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Resumo

A teoria de espacos simétricos ultrapassa os limites da geometria. Apesar dos espagos
simétricos serem variedades Riemannianas, os aspectos algébricos relacionados a eles sdo tao
importantes quanto os geométricos. Descrevemos e provamos resultados sobre as dlgebras
ortogonais involutivas, suas decomposicoes e grupos de Weyl. Mostramos que a um espago
simétrico estd associada, de forma natural, uma édlgebra ortogonal involutiva e vice-versa.
Caracterizamos a imagem inversa da exponencial Riemanniana em espacos simétricos com-
pactos como unido disjunta de érbitas focais, das quais calculamos as dimensdes e contamos
as componentes conexas usando o grupo de Weyl. A partir das simetrias de um espaco
simétrico compacto descrevemos seus campos de Jacobi e o Locus Conjugado de um ponto.
A partir de propriedades geométricas caracterizamos o Locus de Corte e, utilizando o grupo
de Weyl, mostramos que o grupo fundamental € trivial se, e somente se, o Locus de corte € o
Locus conjugado coincidem. Determinamos o grupo fundamental de um espaco simétrico
compacto como quociente de reticulados num subespaco de Cartan da algebra ortogonal
involutiva associada. Mostramos ainda que, sob algumas hipéteses, grupos de Lie podem
ser vistos como Espacos Simétricos e relacionamos os resultados apresentados ao contexto
de grupos de Lie. Ao longo do texto, mostramosmos alguns exemplos para ilustrar a teoria

apresentada.

Palavras-chave: Geometria Riemanniana, Espacos Simétricos, Espacos Homogéneos, Gru-
pos de Lie, Algebras de Lie, Topologia de Espacos Simétricos.






Abstract

The theory of symmetric spaces goes beyond the limits of geometry. Despite symmetric
spaces being Riemannian manifolds, the algebraic features related to them are as important as
the geometric ones. We describe and prove results about orthogonal involutive Lie algebras,
their decompositions and Weyl groups. We show that an orthogonal involutive lie algebra
is associated to a symmetric space in a natural way and the converse too. We describe the
inverse image of the Riemannian exponential in compact symmetric spaces as the union of
focal orbits, of wich we calculate the dimension and count the connected components using
the Weyl group. Using the symmetries of a symmetric space, we describe their Jacobi fields
and calculate the conjugate locus of a point. From geometric properties, we characterize the
cut locus of a point and, using the Weyl group, we show that a compact symmetric space
is simply connected if and only if its Conjugate Locus and Cut Locus are identical. We
calculate the fundamental group of a compact symmetric space as a quocient of lattices in a
Cartan subspace of the associated orthogonal involutive Lie algebra. Moreover, we show that,
under some hypothesis, a Lie group can be seen as a Symmetric Space and we transport the
results to the context of Lie groups. throughout the text we show some examples to illustrate
the theory.

Keywords: Riemannian Geometry, Symmetric Spaces, Homogeneous Spaces, Lie Groups,
Lie Algebras, Topology of Symmetric Spaces.
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Introducao

Os espagos simétricos sdo exemplos de variedades Riemannianas com muitas simetrias,
como o nome ja sugere. Por este motivo, hd muita estrutura e ferramentas disponiveis
para trabalhar com estes espacgos. Para que uma variedade Riemanniana S seja um espaco
simétrico, exige-se que esteja definida, para cada ponto de S, uma isometria involutiva que
preserva as geodésicas passando por aquele ponto (Secdo 2.3). Mais especificamente, se S €
um espago simétrico e p € S, estd definida a simetria geodésica s, : S — S, elafixa pe, se y
é qualquer geodésica passando por p = ¥(0), s, satisfaz

A composicao de duas simetrias geodésicas gera uma isometria que chamamos de
transvecgdo. Utilizando as transvecgdes, mostramos que qualquer espagco simétrico conexo €
uma variedade Riemanniana homogénea (Teorema 2.3.8), ou seja, S = G/K, em que G é um
grupo de Lie conexo que age transitivamente sobre S por isometrias e K < G € um subgrupo
fechado que consiste de isometrias que fixam algum ponto de S, que costumamos denotar
por p. A agdo de G sobre S se identifica com a agdo de G sobre G/K por multiplicacdo a
esquerda, entdo identificamos p = 1K € G/K (veja a Seg¢do 2.1).

Seja g a dlgebra de G e € < g a dlgebra de K. Podemos visualizar os elementos de g como
campos de Killing em S (Proposi¢do 2.3.9), dentre os quais os elementos de £ sdo vistos como
os campos de Killing que se anulam em p. A representagio adjunta ¢ = Ad(s,) : g — ¢
€ um automorfismo involutivo de g que tem decomposi¢ao g = £ @ s em autoespacos +1
(Teorema 2.3.11). A projecdo natural 7 : G — G/K nos permite identificar 7,,S ~ s, entdo,
a partir da métrica de S, obtemos um produto interno B em s que pode ser estendido a um
produto interno ad(#)—invariante e c—invariante em g, ou seja, os elementos ad(X), X € &,
sdo anti-simétricos e o € uma isometria de g (veja a parte final da Se¢ao 2.3). Estas condi¢des
tornam o par (g, o) uma dlgebra ortogonal involutiva com produto interno B (veja a Defini¢ao
1.4.4).
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A estrutura de dlgebra ortogonal involutiva nos fornece mais ferramentas com as quais
podemos trabalhar para entender os espacgos simétricos. O nosso foco principal foi estudar
estas dlgebras nos casos semi-simples ndo compacto e compacto, sendo que o caso compacto
€ 0 mais interessante para nds, uma vez que os resultados geométricos principais estao
relacionados a espacos simétricos compactos, caso em que o grupo G é compacto e, portanto,
g também € compacta. O que diferencia uma algebra de Lie g de um simples espago vetorial
€ o colchete de Lie, que funciona como uma espécie de produto em g, portanto, entender g
se resume, principalmente, a entender as relacdes de colchete existentes (veja a Sec¢do 1.1
para um resumo sobre o assunto de dlgebras de Lie).

Se g tem dimensao finita, existe uma subdlgebra h de g chamada de Subdlgebra de Cartan,

em termos da qual g se decompde como

g=he P o*

a€eA(g,h)

em que g sdo autoespacos generalizados da familia de operadores ady(h) e A(g,h) é o
conjunto das raizes de g com respeito a h (veja a Equagdo 1.2). Esta decomposicado é
importante por que a representacdo adjunta ady de g € dada em termos do colchete, ou seja,
ad(X)Y = [X,Y]e,se He he X € g%, existe n € N tal que (ad(H) — (H))"X =0. A
decomposicao € o primeiro passo para entender as relacdes de colchete. Se g € semi-simples,
suas subalgebras de Cartan sio abelianas e os autoespagos g* sdo autoespagos usuais (veja o
Exemplo 1.2.4). Caso g seja compacta, suas subdlgebras de Cartan sao subdlgebras abelianas
maximais e os operadores ad(H ), H € b, sdo semi-simples, ou seja, diagonalizdveis sobre C.
Por este motivo, a decomposi¢do de uma édlgebra compacta se dd em termos de autoespagos
generalizados (veja o Exemplo 1.2.6).

A partir das raizes de A = A(g, h) podemos definir reticulados que nos fornecem maneiras
de descrever o centro e o grupo fundamental de um grupo de Lie compacto e conexo G como
um quociente de reticulados (Subsec¢do 1.3.1). O conjunto A € um subconjunto do espaco
dual h* e forma o que chamamos de Sistema de Raizes. Podemos identificar f e h* de forma
natural e considerar, para cada o € A, a reflexdo ry em torno do hiperplano o = 0. Cada
uma destas reflexdes age sobre A via a a¢do coadjunta e o deixa invariante (veja a Proposi¢do
1.3.1 e o Lema 1.3.7). O grupo gerado pelas reflexdes rqy, & € A, é chamado de grupo de
Weyl, este grupo € fundamental em varios aspectos da teoria (Se¢do 1.3).

Neste mesmo espirito, estudamos uma dlgebra ortogonal involutiva (g,0). Como a
involucdo o € relevante para nés, consideramos decomposicdes de g que levam em conta
os autoespacos £ e s, invariantes por 6. Em vez de considerar uma subalgebra de Cartan,

consideramos o que chamamos aqui de subespago de Cartan (seguindo o exemplo de [1]).
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Trata-se de uma subalgebra t de g que € maximal abeliana e estd contida em s. Para g
semi-simples e ndo compacta consideramos o caso em que ¢ € uma involucdo de Cartan;
este € o caso mais simples de se obter uma involugdo de Cartan, uma vez que adg(t) consiste

de uma familia comutativa de operadores simétricos. Tem-se entdo a decomposi¢cao

g=3b+t+ Y ga,

acAs

em que Ag = As(g,t) é chamado de conjunto das raizes restritas de g com respeito a t e
0S g¢ S0 autoespacos no sentido usual (Teorema 1.4.3). Para g redutivel, mostramos que
sempre existe uma subdlgebra de Cartan de g contendo t. Usando que toda dlgebra compacta
€ também redutivel, aplicamos o que foi feito no caso compacto na Sec¢do 1.2 para obter a

decomposi¢do de (g,0) como

g=73(t)+t+ ) mg,
ia€As
em que os my sdo espagos de raiz generalizados (Teorema 1.4.10).

Na Subsecdo 1.4.1, mostramos, nos casos compacto e semi-simples ndo compacto, que as
raizes de uma élgebra ortogonal involutiva (g, o) sdo restri¢cdes de raizes de g com respeito
a alguma subélgebra de Cartan. Na Subsecdo 1.4.2, descrevemos o grupo de Weyl de
Aq e tratamos também das diferentes maneiras como ele pode ser visto. Este resultado é
importante porque o grupo de Weyl de A; ndo age apenas em Ay, mas também sobre o
espaco simétrico associado (veja a Equacao (3.16)). Além disso, mostramos que Ay tem
todas as propriedades relevantes para que os resultados da Subsecdo 1.3.3 sejam vélidos.
Este é um passo fundamental, pois nos permite demonstrar resultados importantissimos no
Capitulo 3. A Subsecdo 1.3.3 apresenta resultados de cardter mais técnico que, a primeira
vista, podem parecer desconexos, mas, na verdade, sdo fundamentais na descri¢cao do Locus
de Corte e do Locus Conjugado de um espago simétrico compacto e também na demonstra¢ao
do fato que um espacgo simétrico compacto € simplesmente conexo se, € somente se, seus
Locus de Corte e Locus Conjugado coincidem (Teorema 3.5.8).

Para estudar o locus conjugado de um ponto em um espago simétrico compacto, utiliza-
mos a caracterizagdo tensorial dos espacos localmente simétricos para obter coordenadas
em que a equagdo de Jacobi se escreve de forma mais simples (Equacao 2.3). Nao atacamos
diretamente o problema de calcular o locus conjugado de p em S, mas, sim, reduzimos
o problema a calcular o locus conjugado em um flat maximal para depois estender este
resultado a S. Os flats de S sdo subvariedades conexas, completas, totalmente geodésicas e

com curvatura nula e sao chamados de maximais se nenhum outro os contém. Identificando
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s =TS, os flats maximais de S passando por p coincidem com as érbitas de p em § pela
acdo do grupo T = (exp(t)), em que t é um subespaco de Cartan de (g, o) (Corolario 2.4.4).

Inicialmente, mostramos que a curvatura de S pode ser calculada inteiramente em termos
de colchetes de vetores e isto nos fornece uma maneira de escrever a equacao de Jacobi
em termos da representagio adjunta de t. A decomposi¢do em espacos de raizes de (g,0)
com respeito a t nos dd, entdo, a forma das solu¢des da equagdo de Jacobi e nos permite
determinar precisamente o locus conjugado de p em um flat maximal 7' p = (exp(t)) p. Como
uma consequéncia de resultados dlgebricos, os flats maximais de S sao todos conjugados pela
acdo da isotropia K e cobrem S (Teorema 2.4.5), de modo que o locus conjugado de p em S
coincide com a imagem, pela acio de K, do locus conjugado de p em T p (Teorema 2.4.6).

Em seguida, passamos a estudar o conjunto das geodésicas de S que ligam dois pontos
arbitrarios p e g. Para cada geodésica y que conecta estes dois pontos, fixamos p = ¥(0)
como o ponto inicial e identificamos ¥ com a condigdo inicial H = ¥ (0) € s. Deste modo,
cada geodésica y pode ser vista como um ponto X € § = 7,,S. Consideramos entdo o subgrupo
K? de K das isometrias que fixam ambos p e ¢, de modo que, para todo k € K¢, ky é uma
geodésica que conecta p = 1K e g (veja o inicio da Secao 3.3).

Podemos escrever y(t) = exp,,(tH) = exp(tH)p, em que exp,, € a exponencial Riemanni-

ana de S no ponto p. Como
kexp(tH)p = kexp(tH)k™'p = exp(tAd(k)H)p,

podemos identificar a acdo de K¢ sobre as geodésicas com uma ac¢éo de K¢ sobre s por meio
da representagdo adjunta. A Orbita KYH é denominada 6rbita focal de H e é denotada §(H)
(veja a Equagdo 3.17). Portanto, descrever as geodésicas que conectam p e g se reduz a
descrever a imagem inversa de g pela exponencial exp,,. Mostramos que expljl (q) consiste
de uma unido de 6rbitas focais (Teorema 3.3.2). Além disso, o grupo de Weyl nos fornece
maneiras de contar as componentes conexas das Orbitas focais (Teorema 3.3.6) e podemos
determinar suas dimensdes utilizando informagdes fornecidas pelo sistema de raizes A (u, t)
(Teorema 3.3.7).

Na Secdo 3.4, foi calculado o grupo fundamental de espagos simétricos compactos. As
construgdes desta Se¢do foram inspiradas no artigo [2], que deu o direcionamento necessdrio,
e no capitulo 13 de [3], que calcula o grupo fundamental de grupos de Lie compactos. Assim
como no caso de grupos de Lie conexos e com dlgebra compacta, o grupo fundamental
de um espaco simétrico compacto é um quociente de reticulados. Para demonstrar este
resultado, foi definida a nocdo de elemento regular em S (algo similar ao conceito de
regularidade em grupos de Lie compactos) e foi construido um recobrimento para o conjunto

dos elementos regulares S,., (veja a Equacdo (3.27)). Ocorre que ambos S € S,,; possuem
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grupos fundamentais isomorfos, entdo pudemos realizar todas as construgdes relevantes na
variedade mais amigavel S,.,. Por fim, mostramos que ha uma bijec¢@o entre componentes
conexas de uma 6rbita focal e classes de homotopia de curvas que conectam p e g (veja o
Lema 3.4.21).

Ainda no capitulo 3, estabelecemos as condi¢des necessdrias para que um grupo de Lie
possa ser um espago simétrico (Subsec¢ao 3.1.3). Para que um grupo de Lie seja um espago
simétrico € necessdrio e suficiente que sua dlgebra seja compacta e que admita uma métrica
bi-invariante. Determinamos a decomposi¢ao da dlgebra ortogonal involutiva e os reticulados
associados a um grupo de Lie vendo-o tanto como espaco simetrico quanto como um grupo.
Ao longo do corpo principal do texto mostramos alguns exemplos em grupos de Lie e em
espacos simétricos que nao sdo grupos para ilustrar a teoria apresentada. Mostramos ainda
como os objetos da teoria desenvolvida no capitulo 3 devem ser interpretados no contexto de
grupos de Lie (Subsecdo 3.3.3).

Nos Apéndices constam, de forma resumida, resultados relevantes que fogem ao escopo
do texto principal. Para todos os resultados citados que nao constam nos apéndices, foram ci-
tadas referéncias. O Apéndice A contém resultados de natureza mais geométrica e topoldgica,
enquanto, no Apéndice B, hd resultados de natureza algébrica.






Capitulo 1

Algebras de Lie Ortogonais Involutivas

1.1 Algebras e Grupos de Lie

Nesta secao, vamos estudar as dlgebras de Lie. Apesar de ser um tema ligado a algebra, é
muito importante para o estudo dos espacos simétricos. Na primeira secao, estudaremos o
tema de forma mais abrangente e, nas seguintes, restringiremos nossa atencao as partes do
estudo que sao mais importantes no estudo de espagos simétricos.

Uma dlgebra de Lie g € um espago vetorial munido com um produto bilinear denominado
de colchete de Lie (ou simplesmente colchete) [-,-] : g X g — g que satisfaz as seguintes
relagoes:

1. [X,[Y,Z]] +[Y,[Z,X]] + [Z,[X,Y]] = 0
2. [X,Y] = —[7,X]

para X,Y,Z € g. A primeira equacdo é chamada de identidade de Jacobi e a segunda retrata a
anti-simetria do colchete. Para entender uma algebra g é necessario, portanto, entender as
relagdes que o colchete impde sobre g. As dlgebras mais simples possiveis sdo as abelianas,
aquelas em que o colchete € identicamente nulo. Neste texto, todas as dlgebras de Lie t€ém

dimensao finita e estdo definidas sobre R a menos que seja dito o contrério.

Subalgebras, Ideais e Homomorfismos

Dado um subconjunto W de g, definimos [W, W] como o subespaco de g gerado por elementos
da forma [X,Y] com X,Y € W. Um subespago vetorial h de g é chamado de subdlgebra se
for fechado pelo colchete, ou seja, [h, h] C b; quando isto acontece, denotamos h < g. Uma

subdlgebra b serd chamada de ideal de g se [, g] C b, denotamos b < g. Um homomorfismo
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de dlgebras de Lie é uma aplicagio linear ¢ : g — g’ que satisfaz ¢ ([X,Y]) = [¢(X), ¢ (Y)]
para todos X,Y € g.

Proposicao 1.1.1. Uma subdlgebra de g é um ideal se, e s6 se, for nicleo de algum homo-

morfismo.

Demonstracdo. Se b < g é nicleo do homomorfismo ¢ e X € h,Y € g, temos que [X,Y] €
b, pois ¢([X,Y]) = [¢(X),0(Y)] =[0,¢(Y)] = 0. Por outro lado, se h é um ideal de g,
podemos dar ao espago quociente g/h uma estrutura natural de dlgebra de Lie, definindo
[X +b,Y +b] =[X,Y]+b. Para que esta seja uma boa defini¢do, é essencial que h) seja um
ideal. A proje¢do g : g — g/b definida por ¢(X) = X + b tem niicleo h e é um homomorfismo
de 4lgebras de Lie:

q([X,Y]) =[X,Y]+b = [X+b,Y +b] = [¢(X),q(Y)].

]

Uma élgebra nao abeliana g é chamada de simples se qualquer homomorfismo ndo trivial
com dominio g for injetivo, ou seja, qualquer ideal de g deve ser g ou {0}.

Uma representagdo de g em um espago vetorial V € um homomorfismo de algebras
de lie g — gl(V), em que gl(V) denota o espago das transformagdes lineares V. — V. O
colchete em g/ (V) é o comutador de transformacdes lineares [T,L] =T oL — Lo T, onde o
denota a composi¢ao e pode ser omitido quando o contexto for claro. Um homomorfismo
especialmente interessante € a representacdo adjunta ad de g; trata-se de uma representacao
de g em gl(g). Para cada X € g, ad associa a transformagdo linear dada por ad(X)Y := [X,Y].
Usando a identidade de Jacobi, é facil ver que ad é, de fato, um homomorfismo.

ad([X,Y])Z=—[Z,[X,Y]]
= [Xv [sz]] - [Y7 [XvZ”
=ad(X)ad(Y)Z —ad(Y)ad(X)Z
= [ad(X),ad(Y)]Z.

A partir da representacao adjunta de g obtemos representacdes ad‘b :h — gl(g) das
subdlgebras de h de g. Para entender as relacdes de colchete em g, estudaremos com mais

atencdo as representacdes ad|, na proxima secdo. Serdo especialmente interessantes as

b
representacOes de subdlgebras nilpotentes de g, pois resultam em decomposi¢des de g em

subespacos mais simples do ponto de vista das relacdes de colchete.
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Um homomorfismo g — g € chamado de automorfismo se for bijetivo. Os automorfismos
de g formam um grupo denotado por Aut(g). Uma derivacdo de g é uma aplicagdo linear
D : g — g que satisfaz

D[X,Y| = [DX,Y]+ [X,DY]

Denotamos por Der(g) o conjunto das derivagdes de g. Usando a identidade de Jacobi, é

facil ver que, para cada X € g, ad(X) é uma derivagdo, logo, ad(g) C Der(g).

Centralizadores e Normalizadores

Seja W um subconjunto de g, definimos o centralizador de W em g como o conjunto
3g(W)={Xeg:ad(X)W =0}.

O centro de g é o centralizador de g em g e serd denotado simplesmente por 3(g). O
normalizador de W em g € definido por

ng(W)={Xecg:ad(X)W CW}.

Uma subdlgebra b < g serd um ideal se, e somente se, g = ng(h). Além disso, uma subédlgebra
b serd chamada de autonormalizante se ng(h) = b; observe que este é o completo oposto de

ser um ideal.

Algebras nilpotentes, soliveis e semi-simples

Denote C!(h) = b e defina indutivamente

C"(h) = [b,C"(H)].

A dlgebra h é chamada de nilpotente se existir algum n para o qual C"(h) = {0}. Em
particular, toda dlgebra abeliana € nilpotente. De forma similar, escreva Do(h) = b e defina,

para cada n,

D"(h) =[D"'(h),D"" ' (b)].

Chamaremos b de soliivel se existir algum n tal que D"(h) = 0. E possivel mostrar por
inducdo que D"(h) C C"" () e isto implica que toda dlgebra nilpotente é soldvel. A soma
de ideais soliveis de uma dlgebra g é também soltvel (veja a Proposicdo 5.4.3 de [4]); isto
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implica que, em toda dlgebra de Lie de dimensao finita, hd um ideal soldvel maximal, o qual
¢ denotado rad(h) (veja a Defini¢do 5.4.5 de [4]).

Sejam g e h dlgebras de Lie. Diremos que a soma direta de espagos vetoriais g & h (ou
seja, gNh = 0) é uma soma direta de dlgebras de Lie se [g,h] = 0. Uma dlgebra de Lie g é

chamada de semi-simples se puder ser escrita como a soma direta

g=01D - Don

de ideais simples g;, em particular toda dlgebra simples € semi-simples. O centro da dlgebra
€ sempre um ideal, mas ndo € simples por defini¢do, entdo uma algebra semi-simples tem
centro nulo. Segue desta defini¢do que qualquer ideal de g € da forma b =g;, ©--- D g;,, pois
a intercessdo hMg; € um ideal de g; para qualquer j, entdo € nula ou coincide com g;. Pelo
Teorema 5.6.6 de [4] (Teorema de Levi), qualquer dlgebra de Lie g de dimensao finita pode
ser escrita como tad(g) X s em que s é semi-simples e recebe 0 nome de Complemento de
Levi. O simbolo x denota a soma semi-direta de dlgebras de Lie, trata-se de uma soma direta
de espacos vetoriais que também sdo dlgebras de Lie, em que um dos fatores é um ideal.
Uma édlgebra g é chamada de redutivel se g = 3(g) @ [g, 9] com [g, g] semi-simples. Temos
que g € redutivel se, e somente se, para cada ideal h em g, existe um outro ideal ¢ tal que
g = h @ t. Segue que uma dlgebra redutivel é semi-simples se, e s6 se, 3(g) = {0} e, neste

caso, [g, 9] = g (para mais detalhes, veja a Se¢do 5.7 de [4]).

Formas bilineares ad-invariantes
Uma forma bilinear B : g X g — R é chamada de ad—invariante se satisfizer
B(ad(H)X,Y)+B(X,ad(H)Y)=0

para todos X, Y, H € g. Se hh € um subespaco de g, o seu complemento ortogonal com relacio

a B (em g) € definido por
htB = {X€g:B(X,Y)=0 paratodo Y € h}

A condi¢@o acima também pode ser denotada de forma mais sucinta por B(X,h) = 0.

Proposicao 1.1.2. Seja b um ideal de g. O complemento ortogonal de h com relagdo a B €
também um ideal de g.
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Demonstracio. SejaX € g,Y € he Z € h. Temos que B(Z,h) = 0 por hipétese, devemos

mostrar que [X,Z] € bt Isto segue da invariancia de B, uma vez que
B([X,Z],Y)=—-B(Z,[X,Y]) =0.

O

Dentre as formas definidas em g, hd uma que merece atencao especial, trata-se da forma
bilinear simétrica 3 : g X g — R definida por

B(X.¥) = tr(ad(X)ad(Y)),

em que tr denota o trago. Ela é chamada de forma de Cartan-Killing de g. A simetria de 3
segue das propriedades do trago, i.e., tr(AB) = tr(BA) para A e B transformagdes lineares. Um
cédlculo simples mostra que 8 é ad—invariante, logo, vale a Proposicéo 1.1.2 para f8 e, além
disso, quaisquer dois ideais n e j de g se interceptam em 0 sdo ortogonais com relagdo a f3,
pois,se Z€ g, X €neY €j, temos que ad(Y)Z € j e, portanto, ad(X)ad(Y)Z € nNj = {0}.
Em particular, os ideais simples de uma 4lgebra semi-simples sao dois a dois ortogonais.

O complemento ortogonal de ) com relacdo a 8 serd denotado simplesmente por ht.
Observe que o ideal h Nh < g nem sempre é nulo, uma vez que g~ C hNh~. Uma forma
bilinear simétrica é chamada de ndo degenerada se g = {0}.

Teorema 1.1.3 (Critério de Cartan para algebras semi-simples). Uma dlgebra de Lie g é

semi-simples se, e so se, sua forma de Cartan-Killing é ndo degenerada.

Demonstragdo. Suponha que g € semi-simples, devemos mostrar que ndo existe X € g tal
que B(X,g) = 0. Podemos supor que g é simples, ja que seus ideais simples sdo dois a dois
ortogonais. Observe que g é ideal de g; se existe um tal X, temos que g~ # 0 é ideal de g.
Mas isto é um absurdo, pois g # g, jd que gN g~ é uma dlgebra solivel (Lema 5.5.8 de [4]).

Suponha agora que B é nao degenerada. Se g é simples, o Teorema é vilido, caso
contrario, seja ) # 0 um ideal de g que ndo coincide com g. Podemos escrever g = b @ ht
como soma de ideais que se interceptam em {0} (Lema 5.5.8 de [4]). A restricdode B abhe
a hT é também ndo degenerada. Por inducdo sobre a dimensdo, aplicando este argumento a

e h* concluimos que g € soma direta de ideais simples. [

Algebras Compactas

A classe de dlgebras mais importante para nds serd a das dlgebras compactas. Uma élgebra de

Lie g é compacta se existir algum produto interno ad—invariante em g. Qualquer subalgebra
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de uma algebra compacta é compacta, pois a restricdo do produto interno ad—invariante de g
a uma subdlgebra h < g, € um produto interno ad—invariante em f. Se h < g, denote por h o
ideal complemento ortogonal de h com relacio a este produto interno; temos que g = h & b+,
em que b’ # 0 se h# g e hNh' = {0}, pois um produto interno é ndo degenerado e sua

restricdo a qualquer subespaco € ainda um produto interno. Segue que g € redutivel.

Proposicao 1.1.4. Seja g uma dlgebra compacta. Existe um grupo de Lie compacto com
dlgebra g.

Demonstragcdo. Sendo g redutivel, escreva g = 3(g) @ [g,g]. Como 3(g) é abeliana, € iso-
morfa a dlgebra de um toro 7, que é um grupo de Lie compacto. Observe que [g,g] é
semi-simples e compacta, entdo qualquer grupo de Lie conexo G’ com dlgebra [g, g] serd
compacto pelo Teorema 1.3 do cap. V de [5]. Portanto, g pode ser vista como a dlgebra do
grupo T x G'. O

A reciproca desta Proposicao € verdadeira, como mostra a Proposi¢ao 2.1.4 de [4]. O

seguinte Lema nos serd ttil mais adiante.

Lema 1.1.5. Seja g uma dlgebra de Lie compacta e X € g, entdo ad(X) € gl/(g) tem autova-

lores puramente imagindrios.

Demonstracdo. Seja ( ,) um produto interno ad—invariante em g. A equacéo (ad(X)Y,Z) +
(Y,ad(X)Z) = 0 mostra que ad(X) € anti-simétrica em relagdo a esse produto interno, ou

seja, seus autovalores devem ser puramente imagindrios. [

Observacao 1.1.6. Usando este Lema e a Proposi¢do B.2.1, € possivel mostrar que a forma
de Cartan-Killing de uma dlgebra compacta é negativa semi-definida, ou seja, B(X,X) <0
para todo X € g, sendo que (X,X) = 0 ocorre apenas se X € 3(g). De fato, como ad(X)
tem autovalores puramente imagindrios, deve haver uma base {Y1,Z1,...,Y,Z;,W} (com
W = 0 se a dimensdo de g for par) tal que ad(X)Y; =b;Z; e ad(X)Z; = —b;Y;,comb; € Re
ad(X)W = 0. Deste modo, ad(X)*Y; = —b%Yj ead(X)?Z; = —b?Zj e temos que B(X,X) =
tr(ad(X)?) = —Zb? <0. Se B(X,X) =0, devemos ter b; = 0 para todo j, ou seja, X € 3(g),
pois comuta com uma base de g. Se g for, além de tudo, semi-simples, entdo 3 é negativa
definida.

Exponencial e Homomorfismos

O grupo GL(V) consiste dos operadores invertiveis de um espago vetorial de dimenséo

finita V. E possivel mostrar que se trata de um grupo de Lie e que sua dlgebra é g/(V). A
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exponencial de matrizes e : g/(V) — GL(V'), dada por
et = i L
=n!

¢ um homomorfismo que nos permite associar propriedades de g/(V') com propriedades de
GL(V). Isto vale em geral para qualquer grupo de Lie linear G < GL(V'). Podemos estender
a ideia de exponencial para grupos de Lie quaisquer (ndo necessariamente lineares), veja a
Secdo 5.3 de [6]. Se a dlgebra de G € g, denotamos sua exponencial por exp; : g — G, ou,
caso ndo gere confusdo, denotamos apenas exp.

Se G e H sao grupos de Lie com dlgebras g e fj, respectivamente, € ¢ : G — H é um
homomorfismo diferencidvel, entdo a derivada d@; na identidade ¢ um homomorfismo de
algebras de Lie g — b (veja a Proposicao 5.16 de [6]). Em particular, se ¢ for um isomorfismo,

d@; também serd um isomorfismo. Além disso, para qualquer X € g, temos que

¢ (expg (X)) = expy (d91X), (1.1)

pela Proposi¢do 5.15 de [6].

Uma forma de obter automorfismos de g é considerando a representacdo adjunta de
G em g, Ad: G — GL(g). Para cada g € G, associamos um automorfismo Ad(g) de g
definido por Ad(g)X = (d/dt)gexp(tX)g |0 para X € g. O operador linear Ad(g) é um
homomorfismo de dlgebras de Lie porque € a derivada do homomorfismo de G dado pela
conjugacdo por g. Quando o contexto estiver claro, podemos usar a notacao simplificada
gX = Ad(g)X. Para quaisquer X € g e g € G, temos que

gexp(X)g ™' = exp(Ad(g)X) = exp(gX).

Outra forma de obter automorfismos de g € considerando a restri¢do da exponencial
e: gl(g) — GL(g) a subdlgebra ad(g) < gl(g). O grupo gerado pelos elementos ¢* X X € g,
é chamado de grupo dos automorfismos internos e denotado Inn(g) = (ead(g)). Aqui, e denota
a exponencial de matrizes, enxergando ad(X) como operador de g/(g). Temos ainda que
%) = Ad(exp(X)) pela equagdo (1.1).

Os automorfismos de uma dlgebra de Lie que ndo sdo internos, sao chamados de externos.
Observe que, se s € Aut(g), temos que ad(sX) = sad(X)s !, isto implica que a forma de
Cartan-Killing € invariante por automorfismos, ou seja, B (sX,sY) = B(X,Y) para quaisquer
XY €g.
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Subalgebras e Subgrupos gerados

Seja G um grupo de Lie com dlgebra de Lie g. Se V C g € um subconjunto qualquer,
denotamos por (V) a dlgebra de Lie gerada por V. Para definir esta subdlgebra, defina
V! =V e, indutivamente, defina V" = [V,V"~1]. Por exemplo, V> = [V,V] é o subespago de
g gerado por todos os elementos [X,Y] com X,Y € V. Entdo definimos (V) = U,,_;V". Fica
claro, pela defini¢ao dos V" que (V) é uma subélgebra de g.

De maneira semelhante, seja C C G um subconjunto que contém a identidade de G
e satisfaz C~! = {c_1 :c€C} CC. Se osinversos de C estdo em C, entdo C C c L
O subgrupo (dlgebrico) de G gerado por C é denotado (C). Para defini-lo, denote por
p:Gx G — G o produto de G, defina C! = C e, indutivamente, C" = p(C,C""!). Por
exemplo, C? = {c|c; : ¢1,¢; € C}. Definimos entdo (C) = U C" e, pela defini¢io dos C",
temos que (C) é um grupo.

Suponha, adicionalmente, que C seja conexo por caminhos, ou seja, quaisquer dois
elementos de C podem ser conectados por um caminho diferencidvel contido em C. Para que
esta hipétese seja vélida, basta verificar uma condi¢do mais fraca, qual seja, que a identidade
pode ser conectada a qualquer elemento de C por um caminho contido em C. Se ¢,¢’ € C e
existem caminhos & e o’ (em C) conectando, respectivamente,ce l e 1 e ¢’ (nesta ordem),
entdo a concatenagdo de o e o’ é um caminhode cac’. Sendocy,...,c, € C, temos que, para
cada ¢; € C, existe, um caminho @; : [0, 1] — C tal que o;(0) = 1 e @;(1) = ¢;. Portanto, (C)
deve ser também conexo por caminhos, uma vez que o produto de caminhos ; (7) - - - 0, (¢)
¢ um caminho contido em (C) de 1 ac;---¢,. Segue do Teorema 6.19 de [6] que (C) é um
subgrupo de Lie conexo de G.

Um caso especial de subgrupo gerado que nos interessa € o seguinte. Seja W C g um
subconjunto, entdo denotamos por (exp(W)) < G o subgrupo gerado por exponenciais de
elementos de W. Caso W seja um subespaco de g, (exp(W)) serd um subgrupo de Lie de G
conexo por caminhos, uma vez que todo ponto de exp(W) pode ser conectado a 1 = exp(0)
via um caminho contido em exp(W). Para ver isto, considere w € W, entéo exp(tw) é um
caminho de 1 a exp(w) contido em exp(W ), uma vez que tw € W para todo r € R. Se W for
uma subalgebra, ou seja, W = ) < g, a dlgebra de (exp(h)) coincide com h, mas, se W for

apenas um subespaco, a dlgebra de (exp(W)) ndo é, em geral, igual a W.
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1.2 Subalgebras de Cartan e Decomposicao em espacos de

raizes

Uma transformacio linear 7 : V — V, em que V é um espaco vetorial sobre R ou C, é
chamada split se o seu polindmio minimal se fatora em fatores lineares sobre o respectivo
corpo de escalares. Se o corpo é C, toda transformagao € split. Nos concentramos daqui em

diante no caso real. Suponha que T € split, entdo V se decompde na soma
V=VM(T) 4. +V*(T)

em que
VMT) :={veV:IneN, (T —2id)"v =0},

€ chamado de autoespago generalizado. Denotamos por id o operador identidade de V. Os

autoespacos no sentido usual sdo denotados
Vi={veV:Tv=2Av}.

Seja m uma representagido da dlgebra h em V. Dado um funcional linear A : h — R,

definimos espacos de peso

VA(h) = V() e Vah) = [ Vaw(m).

x€h xeh

Dizemos que A é um peso da representag¢do 7 se VA (h) # 0. Quando a algebra b estiver clara

pelo contexto, poderemos omiti-la na notagao e escrever apenas v,

Lema 1.2.1 (Lema 6.1.3 de [4]). Seja 7w : h — gl(V) uma representagdo da dlgebra nilpotente
b no espago vetorial de dimensio finita V tal que 7(x) € split para cada x € h. Entdo V se

decompde como
V=PVt
A
em que a soma € tomada sobre os pesos de . Cada um dos v (h) é h—invariante.

Fazendo V = g, 7 = ad|_, sendo ) uma subdlgebra nilpotente de g, temos

h’

g* == g*(b) = J{X € g: (ad(H) — A(H))"X = 0,H € b)}.

neN
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Se g;L #0eA #0, 0 peso A é chamado de raiz de g com respeito a h. O conjunto das raizes

¢ denotado A(g,h) e os subespagos g)L sdo chamados de espacos de raizes. A decomposicao

g=EPd*
A

Entender uma dlgebra €, de maneira simples, entender as relacdes de colchete existentes

do Lema 1.2.1 se escreve

nesta dlgebra, entdo a importancia desta decomposi¢do comega a se mostrar na seguinte
proposi¢do, cuja demonstracdo pode ser encontrada em [4].

Proposicao 1.2.2 (Proposi¢do 6.1.5 de [4]). Seja g uma dlgebra de Lie de dimensao finita e
h < g uma subdlgebra nilpotente, entao

L [ghg" ] Cg*™, A pen”
2. go € uma subdlgebra de g.

Da hipétese de nilpoténcia de b, temos que h < go(h). Para nossos propdsitos, € interes-
santes escolher h de modo que g° seja o menor possivel para que tenhamos mais informagao

sobre g.
Proposicao 1.2.3. Se h é uma subdlgebra nilpotente autonormalizante de g, entdo go(b) =h.

Demonstragcdo. A demonstracdo deste resultado pode ser encontrada na Proposicao 6.1.6 de
[4]. O

Uma subdlgebra nilpotente de g é chamada de subdlgebra de Cartan se for autonormali-
zante. Seja h uma subdlgebra de Cartan de g tal que ad(H ) € split para cada H € b (dizemos
simplesmente que h é split). Pelo item (i) do Teorema 6.1.18 e pelo item (ii) do Lema 6.1.15
de [4], toda algebra com dimensdo finita contém uma subalgebra de Cartan. Pelo Lema 1.2.1

e pela Proposicdo 1.2.3, temos que g se decompde em espaco de raizes da seguinte forma.

g=he P o* (1.2)

a€A(g,h)

Se ad(H) é diagonalizdvel para todo H € b, h é chamada de subélgebra de Cartan toral.
Neste caso, g% = g €, em particular, h = gO = go deve ser abeliana.

No caso em que g é semi-simples e b € split, as subdlgebras de Cartan sdo torais € os
espacos g sao unidimensionais (Proposicao 6.3.2 e Teorema 6.3.4 de [4]).
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Exemplo 1.2.4. Seja g =s/(4,R) = {X € gl(4,R) : tr(X) = 0}, é possivel mostrar que g é
semi-simples. Denote por E;; a matriz que tem entrada 1 na posigdo (i, j) e 0 em todas as

outras. O seguinte conjunto de vetores define uma base de g.

Hy=E1 —Ex» Hy = Ey — E33 H3 = E33 — Eyq
Ui, =E1n—Ey Uiz = E13—E3 Uis =Eu4—E4qy
U3 = Exzs — Ex Usqg = E3q — Ey3 Uy =Ery— Egp

Vio = E12+Ey
Vo3 = Exz +E3

Viz = E13+ E3
V34 = E34 + E43

Via=Ej4+E4
Vou = Exq +Egp

A subdlgebra abeliana h = (H,H,H3) é uma subalgebra de Cartan e, denotando H =
xHy 4+ yH, + zH3, temos que

ad(H)(U;j+Vij) = 0;;(H)(Ui; +Vij),
ad(H)(Uij — Vij) = —aij(H)(Ui; — Vij),

em que as raizes ¢;; sdo descritas por

op(H) =2x—y
a4(H) =x+z
OC24(H) =—Xx+y+z

o3(H)=x+y—z
op3(H) = —x+2y—z
o34(H) = —y+2z

Pelo que foi discutido nos pardgrafos anteriores, g se decompde como a soma de h com os
subespagos go,; = (Uij+Vij) e O-ay; = (Uij —Vij).

Vamos tratar agora do caso das dlgebras compactas. Neste caso, a familia de operadores
ad(h) é comutativa, mas ndo é diagonalizavel sobre R.

