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MONITORAMENTO DO iNDICE DE VAZIOS EM UM MODELO DE BARRAGEM
EM ESCALA DE LABORATORIO UTILIZANDO SISMICA PASSIVA E
INTELIGENCIA ARTIFICIAL

RESUMO

As barragens desempenham um papel essencial no contexto mundial por possuirem
varias aplicagdes voltadas a manutencao dos recursos hidricos, tais como: controle de cheias,
armazenamento de dgua para abastecimento publico e irrigagao, além da geracdo de energia
elétrica e retencao de rejeitos de mineragdo. No entanto, seu alto Dano Potencial Associado
gera riscos a populagdes proximas, e no Brasil, a ligagdo com setores econdmicos-chave, como
agricultura e mineracdo, intensifica a necessidade de monitoramento continuo. Segundo o
Comite Internacional de Grandes Barragens, a maioria das barragens no mundo ¢ de terra, sendo
a erosao interna (piping) uma das principais causas de ruptura. No Brasil, os registros da
Agéncia Nacional de Aguas ndo detalham adequadamente as causas de rompimentos,
dificultando a comparagdo com estatisticas globais. A detec¢do precoce do piping ¢ complexa
com métodos tradicionais, mas técnicas geofisicas, como o monitoramento sismico, tém se
destacado na literatura como alternativas complementares para identificar descontinuidades de
forma qualitativa. Contudo, medidas quantitativas sdo essenciais para tomadas de decisdao na
engenharia geotécnica. Diante desse contexto, o presente trabalho fundamentou-se no uso de
monitoramento sismico para estabelecer uma relagdo com um parametro intermediario (indice
de vazios) relacionado a ocorréncia de piping em um modelo de barragem em escala de
laboratdrio, permitindo obter uma medida quantitativa do estado do modelo no tempo.
Inicialmente, cenarios estaticos definiram a assinatura sismica do material sob diferentes
condi¢des de compactagdo. Em seguida, um cendrio dindmico acompanhou a variagao temporal
do parametro intermediario. Modelos de Inteligéncia Artificial (IA) de classificacdo e regressao,
treinados com os dados estaticos, foram aplicados para prever a variacdo do indice de vazios
no cenario dinamico. Os resultados mostraram que os modelos de IA diferenciaram bem os
cendrios estaticos. No cendrio dindmico, a previsao da variacdo do pardmetro intermediario ndo

teve correspondéncia com as observagdes fisicas do modelo.

Palavras-chaves: barragens, erosdo interna (piping), monitoramento sismico, inteligéncia

artificial.
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VOID RATIO MONITORING IN A LABORATORY-SCALE DAM MODEL USING
PASSIVE SEISMICS AND ARTIFICIAL INTELLIGENCE
ABSTRACT

Dams play an essential role globally due to their various applications in electricity
generation, retention of mining waste and water resources management, such as flood control,
water storage for public supply and irrigation. However, their high Associated Potential
Damage poses risks to nearby populations, and in Brazil, their connection to key economic
sectors like agriculture and mining intensifies the need for continuous monitoring. According
to the International Commission on Large Dams, most dams worldwide are earth dams, with
internal erosion (piping) being one of the leading causes of failure. In Brazil, records from the
Agéncia Nacional de Aguas e Saneamento Basico do not adequately detail the causes of dam
failures, making comparisons with global statistics difficult. Early detection of piping is
complex with traditional methods, but geophysical techniques, such as seismic monitoring,
have been highlighted in the literature as complementary alternatives for qualitatively
identifying discontinuities. However, quantitative measurements are essential for decision-
making in geotechnical engineering. In this context, the present study focused on using seismic
monitoring to establish a relationship with an intermediate parameter (void ratio) linked to the
occurrence of piping in a laboratory-scale dam model, allowing for a quantitative measure of
the model's state over time. Initially, static scenarios defined the seismic signature of the
material under different compaction conditions. Subsequently, a dynamic scenario monitored
the temporal variation of the intermediate parameter. Artificial Intelligence (AI) models for
classification and regression, trained with the static data, were applied to predict the variation
of the void ratio in the dynamic scenario. The results showed that the Al models differentiated
the static scenarios well. In the dynamic scenario, the prediction of the intermediate

parameter's variation didn t correspond with the physical observations of the model.

Keywords: dams, internal erosion (piping), seismic monitoring, artificial intelligence.
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1. INTRODUCAO

Dada a importancia socioecondmica que as barragens de terra representam na
infraestrutura hidrica global, a garantia da seguranga e integridade estrutural dessas obras a
longo prazo ¢ fundamental. Essas estruturas ndo estdo isentas de riscos, e diversos modos de
falha podem comprometer sua estabilidade e levar a consequéncias potencialmente
catastroficas para as populacdes e 0 meio ambiente a jusante.

Segundo dados do cadastro mundial de barragens do Comité Internacional de Grandes
Barragens (ICOLD, 2020), 47% das barragens cadastradas tém como finalidade principal
armazenar dgua para irrigacao e 67% sao barragens de terra. As grandes barragens sdo aquelas
com altura minima de 15 m e cujo reservatdrio possui uma capacidade maior que 3 milhdes de
metros cubicos. No Brasil, esses dados constam no cadastro de barragens, que ¢ a base da
Politica Nacional de Seguranga de Barragens (PNSB). Desde sua criacdo em 2010, por meio da
Lei Federal n°® 12.334, até 2019, existem 19.388 barragens cadastradas, sendo 56% barragens
de terra (ANA, 2019). A PNSB tem como objetivo garantir o cumprimento das medidas de
seguranca de barragens e reduzir o risco de acidentes. As barragens que se submetem a essa
politica sdo as grandes barragens cujo Dano Potencial Associado (DPA) ¢ médio ou alto.

Segundo a estatistica geral de modos de ruptura de grandes barragens de terra,
apresentada no estudo de Foster ef al. (2000), que analisou a estatistica de acidentes de mais de
11.000 barragens, os modos de ruptura mais comuns sdo piping ¢ galgamento. O estudo se
concentrou especificamente em barragens de aterro, apresentando estatisticas que
frequentemente atribuem uma propor¢ao maior de falhas a erosdo interna (piping), responsavel
por cerca de 46% a 48% das rupturas de barragens de aterro, tornando-a a principal causa ou
uma causa de importancia comparavel ao galgamento, responsavel por aproximadamente 40%
a 46% das rupturas. Destes, o piping € o mais preocupante pois, por ser um processo de erosao
interna. A analise de incidentes e falhas ocorridas em barragens mostra que os primeiros sinais
da ocorréncia deste fendmeno s6 podem ser observados durante a fase de progressao, quando a
conexao entre jusante e montante ja estd bem desenvolvida. Nesta fase medidas de remediacao
se tornam mais caras e o risco de perda de vidas humanas ¢ maior.

No Brasil, a disponibilidade de dados detalhados sobre as causas dos acidentes e
incidentes ¢ inconsistente ao longo da série historica dos Relatorios de Seguranca de Barragens
(RSB), publicados anualmente pela Agéncia Nacional de Aguas e Saneamento Bésico (ANA).
O galgamento se destaca nos dados de 2023, sendo responsavel por 36% dos acidentes. A

associacao frequente de picos de eventos adversos com periodos de chuvas intensas e relatos



de transbordamento reforca a importancia do galgamento como um modo de falha relevante no
Brasil. Muitos dos casos de ruptura reportados no decorrer dos anos consta como causas
desconhecidas. A persisténcia desta categoria ao longo dos anos é um fator limitante
significativo, o que indica dificuldades na investigacdo das causas raizes dos eventos ou falhas
no processo de reporte dessas informacdes ao Sistema Nacional de Informacdes sobre
Seguranca de Barragens (SNISB).

A utilizacdo de métodos geofisicos para o monitoramento de barragens tem sido uma
alternativa cada vez mais explorada na literatura para estudar o fendmeno de piping. Estes
métodos, por serem nao-destrutivos, possuem a vantagem de serem facilmente aplicados em
barragens em operagdo, permitindo um monitoramento continuo e a possibilidade de
exploragdo de tecnologias como a Internet das Coisas (em inglés, Internet of Things — 10T) e
Inteligéncia Artificial (IA). Porém muitos dos trabalhos que utilizaram monitoramento sismico
ou acustico para estudar o desenvolvimento de piping em modelos reduzidos de laboratorio
fazem uso de analise qualitativa, estudando os efeitos que o processo de iniciagdo desse
fendmeno causa nas ondas monitoradas.

Neste cenario, o presente trabalho pretende utilizar o monitoramento sismico do ruido
ambiental para buscar uma medida de engenharia transiente, representada pelo indice de vazios,
que estabeleca uma relagdo direta entre o processo de desenvolvimento de piping em uma

simulacao em laboratorio e as alteragoes observadas nos dados monitorados.
1.1. OBJETIVOS

Obter uma medida transiente da variagdo de um pardmetro intermedidrio, que esteja
relacionado ao processo de desenvolvimento de piping em um modelo em escala de laboratério,
com o uso de monitoramento sismico e inteligéncia artificial (IA). Para atingir este objetivo
geral, propde-se os seguintes objetivos especificos:

e Definir um parametro intermedidrio que esteja relacionado ao processo de
desenvolvimento de piping e cuja variacao ¢ perceptivel aos sensores utilizados;

e Simular cendrios estaticos de piping com diferentes configuragdes do parametro
escolhido e condi¢des de contorno similares para monitorar a resposta do sensor em
cada configura¢do em um modelo de barragem em escala de laboratorio;

e Adaptar um algoritmo de IA para prever a varidvel escolhida em fung@o dos resultados

do monitoramento;



e Simular um cendrio dindmico de fluxo com variacdo do pardmetro escolhido e
monitorar a mudanga temporal da resposta do sensor as alteragdes ocorridas no
modelo em escala de laboratorio durante o desenvolvimento do piping;

e Analisar a medida transiente do parametro escolhido durante o cenario dinamico,

obtida utilizando o algoritmo de IA calibrado para as condicdes estaticas.
1.2. ESTRUTURA DA DISSERTACAO

Esta dissertagao estd subdivida em cinco capitulos, se¢des e itens. O Capitulo 1 apresenta
a introducdo, com os principais aspectos que motivam o presente estudo, destacando a
importancia das barragens principalmente no contexto economico mundial e a justificativa da
pesquisa, contemplando por fim os objetivos do estudo.

O Capitulo 2 refere-se 0 embasamento tedrico necessario para o estudo desenvolvido. Para
1SS0, possui cinco se¢des que contemplam o desenvolvimento de erosdo interna em barragens
de terra, os métodos de deteccao desse fendmeno utilizando sismica passiva, focando ainda em
estudos que utilizaram este método em modelos reduzidos de barragem. Em seguida sdo
apresentadas as metodologias de andlise de dados e o problema da identificacdo de anomalias
utilizando algoritmos de inteligéncia artificial.

O Capitulo 3 detalha os materiais utilizados, com destaque a regido de onde foi extraido o
material e suas caracteristicas. Em seguida ¢ apresentada a metodologia utilizada para
construcao, simula¢do, monitoramento e analise do desenvolvimento de piping em um modelo
em escala de laboratdrio.

O Capitulo 4 apresenta o processo de construgdo € monitoramento dos cenarios em
laboratério. Em seguida sdo apresentados os resultados do monitoramento dos cendrios
estaticos, com a andlise da diferenciacdo dos cendrios feita pelo algoritmo de Inteligéncia
Artificial adaptado. Por fim sdo apresentados os resultados do monitoramento do cenario
dindmico e a andlise do indice de vazios transiente.

O Capitulo 5 discute as principais conclusdes do estudo, com destaque aos resultados do
monitoramento dindmico e as sugestdes para pesquisas futuras, com o objetivo de tornar o
estudo proposto no presente trabalho mais robusto e aplicavel em situagdes reais.

Ao final do trabalho sdo apresentadas as referéncias utilizadas.



2. REFERENCIAL TEORICO

O presente capitulo apresenta o embasamento tedrico necessario para o estudo
desenvolvido, iniciando com os principios norteadores para o desenvolvimento de erosdo
interna em barragens de terra, explorando os tipos conhecidos na literatura, as formas como
estes mecanismos de ruptura se desenvolvem e como as propriedades do solo mudam nessas
situagoes. Em seguida ¢ abordado o uso de sismica passiva como método de monitoramento de
barragens e deteccao de piping, sendo explorada a sua aplicagdo na literatura e as tecnologias
comumente utilizadas. A aplicagdo desta metodologia em modelos reduzidos de barragem ¢
explorada na sequéncia, com destaque as caracteristicas dos modelos construidos e a forma de
inducdo do piping. Por fim sdo apresentadas as metodologias de andlise de dados para detecgao
de anomalia, explicando os atributos extraidos das ondas monitoradas para insercdo nos
modelos de Inteligéncia Artificial. Por fim ¢ discutido o problema de detec¢do de anomalias

usando IA e sdo destacados os modelos mais utilizados na literatura e seu funcionamento.
2.1. EROSAO INTERNA EM BARRAGENS DE TERRA

Fundamentalmente, a erosao interna em barragens de terra ocorre quando, durante o fluxo
da dgua no corpo do barramento, as particulas de solo sdo desagregadas e transportadas. Em
comparagdo com outros mecanismos de ruptura de barragens, esse ¢ particularmente perigoso
por comprometer a integridade da estrutura de forma muitas vezes indetectavel até que o
mecanismo esteja bem desenvolvido (Robbins & Griftiths, 2018).

A primeira condic¢ao para que haja erosdo interna € o carreamento das particulas. Bonelli
(2013) diferencia trés classes de solos vulneraveis a erosdo interna. Na primeira classe estdo os
solos ndo plasticos, como as areias e siltes, que sdo facilmente erodidos mas tendem a colapsar
quando saturados, ndo permitindo que uma abertura se mantenha. Na segunda classe estao os
solos plasticos, como as argilas, que sdo mais resistentes a erosao em fungao da coesdo entre as
particulas. Essa mesma coesdo permite que haja a formagdo de fissuras, mesmo quando
saturado, e carreamento das particulas quando as forcas de percolacdo sdo grandes o suficiente
para vencer a forcas de contato entre as particulas. Na terceira classe de solo estdo as argilas
dispersivas, que diferem das argilas plasticas em sua mineralogia. Neste tipo de solo a erosao
serd iniciada por fraturas sob pequenos gradientes hidraulicos. Se tratando de modelos de
barragem em laboratorio, a experiéncia corrobora com as observacdes dos autores, nos solos da
primeira classe a reproducao dos mecanismos de erosdo interna, mais especificamente na forma

de piping, sdo dificeis de reproduzir, em funcao do colapso do solo quando saturado.



O processo de erosdo interna em uma barragem depende de uma série de fatores, por isso
uma visao sistematica do problema ¢ importante para visualizar as diversas variaveis que estao
relacionadas com as varias fases de seu desenvolvimento. A Figura 1 apresenta uma arvore de
eventos das varias fases do desenvolvimento da erosdo interna. Tipicamente na literatura a
iniciacdo da erosdo, seja por erosdo regressiva, fuga concentrada, sufusao ou erosao de contato,
¢ descrita como o principio da erosao interna em barragens. Fell & Fry (2007) indicam que a
considera¢do do carregamento ¢ da localizagdo onde hd o inicio da erosdo sao importantes
condicionantes da iniciagdo. Em relagdo ao carregamento ao qual a barragem esta submetida,
os autores indicam que eventos de cheia extremamente raros tém pouca influéncia na
probabilidade anual de falha por erosdo interna, os eventos mais relevantes t€m um tempo de
recorréncia de até 100 anos. Os sismos também tém um papel importante, uma vez que falhas
causadas por terremotos contribuem significativamente para a frequéncia de rupturas
observadas em barragens. Muitos casos de erosdo interna também estdo relacionados com o
local onde o processo ¢ iniciado, que comumente ocorre em locais fissuras causadas por

recalque diferencial de estruturas internas da barragem ou no contato entre a fundacdo e o

nucleo.
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Figura 1 — Arvore de eventos representando as varias fases que precedem uma falha por
erosdo interna pelo aterro (Modificado de Fell & Fry, 2007).



A depender do tipo de processo que caracteriza a iniciacdo do piping, este pode ser

distinguido por quatro diferentes mecanismos (Figura 2):

L

II.

II1.

Iv.

Erosio regressiva: ocorre principalmente na fundagdo, podendo também se desenvolver
no aterro. O processo de erosdo se inicia em uma superficie livre no lado de jusante quando
ha a ocorréncia de gradientes hidraulicos altos, que causam a erosdo das particulas
carregando-as para cima e progredindo pela fundacao da barragem. Para isso acontecer, o
material erodido deve ter a capacidade de formar um tubo (pipe), dando origem ao
processo denominado piping. A presenca desse tipo de erosdo ¢ muitas vezes caracterizada
pelo aparecimento de borbulhamentos, comumente denominados sand boils (Bonelli,
2013).

