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Resumo

A teoria de espaços simétricos ultrapassa os limites da geometria. Apesar dos espaços
simétricos serem variedades Riemannianas, os aspectos algébricos relacionados a eles são tão
importantes quanto os geométricos. Descrevemos e provamos resultados sobre as álgebras
ortogonais involutivas, suas decomposições e grupos de Weyl. Mostramos que a um espaço
simétrico está associada, de forma natural, uma álgebra ortogonal involutiva e vice-versa.
Caracterizamos a imagem inversa da exponencial Riemanniana em espaços simétricos com-
pactos como união disjunta de órbitas focais, das quais calculamos as dimensões e contamos
as componentes conexas usando o grupo de Weyl. A partir das simetrias de um espaço
simétrico compacto descrevemos seus campos de Jacobi e o Locus Conjugado de um ponto.
A partir de propriedades geométricas caracterizamos o Locus de Corte e, utilizando o grupo
de Weyl, mostramos que o grupo fundamental é trivial se, e somente se, o Locus de corte e o
Locus conjugado coincidem. Determinamos o grupo fundamental de um espaço simétrico
compacto como quociente de reticulados num subespaço de Cartan da álgebra ortogonal
involutiva associada. Mostramos ainda que, sob algumas hipóteses, grupos de Lie podem
ser vistos como Espaços Simétricos e relacionamos os resultados apresentados ao contexto
de grupos de Lie. Ao longo do texto, mostramosmos alguns exemplos para ilustrar a teoria
apresentada.

Palavras-chave: Geometria Riemanniana, Espaços Simétricos, Espaços Homogêneos, Gru-
pos de Lie, Álgebras de Lie, Topologia de Espaços Simétricos.





Abstract

The theory of symmetric spaces goes beyond the limits of geometry. Despite symmetric
spaces being Riemannian manifolds, the algebraic features related to them are as important as
the geometric ones. We describe and prove results about orthogonal involutive Lie algebras,
their decompositions and Weyl groups. We show that an orthogonal involutive lie algebra
is associated to a symmetric space in a natural way and the converse too. We describe the
inverse image of the Riemannian exponential in compact symmetric spaces as the union of
focal orbits, of wich we calculate the dimension and count the connected components using
the Weyl group. Using the symmetries of a symmetric space, we describe their Jacobi fields
and calculate the conjugate locus of a point. From geometric properties, we characterize the
cut locus of a point and, using the Weyl group, we show that a compact symmetric space
is simply connected if and only if its Conjugate Locus and Cut Locus are identical. We
calculate the fundamental group of a compact symmetric space as a quocient of lattices in a
Cartan subspace of the associated orthogonal involutive Lie algebra. Moreover, we show that,
under some hypothesis, a Lie group can be seen as a Symmetric Space and we transport the
results to the context of Lie groups. throughout the text we show some examples to illustrate
the theory.

Keywords: Riemannian Geometry, Symmetric Spaces, Homogeneous Spaces, Lie Groups,
Lie Algebras, Topology of Symmetric Spaces.
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Introdução

Os espaços simétricos são exemplos de variedades Riemannianas com muitas simetrias,
como o nome já sugere. Por este motivo, há muita estrutura e ferramentas disponíveis
para trabalhar com estes espaços. Para que uma variedade Riemanniana S seja um espaço
simétrico, exige-se que esteja definida, para cada ponto de S, uma isometria involutiva que
preserva as geodésicas passando por aquele ponto (Seção 2.3). Mais especificamente, se S é
um espaço simétrico e p ∈ S, está definida a simetria geodésica sp : S → S, ela fixa p e, se γ

é qualquer geodésica passando por p = γ(0), sp satisfaz

sp(γ(t)) = γ(−t).

A composição de duas simetrias geodésicas gera uma isometria que chamamos de
transvecção. Utilizando as transvecções, mostramos que qualquer espaço simétrico conexo é
uma variedade Riemanniana homogênea (Teorema 2.3.8), ou seja, S = G/K, em que G é um
grupo de Lie conexo que age transitivamente sobre S por isometrias e K ≤ G é um subgrupo
fechado que consiste de isometrias que fixam algum ponto de S, que costumamos denotar
por p. A ação de G sobre S se identifica com a ação de G sobre G/K por multiplicação à
esquerda, então identificamos p = 1K ∈ G/K (veja a Seção 2.1).

Seja g a álgebra de G e k≤ g a álgebra de K. Podemos visualizar os elementos de g como
campos de Killing em S (Proposição 2.3.9), dentre os quais os elementos de k são vistos como
os campos de Killing que se anulam em p. A representação adjunta σ = Ad(sp) : g→ g

é um automorfismo involutivo de g que tem decomposição g = k⊕ s em autoespaços ±1
(Teorema 2.3.11). A projeção natural π : G → G/K nos permite identificar TpS ≈ s, então,
a partir da métrica de S, obtemos um produto interno B em s que pode ser estendido a um
produto interno ad(k)−invariante e σ−invariante em g, ou seja, os elementos ad(X), X ∈ k,
são anti-simétricos e σ é uma isometria de g (veja a parte final da Seção 2.3). Estas condições
tornam o par (g,σ) uma álgebra ortogonal involutiva com produto interno B (veja a Definição
1.4.4).



2 Introdução

A estrutura de álgebra ortogonal involutiva nos fornece mais ferramentas com as quais
podemos trabalhar para entender os espaços simétricos. O nosso foco principal foi estudar
estas álgebras nos casos semi-simples não compacto e compacto, sendo que o caso compacto
é o mais interessante para nós, uma vez que os resultados geométricos principais estão
relacionados a espaços simétricos compactos, caso em que o grupo G é compacto e, portanto,
g também é compacta. O que diferencia uma álgebra de Lie g de um simples espaço vetorial
é o colchete de Lie, que funciona como uma espécie de produto em g, portanto, entender g
se resume, principalmente, a entender as relações de colchete existentes (veja a Seção 1.1
para um resumo sobre o assunto de álgebras de Lie).

Se g tem dimensão finita, existe uma subálgebra h de g chamada de Subálgebra de Cartan,
em termos da qual g se decompõe como

g= h⊕
⊕

α∈∆(g,h)

gα .

em que gα são autoespaços generalizados da família de operadores adg(h) e ∆(g,h) é o
conjunto das raízes de g com respeito a h (veja a Equação 1.2). Esta decomposição é
importante por que a representação adjunta adg de g é dada em termos do colchete, ou seja,
ad(X)Y = [X ,Y ] e, se H ∈ h e X ∈ gα , existe n ∈ N tal que (ad(H)−α(H))nX = 0. A
decomposição é o primeiro passo para entender as relações de colchete. Se g é semi-simples,
suas subálgebras de Cartan são abelianas e os autoespaços gα são autoespaços usuais (veja o
Exemplo 1.2.4). Caso g seja compacta, suas subálgebras de Cartan são subálgebras abelianas
maximais e os operadores ad(H), H ∈ h, são semi-simples, ou seja, diagonalizáveis sobre C.
Por este motivo, a decomposição de uma álgebra compacta se dá em termos de autoespaços
generalizados (veja o Exemplo 1.2.6).

A partir das raízes de ∆ = ∆(g,h) podemos definir reticulados que nos fornecem maneiras
de descrever o centro e o grupo fundamental de um grupo de Lie compacto e conexo G como
um quociente de reticulados (Subseção 1.3.1). O conjunto ∆ é um subconjunto do espaço
dual h∗ e forma o que chamamos de Sistema de Raízes. Podemos identificar h e h∗ de forma
natural e considerar, para cada α ∈ ∆, a reflexão rα em torno do hiperplano α = 0. Cada
uma destas reflexões age sobre ∆ via a ação coadjunta e o deixa invariante (veja a Proposição
1.3.1 e o Lema 1.3.7). O grupo gerado pelas reflexões rα , α ∈ ∆, é chamado de grupo de
Weyl, este grupo é fundamental em vários aspectos da teoria (Seção 1.3).

Neste mesmo espírito, estudamos uma álgebra ortogonal involutiva (g,σ). Como a
involução σ é relevante para nós, consideramos decomposições de g que levam em conta
os autoespaços k e s, invariantes por σ . Em vez de considerar uma subálgebra de Cartan,
consideramos o que chamamos aqui de subespaço de Cartan (seguindo o exemplo de [1]).



Introdução 3

Trata-se de uma subálgebra t de g que é maximal abeliana e está contida em s. Para g

semi-simples e não compacta consideramos o caso em que σ é uma involução de Cartan;
este é o caso mais simples de se obter uma involução de Cartan, uma vez que adg(t) consiste
de uma família comutativa de operadores simétricos. Tem-se então a decomposição

g= zk(t)+ t+ ∑
α∈∆σ

gα ,

em que ∆σ = ∆σ (g, t) é chamado de conjunto das raízes restritas de g com respeito a t e
os gα são autoespaços no sentido usual (Teorema 1.4.3). Para g redutível, mostramos que
sempre existe uma subálgebra de Cartan de g contendo t. Usando que toda álgebra compacta
é também redutível, aplicamos o que foi feito no caso compacto na Seção 1.2 para obter a
decomposição de (g,σ) como

g= zk(t)+ t+ ∑
iα∈∆σ

mα ,

em que os mα são espaços de raiz generalizados (Teorema 1.4.10).
Na Subseção 1.4.1, mostramos, nos casos compacto e semi-simples não compacto, que as

raízes de uma álgebra ortogonal involutiva (g,σ) são restrições de raízes de g com respeito
a alguma subálgebra de Cartan. Na Subseção 1.4.2, descrevemos o grupo de Weyl de
∆σ e tratamos também das diferentes maneiras como ele pode ser visto. Este resultado é
importante porque o grupo de Weyl de ∆σ não age apenas em ∆σ , mas também sobre o
espaço simétrico associado (veja a Equação (3.16)). Além disso, mostramos que ∆σ tem
todas as propriedades relevantes para que os resultados da Subseção 1.3.3 sejam válidos.
Este é um passo fundamental, pois nos permite demonstrar resultados importantíssimos no
Capítulo 3. A Subseção 1.3.3 apresenta resultados de caráter mais técnico que, à primeira
vista, podem parecer desconexos, mas, na verdade, são fundamentais na descrição do Locus
de Corte e do Locus Conjugado de um espaço simétrico compacto e também na demonstração
do fato que um espaço simétrico compacto é simplesmente conexo se, e somente se, seus
Locus de Corte e Locus Conjugado coincidem (Teorema 3.5.8).

Para estudar o locus conjugado de um ponto em um espaço simétrico compacto, utiliza-
mos a caracterização tensorial dos espaços localmente simétricos para obter coordenadas
em que a equação de Jacobi se escreve de forma mais simples (Equação 2.3). Não atacamos
diretamente o problema de calcular o locus conjugado de p em S, mas, sim, reduzimos
o problema a calcular o locus conjugado em um flat maximal para depois estender este
resultado a S. Os flats de S são subvariedades conexas, completas, totalmente geodésicas e
com curvatura nula e são chamados de maximais se nenhum outro os contém. Identificando
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s = TpS, os flats maximais de S passando por p coincidem com as órbitas de p em S pela
ação do grupo T = ⟨exp(t)⟩, em que t é um subespaço de Cartan de (g,σ) (Corolário 2.4.4).

Inicialmente, mostramos que a curvatura de S pode ser calculada inteiramente em termos
de colchetes de vetores e isto nos fornece uma maneira de escrever a equação de Jacobi
em termos da representação adjunta de t. A decomposição em espaços de raízes de (g,σ)

com respeito a t nos dá, então, a forma das soluções da equação de Jacobi e nos permite
determinar precisamente o locus conjugado de p em um flat maximal T p = ⟨exp(t)⟩p. Como
uma consequência de resultados álgebricos, os flats maximais de S são todos conjugados pela
ação da isotropia K e cobrem S (Teorema 2.4.5), de modo que o locus conjugado de p em S
coincide com a imagem, pela ação de K, do locus conjugado de p em T p (Teorema 2.4.6).

Em seguida, passamos a estudar o conjunto das geodésicas de S que ligam dois pontos
arbitrários p e q. Para cada geodésica γ que conecta estes dois pontos, fixamos p = γ(0)
como o ponto inicial e identificamos γ com a condição inicial H = γ

′(0) ∈ s. Deste modo,
cada geodésica γ pode ser vista como um ponto X ∈ s= TpS. Consideramos então o subgrupo
Kq de K das isometrias que fixam ambos p e q, de modo que, para todo k ∈ Kq, kγ é uma
geodésica que conecta p = 1K e q (veja o início da Seção 3.3).

Podemos escrever γ(t) = expp(tH) = exp(tH)p, em que expp é a exponencial Riemanni-
ana de S no ponto p. Como

k exp(tH)p = k exp(tH)k−1 p = exp(tAd(k)H)p,

podemos identificar a ação de Kq sobre as geodésicas com uma ação de Kq sobre s por meio
da representação adjunta. A órbita KqH é denominada órbita focal de H e é denotada F(H)

(veja a Equação 3.17). Portanto, descrever as geodésicas que conectam p e q se reduz a
descrever a imagem inversa de q pela exponencial expp. Mostramos que exp−1

p (q) consiste
de uma união de órbitas focais (Teorema 3.3.2). Além disso, o grupo de Weyl nos fornece
maneiras de contar as componentes conexas das órbitas focais (Teorema 3.3.6) e podemos
determinar suas dimensões utilizando informações fornecidas pelo sistema de raízes ∆σ (u, t)

(Teorema 3.3.7).
Na Seção 3.4, foi calculado o grupo fundamental de espaços simétricos compactos. As

construções desta Seção foram inspiradas no artigo [2], que deu o direcionamento necessário,
e no capítulo 13 de [3], que calcula o grupo fundamental de grupos de Lie compactos. Assim
como no caso de grupos de Lie conexos e com álgebra compacta, o grupo fundamental
de um espaço simétrico compacto é um quociente de reticulados. Para demonstrar este
resultado, foi definida a noção de elemento regular em S (algo similar ao conceito de
regularidade em grupos de Lie compactos) e foi construído um recobrimento para o conjunto
dos elementos regulares Sreg (veja a Equação (3.27)). Ocorre que ambos S e Sreg possuem
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grupos fundamentais isomorfos, então pudemos realizar todas as construções relevantes na
variedade mais amigável Sreg. Por fim, mostramos que há uma bijeção entre componentes
conexas de uma órbita focal e classes de homotopia de curvas que conectam p e q (veja o
Lema 3.4.21).

Ainda no capítulo 3, estabelecemos as condições necessárias para que um grupo de Lie
possa ser um espaço simétrico (Subseção 3.1.3). Para que um grupo de Lie seja um espaço
simétrico é necessário e suficiente que sua álgebra seja compacta e que admita uma métrica
bi-invariante. Determinamos a decomposição da álgebra ortogonal involutiva e os reticulados
associados a um grupo de Lie vendo-o tanto como espaço simetrico quanto como um grupo.
Ao longo do corpo principal do texto mostramos alguns exemplos em grupos de Lie e em
espaços simétricos que não são grupos para ilustrar a teoria apresentada. Mostramos ainda
como os objetos da teoria desenvolvida no capítulo 3 devem ser interpretados no contexto de
grupos de Lie (Subseção 3.3.3).

Nos Apêndices constam, de forma resumida, resultados relevantes que fogem ao escopo
do texto principal. Para todos os resultados citados que não constam nos apêndices, foram ci-
tadas referências. O Apêndice A contém resultados de natureza mais geométrica e topológica,
enquanto, no Apêndice B, há resultados de natureza algébrica.





Capítulo 1

Álgebras de Lie Ortogonais Involutivas

1.1 Álgebras e Grupos de Lie

Nesta seção, vamos estudar as álgebras de Lie. Apesar de ser um tema ligado à álgebra, é
muito importante para o estudo dos espaços simétricos. Na primeira seção, estudaremos o
tema de forma mais abrangente e, nas seguintes, restringiremos nossa atenção às partes do
estudo que são mais importantes no estudo de espaços simétricos.

Uma álgebra de Lie g é um espaço vetorial munido com um produto bilinear denominado
de colchete de Lie (ou simplesmente colchete) [·, ·] : g× g → g que satisfaz as seguintes
relações:

1. [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

2. [X ,Y ] =−[Y,X ]

para X ,Y,Z ∈ g. A primeira equação é chamada de identidade de Jacobi e a segunda retrata a
anti-simetria do colchete. Para entender uma álgebra g é necessário, portanto, entender as
relações que o colchete impõe sobre g. As álgebras mais simples possíveis são as abelianas,
aquelas em que o colchete é identicamente nulo. Neste texto, todas as álgebras de Lie têm
dimensão finita e estão definidas sobre R a menos que seja dito o contrário.

Subálgebras, Ideais e Homomorfismos

Dado um subconjunto W de g, definimos [W,W ] como o subespaço de g gerado por elementos
da forma [X ,Y ] com X ,Y ∈W . Um subespaço vetorial h de g é chamado de subálgebra se
for fechado pelo colchete, ou seja, [h,h]⊆ h; quando isto acontece, denotamos h≤ g. Uma
subálgebra h será chamada de ideal de g se [h,g]⊆ h, denotamos h⊴ g. Um homomorfismo
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de álgebras de Lie é uma aplicação linear φ : g→ g′ que satisfaz φ([X ,Y ]) = [φ(X),φ(Y )]
para todos X ,Y ∈ g.

Proposição 1.1.1. Uma subálgebra de g é um ideal se, e só se, for núcleo de algum homo-
morfismo.

Demonstração. Se h≤ g é núcleo do homomorfismo φ e X ∈ h,Y ∈ g, temos que [X ,Y ] ∈
h, pois φ([X ,Y ]) = [φ(X),φ(Y )] = [0,φ(Y )] = 0. Por outro lado, se h é um ideal de g,
podemos dar ao espaço quociente g/h uma estrutura natural de álgebra de Lie, definindo
[X +h,Y +h] = [X ,Y ]+h. Para que esta seja uma boa definição, é essencial que h seja um
ideal. A projeção q : g→ g/h definida por q(X) = X +h tem núcleo h e é um homomorfismo
de álgebras de Lie:

q([X ,Y ]) = [X ,Y ]+h= [X +h,Y +h] = [q(X),q(Y )].

Uma álgebra não abeliana g é chamada de simples se qualquer homomorfismo não trivial
com domínio g for injetivo, ou seja, qualquer ideal de g deve ser g ou {0}.

Uma representação de g em um espaço vetorial V é um homomorfismo de álgebras
de lie g → gl(V ), em que gl(V ) denota o espaço das transformações lineares V → V . O
colchete em gl(V ) é o comutador de transformações lineares [T,L] = T ◦L−L◦T , onde ◦
denota a composição e pode ser omitido quando o contexto for claro. Um homomorfismo
especialmente interessante é a representação adjunta ad de g; trata-se de uma representação
de g em gl(g). Para cada X ∈ g, ad associa a transformação linear dada por ad(X)Y := [X ,Y ].
Usando a identidade de Jacobi, é fácil ver que ad é, de fato, um homomorfismo.

ad([X ,Y ])Z =−[Z, [X ,Y ]]

= [X , [Y,Z]]− [Y, [X ,Z]]

= ad(X)ad(Y )Z − ad(Y )ad(X)Z

= [ad(X),ad(Y )]Z.

A partir da representação adjunta de g obtemos representações ad
∣∣
h

: h → gl(g) das
subálgebras de h de g. Para entender as relações de colchete em g, estudaremos com mais
atenção as representações ad

∣∣
h

na próxima seção. Serão especialmente interessantes as
representações de subálgebras nilpotentes de g, pois resultam em decomposições de g em
subespaços mais simples do ponto de vista das relações de colchete.
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Um homomorfismo g→ g é chamado de automorfismo se for bijetivo. Os automorfismos
de g formam um grupo denotado por Aut(g). Uma derivação de g é uma aplicação linear
D : g→ g que satisfaz

D[X ,Y ] = [DX ,Y ]+ [X ,DY ]

Denotamos por Der(g) o conjunto das derivações de g. Usando a identidade de Jacobi, é
fácil ver que, para cada X ∈ g, ad(X) é uma derivação, logo, ad(g)⊆ Der(g).