Teorema 1.2.5. Seja g uma dlgebra compacta, entdo

g=3pehd P mq,

in€A(g;h)

em que by é uma subdlgebra de Cartan da parte semi-simples de g e os my sdo autoespagos

generalizados da familia de operadores ad(h)|(g 41-

Demonstracdo. Sendo g redutivel ela é escrita como g = 3(g) + [g,9] em que [g, g] é com-

pacta e semi-simples. Suponha iniciamente que 3(g) = 0, ou seja, que g é semi-simples e,
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portanto, que a complexificacdo gc = g+ ig de g € semi-simples. Seja h uma subdlgebra de
Cartan de g; pela Proposicao 6.1.11 de [4], b € subalgebra de Cartan de gc.

Os operadores ad(H),H € b, sdo anti-simétricos em relacéo a algum produto interno
ad—invariante em g e, portanto, seus autovalores sao imagindrios puros (Lema 1.1.5), entdo
denotamos as raizes de g com respeito a b por io para & € h*. Em particular, esses autovalores
devem vir em pares conjugados ic. Isto significa que estes operadores sdo semi-simples,

ou seja, diagonalizéveis sobre C. Para o € b, considere os seguintes autoespagos
le ={X € gc:ad(H)X = ia(H)X,H € h}.

Denote por ¢ a conjugacdo complexa em gc dada por ¢(X +iY) =X —iY para X,Y € g.
Trata-se de um isomorfismo linear de gc. A proposi¢do B.2.1 nos mostra que ad(H),H € b,
comuta com ¢, entdo seja X € Iy, temos que ad(H )c(X) = c(ad(H)X) = —ia(H)c(X), o que
mostra que C(X) €l_g. Logo, Iy € [_y tém as mesmas dimensodes e [y + [ € invariante
por ¢, ou seja, Iy +1_¢ = jc para algum subespaco j C g. Defina mg = (Ig +1-¢) N g.
Desta construc¢io e pela Observagdo 1.1.6, vemos que my, € constituido de pares X,Y
satisfazendo ad(H)X = a(H)Y, ad(H)Y = —a(H)X, ad(H)(X +iY) = —ia(H)(X +iY) e
ad(H)(X —iY) = +ia(H)(X —iY). A um par X,Y de my satisfazendo estas propriedades
chamamos de par hiperbélico.

Deste modo, concluimos que a parte semi-simples de g se decompde como

b@ Z M,

in€A(g;h)

donde segue que a decomposi¢do para g enunciada no Teorema ¢ valida. 0

Exemplo 1.2.6. Considere g =s0(4) = {X € gl(4,R) : X + X' = 0}. As matrizes U;; do
Exemplo 1.2.4 formam uma base de g, sendo que t = (U}»,U34) é um toro maximal, logo, é
uma subdlgebra de Cartan. Denote H = tU|; + sU34, calculando os comutadores, obtemos as
seguintes relagcdes.

ad(H)(Uy3 4+ Uzs) = (t —5)(U1a — Uzz), (1.3)
ad(H)(Urs — Uz3) = —(t —5) (U3 + Una), (1.4)
ad(H)(Uys 4+ Uz3) = (t+5) (U133 — Usy), (1.5)
ad(H) (Uys — Usg) = —(t+5)(Ura + Uns). (1.6)

Temos entdo que A(g,t) = {to, A} com o(H) =t —se A(H) =t +s. Segue que my =
(U134 U4, U4 — Up3) e my = (Uja + Uz3, Uiz — Uny).
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Seja g uma élgebra compacta e escreva g = 3 © s, em que s = [g, g] € semi-simples e
3=23(g). Oberve que 3(g) b € subdlgebra abeliana e autonormalizante de g, ja que h =ng(h)
e 3 normaliza h em g, logo, € uma subdlgebra de Cartan de g. Além disso, esta subdlgebra é
abeliana maximal de g, uma vez que os elementos de my ndo comutam com os elementos de

bh. A reciproca também € verdadeira, entdo temos o seguinte resultado

Proposicao 1.2.7. Uma subdlgebra t de uma dlgebra compacta g € uma subdlgebra de Cartan

se, e somente se, € uma subalgebra abeliana maximal.

Demonstragcdo. Resta mostrar apenas que uma subdlgebra t abeliana maximal € subélgebra
de Cartan. Como toda algebra abeliana € nilpotente, basta mostrar que t € autonormalizante.
Seja X € ng(t) e defina m = RX +t. Como [X, ] C t, temos que m é uma subdlgebra de g,
logo, também é compacta e, portanto, redutivel. Segue que m = 3(m) ® [m, m] C 3(m) + ¢,
de modo que m € abeliana e contém t, logo, m = t pela maximalidade de t. O]

Seja t < g uma subdlgebra de Cartan, um elemento H € t é chamado de regular se
t=g"(ad(H)), o que é equivalente a nenhuma raiz de A(g, t) se anular em H. A equivaléncia
pode ser vista utilizando a decomposi¢ao de g em espagos de raizes. Sendo A(g, t) finito, fica
claro que toda subdlgebra de Cartan contém um elemento regular. O seguinte resultado é

muito importante em nossas proximas investigacoes.

Proposicao 1.2.8. Seja g uma algebra de Lie compacta. Quaisquer duas subdlgebras de
Cartan de g sdo conjugadas por um automorfismo interno e, dada uma subdlgebra de Cartan
t, temos que seus conjugados cobrem g, no sentido de que g = Inn(g)t.

Demonstragdo. Sejam t e t' subdlgebras de Cartan e X € t, X' € t' elementos regulares
satisfazendo t = g¥(ad(X)) e ¢ = g%(ad(X’)). Seja G um grupo compacto e conexo com
dlgebra g e considere o produto interno (,) ad—invariante em g. Vamos mostrar que existe
um automorfismo interno que leva t em t, ou seja, elas sdo conjugadas. Como G é conexo,
Ad(G) ~ Inn(g), entdo basta mostrar que existe go € G tal que t' = Ad(go)t.

A fungdo continua g — (Ad(g)X,X’) deve ater um minimo num ponto gy € G por

compacidade. Seja Y € g, e observe que

d d
= —(A Y X. X' — % ad tYA X. X'

= <[Y,Ad(g0)X],X/> = <Ya [Ad<g0>X7X/]>7

onde usamos a bi-linearidade do produto interno. A arbitrariedade de Y, mostra que
[Ad(g0)X,X'] = 0 e segue que Ad(gp)X comuta com um elemento regular de t' e, como

t' é abeliana maximal, temos que Ad(gg)X € t'. Consequentemente, t’ estd contido em
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g°(ad(Ad(go)X)) = Ad(go)g°(ad(X)) = Ad(go)t, o que mostra que t' C Ad(go)t e, por-
tanto, t' = Ad(go)t, pois sdo abelianos maximais.

Dado qualquer Y € g, existe uma subdlgebra abeliana m de dimen¢io maximal contendo
Y. Por construcdo, m deve ser uma subdlgebra de Cartan, entdo, pelo que foi mostrado
anteriormente, deve existir ¢ € Inn(g) tal que m = @(t), ou seja, ¥ € Inn(g)t. O

As subdlgebras de Cartan de uma 4lgebra compacta sao comumente chamadas de toros
maximais. O motivo é que, se G é um grupo de Lie compacto e conexo com dlgebra g,
qualquer toro maximal de g corresponde a um subgrupo maximal abeliano compacto e conexo

de G, que deve ser um toro maximal. Mais especificamente, temos o seguinte resultado.
Proposicao 1.2.9. Seja G um grupo compacto e conexo com dlgebra g. Entdo

1. t < g é toro maximal se, e sO se, € a dlgebra de um toro maximal de G.

2. Quaisquer dois toros maximais de G sdo conjugados via algum g € G.

3. Se T < G é um toro maximal, G = U ng_l.
geG

Demonstragdo. A demonstragcdo desta proposicao pode ser encontrada no Teorema 12.2.2
de [4]. O
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1.3 Sistemas de Raizes e Grupo de Weyl

As raizes das dlgebras semi-simples que estudamos na se¢do anterior formam o que chamamos
de Sistema de Raizes. Nesta Sec¢do, estudaremos propriedades de sistemas de raizes a partir
das quais obteremos resultados topoldgicos e geométricos em grupos de Lie e em Espacos
simétricos (veja o Capitulo 3).

Seja t um espago vetorial com produto interno ( , ). Para H € t, denote por H Lo conjunto
dos X € ttais que (H,X) =0, trata-se de um hiperplano de t. A reflexdo em torno de H Léa
isometria que leva H em —H e fixa H ponto a ponto; ela é descrita pela seguinte férmula

rg(X)=X— Zgi—ZiH
Um isomorfismo linear y de t age em t* pela acdo coadjunta y* ot = ot o 1;/_1. Em particular,
as reflexdes ryy agem em t*.

Podemos relacionar t e t* considerando, para cada H € t o funcional o definido por

oy (X)=(H,X). A associa¢do ¢ : t — t* dada por ¢ (H) = oy é um isomorfismo de espagos

vetoriais que nos permite induzir o produto interno

(o0, B) = (9" (), 07" (B))

em t* a partir do produto interno em t, de modo que t e t* sdo isométricos. Denotamos

Hg = ¢~ (B), entdo faz sentido escrever

o(Hp) = (Ha,Hp) = (&, B) = B(Ha). (1.7)
A reflexdo em torno de o= = DLC pode ser escrita da seguinte forma
(a,B) o(Hp)
Hg)=Hg—2——FHy=p—-2—-=Hqy.
ralllp) =My =2g oy =P =2 g gy e

E facil ver que (er¢)_l = roy ©, portanto, podemos trabalhar tanto em t quanto em t*.

Para cada a € A definimos a co-raiz Hy = (2/(a, &t))Hg. O conjunto das co-raizes terd
um papel importante em se¢des subsequentes. Com esta notagdo, podemos denotar de forma
mais simples

ro(Hpg) = Hg — a(Hg)Hy.

Proposicao 1.3.1. Seja H € t, entdo (ry)* = rg,, em que rq, € vista como uma reflexdo em
t*.
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Demonstragdo. Para B € t*, temos que (ry)*(B) = B o ry coincide com f em H* e com
—pB nareta RH. Lembrando que (o, 3) = B(H), temos que

coincide com B em H' e

B(H) _ B(H) _
B(H) —2WGH(H) =B(H) —ZWWH,OCm =—B(H),
donde segue a igualdade das duas transformagdes. [

Definicio 1.3.2. Um Sistema de Raizes reduzido é um subconjunto finito A C t* que contém
alguma base de t* e que satisfaz:

1. Seax € A,entdo —ax € A

2. ANRo = {+a} paratodo o € A

3. rg(A) C A paratodo o € A

4. Para quaisquer o, 8 € A, ro(Hg) — Hp € ZHy.

A condic@o 4 desta defini¢do é equivalente a 2(c, B)/(o, ) € Z ou (¢, B) = B(Hy) € Z.

Observacao 1.3.3. A condicdo no item 2 € o motivo pelo qual chamamos A de reduzido. Um
conjunto A C t que satisfaz esta definicdo, exceto pelo item 2, € chamado apenas de Sistema
de Raizes. Suponha, por um instante, que a condi¢do 2 ndo seja vélida e seja o € A tal que
existe ¢ # 0 satisfazendo co € A, existem poucos valores possiveis para c. Observe que 2¢ =
(ca,a) € Ze (ca)= (2ca/{ca,ca) = (1/c)t, entdo ((ca),o) = (1/c)(¢,a) =2/c € Z.
Segue que ¢ € {£1/2,£1,£2}.

Observacao 1.3.4. As condicdes da Definicao 1.3.2 sdo propriedades usuais das raizes de
uma algebra de Lie semi-simples com respeito a uma subdlgebra de Cartan split (veja a
remark 6.4.4 de [4]). Os mesmos axiomas também sao satisfeitos pelas raizes de dlgebras
de Lie semi-simples compactas, nas quais as subalgebras de Cartan nao sao split. Este fato
segue da Proposi¢cdo 7.14 e do Teorema 7.30 de [3]. Pelo Teorema 1.2.5, vemos que uma
subdlgebra de Cartan de uma dlgebra compacta g sdo da forma 3(g) +t, em que t é subdlgebra
de Cartan da parte semi-simples de g, logo, as raizes estdo contidas em it* e satisfazem os
axiomas da Defini¢do 1.3.2 em it". Para nos referir as raizes de uma dlgebra compacta com

respeito a uma subalgebra de Cartan, omitiremos o fator i.
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Proposicao 1.3.5. Seja A um sistema de raizes, entdo o conjunto das co-raizes
A={d:0oecA}~{Hyg: acA}

também € um sistema de raizes. Além disso, A € reduzido se, e somente se, A € reduzido.

Demonstragcdo. A demonstracao deste resultado encontra-se na Observagao 6.4.18 de [4].
O

O grupo gerado pelas reflexdes rq, @ € A, € chamado de Grupo de Weyl de A e o deno-
tamos por W (A) ou simplesmente por W. Os hiperplanos a’ C t* podem ser identificados
com o conjunto de zeros de o em t. Chamamos cada um destes hiperplanos de Hiperplano
de raiz. Sendo A finito, é f4cil ver que o complemento destes hiperplanos em t € um conjunto
aberto. A uma componente conexa do complemento dos hiperplanos de raiz damos o nome
de Cdmara de Weyl. Cada Camara de Weyl é um cone convexo aberto em t.

Exemplo 1.3.6. Neste exemplo, vamos descrever o sistema de raizes de so(4) formado pelas
raizes da decomposi¢do s0(4) = t+mg +my do Exemplo 1.2.6, em que t = (Uj2,Uss) €
uma subdlgebra de Cartan de s0(4). Pela Observacao 1.4.2, a forma bilinear simétrica —f3,
em que f3 ¢ a forma de Cartan-Killing de s0(4), é um produto interno em s0(4), uma vez que
50(4) é semi-simples e compacto. Lembre-se que B(X,Y) = tr(ad(X)ad(Y)), entdo, pelas
equagoes (1.3)-(1.6), temos que

tr(ad(H)ad(H)) = —2(t — 5)> —2(t + )2,

em que H = tUjp + sUz4. Fazendor =1 e s =0, segue que B(Uj,U)2) = —4 e, fazendo

t=0es=1, temos que B(Us4,Uss) = —4. Contas simples nos permitem concluir que

B(Ui2,Us4) = 0. Portanto, escolhendo o produto interno B = —}1 B restrito a t, temos que
{U12,U34} é uma base ortonormal de t.

Vamos agora determinar os pontos Hy e H;. Observe que B(H, ,H) = A(H) =t +s,
entdo Hy = U}, + U34. De modo andlogo, B(Hy,H) = a(H) =t — s, entdo Hy = Uy — Usy.
Para ter uma representacgéo grafica do sistema de raizes A = A(s0(4),t) em t*, utilizamos o
isomorfismo ¢ : t — t* e trocamos H,, € H, , respectivamente, por & € A. Escolhemos um
sistema de coordenadas que estd em dualidade com a base ortonormal {U}3,Us4}, ou seja, o
sistema de cordenadas dado pela base {y12 = ¢(U12), 734 = ¢(Us4) }. Veja a Figura 1.1.
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Figura 1.1 : Sistema de raizes A(so(4),1).

Como temos apenas dois hiperplanos de raiz a* e A, o grupo de Weyl de A contém
apenas 4 elementos e é dado por W = {1,rq,r),rqry }, em que rgry coincide com a reflexdo

em torno da origem. Pela Figura 1.1, vemos que hd um total de 4 camaras de Weyl.

Lema 1.3.7. Seja y : t — t um isomorfismo que preserva as raizes de A, ou seja, YA C A,

entdo Y preserva as camaras de Weyl.

Demonstragdo. Observe inicialmente que (w*)~! = (y~1)* e y preserva A se, e s6 se,
l//_l preserva também. Por hipétese, temos que Y*A C A e, sendo ¥ um isomorfismo,
temos que Y* ¢ injetiva; da finitude de A, segue a igualdade y*A = A = (v~ !)*A. Sejam
a € A uma raiz qualquer e B = (y~!)*o. Se nenhuma raiz se anula em H € t, temos que
0+# B(H)=o(y(H)). Isto mostra que y(H) estd em alguma cAmara de Weyl, pois o é
arbitraria. Além disso, como Y é continua, deve levar conexos em conexos, entdo, se C C t é

uma cimara de Weyl, y(C) também sera. O
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Um grupo age simplesmente sobre um conjunto se o unico elemento do grupo que tem

pontos fixos € a identidade.

Teorema 1.3.8. O grupo de Weyl age simplesmente e transitivamente sobre as cdmaras de
Weyl. Sejam H € t um elemento de alguma camara de Weyl e w € W tais que wH = H, entdo

w=1.

Demonstragdo. Estes resultados sdo consequéncias diretas das Proposi¢des 8.23 e 8.27 de

[3].
]

Como a quantidade de raizes € finita, podemos ter apenas uma quantidade finita de
camaras de Weyl. Além disso, a acdo do grupo de Weyl € transitiva e simples, logo, hd uma
bijecado entre o grupo de Weyl e as camaras de Weyl.

Corolario 1.3.9. O grupo de Weyl W ¢ finito.

1.3.1 Reticulados e Grupo Fundamental

Nesta subsec@o, vamos estudar alguns objetos importantes que nos ajudam a fazer conexdes
entre dlgebra e topologia de grupos de Lie, que sdo os reticulados. Vamos mostrar que o
centro e o grupo fundamental de um grupo conexo com dlgebra compacta e semi-simples sao

isomorfos a quocientes de reticulados.

Defini¢ao 1.3.10. Seja t um espaco vetorial com um produto interno. Um reticulado em t é

um subgrupo aditivo I" satisfazendo as seguintes condigdes.

1. Existe d > O tal que, para quaisquer X,Y € I', a distancia entre X e Y € limitada

inferiormente por d.

2. Existe D > 0 tal que qualquer Z € t estd a uma distancia menor que D de algum ponto
deTI.

Segue desta definicdo que um reticulado € discreto, pois, se 0 < d, os pontos de I" sdo
isolados por bolas de raio 6. Além disso, I" contém uma base de t. De fato, se t tem dimenséo
n e I gera um espaco de, no maximo, dimensdo n — 1, a condi¢do 2 da defini¢do nio poderia
ser satisfeita.

Nesta subse¢do g denota uma élgebra de Lie compacta e semi-simples com subélgebra

de Cartan t e conjunto de raizes A = A(g, t) e G denota um grupo conexo com dlgebra g.
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Para H € te X,Y € my um par hiperbodlico (Teorema 1.2.5), temos que
Ad(exp(H))X = )X = cos(a(H))X — sen(at(H))Y (1.8)

Ad(exp(H))Y = M)y = sen(a(H))X + cos(at(H))Y (1.9

Sendo G conexo, temos que ker(Ad) = Z(G). Logo, exp(H) € Z(G) = ker(Ad) se, e somente
se, a(H) € 2nZ para todo o € A. Defina

I'N={Xet:a(X)enZVo €A},

o chamado Reticulado Central associado a A(g,t), que consiste dos pontos de t em que as
raizes de A tém valores multiplos inteiros de 7. Trata-se do conjunto obtido pela intercessao
de hiperplanos de t que sdo paralelos aos hiperplanos de raiz. Se o € A, os hiperplanos
o = km € 7 sdo paralelos ao hiperplano de raiz o = 0, entdo X € I'y se, e somente se, para
cada o € A, existe k € Z tal que X estd no hiperplano & = kx. Defina também

I'={Het:exp(2H) =1} ={H € t:exp(H) =exp(—H)}. (1.10)

Observacao 1.3.11. A teoria desenvolvida nesta se¢do exige que apareca um fator 2 em
algum lugar para que tudo se encaixe como desejado. Por este motivo, escolhemos usar a
exponencial composta com um fator 2 na definicdo de I'. Este fator poderia vir em outros
lugares com os devidos ajustes (veja a Proposic@o 1.5 do capitulo V de [5] e a Secdo 13.4 de
[3] para mais detalhes). O motivo de nossa escolha é que os grupos fundamentais de espacos
simétricos sdo isomorfos a quocientes de reticulados muito parecidos com os que definimos
aqui, entdo definir I" desta forma nos permite manter a teoria de certa maneira "unificada".

Tudo ficard mais claro na Subsecdo 3.1.3.

Proposicao 1.3.12. Se G ¢ um grupo de Lie conexo com dlgebra g, entdo I' C I';. Além
disso,I'=T" se Z(G) = 1.

Demonstragdo. A hipotese de conexidade para G € importante pois implica que ker Ad =

Z(G). Se H €T, temos que exp(2H) = 1, logo, Ad(exp(2H)) = 1 e segue das equacdes (1.8)

e (1.9) que sen(cx(H)) = 0, ou seja, a(H) € n’Z. Segue que H € I'y e, portanto, I' C T'y.
Suponha que Z(G) = 1. Se a(H) € n’Z, as equagdes (1.8) e (1.9) mostram que

Ad(exp(H)) = Ad(exp(—H)),

isto &, exp(2H) € kerAd = Z(G) = 1. Neste caso, '] CT. O
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Em particular, esta demonstracdo mostra que I" € um reticulado, uma vez que esta contido
em outro reticulado. Ainda nao sabemos, no entanto, se é um reticulado em t, mostraremos
isto mais adiante. Temos o seguinte resultado que relaciona Z(G) e os reticulados vistos até

aqui.
Proposicao 1.3.13. Seja G um grupo conexo com dalgebra g, entdo Z(G) ~T"} /T

Demonstragdo. Pelo Corolério 12.2.3 de [4], a exponencial de G € sobrejetiva, entdo seja
z=-exp(2H) € Z(G), para algum H € g. Pela Proposi¢do 1.2.8, podemos escolher t de modo
que H € te, pelas equagdes (1.8) e (1.9), temos que o(H) € nZ. Portanto, a exponencial

escalonada pelo fator 2 define um homomorfismo sobrejetivo I'j — Z(G) com niicleo I'. [

Sendo g compacta, existe um produto interno ad—invariante em g, denote-o por B.
Definimos as co-raizes e o isomorfismo ¢ : t — t* em termos deste produto interno. O
Reticulado Fundamental Ty associado a A(g, t) € o reticulado gerado com coeficientes em
nZ pelas co-raizes Hy, o € A, ou seja, seus elementos sdo combinacdes lineares com
coeficientes em Z de vetores da forma mHg, onde identificamos ¢ e ¢ ! (&) = Hy. Trata-se
de um subreticulado de I'y, pois B(nHy) = B (Hy) € ©Z, ja que B(Hy) € Z para qualquer
B € A. Segue que Ad(exp(wHy)) € {£1} para toda o € A pelas equagdes (1.8) e (1.9).

Proposicao 1.3.14. Seja G um grupo conexo com dlgebra g. Para todo a € A, temos que
exp(2nHy) =1, ouseja, [ C T

Demonstragdo. Para um par hiperbdlico X,Y € my e H € t arbitrério, temos

e isto mostra que [X,Y]| = B(X,X)Hy = B(Y,Y)Hg, jd que B é um produto interno.

Denote H|, = Hy /2, entdo temos as seguintes relagdes
[H,,X] = a(H,)Y =Y, [H,,Y] = —a(H})X = —X, [X,Y] = B(X,X)Hy.
Redimensionando para ter B(X,X) = 1/B(Hy,Hy) = B(Y,Y), obtemos

[H,,X]=Y, [H,,Y]=-X, [X,Y]=H,.
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logo, u(o) = (H},,X,Y) é uma subdlgebra de g isomorfa a 5u(2) ~ s0(3). O grupo conexo
U = (exp(u(a))) < G é compacto pela Proposi¢do 1.3 do capitulo V de [5]. Pela teoria de
recobrimentos simplesmente conexos de grupos de Lie, temos que U é isomorfo a SO(3) ou
ao seu recobrimento universal Spin(3) ~ SU(2), pois Z(Spin(3)) = £1 (veja a Proposicdo
5.3.2 de [7]). As raizes de u(@) tém valores inteiros sobre Hyy, entdo Ad(exp(nH,)) € {+1},
donde segue que exp(nHy) = exp(2nH,,) estd em Z(U). Sendo Z(U) isomorfo a {1} ou a
{+1}, temos que exp(2mHy) = exp(nHy)? = 1, logo, mHy € T. O

Com esta Proposi¢do completamos a demonstracdo do seguinte Teorema, que mostra que

I' € um reticulado em t, ja que as co-raizes geram t.

Teorema 1.3.15. Seja G um grupo conexo com dlgebra g, entdo os reticulados satisfazem
[ZCI'CTI.

Observacao 1.3.16. Observe que as raizes de A sdo nulas em 3(g) Nt = 3(g), entdo a
hipétese de que g € semi-simples € importante para que I'; e Iy sejam reticulados de t
conforme a Defini¢do 1.3.10. Caso 3(g) Nt # 0, ou seja, caso g ndo fosse semi-simples, as
co-raizes ndo poderiam gerar t, entdo I'p ndo poderia ser reticulado. Além disso, escrevendo

t=1® (3(g) Nt), vemos que I'y é a soma de um reticulado em t com o espago 3(g) Nt.

Sejam G um grupo conexo com dlgebra g e 7 : G — G o recobrimento universal de G,
em que G é um grupo de Lie simplesmente conexo com dlgebra g. Como 7 é também um
homomorfismo, G é o quociente de G pelo subgrupo discreto ker < Z(G) e, além disso,
kerm € isomorfo ao grupo fundamental 7;(G) (veja o Teorema 7.15 de [6]). O Teorema
13.17 de [3] nos diz que, para y € T, a curva fechada [0, 1] > 7 — exp(¢y) é homotGpica a um
ponto em G se, e somente se, ¥ € ['g. Em particular, para G = G, temos que I' C I'y, logo, o

reticulado I'y coincide com I'. Segue que Z(G) ~I"| /T’y pela Proposicdo 1.3.13.
Teorema 1.3.17. Seja G um grupo conexo com dlgebra g, entdo m(G) ~T"/T.

Demonstragédo. Observe inicialmente que 7(Z(G)) C Z(G), entdo 7 restringe a um homo-
morfismo Z(G) — Z(G) que podemos considerar, com as devidas identificacdes, como
um homomorfismo 7y : '} /Ty — I'1 /T". O niicleo desse homomorfismo é I' /T e deve ser
isomorfo a ker @ ~ 7, (G).
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De fato, denote ¢ : I'; /Ty — Z(G) e y : T'1 /T — Z(G) os respectivos isomorfismos, que
sao dados por ¢(v+1T) =exps(2v) e y(v+TI') =exps(2v). Observe ainda que expgs =

-1

T oexpg, entdo defina my = Yy~ oo @, deste modo

o(v+To) =y ' om(exps(2v))
=y ! (expg(2v))
=v+TI,

e segue o que afirmamos no primeiro paragrafo. [

Como consequéncia temos que um grupo conexo G com dlgebra compacta e semi-simples
¢ simplesmente conexo se, e somente se, [' = I'y. Além disso, o Corolario 1.4 do capitulo V
de [5] nos diz que, se H € um grupo conexo com algebra compacta ) (ndo necessariamente
semi-simples), entdo H =V X G, em que V € um espaco vetorial e G € conexo, tem algebra
semi-simples e € um compacto maximal (no sentido de que G contém todos os subgrupos
compactos de H). Pela Proposi¢do 1.12 de [8], temos que 7 (H) = (V) X m1(G) = 7 (G).
Dessa forma, o grupo fundamental de grupos de Lie conexos com dlgebra compacta pode ser

calculado a partir dos grupos conexos com algebra compacta e semi-simples.

1.3.2 O grupo fundamental de SO(4)

Relembre os Exemplos 1.2.6 e 1.3.6. Seja u = s0(4) e t = (Uj2,U34). Denotando H =
tUyp + sUsq € t, temos o sistema de raizes A(u,t) = {+a,+£A} cujas raizes satisfazem

o(H)=t—s, AH)=t+s.

Sendo u semi-simples e compacta, a forma B = —% B, em que B denota a forma de Cartan-
Killing de u, se restringe a um produto interno em t tal que Uy, e Uz4 formam uma base
ortonormal.

E ficil ver entio que Hy = Ujp — Usg e Hy, = Ujp + Us4 €, como B(Hy,Hy) =2 =
B(H,,,H, ), temos que as co-raizes Hy e Hj coincidem com Hy e Hy, respectivamente. Segue
que

I'o=n(ZHy+ZHy).
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Para determinar I', observe que

cos(2t) sen(2t) 0
—sen(2r) cos(2¢) 0
0 cos(2s) sen(2s)
0 (25)

0
0

Y

exp(2H) =

0 —sen(2s) cos

de modo que H €T se, e somente se, t,s € TZ e temos que
I'= E(ZUQ —+ ZU34).

Para que H =tUjp +sUs4 € 1, devemos tert —s = a(H) € nZ et+s= A(H) € nZ ou,

equivalentemente, entdo reticulado central € dado por
I'= {tU12+SU34 D r+s, t—s¢€ EZ}.

A Figura 1.2 ilustra os reticulados associados a SO(4). Os pontos verdes representam
elementos de I'; que ndo estdo nos outros reticulados; os azuis, elementos de I" que ndo estio
em [y e os vermelhos, os elementos de I'y. O ponto preto central representa a origem de t.
As linhas tracejadas representam os hiperplanos do diagrama, sendo que aquelas que passam
pela origem séo os hiperplanos de raiz« =0e A =0.

Vamos determinar agora a que grupo o quociente I'/I"y é isomorfo. Observe inicialmente
que, para k € Z, temos kHy, +kH; = 2kU» e —kHy + kH), = 2kU34, logo, 2nZU1; C Ty e
2nZUs4 C Ty. Por outro lado, todo elemento de y = mw(kU)y +nUsq) € T estd em I se, e

somente se, k —n € 27. Por exemplo,

3nU1p +8ntUzq = 3mH) + 51Uy =AW
3nU 12 +97tU34 = 37tH; + 67Uz € 1.

Podemos escrever entao
Io={yeTl: ay) €2nZ}.

1
Considere o homomorfismo I' — Z /27 dado por y — Ea(H ) mod 27Z. Claramente, é um
homomorfismo sobrejetivo com nucleo I'y. Segue do Teorema 1.3.17 que

m1(SO(4)) ~T' /Ty ~ Z,/27Z.
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Figura 1.2 : Reticulados associados ao grupo SO(4).

1.3.3 Equivalentes Focais

Nesta subsecao vamos trabalhar algumas propriedades e resultados envolvendo sistemas de
raizes que serdo aplicados no capitulo 3. Aqui, g denota uma dlgebra de Lie compacta e t,
uma subdlgebra de Cartan de g. Os resultados demonstrados aqui valem igualmente caso g
seja uma dlgebra ortogonal involutiva e t seja um subespaco de Cartan (veja a Secdo 1.4).
Um dos motivos para que eles continuem validos também no contexto de dlgebras ortogonais
involutivas é que os reticulados considerados em ambos sdo os mesmos. Além disso, A(g, t)
e As(g,t) sdo ambos sistemas de raizes e compartilham todas as propriedades relevantes para
os resultados apresentados nesta se¢do. As demonstracdes que precisarem de adaptacoes
serdo mencionadas.

O Diagrama de Stiefel de g é o conjunto

p={H € t: a(H) € nZ paraalgum o € A}. (1.11)
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Trata-se da unido de todos os hiperplanos o = k7, ot € A, os quais sdo paralelos aos hiper-
planos de raiz @ = 0.

Dois pontos X,Y € t sdo I'—equivalentes se X —Y € I e s@o chamados equivalentes
focais se forem I'—equivalentes e |X| = |Y|. Sejam H € t fixado, ¢ = exp(H) e W o grupo
de Weyl de A(g, t), definimos

Wi={weW:wHeH+T}.

Para w € W9, temos que exp(wH) = exp(H). Denotamos por qu o grupo gerado pelas
reflexdes em torno dos hiperplanos de raiz oo = 0, tais que « satisfaz a(H) € n7Z. Trata-se

de um subgrupo de W9, uma vez que, se a(H) € 7, temos

ro(H)—H=—a(H)

2
@ oc)Ha clyCTI, (1.12)

de modo que devemos ter ro(H) € H+T.
Observe ainda que qu é normal em W?; dadow e Wlery € ng , temos que wraw_l =
Fya € sendo w™ ! (H) = H + y para alguma y € T, temos w*a(H) = a(w™ ' (H)) = o(H +

Y) € nZ, uma vez que I' C T'y. Logo, wragw™ ! € qu.

Proposicao 1.3.18. Se w € Wg , entdo wH € H +Ty. Por outro lado, se w € W9 e wH €
H + T, entdo w € W{.

Demonstracdo. Pela equacdo (1.12), temos que ro(H) € H + T se, e somente se, rq € qu .
Sejaw = rgq, - - - rq, um produto de reflexdes de qu . As igualdades abaixo mostram que uma
reflexdo qualquer ry deixa invariante o reticulado I'y.

(. )
I’a(TEHB) —THy = _2n<a,a)H‘x
O (ap)
T a) (B B)
= —mkHyg € T,

(o, B)

(B,B)
Portanto, wH € H + 1.

emque k =2 € 7. Segue que ra(n'HB) €Iy e, por linearidade, temos rq(I'g) C T.
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Sejam @ e B raizes. Aplicando a equagdo (1.12) repetidamente e usando o que foi

mostrado no pardgrafo anterior, temos que

rgro(H) =rg(H) —a(H)rg(Hy)
=H—B(H)Hy; — a(H)p,

em que Y € Iy, ou seja, Jp € uma combinacio linear de co-raizes com coeficientes em Z.
0 0 0

Por indugdo, mostra-se que
k
rey+ro,(H)=H—Y a;(H)y;, (1.13)
j=1

com 7y; € I'y. Segue que rq, ---rq, (H) € H+T se, e somente se, aj(H) € 77 para todo
j=1,... k.
Suponha agora que w € W? e wH € H +T. Escrevendo w = rg, - - - ¢, segue da equagdo
(1.13) que rqg; € Wé’ para j=1,...,k, de modo que w € W(;].
]

Dada a agdo transtiva de um grupo G em um conjunto X, um dominio fundamental para
esta acdo € um subconjunto F de X que intercepta cada 6rbita da acdo em exatamente um
ponto. Desta definicdo segue que G- F = X. Os conjuntos definidos abaixo nos ajudam
a caracterizar um dominio fundamental para o grupo I', aqui visto como um grupo de

translagdes em t.

D={Het:|H|<|H+Y|, paratodo ycI'\{0}}
D={Hct:|H|<|H+Y|, paratodo ycT}

Lema 1.3.19 (Lema 4.2 de [9]). Sejam X,Y € t equivalentes focais distintos. Para qualquer
€>0, (1+¢€)X eY +€X sdo ['—equivalentes distintos e | (14 €)X| > |Y + €X].

Demonstracdo. (1+ €)X e Y + €X sdo claramente distintos e ['—equivalentes, ji que a
diferenca deles é Y — X € I'. Usamos abaixo que |X| = |Y| e a relagdo (X,Y) = |X||Y|cos 0,
em que 0 € o angulo entre X e Y. Temos que

(1+e)X[>—|Y +eX|? = (1+&)*X> - |Y|* —2e(X,Y) — X
= X[P =Y |* +2¢(IX > — (X,Y))
=2¢&(]X|* = |X||Y|cos 0)
=2¢|X|*(1 —cos0) > 0.
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Observe que 8 # 0 porque X e Y sdo distintos e t€ém mesma norma. 0

A préxima proposi¢do mostra que existe um dominio fundamental de I" contido entre D
e D. Pelo item 3, se H € D, temos que |H| é menor que |H + ¥| para todo y € T, entdo as
6rbitas de I interceptam D no mdximo uma vez. O item 1 mostra que D intercepta qualquer
orbita de I', ndo necessariamente apenas uma vez. Portanto, existe um dominio fundamental
F de " em t que satisfaz D C F C D.

Proposi¢do 1.3.20 (Proposicio 4.3 de [9]). Seja H € t um elemento qualquer e D, D definidos

como anteriormente, entdo valem as seguintes afirmacdes.
1. Dado H € t, o elemento de menor norma em H + I pertence a D.
2. D é convexo, compacto e ndo € vazio.

3. D é o interior de D, de modo que H € D se, e somente se, H é o tinico elemento de

H +1" com norma minima.
4. 9D é o conjunto dos H € D que possuem algum equivalente focal ndo-trivial em t.

Demonstragdo. Para o item 1, considere a fungdo f : I — R dada por f(y) = |H + 7.
Observe inicialmente que, em cada regido limitada R de t, existem apenas uma quantidade
finita de pontos em RNT. Claramente, f > 0 e f(I') é um conjunto discreto em R. Para
y € T satisfazendo |y| > 2|H|, temos que

f(0)? = |H+yP = HP +2|H]||y|cos 6 + [y
> |H[*(544cos0)
> |H|%.

Por outro lado, se |y| <2|H|, temos que f(y) = |H+7v| < |H|+|y| < 3|H|.

Seja R a bola fechada com centro na origem e raio 2|H|, temos que f(R) C [0,3|H|]
consiste de uma quantidade finita de pontos, entdo existe Y € I tal que () < f(y) para
todo y € T, em particular H 4 ¥ € D.

O item 2 é demonstrado considerando a expressio |H|> — |[H + 7|, que pode ser reescrita
como —2(H,y) — |y|* = —2(H +7/2,7), logo,

H* <|H+7y?* < 2(H+7/2,7) >0 (1.14)

e esta é uma equacio que define um semi-espaco fechado de t contendo a origem. Logo, D,

¢ a intercessao de semi-espacgos fechados e convexos de t, entdo é fechado e convexo.
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Seja H € D e y € I'. Usando a equacio (1.14), temos que
~2(H.7) ~ v = —2(H +7/2,7) <0,

logo, H satisfaz | (H, )| < |y|>/2. Como I' é discreto e contém uma base de t, as coordenadas
de H sdo uniformemente limitadas, donde segue que D é limitado, logo, compacto. Além
disso, D néo é vazio porque contém a origem.

Para mostrar os itens 3 e 4, vamos mostrar inicialmente que D é aberto. Seja X € {, para
|7| suficientemente grande, temos que |X| < |X — y|. Para determinar uma condigdo para que
tenhamos X € D, observe que |X|> — X —y|*> = 2(X,7) — |y]> < |7/(2|X| — |7]) e isto mostra
que |X| < |X — | para |y| > 2|X]|, logo, para verificar se X € D, basta considerar |y| < 2|X]|.

Seja H € D e definal” = {y € T": |y| < 3|H|}, trata-se de um subconjunto finito de I".
Seja

U={Xet:|X|<3|H|/2,|H—X| < —uU/4R},

em que R é 0 maximo entre os |y| comy €I e
u=max{2(H,y)—|y]>: 0 £ yeT'} <0.

E facil ver que H € U, vamos mostrar que U C D.
Para X € U, temos

X)P— X +y=2(X,7)— 7]
=2(H,y)— |Y* +2(X —H.7)
<u+2(X—Hlly|

u
oM R
SHTAR
u
_H 0
2 <Y

onde, na segunda igualdade, somamos e subtraimos 2(H,y). Isto mostra que X € D e,
portanto, U C D, logo, D ¢€ aberto.

Para mostrar que D & o interior de D, basta mostrar que A = D — D coincide com 9D.
Seja H € A, entao H possui um equivalente focal distinto de H, pois H ¢ D. Além disso,
(1+¢&)H ¢ D, pois H € D e (1+¢€)H é estritamente maior que um de seus equivalentes
focais (Lema 1.3.19). Como € > 0 é arbitrdrio, temos que H € dD. Reciprocamente, seja
H € 0D C D, entdo |H| < |H + 7| para y € T. Sendo D fechado, todo aberto de t contendo H
deve interceptar o complementar de D, entdio existe uma sequéncia H, ¢ D tal que H, — H e,

consequentemente, para cada H,, deve existir ¥, € I tal que |H,| > |H, + %|- A sequéncia ¥,
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deve ser limitada, uma vez que H, converge. Logo, existe alguma subsequéncia convergente
Yo, — Y € I' e devemos ter |H| > |H + 7|. Da definicdo de |H|, temos que |H| = |H + Y/,
logo, H ¢ D e segue que H € A. Este argumento mostra que 0D =A =D — D, entdo D é o
interior de D.