Erosao por fuga concentrada: ocorre quando ha a formagao de uma rachadura, que pode
ser originada por varios fatores: fratura hidraulica causada por recalque diferencial durante
a construcdo ou operacao da barragem, colapso de regides mal compactadas (comum nas
proximidades com estruturas internas das barragens) ou a a¢do de animais, que também
pode contribuir com a ocorréncia desse tipo de erosdo. A progressao desse tipo de erosao
ndo ocorre caso o solo ndo consiga sustentar a rachadura ou haja mecanismos que evitam
a evolugdo da erosao (Bonelli, 2013).

Erosao por instabilidade interna: ocorre quando a percolagdo ¢ capaz de erodir
particulas finas em uma matriz de particulas mais grossas, podendo ser subdivido em
sufusdo (erosdo sem mudanga no volume) ou sufosdo (erosdo com mudanga de volume)
(Robbins & Griffiths, 2018).

Erosao de contato: ocorre no contato de material mais grosso com outro mais fino, o
fluxo paralelo ao contato com o material mais grosso carrega as particulas finas,
provocando a erosao (Bonelli, 2013).

Apos a iniciagdo, a evolugdo da erosdo interna ocorre por meio de trés processos que

culminam com a falha da estrutura:

L.

Continuac¢ao da erosao: Uma vez iniciada, a erosdo prossegue se o fluxo de agua for
capaz de continuar a destacar e transportar particulas e se ndo houver um impedimento
eficaz a jusante (como um filtro bem projetado) que retenha as particulas erodidas. A
depender da estrutura interna do barramento, a abertura inicial pode ser mantida ou

alargada.



II.  Progressiao: A zona de erosdo avanga progressivamente através do corpo da barragem ou
da fundagdo. Esta fase culmina com a formac¢do de um conduto continuo que conecta o
reservatorio a regido de jusante.

II.  Falha: Apds o estabelecimento do conduto, o fluxo concentrado através dele aumenta
significativamente. O aumento da velocidade do fluxo intensifica a erosdo das paredes,
causando seu rapido alargamento. Isso pode levar ao colapso do material e da estrutura do
barramento pela instabilidade do talude de jusante ou por galgamento, em funcao do

recalque da crista.
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Figura 2 — Principais mecanismos de iniciagdo da erosao interna (Modificado de Robbins &
Griffths, 2018)

Ao remover particulas finas do corpo do barramento a erosao interna provoca alteracdes
fundamentais nas propriedades fisicas do solo remanescente. Essas alteragdes, principalmente
no indice de vazios, porosidade e distribuicdo granulométrica, sdo a base para as mudangas

subsequentes nas propriedades hidraulicas e mecanicas.
2.2. MONITORAMENTO E DETECCAO DE EROSAO INTERNA

Tradicionalmente o monitoramento do desempenho da estrutura de um barramento face
as possiveis mudangas, seja elas no seu comportamento hidraulico ou mecanico, ¢ feito com o
uso de instrumentos como medidores de nivel d’4dgua, piezometros, células de tensdo total,
medidores de deslocamentos, medidores de recalques, inclindmetros, medidores de vazao, entre
outros. Cruz (1996), em seu livro que retne uma vasta experiéncia sobre a construcao de

barragens no Brasil destaca que, “considerando que acidentes de barragens de terra estdo



associados a erosdes externas (normalmente nao auscultadas por instrumentos) , ou a erosdes
internas, ou a instabilidades, e que a maioria das obras nao dispde de dispositivos para medi¢ao
das vazodes de percolacdo, e que os instrumentos estdo associados a ‘volumes de influéncia’
limitados, que muitas vezes ndo contém os locais mais criticos para seguranga, fica um tanto
reduzida a probabilidade de detectar por meio da instrumentagdo, de forma incipiente, a
ocorréncia de condi¢des adversas a seguranca”. Apesar da grande vantagem da possibilidade
de fornecer medidas diretas do comportamento do barramento, o autor destaca que, em face de
uma série de limitagdes associadas a cobertura espacial limitada, a instrumentagado tradicional
deve ser acompanhada de um plano eficiente de inspegdes visuais e de outros sistemas de
observacao.

Os métodos geofisicos t€ém o potencial de oferecer uma forma mais economica e
facilmente aplicavel de acompanhar o comportamento das barragens durante sua vida util de
forma ndo destrutiva. Neste cendrio os métodos geofisicos surgem como um método
complementar ao tradicionalmente utilizado na engenharia de barragens. Sua aplicacdo vem
sendo feita das mais diversas formas, mas principalmente para avaliar mudangas que ocorrem
durante a operacao da barragem, seja no corpo ou na fundagdo. Neste cendrio, um melhor
entendimento da conexdo entre os resultados do monitoramento geofisico e a seu significado
relacionado a seguranga de barragens pode ajudar os engenheiros responsaveis por tais
estruturas a adquirir informagdes importantes para tomadas de decisao (Adamo et al., 2020).

Estes métodos levam em consideragdo que a maioria dos so6lidos emitem um baixo nivel
de sinais sismicos/acusticos quando submetidos a tensdes ou quando sofrem deformacdes e
uma variedade de termos € utilizada por varias disciplinas para descrever este fenomeno, como
emissao acustica, atividade microssismica, atividade sismico-acustica, entre outros (Hardy Jr.,
2003). A Figura 3 ilustra a forma como duas técnicas de monitoramento comumente utilizadas
no meio geotécnico funcionam. Na primeira sdo utilizados dois transdutores: um transmissor
que gera o sinal que sera transmitido pelo material e; um receptor, que monitora as mudancas
no sinal. Qualquer mudanga nas caracteristicas do sinal monitorado ocorre em fungdo de
alteragdes no meio monitorado. Na segunda, ¢ utilizado somente um transdutor receptor,
podendo ser um ou mais, que monitora sinais acusticos gerados no proprio material,
denominado monitoramento passivo. Qualquer que seja a técnica de monitoramento utilizada,
¢ importante destacar que se trata de um monitoramento indireto, que ndo permite determinar
diretamente as propriedades do material analisado, somente monitorando alteragdes no sinal
em funcdo de mudancas no material. Essas mudancas sdo associadas as variagdes nas

propriedades mecanicas.



Em relacdo as fontes que geram os sinais monitorados de forma passiva, elas estdo
relacionadas aos processos de deformagdao dos materiais. Esses processos ocorrem no nivel
macroscopico principalmente com a formagdo de fissuras, j4 no nivel microscopico estdo
relacionadas a pequenos deslocamentos, microfissuras e também a alteragcdes na distribui¢ao

granulométrica (Hardy Jr., 2003).
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Transmissor
Receptor
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Figura 3 — Técnicas de monitoramento actstico utilizada para o monitoramento de
materiais/estruturas geologicas: (a) Método sonico; (b) Métodos sismicos/actisticos
(Modificado de Hardy Jr., 2003).

Usualmente, nos trabalhos que constam na literatura, busca-se coletar dados que
reflitam, de maneira indireta e ndo destrutiva, os fendmenos de erosdo interna em barragens.
Nestes casos, a qualidade, quantidade e continuidade de dados sdo questdes importantes. Os
métodos ndo destrutivos inspecionam falhas que sao invisiveis aos olhos devido ao seu tamanho
ou localizagdo. A aplicagdo destes métodos como ferramentas de diagnostico € geralmente
baseada na maximizagdo da seguranga e minimizagdo dos custos associados aos esfor¢os de
implementa¢do do monitoramento e mitiga¢do dos possiveis danos ao barramento.

De maneira mais geral, os métodos ndo destrutivos para detec¢do precoce de piping
buscam detectar os vazios no corpo da barragem, seja pela auséncia de solo, seja pela presenca
de agua nos caminhos em formagdo. Para o primeiro caso, métodos acusticos ja tiveram uso
reportado na literatura. Lu & Wilson (2012) utilizaram tanto técnicas ativas quando passivas de

monitoramento acustico para estudar a evolugdo da erosao interna em laboratorio. Os resultados



obtidos pelos autores mostraram que, no monitoramento ativo, a variacdo da velocidade das
ondas P monitoradas refletiu a evolugdo do processo de erosdo interna, o aumento das
poropressdes positivas e a saturacao do solo adjacente ao tubo. J4 no monitoramento passivo, o
desenvolvimento do piping pode ser identificado ao avaliar as alteragcdes nos dominios do
tempo e da frequéncia e nos contrastes dos espectrogramas.

Rittgers et al. (2015) propdem um novo método para combinar as informagdes de sinais
elétricos e sismicos passivos para detectar, localizar e monitorar alteragdes no comportamento
hidraulico e mecanico de meios porosos por meio de um experimento em escala de campo. As
alteracdes simuladas pelas alteracdes estdo relacionadas ao desenvolvimento de um caminho
de fluxo preferencial no corpo da barragem, associado ao desenvolvimento de piping. Os
autores apresentaram um algoritmo de busca em malha 4D para a localizagdo de emissoes
acustica no tempo e no espago. Os resultados dessa localizagdo foram utilizados para construir
um conjunto de pesos para um modelo invariante do tempo, mas espacialmente variavel. Os
resultados obtidos pelos autores por meio da combinagao das duas técnicas de monitoramento
mostram-se consistentes em termos da observagao do fluxo de agua subterraneo em barragens.

Planes et al. (2016) utilizaram interferometria sismica passiva para monitorar as
mudangas nos barramentos devido a erosdes internas. Em resumo, os autores detectaram
mudangas nas velocidades das ondas sonoras advindas do proprio ambiente quando passavam
pelo barramento integro e comprometido. Os resultados mostraram redugdes de at¢ 20% na
velocidade de onda de superficie a medida que a erosdo interna progrediu. Os autores destacam
ainda que algumas variagdes locais da velocidade mostraram boa correlagdo com variagdes na
poropressao.

Fisher et al. (2016) investigaram técnicas para monitoramento de integridade de
barragens de terra e deteccdo automatica de eventos andmalos em dados sismicos passivos
detectados por meio de geofones. Desenvolveram um novo fluxo de trabalho orientado a dados
que usa inteligéncia artificial (Machine Learning) e dados geofisicos coletados por sensores
localizados na superficie do barramento para identificar eventos de erosdo interna.

Parekh (2016) discute a aplicacdo de métodos geofisicos, por meio de uma combinagao
de métodos acusticos e elétricos para detecgdo € monitoramento continuo da iniciagao da erosao
interna subsuperficial em seus estdgios iniciais. O autor investiga a adequacdo da emissdo
acustica passiva, do auto potencial e da tomografia cross-hole para adequagdo como técnicas
de monitoramento a longo prazo, remotas € continuas para erosdo interna e rachaduras de

barragens de aterro.
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Rahimi et al. (2019) utilizaram ondas sismicas de superficie resultantes de ensaios
realizados em uma barragem no Arkansas que historicamente apresentava problemas
significativos de infiltragdo e erosdo interna, para detectar locais de infiltragdo para fins de
remediacdo e mapeamento. Os caminhos de infiltracdo na barragem foram detectados pela
comparagao das medidas de resistividade obtidas em dois periodos diferentes, mostrando-se um
método util para localizar potenciais zonas frageis de estruturas de maneira economica e rapida.

Ozelim et al. (2022) utilizaram dados actsticos de um modelo reduzido em laboratorio
que simulava uma descontinuidade no corpo do barramento, para discutir as condi¢des da
estrutura e a deteccao da presenca da descontinuidade com o uso de algoritmos de inteligéncia
artificial supervisionados. Os dados do monitoramento foram pré-processados para reduzir sua
dimensionalidade utilizando os 3 parametros de Hjorth. Esses parametros sao calculados a partir
dos dados de monitoramento com o objetivo de diminuir a dimensionalidade e sdo eles:
atividade, mobilidade e complexidade. A metodologia desenvolvida pelos autores permitiu
observar que os parametros de mobilidade e complexidade estdo relacionados com o nivel de
homogeneidade da barragem, enquanto o parametro de mobilidade estava relacionado com a
presenca de fluxo.

Os trabalhos apresentados até o momento utilizaram o monitoramento geofisico com o
objetivo de observar que as alteragdes causadas pelo desenvolvimento de piping nas estruturas
eram evidenciadas por alteragdes nos sinais sismicos/acusticos monitorados. Este tipo de
abordagem destaca a aplicabilidade do método. Na pratica da engenharia de barragens, a
obtencdo de parametros que reflitam de forma mais direta as altera¢cdes monitoradas torna-se
interessante por permitir traduzir essas observacdes em medidas de engenharia. Outras
aplicagdes para utilizagdo de métodos geofisicos com estes objetivos podem ser encontradas na
literatura. Strahser et al. (2011) discutem a utilizacao de sinais sismoelétricos induzidos pela
propagacao de ondas sismicas para analisar variagcdes no teor de umidade do solo. Neste caso,
os autores utilizaram um intervalo relativamente baixo de resisténcia, correspondendo a altos
valores de grau de saturacdo.

Pirogova et al. (2019) discutem a utilizacao de métodos sismicos de alta resolugao para
estimar propriedades elasticas de sedimentos depositados nos mares. Para isso, foi utilizado um
método de inversdo acustica denominado AVA, baseado nas equacdes ndo-lineares de
Zoeppritz, que relacionam os coeficientes de refracdo e reflexdo de ondas para diferentes
angulos de incidéncia. Os resultados mostram que € possivel analisar ndo somente as

propriedades acusticas como também as propriedades elasticas dos solos analisados.
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Uyanik (2019) desenvolveu um estudo em um deposito de solo predominantemente
argiloso em que foi feita a estimativa da porosidade dos solos utilizando as velocidades das
ondas P e S monitoradas. No estudo varios parametros eldsticos foram calculados, como o
modulo de compressibilidade, o mddulo de cisalhamento e o coeficiente de Poisson, por meio
do método de refracao sismica. Foram realizados ensaios de laboratério nas amostras retiradas
e alguns dos parametros obtidos foram utilizados para determinar relagdes empiricas com o0s
parametros monitorados. Os resultados mostraram que, além de ser possivel relacionar o
monitoramento a variacao da porosidade, a mudanga na velocidade de onda S esta diretamente
relacionada ao grau de rigidez do solo.

Minakov & Yarushina (2021) propdoem um modelo elastoplastico com base em
resultados de monitoramento sismico e acustico. Os autores indicam que estudos laboratoriais
recentes em emissdes acusticas em rochas ajudam a conectar os componentes do tensor do
momento sismico com processos de falha. Os autores propdem uma nova representacdo de
fontes sismicas derivadas da lei de fluxo plastico nao associativa, que ajuda a prever o padrao
de fratura localizada e resposta sismica correspondente. Para isso, foi utilizada uma formulagdo
incremental quase-estatica, onde as deformagdes plasticas foram incorporadas com uma parte
da forca de corpo efetiva na equagdo de propagagao de onda.

Conforme indicado por Yousefpour & Mojtahedi (2023), a relacdo entre erosdo interna
e os sinais sismicos ¢ influenciada por diversos fatores como o tipo de solo, as condigdes de
tensdo e saturacao. Os autores indicam que outros fatores como, microfissuras, 0 movimento
de particulas do solo e alteracdes na poropressdo podem alterar as caracteristicas do sinal
sismico. A hipotese levantada no trabalho ¢ de que mudangas nos padrdes dentro dos sinais
sismicos podem fornecer conhecimento sobre os processos que causam o inicio da erosao
interna em barragens de terra, destacando a possibilidade de relacionar diretamente os

resultados do monitoramento com as altera¢des ocorridas.

2.3. MODELOS REDUZIDOS DE BARRAGEM PARA MONITORAMENTO DE
PIPING EM LABORATORIO

Diversos trabalhos na literatura fizeram o uso de modelos reduzidos para simular piping
em laboratorio ou em campo. Nesta secdo serdo exploradas as dimensdes dos modelos
construidos, os materiais utilizados na constru¢do, a forma como foi induzido o piping, o tipo

de sensor utilizado e o estado do modelo apds o ensaio.
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No experimento conduzido por Fisher et al. (2017a) foi construida uma estrutura com
4,27m de comprimento ¢ 0,91m de altura. Para induzir o piping, uma barra com 48,26
centimetros foi inserida abaixo da crista. Apds o enchimento e estabilizagdo do fluxo, a barra
foi retirada do modelo para simular o fendmeno. Para o monitoramento do modelo foram

utilizados geofones de 500 Hz. O resultado da erosdo do modelo mostra uma quantidade

significativa de material carreado, conforme demonstrado na Figura 4.

T ~ o m 2 L
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' Resultado da erosao
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Figura 4 — Estrutura construida para simular o piping em laboratorio: (a) se¢cdo transversal
apods a remoc¢ao da barra; (b) resultado da simulacao (Modificado de Fisher et al., 2017a).

