
 

 

UNIVERSIDADE DE BRASÍLIA 

FACULDADE DE TECNOLOGIA 

DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL 

 

 

 

MONITORAMENTO DO ÍNDICE DE VAZIOS EM UM MODELO DE 

BARRAGEM EM ESCALA DE LABORATÓRIO UTILIZANDO 

SÍSMICA PASSIVA E INTELIGÊNCIA ARTIFICIAL 

 

 

 

RAFAEL MENDES JORGE 

 

 

 

 

ORIENTADOR: ANDRÉ LUÍS BRASIL CAVALCANTE, PhD 

 

 

 

 

DISSERTAÇÃO DE MESTRADO EM GEOTECNIA  

PUBLICAÇÃO G.DM –422/2025 

 

 

 

 

 

BRASÍLIA-DF 

2025 



ii 

 

UNIVERSIDADE DE BRASÍLIA 

FACULDADE DE TECNOLOGIA 

DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL 

 

 
MONITORAMENTO DO ÍNDICE DE VAZIOS EM UM MODELO DE 

BARRAGEM EM ESCALA DE LABORATÓRIO UTILIZANDO 

SÍSMICA PASSIVA E INTELIGÊNCIA ARTIFICIAL 

 

 

RAFAEL MENDES JORGE 

 

 

DISSERTAÇÃO DE MESTRADO SUBMETIDA AO DEPARTAMENTO DE 

ENGENHARIA CIVIL E AMBIENTAL DA UNIVERSIDADE DE BRASÍLIA COMO 

PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO TÍTULO DE 

MESTRE. 

 

 

 

APROVADA POR: 
 

 

 

ANDRÉ LUÍS BRASIL CAVALCANTE, PhD (ENC/UnB). 

(Orientador) 

 

 

 

ANDRÉ PACHECO DE ASSIS, PhD (ENC/UnB) 

(Examinador interno) 
 

 

 

LUAN CARLOS DE SENA MONTEIRO OZELIM, DSc (Senado Federal) 

(Examinador externo) 

 

Brasília/DF 

Maio/2025 



iii 

 

FICHA CATALOGRÁFICA 

JORGE, RAFAEL MENDES 

Monitoramento do índice de vazios em um modelo de barragem em escala de laboratório 

utilizando sísmica passiva e inteligência artificial. 95p., 210 x 297 mm (ENC/FT/UnB, 

Mestrado, Geotecnia, 2025) 

Dissertação de mestrado – Universidade de Brasília, Faculdade de Tecnologia. 

Departamento de Engenharia Civil e Ambiental. 

1. Erosão interna   2. Inteligência artificial 

3. Monitoramento sísmico  4. Barragens 

I. ENC/FT/UnB    II. Mestrado  
 

 

REFERÊNCIA BIBLIOGRÁFICA 

JORGE, R. M. (2025). Monitoramento do índice de vazios em um modelo de barragem em 

escala de laboratório utilizando sísmica passiva e inteligência artificial. Dissertação de 

Mestrado, Publicação PPG G.DM – 422/2025, Departamento de Engenharia Civil, 

Universidade de Brasília, Brasília, DF, 95 p. 

 

CESSÃO DE DIREITOS 

 

NOME DO AUTOR: Rafael Mendes Jorge 

TÍTULO DA DISSERTAÇÃO DE MESTRADO: Monitoramento do índice de vazios em um 

modelo de barragem em escala de laboratório utilizando sísmica passiva e inteligência 

artificial 

GRAU/ANO: Mestre / 2025 

 

 

É concedida à Universidade de Brasília a permissão para reproduzir cópias desta dissertação de 

mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e 

científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação de 

mestrado pode ser reproduzida sem a autorização por escrito do autor. 

 

 

 

______________________________________________ 

Rafael Mendes Jorge 

Quadra 49, Casa 61 

Setor Leste 

72455-490, Gama, Distrito Federal/DF - Brasil. 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEDICATÓRIA 
 

À Deus 

e a todos que trabalharam para que hoje 

eu pudesse estar aqui 

 

  



v 

 

AGRADECIMENTOS 

 

Agradeço primeiro à Deus, por todas as oportunidades, por ter preparado todo o caminho até 

essa conquista, pela força que Ele me deu para finalizar essa caminhada e por todas as pessoas 

que colocou no caminho para me auxiliar. 

Agradeço à minha família, minhas tias Aurelina, Aucéia, minha prima Danielle pelo apoio e 

preocupação constantes e meu tio Adivan, pela ajuda na concepção das peças de madeira 

utilizadas no projeto. Agradeço minhas irmãs, Jéssica, Larissa, Emily e Milena, pelas conversas, 

pela cobrança, pelo incentivo e pelo apoio incondicional.  Por fim agradeço meus pais, Adilson 

e Rosângela pela preocupação e incentivo em toda a dissertação, em especial meu pai, pelo 

apoio no laboratório (que incluíram visitas aos domingos para montagem dos sistemas de 

entrada e saída de água e dias até tarde montando peças para auxiliar a montagem dos 

experimentos) e pelas ideias para resolver todos os problemas no caminho. Amo vocês! 

Agradeço à minha namorada Mariana, pelo apoio incondicional durante toda a dissertação, 

pelas noites até tarde no laboratório destorrando, pesando, compactando material e ajustando 

as vazões quando não tínhamos pensado em todo o sistema de entrada de água. Agradeço pelas 

ideias e soluções para todos os problemas que surgiram no caminho, pelas discussões dos 

melhores caminhos para seguir em cada tomada de decisão, pela elaboração das imagens usadas 

na dissertação, por ter me ajudado a finalizar o texto e os slides e por ter me encorajado mesmo 

nos momentos que eu já não tinha ânimo para continuar. Sem você esse trabalho não teria 

acontecido. Te amo!  

Agradeço ao seu Dorgival e dona Jailma, pela preocupação com o andamento do trabalho e pela 

ajuda durante a elaboração, seja nos dias de caminhada no parque para esfriar a mente, 

estimulados pela dona Jailma, ou na ajuda com a parte de eletrônica com o seu Dorgival. Muito 

obrigado pelo apoio e carinho! 

Agradeço meu orientador e amigo, o professor André Brasil. Nos conhecemos a mais de 6 anos, 

mais ou menos no meio da minha graduação no início de 2019, quando eu cursei a disciplina 

de Geotecnia 2, e desde então o senhor confiou em mim e me apoiou em todos os projetos, que 

já somam 2 PIBICs, 1 TCC, 4 projetos de pesquisa, 1 consultoria e esse mestrado. Muito 

obrigado pela confiança, o senhor trouxe para mim a paixão que eu não tinha pelo curso que se 

tornou a minha profissão. Obrigado pelo apoio em todas as situações, pelos conselhos e pelas 

conversas. 



vi 

 

Agradeço ao grupo de pesquisa Geofluxo, o qual eu tive a grande oportunidade de fazer parte 

por intermédio do professor André Brasil. Foi nele que eu aprendi a fazer pesquisa, a ver os 

problemas e pensar em soluções. Agradeço por todas as ideias e discussões que ajudaram no 

desenvolvimento dessa pesquisa, seja no dia a dia do laboratório ou nos seminários. Agradeço 

de forma especial à Manuelle, uma grande amiga que me apoiou com as ideias e revisões do 

texto e que vem nessa caminhada comigo desde o meu segundo PIBIC, que coincidiu com o 

tempo que estávamos desenvolvendo o projeto AINOÁ. Você me ensinou a essência da pesquisa 

pelos seus olhos, por meio do seu cuidado e zelo com todos os aspectos que permeiam esse 

processo de descoberta de novas soluções para os problemas do nosso dia a dia. Obrigado por 

todo o carinho! Agradeço também a todos que me ajudaram com conselhos, discussões e 

conversas seja sobre o tema ou para tornar os dias mais leves: Katherin, Mateus Bezerra, 

Patrícia, Ana Paola, Daniel Batista, Enzo e Jordana.  

Agradeço aos meus companheiros de caminhada durante esse mestrado, minha turma de 2022, 

principalmente durante os primeiros semestres do curso com as disciplinas obrigatórias e 

optativas. Obrigado pelo apoio, pelas discussões e pelos finais de semana/dias até tarde 

estudando na UnB. 

Por fim agradeço aos técnicos do laboratório de geotecnia da UnB, Saimo e Rogério. Em 

especial ao Rogério, pelas discussões sobre os melhores caminhos para seguir diante dos 

problemas que surgiram durante a compactação do material. Sua experiência prática com a 

argila utilizada foi essencial para a finalização da pesquisa, muito obrigado pelas ideias e dicas!  

 

  



vii 

 

 

MONITORAMENTO DO ÍNDICE DE VAZIOS EM UM MODELO DE BARRAGEM 

EM ESCALA DE LABORATÓRIO UTILIZANDO SÍSMICA PASSIVA E 

INTELIGÊNCIA ARTIFICIAL 

RESUMO 

 

As barragens desempenham um papel essencial no contexto mundial por possuírem 

várias aplicações voltadas à manutenção dos recursos hídricos, tais como: controle de cheias, 

armazenamento de água para abastecimento público e irrigação, além da geração de energia 

elétrica e retenção de rejeitos de mineração. No entanto, seu alto Dano Potencial Associado 

gera riscos a populações próximas, e no Brasil, a ligação com setores econômicos-chave, como 

agricultura e mineração, intensifica a necessidade de monitoramento contínuo. Segundo o 

Comitê Internacional de Grandes Barragens, a maioria das barragens no mundo é de terra, sendo 

a erosão interna (piping) uma das principais causas de ruptura. No Brasil, os registros da 

Agência Nacional de Águas não detalham adequadamente as causas de rompimentos, 

dificultando a comparação com estatísticas globais. A detecção precoce do piping é complexa 

com métodos tradicionais, mas técnicas geofísicas, como o monitoramento sísmico, têm se 

destacado na literatura como alternativas complementares para identificar descontinuidades de 

forma qualitativa. Contudo, medidas quantitativas são essenciais para tomadas de decisão na 

engenharia geotécnica. Diante desse contexto, o presente trabalho fundamentou-se no uso de 

monitoramento sísmico para estabelecer uma relação com um parâmetro intermediário (índice 

de vazios) relacionado à ocorrência de piping em um modelo de barragem em escala de 

laboratório, permitindo obter uma medida quantitativa do estado do modelo no tempo. 

Inicialmente, cenários estáticos definiram a assinatura sísmica do material sob diferentes 

condições de compactação. Em seguida, um cenário dinâmico acompanhou a variação temporal 

do parâmetro intermediário. Modelos de Inteligência Artificial (IA) de classificação e regressão, 

treinados com os dados estáticos, foram aplicados para prever a variação do índice de vazios 

no cenário dinâmico. Os resultados mostraram que os modelos de IA diferenciaram bem os 

cenários estáticos. No cenário dinâmico, a previsão da variação do parâmetro intermediário não 

teve correspondência com as observações físicas do modelo. 

 

Palavras-chaves: barragens, erosão interna (piping), monitoramento sísmico, inteligência 

artificial.  
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VOID RATIO MONITORING IN A LABORATORY-SCALE DAM MODEL USING 

PASSIVE SEISMICS AND ARTIFICIAL INTELLIGENCE  

ABSTRACT 

 

Dams play an essential role globally due to their various applications in electricity 

generation, retention of mining waste and water resources management, such as flood control, 

water storage for public supply and irrigation. However, their high Associated Potential 

Damage poses risks to nearby populations, and in Brazil, their connection to key economic 

sectors like agriculture and mining intensifies the need for continuous monitoring. According 

to the International Commission on Large Dams, most dams worldwide are earth dams, with 

internal erosion (piping) being one of the leading causes of failure. In Brazil, records from the 

Agência Nacional de Águas e Saneamento Básico do not adequately detail the causes of dam 

failures, making comparisons with global statistics difficult. Early detection of piping is 

complex with traditional methods, but geophysical techniques, such as seismic monitoring, 

have been highlighted in the literature as complementary alternatives for qualitatively 

identifying discontinuities. However, quantitative measurements are essential for decision-

making in geotechnical engineering. In this context, the present study focused on using seismic 

monitoring to establish a relationship with an intermediate parameter (void ratio) linked to the 

occurrence of piping in a laboratory-scale dam model, allowing for a quantitative measure of 

the model's state over time. Initially, static scenarios defined the seismic signature of the 

material under different compaction conditions. Subsequently, a dynamic scenario monitored 

the temporal variation of the intermediate parameter. Artificial Intelligence (AI) models for 

classification and regression, trained with the static data, were applied to predict the variation 

of the void ratio in the dynamic scenario. The results showed that the AI models differentiated 

the static scenarios well. In the dynamic scenario, the prediction of the intermediate 

parameter's variation didn’t correspond with the physical observations of the model. 

 

Keywords: dams, internal erosion (piping), seismic monitoring, artificial intelligence. 
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1. INTRODUÇÃO 

Dada a importância socioeconômica que as barragens de terra representam na 

infraestrutura hídrica global, a garantia da segurança e integridade estrutural dessas obras a 

longo prazo é fundamental. Essas estruturas não estão isentas de riscos, e diversos modos de 

falha podem comprometer sua estabilidade e levar a consequências potencialmente 

catastróficas para as populações e o meio ambiente a jusante. 

Segundo dados do cadastro mundial de barragens do Comitê Internacional de Grandes 

Barragens (ICOLD, 2020), 47% das barragens cadastradas têm como finalidade principal 

armazenar água para irrigação e 67% são barragens de terra. As grandes barragens são aquelas 

com altura mínima de 15 m e cujo reservatório possui uma capacidade maior que 3 milhões de 

metros cúbicos. No Brasil, esses dados constam no cadastro de barragens, que é a base da 

Política Nacional de Segurança de Barragens (PNSB). Desde sua criação em 2010, por meio da 

Lei Federal n° 12.334, até 2019, existem 19.388 barragens cadastradas, sendo 56% barragens 

de terra (ANA, 2019). A PNSB tem como objetivo garantir o cumprimento das medidas de 

segurança de barragens e reduzir o risco de acidentes. As barragens que se submetem à essa 

política são as grandes barragens cujo Dano Potencial Associado (DPA) é médio ou alto.  

Segundo a estatística geral de modos de ruptura de grandes barragens de terra, 

apresentada no estudo de Foster et al. (2000), que analisou a estatística de acidentes de mais de 

11.000 barragens, os modos de ruptura mais comuns são piping e galgamento. O estudo se 

concentrou especificamente em barragens de aterro, apresentando estatísticas que 

frequentemente atribuem uma proporção maior de falhas à erosão interna (piping), responsável 

por cerca de 46% a 48% das rupturas de barragens de aterro, tornando-a a principal causa ou 

uma causa de importância comparável ao galgamento, responsável por aproximadamente 40% 

a 46% das rupturas. Destes, o piping é o mais preocupante pois, por ser um processo de erosão 

interna. A análise de incidentes e falhas ocorridas em barragens mostra que os primeiros sinais 

da ocorrência deste fenômeno só podem ser observados durante a fase de progressão, quando a 

conexão entre jusante e montante já está bem desenvolvida. Nesta fase medidas de remediação 

se tornam mais caras e o risco de perda de vidas humanas é maior.  

No Brasil, a disponibilidade de dados detalhados sobre as causas dos acidentes e 

incidentes é inconsistente ao longo da série histórica dos Relatórios de Segurança de Barragens 

(RSB), publicados anualmente pela Agência Nacional de Águas e Saneamento Básico (ANA). 

O galgamento se destaca nos dados de 2023, sendo responsável por 36% dos acidentes. A 

associação frequente de picos de eventos adversos com períodos de chuvas intensas e relatos 
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de transbordamento reforça a importância do galgamento como um modo de falha relevante no 

Brasil. Muitos dos casos de ruptura reportados no decorrer dos anos consta como causas 

desconhecidas. A persistência desta categoria ao longo dos anos é um fator limitante 

significativo, o que indica dificuldades na investigação das causas raízes dos eventos ou falhas 

no processo de reporte dessas informações ao Sistema Nacional de Informações sobre 

Segurança de Barragens (SNISB). 

A utilização de métodos geofísicos para o monitoramento de barragens tem sido uma 

alternativa cada vez mais explorada na literatura para estudar o fenômeno de piping. Estes 

métodos, por serem não-destrutivos, possuem a vantagem de serem facilmente aplicados em 

barragens em operação, permitindo um monitoramento contínuo e a possibilidade de 

exploração de tecnologias como a Internet das Coisas (em inglês, Internet of Things – IOT) e 

Inteligência Artificial (IA). Porém muitos dos trabalhos que utilizaram monitoramento sísmico 

ou acústico para estudar o desenvolvimento de piping em modelos reduzidos de laboratório 

fazem uso de análise qualitativa, estudando os efeitos que o processo de iniciação desse 

fenômeno causa nas ondas monitoradas.  