Por fim, segue do item 3 que cada elemento H € 9D satisfaz |H| = |H + | para algum
0 # y €T, pois H nao pode ser o unico de norma minima em H +1I', jad que H ¢ D. Isto
termina a demonstragdo do item 4. [

Para os proximos resultados, considere os seguintes conjuntos.

Dy={H €t:a(H) <m, paratoda o € A}, (1.15)
Do={Hct: a(H) <, paratoda o € A}. (1.16)

Exemplo 1.3.21. Relembre a Subsecao 1.3.3, em que calculamos o grupo fundamental de
SO(4) e o reticulado da Figura 1.2. A Figura 1.3 abaixo ilustra as regides D e Dy em uma
subdlgebra de Cartan de so(4). A regido amarela representa D e a regido acinzentada, a qual

contém a regido amarela, representa Dy.
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Figura 1.3 : Regides D e Dy em uma subdlgebra de Cartan de s0(4).

Teorema 1.3.22 (Teorema 2.6 de [2]). Se I" =1, entdo
1. Existe um dominio fundamental de T entre Dy e D,.

2. O conjunto de equivalentes focais de H € Dy coincide com a orbita W(;] -H.

3 Wi=w.
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Demonstragdo. Para o item 1, vamos mostrar que D = Dy, entdo o resultado segue do
comentdrio logo antes da Proposicdo 1.3.20. Para mHy € I'g e H € t, temos que

4> — [H|> = 2w (H,Hg)
<HvHO€> <H067H06>

(a.or) i (or.0r)2
4r

=ﬁ(a(ﬂ)+ﬂ),

|

=4rn

uma vez que Hy = 2Hy /{a, ).
n

Sejav=m Z Hy, um elemento de I'y, em que podemos ter Hy, = Hy, mesmo que i # J.
j=1
Supomos que v € escrito com o nimero minimo de parcelas possivel. Uma consequéncia

direta desta hipétese € que ndo podemos ter Hy, = —Hy, para i = j. Além disso, esta hipétese
implica que (Hg,, Hg;) > 0, parai, j € {1,...,n}. Paraentender isto, observe inicialmente que
as co-raizes formam um sistema de raizes A (Proposicio 1.3.5). Suponha que <Hdi,de> <0.
Como Hy; e Hy, ndo sdo proporcionais, pois uma néo pode ser a oposta da outra, segue do
Lema 6.4.8 de [4] que

Hy —(—Hg,) = Hg +Hg, € A,

ou seja, o ndmero de parcelas na soma que define v poderia ser reduzido.

Nestas condic¢des, temos que

|H+v|>—|H|? = ZnZ (H,Hg,) +7r22 Hg, Hg)+27° Y (Hg, Hg,)
j=1 =1 i<j

| V

H)+m)+2n° Y (Hg, Hg)
i<j

| \%

i

‘4; E‘-lk

H)+m).

Se H € Dy, temos, por defini¢do, que |a;(H)| < &, entdo as inequacdes acima mostram que
H € D. Suponha que existe H € D — Dy, entdo existe o € A tal que a(H) > . Sendo H_
a co-raiz correspondente a — o, temos que

4r

P—|HP = o (—a(H) +m) <0,

H+nmH_4
’ + [0 |a‘2

de modo que
|H + 7'L'H_d
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e concluimos que H ¢ D, o que € absurdo. Segue que D = D,.
Vamos mostrar agora o item 2. Seja H € Dy = D, entdo |« (H)| < 7 para toda raiz o
e |H| < |H + 7| para qualquer y € I'. Dado w € W), wH € H+T e |wH| = |H|, entdo H
e wH sao equivalentes focais. Por outro lado, seja H 4+ v um equivalente focal de H, com
vel =1y, entao
) ) w 4m
0=|H+v|*—|H]* = ]—21 T

(j(H) +m) +27° ) (Ha, Ha,),

em que

" 4n
Z z(aJ(H)+7r)207 Z<HdiaHd,-> >0,
=1 Moyl i<j '
logo, oj(H) = —m para j=1,...,n, jd que |aj(H)| < &, para j =1,...,n. Além disso,
devemos ter (Hg,, Hg;) =0 parai, j € {1,...,n} distintos. Em particular, temos que Hg, #
Hg; ero;(Hg) = Hg, se i # j. Sendo

aj(H)H — H+nHy
!Otj|2 oj — aj»

temos que
n

H+v=H+7nY Hgy =ra - ra,(H).
j=1
Como oj(H) € TZ, j=1,...,n, temos que rq, -+ rq, € Wy e, portanto, H +v € WJH. Isto
demonstra o item 2.
Por fim, seja w € W7 e H € D um elemento regular, i.e., H estd em alguma cAmara de
Weyl. Por definicdo de W4, sabemos que wH é equivalente focal de H, entdo segue do item
2 que existe v € qu tal que wH = vH, ou seja, v_'wH = H. Como H é regular, temos que

v~ fixa uma cAmara de Weyl, entiow =v € Wg’ (Teorema 1.3.8). ]

Observacao 1.3.23. Para demonstrar o item 3 do Teorema anterior, utilzamos o fato de
que um elemento do grupo de Weyl que fixa uma camara de Weyl € a identidade, o que
€ justificado pelo Teorema 1.3.8. Este resultado também € vélido no contexto de algebras
ortogonais involutivas compactas. Na demonstragdo do Teorema anterior, basta trocar o

Teorema 1.3.8 pela Proposicao 1.4.18.



40 Algebras de Lie Ortogonais Involutivas

1.4 Algebras de Lie Ortogonais Involutivas

Uma involugdo de g é um automorfismo o € Aut(g) tal que 6> =id. Uma outra forma
de definir o conceito dlgebra semi-simples € usando uma involugdo especial chamada de
involucéo de Cartan. Seja 8 a forma de Cartan-Killing de g, a involugéo ¢ serd chamada de

Involugdo de Cartan se a forma definida em g por
<X7Y> = _B<X76(Y))

for um produto interno. Neste caso, ela recebe o nome de Produto Interno de Cartan.

Teorema 1.4.1. Usando a notagdo do pardgrafo anterior, g € semi-simples se, e so se, { ,) €

um produto interno.

Demonstragdo. Suponha que ( ,) é um produto interno e seja j um ideal de g. Considere
X,Y,Z € g e observe que

Portanto, escolhendo Y € jL, ZcjeX € g, temos que ad(—o(X))Z € j porque j é um ideal,
logo,
0= (Y,ad(—0(X))Z) = (ad(X)Y, Z),

de modo que [X,Y] € j*, logo, i* é um ideal. Além disso, j Nj~ =0, pois ( ,) é um produto
interno, entdo podemos escrever g = j B j*. Isto mostra que g € redutivel (veja a Defini¢ao
5.7.1 e o Lema 5.7.2 de [4]). Devemos ter 3(g) = 0, pois qualquer X € 3(g) € ortogonal a
qualquer outro vetor de g o que ndo pode ocorrer porque ( , ) é um produto interno. Segue
que g é semi-simples.

Suponha agora que g € semi-simples, a existéncia de uma involucao de Cartan estd
relacionada com a existéncia de formas reais compactas de gc e segue do Lema 13.2.10 de
[4]. O

Seja g uma dlgebra semi-simples ndo-compacta com involugdo de Cartan ¢ e escreva

g = £+ 5 como soma direta dos autoespacos 1 de ¢ e considere uma subdlgebra t de g
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contida em s. E ficil ver que
[e,€) C ¢t [s,5] C¢ [ts]Cs,

entdo t deve ser necessariamente abeliana. Logo, qualquer subédlgebra maximal t C s €
uma subalgebra abeliana maximal. Vamos obter uma decomposicao em espacos de raizes
de g similar aquela obtida anteriormente, mas desta vez com respeito a subdlgebra t. Da
demonstracdo do teorema anterior e observando que o|; = —id, temos que ad(H ) é simétrico
com relacdo ao produto interno de Cartan para todo H € t. Portanto, sendo t abeliana,
ad(t) ¢ uma familia comutativa de operadores diagonalizaveis, logo, sdo simultaneamente
diagonalizaveis. Além disso, ad(X) € anti-simétrico com relagdo a (,) para todo X € £ uma
vez que Ol = id.

Observacao 1.4.2. A hipdtese que g ndo seja compacta serve para garantir que s # 0, pois
ad(H),H € s, é simétrico em relacdo ao produto interno de Cartan e, se g for compacta,
os operadores ad(H) devem ter autovalores puramente imagindrios ou nulos. Portanto,
ad(H) = 0 para H € s, caso g seja compacta e semi-simples, e segue que s C 3(g) = 0. Este
argumento mostra que numa algebra compacta e semi-simples, uma involu¢do de Cartan
deve ser a identidade, logo, a forma —f3 deve ser um produto interno em g (veja a Observagio
1.1.6).

Para o € t*, defina
go={X€g:ad(H)X = a(H)X,H € t}.

O conjunto Ags(g,t) dos o # 0 tais que go # 0, é chamado de conjunto de raizes restritas.
Sejam ¢ € Aut(g) um automorfismo que deixa t invariante e X € gy # 0, entdo

Segue que ¢(gq) = g © O € raiz se, e somente se, ¢« € raiz. Em particular, fazendo
¢ = o, obtemos que —a € As(g,t) sempre que @ € Ag(g,t).

Para entender a decomposicao de g com respeito a representacdo ad|¢, ¢ importante enten-
der onde ad(t) age como transformagéo nula, ou seja, entender o centralizador 34(t). Observe
que o age como —id em t, entdo, para X € 34(t), temos que [6(X),t] = o([X,0(t)]) =0.

Segue que 34(t) é invariante por ¢ e podemos escrever

3a(t) = (3() NE) D (34() N 5).
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Se X € 34(t) N5, entdo RX + t é uma dlgebra abeliana contendo t. Pela maximalidade de
t, devemos ter X € t, de modo que t C 3g(t) Ns C t e, portanto, 3g(t) Ns =t. Vale entdo a
igualdade

39(t) = (Gg() NE) B L. (1.17)

Denote m = 34(t) NE.

Teorema 1.4.3. Seja g uma dlgebra semi-simples ndo compacta com decomposicdo de

Cartan €+ s e t C s uma subdlgebra abeliana maximal. Temos que

g=m+t+ Y da.
acAs(g,t)

Demonstra¢do. Como ad(t) é uma familia simultaneamente diagonalizdvel, podemos escre-
ver g = g1 ®--- g, como uma soma de subespacos invariantes minimais por ad(t). Como
trata-se de uma familia comutativa de operadores, cada g; € também invariante minimal de
cada operador ad(H),H € t. De fato, seja W C g; o autoespago associado ao autovalor o;(H)
de ad(H) e X € W. Para Z € t, temos que

ad(H)ad(Z)X = ad(Z)ad(H)X = o;(H)ad(Z)H,

pois 0 = ad([H,Z]) = ad(H)ad(Z) — ad(Z)ad(H). Segue que W ¢ invariante por ad(t) e,
da minimalidade de g;, segue que W = g;. Portanto, qualquer H € t satisfaz ad(H)|y, =

Observe que @; € t*, pois, em cada subespaco g;, coincide com a fungéo linear

L irad(H) ).

n;

em que n; = dim(g;). Portanto, o; € As(g,t) U{0}, jd que 0 # g; C gq,. Segue que

g=go+ Y Oa
aeAO’(gat)

sendo que fica claro que go = m +t. Além disso, se o # 3, temos que go N gg = 0, pois, para
X € gaNgg, € vdlido que a(H)X = [H,X]| = B(H)X paratodo H € t, ou seja, X =0. [

Nesta secdo, trataremos das dlgebras ortogonais involutivas, que aparecem naturalmente
no estudo de espagos simétricos (veja o Teorema 2.3.11). Uma involucdo ¢ d4 origem a uma
decomposicao de g em autoespacos +1, g = €& s em que o age como +id em €. Das relagdes
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de colchete, vemos que existe uma representagdo de £ em s dada por £ 5 X — ad(X)

s, que €

chamada de representagdo de isotropia de €. Chamamos o par (g, c) de dlgebra involutiva.

Definicao 1.4.4. Uma dlgebra ortogonal involutiva é uma dlgebra involutiva (g, o) munida

de um produto interno B que é ad(€)—invariante e também o —invariante, ou seja,

B(ad(X)Y,Z) + B(Y,ad(X)Z) =0,
B(o(Y),0(2)) =B(Y,2),

paratodos X e teY,Z € g.

Em particular, uma 4lgebra semi-simples ndo compacta munida com o produto interno
de Cartan € ortogonal involutiva. Segue ainda da defini¢do que os elementos do grupo de

automorfismos internos gerados por £, denotado
Inng(¢) := (X : X € 8),

deixam B invariante, isto segue do fato que os operadores ad(X),X € &, sdo anti-simétricos

com relagdo a B.

Observacdo 1.4.5. Numa dlgebra ortogonal involutiva, temos que B(¢,s) = 0, pois, para
XecteY €s,temos B(X,Y) =B(o(X),0(Y)) = —B(X,Y). Além disso, qualquer produto
interno Q que satisfaz Q(¢,5) = 0 é o—invariante. Para ver isto, escreva Z =X +7Y ¢
Z =X'+Y' paraX,X ' cteY,Y €s,entio

Q

0(0(2),0(2")) = Q(o(X),0(X")) +0(a(X),0(Y"))

_|_
_|_

+0(c(Y),0(X")+0(c(Y),o(Y"))
=Q0(X,X") - 0(X,Y") - 0(Y,X") +0(Y,Y')
=0(X,X")+0(r,Y")

=0(z,2)).

Exemplo 1.4.6. Para a dlgebra semi-simples g = s[(4,R) do Exemplo 1.2.4, temos que a
involu¢do 6(X) = —X’ é uma involugio de Cartan e, neste caso, h = (Hy,Hp,H3) C 5 é
abeliana maximal, donde segue que as decomposi¢cdes com relacdo a uma subalgebra de
Cartan e a uma subdlgebra abeliana maximal de s coincidem. A subdlgebra € é gerada pelos

Uij,i < j, e é compacta isomorfa a s0(4) e s é gerado pelos V;; junto com b.

O préximo Teorema € uma caracterizagdo importante das dlgebras ortogonais involutivas.
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Teorema 1.4.7. Seja g uma dlgebra de Lie, entdo (g,0) é ortogonal involutiva se, e somente

se, ¥ é uma subdlgebra compacta e existe um produto interno ad(t)—invariante em s.

Demonstragdo. Se (g,0) é ortogonal involutiva, existe um produto interno ad(€) —invariante

em &, que € dado pela restricdo do produto interno em g, isto mostra que € € compacta.
Suponha entdo que existe um produto interno F' em s satisfazendo as hipdteses do

Teorema. Existe também um produto interno B ad(£)—invariante em ¢, pela hipétese de

compacidade de £. Defina o produto interno Q em g da seguinte forma:

O(X,Y)=B(X,Y) se X,Y € ¢
OX,Y)=F(X,Y) se X,Y€s
0(X,Y)=0se XcteYcs

Estendendo para g por linearidade, € facil ver que (g,0) munido do produto interno Q é
uma dlgebra ortogonal involutiva. Observe que Q é o —invariante porque satisfaz Q(¢,5) =0
(veja a Observacao 1.4.5). [

Para algebras semi-simples, temos o seguinte resultado.

Proposicio 1.4.8. Seja g uma édlgebra de Lie semi-simples. Se (g, o) é ortogonal involutiva,

entdo Inng(€) é um subgrupo compacto de Inn(g).

Demonstragdo. Suponha que (g,0) € ortogonal involutiva, e lembre-se que Inng(t) age
como isometrias de B; para concluir que é compacto, basta mostrar que é fechado em GL(g),
ja que Inng () deixa invariante um produto interno. A algebra de Lie de Aut(g) ¢ algebra
das derivagdes Der(g) pelo Lema B.1.1 e, sendo g semi-simples, Der(g) = ad(g) (Teorema
5.5.14 de [4]). A componente da identidade de Aut(g) deve ser entdo o grupo gerado por
produtos de exponenciais ¢*X), X € g, logo, coincide com Inn(g). Segue que Inn(g) é
fechado em GL(g), pois Aut(g) < GL(g) é fechado.

Para concluir, vamos considerar a extensdo de ¢ a um automorfismo de Inn(g) e mostrar
que Inng(€) é a componente da identidade do conjunto de pontos fixos desse automorfismo.
A partir de o, definimos o automorfismo 6 : ad(g) — ad(g), dado por 8(ad(X)) = ad(c(X)).
Seja G o recobrimento universal de Inn(g); pelo Teorema 7.13 de [6], existe um automorfismo
6 : G — G tal que d6; = 6. Observe que Inn(g) tem centro trivial, como visto na sego 1.1
e G tem centro discreto, pois ad(g) tem centro nulo, entio devemos ter Inn(g) ~ G/Z(G).
Como qualquer automorfismo, 8(Z(G)) = Z(G), entdo 6 induz um automorfismo & de

Inn(g) dado por gZ(G) — 6(g)Z(G).
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Com as devidas identificacdes, temos dG| = 0 e, em particular,

G (X)) = PdX)) — pad(o(X))

Desta equacdo, segue que Inng(€) < fix(6). Por outro lado, suponha que

etad(X) _ 6(elad(X)) _ etad(O'(X))_

Derivando em t = 0, temos que ad(X ) = ad(o (X)) e, da injetividade da representag@o adjunta
de g, segue que X € £. Portanto, a dlgebra de Lie de fix(6) ¢ ad(£), donde segue que Inng ()
coincide com a componente da identidade fix(G)o de fix(6). Por fim, temos a seguinte
sequéncia de inclusdes que mostra que Inng () é fechado em GL(g).

Inng(€) = fix(6)o < fix(6) < Inn(g) = Aut(g)o < Aut(g) < GL(g).

]

Uma subdlgebra t < g contida em s serd necessdriamente abeliana, como visto anterior-
mente. Uma subdlgebra maximal de g contida em s é chamada subespaco de Cartan. Usamos
esta nomenclatura para diferenciar do conceito usual de subdlgebra de Cartan; veremos que
os subespacgos de Cartan fornecem decomposi¢des em espacos de raizes similares aquelas
obtidas anteriormente usando as subdlgebras de Cartan.

No inicio desta secdo, determinamos a decomposicdo em espacgos de raizes no caso
semi-simples ndo compacto. Vamos determinar a decomposi¢do no caso compacto. Para

tanto, ¢ importante o seguinte Lema.

Lema 1.4.9. Seja t um subespaco de Cartan de g = £+ 5. Se g € redutivel, t estd contida

numa subdlgebra de Cartan de g.

Demonstragcdo. A equacdo (1.17) vale em qualquer dlgebra ortogonal involutiva, entio

3a(t) = (3g() NE) DL

Seja t' uma subdlgebra de Cartan de 3g()NE, entdo b := t' @ t é subdlgebra de Cartan
de 34(t), pois uma subdlgebra de Cartan de uma soma direta de dlgebras ¢ a soma direta de
subdlgebras de Cartan em cada componente (Lema B.1.2). Os operadores adg(X), X € €, sdo
anti-simétricos, pois ha um produto interno ad(£)—invariante em g, logo, sdo semi-simples
(isto é, diagonalizaveis sobre C). Sendo g redutivel, a Proposic¢do 1.15 do capitulo II de [5]

implica que adg(X) € semi-simples se X € s, de modo que adg4(t) consiste de operadores



46 Algebras de Lie Ortogonais Involutivas

semi-simples. Pela Proposicdo 6.1.12 de [4], segue que h é uma subdlgebra de Cartan de g

contendo t. ]

Usando o Lema anterior, a decomposi¢do em espacos de raizes de uma dlgebra compacta
com relac@o a uma subdlgebra de Cartan do Teorema 1.2.5 e que as raizes de Ag(u,t) sdo
restricdes de raizes de u com respeito a alguma subdlgebra de Cartan contendo t (Subse¢do

1.4.1), obtemos o seguinte resultado.

Teorema 1.4.10. Seja (g,0) uma dlgebra involutiva compacta com decomposicdo t+s e

t C s um subespaco de Cartan. Entdo

g=m-+t+ Z Mgy,
aEAs(g,t)

em que m = 34(t) N € e 0s my sdo autoespagos generalizados da familia de operadores ad(t).

Um vetor H € t é chamado regular se t = 33(H) Ns. Segue da decomposi¢io que o
conjunto de raizes restritas A (g, t) é finito, entdo em todo subespago de Cartan deve haver
um elemento regular. No caso de dlgebras compactas, vimos que as subdlgebras de Cartan
sdo todas conjugadas via automorfismos internos de g. O proximo Teorema € uma variacao
deste resultado que é muito importante no estudo de espacos simétricos compactos (veja o
Teorema 2.4.6).

Teorema 1.4.11. Seja (g,0) uma dlgebra ortogonal involutiva semi-simples ou compacta
com produto interno B. Quaisquer dois subespagos de Cartan de g sdo conjugados por

algum automorfismo de Inng(¥).

Demonstragdo. Esta demonstracdo € uma adaptacdo da demonstragdo da Proposi¢ao 1.2.8.
Sejam t; = 34(H1)Ns e t, = 34(H>) Ns dois subespagos de Cartan de g. Se g é semi-simples,
Inng(€) compacto pela Proposi¢io 1.4.8. Vimos na Segdo 1.1 que £ < g é compacta se g é
compacta. O grupo Inng(£) é conexo e tem dlgebra ady(€). Observe que, sendo £ compacta,
¢ também redutivel, logo, £ = 3(£) & [¢, €], em que [£,£] € semi-simples (veja a Secdo 1.1).
Portanto, temos que ady(€) ~ £/3(€) ~ [¢, €] é semi-simples e compacta e segue que Inng ()

€ um grupo compacto (veja o Teorema 1.3 do capitulo V de [5]). Considere entdo a fun¢do

Inng(¢) > k+— B(kH;,H>),
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em que denotamos kH; = Ad(k)H,. Esta fungdo deve ter extremo em algum ko € Inng(£),

donde segue que, para todo X € ¢, temos

d
0= —B(e™ X H, H
dt (e 0, H) =0

= B([X, koH)], Hy)
= B(X, [koH,, H]),

onde usamos a bi-linearidade do produto interno. Escolhendo X = [koH|, H>] na equacdo
destacada acima, concluimos que [koH|, H,] = 0. Segue que koH| comuta com um elemento
regular de t; e, como t, € abeliana maximal, temos que koH; € t;. Portanto, t; C 3g(koH1) N
s =ko(39(H1)Ns) = koty, logo, kot = L. O

Observacao 1.4.12. O Teorema 1.4.11 poderia ser reformulado da seguinte forma. Seja G
um grupo de Lie conexo com dlgebra g e K = (expg(€)) o subgrupo conexo de g gerado por ¢,
entdo Adg(exp(X)) = ¢*X) implica que Adg(K) = Inng(€), em que Adg € a representagio
adjunta de G. Portanto, dados dois subespacos de Cartan t;,t, de g, existe k € K tal que
Ad(k)t; = t,. Em particular, para outro grupo conexo G’ com dlgebra g e K’ = (expq (£)),
temos Adg(K) ~ Adg (K').

Temos ainda mais um resultado importante, que tem consequéncias geométricas no

estudo de espagos simétricos (veja a Secao 2.4).

Corolario 1.4.13. Sejam (g, ) uma élgebra ortogonal involutiva semi-simples ou compacta

e t C s um subespaco de Cartan, entdo s = Inng(£) - t.

Demonstragdo. A demonstracdo funciona como na Proposicdo 1.2.8, mas o fato mais im-
portante usado aqui é a compacidade de Inng(€). Dado X € s, existe uma subdlgebra de
g maximal contida em s que contém X, ela serd entdo um subespago de Cartan, logo, é
conjugada a qualquer outro subespago de Cartan. Isto mostra que X € Inng(¥) - t. [

Na mesma notagdo da Observacdo 1.4.12, segue desse Corolério o seguinte resultado.

Corolario 1.4.14. Dado X € s, existe k € Ky tal que Ad(k)X € t.

1.4.1 Raizes Restritas

O objetivo desta Subsecdo é mostrar que as raizes de uma algebra ortogonal involutiva g
com respeito a um subespaco de Cartan t C s s@o obtidas pela restri¢do a t de raizes de g
com respeito a alguma subdlgebra de Cartan h que contém t (veja o Lema 1.4.9). Observe
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inicialmente que as decomposi¢des obtidas nos Teoremas 1.4.3 e 1.4.10 sdo independentes

da escolha do subespaco de Cartan escolhido, no sentido da proposicdo a seguir.

Proposicao 1.4.15. Seja (g, 0) uma dlgebra ortogonal involutiva semi-simples e ndo com-
pacta, em que o ¢ uma involugdo de Cartan. Seja k € Inng(€) e t1,t, = kt;| subespagos de
Cartan. Se

g=m;+t + Z o
acA

¢ a decomposicao de g com respeito a t;, entdo

g=my+b+ Y gra

aEA
¢ a decomposicdo com respeito a tp, em que denotamos A; = Ag(g,t;) e m; = 3¢(t;).

Demonstragdo. Por hipotese, temos que kt; = tp, entdo considere Z € m; e observe que, para
k(H) = H' € tp, temos [kZ,H'] = k[Z,H] = 0, logo, km; C m,. Por simetria do argumento,

temos que km; = my,. Temos, portanto que k( Z Ja) = Z 9p-
0EA BeA,
Para concluir, basta notar que, para X € gy, com @ € Ay, temos

ad(H')kX = kad(k"'H")X = k(a(H)X) = (k* o) (H)k(X),

logo, k(X) € gr+q- N

O mesmo vale no caso em que g é compacta, ja que, se kt; = tp, entdo teriamos kmy =

mk*a.

Proposicao 1.4.16. Seja (g, 0) uma dlgebra ortogonal involutiva compacta. Seja k € Inng(€)
e t,tp = k(t;) subespacos de Cartan. Se

g=m;+4t + Z Mg

aEA]

¢ a decomposicao de g com respeito a t;, entdo

g=my+t+ Y Mg
AEA]

¢ a decomposicdo com respeito a tp, em que denotamos A; = As(g,t;) e m; = 34(t;) NEL.

Os préximos resultados estdo baseados na seguinte ideia. Seja (g,0) uma élgebra

ortogonal involutiva semi-simples ndo-compacta. Dado um subespago de Cartan t de g,
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temos que existe uma subdlgebra de Cartan h < g, tal que t < h e, além disso, h = t+ t, em
que t' é uma subdlgebra de Cartan de 3g(t) NE (Lema 1.4.9). Supondo que b € split, temos
que

g=b+ Y ga=t+t+ Y gat+ ) Ga-

A(g,b) of+#0 =0
Além disso, go C 34(t) NE se, e somente se, &y =0, ja que, se X € goNs e afg =0, entdo
t+RX é abeliano maximal em s, o que néo pode ocorrer. E claro que gg N 3g(t) =0se, e

somente se, o|¢ # 0, entdo 34(t) NE =1t + Z gq € segue que
Oé‘t:O

Ad(gut):{a’f: aEA(gvh)a a|’t7é0} (118)

Suponha agora que (g,0) seja uma dlgebra ortogonal involutiva semi-simples nédo-
compacta com involugdo de Cartan ¢ ou compacta. Seja t um subespaco de Cartan de g e
h = t+t uma subdlgebra de Cartan, como no pardgrafo anterior. Pela Proposi¢do 6.1.11 de
[4], bc € uma subdlgebra de Cartan de gc, entdo se fatora como

gc=bct+ Y (@B0)a=tc+te+ Y, (ac)at Y, (80)as
A(gc;he) al¢#0 al¢=0

pois as subdlgebras de Cartan de g¢ sdo torais, ou seja, sua representacdo adjunta é diagona-
lizdvel (Proposicao 6.3.2 de [4]).

Se al¢ =0, entdo (gc)a C 3gc(t) = (3¢())c- Isto mostra que gN ((gc)a + (9¢)-a) ©
3g(t) NE caso al¢ = 0. Portanto, temos que

3g(f)ﬂ?=f’+9ﬂ< Y (gc)a).
o]¢=0

Por outro lado, se ¢t # 0, denote at|¢ = B. Temos que gN ((gc)a + (gc)—«) estd contido
em gg no caso semi-simples ou em mg no caso compacto, logo,

(gg)c= Y, ga-
ale=p

Deste argumento segue que as raizes de g com respeito a t satisfazem a equacao (1.18).

1.4.2 Grupo de Weyl de As(g,t)

O grupo de Weyl de A = As(g,t) é 0 grupo W gerado pelas reflexdes ry com o € As. Seja
G um grupo de Lie conexo com algebra g e K um subgrupo fechado com algebra £; para
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cada k € K, Ad(k) é um isomorfismo linear s — s. Defina o normalizador
M ={keK:Ad(k) -t=1t} = Nk(t)

de tem K e o centralizador
M ={keK:Ad(k)|=id} = Zk(t)

de tem K. O grupo Wy = M* /M age em t por meio da representacdo adjunta: para w =
kM € Wy e H € t, a agdo é dada por

w-H = Ad(k)H,

de modo que W; pode ser visto como Ad(M™).

Pela Observagdo 1.4.12, W, ndo depende das escolhas de G e de K quando K € conexo.
Denote My = Nk, (t) e Mo = Zg,(t). O Teorema 3.5 do capitulo II de [5], mostra que ambos
os grupos M™* /M e My /M podem ser vistos como o grupo gerado pelas reflexdes rq, @ € Ag,

entdo temos o seguinte resultado.
Proposicio 1.4.17. O grupo de Weyl W de A (g, t) é isomorfo a ambos M*/M e My /M.

Assim como no caso de raizes com respeito a uma subélgebra de Cartan, chamamos de
Cdmara de Weyl uma componente conexa do complemento, em t, da unido de hiperplanos de
raiz @ = 0. Como o grupo de Weyl W de A4 € gerado pelas reflexdes nos hiperplanos de raiz
o = 0, os resultados do Teorema 1.3.8 ainda continuam validos.

Proposicao 1.4.18. O grupo de Weyl de As(g,t) age simplesmente e transitivamente sobre
as camaras de Weyl. Sejam H € t um elemento de alguma camara de Weyl e w € W tais que

wH = H,entaiow = 1.

Dado um subespago t de Cartan de g, vimos no Coroldrio 1.4.13 que Inng(€)t = s. Além
disso, se k € K, temos que t' = Ad(k)t C s é ainda um subespago de Cartan de g. Os préximos
resultados aprofundam nosso entendimento sobre a acio adjunta de K sobre os subespagos

de Cartan.

Teorema 1.4.19. Sejam (g,0) uma dlgebra ortogonal involutiva compacta e t,t' subespagos
de Cartan. Considere A C t,k € K e suponha que Ad(k)A = A" C t, entdo existe k' € Ky tal
que Ad(K')t =t e Ad(K')Y = Ad(k)Y paratodo Y € A.

Demonstragdo. Sejat” = Ad(k)t. Como A" C ' Nt’, temos que t', " C 34(A") :=g¢. Além
disso, g’ é invariante por &, uma vez que [6(X),H'] = o([X,—H']) = 0 para quaisquer X € g’
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eH €A’ logo, g’ =¥ +s" emque ' =g'Ntes’=g'Ns. Temos que (g, oy) € uma dlgebra
ortogonal involutiva compacta, entdo existe k; € K tal que Ad(k;) € Inng (¢') < Inng(t)|y e
Ad(ky)t" =t (Teorema 1.4.11). Segue que Ad(kik)t =t e Ad(k k)H = Ad(k)H para todo
H € A. Basta escolher k' = k;k. O

Como consequéncia deste Teorema temos o seguinte Coroldrio, que serd importante para

n6s no Capitulo 3.

Corolario 1.4.20. Seja (g,0) uma élgebra ortogonal involutiva compacta e t um subespaco
de Cartan. Se H € te Ad(k)H € t, entdo existe w € W tal que Ad(k)H = wH.

Demonstragdo. Escolhendo t =t' e A = {H} no Teorema anterior, vemos que existe k' € K
tal que Ad(K")t =te Ad(K')H = Ad(k)H. Observe que k' € M*, entdo o w que procuramos
é Ad(K'). Observe que usamos que W ~ W;. O






Capitulo 2

Espacos Simétricos Riemannianos

2.1 Variedades Riemannianas

Uma Variedade Riemanniana é uma variedade S dotada de uma métrica (,), onde uma
métrica € uma fungdo diferencidvel que, para cada p € S, associa um produto interno em 7,5,
0 espago tangente a S no ponto p.

Uma isometria entre Variedades Riemannianas € um difeomorfismo ¢ : S — N que

satisfaz
((d@)pu, (d@)pv) o(p) = (U V) p

para todos p € S e u,v € T,,S. O conjunto de todas as isometrias de uma Variedade Rieman-
niana forma um grupo de Lie que é denotado I(S). Uma isometria local é uma aplicacdo
que € isometria apenas quando restrita a alguma determinada vizinhanga, isto €, para cada
p € S existe uma vizinhanga U de p tal que ¢ : U — ¢(U) é uma isometria no sentido que
definimos anteriormente.

Os grupos de Lie sdo exemplos de variedades que, além de tudo, s@o grupos. Um grupo
(algébrico) G é chamado grupo de Lie se existe uma estrutura de variedade diferencidvel em
G tal que a aplicagdo produto do grupo p: G x G — G, p(g,h) = gh, seja diferencidvel. Uma
das caracteristicas principais de um grupo de Lie € sua "grande simetria", no sentido de que
ha muitos difeomorfismos G — G. Para g,h € G, denotamos por E; € por D, as aplica¢des
G — G dadas por Eg(h) = gh e Dg(h) = hg, sao as aplicagdes de multiplicacdo a esquerda e
a direita, respectivamente. Pode-se mostrar que estas aplica¢des sao difeomorfismos de G
(veja a Secdo 5.1 de [6]).

Adicionando uma métrica a G, ele se torna uma Variedade Riemanniana. Uma métrica é
chamada de invariante a esquerda se as aplicagdes Eg, g € G, sdo isometrias e, analogamente,

€ chamada de invariante a direita se as aplicagdes Dy, g € G, sdo isometrias. Uma métrica €
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denominada bi-invariante se for invariante tanto a esquerda quanto a direita. Por sua simetria,
sempre existe uma métrica invariante ou a esquerda ou a direita em G. Se queremos uma
métrica invariante a esquerda, basta escolher qualquer produto interno (,) em 717G =g e
definir, para X,Y € T,G,

<X,Y>g = <(dEg);1Xv (dEg)§1Y>-

Nem sempre existe, no entanto, uma métrica bi-invariante num grupo de Lie qualquer, mas
sempre existe caso G seja compacto e conexo (veja o Teorema A.1.8)

O fibrado tangente de S, denotado T'S, € a unido U,c57),S de todos os espagos tangentes
de S. Um campo de vetores em S € uma funcdo X : § — TS, tal que X (p) € 7),S para cada
p € S. Diremos que X ¢é diferenciavel se for diferencidvel visto como aplicagdo S — T'S.
O conjunto dos campos diferencidveis em S serd denotado por y(S). Dada uma funcéo
diferencidvel f: § — R, denotamos por X, f a derivada direcional de f em p na dire¢io de
X, a qual € definida da seguinte maneira. Seja o uma curva em M que satifaz o/(0) = p e
a'(0) = X(p), entdo

Xpf = S (Foa)()

Podemos considerar ainda a funcdo X f como uma fungio S — R dada por (X f)(p) = X, f.

t:0.

Um campo de vetores diferencidvel numa variedade é sempre integrdvel, ou seja, para
cada p € S, existem uma vizinhanca U de p, § > 0 e uma aplicagdo diferencidvel ¢ :

(—0,08) x U — S que satisfaz

2 (1.q) = X(0(0.4)
parag € U,t € (—0,6). A aplicacdo ¢ é chamada de fluxo de X e, fixado ¢, ¢(-,q) = ¢;(q) é
uma curva em S tangente a X. Todos os campos com que trabalharemos serdo diferenciaveis,
a menos que seja dito o contrario, entdo omitiremos este termo.

Uma classe especial de campos de vetores que nos interessa € a dos Campos de Killing.
Trata-se de campos cujos fluxos induzem uma aplicagdo (—8,8) — I(S). Mais precisamente,
seja X um campo de vetores com fluxo ¢ : (—0,8) x U — §; X é chamado Campo de Killing
se, para todo #p € (—0, ) fixado, a aplicacdo @(ty, ) = ¢, : U — S € uma isometria.

Dados dois campos diferencidveis X e Y em S, construimos um novo campo diferencidvel

em S denominado colchete de X e Y, que € definido por:

XY= 20 )oY (00| .

em que ¢ (p) é o fluxo de X passando por p.
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Conexoes Afins

Uma Conexdo Afim numa variedade S é uma aplicagdo V : x(S) x x(S) — x(S) que satisfaz

as seguintes propriedades:
* VixigrZ = fVxZ+gVyZ,
o Vx(Y+Z) =VxY +VxZ,

* Vx(fY)=fVxY +(X/f)Y,

para todos X,Y,Z € x(S) e f,g:S — R funcgdes diferencidveis. Observe que usamos a
notac¢do VxY para denotar o valor de V em (X,Y).

Fixada uma conexdo afim V em S fica determinada a no¢do de derivada covariante de
um campo de vetores ao longo de uma curva. Sejam V e W campos de vetores definidos ao
longo da curva a : I — S, denotamos por DV /dt a derivada covariante de V ao longo de c.

Trata-se de um campo vatorial ao longo & que satisfaz

D DV  DW
e —(V4W)= —+ —,
dt( +W) dt + dt
D d DV
. EUV) = d—J;V —l—fﬂ, em que f : I — R € uma funcdo diferencidvel,

DV
* Se existe um campo Y € x(S) tal que V(t) =Y (a(t)), entdo 7 VaasaY-

Para que a expressdo V4 /4, faga sentido, devemos escrever do/dt em coordenadas locias
em termos de alguma parametrizacao local (veja a Proposicdo 2.2 do capitulo 2 de [10]).

O campo V é denominado paralelo ao longo de o se DV /dt = 0. Seja p = a(0) e v € TS,
¢ possivel mostrar que existe um dnico campo V (¢) paralelo ao longo de o tal que V(0) = v
(veja a Proposigdo 2.6 do capitulo 2 de [10]). Chamamos o vetor V(1) € To1)S de transporte
paralelo de v ao longo de o do ponto p ao ponto a(t).

Dentre as infinitas conexdes possiveis numa variedade, existe uma que € especial em
relacdo a métrica de S, € a chamada conexdo de Levi-Civita de S (veja o Teorema do capitulo
2 de [10]). E a tinica conexdo simétrica, isto é, satisfaz

VxY —VyX = [X,Y]

para quaisquer X,Y € x(S), e compativel com a métrica de S. A condi¢do de compatibilidade
significa que, para quaisquer campos paralelos V e W ao longo de uma curva o, temos

(V, W) = constante, 0 que ocorre se, € somente se,

X(Y,Z) = (VxY,Z)+ (Y,VxZ),
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para quaisquer X,Y,Z € x(S) (veja o Coroldrio 3.3 do capitulo 2 de [10]). Observe que
usamos que (Y,Z) pode ser visto como uma fungdo diferencidvel S — R.

Uma geodésica é uma curva y: I — S cujo vetor tangente ¥/ (¢) é paralelo ao longo de y
em relacdo a conexdo de Levi-Civita. A exponencial Riemmaniana de S em p € a aplicacdo
T,S — S dada por exp,,(v) = ¥(1), em que ¥ € a (linica) geodésica de S que satisfaz y(0) = p
e 7 (0) = v (observe que o tamanho de v pode ser ajustado para que 1 se encontre no dominio
de defini¢do de 7).

Curvatura

Um dos objetos mais importantes no estudo de Variedades Riemannianas € a curvatura. Para
superficies (variedades de dimensao 2) é mais comum estudar a curvatura de Gauss, que é o
produto das duas curvaturas principais em um ponto da superficie. Em dimensdes maiores,
temos mais de duas dire¢des independentes, isto €, a dimensdo do espago tangente € maior
que 2. Consideramos entdo algo andlogo a curvatura de Gauss. Dado um plano (subespaco de
dimenséo 2) contido em 7),S, as geodésicas passando por p e tangentes a ¢ determinam uma
subvariedade de S, de modo que podemos pensar na curvatura K (p, o) desta subvariedade,
K(p, o) é chamada de curvatura seccional de S em p com respeito a ¢ (veja o capitulo 4 de
[10D.