Centralizadores e Normalizadores

Seja W um subconjunto de g, definimos o centralizador de W em g como o conjunto

zg(W ) = {X ∈ g : ad(X)W = 0}.

O centro de g é o centralizador de g em g e será denotado simplesmente por z(g). O
normalizador de W em g é definido por

ng(W ) = {X ∈ g : ad(X)W ⊆W}.

Uma subálgebra h≤ g será um ideal se, e somente se, g= ng(h). Além disso, uma subálgebra
h será chamada de autonormalizante se ng(h) = h; observe que este é o completo oposto de
ser um ideal.

Álgebras nilpotentes, solúveis e semi-simples

Denote C1(h) = h e defina indutivamente

Cn+1(h) = [h,Cn(h)].

A álgebra h é chamada de nilpotente se existir algum n para o qual Cn(h) = {0}. Em
particular, toda álgebra abeliana é nilpotente. De forma similar, escreva D0(h) = h e defina,
para cada n,

Dn(h) = [Dn−1(h),Dn−1(h)].

Chamaremos h de solúvel se existir algum n tal que Dn(h) = 0. É possível mostrar por
indução que Dn(h)⊆Cn+1(h) e isto implica que toda álgebra nilpotente é solúvel. A soma
de ideais solúveis de uma álgebra g é também solúvel (veja a Proposição 5.4.3 de [4]); isto
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implica que, em toda álgebra de Lie de dimensão finita, há um ideal solúvel maximal, o qual
é denotado rad(h) (veja a Definição 5.4.5 de [4]).

Sejam g e h álgebras de Lie. Diremos que a soma direta de espaços vetoriais g⊕h (ou
seja, g∩h= 0) é uma soma direta de álgebras de Lie se [g,h] = 0. Uma álgebra de Lie g é
chamada de semi-simples se puder ser escrita como a soma direta

g= g1 ⊕·· ·⊕gn

de ideais simples g j, em particular toda álgebra simples é semi-simples. O centro da álgebra
é sempre um ideal, mas não é simples por definição, então uma álgebra semi-simples tem
centro nulo. Segue desta definição que qualquer ideal de g é da forma h= gi1 ⊕·· ·⊕gik , pois
a intercessão h∩g j é um ideal de g j para qualquer j, então é nula ou coincide com g j. Pelo
Teorema 5.6.6 de [4] (Teorema de Levi), qualquer álgebra de Lie g de dimensão finita pode
ser escrita como rad(g)⋊ s em que s é semi-simples e recebe o nome de Complemento de
Levi. O símbolo ⋊ denota a soma semi-direta de álgebras de Lie, trata-se de uma soma direta
de espaços vetoriais que também são álgebras de Lie, em que um dos fatores é um ideal.

Uma álgebra g é chamada de redutível se g= z(g)⊕ [g,g] com [g,g] semi-simples. Temos
que g é redutível se, e somente se, para cada ideal h em g, existe um outro ideal k tal que
g= h⊕ k. Segue que uma álgebra redutível é semi-simples se, e só se, z(g) = {0} e, neste
caso, [g,g] = g (para mais detalhes, veja a Seção 5.7 de [4]).

Formas bilineares ad-invariantes

Uma forma bilinear B : g×g→ R é chamada de ad−invariante se satisfizer

B(ad(H)X ,Y )+B(X ,ad(H)Y ) = 0

para todos X ,Y,H ∈ g. Se h é um subespaço de g, o seu complemento ortogonal com relação
a B (em g) é definido por

h⊥,B = {X ∈ g : B(X ,Y ) = 0 para todo Y ∈ h}

A condição acima também pode ser denotada de forma mais sucinta por B(X ,h) = 0.

Proposição 1.1.2. Seja h um ideal de g. O complemento ortogonal de h com relação a B é
também um ideal de g.
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Demonstração. Seja X ∈ g, Y ∈ h e Z ∈ h⊥. Temos que B(Z,h) = 0 por hipótese, devemos
mostrar que [X ,Z] ∈ h⊥. Isto segue da invariância de B, uma vez que

B([X ,Z],Y ) =−B(Z, [X ,Y ]) = 0.

Dentre as formas definidas em g, há uma que merece atenção especial, trata-se da forma
bilinear simétrica β : g×g→ R definida por

β (X ,Y ) = tr(ad(X)ad(Y )),

em que tr denota o traço. Ela é chamada de forma de Cartan-Killing de g. A simetria de β

segue das propriedades do traço, i.e., tr(AB) = tr(BA) para A e B transformações lineares. Um
cálculo simples mostra que β é ad−invariante, logo, vale a Proposição 1.1.2 para β e, além
disso, quaisquer dois ideais n e j de g se interceptam em 0 são ortogonais com relação a β ,
pois, se Z ∈ g, X ∈ n e Y ∈ j, temos que ad(Y )Z ∈ j e, portanto, ad(X)ad(Y )Z ∈ n∩ j= {0}.
Em particular, os ideais simples de uma álgebra semi-simples são dois a dois ortogonais.

O complemento ortogonal de h com relação a β será denotado simplesmente por h⊥.
Observe que o ideal h∩h⊥ ⊴ g nem sempre é nulo, uma vez que g⊥ ⊆ h∩h⊥. Uma forma
bilinear simétrica é chamada de não degenerada se g⊥ = {0}.

Teorema 1.1.3 (Critério de Cartan para álgebras semi-simples). Uma álgebra de Lie g é
semi-simples se, e só se, sua forma de Cartan-Killing é não degenerada.

Demonstração. Suponha que g é semi-simples, devemos mostrar que não existe X ∈ g tal
que β (X ,g) = 0. Podemos supor que g é simples, já que seus ideais simples são dois a dois
ortogonais. Observe que g é ideal de g; se existe um tal X , temos que g⊥ ̸= 0 é ideal de g.
Mas isto é um absurdo, pois g⊥ ̸= g, já que g∩g⊥ é uma álgebra solúvel (Lema 5.5.8 de [4]).

Suponha agora que β é não degenerada. Se g é simples, o Teorema é válido, caso
contrário, seja h ̸= 0 um ideal de g que não coincide com g. Podemos escrever g= h⊕h⊥

como soma de ideais que se interceptam em {0} (Lema 5.5.8 de [4]). A restrição de β a h e
a h⊥ é também não degenerada. Por indução sobre a dimensão, aplicando este argumento a h
e h⊥ concluimos que g é soma direta de ideais simples.

Álgebras Compactas

A classe de álgebras mais importante para nós será a das álgebras compactas. Uma álgebra de
Lie g é compacta se existir algum produto interno ad−invariante em g. Qualquer subálgebra
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de uma álgebra compacta é compacta, pois a restrição do produto interno ad−invariante de g
a uma subálgebra h≤ g, é um produto interno ad−invariante em h. Se h⊴ g, denote por h′ o
ideal complemento ortogonal de h com relação a este produto interno; temos que g= h⊕h⊥,
em que h′ ̸= 0 se h ̸= g e h∩ h′ = {0}, pois um produto interno é não degenerado e sua
restrição a qualquer subespaço é ainda um produto interno. Segue que g é redutível.

Proposição 1.1.4. Seja g uma álgebra compacta. Existe um grupo de Lie compacto com
álgebra g.

Demonstração. Sendo g redutível, escreva g = z(g)⊕ [g,g]. Como z(g) é abeliana, é iso-
morfa à álgebra de um toro T , que é um grupo de Lie compacto. Observe que [g,g] é
semi-simples e compacta, então qualquer grupo de Lie conexo G′ com álgebra [g,g] será
compacto pelo Teorema 1.3 do cap. V de [5]. Portanto, g pode ser vista como a álgebra do
grupo T ×G′.

A recíproca desta Proposição é verdadeira, como mostra a Proposição 2.1.4 de [4]. O
seguinte Lema nos será útil mais adiante.

Lema 1.1.5. Seja g uma álgebra de Lie compacta e X ∈ g, então ad(X) ∈ gl(g) tem autova-
lores puramente imaginários.

Demonstração. Seja ⟨ ,⟩ um produto interno ad−invariante em g. A equação ⟨ad(X)Y,Z⟩+
⟨Y,ad(X)Z⟩ = 0 mostra que ad(X) é anti-simétrica em relação a esse produto interno, ou
seja, seus autovalores devem ser puramente imaginários.

Observação 1.1.6. Usando este Lema e a Proposição B.2.1, é possível mostrar que a forma
de Cartan-Killing de uma álgebra compacta é negativa semi-definida, ou seja, β (X ,X)≤ 0
para todo X ∈ g, sendo que β (X ,X) = 0 ocorre apenas se X ∈ z(g). De fato, como ad(X)

tem autovalores puramente imaginários, deve haver uma base {Y1,Z1, . . . ,Yk,Zk,W} (com
W = 0 se a dimensão de g for par) tal que ad(X)Yj = b jZ j e ad(X)Z j =−b jYj, com b j ∈R e
ad(X)W = 0. Deste modo, ad(X)2Yj =−b2

jYj e ad(X)2Z j =−b2
jZ j e temos que β (X ,X) =

tr(ad(X)2) =−∑b2
j ≤ 0. Se β (X ,X) = 0, devemos ter b j = 0 para todo j, ou seja, X ∈ z(g),

pois comuta com uma base de g. Se g for, além de tudo, semi-simples, então β é negativa
definida.

Exponencial e Homomorfismos

O grupo GL(V ) consiste dos operadores invertíveis de um espaço vetorial de dimensão
finita V . É possível mostrar que se trata de um grupo de Lie e que sua álgebra é gl(V ). A
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exponencial de matrizes e : gl(V )→ GL(V ), dada por

eA =
∞

∑
n=0

1
n!

An

é um homomorfismo que nos permite associar propriedades de gl(V ) com propriedades de
GL(V ). Isto vale em geral para qualquer grupo de Lie linear G ≤ GL(V ). Podemos estender
a ideia de exponencial para grupos de Lie quaisquer (não necessariamente lineares), veja a
Seção 5.3 de [6]. Se a álgebra de G é g, denotamos sua exponencial por expG : g→ G, ou,
caso não gere confusão, denotamos apenas exp.

Se G e H são grupos de Lie com álgebras g e h, respectivamente, e φ : G → H é um
homomorfismo diferenciável, então a derivada dφ1 na identidade é um homomorfismo de
álgebras de Lie g→ h (veja a Proposição 5.16 de [6]). Em particular, se φ for um isomorfismo,
dφ1 também será um isomorfismo. Além disso, para qualquer X ∈ g, temos que

φ(expG(X)) = expH(dφ1X), (1.1)

pela Proposição 5.15 de [6].
Uma forma de obter automorfismos de g é considerando a representação adjunta de

G em g, Ad : G → GL(g). Para cada g ∈ G, associamos um automorfismo Ad(g) de g

definido por Ad(g)X = (d/dt)gexp(tX)g−1|t=0 para X ∈ g. O operador linear Ad(g) é um
homomorfismo de álgebras de Lie porque é a derivada do homomorfismo de G dado pela
conjugação por g. Quando o contexto estiver claro, podemos usar a notação simplificada
gX = Ad(g)X . Para quaisquer X ∈ g e g ∈ G, temos que

gexp(X)g−1 = exp(Ad(g)X) = exp(gX).

Outra forma de obter automorfismos de g é considerando a restrição da exponencial
e : gl(g)→ GL(g) à subálgebra ad(g)≤ gl(g). O grupo gerado pelos elementos ead X ,X ∈ g,
é chamado de grupo dos automorfismos internos e denotado Inn(g) = ⟨ead(g)⟩. Aqui, e denota
a exponencial de matrizes, enxergando ad(X) como operador de gl(g). Temos ainda que
ead(X) = Ad(exp(X)) pela equação (1.1).

Os automorfismos de uma álgebra de Lie que não são internos, são chamados de externos.
Observe que, se s ∈ Aut(g), temos que ad(sX) = sad(X)s−1, isto implica que a forma de
Cartan-Killing é invariante por automorfismos, ou seja, β (sX ,sY ) = β (X ,Y ) para quaisquer
X ,Y ∈ g.
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Subálgebras e Subgrupos gerados

Seja G um grupo de Lie com álgebra de Lie g. Se V ⊆ g é um subconjunto qualquer,
denotamos por ⟨V ⟩ a álgebra de Lie gerada por V . Para definir esta subálgebra, defina
V 1 =V e, indutivamente, defina V n = [V,V n−1]. Por exemplo, V 2 = [V,V ] é o subespaço de
g gerado por todos os elementos [X ,Y ] com X ,Y ∈V . Então definimos ⟨V ⟩= ∪∞

n=1V n. Fica
claro, pela definição dos V n que ⟨V ⟩ é uma subálgebra de g.

De maneira semelhante, seja C ⊆ G um subconjunto que contém a identidade de G
e satisfaz C−1 = {c−1 : c ∈ C} ⊆ C. Se os inversos de C estão em C, então C ⊆ C−1.
O subgrupo (álgebrico) de G gerado por C é denotado ⟨C⟩. Para defini-lo, denote por
p : G×G → G o produto de G, defina C1 = C e, indutivamente, Cn = p(C,Cn−1). Por
exemplo, C2 = {c1c2 : c1,c2 ∈C}. Definimos então ⟨C⟩= ∪∞

n=1Cn e, pela definição dos Cn,
temos que ⟨C⟩ é um grupo.

Suponha, adicionalmente, que C seja conexo por caminhos, ou seja, quaisquer dois
elementos de C podem ser conectados por um caminho diferenciável contido em C. Para que
esta hipótese seja válida, basta verificar uma condição mais fraca, qual seja, que a identidade
pode ser conectada a qualquer elemento de C por um caminho contido em C. Se c,c′ ∈C e
existem caminhos α e α

′ (em C) conectando, respectivamente, c e 1 e 1 e c′ (nesta ordem),
então a concatenação de α e α

′ é um caminho de c a c′. Sendo c1, . . . ,cn ∈C, temos que, para
cada ci ∈C, existe, um caminho αi : [0,1]→C tal que αi(0) = 1 e αi(1) = ci. Portanto, ⟨C⟩
deve ser também conexo por caminhos, uma vez que o produto de caminhos α1(t) · · ·αn(t)
é um caminho contido em ⟨C⟩ de 1 a c1 · · ·cn. Segue do Teorema 6.19 de [6] que ⟨C⟩ é um
subgrupo de Lie conexo de G.

Um caso especial de subgrupo gerado que nos interessa é o seguinte. Seja W ⊆ g um
subconjunto, então denotamos por ⟨exp(W )⟩ ≤ G o subgrupo gerado por exponenciais de
elementos de W . Caso W seja um subespaço de g, ⟨exp(W )⟩ será um subgrupo de Lie de G
conexo por caminhos, uma vez que todo ponto de exp(W ) pode ser conectado a 1 = exp(0)
via um caminho contido em exp(W ). Para ver isto, considere w ∈W , então exp(tw) é um
caminho de 1 a exp(w) contido em exp(W ), uma vez que tw ∈W para todo t ∈ R. Se W for
uma subálgebra, ou seja, W = h≤ g, a álgebra de ⟨exp(h)⟩ coincide com h, mas, se W for
apenas um subespaço, a álgebra de ⟨exp(W )⟩ não é, em geral, igual a W .
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1.2 Subálgebras de Cartan e Decomposição em espaços de
raízes

Uma transformação linear T : V → V , em que V é um espaço vetorial sobre R ou C, é
chamada split se o seu polinômio minimal se fatora em fatores lineares sobre o respectivo
corpo de escalares. Se o corpo é C, toda transformação é split. Nos concentramos daqui em
diante no caso real. Suponha que T é split, então V se decompõe na soma

V =V λ1(T )+ · · ·+V λk(T )

em que
V λ (T ) := {v ∈V : ∃n ∈ N,(T −λ id)nv = 0},

é chamado de autoespaço generalizado. Denotamos por id o operador identidade de V . Os
autoespaços no sentido usual são denotados

Vλ = {v ∈V : T v = λv}.

Seja π uma representação da álgebra h em V . Dado um funcional linear λ : h → R,
definimos espaços de peso

V λ (h) =
⋂
x∈h

V λ (x)(π(x)) e Vλ (h) =
⋂
x∈h

Vλ (x)(π(x)).

Dizemos que λ é um peso da representação π se V λ (h) ̸= 0. Quando a álgebra h estiver clara
pelo contexto, poderemos omití-la na notação e escrever apenas V λ .

Lema 1.2.1 (Lema 6.1.3 de [4]). Seja π : h→ gl(V ) uma representação da álgebra nilpotente
h no espaço vetorial de dimensão finita V tal que π(x) é split para cada x ∈ h. Então V se
decompõe como

V =
⊕

λ

V λ (h)

em que a soma é tomada sobre os pesos de π . Cada um dos V λ (h) é h−invariante.

Fazendo V = g,π = ad
∣∣
h
, sendo h uma subálgebra nilpotente de g, temos

gλ := gλ (h) =
⋃

n∈N
{X ∈ g : (ad(H)−λ (H))nX = 0,H ∈ h}.
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Se gλ ̸= 0 e λ ̸= 0, o peso λ é chamado de raíz de g com respeito a h. O conjunto das raízes
é denotado ∆(g,h) e os subespaços gλ são chamados de espaços de raízes. A decomposição
do Lema 1.2.1 se escreve

g=
⊕

λ

gλ .

Entender uma álgebra é, de maneira simples, entender as relações de colchete existentes
nesta álgebra, então a importância desta decomposição começa a se mostrar na seguinte
proposição, cuja demonstração pode ser encontrada em [4].

Proposição 1.2.2 (Proposição 6.1.5 de [4]). Seja g uma álgebra de Lie de dimensão finita e
h≤ g uma subálgebra nilpotente, então

1. [gλ ,gµ ]⊆ gλ+µ , λ ,µ ∈ h∗

2. g0 é uma subálgebra de g.

Da hipótese de nilpotência de h, temos que h≤ g0(h). Para nossos propósitos, é interes-
santes escolher h de modo que g0 seja o menor possível para que tenhamos mais informação
sobre g.

Proposição 1.2.3. Se h é uma subálgebra nilpotente autonormalizante de g, então g0(h) = h.

Demonstração. A demonstração deste resultado pode ser encontrada na Proposição 6.1.6 de
[4].

Uma subálgebra nilpotente de g é chamada de subálgebra de Cartan se for autonormali-
zante. Seja h uma subálgebra de Cartan de g tal que ad(H) é split para cada H ∈ h (dizemos
simplesmente que h é split). Pelo item (i) do Teorema 6.1.18 e pelo item (ii) do Lema 6.1.15
de [4], toda álgebra com dimensão finita contém uma subálgebra de Cartan. Pelo Lema 1.2.1
e pela Proposição 1.2.3, temos que g se decompõe em espaço de raízes da seguinte forma.

g= h⊕
⊕

α∈∆(g,h)

gα . (1.2)

Se ad(H) é diagonalizável para todo H ∈ h, h é chamada de subálgebra de Cartan toral.
Neste caso, gα = gα e, em particular, h= g0 = g0 deve ser abeliana.

No caso em que g é semi-simples e h é split, as subálgebras de Cartan são torais e os
espaços gα são unidimensionais (Proposição 6.3.2 e Teorema 6.3.4 de [4]).
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Exemplo 1.2.4. Seja g= sl(4,R) = {X ∈ gl(4,R) : tr(X) = 0}, é possível mostrar que g é
semi-simples. Denote por Ei j a matriz que tem entrada 1 na posição (i, j) e 0 em todas as
outras. O seguinte conjunto de vetores define uma base de g.