 Neste cenário, o presente trabalho pretende utilizar o monitoramento sísmico do ruído 

ambiental para buscar uma medida de engenharia transiente, representada pelo índice de vazios, 

que estabeleça uma relação direta entre o processo de desenvolvimento de piping em uma 

simulação em laboratório e as alterações observadas nos dados monitorados. 

1.1. OBJETIVOS 

Obter uma medida transiente da variação de um parâmetro intermediário, que esteja 

relacionado ao processo de desenvolvimento de piping em um modelo em escala de laboratório, 

com o uso de monitoramento sísmico e inteligência artificial (IA). Para atingir este objetivo 

geral, propõe-se os seguintes objetivos específicos: 

• Definir um parâmetro intermediário que esteja relacionado ao processo de 

desenvolvimento de piping e cuja variação é perceptível aos sensores utilizados; 

• Simular cenários estáticos de piping com diferentes configurações do parâmetro 

escolhido e condições de contorno similares para monitorar a resposta do sensor em 

cada configuração em um modelo de barragem em escala de laboratório; 

• Adaptar um algoritmo de IA para prever a variável escolhida em função dos resultados 

do monitoramento; 
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• Simular um cenário dinâmico de fluxo com variação do parâmetro escolhido e 

monitorar a mudança temporal da resposta do sensor às alterações ocorridas no 

modelo em escala de laboratório durante o desenvolvimento do piping; 

• Analisar a medida transiente do parâmetro escolhido durante o cenário dinâmico, 

obtida utilizando o algoritmo de IA calibrado para as condições estáticas. 

1.2. ESTRUTURA DA DISSERTAÇÃO 

Esta dissertação está subdivida em cinco capítulos, seções e itens. O Capítulo 1 apresenta 

a introdução, com os principais aspectos que motivam o presente estudo, destacando a 

importância das barragens principalmente no contexto econômico mundial e a justificativa da 

pesquisa, contemplando por fim os objetivos do estudo.  

O Capítulo 2 refere-se o embasamento teórico necessário para o estudo desenvolvido. Para 

isso, possui cinco seções que contemplam o desenvolvimento de erosão interna em barragens 

de terra, os métodos de detecção desse fenômeno utilizando sísmica passiva, focando ainda em 

estudos que utilizaram este método em modelos reduzidos de barragem. Em seguida são 

apresentadas as metodologias de análise de dados e o problema da identificação de anomalias 

utilizando algoritmos de inteligência artificial. 

O Capítulo 3 detalha os materiais utilizados, com destaque à região de onde foi extraído o 

material e suas características. Em seguida é apresentada a metodologia utilizada para 

construção, simulação, monitoramento e análise do desenvolvimento de piping em um modelo 

em escala de laboratório. 

O Capítulo 4 apresenta o processo de construção e monitoramento dos cenários em 

laboratório. Em seguida são apresentados os resultados do monitoramento dos cenários 

estáticos, com a análise da diferenciação dos cenários feita pelo algoritmo de Inteligência 

Artificial adaptado. Por fim são apresentados os resultados do monitoramento do cenário 

dinâmico e a análise do índice de vazios transiente. 

O Capítulo 5 discute as principais conclusões do estudo, com destaque aos resultados do 

monitoramento dinâmico e as sugestões para pesquisas futuras, com o objetivo de tornar o 

estudo proposto no presente trabalho mais robusto e aplicável em situações reais. 

Ao final do trabalho são apresentadas as referências utilizadas. 
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2. REFERENCIAL TEÓRICO 

O presente capítulo apresenta o embasamento teórico necessário para o estudo 

desenvolvido, iniciando com os princípios norteadores para o desenvolvimento de erosão 

interna em barragens de terra, explorando os tipos conhecidos na literatura, as formas como 

estes mecanismos de ruptura se desenvolvem e como as propriedades do solo mudam nessas 

situações. Em seguida é abordado o uso de sísmica passiva como método de monitoramento de 

barragens e detecção de piping, sendo explorada a sua aplicação na literatura e as tecnologias 

comumente utilizadas. A aplicação desta metodologia em modelos reduzidos de barragem é 

explorada na sequência, com destaque às características dos modelos construídos e a forma de 

indução do piping. Por fim são apresentadas as metodologias de análise de dados para detecção 

de anomalia, explicando os atributos extraídos das ondas monitoradas para inserção nos 

modelos de Inteligência Artificial. Por fim é discutido o problema de detecção de anomalias 

usando IA e são destacados os modelos mais utilizados na literatura e seu funcionamento. 

2.1. EROSÃO INTERNA EM BARRAGENS DE TERRA 

Fundamentalmente, a erosão interna em barragens de terra ocorre quando, durante o fluxo 

da água no corpo do barramento, as partículas de solo são desagregadas e transportadas. Em 

comparação com outros mecanismos de ruptura de barragens, esse é particularmente perigoso 

por comprometer a integridade da estrutura de forma muitas vezes indetectável até que o 

mecanismo esteja bem desenvolvido (Robbins & Griffiths, 2018). 

A primeira condição para que haja erosão interna é o carreamento das partículas. Bonelli 

(2013) diferencia três classes de solos vulneráveis à erosão interna. Na primeira classe estão os 

solos não plásticos, como as areias e siltes, que são facilmente erodidos mas tendem a colapsar 

quando saturados, não permitindo que uma abertura se mantenha. Na segunda classe estão os 

solos plásticos, como as argilas, que são mais resistentes à erosão em função da coesão entre as 

partículas. Essa mesma coesão permite que haja a formação de fissuras, mesmo quando 

saturado, e carreamento das partículas quando as forças de percolação são grandes o suficiente 

para vencer a forças de contato entre as partículas. Na terceira classe de solo estão as argilas 

dispersivas, que diferem das argilas plásticas em sua mineralogia. Neste tipo de solo a erosão 

será iniciada por fraturas sob pequenos gradientes hidráulicos. Se tratando de modelos de 

barragem em laboratório, a experiência corrobora com as observações dos autores, nos solos da 

primeira classe a reprodução dos mecanismos de erosão interna, mais especificamente na forma 

de piping, são difíceis de reproduzir, em função do colapso do solo quando saturado.  
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O processo de erosão interna em uma barragem depende de uma série de fatores, por isso 

uma visão sistemática do problema é importante para visualizar as diversas variáveis que estão 

relacionadas com as várias fases de seu desenvolvimento. A Figura 1 apresenta uma árvore de 

eventos das várias fases do desenvolvimento da erosão interna. Tipicamente na literatura a 

iniciação da erosão, seja por erosão regressiva, fuga concentrada, sufusão ou erosão de contato, 

é descrita como o princípio da erosão interna em barragens. Fell & Fry (2007) indicam que a 

consideração do carregamento e da localização onde há o início da erosão são importantes 

condicionantes da iniciação. Em relação ao carregamento ao qual a barragem está submetida, 

os autores indicam que eventos de cheia extremamente raros têm pouca influência na 

probabilidade anual de falha por erosão interna, os eventos mais relevantes têm um tempo de 

recorrência de até 100 anos. Os sismos também têm um papel importante, uma vez que falhas 

causadas por terremotos contribuem significativamente para a frequência de rupturas 

observadas em barragens. Muitos casos de erosão interna também estão relacionados com o 

local onde o processo é iniciado, que comumente ocorre em locais fissuras causadas por 

recalque diferencial de estruturas internas da barragem ou no contato entre a fundação e o 

núcleo. 

 

 

Figura 1 – Árvore de eventos representando as várias fases que precedem uma falha por 

erosão interna pelo aterro (Modificado de Fell & Fry, 2007). 
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A depender do tipo de processo que caracteriza a iniciação do piping, este pode ser 

distinguido por quatro diferentes mecanismos (Figura 2): 

I. Erosão regressiva: ocorre principalmente na fundação, podendo também se desenvolver 

no aterro. O processo de erosão se inicia em uma superfície livre no lado de jusante quando 

há a ocorrência de gradientes hidráulicos altos, que causam a erosão das partículas 

carregando-as para cima e progredindo pela fundação da barragem. Para isso acontecer, o 

material erodido deve ter a capacidade de formar um tubo (pipe), dando origem ao 

processo denominado piping. A presença desse tipo de erosão é muitas vezes caracterizada 

pelo aparecimento de borbulhamentos, comumente denominados sand boils  (Bonelli, 

2013). 

II. Erosão por fuga concentrada: ocorre quando há a formação de uma rachadura, que pode 

ser originada por vários fatores: fratura hidráulica causada por recalque diferencial durante 

a construção ou operação da barragem, colapso de regiões mal compactadas (comum nas 

proximidades com estruturas internas das barragens) ou a ação de animais, que também 

pode contribuir com a ocorrência desse tipo de erosão. A progressão desse tipo de erosão 

não ocorre caso o solo não consiga sustentar a rachadura ou haja mecanismos que evitam 

a evolução da erosão (Bonelli, 2013). 

III. Erosão por instabilidade interna: ocorre quando a percolação é capaz de erodir 

partículas finas em uma matriz de partículas mais grossas, podendo ser subdivido em 

sufusão (erosão sem mudança no volume) ou sufosão (erosão com mudança de volume) 

(Robbins & Griffiths, 2018).  

IV. Erosão de contato: ocorre no contato de material mais grosso com outro mais fino, o 

fluxo paralelo ao contato com o material mais grosso carrega as partículas finas, 

provocando a erosão (Bonelli, 2013). 

Após a iniciação, a evolução da erosão interna ocorre por meio de três processos que 

culminam com a falha da estrutura: 

I. Continuação da erosão: Uma vez iniciada, a erosão prossegue se o fluxo de água for 

capaz de continuar a destacar e transportar partículas e se não houver um impedimento 

eficaz a jusante (como um filtro bem projetado) que retenha as partículas erodidas. A 

depender da estrutura interna do barramento, a abertura inicial pode ser mantida ou 

alargada. 
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II. Progressão: A zona de erosão avança progressivamente através do corpo da barragem ou 

da fundação. Esta fase culmina com a formação de um conduto contínuo que conecta o 

reservatório à região de jusante. 

III. Falha: Após o estabelecimento do conduto, o fluxo concentrado através dele aumenta 

significativamente. O aumento da velocidade do fluxo intensifica a erosão das paredes, 

causando seu rápido alargamento. Isso pode levar ao colapso do material e da estrutura do 

barramento pela instabilidade do talude de jusante ou por galgamento, em função do 

recalque da crista.   

 

 

Figura 2 – Principais mecanismos de iniciação da erosão interna (Modificado de Robbins & 

Griffths, 2018) 

 

Ao remover partículas finas do corpo do barramento a erosão interna provoca alterações 

fundamentais nas propriedades físicas do solo remanescente. Essas alterações, principalmente 

no índice de vazios, porosidade e distribuição granulométrica, são a base para as mudanças 

subsequentes nas propriedades hidráulicas e mecânicas.  

2.2. MONITORAMENTO E DETECÇÃO DE EROSÃO INTERNA 

Tradicionalmente o monitoramento do desempenho da estrutura de um barramento face 

às possíveis mudanças, seja elas no seu comportamento hidráulico ou mecânico, é feito com o 

uso de instrumentos como medidores de nível d’água, piezômetros, células de tensão total, 

medidores de deslocamentos, medidores de recalques, inclinômetros, medidores de vazão, entre 

outros. Cruz (1996), em seu livro que reúne uma vasta experiência sobre a construção de 

barragens no Brasil destaca que, “considerando que acidentes de barragens de terra estão 
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associados a erosões externas (normalmente não auscultadas por instrumentos) , ou a erosões 

internas, ou a instabilidades, e que a maioria das obras não dispõe de dispositivos para medição 

das vazões de percolação, e que os instrumentos estão associados a ‘volumes de influência’ 

limitados, que muitas vezes não contêm os locais mais críticos para segurança, fica um tanto 

reduzida a probabilidade de detectar por meio da instrumentação, de forma incipiente, a 

ocorrência de condições adversas à segurança”. Apesar da grande vantagem da possibilidade 

de fornecer medidas diretas do comportamento do barramento, o autor destaca que, em face de 

uma série de limitações associadas à cobertura espacial limitada, a instrumentação tradicional 

deve ser acompanhada de um plano eficiente de inspeções visuais e de outros sistemas de 

observação.  

Os métodos geofísicos têm o potencial de oferecer uma forma mais econômica e 

facilmente aplicável de acompanhar o comportamento das barragens durante sua vida útil de 

forma não destrutiva. Neste cenário os métodos geofísicos surgem como um método 

complementar ao tradicionalmente utilizado na engenharia de barragens. Sua aplicação vem 

sendo feita das mais diversas formas, mas principalmente para avaliar mudanças que ocorrem 

durante a operação da barragem, seja no corpo ou na fundação. Neste cenário, um melhor 

entendimento da conexão entre os resultados do monitoramento geofísico e a seu significado 

relacionado à segurança de barragens pode ajudar os engenheiros responsáveis por tais 

estruturas a adquirir informações importantes para tomadas de decisão (Adamo et al., 2020).  

Estes métodos levam em consideração que a maioria dos sólidos emitem um baixo nível 

de sinais sísmicos/acústicos quando submetidos a tensões ou quando sofrem deformações e 

uma variedade de termos é utilizada por várias disciplinas para descrever este fenômeno, como 

emissão acústica, atividade microssísmica,  atividade sísmico-acústica, entre outros (Hardy Jr., 

2003). A Figura 3 ilustra a forma como duas técnicas de monitoramento comumente utilizadas 

no meio geotécnico funcionam. Na primeira são utilizados dois transdutores: um transmissor 

que gera o sinal que será transmitido pelo material e; um receptor, que monitora as mudanças 

no sinal. Qualquer mudança nas características do sinal monitorado ocorre em função de 

alterações no meio monitorado. Na segunda, é utilizado somente um transdutor receptor, 

podendo ser um ou mais, que monitora sinais acústicos gerados no próprio material, 

denominado monitoramento passivo. Qualquer que seja a técnica de monitoramento utilizada, 

é importante destacar que se trata de um monitoramento indireto, que não permite determinar 

diretamente as propriedades do material analisado, somente monitorando alterações no sinal 

em função de mudanças no material. Essas mudanças são associadas às variações nas 

propriedades mecânicas. 
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Em relação às fontes que geram os sinais monitorados de forma passiva, elas estão 

relacionadas aos processos de deformação dos materiais. Esses processos ocorrem no nível 

macroscópico principalmente com a formação de fissuras, já no nível microscópico estão 

relacionadas a pequenos deslocamentos, microfissuras e também a alterações na distribuição 

granulométrica (Hardy Jr., 2003). 

 

 

Figura 3 – Técnicas de monitoramento acústico utilizada para o monitoramento de 

materiais/estruturas geológicas: (a) Método sônico; (b) Métodos sísmicos/acústicos 

(Modificado de Hardy Jr., 2003). 

 

Usualmente, nos trabalhos que constam na literatura, busca-se coletar dados que 

reflitam, de maneira indireta e não destrutiva, os fenômenos de erosão interna em barragens. 

Nestes casos, a qualidade, quantidade e continuidade de dados são questões importantes. Os 

métodos não destrutivos inspecionam falhas que são invisíveis aos olhos devido ao seu tamanho 

ou localização. A aplicação destes métodos como ferramentas de diagnóstico é geralmente 

baseada na maximização da segurança e minimização dos custos associados aos esforços de 

implementação do monitoramento e mitigação dos possíveis danos ao barramento.  

De maneira mais geral, os métodos não destrutivos para detecção precoce de piping 

buscam detectar os vazios no corpo da barragem, seja pela ausência de solo, seja pela presença 

de água nos caminhos em formação. Para o primeiro caso, métodos acústicos já tiveram uso 

reportado na literatura. Lu & Wilson (2012) utilizaram tanto técnicas ativas quando passivas de 

monitoramento acústico para estudar a evolução da erosão interna em laboratório. Os resultados 
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obtidos pelos autores mostraram que, no monitoramento ativo, a variação da velocidade das 

ondas P monitoradas refletiu a evolução do processo de erosão interna, o aumento das 

poropressões positivas e a saturação do solo adjacente ao tubo. Já no monitoramento passivo, o 

desenvolvimento do piping pôde ser identificado ao avaliar as alterações nos domínios do 

tempo e da frequência e nos contrastes dos espectrogramas. 