O grande problema com a abordagem acima € a dificuldade em calcular a curvatura

seccional. De modo a superar esta dificuldade, definimos o operador curvatura
R(X,Y)Z = VyVXZ—VvaZ—FV[X’y}Z, 2.1

para X,Y,Z campos de vetores diferencidveis.

Denote |[x Ay| = \/|)c|2|y|2 —(x,y)%. Se x,y € T,S geram um plano o, definimos a

curvatura seccional
(R(x,y)x,y)

K(p,G): |x/\y\2

E possivel demonstrar que esta defini¢io ndo depende de x,y e, além disso, é importante
observar que o valor de R(X,Y)Z em p depende apenas dos valores de X,Y,Z em p, portanto
a curvatura seccional esta bem definida. Para mais detalhes sobre Geometria Riemanniana,

indicamos a referéncia [10].
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Acoes de grupos e Variedades Homogéneas

Uma ag¢do (a esquerda) de um grupo G sobre S é uma aplicacido y : G x S — S que satisfaz
as seguintes condi¢des: (i) para todo p € Se 1 € G a identidade, y(1,p) = p e (ii) para
g,h € G, temos y(g,y(h,p)) = w(gh,p). O ponto y(g, p) € S € visto como a imagem de p
pela acdo de g e € usualmente denotado simplesmente por gp, lembrando a multiplicacio
no grupo. A acdo ¢ dita diferencidvel se G for um grupo de Lie e se y for uma aplicacao
diferenciavel.

Dizemos que uma variedade S € homogénea se houver um grupo de Lie G que age sobre
ela de forma transitiva e diferencidvel. Suponha que G age de maneira transitiva sobre S e
seja K o subgrupo de G das transformagdes que fixam algum p € S, K é chamado de isotropia
de p. Se K ¢ fechado, é possivel mostrar que existe uma Unica estrutura de variedade em S
tal que a agdo de G é diferencidvel. O espagco G/K munido da topologia quociente, tem uma
estrutura natural de variedade que faz com que S =~ G/K, isto é, S é difeomorfa ao espaco de
classes laterais G/K. Para mais detalhes, veja o Teorema 6.22 de [6]. Uma das vantagens de
se trabalhar com variedades vendo-as como espacos homogéneos ¢ a facilidade em se obter
cartas coordenadas.

Se S ~ G/K é uma variedade homogénea e G € um grupo de Lie que age por isometrias
em S, dizemos que S é uma Variedade Homogénea Riemanniana. As isometrias de G agindo
em S podem ser identificadas com a a¢do de G sobre G/K por multiplicagio a esquerda,
ou seja, g - hK = (gh)K. Podemos entdo estudar S e suas isometrias de forma mais simples
vendo S como o espago quociente G/K. A projecdo @ : G — G/K, (n(g) = gK) nos permite
relacionar propriedades de G com propriedades de G/K. Se G é conexo, G/K também é. Se
G for compacto, G/K também serd. Se G ¢ simplesmente conexo e K é conexo e fechado,
entdo G/K é simplesmente conexo (veja o Teorema A.3.1). Em particular, seja g a dlgebra
de Lie de G e ¢ a dlgebra de K contida em g; se § € um subespaco que satisfaz g = £ D s,

podemos usar 7 para identificar s com 7),S usando que kerdm; = € e que 7 € sobrejetiva.
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2.2 Espacos Localmente Simétricos

Considere uma Variedade Riemanniana S e p € S. Uma vizinhanga normal de p € um aberto
U de S que contém p e € difeomorfo via a exponencial riemanniana exp,, a um aberto de
T,S contendo a origem. Podemos considerar que o aberto contendo 0 € 7,,$ seja uma bola
B(0,¢), onde € pode variar dependendo do ponto p escolhido. Deste modo, definimos a
simetria geodésica ao redor de p. Dados uma geodésica 7y tal que y(0) = per € R tal que
Y(t) € U, definimos s, (y(¢)) = y(—t). Segue desta defini¢do que s,(p) = p e que s, ¢ uma
involugdo, a qual deve satisfazer, portanto, (ds,), = —id.

Definicao 2.2.1. Seja S uma variedade Riemanniana. Dizemos que S é um Espagco Lo-
calmente Simétrico se, para todo p € S, a simetria geodésica s, estiver definida e for uma
isometria local de S.

Exemplo 2.2.2. Na esfera §? C R? a simetria geodésica em torno de p = (0,0, 1) é induzida
pela reflexdo em torno da reta que passa pela origem e por p.

Figura 2.1 : Simetria geodésica na esfera $2.

Podemos definir os espagos localmente simétricos de forma diferente, usando o chamado
tensor curvatura. Esta formulagdo alternativa serd util para nés na descricdo dos campos

de Jacobi nos espagos localmente simétricos. Em vez de pensar na curvatura R como uma
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aplicacdo a depender de 3 argumentos tomando valores no espagco de campos diferencidveis
(veja a equagdo (2.1)), vamos tratd-la como uma aplicag@o a 4 argumentos tomando valores
no espaco de fungdes diferencidveis reais definidas em S. Para fazer isso, usamos a métrica e
definimos

R(X,Y,Z,W):=(R(X,Y)Z,W).

Usamos também R nesta definicdo por motivos de simplicidade de notacdao. Observe que,
fixados X,Y,Z,W € x(M), R(X,Y,Z,W) é uma fun¢ao real diferencidvel definida em S.
Dizemos que R € um tensor de ordem 4, pois depende de 4 argumentos (para mais detalhes,
veja a Secdo 5 do capitulo 4 de [10]). Definimos a derivada covariante VR de R como o

tensor de ordem 5 dado por

VR(X,Y,Z,W,U) =U(R(X,Y,Z,W))
—R(VyX.,Y,Z,W)—R(X,VyY,Z,W)
—R(X,Y,VyZ,W) —R(X,Y,Z,VyW).

E comum denotar VR(X,Y,Z,W,U) por VyR(X,Y,Z,W).

Teorema 2.2.3 (Caracterizacao tensorial). Seja S uma variedade Riemanniana, entdo S é

localmente simétrica se, e somente se, VR = Q.

Demonstragdo. Suponha que s seja localmente simétrica e seja p € S. Sejaze€ T,Sey
uma geodésica satisfazendo y(0) = p,7'(0) = z. Como s,(y(t)) = y(—t) é facil ver que
dsp(z) = —z. Segue que ds, = —id. Para X,Y,Z,W,U € x(S), temos que

U-RX,Y,Z,W)=U(RX,Y)Z,W)=(VyR(X,Y)Z,W)+ (R(X,Y)Z,VyW),
entdo segue que

VR(X,Y,Z,W,U) = (VyR(X,Y)Z,W)+ (R(X,Y)Z,VyW)
—R(VyX,Y,Z,W) —R(X,VyY,Z,W)
—R(X,Y,VyZ,W) —R(X,Y,Z,VyW)
= (VyR(X,Y)Z,W) — (R(VyX,Y)Z,W)
—(R(X,VyY)Z,W) — (R(X,Y)VyZ,W).
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Como s, € isometria local, deve preservar a conexdo V e, portanto, a curvatura (veja o

Teorema A.1.1 e o Corolério A.1.3), logo, denotando L = (dsp)p, temos

VR(X,Y,Z,W,U) = (LVyR(X,Y)Z,IW) — (LR(VyX,Y)Z,LW)

— (LR(X,VyY)Z,IW) — (LR(X,Y)VyZ,LW)
= (VoyR(LX,LY)LZ,LW)
— (R(VoyLX ,LY)LZ,LW)
—(R(LX,VyLY)LZ,LW)
—(R(LX,LY)VyLZ,IW)
= —VR(X,Y,Z,W,U).

Na primeira igualdade, usamos que s, € uma isometria isometria e, na tltima igualdade, que,
em cada parcela, L = —id aparece um niimero impar de vezes. Segue que VR = 0.
Suponha agora que VR = 0. Seja B(p,€) uma vizinhanga normal de p e considere
o referencial geodésico {ej,...,e,} em B(p,€) (veja a proposi¢do A.2.4). Denote por
Rijki = R(ei,ej, ek, e;) as coordenadas de R neste referencial. Pela construgio do referencial
e, como VR = 0, temos que 0s R;ji; sdo constantes ao longo das geodésicas radiais. Para ver
isto, seja 6 uma geodésica radial iniciando em p, i.e., 0(s) = exp,,(sx) para algum x € T},S,

entao

< Ri(0(5)) = Voo Rler e en,1)
= VR(ej,ej,ex, ey, o'(s))
+R(Vor(syeirej,erser) +R(ei, Vo€, exser)
+R(eiej, Vorsyerser) +R(eirej,ex, Vo)

=0.

Observe que usamos a defini¢do de VR para o desenvolvimento dos calculos, que VR =0
para concluir que VR(e;, e, e, e;,0'(s)) = 0 e que Voiser =0, parar=1,...,n, uma vez
que o referencial geodésico € construido de modo que os campos e sejam paralelos ao longo
das geodésicas radiais.

Para concluir a demonstragdo, considere i : T,S — T),S a isometria dada por i(v) =—v,
defina s = exp,, oio (expp)_l e =Poio (P,)_l, onde P € o transporte paralelo ao longo da

geodésica radial y do ponto y(0) = p ao ponto ¥(¢). Sendo os campos e; paralelos ao longo
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das geodésicas radiais, temos que ¢ (¢;) = —e;, i = 1,...,n, logo,

R(¢r(e:), ¢r(ej), 0 (ex), r(er)) = R(ei(p),ej(p),ex(p),ei(p))-

Por linearidade, segue que

R(¢t(”)7¢t(v)a¢t( ) ¢t( )) = (”7V7W7Z>

para todos u,v,w,z € TynS. Pelo Teorema de Cartan (Teorema A.2.5), s € uma isometria
local. Segue do Lema A.1.7 que, numa vizinhanga suficientemente pequena de p, soexp, =
exp,odsp. Como ds;, = —id, temos que s coincide com a simetria geodésica ao redor de
p. [

Um campo de vetores J = J(t) ao longo da geodésica y de S é chamado Campo de Jacobi
ao longo de 7 se satisfaz a seguinte equacao diferencial.

J'(t) +R(Y (1),J(1))Y (1) = 0. (2.2)

Por simplicidade, denotamos D?J /dt* por J”(t), em que D/dt denota a derivada covariante
ao longo de y. O ponto (1), fo > 0, é denominado conjugado a y(0) ao longo de 7 se existe
um campo de Jacobi ndo nulo ao longo de y que satisfaz J(0) = 0 = J(#y). A multiplicidade
de y(t9) como ponto conjugado é igual a quantidade de Campos de Jacobi linearmente
independentes satisfazendo a condi¢do acima. Por conta da condi¢do tensorial, veremos que
os campos de Jacobi tém uma forma simplificada nos espagos localmente simétricos.

Lema 2.2.4. Seja S uma Variedade Riemanniana localmente simétrica e X,Y e Z campos
paralelos ao longo da geodésica ¥, entdo R(X,Y)Z é paralelo ao longo de 7.

Demonstragdo. Para qualquer campo W paralelo ao longo de ¥, temos V,,W = (D/dt)W = 0.
Deste modo, seja {ej,...,e,} um referencial ortonormal e paralelo ao longo de y; como
VR = 0, temos que

0=VR(X,Y,Z,e;,7(t))
=V, R(X,Y,Z,¢)
—R(VyX,Y,Z,e;) +R(X,Vy)Y,Z,e))
—R(X,Y,Vy)Z,e)) +R(X,Y,Z,Vyye)).
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Observe que, por hipétese, temos que V()X = V)Y = Vi) Z =V, ;ye; =0, entdo
0= V’)/(t)R(X7Y7za ei)

D
= <V7’(I)R(X7Y)Zvei> + <R(X7Y)Zavj/(t)ei> = <ZR(X7Y)Z761'>

Segue que (D/dt)R(X,Y)Z = 0, uma vez que o0s ¢;, i = 1,...,n, formam um referéncial
ortonormal, logo, R(X,Y)Z é paralelo ao longo de y. Nas igualdades acima os campos estdo
restritos a 7. O

Para determinar a forma dos campos de Jacobi no espaco localmente simétrico S,
considere inicialmente v = Y(0) € T,,S e seja A, : T,S — T,S o operador definido por
Ay(x) = R(v,x)v. Observe a relacdo deste operador com a equagdo de Jacobi (2.2). Pelas
propriedades da curvatura, A, € simétrico em relagdo ao produto interno definido em 7,
pela métrica de S, ou seja,

(Ay(x),w) = (x, Ap(w)).
Isto segue do fato que R(X,Y,Z,W) = R(Z,W,X,Y) para quaisquer campos X,Y,Z, W dife-
rencidveis em S (veja a Proposicdo 2.4 do capitulo 4 de [10]).

Seja {ey,...,e,} uma base de 7,S que satisfaz A, (e;) = A;e;. Pelo pardgrafo anterior,
Ay () € simétrico para t no dominio de y. Por transporte paralelo, estenda {e1,...,en} a0
longo de . Pelo Lema 2.2.4, temos que Ay ;) (e;i(f)) € paralelo ao longo de yparai=1,...,n.
Observe que Ay (g)(€i(0)) = Ay(ei) = Aje;, entdo existem fungdes reais A; = A,(7) tais que
Ay (ei(t)) = Ai(t)ei(t), com 24;(0) = A;. Isto segue do fato que Ay (;(ei(t)) coincide com o
transporte paralelo de A;e; ao longo de y. Segue do paralelismo que A;(¢) = A; sdo constantes.

n
Escreva J(t) = Y xi(r)ei(r). Nestas coordenadas, a equagdo de Jacobi se reduz ao sistema
i=1

de equagdes lineares
X+ Axi =0 (i=1,...,n).

As solugdes para J sao mostradas abaixo, sendo W (¢) um campo paralelo ao longo de 7.

sen(t\/A;)W (1), Ai >0
J(t) = tW(t), Ai=0 (2.3)
senh(ry/—A4;)W(t), A; <O.

A partir desta discussdo, concluimos que existem pontos conjugados a y(0) ao longo de

Y se, e 8O se, existe a0 menos uma solu¢do com A; > 0. Neste caso, os pontos Y(T—=—) sdo

Vi
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conjugados a y(0) para k € Z. Esta constru¢do mostra que, ao longo de uma geodésica 7,
podem ter vérios pontos conjugados a ¥(0). O ponto ¥(fy) é chamado de primeiro conjugado
se entre ¥(0) e ¥(f) ndo existe em ¥ outro ponto conjugado a ¥(0). O locus conjugado
de p € S € o conjunto de todos pontos conjugados a p ao longo de qualquer geodésica
iniciando em p e o locus conjugado primdrio de p é o conjunto de primeiros conjugados a p
considerando todas as geodésicas iniciando em p.

Vamos finalizar esta secdo mostrando que isometrias preservam campos de Jacobi.

Teorema 2.2.5. Sejam ¢ : S — N uma isometria local, y: [0,€) — S uma geodésica e J um
campo de Jacobi ao longo de y que satisfaz J(0) = 0. Entdo ¥ = @ oy é uma geodésica de N
e J(t) = (d@)yJ (t) € um campo de Jacobi ao longo de ¥.

Demonstracéo. Denote p = ¥(0),v=7(0) e w=J'(0) # 0. Para demonstrar este Teorema,
vamos usar que um campo de Jacobi J = J() ao longo de y que satisfaz J(0) = 0 deve ter a
forma

(dexp,)wtw

(veja o Corolério 2.5 (Cap. 5) de [10]).

J(t) = (d(P)y(t)J(t) = (d(P)y(t) (deXPp)tth
— d(@oexp, )utw
= d(expy(p) °dPp)rtw
= (dexpy(p))iag, (! (dPpw)-
Como (1) = expy(,)(tdPpv), segue que J é um campo de Jacobi com J'(0) = d@,w. Além

disso, como ¢ & isometria local, J(t) = O se, e s6 se, J(¢) = 0. O fato que ¥ é uma geodésica
segue do Coroldrio A.1.4. [

Segue deste Teorema que, se p e ¢ s3o pontos cojugados em S, entdo @(p) e ¢(gq) sao

conjugados em N.
Corolario 2.2.6. Isometrias preservam pontos conjugados.

Um caso especial deste Teorema que serd importante para nds € o seguinte. Seja K um
grupo de isometrias que fixa p, entdo para todo g conjugado a p, temos que kq € conjugado a

p. Dito de outra forma, K age sobre o locus conjugado de p.
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2.3 Espacos Simétricos

Definicao 2.3.1. Seja S uma variedade riemanniana localmente simétrica. Dizemos que
S € um Espaco Simétrico se todas as simetrias geodésicas forem isometrias globalmente

definidas em S.

Neste contexto, uma classe de isometrias de S que tem um papel muito importante, € a
classe das transvecgdes. Considere p € S e Y uma geodésica com y(0) = p. Denote por s; a
simetria geodésica s,y € So = sp. A COMPOSi¢a0 p; = 5,5 05 € chamada de fransvecgdo ao
longo de . As transvec¢des agem como translacdes ao longo de v:

Pi(Y(10)) = s;72080(¥(10)) = 8, /2(¥(=10)) = ¥((—10) = 2((=10) —1/2)) = y(0 +1). (24)

Seja X um campo paralelo ao longo de ¥(¢). Sendo sy uma isometria, temos que Y (1) =
(dso)y(nX (t) € paralelo ao longo de y. Além disso, (dso),X(0) = —X(0), entéo Y (t)
—X(—1).

Lema 2.3.2. Seja y(¢) uma geodésica em S e p; uma transvecgdo ao longo de 7 satisfazendo
pi(y(t)) = y(t+1). Se X € um campo paralelo ao longo de ¥, entdo (dp;)yn X (t) = X (¢ +1).

Demonstragdo. p; = s;/5s0 € uma composicdo de simetrias geodésicas. A discussdo anterior
mostra que a menos de sinal e translacdo no parametro, um campo paralelo ao longo de y é

preservado.

(dp1)ynyX (1) = = (dsi2)y(— X (—1) = X (=1 =2(=1 = 1/2)) = X (t +]).

]

Exemplo 2.3.3. O Lema acima nao ¢é verdadeiro para isometrias em geral, ou seja, uma
isometria que deixa uma geodésica invariante nem sempre preserva os campos paralelos no
sentido destacado no Lema. Considere, por exemplo, o espago euclidiano R3. Qualquer
campo constante é paralelo neste contexto e o eixo z € uma geodésica. Se V é um campo
constante que ndo € paralelo ao eixo z, entdo as rotacdes em torno deste eixo deixam-no
invariante ponto a ponto, mas nao deixam V invariante. Por outro lado, as translacdes na

direcdo do eixo z (transveccdes) deixam V invariante.

Proposicao 2.3.4. 1. Qualquer campo paralelo Y ao longo de ¥ satisfazendo Y (fp) = v €
Ty(4,)S coincide com o campo paralelo X definido por X (t +10) = (dpr) ) v-

2. Pt+1, = P © pr,- Em particular, as transvecgdes ao longo de y formam um grupo a um

parametro.
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3. Paratodot € R, p; = s 14251, Ou seja, as transvecgdes dependem apenas de y € ndo
do ponto inicial y(0).

Demonstragdo. 1. Segue diretamente do Lema 2.3.2.

2. Para uma isometria @, temos que @ oexp, = eXpy(,) °dPp e isto implica que as
isometrias sdo localmente determinadas pela diferencial em um ponto. Segue do item
anterior que a diferencial de uma transveccao induz transporte paralelo e o transporte
paralelo ao longo de duas curvas adjacentes € igual ao transporte paralelo ao longo

destas curvas justapostas. Portanto, segue que p;is, = p; © p, .

3. Observe inicialmente que p,, I = p_s, pelo item anterior e é fécil ver que p;ll _
(Szl/zso)fl = 505y, /2. Portanto,

Pt = Pt+2t P21
= St;+1/2505—1,50
= St;+1/2505051

= Sty +1/251 -

]

Exemplo 2.3.5. No espaco euclidiano R”, as transvecgdes sdo particularmente simples, p; é
a translagdo pelo vetor (Y(r) — ¥(0)). E interessante observar também que as geodésicas de
R" sdao da forma g +1v,t € R, ou seja, sdo imagens de pontos por grupos a um pardmetro de

transvecgoes.

Exemplo 2.3.6. Como visto no Exemplo 2.2.2, a simetria geodésica s, coincide com a
isometria induzida na esfera pela reflexdo em torno da reta r, que passa por p e pela origem.
Esta rotacdo pode ser vista como produto de reflexdes em torno de planos perpendiculares
que contém esta reta. Seja ¥ uma geodésica iniciando em p. A transvecgdo p; = s; /50 €
a composigdo das reflexdes em torno de 7, e da reta que passa pela origem e por y(1/2).
Portanto, pode-se mostrar que p; € a isometria induzida em 52 pela rotagdo em torno da reta
perpendicular ao plano que contém r;, € r,(; /) no sentido de p para y(¢/2) por um angulo que
é o dobro daquele formado pelos pontos p = ¥(0), y(¢/2) e pela origem. Qualquer geodésica

de §? pode, entdo, ser vista como Orbita de um grupo a um parametro de transvecgoes.

Proposicdo 2.3.7. Sejam y uma geodésica de S passando por p = y(0) e p; o grupo de
transvecgoes ao longo de 7.

L ¥(1) = pi(p)-
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d
2. O campo X definido por X (g) = Ept(q) . ¢ um campo de Killing.
=

Demonstragdo. 1. O primeiro item segue da seguinte igualdade.
() = ¥(0+1) = p:(7(0)).

2. Seja ¢; um grupo de isometrias a um pardmetro e defina Y (q) = (d/dt)@:(q)|i=o0- A
trajetéria de Y passando por g € S é claramente dada por ¢;(¢g) e ¢, é uma isometria de

S para cada ¢ por hipétese. Em particular, este resultado vale para ¢; = p;.
]

O campo definido no item 2 da Proposicdo 2.3.7 é chamado de Transvecgdo Infinitesimal,
¢ facil ver que toda transvec¢do pode ser vista como o fluxo de uma transvecc¢ao infinitesimal.
O Teorema 1.2 do capitulo II de [11] nos diz que o grupo de isometrias de uma Variedade
Riemanniana é um grupo de Lie e o grupo de isotropia K é compacto. Denote por G o grupo
de isometrias de S e seja g a dlgebra de Lie de G. Podemos representar g como algebra de
Lie de campos de Killing em S. Denotando por exp a exponencial de G, exp(X) é um grupo
a um parametro de isometrias agindo em § para cada X € g. Podemos associar entdo a cada
X € g o campo dado por X (q) = (d/dt) exp(tX)q|,=o, que é um campo de Killing, uma vez

que seu fluxo é o grupo a 1 pardmetro de isometrias {exp(tX) :t € R} < G.
Teorema 2.3.8. Todo espaco simétrico conexo é uma Variedade Riemanniana homogénea.

Demonstragdo. Dados dois pontos p,q € S, vamos mostrar que existe uma isometria de S
que leva p em g; esta isometria serd uma composi¢ao de transvecgdes. Se m € um ponto
numa vizinhanga normal de p, existe uma geodésica que conecta p e m, logo, existe uma
transvecgdo que leva p em m. Sendo S uma variedade conexa, € também conexa por caminhos.
Seja o : I = [0,1] — S uma curva que satisfaz o(0) = p e (1) = g. Sendo o (/) compacto,
existe uma parti¢do {0 =1y <t} < --- <t, = 1} de I e vizinhangas normais U; de a(z;)
tais que o¢(I) C U;_yU;. Escolhendo a parti¢do de modo que as diferengas |¢;;1 —¢;| sejam

suficientemente pequenas, podemos assumir que ambos o(#;), o (ti+1) € Uit1,i=0,...,n—1,
de modo que existem transvecgdes que levam a(t;) em a(t;iy1), i =0,...,n— 1. Compondo
estas transvecgdes, obtemos uma isometria que leva p = o¢(0) em ¢ = o(1). O

De agora em diante, vamos nos restringir a espacos simétricos conexos. Todo espaco
simétrico conexo € homogeéneo e, portanto, geodesicamente completo pelo Lema A.1.5 e pelo
Teorema de Hopf-Rinow. A completude de S resulta em propriedades importantes como, por
exemplo, o fato que o produto de quaisquer duas simetrias geodésicas de S € uma transvecgao,
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pois quaisquer dois pontos podem ser conectados por uma geodésica. Se p,q € S, seja Y uma
geodésica que satisfaz y(0) = p e y(I) = g, entdo s, 05, = 5,050 = py; € uma transvecgao.

A partir de agora, vamos denotar por G a componente da identidade do grupo de isome-
trias de S. Sendo S conexa, se o grupo de todas as isometrias age de forma transitiva, entdo
G também age de transitivamente (Proposi¢do 13.10 de [6]). Seja K o subgrupo de G que
contém as isometrias que fixam p € S e denote por € sua dlgebra, p serd chamado de ponto
base de S. E ficil ver que os elementos de £ sdo representados como campos de Killing em S
que se anulam em p. Temos S ~ G/K.

Toda geodésica de S determina um grupo a um parametro de transvecgdes, ou seja, p;
estd definida para t € R. Portanto, p, deve ter, necessariamente, a forma exp(tH) para algum
H € g. Em particular, toda transvecgdo infinitesimal é da forma H(q) = (d/dt) exp(tH)q|,—o
para algum H € g. Esta é uma propriedade que nao se restringe apenas as transvecgoes
infinitesimais, a Proposicao A.2.2 mostra que campos de Killing sdo completos em variedades
riemanniananas completas, ou seja, o fluxo de um tal campo estd definido sobre R e deve
determinar um subgrupo a um parametro de G. Todo subgrupo a 1 pardmetro de G € da forma
exp(rX) para algum X € g pelo Teorema 9.2.15 de [4]. Temos entdo o seguinte resultado.

Proposicao 2.3.9. Qualquer campo de Killing em um espago simétrico é completo e tem a

forma

- d
X(gq) =— tX
(@) = & exp(X)a|

para algum X € g e seu fluxo é da forma ¢;(q) = exp(tX)q.
O préximo resultado € uma caracterizacao importante das transvecgdes infinitesimais.

Proposicao 2.3.10. Um campo de Killing Y em § € uma transveccao infinitesimal em p se, e
somente se, (VY), = 0.

Demonstragcdo. SejaY uma transveccdo infinitesimal em p, ou seja, Y (¢) = (d/dt) p:(q)|i=o0,
em que p, é uma transvecgdo ao longo da geodésica y por p. Seja X um campo de S e a(s)
uma curva com a(0) = p e o’ (0) = X(p), entdo (VxY)(p) = (D/ds)Y (a(s))|s=o. Pelo
Lema 3.4 do capitulo 3 de [10], temos que

(Vx¥)(p) = 7 S pi(e(s))
Dd

= E%pt(“(s))

D
= —(dp)a(o) ' (0)]

t=0,5=0

t=0,s=0

t=0
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Na dltima igualdade, usamos que (dp;)q (o) a'(0) é paralelo ao longo de ¥ (item 1 da Proposi-
cdo 2.3.4).

Suponha agora que (VY), = 0 e seja y a geodésica por p satisfazendo y(0) = p e
Y (0) = Y(p). Denote por Z a transvecgdo infinitesimal ao longo de ¥, ou seja, 0 campo
definido por Z(g) = (d/dt)p/(q)li=0. Como p;(p) = ¥(1), temos que Y (p) = ¥ (0) = Z(p).
Pelo que demonstramos no primeiro pardgrafo, temos que (VZ), =0 = (VY),. Segue da
Proposicao A.2.3 que Y — Z é um campo de Killing identicamente nulo, logo, Y = Z € uma

transvecg¢ao infinitesimal. [

Sejam s = {X € g: (VX), =0} e t={X € g: X(p) = 0}. Pela proposi¢do anterior,
os vetores de s geram todas as transvecgdes infinitesimais por p. Como os elementos de g
geram os campos de Killing em S (Proposi¢do 2.3.9), temos que £ Ns = 0 pela Proposi¢cao
A.2.3. Observe ainda que dims > dim7,$ = dim S, pois cada vetor de 7),S determina uma
geodésica passando por p e, portanto, determina uma transvecgdo por p. Sendo S = G/K,
temos que dim§ = dimG — dimK = dimg — dim¢. Segue que dims + dim¢ > dimg e,
portanto, g = £+ 5.

Pela simetria da conexdo, sabemos que [X,Y] = VxY — VyX, donde segue que, se
X,Y €5, [X,Y](p) =0, ie., [X,Y] € t. Este fato, também € uma consequéncia do seguinte
Teorema.

Teorema 2.3.11. Seja s C g o subespaco das transvecgoes infinitesimais. A aplica¢do
0 = Ad(s,) determina uma involugdo de g tal que g = €® s € a decomposigdo em autoespagos
+1.

Demonstragdo. Seja k € K, é facil ver que s,ks, € K e, como (ds,), = —id, s,ks, tem a
mesma diferencial em p que k. Logo, k e s,ks, coincidem em um aberto de S contendo p.
Segue do Lema A.1.6 que s ks, = k e, portanto, 6 = Ad(s;,) age como +1 em €.

Uma transvecgdo p; ao longo da geodésica v tal que y(0) = p, pode ser escrita como
S1/28p» 1080, sppisp = $ps; /2 = p—;- Seja Y a transvecgdo infinitesimal determinada por py,
entdo, para g € S,

o(¥(@)) = Lsppisy(a)

dt =0
d
= EP—I(‘]) -0
=—Y(q).

Segue que ¢ age como —id em s. [
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Esta secdo mostra que a um espaco simétrico S estd associada de maneira natural uma
algebra ortogonal involutiva (g, o) (veja a Se¢do 1.4). Escolhendo p € S como ponto base
e identificando S = G/K, a agdo de G sobre S se identifica com a ag¢do de multiplicagdo
a esquerda de G sobre G/K dada por (g,hK) — (gh)K; em particular, se g € K, temos
(gh)K = ghg K. A projecio natural 7 : G — S dada por 7(g) = gK nos permite identificar
s e T,,S por meio da derivada dm; : g — T),S, que € sobrejetiva e tem niicleo €.

Sendo K a isotropia de p, temos que k age sobre 7}, via os diferenciais de seus elementos,
ouseja, se k € K ev e 1,8, k(v) = dk,(v). Observe que, para X € s e k € K, temos que

kexp(X)K = kexp(X )k~ 'K = exp(Ad(k)X)K,

entdo a agdo de K sobre T,M se identifica com a ag¢@o de K sobre s via a representagdo
adjunta de K, ou seja, k € K age via a isometria Ad(k) : s — s. Portanto, denotando por B a
métrica de S em p e sendo £ compacta (pois K € compacto pelo Teorema 1.2 do capitulo II
de [11]), segue do Teorema 1.4.7 que (g, o) é uma élgebra ortogonal involutiva com produto
interno ad(¥)—invariante B em s.

As transveccdes agem de forma transitiva sobre S e isto nos permite provar o seguinte

resultado.

Proposicao 2.3.12. Denote por P C G o conjunto das transvecgdes por p € S e por K o grupo
das isometrias que fixam p. Temos que G = PK = KP.

Demonstragdo. Segue do fato que as transvecgdes agem de forma transitiva, ou seja, para
cada g € G, existe g € P tal que gg(p) = p. Segue que gg € K, entdo g € PK. Analogamente,
existe g € P tal que g(p) =g~ '(p), i.e., gg € K, donde segue que g € KP. O
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2.4 Locus Conjugado

Nesta secdo vamos caracterizar o locus conjugado de um ponto num espago simétrico conexo
e compacto S = G/K. Assumimos que G é conexo e compacto, que a a¢do de G sobre G/K
por multiplicagdo a direita € uma acao isométrica e que a isotropia K é fechada. Como a
acdo de G € transitiva e isometrias preservam pontos conjugados (Corolério 2.2.6), basta
determinar o locus conjugado de um ponto de S, ja que quaisquer outros locus conjugados
sdo isométricos. Determinaremos o locus conjugado do ponto p = 1K.

Um flat F de S é uma subvariedade conexa, completa, com curvatura nula e totalmente
geodésica. A condicao que F' € subvariedade totalmente geodésica significa que toda geo-
désica de F' é também uma geodésica de S (para mais detalhes, veja a Proposicao 2.9 do
capitulo 6 de [10]). O flat F serd chamada de flat maximal se for um flat que ndo esta contido
em nenhum outro. Os proximos resultados mostram que os flats maximais passando por p
tém como espago tangente as subalgebras de Cartan de s. E de interesse, portanto, ter uma

compreensdo melhor sobre o operador curvatura.

Lema 2.4.1. Seja X uma transvecg¢ao infinitesimal por p e Y um campo diferencidvel definido

numa vizinhanga de p. Denotando por V a conexdo de Levi-Civita, temos que

(VxY), =X, Y](p)-

Demonstragdo. Pela Proposigdo 2.3.10, temos que (VX), = 0. Usando a simetria da cone-
Xao,
[X,Y](p) = (VxY —VyX), = (VxY),.

Usando este Lema, podemos expressar a curvatura em termos do Colchete de Lie.

Teorema 2.4.2. Sejam g € S e x,y,z € TS, entdo

R(x,y)z = [[x,y],z]

Demonstracdo. Existe uma transvecg¢do infinitesimal X em S tal que X (g) = x, pois cada
vetor de 7,5 determina uma transveccdo infinitesimal por g. Seja y(t) = exp(tX)q uma
geodésica por g e observe que ¥ (0) = X(g) = x. Seja Y um campo de Jacobi ao longo de y
com Y (0) =y. Do Lema 2.4.1, sabemos que

X, Y](g) = (VxY)g.
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Usando este resultado e a equacao de Jacobi para Y, temos que

DD

R(x,y)x = _EEY(Y(I)) B

= —%( XY )y
= -2 XYI(r0))
= —(Vx[X,Y])y
=[x, ]

= [l ¥,

t=0

t=0

O resultado entdo segue da equacdo acima usando Lema 3.3 do capitulo 4 de [10]. A
curvatura seccional determina o tensor curvatura e o lado direito da equacao acima tem as

simetrias do tensor curvatura. O]

Um sistema triplo de Lie (STL) é um subespaco m de uma algebra de Lie que satisfaz
[X,Y],Z] € m para todos X,Y,Z € m. O préximo resultado mostra que, para encontrar
subvariedades totalmente geodésicas, conexas e completas de S, basta encontrar subespacos
de s C g que sejam STL. Pelo Teorema 13.8 de [6], se N < G € um subgrupo conexo de
G, entdo para g € S, temos que Ng é uma subvariedade de S. Denotamos por (exp(m)) o
subgrupo de G gerado por produtos de elementos do tipo exp(X),X € m (veja a Subsecdo
"Subdlgebras e Subgrupos gerados"da Se¢ao 1.1). Como trata-se de um subgrupo de Lie
conexo de G, qualquer 6rbita (exp(m))p, para p € S, é uma subvariedade de S.

Proposicao 2.4.3 (Teorema 3.2.2 de [1]). As subvariedades totalmente geodésicas, conexas
e completas de S passando por p sdo da forma (exp(m))p, em que m C s é um STL.

Demonstragdo. Seja S’ C S uma subvariedade totalmente geodésica contendo p e s’ C s um
subespacos que se identifica com TpS’. Sendo S’ totalmente geodésica, as geodésicas de S’
sdo também geodésicas de S, entdo as simetrias geodésicas s, : § — S, g € S', se restringem
a simetrias geodésicas de S'. Segue que S’ tem uma estrutura induzida de espago simétrico e
suas geodésicas passando por p sdo da forma exp(tH)p com H € s'. A Equacdo de Gauss
da Proposi¢do 3.1 do capitulo 6 de [10] mostra que o tensor curvatura de S’ é a restricdo
do tensor curvatura de S, uma vez que a segunda forma fundamental é sempre nula. Pelo
Teorema 2.4.2, temos [[s’,5'],5'] C ¢’ Por fim, se S’ é completa e conexa, seus pontos podem
ser conectados a p por geodésicas, logo, S’ = (exp(s')) p.

Por outro lado, seja m C s um STL, entdo a = m + [m, m] é uma subdlgebra de g. Seja
A = (exp(a)) < G e defina S’ = Ap, trata-se da 6rbita de p pela agdo de A. A variedade S’ é
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uma subvariedade (mergulhada) homogénea e conexa de S e, por defini¢do, as geodésicas
exp(tH)p de S, H € m, estdo contidas em S, ja que exp(tH) € A e toda geodésica de S’
passando por p tem essa forma (pois [m,m| C £). Segue da homogeneidade de S e do fato
que os elementos de A sdo isometrias de S’ com a métrica induzida que as geodésicas de S
sdo da forma aexp(tH)p,a € A, logo, S’ é totalmente geodésica. Além disso, S’ é conexa por
defini¢do (ja que A € conexo) e € completa por conta de sua homogéneidade. Observe que
S'~A/A,, em que A, denota a isotropia de p em A, que é gerada pela subalgebra [m,m],
temos entdo que S, como um conjunto, coincide com {exp(m))p. O

Observe que s C g é um STL, entdo esta proposi¢do nos mostra que S = (exp(s))p, uma
vez que a dimensdo de (exp(s)) é maior ou igual que dim(s) = dim(S). Além disso, temos a

seguinte caracterizagdo algébrica dos flats maximais de S.

Coroléario 2.4.4. Os flats maximais de S passando por p sdo da forma 7' p, em que t é um

subespaco de Cartan de g e T = (exp(t)).

Demonstracdo. Seja t um subespaco de Cartan e denote 7 = (exp(t)). Sendo t abeliana, fica
claro que é um STL, logo, F = T p € subvariedade totalmente geodésica, conexa e completa
pela Proposi¢do 2.4.3 e T p € flat maximal porque t € maximal abeliana em s e o Teorema
2.4.2 garante que 7 p tem curvatura nula.

Por outro lado, se F C S é um flat maximal, deve ser da forma (exp(t))p para algum
STL t contido em s satisfazendo [X, [Y,Z]] = 0 para todos X,Y,Z € t. Esta condigdo sobre
t implica que a subdlgebra t+ [t, ] € nilpotente, jd que [t,t] C 34(t) e, para X,Y,Z, W € t,
temos que [[X,Y],[Z,W]] = [X,[Y,[Z,W]]] — [V, [X,[Z,W]]] = 0, entdo [t,t] é abeliana. As
subdlgebras de Cartan de g s@o nilpotentes maximais, como mostra a Proposicao 6.1.6 de [4].
Deste modo, deve existir uma subdlgebra de Cartan de g contendo t+ [, t] e tal subdlgebra
deve ser abeliana porque g é redutivel (veja a discussdo ap6s o Exemplo 1.2.6), logo, [t,t] =0

e t é subdlgebra abeliana maximal de g contida em s, ja que F € flat maximal. [

Vimos no Teorema 1.4.11 que os subespacgos de Cartan de s sio K—conjugados. No

contexto de espacos simétricos temos um resultado semelhante.

Teorema 2.4.5. Seja S = G/K um espago simétrico e p = K o ponto base. A isotropia K age
de forma transitiva sobre os flats maximais de S passando por p e, dado um flat maximal T p

passando por p, temos que S = KT p.

