-
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Explorando Large Language Models para a Geracao
de Requisitos de Software a partir de Issues em
Projetos de Cédigo Aberto

Guilherme Pereira Paiva

Dissertagao apresentada como requisito parcial para

conclusdo do Mestrado em Informatica

Orientadora
Prof.a Dr.a Edna Dias Canedo

Brasilia
2025

Ficha catalografica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

Paiva, Guilhernme Pereira
P149e Expl orando Large Language Model s para a Geracao de
Requi sitos de Software a partir de |ssues em Projetos de
Codi go Aberto / Guilherme Pereira Paiva; orientador Edna
Canedo. Brasilia, 2025.
56 p.

Di ssertacao(Mestrado em I nformatica) Universidade de
Brasilia, 2025.

1. Engenharia de Requisitos. 2. Large Language Models. 3.
Engenharia de Pronpt. 4. Andlise de Qualidade Autonmatizada.
5. Software de Cbodigo Aberto. |. Canedo, Edna, orient. I1I.
Titul o.

-
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Explorando Large Language Models para a Geracao
de Requisitos de Software a partir de Issues em
Projetos de Cédigo Aberto

Guilherme Pereira Paiva

Dissertagao apresentada como requisito parcial para

conclusdo do Mestrado em Informética

Prof.a Dr.a Edna Dias Canedo (Orientadora)

CIC/UnB
Prof. Dr. Geraldo Pereira Rocha Filho Prof. Dr. Rodrigo Pereira dos Santos
Universidade Estadual do Sudoeste da Universidade Federal do Estado do Rio de
Bahia (UESB) Janeiro (UNIRIO)

Prof.a Dr.a Clidudia Nalon

Coordenadora do Programa de Pés-graduagao em Informatica

Brasilia, 25 de Agosto de 2025

Dedicatoria

A minha esposa, pelo amor, paciéncia e apoio incondicional em todos os momentos;

Aos meus pais e as minhas irmas, pelo incentivo, confianca e carinho ao longo de toda a

jornada;

A minha orientadora, Edna Dias Canedo, pela sabia orientacao, pelo comprometimento e

pelas valiosas contribui¢coes que nortearam cada etapa deste trabalho.

v

Agradecimentos

Agradeco a todos que, de alguma forma, contribuiram para a realizagdo deste estudo:
A banca examinadora pelas valiosas sugestdes que enriqueceram este trabalho;

Aos colegas e aos amigos do programa de pés-graduagao pelo ambiente acolhedor e pelas

discussoes enriquecedoras;
A Universidade de Brasilia, por oferecer infraestrutura e apoio a pesquisa;

A Coordenacio de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), pelo apoio

financeiro concedido para a realizacao desta pesquisa;

Por fim, registro minha gratidao a Deus, fonte de forca e esperanca em todos os momentos.

Resumo

Contexto: A Engenharia de Requisitos (ER) em projetos de Open-Source Software (OSS)
sofre com a informalidade e o grande volume de issues, gerando lacunas entre solicitagoes
de usudrios e artefatos formais exigidos por normas como a ISO/IEC/IEEE 29148:2018.
Objetivo: Avaliar empiricamente a eficicia de Large Language Models (LLMs) — mod-
ulada por diferentes estratégias de engenharia de prompts — na geragao automatica de
requisitos de software a partir de titulos de issues. Método: Foram coletados 150 titu-
los de issues de cinco repositorios OSS altamente ativos; esses titulos foram processados
pelos LLMs 03-mini e DeepSeek R1, combinados com trés estilos de prompt (Zero-shot,
Few-shot e Expert Identity), resultando em 900 requisitos avaliados por um LLM-juiz
(Qwen QwQ-32b) segundo as métricas Nao Ambiguidade, Verificabilidade e Singularidade
derivadas da norma ISO/IEC/IEEE 29148. Resultados: Ambos os LLMs produziram
requisitos de alta qualidade (médias > 4,2 numa escala 1-5), mas com variagao significa-
tiva; a estratégia Few-shot elevou consistentemente a Singularidade, enquanto a Expert
Identity melhorou a Verificabilidade ao custo de requisitos menos singulares, eviden-
ciando trade-offs dependentes do modelo e do prompt. Conclusao: LLMs sao assistentes
promissores para automatizar etapas criticas da ER em OSS, porém sua eficacia exige
prompts cuidadosamente projetados e supervisao humana para balancear atributos de

qualidade concorrentes e assegurar requisitos claros, verificaveis e atomicos.

Palavras-chave: Engenharia de Requisitos, Large Language Models, Engenharia de
Prompt, Analise de Qualidade Automatizada, Software de Codigo Aberto

vi

Abstract

Context: Requirements Engineering (RE) in Open Source Software (OSS) projects suf-
fers from informality and a large volume of issues, creating gaps between user requests and
formal artifacts required by standards such as ISO/IEC/IEEE 29148:2018. Objective:
To empirically evaluate the effectiveness of Large Language Models (LLMs) — modu-
lated by different prompt engineering strategies — in automatically generating software
requirements from issue titles. Method: 150 issue titles were collected from five highly
active OSS repositories; these titles were processed by the LLMs 03-mini and DeepSeek
R1, combined with three prompt styles (Zero-shot, Few-shot, and Expert Identity), re-
sulting in 900 requirements evaluated by an LLM-judge (Qwen QwQ-32b) according to
the metrics Unambiguity, Verifiability, and Singularity, derived from the ISO/IEC/IEEE
29148 standard. Results: Both LLMs produced high-quality requirements (averages >
4.2 on a 1-5 scale), but with significant variation; the Few-shot strategy consistently in-
creased Singularity, while Expert Identity improved Verifiability at the cost of less singular
requirements, highlighting model and prompt dependent trade-offs. Conclusion: LLMs
are promising assistants for automating critical stages of RE in OSS, but their effective-
ness requires carefully designed prompts and human supervision to balance competing

quality attributes and ensure clear, verifiable, and atomic requirements.

Keywords: Requirements Engineering, Large Language Models, Prompt Engineering,

Automated Quality Assessment, Open Source Software

vii

Sumario

1 Introducgao

1.1 Contextualizacdo
1.2 Problema de Pesquisa. L
1.3 Justificativa
1.4 Objetivos
1.4.1 Objetivo Geral
1.4.2 Objetivos Especificos Lo
1.5 Resultados Esperados e Contribuigdes
1.6 Método de Pesquisa
1.7 Estrutura do Trabalho o
2 Fundamentagao
2.1 Fundamentacao Tedrica
2.1.1 Requisitos de Software L.
2.1.2 Qualidade em Requisitos de Software
2.1.3 Large Language Models
2.1.4 Engenharia de Prompts 0L
2.1.5 LLM-as-a-Judgeo
2.2 Trabalhos Relacionados
2.2.1 Lacuna de Pesquisa e a Contribuicao deste Trabalho
2.3 Sintese do Capitulo
3 Configuracao do Estudo
3.1 Desenho da Pesquisa
3.2 ColetadeDados.
3.3 Geracao de Requisitos
3.3.1 Configuracao dos Prompts
3.3.2 Execugdo dos Prompts
3.4 Avaliacdo dos Requisitos

viil

11
12
14
16
17
19
20

3.4.1 Métricas de Avaliagdoo
3.4.2 Avaliagdo Automatizada

3.4.3 Prompt de Avaliacdo
3.5 Estratégia de Analise dos Dados
3.6 Sintese do Capitulo

4 Resultados e Discussao

4.1 Visao Geral da Qualidade dos Requisitos Gerados
QP1: Analise da Eficicia dos Modelos de Linguagem
QP2: Influéncia das Estratégias de Engenharia de Prompts

4.2
4.3

4.4
4.5
4.6

4.3.1 Influéncia dos Prompts no Desempenho do 03-mini

4.3.2 Influéncia dos Prompts no Desempenho do DeepSeek R1

QP3: Caracteristicas Qualitativas, Pontos Fortes e Fracos

Achados Adicionais e Implicagoes Metodolégicas

Limitacoes e Ameagas a validade
4.6.1 Limitagoes do Estudoo oo
4.6.2 Ameacas a Validade
4.7 Sintese do Capitulo

5 Conclusao

Sintese dos Resultados e Respostas as Questoes de Pesquisa

Implicagdes do Estudo

5.2.1 Implicagoes para a Pesquisa

5.2.2 Implicagoes para a Pratica

5.1

5.2

5.3 Trabalhos Futuros
Referéncias

iX

32
33
34
35
36
36
38
40
41
41
42
45

46
46
47
47
48
49

51

3.1

4.1
4.2

4.3

Lista de Figuras

Procedimentos Metodolégicoso 23

Distribuicao das Pontuacoes de Qualidade dos Requisitos por LLM 34
Distribuicao das Pontuacoes de Qualidade dos Requisitos do 03-mini por
Estilo de Prompt 36
Distribuicao das Pontuacoes de Qualidade dos Requisitos do DeepSeek R1
por Estilo de Prompt 37

2.1

3.1

4.1
4.2

4.3

4.4

4.5

Lista de Tabelas

Comparativo dos Trabalhos Relacionados 21
Amostra do Conjunto de Dados de Solicitacoes de Funcionalidades 24

Estatisticas Gerais para as Métricas de Qualidade dos Requisitos (N=900) 33
Estatisticas Descritivas das Métricas de Qualidade por LLM (N=450 por

LLM) . 34
Estatisticas Descritivas para as Pontuagoes do 03-mini por Estilo de Prompt
(N=150 porestilo) 36
Estatisticas Descritivas para as Pontuagoes do DeepSeek R1 por Estilo de
Prompt (N=150 porestilo) L. 37

Matriz de Correlagao de Spearman para as Métricas de Qualidade (N = 900) 41

X1

Lista de Abreviaturas

ER Engenharia de Requisitos.
IA Inteligéncia Artificial.
LLMs Large Language Models.
OSS Open-Source Software.

ZSL Zero-Shot Learning.

xii

e Siglas

Capitulo 1

Introducao

1.1 Contextualizacao

A Engenharia de Requisitos (ER) é reconhecida como uma fase fundamental e, simulta-
neamente, um dos principais gargalos no ciclo de vida do desenvolvimento de software. A
qualidade desta etapa é um fator determinante para o sucesso de um projeto, pois falhas
na elicitacdo, especificagdo ou gerenciamento de requisitos podem levar a atrasos, custos
excessivos e ao desenvolvimento de um produto que nao atende as necessidades das partes
interessadas [1, 2].

Este desafio é particularmente amplificado no ecossistema dindmico e distribuido do
Software de Codigo Aberto — Open-Source Software (OSS). Nesses projetos, a elicitacao
de requisitos raramente segue processos formais. Em vez disso, ela depende massivamente
de sistemas de rastreamento de issues' em plataformas como o GitHub, onde desenvolve-
dores e usuarios reportam falhas, discutem melhorias e propdem novas funcionalidades de
maneira informal [3, 4]. Essa realidade cria uma lacuna significativa entre, de um lado,
um grande volume de solicitagoes concisas, ambiguas e nao estruturadas e, de outro, a ne-
cessidade de requisitos de software claros, verificaveis e singulares, conforme preconizado
por normas como a [SO/IEC/IEEE 29148:2018 [5].

Neste cendrio, os Large Language Models (LLMs) surgem como uma tecnologia pro-
missora. Com sua capacidade avancada de compreender e gerar texto de forma analoga
a humana [6], esses modelos de Inteligéncia Artificial (IA) oferecem um potencial sem
precedentes para automatizar a tarefa de “traduzir” as solicitagoes informais dos usuarios
em artefatos de requisitos bem formados, um objetivo central para a modernizagao da
ER [7]. A capacidade dos LLMs de realizar tarefas complexas com pouca ou nenhuma
supervisao contorna a dependéncia de grandes conjuntos de dados rotulados, que eram

uma limitagao de abordagens de IA anteriores [8].

"https://docs.github.com/pt/issues

https://docs.github.com/pt/issues

Contudo, a eficacia dos LLMs nao é incondicional. A qualidade da saida gerada é
diretamente influenciada pela entrada fornecida, conhecida como prompt. A pratica de
projetar e refinar esses prompts — a Engenharia de Prompts — tornou-se uma disciplina
critica, pois funciona como uma “forma de programacao” para guiar o comportamento
do modelo [9]. Diferentes estratégias de prompt podem levar a resultados drasticamente
distintos [10], tornando essencial a investigagido sobre como otimizar essa interagao para
tarefas especificas de ER.

Diante deste contexto, o presente trabalho se propde a investigar a aplicacdo de LLMs
para a geracao automatica de requisitos de software a partir de uma das fontes mais desa-
fiadoras e realistas do mundo OSS: os titulos de issues do GitHub. Mais especificamente,
esta dissertagao realiza uma avaliacdo empirica e comparativa para entender como dife-
rentes estratégias de engenharia de prompts e a escolha de distintos LLMs impactam a
qualidade dos requisitos gerados, oferecendo insights praticos para a automagao de uma

das etapas mais criticas do desenvolvimento de software.

1.2 Problema de Pesquisa

A elicitacao e especificacao de requisitos sao universalmente reconhecidas como ativida-
des cognitivamente desafiadoras e cruciais para o sucesso de um projeto. Uma pesquisa
recente com profissionais da area de desenvolvimento, conduzida por Mesquita et al. [11],
corrobora essa visao, indicando que a percepcao de dificuldade esta ligada a desafios de
comunicagdo, como gerenciar o relacionamento com as partes interessadas e compreen-
der processos de negocio complexos. Essa dificuldade inerente ao processo manual fre-
quentemente resulta em artefatos de requisitos iniciais que sao informais, ambiguos ou
incompletos.

Essa fragilidade na criacao dos artefatos de requisitos é corroborada por Canedo et al.
[12]. A pesquisa dos autores com equipes ageis revelou que os desafios na documentagao
sdo acentuados pela caréncia de profissionais com treinamento especifico em requisitos e
pela falta de conhecimento sobre as técnicas e métodos da ER.

Este problema se manifesta de forma aguda no ecossistema de OSS. Nesses projetos,
as barreiras de comunicacao sao amplificadas pela natureza distribuida das equipes, e o
processo de elicitagdo depende de um fluxo continuo de issues onde as solicitacoes de
funcionalidades sdo expressas de forma extremamente concisa, muitas vezes apenas em
um titulo [3]. Portanto, existe uma lacuna pragmaética entre a forma como os requisitos
nascem no mundo OSS e a necessidade de artefatos que atendam a critérios de qualidade
rigorosos, como os da norma ISO/IEC/IEEE 29148:2018.

Embora a literatura demonstre o potencial dos LLMs para automatizar tarefas de ER
[13, 14], sua aplicagdo para transpor essa lacuna especifica permanece pouco explorada.
O desempenho dos LLMs ¢ altamente sensivel as instrugoes recebidas, e a engenharia
de prompts emergiu como um fator critico para o sucesso [9, 10]. Contudo, hd pouca
evidéncia empirica sobre como diferentes estratégias de prompt influenciam a qualidade
dos requisitos gerados neste contexto.

A auséncia de uma avaliacdo sistematica que compare o desempenho de diferentes
LLMs e estratégias de prompt, utilizando métricas de qualidade padronizadas para a
tarefa especifica de gerar requisitos a partir de titulos de issues de OSS, configura o
principal problema de pesquisa a ser abordado. E preciso ir além da prova de conceito e
investigar a eficacia, a consisténcia e os trade-offs envolvidos nesta aplicacao pratica.

Portanto, esta dissertacao é norteada por um objetivo central: avaliar empirica-
mente a eficacia de LLMs, modulada por diferentes estratégias de engenharia
de prompts, na geracao de requisitos de software de alta qualidade a partir de
titulos de issues de projetos OSS.

Para alcancar este objetivo, o estudo busca responder as seguintes questoes de pesquisa

(QPs):

o« QP1: Qual a eficacia dos LLMs para gerar requisitos de software a partir de titulos

de issues de projetos OSS?

o QP2: Como diferentes estratégias de engenharia de prompts influenciam a qualidade

dos requisitos gerados?

« QP3: Quais sao as caracteristicas qualitativas, os pontos fortes e fracos dos requi-

sitos gerados por LLMs?

1.3 Justificativa

A relevancia desta pesquisa ancora-se na interseccao de trés pilares: um desafio pratico
persistente na Engenharia de Software, uma lacuna académica na aplicagao de tecnologias
emergentes e uma necessidade metodologica de avaliacao em larga escala.
Primeiramente, a relevancia pratica reside em abordar um dos gargalos mais criticos
do desenvolvimento de software: a Engenharia de Requisitos. Conforme apontado por
Arora et al. [7], a ER é frequentemente subdimensionada devido a restri¢oes de tempo
e recursos, apesar de ser uma fonte conhecida de falhas e retrabalho [2]. Este desafio
¢ acentuado no contexto do Open-Source Software, onde a elicitacdo ocorre de forma
distribuida e informal, predominantemente através de um volume massivo de issues em

plataformas como o GitHub [3, 4]. A tarefa de transformar titulos de issues — que

3

sdo, por natureza, concisos e muitas vezes ambiguos — em requisitos de software claros,
verificiveis e singulares, alinhados com padrdes como a ISO/IEC/IEEE 29148:2018 [5],
constitui um problema pratico para a evolucao de projetos OSS.