H1 = E11 −E22 H2 = E22 −E33 H3 = E33 −E44

U12 = E12 −E21 U13 = E13 −E31 U14 = E14 −E41

U23 = E23 −E32 U34 = E34 −E43 U24 = E24 −E42

V12 = E12 +E21 V13 = E13 +E31 V14 = E14 +E41

V23 = E23 +E32 V34 = E34 +E43 V24 = E24 +E42

A subálgebra abeliana h = ⟨H1,H2,H3⟩ é uma subálgebra de Cartan e, denotando H =

xH1 + yH2 + zH3, temos que

ad(H)(Ui j +Vi j) = αi j(H)(Ui j +Vi j),

ad(H)(Ui j −Vi j) =−αi j(H)(Ui j −Vi j),

em que as raízes αi j são descritas por

α12(H) = 2x− y α13(H) = x+ y− z

α14(H) = x+ z α23(H) =−x+2y− z

α24(H) =−x+ y+ z α34(H) =−y+2z

Pelo que foi discutido nos parágrafos anteriores, g se decompõe como a soma de h com os
subespaços gαi j = ⟨Ui j +Vi j⟩ e g−αi j = ⟨Ui j −Vi j⟩.

Vamos tratar agora do caso das álgebras compactas. Neste caso, a família de operadores
ad(h) é comutativa, mas não é diagonalizável sobre R.

Teorema 1.2.5. Seja g uma álgebra compacta, então

g= z(g)⊕h⊕
⊕

iα∈∆(g,h)

mα ,

em que h é uma subálgebra de Cartan da parte semi-simples de g e os mα são autoespaços
generalizados da família de operadores ad(h)|[g,g].

Demonstração. Sendo g redutível ela é escrita como g= z(g)+ [g,g] em que [g,g] é com-
pacta e semi-simples. Suponha iniciamente que z(g) = 0, ou seja, que g é semi-simples e,
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portanto, que a complexificação gC = g+ ig de g é semi-simples. Seja h uma subálgebra de
Cartan de g; pela Proposição 6.1.11 de [4], hC é subálgebra de Cartan de gC.

Os operadores ad(H),H ∈ h, são anti-simétricos em relação a algum produto interno
ad−invariante em g e, portanto, seus autovalores são imaginários puros (Lema 1.1.5), então
denotamos as raízes de g com respeito a h por iα para α ∈ h∗. Em particular, esses autovalores
devem vir em pares conjugados ±iα . Isto significa que estes operadores são semi-simples,
ou seja, diagonalizáveis sobre C. Para α ∈ h∗, considere os seguintes autoespaços

lα = {X̃ ∈ gC : ad(H)X̃ = iα(H)X̃ ,H ∈ h}.

Denote por c a conjugação complexa em gC dada por c(X + iY ) = X − iY para X ,Y ∈ g.
Trata-se de um isomorfismo linear de gC. A proposição B.2.1 nos mostra que ad(H),H ∈ h,

comuta com c, então seja X̃ ∈ lα , temos que ad(H)c(X̃) = c(ad(H)X̃) =−iα(H)c(X̃), o que
mostra que c(X̃) ∈ l−α . Logo, lα e l−α têm as mesmas dimensões e lα + l−α é invariante
por c, ou seja, lα + l−α = jC para algum subespaço j ⊆ g. Defina mα = (lα + l−α)∩ g.
Desta construção e pela Observação 1.1.6, vemos que mα é constituído de pares X ,Y
satisfazendo ad(H)X = α(H)Y , ad(H)Y =−α(H)X , ad(H)(X + iY ) =−iα(H)(X + iY ) e
ad(H)(X − iY ) = +iα(H)(X − iY ). A um par X ,Y de mα satisfazendo estas propriedades
chamamos de par hiperbólico.

Deste modo, concluimos que a parte semi-simples de g se decompõe como

h⊕ ∑
iα∈∆(g,h)

mα ,

donde segue que a decomposição para g enunciada no Teorema é válida.

Exemplo 1.2.6. Considere g = so(4) = {X ∈ gl(4,R) : X +X t = 0}. As matrizes Ui j do
Exemplo 1.2.4 formam uma base de g, sendo que t= ⟨U12,U34⟩ é um toro maximal, logo, é
uma subálgebra de Cartan. Denote H = tU12 + sU34, calculando os comutadores, obtemos as
seguintes relações.

ad(H)(U13 +U24) = (t − s)(U14 −U23), (1.3)

ad(H)(U14 −U23) =−(t − s)(U13 +U24), (1.4)

ad(H)(U14 +U23) = (t + s)(U13 −U24), (1.5)

ad(H)(U13 −U24) =−(t + s)(U14 +U23). (1.6)

Temos então que ∆(g, t) = {±α,±λ} com α(H) = t − s e λ (H) = t + s. Segue que mα =

⟨U13 +U24,U14 −U23⟩ e mλ = ⟨U14 +U23,U13 −U24⟩.
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Seja g uma álgebra compacta e escreva g = z⊕ s, em que s = [g,g] é semi-simples e
z= z(g). Oberve que z(g)⊕h é subálgebra abeliana e autonormalizante de g, já que h= ns(h)

e z normaliza h em g, logo, é uma subálgebra de Cartan de g. Além disso, esta subálgebra é
abeliana maximal de g, uma vez que os elementos de mα não comutam com os elementos de
h. A recíproca também é verdadeira, então temos o seguinte resultado

Proposição 1.2.7. Uma subálgebra t de uma álgebra compacta g é uma subálgebra de Cartan
se, e somente se, é uma subálgebra abeliana maximal.

Demonstração. Resta mostrar apenas que uma subálgebra t abeliana maximal é subálgebra
de Cartan. Como toda álgebra abeliana é nilpotente, basta mostrar que t é autonormalizante.
Seja X ∈ ng(t) e defina m= RX + t. Como [X , t]⊆ t, temos que m é uma subálgebra de g,
logo, também é compacta e, portanto, redutível. Segue que m= z(m)⊕ [m,m]⊆ z(m)+ t,
de modo que m é abeliana e contém t, logo, m= t pela maximalidade de t.

Seja t ≤ g uma subálgebra de Cartan, um elemento H ∈ t é chamado de regular se
t= g0(ad(H)), o que é equivalente a nenhuma raiz de ∆(g, t) se anular em H. A equivalência
pode ser vista utilizando a decomposição de g em espaços de raízes. Sendo ∆(g, t) finito, fica
claro que toda subálgebra de Cartan contém um elemento regular. O seguinte resultado é
muito importante em nossas próximas investigações.

Proposição 1.2.8. Seja g uma álgebra de Lie compacta. Quaisquer duas subálgebras de
Cartan de g são conjugadas por um automorfismo interno e, dada uma subálgebra de Cartan
t, temos que seus conjugados cobrem g, no sentido de que g= Inn(g)t.

Demonstração. Sejam t e t′ subálgebras de Cartan e X ∈ t, X ′ ∈ t′ elementos regulares
satisfazendo t = g0(ad(X)) e t′ = g0(ad(X ′)). Seja G um grupo compacto e conexo com
álgebra g e considere o produto interno ⟨,⟩ ad−invariante em g. Vamos mostrar que existe
um automorfismo interno que leva t em t′, ou seja, elas são conjugadas. Como G é conexo,
Ad(G)≃ Inn(g), então basta mostrar que existe g0 ∈ G tal que t′ = Ad(g0)t.

A função contínua g 7→ ⟨Ad(g)X ,X ′⟩ deve ater um mínimo num ponto g0 ∈ G por
compacidade. Seja Y ∈ g, e observe que

0 =
d
dt
⟨Ad((exp tY )g0)X ,X ′⟩

∣∣∣
t=0

=
d
dt
⟨ead tY Ad(g0)X ,X ′⟩

∣∣∣
t=0

= ⟨[Y,Ad(g0)X ],X ′⟩= ⟨Y, [Ad(g0)X ,X ′]⟩,

onde usamos a bi-linearidade do produto interno. A arbitrariedade de Y , mostra que
[Ad(g0)X ,X ′] = 0 e segue que Ad(g0)X comuta com um elemento regular de t′ e, como
t′ é abeliana maximal, temos que Ad(g0)X ∈ t′. Consequentemente, t′ está contido em
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g0(ad(Ad(g0)X)) = Ad(g0)g
0(ad(X)) = Ad(g0)t, o que mostra que t′ ⊆ Ad(g0)t e, por-

tanto, t′ = Ad(g0)t, pois são abelianos maximais.
Dado qualquer Y ∈ g, existe uma subálgebra abeliana m de dimenção maximal contendo

Y . Por construção, m deve ser uma subálgebra de Cartan, então, pelo que foi mostrado
anteriormente, deve existir φ ∈ Inn(g) tal que m= φ(t), ou seja, Y ∈ Inn(g)t.

As subálgebras de Cartan de uma álgebra compacta são comumente chamadas de toros
maximais. O motivo é que, se G é um grupo de Lie compacto e conexo com álgebra g,
qualquer toro maximal de g corresponde a um subgrupo maximal abeliano compacto e conexo
de G, que deve ser um toro maximal. Mais especificamente, temos o seguinte resultado.

Proposição 1.2.9. Seja G um grupo compacto e conexo com álgebra g. Então

1. t≤ g é toro maximal se, e só se, é a álgebra de um toro maximal de G.

2. Quaisquer dois toros maximais de G são conjugados via algum g ∈ G.

3. Se T ≤ G é um toro maximal, G =
⋃

g∈G

gT g−1.

Demonstração. A demonstração desta proposição pode ser encontrada no Teorema 12.2.2
de [4].
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1.3 Sistemas de Raízes e Grupo de Weyl

As raízes das álgebras semi-simples que estudamos na seção anterior formam o que chamamos
de Sistema de Raízes. Nesta Seção, estudaremos propriedades de sistemas de raízes a partir
das quais obteremos resultados topológicos e geométricos em grupos de Lie e em Espaços
simétricos (veja o Capítulo 3).

Seja t um espaço vetorial com produto interno ⟨ ,⟩. Para H ∈ t, denote por H⊥ o conjunto
dos X ∈ t tais que ⟨H,X⟩= 0, trata-se de um hiperplano de t. A reflexão em torno de H⊥ é a
isometria que leva H em −H e fixa H⊥ ponto a ponto; ela é descrita pela seguinte fórmula

rH(X) = X −2
⟨X ,H⟩
⟨H,H⟩

H

Um isomorfismo linear ψ de t age em t∗ pela ação coadjunta ψ
∗
α = α ◦ψ

−1. Em particular,
as reflexões rH agem em t∗.

Podemos relacionar t e t∗ considerando, para cada H ∈ t o funcional αH definido por
αH(X) = ⟨H,X⟩. A associação φ : t→ t∗ dada por φ(H) = αH é um isomorfismo de espaços
vetoriais que nos permite induzir o produto interno

⟨α,β ⟩= ⟨φ−1(α),φ−1(β )⟩

em t∗ a partir do produto interno em t, de modo que t e t∗ são isométricos. Denotamos
Hβ = φ

−1(β ), então faz sentido escrever

α(Hβ ) = ⟨Hα ,Hβ ⟩= ⟨α,β ⟩= β (Hα). (1.7)

A reflexão em torno de α
⊥ = H⊥

α pode ser escrita da seguinte forma

rα(Hβ ) = Hβ −2
⟨α,β ⟩
⟨α,α⟩

Hα = β −2
α(Hβ )

⟨α,α⟩
Hα .

É fácil ver que φrHφ
−1 = rαH e, portanto, podemos trabalhar tanto em t quanto em t∗.

Para cada α ∈ ∆ definimos a co-raiz Hα̌ = (2/⟨α,α⟩)Hα . O conjunto das co-raízes terá
um papel importante em seções subsequentes. Com esta notação, podemos denotar de forma
mais simples

rα(Hβ ) = Hβ −α(Hβ )Hα̌ .

Proposição 1.3.1. Seja H ∈ t, então (rH)
∗ = rαH , em que rαH é vista como uma reflexão em

t∗.
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Demonstração. Para β ∈ t∗, temos que (rH)
∗(β ) = β ◦ rH coincide com β em H⊥ e com

−β na reta RH. Lembrando que ⟨αH ,β ⟩= β (H), temos que

rαH (β ) = β −2
⟨αH ,β ⟩
⟨αH ,αH⟩

αH = β −2
β (H)

⟨αH ,αH⟩
αH

coincide com β em H⊥ e

β (H)−2
β (H)

⟨αH ,αH⟩
αH(H) = β (H)−2

β (H)

⟨αH ,αH⟩
⟨αH ,αH⟩=−β (H),

donde segue a igualdade das duas transformações.

Definição 1.3.2. Um Sistema de Raízes reduzido é um subconjunto finito ∆ ⊆ t∗ que contém
alguma base de t∗ e que satisfaz:

1. Se α ∈ ∆, então −α ∈ ∆

2. ∆∩Rα = {±α} para todo α ∈ ∆

3. r∗α(∆)⊆ ∆ para todo α ∈ ∆

4. Para quaisquer α,β ∈ ∆, rα(Hβ )−Hβ ∈ ZHα .

A condição 4 desta definição é equivalente a 2⟨α,β ⟩/⟨α,α⟩ ∈Z ou ⟨α̌,β ⟩= β (Hα̌)∈Z.

Observação 1.3.3. A condição no item 2 é o motivo pelo qual chamamos ∆ de reduzido. Um
conjunto ∆ ⊆ t que satisfaz esta definição, exceto pelo item 2, é chamado apenas de Sistema
de Raízes. Suponha, por um instante, que a condição 2 não seja válida e seja α ∈ ∆ tal que
existe c ̸= 0 satisfazendo cα ∈ ∆, existem poucos valores possíveis para c. Observe que 2c =
⟨cα, α̌⟩ ∈ Z e (cα )̌ = (2cα/⟨cα,cα⟩= (1/c)α̌ , então ⟨(cα )̌,α⟩= (1/c)⟨α̌,α⟩= 2/c ∈ Z.
Segue que c ∈ {±1/2,±1,±2}.

Observação 1.3.4. As condições da Definição 1.3.2 são propriedades usuais das raízes de
uma álgebra de Lie semi-simples com respeito a uma subálgebra de Cartan split (veja a
remark 6.4.4 de [4]). Os mesmos axiomas também são satisfeitos pelas raízes de álgebras
de Lie semi-simples compactas, nas quais as subálgebras de Cartan não são split. Este fato
segue da Proposição 7.14 e do Teorema 7.30 de [3]. Pelo Teorema 1.2.5, vemos que uma
subálgebra de Cartan de uma álgebra compacta g são da forma z(g)+ t, em que t é subálgebra
de Cartan da parte semi-simples de g, logo, as raízes estão contidas em it∗ e satisfazem os
axiomas da Definição 1.3.2 em it∗. Para nos referir às raízes de uma álgebra compacta com
respeito a uma subálgebra de Cartan, omitiremos o fator i.
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Proposição 1.3.5. Seja ∆ um sistema de raízes, então o conjunto das co-raízes

∆̌ = {α̌ : α ∈ ∆} ≃ {Hα̌ : α ∈ ∆}

também é um sistema de raízes. Além disso, ∆ é reduzido se, e somente se, ∆̌ é reduzido.

Demonstração. A demonstração deste resultado encontra-se na Observação 6.4.18 de [4].

O grupo gerado pelas reflexões rα ,α ∈ ∆, é chamado de Grupo de Weyl de ∆ e o deno-
tamos por W (∆) ou simplesmente por W . Os hiperplanos α

⊥ ⊆ t∗ podem ser identificados
com o conjunto de zeros de α em t. Chamamos cada um destes hiperplanos de Hiperplano
de raiz. Sendo ∆ finito, é fácil ver que o complemento destes hiperplanos em t é um conjunto
aberto. A uma componente conexa do complemento dos hiperplanos de raiz damos o nome
de Câmara de Weyl. Cada Câmara de Weyl é um cone convexo aberto em t.

Exemplo 1.3.6. Neste exemplo, vamos descrever o sistema de raízes de so(4) formado pelas
raízes da decomposição so(4) = t+mα +mλ do Exemplo 1.2.6, em que t = ⟨U12,U34⟩ é
uma subálgebra de Cartan de so(4). Pela Observação 1.4.2, a forma bilinear simétrica −β ,
em que β é a forma de Cartan-Killing de so(4), é um produto interno em so(4), uma vez que
so(4) é semi-simples e compacto. Lembre-se que β (X ,Y ) = tr(ad(X)ad(Y )), então, pelas
equações (1.3)-(1.6), temos que

tr(ad(H)ad(H)) =−2(t − s)2 −2(t + s)2,

em que H = tU12 + sU34. Fazendo t = 1 e s = 0, segue que β (U12,U12) = −4 e, fazendo
t = 0 e s = 1, temos que β (U34,U34) = −4. Contas simples nos permitem concluir que

β (U12,U34) = 0. Portanto, escolhendo o produto interno B =−1
4

β restrito a t, temos que
{U12,U34} é uma base ortonormal de t.

Vamos agora determinar os pontos Hα e Hλ . Observe que B(Hλ ,H) = λ (H) = t + s,
então Hλ =U12 +U34. De modo análogo, B(Hα ,H) = α(H) = t − s, então Hα =U12 −U34.
Para ter uma representação gráfica do sistema de raízes ∆ = ∆(so(4), t) em t∗, utilizamos o
isomorfismo φ : t→ t∗ e trocamos Hα e Hλ , respectivamente, por α e λ . Escolhemos um
sistema de coordenadas que está em dualidade com a base ortonormal {U12,U34}, ou seja, o
sistema de cordenadas dado pela base {γ12 = φ(U12),γ34 = φ(U34)}. Veja a Figura 1.1.
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Figura 1.1 : Sistema de raízes ∆(so(4), t).

Como temos apenas dois hiperplanos de raiz α
⊥ e λ

⊥, o grupo de Weyl de ∆ contém
apenas 4 elementos e é dado por W = {1,rα ,rλ ,rαrλ}, em que rαrλ coincide com a reflexão
em torno da origem. Pela Figura 1.1, vemos que há um total de 4 câmaras de Weyl.

Lema 1.3.7. Seja ψ : t→ t um isomorfismo que preserva as raízes de ∆, ou seja, ψ
∗
∆ ⊆ ∆,

então ψ preserva as câmaras de Weyl.

Demonstração. Observe inicialmente que (ψ∗)−1 = (ψ−1)∗ e ψ preserva ∆ se, e só se,
ψ

−1 preserva também. Por hipótese, temos que ψ
∗
∆ ⊆ ∆ e, sendo ψ um isomorfismo,

temos que ψ
∗ é injetiva; da finitude de ∆, segue a igualdade ψ

∗
∆ = ∆ = (ψ−1)∗∆. Sejam

α ∈ ∆ uma raiz qualquer e β = (ψ−1)∗α . Se nenhuma raíz se anula em H ∈ t, temos que
0 ̸= β (H) = α(ψ(H)). Isto mostra que ψ(H) está em alguma câmara de Weyl, pois α é
arbitrária. Além disso, como ψ é contínua, deve levar conexos em conexos, então, se C ⊆ t é
uma câmara de Weyl, ψ(C) também será.
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Um grupo age simplesmente sobre um conjunto se o único elemento do grupo que tem
pontos fixos é a identidade.

Teorema 1.3.8. O grupo de Weyl age simplesmente e transitivamente sobre as câmaras de
Weyl. Sejam H ∈ t um elemento de alguma câmara de Weyl e w ∈W tais que wH = H, então
w = 1.

Demonstração. Estes resultados são consequências diretas das Proposições 8.23 e 8.27 de
[3].

Como a quantidade de raízes é finita, podemos ter apenas uma quantidade finita de
câmaras de Weyl. Além disso, a ação do grupo de Weyl é transitiva e simples, logo, há uma
bijeção entre o grupo de Weyl e as câmaras de Weyl.

Corolário 1.3.9. O grupo de Weyl W é finito.

1.3.1 Reticulados e Grupo Fundamental

Nesta subseção, vamos estudar alguns objetos importantes que nos ajudam a fazer conexões
entre álgebra e topologia de grupos de Lie, que são os reticulados. Vamos mostrar que o
centro e o grupo fundamental de um grupo conexo com álgebra compacta e semi-simples são
isomorfos a quocientes de reticulados.