O modelo em escala de laboratorio de Planes ef al. (2016) foi construido em um canal
trapezoidal com 21,3m de comprimento e 6,10m de largura (Figura 5a). O material utilizado na
construc¢do do aterro foi uma areia siltosa de baixa plasticidade. O solo foi compactado a uma
densidade de 0,5% da densidade maxima utilizando o Proctor Normal na umidade 6tima. Os

primeiros 30cm do aterro foram compactados a 98% da densidade maxima, enquanto os tltimos
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36cm foram compactados a 87% da densidade méxima. Durante a constru¢do, uma barra com
1,3cm de diametro foi inserida no corpo do barramento 25cm abaixo da crista e se estendendo
do reservatorio a face de jusante (Figura 5b). Para monitorar a estrutura, dez geofones de
componente vertical foram posicionados na crista do aterro com 6lcm de espagamento. Os
geofones utilizados possuiam uma largura de banda de 20 a 400 Hz. A evolucdo do piping
induzido pelos autores pode ser observado na Figura 5c¢, onde ¢ possivel notar que ha uma

quantidade consideravel de material carreado durante o ensaio.
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Figura 5 — Modelo em escala de laboratorio para simulagdo de piping: (a) vista frontal e; (b)
secdo transversal; (c) resultado da erosdo apds 0,5h, 1,5h, 2,5h, 3,5h e 5h apo6s iniciacdo do
piping (Modificado de Plangs et al., 2016).
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No ensaio em larga escala conduzido por Hanson ef al. (2010) foi montada uma
barragem com 1,3m de altura, 1,8m de largura da crista e 9,6m de largura da base. Para induzir
o piping foi utilizada uma barra metalica de 40mm de didmetro. Assim que o nivel d’4dgua se
manteve constante no reservatorio, a barra metdlica foi removida e iniciou-se o processo de
carreamento do material. A evolugdo da descontinuidade induzida na barragem est4 apresentada

na Figura 6.

Figura 6 — Evolucdo da ruptura do modelo de barragem em larga escala (Hanson et al., 2010).
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Hickey et al. (2009) montaram um ensaio em larga escala para monitoramento de erosao
interna utilizando sismica passiva. O aterro montado pelos autores possuiu 12m de
comprimento ¢ 1,25m de altura, construido ao longo de um canal controlado. A compactagao
do material foi feita em uma série de 11 camadas de aproximadamente 11cm de espessura.
Durante o processo de compactagdo um tubo metalico foi introduzido no corpo do barramento,
sendo removido posteriormente para criar um canal inicial e iniciar o processo de erosdao. As
caracteristicas do material utilizado na constru¢do estdo apresentadas na Figura 7a. Apos a
remocao do tubo, a evolugdo da erosdo induzida no barramento foi consideravel, conforme pode
ser observado na Figura 7b. O monitoramento do processo de erosdo foi feito com o uso de

acelerOmetros.

Teste de erosdo interna
Classificagdo do solo: CL
21% Areia; 44% Silte; 35%
Argila (0,005 mm)

32 | tndice de plasticidade: 13-15

Umidade média: 15,44%
Densidade seca média: 1,778
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Figura 7 — Modelo de barragem para simulagdo de piping: (a) se¢do transversal; (b) resultado
da erosdo (Modificado de Hickey et al., 2009).
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Os resultados dos estudos que constam na literatura mostram a versatilidade dos
métodos geofisicos para monitoramento de alteragdes em estruturas geotécnicas. Na maioria
dos casos, em fun¢do do volume de dados, o uso da inteligéncia artificial para andlise dos
resultados do monitoramento se mostra como a alternativa mais explorada, principalmente nos
casos em que se procura encontrar padroes de comportamento para um certo conjunto de dados.
Esse uso deve ser precedido pela preparacdo dos dados. No caso de dados proveniente de
monitoramento sismico/acustico essa preparacao ¢ feita por meio da extragdo dos atributos que

representam a configurag¢do do sinal monitorado em cada instante de tempo.
2.4. PREPARACAO DE DADOS SISMICOS PARA DETECCAO DE ANOMALIAS

A escolha do modelo de Machine Learning mais eficiente para a previsao de anomalias
no meio poroso esta condicionada ao tratamento prévio dos sinais acusticos pautado, portanto,
no processamento dos dados de entrada e na extragdo dos seus principais atributos, incluindo,
sua organizacdo na forma vetorial. A extracao dos atributos ¢ uma etapa de processamento
essencial tanto para reconhecimento de padrdes quanto para as tarefas de aprendizado de
maquina. Os dados de 4udio sdo intrinsecamente volumosos, portanto, a reducdo da taxa de
dados se faz necessaria. Assim, com essa etapa, os algoritmos de andlise ficam condicionados
a uma quantidade pequena de recursos que representam as propriedades dos sinais acusticos
captados originalmente (Giannkopoulos & Pikrakis, 2014). Caso os atributos nao sejam
adequadamente selecionados nessa fase, ha comprometimento de todas as etapas subsequentes.
Os principais atributos das ondas actsticas podem ser categorizados em relagao ao seu dominio,
isto ¢, em fungdo do tempo e da frequéncia.

De modo geral, essas propriedades de dominio do tempo sdo extraidas diretamente dos
sinais acusticos, sendo elas:

e Envelope de Amplitude (Amplitude Envelope - AE): representa o volume do sinal,
por meio da extracdo do valor maximo de amplitude de cada amostra contida em
uma janela de analise (Albuquerque et al., 2022). Os autores indicam que amplitudes
elevadas sdo indicativas de eventos barulhentos, como rachaduras ou piping. Tal

atributo ¢ calculado por meio da equagdo (1).
(t+1)(K 1)
AE, = max s(k) (1)

k=t.K

Onde, K ¢ o tamanho da janela de analise e s(k) simboliza a amplitude da amostra k.
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e Energia Quadrada Média (Root-Mean Square Energy - RMS): pode ser obtida por
meio da equacdo (2) e ¢ similar ao envelope de amplitude, porém ¢ menos sensivel
aos valores destoantes de cada amostra no sinal acustico. Representa, portanto, uma
“altura” e detecta diferentes tipos de ruido em cada parte do sinal (Albuquerque et
al., 2022). Os autores indicam que o RMS, assim como a AE, ¢ uma propriedade de
sinais acusticos importante para os eventos de erosdo e fissura¢do, por ser um
indicativo dos barulhos, como do fluxo de dgua ou no desenvolvimento de

rachaduras ou piping.

1 (t+1)(K-1) ,
RMS, = = > s(k) 2)

k=t.K

e Taxa de cruzamento com o zero (Zero-Crossing Rate - ZCR): diz respeito ao nimero
de vezes que o sinal muda de valor, de positivo para negativo, indicando a
quantidade de vezes que este cruza o eixo x. E calculado por meio da equagio (3) e
pode ser interpretado como uma medida de quio ruidoso € o sinal (Giannkopoulos

& Pikrakis, 2014). Os autores indicam que esse parametro reflete de certa forma, as

caracteristicas espectrais do sinal.

(t+1)(K-1)
ZCR =3 > |sinal(s(k)) - sinal(s(k +1))| 3)

k=t.K

Onde, sinal(s(k)) refere-se ao sinal da funcdo s(k) atribuido de acordo com os valores de
amplitude, isto &,
Ls(k)>0
sinal(s(k))=<-1,s(k)<0
0,s(k)=0

Os atributos do dominio da frequéncia revelam importantes caracteristicas do sinal
acustico, a maioria dos atributos mais importantes para andlise destes sinais estdo neste
dominio. Estes sdo obtidos por meio da transformacdo do dado (originalmente representado no
dominio do tempo) para o dominio da frequéncia (espectral) mediante transformacdes ou
autocorrelacdes, sendo que as ferramentas de transformagao mais usuais sdo: a Transformada
Discreta de Fourier (TDF) e a Transformada Discreta de Cosseno (TDC) (Mitrovic et al., 2010).
Dentre as propriedades do dominio da frequéncia, destaca-se:

e Centroide espectral: representa uma medida da posicdo e da forma do espectro. O

centroide espectral ¢ o centro de “gravidade” do espectro (Giannkopoulos &
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Pikrakis, 2014). O valor do centroide C; no i-ésimo frame de dudio ¢ definida

conforme apresentado na equacao (4):

7 “4)

Onde, Xi(k), k=1, ..., WrL ¢ a magnitude dos coeficientes da TDF no i-¢simo frame de dudio.
E WrL € o nimero de coeficientes utilizados.

e Rolloff espectral: ¢ definido como a frequéncia abaixo da qual uma certa
porcentagem da distribuicdo de magnitude do espectro estd concentrada,
normalmente refere-se a porcentagens por volta de 90% (Giannkopoulos & Pikrakis,
2014). Se o m-¢ésino coeficiente da TDF corresponde ao rolloff espectral do i-ésimo
frame, entdo a equagdo (5) ¢ satisfeita.

WFL

> X () =C X, (b) ®

Outros atributos que podem ser extraidos do dominio da frequéncia sdo a Razdo de
Energia de Banda, a Largura de Banda Espectral, a Planicidade espectral, que se refere a
quantificagdo do quanto o sinal € parecido com um ruido ou se possui uma tonicidade associada,
e os coeficientes do Cepstrum de Frequéncia Mel (Mel-Frequency Cepstrum Coefficients -
MFCCs), muito populares para o reconhecimento da voz. Os MFCCs sdo um tipo cepstral de
representacao do sinal acustico, no qual as bandas de frequéncia sdo distribuidas de acordo com
a escala Mel (Giannkopoulos & Pikrakis, 2014). Os MFCCs sao obtidos por meio da aplicagao
da Transformada Discreta de Cosseno (TDC) que resultam em coeficientes relacionados a parte

real da Transformada de Fourier.
2.5. INTELIGENCIA ARTFICIAL PARA DETECCAO DE ANOMALIAS

Apo6s a preparagao dos dados, um caminho comumente adota na literatura ¢ a insercao
destes em um modelo de IA para detec¢do de anomalias que possam ser indicativas da
ocorréncia de piping. Entende-se como detec¢ao de anomalias a procura por instancias ou
padrdes nos dados que apresentam um desvio em relagdo ao comportamento normal esperado.
Ferramentas para deteccdo de anomalias sdo interessantes pois elas normalmente indicam

informacodes uteis para tomadas de decisdo (Singh, 2017). A detec¢dao de fraude em sistemas
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financeiros e falhas em sistemas industriais sdo algumas das aplicagdes de algoritmos de
detec¢ao de anomalias encontradas na literatura.

Um aspecto importante da detec¢do de anomalias refere-se a natureza da anomalia que se
deseja detectar. Chandola et al. (2009) classificam as anomalias em trés tipos:

e Anomalias pontuais: caso uma Unica instancia do dado possa ser considerada andmala
quando comparada com o os outros. E o tipo mais simples de anomalia, sendo o foco na
maioria das pesquisas;

e Anomalias contextuais (ou anomalias condicionais): caso uma instancia de dado possa ser
considerada andmala em um contexto especifico, mas nao fora dele;

e Anomalias coletivas: caso uma colecdo de dados relacionados possa ser considerada
andmala em relagdo ao banco de dados total. Dados individuais dentro de uma anomalia
coletiva podem ndo ser uma anomalia quando analisados sozinhos, mas a sua ocorréncia
em grupo ¢ considerada andmala.

Uma forma comum de lidar com um problema de detec¢ao de anomalia ¢ definir uma
regido que representa o comportamento normal e classificar que os dados que ndo se encaixam
nesse comportamento como anormais. O grande problema dessa abordagem ¢ definir o que € o
comportamento normal, determinar um limite que comporte todas as regides do que pode ser
considerado normal ¢ extremamente dificil, adicionalmente os limites que definem o
comportamento como andmalo muitas vezes ndo ¢ preciso, podendo um dado normal ser
classificado como andmalo ou vice-versa (Chandola ef al., 2009).

A aplicacdo dessas abordagens no contexto da deteccdo de piping traz uma discussao
interessante, uma vez que determinar a ocorréncia do fendmeno utilizando algoritmos ndo
supervisionados ¢ uma tarefa complicada, pois deve-se conhecer o que significa o
comportamento normal do sensor para estabelecer os cenarios com anomalia. No cenario atual,
tanto no Brasil como no mundo, onde existem muitas barragens em operagdo, o conhecimento
do comportamento sem anomalia pode ser dificil de determinar. Desta forma, uma maneira de
abordar o problema seria caracterizar o comportamento sismico/acustico esperado da barragem.
Nos casos em que ¢ possivel conhecer o comportamento esperado para cada situagdo, seja com
ou sem anomalia, podem ser utilizados algoritmos de classificagdo ou regressao para avaliagao
de novos dados.

A classificagdo e a regressao sao as duas principais categorias de tarefas no aprendizado
supervisionado (Lee, 2025a). Embora ambas utilizem dados rotulados para treinar modelos,
seus objetivos e os tipos de problemas que resolvem sdo fundamentalmente diferentes.

A classificagdo se ocupa de prever resultados discretos ou categdricos. Exemplos classicos
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incluem a identificag@o de e-mails como "spam" ou "ndo spam", o diagndstico de uma condigao

médica como "maligna" ou "benigna", ou a categorizacdo de imagens em classes como "cado",

"gato" ou "carro". As tarefas de classificagdo podem ser subdivididas em:

Classificacdo Bindria: Onde existem apenas duas categorias de saida possiveis
(fraude/nao fraude).

Classificacdo Multiclasse: Onde existem mais de duas categorias mutuamente
exclusivas (classificar a raca de um cdo).

Classificacdo Multirrotulo: Onde uma tnica instancia pode ser associada a multiplas

categorias simultaneamente (rotular um filme como "acao" e "comédia").

Por outro lado, a regressdo visa prever resultados continuos ou valores numéricos.

Exemplos incluem a estimativa do pre¢o de uma casa com base em suas caracteristicas, a

previsdo da pressdo arterial de um paciente ou a proje¢do do valor de uma agao.

Se tratando de uma sériec de diferentes modelos de classificacdo, a avaliacdo do

desempenho de cada um ¢ tao crucial quanto seu treinamento, e as métricas utilizadas diferem

significativamente entre classificagdo e regressao, refletindo seus objetivos distintos. Para a

classificagdo, as métricas avaliam quao bem o modelo consegue separar as classes. Géron

(2019) descreve as principais métricas, que incluem:

Acurécia: representa a proporcao de previsdes corretas sobre o total. Embora intuitiva,
pode ser enganosa em conjuntos de dados desbalanceados.

Precisao: representa de todas as previsdes positivas, quantas estavam corretas, sendo
calculada conforme indicado na equacao 6. Onde, TP refere-se aos verdadeiros positivos
e FP aos falsos positivos.

Precisdo = L (6)
P+ FP

Recall ou sensibilidade: representa de todos os positivos reais, quantos foram
corretamente identificados, sendo calculado conforme apresentado na equagdo 7, onde

FN refere-se aos falsos negativos.

Recall = P (7
TP+ FN

F1-Score: representa a média harmonica da precisdo e do recall, fornecendo um
equilibrio entre os dois e sendo calculado conforme apresentado na equagao 8.

precisdo - recall

F1=2 (8)

precisdo +recall
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Outra forma de representar os resultados de um algoritmo de classificacdo ¢ por meio da

matriz de confusdo, uma tabela que detalha os verdadeiros positivos, verdadeiros negativos,

falsos positivos e falsos negativos, fornecendo uma visao geral dos erros do modelo.

Para a regressao, as métricas medem a proximidade entre os valores previstos e os valores

reais, conforme descrito por (Lee, 2025a):

Erro Quadratico Médio (MSE): representa a média dos quadrados das diferencas entre
os valores previstos e reais, penalizando erros maiores de forma mais significativa. O
MSE ¢ calculado por meio da equagdo 9.
I ¢ A N2
MSE=—3"(3,~5,) ©)
i=1

Raiz do Erro Quadratico Médio (RMSE): representa a raiz quadrada do MSE,
retornando a métrica de erro para a mesma escala dos dados originais.
Erro Absoluto Médio (MAE): representa a média das diferengas absolutas, sendo menos

sensivel a outliers do que o MSE. O MAE ¢ calculado por meio da equagdo 10.

MAE=1Y

i=l1

Vi _)/}i (10)

Coeficiente de Determinagdo (R?): Indica a propor¢do da varidncia na variavel
dependente que ¢ previsivel a partir das variaveis independentes. Varia de 0 a 1, com
valores mais altos indicando um melhor ajuste. O R? ¢ calculado por meio da equagao

I1.

PR MO

> (3 -y (h

A escolha da métrica de avaliagdo apropriada ndo ¢ apenas uma decisao técnica, mas um

reflexo direto dos objetivos ou do contexto da aplicagao. As formulas matematicas para precisao

e recall, por exemplo, ndo capturam o custo assimétrico dos diferentes tipos de erro no mundo

real. Em um cendrio de diagndstico médico, como a detec¢do de cancer, um falso negativo (nao

detectar uma doenca existente) tem consequéncias muito mais graves do que um falso positivo

(sugerir uma doenga que nao existe, levando a mais exames). Nesse contexto, o recall (a

capacidade de identificar todos os casos positivos reais) € priorizado, mesmo que isso signifique

uma precisdo menor. Em contraste, em um sistema de filtragem de spam, um falso positivo (um

e-mail importante ser classificado como spam) ¢ frequentemente considerado mais

problematico do que um falso negativo (um e-mail de spam chegar a caixa de entrada). Aqui, a

precisdo € a métrica mais critica. Portanto, a avaliagdo de um modelo ¢ indissociavel da anélise
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do custo do erro em seu dominio de aplicacdo, transformando a sele¢do de métricas em uma

traducao de prioridades estratégicas para um critério quantificavel.