Rittgers et al. (2015) propõem um novo método para combinar as informações de sinais 

elétricos e sísmicos passivos para detectar, localizar e monitorar alterações no comportamento 

hidráulico e mecânico de meios porosos por meio de um experimento em escala de campo. As 

alterações simuladas pelas alterações estão relacionadas ao desenvolvimento de um caminho 

de fluxo preferencial no corpo da barragem, associado ao desenvolvimento de piping. Os 

autores apresentaram um algoritmo de busca em malha 4D para a localização de emissões 

acústica no tempo e no espaço. Os resultados dessa localização foram utilizados para construir 

um conjunto de pesos para um modelo invariante do tempo, mas espacialmente variável. Os 

resultados obtidos pelos autores por meio da combinação das duas técnicas de monitoramento 

mostram-se consistentes em termos da observação do fluxo de água subterrâneo em barragens. 

Planès et al. (2016) utilizaram interferometria sísmica passiva para monitorar as 

mudanças nos barramentos devido a erosões internas. Em resumo, os autores detectaram 

mudanças nas velocidades das ondas sonoras advindas do próprio ambiente quando passavam 

pelo barramento íntegro e comprometido. Os resultados mostraram reduções de até 20% na 

velocidade de onda de superfície à medida que a erosão interna progrediu. Os autores destacam 

ainda que algumas variações locais da velocidade mostraram boa correlação com variações na 

poropressão.  

Fisher et al. (2016) investigaram técnicas para monitoramento de integridade de 

barragens de terra e detecção automática de eventos anômalos em dados sísmicos passivos 

detectados por meio de geofones. Desenvolveram um novo fluxo de trabalho orientado a dados 

que usa inteligência artificial (Machine Learning) e dados geofísicos coletados por sensores 

localizados na superfície do barramento para identificar eventos de erosão interna.  

Parekh (2016) discute a aplicação de métodos geofísicos, por meio de uma combinação 

de métodos acústicos e elétricos para detecção e monitoramento contínuo da iniciação da erosão 

interna subsuperficial em seus estágios iniciais. O autor investiga a adequação da emissão 

acústica passiva, do auto potencial e da tomografia cross-hole para adequação como técnicas 

de monitoramento a longo prazo, remotas e contínuas para erosão interna e rachaduras de 

barragens de aterro.  
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Rahimi et al. (2019) utilizaram ondas sísmicas de superfície resultantes de ensaios 

realizados em uma barragem no Arkansas que historicamente apresentava problemas 

significativos de infiltração e erosão interna, para detectar locais de infiltração para fins de 

remediação e mapeamento. Os caminhos de infiltração na barragem foram detectados pela 

comparação das medidas de resistividade obtidas em dois períodos diferentes, mostrando-se um 

método útil para localizar potenciais zonas frágeis de estruturas de maneira econômica e rápida. 

Ozelim et al. (2022) utilizaram dados acústicos de um modelo reduzido em laboratório 

que simulava uma descontinuidade no corpo do barramento, para discutir as condições da 

estrutura e a detecção da presença da descontinuidade com o uso de algoritmos de inteligência 

artificial supervisionados. Os dados do monitoramento foram pré-processados para reduzir sua 

dimensionalidade utilizando os 3 parâmetros de Hjorth. Esses parâmetros são calculados a partir 

dos dados de monitoramento com o objetivo de diminuir a dimensionalidade e são eles: 

atividade, mobilidade e complexidade. A metodologia desenvolvida pelos autores permitiu 

observar que os parâmetros de mobilidade e complexidade estão relacionados com o nível de 

homogeneidade da barragem, enquanto o parâmetro de mobilidade estava relacionado com a 

presença de fluxo. 

Os trabalhos apresentados até o momento utilizaram o monitoramento geofísico com o 

objetivo de observar que as alterações causadas pelo desenvolvimento de piping nas estruturas 

eram evidenciadas por alterações nos sinais sísmicos/acústicos monitorados. Este tipo de 

abordagem destaca a aplicabilidade do método. Na prática da engenharia de barragens, a 

obtenção de parâmetros que reflitam de forma mais direta as alterações monitoradas torna-se 

interessante por permitir traduzir essas observações em medidas de engenharia. Outras 

aplicações para utilização de métodos geofísicos com estes objetivos podem ser encontradas na 

literatura. Strahser et al. (2011) discutem a utilização de sinais sismoelétricos induzidos pela 

propagação de ondas sísmicas para analisar variações no teor de umidade do solo. Neste caso, 

os autores utilizaram um intervalo relativamente baixo de resistência, correspondendo a altos 

valores de grau de saturação.  

Pirogova et al. (2019) discutem a utilização de métodos sísmicos de alta resolução para 

estimar propriedades elásticas de sedimentos depositados nos mares. Para isso, foi utilizado um 

método de inversão acústica denominado AVA, baseado nas equações não-lineares de 

Zoeppritz, que relacionam os coeficientes de refração e reflexão de ondas para diferentes 

ângulos de incidência. Os resultados mostram que é possível analisar não somente as 

propriedades acústicas como também as propriedades elásticas dos solos analisados. 
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Uyanık (2019) desenvolveu um estudo em um depósito de solo predominantemente 

argiloso em que foi feita a estimativa da porosidade dos solos utilizando as velocidades das 

ondas P e S monitoradas. No estudo vários parâmetros elásticos foram calculados, como o 

módulo de compressibilidade, o módulo de cisalhamento e o coeficiente de Poisson, por meio 

do método de refração sísmica. Foram realizados ensaios de laboratório nas amostras retiradas 

e alguns dos parâmetros obtidos foram utilizados para determinar relações empíricas com os 

parâmetros monitorados. Os resultados mostraram que, além de ser possível relacionar o 

monitoramento à variação da porosidade, a mudança na velocidade de onda S está diretamente 

relacionada ao grau de rigidez do solo. 

Minakov & Yarushina (2021) propõem um modelo elastoplástico com base em 

resultados de monitoramento sísmico e acústico. Os autores indicam que estudos laboratoriais 

recentes em emissões acústicas em rochas ajudam a conectar os componentes do tensor do 

momento sísmico com processos de falha. Os autores propõem uma nova representação de 

fontes sísmicas derivadas da lei de fluxo plástico não associativa, que ajuda a prever o padrão 

de fratura localizada e resposta sísmica correspondente. Para isso, foi utilizada uma formulação 

incremental quase-estática, onde as deformações plásticas foram incorporadas com uma parte 

da força de corpo efetiva na equação de propagação de onda. 

Conforme indicado por Yousefpour & Mojtahedi (2023), a relação entre erosão interna 

e os sinais sísmicos é influenciada por diversos fatores como o tipo de solo, as condições de 

tensão e saturação. Os autores indicam que outros fatores como, microfissuras, o movimento 

de partículas do solo e alterações na poropressão podem alterar as características do sinal 

sísmico. A hipótese levantada no trabalho é de que mudanças nos padrões dentro dos sinais 

sísmicos podem fornecer conhecimento sobre os processos que causam o início da erosão 

interna em barragens de terra, destacando a possibilidade de relacionar diretamente os 

resultados do monitoramento com as alterações ocorridas. 

2.3. MODELOS REDUZIDOS DE BARRAGEM PARA MONITORAMENTO DE 

PIPING EM LABORATÓRIO 

Diversos trabalhos na literatura fizeram o uso de modelos reduzidos para simular piping 

em laboratório ou em campo. Nesta seção serão exploradas as dimensões dos modelos 

construídos, os materiais utilizados na construção, a forma como foi induzido o piping, o tipo 

de sensor utilizado e o estado do modelo após o ensaio. 
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 No experimento conduzido por Fisher et al. (2017a) foi construída uma estrutura com 

4,27m de comprimento e 0,91m de altura. Para induzir o piping, uma barra com 48,26 

centímetros foi inserida abaixo da crista. Após o enchimento e estabilização do fluxo, a barra 

foi retirada do modelo para simular o fenômeno. Para o monitoramento do modelo foram 

utilizados geofones de 500 Hz. O resultado da erosão do modelo mostra uma quantidade 

significativa de material carreado, conforme demonstrado na Figura 4. 

 

 

(a) 

 

(b) 

Figura 4 – Estrutura construída para simular o piping em laboratório: (a) seção transversal 

após a remoção da barra; (b) resultado da simulação (Modificado de Fisher et al., 2017a). 

 

 O modelo em escala de laboratório de Planès et al. (2016) foi construído em um canal 

trapezoidal com 21,3m de comprimento e 6,10m de largura (Figura 5a). O material utilizado na 

construção do aterro foi uma areia siltosa de baixa plasticidade. O solo foi compactado a uma 

densidade de 0,5% da densidade máxima utilizando o Proctor Normal na umidade ótima. Os 

primeiros 30cm do aterro foram compactados a 98% da densidade máxima, enquanto os últimos 
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36cm foram compactados a 87% da densidade máxima. Durante a construção, uma barra com 

1,3cm de diâmetro foi inserida no corpo do barramento 25cm abaixo da crista e se estendendo 

do reservatório à face de jusante (Figura 5b). Para monitorar a estrutura, dez geofones de 

componente vertical foram posicionados na crista do aterro com 61cm de espaçamento. Os 

geofones utilizados possuíam uma largura de banda de 20 a 400 Hz. A evolução do piping 

induzido pelos autores pode ser observado na Figura 5c, onde é possível notar que há uma 

quantidade considerável de material carreado durante o ensaio. 

 

 

(a) 

 

(b) 

 

(c) 

Figura 5 – Modelo em escala de laboratório para simulação de piping: (a) vista frontal e; (b) 

seção transversal; (c) resultado da erosão após 0,5h, 1,5h, 2,5h, 3,5h e 5h após iniciação do 

piping (Modificado de Planès et al., 2016).  
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No ensaio em larga escala conduzido por Hanson et al. (2010) foi montada uma 

barragem com 1,3m de altura, 1,8m de largura da crista e 9,6m de largura da base. Para induzir 

o piping foi utilizada uma barra metálica de 40mm de diâmetro. Assim que o nível d’água se 

manteve constante no reservatório, a barra metálica foi removida e iniciou-se o processo de 

carreamento do material. A evolução da descontinuidade induzida na barragem está apresentada 

na Figura 6.  

 

 

Figura 6 – Evolução da ruptura do modelo de barragem em larga escala (Hanson et al., 2010).  
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 Hickey et al. (2009) montaram um ensaio em larga escala para monitoramento de erosão 

interna utilizando sísmica passiva. O aterro montado pelos autores possuiu 12m de 

comprimento e 1,25m de altura, construído ao longo de um canal controlado. A compactação 

do material foi feita em uma série de 11 camadas de aproximadamente 11cm de espessura. 

Durante o processo de compactação um tubo metálico foi introduzido no corpo do barramento, 

sendo removido posteriormente para criar um canal inicial e iniciar o processo de erosão. As 

características do material utilizado na construção estão apresentadas na Figura 7a. Após a 

remoção do tubo, a evolução da erosão induzida no barramento foi considerável, conforme pode 

ser observado na Figura 7b. O monitoramento do processo de erosão foi feito com o uso de 

acelerômetros. 

 

 

(a) 

 

(b) 

Figura 7 – Modelo de barragem para simulação de piping: (a) seção transversal; (b) resultado 

da erosão (Modificado de Hickey et al., 2009). 
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Os resultados dos estudos que constam na literatura mostram a versatilidade dos 

métodos geofísicos para monitoramento de alterações em estruturas geotécnicas. Na maioria 

dos casos, em função do volume de dados, o uso da inteligência artificial para análise dos 

resultados do monitoramento se mostra como a alternativa mais explorada, principalmente nos 

casos em que se procura encontrar padrões de comportamento para um certo conjunto de dados. 

Esse uso deve ser precedido pela preparação dos dados. No caso de dados proveniente de 

monitoramento sísmico/acústico essa preparação é feita por meio da extração dos atributos que 

representam a configuração do sinal monitorado em cada instante de tempo. 

2.4. PREPARAÇÃO DE DADOS SÍSMICOS PARA DETECÇÃO DE ANOMALIAS 

A escolha do modelo de Machine Learning mais eficiente para a previsão de anomalias 

no meio poroso está condicionada ao tratamento prévio dos sinais acústicos pautado, portanto, 

no processamento dos dados de entrada e na extração dos seus principais atributos, incluindo, 

sua organização na forma vetorial. A extração dos atributos é uma etapa de processamento 

essencial tanto para reconhecimento de padrões quanto para as tarefas de aprendizado de 

máquina. Os dados de áudio são intrinsecamente volumosos, portanto, a redução da taxa de 

dados se faz necessária. Assim, com essa etapa, os algoritmos de análise ficam condicionados 

a uma quantidade pequena de recursos que representam as propriedades dos sinais acústicos 

captados originalmente (Giannkopoulos & Pikrakis, 2014). Caso os atributos não sejam 

adequadamente selecionados nessa fase, há comprometimento de todas as etapas subsequentes. 

Os principais atributos das ondas acústicas podem ser categorizados em relação ao seu domínio, 

isto é, em função do tempo e da frequência. 

De modo geral, essas propriedades de domínio do tempo são extraídas diretamente dos 

sinais acústicos, sendo elas:  

• Envelope de Amplitude (Amplitude Envelope - AE): representa o volume do sinal, 

por meio da extração do valor máximo de amplitude de cada amostra contida em 

uma janela de análise (Albuquerque et al., 2022). Os autores indicam que amplitudes 

elevadas são indicativas de eventos barulhentos, como rachaduras ou piping. Tal 

atributo é calculado por meio da equação (1). 

( 1)( 1)

.
max ( )

t K

t
k t K

AE s k
+ −

=
=                                                   (1) 

Onde, K é o tamanho da janela de análise e s(k) simboliza a amplitude da amostra k. 
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• Energia Quadrada Média (Root-Mean Square Energy - RMS): pode ser obtida por 

meio da equação (2) e é similar ao envelope de amplitude, porém é menos sensível 

aos valores destoantes de cada amostra no sinal acústico. Representa, portanto, uma 

“altura” e detecta diferentes tipos de ruído em cada parte do sinal (Albuquerque et 

al., 2022). Os autores indicam que o RMS, assim como a AE, é uma propriedade de 

sinais acústicos importante para os eventos de erosão e fissuração, por ser um 

indicativo dos barulhos, como do fluxo de água ou no desenvolvimento de 

rachaduras ou piping.  

( 1)( 1)
2

.

1
( )

t K

t

k t K

RMS s k
K

+ −

=

=                                          (2) 

• Taxa de cruzamento com o zero (Zero-Crossing Rate - ZCR): diz respeito ao número 

de vezes que o sinal muda de valor, de positivo para negativo, indicando a 

quantidade de vezes que este cruza o eixo x. É calculado por meio da equação (3) e 

pode ser interpretado como uma medida de quão ruidoso é o sinal (Giannkopoulos 

& Pikrakis, 2014). Os autores indicam que esse parâmetro reflete de certa forma, as 

características espectrais do sinal.  

( 1)( 1)

.

1
( ( )) ( ( 1))

2

t K

t

k t K

ZCR sinal s k sinal s k
+ −

=

= − +                            (3) 

Onde, sinal(s(k)) refere-se ao sinal da função s(k) atribuído de acordo com os valores de 

amplitude, isto é, 

1, ( ) 0

( ( )) 1, ( ) 0

0, ( ) 0

s k

sinal s k s k

s k




= − 
 =

  

Os atributos do domínio da frequência revelam importantes características do sinal 

acústico, a maioria dos atributos mais importantes para análise destes sinais estão neste 

domínio. Estes são obtidos por meio da transformação do dado (originalmente representado no 

domínio do tempo) para o domínio da frequência (espectral) mediante transformações ou 

autocorrelações, sendo que as ferramentas de transformação mais usuais são: a Transformada 

Discreta de Fourier (TDF) e a Transformada Discreta de Cosseno (TDC) (Mitrovic et al., 2010). 

Dentre as propriedades do domínio da frequência, destaca-se: 

• Centroide espectral: representa uma medida da posição e da forma do espectro. O 

centroide espectral é o centro de “gravidade” do espectro (Giannkopoulos & 
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Pikrakis, 2014). O valor do centroide Ci no i-ésimo frame de áudio é definida 

conforme apresentado na equação (4): 

1

1

( )

( )

FL

FL

W

i

k
i W

i

k

kX k

C

X k

=

=

=



                                                     (4) 

Onde, Xi(k), k = 1, ..., WFL é a magnitude dos coeficientes da TDF no i-ésimo frame de áudio.  

E WFL é o número de coeficientes utilizados. 