Em segundo lugar, a relevancia académica emerge da necessidade de investigar
sistematicamente o potencial dos LLMs para solucionar o problema descrito. A literatura
recente ja demonstrou que os LLMs sdo promissores para automatizar diversas tarefas
de ER [13, 8]. Contudo, persistem lacunas que este trabalho se propoe a preencher.
Estudos anteriores nao focaram adequadamente no desafio de gerar requisitos a partir de
entradas tao restritas e informais como os titulos de issues de OSS. Além disso, embora
a importancia da engenharia de prompts seja reconhecida [9, 10], falta uma avaliagdo
empirica comparativa em larga escala que investigue como diferentes estratégias de prompt
e a escolha de distintos LLMs influenciam atributos de qualidade especificos. Este estudo
avanga ao investigar nao apenas a eficacia dos modelos, mas também os trade-offs entre
as métricas de qualidade, um aspecto pratico e pouco explorado.

Finalmente, a relevancia metodoldégica desta dissertacao esta na adogao e validagao
do paradigma LLM-as-a-Judge para a avaliacdo da qualidade dos artefatos gerados. A
avaliagdo manual de um grande volume de requisitos seria impraticavel. A abordagem
LLM-as-a-Judge oferece uma alternativa escaldvel, consistente e de baixo custo [15]. Ao
empregar um LLM avaliador fundamentado em critérios explicitos da norma ISO 29148,
este trabalho nao so viabiliza a analise em larga escala, mas também contribui com evi-
déncias sobre a robustez desta metodologia para mitigar vieses conhecidos no dominio
especifico da ER.

Portanto, esta dissertagao justifica-se por fornecer evidéncias empiricas e insights pra-
ticos sobre a aplicagao de LLMs a um problema real da ER em projetos OSS, avancando
o conhecimento sobre a interagao entre modelos, prompts e qualidade dos requisitos, ao

mesmo tempo em que explora uma abordagem de avaliacdo automatizada promissora.

1.4 Objetivos

Com base no problema de pesquisa delineado, os objetivos deste trabalho foram estrutu-

rados da seguinte forma:

1.4.1 Objetivo Geral

O objetivo geral deste trabalho é avaliar empiricamente a eficacia de LLMs, modulada
por diferentes estratégias de engenharia de prompts, na geracao de requisitos de software

de alta qualidade a partir de titulos de issues de projetos OSS.

1.4.2 Objetivos Especificos

Para alcancar o objetivo geral, os seguintes objetivos especificos foram definidos:

1. Coletar um conjunto de dados composto por titulos de issues de solicitacoes de

funcionalidades de repositorios OSS de alta atividade no GitHub.
2. Desenvolver estratégias de engenharia de prompts para guiar a geragao de requisitos.

3. Gerar um corpus de requisitos de software utilizando LLMs distintos em combinacao

com as estratégias de prompt.

4. Definir um protocolo de avaliacdo de qualidade baseado em métricas da norma
ISO/IEC/IEEE 29148:2018.

5. Avaliar a qualidade dos requisitos gerados de forma automatizada, utilizando um

modelo de LLM como avaliador.

6. Analisar os dados quantitativos e qualitativos para responder as questoes de pes-
quisa, comparando a eficacia dos LLMs e das estratégias de prompt e identificando

os pontos fortes e fracos das saidas geradas.

1.5 Resultados Esperados e Contribuicoes

A execugao desta pesquisa visa gerar um conjunto de contribuicoes tedricas, préaticas e
metodoldgicas para a area de Engenharia de Software. Os principais resultados e contri-

buigoes esperados sao:

1. Um conjunto de dados publico e anotado: Disponibilizacao de um dataset
contendo 150 titulos de issues de projetos OSS e os 900 requisitos de software gera-
dos. Cada requisito é acompanhado por pontuacoes de qualidade e pela justificativa

textual do LLM-juiz, servindo como um recurso valioso para futuras pesquisas.

2. Evidéncia empirica sobre a eficacia de LLMs: Uma avaliacdo quantitativa e
qualitativa que responde a questao de quao eficazes sao os LLMs para a tarefa de
gerar requisitos a partir de entradas concisas, oferecendo uma visao realista de suas

capacidades e limitacoes atuais.

3. Analise comparativa de estratégias de prompt: Um estudo aprofundado sobre
como diferentes estratégias de engenharia de prompts impactam a qualidade dos
requisitos. A pesquisa identifica os trade-offs gerados por cada estratégia, fornecendo

orientagoes praticas para a escolha do prompt mais adequado.

4. Validagao de uma metodologia de avaliacao escalavel: Demonstragao e va-
lidacao do uso do paradigma LLM-as-a-Judge para avaliacao de qualidade em ER,
incluindo evidéncias de sua robustez contra vieses conhecidos e sua utilidade para

analises em larga escala.

1.6 Meétodo de Pesquisa

Para alcancar os objetivos propostos, esta pesquisa adota um desenho empirico e quanti-
tativo, aderindo a padrdes para pesquisa em Engenharia de Software definidos pela ACM
SIGSOFT [16]. Especificamente, o trabalho combina os padrdes:

« Mineracio de Repositérios?: Para a extracdo sistemética de solicitacdes de fun-
cionalidades (issues) de repositorios de software de cddigo aberto no GitHub, for-

mando a base de dados para o estudo.

« Ciéncia de Dados?®: Para o desenho, conducdo e avaliacao dos experimentos de ge-
racao automatica de requisitos, incluindo a aplicagdo de modelos, andlise estatistica

e interpretagao dos resultados.

O fluxo metodoldgico, detalhado no Capitulo 3, foi executado em trés fases principais.
Na Coleta de Dados, foram minerados 150 titulos de issues de cinco repositorios OSS
de alta relevancia. Na Geracao de Requisitos, estes titulos foram processados por dois
LLMs (03-mini e DeepSeek R1) com trés estratégias de prompt distintas, resultando em
900 requisitos. Finalmente, na Avaliacao de Qualidade, foi empregado o paradigma
LLM-as-a-Judge com o modelo Qwen QwQ-32b para avaliar cada requisito segundo as
métricas de Nao Ambiguidade, Verificabilidade e Singularidade da norma ISO/IEC/IEEE
29148:2018.

Os resultados obtidos a partir do processo de geracao de requisitos, bem como os
scripts utilizados, foram disponibilizados publicamente na plataforma de arquivamento e
versionamento Zenodo*. Essa iniciativa visa garantir a transparéncia, a disponibilidade e

a replicabilidade das etapas realizadas.

1.7 Estrutura do Trabalho

Esta dissertacao esta organizada em cinco capitulos, além deste, que se desdobram da

seguinte forma:

Zhttps://www2.sigsoft.org/EmpiricalStandards/docs/standards?standard=RepositoryMining
3https:/ /www2.sigsoft.org/EmpiricalStandards/docs/standards?standard=DataScience
“https://zenodo.org/records/13655334

https://zenodo.org/records/13655334

Capitulo 2: Fundamentacao Tedérica — Revisa os conceitos essenciais de En-
genharia de Requisitos, qualidade de requisitos segundo a norma ISO/IEC/IEEE
29148:2018, LLMs, engenharia de prompts e o paradigma LLM-as-a-Judge. Tam-
bém analisa os trabalhos relacionados para posicionar esta pesquisa na literatura

atual;

Capitulo 3: Configuracao do Estudo — Descreve em detalhes o método ado-
tado, incluindo os procedimentos para coleta de dados, a configuracdo dos LLMs e
prompts para a geracao de requisitos, e o protocolo de avaliacao automatizada da

qualidade;

Capitulo 4: Resultados e Discussao — Apresenta e analisa os resultados quan-
titativos e qualitativos obtidos. Cada questao de pesquisa é abordada, discutindo a
eficacia dos LLMs, a influéncia dos prompts e as caracteristicas dos requisitos gera-
dos. Também analisa criticamente as limitacoes do estudo e as potenciais ameacas

a sua validade, com o objetivo de contextualizar o alcance dos resultados;

Capitulo 5: Conclusao — Recapitula as contribuigoes da dissertacao, sintetiza
as conclusdes em resposta as questoes de pesquisa, e delineia as implicagoes dos

resultados e as dire¢oes para trabalhos futuros.

Capitulo 2
Fundamentacao

Este capitulo estabelece as bases tedricas para a presente dissertacao. Inicia-se discu-
tindo a extragdo de requisitos a partir de artefatos de software em projetos de codigo
aberto, definindo em seguida os critérios de qualidade para requisitos com base na norma
ISO/IEC/IEEE 29148:2018 [5]. Subsequentemente, sdo apresentados LLMs, com foco em
técnicas de engenharia de prompts. Por fim, aborda-se o paradigma emergente LLM-
as-a-Judge para avaliagdo em larga escala e analisam-se os trabalhos relacionados para

identificar a lacuna de pesquisa que este trabalho se propoe a preencher.

2.1 Fundamentacao Tedrica

2.1.1 Requisitos de Software

A ER é um processo sistematico e disciplinado fundamental no ciclo de vida do desenvol-
vimento de software. Ela abrange o conjunto de atividades focadas em descobrir, analisar,
documentar e verificar as funcionalidades e restrigdes de um sistema [1]. Uma ER eficaz
é crucial para o sucesso de um projeto, pois estabelece uma base sélida que alinha as
expectativas das partes interessadas (stakeholders) com o produto final, mitigando riscos
de falhas, atrasos e custos excessivos [2].

O processo de ER é composto por um conjunto de atividades inter-relacionadas e
iterativas. Embora possam ser apresentadas de forma sequencial para fins didaticos, na
pratica, essas atividades sao frequentemente sobrepostas e revisitadas ao longo do projeto,

em um ciclo continuo de refinamento [1]. As principais atividades incluem:

« Elicitacao e Andlise: A fase de descoberta, onde os requisitos sao identificados
por meio da interagao com stakeholders e da analise do dominio do problema. Esta é
uma das fases mais criticas e desafiadoras, pois envolve a traducao de necessidades,

muitas vezes vagas ou implicitas, em conceitos concretos [1, 2];

8

« Especificagao: A atividade de converter os requisitos elicitados em um formato
padronizado, claro e inequivoco. O resultado ¢ um documento de requisitos que
serve como um contrato entre clientes e desenvolvedores, guiando o projeto, desen-

volvimento e testes subsequentes [1];

o Validacgao: O processo de verificacdo para garantir que os requisitos especificados
realmente definem o sistema que o cliente deseja e necessita. Esta fase busca iden-
tificar problemas como omissoes, inconsisténcias e ambiguidades antes que eles se

propaguem para as fases posteriores do desenvolvimento [1];

« Gerenciamento de Requisitos: Dado que os requisitos sao raramente estaticos,
esta atividade lida com as mudancas inevitaveis que ocorrem durante o ciclo de vida
do projeto. Inclui o controle de alteragoes, a andlise de impacto e a manutencao da

rastreabilidade entre os requisitos e outros artefatos do sistema [1].

Desafios na Engenharia de Requisitos

A elicitagao e a especificacao de requisitos sdo processos inerentemente complexos e reple-
tos de desafios. Um dos obstéculos mais significativos reside na comunicagao e na propria
natureza da linguagem natural. Requisitos sao frequentemente expressos de forma vaga,
ambigua, inconsistente ou incompleta, o que pode levar a multiplas interpretagoes e, con-
sequentemente, a falhas no desenvolvimento [2].

Outros desafios importantes incluem [1, 2]:

o Dificuldade na Articulagao: Muitas vezes, os stakeholders nao sabem exatamente
o que querem de um sistema ou tém dificuldade em articular suas necessidades de

forma clara e precisa.

e Requisitos Conflitantes: Diferentes stakeholders podem ter necessidades e prio-

ridades divergentes, resultando em requisitos que entram em conflito entre si.

e« Conhecimento Implicito: Especialistas de dominio possuem conhecimento tacito
sobre seus processos de trabalho, que consideram tao fundamental a ponto de nao

o mencionarem, levando a omissoes criticas.

e« Ambiente Dinamico: Fatores de negbcio, econémicos e politicos podem mudar
durante o processo de andlise, alterando a importancia de certos requisitos ou in-

troduzindo novos.

Essas dificuldades ressaltam a importancia de técnicas e ferramentas que possam auxiliar

na transformacao de entradas informais e ambiguas em requisitos bem definidos.

Além disso, a Engenharia de Requisitos enfrenta desafios como tempo, restri¢coes or-
camentarias, ferramentas inadequadas e uma abordagem que prioriza especialmente a
implementagao, levando a problemas como requisitos inconsistentes, incompletos e incor-

retos em estagios posteriores de desenvolvimento [7].

Elicitacao de Requisitos em Projetos OSS

Os desafios da ER sao particularmente amplificados no contexto de projetos OSS. Estes
projetos sao caracterizados por um desenvolvimento distribuido, colaborativo e, muitas
vezes, menos formal, onde a comunidade de desenvolvedores e usuarios desempenha um
papel central [3]. Nesses ambientes, a elicitagdo de requisitos raramente segue um processo
estruturado de entrevistas ou workshops.

Em vez disso, a elicitacdo em projetos OSS depende fortemente de ferramentas de co-
municacao e documentacao online, principalmente dos sistemas de rastreamento de issues
(issue trackers), como os encontrados em plataformas como GitHub, Jira e Bugzilla [4].
Um issue tracker é um sistema que permite aos usuarios e desenvolvedores reportar bugs,
solicitar novas funcionalidades, fazer perguntas e discutir aspectos técnicos do projeto.
Cada entrada (issue) funciona como um tépico de discussao que pode evoluir para um
requisito de software [3, 4].

O uso de ussue trackers como principal fonte de requisitos introduz um conjunto tnico

de desafios:

e Grande Volume de Entradas: Projetos OSS populares recebem um volume mas-
sivo de issues e pedidos de funcionalidades, tornando dificil para os desenvolvedores

gerenciar, classificar e priorizar essas solicitagoes de forma eficaz [3].

o Informalidade e Falta de Estrutura: As issues sao frequentemente escritas em
linguagem natural informal, com vocabulario e estrutura sintatica muito diferentes
dos requisitos formais. Titulos de issues, em particular, podem ser extremamente

concisos, ambiguos ou incompletos [17].

o Comunicagao Distribuida: A natureza distribuida e assincrona da comunicacao
em issue trackers dificulta a obtencao de esclarecimentos e a resolucao de conflitos

entre os interesses dos diversos stakeholders [3].

Essa lacuna entre a natureza informal e massiva das solicitagoes em issue trackers
de OSS e a necessidade de requisitos de software claros, singulares e verificaveis cria
uma oportunidade significativa para a automacgao. A capacidade de transformar auto-
maticamente entradas concisas e informais, como os titulos de issues, em requisitos bem
formados poderia otimizar drasticamente o processo de ER em projetos OSS, motivando

a exploracao de tecnologias como LLMs para esta tarefa.

10

2.1.2 Qualidade em Requisitos de Software

A norma ISO/IEC/IEEE 29148:2018 [5] é o padrao internacional que estabelece dire-
trizes para os processos e produtos da Engenharia de Requisitos. Ela fornece um arca-
bougo robusto para a definicdo da qualidade de um requisito, detalhando um conjunto de
caracteristicas que cada declaracao deve possuir para ser considerada apropriadamente
elaborada.

Segundo a norma, um requisito bem escrito deve, primeiramente, seguir boas praticas
de redacao. Ele deve ser expresso em voz ativa e utilizar declaracoes positivas, evitando
negacoes como “o sistema nao deve”. O uso de termos vagos deve ser evitado, e a ter-
minologia especifica do dominio deve ser formalmente definida e aplicada de maneira
consistente. Estruturalmente, uma declaracao de requisito deve conter um sujeito claro
(por exemplo, “o sistema”, “o compilador”), um verbo modal que indique obrigatoriedade:
tipicamente “deve” (shall), e uma descri¢ao da funcionalidade ou restri¢ao a ser atendida.

Além dessas diretrizes de estilo, a ISO/IEC/IEEE 29148:2018 define que cada requisito

individual deve possuir um conjunto de atributos essenciais de qualidade:

e Necessario: O requisito define uma funcionalidade, caracteristica ou restricao es-
sencial. Sua auséncia resultaria em uma deficiéncia no sistema que nao poderia ser

suprida por outros requisitos.

e Apropriado: O nivel de detalhe do requisito ¢ adequado ao nivel de abstracao da
entidade a que se refere. Ele deve evitar impor restricoes de design desnecessérias,

permitindo liberdade na implementacao.

e Nao Ambiguo: O requisito é redigido de forma que s6 possa ser interpretado de
uma unica maneira. A declaracao deve ser simples e de facil compreensao para todas

as partes interessadas.

o Completo: O requisito descreve suficientemente a funcionalidade necessaria, sem
que informagoes adicionais sejam precisas para seu entendimento. Ele deve conter

toda a informagao necessaria para que seja possivel projeta-lo e testé-lo.

e Singular: O requisito expressa uma tunica funcionalidade, caracteristica, restri¢ao
ou fator de qualidade. Ele deve ser atémico, evitando a combinagdo de multiplas

necessidades em uma tnica declaracao para facilitar o rastreamento e a verificagao.