Dentre os algoritmos de classificacdo comumente utilizados, cita-se:

Regressao Logistica (Logistic Regression): tem como funcdo modelar a probabilidade
de um resultado categorico, tipicamente binario. O desafio central que esse tipo de
algoritmo resolve ¢ como usar uma fungdo linear para prever uma probabilidade. A
solu¢do nao € modelar a probabilidade diretamente, mas sim uma transformacado dela
por meio do logaritmo da razdo de chances. A principal vantagem desse tipo de
algoritmo esta relacionada a sua simplicidade, enquanto a sua principal limitagdo esta
relacionada a hipdtese de que hd uma relacdo linear entre as entradas no logaritmo da
razao de chances, o que nem sempre ¢ verdade. Além disso, o modelo ¢ sensivel a
ouliers e a alta correlacdo entre as variaveis de entrada (Lee, 2025b).

Maquinas de Vetores de Suporte (Support Vector Machines - SVM): sdo algoritmos
baseados na teoria de aprendizagem estatistica de Vapnik-Cherbonenkis e no principio
de minimizagao do risco estrutural (Bhavsar & Panchal, 2012). Conforme descrito pelos
autores, o objetivo central do SVM ¢ identificar um hiperplano no espaco de dados de
entrada que separe os dados de diferentes classes da melhor forma possivel. A maior
forga do SVM reside em sua capacidade de lidar com dados nao linearmente separaveis
por meio do kernel trick. Em vez de tentar ajustar uma fronteira ndo linear no espago
original, a SVM utiliza uma fun¢do de kernel (polinomial, Fun¢do de Base Radial ou
Sigmoide) para mapear os dados para um espago de dimensdao muito maior. A ideia ¢
que, nesse espago de dimensao superior, os dados se tornem linearmente separaveis. A
principal desvantagem deste método esta relacionada ao custo computacional associado.
Gradiente Descendente Estocastico (Stochastic Gradient Descent - SGD): representa
uma abordagem simples e eficaz para o treinamento de modelos lineares. Sua aplicagdo
¢ ideal em cendrios que utilizam fun¢des de perda convexas, como a Regressdo
Logistica e as Maquinas de Vetores de Suporte lineares. Em sua esséncia, o SGD ¢
estritamente uma técnica de otimizacao, € ndo uma familia especifica de modelos de
aprendizado de maquina. Trata-se apenas do método utilizado para treinar um modelo
(Scikit-learn, 2025).

Naive-Bayes: algoritmo fundamentado no Teorema de Bayes, que retorna a
probabilidade de um evento com base no conhecimento prévio de condi¢des que podem

estar relacionadas a este evento. As vantagens desse algoritmo estdo associadas a sua
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simplicidade e de que ele ndo requer uma grande quantidade de dados para estimar as
probabilidades. A maior desvantagem deste tipo de algoritmo esté associada a suposicao
de independéncia entre as variaveis (IBM, 2025a).

K-Nearest Neighbors (KNN): é algoritmo simples que opera sob a suposi¢cdo de que
pontos de dados semelhantes existem em proximidade uns dos outros. Ao contrario da
maioria dos outros algoritmos, o kNN ndo passa por uma fase de treinamento explicita
para aprender um modelo, em vez disso o algoritmo memoriza todo o conjunto de dados
de treinamento e calcula a distancia entre o ponto de consulta e todos os outros pontos
nesse conjunto de dados. Em seguida o algoritmo identifica o ‘k’ pontos mais proximos
e a nova amostra ¢ atribuida a classe que ¢ mais frequente entre esses ‘k’ vizinhos. A
principal vantagem deste tipo de algoritmo esté relacionada a sua simplicidade, porém
em espacgos de alta dimensdo o conceito de proximidade se torna menos significativo,
pois todos os pontos tendem a estar distantes um dos outros, degradando
consideravelmente o desempenho do algoritmo, sendo sua principal desvantagem (IBM,
2025d).

Arvores de decisdo (Decision Trees): ¢ um algoritmo ndo paramétrico que se destaca
por sua estrutura intuitiva e sua capacidade de gerar regras de decisao simples. O

N A

algoritmo funciona como uma série de regras “se-entao” a partir das features dos dados,
que sdo organizadas em uma estrutura hierarquica semelhante a uma arvore. As raizes
da arvore atuam como a entrada de dados e a cada n6 de decisdo a partir da raiz o
algoritmo procura a melhor feature e o melhor ponto de corte para dividir os dados em
dois ou mais subconjuntos. A principal desvantagem deste tipo de algoritmo ¢ a sua
tendéncia a overfitting, podendo criar arvores excessivamente complexas que se ajustam
bem as variagcdes dos dados de treinamento, mas que ndo funcionam bem em novos
dados (IBM, 2025Db).

Florestas aleatorias (Random Forests): algoritmo que opera construindo uma grande
colecao de arvores de decisdao descorrelacionadas durante o treinamento. Neste tipo de
algoritmo a previsao final ¢ determinada por uma espécie de “voto de maioria” entre
todas as arvores da floresta. A chave para o desempenho das florestas aleatorias € a
garantia de que as arvores individuais sejam diversas, por meio da separagdo do
conjunto de dados para cada arvore. Trata-se de um dos algoritmos mais robustos
disponiveis, que combate eficazmente o overfitting e permite obter a importancia das

varidveis (IBM, 2025c¢).
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Multilayer Perceptron (MLP): conforme descrito por Baladram (2024), ¢ um tipo de
algoritmo de deep learning na forma de uma rede neural feedfoward, o que significa que
os dados fluem em uma unica direcao. A estrutura de um MLP simula o funcionamento
de um neurdnio, sendo formado por uma camada de entrada, que recebe os dados brutos,
um numero arbitrario de camadas ocultas e uma camada de saida, que produz a predi¢ao.
O treinamento de um MLP ¢ realizado através do algoritmo de retropropagacdo
(backpropagation). O processo comega com uma passagem para a frente (forward pass),
onde os dados de entrada sdo propagados através da rede neural para gerar uma
predicdo. Em seguida, uma fun¢do de perda ¢ calculada para medir o erro entre a
predicdo e o rotulo verdadeiro. A retropropagacao entdo calcula o gradiente da fungado
de perda em relacdo a cada peso e viés na rede, comecando pela camada de saida e
movendo-se para tras. Finalmente, um algoritmo de otimizagdo usa esses gradientes
para atualizar os pesos e vieses, movendo-os ligeiramente na dire¢do que minimiza o
erro. Este ciclo de forward pass, calculo de perda, backpropagation e atualizagdo de
pesos ¢ repetido diversas vezes até que o modelo convirja. A principal vantagem do
MLP ¢ sua capacidade de aprender padrdes e relagdes nao lineares extremamente
complexas, tornando-o adequado para uma vasta gama de problemas de classificacio
que os modelos lineares ndo conseguem resolver.

Dentre os algoritmos de regressdo comumente utilizados, cita-se:

Random Forest Regressor: conforme descrito por Biau & Scornet (2016), trata-se de
um algoritmo que mantém a arquitetura do seu andlogo de classificagdo, mas com
modificagdes em como as arvores sao construidas e como suas predicdes sao agregadas.
No que diz respeito ao processo de constru¢do, em arvores de regressao o objetivo nao
¢ criar nds puros em termos de classe, mas sim criar nos onde os valores da variavel de
destino sejam o mais semelhante possivel. Na predicao final, em vez de ser um voto de
maioria, esta ¢ computada como a média das predigdes de todas as arvores de decisao
individual. As vantagens e desvantagens desse tipo de modelo sdo as mesmas do
algoritmo de classifica¢do analogo.

Support Vector Regressor (SVR): conforme descrito por Sidharth (2025), trata-se de
uma adapta¢do do SVM para tarefas de regressdo. Ele transpde a ideia de maximizar a
margem de separagdo para o problema de ajustar uma funcdo a dados continuos,
introduzindo o conceito de uma margem de tolerancia ao erro. Portanto, enquanto o
SVM busca um hiperplano que maximize a distdncia entre as classes, o objetivo do SVR

¢ encontrar um hiperplano que se ajuste ao maior niumero possivel de pontos de dados
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dentro de uma margem de erro predefinida. Esta margem ¢ definida por um
hiperparametro chave chamado épsilon. As vantagens do SVR derivam diretamente de
seus principios de funcionamento. A perda insensivel a épsilon o torna muito robusto a
outliers, pois pontos ruidosos que ainda caem dentro do tubo de épsilon ndo afetam o
modelo final. Assim como a SVM, ele tem um bom desempenho em espagos de alta
dimensao e ¢ eficiente em termos de memdria, pois sua solugdo depende apenas de um
subconjunto dos dados de treinamento (os vetores de suporte). As desvantagens sao
também significativas. O SVR pode ser computacionalmente intensivo e lento para

treinar em conjuntos de dados muito grandes, devido a sua complexidade de otimizagdo.
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3. MATERIAIS E METODOLOGIA

Para obter a medida transiente do parametro intermediario durante uma simulacao do
processo de desenvolvimento de piping em um modelo em escala de laboratério, foi
estabelecido o comportamento esperado para este parametro por meio do monitoramento de
cendrios estaticos, como uma forma de caracterizar a resposta sismica do sensor para o material
sob diferentes condigdes. A associacao da resposta sismica do sensor com a quantificagao do
parametro intermedidrio em cada cendrio estatico foi feita por modelos de Machine Learning
supervisionando para classificagdo e regressao. A escolha das condi¢des iniciais do material de
cada cenario estatico foi pautada em estudos que fizeram a caracterizagdo do material utilizado
na constru¢do do modelo de barragem. Os cendrios foram montados e monitorados utilizando
equipamentos adquiridos durante o projeto AINOA (Sistema de Monitoramento de Patologias
Internas em Barragens de Terra e Enrocamento Fundamentado em Inteligéncia Artificial e
Internet das Coisas: Caso de Estudo da Barragem do Paranoa-DF), em que o presente autor
participou, atuando na equipe de desenvolvimento e monitoramento do modelo reduzido em
laboratdrio. O algoritmo de IA adaptado também foi elaborado para o projeto, o presente
trabalho utilizou o conhecimento construido na ocasido para o calculo e selecdo dos atributos
de onda mais adequados. Para o desenvolvimento do algoritmo utilizado na presente pesquisa
foi utilizada a linguagem de programagado Python.

Neste capitulo estdo descritos de forma detalhada os materiais utilizados na pesquisa,
iniciando com a caracterizagdo dos materiais geotécnicos utilizados, seguindo pela
configuracdo do equipamento e do modelo de barragem construido em laboratorio, descricao
das caracteristicas do equipamento utilizado no monitoramento sismico e dos atributos

extraidos dos dados. Em seguida, ¢ detalhada a metodologia desenvolvida para o trabalho.
3.1. MATERIAIS
3.1.1. CARACTERIZACAO DOS MATERIAIS GEOTECNICOS

O material utilizado na montagem dos cenérios foi coletado no Campo Experimental do
Programa de Pos-Graduacdo em Geotecnia da Universidade de Brasilia (PPGG/UnB) (Figura
8). Optou-se pela utilizacdo de um material argiloso, pois ndo ¢ possivel induzir uma ruptura
por piping em uma areia, ja que esta tende a apresentar um efeito cicatrizante, colapsando ao
ser saturada e, portanto, um modelo de barragem com este material ndo consegue manter uma

fissura aberta por tempo suficiente para permitir a simulagdo de piping (Fell & Fry, 2007).
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Figura 8 — Localizagdo do Campo Experimental do Programa de P6s-Gradugao em Geotecnia
(modificado de Google Earth, 2025).

O perfil estratigrafico do solo no campo experimental (Figura 9) mostra que, nas
camadas mais superficiais, abaixo da camada de vegetacdo, tem-se uma camada de argila
arenosa muito mole, que sera o material utilizado na presente pesquisa. Este foi retirado a uma

profundidade de aproximadamente 2 metros.
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Figura 9 — Perfil estratigrafico do solo no Campo Experimental do PPGG/UnB (Modificado
de Rebolledo et al., 2019).
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A curva granulométrica sem defloculante e com defloculante da argila arenosa utilizada,
obtida por Lopes (2019), apresentada na Figura 10, reflete o comportamento caracteristico do
solo da regido, em que ha a formacao de agregados de particulas de solo cimentado, por isso a

diferenga entre os resultados do ensaio feito com e sem defloculante.
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Figura 10 — Curva granulométrica da argila do Campo Experimental do PPGG/UnB (Lopes,
2019).

Para definicao dos cenarios foram utilizados resultados de ensaios de compactagao em
trabalhos na literatura que utilizaram o material do Campo Experimental. Foram comparados
0s pesos especificos minimos € maximos atingidos nos ensaios para definir o maior intervalo
de indice de vazios possivel. No trabalho de Lopes (2019) foi utilizada a energia intermedidria
e foi atingido um peso especifico seco maximo (Yd,max) de 16,78 kN/m? com umidade 6tima de
20,18%, enquanto que o peso especifico seco minimo (Yd,min) do ensaio foi de 14,84 kN/m? com
umidade de 16,74%. Collantes (2022) coletou amostras de material nas profundidades de 1, 3,
5 e 7 metros, e utilizando a energia intermedidria e obteve um Ygmax de 16,61 kN/m? com
umidade 6tima de 20,52%, € um Y4,min de 14,83 kN/m? com umidade de 16,96% para as amostras
coletadas aos 3 metros de profundidade. Silva et al. (2024) coletaram amostras na profundidade
de 2 metros e utilizou a energia normal na compactac¢ao, atingindo um VYqmax de 16,24 kN/m?
com umidade 6tima de 21,71%, € um Ygmin de 12,18 kN/m? com umidade de 16,51%. Nos
resultados preliminares da pesquisa de doutorado de Neves (2025), que também coletou
amostras a 2 metros de profundidade e utilizou a energia normal na compactagao, foi obtido um

Vdmax de 16,37 kN/m? com umidade 6tima de 21,48% e um Ydamin de 14,61 kN/m* com umidade
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de 16,96%. Os pontos das curvas de compactacao obtidos pelos autores supracitados e os ajustes

dos pontos experimentais utilizando polindmios de 3°grau estdo apresentados na Figura 11.
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Figura 11 — Curvas de compactacao do solo do Campo Experimental do PPGG/UnB com
ajuste polinomial de grau 3 (Collantes, 2022; Lopes, 2019; Neves, 2025; Silva et al., 2024).

Em funcdo da amplitude de pesos especificos alcangada no ramo seco da curva de
compactagdo de Silva et al. (2024), a curva dos autores foi escolhida para a definicdo dos

parametros iniciais de cada cenario, que serao explicitados na se¢ao 3.2.
3.1.2. EQUIPAMENTO EXPERIMENTAL

Para constru¢do do modelo foi utilizada uma caixa fabricada com vidro, com dimensdes
1,2x0,26x0,26m. O equipamento utilizado ndo possui uma das faces, que funcionou como face
de jusante do modelo. Os sistemas de entrada e saida de agua montados para possibilitar a
circulacao de dgua no sistema serao detalhados na se¢do 3.2. A caixa foi posicionada sobre uma
plataforma constituida de uma série de 7 blocos de concreto com 0,35m de altura com o objetivo
de facilitar o processo de compactagao das camadas e servir como uma base rigida o suficiente

para transmitir o ruido ambiental para a barragem (Figura 12).
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Figura 12 — Dimensodes da caixa de vidro tendo por base blocos de concreto.

3.1.3. INSTRUMENTACAO

O sensor a ser utilizado ¢ um sismografo fabricado pela empresa Raspberry Shake,
sendo constituido por um sistema composto de um microcontrolador (placa Raspberry) e
geofones em uma caixa acrilica (Figura 13). A aquisi¢do dos dados ¢ feita por 3 geofones
posicionados ortogonalmente, o que permite o monitoramento de ondas em trés direcdes
ortogonais. Sao geofones de 4,5 Hz que permitem adquirir até 100 amostras por segundo. O
sistema possui a capacidade de transmissdo de dados em tempo real, sendo um diferencial deste
sensor em relacdo aos outros disponiveis no mercado. O resultado do monitoramento ¢ expresso
em trés canais relacionados a cada uma das dire¢des: EHZ, que representa as ondas captadas na
dire¢do vertical; EHN, que representa a dire¢do norte/sul e; EHE, que representa a diregdo

leste/oeste.

Figura 13 — Sistema Raspberry Shake com trés geofones (RS3D).
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3.1.4. EXTRACAO DOS ATRIBUTOS DAS ONDAS

A extragdo de atributos foi projetada para extrair um conjunto abrangente de
caracteristicas de sinais de audio, cruciais para analises em dominios como processamento de
fala, musica e outras aplicacdes de sinais baseadas em tempo. A sele¢do dessas caracteristicas
baseou-se no trabalho de Fisher ef al. (2017), visando fornecer uma representagao robusta e
significativa dos dados de audio (Albuquerque et al., 2022).

Conforme descrito pelos autores, o processo de extracao de caracteristicas ¢ realizado
quadro a quadro para cada canal do sinal de entrada. Para mitigar o vazamento espectral, que
ocorre nas transicoes de quadros devido a descontinuidade do sinal, a fun¢do emprega a
sobreposicdo de quadros. Para isso foram definidos dois parametros: o frame size (comprimento
da janela de anélise) e o hop length (deslocamento da janela de analise).

