Resultados e Respostas às Questões de Pesquisa
	Implicações do Estudo
	Implicações para a Pesquisa
	Implicações para a Prática

	Trabalhos Futuros

	Referências