• Rolloff espectral: é definido como a frequência abaixo da qual uma certa 

porcentagem da distribuição de magnitude do espectro está concentrada, 

normalmente refere-se a porcentagens por volta de 90% (Giannkopoulos & Pikrakis, 

2014). Se o m-ésino coeficiente da TDF corresponde ao rolloff espectral do i-ésimo 

frame, então a equação (5) é satisfeita. 

1 1

( ) ( )
FLWm

i i

k k

X k C X k
= =

=                                              (5) 

Outros atributos que podem ser extraídos do domínio da frequência são a Razão de 

Energia de Banda, a Largura de Banda Espectral, a Planicidade espectral, que se refere à 

quantificação do quanto o sinal é parecido com um ruído ou se possui uma tonicidade associada, 

e os coeficientes do Cepstrum de Frequência Mel (Mel-Frequency Cepstrum Coefficients - 

MFCCs), muito populares para o reconhecimento da voz. Os MFCCs são um tipo cepstral de 

representação do sinal acústico, no qual as bandas de frequência são distribuídas de acordo com 

a escala Mel (Giannkopoulos & Pikrakis, 2014). Os MFCCs são obtidos por meio da aplicação 

da Transformada Discreta de Cosseno (TDC) que resultam em coeficientes relacionados à parte 

real da Transformada de Fourier. 

2.5. INTELIGÊNCIA ARTFICIAL PARA DETECÇÃO DE ANOMALIAS 

Após a preparação dos dados, um caminho comumente adota na literatura é a inserção 

destes em um modelo de IA para detecção de anomalias que possam ser indicativas da 

ocorrência de piping. Entende-se como detecção de anomalias a procura por instâncias ou 

padrões nos dados que apresentam um desvio em relação ao comportamento normal esperado. 

Ferramentas para detecção de anomalias são interessantes pois elas normalmente indicam 

informações úteis para tomadas de decisão (Singh, 2017). A detecção de fraude em sistemas 
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financeiros e falhas em sistemas industriais são algumas das aplicações de algoritmos de 

detecção de anomalias encontradas na literatura. 

Um aspecto importante da detecção de anomalias refere-se à natureza da anomalia que se 

deseja detectar. Chandola et al. (2009) classificam as anomalias em três tipos: 

• Anomalias pontuais: caso uma única instância do dado possa ser considerada anômala 

quando comparada com o os outros. É o tipo mais simples de anomalia, sendo o foco na 

maioria das pesquisas; 

• Anomalias contextuais (ou anomalias condicionais): caso uma instância de dado possa ser 

considerada anômala em um contexto específico, mas não fora dele; 

• Anomalias coletivas: caso uma coleção de dados relacionados possa ser considerada 

anômala em relação ao banco de dados total. Dados individuais dentro de uma anomalia 

coletiva podem não ser uma anomalia quando analisados sozinhos, mas a sua ocorrência 

em grupo é considerada anômala. 

Uma forma comum de lidar com um problema de detecção de anomalia é definir uma 

região que representa o comportamento normal e classificar que os dados que não se encaixam 

nesse comportamento como anormais. O grande problema dessa abordagem é definir o que é o 

comportamento normal, determinar um limite que comporte todas as regiões do que pode ser 

considerado normal é extremamente difícil, adicionalmente os limites que definem o 

comportamento como anômalo muitas vezes não é preciso, podendo um dado normal ser 

classificado como anômalo ou vice-versa (Chandola et al., 2009).  

A aplicação dessas abordagens no contexto da detecção de piping traz uma discussão 

interessante, uma vez que determinar a ocorrência do fenômeno utilizando algoritmos não 

supervisionados é uma tarefa complicada, pois deve-se conhecer o que significa o 

comportamento normal do sensor para estabelecer os cenários com anomalia. No cenário atual, 

tanto no Brasil como no mundo, onde existem muitas barragens em operação, o conhecimento 

do comportamento sem anomalia pode ser difícil de determinar. Desta forma, uma maneira de 

abordar o problema seria caracterizar o comportamento sísmico/acústico esperado da barragem. 

Nos casos em que é possível conhecer o comportamento esperado para cada situação, seja com 

ou sem anomalia, podem ser utilizados algoritmos de classificação ou regressão para avaliação 

de novos dados.   

A classificação e a regressão são as duas principais categorias de tarefas no aprendizado 

supervisionado (Lee, 2025a). Embora ambas utilizem dados rotulados para treinar modelos, 

seus objetivos e os tipos de problemas que resolvem são fundamentalmente diferentes. 

A   classificação se ocupa de prever resultados discretos ou categóricos. Exemplos clássicos 
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incluem a identificação de e-mails como "spam" ou "não spam", o diagnóstico de uma condição 

médica como "maligna" ou "benigna", ou a categorização de imagens em classes como "cão", 

"gato" ou "carro". As tarefas de classificação podem ser subdivididas em:    

• Classificação Binária: Onde existem apenas duas categorias de saída possíveis 

(fraude/não fraude).    

• Classificação Multiclasse: Onde existem mais de duas categorias mutuamente 

exclusivas (classificar a raça de um cão).    

• Classificação Multirrótulo: Onde uma única instância pode ser associada a múltiplas 

categorias simultaneamente (rotular um filme como "ação" e "comédia").    

Por outro lado, a regressão visa prever resultados contínuos ou valores numéricos. 

Exemplos incluem a estimativa do preço de uma casa com base em suas características, a 

previsão da pressão arterial de um paciente ou a projeção do valor de uma ação.  

Se tratando de uma série de diferentes modelos de classificação, a avaliação do 

desempenho de cada um é tão crucial quanto seu treinamento, e as métricas utilizadas diferem 

significativamente entre classificação e regressão, refletindo seus objetivos distintos. Para a 

classificação, as métricas avaliam quão bem o modelo consegue separar as classes. Géron 

(2019) descreve as principais métricas, que incluem:    

• Acurácia: representa a proporção de previsões corretas sobre o total. Embora intuitiva, 

pode ser enganosa em conjuntos de dados desbalanceados. 

• Precisão: representa de todas as previsões positivas, quantas estavam corretas, sendo 

calculada conforme indicado na equação 6. Onde, TP refere-se aos verdadeiros positivos 

e FP aos falsos positivos. 

TP
Precisão

TP FP
=

+
                                                     (6) 

• Recall ou sensibilidade: representa de todos os positivos reais, quantos foram 

corretamente identificados, sendo calculado conforme apresentado na equação 7, onde 

FN refere-se aos falsos negativos. 

TP
Recall

TP FN
=

+
                                                    (7) 

• F1-Score: representa a média harmônica da precisão e do recall, fornecendo um 

equilíbrio entre os dois e sendo calculado conforme apresentado na equação 8. 

1 2
precisão recall

F
precisão recall


= 

+
                                              (8) 
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Outra forma de representar os resultados de um algoritmo de classificação é por meio da 

matriz de confusão, uma tabela que detalha os verdadeiros positivos, verdadeiros negativos, 

falsos positivos e falsos negativos, fornecendo uma visão geral dos erros do modelo.    

Para a regressão, as métricas medem a proximidade entre os valores previstos e os valores 

reais, conforme descrito por (Lee, 2025a):    

• Erro Quadrático Médio (MSE): representa a média dos quadrados das diferenças entre 

os valores previstos e reais, penalizando erros maiores de forma mais significativa. O 

MSE é calculado por meio da equação 9. 

2

1

1
ˆ( )

n

i i

i

MSE y y
n =

= −                                             (9) 

• Raiz do Erro Quadrático Médio (RMSE): representa a raiz quadrada do MSE, 

retornando a métrica de erro para a mesma escala dos dados originais. 

• Erro Absoluto Médio (MAE): representa a média das diferenças absolutas, sendo menos 

sensível a outliers do que o MSE. O MAE é calculado por meio da equação 10. 

1

1
ˆ

n

i i

i

MAE y y
n =

= −                                                 (10) 

• Coeficiente de Determinação (R²): Indica a proporção da variância na variável 

dependente que é previsível a partir das variáveis independentes. Varia de 0 a 1, com 

valores mais altos indicando um melhor ajuste. O R² é calculado por meio da equação 

11. 
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−


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                                                  (11) 

A escolha da métrica de avaliação apropriada não é apenas uma decisão técnica, mas um 

reflexo direto dos objetivos ou do contexto da aplicação. As fórmulas matemáticas para precisão 

e recall, por exemplo, não capturam o custo assimétrico dos diferentes tipos de erro no mundo 

real. Em um cenário de diagnóstico médico, como a detecção de câncer, um falso negativo (não 

detectar uma doença existente) tem consequências muito mais graves do que um falso positivo 

(sugerir uma doença que não existe, levando a mais exames). Nesse contexto, o recall (a 

capacidade de identificar todos os casos positivos reais) é priorizado, mesmo que isso signifique 

uma precisão menor. Em contraste, em um sistema de filtragem de spam, um falso positivo (um 

e-mail importante ser classificado como spam) é frequentemente considerado mais 

problemático do que um falso negativo (um e-mail de spam chegar à caixa de entrada). Aqui, a 

precisão é a métrica mais crítica. Portanto, a avaliação de um modelo é indissociável da análise 
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do custo do erro em seu domínio de aplicação, transformando a seleção de métricas em uma 

tradução de prioridades estratégicas para um critério quantificável. 

Dentre os algoritmos de classificação comumente utilizados, cita-se: 

• Regressão Logística (Logistic Regression): tem como função modelar a probabilidade 

de um resultado categórico, tipicamente binário. O desafio central que esse tipo de 

algoritmo resolve é como usar uma função linear para prever uma probabilidade. A 

solução não é modelar a probabilidade diretamente, mas sim uma transformação dela 

por meio do logaritmo da razão de chances. A principal vantagem desse tipo de 

algoritmo está relacionada à sua simplicidade, enquanto a sua principal limitação está 

relacionada à hipótese de que há uma relação linear entre as entradas no logaritmo da 

razão de chances, o que nem sempre é verdade. Além disso, o modelo é sensível a 

ouliers e a alta correlação entre as variáveis de entrada (Lee, 2025b). 

• Máquinas de Vetores de Suporte (Support Vector Machines - SVM): são algoritmos 

baseados na teoria de aprendizagem estatística de Vapnik-Cherbonenkis e no princípio 

de minimização do risco estrutural (Bhavsar & Panchal, 2012). Conforme descrito pelos 

autores, o objetivo central do SVM é identificar um hiperplano no espaço de dados de 

entrada que separe os dados de diferentes classes da melhor forma possível. A maior 

força do SVM reside em sua capacidade de lidar com dados não linearmente separáveis 

por meio do kernel trick. Em vez de tentar ajustar uma fronteira não linear no espaço 

original, a SVM utiliza uma função de kernel (polinomial, Função de Base Radial ou 

Sigmoide) para mapear os dados para um espaço de dimensão muito maior. A ideia é 

que, nesse espaço de dimensão superior, os dados se tornem linearmente separáveis. A 

principal desvantagem deste método está relacionada ao custo computacional associado.  

• Gradiente Descendente Estocástico (Stochastic Gradient Descent - SGD): representa 

uma abordagem simples e eficaz para o treinamento de modelos lineares. Sua aplicação 

é ideal em cenários que utilizam funções de perda convexas, como a Regressão 

Logística e as Máquinas de Vetores de Suporte lineares. Em sua essência, o SGD é 

estritamente uma técnica de otimização, e não uma família específica de modelos de 

aprendizado de máquina. Trata-se apenas do método utilizado para treinar um modelo 

(Scikit-learn, 2025). 

• Naive-Bayes: algoritmo fundamentado no Teorema de Bayes, que retorna a 

probabilidade de um evento com base no conhecimento prévio de condições que podem 

estar relacionadas a este evento. As vantagens desse algoritmo estão associadas à sua 
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simplicidade e de que ele não requer uma grande quantidade de dados para estimar as 

probabilidades. A maior desvantagem deste tipo de algoritmo está associada à suposição 

de independência entre as variáveis (IBM, 2025a). 

• K-Nearest Neighbors (kNN): é algoritmo simples que opera sob a suposição de que 

pontos de dados semelhantes existem em proximidade uns dos outros. Ao contrário da 

maioria dos outros algoritmos, o kNN não passa por uma fase de treinamento explícita 

para aprender um modelo, em vez disso o algoritmo memoriza todo o conjunto de dados 

de treinamento e calcula a distância entre o ponto de consulta e todos os outros pontos 

nesse conjunto de dados. Em seguida o algoritmo identifica o ‘k’ pontos mais próximos 

e a nova amostra é atribuída à classe que é mais frequente entre esses ‘k’ vizinhos. A 

principal vantagem deste tipo de algoritmo está relacionada à sua simplicidade, porém 

em espaços de alta dimensão o conceito de proximidade se torna menos significativo, 

pois todos os pontos tendem a estar distantes um dos outros, degradando 

consideravelmente o desempenho do algoritmo, sendo sua principal desvantagem (IBM, 

2025d). 

• Árvores de decisão (Decision Trees): é um algoritmo não paramétrico que se destaca 

por sua estrutura intuitiva e sua capacidade de gerar regras de decisão simples. O 

algoritmo funciona como uma série de regras “se-então” a partir das features dos dados, 

que são organizadas em uma estrutura hierárquica semelhante a uma árvore. As raízes 

da árvore atuam como a entrada de dados e a cada nó de decisão a partir da raiz o 

algoritmo procura a melhor feature e o melhor ponto de corte para dividir os dados em 

dois ou mais subconjuntos. A principal desvantagem deste tipo de algoritmo é a sua 

tendência a overfitting, podendo criar árvores excessivamente complexas que se ajustam 

bem às variações dos dados de treinamento, mas que não funcionam bem em novos 

dados (IBM, 2025b). 

• Florestas aleatórias (Random Forests): algoritmo que opera construindo uma grande 

coleção de árvores de decisão descorrelacionadas durante o treinamento. Neste tipo de 

algoritmo a previsão final é determinada por uma espécie de “voto de maioria” entre 

todas as árvores da floresta. A chave para o desempenho das florestas aleatórias é a 

garantia de que as árvores individuais sejam diversas, por meio da separação do 

conjunto de dados para cada árvore. Trata-se de um dos algoritmos mais robustos 

disponíveis, que combate eficazmente o overfitting e permite obter a importância das 

variáveis (IBM, 2025c). 
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• Multilayer Perceptron (MLP): conforme descrito por Baladram (2024), é um tipo de 

algoritmo de deep learning na forma de uma rede neural feedfoward, o que significa que 

os dados fluem em uma única direção. A estrutura de um MLP simula o funcionamento 

de um neurônio, sendo formado por uma camada de entrada, que recebe os dados brutos, 

um número arbitrário de camadas ocultas e uma camada de saída, que produz a predição. 

O treinamento de um MLP é realizado através do algoritmo de retropropagação 

(backpropagation). O processo começa com uma passagem para a frente (forward pass), 

onde os dados de entrada são propagados através da rede neural para gerar uma 

predição. Em seguida, uma função de perda é calculada para medir o erro entre a 

predição e o rótulo verdadeiro. A retropropagação então calcula o gradiente da função 

de perda em relação a cada peso e viés na rede, começando pela camada de saída e 

movendo-se para trás. Finalmente, um algoritmo de otimização usa esses gradientes 

para atualizar os pesos e vieses, movendo-os ligeiramente na direção que minimiza o 

erro. Este ciclo de forward pass, cálculo de perda, backpropagation e atualização de 

pesos é repetido diversas vezes até que o modelo convirja. A principal vantagem do 

MLP é sua capacidade de aprender padrões e relações não lineares extremamente 

complexas, tornando-o adequado para uma vasta gama de problemas de classificação 

que os modelos lineares não conseguem resolver. 

Dentre os algoritmos de regressão comumente utilizados, cita-se: 

• Random Forest Regressor: conforme descrito por Biau & Scornet (2016), trata-se de 

um algoritmo que mantém a arquitetura do seu análogo de classificação, mas com 

modificações em como as árvores são construídas e como suas predições são agregadas. 

No que diz respeito ao processo de construção, em árvores de regressão o objetivo não 

é criar nós puros em termos de classe, mas sim criar nós onde os valores da variável de 

destino sejam o mais semelhante possível. Na predição final, em vez de ser um voto de 

maioria, esta é computada como a média das predições de todas as árvores de decisão 

individual. As vantagens e desvantagens desse tipo de modelo são as mesmas do 

algoritmo de classificação análogo. 