Definição 1.3.10. Seja t um espaço vetorial com um produto interno. Um reticulado em t é
um subgrupo aditivo Γ satisfazendo as seguintes condições.

1. Existe d > 0 tal que, para quaisquer X ,Y ∈ Γ, a distância entre X e Y é limitada
inferiormente por d.

2. Existe D > 0 tal que qualquer Z ∈ t está a uma distância menor que D de algum ponto
de Γ.

Segue desta definição que um reticulado é discreto, pois, se δ < d, os pontos de Γ são
isolados por bolas de raio δ . Além disso, Γ contém uma base de t. De fato, se t tem dimensão
n e Γ gera um espaço de, no máximo, dimensão n−1, a condição 2 da definição não poderia
ser satisfeita.

Nesta subseção g denota uma álgebra de Lie compacta e semi-simples com subálgebra
de Cartan t e conjunto de raízes ∆ = ∆(g, t) e G denota um grupo conexo com álgebra g.
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Para H ∈ t e X ,Y ∈mα um par hiperbólico (Teorema 1.2.5), temos que

Ad(exp(H))X = ead(H)X = cos(α(H))X − sen(α(H))Y (1.8)

Ad(exp(H))Y = ead(H)Y = sen(α(H))X + cos(α(H))Y (1.9)

Sendo G conexo, temos que ker(Ad) = Z(G). Logo, exp(H)∈ Z(G) = ker(Ad) se, e somente
se, α(H) ∈ 2πZ para todo α ∈ ∆. Defina

Γ1 = {X ∈ t : α(X) ∈ πZ ∀α ∈ ∆},

o chamado Reticulado Central associado a ∆(g, t), que consiste dos pontos de t em que as
raízes de ∆ têm valores múltiplos inteiros de π . Trata-se do conjunto obtido pela intercessão
de hiperplanos de t que são paralelos aos hiperplanos de raíz. Se α ∈ ∆, os hiperplanos
α = kπ ∈ πZ são paralelos ao hiperplano de raíz α = 0, então X ∈ Γ1 se, e somente se, para
cada α ∈ ∆, existe k ∈ Z tal que X está no hiperplano α = kπ . Defina também

Γ = {H ∈ t : exp(2H) = 1}= {H ∈ t : exp(H) = exp(−H)}. (1.10)

Observação 1.3.11. A teoria desenvolvida nesta seção exige que apareça um fator 2 em
algum lugar para que tudo se encaixe como desejado. Por este motivo, escolhemos usar a
exponencial composta com um fator 2 na definição de Γ. Este fator poderia vir em outros
lugares com os devidos ajustes (veja a Proposição 1.5 do capítulo V de [5] e a Seção 13.4 de
[3] para mais detalhes). O motivo de nossa escolha é que os grupos fundamentais de espaços
simétricos são isomorfos a quocientes de reticulados muito parecidos com os que definimos
aqui, então definir Γ desta forma nos permite manter a teoria de certa maneira "unificada".
Tudo ficará mais claro na Subseção 3.1.3.

Proposição 1.3.12. Se G é um grupo de Lie conexo com álgebra g, então Γ ⊆ Γ1. Além
disso, Γ = Γ1 se Z(G) = 1.

Demonstração. A hipótese de conexidade para G é importante pois implica que kerAd =

Z(G). Se H ∈ Γ, temos que exp(2H) = 1, logo, Ad(exp(2H)) = 1 e segue das equações (1.8)
e (1.9) que sen(α(H)) = 0, ou seja, α(H) ∈ πZ. Segue que H ∈ Γ1 e, portanto, Γ ⊆ Γ1.

Suponha que Z(G) = 1. Se α(H) ∈ πZ, as equações (1.8) e (1.9) mostram que

Ad(exp(H)) = Ad(exp(−H)),

isto é, exp(2H) ∈ kerAd = Z(G) = 1. Neste caso, Γ1 ⊆ Γ.
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Em particular, esta demonstração mostra que Γ é um reticulado, uma vez que está contido
em outro reticulado. Ainda não sabemos, no entanto, se é um reticulado em t, mostraremos
isto mais adiante. Temos o seguinte resultado que relaciona Z(G) e os reticulados vistos até
aqui.

Proposição 1.3.13. Seja G um grupo conexo com álgebra g, então Z(G)≃ Γ1/Γ.

Demonstração. Pelo Corolário 12.2.3 de [4], a exponencial de G é sobrejetiva, então seja
z = exp(2H) ∈ Z(G), para algum H ∈ g. Pela Proposição 1.2.8, podemos escolher t de modo
que H ∈ t e, pelas equações (1.8) e (1.9), temos que α(H) ∈ πZ. Portanto, a exponencial
escalonada pelo fator 2 define um homomorfismo sobrejetivo Γ1 → Z(G) com núcleo Γ.

Sendo g compacta, existe um produto interno ad−invariante em g, denote-o por B.
Definimos as co-raízes e o isomorfismo φ : t → t∗ em termos deste produto interno. O
Reticulado Fundamental Γ0 associado a ∆(g, t) é o reticulado gerado com coeficientes em
πZ pelas co-raízes Hα̌ , α ∈ ∆, ou seja, seus elementos são combinações lineares com
coeficientes em Z de vetores da forma πHα̌ , onde identificamos α̌ e φ

−1(α̌) = Hα̌ . Trata-se
de um subreticulado de Γ1, pois β (πHα̌) = πβ (Hα̌) ∈ πZ, já que β (Hα̌) ∈ Z para qualquer
β ∈ ∆. Segue que Ad(exp(πHα̌)) ∈ {±1} para toda α ∈ ∆ pelas equações (1.8) e (1.9).

Proposição 1.3.14. Seja G um grupo conexo com álgebra g. Para todo α ∈ ∆, temos que
exp(2πHα̌) = 1, ou seja, Γ0 ⊆ Γ.

Demonstração. Para um par hiperbólico X ,Y ∈mα e H ∈ t arbitrário, temos

B(H, [X ,Y ]) = B([H,X ],Y )

= α(H)B(Y,Y )

= B(H,Hα)B(Y,Y )

= B(H,B(Y,Y )Hα)

e isto mostra que [X ,Y ] = B(X ,X)Hα = B(Y,Y )Hα , já que B é um produto interno.
Denote H ′

α = Hα̌/2, então temos as seguintes relações

[H ′
α ,X ] = α(H ′

α)Y = Y, [H ′
α ,Y ] =−α(H ′

α)X =−X , [X ,Y ] = B(X ,X)Hα .

Redimensionando para ter B(X ,X) = 1/B(Hα ,Hα) = B(Y,Y ), obtemos

[H ′
α ,X ] = Y, [H ′

α ,Y ] =−X , [X ,Y ] = H ′
α .
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logo, u(α) = ⟨H ′
α ,X ,Y ⟩ é uma subálgebra de g isomorfa a su(2)≃ so(3). O grupo conexo

U = ⟨exp(u(α))⟩ ≤ G é compacto pela Proposição 1.3 do capítulo V de [5]. Pela teoria de
recobrimentos simplesmente conexos de grupos de Lie, temos que U é isomorfo a SO(3) ou
ao seu recobrimento universal Spin(3)≃ SU(2), pois Z(Spin(3)) =±1 (veja a Proposição
5.3.2 de [7]). As raízes de u(α) têm valores inteiros sobre H ′

α , então Ad(exp(πH ′
α))∈ {±1},

donde segue que exp(πHα̌) = exp(2πH ′
α) está em Z(U). Sendo Z(U) isomorfo a {1} ou a

{±1}, temos que exp(2πHα̌) = exp(πHα̌)
2 = 1, logo, πHα̌ ∈ Γ.

Com esta Proposição completamos a demonstração do seguinte Teorema, que mostra que
Γ é um reticulado em t, já que as co-raízes geram t.

Teorema 1.3.15. Seja G um grupo conexo com álgebra g, então os reticulados satisfazem
Γ0 ⊆ Γ ⊆ Γ1.

Observação 1.3.16. Observe que as raízes de ∆ são nulas em z(g)∩ t = z(g), então a
hipótese de que g é semi-simples é importante para que Γ1 e Γ0 sejam reticulados de t

conforme a Definição 1.3.10. Caso z(g)∩ t ̸= 0, ou seja, caso g não fosse semi-simples, as
co-raízes não poderiam gerar t, então Γ0 não poderia ser reticulado. Além disso, escrevendo
t= t̂⊕ (z(g)∩ t), vemos que Γ1 é a soma de um reticulado em t̂ com o espaço z(g)∩ t.

Sejam G um grupo conexo com álgebra g e π : G̃ → G o recobrimento universal de G,
em que G̃ é um grupo de Lie simplesmente conexo com álgebra g. Como π é também um
homomorfismo, G é o quociente de G̃ pelo subgrupo discreto kerπ ≤ Z(G̃) e, além disso,
kerπ é isomorfo ao grupo fundamental π1(G) (veja o Teorema 7.15 de [6]). O Teorema
13.17 de [3] nos diz que, para γ ∈ Γ, a curva fechada [0,1] ∋ t 7→ exp(tγ) é homotópica a um
ponto em G se, e somente se, γ ∈ Γ0. Em particular, para G = G̃, temos que Γ ⊆ Γ0, logo, o
reticulado Γ0 coincide com Γ. Segue que Z(G̃)≃ Γ1/Γ0 pela Proposição 1.3.13.

Teorema 1.3.17. Seja G um grupo conexo com álgebra g, então π1(G)≃ Γ/Γ0.

Demonstração. Observe inicialmente que π(Z(G̃))⊆ Z(G), então π restringe a um homo-
morfismo Z(G̃) → Z(G) que podemos considerar, com as devidas identificações, como
um homomorfismo π0 : Γ1/Γ0 → Γ1/Γ. O núcleo desse homomorfismo é Γ/Γ0 e deve ser
isomorfo a kerπ ≃ π1(G).

Γ1/Γ0 Z(G̃)

Γ1/Γ Z(G)

φ

π0 π

ψ
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De fato, denote φ : Γ1/Γ0 → Z(G̃) e ψ : Γ1/Γ → Z(G) os respectivos isomorfismos, que
são dados por φ(v+Γ0) = expG̃(2v) e ψ(v+Γ) = expG(2v). Observe ainda que expG̃ =

π ◦ expG, então defina π0 = ψ
−1 ◦π ◦φ , deste modo

π0(v+Γ0) = ψ
−1 ◦π(expG̃(2v))

= ψ
−1(expG(2v))

= v+Γ,

e segue o que afirmamos no primeiro parágrafo.

Como consequência temos que um grupo conexo G com álgebra compacta e semi-simples
é simplesmente conexo se, e somente se, Γ = Γ0. Além disso, o Corolário 1.4 do capítulo V
de [5] nos diz que, se H é um grupo conexo com álgebra compacta h (não necessariamente
semi-simples), então H =V ×G, em que V é um espaço vetorial e G é conexo, tem álgebra
semi-simples e é um compacto maximal (no sentido de que G contém todos os subgrupos
compactos de H). Pela Proposição 1.12 de [8], temos que π1(H) = π1(V )×π1(G) = π1(G).
Dessa forma, o grupo fundamental de grupos de Lie conexos com álgebra compacta pode ser
calculado a partir dos grupos conexos com álgebra compacta e semi-simples.

1.3.2 O grupo fundamental de SO(4)

Relembre os Exemplos 1.2.6 e 1.3.6. Seja u = so(4) e t = ⟨U12,U34⟩. Denotando H =

tU12 + sU34 ∈ t, temos o sistema de raízes ∆(u, t) = {±α,±λ} cujas raízes satisfazem

α(H) = t − s, λ (H) = t + s.

Sendo u semi-simples e compacta, a forma B =−1
4

β , em que β denota a forma de Cartan-
Killing de u, se restringe a um produto interno em t tal que U12 e U34 formam uma base
ortonormal.

É fácil ver então que Hα = U12 −U34 e Hλ = U12 +U34 e, como B(Hα ,Hα) = 2 =

B(Hλ ,Hλ ), temos que as co-raízes Hα̌ e H
λ̌

coincidem com Hα e Hλ respectivamente. Segue
que

Γ0 = π(ZHα +ZHλ ).
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Para determinar Γ, observe que

exp(2H) =


cos(2t) sen(2t) 0 0
−sen(2t) cos(2t) 0 0

0 0 cos(2s) sen(2s)
0 0 −sen(2s) cos(2s)

 ,

de modo que H ∈ Γ se, e somente se, t,s ∈ πZ e temos que

Γ = π(ZU12 +ZU34).

Para que H = tU12 + sU34 ∈ γ1, devemos ter t − s = α(H) ∈ πZ e t + s = λ (H) ∈ πZ ou,
equivalentemente, então reticulado central é dado por

Γ1 = {tU12 + sU34 : t + s, t − s ∈ πZ}.

A Figura 1.2 ilustra os reticulados associados a SO(4). Os pontos verdes representam
elementos de Γ1 que não estão nos outros reticulados; os azuis, elementos de Γ que não estão
em Γ0 e os vermelhos, os elementos de Γ0. O ponto preto central representa a origem de t.
As linhas tracejadas representam os hiperplanos do diagrama, sendo que aquelas que passam
pela origem são os hiperplanos de raiz α = 0 e λ = 0.

Vamos determinar agora a que grupo o quociente Γ/Γ0 é isomorfo. Observe inicialmente
que, para k ∈ Z, temos kHα + kHλ = 2kU12 e −kHα + kHλ = 2kU34, logo, 2πZU12 ⊆ Γ0 e
2πZU34 ⊆ Γ0. Por outro lado, todo elemento de γ = π(kU12 +nU34) ∈ Γ está em Γ0 se, e
somente se, k−n ∈ 2Z. Por exemplo,

3πU12 +8πU34 = 3πHλ +5πU34 ̸∈ Γ0

3πU12 +9πU34 = 3πHλ +6πU34 ∈ Γ0.

Podemos escrever então

Γ0 = {γ ∈ Γ : α(γ) ∈ 2πZ}.

Considere o homomorfismo Γ → Z/2Z dado por γ 7→ 1
π

α(H) mod 2Z. Claramente, é um
homomorfismo sobrejetivo com núcleo Γ0. Segue do Teorema 1.3.17 que

π1(SO(4))≃ Γ/Γ0 ≃ Z/2Z.
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Figura 1.2 : Reticulados associados ao grupo SO(4).

1.3.3 Equivalentes Focais

Nesta subseção vamos trabalhar algumas propriedades e resultados envolvendo sistemas de
raízes que serão aplicados no capítulo 3. Aqui, g denota uma álgebra de Lie compacta e t,
uma subálgebra de Cartan de g. Os resultados demonstrados aqui valem igualmente caso g

seja uma álgebra ortogonal involutiva e t seja um subespaço de Cartan (veja a Seção 1.4).
Um dos motivos para que eles continuem válidos também no contexto de álgebras ortogonais
involutivas é que os reticulados considerados em ambos são os mesmos. Além disso, ∆(g, t)

e ∆σ (g, t) são ambos sistemas de raízes e compartilham todas as propriedades relevantes para
os resultados apresentados nesta seção. As demonstrações que precisarem de adaptações
serão mencionadas.

O Diagrama de Stiefel de g é o conjunto

ρ = {H ∈ t : α(H) ∈ πZ para algum α ∈ ∆}. (1.11)
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Trata-se da união de todos os hiperplanos α = kπ , α ∈ ∆, os quais são paralelos aos hiper-
planos de raíz α = 0.

Dois pontos X ,Y ∈ t são Γ−equivalentes se X −Y ∈ Γ e são chamados equivalentes
focais se forem Γ−equivalentes e |X |= |Y |. Sejam H ∈ t fixado, q = exp(H) e W o grupo
de Weyl de ∆(g, t), definimos

W q = {w ∈W : wH ∈ H +Γ}.

Para w ∈ W q, temos que exp(wH) = exp(H). Denotamos por W q
0 o grupo gerado pelas

reflexões em torno dos hiperplanos de raíz α = 0, tais que α satisfaz α(H) ∈ πZ. Trata-se
de um subgrupo de W q, uma vez que, se α(H) ∈ πZ, temos

rα(H)−H =−α(H)
2

⟨α,α⟩
Hα ∈ Γ0 ⊆ Γ, (1.12)

de modo que devemos ter rα(H) ∈ H +Γ.
Observe ainda que W q

0 é normal em W q; dado w ∈W q e rα ∈W q
0 , temos que wrαw−1 =

rw∗α e, sendo w−1(H) = H + γ para alguma γ ∈ Γ, temos w∗
α(H) = α(w−1(H)) = α(H +

γ) ∈ πZ, uma vez que Γ ⊆ Γ1. Logo, wrαw−1 ∈W q
0 .

Proposição 1.3.18. Se w ∈ W q
0 , então wH ∈ H +Γ0. Por outro lado, se w ∈ W q e wH ∈

H +Γ0, então w ∈W q
0 .

Demonstração. Pela equação (1.12), temos que rα(H) ∈ H +Γ0 se, e somente se, rα ∈W q
0 .

Seja w = rα1 · · ·rαn um produto de reflexões de W q
0 . As igualdades abaixo mostram que uma

reflexão qualquer rα deixa invariante o reticulado Γ0.

rα(πH
β̌
)−πH

β̌
=−2π

⟨α, β̌ ⟩
⟨α,α⟩

Hα

=−4π
⟨α,β ⟩

⟨α,α⟩⟨β ,β ⟩
Hα

=−πkHα̌ ∈ Γ0,

em que k = 2
⟨α,β ⟩
⟨β ,β ⟩

∈ Z. Segue que rα(πH
β̌
) ∈ Γ0 e, por linearidade, temos rα(Γ0)⊆ Γ0.

Portanto, wH ∈ H +Γ0.
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Sejam α e β raízes. Aplicando a equação (1.12) repetidamente e usando o que foi
mostrado no parágrafo anterior, temos que

rβ rα(H) = rβ (H)−α(H)rβ (Hα̌)

= H −β (H)H
β̌
−α(H)γ0,

em que πγ0 ∈ Γ0, ou seja, γ0 é uma combinação linear de co-raízes com coeficientes em Z.
Por indução, mostra-se que

rα1 · · ·rαk(H) = H −
k

∑
j=1

α j(H)γ j, (1.13)

com πγ j ∈ Γ0. Segue que rα1 · · ·rαk(H) ∈ H +Γ0 se, e somente se, α j(H) ∈ πZ para todo
j = 1, . . . ,k.

Suponha agora que w ∈W q e wH ∈ H+Γ0. Escrevendo w = rα1 · · ·rαk , segue da equação
(1.13) que rα j ∈W q

0 para j = 1, . . . ,k, de modo que w ∈W q
0 .

Dada a ação transtiva de um grupo G em um conjunto X , um domínio fundamental para
esta ação é um subconjunto F de X que intercepta cada órbita da ação em exatamente um
ponto. Desta definição segue que G ·F = X . Os conjuntos definidos abaixo nos ajudam
a caracterizar um domínio fundamental para o grupo Γ, aqui visto como um grupo de
translações em t.

D = {H ∈ t : |H|< |H + γ|, para todo γ ∈ Γ\{0}}
D = {H ∈ t : |H| ≤ |H + γ|, para todo γ ∈ Γ}

Lema 1.3.19 (Lema 4.2 de [9]). Sejam X ,Y ∈ t equivalentes focais distintos. Para qualquer
ε > 0, (1+ ε)X e Y + εX são Γ−equivalentes distintos e |(1+ ε)X |> |Y + εX |.

Demonstração. (1+ ε)X e Y + εX são claramente distintos e Γ−equivalentes, já que a
diferença deles é Y −X ∈ Γ. Usamos abaixo que |X |= |Y | e a relação ⟨X ,Y ⟩= |X ||Y |cosθ ,
em que θ é o ângulo entre X e Y . Temos que

|(1+ ε)X |2 −|Y + εX |2 = (1+ ε)2|X |2 −|Y |2 −2ε⟨X ,Y ⟩− ε
2|X |2

= |X |2 −|Y |2 +2ε(|X |2 −⟨X ,Y ⟩)
= 2ε(|X |2 −|X ||Y |cosθ)

= 2ε|X |2(1− cosθ)> 0.
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Observe que θ ̸= 0 porque X e Y são distintos e têm mesma norma.