Demonstragdo. Sejam Tp,T'p C S flats maximais passando por p com respectivos subespa-
¢os de Cartan associados t e t'. Existe k € K tal que Ad(k)t = t' (Teorema 1.4.11). Observe

que, para H € t, temos

kexp(H)K = kexp(H)k 'K = exp(Ad(k)H)K,
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entdo kT p = T'p. O Corolério 1.4.13 implica que Ad(K)t = s, logo, KT p = S. [l

Supomos agora que S seja um espago simétrico compacto e consideramos o flat maximal
Tp,com T = (exp(t)), sendo t um subespaco de Cartan. Pela decomposi¢io de g (Teorema

1.4.10), podemos escrever s = t+ Y (mgNs).
0€As(g,t)
Uma geodésica de T p passando por p tem a forma y(¢) = exp(tH)p com H € t. Para

obter a forma dos campos de Jacobi ao longo de ¥, usamos o Teorema 2.4.2 e a discussao
que resultou na Equagdo (2.3). Para H € t,X € s, temos que os autovalores do operador de
Jacobi R(H,X)H = —ad(H)?X tém a forma a/(H)? (Teorema 1.4.10). Portanto, um campo
de Jacobi que ndo é da forma tW (¢) deve ter a forma

J(t) = sen(t|oe(H) )W (1)

para algum campo paralelo W ao longo de y e a(H) # 0. Logo, y(1) =exp(H)p € Tp
¢ conjugado a p se, e somente se, 0 # a(H) € nZ. A multiplicidade de exp(H)p como
conjugado de p coincide com a quantidade de raizes positivas B para as quais 0 # 3 (H) € 7.
Lembre-se do Diagrama de Stiefel p definido na Subsecdo 1.3.3, o Locus conjugado de p
em F coincide com exp(p)p. Por outro lado, exp(H)p é um primeiro conjugado a p se, e
somente se, existe alguma raiz 8 para a qual |3(H)| = m; naturalmente isto implica que
B(AH) & nZ para A € (0,1). Portanto, o locus conjugado primdrio de de p em T p coincide
com exp(dDy)p, em que Dy foi definido na Equacéo (1.15),

Do={H ct:a(H) <m, paratoda o € A}.

Este argumento caracteriza o locus conjugado de p em um flat maximal. O Corolario
2.2.6 mostra que isometrias preservam pontos conjugados, em particular K age sobre o
conjunto de pontos conjugados a p, pois fixa p. Pelo Teorema 2.4.5, esta acao € transitiva,

logo, temos o seguinte resultado.

Teorema 2.4.6. Seja S = G/K um espago simétrico compacto, em que K € a isotropia de
pES.

1. O locus conjugado de p em S é a imagem por K dos conjugados a p em T p.
2. O locus conjugado primdrio de p em S é o conjunto K exp(dDy)p.

Nas subsecdes 3.5.1 e 3.5.2 calculamos os Locus conjugados na esfera $? e no plano

projetivo RP?.






Capitulo 3

Espacos Simétricos Compactos

3.1 Preliminares

3.1.1 Construindo um Espaco Simétrico

Nesta Subsecdo vamos construir um espago simétrico simplesmente conexo a partir de uma
algebra ortogonal involutiva (u,0) dada. Este espaco pode ser visto como recobrimento
riemanniano dos espagos simétricos associados a (u,0) (veja a Se¢do 1.5 de [1]). Denotamos
por B o produto interno em u que torna (u,0) uma dlgebra ortogonal involutiva. Seja
u = £®s a decomposicao de u em autoespacos £1.

Seja U um grupo de Lie simplesmente conexo com 4lgebra u; pelo Teorema 7.13 de [6],
o se estende a um automorfismo (involutivo) U — U, que denotamos ainda por . Pela
Proposigdo 3.2.5, temos que fix(o) é conexo, logo, coincide com K = (exp(£)), donde segue
que K é um subgrupo fechado de U.

Defina o espago homogéneo conexo S = U /K. Temos que S é simplesmente conexa
pelo Teorema A.3.1. Como o(K) C K, ¢ induz uma involugdo s : U /K — U /K dada por
s(uK) = o(u)K.

Observe que s € diferencidvel, uma vez que satisfaz s o T = 7 o ¢, em que a projecdo natural
nt:U — U/K é uma submersio (veja o Teorema 6.22 de [6]).
Seja p = 1K = (1) o ponto base padrdo de S. Nosso préximo passo ¢ definir, em S, um

produto interno U —invariante. A diferencial da proje¢do 7 nos permite identificar T,S com
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s, logo, o produto interno B de g define um produto interno em 7,5 = 5. Observe que K age
por isometrias em 7,5, uma vez que B € ad(€)—invariante. A ideia agora ¢ utilizar U para
mover este produto interno aos outros pontos de S.
Para up € S e w,v € T;;,S, definimos
~1 -1
<W7 v>MP = B(duup (W)aduup (V))
trata-se de uma métrica em S. Esta métrica é U —invariante, uma vez que, para quaisquer

;o
u,u € U, temos

(duy, (W), ditr, (V) yup = B(d('u )uipdu (w),d(u'u )ml,pdu ) (3.1)
= B(du,,, (w),dug, (v)) (3.2)
= (w, v)up. (3.3)

Por fim, vamos mostrar que S € um espago simétrico. Seja Y’ = d n(Y) € 7,5, em que
Y € s, temos que

dsy(Y')=d(son) Y =d(moo) Y =dm(-Y)=-Y, (3.4)
logo, ds, = —id. Observe agora que
s(uu'p) = s(x(ud)) = n(o(u)) = o(u)w (o () = o(u)s(u'p), (3.5)

. . 1 » .~
de modo que sou = o(u)os. Portanto, ds,, = do(u),dspdu,, é¢ uma composicio de
isometrias. Segue que s € a simetria geodésica em torno de p e a simetria geodésica em um

ponto qualquer up é dada por usu— g Logo, S é um espaco simétrico.

3.1.2 Reticulados em Espacos Simétricos Compactos

A partir de agora nosso interesse serd completamente voltado para os espacos simétricos
compactos, aos quais adicionaremos algumas hipéteses. Sejam U um grupo de Lie compacto
e conexo com algebra u e ¢ : U — U um automorfismo involutivo. Denotamos também
por o a involucdo u — u obtida tomando a diferencial de 0 em 1 € U, de modo que u se
decompdes como £ & s, a soma dos autoespacos +1. Seja K um subgrupo fechado de U
que satisfaz fix(0)o C K C fix(0), em que fix(0)o denota a componente da identidade do

conjunto de pontos fixos fix(c) de ©.
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Assumimos que existe em u um produto interno B que é ad(€)—invariante e c—invariante,
ou seja,
B(ad(X)Y,Z)+B(Y,ad(X)Z) =0

B(o(Y),0(2)) =B(Y,Z)

paratodos X € teY,Z € u. Isto torna (u,0) uma élgebra ortogonal involutiva com produto
interno B. Chamaremos de espago simétrico compacto o espago homogéneo S = U /K
munido de uma métrica U —invariante.

Identificando T),S ~ s e procedendo como na Subse¢do 3.1.1, temos que B se restringe a
um produto interno ad(#)—invariante em u que se estende a um produto interno U —invariante
em U /K. A involugéo o : U — U induz a simetria geodésica s em p = 1K a partir da qual
obtemos as simetrias geodésicas nos outros pontos por conjugacao via elementos de U.

Como visto na Secdo 2.3, a exponencial Riemanniana de S em p é dada por
exp,:5— S, exp,(X)=exp(X)K,

em que exp denota a exponencial de U. Seja t C s um subespago de Cartan, o reticulado de
S em t € definido por

I'={Hect:exp,(H)=p}={H € t:exp(H) € K}. (3.6)
Observe que, caso H € I, temos que exp(H) € K, logo,
exp(H) = o (exp(H)) = exp(0(H)) = exp(—H).
Portanto, uma definicao equivalente para I" é
I'={H e t:exp(2H) =1}.

Relembre o sistema Ag = A (u,t) de raizes restritas com respeito a um subespaco de

Cartan t C 5. Definimos o reticulado central
I'N={Het:a(H)eZY a € As} 3.7

e o reticulado fundamental I'y, que € gerado pelas co-raizes com coeficientes em 77Z. Observe
que chamamos I'y e Iy de reticulados, mas eles podem ndo ser reticulados em t no sentido da
Defini¢do 1.3.10 dependendo se tN3(u) é nulo ou ndo (veja a Observagdo 1.3.16). Queremos
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demonstrar um resultado andlogo ao Teorema 1.3.15, mas no contexto de espacos simétricos
compactos. Para tanto, vamos considerar o chamado espago simétrico adjunto de S.
Sendo u compacta, é também redutivel, entdo podemos escrever u = 3(u) ©u’ em que
' = [u,u] é semi-simples. Como [0(X),Y] = o([X,0(Y)]), temos que 3(u) é invariante por
0. A parte semi-simples 1’ também € invariante, uma vez que o (1) = [o(u),o(u)] =1/,
logo,
u=GWNHeGWNs)®WNE)®WNs).

Segue que t =t @ (£ N3(u)), em que t' = tNu' é um subespaco de Cartan da dlgebra
ortogonal involutiva (', 6|,/), em que o produto interno considerado € a restri¢io do produto
interno de (u,0).

Uma vez que 3(ut) € invariante por o, temos que Z = Z(U ) também €. Segue que ¢ induz
um automorfismo ¢’ : U’ — U’ dado por ¢’ (uZ(U)) = 6(u)Z(U), em que U' = U /Z(U).
Como Ad(U) ~ U /Z(U), podemos identificar U’ = Ad(U), entdo o automorfismo ¢’ satisfaz
o’(Ad(u)) = Ad(o(u)) para u € U. Observe ainda que

¢0X) = Ad(exp(o(X)))
= Ad(o(exp(X)))
= o/ (Ad(exp(X)))

_ G/(ead(X))‘

Seja K' = fix(0”), 0 espago simétrico adjunto de S é o espago simétrico S’ = U’ /K’ associado
a dlgebra ortogonal involutiva compacta e semi-simples (1,0 |,/). A métrica considerada em
S’ é obtida como na Subsecdo 3.1.1.

O reticulado de S’ é dado por
I"'={Het exp,(H)=p}={H et :expy(H) €K'},

em que expy: (H) = ") jd que U' = Ad(U) < GL(u). Fica claro que H € I” se, e somente

se, ¢*4) € K’ ¢ isto ocorre se, ¢ somente se,
ead(H) _ G/(ead(H)) _ ead(G(H)) _ e—ad(H)7 (3.8)
ou seja, ¢CH) — 1. Usando a decomposicdo em espaco de raizes restritas de u, sejam

X,Y € my um par hiperbdlico, entdo

X = MCH X — cos(20(H))X —sen(20.(H))Y (3.9)
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d(2H)

(veja as equacdes (1.8) e (1.9)). de modo que ¢* =1 se, e somente se, a(H) € nZ.

Portanto, I coincide com o reticulado central
I={Het:aH)enZVacA;Ww, t)} (3.10)

Sejam 7 : U — Se ' : U' — K’ as projecdes candnicas. Como Ad(K) C K’, temos que
a proje¢io adjunta Ad : U — Ad(U) induz a projegdo r : S — S’ definida por

r(wk) = r(n(u)) = 7' (Ad(u)) = Ad(u)K’

Observe que, se X € sN3(u), temos que r(exp(tX)K) = Ad(exp(tX))K' = 1K', logo, o
diferencial de r em p = 1K coincide com a projecdo P : 5 — s N u paralela a 5N 3(u).
Podemos restringir P a projecdo t — t’ paralela a tN3(u). Seja H € T, entdo exp(H) €K e
temos

¢MPUH)) — (ad(H) — Ad(exp(H)) € Ad(K) C K,

de modo que P(H) € T'. Como I' =T, a discussdo do pardgrafo anterior nos mostra
que a(P(H)) € wZ. As raizes se anulam em 3(u), entdo o(H) = a(P(H)) € ©Z, ou seja,
Heln.

Vamos finalizar mostrando que I'g C I'. Sejam X,Y € my um par hiperbdlico, H € t
e denote por B o produto interno ad(¢)—invariante e c—invariante de (u,0). Observe
que X —o(X) €esnNmgy, Y +0(Y) € tNmg e, portanto, [X — o (X),Y +o(Y)] € t, uma
vez que estd em s e comuta com os elementos de t. Por simplicidade de notaciao, denote
Xo=X—-0(X)eYy=Y+0(Y). Temos que, para qualquer H € t,

Usando que Yy, € £ e a invariancia de B, temos que

B(H, [Xa,Ya]) = B([Ya, H], Xot)
(H)B(Xa; Xa)
( ’ ) (XOHXOC)
(H,

B(Xo,Xoa)Ha)-

(04
B
B
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Sendo B um produto interno, concluimos que [Xq, Yy = B(Xq,Xo)Ho = B(Yy, Yo )Hy. De-
notando

1 X,

X, = :
% B(Hq,Ha) \/B(Xq,Xq)

o 1 Y,

B(Hy,Hy,) \/m7

temos que B(X},,X,) = B(Y},,Y,) = 1/B(Hy,Hy). Seja H,, = Hg /2, entdo sdo vélidas as
seguintes relacdes de colchete.

[H(/xvx(lx] = Y(;w [H(IX’Y(;] = _X(/)u [X(I)UY(;] :H(lxv

em que Hy denota a co-raiz correspondente a o vista como elemento de t. Definimos entdo
u(a) = (H),,X/,,Y/,) C u, trata-se de uma dlgebra isomorfa a s0(3) ~ su(2).

Considere o grupo §3 ~SU (2). Podemos ver o grupo $3 como o conjunto dos elementos
unitarios dentro do anel de divisdo

H={a+bi+cj+dk:a,b,c,d € R},

chamado de Quaternions (para mais detalhes sobre quaternions, veja a Se¢do 4.4 de [7] ou o
Capitulo 1 de [12]). Os elementos i, j e k de H satisfazem 2= j2 — k= ijk=—1e H pode

ser identificado com o R* como espaco vetorial. Neste contexto, consideramos
S ={a+bi+cj+dkecH:a*+b*+*+d>=1}.
E possivel mostrar que todo quaternion unitdrio g pode ser escrito na forma
g = cos 6 +ysend = %
para algum 6 € R e y um quaternion unitario com parte real nula, isto €, y pertence a
u=Ri+Rj+Rk

e tem norma 1. Além disso, ¢ ¢ definido pela série de poténcias usual da exponencial
- (6y)"

)}

|
=0 n.
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Observe que U é uma dlgebra de Lie ndo abeliana com o colchete dado por [g,q] =

g9’ — q'q. Temos as seguintes relagdes de colchete para os geradores de 1t

[i/2,j/2] =k/2, [i/2,k/2] = =j/2, [j/2,k/2] =i/2.

Portanto, T ~ su(2) é a dlgebra de §° ~ SU(2).

Considere a involucao ¢ de $3 dada por 6(q) = kgk~'. O conjunto K de pontos fixos
de G é uma circunferéncia obtida via a intercessdo do plano R + Rk com S° e sua dlgebra é
£ = Rk. A derivada de G em 1, que denotamos ainda por G, é entio uma involugdo de 1 que
age como id em £ e como —id no complemento 5 = Ri 4 Rj. Temos entio que t = Ri é um
subespaco de Cartan de (u,0).

A aplicacgdo linear ¢ : u — u definida por

90(i/2) = Hy, 0(j/2)=Xg, 0(k/2)=Y,

é um homomorfismo de algebras de Lie e satisfaz ¢ (%) = u(a) e ¢(€) C ¢. Sendo S°
simplesmente conexo, ¢ pode ser integrado a um homomorfismo y : §3 — U tal que y(K) C
Ke

w(e'") = exp(¢(ti)) = exp(tHy) (3.11)

(veja o Teorema 7.13 de [6]). Segue que
exp(THy) = y(e™) = y(-1) €K, (3.12)

logo, THy € T'. Observe que usamos que —1 € K e que w(K) C K. Segue desta discussdo o

seguinte Teorema.

Teorema 3.1.1. Seja S um espaco simétrico compacto. Os reticulados associados a S
satisfazem I'o CT" C 1.

Seja S um espago simétrico compacto associado a dlgebra ortogonal involutiva (1, 0) e
t C u um subespaco de Cartan. O Diagrama de Stiefel de S € definido por

p={Xect:a(X)e nZparaalgum o € As(u,t)}. (3.13)

Observe a semelhanca com o diagrama de uma algebra compacta (veja a Equacao (1.11)).

Temos consequéncia do Teorema anterior o seguinte Corolario

Corolario 3.1.2. I' C p e p € invariante pelas translacdes de I'.
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3.1.3 Grupos de Lie e Espacos Simétricos

Nesta Subsec¢do, veremos como um grupo de Lie U conexo com algebra compacta e que
admite uma métrica bi-invariante pode ser visto como o espago simétrico (U x U) /K, em
que K serd definido abaixo. Veremos também como os reticulados definidos em (U x U)/K
se relacionam com os reticulados em U definidos na Subsecao 1.3.1. Juntamente com os
resultados da Secdo 3.4 a respeito dos grupos fundamentais de espagos simétricos, isto
nos permitird entender o motivo do uso do fator 2 na definicdo do reticulado I" (equagdo
(1.10)). Para tanto, vamos estudar sobre as raizes e os sistemas de raizes associados a dlgebra
ortogonal involutiva u @ u.

Considere o grupo U2 = U x U com produto definido coordenada a coordenada e a
involugdo o : U? — U? dada por 6 (u;,uz) = (uz,u;). Denotaremos a dgebra de U? por
w> =udu, sendo u a algebra de U, e um elemento desta dlgebra serd denotado X @Y. O
colchete de Lie é dado coordenada a coordenada: [X; ©Xo, X[ & X;] = [X1,X]] @ [X2,X5].

2 502 que também

A diferencial na identidade da involu¢do ¢ induz uma involucdo u
denotaremos por & e é definida por 6(X; ®X;) = X, ® X;. A dlgebra u? se decompde como

a soma £ @ s de autoespagos =1, em que

t={XoX:Xcul~u
s={X®-X:Xcu}~u

Em particular, todo elemento X; & X, € u u pode ser escrito como soma de elementos de £

e de s da seguinte forma:

Xi+X Xi+X, Xi—X X1 —X
it o XtX Xi—X o XX

X, OX, =
1% 2 2 2 2

em que + denota a soma em u G .

Observe que £ ~ u, entdo, pelo Teorema 1.4.7, para que u? seja ortogonal involutiva é
necessario que u seja compacto.

Por outro lado, supondo u é compacto, existe um produto interno ad—invariante em u,
denote-o por B. Obtemos entdo um produto interno ad—invariante em u & u, que denotamos

ainda por B, e € dado por

B(X, ®X2,X] ©X5) = B(X1,X]) +B(X2,X).
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A invariancia de B em u® u segue da invariancia em cada componente:

B([H, ® Hy, X1 ®X2],X] ® X)) = B([H1,X1] © [Ha, X2], X{ ©X3)

= B([H1,X1],X]) + B([H2,X3],X3)
= —B(X1, [H1,X{]) — B(Xa, [H2,X;])
—B(X1 & Xy, [H1,X{] & [H2,X3))
—B(X1 ®X,,[H| ® Hy, X{ D X3)]).

—

Segue que B é, em particular, ad(¢)—invariante. Observe por fim que, para X,Y € u, te-
mos B(X®—X,Y ®Y) =B(X,Y) —B(X,Y) =0, logo, B(t,5) = 0 e B deve ser também
o —invariante (veja a Observacdo 1.4.5). Este argumento em conjunto com o Teorema 1.4.7

demonstra o seguinte Teorema.
Teorema 3.1.3. A dlgebra (uz, 0) é ortogonal involutiva se, e somente se, u é compacto.

Vamos descrever agora um subespaco de Cartan t C s. Sendo s ~ u e u compacto, t deve
ser isomorfa a uma subalgebra de Cartan h de u, uma vez que t € uma subalgebra abeliana

maximal contida em s (Proposicdo 1.2.7). Defina
t={H®—H:Heh}.

Como h € abeliana maximal em u, t € abeliana maximal em s. Para um par hiperbdlico
X,Y € mg, temos que

[H®—H,X®Y]|=[H,X|®—[H,Y]

= o(H)Y ®a(H)X = a(H)(Y &X)
H®—-H,Y®X|=[H,Y)®—[H,X]

= —aH)Xd—a(H)Y =—a(H)(X®Y).

Proposicao 3.1.4. Os espacos de raizes restritas de u? com respeito a t sdo da forma
Mg My em que my é um espaco de raiz de u com relagdo a h e @ € A(u, h). Temos que u?
se decompde como
m+t+ ) mg@mg,
ocA(u,bh)

em que m = 3¢(t) = {X ©X : X € 3u(h) = b}
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Demonstragdo. Temos que my @ mg € um espaco de raiz (generalizado) se, e somente se,
o = B, uma vez que, se X1, Xo E mg e Y}, 1 € mg sdo pares hiperbdlicos, entio

[Ho—H,X,80Y|=[H,X||®—[H,Y1]|=a(H)X,®B(H)Y.

Além disso, se X BY € my G mg, podemos escrever X $0+0BY € mg Emy + mg G mg.
Pelo Teorema 1.4.10, a decomposicio de u? com respeito a t é dada por

u? =3 (t) +t+ Z Mg G Mg,
a€A(g,h)

Obsereve que 0 = [H & —H,X ® X| = [H,X|® —[H,X] para todo H € § se, e somente
se, [H,X] = 0 para todo H € hj, donde segue que 3¢(t) = {X DX : X € 5,(h) =h} ~b.
0

Como consequéncia desta proposi¢do, temos que o sitema de raizes restritas Ag (uz, t)
¢ isomorfo a A(u, ). Em particular, podemos ver uma raiz de & € Ag(u @ u,t) como um
elemento o € A(u,by) fazendo &(H @ —H) := o(H). Por simplicidade, identificaremos &
com .

A involugdo 6 : U? — U? tem conjunto de pontos fixos fix(¢) = { (u,u) : u € U} conexo,
uma vez que € isomorfo a U. Existe uma acdo y : U 2xU — U do grupo U 2 sobre U a
esquerda e a direita por translagdes via W((u1,u2),x) = uixu, ! Esta acfio é claramente
transitiva, uma vez que a 6rbita de 1 coincide com y(U x {1},{1}) = U. A isotropia
de 1 ¢ exatamente K := fix(c) = (exp,2(£)), em que a exponencial de U? ¢ definida por
expy2 (X @Y) = (exp(X),exp(Y)) e exp denota a exponencial de U. Segue que a aplicacdo
p:(UxU)/K — U dada por p((u1,u2)K) = y((u1,u2),1) = uju; ' é um difeomorfismo
(Proposicao 13.9 de [6]).

E interessante observar que i fornece uma equivaléncia entre a agio v de U 2 sobre
U com a acdo de multiplicacdo a esquerda de G sobre U 2 /K. Tsto decorre das seguintes

igualdades.

1 ((ur,u2) - (x1,22)K) = ug (135 Yy ' = wr((uy,u0), p((x1,x2)K)). (3.14)

Nosso préximo passo é mostrar em detalhes a métrica usada em (U x U)/K para que
seja um espaco simétrico e como esta métrica corresponde a uma métrica bi-invariante em
U. Denote S = U?/K e p= (1,1)K e identifique T,S ~ s via a projecdo natural U?>—S.0

produto interno B define um produto interno em 7),$ dada por

X®-X,YO-Y),=B(XO—X,Y®-Y)=2B(X,Y),
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para X © —X,Y ® —Y € s. Podemos transladar este produto interno de forma diferencidvel

aos outros pontos de S via a acdo de U 2 sobre S por multiplicacdo a esquerda, definindo

<W7 v>(u1,u2)p - B(d<”1’”2)(_,4117u2)p(w)7d(u17u2)(_u117u2)p(v))7

paraw,v € T pS. Procedendo como na equagio (3.1), mostra-se que esta € uma métrica

uy,u2)
U?—invariante em S.
A simetria geodésica s ao redor de p é definida usando a involucdo de U? de acordo com

o seguinte diagrama.

A involugdo s satisfaz s o T = mo 0, estd bem definida porque 6(K) C K e é diferencidvel
porque 7 € uma submersao (veja o Teorema 6.22 de [6]). Explicitamente, ela é dada por
s((uy1,up)K) = o (uy,uz)K = (up,u;)K. Procedendo como nas equagdes (3.4) e (3.5), mostra-
se que s € uma isometria e que a simetria geodésica s, ,,), ¢ dada por (uy,up)s(uy, uz)_l.
Portanto, temos que U ~ U 2 /K é um espaco simétrico.

Vamos definir uma métrica em U de modo que o difeomorfismo p : § — U seja uma
isometria. Parau € U e X,Y € T, U, defina

(w,v)u = (dit ' (W), dis ' () )

Por construcio, fica claro que i : U? /K — U é uma isometria. Vamos mostrar que se trata
de uma métrica bi-invariante em U (veja a Se¢do 2.1).

Inicialmente, observamos que, para x,u € U, temos

i o Ey(x) = ! (1ex) = (ux, 1)K = (u, ) (v),

ou seja, 4~ o E, = (u, 1) ! (x), onde denotamos por (u, 1) a isometria de S que é dada pela

multiplicagdo 2 esquerda por (i, 1) € U%. Analogamente,

o Dy (x) = " (o) = G, DK = (L' K = (L)' (),
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entao u_l oD, = (l,u_l) ,u_l. Usaremos estas conclusdes nas equacdes abaixo. Sejam

w,v € T,U. A invariancia a esquerda pode ser vista da seguinte forma:

((dEy)xw, (dEu)xv)ux d“u (dEy)xw, d.uux (dEw)xv) (ux,1)p
d(u 1) x,1) d“x Wd(u 1)(x 1)p d.ux >( p
dp wdp ) e

W,>

=
=
=
=

A invariancia a direita segue de maneira andloga.

<(dDM)XW7 (dDu)x > dnuxu (dD )XW dlLL)CM (dD )Xv>(xu )p

d( )xl) du, Wad(lau )(x,l)pd.ux_lv>(xu71)p
du wdux >( xp

W, V).

=
=
=
=

Demonstramos entdo o seguinte Teorema.

Teorema 3.1.5. Uma métrica em S = U2/K em que a ag¢do de U? por multiplicagdo a direita

é uma agdo isométrica corresponde a uma métrica bi-invariante em U.

A reciproca deste Teorema também € valida, uma vez que a métrica em S pode ser vista
como uma métrica vinda de U, definindo

WV wra)p = (- ) p 2 AWy 1) pY) 51

Suponha que a métrica em U seja bi-invariante e observe que a equagao (3.14) implica que
wo (uy,up) = (Duz—l oEy, )ou, logo,

(d(ur,u) (x1,x2) pW> d(uy,uz) (x1 7x2)Pv> (uyx1,u0%2)p

- <du(u1X1.u2X2) d(ul’uz)(xhxz)PW’ d'u(ulxhuzxz)l?d(ul’uz)(x1,X2)Pv>u1x1x51u51
< ( ”l)xlx ld‘u(xl XZ)PW’d(Du;E“l >x1x£1d“(xl,Xz)Pv>u1x1x;1u;1

= (Al (x) ) pWs d“(xhxz)PV)x]xz"
=

w,v > (x1,%2)p

Isto demonstra o seguinte resultado.
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Teorema 3.1.6. Uma métrica bi-invariante em U corresponde a uma métrica U 2 _invariante
emS=U?/K.

Portanto, um grupo de Lie conexo € um espaco simétrico se, € somente se, sua dlgebra
€ compacta e ele admite uma métrica bi-invariante. Vamos agora estudar como a simetria
geodésica de S induzida pela involu¢do ¢ de U 2 se apresenta em U. Denote a simetria
geodésica de U por i, ela deve satisfazer iou = [ oi, ou seja, o seguinte diagrama ¢é

comutativo.
U?/JK ——— U?/K
0 p
U ——ommenboeeee » U

Fica claro que i € diferencidvel, uma vez que y € um difeomorfismo e, em particular, uma

submersao (Proposi¢do 5.19 de [13]). Explicitamente, temos que

i(gh™") = i(u((g,WK)) = u(s((8,W)K)) = u((h,g)K) = hg ™",

logo, i coincide com a inversdao em U.

Denotando por exp a exponencial de U (como grupo de Lie), temos que ela coincide
com a exponencial Riemanniana de U, uma vez que a métrica é bi-invariante (Teorema
A.2.6). Portanto, as geodésicas de U passando por 1 e com dire¢do X € u sdo da forma
y(t) = exp(tX) e, como era de se esperar, temos que i(exp(X)) = exp(—X). A simetria
geodésica ao redor de qualquer ponto u € U € entdo dada por E,0ioE,-1 = D,ocioD, i e,

para uma geodésica ¥, () = uexp(tX) passando por u com dire¢do X (u) = (dE, )X, temos

E,0ioE, i (Yu(t)) = Yu(—1).

Assim fica caracterizado U como espacgo simétrico.
Para finalizar esta subse¢ao, vamos tratar dos reticulados em U e em S = U 2 /K e ver
como eles se relacionam. Denotando p = K, temos que a exponencial Riemanniana de U 2 /K

em p € dada por

exp,(X ©Y) =exp2(X ©Y)K = (exp(X),exp(Y))K.
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Definimos agora os reticulados de U 2 /K como na Subsecéo anterior, seja

I'={Ho-Hect:exp,(H®—H)=p}
={H®—H ct:expy2(H®—H) = (exp(H),exp(—H)) € K}
={H®—Hct:exp(H)=exp(—H)},

como na equacao (3.6). Assim como na equagao (3.7), definimos
I'N={He-Hect:a(H®—H)=a(H) € nZ paratoda o € A(u,h)}.

O reticulado central I'y € definido como o reticulado gerado, com coeficientes em 7Z pelas
co-raizes Hy & —Hg, a € A(u,h).

Vamos entender agora como estes reticulados se apresentam em U visto como grupo de
Lie. Os reticulados I'y e I'g dependem apenas da estrutura dos sistemas de raizes Ac(uz, t) ~
A(u,h), entdo correspondem, em U, aos reticulados central e fundamental definidos na
Subsecdo 1.3.1. Para ver a que reticulado I' corresponde, observe que a isometria (L nos
fornece um isomorfismo entre s e u que € dado por

d d
du,(X e —X) = E,u(expp(tX ®—X)) 0 Eexp(ZtX) 0 2X. (3.15)

Temos que exp,(X & —X) = p se, e somente se, exp(X) = exp(—X), de modo que o reticu-
lado I" aqui definido € isomorfo ao reticulado

I'={Hebh:exp2H)=1}={H € h:exp(H) =exp(—H)}

definido na equacao (1.10). Fica entdo claro o motivo de termos adicionado o fator 2 na
definicao de I'.
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3.2 Grupo de Weyl

O grupo de Weyl W de As(g,t) pode ser visto tanto como o grupo gerado pelas reflexdes
fa,® € Ag ou como o grupo quociente M*/M em que M™ e M sdo, respectivamente, 0
normalizador e o centralizador de t em K. Este grupo age em U /K por multiplicagdo a
esquerda

w-uK:qu:wuw*IK, (3.16)

em que w pode ser pensado como um elemento de K. Se T = (exp(t)) e Tp denota o
respectivo flat maximal, temos que W deixa T p invariante. De fato, se H € {, temos que

wexp(H)K = wexp(H)w™ 'K = exp(Ad(w)H)K € Tp.

Nesta Secdo vamos estender o Coroldrio 1.4.20 para a acdo de W sobre U /K. Mais especifi-

camente, queremos demonstrar o seguinte resultado.

Teorema 3.2.1 (Teorema 3.9 de [2]). Seja S = U /K um espaco simétrico compacto com
ponto base p = K. Suponha que k € K e h € T sejam tais que khp € T p, entdo existe w € W
tal que khp = whp.

Observacao 3.2.2. Algo similar € vélido no contexto de grupos e Lie compactos e conexos.
Seja G um grupo de Lie compacto e conexo e 7 um toro maximal, o grupo de Weyl analitico
associado ao par (G,T) é definido por W(G,T) = Ng(T)/T. Este grupo age sobre T por
conjugacdo. A Proposic¢do 1.2.9 mostra que todos os toros maximais de G sdo conjugados e
que G € uma unido de toros maximais. O item (i) do Teorema 12.2.13 de [4] mostra que, se

1 1

t€Tege G sio tais que grg~ ! € T, entdo existe w € W(G,T) tal que gtg~' = wrw ™!

A isotropia K ndo é necessariamente conexa, denotamos sua componente conexa por
Ko. Para qualquer k € K, temos que t' = Ad(k)t C s é um subespago de Cartan, logo, pelo
Teorema 1.4.11, existe [ € Ky tal que Ad(I)t' = Ad(lk)t = t, ou seja, [k € M*. Pelo Teorema
1.4.19, existe u € Ky que normaliza t tal que Ad(lk)H = Ad(u)H para todo H € t. Segue que
u~ 'k € M, logo, k = (I"'u)(u~'1k) € KoM. Esta discussdo demonstra o seguinte resultado.

Proposicao 3.2.3 (Proposi¢do 3.1 de [9]). Seja Ky a componente conexa de K e M o
centralizador de t em K, entdo K = KoM.

No proximo Teorema vamos estender o resultado descrito na Observagdo 3.2.2 para um

toro T =< exp(t) > de U cuja dlgebra t € um subespago de Cartan.

Teorema 3.2.4 (Proposicdo 3.2 de [9]). Sejam k € K e h € T e suponha que khk™' € T, entdo
existe algum w € W tal que khk=' = whw™ L.
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Demonstracdo. Seja h' = khk~'. A ideia da demonstracio é proceder de forma andloga a
demonstracdo do Teorema 1.4.19 e procurar um elemento de (Uy, ) (onde Uy, é o centralizador
de ') que nos possibilite construir o elemento w de W que nos interessa. Inicialmente,
observe que, como t C s e 0 age como —id em s, temos que ¢ age como a inversao em 7.
E facil ver que (Uy)o = k(Uy)ok™ ! e, portanto, T,kTk™' C (Uy)o := P. Além disso,

Up = Ugyy-1, entdo Uy € invariante por 6, uma vez que, para u € Uy, temos
cwhow) ' =cu) uY=cH) ' =.

Como o (P) C Uy, é conexo e contém a identidade, segue que o(P) = P. Denote por ¢’ a
restrigio o|p. Por defini¢do K satisfaz fix(c)y C K C fix(o), entdo temos que fix(c”)y C
KNP C fix(c’). Definindo K’ := (Kjy)o € KNP (onde Kjy é o centralizador de i’ em K),
temos que S = P/K’ é um espaco simétrico e TK’ Tk 'K’ sdo flats maximais de S (veja o
Corolario 2.4.4).

Segue do Teorema 2.4.5 que existe [ € K’ tal que [kTk~'I~! = T. Observe que [k € Ng(T')
e, como K’ C Uiji-1, temos que Ikhk='17' = khk~!. Basta escolher w = [kM. O]

3.2.1 Recobrimento Universal de U

Seja & : U — U o recobrimento simplesmente conexo de U, trata-se de um grupo ndo
compacto sempre que u nio é semi-simples. Este fato é consequéncia de que u = 3(u) Qu' é
redutivel; U é igual a Z x U’, em que Z é um grupo vetorial central com dlgebra 3(u) e U’ é
conexo e simplesmente conexo com dlgebra semi-simples e compacta g, logo, € compacto
(veja o Teorema 1.3 do capitulo V de [5]). De fato, sendo U compacto com dlgebra u, deve
difeomorfo a T x U’ em que T é um toro com dlgebra 3(ut) e U’ é compacto semi-simples,
logo, U é um produto do recobrimento Z de T com o recobrimento I’ de U’ (veja o Corolario
1.4 do capitulo V de [5]). Podemos identificar Z com a componente conexa da identidade do
centro Z(U), uma vez que U’ tem centro finito. Além disso, U’ contém todos os subgrupos
compactos de U/ uma vez que Z nio contém nenhum subgrupo compacto, exceto por {1}.
Nesta Secdo, vamos mostrar que vale uma versdo do Teorema 3.2.4 para o recobrimento 0.

O Teorema 12.4.26 de [4] nos mostra que o conjunto de pontos fixos de um automorfismo
de um grupo de Lie compacto e simplesmente conexo € conexo. Vamos estender este

resultado para grupos simplesmente conexos com dlgebra compacta.

Proposicio 3.2.5 (Proposicdo 3.3 de [2]). Seja & um automorfismo de U, entdo o conjunto

fix(6) de pontos fixos de & é conexo.
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Demonstragdo. Parau € U e z € Z, temos que
6(Ju=6(z6"" () = 6(6 ' (w)z) = 6(2)u,

logo, 6(z) estd no centro de U, mas, sendo &(Z) conexo e contido em Z(U), temos que
6(Z) = Z. Por outro lado, temos que 6(U") é um subgrupo compacto e conexo de U, entio
6(0)=0"

Portanto, temos que & se decompde como & = G|z X G|y e segue que fix(6) =
fix(&|z) x fix(6|7). Sendo U’ compacto e semi-simples, fix(&|;/) € conexo pelo Teo-
rema 12.4.26 de [4]. Além disso, G|z é um automorfismo de um espago vetorial visto como
grupo aditivo, entdo é linear pelo Lema B.2.2, entdo fix(&|z) é conexo, pois trata-se de um
subespaco vetorial. [

Denote por T o subgrupo conexo de U com dlgebra t. A derivada (do); da involugio
de U € um homomorfismo involutivo de u e, pela teoria de recobrimentos de grupos de Lie,
existe uma involugdo & de U que satisfaz (do); = (d&); (veja o Teorema 7.13 de [6]). As
involugdes o e & estdo relacionadas via o recobrimento universal segundo a seguinte equacao
o6 =0cof,umavezqued(cof); =d(ToG); (Proposigdo 7.8 de [6]). Para demonstrar
o préximo resultado, fazemos uma reducio, assumimos que £ C ', ou seja, o centro de u

estd contido em s e £ intercepta apenas a parte semi-simples de 1.

Proposic¢ao 3.2.6 (Proposi¢io 3.5 de [2]). Suponha que £ C v e que 3(u) C 5, entdo 7 =
Zx(TNU") e K :=1ix(6) CU'. Além disso, temos a decomposigdo U = KTK para U.

Demonstracdo. Como t é abeliano maximal e 3(u) C s, temos que 3(u) C t, logo, t =
3(u) @ (tNg). Segue do Coroldrio 1.4 do capitulo V de [5] que T = Z x (T NU’). Observe
que K é conexo pela Proposicdo 3.2.5 e que sua algebra consiste dos pontos fixos de
o = (d&), logo, K = (exp(t)). Como € <1/, segue que K < U’, uma vez que ambos os
grupos sao conexos.

Na demonstragdo da Proposi¢do 3.2.5, vimos que u’ € invariante por &, logo, (v, &) é
uma élgebra ortogonal involutiva que se decompde como 1 = €@ (1’ Ns). Os subespagos
de Cartan contidos em 1’ N s sdo todos conjugados via Inn, (£) ~ Ad(K) e cobrem u' N5

(Corolario 1.4.13). Usando a Proposi¢ao 2.3.12, concluimos que

0’ = R(FNO"R.

Observe que U’ ~ U /Z, entdo considere a projec¢io natural 7t : U — U /Z. Como U ~ Z x
U’, podemos considerar que 7 coincide com a projecio Z x U’ — U’ na segunda coordenada
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de Zx U'. Segue que n(K) =K e n(T) =T NU’, de modo que

~—

n(0)=U0"=

>
>

(FN0")R = n(RTR).

Comokerw =Z,dadou € U, existem k.l € K,z Ze h e T tais que u = khlz = k(hz)l €
KTK,uma vez que Z C T.

O

O préximo Lema nos mostra porque podemos sempre assumir que £ C u'. A ideia é
mostrar que, dado um espago simétrico compacto U /K, sempre existe um espaco simétrico

U /K isométrico a U /K em que a hipétese é valida. Lembre-se que
u=0GuNeOeGuNs) oW e W ns).
Definimos a dlgebra compacta
u=(3u)Ns)e W Ne) e Ns),

que é uma subdlgebra de u isomorfa a u/(3(u) N€). Observe que a involugdo o de u se

restringe a uma involug¢do 6 = oy de u.

Lema 3.2.7. Existe um espago simétrico compacto isométrico a U /K cuja algebra ortogonal

involutiva associada tem o autoespaco +1 contido na parte semi-simples.

Demonstragdo. A parte semi-simples de & coincide com 1 € (1) = 3(u) Ns. Além disso,
o autoespaco —1 de G coincide com s, enquanto o autoespago +1 é igual a £Ng:=¢, i.e.,
intercepta apenas a parte semi-simples. O subgrupo Z(U) N K é normal em U, defina entdo
U=U/(Z(U)NK). Ainvolugio de U deixa Z(U) NK invariante, pois age como a identidade
em K (lembre-se que fix(c)y C K C fix(0)), entdo ¢ induz uma involugdo G : U — U que
satisfaz G o ¢ = ¢ o o, em que ¢ € a projecdo natural U — U.