» Viavel: O requisito pode ser implementado dentro das restrigoes do sistema (como

custo, prazo e tecnologia) com um nivel de risco aceitével.

o Verificavel: O requisito é estruturado e redigido de modo que sua implementacao

no sistema possa ser verificada de forma objetiva, seja por meio de testes, inspecao,

11

analise ou demonstracao. A verificabilidade é aprimorada quando o requisito é

mensuravel.

o Correto: O requisito representa com precisao a necessidade da entidade (cliente,

usudrio) da qual foi derivado.

e Conforme: O requisito individual segue um modelo ou estilo de escrita padronizado

e aprovado pela organizacao ou pelo projeto, quando aplicavel.

No contexto deste trabalho, a avaliacao da qualidade concentra-se em um subconjunto
pragmatico dessas caracteristicas: Nao Ambiguidade, Verificabilidade e Singularidade.
Essa selecao ¢ justificada pois tais atributos podem ser avaliados de forma mais objetiva em
requisitos isolados, sem a necessidade do contexto completo do projeto, como cronogramas,
orcamentos e detalhes de arquitetura, que muitas vezes estao ausentes ou sao pouco
explicitos nos ambientes de OSS. A capacidade de gerar requisitos de qualidade é um

passo fundamental para automatizar e otimizar a ER nesses ecossistemas dindmicos [3].

2.1.3 Large Language Models

Large Language Models representam um avango significativo no campo da Inteligéncia
Artificial, caracterizados pela sua capacidade de compreender, gerar e interagir utilizando
linguagem natural de forma sofisticada. S&o modelos de redes neurais com bilhoes de
parametros, treinados em vastos volumes de dados textuais, o que lhes confere uma pro-
ficiéncia em uma ampla gama de tarefas linguisticas [6, 18].

A principal vantagem dos LLMs reside em sua versatilidade. Eles podem atuar como
“solucionadores de tarefas de propdsito geral”, capazes de seguir instrugoes humanas para
executar tarefas complexas e novas, muitas vezes sem a necessidade de exemplos explicitos
[18]. Essa capacidade, conhecida como “seguimento de instrugdes”, é uma das habilidades
emergentes que os distinguem de modelos de TA anteriores. Outra habilidade crucial é
o raciocinio em multiplos passos, que permite aos LLMs decompor problemas complexos
em etapas intermediarias para derivar uma solucao, tornando-os blocos de construcao

fundamentais para o desenvolvimento de agentes de IA mais gerais [18].

A Arquitetura Transformer

A viabilidade e o sucesso dos LLMs modernos sao intrinsecamente ligados a arquitetura
Transformer, introduzida por Vaswani et al. em 2017 [19]. Antes de sua criagdo, mo-
delos de Redes Neurais processavam os dados sequencialmente, o que criava um gargalo

computacional e dificultava a captura de dependéncias de longo prazo no texto.

12

O Transformer revolucionou o campo ao propor uma arquitetura que dispensa com-
pletamente a recorréncia, baseando-se exclusivamente em mecanismos de atengao [19]. O
coracao do Transformer é o mecanismo de auto-atencao, que permite ao modelo ponde-
rar a importancia de todas as palavras em uma sequéncia em relacdo umas as outras,
capturando o contexto de forma muito mais eficaz. Crucialmente, esse processo pode ser
executado em paralelo para cada palavra, o que tornou o treinamento em hardware mo-
derno muito mais eficiente. Essa caracteristica foi o que permitiu escalar os modelos de
linguagem para centenas de bilhoes de parametros, tornando o Transformer a arquitetura
padrao para o desenvolvimento de LLMs [6, 18].

Em sua forma original, a arquitetura consiste em um encoder (codificador) e um
decoder (decodificador). O codificador é responsavel por processar a sequéncia de entrada
e criar uma representacao numeérica rica em contexto. O decodificador, por sua vez,
utiliza essa representacao para gerar a sequéncia de saida, um token de cada vez, de
forma autorregressiva [19]. O desenvolvimento de um LLM segue um paradigma de duas
etapas principais: pré-treinamento e ajuste fino [6, 18].

Na fase de pré-treinamento, o modelo é treinado em um corpus massivo e nao rotulado
de texto, extraido da internet e de outras fontes. O treinamento é auto-supervisionado, ge-
ralmente com objetivos como prever a préxima palavra em uma sentenca. E nesta fase que
o modelo adquire seu conhecimento fundamental sobre a linguagem, incluindo gramatica,
fatos, capacidade de raciocinio e compreensao semantica. Esse conhecimento generalista
é o que permite que os LLMs executem tarefas para as quais nao foram explicitamente
treinados [18, 6].

Ap6s o pré-treinamento, o modelo passa pela fase de ajuste fino. Nela, o LLM, ja do-
tado de conhecimento geral, é treinado em um conjunto de dados menor e mais especifico
para aprimorar suas capacidades em tarefas particulares ou para se alinhar com as expec-
tativas humanas. Uma forma proeminente de ajuste fino é o “ajuste de instrugao”, onde
o modelo é treinado com exemplos de instrugoes e as respostas desejadas. Esse processo
¢ fundamental para aprimorar a capacidade de seguir instru¢ées complexas e produzir
respostas mais tuteis e seguras [6, 18].

As variagoes na arquitetura Transformer levaram a diferentes familias de LLMs. As
principais sao:

e Encoder-Decoder: Utilizam tanto o codificador quanto o decodificador. Sao co-

muns em tarefas de tradugdo ou sumarizagao.

e Decoder-Only: Utilizam apenas uma pilha de decodificadores com uma mascara
de atencao que garante que cada token s6 possa “ver” os tokens anteriores. Essa
arquitetura, chamada de “decoder causal”, é a base de modelos focados em geragao
de texto, como a série GPT [20].

13

o Encoder-Only: Modelos como o BERT [21] utilizam apenas o codificador para
criar representacoes profundas do texto, sendo altamente eficazes em tarefas de

compreensao de linguagem, como classificagdo de texto e andlise de sentimento [6].

Limitacées e Consideracées Eticas

Apesar de suas capacidades, os LLMs possuem limitacoes significativas. Eles podem gerar
informagoes factualmente incorretas (fendémeno conhecido como “alucinagao”), reprodu-
zir vieses presentes nos dados de treinamento e produzir respostas toxicas ou prejudiciais
[18]. Esforgos para alinhar os modelos aos valores humanos, por meio de técnicas como o
Aprendizado por Refor¢o com Feedback Humano (Reinforcement Learning from Human
Feedback - RLHF) [22], buscam mitigar esses problemas, mas podem introduzir um “im-
posto de alinhamento”, onde a melhoria na seguranca e conformidade pode levar a uma
ligeira perda de capacidade em outras areas [6].

As preocupacoes éticas e sociais incluem o potencial de uso indevido para desinforma-
¢ao, a perpetuacao de esteredtipos, questoes de privacidade de dados e o consideravel custo
computacional e ambiental associado ao treinamento desses modelos massivos. Portanto,
o desenvolvimento e a aplicacao de LLMs exigem uma abordagem critica e responsavel
[18].

2.1.4 Engenharia de Prompts

A interagdo com LLMs é mediada por instrugdes em linguagem natural conhecidas como
prompts. A pratica de projetar, refinar e implementar sistematicamente esses prompts
para guiar o comportamento de um LLM e otimizar seus resultados em tarefas especificas
é denominada Engenharia de Prompts [23]. Essa disciplina é importante, pois a qualidade,
precisao e relevancia da resposta de um LLM estao diretamente condicionadas a clareza e
eficdcia da instrugao recebida. De acordo com White et al. [9], os prompts funcionam como
uma “forma de programacao” para instruir um LLM a executar tarefas de engenharia de
software.

A necessidade dessa engenharia surge da prépria natureza da linguagem natural, que
pode ser inerentemente ambigua. Um prompt mal formulado pode levar a interpretacoes
equivocadas por parte do modelo, resultando em saidas indesejadas ou desalinhadas com a
intengao do usudrio [10]. Portanto, a engenharia de prompts visa mitigar essa ambiguidade

e a “dirigir o comportamento do modelo para os resultados desejados” [23].

14

Estratégias Fundamentais de Prompt

A literatura estabeleceu diversas técnicas para estruturar prompts, que variam em com-
plexidade e na quantidade de contexto fornecido ao modelo [23, 24, 25]. Essas estratégias
sao frequentemente categorizadas com base no conceito de aprendizagem em contexto,
onde o modelo adapta seu comportamento com base nas informacoes contidas no préprio

prompt, sem a necessidade de re-treinamento ou ajuste fino de seus pardmetros [24].

Zero-shot Prompting E a abordagem mais direta, na qual o LLM recebe apenas uma
instrucao em linguagem natural descrevendo a tarefa, sem nenhum exemplo de como
executd-la [24, 10]. Essa técnica depende inteiramente do conhecimento pré-treinado
do modelo para interpretar a solicitacao e gerar uma resposta adequada. Embora
seja a mais simples de implementar, sua eficicia pode ser limitada em tarefas com-

plexas ou que exigem um formato de saida muito especifico.

Few-shot Prompting Para aprimorar a precisao e guiar o modelo de forma mais eficaz,
a técnica de few-shot prompting é empregada. Ela consiste em incluir no prompt,
além da instrucao, alguns exemplos de pares “entrada-saida” que demonstram a
tarefa a ser realizada [24]. Esses exemplos servem como um condicionamento, per-
mitindo que o modelo infira o padrao e o formato esperados para a resposta. A
eficacia dessa abordagem pode ser tao sensivel que até mesmo a ordem dos exem-

plos no prompt pode influenciar significativamente o desempenho do modelo [10].

Além das estratégias basicas, técnicas mais sofisticadas foram desenvolvidas para lidar

com problemas complexos e para sistematizar a interacao com os LLMs.

Expert Identity Prompting Uma estratégia poderosa é a de atribuir uma persona ou
identidade de especialista ao LLM. A técnica EzpertPrompting, proposta por Xu et
al. [25], é uma estratégia de prompt aumentada que instrui o modelo a responder
como um especialista em um determinado dominio. Ao condicionar a resposta a
uma identidade detalhada (por exemplo, “Vocé é um Engenheiro de Requisitos
de Software com vasta experiéncia...”), o objetivo é extrair o potencial latente do
modelo para gerar respostas mais abrangentes, detalhadas e de maior qualidade,

especialmente em tarefas que requerem conhecimento aprofundado.

Chain-of-Thought Prompting Para problemas que exigem raciocinio complexo em
multiplas etapas, a técnica de Chain-of-Thought (Cadeia de Pensamento) se mostrou
eficaz. Ela consiste em instruir o modelo a “gerar uma série coerente de passos de
raciocinio intermedidrios que levam a resposta final” [10]. Ao externalizar o processo
de raciocinio, o LLM tende a cometer menos erros em tarefas légicas e matematicas,

melhorando sua capacidade de resolucao de problemas.

15

2.1.5 LLM-as-a-Judge

A avaliacao da qualidade de textos gerados por LLMs, especialmente em tarefas abertas
como a geracao de requisitos, apresenta desafios significativos. Métricas tradicionais base-
adas em correspondéncia, como ROUGE [26] e BLEU [27], sao frequentemente inadequa-
das, pois nao conseguem capturar atributos sutis como clareza, relevancia ou adequacao
ao contexto [28]. Em resposta a essa lacuna, emergiu um novo paradigma de avaliagdo
conhecido como LLM-as-a-Judge (LLM como Juiz), proposto por Zheng et al. [15]. A
premissa central é utilizar LLMs de ponta como substitutos de avaliadores humanos para
julgar a qualidade dos resultados de outros modelos [15, 29]. Essa abordagem aproveita a
capacidade dos LLMs de compreender instrugoes complexas e raciocinar de forma analoga
a humana para realizar avaliagoes detalhadas e contextuais, superando as limitacoes dos
métodos de avaliagdo automadtica tradicionais [28].

A adocao do LLM-as-a-Judge oferece vantagens substanciais, principalmente em ter-
mos de escalabilidade, custo e consisténcia. A avaliacio humana, embora considerada o
padrao-ouro, é um processo caro, demorado e dificil de escalar, especialmente para gran-
des volumes de dados, como os requisitos gerados neste estudo [15]. O LLM-as-a-Judge
automatiza esse processo, oferecendo uma alternativa econémica e agil [29]. Além disso,
um LLM-juiz é menos suscetivel a fatores como fadiga ou variabilidade subjetiva que
podem afetar a consisténcia entre multiplos avaliadores humanos [29]. Outro beneficio
chave é a explicabilidade: LLMs podem ser instruidos a fornecer ndo apenas uma pontu-
acao, mas também uma justificativa textual detalhada para suas avaliagoes, tornando o
processo mais transparente e interpretavel, uma capacidade que foi fundamental para a
andlise qualitativa realizada nesta pesquisa [15].

Quando comparado a avaliacdo humana, o paradigma LLM-as-a-Judge demonstra
uma notavel convergéncia. Estudos mostram que LLMs robustos, como o GPT-4, po-
dem atingir niveis de concordancia com as preferéncias humanas superiores a 80%, um
patamar comparavel ao nivel de concordancia entre os préprios humanos [15]. Essa alta
correlacdo com o julgamento humano valida seu uso como uma alternativa eficaz para
avaliar atributos complexos e subjetivos, como a qualidade de um requisito de software.
Ao mimetizar o raciocinio humano e alinhar-se com suas preferéncias, os LLMs-juizes
combinam a profundidade da avaliacao especializada com a escalabilidade dos métodos
autométicos [29].

Apesar de seu potencial, a abordagem LLM-as-a-Judge nao estd isenta de limitagoes.
Uma das principais preocupacoes € a suscetibilidade a vieses inerentes aos modelos. Entre

os mais documentados estao:

e Viés de Posicao: A tendéncia de favorecer a primeira resposta apresentada em

uma comparagao pareada [15].

16

e Viés de Verbosidade: A propensao a atribuir pontuagoes mais altas a respostas

mais longas, independentemente da qualidade do contetido [15].

e Viés de Auto-aprimoramento: A tendéncia de um LLM-juiz favorecer respostas

geradas por si mesmo ou por modelos com arquitetura similar [15, 29].

Adicionalmente, os LLMs podem apresentar alucinagoes ou limitagdes em dominios
de raciocinio muito especificos, o que pode levar a julgamentos incorretos [15, 29]. Para
mitigar esses riscos, é necessario adotar estratégias como a randomizacao da ordem das
respostas, o uso de prompts de avaliagdo claros e baseados em critérios bem definidos,
como os da norma ISO/IEC/IEEE 29148:2018 [5] utilizados neste trabalho, e a sele¢ao de
um LLM-juiz arquitetonicamente distinto dos modelos avaliados. A supervisao humana,
mesmo que em uma amostra, continua sendo indispensavel para validar e calibrar os

resultados da avaliagdo automatizada [29].

2.2 Trabalhos Relacionados

A aplicagdo de LLMs tem se expandido rapidamente na Engenharia de Software, com a
ER emergindo como um campo de grande potencial. A capacidade desses modelos de
compreender e gerar linguagem natural oferece solu¢des promissoras para automatizar ta-
refas tradicionalmente manuais, trabalhosas e propensas a ambiguidades [7]. Uma revisao
sistematica da literatura recente confirma o crescente interesse na area, destacando que
atividades como especificagao, elicitacdo e analise de requisitos sdo as mais exploradas,
enquanto a priorizacao e a rastreabilidade ainda carecem de atencao [30]. Neste contexto,
a literatura tem abordado o uso de LLMs em ER a partir de diversas perspectivas, que
podem ser agrupadas em automacao de tarefas fundamentais, exploragdo da elicitagao,
desenvolvimento de frameworks integrados e o papel crucial do prompt engineering.
Uma vertente significativa da pesquisa foca em validar a capacidade dos LLMs para
automatizar tarefas centrais de ER. No que tange a geracao de artefatos, Krishna et al.
[13] demonstraram empiricamente que LLMs como GPT-4 e CodeLlama podem gerar
rascunhos de Documentos de Especificagao de Requisitos de Software (Software Require-
ment Specifications - SRS) com qualidade comparédvel & de um engenheiro jinior, resul-
tando em uma economia de tempo substancial. De forma complementar, Almonte et al.
[14] investigaram a geracao de Requisitos Nao-Funcionais a partir de Requisitos Funcio-
nais, concluindo, através de uma avaliagdo com multiplos especialistas, que os Requisitos
Nao-Funcionais gerados por LLMs possuem alta validade e aplicabilidade. Outra tarefa
fundamental é a classificacdo de requisitos. Nesse dmbito, Alhoshan et al. [8] explora-

ram a abordagem de Zero-Shot Learning (ZSL), mostrando que LLMs podem classificar

17

requisitos (por exemplo, funcional vs. nao funcional) com desempenho aceitével sem a
necessidade de grandes volumes de dados rotulados, o que representa uma alternativa
escalavel aos métodos supervisionados tradicionais. Esses estudos estabelecem coletiva-
mente que LLMs sdo ferramentas vidveis para a producao e organizacao de artefatos de
requisitos.