A próxima proposição mostra que existe um domínio fundamental de Γ contido entre D
e D. Pelo item 3, se H ∈ D, temos que |H| é menor que |H + γ| para todo γ ∈ Γ, então as
órbitas de Γ interceptam D no máximo uma vez. O item 1 mostra que D intercepta qualquer
órbita de Γ, não necessariamente apenas uma vez. Portanto, existe um domínio fundamental
F de Γ em t que satisfaz D ⊆ F ⊆D.

Proposição 1.3.20 (Proposição 4.3 de [9]). Seja H ∈ t um elemento qualquer e D,D definidos
como anteriormente, então valem as seguintes afirmações.

1. Dado H ∈ t, o elemento de menor norma em H +Γ pertence a D.

2. D é convexo, compacto e não é vazio.

3. D é o interior de D, de modo que H ∈ D se, e somente se, H é o único elemento de
H +Γ com norma mínima.

4. ∂D é o conjunto dos H ∈ D que possuem algum equivalente focal não-trivial em t.

Demonstração. Para o item 1, considere a função f : Γ → R dada por f (γ) = |H + γ|.
Observe inicialmente que, em cada região limitada R de t, existem apenas uma quantidade
finita de pontos em R∩Γ. Claramente, f ≥ 0 e f (Γ) é um conjunto discreto em R. Para
γ ∈ Γ satisfazendo |γ|> 2|H|, temos que

f (γ)2 = |H + γ|2 = |H|2 +2|H||γ|cosθ + |γ|2

> |H|2(5+4cosθ)

≥ |H|2.

Por outro lado, se |γ| ≤ 2|H|, temos que f (γ) = |H + γ| ≤ |H|+ |γ| ≤ 3|H|.
Seja R a bola fechada com centro na origem e raio 2|H|, temos que f (R) ⊆ [0,3|H|]

consiste de uma quantidade finita de pontos, então existe γ0 ∈ Γ tal que f (γ0)≤ f (γ) para
todo γ ∈ Γ, em particular H + γ0 ∈ D.

O item 2 é demonstrado considerando a expressão |H|2 −|H + γ|2, que pode ser reescrita
como −2⟨H,γ⟩− |γ|2 =−2⟨H + γ/2,γ⟩, logo,

|H|2 ≤ |H + γ|2 ⇐⇒ 2⟨H + γ/2,γ⟩ ≥ 0 (1.14)

e esta é uma equação que define um semi-espaço fechado de t contendo a origem. Logo, D,
é a intercessão de semi-espaços fechados e convexos de t, então é fechado e convexo.
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Seja H ∈ D e γ ∈ Γ. Usando a equação (1.14), temos que

−2⟨H,γ⟩− |γ|2 =−2⟨H + γ/2,γ⟩ ≤ 0,

logo, H satisfaz |⟨H,γ⟩| ≤ |γ|2/2. Como Γ é discreto e contém uma base de t, as coordenadas
de H são uniformemente limitadas, donde segue que D é limitado, logo, compacto. Além
disso, D não é vazio porque contém a origem.

Para mostrar os itens 3 e 4, vamos mostrar inicialmente que D é aberto. Seja X ∈ t, para
|γ| suficientemente grande, temos que |X |< |X − γ|. Para determinar uma condição para que
tenhamos X ∈D, observe que |X |2−|X −γ|2 = 2⟨X ,γ⟩−|γ|2 ≤ |γ|(2|X |− |γ|) e isto mostra
que |X |< |X − γ| para |γ|> 2|X |, logo, para verificar se X ∈ D, basta considerar |γ| ≤ 2|X |.

Seja H ∈ D e defina Γ
′ = {γ ∈ Γ : |γ| ≤ 3|H|}, trata-se de um subconjunto finito de Γ.

Seja
U = {X ∈ t : |X |< 3|H|/2, |H −X |<−µ/4R},

em que R é o maximo entre os |γ| com γ ∈ Γ
′ e

µ = max{2⟨H,γ⟩− |γ|2 : 0 ̸= γ ∈ Γ
′}< 0.

É fácil ver que H ∈U , vamos mostrar que U ⊆D.
Para X ∈U , temos

|X |2 −|X + γ|2 = 2⟨X ,γ⟩− |γ|2

= 2⟨H,γ⟩− |γ|2 +2⟨X −H,γ⟩
≤ µ +2|X −H||γ|

< µ −2
µ

4R
R

=
µ

2
< 0,

onde, na segunda igualdade, somamos e subtraimos 2⟨H,γ⟩. Isto mostra que X ∈ D e,
portanto, U ⊆D, logo, D é aberto.

Para mostrar que D é o interior de D, basta mostrar que A =D−D coincide com ∂D.
Seja H ∈ A, então H possui um equivalente focal distinto de H, pois H ̸∈ D. Além disso,
(1+ ε)H ̸∈ D, pois H ∈ D e (1+ ε)H é estritamente maior que um de seus equivalentes
focais (Lema 1.3.19). Como ε > 0 é arbitrário, temos que H ∈ ∂D. Reciprocamente, seja
H ∈ ∂D⊆D, então |H| ≤ |H+γ| para γ ∈ Γ. Sendo D fechado, todo aberto de t contendo H
deve interceptar o complementar de D, então existe uma sequência Hn ̸∈ D tal que Hn → H e,
consequentemente, para cada Hn, deve existir γn ∈ Γ tal que |Hn|> |Hn+ γn|. A sequência γn
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deve ser limitada, uma vez que Hn converge. Logo, existe alguma subsequência convergente
γnk → γ ∈ Γ e devemos ter |H| ≥ |H + γ|. Da definição de |H|, temos que |H| = |H + γ|,
logo, H ̸∈ D e segue que H ∈ A. Este argumento mostra que ∂D = A =D−D, então D é o
interior de D.

Por fim, segue do item 3 que cada elemento H ∈ ∂D satisfaz |H|= |H + γ| para algum
0 ̸= γ ∈ Γ, pois H não pode ser o único de norma mínima em H +Γ, já que H ̸∈ D. Isto
termina a demonstração do item 4.

Para os próximos resultados, considere os seguintes conjuntos.

D0 = {H ∈ t : α(H)< π, para toda α ∈ ∆}, (1.15)

D0 = {H ∈ t : α(H)≤ π, para toda α ∈ ∆}. (1.16)

Exemplo 1.3.21. Relembre a Subseção 1.3.3, em que calculamos o grupo fundamental de
SO(4) e o reticulado da Figura 1.2. A Figura 1.3 abaixo ilustra as regiões D e D0 em uma
subálgebra de Cartan de so(4). A região amarela representa D e a região acinzentada, a qual
contém a região amarela, representa D0.
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Figura 1.3 : Regiões D e D0 em uma subálgebra de Cartan de so(4).

Teorema 1.3.22 (Teorema 2.6 de [2]). Se Γ = Γ0, então

1. Existe um domínio fundamental de Γ entre D0 e D0.

2. O conjunto de equivalentes focais de H ∈ D0 coincide com a órbita W q
0 ·H.

3. W q =W q
0 .
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Demonstração. Para o item 1, vamos mostrar que D = D0, então o resultado segue do
comentário logo antes da Proposição 1.3.20. Para πHα̌ ∈ Γ0 e H ∈ t, temos que

|H +πHα̌ |2 −|H|2 = 2π⟨H,Hα̌⟩+π
2|Hα̌ |2

= 4π
⟨H,Hα⟩
⟨α.α⟩

+4π
2 ⟨Hα ,Hα⟩
⟨α.α⟩2

=
4π

|α|2
(α(H)+π),

uma vez que Hα̌ = 2Hα/⟨α,α⟩.

Seja v = π

n

∑
j=1

Hα̌ j um elemento de Γ0, em que podemos ter Hα̌ j = Hα̌i mesmo que i ̸= j.

Supomos que v é escrito com o número mínimo de parcelas possível. Uma consequência
direta desta hipótese é que não podemos ter Hα̌ j =−Hα̌i para i ̸= j. Além disso, esta hipótese
implica que ⟨Hα̌i,Hα̌ j⟩≥ 0, para i, j ∈{1, . . . ,n}. Para entender isto, observe inicialmente que
as co-raízes formam um sistema de raízes ∆̌ (Proposição 1.3.5). Suponha que ⟨Hα̌i,Hα̌ j⟩< 0.
Como Hα̌ j e Hα̌i não são proporcionais, pois uma não pode ser a oposta da outra, segue do
Lema 6.4.8 de [4] que

Hα̌i − (−Hα̌ j) = Hα̌i +Hα̌ j ∈ ∆̌,

ou seja, o número de parcelas na soma que define v poderia ser reduzido.
Nestas condições, temos que

|H + v|2 −|H|2 = 2π

n

∑
j=1

⟨H,Hα̌ j⟩+π
2

n

∑
j=1

⟨Hα̌ j ,Hα̌ j⟩+2π
2
∑
i< j

⟨Hα̌i,Hα̌ j⟩

≥
n

∑
j=1

4π

|α j|2
(α j(H)+π)+2π

2
∑
i< j

⟨Hα̌i,Hα̌ j⟩

≥
n

∑
j=1

4π

|α j|2
(α j(H)+π).

Se H ∈ D0, temos, por definição, que |α j(H)|< π , então as inequações acima mostram que
H ∈ D. Suponha que existe H ∈ D−D0, então existe α ∈ ∆ tal que α(H)> π . Sendo H−α̌

a co-raiz correspondente a −α , temos que

|H +πH−α̌ |2 −|H|2 = 4π

|α|2
(−α(H)+π)< 0,

de modo que
|H +πH−α̌ |< |H|
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e concluimos que H ̸∈ D, o que é absurdo. Segue que D =D0.
Vamos mostrar agora o item 2. Seja H ∈ D0 = D, então |α(H)| ≤ π para toda raiz α

e |H| ≤ |H + γ| para qualquer γ ∈ Γ. Dado w ∈ W q
0 , wH ∈ H +Γ e |wH| = |H|, então H

e wH são equivalentes focais. Por outro lado, seja H + v um equivalente focal de H, com
v ∈ Γ = Γ0, então

0 = |H + v|2 −|H|2 =
n

∑
j=1

4π

|α j|2
(α j(H)+π)+2π

2
∑
i< j

⟨Hα̌i,Hα̌ j⟩,

em que
n

∑
j=1

4π

|α j|2
(α j(H)+π)≥ 0, ∑

i< j
⟨Hα̌i,Hα̌ j⟩ ≥ 0,

logo, α j(H) = −π para j = 1, . . . ,n, já que |α j(H)| ≤ π , para j = 1, . . . ,n. Além disso,
devemos ter ⟨Hα̌i,Hα̌ j⟩= 0 para i, j ∈ {1, . . . ,n} distintos. Em particular, temos que Hα̌i ̸=
Hα̌ j e rα j(Hα̌i) = Hα̌i se i ̸= j. Sendo

rα j(H) = H −2
α j(H)

|α j|2
Hα j = H +πHα̌ j ,

temos que

H + v = H +π

n

∑
j=1

Hα̌ j = rα1 · · ·rαn(H).

Como α j(H) ∈ πZ, j = 1, . . . ,n, temos que rα1 · · ·rαn ∈W q
0 e, portanto, H + v ∈W q

0 H. Isto
demonstra o item 2.

Por fim, seja w ∈W q e H ∈ D0 um elemento regular, i.e., H está em alguma câmara de
Weyl. Por definição de W q, sabemos que wH é equivalente focal de H, então segue do item
2 que existe v ∈W q

0 tal que wH = vH, ou seja, v−1wH = H. Como H é regular, temos que
v−1w fixa uma câmara de Weyl, então w = v ∈W q

0 (Teorema 1.3.8).

Observação 1.3.23. Para demonstrar o item 3 do Teorema anterior, utilzamos o fato de
que um elemento do grupo de Weyl que fixa uma câmara de Weyl é a identidade, o que
é justificado pelo Teorema 1.3.8. Este resultado também é válido no contexto de álgebras
ortogonais involutivas compactas. Na demonstração do Teorema anterior, basta trocar o
Teorema 1.3.8 pela Proposição 1.4.18.
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1.4 Álgebras de Lie Ortogonais Involutivas

Uma involução de g é um automorfismo σ ∈ Aut(g) tal que σ
2 = id. Uma outra forma

de definir o conceito álgebra semi-simples é usando uma involução especial chamada de
involução de Cartan. Seja β a forma de Cartan-Killing de g, a involução σ será chamada de
Involução de Cartan se a forma definida em g por

⟨X ,Y ⟩=−β (X ,σ(Y ))

for um produto interno. Neste caso, ela recebe o nome de Produto Interno de Cartan.

Teorema 1.4.1. Usando a notação do parágrafo anterior, g é semi-simples se, e só se, ⟨ ,⟩ é
um produto interno.

Demonstração. Suponha que ⟨ ,⟩ é um produto interno e seja j um ideal de g. Considere
X ,Y,Z ∈ g e observe que

⟨ad(X)Y,Z⟩=−β ([X ,Y ],σ(Z))

=−β (Y, [σ(Z),X ])

=−β (Y,σ(−[σ(X),Z])

=−β (Y,σ([−σ(X),Z])

= ⟨Y,ad(−σ(X))Z⟩.

Portanto, escolhendo Y ∈ j⊥, Z ∈ j e X ∈ g, temos que ad(−σ(X))Z ∈ j porque j é um ideal,
logo,

0 = ⟨Y,ad(−σ(X))Z⟩= ⟨ad(X)Y,Z⟩,

de modo que [X ,Y ] ∈ j⊥, logo, j⊥ é um ideal. Além disso, j∩ j⊥ = 0, pois ⟨ ,⟩ é um produto
interno, então podemos escrever g= j⊕ j⊥. Isto mostra que g é redutível (veja a Definição
5.7.1 e o Lema 5.7.2 de [4]). Devemos ter z(g) = 0, pois qualquer X ∈ z(g) é ortogonal a
qualquer outro vetor de g o que não pode ocorrer porque ⟨ ,⟩ é um produto interno. Segue
que g é semi-simples.

Suponha agora que g é semi-simples, a existência de uma involução de Cartan está
relacionada com a existência de formas reais compactas de gC e segue do Lema 13.2.10 de
[4].

Seja g uma álgebra semi-simples não-compacta com involução de Cartan σ e escreva
g = k+ s como soma direta dos autoespaços ±1 de σ e considere uma subálgebra t de g
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contida em s. É fácil ver que

[k,k]⊆ k, [s,s]⊆ k, [k,s]⊆ s,

então t deve ser necessariamente abeliana. Logo, qualquer subálgebra maximal t ⊆ s é
uma subálgebra abeliana maximal. Vamos obter uma decomposição em espaços de raízes
de g similar àquela obtida anteriormente, mas desta vez com respeito à subálgebra t. Da
demonstração do teorema anterior e observando que σ |s =−id, temos que ad(H) é simétrico
com relação ao produto interno de Cartan para todo H ∈ t. Portanto, sendo t abeliana,
ad(t) é uma família comutativa de operadores diagonalizáveis, logo, são simultaneamente
diagonalizáveis. Além disso, ad(X) é anti-simétrico com relação a ⟨,⟩ para todo X ∈ k uma
vez que σ |k = id.

Observação 1.4.2. A hipótese que g não seja compacta serve para garantir que s ̸= 0, pois
ad(H),H ∈ s, é simétrico em relação ao produto interno de Cartan e, se g for compacta,
os operadores ad(H) devem ter autovalores puramente imaginários ou nulos. Portanto,
ad(H) = 0 para H ∈ s, caso g seja compacta e semi-simples, e segue que s⊆ z(g) = 0. Este
argumento mostra que numa álgebra compacta e semi-simples, uma involução de Cartan
deve ser a identidade, logo, a forma −β deve ser um produto interno em g (veja a Observação
1.1.6).

Para α ∈ t∗, defina

gα = {X ∈ g : ad(H)X = α(H)X ,H ∈ t}.

O conjunto ∆σ (g, t) dos α ̸= 0 tais que gα ̸= 0, é chamado de conjunto de raízes restritas.
Sejam φ ∈ Aut(g) um automorfismo que deixa t invariante e X ∈ gα ̸= 0, então

ad(H)φ(X) = φ([φ−1(H),X ]) = α(φ−1(H))φ(X) = (φ∗
α)(H)φ(X).

Segue que φ(gα) = gφ∗α e α é raiz se, e somente se, φ
∗
α é raíz. Em particular, fazendo

φ = σ , obtemos que −α ∈ ∆σ (g, t) sempre que α ∈ ∆σ (g, t).
Para entender a decomposição de g com respeito à representação ad|t, é importante enten-

der onde ad(t) age como transformação nula, ou seja, entender o centralizador zg(t). Observe
que σ age como −id em t, então, para X ∈ zg(t), temos que [σ(X), t] = σ([X ,σ(t)]) = 0.
Segue que zg(t) é invariante por σ e podemos escrever

zg(t) = (zg(t)∩ k)⊕ (zg(t)∩ s).
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Se X ∈ zg(t)∩ s, então RX + t é uma álgebra abeliana contendo t. Pela maximalidade de
t, devemos ter X ∈ t, de modo que t⊆ zg(t)∩ s⊆ t e, portanto, zg(t)∩ s= t. Vale então a
igualdade

zg(t) = (zg(t)∩ k)⊕ t. (1.17)

Denote m= zg(t)∩ k.

Teorema 1.4.3. Seja g uma álgebra semi-simples não compacta com decomposição de
Cartan k+ s e t⊆ s uma subálgebra abeliana maximal. Temos que

g=m+ t+ ∑
α∈∆σ (g,t)

gα .

Demonstração. Como ad(t) é uma família simultaneamente diagonalizável, podemos escre-
ver g= g1 ⊕·· ·⊕gn como uma soma de subespaços invariantes minimais por ad(t). Como
trata-se de uma família comutativa de operadores, cada gi é também invariante minimal de
cada operador ad(H),H ∈ t. De fato, seja W ⊆ gi o autoespaço associado ao autovalor αi(H)

de ad(H) e X ∈W . Para Z ∈ t, temos que

ad(H)ad(Z)X = ad(Z)ad(H)X = αi(H)ad(Z)H,

pois 0 = ad([H,Z]) = ad(H)ad(Z)− ad(Z)ad(H). Segue que W é invariante por ad(t) e,
da minimalidade de gi, segue que W = gi. Portanto, qualquer H ∈ t satisfaz ad(H)|gi =

αi(H)idgi .
Observe que αi ∈ t∗, pois, em cada subespaço gi, coincide com a função linear

1
ni

tr(ad(H)|gi),

em que ni = dim(gi). Portanto, αi ∈ ∆σ (g, t)∪{0}, já que 0 ̸= gi ⊆ gαi . Segue que

g= g0 + ∑
α∈∆σ (g,t)

gα ,

sendo que fica claro que g0 =m+ t. Além disso, se α ̸= β , temos que gα ∩gβ = 0, pois, para
X ∈ gα ∩gβ , é válido que α(H)X = [H,X ] = β (H)X para todo H ∈ t, ou seja, X = 0.

Nesta seção, trataremos das álgebras ortogonais involutivas, que aparecem naturalmente
no estudo de espaços simétricos (veja o Teorema 2.3.11). Uma involução σ dá origem a uma
decomposição de g em autoespaços ±1, g= k⊕s em que σ age como +id em k. Das relações
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de colchete, vemos que existe uma representação de k em s dada por k ∋ X 7→ ad(X)|s, que é
chamada de representação de isotropia de k. Chamamos o par (g,σ) de álgebra involutiva.

Definição 1.4.4. Uma álgebra ortogonal involutiva é uma álgebra involutiva (g,σ) munida
de um produto interno B que é ad(k)−invariante e também σ−invariante, ou seja,

B(ad(X)Y,Z)+B(Y,ad(X)Z) = 0,

B(σ(Y ),σ(Z)) = B(Y,Z),

para todos X ∈ k e Y,Z ∈ g.