• Support Vector Regressor (SVR): conforme descrito por Sidharth (2025),  trata-se de 

uma adaptação do SVM para tarefas de regressão. Ele transpõe a ideia de maximizar a 

margem de separação para o problema de ajustar uma função a dados contínuos, 

introduzindo o conceito de uma margem de tolerância ao erro. Portanto, enquanto o 

SVM busca um hiperplano que maximize a distância entre as classes, o objetivo do SVR 

é encontrar um hiperplano que se ajuste ao maior número possível de pontos de dados 
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dentro de uma margem de erro predefinida. Esta margem é definida por um 

hiperparâmetro chave chamado épsilon. As vantagens do SVR derivam diretamente de 

seus princípios de funcionamento. A perda insensível a épsilon o torna muito robusto a 

outliers, pois pontos ruidosos que ainda caem dentro do tubo de épsilon não afetam o 

modelo final. Assim como a SVM, ele tem um bom desempenho em espaços de alta 

dimensão e é eficiente em termos de memória, pois sua solução depende apenas de um 

subconjunto dos dados de treinamento (os vetores de suporte). As desvantagens são 

também significativas. O SVR pode ser computacionalmente intensivo e lento para 

treinar em conjuntos de dados muito grandes, devido à sua complexidade de otimização. 
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3. MATERIAIS E METODOLOGIA 

Para obter a medida transiente do parâmetro intermediário durante uma simulação do 

processo de desenvolvimento de piping em um modelo em escala de laboratório, foi 

estabelecido o comportamento esperado para este parâmetro por meio do monitoramento de 

cenários estáticos, como uma forma de caracterizar a resposta sísmica do sensor para o material 

sob diferentes condições. A associação da resposta sísmica do sensor com a quantificação do 

parâmetro intermediário em cada cenário estático foi feita por modelos de Machine Learning 

supervisionando para classificação e regressão. A escolha das condições iniciais do material de 

cada cenário estático foi pautada em estudos que fizeram a caracterização do material utilizado 

na construção do modelo de barragem. Os cenários foram montados e monitorados utilizando 

equipamentos adquiridos durante o projeto AINOA (Sistema de Monitoramento de Patologias 

Internas em Barragens de Terra e Enrocamento Fundamentado em Inteligência Artificial e 

Internet das Coisas: Caso de Estudo da Barragem do Paranoá-DF), em que o presente autor 

participou, atuando na equipe de desenvolvimento e monitoramento do modelo reduzido em 

laboratório. O algoritmo de IA adaptado também foi elaborado para o projeto, o presente 

trabalho utilizou o conhecimento construído na ocasião para o cálculo e seleção dos atributos 

de onda mais adequados. Para o desenvolvimento do algoritmo utilizado na presente pesquisa 

foi utilizada a linguagem de programação Python. 

Neste capítulo estão descritos de forma detalhada os materiais utilizados na pesquisa, 

iniciando com a caracterização dos materiais geotécnicos utilizados, seguindo pela 

configuração do equipamento e do modelo de barragem construído em laboratório, descrição 

das características do equipamento utilizado no monitoramento sísmico e dos atributos 

extraídos dos dados. Em seguida, é detalhada a metodologia desenvolvida para o trabalho. 

3.1. MATERIAIS 

3.1.1. CARACTERIZAÇÃO DOS MATERIAIS GEOTÉCNICOS 

O material utilizado na montagem dos cenários foi coletado no Campo Experimental do 

Programa de Pós-Graduação em Geotecnia da Universidade de Brasília (PPGG/UnB) (Figura 

8). Optou-se pela utilização de um material argiloso, pois não é possível induzir uma ruptura 

por piping em uma areia, já que esta tende a apresentar um efeito cicatrizante, colapsando ao 

ser saturada e, portanto, um modelo de barragem com este material não consegue manter uma 

fissura aberta por tempo suficiente para permitir a simulação de piping (Fell & Fry, 2007).  
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Figura 8 – Localização do Campo Experimental do Programa de Pós-Gradução em Geotecnia 

(modificado de Google Earth, 2025). 

 

O perfil estratigráfico do solo no campo experimental (Figura 9) mostra que, nas 

camadas mais superficiais, abaixo da camada de vegetação, tem-se uma camada de argila 

arenosa muito mole, que será o material utilizado na presente pesquisa. Este foi retirado à uma 

profundidade de aproximadamente 2 metros. 

 

Figura 9 – Perfil estratigráfico do solo no Campo Experimental do PPGG/UnB (Modificado 

de Rebolledo et al., 2019). 
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A curva granulométrica sem defloculante e com defloculante da argila arenosa utilizada, 

obtida por Lopes (2019), apresentada na Figura 10, reflete o comportamento característico do 

solo da região, em que há a formação de agregados de partículas de solo cimentado, por isso a 

diferença entre os resultados do ensaio feito com e sem defloculante. 

 

 

Figura 10 – Curva granulométrica da argila do Campo Experimental do PPGG/UnB (Lopes, 

2019). 

 

Para definição dos cenários foram utilizados resultados de ensaios de compactação em 

trabalhos na literatura que utilizaram o material do Campo Experimental. Foram comparados 

os pesos específicos mínimos e máximos atingidos nos ensaios para definir o maior intervalo 

de índice de vazios possível. No trabalho de Lopes (2019) foi utilizada a energia intermediária 

e foi atingido um peso específico seco máximo (γd,máx) de 16,78 kN/m³ com umidade ótima de 

20,18%, enquanto que o peso específico seco mínimo (γd,mín) do ensaio foi de 14,84 kN/m³ com 

umidade de 16,74%. Collantes (2022) coletou amostras de material nas profundidades de 1, 3, 

5 e 7 metros, e utilizando a energia intermediária e obteve um γd,máx de 16,61 kN/m³, com 

umidade ótima de 20,52%, e um γd,mín de 14,83 kN/m³ com umidade de 16,96% para as amostras 

coletadas aos 3 metros de profundidade. Silva et al. (2024) coletaram amostras na profundidade 

de 2 metros e utilizou a energia normal na compactação, atingindo um γd,máx de 16,24 kN/m³ 

com umidade ótima de 21,71%, e um γd,mín de 12,18 kN/m³ com umidade de 16,51%. Nos 

resultados preliminares da pesquisa de doutorado de Neves (2025), que também coletou 

amostras a 2 metros de profundidade e utilizou a energia normal na compactação, foi obtido um 

γd,máx de 16,37 kN/m³ com umidade ótima de 21,48% e um γd,mín de 14,61 kN/m³ com umidade 
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de 16,96%. Os pontos das curvas de compactação obtidos pelos autores supracitados e os ajustes 

dos pontos experimentais utilizando polinômios de 3°grau estão apresentados na Figura 11. 

 

 

Figura 11 – Curvas de compactação do solo do Campo Experimental do PPGG/UnB com 

ajuste polinomial de grau 3 (Collantes, 2022; Lopes, 2019; Neves, 2025; Silva et al., 2024).  

 

Em função da amplitude de pesos específicos alcançada no ramo seco da curva de 

compactação de Silva et al. (2024), a curva dos autores foi escolhida para a definição dos 

parâmetros iniciais de cada cenário, que serão explicitados na seção 3.2. 

3.1.2. EQUIPAMENTO EXPERIMENTAL 

Para construção do modelo foi utilizada uma caixa fabricada com vidro, com dimensões 

1,2x0,26x0,26m. O equipamento utilizado não possui uma das faces, que funcionou como face 

de jusante do modelo. Os sistemas de entrada e saída de água montados para possibilitar a 

circulação de água no sistema serão detalhados na seção 3.2. A caixa foi posicionada sobre uma 

plataforma constituída de uma série de 7 blocos de concreto com 0,35m de altura com o objetivo 

de facilitar o processo de compactação das camadas e servir como uma base rígida o suficiente 

para transmitir o ruído ambiental para a barragem (Figura 12).  
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Figura 12 – Dimensões da caixa de vidro tendo por base blocos de concreto. 

 

3.1.3. INSTRUMENTAÇÃO 

O sensor a ser utilizado é um sismógrafo fabricado pela empresa Raspberry Shake, 

sendo constituído por um sistema composto de um microcontrolador (placa Raspberry) e 

geofones em uma caixa acrílica (Figura 13). A aquisição dos dados é feita por 3 geofones 

posicionados ortogonalmente, o que permite o monitoramento de ondas em três direções 

ortogonais. São geofones de 4,5 Hz que permitem adquirir até 100 amostras por segundo. O 

sistema possui a capacidade de transmissão de dados em tempo real, sendo um diferencial deste 

sensor em relação aos outros disponíveis no mercado. O resultado do monitoramento é expresso 

em três canais relacionados a cada uma das direções: EHZ, que representa as ondas captadas na 

direção vertical; EHN, que representa a direção norte/sul e; EHE, que representa a direção 

leste/oeste. 

 

 

Figura 13 – Sistema Raspberry Shake com três geofones (RS3D). 
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3.1.4. EXTRAÇÃO DOS ATRIBUTOS DAS ONDAS   

A extração de atributos foi projetada para extrair um conjunto abrangente de 

características de sinais de áudio, cruciais para análises em domínios como processamento de 

fala, música e outras aplicações de sinais baseadas em tempo. A seleção dessas características 

baseou-se no trabalho de Fisher et al. (2017), visando fornecer uma representação robusta e 

significativa dos dados de áudio (Albuquerque et al., 2022). 

Conforme descrito pelos autores, o processo de extração de características é realizado 

quadro a quadro para cada canal do sinal de entrada. Para mitigar o vazamento espectral, que 

ocorre nas transições de quadros devido à descontinuidade do sinal, a função emprega a 

sobreposição de quadros. Para isso foram definidos dois parâmetros: o frame size (comprimento 

da janela de análise) e o hop length (deslocamento da janela de análise). 

As características extraídas são divididas em duas categorias principais: 

I. Características no Domínio do Tempo: 

a. Envelope de Amplitude (EA): representa a variação da amplitude instantânea do sinal 

ao longo do tempo; 

b. Root-Mean-Square (RMS): mede a intensidade média do sinal no quadro; 

c. Taxa de Cruzamento por Zero (TCZ): indica a frequência com que o sinal cruza o eixo 

zero, sendo um indicador de características percussivas ou da presença de ruído. 

II. Características no Domínio da Frequência: 

a. Razão de Energia de Banda (REB): calcula a proporção da energia do sinal abaixo e 

acima de uma frequência de corte especificada; 

b. Largura de Banda Espectral (LBE): descreve a dispersão das frequências no espectro 

do sinal; 

c. Centroide Espectral (CE): representa o "centro de massa" do espectro de frequência, 

indicando a predominância de frequências mais baixas ou mais altas; 

d. Planicidade Espectral (PE): quantifica o quão "plano" ou "pontiagudo" é o espectro, 

com valores mais altos indicando um espectro mais próximo de ruído branco; 

e. Rolloff Espectral (RE): a frequência abaixo da qual uma porcentagem especificada da 

energia total do espectro está contida (neste caso, 85%), útil para distinguir entre sons 

vocais e não-vocais; 
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f. Coeficientes Cepstrais de Frequência Mel (MFCCs): foram extraídos MFCCs, que 

são amplamente utilizados em reconhecimento de fala e música por sua capacidade 

de representar as características timbrais de um som. Além dos 13 MFCCs brutos, 

foram calculadas suas primeiras e segundas derivadas, que representam as variações 

temporais desses coeficientes, fornecendo informações sobre a dinâmica do sinal. 

3.2. METODOLOGIA 

A metodologia da presente dissertação foi dividida em duas etapas, exibidas no 

fluxograma da Figura 14.  

Na Etapa 1, foi feita a escolha de um parâmetro intermediário (PI) que possa ser 

relacionado com o carreamento das partículas finas do solo durante um processo de piping e 

detectado durante o monitoramento sísmico. Foram definidas duas variáveis iniciais, o teor de 

umidade (θ) e o índice de vazios (e), avaliadas em amostras de areia com diferentes 

características. Foram montados 3 cenários, no primeiro foi utilizado uma amostra de areia 

grossa seca, no segundo uma amostra de areia fina úmida e no terceiro uma amostra de areia 

fina seca. Os cenários foram montados em células acrílicas, os sensores foram posicionados 

sobre as células e o monitoramento foi feito durante 2 horas. Os dados monitorados foram pré-

processados utilizando o software gratuito Swarm, desenvolvido pelo Instituto de Pesquisas 

Geológicas dos Estados Unidos (United States Geological Survey - USGS). Trata-se de uma 

aplicação desenvolvida para analisar dados sísmicos, funcionando com fontes estáticas e 

dinâmicas, sendo possível utilizá-lo para analisar dados em tempo real. Os dados foram 

analisados visualmente, sendo definido o parâmetro intermediário com base nos resultados 

observados e na literatura. 

Na Etapa 2, foram montados cenários de monitoramento de fluxo em uma simulação de 

piping em um modelo de barragem em escala de laboratório. Foram definidos cinco cenários 

estáticos e um cenário dinâmico. Em todos os cenários, o piping foi induzido no barramento 

seguindo a prática comumente adotada na literatura, com a inserção de um tubo ligando o 

reservatório de montante ao talude de jusante da barragem durante o processo de construção da 

barragem, induzindo uma descontinuidade. Durante o enchimento do reservatório o tubo foi 

mantido selado de forma a não permitir a passagem de água, o monitoramento foi iniciado 

quando se permitiu o fluxo de água pela descontinuidade. As condições de contorno do ensaio 

foram mantidas constantes em todos os cenários: 1) O nível de água do reservatório de montante 

foi mantido constante durante o monitoramento e; 2) No início do ensaio há uma 
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descontinuidade, induzida pela introdução de um tubo no corpo da barragem, com diâmetro de 

8 mm.  

 

 

Figura 14 – Fluxograma metodológico realizado nesta pesquisa. 
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Nos cenários estáticos foi inserido um tubo de acrílico com diâmetro interno de 8mm 

durante a compactação. Em todos eles o tubo não foi retirado durante o monitoramento, criando 

um caminho preferencial de fluxo de água do reservatório por uma descontinuidade no corpo 

do barramento cujo diâmetro não sofre alteração com o tempo, mantendo as duas condições de 

contorno constantes (Figura 15).  

 

Figura 15 – Condições de contorno e inicial de cada um dos cenários estáticos. 

 

Utilizando o intervalo entre o peso específico seco máximo e mínimo obtidos por Silva 

et al. (2024), foram definidos 5 pesos específicos como condição inicial de cada um dos 

cenários estáticos, conforme apresentado na Tabela 1. O Cenário 5 foi utilizado tanto como 

condição inicial do cenário estático, para caracterizar o comportamento inicial, como do cenário 

dinâmico, para que a variação do índice de vazios causada pelo carreamento das partículas faça 
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com que o índice de vazios equivalente do meio diminua, passando pelos índices de vazios 

simulados nos cenários 4, 3, 2 e 1. 

 

Tabela 1 - Condição inicial dos cenários estáticos e dinâmico. 

Cenário γd (kN/m³) e w (%) 

1 12,180 1,17 16,51 

2 13,195 1,01 17,12 

3 14,210 0,86 17,87 

4 15,225 0,74 18,90 

5 16,230 0,63 21,46 

Onde, γd é o peso específico seco, e é o índice de vazios, calculado a partir da equação (12), e 

w é a umidade do material. 

1s w

d

G
e




= −  (12) 

Onde, γw é o peso específico da água (9,81 kN/m³) e Gs é o peso específico relativo de sólidos 

do solo. O valor de Gs utilizado foi obtido a partir do trabalho de doutorado em andamento de 

Neves (2025), sendo igual a 2,7. 

 

Figura 16 – Condições de contorno e condição inicial/final do cenário dinâmico. 



37 

No cenário dinâmico foi inserido um tubo maciço de aço com diâmetro externo de 8mm 

no interior da barragem durante a compactação. Neste cenário o tubo foi retirado no início do 

monitoramento e permitiu-se que o fluxo de água no interior da descontinuidade carregasse as 

partículas finas do material, simulando a ocorrência de piping no modelo (Figura 16). 

3.2.1. DIMENSÕES E MONTAGEM DO MODELO EM LABORATÓRIO 

As dimensões do modelo construído foram arbitradas de forma a comportar o sensor na 

crista sem a necessidade de adaptações, garantindo um bom acoplamento do sensor à crista. O 

modelo possuiu 0,15m de altura com taludes de 30° e base de 0,63m. A lâmina d’água foi 

mantida com uma altura máxima de 0,125m (Figura 17).  

 

 

Figura 17 – Dimensões do modelo de barragem. 