Defina K = ¢(K), entdo temos que K C ¢(fix(o)) C fix(G). Todos estes grupos tém
mesma 4lgebra £, logo, fix(G)o C K. Segue que U /K é um espago simétrico compacto. Para
finalizar, vamos mostrar que é isométrico a U /K. Considere o seguinte diagrama, em que 7

e 7 denotam projecdes naturais e Y € definida por Yo =7 o @.
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Observe que
v(W'K) =yuK) <= ¢(u ') eK — u v €Kk,

logo, y estd bem definida e € injetiva. Sendo 7 o ¢ sobrejetivo, temos que Y é sobrejetiva.

Vamos mostrar que ¥ € uma isometria. 7 € uma submersdo e y o 7 € diferencidvel,
entdo y é diferencidvel. Além disso, ambos 7 e ¢ sdo submersdes e l//_] o(Wod)=mé
diferencdivel, logo, ! é diferencidvel. Segue que v é um difeomorfismo. Seja p =K e
P = K os pontos base padrdo, identifique s = 7,,S = Tﬁg via as projecdes T, 7T e considere
X € s, entdo

(dy)pX = (dy),o (dn)i (X +¢)
= (dm)10(d¢)1(X +¥)
= (d7T)1(X +F)
=X.

Segue que (dy), ¢ uma isometria. Para u € U, temos que y(up) = ¢(u)y(p), entdo
(dY)u(p) = (d¢(u))po (dy), € uma isometria, uma vez que a agdo de U por multiplicagio a

dlrelta em U /K é isométrica. [

Para finalizar esta subsecao, vamos demonstrar que o andlogo do Teorema 3.2.4 € vélido
no recobrimento simplesmente conexo % : U — U. Observe que o referido Teorema ndo é
diretamente vélido para U se u ndo for semi-simples, pois, neste caso, U nido é compacto
(como visto no inicio desta subsecdo). Usando a notacao da Proposicao 3.2.6, defina
W = Ng(T) = Ng ().
Teorema 3.2.8 (Proposicao 3.6 de [2]). Se]am keReheT esuponha que khk ' € T, entdo

existe algum w € W tal que khk=' = whw™!. Além disso, (W) CW.

Demonstragdo. SejaT' = T NU’. Pela Proposicdo 3.2.6, temos que T =T'xZe K C U'.

Restringindo & a U’, obtemos o espaco simétrico compacto G/K que tem toro maximal 7.
Denote 7 = khk ' € T e escreva h =iz, i =7z com W',f € T' e 7,7 € Z. Como Z é

subgrupo central, temos que 7'z = ki'k 'z, entio ¥ = kh'k ' e z=Z, umavezque U = Zx U'.

Segue do Teorema 3.2.4 que existe w € Ng(T') = Ng(T) tal que ki'k ' = wh'vo ™!, segue

que

khk ™' = ki’ k™2 = wi'w 'z = wh .

Para finalizar, sendo K conexo, temos que #(K) C fix(c)o C K e #(T) = T, pois ambos
sdo abelianos e conexos com dlgebra t. Sejake W e r = fi(f) € T, em que 7 € T, entdo
g(k)tr(k)~! = 7(kik~') € T, logo, #(W) C W. O
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3.2.2 Recobrimento Universal de Klein de U /K

Nesta secdo vamos tratar de um recobrimento simplesmente conexo especial de U /K cha-
mado de Recobrimento Universal de Klein. Estudar este recobrimento € interessante para
nds porque permitird estender o Teorema 3.2.4 para U /K considerando a ag¢do do grupo de
Weylem U /K.

Para u € U, denotaremos por * o anti-homomorfismo de U definido por u* = G(u*l), em
que o ¢é a involugdo de U. E facil ver que * é uma operagio involutiva, ou seja, u™* = u para
todo u € U. Além disso, * coincide com a inversdo em fix(o); em particular, coincide com a
inversdo em K, uma vez que K C fix(o). Existe entdo uma agdo natural de U sobre si mesmo
dada por u-h = uhu*. Defina a aplica¢do 1 : U — U dada por 1 (u) = uu™, entdo n(U) é
a Orbita de 1 pela agdo definida acima. Observe ainda que fix(o) € a isotropia de 1. Para
reduzir a redundéncia de 71, podemos fatora-la via o quociente de U por algum subgrupos de
fix(o), tal qual K.

Por simplicidade, denotamos ambas as aplicagdes com o mesmo simbolo 7, deve satisfazer
N(uK) = n(u) e esta claramente bem definida, uma vez que K C fix(c). Observe que
N(uK) = uu™ = u- 1, entdo 1 é U—equivariante. Chamaremos ambas as aplicagdes N
definidas acima de Recobrimento de Cartan de U.

Como fix(0)o C K, temos que 1 : U/K — U tem diferencial sempre ndo nula, logo, é
um homeomorfismo local sobre sua imagem. Dois pontos uK e vK t€m mesma imagem por
n sempre que u € fix(o)v, entdo fix(o) parametriza os conjunto de pontos de U /K com
uma mesma imagem via 7, em outras palavras, ) : U/K — U é um recobrimento sobre sua
imagem com fibra difeomorfa a fix(c) /K em cada ponto, que é discreta porque K contém a
componente da identidade de fix(o).

Se ##: U — U é o recobrimento simplesmente conexo de U e & é a extensdo de ¢ a
U, entdo fix(6) é conexo pela Proposigdo 3.2.5. Logo, K = (exp(£)) coincide com fix(&).
Temos entdo que #(K) = fix(c)o C K e U/K é simplesmente conexo pelo Teorema A.3.1,
entdo 7 : U — U induz a aplicagdo 7 : U /K — U /K, que denotamos ainda por 7, e satisfaz
7(uk) = 7(u)K.
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Observe que 7 é claramente sobrejetiva e é diferencidvel uma vez que fo f = fo & é
diferencidvel e f é uma submersio (veja o Teorema 5.19 de [13]). Vamos mostrar que 7 é
um recobrimento.

O grupo ! (K) normzaliza K, como mostra a demonstragdo do Lema 3.2.13 e ambos
K e #71(K) tém a mesma algebra, entdo 7~ (K)/K é discreto. Pelo Teorema 13.22 de [6],
a aplicacdo & : U /K — U /7~ (K), definida por & (uK) = ut ' (K), é um fibrado principal
com grupo estrutural 7' (K) /K, logo, é um recobrimento diferencidvel (veja o Teorema
A.3.3). Seja y: U/ Y(K) — U/K dada por y(uit "' (K)) = #(u)K, esta aplicacdo estd

bem definida e € injetiva, uma vez que

uft"Y(K) =vi 1 (K) <= #A(uv) e K < #(u 'v)K =K.
Além disso, y é claramente sobrejetiva e € diferencidvel (Teorema 5.19 de [13]), pois satisfaz
% =wo& e & é uma submersio sobrejetiva, ja que K e #~!(K) tém a mesma 4lgebra e os
espacos tangentes de U /K e U /%~ (K) se identificam com u/¢. Como 7% = yo &, a derivada
de v é sobrejetiva em todo ponto, logo, € também injetiva, ja que € uma aplicacdo entre
espacos de mesma dimensao; segue da Proposicdo 5.16 de [13] que y € um difeomorfismo.

Sendo & um recobrimento, & é também um recobrimento.

Y
g
A

Como K = fix(&), ao fatorar o recobrimento de Cartan 7) de U via U /K, obtemos o
mergulho 7j : U /K — U. Denote S = 7 (U /K), entdo temos o seguinte diagrama comutativo
de recobrimentos simplesmente conexos, que define o Recobrimento Universal de Klein

denotado por A.
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Observe que A € um recobrimento porque 7 € e porque 7] é um homeomorfismo. O
préximo passo € descrever como sdo as fibras destes recobrimentos. No que segue, usaremos
os resultados descritos na Subsecao A.3.1 do Apéndice.

Denotando por p = K o ponto base padrdo de U /K, observe que ambas as fibras 7! (p)e
A1 (p) sdo isomorfas ao grupo das deck transformations do respectivo recobrimento, ja que
este grupo age de maneira transitiva e fiel e trata-se de recobrimentos simplesmente conexos.
Além disso, ambos 7! (p) e A ! (p) sdo isomorfos ao grupo fundamental 7 (U /K) e U /K
é difeomorfo ao quociente S/A ! (p).

Sejam u = €+ s a decomposicdo de u e t C s um subespaco de Cartan. Denote por
T = (exp(t)) o grupo conexo gerado por t em U e defina FF =T NZ(U).

Teorema 3.2.9. O mergulho 7 se fatora a um isomorfismo de grupos N (K) /K — F. Além

disso, fi se restringe a um isomorfismo entre &1 (p) e A~ (p).
A demonstracdo deste Teorema seguird de uma série de Lemas que mostramos a seguir.

Lema 3.2.10. Ng(K)NT ={rcT:* € F}

Demonstragdo. Sejat € Ng(K)NT e k € K. Como t C s, temos que o(r) =1~ !

disso, tkt~! € K. Segue que tkt ™! = o (tkt ') =t~ 'kz, entdio 1* € Z;(K) pela arbitrariedade
de k. Observe, no entanto, que = RTK (Proposi¢o 3.2.6), entdo 1> € TNZ(U) = F.

Seja agorar € T e suponha que 1> € F. Temos que Ad(r?) = id, pois t? € Z(U), entdo
Ad(r) = Ad(r!). Observe por fim que

e, além

cAd(t)o ' =Ad(o(r) = Ad(r™!) = Ad(r),

uma vez que t € T, ou seja, ¢ comuta com Ad(t), logo, Ad(¢) deixa € invariante. Segue que
t € Ny () = Ny(K), em que esta igualdade vale pela conexidade de K. O

Lema 3.2.11. Ny (K) = (Ng(K)NnT)K C TK.
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Demonstragdo. Sejau € Ny (K) e escreva u = ktl com k,l € K et € T (Proposigdo 3.2.6),
isto mostra que t € N (K) NT. Como u normaliza K, temos que k~'u=um para algum

m € K, segue que um = tl, ou seja, u = tlm. O

Considere agora o recobrimento de Cartan 7} : U — U. Pelo Lema 3.2.11, temos que
(Ng(K)) = 1(Ng(K) N T), uma vez que 7) € constante nas classes laterais uK. Para
qualquer 7 € T, temos que 7 (¢) = 2, entdo segue do Lema 3.2.10 que ) (Ny(K)) CF. Por
fim, veja que, se u € U e n € Ny (K), temos que

A (un) = ) (n)us* = " n) = 7 )7 (),
em que usamos que 7 (n) € Z(U). Portanto 7} induz um homomorfismo Ny (K) — F com

niicleo K. Para mostrar que Ny (K)/K ~ F, resta mostrar que ) € sobrejetiva, isto que segue
do Lema a seguir.

Lema 3.2.12. f)(Ny(K)) =F.

Demonstragdo. Pelo Corolério 12.2.3 de [4], a exponencial t — T é sobrejetiva, logo, todo
elemento de 7 tem raiz quadrada em 7. Sejat € F e h € T tal que t = h?; segue do Lema
3.2.10que h € Ng(K)NT. O

Vamos mostrar agora que o isomorfismo 7 : Ny (K)/K — F se restringe a um isomorfismo
entre as fibras 7~ (p) e A~ (p). Pelo que foi discutido anteriormente, ji sabemos que trata-
se de grupos isomorfos e é facil ver que 7 (' (p)) = A ! (p) pela construgdo de A. Portanto,
basta mostrar o seguinte Lema.

Lema 3.2.13. #~'(p) < Ny (K)/K.

Demonstragdo. Sejau € U e suponha que 7 (u) € K. Temos que

#uku™') C #(u)K#(u) ' =K,

logo, uk u'eK sdo subgrupos conexos de U com dlgebra &, entdo coincidem e segue que
uc NU ([Z ) L]

O grupo Ny (K)/K age a direita de U/K por isometrias da seguinte maneira. Seja
n € Ng(K) euecU, entdo uk -nK = unK = uKn. O grupo F também age sobre S por
multiplicacao a direita e podemos vizualizar esta acdo por meio do recobrimento de Cartan.
Seja f = fj(nK) € F e s = fj(uK) € §, entdo

s-f = (k)7 (nK) = i (unK) = 7 (uk -nK),

=
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onde usamos que o recobrimento de Cartan 7) : U — U satisfaz 7j(un) = 7j(u)7)(n) para
u € U e n € Ny (K). Portanto, 7] funciona como uma equivaléncia entre estas duas agdes.
Os resultados que vimos até aqui nos permitem demonstrar um resultado andlogo ao
Teorema 3.2.4 para o espago simétrico U /K. Seja W = M* /M o grupo de Weyl de U /K, em
que M* e M sdo, respectivamente, o normalizador e o centralizador de t em K. Denote por T
o subgrupo conexo de U com élgebra t. Finalizamos demonstrando o Teorema 3.2.1, que

enunciamos no inicio desta Se¢do.

Demonstragdo do Teorema 3.2.1. Pela Proposi¢do 3.2.3, podemos escrever k = kom, com
ko € Ko e m € M. Como m centraliza T, podemos supor, sem perda de generalidade, que
k=kye K. Sejat €T tal que ktp =t'p e considere k € K,7, € T no recobrimento
%:U — U tais que #(k) =k, #(f) =t e #(7') = ¢'. Denotando j = K, temos que

F(kip) =ktp =1t'p=R(7'p).

Isto mostra que ambos 7' jj e ki estdo em &~ (p), logo, 7 (7' ), 7 (kip) € A~ (p). Vimos
que & (p) < Ny(K), entio A~ (p) < F; segue que existe f € F C T tal que

k! =qkip) =q(Fp)-f= (') feT.
Pelo Teorema 3.2.8, temos que existe w € W, em que W= N,g(T), tal que
fj(kip) = ki*k~' = witw™ ! = f(Wip).

Como 7 é um mergulho, temos que k75 = w7 . Projetando esta igualdade em U /K, temos

que ktp = T(W)tp, em que T(Ww) € W pelo Teorema 3.2.8. H



3.3 Imagem Inversa da Exponencial 99

3.3 Imagem Inversa da Exponencial

O objetivo desta Secdo é descrever o conjunto das geodésicas que conectam dois pontos
arbitrarios p e g de um espago simétrico compacto S. Para motivar a discussao, considere o

seguinte exemplo

Exemplo 3.3.1 (Esfera $2 C R%). Sejam p,q € $? e suponha que g # p e que ¢ # —p. Seja
X € T,S? o vetor de menor norma tal que exp »(X) = g e denote Xp = X /|X|. As geodésicas
que conectam p € g t€m a forma exp,,(t(X +27Xp)), t € [0,1], logo, todos os pontos do
reticulado X + 277X s@o levados em g por exp,,.

Por outro lado, se g = —p, todo X € TPS2 com |X| = 7 é tal que exp,, (tX) € uma geodésica
que vai de p a g = —p. O mesmo vale se |X| = (2k+ 1)7 para k € N. De maneira andloga, se
q = p, as geodésicas fechadas passando por p t€ém a forma expp(tX ) com |X| =2km, k € N.
Mais adiante, voltaremos a este exemplo nos apropriando da teoria geral a ser desenvolvida

nesta Secao.

Fixado o ponto base p = 1K e, dado um ponto g € S = U /K, denote por K¢ o subgrupo
de K que fixa g, entdo, para qualquer geodésica y que conecta p € g, a érbita K97y consiste
de geodésicas que vao de p a g. Podemos identificar uma geodésica y com o vetor tangente
X =7(0) € T,S = 5 e escrevemos ¥(t) = exp,,(tX) = exp(tX ) p, de modo que g = (1) =
exp,(X)eX € explj1 (¢). Dado k € K, a exponencial Riemanniana satisfaz

ky(t) = kexp(tX)k 1K = exp(tAd(k)X) p,

logo, K7 age em exp;l (g) via a sua representacdo adjunta, ou seja, kX = Ad(k)X. Como os
subespacos de Cartan sao conjugados e cobrem s (Corolério 1.4.13), podemos supor, sem
perda de generalidade, que X = H € t, em que t C s € um subespaco de Cartan. Deste modo,

a Orbita K9y se identifica com a chamada drbita focal
S(H) =K7H CT,S. (3.17)
Considere o reticulado de S,
I'={yet:exp,(y)=p}={ret:exp(y) €K},
definido na Subsecdo 3.1.2. Lembre-se do centralizador mod I'

Wi={weW:wHecH+T}.
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e do subgrupo ng de W gerado pelas reflexdes em hiperplanos de raiz @ = 0 tais que

o(H) € nZ. Como vimos na Subse¢do 1.3.3, trata-se de um subgrupo normal de W¢.

Teorema 3.3.2. Dado q = exp(H)p,

exp, ' (q) = |J F(H+7)
yel'

Demonstracdo. Denote h = exp(H). Inicialmente, mostramos que cada uma das 6rbitas

focais é levada em g = hp pela exponencial. Dado k € K e y € T, temos que
exp,,(Ad(k)(H +7)) = kexp(H + y)k ' p = kexp(H)k ™' p = k(hp) = q.

Por outro lado, seja X € s tal que exp,,(X) = exp(X)p = hp. Existe k € K tal que Ad(k)X € t
(Coroldrio 1.4.13), de modo que exp(Ad(k)X)p = khp € Tp. Segue do Teorema 3.2.1 que
existe w € W que satisfaz khp = whp, em que w pode ser pensado como um elemento de K

e, portanto, k~'w e K9. De modo equivalente, podemos escrever
exp(Ad(k)X)p = exp(wH)p,
em que ambos Ad(k)X,wH € t, logo,
Ad(k)X =wH+7Y =w(H +7),

emquey=w_ : Y € T. Observe que usamos que I' é W —invariante, isto segue do fato que

podemos considerar W C K e exp(I') C K. Temos entdo que
X =Ad(k Yw(H+7y)=Ad(k'w)(H+7) e F(H+7).

]

Por definicao de 6rbita, se duas Orbitas focais se intersectam, elas claramente coincidem.
O subgrupo W de W nos fornece uma maneira de determinar quando duas 6rbitas focais

coincidem.

Proposic¢ao 3.3.3. Duas 6rbitas focais §(H + ¥) e F(H +7) coincidem se, e somente se,
H+Y e Wi(H+Y).

Demonstragcdo. Suponha que exista w € W (podemos pensar que w € K) tal que w(H +7y) =
H + 7, entdo
q=exp(H+7Y)p=wexp(H+7)p=wqg.
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Segue que w € K? e, portanto, H + Y € F(H + 7).

Por outro lado, suponha que §(H +v) = §(H + 7). Existe k € K7 tal que H +Y =
Ad(k)(H +7) e, pelo Coroldrio 1.4.20, existe w € W que satisfaz Ad(k)(H +7y) = w(H +7).
Como wy €T, temos que w € W4, O

O proximo passo € determinar a dimensao das Orbitas focais e descrever suas componentes
conexas. Para tanto, é necessario entender melhor alguns subgrupos de K7 e de W9. Seja
Ky = {k € K : Ad(k)H = H} o centralizador de H em K e K, = {k € K : khkk ' = h} o

centralizador de 4 em K. Para k € Ky, temos que
h=exp(H) = exp(Ad(k)H) = khk !,

de modo que Ky C K. Os elementos de Ky fixam a geodésica y(¢) = exp(tH) ponto a ponto
e 0 mesmo ndo &, necessariamente, verdade para os elementos de Kj,. Temos entdo que §(H)
¢ difeomorfo ao espago homogéneo K /K.

Seja t C s um subespago de Cartan de u, denote m = 3,(t) N e lembre-se dos autoespagos
generalizados my da familia de operadores ad(t) definidos no Teorema 1.4.10. Temos que 1t

se decompde da seguinte forma:

u=m-+t+4 Z My,
acAs

em que Ag = Ag(u,t) é o conjunto das raizes restritas e o € a invoug@o de u, conforme a
Secdo 1.4. Para o € Ag(u,t), denotamos €y = ENmy € 54 = sMNMy, de modo que

t=m® ) by, s=td Y sq.

aEAs acAs

ty e 5o tém a mesma dimensdo, uma vez que, para H regular (ou seja, 3,(H) Ns =t, vejaa

Secdo 1.4), temos que ad(H) é invertivel em cada mg e temos que
ad(H)ty Csy, ad(H)sq C ty.

Denotamos por ny a dimensdo comum de sq € €.

A élgebra de Ky € denotada ty = {X € ¢: [X,H] = 0} e a élgebra ¢, de K, pode ser

d(H)

descrita como {X € £: ¢*“V"/X = X}. Estas dlgebras podem ser decompostas da seguinte

forma.

ty=md Y to, H=ma Y to (3.18)
o(H)=0 o(H)e2nZ
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Se k € K9, temos que kq = ¢, logo, aplicando o recobrimento de Klein 1 : U/K — U com
q = hp, temos que

kh*k~' = n(khp) = n(kq) = 1(q) = n(hp) = 17, (3.19)

entdo K? C U, o centralizador de h?. Como khp = hp se, e somente se h'khek , podemos
descrever K¢ como o conjunto {k € K : h~'kh € K}. Para X é um elemento da 4lgebra £
de K9, temos que exp(—H ) exp(tX) exp(H) = exp(te*d~7)X) € K para todo ¢ € R, entio
MR X c b Segue que 89 = {X € €: ¢™H)X c £}, Para X € ¢, usando a involugdo,
temos que

ead(—H)X _ G(ead(_H)X) _ ead(H)X

(veja a Equacdo (3.8)). Portanto, P2y — x , entdo
P ={Xect: MY =X} =¢,.
Lembrando da equacdo (3.9) e da discuss@o que vem em seguida, temos que

=tp=mod ) ¢ty (3.20)
o(H)ernZ

Estes espacos que descrevemos nos serdo tuteis na demonstracao da préxima Proposicao,
que € um passo na dire¢do de entender as propriedades das Orbitas focais. Os elementos do
grupo de Weyl W sdo reprsentados em K pelos elementos do normalizador M™ de t, ou seja,
W = Ad(M")|;. Defina M = M*NK1.

Proposicio 3.3.4. Podemos decompor K¢ = (K?)oM™.

Demonstracdo. A ideia desta demonstragdo é, a partir do espaco simétrico U /K, encontrar
um espago simétrico que tenha K¢ como isotropia para, assim, proceder de maneira similar a
Proposicao 3.2.3.
Denote por s a simetria geodésica ao redor de p = K, ela satisfaz s(uK) = o (u)K, em que
o é ainvolugio de U. Seja g = hp, em que h = exp(H) com H € te defina g = s(q) =h'p.
Se k € K9, temos que
kg = s(khp) = s(hp) = c(h)p=¢,

! !
logo, K¢ C K?. Por simetria do argumento, temos que K = K9 .
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O centralizador U, € fechado em U, logo, € um grupo compacto. Além disso, se u € U2,

temos que

c(wh’c(u™')=cwh>u")=0c(h™?)=h,

oc(wh o) =cwh*u')=c(h*)=h2,

logo, Uj» € invariante por o. Por fim, a equagdo (3.19) nos mostra que K¢ < U,».

Denote por u,» a dlgebra de U,2; sendo U invariante por o, u, também €, entdo
we =8 D5, emque € =ENuy €5, = sNu,e. Relembrando a equagdo (3.20), temos
que £, = 9, logo, ﬁx(G\th)o CK1C ﬁx(G]th) e, portanto, U,» /K9 é um espaco simétrico
compacto. Observe ainda que t C 5,2, uma vez que h* € T = (exp(t)) < Ujz.

Dado k € K%, Ad(k)t C 5,2 € um subespaco de Cartan, entdo, pelo Coroldrio 1.4.13, existe
k' € (K7 tal que Ad(K'k)t = t, logo, K'k = w € KINM* = M*?. Portanto, k = (K') " 'w €
K9 = (KCI)OM*CI

[

A préxima proposi¢do nos fornece informagoes sobre os grupos W7 e qu , 0S quais sao

importantes nas descricdes das Orbitas focais.

Proposic¢ao 3.3.5. Os subgrupos W7 e qu de W satisfazem
W =AdM)|¢ Wy =Ad((K?)oNM*)|;.

Demonstracdo. Sejaw € W, entdo wH = H + y para algum y € I'. Seja k € M* um repre-
sentante de w, ou seja, w = Ad(k). Segue que

kq = kexp(H)k™'p = exp(wH)p = exp(H +y)p = exp(H)p = g,

logo, k € K?. Por outro lado, se k € M*?, temos que exp(Ad(k)H)p = k(exp(H)p) =
exp(H)p = q, entdo Ad(k)H € H+T, ou seja, Ad(k) € W4.

Com a notacdo da Proposi¢do 3.3.4, seja
se, () FtD) mg
[0

a decomposi¢ido de u;,2 em espagos de raizes restritas com respeito a t (vide Teorema
1.4.10). O grupo U, pode ser descrito como o conjunto dos u € U tal que uh*u=' = h? ou,

equivalentemente, Wuh™?% = u, de modo que, para X € w2, temos

exp(tX) = exp(Ad(h?)rX) = exp(e™PHX) = W exp(1X)h 2.
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Portanto, todo X € u,> deve satisfazer ¢MCH) Y — X Esta equacao impode condi¢des sobre

as raizes de Ag(u2,t). Para um par hiperbdlico X,Y € m,,, temos que X = oA4CH) x

cos(2a(H))X —sen(2a(H))Y, de modo que at(H) € mZ. Segue que o conjunto de raizes de
(u;2,t) pode ser descrito como {o € Ag(u,t) : a(H) € nZ} e, portanto, o seu grupo de Weyl
coincide com qu , 0 qual pode ser visto tanto como representacio adjunta do normalizador
KINM* C K? quanto de (K?)oNM* = (K9)oN(KINM*) = (K?)oNM™ (veja a Proposi¢io
1.4.17). [

Pelo Teorema 13.8 de [6] e pelo comentério que vem logo em seguida a este Teorema, se
G é um grupo de Lie (ndo necessariamente conexo) e age de forma diferencidvel e transitiva

sobre uma variedade N, entdo, para x € N, temos

N=Gx= U gGox = U Gogx,
geG geG

uma vez que Gy < G, ou seja, N € unido de componentes conexas difeomorfas a Gox. O
mesmo ocorre com as Orbitas focais, cada uma de suas componentes conexas é difeomorfa a
(K9)oH e, como K9 = (K9)oM*? (Proposi¢do 3.3.4) e W = Ad(M™)|¢ (Proposi¢do 3.3.5),

as outras componentes sdo da forma (K?)owH para algum w € W9. Portanto,

S(H)=KH= [ (K?)owH. (3.21)

weW4d

Esta descri¢do pode ser ainda mais refinada se determinarmos sob quais condi¢des (K?)owH =
(K9)ow'H para w,w' € W4.

Teorema 3.3.6. As componentes conexas de F(H) estdo em bijecdo com o grupo quociente
wi/ Wg . Cada componente corresponde a uma orbita (a esquerda) de Wél em WIH e é
difeomorfa a (K?)oH.

Demonstracdo. Inicialmente, observamos que §(H ) intercepta t na 6rbita WH. Claramente,
W9H C t. Por outro lado, seja k € K9 e suponha que Ad(k)H € t, entdo existe w € W tal que
Ad(k)H = wH (Coroldrio 1.4.20). Temos que

q =exp(H)p = kq = exp(Ad(k)H)p = exp(wH ) p,

logo, wH € H+T e segue que w € W9, Usando a equagio (3.21), para contar as componentes
conexas de F(H ), basta determinar sob quais condigdes (K9)owH = (K?)ow'H para w,w’ €
we.
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O centralizador Wy de H em W satisfaz Wy < qu AW, Sew = Ilwg para g € Wy
el € W, é facil ver que (K?)owH = (K?)ow'H, pois gH = H e Wy = Ad((K?)oNM*)|;
(Proposigdo 3.3.5). Vamos mostrar que as componentes conexas de §(H) estdo em bije-
¢ao com o espago de classes laterais duplas W(;’ \ W%/Wy. Suponha, de modo geral, que
(K9)owH = (K?)ow'H e relembre o espago simétrico U,,»/K? definido na demonstragio da
Proposi¢do 3.3.4, o seu grupo de Weyl é qu . Temos que t > w'H = Ad(y)wH para algum
y € (K)o, entdo existe [ € Wy tal que IwH = Ad(y)wH (Corolério 1.4.20) e segue que
wH = [wH. Se H é regular, segue da Proposicdo 1.4.18 que w’' = Iw, caso contrdrio, temos
que (Iw)~'w' € Wy, ou seja, w' = Iwg para algum g € Wy.

Segue que hd uma bijecdo entre as componentes conexas de §(H) e o conjunto de classes
laterias duplas Wy \ W9 /Wy. Para qualquer w € W, temos que Wy wWy = wWWy = wW,,
uma vez que W] << W, logo, hd uma correspondéncia bijetiva entre W7/W e W) \ W?/Wy.

]

Por fim, descrevemos uma férmula para a dimensdo das 6rbitas focais. Num sistema de
raizes, temos a nocao de raizes positivas e negativas (veja a Defini¢dao 6.4.9 de [4]). Com as
devidas escolhas feitas, denotamos por Ag(u,t)™ 0 conjunto de raize positivas de Ag (u, t).
Defina

Ly ={acAs;(u,t)":0#4 a(H) € nZ}.

Cada 6rbita focal é difeomorfa a K9 /Ky como visto anteriormente e a dimensio de K?/Ky
coincide com a dimensdo de €7 /¢y, a qual pode ser calculada observando as equacdes (3.18)

e (3.20). Isto demonstra o seguinte Teorema.

Teorema 3.3.7.

dmF(H)= Y na,

acly

onde ny é a dimensdo comum de €y e Sq.

3.3.1 Imagem Inversa da Exponencial na Esfera 2

Nesta Subsec¢do, vamos aplicar a esfera unitéria $? C R? com a métrica induzida pelo produto
interno padrio de R? a teoria desenvolvida a respeito da imagem inversa da exponencial.
Escolhemos p = (0,0, 1) como ponto base. O grupo U = SO(3) age de forma transitiva

sobre 2, de modo que podemos escrever S?~U /K, em que

K= { (A 1) tA € SO(2)} ~ SO(2).
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A simetria geodésica em torno de p é dada pela restri¢do da transformacdo linear

a §? (veja o Exemplo 2.2.2). A a¢do de s, sobre 52 se identifica com a acdo de multiplicacao
a esquerda por s, em U /K. Podemos recuperar a involugdo ¢ de U observando que ela

compde o seguinte diagrama comutativo

u—% U

SZ Sp SZ

-1

emquer:U — S?éa projecdo natural. Temos que o satisfaz o (u) = Sputs,,

Considere a base

0 1
Xi=1-120 s Xo =
0 —1

0
0 X3 = 0o 1],
-1 0

S O O
S O =

de s0(3) com as relacdes de colchete
X1,X] = —X3, [X1,X3] =Xa, [X0,X3]=—X].
A involucdo o : s0(3) — so(3) satisfaz
(X)) =X, o(X2)=-X3, o(X3)=—-Xz,

de modo que £ = (X)) e s = (X3,X3). Os subespacos de Cartan sdo unidimensionais da forma
t=(H) com H € s. Escolhendo H = 6X,, temos que s0(3) se decompde como t+ my com
mg = (X1,X3), em que o sistema de raizes restritas € A¢ = {+a '} com o (H) = 6. Portanto,
o grupo de Weyl tem apenas dois elementos, W = {1,rq}, em que ro(H) = —H. Fica claro
que I'y = nZX;.

Para determinar os reticulados I" e I'y precisamos entender como a métrica se expressa
em t. Identificando s ~ TI,,S2 e considerando Y € s, a exponencial Riemanniana se escreve

Y

exp,(¥) :exp(Y)p:cos(|Y|)p—|—sen(|Y|)‘7| (3.22)
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Além disso, denotando exp : s0(3) — SO(3) a exponencial de SO(3), temos que

cos(s) O sen(s) 1
exp(sXp) = 0 1 0 , exp(sX3) = cos(s) sen(s) |,
—sen(s) 0 cos(s) —sen(s) cos(s)

logo, exp,((7/2)X2) = exp((7/2)X2)p = (1,0,0) e exp,((/2)X3) = (0,1,0). Portanto, o
produto interno em s induzido pela métrica de > em p é tal que X»,X3 forma uma base
ortonormal.

Como a(X,) = 1, temos que Hy = X, e segue que Hg = 2H,, logo, T'g = 2nZX;. Pela
Equacio (3.22), o reticulado I'" pode ser definido como

[={Yct:|Y| €2nZ},

pois exp,(Y) = p se |Y| € 277Z. Segue que I' = T'.

Vamos agora variar o valor de 0 na definicdo de H = 60X, de modo a considerar os
diferentes resultados possiveis de acordo com cada escolha para g = exp, (H). Suponha
que H = 27X, ou seja, g = p, entdo K¢ = K é conexo e segue da Proposicdo 3.3.5 que
W=wi= qu , de modo que F(H) tem apenas uma conponente conexa (Teorema 3.3.6).
Para ver isso, considere

cos(s) sen(s)
u= | —sen(s) cos(s) ckK.
1

Temos que Ad(u)H = uHu ' =2m(cos(s)X, — sen(s)X3), donde segue que F(H) consiste de
uma circunferéncia com centro na origem de s e com raio 27. De maneira similar, mostra-se
que, para cada y = 2kmX, € T, a 6rbita focal F(H + y) consiste de uma circunferéncia com
raio 2|k + 1|m. Segue que exp[;l (¢) é uma unido disjunta de circunferéncias. Observe a
Figura 3.1, ela ilustra o plano TpS2 ~ s e o eixo destacado representa o subespago de Cartan
t. Os pontos verdes representam elementos de I'; que ndo estdo em I e, os vermelhos, os

elementos de I'y =I". O ponto preto central representa a origem de s.
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F(H + 27 X5)

Figura 3.1 : Orbitas focais em S? no caso H = 271X,

Suponha agora que H = X>, isto é, ¢ = — p. Qualquer rota¢do de SO(3) que fixa p deve
fixar também o seu antipoda ¢, logo, K¢ = K. Como no exemplo anterior, W = W% = qu e
cada 6rbita focal tem apenas uma componente conexa. Novamente, exp;I (¢) é uma unido
disjunta de circunferéncias centradas na origem de s, mas, desta vez, com raios |2k + 1|,

k € Z, veja a Figura 3.2 abaixo.
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F(H + 27 X5)

Figura 3.2 : Orbitas focais em % no caso H = 11X,.

Suponha agora que g € {+p}, ou seja, H ¢ nZX,. Um elemento de K que fixa dois
pontos de s? que ndo sdo antipodas deve ser a identidade, entdo K¢ = {1}. Segue que cada
6rbita focal consiste de um tinico ponto e exp™ ! (q) = H +T.

3.3.2 Imagem Inversa da Exponencial no Plano Projetivo RP?

Nesta subse¢do, vamos tratar do plano projetivo, do qual a esfera do exemplo anterior
€ o recobrimento universal Riemanniano. Isto nos permitird aproveitar o que fizemos
anteriormente e adaptar para este novo contexo.

O plano projetivo, denotado RP? pode ser descrito de diferentes maneiras, uma delas é
como o conjunto obtido ao se identificar pontos antipodas da esfera. Um ponto de RP? ¢
denotado [g] = {£¢}, onde g € $>. Temos entdo uma projecio natural 7 : S*> — RP* dada
por ©(q) = [g], que é um difeomorfismo local (veja os Exemplos 4.7 e 4.8 do capitulo 1
de [10] para mais detalhes). Podemos definir uma métrica em RP? para que 7 seja uma

isometria local da seguinte maneira. Para w,v € T[q] ]RPZ,

W) = (dﬂ[;]lw,dn[q]lv)q.
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Podemos escolher tanto g quanto —g para definir a métrica em [g|, mas a defini¢do ndo
depende desta escolha, como veremos a seguir. Sejaa = —1 € O(3), é facil ver que Toa =1

1

e, consequentemente, T =ao n~!. Usando que da_, = —id, concluimos que

[q]lv)_q = (da_qdn[;]lw, da_qdn'[q}lv)q

-1
<d7r[q] w,dT

= (dﬂ?[;]lw,dﬂ[;}lv}q.

Sendo 7 uma isometria local, a exponencial Riemanniana de RP?> em [p] satisfaz
expy,| odm, = moexp, (Lema A.1.7). Usando dm, para identificar Tp52 e T[p}]RPz, po-

demos considerar que expy, = Toexp,. A simetria geodésica s}, satifaz s, ow = wos),.

7] 2

De fato, seja X € T,,Sz, entao

7 (sp(expp(X))) = m(exp,(=X))
= exppy) (=)
= s7p) (exp [p](X))
= 5] (7(exp, (X))

Temos o seguinte diagrama comutativo.

2 g

rp? W pp?

Compondo a proje¢ao r: U — 52 do exmplo anterior com 7T, obtemos o seguinte diagrama
comutativo.

uvu—2% U

)
RP> — P Rp2

Isto nos mostra que, no nivel da 4dlgebra u nada € alterado em relagdo ao exemplo da esfera.

A projecdo 7 nos permite transferir a agdo de U = SO(3) sobre S? para uma acfio sobre
RP? fazendo u[g) = n(ug) = [ug]. Deste modo, temos que RP? ~ U /K’, em que a isotropia

. A
e={(t ) esom)

de [p] é dada por
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em que A é uma matriz 2 x 2. Seja A’ como definido na Equacio (3.26), entdo todo elemento

de K’ ou estd em K (a isotropia de p no exemplo da esfera 5?) ou pode ser escrito como

R,

=J €K

de modo que K’ = K UJK tem duas componentes, sendo K a componente da identidade de
K.

A algebra de K’ coincide com a élgebra £ = (X;) do exemplo anterior e 5 = (X5, X3).
Identificando os espagos tangentes em p e em [p| com s, escolhemos o subespaco de Cartan
t = (X»), de modo que I'} = nZX, e I’y = 277ZX;. Para determinar o reticulado I, basta
notar que [p] = expy, (0X2) = 7(exp,(6X2)) se, e somente se, exp,(6Xz) € {+p}, logo,
I'=n7ZX,=T}.

Vamos agora obter a 6rbita focal F(H) no caso em que H = (7/2)X;. Observe que
expp, (H) = [g] com g = (1,0,0), como visto no exemplo anterior. Temos que (K"l

consiste dos elementos k € K’ tais que kg € {%q}; cdlculos simples mostram que

( 3\

(K" = {1, -1 |, 1 -1 :

Temos que

Ad(D)X; = Ad(ky) X = X5,
Ad(k)Xy = Ad(k3)Xs = —X,,

de modo que F(H) = (K')¥) = {+H}. Como I = 7ZX>, temos que, para ¥ = mnX, € T,
S(H+y) ={+(H+7)}.

Vimos no exemplo da esfera que W = {#1} e, claramente, 1 € W4, Como

—1-H=—H=H— 1X,,
~—~
er
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temos que —1 € W4 também. Além disso, o(H) = /2, entdio —1 & Wo[q] e temos WOM =
{1}, como esperado, jd que as 6rbitas focais tém apenas duas componentes conexas (que sdo
dois pontos).

Para H = X, temos que [g] = expy, (H) = [p], jd que exp,(H) = —p, logo, (KN =K'
Contas simples mostram que Ad(J)X; = X, e Ad(J)X3 = —X3, de modo que a érbita de
qualquer ponto de X € s pela agdo de Ad(K’) consiste de uma circunferéncia passando por
X e com centro na origem. Portanto, uma 6rbita focal §(H + y), y € I, consiste de uma
circunferéncia com centro na origem e passando por H + ¥, como na Figura 3.3 abaixo, a
qual descreve o plano Tj, RP? ~ 5. Os pontos verdes representam elementos do reticulado
I'=T"| que ndo estdo em Iy e os pontos vermelhos representam elementos de I'g. Observe
como as Orbitas focais na Figura 3.3 podem ser formados pela sobreposicao das orbitas focais
nas Figuras 3.1 e 3.2. Isto estd relacionado com o fato que construimos RP? identificando os

pontos antipodas de S2.