Outra area de investigagao se concentra na fase inicial e interativa da ER: a elicitacao
de requisitos. Diversos trabalhos comparam o desempenho de LLMs com o de especialis-
tas humanos. Hymel et al. [31] conduziram um estudo comparativo no qual os requisitos
gerados por um LLM foram considerados mais alinhados e completos pelos stakeholders do
que aqueles produzidos por especialistas humanos em uma sessao de tempo limitado, além
de serem drasticamente mais rapidos e baratos de obter. De maneira similar, Ronanki et
al. [32] avaliaram a qualidade de requisitos para sistemas de IA confidveis e descobriram
que os requisitos gerados pelo ChatGPT superaram os formulados por humanos em atri-
butos como consisténcia e correcao, apesar de nao atenderem as expectativas em termos
de viabilidade e clareza. Indo além da simples geracao, Ataei et al. [33] propuseram o
Elicitron, um framework que utiliza agentes de TA simulados para descobrir necessidades
dos usuarios, demonstrando um potencial para explorar casos de uso nao previstos que
seriam dificeis de capturar em entrevistas convencionais.

Visando uma automagcao mais completa, alguns pesquisadores tém proposto frameworks
que orquestram LLMs para cobrir multiplas fases da ER. Um exemplo proeminente é o
MARE, de Jin et al. [34], um framework de colaboracao multiagente que simula uma
equipe de ER, dividindo tarefas como elicitacdo, modelagem, verificacao e especificacao
entre diferentes agentes de LLM. Seus resultados indicam que essa abordagem colabo-
rativa supera o desempenho de um unico LLM. Em paralelo a geragao, a avaliacao da
qualidade dos requisitos também tem sido automatizada. Lubus et al. [35] demonstra-
ram que um LLM pode avaliar caracteristicas de qualidade de requisitos de acordo com a
norma ISO/IEC/IEEE 29148:2018 [5], identificar falhas, fornecer explicagoes plausiveis e
sugerir melhorias. Este trabalho ¢ particularmente relevante, pois introduz a ideia de usar
um LLM nao apenas como um gerador, mas também como um avaliador, um conceito
alinhado a metodologia LLM-as-a-Judge.

Um tema transversal e critico em toda a literatura é a importancia do prompt engine-
ering para otimizar o desempenho dos LLMs. A forma como as instrugoes sao fornecidas
ao modelo impacta diretamente a qualidade da saida. Ronanki et al. [10] abordaram essa
questao de forma sistematica, avaliando a eficacia de cinco padroes de prompt em tarefas
de classificacao e rastreabilidade de requisitos. Eles concluiram que diferentes padroes
sdo mais adequados para tarefas distintas e que a escolha do prompt é fundamental para

a confiabilidade dos resultados. Este estudo estabelece um precedente metodologico im-

18

portante ao focar ndo apenas em se LLMs podem realizar tarefas de ER, mas em como

otimizar sua performance através de estratégias de prompt.

2.2.1 Lacuna de Pesquisa e a Contribuicao deste Trabalho

A literatura existente estabelece de forma robusta que os LLMs sao capazes de executar
diversas tarefas de ER, desde a classificacao [8] e geragdo de especificagdes completas
[13], até a elicitacao de necessidades latentes [33]. Ficou claro também que o prompt
engineering é um fator determinante para o sucesso [10] e que a avaliacdo automatizada,
da qualidade é uma drea emergente e promissora [35].

Contudo, algumas lacunas persistem. Primeiramente, um diferencial crucial, que de-
fine o escopo do nosso trabalho, é o foco no ecossistema de Software de Cddigo Aberto.
Conforme detalhado na Subsec¢ao 2.1.1, o processo de ER em projetos OSS é caracterizado
por um grande volume de entradas informais, nao estruturadas e concisas provenientes de
issue trackers. Enquanto os trabalhos revisados utilizam descri¢coes de projetos controla-
dos [13, 31] ou datasets de benchmark [8, 10], eles ndo enfrentam diretamente o desafio de
processar a matéria-prima da elicitacao em OSS. Nossa pesquisa ataca esse problema cen-
tral: a transformacao de titulos de issues em requisitos bem escritos, um cendrio pratico
e pouco explorado.

Além disso, enquanto o trabalho de Ronanki et al. [10] avaliou padroes de prompt,
falta um estudo empirico comparativo em larga escala que meca como estratégias de
prompt distintas influenciam atributos de qualidade especificos e padronizados. O efeito
interativo entre a escolha do LLM e a estratégia de prompting também permanece uma
area pouco explorada, assim como a validacao da abordagem LLM-as-a-Judge para a
avaliacao escalavel de artefatos de requisitos neste contexto.

Este trabalho se posiciona diretamente para preencher essas lacunas. Realizamos uma
avaliagao empirica sistematica no contexto especifico de OSS, transformando titulos de
issues em requisitos de software. Comparamos explicitamente trés estratégias de prompt
em dois LLMs distintos e medimos seu impacto em trés atributos de qualidade da norma
ISO/IEC/IEEE 29148:2018 [5]. Ao fazer isso, ndo apenas demonstramos a eficicia dos
LLMs, mas também revelamos os trade-offs dependentes do modelo e do prompt entre
esses atributos, validando a metodologia LLM-as-a-Judge como uma abordagem escalavel
e consistente para a avaliagdo de qualidade em larga escala neste dominio. Dessa forma,
nossa pesquisa avanca a literatura de uma demonstragao de potencial para o fornecimento
de evidéncias documentadas sobre desempenho, efeitos colaterais e consideracoes praticas

para a aplicacdo de LLMs na geracao de requisitos.

19

2.3 Sintese do Capitulo

Este capitulo estabeleceu a fundamentacao tedrica que sustenta a pesquisa. Iniciou-se com
a definicdo da Engenharia de Requisitos, detalhando suas atividades, desafios e as parti-
cularidades do processo em ambientes de Software de Codigo Aberto, onde a elicitacao
informal via issue trackers cria uma oportunidade para a automacao. Em seguida, foram
apresentados os critérios de qualidade para requisitos de software, com base na norma
ISO/IEC/IEEE 29148:2018 [5], justificando a escolha das métricas de Nao Ambiguidade,
Verificabilidade e Singularidade para o escopo deste trabalho.

A discussao prosseguiu com a introducao aos LLMs, abordando a arquitetura Trans-
former, suas capacidades e limitacoes. Foi dado destaque a Engenharia de Prompts como
uma disciplina crucial para otimizar a interacdo com esses modelos, descrevendo estra-
tégias fundamentais. Subsequentemente, foi apresentado o paradigma LLM-as-a-Judge
como uma solugdo escalavel para a avaliacdo da qualidade de artefatos gerados, deta-
lhando seus beneficios e vieses potenciais.

Por fim, uma anélise dos trabalhos relacionados na Tabela 2.1 revela o panorama atual
da aplicacao de LLMs em ER, identificando a lacuna de pesquisa que esta dissertacao se
propoe a preencher: a avaliagao empirica e comparativa de estratégias de prompt e de
diferentes LLMs na tarefa de gerar requisitos a partir de entradas concisas no contexto
especifico de projetos OSS, utilizando uma metodologia de avaliacdo automatizada e es-

calavel.

20

Tabela 2.1: Comparativo dos Trabalhos Relacionados

Referéncia

Tecnologia utilizada

Etapas de ER
abordadas

Base de dados

Alhoshan et al. [§]

Krishna et al. [13]

Almonte et al. [14]

Hymel et al. [31]

Ronanki et al. [32]

Ataei et al. [33]

Jin et al. [34]

Lubus et al. [35]

Ronanki et al. [10]

Sentence-BERT, ZSL

GPT-4, CodeLlama

Multiplos LLMs (GPT,
Claude, Gemini, Llama)

GPT-4

ChatGPT

Multi-agentes LLM
(GPT-4-Turbo)

Multi-agentes LLM
(GPT-3.5)

LLaMA 2 como avaliador

GPT-3.5 turbo, Padroes

de Prompt

Classificacao

Geracao,
Validacgao e
Retificacao de
SRS

Geracao de
NFRs, Validagao

Elicitacao
(geragao inicial
de
épicos/historias)

Elicitacao de
requisitos

Elicitacao de
necessidades
latentes

Elicitacao,
Modelagem,
Verificagao,
Especificagao
Qualidade,

Validacao,
Melhoria

Classificacao e
Rastreabilidade
de requisitos

PROMISE NFR,
SecReq

Benchmark humano
(portal
universitario)

FR NFR Dataset
(derivado do
PURE)

Entradas de
stakeholders,
especialistas
humanos

Especialistas
humanos

Entrevistas
humanas (para
comparagao)

Datasets publicos e
casos de avaliacao
proprios

Projeto hipotético e

dataset PURE

PROMISE NFR,
PURE

Trabalho
Proposto

LLMs (03-mini,
DeepSeek R1),
LLM-as-a-Judge
(Qwen)

Geracao de
requisitos,
Avaliacao de
Qualidade

Titulos de issues
de repositoérios
OSS (GitHub)

21

Capitulo 3
Configuracao do Estudo

Este capitulo detalha a configuracao metodoldgica adotada para responder as questoes de
pesquisa desta dissertacdo. Assumindo os conceitos apresentados no Capitulo 2, o foco
aqui reside em descrever os procedimentos técnicos e as decisdes operacionais tomadas
em cada fase do estudo. O objetivo é fornecer uma descricao transparente e sistematica
do processo, garantindo a validade, a replicabilidade e a confiabilidade dos resultados.

A pesquisa foi estruturada em trés estagios principais, conforme ilustrado na Figura
3.1: (1) coleta de dados, (2) geragdo de requisitos e (3) avaliacdo de requisitos. Cada
etapa foi executada de forma rigorosa, desde a extracao de solicitagoes de funcionalidades
(feature requests) de repositérios de software de cédigo aberto até a andlise quantitativa

e qualitativa dos requisitos gerados por LLMs.

3.1 Desenho da Pesquisa

O presente estudo emprega um desenho de pesquisa empirico e quantitativo para avaliar
a eficacia de técnicas de engenharia de prompts na geracao de requisitos de software por
LLMs. A metodologia foi concebida para examinar como diferentes estratégias de prompt
e a escolha do LLM influenciam a qualidade dos artefatos de requisitos gerados a partir
de solicitacoes de funcionalidades extraidas de projetos de software de codigo aberto.

A Figura 3.1 apresenta uma visao geral do fluxo metodolégico, que se desdobra nas

trés fases sequenciais que serao detalhadas nas se¢des subsequentes deste capitulo.

3.2 Coleta de Dados

A primeira etapa da metodologia, conforme indicado na Figura 3.1, consistiu na constru-
¢ado de um conjunto de dados abrangente e relevante para a tarefa de geracao de requisitos.

Para isso, realizou-se a extracao de solicitacoes de funcionalidades dos cinco projetos de

22

Passo 2:

Geracao
Passo 1: Passo 3:
Extragao ol ™ Avaliacao
—_
DeepSeek B1 .
Requisitos
Distill-Llama-70B
—_— 3 M
A h
Github API Feature YZ| —— owencwa3szb indices de
Requests — Qualidade
RBequisitos

o3-mini

Figura 3.1: Procedimentos Metodoldégicos

c6digo aberto com maior nimero de issues no GitHub: Pytorch, Flutter, Godot En-
gine!, Rust e Golang?. A escolha desses repositérios foi baseada em seu elevado nivel de
atividade e relevancia para a comunidade de OSS.

O processo de coleta de dados seguiu os seguintes passos:

1. Critérios de Selegcao das issues: Para garantir a inclusao de solicitagoes de fun-
cionalidades genuinas e com alto engajamento da comunidade, foram selecionadas
as 30 issues abertas mais ativas® de cada repositério. Esta abordagem foi necessaria
devido a inexisténcia de um método programatico consistente para identificar is-
sues que foram fechadas por motivos de classificacao incorreta, spam ou duplicagao
entre diferentes repositorios. As issues foram filtradas para incluir apenas aquelas
com o rétulo de feature request (solicitagao de funcionalidades) ou equivalente. Este
processo de filtragem foi fundamental para garantir que o conjunto de dados perma-
necesse focado em contetdo pratico e relacionado a requisitos, eliminando discussoes

irrelevantes ou tarefas menos significativas.

2. Extracao e Formatacao dos Dados: Utilizando a API do GitHub, os titulos
e os rétulos das issues foram extraidos e estruturados em um conjunto de dados
padronizado. Cada registro continha metadados (ex: nome do repositério, ID da
issue), juntamente com o conteudo textual necessario para a geragdo de requisitos.
Este passo visou facilitar a consisténcia em todo o conjunto de dados, o que foi
fundamental para a etapa de engenharia de prompts e para a andlise subsequente,

além de garantir a reprodutibilidade dos experimentos.

10O projeto Godot Engine possui um repositério especifico para solicitacdes de funcionalidades, deno-
minado godot-proposals.

2Dados coletados em 22 de marco de 2025, a partir do repositério https://github.com/EvanLi/
Github-Ranking

30Ordenadas por reactions na API do GitHub: https://docs.github.com/en/rest/reactions/
reactions?apiVersion=2022-11-28

23

https://github.com/EvanLi/Github-Ranking
https://github.com/EvanLi/Github-Ranking
https://docs.github.com/en/rest/reactions/reactions?apiVersion=2022-11-28
https://docs.github.com/en/rest/reactions/reactions?apiVersion=2022-11-28

Dessa forma, o conjunto de dados final foi composto por 150 solicitagoes de funcionali-
dades, coletadas igualmente dos cinco repositérios mencionados. Para a fase subsequente
de geracgao de requisitos, o titulo da issue extraido de cada solicitagao serviu como dado de
entrada principal. Esta cole¢ao curada apresenta uma gama diversificada de entradas para
os LLMs, abrangendo solicitagdes de dominios de software variados (como aprendizado
de méaquina, frameworks de interface de usuério, desenvolvimento de jogos e programacao
de sistemas) e exibindo variagoes naturais na formulagao, especificidade técnica e compri-
mento do titulo. Um excerto que ilustra a estrutura dos dados coletados é apresentado
na Tabela 3.1.

Tabela 3.1: Amostra do Conjunto de Dados de Solicitagoes de Funcionalidades

Repositorio Numero da issue Titulo da issue

pytorch /pytorch 16897 Implement
numpy .random. choice equi-
valent

flutter/flutter 46789 Improve the indexability (SEO) of
Flutter apps on the web

godotengine/godot-proposals 6416 Add a Trait system for GDScript

rust-lang/rust 39915 Linking with LLD

golang/go 32204 net/http: support HT'TP/3

3.3 Geracao de Requisitos

Na segunda etapa da metodologia, foram preparados os prompts e executados dois LLMs
distintos para gerar os requisitos a partir do conjunto de dados construido na fase anterior.
Motivados por estudos prévios em engenharia de prompts, como os discutidos na Segao
2.1.4, os prompts foram elaborados com base em algumas das técnicas mais conhecidas,

com o objetivo de avaliar seu papel na melhoria da qualidade das respostas dos LLMs.

3.3.1 Configuracao dos Prompts

Foram desenvolvidos trés prompts distintos, cada um baseado em uma conhecida técnica
de engenharia de prompts, para investigar como diferentes abordagens afetam a qualidade
e a clareza dos requisitos produzidos: Zero-shot, Few-shot e Expert Identity. Cada método
representa uma estratégia diferente na forma como o modelo é preparado para interpretar

e responder a entrada.

Zero-shot Este método, baseado na abordagem de zero-shot prompting (descrita na

Segao 2.1.4), consistiu em fornecer diretamente os titulos das issues ao modelo,

24

sem detalhes ou exemplos adicionais. A estratégia baseia-se no conhecimento geral
do modelo para executar a tarefa. Conforme explorado por Alhoshan et al. [8],
esta técnica mostrou-se eficaz em tarefas de classificagdo de requisitos sem dados de
treinamento rotulados. Neste trabalho, ela foi utilizada para testar o conhecimento

inerente e a adaptabilidade do modelo sem contexto adicional.

Prompt - Zero-shot

You are given a feature request from an open-source software project’s issue tracker.

Generate a clear, concise, and self-contained software requirement statement that
captures the intended feature.
Output only the finalized requirement statement. Do not include explanations or

commentary.

Few-shot Nesta abordagem (descrita na Segao 2.1.4), alguns exemplos de requisitos
previamente gerados foram incluidos no prompt para guiar o modelo. Essa técnica
ajuda o modelo a inferir os requisitos da tarefa a partir de um ntimero minimo de
exemplos, melhorando sua precisao e relevancia [24, 10]. O objetivo deste prompt
foi fornecer uma orientacao minima ao modelo para obter uma maior precisdo com

base em padroes de exemplos anteriores.

Prompt - Few-Shot

Here are examples of feature requests from an open-source software project’s issue

tracker along with their corresponding software requirements.

Based on these examples, analyze new feature requests and generate the require-
ment.

Output only the finalized requirement statement. Do not include explanations or

commentary.

Feature request: Limit GPU memory usage during prediction.
Requirement: The system shall provide an option to limit GPU memory usage

during prediction.

Feature request: Reset password
Requirement: The system must provide a functional “forgot password” link that

allows users to reset their passwords securely.

Feature request: Make the application use vector search.

Requirement: The system shall use vector search to improve search performance.

25

Expert Identity A técnica de Expert Prompting (apresentada na Segdo 2.1.4) instrui
os LLMs a agirem como especialistas distintos para resolver problemas complexos,
fornecendo uma Expert Identity e instrugoes especificas para seu dominio. Isso tende
a levar a um melhor desempenho e a respostas de maior qualidade, especialmente

em tarefas que exigem uma compreensao aprofundada [25].