Em particular, uma álgebra semi-simples não compacta munida com o produto interno
de Cartan é ortogonal involutiva. Segue ainda da definição que os elementos do grupo de
automorfismos internos gerados por k, denotado

Inng(k) := ⟨ead X : X ∈ k⟩,

deixam B invariante, isto segue do fato que os operadores ad(X),X ∈ k, são anti-simétricos
com relação a B.

Observação 1.4.5. Numa álgebra ortogonal involutiva, temos que B(k,s) = 0, pois, para
X ∈ k e Y ∈ s, temos B(X ,Y ) = B(σ(X),σ(Y )) =−B(X ,Y ). Além disso, qualquer produto
interno Q que satisfaz Q(k,s) = 0 é σ−invariante. Para ver isto, escreva Z = X +Y e
Z′ = X ′+Y ′ para X ,X ′ ∈ k e Y,Y ′ ∈ s, então

Q(σ(Z),σ(Z′)) = Q(σ(X),σ(X ′))+Q(σ(X),σ(Y ′))

+Q(σ(Y ),σ(X ′))+Q(σ(Y ),σ(Y ′))

= Q(X ,X ′)−Q(X ,Y ′)−Q(Y,X ′)+Q(Y,Y ′)

= Q(X ,X ′)+Q(Y,Y ′)

= Q(Z,Z′).

Exemplo 1.4.6. Para a álgebra semi-simples g = sl(4,R) do Exemplo 1.2.4, temos que a
involução σ(X) = −X t é uma involução de Cartan e, neste caso, h = ⟨H1,H2,H3⟩ ⊆ s é
abeliana maximal, donde segue que as decomposições com relação a uma subálgebra de
Cartan e a uma subálgebra abeliana maximal de s coincidem. A subálgebra k é gerada pelos
Ui j, i < j, e é compacta isomorfa a so(4) e s é gerado pelos Vi j junto com h.

O próximo Teorema é uma caracterização importante das álgebras ortogonais involutivas.
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Teorema 1.4.7. Seja g uma álgebra de Lie, então (g,σ) é ortogonal involutiva se, e somente
se, k é uma subálgebra compacta e existe um produto interno ad(k)−invariante em s.

Demonstração. Se (g,σ) é ortogonal involutiva, existe um produto interno ad(k)−invariante
em k, que é dado pela restrição do produto interno em g, isto mostra que k é compacta.

Suponha então que existe um produto interno F em s satisfazendo as hipóteses do
Teorema. Existe também um produto interno B ad(k)−invariante em k, pela hipótese de
compacidade de k. Defina o produto interno Q em g da seguinte forma:

Q(X ,Y ) = B(X ,Y ) se X ,Y ∈ k

Q(X ,Y ) = F(X ,Y ) se X ,Y ∈ s

Q(X ,Y ) = 0 se X ∈ k e Y ∈ s

Estendendo para g por linearidade, é fácil ver que (g,σ) munido do produto interno Q é
uma álgebra ortogonal involutiva. Observe que Q é σ−invariante porque satisfaz Q(k,s) = 0
(veja a Observação 1.4.5).

Para álgebras semi-simples, temos o seguinte resultado.

Proposição 1.4.8. Seja g uma álgebra de Lie semi-simples. Se (g,σ) é ortogonal involutiva,
então Inng(k) é um subgrupo compacto de Inn(g).

Demonstração. Suponha que (g,σ) é ortogonal involutiva, e lembre-se que Inng(k) age
como isometrias de B; para concluir que é compacto, basta mostrar que é fechado em GL(g),
já que Inng(k) deixa invariante um produto interno. A álgebra de Lie de Aut(g) é algebra
das derivações Der(g) pelo Lema B.1.1 e, sendo g semi-simples, Der(g) = ad(g) (Teorema
5.5.14 de [4]). A componente da identidade de Aut(g) deve ser então o grupo gerado por
produtos de exponenciais ead(X), X ∈ g, logo, coincide com Inn(g). Segue que Inn(g) é
fechado em GL(g), pois Aut(g)≤ GL(g) é fechado.

Para concluir, vamos considerar a extensão de σ a um automorfismo de Inn(g) e mostrar
que Inng(k) é a componente da identidade do conjunto de pontos fixos desse automorfismo.
A partir de σ , definimos o automorfismo θ : ad(g)→ ad(g), dado por θ(ad(X)) = ad(σ(X)).
Seja G̃ o recobrimento universal de Inn(g); pelo Teorema 7.13 de [6], existe um automorfismo
θ̃ : G̃ → G̃ tal que dθ̃1 = θ . Observe que Inn(g) tem centro trivial, como visto na seção 1.1
e G̃ tem centro discreto, pois ad(g) tem centro nulo, então devemos ter Inn(g)≃ G̃/Z(G̃).
Como qualquer automorfismo, θ̃(Z(G̃)) = Z(G̃), então θ̃ induz um automorfismo σ̃ de
Inn(g) dado por gZ(G̃) 7→ θ̃(g)Z(G̃).
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Com as devidas identificações, temos dσ̃1 = θ e, em particular,

σ̃(ead(X)) = eθ(ad(X)) = ead(σ(X)).

Desta equação, segue que Inng(k)≤ fix(σ̃). Por outro lado, suponha que

etad(X) = σ̃(etad(X)) = etad(σ(X)).

Derivando em t = 0, temos que ad(X) = ad(σ(X)) e, da injetividade da representação adjunta
de g, segue que X ∈ k. Portanto, a álgebra de Lie de fix(σ̃) é ad(k), donde segue que Inng(k)
coincide com a componente da identidade fix(σ̃)0 de fix(σ̃). Por fim, temos a seguinte
sequência de inclusões que mostra que Inng(k) é fechado em GL(g).

Inng(k) = fix(σ̃)0 ≤ fix(σ̃)≤ Inn(g) = Aut(g)0 ≤ Aut(g)≤ GL(g).

Uma subálgebra t≤ g contida em s será necessáriamente abeliana, como visto anterior-
mente. Uma subálgebra maximal de g contida em s é chamada subespaço de Cartan. Usamos
esta nomenclatura para diferenciar do conceito usual de subálgebra de Cartan; veremos que
os subespaços de Cartan fornecem decomposições em espaços de raízes similares àquelas
obtidas anteriormente usando as subálgebras de Cartan.

No início desta seção, determinamos a decomposição em espaços de raízes no caso
semi-simples não compacto. Vamos determinar a decomposição no caso compacto. Para
tanto, é importante o seguinte Lema.

Lema 1.4.9. Seja t um subespaço de Cartan de g = k+ s. Se g é redutível, t está contida
numa subálgebra de Cartan de g.

Demonstração. A equação (1.17) vale em qualquer álgebra ortogonal involutiva, então
escreva

zg(t) = (zg(t)∩ k)⊕ t.

Seja t′ uma subálgebra de Cartan de zg(t)∩ k, então h := t′⊕ t é subálgebra de Cartan
de zg(t), pois uma subálgebra de Cartan de uma soma direta de álgebras é a soma direta de
subálgebras de Cartan em cada componente (Lema B.1.2). Os operadores adg(X), X ∈ k, são
anti-simétricos, pois há um produto interno ad(k)−invariante em g, logo, são semi-simples
(isto é, diagonalizáveis sobre C). Sendo g redutível, a Proposição 1.15 do capítulo II de [5]
implica que adg(X) é semi-simples se X ∈ s, de modo que adg(t) consiste de operadores
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semi-simples. Pela Proposição 6.1.12 de [4], segue que h é uma subálgebra de Cartan de g

contendo t.

Usando o Lema anterior, a decomposição em espaços de raízes de uma álgebra compacta
com relação a uma subálgebra de Cartan do Teorema 1.2.5 e que as raízes de ∆σ (u, t) são
restrições de raízes de u com respeito a alguma subálgebra de Cartan contendo t (Subseção
1.4.1), obtemos o seguinte resultado.

Teorema 1.4.10. Seja (g,σ) uma álgebra involutiva compacta com decomposição k+ s e
t⊆ s um subespaço de Cartan. Então

g=m+ t+ ∑
α∈∆σ (g,t)

mα ,

em que m= zg(t)∩ k e os mα são autoespaços generalizados da família de operadores ad(t).

Um vetor H ∈ t é chamado regular se t = zg(H)∩ s. Segue da decomposição que o
conjunto de raízes restritas ∆σ (g, t) é finito, então em todo subespaço de Cartan deve haver
um elemento regular. No caso de álgebras compactas, vimos que as subálgebras de Cartan
são todas conjugadas via automorfismos internos de g. O próximo Teorema é uma variação
deste resultado que é muito importante no estudo de espaços simétricos compactos (veja o
Teorema 2.4.6).

Teorema 1.4.11. Seja (g,σ) uma álgebra ortogonal involutiva semi-simples ou compacta
com produto interno B. Quaisquer dois subespaços de Cartan de g são conjugados por
algum automorfismo de Inng(k).

Demonstração. Esta demonstração é uma adaptação da demonstração da Proposição 1.2.8.
Sejam t1 = zg(H1)∩s e t2 = zg(H2)∩s dois subespaços de Cartan de g. Se g é semi-simples,
Inng(k) compacto pela Proposição 1.4.8. Vimos na Seção 1.1 que k≤ g é compacta se g é
compacta. O grupo Inng(k) é conexo e tem álgebra adg(k). Observe que, sendo k compacta,
é também redutível, logo, k = z(k)⊕ [k,k], em que [k,k] é semi-simples (veja a Seção 1.1).
Portanto, temos que adg(k)≃ k/z(k)≃ [k,k] é semi-simples e compacta e segue que Inng(k)
é um grupo compacto (veja o Teorema 1.3 do capítulo V de [5]). Considere então a função

Inng(k) ∋ k 7→ B(kH1,H2),
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em que denotamos kH1 = Ad(k)H1. Esta função deve ter extremo em algum k0 ∈ Inng(k),
donde segue que, para todo X ∈ k, temos

0 =
d
dt

B(ead(tX)k0H1,H2)
∣∣∣
t=0

= B([X ,k0H1],H2)

= B(X , [k0H1,H2]),

onde usamos a bi-linearidade do produto interno. Escolhendo X = [k0H1,H2] na equação
destacada acima, concluimos que [k0H1,H2] = 0. Segue que k0H1 comuta com um elemento
regular de t2 e, como t2 é abeliana maximal, temos que k0H1 ∈ t2. Portanto, t2 ⊆ zg(k0H1)∩
s= k0(zg(H1)∩ s) = k0t1, logo, k0t1 = t2.

Observação 1.4.12. O Teorema 1.4.11 poderia ser reformulado da seguinte forma. Seja G
um grupo de Lie conexo com álgebra g e K = ⟨expG(k)⟩ o subgrupo conexo de g gerado por k,
então AdG(exp(X)) = ead(X) implica que AdG(K) = Inng(k), em que AdG é a representação
adjunta de G. Portanto, dados dois subespaços de Cartan t1, t2 de g, existe k ∈ K tal que
Ad(k)t1 = t2. Em particular, para outro grupo conexo G′ com álgebra g e K′ = ⟨expG′(k)⟩,
temos AdG(K)≃ AdG′(K′).

Temos ainda mais um resultado importante, que tem consequências geométricas no
estudo de espaços simétricos (veja a Seção 2.4).

Corolário 1.4.13. Sejam (g,σ) uma álgebra ortogonal involutiva semi-simples ou compacta
e t⊆ s um subespaço de Cartan, então s= Inng(k) · t.

Demonstração. A demonstração funciona como na Proposição 1.2.8, mas o fato mais im-
portante usado aqui é a compacidade de Inng(k). Dado X ∈ s, existe uma subálgebra de
g maximal contida em s que contém X , ela será então um subespaço de Cartan, logo, é
conjugada a qualquer outro subespaço de Cartan. Isto mostra que X ∈ Inng(k) · t.

Na mesma notação da Observação 1.4.12, segue desse Corolário o seguinte resultado.

Corolário 1.4.14. Dado X ∈ s, existe k ∈ K0 tal que Ad(k)X ∈ t.

1.4.1 Raízes Restritas

O objetivo desta Subseção é mostrar que as raízes de uma álgebra ortogonal involutiva g

com respeito a um subespaço de Cartan t ⊆ s são obtidas pela restrição a t de raízes de g

com respeito a alguma subálgebra de Cartan h que contém t (veja o Lema 1.4.9). Observe
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inicialmente que as decomposições obtidas nos Teoremas 1.4.3 e 1.4.10 são independentes
da escolha do subespaço de Cartan escolhido, no sentido da proposição a seguir.

Proposição 1.4.15. Seja (g,σ) uma álgebra ortogonal involutiva semi-simples e não com-
pacta, em que σ é uma involução de Cartan. Seja k ∈ Inng(k) e t1, t2 = kt1 subespaços de
Cartan. Se

g=m1 + t1 + ∑
α∈∆1

gα

é a decomposição de g com respeito a t1, então

g=m2 + t2 + ∑
α∈∆1

gk∗α

é a decomposição com respeito a t2, em que denotamos ∆ j = ∆σ (g, t j) e m j = zk(t j).

Demonstração. Por hipótese, temos que kt1 = t2, então considere Z ∈m1 e observe que, para
k(H) = H ′ ∈ t2, temos [kZ,H ′] = k[Z,H] = 0, logo, km1 ⊆m2. Por simetria do argumento,
temos que km1 =m2. Temos, portanto que k( ∑

α∈∆1

gα) = ∑
β∈∆2

gβ .

Para concluir, basta notar que, para X ∈ gα , com α ∈ ∆1, temos

ad(H ′)kX = kad(k−1H ′)X = k(α(H)X) = (k∗α)(H ′)k(X),

logo, k(X) ∈ gk∗α .

O mesmo vale no caso em que g é compacta, já que, se kt1 = t2, então teriamos kmα =

mk∗α .

Proposição 1.4.16. Seja (g,σ) uma álgebra ortogonal involutiva compacta. Seja k ∈ Inng(k)
e t1, t2 = k(t1) subespaços de Cartan. Se

g=m1 + t1 + ∑
α∈∆1

mα

é a decomposição de g com respeito a t1, então

g=m2 + t2 + ∑
α∈∆1

mk∗α

é a decomposição com respeito a t2, em que denotamos ∆ j = ∆σ (g, t j) e m j = zg(t j)∩ k.

Os próximos resultados estão baseados na seguinte ideia. Seja (g,σ) uma álgebra
ortogonal involutiva semi-simples não-compacta. Dado um subespaço de Cartan t de g,
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temos que existe uma subálgebra de Cartan h≤ g, tal que t≤ h e, além disso, h= t+ t′, em
que t′ é uma subálgebra de Cartan de zg(t)∩ k (Lema 1.4.9). Supondo que h é split, temos
que

g= h+ ∑
∆(g,h)

gα = t+ t′+ ∑
α|t ̸=0

gα + ∑
α|t=0

gα .

Além disso, gα ⊆ zg(t)∩ k se, e somente se, α|t = 0, já que, se X ∈ gα ∩ s e α|t = 0, então
t+RX é abeliano maximal em s, o que não pode ocorrer. É claro que gα ∩ zg(t) = 0 se, e
somente se, α|t ̸= 0, então zg(t)∩ k= t′+ ∑

α|t=0
gα e segue que

∆σ (g, t) = {α|t : α ∈ ∆(g,h), α|t ̸= 0}. (1.18)

Suponha agora que (g,σ) seja uma álgebra ortogonal involutiva semi-simples não-
compacta com involução de Cartan σ ou compacta. Seja t um subespaço de Cartan de g e
h= t+ t′ uma subálgebra de Cartan, como no parágrafo anterior. Pela Proposição 6.1.11 de
[4], hC é uma subálgebra de Cartan de gC, então se fatora como

gC = hC+ ∑
∆(gC,hC)

(gC)α = tC+ t′C+ ∑
α|t ̸=0

(gC)α + ∑
α|t=0

(gC)α ,

pois as subálgebras de Cartan de gC são torais, ou seja, sua representação adjunta é diagona-
lizável (Proposição 6.3.2 de [4]).

Se α|t = 0, então (gC)α ⊆ zgC(t) = (zg(t))C. Isto mostra que g∩ ((gC)α +(gC)−α) ⊆
zg(t)∩ k caso α|t = 0. Portanto, temos que

zg(t)∩ k= t′+g∩

(
∑

α|t=0
(gC)α

)
.

Por outro lado, se α|t ̸= 0, denote α|t = β . Temos que g∩ ((gC)α +(gC)−α) está contido
em gβ no caso semi-simples ou em mβ no caso compacto, logo,

(gβ )C = ∑
α|t=β

gα .

Deste argumento segue que as raízes de g com respeito a t satisfazem a equação (1.18).

1.4.2 Grupo de Weyl de ∆σ (g, t)

O grupo de Weyl de ∆σ = ∆σ (g, t) é o grupo W gerado pelas reflexões rα com α ∈ ∆σ . Seja
G um grupo de Lie conexo com álgebra g e K um subgrupo fechado com álgebra k; para
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cada k ∈ K, Ad(k) é um isomorfismo linear s→ s. Defina o normalizador

M∗ = {k ∈ K : Ad(k) · t= t}= NK(t)

de t em K e o centralizador

M = {k ∈ K : Ad(k)|t = id}= ZK(t)

de t em K. O grupo Ws = M∗/M age em t por meio da representação adjunta: para w =

kM ∈Ws e H ∈ t, a ação é dada por

w ·H = Ad(k)H,

de modo que Ws pode ser visto como Ad(M∗)|t.
Pela Observação 1.4.12, Ws não depende das escolhas de G e de K quando K é conexo.

Denote M∗
0 = NK0(t) e M0 = ZK0(t). O Teorema 3.5 do capítulo II de [5], mostra que ambos

os grupos M∗/M e M∗
0/M0 podem ser vistos como o grupo gerado pelas reflexões rα ,α ∈ ∆σ ,

então temos o seguinte resultado.

Proposição 1.4.17. O grupo de Weyl W de ∆σ (g, t) é isomorfo a ambos M∗/M e M∗
0/M0.

Assim como no caso de raízes com respeito a uma subálgebra de Cartan, chamamos de
Câmara de Weyl uma componente conexa do complemento, em t, da união de hiperplanos de
raiz α = 0. Como o grupo de Weyl W de ∆σ é gerado pelas reflexões nos hiperplanos de raiz
α = 0, os resultados do Teorema 1.3.8 ainda continuam válidos.

Proposição 1.4.18. O grupo de Weyl de ∆σ (g, t) age simplesmente e transitivamente sobre
as câmaras de Weyl. Sejam H ∈ t um elemento de alguma câmara de Weyl e w ∈W tais que
wH = H, então w = 1.

Dado um subespaço t de Cartan de g, vimos no Corolário 1.4.13 que Inng(k)t= s. Além
disso, se k ∈K, temos que t′ =Ad(k)t⊆ s é ainda um subespaço de Cartan de g. Os próximos
resultados aprofundam nosso entendimento sobre a ação adjunta de K sobre os subespaços
de Cartan.

Teorema 1.4.19. Sejam (g,σ) uma álgebra ortogonal involutiva compacta e t, t′ subespaços
de Cartan. Considere A ⊆ t,k ∈ K e suponha que Ad(k)A = A′ ⊆ t′, então existe k′ ∈ K0 tal
que Ad(k′)t= t′ e Ad(k′)Y = Ad(k)Y para todo Y ∈ A.

Demonstração. Seja t′′ = Ad(k)t. Como A′ ⊆ t′∩ t′′, temos que t′, t′′ ⊆ zg(A′) := g′. Além
disso, g′ é invariante por σ , uma vez que [σ(X),H ′] = σ([X ,−H ′]) = 0 para quaisquer X ∈ g′
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e H ′ ∈ A′, logo, g′ = k′+s′ em que k′ = g′∩k e s′ = g′∩s. Temos que (g′,σ |g′) é uma álgebra
ortogonal involutiva compacta, então existe k1 ∈ K0 tal que Ad(k1) ∈ Inng′(k

′)≤ Inng(k)|g′ e
Ad(k1)t

′′ = t′ (Teorema 1.4.11). Segue que Ad(k1k)t= t′ e Ad(k1k)H = Ad(k)H para todo
H ∈ A. Basta escolher k′ = k1k.