F(H + 27 X>)

Figura 3.3 : Orbitas Focais em RP? no caso H = 1tX».
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3.3.3 Imagem Inversa da Exponencial em Grupos de Lie

Nesta Subsec¢do, vamos aplicar a teoria da Imagem inversa da exponencial a uma classe de
grupos de Lie que podem ser vistos como espagos simétricos. Pelo Teorema A.2.6, sabemos
que, num grupo de Lie com métrica bi-invariante, a exponencial do grupo coincide com
a exponencial Riemanniana. Seja U um grupo de Lie conexo com dlgebra compacta u e
métrica bi-invariante, tal como na Subsec¢do 3.1.3. Vimos que existe uma isometria [ entre
U e o espaco simétrico U2 /K em que K = {(u,u) : u € U} e u é dada por
—1
w((ur,u2)K) = uyuy
Além disso, vimos que a algebra u? se decompde como a soma £+ s de autoespacos £1, em

que

t={XpX:Xecu}~u
s={X®-X:Xecu}~u

e £ é a dlgebra de K. Denotando p = (1, 1)K, podemos identificar 7,,(U?/K) ~ 5 e a isometria

U nos fornece um isomorfismo s — u dado por

veja a Equagao (3.15).

Sejam h < u uma subdlgebra de Cartan e h = exp(H), com H € h, vamos calcular
exp ! (h) utilizando o que vimos na Sec¢io 3.3. Seja Hy = H/2 e hy = exp(Hy). Escolhendo
q = (ho,hy")K € U*/K, temos que (q) = h§ = h. Para determinar exp ' (h), vamos
determinar expl;1 (g) e usar a isometria u para obter o resultado desejado. Pelo Teorema

3.3.2, temos que

exp,'(9)= |J SHo®—Ho+y®-7),
y®e—yell

em que §(Ho® —Hp) = K9(Hy ® —Hp) e K? age via a representagio adjunta.
Teorema 3.3.8. Temos que
exp ' (h) = dpp(exp, ' (9))-

Demonstragdo. Seja X € exp™ ! (h). Observe que X = du,(X/2®—-X/2) e que

i (exp, (X /26 —X /2)) = exp(X) = h = p(q).
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Da injetividade de u segue que exp,(X /2@ —X/2) = g e, portanto, X € du,, (explj1 (q))-

Por outro lado, seja Y € d,up(exp;](q)) e denote ¥ = du,(X @ —X), em que g =
expp(X @ —X). Usando que exp coincide com a exponencial Riemanniana de U segue
do Lema A.1.7 que

exp(¥) = exp(dity (X © X))
— u(exp, (X & X))
= u(q)
= h,

logo, Y € exp ! (h) O

Para entender melhor exp_1 (h), devemos entdo entender o subgrupo K?; ele consiste
dos elementos (k,k) € K que fixam g, ou seja, (k,k) (ho,hgl)K = (ho,hal)K. Temos que
(k,k) € K9 se, e somente se,

khk ' = kh3k™' = h} = h.
Portanto,
K?={(k,k) €K :k €Uy},
¢ a diagonal de Uj, x Uy, em que Uj, é o centralizador de 7 em U. De maneira geral,

Ad(u, )X DY = Ad(u)X ® Ad(«)Y, entdo

d,up(Ad(k, k)Hy® —Hp) = du, (Ad(k)Hy & —Ad(k)Hp) = Ad(k)H.

dtp (Ad(k, k) (Ho @ —Ho + Y@ —)) = Ad(k) (H +2).
Temos entdo que

Teorema 3.3.9. Se y € I, a 6rbita focal F(Hy® —Ho+ y® —y) em U? /K corresponde, em
U, via a isometria |, a orbita Uy(H +2Y). Segue que

exp™! () = | Un(H +2).
yel’

Além disso, UpH ¢ difeomorfo ao espagco homogéneo Uy, /Uy.

Vamos tratar agora sobre como usar a formula do Teorema 3.3.7 para calcular a dimensao

da orbita focal UpH. Relembre a decomposicao de u? com respeito ao subespaco de Cartan t
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(Proposi¢do 3.1.4) e observe que (mg ®my) NE~ my. Seja
Ly, ={a € A" :0+# a(Hy® —Hy) = a(Hy) € nZ}
e observe que, como H = 2Hy, 0 # ot(Hp) € nZ se, e somente se, 0 # o(H) € 2. Portanto,
Ly,={a€A":0+# a(H) €2nZ}
Deste modo, aplicando a férmula, temos que

dim(UpH) = dimF(Ho®& —Ho) = Y ng= ) dim(mg), (3.23)

(XGLHO OCELHO

em que nqy € igual a dimensao de (my G my) NE, que € igual a dimensdo de my,.

Imagem Inversa da Exponencial em SO(4)

Aplicamos agora o que foi visto até aqui nesta Se¢cdo em um exemplo mais especifico.
Sejam U = SO(4) e u = so(4). Como no Exemplo 1.2.6, as matrizes U;; = E;; — Ej;,
comi,j€{l,...,4} ei < j, formam uma base de u e as matrizes U}, e U34 formam uma
subalgebra de Cartan que denotaremos h. Sejam

0O 6 cosO senf
-0 0 —senf 7]

H=0U}; = ol h=exp(H) = seny cos
00 01

Calculos simples mostram que Uj, consiste de matrizes da forma

A
U= ( B) . (3.24)

Se 6 ¢ nZ, temos que A, B € SO(2), ou seja, Uy, ~ SO(2) x SO(2). Como a matriz

(0 1Y} 0 m/2
R_<—l O>—exp (—71'/2 0) (3.25)

pertence a SO(2) e SO(2) é abeliano, temos que Uy, coincide com Uy e segue que U,H = {H }.
Como as componentes conexas de U, H estdo em bijecao com o quociente W9/ W(fl , deduzimos
que W9 = Wy (Teorema 3.3.6).
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Por outro lado, se 0 = 7, temos que

de modo que H € I' e, conforme a Equagdo (3.24),
Upy={u: A,B€0O(2), ABcSO(2)}.

Como no caso anterior, Uy ~ SO(2) x SO(2). Para determinar U,H, observe que, como
SO(2) é a componente da identidade de O(2), entdo O(2) = SO(2) UA’SO(2) para alguma
A" € 0(2) — SO(2). Podemos escolher, por exemplo,

, (10
A_<O 1) (3.26)

Seja u € U, conforme a Equagdo (3.24), podemos escrever A = A’Ag se A € O(2) —SO(2),
em que Ag € SO(2) comuta com a matriz R da Equagdo (3.25) ou A = Ag se A € SO(2).

Segue que
R ARA™!
Ad(u)H = uHu ' = u & =" ,
0] 0]

em que O denota a matriz nula 2 x 2. Temos entdo que U, H consiste de 2 pontos, sendo um

TA'R(A) ! _ (—=R _
o) o)

Segue que W9 /W, ~ {£1}.
Por fim, suponha que 6 = 27. Neste caso, temos que & = 1, logo, U, = U e temos que
UyH ~ U, /Uy =~ U /(SO(2) x SO(2)) tem dimensdo 4, o que concorda com a férmula da

equacdo (3.23), uma vez que ambas as raizes & ¢ A (Exemplo 1.2.6) assumem o valor 27

deles H e o outro

sobre 2V, e dimmgy = 2 = dimm,.
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3.4 Grupo Fundamental de Espacos Simétricos

Nesta Secao vamos calcular o grupo fundamental de um espacgo simétrico conexo e compacto.
A estratégia € baseada no capitulo 13 de [3], em que é obtido o grupo fundamental de grupos
de Lie compactos. Veremos que, assim como no caso de grupos de Lie compactos, os grupos
fundamentais de espacos simétricos compactos e conexos sdo quocientes de reticulados.
Seguiremos os passos descritos no Teorema 5.2 de [2] e, quando necessario, usaremos alguns
resultados de [3]. Manteremos as mesmas notacoes da Secdo anterior.

Denotando por T o subgrupo conexo de U gerado pelo subespaco de Cartan ¢, € facil
calcular o grupo fundamental do flat maximal 7 p de U /K. A exponencial Riemanniana exp), :
t — T p € sobrejetiva e € um homeomorfismo local, logo, € um recobrimento simplesmente
conexo de Tp. O grupo das deck transformations consiste dos pontos H € t tais que
exp,(H) = p, ou seja, coincide com o reticulado I'. Sendo t simplesmente conexo, temos
que 7 (Tp) ~T. Observe que usamos a notagdo 7; (7 p) sem mencionar o ponto base do
grupo fundamental, fazemos isso porque 7 p € conexo (e, portanto, conexo por caminhos),
entdo, a menos de isomorfismos, a escolha de ponto base € irrelevante (Proposi¢do 1.5 de
[8]). A menos que seja dito o contrdrio, o ponto base é sempre p. Além disso, chamaremos
de loop uma curva fechada. Para mais detalhes sobre a relagc@o entre recobrimentos e grupos
fundamentais, veja a Subsecdo A.3.1 do Apéndice.

Por simplicidade, denote S = U /K. Vamos descrever uma relagdo entre 7; (T p) e m;(S).
Seja [a] uma classe de homotopia de loops passando por p, ou seja, [a] € m(S). Pelo
Teorema 2.2 do Capitulo 12 de [10], todo elemento de 7 (S) pode ser representado por uma
geodésica fechada passando por p, entio seja X € s ~ TS e 7(t) = exp,,(tX),t € [0, 1], uma
geodésica fechada tal que [@] = [y]. Observe que exp,(X) = p. Pelo Coroldrio 1.4.14, existe
k € Ky tal que Ad(k)X = H € t, de modo que

exp,(H) = kexp,(X) = kp = p,

donde segue que H € I'. Sendo Kj conexo, denote por k(s),s € [0, 1], uma curva em Kj tal
que k(0) =1 e k(1) = k. A aplicacdo

ls(t) = k(s)exp, (tX)

€ continua e satisfaz lo(t) = y(¢) e [i(t) = exp,(tH), logo, ¢ uma homotopia entre ¥ e a
geodésica exp,,(tH) de Tp. Note que k(s)exp,(X) = k(s)p = p, entdo I;(t) € uma curva
fechada por p para todo s.
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A inclusdo 7' p — S induz a inclusdo 7; (Tp) — 71 (S). A discussdo do pardgrafo anterior

demonstra o seguinte resultado.

Teorema 3.4.1. Todo loop em S é homotopico a um loop em T p e a inclusdo Tp — S induz

0 homomorfismo sobrejetivo 7| (T p) — w1 (S).

Isto nos mostra que, para calcular 7, (S), basta determinar o nicleo do homomorfismo
m (Tp) — m(S), é para isso que trabalharemos nesta Se¢do. Demonstramos agora um Lema

andlogo a Proposicao 13.14 de [3], que nos serd util mais adiante.

Lema 3.4.2. Todo loop em 7 p € homotdpico em 7 p a um loop da forma

t > exp, (1Y),

paraalgum ye .

Demonstragdo. Sejal(t),t €[0,1],um loop em T p passando por p. Existe uma curva /() em
t que é o levantamento de [(z), ou seja, I(1) = expp(l~ (1)) (Proposigéo 13.2 de [3]). Observe
que usamos que exp,, : t — T'p € o recobrimento simplesmente conexo de T'p. Se / (I)=vyerTl,
temos que / é homotdpica com extremidades fixadas ao segmento de reta r(r) =y, 1 € [0, 1].
Denotando esta homotopia por I, ela satisfaz [y = [ e [; = r. A composicdo exp, oly nos

fornece uma homotopia entre [ e a geodésica fechada exp, (ty),t €10,1]. ]

Observacao 3.4.3. A composi¢do de loops em T p corresponde a operagdo de soma em
I'=m(Tp). Sejam Hy,H, € I' e a;(t) = exp,(tH;) (j = 1,2) loops em T p. Considere
a composicdo (produto em 7y (T p)) [ - @] dos loops [] e [ap]. O levantamento desta
composi¢do deve ser uma composicao dos levantamentos ¢ — tH;| e t — H| +tH>, ou seja, 0
levantamento ¢ — tH, de o foi transladado por H;. Este levantamento € homotépico em t
ao segmento ¢ — t(H; + H,). Entdo a composi¢do de loops em T p corresponde a operagio
de somaemI' = (Tp).

Na Subsecdo 3.1.2, construimos um homomorfismo y : $3—=U,o qual satisfaz

y(e) =exp(tg(v)),

em que y € um quaternion unitdrio com parte real nula. Considere o arco de grande circulo
c(r) = €™, 1 €[0,1], que vai de 1 € §* ao ponto antipoda —1 € §>. Sejan:U — U/K a
projecio natural, entdo w(y(e'™)) = n(exp(tnHy)) = exp,(tmHy). Portanto, a composi¢do
7o W mapeia a semicircunferéncia c([0, 1]) na geodésica fechada 7 — exp,,(7Hy ) passando

por p.
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Teorema 3.4.4. Se y € Iy, entdo a geodésica fechada y(t) = exp ,(ty),t € [0, 1], é homoto-

pica, em S, a um ponto.

Demonstragdo. Seja mHy € I'y, vamos mostrar que ¥(t) = exp,(t7Hy), ¢ € [0, 1], ¢ homo-
tépica, em S, a um ponto. Temos que ¥(¢) = m(w(e/™)). Lembre-se do subgrupo K de
pontos fixos da involucdo & : §°> — §° definidos na Subsecdo 3.1.2, temos que y(K) C K. O

conjunto K é um grande circulo de e pode ser parametrizado por s — ek

, em que k é um
quaternion unitdrio.
Seja I,(t) a homotopia em S* definida da seguinte maneira. Para s = 0, lo(r) = '™,

1 €1[0,1], e, para s € (0,1], Ii(¢) é o grande circulo de S* que conecta ¢ ao ponto —1 € K.

Deste modo, temos que /(z) é uma homotopia, com extremidades em K, da curva ¢ Ty
curva constante /1 (1) = —1, ja que ¢™ = —1. A composi¢do 7o W o/(¢) é uma homotopia

de y a curva constante 7(y(—1)) € m(K) = {p}.

Seja agora y € I'g um ponto qualquer. Pelo Lema 3.4.2 e pela Observacao 3.4.3, temos
que ¥(t) = exp,(ty) € homotSpico a uma composigdo de loops do tipo exp,(t7Hy) para
variadas co-raizes Hy. Sendo cada uma delas homotépica a um ponto, temos que ()

também €. ]

Nosso préximo passo € mostrar que os elementos de I' — I’y correspondem a loops em
T p que ndo sdo homotdpicos a um ponto. Para tanto, vamos considerar um subconjunto de S
denotado S, cujo grupo fundamental € isomorfo ao de S e que tem propriedades que nos
ajudario a obter os resultados desejados. Para estudar S,.,, construiremos um recobrimento
para ele.

Seja U um grupo compacto. Um elemento x € U € chamado de regular se esta contido
em apenas um toro maximal de U e, caso contrdrio, x € chamado de singular. Os conjunto de
elementos regulares e singulares serdo denotados Uy,g € Using respectivamente. Por exemplo,
se x = utu”! para t em algum toro maximal 7" e u € U, temos que x é regular se, e somente
se, T € o tnico toro maximal que contém ¢, uma vez que todos os toros maximais de U sao
conjugados e cobrem U (veja a Proposigdo 1.2.9). Além disso, escrevendo ¢ = exp(2H ) para
H na algebra de T, temos que x = uexp(2H )u_l ¢ singular se, e somente se, existe alguma
raiz o tal que ot(H) € nZ (Proposicdo 13.24 de [3]).

Inspirado nessas ideias definimos t,.; 0 conjunto de elementos regulares de t, trata-se do

complemento em t do diagrama de Stiefel p (equacdo (3.13)). Em outras palavras
teg={H ct: (H) & n’Z paratodo & € Ag(u,t)},

em que t ¢ um subespago de Cartan de (u,5). Uma componente conexa de t,,, ¢ chamada

de alcova e ty.g € uma unido de alcovas.
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Observacao 3.4.5. Observe que o conceito de elemento regular € um pouco mais restritivo
neste novo contexto. Anteriormente, definimos H € t como regular se t = 34(H)Ns, o que

equivale a condi¢do que nenhuma raiz de As se anule sobre H.

Considere o grupo I' x W e seja H € t. Este grupo age a direita de t via
H-(y,w)=y+w 'H.
Observe que

H- (% W) ’ (V?W/) = (y—i—wilH) ’ (Vawl)
=7+ ) y+(ww)'H
=H-(Y + W) r,ww).

E importante observar que W deixa I invariante. Se y € T'e w = kM € W, temos que

exp,(wy) = kexp,(¥) = kp = p,

uma vez que K € a isotropia de p. Definimos entdo o produto em I' x W por

(vow)- (VW) = (¥ + (W)~ yoww)

Como consequéncia da proxima proposi¢do, podemos restringir a acdo de I" x W a uma acao

sobre ty.g.
Proposicao 3.4.6. Os grupos I e W deixam t,, invariante.

Demonstracdo. Seja H € t,.,. Sabemos que I' deixa p invariante, uma vez que I' C I'y, logo,
se H+ Y € p para alguma y € T, temos que H = (H +y) — Y € p, o que é absurdo. Segue
que I' deixa t,,, invariante.

Seja w € W e suponha que a(wH) € nZ para alguma raiz a, ou seja, wH € p. Temos
que (W ) a € Ag(u,t) e (W) a)(H) = a(wH) € nZ, de modo que H & t,¢, 0 que é
contraditorio. 0

Enunciamos agora um resultado que nos ser4 util posteriormente.

Teorema 3.4.7. O grupo I'g x W age transitivamente e simplesmente no conjunto de alcovas

de t. Portanto, I' x W age transitivamente no conjunto de alcovas.

Demonstragdo. Este Teorema é consequéncia direta do Teorema 13.34 de [3] observando

que I'o x W <TI'xW. Aqui a acdo que consideramos € a direita e ndo a esquerda como em
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[3], mas o resultado ndo € alterado. Considere a acdo a esquerda
(v,w)*xH =wH +.

E facil ver que
(Y7w> *H=H - (Y7W_])7

donde segue que o Teorema também € valido considerando a ac¢ao a direita. [

Seja
Sreg := Kexp,(treg) = exp,(Ad(K)treg) (3.27)

o conjunto dos elementos regulares de S, trata-se de um aberto de S, uma vez que t,., € uma
unido de abertos conexos em t, K age por isometrias e Ad(K)t =s. O complemento de S,.q
em § € chamado de conjunto dos pontos singulares de S e sera denotado Sy;n,. Segue da
Proposigdo 13.24 de [3] que Ssing = T(Using), em que @ : U — U /K é a projegdo natural.
Observe que kexp,(H) = exp,(H) sempre que k € M, entdo, com o objetivo de construir
um recobrimento para Sy, consideramos o quociente K /M. Sendo W = M* /M, em que M*
e M sao, respectivamente, o normalizador e o centralizador de t em K, temos que W age

naturalmente a direita de K/M da seguinte maneira:
kM -w = kwM.

Esta acdo estd bem definida uma vez que M <I M*. Portanto, temos que I' x W age simples-

mente a direita de t,,, X K/M via
(H,kM) - (y,w) = (y+w™ " H,kwM).

A simplicidade da ac¢do segue do fato que, se (y,w) fixa (H,kM), temos que kwM = kM, ou
seja, w € M. Segue que w'H=He, portanto, Y+ H = H, entdo Yy deve ser nulo.
Considere a aplicagao

W ity X K/M — Speg
(H,kM) — kexp,(H).
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Vamos mostrar que ‘¥ € um recobrimento de S,,;. A agdo do grupo I' x W deixa ¥ invariante:

W(y+w H kwM) = kwexp, (v + wlH)
= kwexpp(w’lH)
= kexpp(ww_lH)
= W(H, kM)

A préxima proposi¢do mostra que o grau ao qual ¥ deixa de ser injetiva é medido pela acdo
deI'xW.

Proposi¢io 3.4.8. Sejam H,H' € t,., € k,k' € K e suponha que ¥(H kM) =Y (H' k' M),
entdo existe (y,w) € I' x W tal que

(H',KM) = (H,kM) - (y,w)
Demonstragdo. Por hipétese, temos kexp,(H) = K exp o (H "), de modo que
q=exp,(H) = expp(Ad(k_lk')H/) € Sreq-
Pelo Teorema 3.3.2 e pela Proposi¢do 3.3.3, temos que
Ad(k~'WYH' = Ad(u)(H +7)

para algum u € K, uma vez que W7 = Ad(M™)|;. Sendo exp,(H) € Sy, temos que
o(H) ¢ 7 para nenhuma raiz ¢, donde segue que a dlgebra de K¢ satisfaz ¢ = m =
3u(t) NE (veja a equagdo (3.20)). Segue que (K?)g = My e, pela Proposigdo 3.3.4, temos que
K9 = MoM*? = M*4. Portanto, u € M*? e, pela Proposicdo 3.3.3, segue que Ad(u)|¢ € W9,
de modo que

Ad(u)(H+y) = H+7.

para alguma Y € I'. Portanto, Ad(k”'k')H' = H+ Y € t e segue do Coroldrio 1.4.20
que Ad(k_lk/)H’ = wH’ para algum w € W. Temos, enfim, que wH' = H + ¥, ou seja,
H =wY+w ' 'H=v"+w'Hparay’ =w Y. Segue que

Adw 'k 'K)H' =H'.
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Observe que t = 3, (H’) uma vez que H' é regular e, se kg € K centraliza H eYct,

temos que
[Ad(ko)Y,H'] = Ad(ko)[Y,Ad(ky ") H'] = Ad(ko)[Y,H'] = Ad(ko)0 =0,

de modo que Ad(kg)t C t e kg € M*. Temos que w 'k 'k’ € M* ¢ Ad(w™ 'k~ k') é um
elemento do grupo de Weyl que fixa um elemento regular, logo, € a identidade (Proposi¢ao
1.4.18). Segue que w™ 'k~ 'k’ € M e kK'M = kwM. Finalmente, temos que

(H',K'M) = (H,kM) - (7", w).

]

Considere o espaco Q obtido identificando os pontos das 6rbitas de I' x W em t,., x K /M.
A proposigdo anterior nos mostra que a proje¢ao natural t,. X K/M — Q se identifica com
a aplicacdo W : t,,¢ X K/M — S,., uma vez que os pontos que t€ém mesma imagem por ¥
devem estar numa mesma Orbita de I' x W. Pela Proposicao 1.40 de [8], para mostrar que ¥
€ um recobrimento, basta mostrar que a acdo de I' x W € propriamente descontinua (veja a

Subsecao A.3.1 para mais detalhes).
Lema 3.4.9. A acio a direita de I" x W sobre t,,; x K/M ¢é propriamente descontinua.

Demonstragdo. Seja (H,kM) € t,., x K/M. Observe que HW consiste de uma quantidade

finita de pontos e a imagem de H por I'x W € igual a

U Hw™! +T,

wew
que € um reticulado segundo a Defini¢do 1.3.10. Portanto, podemos escolher um aberto U
de t,,, contendo H tal que H(y,w) = y+w ™ 'H ¢ U para todo (y,w) € T x W diferente de
(0,1).
Por outro lado, para kM € K/M, temos que a 6rbita kM - W consiste de uma quantidade
finita de pontos, entdo basta mostrar que kM = kwM apenas se w = 1. E fécil ver que isto

ocorre se, e somente se, w € M, mas, como W = M*/M, isto é equivalente a dizer que
w=1. O

Teorema 3.4.10. Seja A C t,.q uma alcova, entdo a restrigao |, g /m € também um reco-

brimento de Syeq.

Demonstragdo. Pelo Teorema 3.4.7, temos que a acao de I' x W pode levar qualquer ponto

de t,o em A, de modo que W(A X K/M) = Syeg, ou seja, W[4k /u € sobrejetiva.
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Para y € S;e, existe V C S, aberto e contendo y tal que p! (V) é uma unido de abertos
disjuntos Ug C teq X K /M que sdo homeomorfos, via ¥ a V. Diminuindo V de forma
adequada, podemos assumir que V é conexo, de modo que cada Uy ou estd contido em
A x K/M ou nio o intercepta. Segue que a imagem inversa de V por W|, .k /m € uma unido
disjunta de abertos de A x K/M. O

O préximo resultado nos mostra que, para estudar loops em S, basta considerar loops em
Tp.

Proposicao 3.4.11. Todo loop em S é homotdpico a um loop da forma ¢ +— expp(ty) para
algum yeT.

Demonstracdo. Pelo Teorema 3.4.1, um loop qualquer de S é homotépico a um loop em
Tp e, pelo Lema 3.4.2, temos que todo loop em 7 p é homotdpico a um loop da forma
t > exp,(ty) paraalgum y € T. O

Sejam A C tuma alcova, H € Ae y e I' —I. Pelo Lema 13.38 de [3], existem }/ elpe
w € W tais que
H' =w-(H+y+7) €A,

mas H' # H. Seja p(t) = H+t(H' —H),t € [0,1], de modo que p(0) = H e p(1) = H'.
Pensando em M* como o normalizador de t em Ky, se k € M™ representa w, seja k(¢) um

caminho em Ky de 1 a k e defina
q(t) = (p(t),k(t)"'M) e Ax K /M. (3.28)

Observe que ¢(0) # g(1), uma vez que p(0) # p(1).

Teorema 3.4.12. O caminho W o q(t) é um loop em S,. € é homotdpico, em S, ao loop
t > exp,(ty).

Demonstragdo. Observe inicialmente que

W(g(1)) =W(H' kM)
=k exp,(H’)
= exp,(w 'w(H+7+7))
=exp,(H+7y+7)
= exp,,(H)
=¥(q(0)),



3.4 Grupo Fundamental de Espacos Simétricos 125

logo, W o g € um loop. Temos que

W(q(r)) =¥ (p(1),k(t1)"'M) = exp, (Ad(k(t) ") p(r)).

em que Ad(k(r) ') p(r) comega em H e termina em H + v+ ¥, logo, é homotGpico em t a0

segmento ¢ > H +t(y+7Y), pois t é simplesmente conexo. Segue que ¥ o g é homotépico a

t > exp,(H+1(y+7)) = exp(H)exp, (t(y+7)).

Como podemos deformar exp(H) continuamente para a identidade 1 via s — exp((1 —s)H),
temos que ¥ o g € homotdpico a r — exp,,(#(y + 7)). Pela Observagdo 3.4.3, temos que
t > exp,(t(y+ Y')) é homot6pico a composic¢do dos loops t — exp(ty) e ¢ — exp(tY), em
que o segundo desses loops € homotdpico a um ponto pelo Teorema 3.4.4. Portanto, Wo g é

homot6pico, em S, ao loop ¢ — exp(t7). O

Para demonstrar o préximo resultado, precisamos de uma condi¢do para determinar
quando um loop em um dado espago topoldgico nao € homotdpico a um ponto a partir de

informacdes no recobrimento.

Lema 3.4.13. Sejam X e Y espacos topoldgicos conexos e 7 : ¥ — X um recobrimento.
Suponha que / é um loop homotépico a um ponto em X e seja [ seu levantamento em Y,

entido / é um loop em Y.

Demonstragdo. Seja l; uma homotopia de [ a um ponto que satisfaz
lo(t)=1(t), L(t)=xeX

Podemos levantar /; a uma homotopia I; em Y com extremidades fixadas (veja o Teorema
13.3 de [3]). Sendo /; uma curva constante, temos que l]([O, 1)) C n_l(x), ou seja, | é
constante e igual a um ponto. Como ; é uma homotopia com extremos fixados, temos que /

deve ser um loop em Y. [

Corolario 3.4.14. Se [ é um loop em X e seu levantamento nio é um loop em Y, entdo / ndo

pode ser homotdpica a um ponto.

Vamos mostrar agora que S € Sy¢ t€m 0 mesmo grupo fundamental. Mais especificamente,

vamos demonstrar o seguinte Teorema.

Teorema 3.4.15. Todo loop em S é homotdpico a um loop em S;.q. Um loop em S, é

homotdpico, em S, a um ponto apenas se for homotdpico, em Syeg, a um ponto.
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Para demonstrar estes resultados, precisamos de alguns Lemas auxiliares. O Lema a
seguir foi retirado de [3] e serd enunciado para referéncia futura. Mudamos ligeiramente a

notacdo para servir melhor a nossos propdsitos.

Lema 3.4.16 (Lema 13.29 de [3]). Sejam L,Y e D variedades compactas, sendo que D pode
ter bordo, que satisfazem
dim(Y) +dim(D) < dim(L).

Sejam f:Y — Le g: D — L funcdes diferencidveis. Suponha que E C D € fechado e a
imagem g(E) de E por g € disjunta de f(Y), entdo g é homotdpica a uma fungdo g’ : D — L
tal que g e g’ coincidem em E, mas g'(D) N f(Y) = 0.

Como consequéncia do Lema 13.28 de [3], temos o seguinte resultado.

Lema 3.4.17. Existe uma subvariedade compacta N C U tal que S, C 7T(N) €
dim(7(N)) < dim(S) — 3.

Demonstracdo. Sejam My, ..., M, variedades compactase f;:M; — U, j=1,...,n, fun¢des

diferencidveis conforme o Lema 13.28 de [3]. Temos que
dlm(M]) S dll’Il(U) —3 e Using g U fJ(MJ>
j=1

Defina N = U'j_, fj(M;), sendo que N € compacta porque € uma unido finita de compactos.
Segue que
Ssing — 77:(Using) C E(N)

e, além disso,

dim(7(N)) < dim(N) — dim(K)

<dim(U) — 3 — dim(K)
—3.

= dim(S

~—"

O]
Com estes dois lemas, temos o suficiente para fazer a demonstracdo do Teorema 3.4.15.

Demonstragdo do Teorema 3.4.15. Seja [ um loop qualquer em S, podemos pensar em [/

como uma funcdo g : S — S. Vamos aplicar o Lema 3.4.16 com D = Sl, L=S,E=0,



3.4 Grupo Fundamental de Espacos Simétricos 127

Y = n(N) (como no Lema 3.4.17) e escolheremos f como a inclusdo w(N) — S. Isto é

possivel porque
dim(7(N)) 4+ dim(S') < dim(S) —3+ 1 < dim(S).

O Lema 3.4.16 entdo nos diz que podemos deformar g continuamente a uma aplicacao
g : 8! — Stal que g'(S!) ndo intercepta w(N) D Ssing- Ou seja, obtemos uma homotopia do
loop I =gaumloop !’ =g C Sye.

Se [ € um loop em S, que € homotdpico a um ponto em Sy, também serd homotdpico a
um ponto em S, jd que Sy, C S. Suponha agora que / € um loop em S, que € homotGpico, em
S, a um ponto. Vamos mostrar que / também € homotdpico, em S,.,, a um ponto. Podemos
pensar na homotopia, em S, de / a um ponto como uma aplicagdo continua g : D — S, em
que D é um disco fechado no plano tal que g(dD) = [ e a imagem do centro de D é o fim da
homotopia. Podemos aplicar o Lema 3.4.16 com E = dD, D como o disco descrito acima,
L=S,Y =n(N) e f como ainclusdo m(N) — S, uma vez que

dim(m(N)) +dim(D) < dim(S) —3+42 =dim(S) — 1 < dim(S).
Existe entdo uma aplicag¢do g’ : D — S tal que g’|;p = [ = g|,p» mas g’ (D) ndo intercepta
7(N) D Ssing. Em outras palavras, g’ é uma homotopia de / a um ponto em Sreg- O
Finalmente, temos todos os requisitos para provar o seguinte Teorema.
Teorema 3.4.18. Seja y € I'— T e I(t) = exp (1Y), entdo | ndo é homotdpico a um ponto.

Demonstragcdo. Considere o caminho g em A X K/M construido na equagio (3.28), em que
A C t é uma alcova. Lembre-se que | .k /m € um recobrimento (Teorema 3.4.10) e que
W og € um loop em S, que € homotopico, em S, af — exp, (ty) (Teorema 3.4.12). Como
g ndo é um loop em em A x K /M, temos que ¥ o ¢ ndo ¢ homotdpico, em S,.e, a um ponto
(Coroldrio 3.4.14). Como S e S;. t€ém grupos fundamentais isomorfos, segue do Teorema
3.4.15, que ¥ o g nfio € homotdpico, em S a um ponto, logo, 7 — exp,,(ty) ndo € homotdpico,
em S, a um ponto. L]

Segue que 0 homomorfismo sobrejetivo
I~ 7171(Tp) — JTI(S)

do Teorema 3.4.1 tem como ntcleo o reticulado Iy, de modo que é vélido o seguinte Teorema.
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Teorema 3.4.19 (Teorema 5.2 de [2]). Se S é um espaco simétrico compacto, entdo
/51 (S ) ~ F/ F().

Como consequéncia deste teorema, e dos reticulados calculados nas Subsecdes 3.3.1 e
3.3.2, temos que 1 (S%) ~ 1 (como esperado) e 7| (RP?) ~ Z/27. Para finalizar esta Secio,
enunciamos algumas consequéncias do Teorema anterior.

Corolario 3.4.20 (Corolario 5.3 de [2]). Se S € simplesmente conexo, entdo
=Ty, D=Dy, WIi=W]

Segue que cada uma das 6rbitas focais F(H) sdo conexas.

Demonstragdo. Estd claro que I =T, uma vez que 1 = m;(S) ~I'/I). O fato que W? = W]
segue do Teorema 1.3.22 e a igualdade D = D, segue da demonstracdo do mesmo Teorema.
As orbitas focais foram definidas na equacdo (3.17) e elas s@o conexas porque estdo em
bije¢do com o grupo quociente W? /W (Teorema 3.3.6). O

Por defini¢do, se w € W9, temos que wH — H € T, isto nos fornece uma maneira de
construir uma aplicagdo ¢ : W¢ — I' /Ty ~ m;(S) dada por ¢ (w) = wH — H +T'. A Proposi-
cao 1.3.18 nos mostra que o grau de injetividade de ¢ € medido pelo subgrupo qu de W4,

Suponha que w,w’ € W7 e que
wH—H+Tog=wH—-H+Ty <= wH+To=wH+T).

Portanto, W_IW/H—|—F() = H+1, ou seja, w'WH e H +T, de modo que ww € qu.

Consideramos entdo a aplicacdo injetiva

(PIWq/W(;I —)F/FQZEI(S)
wr—wH —H+1

Lembre-se que as componentes conexas da érbita focal §(H) estdo em bijecdo com o
grupo quociente W9/ Wé’ (Teorema 3.3.6). Vamos mostrar a seguir que cada componente
conexa de §(H) corresponde a uma classe de homotopia de curvas entre p e g = exp ,(H).
Seja yy = expp(tH ) e denote por 7, , 0 conjunto das classes de homotopia de curvas que
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vao de p a q. Considere a aplicacdo

Vi, — T (S)

(o] — [orx 7],

em que Yy ! denota a geodésica Y percorrida na ordem reversa e % denota a concatenagio de
curvas, isto €, em O x ¥ ! primeiro percorremos o € depois ¥y L

Lema 3.4.21. A aplicacdo v : w, ; — 71 (S) é uma bijegdo.

Demonstragdo. A condigdo [ * y};l] =o' x vy 1] implica que existe uma homotopia entre
a e o com extremidades fixadas, ou seja, [at] = [@]. Segue que Vv € injetiva.
Por outro lado, seja § : m(S) — 7,4 dada por & ([e]) = [0 * Y], entdo

v(&(lal)) = v([a*yu])
=la*ym*1y']

= [a].

Portanto, £ é uma inversa a direita de v, o que implica que v é sobrejetiva. U

A composicdo v~ o ¢ é uma aplicacdo injetiva W9 / Wg’ — Mpg» O que nos dd uma
correspondéncia entre componentes conexas de §(H) e classes de homotopias de curvas
entre p e g. Em particular, se S € simplesmente conexa, hd apenas um elemento em 7, ,, de
modo que o grupo quociente W9/W,/ € trivial, ou seja, W = W e F(H) tem apenas uma
componente conexa. Dessa forma, reobtemos parte dos resultados do Corolério 3.4.20.
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3.5 Locus de Corte e Locus Conjugado

Nesta Secdo vamos obter o locus de corte de um espaco simétrico compacto. O locus
conjugado foi definido na Secao 2.2 e o que chamamos de locus de corte aqui € comumente
chamado de "cut locus" em inglés. Denotaremos S = U /K e manteremos também as outras
notagdes da se¢do anterior.

Seja a : [a,b] — S uma curva diferencidvel, definimos o seu comprimento por

@)= [ Vi@, di

Um segmento de geodésica y: [a,b] — S ligando os pontos p = y(a) e ¢ = y(b) é chamada
de geodésica minimizante se satisfaz

((y) < (o)

para toda curva « ligando os pontos p e q.

Em uma variedade Riemanniana completa as geodésicas estdo definidas para qualquer
valor de parAmetro. Considere entéo a geodésica 7 : [0,00) — S. Pela Proposi¢do 3.6 do
capitulo 3 de [10], temos que, para ¢ > 0 suficientemente pequeno, o segmento geodésico
7([0,7]) é minimizante. Além disso, se ¥([0,#;]) ndo é minimizante, entdo y([0,#,]) ndo é
minimizante para nenhum #, > ¢;. Por continuidade, o conjunto maximal dos pontos 7 € [0, o)

tais que a geodésica ¥([0,¢]) é minimizante deve ser da forma [0, 7] ou [0,e0).

Definicao 3.5.1. Se existe 79 > 0 tal que y([0,7)]) € uma geodésica minimizante e y([0,#])
ndo é minimizante para t; > fy, dizemos que ¥(fo) € um ponto de corte de p = y(0) ao longo
de y. O conjunto dos pontos de corte de p ao longo de todas as geodésicas iniciando em p é
chamado de locus de corte de p e é denotado C(p).

Exemplo 3.5.2. Para ilustrar a Definicdo 3.5.1 e as outras ideias desta Se¢do, considere a
esfera > CR>. Uma geodésica que se inicia em um ponto p € S? deixa de ser minimizante
assim que passa pelo antipoda —p. Na Figura 3.4 abaixo, vemos que a geodésica em azul
conecta p a ¢, porém, a geodésica em vermelho cumpre o mesmo papel percorrendo um

caminho mais curto. As duas geodésicas fazem parte do mesmo grande circulo.
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o’
-p

Figura 3.4 : Geodésicas na Esfera.

Pela figura, j4 somos capazes de perceber que o locus de corte de p em S? consiste
exatamente de seu antipoda —p.

Podemos nos referir a um segmento de geodésica minimizante entre dois pontos como
geodésica minimizante entre os pontos em questdo. Vamos agora demonstrar algumas propri-
edades do locus de corte de um ponto em um espaco homogéneo Riemanniano. Inicialmente,

temos o seguinte resultado.

Lema 3.5.3. Sejam N uma variedade Riemanniana e ¥ : [a,b] — N um segmento de geodésica
minimizante ligando os pontos p = ¥(0) e ¢ = y(1). Se ¢ : N — N é uma isometria, entdo

@ oy é uma geodésica minimizante ligando os pontos ¢@(p) e @(q).

Demonstragdo. Seja o uma curva que conecta @(p) e ¢(g), entdo ¢ ' o o é uma curva que
conecta p e g, logo, £(y) < £(¢~' o @), ja que y é minimizante. Como isometrias preservam

o comprimento de curvas, temos que

Upoy) <lipop 'oa)={(a).
Segue que ¢ o ¥([a,b]) é minimizante. O]

Corolario 3.5.4. Sejam p € Se ¢ : S — S uma isometria, entdo @(C(p)) = C(@(p)).



132 Espacos Simétricos Compactos

Demonstragdo. Seja y(ty) € C(p). Pelo Lema anterior, temos que @(¥([0,7y])) é minimi-
zante, uma vez que Y([0,7]) é minimizante. Se #; > fo, entdo @(¥([0,1])) deixa de ser
minimizante, pois, caso contrdrio, ¥([0,7;]) seria minimizante, o que é impossivel porque
Y(tp) € um ponto de corte. Segue que ¢(y(19)) € C(@(p)).

Suponha agora que ¥(fy) € C(¢(p)). Podemos escrever ¥ = ¢ o y. Pelo Lema anterior e
pelos argumentos do paragrafo anterior, ¥(tp) € C(p), de modo que ¥(tp) € ¢(C(p)). O

Segue do Corolario anterior que, num espago homogéneo Riemanniano U /K os locus de
corte sdo todos isométricos, ou seja, se conhecemos C(p) e queremos calcular C(g), basta
escolher u € U tal que up = g e temos

C(q) = C(up) = uC(p).