As caracteristicas extraidas sdo divididas em duas categorias principais:

I.  Caracteristicas no Dominio do Tempo:

a. Envelope de Amplitude (EA): representa a variagao da amplitude instantanea do sinal
ao longo do tempo;

b. Root-Mean-Square (RMS): mede a intensidade média do sinal no quadro;

c. Taxa de Cruzamento por Zero (TCZ): indica a frequéncia com que o sinal cruza o eixo
zero, sendo um indicador de caracteristicas percussivas ou da presenca de ruido.

II.  Caracteristicas no Dominio da Frequéncia:

a. Razdo de Energia de Banda (REB): calcula a propor¢ao da energia do sinal abaixo e
acima de uma frequéncia de corte especificada;

b. Largura de Banda Espectral (LBE): descreve a dispersdo das frequéncias no espectro
do sinal;

c. Centroide Espectral (CE): representa o "centro de massa" do espectro de frequéncia,
indicando a predominancia de frequéncias mais baixas ou mais altas;

d. Planicidade Espectral (PE): quantifica o quao "plano" ou "pontiagudo" € o espectro,
com valores mais altos indicando um espectro mais proximo de ruido branco;

e. Rolloff Espectral (RE): a frequéncia abaixo da qual uma porcentagem especificada da
energia total do espectro esta contida (neste caso, 85%), util para distinguir entre sons

vocais e ndo-vocais;
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f. Coeficientes Cepstrais de Frequéncia Mel (MFCCs): foram extraidos MFCCs, que
sao amplamente utilizados em reconhecimento de fala e musica por sua capacidade
de representar as caracteristicas timbrais de um som. Além dos 13 MFCCs brutos,
foram calculadas suas primeiras e segundas derivadas, que representam as variagoes

temporais desses coeficientes, fornecendo informagdes sobre a dindmica do sinal.
3.2. METODOLOGIA

A metodologia da presente dissertagao foi dividida em duas etapas, exibidas no
fluxograma da Figura 14.

Na Etapa 1, foi feita a escolha de um pardmetro intermedidrio (PI) que possa ser
relacionado com o carreamento das particulas finas do solo durante um processo de piping e
detectado durante o monitoramento sismico. Foram definidas duas variaveis iniciais, o teor de
umidade (8) e o indice de vazios (e), avaliadas em amostras de areia com diferentes
caracteristicas. Foram montados 3 cendrios, no primeiro foi utilizado uma amostra de areia
grossa seca, no segundo uma amostra de areia fina imida e no terceiro uma amostra de areia
fina seca. Os cenarios foram montados em células acrilicas, os sensores foram posicionados
sobre as células e o monitoramento foi feito durante 2 horas. Os dados monitorados foram pré-
processados utilizando o software gratuito Swarm, desenvolvido pelo Instituto de Pesquisas
Geologicas dos Estados Unidos (United States Geological Survey - USGS). Trata-se de uma
aplicacdo desenvolvida para analisar dados sismicos, funcionando com fontes estaticas e
dindmicas, sendo possivel utiliza-lo para analisar dados em tempo real. Os dados foram
analisados visualmente, sendo definido o pardmetro intermedidrio com base nos resultados
observados e na literatura.

Na Etapa 2, foram montados cenarios de monitoramento de fluxo em uma simulagao de
piping em um modelo de barragem em escala de laboratdrio. Foram definidos cinco cenarios
estaticos € um cenario dindmico. Em todos os cendrios, o piping foi induzido no barramento
seguindo a pratica comumente adotada na literatura, com a inser¢do de um tubo ligando o
reservatorio de montante ao talude de jusante da barragem durante o processo de construgao da
barragem, induzindo uma descontinuidade. Durante o enchimento do reservatorio o tubo foi
mantido selado de forma a ndo permitir a passagem de dgua, o monitoramento foi iniciado
quando se permitiu o fluxo de 4gua pela descontinuidade. As condi¢gdes de contorno do ensaio
foram mantidas constantes em todos os cendrios: 1) O nivel de 4gua do reservatdrio de montante

foi mantido constante durante o monitoramento e; 2) No inicio do ensaio hd uma
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descontinuidade, induzida pela introducido de um tubo no corpo da barragem, com didmetro de

8 mm.
1. DEFINICAO DO PARAMETRO INTERMEDIARIO (PI)
Cenario 1 Cenario 2 Cenario 3
&
Ex
=
1E
=
2. MODELO DA BARRAGEM EM ESCALA DE LABORATORIO
2.1. Cenarios com o PI fixo - e, sendon=[1a 5] 2.2 . Cenario PI variavel - Ae

Sem tubo de
Acrilico

Com tubo de
Acrilico

3. MODELO DE PREVISAO
Anilise do
Modelo *_«(\
Banco s G :é': ©

de dados  Machine Learning CRTay
Supervisionado ’Ik'einamento
(Python) dos modelos

- Processamento

Pré-Processamento

Figura 14 — Fluxograma metodologico realizado nesta pesquisa.
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Nos cendrios estaticos foi inserido um tubo de acrilico com didmetro interno de 8mm
durante a compactagdo. Em todos eles o tubo ndo foi retirado durante o monitoramento, criando
um caminho preferencial de fluxo de dgua do reservatério por uma descontinuidade no corpo
do barramento cujo didmetro ndo sofre alteracdo com o tempo, mantendo as duas condi¢des de

contorno constantes (Figura 15).

A W A

Tubo de Acrilico (@iyemo = Smm)

Secdo Longitudinal (AA")

Cenario 1 Cenario 2 Cenario 3 Cenario 4 Cenario 5

Figura 15 — Condig¢des de contorno e inicial de cada um dos cenarios estaticos.

Utilizando o intervalo entre o peso especifico seco méximo e minimo obtidos por Silva
et al. (2024), foram definidos 5 pesos especificos como condicdo inicial de cada um dos
cenarios estaticos, conforme apresentado na Tabela 1. O Cenério 5 foi utilizado tanto como
condi¢do inicial do cenario estatico, para caracterizar o comportamento inicial, como do cenario

dindmico, para que a variagdo do indice de vazios causada pelo carreamento das particulas faga
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com que o indice de vazios equivalente do meio diminua, passando pelos indices de vazios

simulados nos cenarios 4, 3,2 ¢ 1.

Tabela 1 - Condig¢ao inicial dos cenarios estaticos e dinamico.

Cenario  y4 (kN/m?) e w (%)
1 12,180 1,17 16,51
2 13,195 1,01 17,12
3 14,210 0,86 17,87
4 15,225 0,74 18,90
5 16,230 0,63 21,46

Onde, ya ¢ o peso especifico seco, e ¢ o indice de vazios, calculado a partir da equacdo (12), e
w ¢ a umidade do material.

e= G;—Z/W -1 (12)
Onde, yw ¢ o peso especifico da dgua (9,81 kN/m?) e Gs € o peso especifico relativo de sélidos
do solo. O valor de Gs utilizado foi obtido a partir do trabalho de doutorado em andamento de

Neves (2025), sendo igual a 2,7.

Compactagao
otima

ﬁ

Condigao Inicial Condig¢ao Final
(2= 8mm)

Vistas Frontais - Se¢ao Transversal (B-B')

Figura 16 — Condig¢des de contorno e condicao inicial/final do cenério dindmico.
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No cenario dindmico foi inserido um tubo macico de ago com didmetro externo de 8mm
no interior da barragem durante a compactacao. Neste cendrio o tubo foi retirado no inicio do
monitoramento e permitiu-se que o fluxo de agua no interior da descontinuidade carregasse as

particulas finas do material, simulando a ocorréncia de piping no modelo (Figura 16).
3.2.1. DIMENSOES E MONTAGEM DO MODELO EM LABORATORIO

As dimensodes do modelo construido foram arbitradas de forma a comportar o sensor na
crista sem a necessidade de adaptacdes, garantindo um bom acoplamento do sensor a crista. O
modelo possuiu 0,15m de altura com taludes de 30° e base de 0,63m. A lamina d’agua foi

mantida com uma altura méxima de 0,125m (Figura 17).

0,63 m

Figura 17 — Dimensdes do modelo de barragem.

A montagem do modelo foi feita em cinco camadas de 3 cm para facilitar a compactacao
do material. Para cada camada, com base nas condicoes iniciais de cada cenario indicadas na
Tabela 1, foi calculada a quantidade de solo seco e 4gua necessdrios para atingir o peso
especifico e, portanto, o indice de vazios estipulado. As quantidades calculadas foram pesadas
e separadas, a homogeneizacao do material foi feita com o auxilio de uma betoneira em fung¢ao
da quantidade elevada de material, principalmente nas primeiras camadas.

A compactagdo do material foi feita utilizando um soquete pequeno, a energia de
compactagdo em cada camada foi distribuida com o auxilio de uma série de cinco apoios feitos
de madeira, cujas dimensdes eram compativeis com o tamanho de cada camada. O controle da
compactagdo foi feito por meio da verificagdo da altura da camada durante o processo de
compactagdo. Para isso, utilizou-se um desenho de referéncia da barragem, feito na face externa
do vidro, e estruturas auxiliares elaboradas para delimitar as dimensdes da barragem durante a

construcao das camadas, conforme apresentado na Figura 18.
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0,15m

(e)

Figura 18 — Esquema de montagem e compactacao das camadas do modelo de barragem: (a)
primeira camada, com o sulco para inser¢do do tubo; (b) segunda camada; (c) terceira
camada; (d) quarta camada e; (e) quinta camada.

ApoOs a compactacao de cada camada, foi feita a escarificagdo do material e, em seguida
o material da camada subsequente foi depositado e compactado. No topo da primeira camada
da compactagdo, foi feito um sulco para receber o tubo que simulou a descontinuidade no

barramento (Figura 18a).
3.2.2. CONFIGURACAO DO ENSAIO

A Figura 19 apresenta a configuracdo do ensaio com os sistemas de entrada e saida de
agua, montados para permitir a circulagdo de 4gua no sistema.

Para manter o nivel do reservatério constante mesmo com o aumento do didmetro da
descontinuidade no cenario dindmico, foram construidos dois sistemas de entrada de 4gua. No
primeiro, a agua da rede de abastecimento alimentou um reservatorio cujo nivel foi mantido
constante com o auxilio de uma valvula controladora de nivel automatica. Na saida do
reservatorio foi instalado um registro e um sistema de tubos com didmetro de 3/4" ligando-o ao
reservatorio de dgua da barragem, cujo nivel foi mantido constante com o auxilio de uma
valvula controladora de nivel com didmetro compativel com a tubulacao instalada. No segundo,
a rede de abastecimento foi ligada diretamente ao reservatorio da barragem, utilizando um
sistema de tubos com didmetro de 1/2". O nivel de 4gua no reservatorio da barragem foi mantido
constante com o uso de outra valvula controladora de nivel.

O sistema de saida de agua foi projetado para comportar um grande volume de agua
passando pelo corpo do barramento. Para isso, foi utilizada uma caixa de acrilico a partir da
qual foi instalada uma tubula¢do com 50 mm de didmetro até o ralo de captacdo de 4gua mais

proximo.
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Os ensaios foram monitorados por 4 horas, o horério de coleta de dados escolhido foi
na janela das 1h as Sh. Como a metodologia proposta ndo prevé a filtragem dos ruidos, foi
escolhido o horario que representa o horario com a menor quantidade de ruidos gerados pela

atividade humana nas proximidades do laboratorio.

Entrada de Agua
20(.) L

\ o

Reservatorio
(Pressao
controlada)

Figura 19 — Sistema de monitoramento para os cenarios estaticos e dindmicos da barragem em
escala de laboratério

3.2.3. MODELOS DE IA E ANALISE DOS RESULTADOS

Os cenarios de monitoramento estatico foram utilizados como dados de entrada dos

modelos supervisionados de Machine Learning de classificagdo e de regressdo. Inicialmente
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foram utilizadas todas as componentes (EHZ, EHN e EHE) para gerar os modelos de previsao.
Os dados foram pré-processados por meio da extracao dos atributos, divididos entre teste e
treinamento usando uma propor¢ao de 20% dos dados para teste € 80% para treinamento dos
algoritmos. Foi aplicada a validacdo cruzada utilizando o 10-fold cross validation nos dados de
treinamento. Essa ¢ uma técnica que avalia o desempenho do modelo de forma mais precisa,
para isso o conjunto de treinamento ¢ dividido em 10 partes e, para cada rodada de validacao,
9 partes sdo usadas para treinar o modelo e a parte restante ¢ utilizada para avaliar o
desempenho. O processo ¢ repetido 10 vezes, alterando o conjunto utilizado para avaliar o
desempenho, sendo apresentada a média e o desvio padrdo dos resultados.

Em seguida os dados foram utilizados para treinar diferentes modelos, os modelos de
classificagdo incluiram, SGD Linear, Logistic Regression, k-Nearest Neighbors, Gaussian
Naive Bayes, Decision Tree, Random Forest, Support Vector Machine e Multilayer Perceptron
(MLP), enquanto os modelos de regressdo incluiram o Random Forest Regressor e o Support
Vector Regression. Os modelos foram utilizados com suas configuragdes padrdo, no caso do
MLP foi utilizada uma arquitetura com 4 camadas de 40 neurdnios cada, a funcao de ativagao
“relu”, um parametro alpha de 0,001. O alpha é um parametro para o termo de regularizagio,
também conhecido como termo de penalidade, que combate o overfitting restringindo o
tamanho dos pesos. Aumentar o alfa pode corrigir a alta variancia (um sinal de overfitting),
incentivando pesos menores, resultando em um grafico de limite de decisao que aparece com
curvaturas menores. Da mesma forma, diminuir o alfa pode corrigir o alto viés (um sinal de
underfitting), incentivando pesos maiores, potencialmente resultando em um limite de decisdo
mais complicado. Os resultados das métricas de cada algoritmo foi avaliada e aquele com as
melhores métricas de desempenho foi selecionado como modelo preditivo.

Os dados do monitoramento dindmico foram entao utilizados como dados de entrada do
modelo preditivo calibrado com os cendrios estaticos para prever a variagdo do pardmetro
intermediario no tempo. A andlise dos resultados foi pautada na anélise do comportamento
esperado do modelo, que deveria apresentar uma variagao gradual do parametro intermediério,

conforme a observagdo em laboratorio das condi¢des de carreamento do material.
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4. RESULTADOS E DISCUSSOES

Neste capitulo serdo apresentadas as andlises e discussoes dos resultados obtidos nas
duas etapas propostas. Inicialmente serdo apresentadas as imagens da montagem final dos
cendrios de cada etapa de monitoramento, em seguida serdo apresentados os sismogramas e
espectrogramas do monitoramento realizado. Serdo discutas as diferengas nos sismogramas,
espectrogramas das etapas 1 e 2 e nos atributos de onda extraidos na etapa 2. Apos a
apresentacao dos resultados do monitoramento estatico, serdo apresentados os resultados do
treinamento dos algoritmos de classificacdo e regressdo, com destaque as métricas de
desempenho obtidas para os modelos e a matriz de confusdo do melhor modelo, selecionado
como modelo de previsao para o cenario dinamico.

Em fung¢dao da densidade elevada do material no Cenario 5, o primeiro dia de
monitoramento foi utilizado como resultado do cenario estatico, sendo assumido que houve
pouco ou nenhum carreamento de material. O monitoramento dos dias seguintes foi
considerado como cenario dindmico, serdo apresentadas as variagdes observadas em laboratério
durante o tempo monitorado e, em seguida, serdo discutidos os resultados da aplicagdo do

modelo de previsao nos dados.

4.1. DEFINICAO DO PARAMETRO INTERMEDIARIO

Os cenarios de monitoramento montados estdo apresentados na Figura 20, onde estdo
representados, da esquerda para a direita os cilindros identificados com numeragdo de 1 a 3. Os
sensores posicionados em cada célula e as caracteristicas dos materiais estdo apresentados na
Tabela 2. Em fun¢@o do curto tempo de monitoramento dos cendrios, foi escolhida uma janela
de pouco mais de um minuto de duracdo em que foram comparadas as frequéncias

predominantes para cada cenario de monitoramento.

Tabela 2 — Caracteristicas dos materiais para determinacdo do pardmetro intermediario.

Cenario Material Sensor Densidade
1 Areia grossa seca R7D9F 1,52 g/em?
2 Areia fina timida R17F9 1,09 g/cm?
3 Areia fina seca RAOF7 1,38 g/cm?
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Frequency (Hz)

Figura 20 — Montagem dos 3 cenarios de monitoramento da Etapa 1.