Prompt - Expert ldentity

You are a Software Requirements Engineer with deep expertise in analyzing feature

requests in open-source software projects. Your task is to generate a clear, complete,
and actionable software requirement from informal feature requests found in OSS
issue trackers.

Output only the finalized requirement statement. Do not include explanations or

commentary.

3.3.2 Execucao dos Prompts

A geracao dos requisitos foi realizada utilizando os modelos de raciocinio OpenAI 03-mini*

e DeepSeek-R1-Distill-Llama-70B® [36]. Os modelos foram selecionados com base em
seu desempenho médio em multiplos benchmarks. O OpenAIl o3-mini foi escolhido por
sua superior relacao custo-beneficio entre os modelos de raciocinio de cédigo fechado:
seu custo ¢é inferior a 10% do OpenAI o1, o modelo de melhor desempenho, enquanto
entrega resultados comparaveis. Da mesma forma, o DeepSeek-R1-Distill-Llama-70B
foi selecionado como o modelo de raciocinio de cdédigo aberto com a melhor relacao custo-
beneficio, com base no tamanho de suas variantes destiladas e em métricas de desempenho
de benchmarks® [37].

Para garantir um grau de reprodutibilidade, permitindo ao mesmo tempo uma diversi-
dade na formulacao das saidas, os LLMs foram configurados com parametros especificos.
A semente aleatéria (random seed) foi fixada em 42 para todas as tarefas de geragao.
Foi empregada uma temperatura de 1.0; embora temperaturas mais altas aumentem a
aleatoriedade, este valor foi escolhido para encorajar os modelos a explorarem uma gama
um pouco mais ampla de formulacoes de requisitos potenciais, com base nas diferentes
solicitacoes de entrada e estilos de prompt, em vez de produzirem saidas excessivamente
deterministicas. E importante notar que as respostas de LLMs podem exibir comporta-
mento nao deterministico mesmo com uma semente fixa, devido a fatores como otimi-

zagoes subjacentes do modelo ou atualizagoes da API ao longo do tempo. No escopo e

‘https://openai.com/index/openai-o03-mini/
Shttps://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
6Métricas coletadas em 22 de marco de 2025

26

https://openai.com/index/openai-o3-mini/
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B

cronograma deste estudo, execucoes repetidas do pipeline de geracao sob configuracoes
idénticas produziram saidas altamente consistentes, demonstrando a reprodutibilidade
pratica de nossos resultados.

Ambos os LLMs foram avaliados utilizando todas as variantes de prompt como prompts
de sistema e os titulos das issues como prompts de usudrio. Cada variante de prompt foi
pareada com cada titulo de issue e submetida a ambos os modelos, resultando em trés
requisitos distintos por issue. Este processo gerou um total de 450 requisitos por LLM,

somando 900 requisitos no geral.

3.4 Avaliacao dos Requisitos

3.4.1 Meétricas de Avaliacao

No campo da engenharia de sistemas e software, requisitos bem formulados sao cruciais
para o sucesso dos projetos. Conforme a norma ISO/IEC/IEEE 29148:2018 [5], os re-
quisitos individuais devem ser: (1) necessérios; (2) apropriados; (3) ndo ambiguos; (4)
completos; (5) singulares; (6) vidveis; (7) verificaveis; (8) corretos; e (9) conformes. Uma,
andlise mais detalhada da descrigao dessas caracteristicas leva a conclusao de que a Nao
Ambiguidade, a Singularidade e a Verificabilidade podem ser mais facilmente ava-
liadas ao se analisar requisitos de forma isolada, especialmente no contexto de OSS, onde
detalhes especificos do projeto, como partes interessadas, prazos e restrigoes, sao fre-
quentemente ausentes. As demais caracteristicas necessitam de uma compreensao mais
aprofundada do contexto e das restri¢goes especificas do projeto.

A selecao dessas trés métricas é util para avaliar os requisitos gerados e sua conformi-
dade com a norma, pois elas representam qualidades intrinsecas de requisitos individuais
e podem ser avaliadas sem o contexto completo do projeto. Cada métrica foi avaliada uti-
lizando uma escala Likert de 1 a 5, onde 1 representa baixa qualidade e 5, alta qualidade.
Para garantir uma métrica padronizada de comparacao, foi adotada a escala de avaliacao

presente em outros estudos [13, 14].

3.4.2 Avaliagcao Automatizada

Para avaliar o grande volume de requisitos de software gerados neste estudo, foi adotado o
paradigma LLM-as-a-Judge, discutido na Secao 2.1.5, utilizando o modelo Qwen QwQ-32b
[38, 39] como avaliador. Esta metodologia oferece uma alternativa escaldvel e de baixo
custo a avaliacdo humana extensiva, que seria impraticavel para o grande ntmero de

saidas geradas [15].

27

Empregar um LLM como juiz neste contexto oferece vantagens distintas. Primeiro,
promove uma consisténcia superior nas 900 avaliagoes, pois o LLM nao é suscetivel a
fatores como fadiga ou variabilidade subjetiva que podem afetar avaliadores humanos
[29]. Segundo, a abordagem oferece explicabilidade. Conforme destacado na literatura,
uma vantagem chave é a capacidade de configurar o juiz para fornecer justificativas para
suas avaliacoes [15]. Nossa implementagao foi projetada para explorar essa capacidade,
operacionalizando a avaliacao com base nos critérios da norma ISO/IEC/IEEE 29148:2018
[5]. O juiz foi instruido a retornar uma resposta estruturada, contendo nao apenas uma
pontuacao para cada atributo, mas também uma explicacao textual. Essa justificativa é
essencial para nossa analise, fornecendo os dados qualitativos necessarios para interpretar
0s escores quantitativos.

Embora vantajosa, é essencial reconhecer e mitigar as limitagoes potenciais da aborda-
gem. Juizes LLM podem exibir vieses inerentes, como o de auto-aprimoramento (favorecer
saidas de modelos com arquitetura similar) [29, 15]. Para mitigar esse risco, seleciona-
mos deliberadamente um avaliador (Qwen QwQ-32Db) que é arquitetonicamente distinto dos
LLMs testados (OpenAI o3-mini e DeepSeek R1). Adicionalmente, ao fornecer ao juiz
defini¢oes claras e baseadas na norma em seu prompt, buscamos restringir seu processo

de tomada de decisao e aprimorar a precisao avaliativa.

3.4.3 Prompt de Avaliacao

Para guiar o LLM em seu papel de avaliador, foi elaborado um prompt especifico que
descreve a tarefa, os critérios e o formato de saida desejado. O prompt instrui o LLM
a avaliar um requisito de software com base nos atributos de qualidade selecionados da
norma ISO/IEC/IEEE 29148:2018 [5]: Nao Ambiguidade, Verificabilidade e Singulari-
dade. Para garantir a coleta sistematica de dados e facilitar a andalise automatizada, o
prompt instruiu explicitamente o LLM a estruturar sua resposta como uma instancia
JSON em conformidade com um esquema especifico. Esse esquema inclui campos para as
pontuacoes numéricas de cada atributo e um campo dedicado para a “explicacao” textual

do avaliador. O prompt completo fornecido ao LLM avaliador foi o seguinte:

Prompt - Avaliador LLM

As an experienced requirements engineer, your task is to evaluate the quality of a

given software requirement based on the following criteria:

Unambiguity: The requirement is stated in such a way so that it can be interpreted

in only one way. The requirement is stated simply and is easy to understand. Score

28

10

11

12

13

14

15

16

17

18

19

20

1 if the requirement is highly ambiguous and 5 if there is no room for multiple

interpretations.

Verifiability: The requirement is structured and worded such that its realization
can be proven (verified) to the customer’s satisfaction at the level the requirements
exists. Verifiability is enhanced when the requirement is measurable. Score 1 if the

requirement is difficult to verify, and 5 if it is easily measurable.

Singularity: The requirement states a single capability, characteristic, constraint or
quality factor. Score 1 if the requirement includes several needs or is unclear in its

focus, and 5 if it is entirely singular in nature.

For each criterion, provide a score from 1 to 5, with 1 being the lowest (poor) and
5 being the highest (excellent). Structure your output as a JSON object containing

the scores and a combined explanation for your ratings.

O esquema JSON que o modelo foi instruido a seguir esta detalhado abaixo:

"properties": {

"unambiguity": {
"description": "1-5 score for unambiguity",
"title": "Unambiguity",
"type": "integer"

s

"verifiability": {
"description": "1-5 score for verifiability",
"title": "Verifiability",
"type": "integer"

s

"singularity": {
"description": "1-5 score for singularity",
"title": "Singularity",
"type": "integer"

i

"explanation": {
"description": "Combined textual explanation for the scores",

"title": "Explanation",

29

21

22

23

24

25

26

27

28

29

30

"type": "string"
b
s
"required": [
"unambiguity",
"verifiability",
"singularity",

"explanation"

3.5 Estratégia de Analise dos Dados

Para abordar as questoes de pesquisa, foi utilizada uma abordagem de métodos mistos
para examinar a colecao de 900 requisitos gerados, cada um anotado com as pontuacoes
da escala Likert para Nao Ambiguidade, Verificabilidade e Singularidade, juntamente com
a justificativa qualitativa do LLM juiz.

Quantitativamente, serao calculadas estatisticas descritivas (médias, medianas, desvios
padrao e distribuigdes de frequéncia) e visualizadas as distribuigdes das pontuagoes, tanto
de forma geral quanto dentro dos grupos experimentais definidos pelo LLM, estilo de
prompt e repositério. Como os dados sdo ordinais e podem violar os pressupostos de
normalidade, serao aplicados testes ndo paramétricos: o teste U de Mann-Whitney [40)]
para comparagoes entre pares e o teste de Kruskal-Wallis [41], seguido pelo procedimento
post-hoc de Dunn [42] quando apropriado (ex: entre os estilos de prompt). O coeficiente
de correlagao de Spearman [43] serd calculado para avaliar as associagoes entre as trés
métricas de qualidade.

Qualitativamente, sera realizada uma analise teméatica do feedback narrativo do juiz,
registrado no campo explanation, suplementada com amostras dos requisitos gerados,
para descobrir pontos fortes, fracos e padroes recorrentes ligados a combinagoes especi-
ficas de LLM e prompt. A integracao dessas percepcoes qualitativas com os resultados
quantitativos fornecera uma explicacao mais rica dos fatores que influenciam a qualidade

dos requisitos.

30

3.6 Sintese do Capitulo

Neste capitulo, foi detalhado o desenho metodologico da pesquisa. Iniciou-se com a des-
cricao da arquitetura geral do estudo, fundamentada em trés estagios: coleta, geracao e
avaliagdo. A etapa de coleta de dados foi descrita, especificando a selecao de cinco re-
positérios de OSS de alta atividade e o critério de extragao de 150 titulos de issues que
serviram como matéria-prima. Em seguida, o processo de geracao de requisitos foi por-
menorizado, incluindo a configuragdo de trés estratégias de prompt (Zero-shot, Few-shot,
Expert Identity) e a execu¢ao em dois LLMs distintos (OpenAI o3-mini e DeepSeek R1)
com parametros controlados. A metodologia de avaliagao foi apresentada, justificando
a escolha das métricas da norma ISO/IEC/IEEE 29148:2018 e detalhando a implemen-
tagdo da abordagem LLM-as-a-Judge, incluindo o prompt de avaliagao e o esquema de
saida estruturada. Por fim, foi delineada a estratégia de andlise de dados de métodos
mistos, combinando testes estatisticos nao paramétricos com andlise tematica para uma

interpretacao robusta dos resultados.

31

Capitulo 4
Resultados e Discussao

Este capitulo apresenta e discute os resultados obtidos a partir da avaliagao de LLMs para
a geracao automatica de requisitos de software a partir de titulos de issues do GitHub. O
objetivo é responder as questoes de pesquisa que nortearam este estudo, fornecendo uma
analise aprofundada tanto quantitativa quanto qualitativa dos dados coletados.

Para responder a estas questoes, foi empregada a metodologia empirica detalhada no
Capitulo 3. O processo envolveu a coleta de dados de repositérios de coédigo aberto, a
geracao de 900 requisitos candidatos utilizando dois LLMs e trés estratégias de prompt,
e a subsequente avaliagdo da qualidade desses requisitos através do paradigma LLM-as-
a-Judge.

As questoes de pesquisa que direcionam este trabalho sao:

e« QP1: Qual a eficacia dos LLMs para gerar requisitos de software a partir de titulos

de issues de projetos OSS?

o« QP2: Como diferentes estratégias de engenharia de prompts influenciam a quali-

dade dos requisitos gerados?

o QP3: Quais sao as caracteristicas qualitativas, os pontos fortes e fracos dos requi-

sitos gerados pelos LLMs?

O capitulo esta estruturado da seguinte forma: a Secdo 4.1 oferece uma visdo pa-
noramica da qualidade geral dos requisitos gerados. As segoes subsequentes abordam
cada questao de pesquisa individualmente, integrando a apresentacao dos resultados com
uma discussao aprofundada. A Secdo 4.2 avalia a eficacia geral dos LLMs. A Secao 4.3
investiga a influéncia das estratégias de prompt. A Secao 4.4 explora as caracteristicas
qualitativas dos requisitos através de exemplos ilustrativos. A Secao 4.5 apresenta achados
suplementares e suas implica¢oes. Por fim, a Secao 4.7 sintetiza as principais conclusoes

do capitulo.

32

4.1 Visao Geral da Qualidade dos Requisitos Gera-

dos

Uma anélise inicial de todos os 900 requisitos gerados estabeleceu uma base para a com-
preensao da qualidade geral alcancada pelos LLMs. As principais estatisticas descritivas
para os atributos de Nao Ambiguidade, Verificabilidade e Singularidade estao sumarizadas
na Tabela 4.1.

De modo geral, os requisitos gerados foram avaliados favoravelmente pelo LLM-juiz,
com pontuacgoes médias superiores a 4.25 e medianas de 4 ou 5 em todas as métricas. Este
resultado sugere que os LLMs sao frequentemente capazes de produzir requisitos perce-
bidos como largamente nao ambiguos, verificaveis e singulares, indicando uma aderéncia
geral aos atributos de qualidade definidos pela norma ISO/IEC/IEEE 29148:2018. Este

potencial alinha-se com as conclusoes de trabalhos como [7, 44].

Tabela 4.1: Estatisticas Gerais para as Métricas de Qualidade dos Requisitos (N=900)
Estatistica Nao Ambiguidade Verificabilidade Singularidade

Média 4.34 4.25 4.38
Desvio Padrao 0.69 0.84 1.15
Minimo 2.00 1.00 1.00
Mediana 4.00 4.00 5.00
Maximo 5.00 5.00 5.00

Contudo, a variabilidade notével, especialmente no atributo de Singularidade (DP =
1.15), e as pontuagoes minimas (2.0, 1.0, e 1.0) indicam deficiéncias ocasionais e uma
inconsisténcia significativa. Este achado corrobora os desafios inerentes a Engenharia de
Requisitos, como a dificuldade de se obter qualidade consistente, discutidos no Capitulo
2 e amplificados em ambientes OSS pela informalidade das issues, como apontado na
Subsecao 2.1.1.

A distribuicao das pontuagoes, ilustrada na Figura 4.1, confirma essa observacao. Em-
bora as pontuagoes altas (4 e 5) predominem, existe uma cauda nao trivial de pontuagoes
mais baixas, especialmente para Verificabilidade e Singularidade. Isso sugere que, em-
bora os LLMs sejam promissores, alcancar uma geracao de requisitos de alta qualidade de
forma consistente continua a ser um desafio, influenciado por fatores que serdo explorados

nas segoes seguintes.

33

Nao-ambiguidade Verificabilidade Singularidade

I Deepseek 350 o Deepseek
[03 Mini 300/ E=E 03 Mini

200{ HEE Deepseek
[03 Mini

150] 2501
© .© 150 © >0
2 e 2 200
<g (g (03)
1
g 00 §100 150 1
w w [
100
50 50
501

o_

Pontuacao Pontuagdo Pontuacdo

Figura 4.1: Distribui¢ao das Pontuacoes de Qualidade dos Requisitos por LLM

4.2 QP1: Analise da Eficacia dos Modelos de Lingua-
gem

Nesta secao, abordamos a primeira questao de pesquisa: QP1: Qual a eficacia dos
LLMs para gerar requisitos de software a partir de titulos de issues de projetos
OSS?

A comparagao da eficacia dos dois LLMs avaliados, 03-mini e DeepSeek, revelou capa-
cidades comparaveis na geragao de requisitos de alta qualidade, como detalhado na Tabela
4.2. Ambos os modelos alcangaram medianas de 4 para Ndo Ambiguidade e Verificabi-
lidade, e de 5 para Singularidade, reforcando a conclusao geral de que sao ferramentas

eficazes para esta tarefa.