Como consequência deste Teorema temos o seguinte Corolário, que será importante para
nós no Capítulo 3.

Corolário 1.4.20. Seja (g,σ) uma álgebra ortogonal involutiva compacta e t um subespaço
de Cartan. Se H ∈ t e Ad(k)H ∈ t, então existe w ∈W tal que Ad(k)H = wH.

Demonstração. Escolhendo t= t′ e A = {H} no Teorema anterior, vemos que existe k′ ∈ K
tal que Ad(k′)t= t e Ad(k′)H = Ad(k)H. Observe que k′ ∈ M∗, então o w que procuramos
é Ad(k′). Observe que usamos que W ≃Ws.





Capítulo 2

Espaços Simétricos Riemannianos

2.1 Variedades Riemannianas

Uma Variedade Riemanniana é uma variedade S dotada de uma métrica ⟨,⟩, onde uma
métrica é uma função diferenciável que, para cada p ∈ S, associa um produto interno em TpS,
o espaço tangente a S no ponto p.

Uma isometria entre Variedades Riemannianas é um difeomorfismo ϕ : S → N que
satisfaz

⟨(dϕ)pu,(dϕ)pv⟩ϕ(p) = ⟨u,v⟩p

para todos p ∈ S e u,v ∈ TpS. O conjunto de todas as isometrias de uma Variedade Rieman-
niana forma um grupo de Lie que é denotado I(S). Uma isometria local é uma aplicação
que é isometria apenas quando restrita a alguma determinada vizinhança, isto é, para cada
p ∈ S existe uma vizinhança U de p tal que ϕ : U → ϕ(U) é uma isometria no sentido que
definimos anteriormente.

Os grupos de Lie são exemplos de variedades que, além de tudo, são grupos. Um grupo
(algébrico) G é chamado grupo de Lie se existe uma estrutura de variedade diferenciável em
G tal que a aplicação produto do grupo p : G×G → G, p(g,h) = gh, seja diferenciável. Uma
das características principais de um grupo de Lie é sua "grande simetria", no sentido de que
há muitos difeomorfismos G → G. Para g,h ∈ G, denotamos por Eg e por Dg as aplicações
G → G dadas por Eg(h) = gh e Dg(h) = hg, são as aplicações de multiplicação à esquerda e
à direita, respectivamente. Pode-se mostrar que estas aplicações são difeomorfismos de G
(veja a Seção 5.1 de [6]).

Adicionando uma métrica a G, ele se torna uma Variedade Riemanniana. Uma métrica é
chamada de invariante à esquerda se as aplicações Eg,g ∈ G, são isometrias e, analogamente,
é chamada de invariante à direita se as aplicações Dg,g ∈ G, são isometrias. Uma métrica é
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denominada bi-invariante se for invariante tanto à esquerda quanto à direita. Por sua simetria,
sempre existe uma métrica invariante ou à esquerda ou à direita em G. Se queremos uma
métrica invariante à esquerda, basta escolher qualquer produto interno ⟨,⟩ em T1G = g e
definir, para X ,Y ∈ TgG,

⟨X ,Y ⟩g = ⟨(dEg)
−1
g X ,(dEg)

−1
g Y ⟩.

Nem sempre existe, no entanto, uma métrica bi-invariante num grupo de Lie qualquer, mas
sempre existe caso G seja compacto e conexo (veja o Teorema A.1.8)

O fibrado tangente de S, denotado T S, é a união ∪p∈STpS de todos os espaços tangentes
de S. Um campo de vetores em S é uma função X : S → T S, tal que X(p) ∈ TpS para cada
p ∈ S. Diremos que X é diferencíavel se for diferenciável visto como aplicação S → T S.
O conjunto dos campos diferenciáveis em S será denotado por χ(S). Dada uma função
diferenciável f : S → R, denotamos por Xp f a derivada direcional de f em p na direção de
Xp a qual é definida da seguinte maneira. Seja α uma curva em M que satifaz α(0) = p e
α
′(0) = X(p), então

Xp f =
d
dt
( f ◦α)(t)

∣∣∣
t=0

.

Podemos considerar ainda a função X f como uma função S → R dada por (X f )(p) = Xp f .
Um campo de vetores diferenciável numa variedade é sempre integrável, ou seja, para

cada p ∈ S, existem uma vizinhança U de p, δ > 0 e uma aplicação diferenciável φ :
(−δ ,δ )×U → S que satisfaz

∂φ

∂ t
(t,q) = X(φ(t,q))

para q ∈U, t ∈ (−δ ,δ ). A aplicação φ é chamada de fluxo de X e, fixado q, φ(·,q) = φt(q) é
uma curva em S tangente a X . Todos os campos com que trabalharemos serão diferenciáveis,
a menos que seja dito o contrário, então omitiremos este termo.

Uma classe especial de campos de vetores que nos interessa é a dos Campos de Killing.
Trata-se de campos cujos fluxos induzem uma aplicação (−δ ,δ )→ I(S). Mais precisamente,
seja X um campo de vetores com fluxo φ : (−δ ,δ )×U → S; X é chamado Campo de Killing
se, para todo t0 ∈ (−δ ,δ ) fixado, a aplicação φ(t0, ·) = φt0 : U → S é uma isometria.

Dados dois campos diferenciáveis X e Y em S, construimos um novo campo diferenciável
em S denominado colchete de X e Y , que é definido por:

[X ,Y ] =
d
dt
(dφ−t)φt(p))Y (φt(p))

∣∣∣
t=0

,

em que φt(p) é o fluxo de X passando por p.
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Conexões Afins

Uma Conexão Afim numa variedade S é uma aplicação ∇ : χ(S)×χ(S)→ χ(S) que satisfaz
as seguintes propriedades:

• ∇ f X+gY Z = f ∇X Z +g∇Y Z,

• ∇X(Y +Z) = ∇XY +∇X Z,

• ∇X( fY ) = f ∇XY +(X f )Y ,

para todos X ,Y,Z ∈ χ(S) e f ,g : S → R funções diferenciáveis. Observe que usamos a
notação ∇XY para denotar o valor de ∇ em (X ,Y ).

Fixada uma conexão afim ∇ em S fica determinada a noção de derivada covariante de
um campo de vetores ao longo de uma curva. Sejam V e W campos de vetores definidos ao
longo da curva α : I → S, denotamos por DV/dt a derivada covariante de V ao longo de α .
Trata-se de um campo vatorial ao longo α que satisfaz

•
D
dt
(V +W ) =

DV
dt

+
DW
dt

,

•
D
dt
( fV ) =

d f
dt

V + f
DV
dt

, em que f : I → R é uma função diferenciável,

• Se existe um campo Y ∈ χ(S) tal que V (t) = Y (α(t)), então
DV
dt

= ∇dα/dtY .

Para que a expressão ∇dα/dtY faça sentido, devemos escrever dα/dt em coordenadas locias
em termos de alguma parametrização local (veja a Proposição 2.2 do capítulo 2 de [10]).

O campo V é denominado paralelo ao longo de α se DV/dt ≡ 0. Seja p=α(0) e v∈ TpS,
é possível mostrar que existe um único campo V (t) paralelo ao longo de α tal que V (0) = v
(veja a Proposição 2.6 do capítulo 2 de [10]). Chamamos o vetor V (t) ∈ Tα(t)S de transporte
paralelo de v ao longo de α do ponto p ao ponto α(t).

Dentre as infinitas conexões possíveis numa variedade, existe uma que é especial em
relação à métrica de S, é a chamada conexão de Levi-Cività de S (veja o Teorema do capítulo
2 de [10]). É a única conexão simétrica, isto é, satisfaz

∇XY −∇Y X = [X ,Y ]

para quaisquer X ,Y ∈ χ(S), e compatível com a métrica de S. A condição de compatibilidade
significa que, para quaisquer campos paralelos V e W ao longo de uma curva α , temos
⟨V,W ⟩ ≡ constante, o que ocorre se, e somente se,

X⟨Y,Z⟩= ⟨∇XY,Z⟩+ ⟨Y,∇X Z⟩,
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para quaisquer X ,Y,Z ∈ χ(S) (veja o Corolário 3.3 do capítulo 2 de [10]). Observe que
usamos que ⟨Y,Z⟩ pode ser visto como uma função diferenciável S → R.

Uma geodésica é uma curva γ : I → S cujo vetor tangente γ
′(t) é paralelo ao longo de γ

em relação à conexão de Levi-Cività. A exponencial Riemmaniana de S em p é a aplicação
TpS → S dada por expp(v) = γ(1), em que γ é a (única) geodésica de S que satisfaz γ(0) = p
e γ

′(0) = v (observe que o tamanho de v pode ser ajustado para que 1 se encontre no domínio
de definição de γ).

Curvatura

Um dos objetos mais importantes no estudo de Variedades Riemannianas é a curvatura. Para
superfícies (variedades de dimensão 2) é mais comum estudar a curvatura de Gauss, que é o
produto das duas curvaturas principais em um ponto da superfície. Em dimensões maiores,
temos mais de duas direções independentes, isto é, a dimensão do espaço tangente é maior
que 2. Consideramos então algo análogo à curvatura de Gauss. Dado um plano (subespaço de
dimensão 2) contido em TpS, as geodésicas passando por p e tangentes a σ determinam uma
subvariedade de S, de modo que podemos pensar na curvatura K(p,σ) desta subvariedade,
K(p,σ) é chamada de curvatura seccional de S em p com respeito a σ (veja o capítulo 4 de
[10]).

O grande problema com a abordagem acima é a dificuldade em calcular a curvatura
seccional. De modo a superar esta dificuldade, definimos o operador curvatura

R(X ,Y )Z = ∇Y ∇X Z −∇X ∇Y Z +∇[X ,Y ]Z, (2.1)

para X ,Y,Z campos de vetores diferenciáveis.

Denote |x ∧ y| =
√

|x|2|y|2 −⟨x,y⟩2. Se x,y ∈ TpS geram um plano σ , definimos a
curvatura seccional

K(p,σ) =
⟨R(x,y)x,y⟩
|x∧ y|2

.

É possível demonstrar que esta definição não depende de x,y e, além disso, é importante
observar que o valor de R(X ,Y )Z em p depende apenas dos valores de X ,Y,Z em p, portanto
a curvatura seccional está bem definida. Para mais detalhes sobre Geometria Riemanniana,
indicamos a referência [10].
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Ações de grupos e Variedades Homogêneas

Uma ação (à esquerda) de um grupo G sobre S é uma aplicação ψ : G×S → S que satisfaz
as seguintes condições: (i) para todo p ∈ S e 1 ∈ G a identidade, ψ(1, p) = p e (ii) para
g,h ∈ G, temos ψ(g,ψ(h, p)) = ψ(gh, p). O ponto ψ(g, p) ∈ S é visto como a imagem de p
pela ação de g e é usualmente denotado simplesmente por gp, lembrando a multiplicação
no grupo. A ação é dita diferenciável se G for um grupo de Lie e se ψ for uma aplicação
diferenciável.

Dizemos que uma variedade S é homogênea se houver um grupo de Lie G que age sobre
ela de forma transitiva e diferenciável. Suponha que G age de maneira transitiva sobre S e
seja K o subgrupo de G das transformações que fixam algum p ∈ S, K é chamado de isotropia
de p. Se K é fechado, é possível mostrar que existe uma única estrutura de variedade em S
tal que a ação de G é diferenciável. O espaço G/K munido da topologia quociente, tem uma
estrutura natural de variedade que faz com que S ≈ G/K, isto é, S é difeomorfa ao espaço de
classes laterais G/K. Para mais detalhes, veja o Teorema 6.22 de [6]. Uma das vantagens de
se trabalhar com variedades vendo-as como espaços homogêneos é a facilidade em se obter
cartas coordenadas.

Se S ≈ G/K é uma variedade homogênea e G é um grupo de Lie que age por isometrias
em S, dizemos que S é uma Variedade Homogênea Riemanniana. As isometrias de G agindo
em S podem ser identificadas com a ação de G sobre G/K por multiplicação à esquerda,
ou seja, g ·hK = (gh)K. Podemos então estudar S e suas isometrias de forma mais simples
vendo S como o espaço quociente G/K. A projeção π : G → G/K, (π(g) = gK) nos permite
relacionar propriedades de G com propriedades de G/K. Se G é conexo, G/K também é. Se
G for compacto, G/K também será. Se G é simplesmente conexo e K é conexo e fechado,
então G/K é simplesmente conexo (veja o Teorema A.3.1). Em particular, seja g a álgebra
de Lie de G e k a álgebra de K contida em g; se s é um subespaço que satisfaz g = k⊕ s,
podemos usar π para identificar s com TpS usando que kerdπ1 = k e que π é sobrejetiva.
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2.2 Espaços Localmente Simétricos

Considere uma Variedade Riemanniana S e p ∈ S. Uma vizinhança normal de p é um aberto
U de S que contém p e é difeomorfo via a exponencial riemanniana expp a um aberto de
TpS contendo a origem. Podemos considerar que o aberto contendo 0 ∈ TpS seja uma bola
B(0,ε), onde ε pode variar dependendo do ponto p escolhido. Deste modo, definimos a
simetria geodésica ao redor de p. Dados uma geodésica γ tal que γ(0) = p e t ∈ R tal que
γ(t) ∈U , definimos sp(γ(t)) = γ(−t). Segue desta definição que sp(p) = p e que sp é uma
involução, a qual deve satisfazer, portanto, (dsp)p =−id.

Definição 2.2.1. Seja S uma variedade Riemanniana. Dizemos que S é um Espaço Lo-
calmente Simétrico se, para todo p ∈ S, a simetria geodésica sp estiver definida e for uma
isometria local de S.

Exemplo 2.2.2. Na esfera S2 ⊆ R3 a simetria geodésica em torno de p = (0,0,1) é induzida
pela reflexão em torno da reta que passa pela origem e por p.

Figura 2.1 : Simetria geodésica na esfera S2.

Podemos definir os espaços localmente simétricos de forma diferente, usando o chamado
tensor curvatura. Esta formulação alternativa será útil para nós na descrição dos campos
de Jacobi nos espaços localmente simétricos. Em vez de pensar na curvatura R como uma
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aplicação a depender de 3 argumentos tomando valores no espaço de campos diferenciáveis
(veja a equação (2.1)), vamos tratá-la como uma aplicação a 4 argumentos tomando valores
no espaço de funções diferenciáveis reais definidas em S. Para fazer isso, usamos a métrica e
definimos

R(X ,Y,Z,W ) := ⟨R(X ,Y )Z,W ⟩.

Usamos também R nesta definição por motivos de simplicidade de notação. Observe que,
fixados X ,Y,Z,W ∈ χ(M), R(X ,Y,Z,W ) é uma função real diferenciável definida em S.
Dizemos que R é um tensor de ordem 4, pois depende de 4 argumentos (para mais detalhes,
veja a Seção 5 do capítulo 4 de [10]). Definimos a derivada covariante ∇R de R como o
tensor de ordem 5 dado por

∇R(X ,Y,Z,W,U) =U(R(X ,Y,Z,W ))

−R(∇U X ,Y,Z,W )−R(X ,∇UY,Z,W )

−R(X ,Y,∇U Z,W )−R(X ,Y,Z,∇UW ).

É comum denotar ∇R(X ,Y,Z,W,U) por ∇U R(X ,Y,Z,W ).

Teorema 2.2.3 (Caracterização tensorial). Seja S uma variedade Riemanniana, então S é
localmente simétrica se, e somente se, ∇R = 0.

Demonstração. Suponha que s seja localmente simétrica e seja p ∈ S. Seja z ∈ TpS e γ

uma geodésica satisfazendo γ(0) = p,γ ′(0) = z. Como sp(γ(t)) = γ(−t) é fácil ver que
dsp(z) =−z. Segue que dsp =−id. Para X ,Y,Z,W,U ∈ χ(S), temos que

U ·R(X ,Y,Z,W ) =U⟨R(X ,Y )Z,W ⟩= ⟨∇U R(X ,Y )Z,W ⟩+ ⟨R(X ,Y )Z,∇UW ⟩,

então segue que

∇R(X ,Y,Z,W,U) = ⟨∇U R(X ,Y )Z,W ⟩+ ⟨R(X ,Y )Z,∇UW ⟩
−R(∇U X ,Y,Z,W )−R(X ,∇UY,Z,W )

−R(X ,Y,∇U Z,W )−R(X ,Y,Z,∇UW )

= ⟨∇U R(X ,Y )Z,W ⟩−⟨R(∇U X ,Y )Z,W ⟩
−⟨R(X ,∇UY )Z,W ⟩−⟨R(X ,Y )∇U Z,W ⟩.
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Como sp é isometria local, deve preservar a conexão ∇ e, portanto, a curvatura (veja o
Teorema A.1.1 e o Corolário A.1.3), logo, denotando L = (dsp)p, temos

∇R(X ,Y,Z,W,U) = ⟨L∇U R(X ,Y )Z,LW ⟩−⟨LR(∇U X ,Y )Z,LW ⟩
−⟨LR(X ,∇UY )Z,LW ⟩−⟨LR(X ,Y )∇U Z,LW ⟩
= ⟨∇LU R(LX ,LY )LZ,LW ⟩
−⟨R(∇LU LX ,LY )LZ,LW ⟩
−⟨R(LX ,∇LU LY )LZ,LW ⟩
−⟨R(LX ,LY )∇LU LZ,LW ⟩
=−∇R(X ,Y,Z,W,U).

Na primeira igualdade, usamos que sp é uma isometria isometria e, na última igualdade, que,
em cada parcela, L =−id aparece um número ímpar de vezes. Segue que ∇R = 0.

Suponha agora que ∇R = 0. Seja B(p,ε) uma vizinhança normal de p e considere
o referencial geodésico {e1, . . . ,en} em B(p,ε) (veja a proposição A.2.4). Denote por
Ri jkl = R(ei,e j,ek,el) as coordenadas de R neste referencial. Pela construção do referencial
e, como ∇R = 0, temos que os Ri jkl são constantes ao longo das geodésicas radiais. Para ver
isto, seja σ uma geodésica radial iniciando em p, i.e., σ(s) = expp(sx) para algum x ∈ TpS,
então

d
ds

Ri jkl(σ(s)) = ∇σ ′(s)R(ei,e j,ek,el)

= ∇R(ei,e j,ek,el,σ
′(s))

+R(∇σ ′(s)ei,e j,ek,el)+R(ei,∇σ ′(s)e j,ek,el)

+R(ei,e j,∇σ ′(s)ek,el)+R(ei,e j,ek,∇σ ′(s)el)

= 0.

Observe que usamos a definição de ∇R para o desenvolvimento dos cálculos, que ∇R = 0
para concluir que ∇R(ei,e j,ek,el,σ

′(s)) = 0 e que ∇σ ′(s)er = 0, para r = 1, . . . ,n, uma vez
que o referencial geodésico é construido de modo que os campos e j sejam paralelos ao longo
das geodésicas radiais.

Para concluir a demonstração, considere i : TpS → TpS a isometria dada por i(v) =−v,
defina s = expp ◦i◦ (expp)

−1 e φt = Pt ◦ i◦ (Pt)
−1, onde Pt é o transporte paralelo ao longo da

geodésica radial γ do ponto γ(0) = p ao ponto γ(t). Sendo os campos ei paralelos ao longo
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das geodésicas radiais, temos que φt(ei) =−ei, i = 1, . . . ,n, logo,

R(φt(ei),φt(e j),φt(ek),φt(el))≡ R(ei(p),e j(p),ek(p),el(p)).

Por linearidade, segue que

R(φt(u),φt(v),φt(w),φt(z))≡ R(u,v,w,z)

para todos u,v,w,z ∈ Tγ(t)S. Pelo Teorema de Cartan (Teorema A.2.5), s é uma isometria
local. Segue do Lema A.1.7 que, numa vizinhança suficientemente pequena de p, s◦ expp =

expp ◦dsp. Como dsp = −id, temos que s coincide com a simetria geodésica ao redor de
p.