 

A montagem do modelo foi feita em cinco camadas de 3 cm para facilitar a compactação 

do material. Para cada camada, com base nas condições iniciais de cada cenário indicadas na 

Tabela 1, foi calculada a quantidade de solo seco e água necessários para atingir o peso 

específico e, portanto, o índice de vazios estipulado. As quantidades calculadas foram pesadas 

e separadas, a homogeneização do material foi feita com o auxílio de uma betoneira em função 

da quantidade elevada de material, principalmente nas primeiras camadas.  

A compactação do material foi feita utilizando um soquete pequeno, a energia de 

compactação em cada camada foi distribuída com o auxílio de uma série de cinco apoios feitos 

de madeira, cujas dimensões eram compatíveis com o tamanho de cada camada. O controle da 

compactação foi feito por meio da verificação da altura da camada durante o processo de 

compactação. Para isso, utilizou-se um desenho de referência da barragem, feito na face externa 

do vidro, e estruturas auxiliares elaboradas para delimitar as dimensões da barragem durante a 

construção das camadas, conforme apresentado na Figura 18. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figura 18 – Esquema de montagem e compactação das camadas do modelo de barragem: (a) 

primeira camada, com o sulco para inserção do tubo; (b) segunda camada; (c) terceira 

camada; (d) quarta camada e; (e) quinta camada. 

 

 Após a compactação de cada camada, foi feita a escarificação do material e, em seguida 

o material da camada subsequente foi depositado e compactado. No topo da primeira camada 

da compactação, foi feito um sulco para receber o tubo que simulou a descontinuidade no 

barramento (Figura 18a). 

3.2.2. CONFIGURAÇÃO DO ENSAIO 

A Figura 19 apresenta a configuração do ensaio com os sistemas de entrada e saída de 

água, montados para permitir a circulação de água no sistema.  

Para manter o nível do reservatório constante mesmo com o aumento do diâmetro da 

descontinuidade no cenário dinâmico, foram construídos dois sistemas de entrada de água. No 

primeiro, a água da rede de abastecimento alimentou um reservatório cujo nível foi mantido 

constante com o auxílio de uma válvula controladora de nível automática. Na saída do 

reservatório foi instalado um registro e um sistema de tubos com diâmetro de 3/4" ligando-o ao 

reservatório de água da barragem, cujo nível foi mantido constante com o auxílio de uma 

válvula controladora de nível com diâmetro compatível com a tubulação instalada. No segundo, 

a rede de abastecimento foi ligada diretamente ao reservatório da barragem, utilizando um 

sistema de tubos com diâmetro de 1/2". O nível de água no reservatório da barragem foi mantido 

constante com o uso de outra válvula controladora de nível. 

 O sistema de saída de água foi projetado para comportar um grande volume de água 

passando pelo corpo do barramento. Para isso, foi utilizada uma caixa de acrílico a partir da 

qual foi instalada uma tubulação com 50 mm de diâmetro até o ralo de captação de água mais 

próximo. 
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Os ensaios foram monitorados por 4 horas, o horário de coleta de dados escolhido foi 

na janela das 1h às 5h. Como a metodologia proposta não prevê a filtragem dos ruídos, foi 

escolhido o horário que representa o horário com a menor quantidade de ruídos gerados pela 

atividade humana nas proximidades do laboratório.  

 

 

Figura 19 – Sistema de monitoramento para os cenários estáticos e dinâmicos da barragem em 

escala de laboratório 

3.2.3. MODELOS DE IA E ANÁLISE DOS RESULTADOS 

Os cenários de monitoramento estático foram utilizados como dados de entrada dos 

modelos supervisionados de Machine Learning de classificação e de regressão. Inicialmente 
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foram utilizadas todas as componentes (EHZ, EHN e EHE) para gerar os modelos de previsão. 

Os dados foram pré-processados por meio da extração dos atributos, divididos entre teste e 

treinamento usando uma proporção de 20% dos dados para teste e 80% para treinamento dos 

algoritmos. Foi aplicada a validação cruzada utilizando o 10-fold cross validation nos dados de 

treinamento. Essa é uma técnica que avalia o desempenho do modelo de forma mais precisa, 

para isso o conjunto de treinamento é dividido em 10 partes e, para cada rodada de validação, 

9 partes são usadas para treinar o modelo e a parte restante é utilizada para avaliar o 

desempenho. O processo é repetido 10 vezes, alterando o conjunto utilizado para avaliar o 

desempenho, sendo apresentada a média e o desvio padrão dos resultados. 

Em seguida os dados foram utilizados para treinar diferentes modelos, os modelos de 

classificação incluíram, SGD Linear, Logistic Regression, k-Nearest Neighbors, Gaussian 

Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine e Multilayer Perceptron 

(MLP), enquanto os modelos de regressão incluíram o Random Forest Regressor e o Support 

Vector Regression. Os modelos foram utilizados com suas configurações padrão, no caso do 

MLP foi utilizada uma arquitetura com 4 camadas de 40 neurônios cada, a função de ativação 

“relu”, um parâmetro alpha de 0,001. O alpha é um parâmetro para o termo de regularização, 

também conhecido como termo de penalidade, que combate o overfitting restringindo o 

tamanho dos pesos. Aumentar o alfa pode corrigir a alta variância (um sinal de overfitting), 

incentivando pesos menores, resultando em um gráfico de limite de decisão que aparece com 

curvaturas menores. Da mesma forma, diminuir o alfa pode corrigir o alto viés (um sinal de 

underfitting), incentivando pesos maiores, potencialmente resultando em um limite de decisão 

mais complicado. Os resultados das métricas de cada algoritmo foi avaliada e aquele com as 

melhores métricas de desempenho foi selecionado como modelo preditivo. 

Os dados do monitoramento dinâmico foram então utilizados como dados de entrada do 

modelo preditivo calibrado com os cenários estáticos para prever a variação do parâmetro 

intermediário no tempo. A análise dos resultados foi pautada na análise do comportamento 

esperado do modelo, que deveria apresentar uma variação gradual do parâmetro intermediário, 

conforme a observação em laboratório das condições de carreamento do material.  
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4. RESULTADOS E DISCUSSÕES 

Neste capítulo serão apresentadas as análises e discussões dos resultados obtidos nas 

duas etapas propostas. Inicialmente serão apresentadas as imagens da montagem final dos 

cenários de cada etapa de monitoramento, em seguida serão apresentados os sismogramas e 

espectrogramas do monitoramento realizado. Serão discutas as diferenças nos sismogramas, 

espectrogramas das etapas 1 e 2 e nos atributos de onda extraídos na etapa 2. Após a 

apresentação dos resultados do monitoramento estático, serão apresentados os resultados do 

treinamento dos algoritmos de classificação e regressão, com destaque às métricas de 

desempenho obtidas para os modelos e a matriz de confusão do melhor modelo, selecionado 

como modelo de previsão para o cenário dinâmico.  

Em função da densidade elevada do material no Cenário 5, o primeiro dia de 

monitoramento foi utilizado como resultado do cenário estático, sendo assumido que houve 

pouco ou nenhum carreamento de material. O monitoramento dos dias seguintes foi 

considerado como cenário dinâmico, serão apresentadas as variações observadas em laboratório 

durante o tempo monitorado e, em seguida, serão discutidos os resultados da aplicação do 

modelo de previsão nos dados.  

 

4.1. DEFINIÇÃO DO PARÂMETRO INTERMEDIÁRIO 

Os cenários de monitoramento montados estão apresentados na Figura 20, onde estão 

representados, da esquerda para a direita os cilindros identificados com numeração de 1 a 3. Os 

sensores posicionados em cada célula e as características dos materiais estão apresentados na 

Tabela 2. Em função do curto tempo de monitoramento dos cenários, foi escolhida uma janela 

de pouco mais de um minuto de duração em que foram comparadas as frequências 

predominantes para cada cenário de monitoramento. 

 

Tabela 2 – Características dos materiais para determinação do parâmetro intermediário. 

Cenário Material Sensor Densidade 

1 Areia grossa seca R7D9F 1,52 g/cm³ 

2 Areia fina úmida R17F9 1,09 g/cm³ 

3 Areia fina seca RA0F7 1,38 g/cm³ 
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Figura 20 – Montagem dos 3 cenários de monitoramento da Etapa 1. 

 

4.1.1. CENÁRIO 1 

Na análise dos resultados do Cenário 1, montado sobre um cilindro preenchido com 

areia grossa seca, é possível observar que, na componente leste-oeste (EHE) há uma 

predominância de frequências em torno dos 10 Hz e próximo aos 20 Hz (Figura 21a e Figura 

22a). Na componente norte-sul (EHN) as frequências estão concentradas em um intervalo maior 

de frequência, de 10 a 30 Hz (Figura 21b e  Figura 22b). Já a componente vertical (EHZ), 

apresenta uma faixa predominante de frequência em torno dos 10 Hz (Figura 21c e Figura 22c). 

Em todos os casos, há uma frequência constante próxima aos 45 Hz que apresenta um conteúdo 

de frequência mais pronunciado nas componentes EHE e EHN, e menos pronunciado na 

componente EHZ. 

 

 

(a) 
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(b) 

 

(c) 

Figura 21 – Espectrograma de frequência do sensor R7D9F: (a) componente EHE; (b) 

componente EHN; (c) componente EHZ. 

 

 

(a) 

 

(b) 

 

(c) 

Figura 22 – Conteúdo de frequência do sensor R7D9F: (a) componente EHE; (b) componente 

EHN; (c) componente EHZ. 
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4.1.2. CENÁRIO 2 

Na análise dos resultados do Cenário 2, montado sobre um cilindro preenchido com 

areia fina úmida, é possível observar que, na componente leste-oeste (EHE) o conteúdo de 

frequência não é tão pronunciado, em comparação com o obtido no monitoramento do Cenário 

1. Neste caso as maiores frequências ficam em torno dos 30 Hz (Figura 23a e Figura 24a). Na 

componente norte-sul (EHN) as frequências estão concentradas em torno de pouco mais de 10 

Hz e em torno de 25 Hz (Figura 23b e Figura 24b). Já a componente vertical (EHZ), apresenta 

uma faixa predominante de frequência no intervalo de 10 a 20 Hz (Figura 23c e Figura 24c). 

Assim como foi observado no cenário 1, em todos os casos há uma frequência constante 

próxima aos 45 Hz, porém aqui ela apresenta um conteúdo de frequência semelhante nas três 

componentes. 

 

 

(a) 

 

(b) 

 

(c) 

Figura 23 – Espectrogramas de frequência do sensor R17F9: (a) componente EHE; (b) 

componente EHN; (c) componente EHZ. 
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(a) 

 

(b) 

 

(c) 

Figura 24 – Conteúdo de frequência do sensor R17F9: (a) componente EHE; (b) componente 

EHN; (c) componente EHZ. 

 

4.1.3. CENÁRIO 3 

Na análise dos resultados do Cenário 3, montado sobre um cilindro preenchido com 

areia fina seca, é possível observar que, na componente leste-oeste (EHE) as frequências 

predominantes ficam em torno dos 20 Hz (Figura 25a e Figura 26a). Na componente norte-sul 

(EHN) as frequências estão concentradas um intervalo de 10 a pouco mais de 30 Hz (Figura 

25b e Figura 26b). Já a componente vertical (EHZ) apresenta duas regiões predominantes de 

frequência: na faixa de 10 a 20 Hz e em torno de 30 Hz (Figura 25c e Figura 26c). Assim como 

foi observado nos Cenários 1 e 2, há uma frequência constante próxima aos 45 Hz, porém aqui 

ela apresenta um conteúdo de frequência semelhante nas componentes EHE e EHN e menos 

pronunciado na componente EHZ. 
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(a) 

 

(b) 

 

(c) 

Figura 25 – Espectrogramas de frequência do sensor RA0F7: (a) componente EHE; (b) 

componente EHN; (c) componente EHZ. 

 

 

(a) 

 

(b) 
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(c) 

Figura 26 – Conteúdo de frequência do sensor RA0F7: (a) componente EHE; (b) componente 

EHN; (c) componente EHZ. 

 

Como a componente vertical (EHZ) foi a que apresentou as maiores variações de 

comportamento, principalmente quando verificado que as frequências em torno de 45 Hz foram 

observadas em todos os cenários e no Cenário 3 esse efeito foi bem menos pronunciado, essa 

foi a componente escolhida para representar as variações observadas entre as diferentes 

condições de cada cenário. 

Comparando a alteração da granulometria do material entre os Cenários 1 e 3, observa-

se que a principal diferença entre os resultados se mostra na atenuação da frequência em torno 

de 45 Hz, uma vez que o comportamento observado da concentração das frequências em torno 

de 10 Hz é semelhante entre os dois casos. Já na comparação entre a areia fina seca e úmida, 

observa-se que a adição de água na amostra ajuda a atenuar os conteúdos de frequência na faixa 

de 20 a 40 Hz, que são menos pronunciados no Cenário 2 em comparação com o Cenário 3. 

Em um processo de desenvolvimento de piping, como há carreamento de material fino, 

as alterações que ocorrem no meio estão muito relacionadas com mudanças nas características 

do meio, sendo melhor representada pela alteração na granulometria. Essa mudança causa 

alteração no índice de vazios no meio. Em função dessas observações e da verificação da 

capacidade do sensor de detectar essas alterações no meio, aqui representadas pela alteração na 

granulometria entre os Cenários 1, 2 e 3, optou-se pela escolha do índice de vazios como 

variável intermediária. 

4.2. MONTAGEM E MONITORAMENTO DOS CENÁRIOS ESTÁTICOS 

4.2.1. CENÁRIO 1 

O processo de montagem está apresentado na Figura 27, onde pode ser observado o uso 

das estruturas auxiliares, e na Figura 28, onde está apresentada a configuração final do modelo 

em escala de laboratório construído para o Cenário 1. No Apêndice B está apresentada condição 

inicial do monitoramento deste cenário (Figura 1.B). 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figura 27 –Vista frontal das camadas durante o processo de compactação cenário 1. 

 

 

Figura 28 –Barragem montada cenário 1. 

 

Os resultados das 4 horas de monitoramento do Cenário 1 estão apresentados na forma 

de sismograma (Figura 29) e espectrograma (Figura 30). Nos atributos extraídos dos dados, 
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apresentados na Tabela 3, que auxiliam na interpretação dos resultados observados no 

sismograma, observa-se uma variação média da amplitude maior para a componente EHE e 

muito semelhante para as componentes EHN e EHZ. No espectrograma observa-se frequências 

mais pronunciadas na componente EHN, enquanto as frequências nas outras componentes são 

menos pronunciadas. No Apêndice A, estão apresentadas as comparações dos valores de quatro 

atributos no tempo: o centroide espectral (Figura 1.Aa), a largura de banda espectral (Figura 

2.Aa), a razão de energia de banda (Figura 3.Aa) e a taxa de cruzamento do zero (Figura 4.Aa). 

 

 

Figura 29 – Sismograma para o Cenário 1. 

 

 

Figura 30 – Espectrograma para o Cenário 1 com os seguintes parâmetros: frame size 

(comprimento da janela de análise) = 1024 e hop length (deslocamento da janela de análise) = 

512. 
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Tabela 3 – Média e desvio padrão dos atributos extraídos dos dados do Cenário 1. 

Componente EHE EHN EHZ 
Atributo Média Desvio Padrão Média Desvio Padrão Média Desvio Padrão 

EA 377,97 291,36 372,43 206,74 373,04 272,95 
RMS 115,78 53,62 115,64 43,16 115,13 52,59 
TCZ 0,654 0,082 0,65 0,08 0,66 0,08 
REB 0,17 0,18 0,17 0,18 0,17 0,17 
LBE 14,05 1,24 14,01 1,22 14,06 1,23 
CE 22,95 1,77 22,98 1,77 22,92 1,77 
PE 0,06 0,04 0,06 0,04 0,06 0,04 
RE 41,9 2,61 41,9 2,44 41,81 2,68 
 

4.2.2. CENÁRIO 2 

O processo de montagem está apresentado na Figura 31, onde pode ser observado o uso 

das estruturas auxiliares, e na Figura 32, onde está apresentada a configuração final do modelo 

em escala de laboratório construído para o Cenário 2.  No Apêndice B está apresentada condição 

inicial do monitoramento deste cenário (Figura 2.B). 

 

 
(a) 

 
(b)  
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(c) 

 
(d) 

 
(e) 

Figura 31 – Vista frontal das camadas durante o processo de compactação cenário 2. 