Tabela 4.2: Estatisticas Descritivas das Métricas de Qualidade por LLM (N=450 por
LLM)

03-mini DeepSeek
Meétrica Média Mediana DP Meédia Mediana DP
Nao Ambiguidade 4.34 4 0.72 4.35 4 0.67
Verificabilidade 4.29 4 0.83 4.21 4 0.86
Singularidade 4.48 5 1.06 4.28 5 1.23

Apesar das médias similares, a aplicacao de testes U de Mann-Whitney revelou uma
vantagem estatisticamente significativa para o 03-mini na geragao de requisitos com maior
Singularidade (U = 108009.5, p = 0.023). Na pratica, isso sugere que o 03-mini de-
monstrou uma tendéncia ligeiramente maior a gerar requisitos atomicos, que se concen-
tram em uma Unica funcionalidade. Para os atributos de Nao Ambiguidade (p = 0.967) e

Verificabilidade (p = 0.156), nao foram encontradas diferengas significativas. Os desvios

34

padrao substanciais observados em ambos os modelos, no entanto, reforcam que a escolha
do LLM ¢ apenas um dos fatores que influenciam o resultado final.

Para contextualizar estes achados, é 1til compara-los com as conclusées de outros es-
tudos relevantes. Nossos resultados convergem conceitualmente com a literatura em dois
pontos principais. Primeiro, os LLMs demonstram uma promessa significativa como as-
sistentes capazes para a elaboracao de artefatos de ER. Nossas altas pontuagoes médias
alinham-se com os resultados favoraveis reportados por Krishna et al. [13], onde o CodeL-
lama produziu saidas compardveis a um benchmark humano, e por Almonte et al. [14],
onde os NFRs gerados alcangaram uma pontuagao mediana de validade de 5.0/5.0. Em
segundo lugar, e de forma crucial, todos os estudos relatam uma variabilidade significativa
e fraquezas notaveis nas saidas geradas. Os desvios padrao substanciais em nossos resul-
tados e a presenca de requisitos com baixa pontuacdo espelham os achados de Krishna
et al. [13], que notaram problemas com verbosidade e formatacao, e Almonte et al. [14],
que descobriram que quase 20% dos NFRs gerados tinham atributos de qualidade incom-
pativeis. Esta conclusao compartilhada ressalta que, embora os LLMs sejam eficazes, sua
saida nao é uniformemente perfeita, reforcando a necessidade de avaliacdo e refinamento

cuidadosos.

Sumario da QP1

Os LLMs sao geralmente eficazes na geracao de requisitos de software a partir de ti-
tulos de issues de OSS, alcangando altas pontuagoes médias de qualidade (> 4.2/5)
para Nao Ambiguidade, Verificabilidade e Singularidade. No entanto, essa eficacia
apresenta uma variabilidade significativa nas pontuagoes, indicando que a alta qua-
lidade nao ¢é garantida e depende de outros fatores, como a clareza da entrada. Os
dois modelos testados tiveram desempenho geral comparavel, embora o 03-mini

tenha apresentado uma vantagem pequena, mas estatisticamente significativa, na

producao de requisitos com maior Singularidade.

4.3 QP2: Influéncia das Estratégias de Engenharia
de Prompts

Esta secao investiga a segunda questao de pesquisa: QP2: Como diferentes estraté-
gias de engenharia de prompts influenciam a qualidade dos requisitos gerados?
A anélise confirmou que a engenharia de prompts tem um impacto significativo, embora

os efeitos tenham sido notavelmente dependentes do modelo, reforcando as conclusoes de

35

[9, 10] sobre a importéncia do design do prompt e adicionando nuances sobre as respostas

especificas de cada modelo.

4.3.1 Influéncia dos Prompts no Desempenho do 03-mini

Para o modelo 03-mini (Tabela 4.3, Figura 4.2), testes de Kruskal-Wallis indicaram
efeitos significativos do prompt sobre a Nao Ambiguidade (H = 12.50, p = 0.002) e
a Singularidade (H = 30.08, p < 0.001). A estratégia Few-shot produziu os melhores
resultados para ambos, alcangando a mediana mais alta (5) em todas as métricas e a média
mais alta para Singularidade e Nao Ambiguidade. Em contrapartida, o prompt Expert
Identity, apesar de sua intengdo de explorar um conhecimento de dominio simulado,
teve um desempenho inferior, degradando particularmente a Singularidade (média 4.11).
Isso sugere que, para o 03-mini, fornecer exemplos concretos (Few-shot) foi mais eficaz

do que atribuir uma persona.

Tabela 4.3: Estatisticas Descritivas para as Pontuagoes do 03-mini por Estilo de Prompt
(N=150 por estilo)

Zero-Shot Few-shot Expert
Meétrica Média Mediana DP Média Mediana DP Média Mediana DP
N&ao Ambiguidade 4.37 4 0.70 4.43) 0.76 4.21 4 0.67
Verificabilidade 4.21 4 0.82 4.29) 0.97 4.36 4 0.67
Singularidade 4.56 5 0.97 4.77 5 0.75 4.11 5 1.29
Ndo-ambiguidade Verificabilidade Singularidade
5
4 o (]
%3 E— — ° °
2 o o o o o o o o
1 o ° JR
Zero-shot Few-shot Expert Identity Zero-shot Few-shot Expert Identity Zero-shot Few-shot Expert Identity
Estilo de Prompt Estilo de Prompt Estilo de Prompt

Figura 4.2: Distribuicdo das Pontuagoes de Qualidade dos Requisitos do 03-mini por
Estilo de Prompt

4.3.2 Influéncia dos Prompts no Desempenho do DeepSeek R1

Para o modelo DeepSeek R1 (Tabela 4.4, Figura 4.3), efeitos significativos do prompt
foram encontrados para Verificabilidade (H = 7.84, p = 0.020) e Singularidade (H =

36

29.00, p < 0.001). Neste caso, o prompt Expert Identity melhorou significativamente
a Verificabilidade (mediana 5, média 4.37). No entanto, de forma anéloga aos resultados
do 03-mini, o prompt Expert Identity levou a menor média de Singularidade (3.95) e
a maior variabilidade (DP 1.37). Novamente, o prompt Few-shot foi o mais eficaz para
aprimorar a Singularidade (média 4.69).

Este resultado evidencia um balanceamento critico, particularmente com o prompt
Expert Identity: tentativas de aumentar o detalhe para melhorar a Verificabilidade
podem encorajar o modelo a combinar miltiplas facetas, reduzindo a Singularidade. Este
fendmeno pode ser explicado pela tensao entre a instrugdo do prompt (atuar como um
especialista para gerar um requisito “completo e pratico”), e o principio de atomicidade

(Singularidade) da engenharia de requisitos.

Tabela 4.4: Estatisticas Descritivas para as Pontuagoes do DeepSeek R1 por Estilo de
Prompt (N=150 por estilo)

Zero-shot Few-shot Expert
Meétrica Média Mediana DP Média Mediana DP Média Mediana DP
Nao Ambiguidade 4.31 4 0.65 4.33 4 0.74 4.42 4 0.59
Verificabilidade 4.18 4 0.79 4.07 4 0.98 4.37) 0.76
Singularidade 4.20 5 1.27 4.69) 0.86 3.95 5) 1.37
Nao-ambiguidade Verificabilidade Singularidade
5
4 o
§3 o
2 o o o o o
1 o
Zero-shot Few-shot Expert Identity Zero-shot Few-shot Expert Identity Zero-shot Few-shot Expert Identity
Estilo de Prompt Estilo de Prompt Estilo de Prompt

Figura 4.3: Distribuicdo das Pontuacoes de Qualidade dos Requisitos do DeepSeek R1
por Estilo de Prompt

37

Sumario da QP2

A engenharia de prompts influencia significativamente a qualidade dos requisitos
gerados, mas seus efeitos sao dependentes do modelo e podem introduzir trade-offs
criticos entre atributos de qualidade. A estratégia Few-shot melhorou de forma
consistente e significativa a Singularidade para ambos os LLMs, provando ser eficaz
para gerar requisitos atomicos e focados. Em contrapartida, o prompt Expert
Identity criou uma troca: por vezes, melhorou a Verificabilidade ao adicionar
detalhes (notavelmente para o DeepSeek R1), mas frequentemente o fez ao custo

de degradar a Singularidade para ambos os modelos.

4.4 (QP3: Caracteristicas Qualitativas, Pontos Fortes

e Fracos

A andlise qualitativa dos requisitos gerados e das explica¢oes do juiz forneceu percepgoes
mais profundas, respondendo a terceira questao de pesquisa: QP3: Quais sao as ca-
racteristicas qualitativas, os pontos fortes e fracos dos requisitos gerados pelos
LLMs? Os achados qualitativos corroboram amplamente os resultados quantitativos.
Um ponto forte recorrente dos LLMs é a sua capacidade de capturar a intencao cen-
tral de titulos de issues claros e produzir declaragoes sintaticamente corretas que seguem
a estrutura basica de um requisito. No entanto, sua principal fraqueza é uma forte de-
pendéncia da clareza da entrada, ecoando o principio “garbage-in, garbage-out” [10] e os
desafios da linguagem natural na ER discutidos no Capitulo 2. Titulos vagos ou excessi-
vamente amplos invariavelmente levaram a requisitos com baixa Verificabilidade.

A seguir, exemplos extraidos do conjunto de dados ilustram essas observagoes.

« Exemplo 1 (Boa Singularidade — 03-mini, Few-shot):

— Titulo da issue: Add support for nullable static types in GDScript
(godotengine /godot-proposals, 162)

— Requisito: O sistema deve oferecer suporte a tipos estaticos anulaveis no
GDScript.

— Pontuagées (N, V, S): 5,5, 5

— Justificativa do Juiz: O requisito especifica claramente o suporte para tipos
estaticos anuldveis em GDScript sem ambiguidade. E uma solicitacdo de fun-

cionalidade singular e pode ser verificada através de testes de implementacao.

38

— Observagao: Este caso exemplifica como a combinacao de uma entrada clara e
uma estratégia de prompt eficaz, como a Few-shot, pode produzir um resultado
ideal. O prompt guia o modelo para manter o foco, evitando elaboragoes

desnecessarias que comprometeriam a Singularidade.
« Exemplo 2 (Baixa Singularidade — DeepSeek R1, Expert Identity):

— Titulo da issue: Implement Terrain (godotengine/godot-proposals, 6121)

— Requisito: O sistema deve fornecer um sistema de terreno integrado que
permita aos usuarios criar, modificar e gerenciar paisagens 3D dentro do meca-
nismo Godot. O sistema de terreno deve oferecer suporte a geragao de terreno
baseado em mapa de altura, pintura de textura com varias camadas e integra-
¢do com os sistemas de fisica, iluminacdo e material do Godot. Deve incluir
recursos para pintura de vegetagao, colocacao de dgua e manipulagao de nivel
de detalhe (LOD) para otimizagdo do desempenho. O sistema também deve
fornecer uma ferramenta de edi¢ao de terreno com uma interface amigavel para
ajustes de altura, textura e material, e garantir a compatibilidade com os re-
cursos existentes do Godot, como iluminagao e sombras dinamicas. Além disso,
o sistema de terreno deve ser projetado para ser eficiente, dimensionavel e ex-
tensivel para acomodar grandes ambientes de mundo aberto e personalizagoes
definidas pelo usuario.

— Pontuagées (N, V, S): 3, 3, 2

— Justificativa do Juiz: O requisito especifica um sistema de terreno com re-
cursos claros (gerenciamento de LOD, streaming dindmico, integracao de fisica,
ferramentas de editor, extensibilidade). Entretanto, termos como “eficiente”,
“dimensionavel” e “extensivel” introduzem ambiguidade. A verificabilidade é
possivel para a maioria dos recursos (por exemplo, presencga de ferramentas,
integracao compartilhada), mas termos subjetivos complicam os testes. O re-
quisito se concentra apenas no sistema de terreno, abrangendo seus aspectos

técnicos e de ferramentas sem misturar preocupagoes nao relacionadas.

— Observagao: Este exemplo é uma ilustracdo qualitativa clara do trade-off
identificado na andlise quantitativa da Secao 4.3. O prompt Expert Identity
incentiva o modelo a ser abrangente, resultando em uma declaracao detalhada
que, embora potencialmente mais informativa, viola diretamente o principio da

Singularidade ao agrupar multiplas sub-funcionalidades.

« Exemplo 3 (Requisito vago a partir de titulo vago — 03-mini, Zero-shot):

39

— Titulo da issue: Reusing state logic is either too verbose or too
difficult (flutter/flutter, 51752)

— Requisito: O sistema deve incluir um mecanismo que simplifica a reutilizagao
da logica de estado, minimizando a verbosidade e reduzindo a complexidade

da implementacao.
— Pontuagées (N, V, S): 3,2, 5
— Justificativa do Juiz: O requisito especifica um mecanismo para simplificar

a reutilizacao da logica de estado com clareza de propdsito, mas usa termos

vagos como ‘minimizando’ e ‘reduzindo’ sem métricas quantificaveis.

— Observacgao: Este resultado demonstra que o principio “garbage-in, garbage-
out” é amplificado pela estratégia de prompt Zero-shot. A falha aqui nao
estd apenas na entrada, mas na incapacidade da estratégia zero-shot de guiar
o modelo do espaco do problema para o espaco da solugao, um passo crucial

na especificacao de requisitos.

Sumario da QP3

Qualitativamente, um ponto forte chave dos LLMs é sua capacidade de capturar
a intencao central de titulos de entrada claros e produzir requisitos sintaticamente
corretos. Sua principal fraqueza é uma forte dependéncia da clareza da entrada;
titulos vagos ou excessivamente amplos invariavelmente produzem requisitos que
carecem de verificabilidade. Uma caracteristica recorrente é um trade-off funda-
mental entre detalhe e foco; prompts projetados para obter conteiido abrangente
(ex: Expert Identity) frequentemente produzem declaragoes mais descritivas que

violam o principio da singularidade ao agrupar miltiplas capacidades distintas.

4.5 Achados Adicionais e Implicacoes Metodolbégicas

Analises suplementares revelaram outros insights relevantes. Foi encontrada uma varia-
¢ao estatisticamente significativa na qualidade dos requisitos para todas as trés métricas
(p < 0.001, via Kruskal-Wallis), o que reforga o papel critico da qualidade dos dados de
entrada. Adicionalmente, a analise de correlagdo de Spearman (Tabela 4.5) mostrou uma
forte relagao positiva entre Nao Ambiguidade e Verificabilidade (p = 0.69). Este resultado
é teoricamente esperado, pois, conforme a norma ISO/IEC/IEEE 29148:2018, a clareza
de um requisito é um pré-requisito para que sua implementacdo possa ser verificada ob-
jetivamente.

Uma implicagdo metodoldgica importante de nossos achados refere-se a validade da

abordagem LILM-as-a-Judge. Conforme discutido na Sec¢ao 3.4, um dos vieses conhecidos

40

Tabela 4.5: Matriz de Correlagao de Spearman para as Métricas de Qualidade (N = 900)

Métrica Nao Ambiguidade Verificabilidade Singularidade
Nao Ambiguidade 1.00 0.69 0.37
Verificabilidade 0.69 1.00 0.30
Singularidade 0.37 0.30 1.00

desta metodologia é o “viés de verbosidade”, onde juizes LLM tendem a favorecer respos-
tas mais longas. Curiosamente, nossos resultados indicam que o protocolo de avaliacao
resistiu a esse viés no que tange a métrica de Singularidade. O prompt Expert Identity
encorajou a geracao de requisitos mais verbosos e elaborados, que, por sua vez, receberam
pontuagdes mais baixas de Singularidade. Em vez de recompensar a verbosidade, nosso
juiz penalizou corretamente os requisitos menos focados e multifacetados.

Essa robustez provavelmente se deve ao embasamento do prompt de avaliagdo em
critérios explicitos e decompostos, derivados da norma ISO 29148. A instrugdo clara
para avaliar se o requisito declarava uma “tnica funcionalidade”, fornecida no prompt
de avaliacao, parece ter sido crucial. Isso sugere que fundamentar avaliagoes LLM-as-
a-Judge em critérios claros de padroes estabelecidos é uma estratégia vital para mitigar
vieses conhecidos e aumentar a validade de construto de avaliagoes automatizadas em

Engenharia de Requisitos.

4.6 Limitacoes e Ameacgas a validade

Para garantir a transparéncia e o rigor cientifico, esta secao aborda as limitacoes inerentes
ao estudo e discute as potenciais ameagas a validade dos resultados apresentados. O
reconhecimento explicito dessas questoes é fundamental para contextualizar as conclusoes,
orientar a interpretacao dos achados e sugerir caminhos para pesquisas futuras que possam

superar tais restricoes.

4.6.1 Limitacoes do Estudo

Além das ameagas formais a validade, que serdao detalhadas na se¢ao seguinte, é importante
reconhecer algumas limitacoes de escopo que definem as fronteiras desta pesquisa.

Uma primeira limitagdo reside no escopo dos modelos de linguagem avaliados. O
estudo concentrou-se em dois LLMs para geragdo (03-mini e DeepSeek R1) e um para
avaliagdo (Qwen QwQ-32b). Embora a sele¢ao tenha sido justificada com base em critérios
de desempenho e custo-beneficio (conforme detalhado na Secao 3.3.2), o ecossistema de

LLMs ¢é vasto e estda em constante evolucao. Modelos com arquiteturas, dados de treina-

41

mento ou métodos de ajuste fino distintos poderiam apresentar sensibilidades diferentes
as estratégias de prompt e exibir outros padrdes de desempenho.