4.1.1. CENARIO 1

Na andlise dos resultados do Cendrio 1, montado sobre um cilindro preenchido com
areia grossa seca, ¢ possivel observar que, na componente leste-oeste (EHE) ha uma
predominancia de frequéncias em torno dos 10 Hz e proximo aos 20 Hz (Figura 21a e Figura
22a). Na componente norte-sul (EHN) as frequéncias estdo concentradas em um intervalo maior
de frequéncia, de 10 a 30 Hz (Figura 21b e Figura 22b). J4 a componente vertical (EHZ),
apresenta uma faixa predominante de frequéncia em torno dos 10 Hz (Figura 21c e Figura 22c¢).
Em todos os casos, ha uma frequéncia constante préxima aos 45 Hz que apresenta um contetdo
de frequéncia mais pronunciado nas componentes EHE e EHN, e menos pronunciado na

componente EHZ.
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Figura 21 — Espectrograma de frequéncia do sensor R7D9F: (a) componente EHE; (b)
componente EHN; (¢) componente EHZ.
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Figura 22 — Contetido de frequéncia do sensor R7D9F: (a) componente EHE; (b) componente
EHN; (c) componente EHZ.
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4.1.2. CENARIO 2

Na analise dos resultados do Cenario 2, montado sobre um cilindro preenchido com
areia fina umida, ¢ possivel observar que, na componente leste-oeste (EHE) o contetdo de
frequéncia nao ¢ tdo pronunciado, em comparagdo com o obtido no monitoramento do Cenario
1. Neste caso as maiores frequéncias ficam em torno dos 30 Hz (Figura 23a e Figura 24a). Na
componente norte-sul (EHN) as frequéncias estdo concentradas em torno de pouco mais de 10
Hz e em torno de 25 Hz (Figura 23b e Figura 24b). Ja a componente vertical (EHZ), apresenta
uma faixa predominante de frequéncia no intervalo de 10 a 20 Hz (Figura 23c e Figura 24c).
Assim como foi observado no cenario 1, em todos os casos hd uma frequéncia constante

proxima aos 45 Hz, porém aqui ela apresenta um contetido de frequéncia semelhante nas trés

componentes.
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Figura 23 — Espectrogramas de frequéncia do sensor R17F9: (a) componente EHE; (b)
componente EHN; (¢) componente EHZ.
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Figura 24 — Conteudo de frequéncia do sensor R17F9: (a) componente EHE; (b) componente
EHN; (¢) componente EHZ.

4.1.3. CENARIO 3

Na andlise dos resultados do Cendrio 3, montado sobre um cilindro preenchido com
areia fina seca, ¢ possivel observar que, na componente leste-oeste (EHE) as frequéncias
predominantes ficam em torno dos 20 Hz (Figura 25a e Figura 26a). Na componente norte-sul
(EHN) as frequéncias estdo concentradas um intervalo de 10 a pouco mais de 30 Hz (Figura
25b e Figura 26b). J4 a componente vertical (EHZ) apresenta duas regides predominantes de
frequéncia: na faixa de 10 a 20 Hz e em torno de 30 Hz (Figura 25¢ e Figura 26¢). Assim como
foi observado nos Cenarios 1 e 2, hd uma frequéncia constante proxima aos 45 Hz, porém aqui
ela apresenta um contetdo de frequéncia semelhante nas componentes EHE e EHN e menos

pronunciado na componente EHZ.
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Figura 25 — Espectrogramas de frequéncia do sensor RAOF7: (a) componente EHE; (b)
componente EHN; (¢) componente EHZ.
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Figura 26 — Contetdo de frequéncia do sensor RAOF7: (a) componente EHE; (b) componente
EHN; (c) componente EHZ.

Como a componente vertical (EHZ) foi a que apresentou as maiores variagdes de
comportamento, principalmente quando verificado que as frequéncias em torno de 45 Hz foram
observadas em todos os cenarios € no Cenario 3 esse efeito foi bem menos pronunciado, essa
foi a componente escolhida para representar as variagdes observadas entre as diferentes
condigoes de cada cenario.

Comparando a alteracdo da granulometria do material entre os Cenarios 1 e 3, observa-
se que a principal diferenga entre os resultados se mostra na atenuagdo da frequéncia em torno
de 45 Hz, uma vez que o comportamento observado da concentragao das frequéncias em torno
de 10 Hz ¢é semelhante entre os dois casos. J4 na comparacao entre a areia fina seca e imida,
observa-se que a adi¢do de d4gua na amostra ajuda a atenuar os contetidos de frequéncia na faixa
de 20 a 40 Hz, que sdo menos pronunciados no Cenério 2 em comparagdo com o Cenario 3.

Em um processo de desenvolvimento de piping, como ha carreamento de material fino,
as alteragdes que ocorrem no meio estao muito relacionadas com mudangas nas caracteristicas
do meio, sendo melhor representada pela alteragdo na granulometria. Essa mudanca causa
alteracdo no indice de vazios no meio. Em funcdo dessas observacoes ¢ da verificacao da
capacidade do sensor de detectar essas alteracdes no meio, aqui representadas pela alteracao na
granulometria entre os Cendrios 1, 2 e 3, optou-se pela escolha do indice de vazios como

variavel intermediaria.
4.2. MONTAGEM E MONITORAMENTO DOS CENARIOS ESTATICOS
4.2.1. CENARIO 1

O processo de montagem esta apresentado na Figura 27, onde pode ser observado o uso
das estruturas auxiliares, € na Figura 28, onde esta apresentada a configuracao final do modelo
em escala de laboratério construido para o Cenério 1. No Apéndice B esta apresentada condi¢ao

inicial do monitoramento deste cendrio (Figura 1.B).
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Figura 28 —Barragem montada cenario 1.

Os resultados das 4 horas de monitoramento do Cendrio 1 estdo apresentados na forma

de sismograma (Figura 29) e espectrograma (Figura 30). Nos atributos extraidos dos dados,
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apresentados na Tabela 3, que auxiliam na interpretacdo dos resultados observados no
sismograma, observa-se uma variacdo média da amplitude maior para a componente EHE e
muito semelhante para as componentes EHN e EHZ. No espectrograma observa-se frequéncias
mais pronunciadas na componente EHN, enquanto as frequéncias nas outras componentes sao
menos pronunciadas. No Apéndice A, estdo apresentadas as comparacdes dos valores de quatro
atributos no tempo: o centroide espectral (Figura 1.Aa), a largura de banda espectral (Figura

2.Aa), arazio de energia de banda (Figura 3.Aa) e a taxa de cruzamento do zero (Figura 4.Aa).

1000 | - —
‘ I [ ‘ I B EHE
500

=500 1

1000

| - EHN
500 ‘ | ‘

-500 " ‘ ' ‘ )

1000
‘ | BN EHZ

500

~500 ol 1 ! N Al

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00
Tempo (Horas)

Figura 29 — Sismograma para o Cenario 1.
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Figura 30 — Espectrograma para o Cenario 1 com os seguintes parametros: frame size
(comprimento da janela de analise) = 1024 e hop length (deslocamento da janela de analise) =
512.
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Tabela 3 — Média e desvio padrao dos atributos extraidos dos dados do Cenario 1.

Componente EHE EHN EHZ
Atributo Média  DesvioPadrdo  Média DesvioPadrao  Média  Desvio Padrao
EA 377,97 291,36 372,43 206,74 373,04 272,95
RMS 115,78 53,62 115,64 43,16 115,13 52,59
TCZ 0,654 0,082 0,65 0,08 0,66 0,08
REB 0,17 0,18 0,17 0,18 0,17 0,17
LBE 14,05 1,24 14,01 1,22 14,06 1,23
CE 22,95 1,77 22,98 1,77 22,92 1,77
PE 0,06 0,04 0,06 0,04 0,06 0,04
RE 41,9 2,61 41,9 2,44 41,81 2,68

4.2.2. CENARIO 2

O processo de montagem esta apresentado na Figura 31, onde pode ser observado o uso
das estruturas auxiliares, e na Figura 32, onde estd apresentada a configuragao final do modelo
em escala de laboratorio construido para o Cenario 2. No Apéndice B esté apresentada condi¢cao

inicial do monitoramento deste cenario (Figura 2.B).
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Figura 31 — Vista frontal das camadas durante o processo de compactagdo cendrio 2.

Os resultados das 4 horas de monitoramento do Cendrio 2 estdo apresentados na forma
de sismograma (Figura 33) e espectrograma (Figura 34). Nos atributos extraidos dos dados,
apresentados na Tabela 4, observa-se uma variagdo média da amplitude menor para a
componente EHN e muito semelhante para as componentes EHE ¢ EHZ. No espectrograma
observa-se que nenhuma das componentes apresentam frequéncias muito pronunciadas, a nao
ser por alguns eventos de pico, que também podem ser observados no sismograma. No
Apéndice A, estao apresentadas as comparacdes dos valores de quatro atributos no tempo: o
centroide espectral (Figura 1.Ab), a largura de banda espectral (Figura 2.Ab), a razdo de energia

de banda (Figura 3.Ab) e a taxa de cruzamento do zero (Figura 4.Ab).
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Figura 32 — Barragem montada cenario 2.

Em comparagdo com os resultados dos atributos extraidos para o Cenario 1, observa-se
que houve um aumento no envelope de amplitude médio das componentes EHE e EHZ,
enquanto a componente EHN manteve um valor semelhante ao observado no Cenario 1. O
envelope de amplitude representa a variagdo da amplitude do sinal ao longo do tempo,
indicando que, em média, as componentes EHE e EHZ apresentaram uma variagdo maior no
Cenario 2, quando comparadas com o Cendrio 1. Diferengas visuais também sao possiveis de
observar nos espectrogramas de frequéncia de ambos os cenérios. Enquanto no Cenario 1 a
componente EHN apresentou frequéncias mais pronunciadas durante todo o periodo de

monitoramento, no Cenario 2 0 mesmo comportamento nao foi observado.

54



Amplitude

P EHN) Hz (Compontente EHE)

c38888.,238888,38888

EHZ) Hz(C

Hz (C

1000

500

=500

—-1000
1000

500 1

=500 A

-1000
1000

500

o
L

=500 A

-1000

0:00:00

0 EHE

‘ Emm EHN

B EHZ

2:00 2:30 3:00 4:00

Tempo (Horas)

1:00 1:30

Figura 33 — Sismograma para o Cenario 2.
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Figura 34 — Espectrograma para o Cenario 2 com os seguintes parametros: frame size
(comprimento da janela de analise) = 1024 e hop length (deslocamento da janela de analise) =

512.

Tabela 4 — Média e desvio padrao dos atributos extraidos dos dados do Cenario 2.

Componente EHE EHN EHZ
Atributo Média DesvioPadrdao Média DesvioPadrdo Média  Desvio Padrdo
EA 383,49 222,97 374,12 208,85 382,36 221,44
RMS 118,58 54,18 116,58 50,58 118,19 50,87
TCZ 0,64 0,09 0,64 0,09 0,64 0,09
REB 0,19 0,21 0,19 0,22 0,19 0,19
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LBE 13,88 1,26 13,96 1,23 13,87 1,28

CE 22,19 2,11 22,15 2,08 22,15 2,13
PE 0,06 0,03 0,06 0,03 0,05 0,03
RE 41,12 3,07 41,3 2,86 41,08 3,12

4.2.3. CENARIO 3

O processo de montagem esta apresentado na Figura 35, onde pode ser observado o uso
das estruturas auxiliares, e na Figura 36, onde est4 apresentada a configuragdo final do modelo
em escala de laboratério construido para o Cenario 3. No Apéndice B estd apresentada condi¢ao

inicial do monitoramento deste cendrio (Figura 3.B).
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Figura 36 — Barragem montada cenario 3.
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Os resultados das 4 horas de monitoramento do Cenario 3 estdo apresentados na forma
de sismograma (Figura 37) e espectrograma (Figura 38). Nos atributos extraidos dos dados,
apresentados na Tabela 5, observa-se uma variagdo média da amplitude muito semelhante nas
trés componentes. No espectrograma observa-se que nenhuma das componentes apresentam
frequéncias muito pronunciadas, a ndo ser por alguns eventos de pico, que também podem ser
observados no sismograma. No Apéndice A, estdo apresentadas as comparacdes dos valores de
quatro atributos no tempo: o centroide espectral (Figura 1.Ac), a largura de banda espectral
(Figura 2.Ac), arazdo de energia de banda (Figura 3.Ac) e a taxa de cruzamento do zero (Figura
4.Ac).

Em comparagcdo com os resultados dos Cenarios 1 e 2, observa-se que houve um
aumento no envelope de amplitude médio de todas as componentes. Isso indica que, em média,
as componentes EHE, EHN e EHZ apresentaram uma variagdo maior de amplitude no Cenario
3, quando comparadas com os Cendrios 1 e 2. Em relag@o aos espectrogramas de frequéncia,
os resultados obtidos no Cenario 3 sdo semelhantes aos obtidos no Cenario 2 e ambos diferem
dos resultados obtidos no Cenario 1. Enquanto no Cenario 1 a componente EHN apresentou
frequéncias mais pronunciadas durante todo o periodo de monitoramento, nos Cenarios 2 ¢ 3 0
mesmo comportamento ndo foi observado. Ao comparar essa mesma componente nos Cenarios
2 e 3 ¢ possivel observar visualmente que no Cenario 3 existe uma pequena diferenca nas

frequéncias em torno de 40 Hz, que estao mais pronunciadas no tltimo cenario.

T
BN EHE

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30
Tempo (Horas)

Figura 37 — Sismograma para o Cenario 3.
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Figura 38 — Espectrograma para o Cenario 3 com os seguintes parametros: frame size
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(comprimento da janela de anélise) = 1024 e hop length (deslocamento da janela de andlise) =

Tabela 5 — Média e desvio padrao dos atributos extraidos dos dados do Cenario 3.

512.

Componente EHE EHN
Atributo Média DesvioPadrao Média DesvioPadrdo Média  Desvio Padrao
EA 395,92 229,31 395,66 241,9 396,68 239,37
RMS 133,91 57,19 134,28 60,4 135,12 63,12
TCzZ 0,72 0,08 0,72 0,09 0,72 0,09
REB 0,13 0,17 0,14 0,26 0,13 0,14
LBE 14,39 1,15 14,41 1,14 13,36 1,16
CE 22,84 1,97 22,85 1,97 22,89 1,95
PE 0,04 0,02 0,04 0,02 0,04 0,02
RE 42,18 2,86 42,21 2,79 42,19 2,79

4.2.4. CENARIO 4

O processo de montagem est4 apresentado na Figura 39, onde pode ser observado o uso

das estruturas auxiliares, e na Figura 40, onde est4 apresentada a configuragdo final do modelo

em escala de laboratdrio construido para o Cenario 4. No Apéndice B estd apresentada condigao

inicial do monitoramento deste cendrio (Figura 4.B).
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Figura 40 —Barragem montada cenario 4.

Os resultados das 4 horas de monitoramento do Cendrio 4 estdo apresentados na forma

de sismograma (Figura 41) e espectrograma (Figura 42). Os atributos extraidos dos dados,
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apresentados na Tabela 6, onde observa-se uma variacdo média da amplitude muito semelhante
nas trés componentes. No espectrograma observa-se que as trés componentes apresentam
conteudos de frequéncia muito pronunciados. A componente EHZ apresenta conteudo de
frequéncia elevado na faixa de 0 a proximo de 50 Hz, um comportamento semelhante pode ser
observado na componente EHN, com uma pequena diferenca nas frequéncias de 20 a 30 Hz.
Na componente EHE visualmente as frequéncias mais pronunciadas estdo na faixa de 0 a 20
Hz. No Apéndice A, estdo apresentadas as comparagdes dos valores de quatro atributos no
tempo: o centroide espectral (Figura 1.Ad), a largura de banda espectral (Figura 2.Ad), a razio

de energia de banda (Figura 3.Ad) e a taxa de cruzamento do zero (Figura 4.Ad).
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Figura 41 — Sismograma para o Cenario 4.

Em comparac¢ao com os resultados dos Cenarios 1, 2 e 3, observa-se que houve uma
diminui¢do no envelope de amplitude médio de todas as componentes. Isso indica que, em
média, as componentes EHE, EHN e EHZ apresentaram uma variagdo menor de amplitude no
Cenario 4, quando comparadas com os Cenarios 1, 2 e 3. Essa observacao ndo coincide com a
relacdo que estava sendo observada até o Cendrio 3, em que o efeito da diminui¢ao do indice
de vazios de cada cendrio provocou um aumento no envelope de amplitude médio de todas as
componentes. Em relacdo aos espectrogramas de frequéncia, os resultados obtidos no Cenario
4 diferem dos obtidos em todos os cendrios apresentados anteriormente. Enquanto no Cenario

1 somente a componente EHN apresentou frequéncias mais pronunciadas durante todo o
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periodo de monitoramento e nos Cenarios 2 e 3 nenhuma das componentes apresentou um

conteudo de frequéncia muito elevado, no Cendrio 4 todas as componentes apresentaram um

conteudo elevado de frequéncia.
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Figura 42 — Espectrograma para o Cenario 4 com os seguintes parametros: frame size
(comprimento da janela de andlise) = 1024 e hop length (deslocamento da janela de analise) =

512.

Tabela 6 — Média e desvio padrao dos atributos extraidos dos dados do Cenario 4.

Componente EHE EHN EHZ
Atributo Média DesvioPadrdao Média DesvioPadrdo Média  Desvio Padrao
EA 368,97 204,9 366,69 172,39 366,17 179,98
RMS 111,01 37,79 111,16 36,14 111,49 35,61
TCZ 0,62 0,09 0,62 0,09 0,62 0,09
REB 0,22 0,27 0,22 0,26 0,21 0,22
LBE 13,63 1,22 13,98 1,21 13,93 1,22
CE 22,92 1,94 22,96 1,91 22,96 1,86
PE 0,08 0,06 0,08 0,06 0,08 0,05
RE 41,21 2,94 41,27 2,81 41,11 2,91

4.2.5. CENARIO 5

O processo de montagem est4 apresentado na Figura 43, onde pode ser observado o uso
das estruturas auxiliares, e na Figura 44, onde est4 apresentada a configuragao final do modelo
em escala de laboratdrio construido para o Cenario 5. No Apéndice B esté apresentada condigao

inicial do monitoramento deste cenario (Figura 5.B).
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Figura 44 —Barragem montada do cenério 5 e do cenario dindmico.