 

Os resultados das 4 horas de monitoramento do Cenário 2 estão apresentados na forma 

de sismograma (Figura 33) e espectrograma (Figura 34). Nos atributos extraídos dos dados, 

apresentados na Tabela 4, observa-se uma variação média da amplitude menor para a 

componente EHN e muito semelhante para as componentes EHE e EHZ. No espectrograma 

observa-se que nenhuma das componentes apresentam frequências muito pronunciadas, a não 

ser por alguns eventos de pico, que também podem ser observados no sismograma. No 

Apêndice A, estão apresentadas as comparações dos valores de quatro atributos no tempo: o 

centroide espectral (Figura 1.Ab), a largura de banda espectral (Figura 2.Ab), a razão de energia 

de banda (Figura 3.Ab) e a taxa de cruzamento do zero (Figura 4.Ab). 
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Figura 32 – Barragem montada cenário 2. 

 

Em comparação com os resultados dos atributos extraídos para o Cenário 1, observa-se 

que houve um aumento no envelope de amplitude médio das componentes EHE e EHZ, 

enquanto a componente EHN manteve um valor semelhante ao observado no Cenário 1. O 

envelope de amplitude representa a variação da amplitude do sinal ao longo do tempo, 

indicando que, em média, as componentes EHE e EHZ apresentaram uma variação maior no 

Cenário 2, quando comparadas com o Cenário 1. Diferenças visuais também são possíveis de 

observar nos espectrogramas de frequência de ambos os cenários. Enquanto no Cenário 1 a 

componente EHN apresentou frequências mais pronunciadas durante todo o período de 

monitoramento, no Cenário 2 o mesmo comportamento não foi observado. 



55 

 

Figura 33 – Sismograma para o Cenário 2.  

 

 

Figura 34 – Espectrograma para o Cenário 2 com os seguintes parâmetros: frame size 

(comprimento da janela de análise) = 1024 e hop length (deslocamento da janela de análise) = 

512. 

 

Tabela 4 – Média e desvio padrão dos atributos extraídos dos dados do Cenário 2. 

Componente EHE EHN EHZ 
Atributo Média Desvio Padrão Média Desvio Padrão Média Desvio Padrão 

EA 383,49 222,97 374,12 208,85 382,36 221,44 
RMS 118,58 54,18 116,58 50,58 118,19 50,87 
TCZ 0,64 0,09 0,64 0,09 0,64 0,09 
REB 0,19 0,21 0,19 0,22 0,19 0,19 
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LBE 13,88 1,26 13,96 1,23 13,87 1,28 
CE 22,19 2,11 22,15 2,08 22,15 2,13 
PE 0,06 0,03 0,06 0,03 0,05 0,03 
RE 41,12 3,07 41,3 2,86 41,08 3,12 

 

4.2.3. CENÁRIO 3 

O processo de montagem está apresentado na Figura 35, onde pode ser observado o uso 

das estruturas auxiliares, e na Figura 36, onde está apresentada a configuração final do modelo 

em escala de laboratório construído para o Cenário 3.  No Apêndice B está apresentada condição 

inicial do monitoramento deste cenário (Figura 3.B). 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figura 35 – Vista frontal das camadas durante o processo de compactação cenário 3. 

 

 

Figura 36 – Barragem montada cenário 3. 



58 

Os resultados das 4 horas de monitoramento do Cenário 3 estão apresentados na forma 

de sismograma (Figura 37) e espectrograma (Figura 38). Nos atributos extraídos dos dados, 

apresentados na Tabela 5, observa-se uma variação média da amplitude muito semelhante nas 

três componentes. No espectrograma observa-se que nenhuma das componentes apresentam 

frequências muito pronunciadas, a não ser por alguns eventos de pico, que também podem ser 

observados no sismograma. No Apêndice A, estão apresentadas as comparações dos valores de 

quatro atributos no tempo: o centroide espectral (Figura 1.Ac), a largura de banda espectral 

(Figura 2.Ac), a razão de energia de banda (Figura 3.Ac) e a taxa de cruzamento do zero (Figura 

4.Ac). 

Em comparação com os resultados dos Cenários 1 e 2, observa-se que houve um 

aumento no envelope de amplitude médio de todas as componentes. Isso indica que, em média, 

as componentes EHE, EHN e EHZ apresentaram uma variação maior de amplitude no Cenário 

3, quando comparadas com os Cenários 1 e 2. Em relação aos espectrogramas de frequência, 

os resultados obtidos no Cenário 3 são semelhantes aos obtidos no Cenário 2 e ambos diferem 

dos resultados obtidos no Cenário 1. Enquanto no Cenário 1 a componente EHN apresentou 

frequências mais pronunciadas durante todo o período de monitoramento, nos Cenários 2 e 3 o 

mesmo comportamento não foi observado. Ao comparar essa mesma componente nos Cenários 

2 e 3 é possível observar visualmente que no Cenário 3 existe uma pequena diferença nas 

frequências em torno de 40 Hz, que estão mais pronunciadas no último cenário. 

 

 

Figura 37 – Sismograma para o Cenário 3. 
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Figura 38 – Espectrograma para o Cenário 3 com os seguintes parâmetros: frame size 

(comprimento da janela de análise) = 1024 e hop length (deslocamento da janela de análise) = 

512. 

Tabela 5 – Média e desvio padrão dos atributos extraídos dos dados do Cenário 3. 

Componente EHE EHN EHZ 
Atributo Média Desvio Padrão Média Desvio Padrão Média Desvio Padrão 

EA 395,92 229,31 395,66 241,9 396,68 239,37 
RMS 133,91 57,19 134,28 60,4 135,12 63,12 
TCZ 0,72 0,08 0,72 0,09 0,72 0,09 
REB 0,13 0,17 0,14 0,26 0,13 0,14 
LBE 14,39 1,15 14,41 1,14 13,36 1,16 
CE 22,84 1,97 22,85 1,97 22,89 1,95 
PE 0,04 0,02 0,04 0,02 0,04 0,02 
RE 42,18 2,86 42,21 2,79 42,19 2,79 

 

4.2.4. CENÁRIO 4 

O processo de montagem está apresentado na Figura 39, onde pode ser observado o uso 

das estruturas auxiliares, e na Figura 40, onde está apresentada a configuração final do modelo 

em escala de laboratório construído para o Cenário 4.  No Apêndice B está apresentada condição 

inicial do monitoramento deste cenário (Figura 4.B). 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figura 39 –Vista frontal das camadas durante o processo de compactação cenário 4. 

 

 

Figura 40 –Barragem montada cenário 4. 

 

Os resultados das 4 horas de monitoramento do Cenário 4 estão apresentados na forma 

de sismograma (Figura 41) e espectrograma (Figura 42). Os atributos extraídos dos dados, 
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apresentados na Tabela 6, onde observa-se uma variação média da amplitude muito semelhante 

nas três componentes. No espectrograma observa-se que as três componentes apresentam 

conteúdos de frequência muito pronunciados. A componente EHZ apresenta conteúdo de 

frequência elevado na faixa de 0 a próximo de 50 Hz, um comportamento semelhante pode ser 

observado na componente EHN, com uma pequena diferença nas frequências de 20 a 30 Hz. 

Na componente EHE visualmente as frequências mais pronunciadas estão na faixa de 0 a 20 

Hz. No Apêndice A, estão apresentadas as comparações dos valores de quatro atributos no 

tempo: o centroide espectral (Figura 1.Ad), a largura de banda espectral (Figura 2.Ad), a razão 

de energia de banda (Figura 3.Ad) e a taxa de cruzamento do zero (Figura 4.Ad). 

 

 

Figura 41 – Sismograma para o Cenário 4. 

 

Em comparação com os resultados dos Cenários 1, 2 e 3, observa-se que houve uma 

diminuição no envelope de amplitude médio de todas as componentes. Isso indica que, em 

média, as componentes EHE, EHN e EHZ apresentaram uma variação menor de amplitude no 

Cenário 4, quando comparadas com os Cenários 1, 2 e 3. Essa observação não coincide com a 

relação que estava sendo observada até o Cenário 3, em que o efeito da diminuição do índice 

de vazios de cada cenário provocou um aumento no envelope de amplitude médio de todas as 

componentes.  Em relação aos espectrogramas de frequência, os resultados obtidos no Cenário 

4 diferem dos obtidos em todos os cenários apresentados anteriormente. Enquanto no Cenário 

1 somente a componente EHN apresentou frequências mais pronunciadas durante todo o 
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período de monitoramento e nos Cenários 2 e 3 nenhuma das componentes apresentou um 

conteúdo de frequência muito elevado, no Cenário 4 todas as componentes apresentaram um 

conteúdo elevado de frequência. 

 

 

Figura 42 – Espectrograma para o Cenário 4 com os seguintes parâmetros: frame size 

(comprimento da janela de análise) = 1024 e hop length (deslocamento da janela de análise) = 

512. 

 

Tabela 6 – Média e desvio padrão dos atributos extraídos dos dados do Cenário 4. 

Componente EHE EHN EHZ 
Atributo Média Desvio Padrão Média Desvio Padrão Média Desvio Padrão 

EA 368,97 204,9 366,69 172,39 366,17 179,98 
RMS 111,01 37,79 111,16 36,14 111,49 35,61 
TCZ 0,62 0,09 0,62 0,09 0,62 0,09 
REB 0,22 0,27 0,22 0,26 0,21 0,22 
LBE 13,63 1,22 13,98 1,21 13,93 1,22 
CE 22,92 1,94 22,96 1,91 22,96 1,86 
PE 0,08 0,06 0,08 0,06 0,08 0,05 
RE 41,21 2,94 41,27 2,81 41,11 2,91 

 

4.2.5. CENÁRIO 5 

O processo de montagem está apresentado na Figura 43, onde pode ser observado o uso 

das estruturas auxiliares, e na Figura 44, onde está apresentada a configuração final do modelo 

em escala de laboratório construído para o Cenário 5.  No Apêndice B está apresentada condição 

inicial do monitoramento deste cenário (Figura 5.B). 
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(c) 

 
(d) 
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(e) 

Figura 43 –Vista frontal das camadas durante o processo de compactação cenário 5. 

 

 

Figura 44 –Barragem montada do cenário 5 e do cenário dinâmico. 

 

Os resultados das 4 horas de monitoramento do Cenário 5 estão apresentados na forma 

de sismograma (Figura 45) e espectrograma (Figura 46). Nos atributos extraídos dos dados, 
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apresentados na Tabela 7, observa-se uma variação média da amplitude muito semelhante nas 

três componentes. No espectrograma observa-se que a componente EHN apresentou um 

conteúdo de frequência mais pronunciado quando comparado com as componentes EHZ e EHE. 

No Apêndice A, estão apresentadas as comparações dos valores de quatro atributos no tempo: 

o centroide espectral (Figura 1.Ae), a largura de banda espectral (Figura 2.Ae), a razão de 

energia de banda (Figura 3.Ae) e a taxa de cruzamento do zero (Figura 4.Ae). 

 

 

Figura 45 – Sismograma para o Cenário 5. 

 

Em comparação com os resultados dos Cenários 1, 2, 3 e 4, observa-se que houve um 

aumento no envelope de amplitude médio de todas as componentes. Isso indica que, em média, 

as componentes EHE, EHN e EHZ apresentaram uma variação consideravelmente maior de 

amplitude no Cenário 5, quando comparadas com os Cenários 1, 2, 3 e 4. Além dessa 

constatação, é possível observar tanto nos sismogramas quanto nos espectrogramas, a 

ocorrência de uma série de picos durante o monitoramento, que aumentaram consideravelmente 

o desvio padrão do envelope de amplitude. Esses picos não foram observados em nenhum dos 

outros cenários de monitoramento, e em todos eles o tubo de acrílico estava presente no corpo 

do barramento. A retirada do tubo para permitir o carreamento do material no Cenário 5 pode 

ter sido o motivo da ocorrência de um sinal com um maior nível de ruídos. Em relação aos 

espectrogramas de frequência, os resultados obtidos no Cenário 5 diferem dos obtidos 

anteriormente principalmente em função dos picos de frequência observados em todas as 
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componentes, porém menos pronunciados na componente EHE. No pequeno intervalo entre os 

picos, é possível observar visualmente que as frequências estão mais pronunciadas na 

componente EHN, semelhante ao observado no Cenário 1.  

 

 

Figura 46 – Espectrograma para o Cenário 5 com os seguintes parâmetros: frame size 

(comprimento da janela de análise) = 1024 e hop length (deslocamento da janela de análise) = 

512. 

 

Tabela 7 – Média e desvio padrão dos atributos extraídos dos dados do Cenário 5. 

Componente EHE EHN EHZ 
Atributo Média Desvio Padrão Média Desvio Padrão Média Desvio Padrão 

EA 489,92 323,15 491,93 333,43 486,58 327,27 
RMS 136,32 42,45 136,95 41,96 136,68 42,1 
TCZ 0,7 0,08 0,69 0,08 0,7 0,08 
REB 0,15 0,3 0,15 0,24 0,15 0,3 
LBE 14,46 1,18 14,39 1,19 14,41 1,19 
CE 23,55 2,37 23,56 2,34 23,57 2,31 
PE 0,06 0,06 0,06 0,06 0,06 0,06 
RE 42,82 1,81 42,74 1,87 42,8 1,86 

 

4.3. ALGORITMO DE IDENTIFICAÇÃO DOS CENÁRIOS ESTÁTICOS 

Nos dados de entrada para teste e treinamento dos algoritmos, a extração de atributos 

foi feita utilizando os seguintes parâmetros: frame size (comprimento da janela de análise) = 

1024 e um hop lenght (deslocamento da janela de análise) = 512. Com os atributos extraídos, 

foram treinados os modelos de classificação e regressão, cujos resultados estão apresentados na 

Tabela 8.  
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Tabela 8 – Resumo da acurácia dos algoritmos de classificação e regressão avaliados para os 

dados de teste e treinamento. 

Algoritmos de classificação 

Algoritmo 
Validação cruzada Acurácia 

Média Desvio padrão Treino Teste 

SGD Linear 0,87 0,01 0,87 0,87 

Logistic Regression 0,89 0,01 0,89 0,9 

k-Nearest Neighbors 0,88 0,01 0,88 0,88 

Naive Bayes 0,62 0,01 0,62 0,62 

Decision Tree 0,82 0,02 0,82 0,78 

Random Forest 0,97 0,01 0,97 0,96 

Support Vector Machine (SVM) 0,98 0,00 0,98 0,98 

Multilayer Perceptron 0,97 0,01 0,97 0,97 

Algoritmos de regressão 

Algoritmo MSE* RMSE** R²*** 

Random Forest Regressor 0,404 0,635 0,796 

Support Vector Regressor 0,353 0,594 0,822 

*MSE – Mean Squared Error (Erro quadrático médio); ** RMSE – Root Mean Squared Error 

(Raiz do erro quadrático médio); *** R² - Coeficiente de determinação. 

 

Dentre os modelos de classificação treinados, o Naive Bayes foi o que apresentou os 

piores resultados, seguido pelo algoritmo de árvores de decisão (Decision Trees). O SGD 

Linear, k-Nearest Neighbors e Logistic Regression apresentaram um desempenho semelhante, 

com acurácia no treino próxima a 0,90. Os modelos com os melhores desempenhos foram o 

Support Vector Machine, Multilayer Perceptron e Random Forest, com acurácia muito próxima 

de 1, significando que a diferenciação entre os cenários estáticas apresentou um melhor 

desempenho nesses três algoritmos. Entre os três melhores, foi escolhido o Support Vector 

Machine, uma vez que sua aplicação para análise de piping já foi registrada na literatura, nos 

trabalhos de Fisher et al. (2017) e Fisher et al. (2016). 

Os resultados do treinamento utilizando o 10-fold cross validation estão apresentados 

na Figura 47 e na Tabela 9, onde é possível observar que o algoritmo diferencia bem os cenários 

nos dados de teste. Além disso, os resultados da validação cruzada indicam um desvio padrão 

baixo entre os conjuntos de dados analisados, o que indica que o algoritmo não se tornou 

tendencioso na identificação dos dados de treinamento. 
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Figura 47 – Matriz de confusão com a validação cruzada para os dados de treino utilizando o 

modelo SVM. 

 

Tabela 9 – Métricas de desempenho do algoritmo SVM nos dados de treinamento com 

validação cruzada. 

Classe predita Precisão Recall F1-Score 

1 0,98 0,97 0,98 

2 0,98 0,98 0,98 

3 0,99 0,98 0,98 

4 0,99 0,98 0,99 

5 0,96 0,99 0,97 

Acurácia 0,98 

 

 Os resultados do algoritmo treinado nos dados de teste, apresentados na matriz de 

confusão da Figura 48 e nas métricas de desempenho da Tabela 10, destacam a capacidade do 

modelo de diferenciar os cenários de monitoramento estático, com valores próximos a 1 em 

todas as métricas de desempenho avaliadas. 