Em segundo lugar, a generalizacao dos achados é condicionada pela natureza dos
dados de entrada. A pesquisa focou-se exclusivamente na geracao de requisitos a partir
de titulos de issues de cinco repositorios de software de cddigo aberto de grande porte.
Embora essa escolha represente um cenario pratico e desafiador, as conclusées podem
nao ser diretamente aplicdveis a outros contextos, como projetos comerciais de cédigo
fechado, dominios com requisitos de seguranca criticos, ou fontes de entrada mais ricas
(por exemplo, transcri¢oes de reunides ou descrigoes completas de issues).

Finalmente, a préopria metodologia de avaliagao, baseada no paradigma LLM-as-a-
Judge, constitui uma limitacdo importante. Embora justificada pela escalabilidade e con-
sisténcia, e tendo seus viéses conhecidos mitigados por estratégias como a selecdo de um
juiz arquitetonicamente distinto, a avaliacao automatizada permanece uma aproximacao
da avaliacao por especialistas humanos. A subjetividade e a profundidade do julgamento
humano nao podem ser totalmente replicadas, e os vieses inerentes aos LLMs, mesmo que

controlados, ainda representam uma restri¢ao.

4.6.2 Ameacas a Validade

Para uma andlise mais sistemética, as ameacas a validade sao discutidas a seguir, seguindo

as categorias estabelecidas por Wohlin et al. [45].

Ameacas a Validade de Construto

A validade de construto refere-se a correspondéncia entre os construtos tedricos da pes-

quisa e suas medi¢oes operacionais.

o Medicao da Qualidade dos Requisitos: A qualidade foi medida utilizando os
atributos de Nao Ambiguidade, Verificabilidade e Singularidade, derivados da norma
ISO/IEC/IEEE 29148:2018. Conforme justificado na Secao 3.4.1, essa selegdo se
baseou na sua avaliabilidade isolada para dados de OSS. Contudo, esses atributos
representam apenas um subconjunto das caracteristicas definidas pela norma (omi-
tindo, por exemplo, Viabilidade, Completude e Corregao). Portanto, nossos achados

refletem a qualidade primordialmente sob essa Otica especifica.

e LLM-as-a-Judge como Proxy de Qualidade: A avaliacdo dependeu de um
LLM (Qwen QwQ-32b) como juiz. Embora essa abordagem ofereca escalabilidade e
consisténcia, e trabalhos anteriores sugiram alta concordancia com humanos [15, 29],

a interpretacao dos critérios de qualidade pelo juiz LLM pode diferir sutilmente da de

42

especialistas humanos ou exibir vieses inerentes. Mitigamos essa ameaca fornecendo
defini¢oes claras baseadas na norma e capturando a justificativa do juiz, mas a

avaliacao permanece uma aproximacao da “verdadeira” qualidade.

« Representacao de Solicitagcoes de Funcionalidades por Titulos: Utilizamos
apenas os titulos das issues do GitHub como entrada para a geracao de requisitos.
Os titulos podem nao capturar todo o contexto ou as nuances presentes no corpo
da issue ou nos comentarios. Essa simplificacio, feita em prol da consisténcia e
viabilidade, significa que nossos resultados refletem a capacidade dos LLMs de gerar
requisitos a partir de declaragdes concisas e potencialmente incompletas, e nao de

solicitacoes totalmente detalhadas.

Ameacgas a Validade Interna

A validade interna aborda fatores que poderiam ter influenciado os resultados observados

além das manipulacoes experimentais.

o Efeito de Confusao da Qualidade da Entrada: A clareza, complexidade e es-
pecificidade de dominio inerentes aos titulos das issues variaram significativamente,
influenciando a qualidade dos requisitos gerados independentemente do LLM ou
do prompt utilizado. Embora tenhamos analisado o efeito do repositério como um
proxy, controlar precisamente a qualidade da entrada em todos os 150 titulos diver-

sos fol inviavel.

« Nao Determinismo dos LLMs: Embora tenhamos utilizado sementes (seeds) e
configuragoes de temperatura fixas, o nao determinismo inerente as APIs dos LLMs
ou otimizagoes subjacentes poderia, potencialmente, introduzir pequenas variagoes.
Observamos reprodutibilidade pratica durante nossos experimentos, mas nao pode-

mos garantir saidas idénticas em uma replicagao exata.

Ameacgas a Validade Externa

A validade externa refere-se a generalizacao de nossos achados para outros contextos.

» Selecao Limitada de LLMs: Avaliamos apenas dois LLMs (03-mini e DeepSeek
R1). Os achados relativos ao desempenho e a sensibilidade aos estilos de prompt
podem nao se generalizar diretamente para outros modelos, tais como: modelos
maiores da OpenAl, Claude e variantes do Llama com diferentes arquiteturas, dados

de treinamento ou ajustes finos.

43

o Técnicas de Prompt Especificas: Testamos trés estilos de prompt especificos. A
eficacia relativa pode diferir com outras técnicas como Chain-of-Thought, templates

complexos ou geragao aumentada por recuperacao de informacao.

« Especificidade da Tarefa e da Entrada: Nosso estudo focou na geracdo de uma
unica declaragao de requisito a partir de titulos de issues. Os resultados podem nao
ser relevantes para a geracao de requisitos a partir de diferentes tipos de entradas,
como histoérias de usuario, descri¢oes detalhadas e atas de reunido, ou para outras

etapas da ER, como classificacao, rastreamento ou refinamento.

o Contexto dos Repositorios OSS: Os dados originaram-se de cinco repositorios
de codigo aberto especificos e ativos. As praticas para escrever solicitagbes de fun-
cionalidades e a natureza dos requisitos podem diferir em outros projetos OSS,
projetos menores, dominios diferentes (por exemplo, sistemas de seguranga critica)

ou ambientes de desenvolvimento comercial de cédigo fechado.

Ameacas a Validade de Conclusao e Confiabilidade

Esta categoria relaciona-se a capacidade de tirar conclusoes corretas e a reprodutibilidade

do estudo.

o Confiabilidade do Juiz LLM: Além das preocupagoes de validade de construto,
a consisténcia do juiz na aplicacao dos critérios de pontuacao ao longo dos 900
requisitos pode ser questionada. Efeitos de fadiga sdo minimizados em comparagao
com humanos [15], mas a consisténcia interna do modelo nao é garantida. Utilizamos
saidas JSON estruturadas para garantir que as classificagoes fossem capturadas

sistematicamente.

o Poder Estatistico e Testes: Utilizamos testes nao paramétricos apropriados para
dados ordinais, conforme descrito na Secao 3.5. Embora o tamanho da amostra
(N=900) fornega um poder estatistico razoavel, a possibilidade de erros do Tipo
IT (ndo detectar pequenos efeitos verdadeiros) existe, como em qualquer andlise

estatistica.

o Extracao e Processamento de Dados: Erros potenciais no uso da API do
GitHub ou nos scripts de processamento poderiam afetar o conjunto de dados. O
uso padrao da API e a verificacao dos scripts foram empregados para minimizar esse

risco.

* Reprodutibilidade: Conforme observado na Validade Interna, o nao determinismo
dos LLMs representa um desafio. Além disso, a rdpida evolucao dos LLMs signi-

fica que as versoes especificas dos modelos utilizados (03-mini, DeepSeek R1, Qwen

44

QwQ-32b) podem ser atualizadas ou descontinuadas, afetando potencialmente futu-
ras tentativas de replicacao. Documentamos claramente os modelos e parametros

utilizados para mitigar essa ameaca.

4.7 Sintese do Capitulo

Este capitulo apresentou e discutiu os resultados da avaliacdo empirica da geracao de
requisitos de software por LLMs. Foi demonstrado que, embora os modelos sejam geral-
mente eficazes, sua performance é fortemente modulada pela qualidade da entrada e pela
estratégia de engenharia de prompts.

Em resposta a QP1, os resultados indicam que LLMs sao ferramentas capazes, mas
a qualidade da saida varia significativamente. No que tange a QP2, foi revelado que a
engenharia de prompts é um fator determinante, com a estratégia Few-shot se mostrando
robusta para melhorar a Singularidade, enquanto a estratégia Expert Identity introdu-
ziu um trade-off entre Verificabilidade e Singularidade. Finalmente, a analise qualitativa
da QP3 ilustrou esses padroes com exemplos concretos, destacando a dependéncia da
clareza da entrada e o conflito entre detalhe e foco.

Os achados reforcam a visao de que os LLMs funcionam melhor como assistentes po-
derosos que exigem projeto de prompt cuidadoso e supervisao humana para refinar as
saidas, garantindo Verificabilidade e Singularidade adequadas. Esses resultados formam a
base para as conclusoes gerais da dissertacao, as implica¢oes para a pratica da Engenha-
ria de Requisitos e as dire¢oes para trabalhos futuros, que serdo detalhados no capitulo

seguinte.

45

Capitulo 5
Conclusao

Esta dissertagao propos-se a investigar a aplicagao de LLMs na automagao de uma ta-
refa fundamental e desafiadora da ER: a geracao de requisitos de software a partir de
solicitagoes de funcionalidades informais. Conforme discutido no Capitulo 2, o contexto
dos projetos de OSS intensifica esse desafio, devido ao grande volume e a natureza nao
estruturada das entradas provenientes de sistemas de rastreamento de issues. O objetivo
central foi avaliar empiricamente nao apenas a eficacia dos LLMs nessa tarefa, mas tam-
bém como sua performance é modulada por diferentes modelos e estratégias de engenharia
de prompts.

Para alcancar esse objetivo, foi implementada a metodologia detalhada no Capitulo
3, que envolveu a coleta de dados de repositorios OSS proeminentes, a geracao de 900
requisitos e sua subsequente avaliacao automatizada através do paradigma LLM-as-a-
Judge, com base em atributos de qualidade da norma ISO/IEC/IEEE 29148:2018. Este
capitulo final sintetiza os resultados obtidos, discute suas implicagoes tedricas e praticas,

reconhece as limitagoes do estudo e aponta dire¢oes para pesquisas futuras.

5.1 Sintese dos Resultados e Respostas as Questoes

de Pesquisa

A analise dos dados, apresentada no Capitulo 4, forneceu respostas claras as questoes de
pesquisa que nortearam este trabalho.

Em resposta & QP1 (Qual a eficicia dos LLMs para gerar requisitos de soft-
ware a partir de titulos de issues de projetos OSS?), o estudo concluiu que os
LLMs sao, de modo geral, eficazes. As pontuac¢oes médias para os atributos de Ndao Am-
biguidade, Verificabilidade e Singularidade foram consistentemente altas (superiores a 4.2

em uma escala de 5), indicando que os modelos sdo capazes de produzir saidas de quali-

46

dade. Contudo, essa eficacia é marcada por uma inconsisténcia significativa, evidenciada
pelos altos desvios padrao e pela presenca de requisitos com baixa pontuagao. Portanto,
embora promissores, os LLMs nao garantem a geragao de requisitos de alta qualidade de
forma uniforme, sendo sua performance fortemente dependente de outros fatores.

No que tange a QP2 (Como diferentes estratégias de engenharia de prompts
influenciam a qualidade dos requisitos gerados?), os resultados revelaram que a
engenharia de prompts é um fator determinante, mas seus efeitos sao dependentes do mo-
delo e podem introduzir trade-offs entre os atributos de qualidade. A estratégia Few-shot
destacou-se por melhorar de forma robusta e estatisticamente significativa a Singulari-
dade em ambos os modelos. Em contrapartida, a estratégia Expert Identity, embora
concebida para gerar saidas mais completas, frequentemente degradou a Singularidade
ao mesmo tempo que, em um dos modelos, melhorou a Verificabilidade. Este achado,
detalhado na Secao 4.3, expoe uma tensao fundamental entre a geragdo de requisitos
detalhados e o principio da atomicidade.

Finalmente, para a QP3 (Quais sdo as caracteristicas qualitativas, os pontos
fortes e fracos dos requisitos gerados pelos LLMs?), a anélise qualitativa da Segao
4.4 corroborou os achados quantitativos. Um ponto forte recorrente foi a capacidade dos
modelos de produzir declaragoes sintaticamente corretas que capturam a intencao de en-
tradas claras. A principal fraqueza foi a extrema dependéncia da qualidade da entrada,
aderindo ao principio “garbage-in, garbage-out”, onde titulos vagos invariavelmente leva-
ram a requisitos nao verificiveis. A andlise qualitativa também ilustrou o trade-off entre
detalhe e foco, mostrando como prompts que incentivam a completude podem resultar

em requisitos que, embora mais ricos em informacao, violam a Singularidade.

5.2 Implicacoes do Estudo

Os resultados desta dissertacao oferecem contribuigoes tanto para o campo académico da

Engenharia de Software quanto para a pratica profissional da Engenharia de Requisitos.

5.2.1 Implicagoes para a Pesquisa

Este trabalho avanca o estado da arte da aplicacao de LLMs em ER de varias maneiras.
Enquanto estudos anteriores, como os de Krishna et al. [13] e Almonte et al. [14], estabe-
leceram a viabilidade dos LLMs para gerar artefatos de requisitos, nossa pesquisa fornece
uma analise mais granular. Demonstramos empiricamente os trade-offs que surgem en-
tre diferentes atributos de qualidade (notavelmente, Verificabilidade vs. Singularidade)

como consequéncia de estratégias de prompt especificas. Essa descoberta adiciona uma

47

camada de complexidade a compreensao de como otimizar a geragao de requisitos, suge-
rindo que nao existe uma “melhor estratégia” universal, mas sim uma escolha dependente
dos objetivos de qualidade priorizados.

Adicionalmente, ao comparar dois LLMs distintos, mostramos que a resposta as es-
tratégias de prompt nao é uniforme, reforcando a necessidade de estudos que considerem
a interacao entre modelo e prompt, uma area pouco explorada por trabalhos como o de
Ronanki et al. [10].

Metodologicamente, este estudo contribui para a validagao do paradigma LLM-as-a-
Judge no dominio da ER. Conforme discutido na Secao 4.5, nosso protocolo de avaliacao,
fundamentado em critérios explicitos da norma ISO/IEC/IEEE 29148:2018, demonstrou
ser capaz de mitigar o conhecido “viés de verbosidade” [15]. Ao penalizar corretamente os
requisitos mais longos, porém menos singulares, gerados pelo prompt Expert Identity,
o juiz LLM demonstrou uma aderéncia aos critérios definidos, o que fortalece a validade
de construto de avaliacoes automatizadas e escalaveis quando estas sao rigorosamente

fundamentadas em padroes estabelecidos.

5.2.2 Implicacoes para a Pratica

Para os profissionais de Engenharia de Software, a principal implicacao é que os LLMs
devem ser vistos como assistentes poderosos, e nao como substitutos autéonomos para
engenheiros de requisitos. A forte dependéncia da clareza da entrada significam que a
supervisao humana permanece indispensavel.

Com base nos achados, podem-se extrair as seguintes recomendagoes praticas:

o Para gerar uma lista inicial de requisitos atomicos e focados, que podem servir como
base para decomposicao e refinamento, a estratégia Few-shot é a mais recomendada,

pois demonstrou ser a mais eficaz para garantir a Singularidade.

o Ao utilizar estratégias que visam gerar conteiido mais detalhado, como a Expert
Identity, os profissionais devem estar cientes do risco de produzir requisitos nao
singulares. Embora possam conter informacoes tteis para melhorar a Verificabili-
dade, essas saidas devem ser tratadas como especificagoes que requerem decomposi-
¢ao manual em multiplos requisitos atomicos antes de serem integradas ao processo

de desenvolvimento.

e A qualidade da entrada é primordial. Investir tempo na clarificagao de titulos de
issues ou na elaboracao de descricoes mais detalhadas antes de alimentar um LLM
provavelmente resultard em uma economia de esforco significativa no refinamento

posterior dos requisitos gerados.

48

5.3 Trabalhos Futuros

Conforme detalhado na Secao 4.6.1, este estudo possui limitacoes que definem as fronteiras
de suas conclusoes e abrem caminhos para pesquisas futuras. As principais limitagoes
incluem a avaliacdo de um ndmero restrito de LLMs e estratégias de prompt, o foco
exclusivo em titulos de issues como fonte de entrada, e a dependéncia de um juiz LLM para
a avaliacdo, cujos vieses, embora mitigados, ndo podem ser completamente eliminados.
Com base nessas limitacoes e nos achados do estudo, as seguintes dire¢oes para tra-

balhos futuros sdo propostas:

o Explorar Entradas Mais Ricas: Investigar a geracao de requisitos utilizando nao
apenas o titulo, mas o corpo completo da issue, incluindo comentarios. Isso exigiria
técnicas para sumarizar e extrair as informagoes mais relevantes de longas discus-
soes. A Geragao Aumentada por Recuperagdo (RAG) poderia ser uma abordagem

promissora para fornecer contexto relevante ao LLM.