Os resultados das 4 horas de monitoramento do Cenario 5 estdo apresentados na forma

de sismograma (Figura 45) e espectrograma (Figura 46). Nos atributos extraidos dos dados,
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apresentados na Tabela 7, observa-se uma variacdo média da amplitude muito semelhante nas
trés componentes. No espectrograma observa-se que a componente EHN apresentou um
conteudo de frequéncia mais pronunciado quando comparado com as componentes EHZ e EHE.
No Apéndice A, estdo apresentadas as comparacdes dos valores de quatro atributos no tempo:
o centroide espectral (Figura 1.Ae), a largura de banda espectral (Figura 2.Ae), a razdo de

energia de banda (Figura 3.Ae) e a taxa de cruzamento do zero (Figura 4.Ae).

EEE EHE
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Figura 45 — Sismograma para o Cenario 5.

Em comparagdo com os resultados dos Cenarios 1, 2, 3 e 4, observa-se que houve um
aumento no envelope de amplitude médio de todas as componentes. Isso indica que, em média,
as componentes EHE, EHN e EHZ apresentaram uma variacdo consideravelmente maior de
amplitude no Cenario 5, quando comparadas com os Cendrios 1, 2, 3 e 4. Além dessa
constatagdo, ¢ possivel observar tanto nos sismogramas quanto nos espectrogramas, a
ocorréncia de uma série de picos durante o monitoramento, que aumentaram consideravelmente
o desvio padrao do envelope de amplitude. Esses picos ndo foram observados em nenhum dos
outros cendrios de monitoramento, € em todos eles o tubo de acrilico estava presente no corpo
do barramento. A retirada do tubo para permitir o carreamento do material no Cendrio 5 pode
ter sido o motivo da ocorréncia de um sinal com um maior nivel de ruidos. Em relagdo aos
espectrogramas de frequéncia, os resultados obtidos no Cendrio 5 diferem dos obtidos

anteriormente principalmente em fun¢do dos picos de frequéncia observados em todas as
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componentes, porém menos pronunciados na componente EHE. No pequeno intervalo entre os
picos, ¢ possivel observar visualmente que as frequéncias estdo mais pronunciadas na

componente EHN, semelhante ao observado no Cenario 1.
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Figura 46 — Espectrograma para o Cenario 5 com os seguintes parametros: frame size
(comprimento da janela de analise) = 1024 e hop length (deslocamento da janela de analise) =
512.

Tabela 7 — Média e desvio padrao dos atributos extraidos dos dados do Cenario 5.

Componente EHE EHN EHZ
Atributo Média DesvioPadrdao Média DesvioPadrdo Média  Desvio Padrao
EA 489,92 323,15 491,93 333,43 486,58 327,27
RMS 136,32 42,45 136,95 41,96 136,68 42,1
TCZ 0,7 0,08 0,69 0,08 0,7 0,08
REB 0,15 0,3 0,15 0,24 0,15 0,3
LBE 14,46 1,18 14,39 1,19 14,41 1,19
CE 23,55 2,37 23,56 2,34 23,57 2,31
PE 0,06 0,06 0,06 0,06 0,06 0,06
RE 42,82 1,81 42,74 1,87 42,8 1,86

4.3. ALGORITMO DE IDENTIFICACAO DOS CENARIOS ESTATICOS

Nos dados de entrada para teste e treinamento dos algoritmos, a extragdo de atributos
foi feita utilizando os seguintes parametros: frame size (comprimento da janela de analise) =
1024 e um hop lenght (deslocamento da janela de analise) = 512. Com os atributos extraidos,

foram treinados os modelos de classificacdo e regressao, cujos resultados estao apresentados na
Tabela 8.
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Tabela 8 — Resumo da acuracia dos algoritmos de classificagdo e regressao avaliados para os
dados de teste e treinamento.

Algoritmos de classificacao

i Validag¢ao cruzada Acuracia
Algoritmo M¢édia  Desvio padrao  Treino  Teste
SGD Linear 0,87 0,01 0,87 0,87
Logistic Regression 0,89 0,01 0,89 0.9
k-Nearest Neighbors 0,88 0,01 0,88 0,88
Naive Bayes 0,62 0,01 0,62 0,62
Decision Tree 0,82 0,02 0,82 0,78
Random Forest 0,97 0,01 0,97 0,96
Support Vector Machine (SVM) 0,98 0,00 0,98 0,98
Multilayer Perceptron 0,97 0,01 0,97 0,97
Algoritmos de regressao
Algoritmo MSE* RMSE** Rk
Random Forest Regressor 0,404 0,635 0,796
Support Vector Regressor 0,353 0,594 0,822

*MSE — Mean Squared Error (Erro quadratico médio); ** RMSE — Root Mean Squared Error

(Raiz do erro quadratico médio); *** R? - Coeficiente de determinagao.

Dentre os modelos de classificacao treinados, o Naive Bayes foi o que apresentou os
piores resultados, seguido pelo algoritmo de arvores de decisdo (Decision Trees). O SGD
Linear, k-Nearest Neighbors e Logistic Regression apresentaram um desempenho semelhante,
com acurécia no treino proxima a 0,90. Os modelos com os melhores desempenhos foram o
Support Vector Machine, Multilayer Perceptron € Random Forest, com acuracia muito proxima
de 1, significando que a diferenciacdo entre os cendrios estdticas apresentou um melhor
desempenho nesses trés algoritmos. Entre os trés melhores, foi escolhido o Support Vector
Machine, uma vez que sua aplicacdo para analise de piping ja foi registrada na literatura, nos
trabalhos de Fisher et al. (2017) e Fisher et al. (2016).

Os resultados do treinamento utilizando o /0-fold cross validation estao apresentados
na Figura 47 e na Tabela 9, onde ¢ possivel observar que o algoritmo diferencia bem os cenarios
nos dados de teste. Além disso, os resultados da validacdo cruzada indicam um desvio padrao
baixo entre os conjuntos de dados analisados, o que indica que o algoritmo ndo se tornou

tendencioso na identificacao dos dados de treinamento.
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Figura 47 — Matriz de confusdo com a validacdo cruzada para os dados de treino utilizando o
modelo SVM.

Tabela 9 — Métricas de desempenho do algoritmo SVM nos dados de treinamento com
valida¢ao cruzada.

Classe predita Precisao Recall  F1-Score
1 0,98 0,97 0,98
2 0,98 0,98 0,98
3 0,99 0,98 0,98
4 0,99 0,98 0,99
5 0,96 0,99 0,97
Acuracia 0,98

Os resultados do algoritmo treinado nos dados de teste, apresentados na matriz de

confusdo da Figura 48 e nas métricas de desempenho da Tabela 10, destacam a capacidade do

modelo de diferenciar os cenarios de monitoramento estatico, com valores proximos a 1 em

todas as métricas de desempenho avaliadas.
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Figura 48 — Matriz de confusdo para os dados de teste utilizando o modelo SVC.

Tabela 10 — Métricas de desempenho do algoritmo SVC nos dados de teste.

Classe predita Precisao Recall  F1-Score

1 0,98 0,96 0,97
2 0,98 0,99 0,99
3 0,99 0,98 0,99
4 1,00 0,98 0,99
5 0,95 0,99 0,97
Acuracia 0,98

4.4. MONITORAMENTO DO CENARIO DINAMICO

O monitoramento do cenario dindmico foi iniciado com a retirada da barra metalica,
marcando o inicio do piping. Na Figura 49a ¢ apresentada uma vista frontal do modelo de
barragem no Cenario 5 apds o final do processo de construgdo, enquanto a Figura 49b apresenta
o momento apos a retirada do tubo. Nos primeiros cinco dias apds a retirada do tubo o
monitoramento foi mantido mesmo sem a passagem de adgua, sendo o sistema de entrada de

agua ligado no inicio da noite e desligado na manha do dia seguinte.
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Figura 49 — Inicio do monitoramento: (a) antes da retirada do tubo metalico e; (b) apds a
retirada do tubo.

A Figura 50 apresenta o processo de evolugdo do piping nas duas semanas de
monitoramento. A evolugdo da erosdo na frente do barramento mostra que, até o oitavo dia
(Figura 50f), houve pouco aumento do diametro do tubo, indicando que houve pouco alteracao
nas condi¢des do meio até este ponto. Para acelerar o processo de erosdao, no nono dia de
monitoramento foi inserido um mergulhdo no reservatorio da barragem para aumentar a
temperatura tanto da 4gua como do solo. Alguns trabalhos na literatura, como os de Tran ef al.
(2020) e Akinola et al. (2019), indicam que o aumento da temperatura tanto da 4gua como do
solo influenciam na taxa de erosdo de solos coesivos. Os resultados apresentados na Figura 50g
em diante indicam que o aumento da temperatura da 4gua contribuiu com o aumento da erosao,
corroborando com os resultados obtidos pelos autores. O mergulhao foi mantido no reservatorio
de jusante durante 7 dias, quando a temperatura da agua foi mantida em um intervalo de
temperatura de 45 a 50° C. Nesse periodo, o sistema de entrada de dgua foi mantido ligado

durante os dias e as noites de monitoramento.
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Figura 50 — Evolucao do piping durante duas semanas de monitoramento: (a) primeiro dia; (b)
segundo dia; (c) terceiro dia; (d) quarto dia; () quinto dia; (f) oitavo dia; (g) décimo dia; (h)
décimo primeiro dia; (i) décimo segundo dia; (j) décimo quinto dia.

4.5. MEDIDA TRANSIENTE DO iNDICE DE VAZIOS

O resultado da previsao dos modelo de classificacao selecionado para os dados das duas
semanas de monitoramento esta apresentado na Figura 51. Uma carateristica desse tipo de
modelo ¢ que a classificagdo ¢ feita em valores discretos, nesse caso entre os cenarios estaticos
(1, 2, 3,4 e 5), para cada valor de entrada no modelo. Para melhorar a tendéncia geral das
previsoes, estd plotada a média movel das previsdes do modelo. Os resultados obtidos mostram
que o modelo ndo apresentou um desempenho condizente com o observado em laboratdrio,
com pequenas variagcdes na descontinuidade induzida no barramento. Isso pode ser atribuido
principalmente a falta de conhecimento sobre o comportamento sismico esperado para o sensor
entre os cendrios estaticos de monitoramento.

Diante das observagdes dos resultados nos modelos de classificacao, optou-se por adotar
algoritmos de regressdo. A vantagem da utilizagdo desse tipo de algoritmo & que estes
estabelecem uma relacdo entre as variaveis preditoras e a varidvel que se deseja prever, ou seja,

o algoritmo prevé uma espécie de fun¢do que se ajusta aos dados. Com esta abordagem
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Classe Prevista

Classe Prevista

esperava-se preencher a lacuna entre o comportamento sismico conhecido, representado pelos
cenarios estaticos, e 0 comportamento sismico esperado no intervalo entre os indices de vazios
conhecidos. Os resultados apresentados na Figura 52 mostram que o modelo de regressdo com

o melhor coeficiente de determinag¢do também ndo foi capaz de reproduzir o comportamento

} } ” \ | .

monitorado em laboratorio.
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Figura 51 — Previsoes do modelo SVM durante o monitoramento dinamico ¢ média movel dos
valores previstos.
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Figura 52 — Previsdes do modelo de regressao Support Vector Regressor durante o
monitoramento do cenario dindmico ¢ média moével dos valores previstos.
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A Tabela 11 apresenta o calculo do didmetro que o tubo deveria atingir no interior do
barramento para provocar uma variagao do indice de vazios equivalente do meio até atingir o
indice de vazios calculado nos Cenarios 2 ¢ 3 (0,74 e 0,86, respectivamente). A partir dos
resultados apresentados, ¢ interessante observar que para atingir o indice de vazios calculado
para o Cenario 2, seria necessario que o didmetro do tubo aumentasse para 4,0cm, o que
corresponderia a uma massa de solo perdida de 1,134kg. No caso do Cenario 3, o aumento
deveria ser ainda maior, com o tubo chegando a 6,0cm de didmetro, com 2,484kg de material
carreado. Conforme observado na Figura 50j, ap6s o décimo quinto dia de monitoramento nao
houve um aumento tdo grande do cilindro, indicando tanto pelo aspecto visual da barragem

quanto pelo volume de 4gua que passava pelo barramento.

Tabela 11 — Célculo da variacdo do indice de vazios para a alteracao no didmetro do tubo
simulando o desenvolvimento de piping no barramento.

Didmetro Massa de Massada Massa

cilindro solo barragem - tante Vainal e
(cm) perdida Cenario5 (kg) (KN/m~)

(kg) (kg)

0,8 0,043 22,07 22,026 16,06 0,65
1,2 0,097 22,07 21,972 16,02 0,65
1,6 0,175 22,07 21,894 15,96 0,66
2,0 0,277 22,07 21,792 15,88 0,67
2,4 0,403 22,07 21,665 15,79 0,68
2,8 0,556 22,07 21,513 15,68 0,69
3,2 0,735 22,07 21,334 15,55 0,70
3,6 0,926 22,07 21,143 15,41 0,72
4,0 1,134 22,07 20,935 15,26 0,74
4,4 1,372 22,07 20,696 15,09 0,76
4,8 1,637 22,07 20,432 14,89 0,78
5,2 1,915 22,07 20,154 14,69 0,80
5,6 2,193 22,07 19,876 14,49 0,83
6,0 2,484 22,07 19,585 14,28 0,86

A comparagdo dos resultados obtidos com o comportamento esperado, com base no
observado em laboratorio, mostram que no monitoramento de cenario dinamico os algoritmos
de classificagdo e regressao nao foram capazes de identificar a variagdo do indice de vazios no
tempo. Como a ndo correlagdo entre os comportamentos foi observada na transi¢ao dos cenarios
estaticos para o cendrio dindmico, em que a principal diferenca estd relacionada a auséncia do
tubo de acrilico e ao carreamento de material, ambos os efeitos combinados podem ter sido

determinantes para ndo permitir correlacionar os dois monitoramentos. A escolha do
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comprimento e do deslocamento da janela de anélise também pode estar relacionada aos
problemas observados, uma vez que se trata de um tradeoff entre o nivel de detalhe observado
no sinal e a inclusdo de eventos que podem ndo ser representativos do sinal como um todo.
Como foram utilizados varios atributos no dominio do tempo e da frequéncia, a janela de anélise
utilizada pode ter capturado eventos que ocorreram especificamente na noite de monitoramento
de cada cenario estatico, permitindo a diferenciacdo entre eles, porém inviabilizando a
identificacao da variagao do indice de vazios no cenario dindmico.

Na montagem dos ensaios, a condi¢do de contorno da presenga do tubo acrilico pode ter
sido um fator limitante. Para contornar esse problema, ensaios que permitam simular e
monitorar a evolugao do piping sem a necessidade do tubo acrilico, poderiam permitir conhecer
melhor o comportamento sismico/actstico do material. A utilizagdo de sensores que permitam
obter as velocidades das ondas P e S também podem ser interessantes para relacionar a alteracao

no comportamento elastico do material com a evolugao do piping.
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5.

CONCLUSOES E SUGESTOES PARA PESQUISAS FUTURAS

Com o estudo realizado do monitoramento sismico passivo da variagdo do indice de

vazios em modelos de barragem em escala de laboratdrio, sdo elencadas as seguintes

conclusoes:

A escolha do indice de vazios como parametro intermediario que se relaciona com a
ocorréncia de piping mostrou-se interessante, uma vez que a andlise visual dos resultados
da etapa 1 mostram que os sensores utilizados sdo capazes de detectar diferencas que
incluem a variagao do indice de vazios do meio;

A simulagdo dos cenarios com indice de vazios constante € com a presenca de uma
descontinuidade no modelo de barragem, utilizada para simular a ocorréncia de piping,
aliado aos algoritmos de inteligéncia artificial de classificacdo e regressdo, permitiram
observar que, nas condi¢des ensaiadas, ¢ possivel estabelecer uma relagado entre diferentes
valores do indice de vazios € 0 comportamento sismico do material;

A simulagdo do cendrio dindmico, com variacao do indice de vazios no tempo, partindo
do cenario de 100% da energia do Proctor Normal na umidade 6tima mostrou que, nas
dimensdes propostas para o modelo em laboratorio, a carga hidraulica do reservatorio da
barragem ndo foi suficiente para causar o desprendimento e arraste das particulas sob
condigdes normais. Neste caso, o aumento da temperatura ajudou no aumento da taxa de
erosao, porém, durante o tempo monitorado, visualmente nao foram observadas mudancas
expressivas no diametro do piping induzido no inicio do ensaio;

A utilizacdo do algoritmo calibrado para os cenarios estaticos ndo foi eficiente na previsao
da variagdo do indice de vazios do cenario dindmico. Os resultados obtidos ndo foram
condizentes tanto com o comportamento do material sob as condigdes simuladas, onde
esperava-se ver uma variagao gradual do indice de vazios com o tempo de monitoramento,
quanto com as observagdes visuais da evolugdo do piping em laboratério, que
demonstraram uma evolucao lenta do didmetro do tubo, particularmente nos primeiros 5
dias de monitoramento;

A ndo correlag@o obtida entre os comportamentos monitorados nos cenarios estaticos e o
comportamento monitorado no cendrio dindmico pode ser justificada pela falta de
conhecimento da assinatura sismica do material para um conjunto maior de indices de
vazios. A alteragdo na assinatura sismica do material com e sem o tubo, que representa a
principal diferenca entre os cendrios estaticos e dindmico, também pode estar relacionada

com os resultados obtidos nos ajustes dos algoritmos.
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Para aperfeicoar a metodologia proposta e permitir evoluir no estudo para possibilitar

sua aplicacdo em barragens reais, identificando o seu estado e possibilitando o fornecimento

de informagdes para tomadas de decisdes, sdo propostas as seguintes recomendagdes para

trabalhos futuros na area:

Caracterizacdo do comportamento sismico/acustico dos materiais em condigdes mais
controladas, utilizando um ensaio pinhole adaptado para permitir monitorar a amostra
durante o ensaio. Desta forma seria possivel monitorar as variagdes no sinal monitorado
somente em funcdo do carreamento do material, evitando a interferéncia de outras
condicdes externas.