De modo que basta estudar o locus de corte de apenas um ponto.
Relembre que dois pontos de H,H' € t sdo chamados de I'—equivalentes se H —H' € T’

e sio chamados de equivalentes focais se, além disso, |H| = |H’|. Além disso, relembre dos

conjuntos

D={Het:|H|<|H+Y|, paratodo ycI'\{0}}
D={Hect:|H|<|H+Y|, paratodo yeT}

definidos na Subsegio 1.3.3, em que D é o interior de D (Proposi¢do 1.3.20). Antes de
determinar o locus de corte de S, vamos determind-lo em 7 p para depois aplicar a acdo de K
e obter o locus de corte em S.

Proposicao 3.5.5. Seja t < u um subespaco de Cartan e T < U o toro gerado por t. O locus
de corte de p no flat maximal 7'p € igual a exp,,(dD).

Demonstragao. Seja exp,(H) € C(p), entdo exp,,(tH) € uma geodésica minimizante para
t € ]0,1] e deixa de ser minimizante para ¢ > 1. Portanto, os pontos tH, t € [0, 1], devem ter
normas minimais entre seus I'—equivalentes, ou seja, tH € D parat € [0,1] e tH ¢ D para
t > 1. Segue que H € dD.

Seja agora H € dD. Sendo D convexo, temos que os pontos tH tém normas minimais
entre seus ['—equivalentes para 0 <7 < 1, logo, a geodésica exp,, (tH) é minimizante para
t €[0,1]. Como dD =D — D, existe y € I' ndo nulo tal que Y = H + y é um equivalente
focal de H (veja a Proposi¢ao 1.3.20). Pelo Lema 1.3.19, temos que, para qualquer € > 0,
(1+€)H e Y + €H sdo equivalentes focais, entdo

exp,((1+&)H) =exp,(Y +&H).
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Além disso,

(1+€e)H|>|Y +€eH
zante parat > 1. Portanto, H € C(p). O

, de modo que exp,, (tH) ndo pode ser geodésica minimi-

Para caracterizar o locus de corte de p em S precisamos determinar qual a relacao ele
tem com o locus de corte de p em T p. Em uma variedade Riemannina, temos a nocado de
distdncia. A distancia dy(p,q) entre dois pontos p e ¢ de uma variedade N é definido como
o infimo dos comprimentos de todas as curvas que conectam p e g. Portanto, se ¥ € uma
geodésica minimizante de p a ¢, entdo dy(p,q) = £(7y). Segue do Lema 3.5.3 que isometrias
preservam a funcdo distincia, uma vez que preservam comprimentos de curvas.

Se N’ C N é uma subvariedade, podemos obter uma nocio de distAncia em N” por meio
da restricdo da fun¢do distincia de N a N'. Uma outra nocdo de distancia pode ser obtida
considerando apenas a variedade N’ sem levar em conta o espaco ambiente N em que est
inserida. Sejam p,q € N', definimos a distancia intrinsica dy:(p,q) como o infimo dos
comprimentos de curvas contidas em N’ e que conectam p e g. Como todas as curvas de N’

que conectam p e g sdo também curvas de N, temos que

dy(p,q) <dy/(p,q).

Lema 3.5.6. Sejam dy e dr as distancias intrinsecas de S e de T p respectivamente, entdo dr
coincide com a restri¢do de dg a T p.

Demonstracdo. Sejam x,y € T p, entdo ds(x,y) < dr(x,y). Como T age transitivamente por
isometrias (de S) em 7 p, podemos supor, sem perda de generalidade, que x =hp e que y = p
para algum & € T. Como a exponencial de U € sobrejetiva, escolha X € s que satisfaca
exp,, (X) = hp e que tenha norma minima. A geodésica exp,, (tX) conecta p a hp e, pela
minimalidade de X deve ser minimizante para O <7 < 1. Esta afirmagdo segue do Coroldrio
3.9 do capitulo 3 de [10], uma vez que uma curva que conecta dois pontos em uma variedade
com comprimento minimo deve ser uma geodésica e dentre as geodésicas que conectam p e
hp, exp,(tX) tem comprimento minimo e igual a [X|. Segue que ds(hp, p) = |X]|.

Seja H € t com norma minima satisfazendo hp = exp,(H). De maneira similar ao

paragrafo anterior, mostra-se que dr (hp, p) = |H|. Com estas construgdes, temos que

exp,(X) =exp,(H) = hp,

de modo que X € §(H + y) para algum y € T pela Proposi¢do 3.3.3. Como §(H +7) é a
6rbita da acdo de K9 sobre H + y e K age por isometrias em s, temos que |X| = |H +7y| > |H],



134 Espacos Simétricos Compactos

uma vez que H tem norma minima. Finalmente, temos a desigualde reversa
X| = ds(hp, p) > dr(hp,p) = |H]|.

]

Teorema 3.5.7. Seja S = U /K um espago simétrico compacto e p = 1K. O locus de corte

C(p) de p em S coincide com o conjunto K exp,(dD).

Demonstragdo. Denote por Cr(p) e Cs(p) os locus de corte de p em T'p e em S respecti-
vamente. Pelo Lema 3.5.6, a distincia intrinseca de T p coincide com a distancia induzida
em T p pela distancia intrinseca de S, portanto, Cr(p) C Cs(p). Como K fixa p, segue do
Coroldrio 3.5.4 que K age sobre o locus de corte de p, de modo que KCr(p) C Cs(p). Como
Ad(K)t = s, esta inclusdo é, na verdade, uma igualdade, ou seja,

Cs(p) = KCr(p) = Kexp,(dD),

aplicando a Proposicdo 3.5.5. [

Relembre agora dos conjuntos

Dy={H € t:a(H) < m, paratoda o € As(u,t)},
Do={H € t: a(H) < 7, paratoda o € Ag(u,t)},

definidos na Subsecdo 1.3.3. Mostramos na Se¢do 2.4 que o locus conjugado primario de p
em 7 p coincide com exp p(aDo) e no Teorema 2.4.6 que o locus conjugado primdrio de p
em S é orbita K expp(QDO). O préximo Teorema caracteriza a topologia de S com base nos
seus locus de corte e locus conjugado.

Teorema 3.5.8. Sejam S um espaco simétrico compacto e p € S, entdo S é simplesmente

conexo se, e somente se, o locus de corte de p coincide com o locus conjugado primdrio de

p-

Demonstracdo. Denote por Cl(p) o locus conjugado primdrio de p em S. Temos que
C'(p) = Kexp,(dDy) e C(p) = Kexp,(dD), entdo

C(p)=C'(p) < D="D,.

Se § € simplesmente conexa, o Teorema 3.4.19 implica que I' = I'y e segue da demonstragao
do Teorema 1.3.22 que D = D.
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Por outro lado, suponha que C(p) =C 1 (p) ou, equivalentemente, que D = Dy, vamos

mostrar que I' C I'y. Seja H € t e defina
mg := min |H + Y|, m :=min|H + 7.
NElo yer

vamos mostrar que my = m. Considere a demonstragdo do item 1 da Proposicao 1.3.20,
restringindo fungdo f a I'y obtemos que existe Y € Iy tal que mp = f(W) = |H + -

O Teorema 1.3.22 implica que existe um dominio fundamental de I'y contido entre Dy
e Do. Se H+ 1y & Do, existe y1 € Iy tal que H + % + v € Dy, mas, como Dy = D, isto
implica que |H + Y+ 11| < |H + %, 0 que é absurdo ja que |H + Y| é minimal. Portanto,
H + Yy € Dy. Pela definicio de D, segue que

mo = |H + | = min|(H + %) + 7| = min |H + 7| = m,
vell yell

uma vez que ['lg C T
Seja y € I' e considere H = Y nas discussoes acima. Temos que

min = min =0,
min |+ = min|y+7|

logo, Y € I'g. Segue que I' =1 e, portanto, S € simplesmente conexa. [l

3.5.1 Locus Conjugado e de Corte na Esfera 2

Vamos descrever os Locus Conjugado e de Corte de p = (0,0,1) em S?. Lembre-se da
Subsec¢do 3.3.1 em que descrevemos o sistema de raizes e reticulados associados. Para tanto,

basta observar que
Doy={Het:|aH)|<n}={tXy:t€(—n,n)}

¢ um intervalo centrado na origem e com tamanho 27 em t = (X;). Como 9Dy = {+7X>},
segue que o locus conjugado primdrio de p em T p coincide com {—p} = exp p(in). Como
K fixa —p, locus conjugado primério de p em $? contém apenas —p (Teorema 2.4.6). Os
tinicos pontos conjugados a p sdo p e —p, uma vez que exp,(I'1 —0) = {£p}.

Como I' = 27ZX;, se H' € té tal que |[H'| > 7, existe y € " tal que |H' + Y| < 7. Neste
caso, dado qualquer 0 # ¢ € T, temos que |H' +y+ 7| > |H' + v|. Portanto,

D={Hect:|H|<|H+Yyl,yeT'—=0} =Dy
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e segue que o Locus de Corte de p coincide com o Locus conjugado primdrio, o que j4 era
esperado, ja que §2¢é simplesmente conexo (Teorema 3.5.8). A regido D = D € representada
na Figura 3.2 pelo segmento amarelo cujo ponto médio € a origem de s. Outra forma de obter
que T (Sz) ~ | é observando que I' = I', logo, € uma consequéncia do Teorema 3.4.19.

3.5.2 Locus Conjugado e de Corte no Plano Projetivo RP?

Usaremos aqui as mesmas notacdes da Subsecdo 3.3.2 em que descrevemos o sistema de
raizes e os reticulados associados a RP?. Vamos descrever os locus conjugado e de corte
de [p] em RP?, em que p = (0,0,1) € S>. Observe que Dy depende apenas da estrutra do
sistema de raizes, entdo Dy = {tX; : t € (—m, )} coincide com o exemplo da esfera, de modo
que 9Dy = {£7X,}. Como exp,(dDy) = {£p}, temos que expy,)(dDy) = {[p]}, logo, o
Locus conjugado primdrio de [p] em T'[p] contém apenas o ponto [p], em que 7 = (exp(t)).
Como K fixa [p], o Locus conjugado primdrio de [p] em S contém apenas [p] (Teorema 2.4.6).
O conjunto Dy estd representado na Figura 3.3 como o segmento rosa compreendido entre H
e —H, note que ele contém o segmento amarelo, o qual representa D.

O Locus de Corte, no entanto, muda em relacdo ao exemplo anterior, uma vez que

I' = n7Z.X, muda em relacdo ao exemplo da esfera. Temos que
D={tX,:te(—xn/2,/2)},

entdo 0D = {+(m/2)X,}. Segue que o Locus de Corte de [p] em T'[p] é igual a {[¢]}, com
g = (1,0,0) = exp,((7/2)X2). Vamos determinar agora o Locus de corte K'[g] de [p] em
S. Os elementos de K e a isometria J deixam invariante o plano xy que contém g e Kq € o
grande circulo vermelho na Figura 3.5, ele estd contido no plano xy e passa por g. Além
disso, J preserva este grande circulo, de modo que JKg = Kq. Como K’ = KUJK, K'q=Kq
e segue que K'[g] = (K'q), ou seja, K'[g] é a projecdo do grande circulo K'g de S? em
RP?. Observe que, neste caso, o locus conjugado primdrio e o locus de corte de [p] ndo
coincidem, isto j4 era esperado, pois RP? ndo é simplesmente conexo (veja o Teorema 3.5.8).
Na verdade, m (sz) ~ 7./27, pelo Teorema 3.4.19 (observe que usamos os reticulados
calculados na Subsecdo 3.3.2).
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—P

Figura 3.5 : Locus de corte de [p] no plano projetivo RP?.






Apéndice A

A.1 Isometrias e conexao de Levi-Civita

Seja ¢ : M — N uma aplicacdo diferencidvel entre variedades, dizemos que dois campos de
vetores X em M e Y em N sdo ¢ —relacionados se d¢,(X(p)) =Y (¢(p)) para todo p € M.
Além disso, se ¢ é difeomorfismo, existe um tinico campo em N ¢ —relacionado a um dado

campo X de M, que € denotado por ¢.X e definido da seguinte forma:

(0:X)(q) = (d9)g-1)X (97" (9)).

O campo ¢.X € chamado de pushfoward de X via o difeomorfismo ¢.

Teorema A.1.1. Sejam (M,g,V¥) e (N, h, Vh) Variedades Riemannianas equipadas com as
respectivas conexoes de Levi-Civita e seja @ : M — N uma isometria local. Seja U C M um

aberto tal que ¢ : U — @(U) é uma isometria, entdo
h

para XY € x(U) campos de vetores diferencidveis definidos em U.

Demonstragdo. Por simplicidade, vamos supor que ¢ é uma isometria. Observe inicialmente
que h(@.X,9.Y) = g(X,Y). Pela férmula de Koszul (equacio (9) do cap. 2 de [10]), temos
que

2h(0.Z,Vip x0.Y) = (9Y)h(9.X,0.Z) + (¢ X)h(9.Z, .Y )
— (@ Z2)h(9:X, .Y ) — h(9.[X, Z], .Y
—/’L(QD*[X,Z], (P*X) _h<(P*[X7Y]7 @*2)7

em que usamos que o pushforward comuta com o colchete de campos. Basta mostrar que
(@Y h(0.X,0.2)](q) = Yg(X,Z)(¢ ' (q)) para todo g € N e quaisquer campos diferen-
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cidveis X,Y,Z de M, pois, neste caso, obteremos que 2g(Z, V§(Y) =2h(¢.Z, ¢*V§(Y), donde
segue que @, V§Y = VZ’*X 0.Y.
Seja y; o fluxo de ¥ em algum aberto de M e §; = @ oy, 0@ '. E facil ver que (¢.Y)(g) =

4 (q)|¢=0, entéo

(90)h(9.X,9.2))(0) = H(0.X,0.2)(51(9))

_ %g(x,z)(yt(qo‘l(q»)

= [Yg(X,2)](¢" ' (q))-

t=0

t=0

O

Corolério A.1.2. Seja V() € Ty(;)M um campo paralelo ao longo da curva «(t), entdo
W(t) = (d@)q()V () € um campo paralelo ao longo de de g o .

Demonstracdo. Seja (x,U) uma carta coordenada de M, em que U CR" e x: U — M. Nesta

. d
carta, denote por (xi(),...,x,(¢)) as coordenadas locais de & e X; = =—. Escrevendo

an
V(t)= ZV]XJ', temos que
J

DV (t) dv’ dx; ;
=) —X; — vV X
dt Zj" t 1+§! dr X

Denotando () = ¢ o a(¢), podemos escrever
W () = Y v (0)(d@) o) Xj(e(r)) = v (1) (0. X;) (B (1)),

logo,
DW (1) dv’

dX' i h
i SRR Ml ALY
J LJ

— 0, (D‘;t(t)) —0.

O operador curvatura de uma Variedade Riemanniana € o operador

R(X, Y)Z =VyVxZ-VxVyZ+ V[ij}Z,
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definido na equacdo (2.1), em que V denota a conexao de Levi-Civita.

Corolario A.1.3. Seja ¢ uma isometria local entre as Variedades Riemannianas (M, g, V¥)
e (N,h, Vh) equipadas com as respectivas conexdes de Levi-Civita, e sejam R o operador

curvatura de M e R o operador curvatura de N. Entdo
OR(X,Y)Z = R(0. X, 0.Y)0.Z.
Demonstragdo. Este resultado é consequéncia da aplicagdo repetida do Teorema A.1.1.

OR(X,Y)Z = @ (V§VYZ - V5V Z + VfXﬂZ)
=V y@.V5Z -Vl xo.V3Z+ VZ,* Xy 9Z
h
- VZ’*YVZ’*X(P*Z o V]:P*XV(P*Y(P*Z—’— V?‘P*X@*Y] QD*Z

= R(QD*X, 0.Y)0.Z.

O

Corolario A.1.4. Sejam pe M e ¢ : U C M — N uma isometria local entre variedades
Riemannianas, em que U é um aberto contendo p. Se y(¢) é uma geodésica em M, com
7(0) = p, entdo, escolhendo um dominio adequado para ¥, temos que ¢ o ¥(¢) é uma geodésica
de N.

Demonstracdo. Seja I = (—6,0) o dominio de ¥, em que 6 > 0 é tal que y(I) C U. Este
resultado segue do fato que uma isometria preserva campos paralelos. Sendo /() paralelo
ao longo de v, d (py(t)}/ (1) é o vetor tangente da curva @ o y(¢) e é paralelo ao longo de p oy

pelo Corolério A.1.2, logo, ¢ oy € uma geodésica. [
Lema A.1.5. Um espaco homogéneo Riemanniano é completo como espago métrico.

Demonstragdo. Seja M um espago homogéneo riemanniano e x,, uma sequéncia de Cauchy

em M, ou seja, dado € > 0, existe N € N tal que
nm>N = d(x;,xm) <E. (A.1)

Seja p € M. Para cada n, existe uma isometria g, tal que g,(p) = x,. Dado, € > 0, fixe
N € N que satisfaz (A.1); para m > N, temos

€>d(xn,Xm) = d(gn(p),Xm)
= d(p,gxn"xm)-
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Segue que, se m > N, temos gy (Xm) € Be(p), ou seja, x,, € gn(Be(p)) = Be(gn(p))- Logo,
escolhendo € suficientemente pequeno para que B = B¢(gn(p)) seja compacto, existe uma

subsequéncia convergente de x,, donde segue que x,, € convergente. [

Lema A.1.6. Uma isometria que fixa pontualmente um aberto da Variedade Riemanniana

completa M € a identidade.

Demonstragcdo. Seja ¢ uma isometria e U C M um aberto cujos pontos sao fixados por ¢.
Sejam u € U, g um ponto qualquer de M e Y uma geodésica conectando u e g. Como ¢ fixa

a por¢do de Y que estd em U, deve fixar y por inteiro, logo, fixa g. Segue que ¢ = id. [

Lema A.1.7. Seja ¢ : V C M — N uma isometria local entre variedades Riemannianas e
p €M . SejaU C T,M uma berto de 0 tal que exp,(U) CV e dg,(U) estd no dominio de
eXPg(p)> entao

poexp, |u = expy(,) odPplu

Demonstragdo. Este resultado segue fazendo uma comparagdo das geodésicar de N inici-
ando em @(p). Para v € T,M escolhido adequadamente e s € (—6,6), temos que o(s) =
@(exp,(sv)) é uma geodésica que satisfaz 6(0) = @(p) e 6'(0) = d@,(v). Por outro lado,
Y(s) = expg(p) (sd@y(v)) satisfaz y(0) = p e Y (0) = d@,(v), ou seja, a(s) = ¥(s), o que
demonstra o Lema. [l

No préximo Teorema usamos as ideias de formas diferenciais em uma variedade para
construir uma métrica bi-invariante em um grupo de Lie compacto e conexo. Para os detalhes
que nao forem expostos aqui sobre formas diferenciais, indicamos o capitulo 4 de [14].

Se @ é uma forma diferencial em uma variedade G e f : G — G é uma fungdo diferencid-
vel, denotamos por f*® o pushforward de @ por f. Para a € G, temos, em detalhes,

(ffo)(a)(viy...,vn) = o(f(a))(dfavi,-- - dfavn),

em que vy,...,v, € T,G.
Uma forma w é chamada de invariante a esquerda ou invariante a direita se, respecti-
vamente E;® = ® ou D;® = ®, em que E, e D, denotam a multiplicacdo a esquerda e a

direita de G respectivamente. Em detalhes, esta condicao sigifica que

o(a)(vi,...,vn) = (Eg0)(a@)(v1,--.,vn) = 0(ga)((dEq)gVv1; - - (dEa)gVn),
o(a)(vi,-..,vn) = (Dg@)(a)(vi,...,vn) = ©(ag)((dDa)gVv1;- - (dDa)gvn).

Teorema A.1.8. Seja G um grupo de Lie compacto e conexo, entdo existe uma métrica

bi-invariante em G.
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Demonstragdo. Esta demonstracao € baseada no exercicio 7 do capitulo 1 de [10]. Primeiro,
vamos mostrar que sempre existe uma forma invariante a esquerda em G. Seja @y um tensor
alternado em 771G = g e defina

a)(a)(vl,. .. ,Vn) = wO((dEa*l)th ceey (a’Eafl)avn).

As equacdes a seguir mostram que @ € invariante a esquerda.

(Ego)(a)(vi,--.,vn) = 0(ga)((dEg)avi;- - (dEg)avn)
((dE )ga(dE Javi, .- 7(dE(ga)—l)ga(dEg)aVn)
((dE,- 1)aV17 > (dE4~1)avn)

(a (V17 5V )

[
g &

I
e

Seja agora n = dim(G) e ® uma n—forma invariante a esquerda em G. Observe que
* * * * k
E,D,0=D,E,0=D,0

uma vez que E,0D, = D, 0E,, logo, D;,® é também invariante a esquerda. Sendo a dimensdo
do espago vetorial das n—formas em G unidimensional, devemos ter que D}, = f(a)® para
alguma fung¢do continua f : G — R — {0}. A funcéo f deve ser um homomorfismo, uma vez

que

flab)® = Dy,
=D,D,0
= f(@)Dyo
= fla)f(b)o

Como G é compacto e o dnico subgrupo compacto de R — {0} é {1}, temos que f=1¢
segue que @ ¢ também invariante a direita.

Construimos agora uma métrica bi-invariante em G da seguinte forma. Seja (,) uma
métrica invariante a esquerda em G (foi mostrado na Secdo 2.1 que uma tal métrica sempre

existe) e defina
(09)y = [ (D)1, (dD1)yv)0

Como a fungdo ((dDy)yu, (dDy)yv)yx que depende de x ndo tem singularidades, a compaci-
dade de G garante que (, ) sempre assume valores finitos. As prépriedades de produto interno
seguem do fato que (,) € uma métrica e da linearidade da integral.
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Vamos verificar agora que esta métrica € bi-invariante. Primeiro, a invariancia a direita.

(D)1, (D) W)y = [ ((dD.)y4(dD)yt,(ADy)(dD)y ) D0
_ /c<(dDgx>yu, (dDgy)yv)ygeDg
— /G ((dDx)yt, (ADy)yv)yx @
= (u,v)y

A invariancia a esquerda segue da seguintes equacoes.

((dEg)yu,(dEg)yv)gy = /G<<de)gy(dEg)y”a (dDy)gy(dEg)yv) gyxkiy @
_ /G ((dEg) x(dDy)ytt, (AEg) 1 (dDy)yv) e @
_ /G ((dDy)yut, (dDy)yv)y 0

= (ua v)y
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A.2 Campos de Vetores

Lema A.2.1. Um campo de Killing tem norma constante ao longo de seu fluxo.

Demonstragdo. Esta afirmacgdo é consequéncia do fato que o fluxo ¢, de um campo de
Killing X é uma isometria para cada ¢t e também de uma das propriedades fundamentais das
fungdes do tipo fluxo que é ¢, 0 O, = @, = @50 @;. Observe que

= %‘Ps((pt(x» = (dgs):X (x).

X(@y(x)) = %rpt(cps(x» o

Portanto,

X (@5(x))* = (X (95(0)), X (@(x))) = ((dps)xX (x), (d )X (x)) = |X (x)[.

]

Proposicao A.2.2. Seja X um campo de Killing na Variedade Riemanniana completa M,
entdo X € completo.

Demonstragcdo. Suponha que o fluxo ¢, (x) de X esteja definido parat € (a,b)ex € U C M,
em que U é aberto. Seja {t,} C (a,b) uma sequéncia satisfazendo #, — b. Usando o Lema

anterior, temos que

d(@,(x), 9y (x)) < = [tn — 1l X (%),

[ " 1X(9u(0))] ds

entdo ¢y (x) é de Cauchy, logo, convergente pela completude de M.

Denote y = r}l_r}olo ¢y, (x). Para ver que y = th_r)r; ¢ (x), considere s, — b com s, € (a,b).
Seja u, a sequéncia definida por uy; =t € up;—1 = si. Pelo argumento acima, @, (x) é de
Cauchy e converge para y pois uma de suas subsequéncias converge para y; em particular,
¢, (x) — v, donde segue que y = }1_>mb O (x).

Observe que X (¢ (x)) = (d/dt) @ (x), entdo, por continuidade,

.0
llrr[; E‘Pt(x) =X(y).

t—

Isto mostra que (a,b) ndo é dominio maximal de ¢, e devemos ter b = co. Analogamente,

mostra-se que a = —oo. [

Proposicao A.2.3. Seja X um campo de Killing numa Variedade Riemanniana conexa M.
Se existe ¢ € M tal que X(¢) =0e (VX), = 0, entdo X ¢é identicamente nulo.
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Demonstracao. X(q) = 0 implica que ¢ € um ponto fixo do fluxo ¢, de X. Este fato segue
unicidade de solucgdes de equagdes diferenciais usando que a solug@o constante @;(g) =
g satisfaz (d/9dt)¢;(q) = X(¢,(q)). Portanto, (d¢;), : T,M — T,M; vamos mostrar que
(d¢)q = id. Usando a simetria da conexdo e a hipétese, temos que

X.Y)(g) = (Vx¥ ~VyX)(g) = (Va¥)g = SV (0@)|_ = S¥(a)| =0

Por outro lado, 0 = [X,Y](q) = (d/dt)(¢—;)+Y |=0. Como @, = @, o s, temos que d@_;
nao depende de ¢, logo, d@_, = id, pois d¢y = id. Usando a exponencial riemanniana,
pode-se mostrar que uma isometria € localmente determinada pela diferencial em um ponto

(Lema A.1.7), entdo segue que @; = id para todo #, ou seja, X = 0. [

Proposicao A.2.4. Seja M uma Variedade Riemanniana de dimensdo n e p € M. Existe uma
vizinhanca U de p e campos diferencidveis ey, ..., e, ortonormais definidos em U tais que

(Veej)(p) = 0. Tal conjunto de campos é chamado de Referencial geodésico.

Demonstragdo. Seja U C M uma vizinhanca normal de p. Para cada g € U, existe uma tnica
geodésica minimizante e normalizada tal que y(0) = p e ¥(d(p,q)) = ¢, em que d(p,q) é
a distancia Riemanniana de p a g, que estd bem definida na vizinhanca normal U. Seja
Vi,...,V, uma base ortonormal de 7,M e denote por V;(¢) o transporte paralelo de v; ao
longo de y de p a y(t). Por fim, para g € U, defina e;(q) = V;(d(p,q)).

Seja ¢ a geodésica normalizada que satisfaz 6(0) = p e 6'(0) = ¢;(p) = V;(0) = v;,

entao
(Ve,ei)(p) = %ei(c(s)) o d%vj(d(p’ o(s)) =0 0

]

Para enunciar o préximo Teorema, sejam M e N duas Variedades Riemannianas e p € M,
g € N. Sejai:T,M — T,N uma isometrai linear ¢ considere uma vizinhanga normal V
de p tal que exp, esteja definida em io exp;l(V). Defina f : V — N dada por f(x) =
exp, 0io exp[;l (x). Para cada x € V, existe uma tnica geodésica normalizada y: [0,7] — M tal
que ¥(0) = p e y(t) = x, entdo denote por P, o transporte paralelo ao longo de ¥ iniciando em p
e terminando em ¥(). Defina a aplicacdo ¢; : TxM — Ty(,)N dada por ¢;(v) = P;oio P 1),
em que P, é o transporte ao longo da geodésica normalizada 7 : [0,f] — N que satisfaz

7(0) =qe7(0) =i(¥(0)).

Proposicio A.2.5 (Teorema 2.1 de [10]). Com a notacdo acima e denotando por R e R as

curvaturas de M e N, respectivamente, se, para todo x € V e w,y,u,v € T,M, tivermos

(R(w,y)u,v) = (R(¢:(w), 0 ()0 (1), $: (v))
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entdo f:V — f(V) C N é uma isometria local tal que df, = i.

Teorema A.2.6. Num grupo de Lie G com métrica bi-invariante, a exponencial do grupo

coincide com a exponencial Riemanniana.

Demonstragdo. Vamos considerar que a dlgebra de Lie g de G é composta dos campos
de vetores invariantes a esquerda. Para qualquer g € G e X,Y € g, temos que (X,Y), =
((dLg)1X(1),(dLg)1Y(1))g = (X,Y)1,logo, (X,Y) é constante e temos que Z(X,Y) = 0 para
todo campo diferencidvel Z de G. Pela equacdo de Koszul (equacgdo (9) do capitulo 2 de
[10]), temos que

2(X,VyY) =2(Y,[X,Y]).

A bi-invariincia entdo implica que ([X,Y],Y) + (Y, [X,Y]) =0, logo, (X,VyY) = 0 para
qualquer X € g, entdo VyY = 0 para todo Y € g. Portanto, todo subgrupo a um parametro
exp(tY) é uma geodésica e, reciprocamente, toda geodésica tem esta forma por conta da

unicidade de geodésicas dados um ponto e uma dire¢do. O
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A.3 Fibrados e Topologia

Teorema A.3.1. Seja G um grupo de Lie simplesmente conexo e K um subgrupo conexo e

fechado, entdo G/K é um espaco homogéneo simplesmente conexo.

Nio demonstraremos este Teorema diretamente; em vez disso, vamos demonstrar um
resultado mais geral do qual o Teorema acima € um caso particular.

Um fibrado principal, P(M,K) se constitui do espaco total P, da base M e do grupo
estrutural K. Os espagos topologicos P e M sao relacionados pela projecao 7 : P — M. o
grupo K age de forma livre a direita de P (apenas a identidade tem pontos fixos) e as Orbitas
de K sio as fibras 7! (x), x € M. Exige-se ainda que P seja localmente trivial, ou seja, para
cada x € M, existe uma vizinhanca x € U C M e uma aplicagdo bijetora y : n! (U)—-UxK
tal que, se m; denota a projecdo na primeira coordenada de M x K, temos que 7j o Y = T.
Observe que trivializagdo local pode ser vista tanto como uma aplicagao n! (U)—UxK
quanto como uma aplicagio U x K — 1~ 1 (U).

No caso em que P e M sdo variedades diferencidveis, consideramos que 7 é diferencidvel,
que K é um grupo de Lie que age diferenciavelmente e que y é um difeomorfismo. A

aplicacdo ¥ pode ser descrita de maneira mais explicita da seguinte maneira.

emque, ¢ : 7 (U) — K satisfaz ¢ (xk) = ¢ (x)k para k € K. Segue que

Y (xk) = (m(xk), ¢ (xk)) = (7(x), ¢ (x)k)).

Pela Proposicdo 13.22 de [6], se K < G € um subgrupo fechado, entdo a projecao natural
7 : G — G/K é um fibrado principal com grupo estrutural K.

Proposicao A.3.2. Seja w : P — M um fibrado principal com grupo estrutural K. Suponha
que P é simplesmente conexo e que K € conexo por caminhos, entdo M é simplesmente

conexo.

Demonstragdo. Sejam € M e o : [0,1] — M um caminho fechado tal que 6(0) =m = o (1),
vamos mostrar que ¢ € homotdpica a um ponto. Pela Proposi¢ao 4.48 de [8], existe um
levantamento 6 : [0, 1] — P que satisfaz 1o 6 = o.

Seja U; uma vizinhanca de m que admite a trivializa¢do local v : U; x K — 1~ 1 (Uy).
Denote y; ' (6(0)) = (m,ko) e w; '(6(1)) = (m,k;). Intuitivamente, & se projeta no cami-
nho fechado &, mas ndo é necessariamente fechado (a menos que ko = k). Sejak: [0,1] — F
tal que k(0) = kg e k(1) = k; e defina &(¢) = yy(m,k(2t —1)).
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A seguir vamos definir um caminho fechado em P que nos fornecerd a homotopia que

deforma o no caminho constante m. Seja

) 6(2), te0,1/2]
o) = 5(1), te[1/2,1].

E f4cil verificar que ¢ € continua e também € fechada, uma vez que

¢(0) = &(0) = yi(m ko) = y1(m,k(0)) = 6(1) = ¢(1) := p.

Sendo P simplesmente conexo, existe uma homotopia / : [0, 1]2 — P que satisfaz h(0,t) =
o (1), h(1,t) = pparat € [0,1] e h(s,0) = p=h(s, 1) paras € [0,1]. Defina H = o h, entdo

H(0.1) = o(2t), t€]0,1/2]
o my rey2]

eH(1,t) =n(p) =mparat € [0,1], H(s,0) =m = H(s, 1) para s € [0, 1]].
Segue que H € a homotopia que deforma o ao ponto m e, portanto, M é simplesmente
conexo. [

Teorema A.3.3. Um fibrado principal com fibra discreta é uma aplica¢do de recobrimento.

Demonstragdo. Para cada x € M, seja U > x uma vizinhan¢a que admite uma trivializagao
local y. Por definicio ! (U) é homeomorfo a U x G e sendo a fibra discreta, G também
é discreto. O produto cartesiano U x G, e portanto, 7~ | (U) pode ser visto como a unido
disjunta

U U x{g}

geG

em que, claramente, U x {g} é homeomorfo a U via 7, ja que 7 coincide com 7j o ¥ em

n! (U). Segue que 7 é uma aplicagdo de recobrimento. 0

A.3.1 Grupo Fundamental e Deck Transformations

Seja r : X — X um recobrimento, em que ambas X e X sdo variedades conexas. O grupo das
deck transformations deste recobrimento € o conjunto G(X) dos homeomorfismos f: X — X
que satisfazem ro f = r, pode ser visto também como o conjunto de levantamentos da
aplicagdo de recobrimento r. Esta condi¢do implica que G(X) age sobre as fibras ! (x)

para x € X; em particular, esta acdo € fiel por conta da unicidade de levantamentos (veja a
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Proposi¢do 1.34 de [8]). Uma agdo fiel é aquela em que apenas a identidade do grupo tem
pontos fixos.

O recobrimento r induz um homomorfismo entre 7 (X) e 7;(X) que é denotado r, e
satisfaz r.[y] = [ro¥|, em que [y] denota uma classe de homotopia de um caminho fechado.
Denote H = r.(m; (X)) < m(X). Temos que G(X) é isomorfo a N(H)/H, em que N(H)
denota o normalizador de H em 71 (X ). No caso em que H é normal em 7;(X), o grupo de
deck transformations age de forma transitiva sobre as fibras r ! (x),x € X, e G(X) ~ 7, (X) /H.
Em particular, se X é simplesmente conexo, temos que H € trivial e G(X) ~ 71 (X) (veja a
Proposicao 1.39 de [8]).

A agio de G(X) sobre X é propriamente descontinua, isto significa que, dado qualquer
% € X, existe uma vizinhanga V de ¥ tal que g(V)Nh(V) = 0 se g e h sdo elementos distintos
de G(X). Equivalentemente, g(V) NV = 0 sempre que g # 1. Para x € X, existe um aberto
W s xtalque p (W)= U V; é unido de vizinhangas V; disjuntas e homeomorfas, via p, a W.

J
Seja % € p~!(x) NV}, entdo é fcil ver que g(V;) NV, # 0 se, e somente se, g = 1, pois G(X)

preserva p! (x) e apenas a identidade tem pontos fixos. Como resultado desta discusséo,
segue que, no caso em que G(X) age transitivamente, X é homeomorfo ao quociente X /G(X),
onde identificamos os pontos das 6rbitas de G(X) (veja a Proposi¢do 1.40 de [8]).
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B.1 Algebras e Grupos de Lie

Lema B.1.1. Seja g uma dlgebra de Lie com grupo de automorfismos Aut(g). A dlgebra de
Lie de Aut(g) é Der(g).

Demonstracdo. Seja D € gl(g), vamos mostrar que D é derivagdo se, e s6 se, ¢P 6 um

automorfismo de g para todo r € R. Sejam X,Y € g.
Se ¢'P ¢ automorfismo, temos que ¢'?[X, Y] = [¢'PX, ¢'PY]; derivando em # = 0 e usando
a bilinearidade do colchete, temos que D[X,Y] = [DX,Y]|+ [X,DY].
Por outro lado, se D é derivacio, basta notar que ¢'°[X,Y] e [¢'PX,'PY] coincidem para
t = 0 e satisfazem a mesma equagao diferencial, ou seja,
d

d

tD tDys D
X,Y|= X,e7Y].
te [X,Y] t[e ,e7Y]

O

Lema B.1.2. Seja g = g; ¢ g> uma soma direta de dlgebras de Lie. Qualquer subdlgebra de
Cartan de g € da forma b; @ b, em que b; € subdlgebra de Cartan de g;, j = 1,2.

Demonstragdo. Se by e b sdo subdlgebras de Cartan de g; e g, respectivamente, entao
b1 @ b, deve ser uma subdlgebra autonormalizante, jd que [g, g2] = 0 e cada uma das b; é
autonormalizante em g, logo, € uma subélgebra de Cartan.

Suponha entdo que h < g é subdlgebra de Cartan. h deve interceptar ambos g; € go,
caso contrdrio, [h,g;] = 0 para algum j, ou seja, g; < ng(h) = b, o que ¢ absurdo. Portanto,
podemos escrever h) = by @ b, sendo h; = g;Nh. Dado X € ngj(bj), temos que [X,h] =
X, b1 +h2] = [X,b1] C b, entdo X € (g;1h) = b,. O
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B.2 Complexificacao

Nesta secdo vamos tratar das complexificdes de espacos vetoriais e de operadores. Veremos
que tipos de conclusdes podemos tirar sobre a estrutura dos subespacos com relacdo a um
dado operador a partir das propriedades na complexificagao.

Dado um espaco vetorial V sobre R, definimos a sua complexificagdo V¢ como a soma
direta formal V &iV. A conjugacdo c : Vo — V¢ € o automorfismo antilinear definido por
c(u+iv) =u—ivcomu,v € V. A terminologia antilinear est4 relacionada ao fato que, para
z € C, temos c(z(u+iv)) = Zc(u+iv), em que Z denota o conjugado de z em C. E fécil
ver que w € V¢ € fixado se, e somente se, w € V C V. Um subespaco de V¢ da forma W
para algum subespaco W C V € claramente preservado por c e, por outro lado, se E < V¢ e
c(E) = E, entdo existe W <V tal que E = W¢. De fato, basta observar que, se u+iv € E,
entdo u —iv € E e segue que u,v € ENV,logo, E = (ENV)c.

Um endomorfismo M : V — V induz um endomorfismo M¢ : V¢ — V¢ chamado de
complexificacdo de M. Para z € C, definimos Mc (z(u+iv)) = z(M(u) 4+ iM(v)). Observe

que

coMc(z(u+iv)) = c(z(M(u) +iM(v)))
Z(M(u) —iM(v))
= Mcoc(z(utiv)),

logo, coM¢ = Mc oc. Se Mc tem um autovalor complexo z = a + ib associado ao autovetor
u+iv, entdo u e v satisfazem M(u) = au — bv e M(v) = bu+ av. Este fato segue da equagio
abaixo

M(u)+iM(v) = Mc(u+iv) = (a+ib)(u+iv) = au —bv+i(bu+av).

Portanto, W = (u,v) é um subespaco de V em que M se expressa matricialmente como

a b
(—b a). (B.1)

Em particular, se @ = 0, M|y € anti-simétrica. Resumimos as consequéncias desta discussio

na Proposicao abaixo.

Proposicao B.2.1. Sejam V um espaco vetorial real, V¢ sua complexificacioe M : V —V

um endomorfismo linear. Entdo valem as seguintes afirmagdes.

1. Mc comuta com a conjugacao c.
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2. Um subespago E < V¢ é da forma W para W <V se, e somente se, c(E) =E.

3. Se M¢ tem um autovetor complexo, entdo existe um subespaco de dimensao 2 de V

invariante por M em que M tem a representacdo matricial da Equacao (B.1).

Lema B.2.2. Sejam V, W espacos vetoriais reais de dimensao finitae f : V — W um homo-

morfismo continuo de espacos vetoriais vistos como grupos aditivos, entdo f € linear.
Demonstragdo. Sem perda de generalidade, assumimos que V = R" e W = R". Por hipétese,
temos que f(u+v) = f(u)+ f(v) para todos u,v € R". Sejam n,m € Z, entdo f(nu) =nf(u)
1 1 1
ef(u)=f (Tu) =mf (—u) ,logo, —f(u)=f (—u) Segue que, para todos g = e Q,
m m m m m

temos f(qu) = qf(u). Sendo Q denso em R e f continua, concluimos que f(ru) = rf(u)
para todo r € R. [
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