 



70 

 

Figura 48 – Matriz de confusão para os dados de teste utilizando o modelo SVC. 

 

Tabela 10 – Métricas de desempenho do algoritmo SVC nos dados de teste. 

Classe predita Precisão Recall F1-Score 

1 0,98 0,96 0,97 

2 0,98 0,99 0,99 

3 0,99 0,98 0,99 

4 1,00 0,98 0,99 

5 0,95 0,99 0,97 

Acurácia 0,98 

4.4. MONITORAMENTO DO CENÁRIO DINÂMICO 

O monitoramento do cenário dinâmico foi iniciado com a retirada da barra metálica, 

marcando o início do piping. Na Figura 49a é apresentada uma vista frontal do modelo de 

barragem no Cenário 5 após o final do processo de construção, enquanto a Figura 49b apresenta 

o momento após a retirada do tubo. Nos primeiros cinco dias após a retirada do tubo o 

monitoramento foi mantido mesmo sem a passagem de água, sendo o sistema de entrada de 

água ligado no início da noite e desligado na manhã do dia seguinte.  
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(a) (b) 

Figura 49 – Início do monitoramento: (a) antes da retirada do tubo metálico e; (b) após a 

retirada do tubo. 

 

 A Figura 50 apresenta o processo de evolução do piping nas duas semanas de 

monitoramento. A evolução da erosão na frente do barramento mostra que, até o oitavo dia 

(Figura 50f), houve pouco aumento do diâmetro do tubo, indicando que houve pouco alteração 

nas condições do meio até este ponto. Para acelerar o processo de erosão, no nono dia de 

monitoramento foi inserido um mergulhão no reservatório da barragem para aumentar a 

temperatura tanto da água como do solo. Alguns trabalhos na literatura, como os de Tran et al. 

(2020) e Akinola et al. (2019), indicam que o aumento da temperatura tanto da água como do 

solo influenciam na taxa de erosão de solos coesivos. Os resultados apresentados na Figura 50g 

em diante indicam que o aumento da temperatura da água contribuiu com o aumento da erosão, 

corroborando com os resultados obtidos pelos autores. O mergulhão foi mantido no reservatório 

de jusante durante 7 dias, quando a temperatura da água foi mantida em um intervalo de 

temperatura de 45 a 50° C. Nesse período, o sistema de entrada de água foi mantido ligado 

durante os dias e as noites de monitoramento.  
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(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 
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(i) (j) 

Figura 50 – Evolução do piping durante duas semanas de monitoramento: (a) primeiro dia; (b) 

segundo dia; (c) terceiro dia; (d) quarto dia; (e) quinto dia; (f) oitavo dia; (g) décimo dia; (h) 

décimo primeiro dia; (i) décimo segundo dia; (j) décimo quinto dia. 

 

4.5. MEDIDA TRANSIENTE DO ÍNDICE DE VAZIOS 

O resultado da previsão dos modelo de classificação selecionado para os dados das duas 

semanas de monitoramento está apresentado na Figura 51. Uma caraterística desse tipo de 

modelo é que a classificação é feita em valores discretos, nesse caso entre os cenários estáticos 

(1, 2, 3, 4 e 5), para cada valor de entrada no modelo. Para melhorar a tendência geral das 

previsões, está plotada a média móvel das previsões do modelo. Os resultados obtidos mostram 

que o modelo não apresentou um desempenho condizente com o observado em laboratório, 

com pequenas variações na descontinuidade induzida no barramento. Isso pode ser atribuído 

principalmente à falta de conhecimento sobre o comportamento sísmico esperado para o sensor 

entre os cenários estáticos de monitoramento.  

Diante das observações dos resultados nos modelos de classificação, optou-se por adotar 

algoritmos de regressão. A vantagem da utilização desse tipo de algoritmo é que estes 

estabelecem uma relação entre as variáveis preditoras e a variável que se deseja prever, ou seja, 

o algoritmo prevê uma espécie de função que se ajusta aos dados. Com esta abordagem 
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esperava-se preencher a lacuna entre o comportamento sísmico conhecido, representado pelos 

cenários estáticos, e o comportamento sísmico esperado no intervalo entre os índices de vazios 

conhecidos. Os resultados apresentados na Figura 52 mostram que o modelo de regressão com 

o melhor coeficiente de determinação também não foi capaz de reproduzir o comportamento 

monitorado em laboratório. 

 

 

Figura 51 – Previsões do modelo SVM durante o monitoramento dinâmico e média móvel dos 

valores previstos. 

 

 

Figura 52 – Previsões do modelo de regressão Support Vector Regressor durante o 

monitoramento do cenário dinâmico e média móvel dos valores previstos. 



76 

A Tabela 11 apresenta o cálculo do diâmetro que o tubo deveria atingir no interior do 

barramento para provocar uma variação do índice de vazios equivalente do meio até atingir o 

índice de vazios calculado nos Cenários 2 e 3 (0,74 e 0,86, respectivamente). A partir dos 

resultados apresentados, é interessante observar que para atingir o índice de vazios calculado 

para o Cenário 2, seria necessário que o diâmetro do tubo aumentasse para 4,0cm, o que 

corresponderia a uma massa de solo perdida de 1,134kg. No caso do Cenário 3, o aumento 

deveria ser ainda maior, com o tubo chegando a 6,0cm de diâmetro, com 2,484kg de material 

carreado. Conforme observado na Figura 50j, após o décimo quinto dia de monitoramento não 

houve um aumento tão grande do cilindro, indicando tanto pelo aspecto visual da barragem 

quanto pelo volume de água que passava pelo barramento. 

 

Tabela 11 – Cálculo da variação do índice de vazios para a alteração no diâmetro do tubo 

simulando o desenvolvimento de piping no barramento. 

Diâmetro 
cilindro 

(cm) 

Massa de 
solo 

perdida 
(kg) 

Massa da 
barragem - 
Cenário 5 

(kg) 

Massa 
restante 

(kg) 

γd,final 
(kN/m³) e 

0,8 0,043 22,07 22,026 16,06 0,65 
1,2 0,097 22,07 21,972 16,02 0,65 
1,6 0,175 22,07 21,894 15,96 0,66 
2,0 0,277 22,07 21,792 15,88 0,67 
2,4 0,403 22,07 21,665 15,79 0,68 
2,8 0,556 22,07 21,513 15,68 0,69 
3,2 0,735 22,07 21,334 15,55 0,70 
3,6 0,926 22,07 21,143 15,41 0,72 
4,0 1,134 22,07 20,935 15,26 0,74 
4,4 1,372 22,07 20,696 15,09 0,76 
4,8 1,637 22,07 20,432 14,89 0,78 
5,2 1,915 22,07 20,154 14,69 0,80 
5,6 2,193 22,07 19,876 14,49 0,83 
6,0 2,484 22,07 19,585 14,28 0,86 

 

 A comparação dos resultados obtidos com o comportamento esperado, com base no 

observado em laboratório, mostram que no monitoramento de cenário dinâmico os algoritmos 

de classificação e regressão não foram capazes de identificar a variação do índice de vazios no 

tempo. Como a não correlação entre os comportamentos foi observada na transição dos cenários 

estáticos para o cenário dinâmico, em que a principal diferença está relacionada à ausência do 

tubo de acrílico e ao carreamento de material, ambos os efeitos combinados podem ter sido 

determinantes para não permitir correlacionar os dois monitoramentos. A escolha do 
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comprimento e do deslocamento da janela de análise também pode estar relacionada aos 

problemas observados, uma vez que se trata de um tradeoff entre o nível de detalhe observado 

no sinal e a inclusão de eventos que podem não ser representativos do sinal como um todo. 

Como foram utilizados vários atributos no domínio do tempo e da frequência, a janela de análise 

utilizada pode ter capturado eventos que ocorreram especificamente na noite de monitoramento 

de cada cenário estático, permitindo a diferenciação entre eles, porém inviabilizando a 

identificação da variação do índice de vazios no cenário dinâmico. 

 Na montagem dos ensaios, a condição de contorno da presença do tubo acrílico pode ter 

sido um fator limitante. Para contornar esse problema, ensaios que permitam simular e 

monitorar a evolução do piping sem a necessidade do tubo acrílico, poderiam permitir conhecer 

melhor o comportamento sísmico/acústico do material. A utilização de sensores que permitam 

obter as velocidades das ondas P e S também podem ser interessantes para relacionar a alteração 

no comportamento elástico do material com a evolução do piping. 
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5. CONCLUSÕES E SUGESTÕES PARA PESQUISAS FUTURAS 

Com o estudo realizado do monitoramento sísmico passivo da variação do índice de 

vazios em modelos de barragem em escala de laboratório, são elencadas as seguintes 

conclusões: 

• A escolha do índice de vazios como parâmetro intermediário que se relaciona com a 

ocorrência de piping mostrou-se interessante, uma vez que a análise visual dos resultados 

da etapa 1 mostram que os sensores utilizados são capazes de detectar diferenças que 

incluem a variação do índice de vazios do meio; 

• A simulação dos cenários com índice de vazios constante e com a presença de uma 

descontinuidade no modelo de barragem, utilizada para simular a ocorrência de piping, 

aliado aos algoritmos de inteligência artificial de classificação e regressão, permitiram 

observar que, nas condições ensaiadas, é possível estabelecer uma relação entre diferentes 

valores do índice de vazios e o comportamento sísmico do material; 

• A simulação do cenário dinâmico, com variação do índice de vazios no tempo, partindo 

do cenário de 100% da energia do Proctor Normal na umidade ótima mostrou que, nas 

dimensões propostas para o modelo em laboratório, a carga hidráulica do reservatório da 

barragem não foi suficiente para causar o desprendimento e arraste das partículas sob 

condições normais. Neste caso, o aumento da temperatura ajudou no aumento da taxa de 

erosão, porém, durante o tempo monitorado, visualmente não foram observadas mudanças 

expressivas no diâmetro do piping induzido no início do ensaio; 

• A utilização do algoritmo calibrado para os cenários estáticos não foi eficiente na previsão 

da variação do índice de vazios do cenário dinâmico. Os resultados obtidos não foram 

condizentes tanto com o comportamento do material sob as condições simuladas, onde 

esperava-se ver uma variação gradual do índice de vazios com o tempo de monitoramento, 

quanto com as observações visuais da evolução do piping em laboratório, que 

demonstraram uma evolução lenta do diâmetro do tubo, particularmente nos primeiros 5 

dias de monitoramento; 

• A não correlação obtida entre os comportamentos monitorados nos cenários estáticos e o 

comportamento monitorado no cenário dinâmico pode ser justificada pela falta de 

conhecimento da assinatura sísmica do material para um conjunto maior de índices de 

vazios. A alteração na assinatura sísmica do material com e sem o tubo, que representa a 

principal diferença entre os cenários estáticos e dinâmico, também pode estar relacionada 

com os resultados obtidos nos ajustes dos algoritmos. 
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Para aperfeiçoar a metodologia proposta e permitir evoluir no estudo para possibilitar 

sua aplicação em barragens reais, identificando o seu estado e possibilitando o fornecimento 

de informações para tomadas de decisões, são propostas as seguintes recomendações para 

trabalhos futuros na área: 

• Caracterização do comportamento sísmico/acústico dos materiais em condições mais 

controladas, utilizando um ensaio pinhole adaptado para permitir monitorar a amostra 

durante o ensaio. Desta forma seria possível monitorar as variações no sinal monitorado 

somente em função do carreamento do material, evitando a interferência de outras 

condições externas.  

• Adaptação do ensaio de simulação do desenvolvimento de piping no tempo (cenário 

dinâmico) para permitir o monitoramento da quantidade de material carreado, 

permitindo obter uma medida direta da variação do índice de vazios equivalente por meio 

da perda de massa da barragem. Isso permitiria obter um parâmetro para verificar de 

forma qualitativa o índice de vazios da barragem no tempo monitorado, comparando 

esses resultados com as previsões dos algoritmos de IA. 

• Utilização de um modelo de Machine Learning que possua uma dependência temporal 

(como o Long Short-Term Memory – LSTM), uma vez que o piping é um fenômeno que 

depende do tempo de ensaio para desenvolver. Esse tipo de algoritmo talvez tenha a 

capacidade de identificar essa dependência temporal, permitindo prever a assinatura 

sísmica do material diante das variações entre os cenários conhecidos, auxiliando na 

previsão do estado da barragem no cenário dinâmico.  

• Utilização de sensores que permitam conhecer a variação das velocidades das ondas P e 

S, permitindo estabelecer relações com o comportamento elástico do material. A variação 

monitorada no comportamento dos materiais poderia ser utilizada para conhecer 

mudanças relacionadas ao desenvolvimento do piping, permitindo relacionar 

diretamente o comportamento mecânico na fase elástica com a ruptura por este tipo de 

mecanismo. 

• A validação do modelo é outra questão pertinente e importante, portanto a elaboração de 

um estudo de caso para aplicação da metodologia proposta inicialmente para laboratório 

seria um passo importante para permitir a aplicação em casos reais. 
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1. APÊNDICE A – ATRIBUTOS EXTRAÍDOS 

Comportamento em função do tempo dos atributos extraídos, sendo eles: Spectral 

Centroid, Sperctral Bandwith, Band Energy Ratio (BER), Zero Crossing Rate (ZCR) a partir 

do monitoramento dos cenários de 1 a 5 e cenário dinâmico.  

 

(a) 

 

(b) 

 

(c) 



87 

 

(d)  

 

(e) 

Figura 1.A – Representação do Spectral Centroid com os seguintes parâmetros: tamanho do 

quadro de análise (frame size) = 1024 e deslocamento da janela (hop length) = 512, aplicados 

aos cenários estáticos: (a) cenário 1, (b) cenário 2, (c) cenário 3, (d) cenário 4 e (e) cenário 5. 

 

 

(a) 
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(b) 

 
(c) 

 

(d) 

 

(e) 

Figura 2.A – Representação do Spectral Bandwidth com os seguintes parâmetros: tamanho do 

quadro de análise (frame size) = 1024 e deslocamento da janela (hop length) = 512, aplicados 

aos cenários estáticos: (a) cenário 1, (b) cenário 2, (c) cenário 3, (d) cenário 4 e (e) cenário 5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figura 3.A – Representação do Band Energy Ratio (BER) normalizado com os seguintes 

parâmetros: tamanho do quadro de análise (frame size) = 1024 e deslocamento da janela (hop 

length) = 512, aplicados aos cenários estáticos: (a) cenário 1, (b) cenário 2, (c) cenário 3, (d) 

cenário 4 e (e) cenário 5. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figura 4.A – Representação do Zero Crossing Rate (ZCR) com os seguintes parâmetros: 

tamanho do quadro de análise (frame size) = 1024 e deslocamento da janela (hop length) = 512, 

aplicados aos cenários estáticos: (a) cenário 1, (b) cenário 2, (c) cenário 3, (d) cenário 4 e (e) 

cenário 5. 

 

 

Figura 5.A – Representação do Spectral Centroid para o Cenário dinâmico, considerando 10 

dias de monitoramento com os seguintes parâmetros: frame size (comprimento da janela de 

análise) = 1024 e hop length (deslocamento da janela de análise) = 512. 
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Figura 6.A – Representação do Spectral Bandwidth para o Cenário dinâmico, considerando 10 

dias de monitoramento com os seguintes parâmetros: frame size (comprimento da janela de 

análise) = 1024 e hop length (deslocamento da janela de análise) = 512. 

 

 

Figura 7.A – Representação do Band Energy Ratio (BER) normalizado para o Cenário 

dinâmico, considerando 10 dias de monitoramento com os seguintes parâmetros: frame size 

(comprimento da janela de análise) = 1024 e hop length (deslocamento da janela de análise) = 

512. 

 

 

Figura 8.A – Representação do Zero Crossing Rate (ZCR) para o Cenário dinâmico, 

considerando 10 dias de monitoramento com os seguintes parâmetros: frame size (comprimento 

da janela de análise) = 1024 e hop length (deslocamento da janela de análise) = 512. 
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2. APÊNDICE B – MONITORAMENTO DOS CENÁRIOS 

 

Figura 1.B – Início do monitoramento do Cenário 1. 

 

 

Figura 2.B – Início do monitoramento do Cenário 2. 
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Figura 3.B – Início do monitoramento do Cenário 3. 

 

 

Figura 4.B – Início do monitoramento do Cenário 4. 
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Figura 5.B – Início do monitoramento do Cenário 5. 

 