« Sofisticacao das Estratégias de Prompt: Avaliar técnicas mais avancadas, como
Chain-of-Thought (CoT), para incentivar o LLM a “raciocinar” sobre o requisito
antes de gera-lo, potencialmente melhorando a qualidade de requisitos derivados de

entradas ambiguas.

o« Decomposicao Automatizada de Requisitos: Dado que o prompt Expert
Identity tende a gerar saidas detalhadas, mas nao singulares, uma linha de pes-
quisa promissora seria desenvolver um segundo estégio no pipeline, onde outro LLM
é encarregado de decompor automaticamente esses requisitos complexos em um con-

junto de requisitos atomicos e singulares.

o Validacdo Humana e Comparativa: Realizar um estudo comparativo envol-
vendo especialistas humanos para avaliar os requisitos gerados. Isso permitiria nao
apenas validar os resultados do LLM-as-a-Judge em maior profundidade, mas tam-
bém quantificar o nivel de concordancia entre o julgamento humano e o automati-

zado no contexto especifico da ER.

o Generalizacao para Outros Contextos: Replicar o estudo em diferentes domi-
nios, como projetos comerciais de codigo fechado ou sistemas de seguranca critica,
para verificar se os padroes de desempenho e os trade-offs observados se mantém

em ambientes com processos de ER mais formais.

A automacao da Engenharia de Requisitos, um dos gargalos mais persistentes no de-
senvolvimento de software, deu um passo significativo com o advento de LLMs. Esta

dissertacdo demonstrou que, embora a promessa de uma automacao completa ainda nao

49

tenha sido alcancada, os LLMs sao ferramentas de imenso potencial, capazes de transfor-
mar entradas informais em artefatos de requisitos estruturados com um nivel de qualidade
notavel.

A principal contribuicdo deste trabalho é a evidéncia empirica de que a eficacia dessa
transformacao nao é absoluta, mas sim uma fungdo complexa da clareza da entrada, da
escolha do modelo e, crucialmente, da estratégia de interacdo empregada. A descoberta
de trade-offs explicitos entre atributos de qualidade fundamentais, como Verificabilidade e
Singularidade, sublinha a necessidade de uma abordagem estratégica e consciente ao apli-
car essas tecnologias. Em ultima analise, o futuro da Engenharia de Requisitos assistida
por IA reside nao na substitui¢do da pericia humana, mas em uma colaboracao sinérgica,
onde a capacidade de geragao dos LLMs é guiada e refinada pela intuicao, conhecimento

de dominio e julgamento critico dos engenheiros de software.

50

1]

2]

Referéncias

Sommerville, Tan: Software engineering. Pearson, Boston, 102 edicao, 2016,
ISBN 9780133943030. 1, 8, 9

Attanayaka, Buddhima, Dasuni Nawinna, Kalpani Manathunga e Pradeep K.W.
Abeygunawardhana: Success factors of requirement elicitation in the field of software

engineering. Em 2022 jth International Conference on Advancements in Computing
(ICAC), paginas 240-245, 2022. 1, 3, 8, 9

Tasnim, Maliha, Maruf Rayhan, Zheying Zhang e Timo Poranen: A systematic lit-
erature review on requirements engineering practices and challenges in open-source
projects. Em 2023 49th Furomicro Conference on Software Engineering and Advanced
Applications (SEAA), paginas 278-285, 2023. 1, 2, 3, 10, 12

Lim, Sachiko, Aron Henriksson e Jelena Zdravkovic: Data-driven requirements elic-
itation: A systematic literature review. SN Comput. Sci., 2(1):16, 2021. https:
//doi.org/10.1007/s42979-020-00416-4. 1, 3, 10

IEEE: ISO/IEC/IEEE International Standard - systems and software engineering
— life cycle processes — requirements engineering. ISO/IEC/IEEE 29148:2018(E),
paginas 1-104, 2018. 1, 4, 8, 11, 17, 18, 19, 20, 27, 28

Zhao, Wayne Xin, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yinggian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie e Ji-Rong Wen: A survey of large language
models. CoRR, abs/2303.18223, 2023. https://doi.org/10.48550/arXiv.2303.
18223. 1, 12, 13, 14

Arora, Chetan, John Grundy e Mohamed Abdelrazek: Advancing requirements en-
gineering through generative Al: assessing the role of llms. CoRR, abs/2310.13976,
2023. https://doi.org/10.48550/arXiv.2310.13976. 1, 3, 10, 17, 33

Alhoshan, Waad, Alessio Ferrari e Liping Zhao: Zero-shot learning for requirements
classification: An exploratory study. Inf. Softw. Technol., 159:107202, 2023. https:
//api.semanticscholar.org/CorpusID:256697343. 1, 4, 17, 19, 21, 25

White, Jules, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith e Douglas C. Schmidt: A prompt pattern cat-
alog to enhance prompt engineering with chatgpt. ArXiv, abs/2302.11382, 2023.
https://api.semanticscholar.org/CorpusID:257079092. 2, 3, 4, 14, 36

o1

https://doi.org/10.1007/s42979-020-00416-4
https://doi.org/10.1007/s42979-020-00416-4
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2310.13976
https://api.semanticscholar.org/CorpusID:256697343
https://api.semanticscholar.org/CorpusID:256697343
https://api.semanticscholar.org/CorpusID:257079092

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Ronanki, Krishna, Beatriz Cabrero Daniel, Jennifer Horkoff e Christian Berger: Re-
quirements engineering using generative ai: Prompts and prompting patterns. ArXiv,
abs/2311.03832, 2023. https://api.semanticscholar.org/CorpusID:265043266.
2,3,4, 14, 15, 18, 19, 21, 25, 36, 38, 48

Mesquita, Rodrigo, Geovana Ramos Sousa Silva e Edna Dias Canedo: On the ex-
periences of practitioners with requirements elicitation techniques. Proceedings of
the XXXVII Brazilian Symposium on Software Engineering, 2023. https://api.
semanticscholar.org/CorpusID:262467959. 2

Canedo, Edna Dias, Angélica Toffano Seidel Calazans, Geovana Ramos Sousa Silva,
Eloisa Toffano Seidel Masson e Isabel Sofia Brito: On the challenges to documenting
requirements in agile software development: A practitioners’ perspective. Anais do
XXVII Congresso Ibero-Americano em Engenharia de Software (CIbSE 2024), 2024.
https://api.semanticscholar.org/CorpusID:270177412. 2

Krishna, Madhava, Bhagesh Gaur, Arsh Verma e Pankaj Jalote: Using llms in soft-
ware requirements specifications: An empirical evaluation. Em 2024 IEEE 32nd
International Requirements Engineering Conference (RE), paginas 475-483, 2024. 3,
4,17, 19, 21, 27, 35, 47

Almonte, Jomar Thomas, Santhosh Anitha Boominathan e Nathalia Nascimento:
Automated non-functional requirements generation in software engineering with large
language models: A comparative study, 2025. https://arxiv.org/abs/2503.15248.
3, 17, 21, 27, 35, 47

Zheng, Lianmin, Wei Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yong-
hao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E.
Gonzalez e lon Stoica: Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.
https://arxiv.org/abs/2306.05685. 4, 16, 17, 27, 28, 42, 44, 48

Ralph, Paul, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz,
Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri, Breno
Bernard Nicolau de Franca, Carlo Alberto Furia, Greg Gay, Nicolas Gold, Daniel
Graziotin, Pinjia He, Rashina Hoda, Natalia Juristo, Barbara Kitchenham, Valentina
Lenarduzzi, Jorge Martinez, Jorge Melegati, Daniel Mendez, Tim Menzies, Jefferson
Molleri, Dietmar Pfahl, Romain Robbes, Daniel Russo, Nyyti Saariméki, Federica
Sarro, Davide Taibi, Janet Siegmund, Diomidis Spinellis, Miroslaw Staron, Klaas
Stol, Margaret Anne Storey, Davide Taibi, Damian Tamburri, Marco Torchiano,
Christoph Treude, Burak Turhan, Xiaofeng Wang e Sira Vegas: Empirical standards
for software engineering research, 2021. https://arxiv.org/abs/2010.03525. 6

Pérez-Verdejo, J. Manuel, A. J. Sanchez-Garcia, J. O. Ochardn-Herndndez, E.
Mezura-Montes e K. Cortés-Verdin: Requirements and github issues: An auto-
mated approach for quality requirements classification. Programming and Com-
puter Software, 47(8):704-721, dezembro 2021, ISSN 0361-7688, 1608-3261. https:
//link.springer.com/10.1134/S0361768821080193. 10

52

https://api.semanticscholar.org/CorpusID:265043266
https://api.semanticscholar.org/CorpusID:262467959
https://api.semanticscholar.org/CorpusID:262467959
https://api.semanticscholar.org/CorpusID:270177412
https://arxiv.org/abs/2503.15248
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2010.03525
https://link.springer.com/10.1134/S0361768821080193
https://link.springer.com/10.1134/S0361768821080193

[18]

[19]

23]

[24]

[25]

Minaee, Shervin, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain e Jianfeng Gao: Large language models: A survey. 2024.
https://arxiv.org/abs/2402.06196. 12, 13, 14

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Lukasz Kaiser e Illia Polosukhin: Attention is all you need. Advances in
neural information processing systems, 30, 2017. 12, 13

Radford, Alec, Karthik Narasimhan, Tim Salimans, Ilya Sutskever et al.: Improving
language understanding by generative pre-training. 13

Devlin, Jacob, Ming Wei Chang, Kenton Lee e Kristina Toutanova: Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 14

Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike e Ryan Lowe: Training language models
to follow instructions with human feedback, 2022. https://arxiv.org/abs/2203.
02155. 14

Schulhoff, Sander, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda
Liu, Chenglei Si, Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff et al.:

The prompt report: A systematic survey of prompting techniques. arXiv preprint
arXiv:2406.06608, 2024. 14, 15

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever e
Dario Amodei: Language models are few-shot learners. ArXiv, abs/2005.14165, 2020.
https://api.semanticscholar.org/CorpusID:218971783. 15, 25

Xu, Benfeng, An Yang, Junyang Lin, Quang Wang, Chang Zhou, Yongdong Zhang
e Zhendong Mao: Ezpertprompting: Instructing large language models to be distin-
guished experts. ArXiv, abs/2305.14688, 2023. https://api.semanticscholar.
org/CorpusID:258865458. 15, 26

Lin, Chin Yew: ROUGE: A package for automatic evaluation of summaries. Em
Text Summarization Branches Out, paginas 74-81, Barcelona, Spain, julho 2004. As-
sociation for Computational Linguistics. https://aclanthology.org/W04-1013/.
16

Papineni, Kishore, Salim Roukos, Todd Ward e Wei Jing Zhu: Bleu: a method for
automatic evaluation of machine translation. Em Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL ’02, pagina 311-318,

33

https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:258865458
https://api.semanticscholar.org/CorpusID:258865458
https://aclanthology.org/W04-1013/

28]

[29]

[36]

USA, 2002. Association for Computational Linguistics. https://doi.org/10.3115/
1073083.1073135. 16

Li, Dawei, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao,
Zhen Tan, Amrita Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, Kai Shu,
Lu Cheng e Huan Liu: From generation to judgment: Opportunities and challenges
of llm-as-a-judge, 2025. https://arxiv.org/abs/2411.16594. 16

Gu, Jiawei, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei
Li, Yinghan Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo
Wang, Wen Gao, Lionel Ni e Jian Guo: A survey on llm-as-a-judge, 2024. https:
//arxiv.org/abs/2411.15594. 16, 17, 28, 42

Khan, Javed Ali, Shamaila Qayyum e Hafsa Shareef Dar: Large language model
for requirements engineering: A systematic literature review. margo 2025. https:
//www.researchsquare.com/article/rs-5589929/v1. 17

Hymel, Cory e Hiroe Johnson: Analysis of llms vs human experts in requirements
engineering, 2025. https://arxiv.org/abs/2501.19297. 18, 19, 21

Ronanki, Krishna, Christian Berger e Jennifer Horkoff: Investigating chatgpt’s poten-
tial to assist in requirements elicitation processes, 2023. https://arxiv.org/abs/
2307.07381. 18, 21

Ataei, Mohammadmehdi, Hyunmin Cheong, Daniele Grandi, Ye Wang, Nigel Morris
e Alexander Tessier: Elicitron: An llm agent-based simulation framework for design
requirements elicitation, 2024. https://arxiv.org/abs/2404.16045. 18, 19, 21

Jin, Dongming, Zhi Jin, Xiaohong Chen e Chunhui Wang: Mare: Multi-agents col-
laboration framework for requirements engineering. ArXiv, abs/2405.03256, 2024.
https://api.semanticscholar.org/CorpusID:269605506. 18, 21

Lubos, Sebastian, Alexander Felfernig, Thi Ngoc Trang Tran, Damian Garber, Mer-
fat El Mansi, Seda Polat Erdeniz e Viet Man Le: Leveraging llms for the quality
assurance of software requirements. Em 2024 IEEE 32nd International Requirements
Engineering Conference (RE), paginas 389-397, 2024. 18, 19, 21

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,
Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai
Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu,
Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Er-
hang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin
Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia,

o4

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://www.researchsquare.com/article/rs-5589929/v1
https://www.researchsquare.com/article/rs-5589929/v1
https://arxiv.org/abs/2501.19297
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2307.07381
https://arxiv.org/abs/2404.16045
https://api.semanticscholar.org/CorpusID:269605506

[38]

[39]

[40]

[41]

Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Ming-
ming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou,
Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding
Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun,
Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun,
Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yud-
uan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang
You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li,
Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren,
Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang e
Zhen Zhang: Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. https://arxiv.org/abs/2501.12948. 26

White, Colin, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha
Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chin-
may Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger e Micah Goldblum:
Livebench: A challenging, contamination-free llm benchmark, 2024. https://arxiv.
org/abs/2406.19314. 26

Yang, An, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai
Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang,
Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang e Zihan Qiu: Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024. 27

Qwen Team: Qw@-32B: Embracing the power of reinforcement learning, March 2025.
https://qwenlm.github.io/blog/qwq-32b/. 27

Mann, H. B. e D. R. Whitney: On a test of whether one of two random wvari-
ables is stochastically larger than the other. The Annals of Mathematical Statistics,
18(1):50-60, margo 1947, ISSN 0003-4851. http://projecteuclid.org/euclid.
aoms/1177730491. 30

Kruskal, William H. e W. Allen Wallis: Use of ranks in one-criterion variance anal-
ysis. Journal of the American Statistical Association, 47(260):583-621, dezem-

95

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://qwenlm.github.io/blog/qwq-32b/
http://projecteuclid.org/euclid.aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491

[42]

[43]

[44]

[45]

bro 1952, ISSN 0162-1459, 1537-274X. http://www.tandfonline.com/doi/abs/
10.1080/01621459.1952.10483441. 30

Dunn, Olive Jean: Multiple comparisons wusing rank sums. Technometrics,
6(3):241-252, agosto 1964, ISSN 0040-1706, 1537-2723. http://www.tandfonline.
com/doi/abs/10.1080/00401706.1964.10490181. 30

Spearman, C.: The proof and measurement of association between two things. The
American Journal of Psychology, 15(1):72, janeiro 1904, ISSN 00029556. https:
//www.jstor.org/stable/14121597origin=crossref. 30

Marques, Nuno, Rodrigo Rocha Silva e Jorge Bernardino: Using chatgpt in software
requirements engineering: A comprehensive review. Future Internet, 16(6):1-21, 2024,
ISSN 1999-5903. 33

Wohlin, Claes, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell e
Anders Wesslen: Ezperimentation in software engineering, 2012. https://link.
springer.com/book/10.1007/978-3-662-69306-3. 42

o6

http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
http://www.tandfonline.com/doi/abs/10.1080/00401706.1964.10490181
http://www.tandfonline.com/doi/abs/10.1080/00401706.1964.10490181
https://www.jstor.org/stable/1412159?origin=crossref
https://www.jstor.org/stable/1412159?origin=crossref
https://link.springer.com/book/10.1007/978-3-662-69306-3
https://link.springer.com/book/10.1007/978-3-662-69306-3

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Contextualização
	Problema de Pesquisa
	Justificativa
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Resultados Esperados e Contribuições
	Método de Pesquisa
	Estrutura do Trabalho

	Fundamentação
	Fundamentação Teórica
	Requisitos de Software
	Qualidade em Requisitos de Software
	Large Language Models
	Engenharia de Prompts
	LLM-as-a-Judge

	Trabalhos Relacionados
	Lacuna de Pesquisa e a Contribuição deste Trabalho

	Síntese do Capítulo

	Configuração do Estudo
	Desenho da Pesquisa
	Coleta de Dados
	Geração de Requisitos
	Configuração dos Prompts
	Execução dos Prompts

	Avaliação dos Requisitos
	Métricas de Avaliação
	Avaliação Automatizada
	Prompt de Avaliação

	Estratégia de Análise dos Dados
	Síntese do Capítulo

	Resultados e Discussão
	Visão Geral da Qualidade dos Requisitos Gerados
	QP1: Análise da Eficácia dos Modelos de Linguagem
	QP2: Influência das Estratégias de Engenharia de Prompts
	Influência dos Prompts no Desempenho do o3-mini
	Influência dos Prompts no Desempenho do DeepSeek R1

	QP3: Características Qualitativas, Pontos Fortes e Fracos
	Achados Adicionais e Implicações Metodológicas
	Limitações e Ameaças à validade
	Limitações do Estudo
	Ameaças à Validade

	Síntese do Capítulo

	Conclusão
	Síntese dos Resultados e Respostas às Questões de Pesquisa
	Implicações do Estudo
	Implicações para a Pesquisa
	Implicações para a Prática

	Trabalhos Futuros

	Referências