Adaptagdo do ensaio de simulagdo do desenvolvimento de piping no tempo (cenario
dindmico) para permitir o monitoramento da quantidade de material carreado,
permitindo obter uma medida direta da variagdo do indice de vazios equivalente por meio
da perda de massa da barragem. Isso permitiria obter um parametro para verificar de
forma qualitativa o indice de vazios da barragem no tempo monitorado, comparando
esses resultados com as previsdes dos algoritmos de IA.

Utilizagdo de um modelo de Machine Learning que possua uma dependéncia temporal
(como o Long Short-Term Memory — LSTM), uma vez que o piping ¢ um fendmeno que
depende do tempo de ensaio para desenvolver. Esse tipo de algoritmo talvez tenha a
capacidade de identificar essa dependéncia temporal, permitindo prever a assinatura
sismica do material diante das varia¢des entre os cenarios conhecidos, auxiliando na
previsao do estado da barragem no cenario dindmico.

Utilizacao de sensores que permitam conhecer a variagao das velocidades das ondas P e
S, permitindo estabelecer relacdes com o comportamento elastico do material. A variagao
monitorada no comportamento dos materiais poderia ser utilizada para conhecer
mudancgas relacionadas ao desenvolvimento do piping, permitindo relacionar
diretamente o comportamento mecanico na fase eldstica com a ruptura por este tipo de
mecanismo.

A validagdo do modelo ¢ outra questdo pertinente e importante, portanto a elaboragdo de
um estudo de caso para aplicagdo da metodologia proposta inicialmente para laboratorio

seria um passo importante para permitir a aplicagdo em casos reais.

79



REFERENCIAS BIBLIOGRAFICAS

Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., & Knutsson, S. (2020). Geophysical Methods
and their Applications in Dam Safety Monitoring. Journal of Earth Sciences and

Geotechnical Engineering, 11(1), 291-345. doi: 10.47260/jesge/1118

Akinola, A. 1., Wynn-Thompson, T., Olgun, C. G., Mostaghimi, S., & Eick, M. J. (2019).
Fluvial Erosion Rate of Cohesive Streambanks Is Directly Related to the Difference in
Soil and Water Temperatures. Journal of Environmental Quality, 48(6), 1741-1748. doi:
10.2134/jeq2018.10.0385

Albuquerque, E. A. C., Diniz, M. dos S., Borges, L. P. d. F., & Ozelim, L. C. de S. M. (2022).
Relatorio de Produto: Modelo de Machine Learning Supervisionado Desenvolvido com

os Dados Experimentais e Aplicado na Barragem do Paranoa-DF. Brasilia, DF, Brasil.

Relatorio de Seguranca de Barragens. Brasilia, DF, Brasil.

Baladram, S. (2024). Multilayer Perceptron, Explained: A Visual Guide wiht Mini 2D Dataset.
Retrieved from https://towardsdatascience.com/multilayer-perceptron-explained-a-visual-
guide-with-mini-2d-dataset-0ae8100c5d1c/

Bhavsar, H., & Panchal, M. H. (2012). A Review on Support Vector Machine for Data
Classification. International Journal of Advanced Research in Computer Engineering &

Technology, 1(10), 2278—-1323.

Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227. doi:
10.1007/s11749-016-0481-7

Bonelli, S. (2013). Erosion in Geomechanics Applied to Dams and Levees. In Erosion in

Geomechanics Applied to Dams and Levees. doi: 10.1002/9781118577165

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A Survey. In ACM
Computing Surveys. doi: 10.1145/1541880.1541882

80



Collantes, R. D. C. P. (2022). Influéncia da temperatura na suc¢do e comportamento mecanico
dos solos tropicais compactados. Tese de Doutorado, G.TD - 174/2022, Universidade de

Brasilia, Brasilia, Brasil.

Cruz, P. T. da. (1996). 100 barragens brasileiras: casos historicos, materiais de construgao,

projeto (2%, 4* rei). Sao Paulo: Oficina de Textos.

Fell, R., & Fry, J. J. (2007). The state of the art of assessing the likelihood of internal erosion
of embankment dams, water retaining structures and their foundations. In Internal Erosion

of Dams and Their Foundations. CRC Press. doi: 10.1201/9781482266146-6

Fisher, W. D., Camp, T. K., & Krzhizhanovskaya, V. V. (2016). Crack detection in earth dam
and levee passive seismic data using support vector machines. Procedia Computer

Science, 80, 577-586. doi: 10.1016/j.procs.2016.05.339

Fisher, W. D., Camp, T. K., & Krzhizhanovskaya, V. V. (2017). Anomaly detection in earth
dam and levee passive seismic data using support vector machines and automatic feature

selection.  Journal  of  Computational  Science, 20, 143-153.  doi:
10.1016/j.jocs.2016.11.016

Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and
accidents. Canadian Geotechnical Journal, 37(5), 1000-1024. doi: 10.1139/t00-030

Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn , Keras & TensorFlow (2nd
Ed.). Sebastopol, CA: O’Reilly Media, Inc.

Giannkopoulos, T., & Pikrakis, A. (2014). Introduction to audio analysis, a MATLAB

Approach. Academic Press.

Hanson, G., Tejral, R. D., Hunt, S. L., & Temple, D. M. (2010). Internal Erosion and Impact of
Erosion Resistance. USSDams 2010.

Hardy Jr., H. R. (2003). Acoustic Emission/Microseismic Activity (1st ed., Vols. 1-Princi). The

Pennsulvania State University, University Park, Pennsylvania, EUA: A.A.Balkema

81



Publishers.

Hickey, C. J., Ekimov, A., Hanson, G. J., & Sabatier, J. M. (2009). Time-lapse seismic
measeurements on a small earthen embankment during an internal erosion experiment.
Proceedings of the Symposium on the Application of Geophyics to Engineering and
Environmental Problems, SAGEEP, 1(May 2015), 163—175. doi: 10.4133/1.3176689

IBM.  (2025a). What  are  Naive  Bayes  Classifiers?  Retrieved  from

https://www.ibm.com/think/topics/naive-bayes

IBM. (2025b). What is a decision tree? Retrieved from

https://www.ibm.com/think/topics/decision-trees

IBM. (2025c¢). What is random forest? Retrieved from

https://www.ibm.com/think/topics/random-forest

IBM. (2025d). What is the k-nearest neighbors (kNN) algorithm? Retrieved from
https://www.ibm.com/think/topics/knn

ICOLD. (2020). World Register of Dams: General Synthesis. Retrieved from
https://www.icold-cigb.org/GB/world_register/general synthesis.asp

Lee, F. (2025a). Classification vs  regression. IBM.  Retrieved from

https://www.ibm.com/think/topics/classification-vs-regression

Lee, F. (2025b). What is logistic  regression? IBM. Retrieved from

https://www.ibm.com/think/topics/logistic-regression

Lopes, M. M. (2019). Estudo do comportamento fisico-mecdnico de solos refor¢ados com
fibras de agai. Projeto Final em Engenharia Ambiental, Universidade de Brasilia, Brasilia,

DF.

Lu, Z., & Wilson, G. V. (2012). Acoustic Measurements of Soil Pipeflow and Internal Erosion.
Soil Science Society of America Journal, 76(3), 853—866. doi: 10.2136/sss2j2011.0308

82



Minakov, A., & Yarushina, V. (2021). Elastoplastic source model for microseismicity and
acoustic emission. Geophysical Journal International, 227(1), 33-53. doi:

10.1093/gji/ggab207

Mitrovic, D., Zeppelzauer, M., & Breiteneder, C. (2010). Features for content-based audio
retrieval. Advances in Computers, 78, 71-150. doi: https://doi.org/10.1016/S0065-
2458(10)78003-7

Neves, J. P. (2025). Andlise de Suscetibilidade de deslizamentos superficiais de talude de solo
tropical ndo saturado sob situagdo de precipitagoes intensas utilizando equipamento de
simulagdo em tempo real. Universidade de Brasilia. Doutorado em Engenharia Civil -

Geotecnia. Trabalho em andamento.

Ozelim, L. C. de S. M., Borges, L. P. d. F., Cavalcante, A. L. B., Albuquerque, E. A. C., Diniz,
M. dos S., Goéis, M. S., Costa, K. R. C. B., Souza, P. F., Dantas, A. P. do N., Jorge, R. M.,
Moreira, G. R., Barros, M. L., & Aquino, F. R. (2022). Structual health monitoring of
dams based on acoustic monitoring, deep neural networks, fuzzy logic and a CUSUM

control algorithm. Sensors, 22(2482), 1-25. doi: https://doi.org/10.3390/522072482

Parekh, M. L. (2016). Advanced Internal Erosion Monitoring Using Seismic Methods in Field
and Laboratory Studies. Colorado School of Mines.

Pirogova, A. S., Tikhotskii, S. A., Tokarev, M. Y., & Suchkova, A. V. (2019). Estimation of
Elastic Stress-Related Properties of Bottom Sediments via the Inversion of Very- and

Ultra-High-Resolution Seismic Data. Izvestiya - Atmospheric and Ocean Physics, 55(11),
1755-1765. doi: 10.1134/S0001433819110124

Planes, T., Mooney, M. A., Rittgers, J. B. R., Parekh, M. L., Behm, M., & Snieder, R. (2016).
Time-lapse monitoring of internal erosion in earthen dams and levees using ambient

seismic noise. Geotechnique, 66(4), 301-312. doi: 10.1680/jgeot.14.P.268

Rahimi, S., Moody, T., Wood, C., Kouchaki, B. M., Barry, M., Tran, K., & King, C. (2019).

Mapping Subsurface Conditions and Detecting Seepage Channels for an Embankment

83



Dam Using Geophysical Methods: A Case Study of the Kinion Lake Dam. Journal of
Environmental and Engineering Geophysics, 24(3), 373-386. doi: 10.2113/JEEG24.3.373

Rebolledo, J. F. R., Leén, R. F. P., & Camapum de Carvalho, J. (2019). Obtaining the
Mechanical Parameters for the Hardening Soil Model of Tropical Soils in the City of
Brasilia. Soils and Rocks, 42(1), 61-74. doi: 10.28927/sr.421061

Rittgers, J. B., Revil, A., Planes, T., Mooney, M. A., & Koelewijn, A. R. (2015). 4-D imaging
of seepage in earthen embankments with time-lapse inversion of self-potential data

constrained by acoustic emissions localization. Geophysical Journal International,

200(2), 758-772. doi: 10.1093/gji/ggud32

Robbins, B. A., & Griffiths, D. V. (2018). Internal erosion of embankments: A review and
appraisal. Geotechnical Practice Publication, 2018-Novem(GPP 12), 61-75. doi:
10.1061/9780784481936.005

Scikit-learn.  (2025). Stochastic  Gradient Descent. Retrieved from https://scikit-

learn.org/stable/modules/sgd.html

Sidharth, G. (2025). Support Vector Regression: A Comprehensive Guide with Examplo.
Retrieved from https://www.quarkml.com/2022/11/support-vector-regression-a-

complete-guide-with-example.html

Silva, A. B., Velho, P., & Velho, P. (2024). POTENCIAL USO GEOTECNICO DE FIBRAS
DE ACAI COMO REFORCO DE SOLOS ARGILOSOS: ESTUDO GEOTECNICO
EXPERIMENTAL COMPARATIVO DE RESISTENCIA AO CISALHAMENTO. 1-8.

Singh, A. (2017). Anomaly Detection for Temporal Data using Long Short-Term Memory
(LSTM). Trita-Ict-Ex Nv - 2017:124, Independen, 52. Retrieved from http://kth.diva-
portal.org/smash/record.jsf?pid=diva2:1149130

Strahser, M., Jouniaux, L., Sailhac, P., Matthey, P. D., & Zillmer, M. (2011). Dependence of
seismoelectric amplitudes on water content. Geophysical Journal International, 187(3),

1378-1392. doi: 10.1111/1.1365-246X.2011.05232.x

84



Tran, T. V., Karim, M. Z., Kuili, S., Tucker-Kulesza, S. E., & Derby, M. M. (2020).
Temperature Effects on Cohesive Geomaterial Erodibility. Journal of Materials in Civil

Engineering, 32(2). doi: 10.1061/(asce)mt.1943-5533.0003046

Uyanik, O. (2019). Estimation of the porosity of clay soils using seismic P- and S-wave

velocities. Journal of Applied Geophysics, 170. doi: 10.1016/j.jappgeo.2019.103832

Yousefpour, N., & Fazel Mojtahedi, F. (2023). Early detection of internal erosion in earth dams:
combining seismic monitoring and convolutional AutoEncoders. Georisk, 1-21. doi:

10.1080/17499518.2023.2251128

85



1.  APENDICE A — ATRIBUTOS EXTRAIDOS

Comportamento em fun¢do do tempo dos atributos extraidos, sendo eles: Spectral
Centroid, Sperctral Bandwith, Band Energy Ratio (BER), Zero Crossing Rate (ZCR) a partir

do monitoramento dos cenarios de 1 a 5 e cenario dinamico.
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Figura 1.A — Representagdo do Spectral Centroid com os seguintes parametros: tamanho do
quadro de analise (frame size) = 1024 e deslocamento da janela (hop length) = 512, aplicados
aos cenarios estaticos: (a) cenario 1, (b) cenario 2, (¢) cenario 3, (d) cenario 4 e (e) cenario 5.
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Figura 2.A — Representagdo do Spectral Bandwidth com os seguintes parametros: tamanho do
quadro de analise (frame size) = 1024 e deslocamento da janela (hop length) = 512, aplicados
aos cenarios estaticos: (a) cenario 1, (b) cenario 2, (¢) cenario 3, (d) cendrio 4 e (e) cenario 5.
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Figura 3.A — Representacdo do Band Energy Ratio (BER) normalizado com os seguintes
parametros: tamanho do quadro de analise (frame size) = 1024 e deslocamento da janela (hop
length) = 512, aplicados aos cendrios estaticos: (a) cenario 1, (b) cenario 2, (c) cendrio 3, (d)
cenario 4 e (e) cenario 5.
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Figura 4.A — Representagdo do Zero Crossing Rate (ZCR) com os seguintes parametros:
tamanho do quadro de andlise (frame size) = 1024 e deslocamento da janela (hop length) =512,
aplicados aos cendrios estaticos: (a) cenario 1, (b) cenario 2, (c) cenario 3, (d) cenario 4 ¢ (e)
cenario 5.
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Figura 5.A — Representac¢do do Spectral Centroid para o Cenario dinamico, considerando 10
dias de monitoramento com os seguintes parametros: frame size (comprimento da janela de
analise) = 1024 e hop length (deslocamento da janela de analise) = 512.
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Figura 6.A — Representagdo do Spectral Bandwidth para o Cenario dindmico, considerando 10
dias de monitoramento com os seguintes parametros: frame size (comprimento da janela de
analise) = 1024 e hop length (deslocamento da janela de analise) = 512.
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Figura 7.A — Representacdo do Band Energy Ratio (BER) normalizado para o Cenario
dindmico, considerando 10 dias de monitoramento com os seguintes parametros: frame size
(comprimento da janela de analise) = 1024 e hop length (deslocamento da janela de analise) =
512.
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Figura 8.A — Representacdo do Zero Crossing Rate (ZCR) para o Cenario dindmico,
considerando 10 dias de monitoramento com os seguintes parametros: frame size (comprimento
da janela de andlise) = 1024 e hop length (deslocamento da janela de analise) = 512.
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2.

APENDICE B - MONITORAMENTO DOS CENARIOS

250,

Figura 2.B — Inicio do monitoramento do Cenario 2.
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Figura 4.B — Inicio do monitoramento do Cenario 4.
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Figura 5.B — Inicio do monitoramento do Cendrio 5.
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