Um campo de vetores J = J(t) ao longo da geodésica γ de S é chamado Campo de Jacobi
ao longo de γ se satisfaz a seguinte equação diferencial.

J′′(t)+R(γ ′(t),J(t))γ ′(t) = 0. (2.2)

Por simplicidade, denotamos D2J/dt2 por J′′(t), em que D/dt denota a derivada covariante
ao longo de γ . O ponto γ(t0), t0 > 0, é denominado conjugado a γ(0) ao longo de γ se existe
um campo de Jacobi não nulo ao longo de γ que satisfaz J(0) = 0 = J(t0). A multiplicidade
de γ(t0) como ponto conjugado é igual à quantidade de Campos de Jacobi linearmente
independentes satisfazendo a condição acima. Por conta da condição tensorial, veremos que
os campos de Jacobi têm uma forma simplificada nos espaços localmente simétricos.

Lema 2.2.4. Seja S uma Variedade Riemanniana localmente simétrica e X ,Y e Z campos
paralelos ao longo da geodésica γ , então R(X ,Y )Z é paralelo ao longo de γ .

Demonstração. Para qualquer campo W paralelo ao longo de γ , temos ∇γ ′W =(D/dt)W = 0.
Deste modo, seja {e1, . . . ,en} um referencial ortonormal e paralelo ao longo de γ; como
∇R = 0, temos que

0 = ∇R(X ,Y,Z,ei,γ
′(t))

= ∇γ ′(t)R(X ,Y,Z,ei)

−R(∇γ ′(t)X ,Y,Z,ei)+R(X ,∇γ ′(t)Y,Z,ei)

−R(X ,Y,∇γ ′(t)Z,ei)+R(X ,Y,Z,∇γ ′(t)ei).
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Observe que, por hipótese, temos que ∇γ ′(t)X = ∇γ ′(t)Y = ∇γ ′(t)Z = ∇γ ′(t)ei = 0, então

0 = ∇γ ′(t)R(X ,Y,Z,ei)

= ⟨∇γ ′(t)R(X ,Y )Z,ei⟩+ ⟨R(X ,Y )Z,∇γ ′(t)ei⟩=
〈

D
dt

R(X ,Y )Z,ei

〉
Segue que (D/dt)R(X ,Y )Z = 0, uma vez que os ei, i = 1, . . . ,n, formam um referêncial

ortonormal, logo, R(X ,Y )Z é paralelo ao longo de γ . Nas igualdades acima os campos estão
restritos a γ .

Para determinar a forma dos campos de Jacobi no espaço localmente simétrico S,
considere inicialmente v = γ

′(0) ∈ TpS e seja Λv : TpS → TpS o operador definido por
Λv(x) = R(v,x)v. Observe a relação deste operador com a equação de Jacobi (2.2). Pelas
propriedades da curvatura, Λv é simétrico em relação ao produto interno definido em TpS
pela métrica de S, ou seja,

⟨Λv(x),w⟩= ⟨x,Λv(w)⟩.

Isto segue do fato que R(X ,Y,Z,W ) = R(Z,W,X ,Y ) para quaisquer campos X ,Y,Z,W dife-
renciáveis em S (veja a Proposição 2.4 do capítulo 4 de [10]).

Seja {e1, . . . ,en} uma base de TpS que satisfaz Λv(ei) = λiei. Pelo parágrafo anterior,
Λγ ′(t) é simétrico para t no domínio de γ . Por transporte paralelo, estenda {e1, . . . ,en} ao
longo de γ . Pelo Lema 2.2.4, temos que Λγ ′(t)(ei(t)) é paralelo ao longo de γ para i = 1, . . . ,n.
Observe que Λγ ′(0)(ei(0)) = Λv(ei) = λiei, então existem funções reais λi = λi(t) tais que
Λγ ′(t)(ei(t)) = λi(t)ei(t), com λi(0) = λi. Isto segue do fato que Λγ ′(t)(ei(t)) coincide com o
transporte paralelo de λiei ao longo de γ . Segue do paralelismo que λi(t)≡ λi são constantes.

Escreva J(t) =
n

∑
i=1

xi(t)ei(t). Nestas coordenadas, a equação de Jacobi se reduz ao sistema

de equações lineares
x′′i +λixi = 0 (i = 1, . . . ,n).

As soluções para J são mostradas abaixo, sendo W (t) um campo paralelo ao longo de γ .

J(t) =


sen(t

√
λi)W (t), λi > 0

tW (t), λi = 0

senh(t
√

−λi)W (t), λi < 0.

(2.3)

A partir desta discussão, concluimos que existem pontos conjugados a γ(0) ao longo de

γ se, e só se, existe ao menos uma solução com λi > 0. Neste caso, os pontos γ(π
k√
λi
) são
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conjugados a γ(0) para k ∈ Z. Esta construção mostra que, ao longo de uma geodésica γ ,
podem ter vários pontos conjugados a γ(0). O ponto γ(t0) é chamado de primeiro conjugado
se entre γ(0) e γ(t0) não existe em γ outro ponto conjugado a γ(0). O locus conjugado
de p ∈ S é o conjunto de todos pontos conjugados a p ao longo de qualquer geodésica
iniciando em p e o locus conjugado primário de p é o conjunto de primeiros conjugados a p
considerando todas as geodésicas iniciando em p.

Vamos finalizar esta seção mostrando que isometrias preservam campos de Jacobi.

Teorema 2.2.5. Sejam ϕ : S → N uma isometria local, γ : [0,ε)→ S uma geodésica e J um
campo de Jacobi ao longo de γ que satisfaz J(0) = 0. Então γ̃ = ϕ ◦ γ é uma geodésica de N
e J̃(t) = (dϕ)γ(t)J(t) é um campo de Jacobi ao longo de γ̃ .

Demonstração. Denote p = γ(0), v = γ
′(0) e w = J′(0) ̸= 0. Para demonstrar este Teorema,

vamos usar que um campo de Jacobi J = J(t) ao longo de γ que satisfaz J(0) = 0 deve ter a
forma

(d expp)tvtw

(veja o Corolário 2.5 (Cap. 5) de [10]).

J̃(t) = (dϕ)γ(t)J(t) = (dϕ)γ(t)(d expp)tvtw

= d(ϕ ◦ expp)tvtw

= d(expϕ(p) ◦dϕp)tvtw

= (d expϕ(p))tdϕp(v)t(dϕpw).

Como γ̃(t) = expϕ(p)(tdϕpv), segue que J̃ é um campo de Jacobi com J̃′(0) = dϕpw. Além
disso, como ϕ é isometria local, J(t) = 0 se, e só se, J̃(t) = 0. O fato que γ̃ é uma geodésica
segue do Corolário A.1.4.

Segue deste Teorema que, se p e q são pontos cojugados em S, então ϕ(p) e ϕ(q) são
conjugados em N.

Corolário 2.2.6. Isometrias preservam pontos conjugados.

Um caso especial deste Teorema que será importante para nós é o seguinte. Seja K um
grupo de isometrias que fixa p, então para todo q conjugado a p, temos que kq é conjugado a
p. Dito de outra forma, K age sobre o locus conjugado de p.
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2.3 Espaços Simétricos

Definição 2.3.1. Seja S uma variedade riemanniana localmente simétrica. Dizemos que
S é um Espaço Simétrico se todas as simetrias geodésicas forem isometrias globalmente
definidas em S.

Neste contexto, uma classe de isometrias de S que tem um papel muito importante, é a
classe das transvecções. Considere p ∈ S e γ uma geodésica com γ(0) = p. Denote por st a
simetria geodésica sγ(t) e s0 = sp. A composição pt = st/2 ◦ s0 é chamada de transvecção ao
longo de γ . As transvecções agem como translações ao longo de γ:

pt(γ(t0)) = st/2 ◦ s0(γ(t0)) = st/2(γ(−t0)) = γ((−t0)−2((−t0)− t/2)) = γ(t0 + t). (2.4)

Seja X um campo paralelo ao longo de γ(t). Sendo s0 uma isometria, temos que Y (t) =
(ds0)γ(t)X(t) é paralelo ao longo de γ . Além disso, (ds0)pX(0) = −X(0), então Y (t) =
−X(−t).

Lema 2.3.2. Seja γ(t) uma geodésica em S e pl uma transvecção ao longo de γ satisfazendo
pl(γ(t)) = γ(t + l). Se X é um campo paralelo ao longo de γ , então (d pl)γ(t)X(t) = X(t + l).

Demonstração. pl = sl/2s0 é uma composição de simetrias geodésicas. A discussão anterior
mostra que a menos de sinal e translação no parâmetro, um campo paralelo ao longo de γ é
preservado.

(d pl)γ(t)X(t) =−(dsl/2)γ(−t)X(−t) = X(−t −2(−t − l/2)) = X(t + l).

Exemplo 2.3.3. O Lema acima não é verdadeiro para isometrias em geral, ou seja, uma
isometria que deixa uma geodésica invariante nem sempre preserva os campos paralelos no
sentido destacado no Lema. Considere, por exemplo, o espaço euclidiano R3. Qualquer
campo constante é paralelo neste contexto e o eixo z é uma geodésica. Se V é um campo
constante que não é paralelo ao eixo z, então as rotações em torno deste eixo deixam-no
invariante ponto a ponto, mas não deixam V invariante. Por outro lado, as translações na
direção do eixo z (transvecções) deixam V invariante.

Proposição 2.3.4. 1. Qualquer campo paralelo Y ao longo de γ satisfazendo Y (t0) = v ∈
Tγ(t0)S coincide com o campo paralelo X definido por X(t + t0) = (d pt)γ(t0)v.

2. pt+t1 = pt ◦ pt1 . Em particular, as transvecções ao longo de γ formam um grupo a um
parâmetro.
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3. Para todo t ∈ R, pt = st1+t/2st1 , ou seja, as transvecções dependem apenas de γ e não
do ponto inicial γ(0).

Demonstração. 1. Segue diretamente do Lema 2.3.2.

2. Para uma isometria ϕ , temos que ϕ ◦ expp = expϕ(p) ◦dϕp e isto implica que as
isometrias são localmente determinadas pela diferencial em um ponto. Segue do item
anterior que a diferencial de uma transvecção induz transporte paralelo e o transporte
paralelo ao longo de duas curvas adjacentes é igual ao transporte paralelo ao longo
destas curvas justapostas. Portanto, segue que pt+t1 = pt ◦ pt1 .

3. Observe inicialmente que p−1
t1 = p−t1 pelo item anterior e é fácil ver que p−1

t1 =

(st1/2s0)
−1 = s0s−t1/2. Portanto,

pt = pt+2t1 p−2t1

= st1+t/2s0s−t1s0

= st1+t/2s0s0st1

= st1+t/2st1.

Exemplo 2.3.5. No espaço euclidiano Rn, as transvecções são particularmente simples, pt é
a translação pelo vetor (γ(t)− γ(0)). É interessante observar também que as geodésicas de
Rn são da forma q+ tv, t ∈ R, ou seja, são imagens de pontos por grupos a um parâmetro de
transvecções.

Exemplo 2.3.6. Como visto no Exemplo 2.2.2, a simetria geodésica sp coincide com a
isometria induzida na esfera pela reflexão em torno da reta rp que passa por p e pela origem.
Esta rotação pode ser vista como produto de reflexões em torno de planos perpendiculares
que contém esta reta. Seja γ uma geodésica iniciando em p. A transvecção pt = st/2s0 é
a composição das reflexões em torno de rp e da reta que passa pela origem e por γ(t/2).
Portanto, pode-se mostrar que pt é a isometria induzida em S2 pela rotação em torno da reta
perpendicular ao plano que contém rp e rγ(t/2) no sentido de p para γ(t/2) por um ângulo que
é o dobro daquele formado pelos pontos p = γ(0), γ(t/2) e pela origem. Qualquer geodésica
de S2 pode, então, ser vista como órbita de um grupo a um parâmetro de transvecções.

Proposição 2.3.7. Sejam γ uma geodésica de S passando por p = γ(0) e pt o grupo de
transvecções ao longo de γ .

1. γ(t) = pt(p).
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2. O campo X definido por X(q) =
d
dt

pt(q)
∣∣∣
t=0

é um campo de Killing.

Demonstração. 1. O primeiro item segue da seguinte igualdade.

γ(t) = γ(0+ t) = pt(γ(0)).

2. Seja ϕt um grupo de isometrias a um parâmetro e defina Y (q) = (d/dt)ϕt(q)|t=0. A
trajetória de Y passando por q ∈ S é claramente dada por ϕt(q) e ϕt é uma isometria de
S para cada t por hipótese. Em particular, este resultado vale para ϕt = pt .

O campo definido no item 2 da Proposição 2.3.7 é chamado de Transvecção Infinitesimal;
é fácil ver que toda transvecção pode ser vista como o fluxo de uma transvecção infinitesimal.
O Teorema 1.2 do capítulo II de [11] nos diz que o grupo de isometrias de uma Variedade
Riemanniana é um grupo de Lie e o grupo de isotropia K é compacto. Denote por G o grupo
de isometrias de S e seja g a álgebra de Lie de G. Podemos representar g como álgebra de
Lie de campos de Killing em S. Denotando por exp a exponencial de G, exp(tX) é um grupo
a um parâmetro de isometrias agindo em S para cada X ∈ g. Podemos associar então a cada
X ∈ g o campo dado por X̃(q) = (d/dt)exp(tX)q|t=0, que é um campo de Killing, uma vez
que seu fluxo é o grupo a 1 parâmetro de isometrias {exp(tX) : t ∈ R} ≤ G.

Teorema 2.3.8. Todo espaço simétrico conexo é uma Variedade Riemanniana homogênea.

Demonstração. Dados dois pontos p,q ∈ S, vamos mostrar que existe uma isometria de S
que leva p em q; esta isometria será uma composição de transvecções. Se m é um ponto
numa vizinhança normal de p, existe uma geodésica que conecta p e m, logo, existe uma
transvecção que leva p em m. Sendo S uma variedade conexa, é também conexa por caminhos.
Seja α : I = [0,1]→ S uma curva que satisfaz α(0) = p e α(1) = q. Sendo α(I) compacto,
existe uma partição {0 = t0 < t1 < · · · < tn = 1} de I e vizinhanças normais Ui de α(ti)
tais que α(I)⊆ ∪n

i=0Ui. Escolhendo a partição de modo que as diferenças |t j+1 − t j| sejam
suficientemente pequenas, podemos assumir que ambos α(ti),α(ti+1)∈Ui+1, i= 0, . . . ,n−1,
de modo que existem transvecções que levam α(ti) em α(ti+1), i = 0, . . . ,n−1. Compondo
estas transvecções, obtemos uma isometria que leva p = α(0) em q = α(1).

De agora em diante, vamos nos restringir a espaços simétricos conexos. Todo espaço
simétrico conexo é homogêneo e, portanto, geodesicamente completo pelo Lema A.1.5 e pelo
Teorema de Hopf-Rinow. A completude de S resulta em propriedades importantes como, por
exemplo, o fato que o produto de quaisquer duas simetrias geodésicas de S é uma transvecção,
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pois quaisquer dois pontos podem ser conectados por uma geodésica. Se p,q ∈ S, seja γ uma
geodésica que satisfaz γ(0) = p e γ(l) = q, então sq ◦ sp = sl ◦ s0 = p2l é uma transvecção.

A partir de agora, vamos denotar por G a componente da identidade do grupo de isome-
trias de S. Sendo S conexa, se o grupo de todas as isometrias age de forma transitiva, então
G também age de transitivamente (Proposição 13.10 de [6]). Seja K o subgrupo de G que
contém as isometrias que fixam p ∈ S e denote por k sua álgebra, p será chamado de ponto
base de S. É fácil ver que os elementos de k são representados como campos de Killing em S
que se anulam em p. Temos S ≈ G/K.

Toda geodésica de S determina um grupo a um parâmetro de transvecções, ou seja, pt

está definida para t ∈ R. Portanto, pt deve ter, necessariamente, a forma exp(tH) para algum
H ∈ g. Em particular, toda transvecção infinitesimal é da forma H̃(q) = (d/dt)exp(tH)q|t=0

para algum H ∈ g. Esta é uma propriedade que não se restringe apenas às transvecções
infinitesimais, a Proposição A.2.2 mostra que campos de Killing são completos em variedades
riemanniananas completas, ou seja, o fluxo de um tal campo está definido sobre R e deve
determinar um subgrupo a um parâmetro de G. Todo subgrupo a 1 parâmetro de G é da forma
exp(tX) para algum X ∈ g pelo Teorema 9.2.15 de [4]. Temos então o seguinte resultado.

Proposição 2.3.9. Qualquer campo de Killing em um espaço simétrico é completo e tem a
forma

X̃(q) =
d
dt

exp(tX)q
∣∣∣
t=0

,

para algum X ∈ g e seu fluxo é da forma ϕt(q) = exp(tX)q.

O próximo resultado é uma caracterização importante das transvecções infinitesimais.

Proposição 2.3.10. Um campo de Killing Y em S é uma transvecção infinitesimal em p se, e
somente se, (∇Y )p = 0.

Demonstração. Seja Y uma transvecção infinitesimal em p, ou seja, Y (q) = (d/dt)pt(q)|t=0,
em que pt é uma transvecção ao longo da geodésica γ por p. Seja X um campo de S e α(s)
uma curva com α(0) = p e α

′(0) = X(p), então (∇XY )(p) = (D/ds)Y (α(s))|s=0. Pelo
Lema 3.4 do capítulo 3 de [10], temos que

(∇XY )(p) =
D
ds

d
dt

pt(α(s))
∣∣∣
t=0,s=0

=
D
dt

d
ds

pt(α(s))
∣∣∣
t=0,s=0

=
D
dt
(d pt)α(0)α

′(0)
∣∣∣
t=0

= 0.
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Na última igualdade, usamos que (d pt)α(0)α
′(0) é paralelo ao longo de γ (item 1 da Proposi-

ção 2.3.4).
Suponha agora que (∇Y )p = 0 e seja γ a geodésica por p satisfazendo γ(0) = p e

γ
′(0) = Y (p). Denote por Z a transvecção infinitesimal ao longo de γ , ou seja, o campo

definido por Z(q) = (d/dt)pt(q)|t=0. Como pt(p) = γ(t), temos que Y (p) = γ
′(0) = Z(p).

Pelo que demonstramos no primeiro parágrafo, temos que (∇Z)p = 0 = (∇Y )p. Segue da
Proposição A.2.3 que Y −Z é um campo de Killing identicamente nulo, logo, Y = Z é uma
transvecção infinitesimal.

Sejam s = {X ∈ g : (∇X̃)p = 0} e k = {X ∈ g : X̃(p) = 0}. Pela proposição anterior,
os vetores de s geram todas as transvecções infinitesimais por p. Como os elementos de g

geram os campos de Killing em S (Proposição 2.3.9), temos que k∩ s= 0 pela Proposição
A.2.3. Observe ainda que dims≥ dimTpS = dimS, pois cada vetor de TpS determina uma
geodésica passando por p e, portanto, determina uma transvecção por p. Sendo S = G/K,
temos que dimS = dimG − dimK = dimg− dimk. Segue que dims+ dimk ≥ dimg e,
portanto, g= k+ s.

Pela simetria da conexão, sabemos que [X ,Y ] = ∇XY − ∇Y X , donde segue que, se
X ,Y ∈ s, [X ,Y ](p) = 0, i.e., [X ,Y ] ∈ k. Este fato, também é uma consequência do seguinte
Teorema.

Teorema 2.3.11. Seja s ⊆ g o subespaço das transvecções infinitesimais. A aplicação
σ =Ad(sp) determina uma involução de g tal que g= k⊕s é a decomposição em autoespaços
±1.

Demonstração. Seja k ∈ K, é fácil ver que spksp ∈ K e, como (dsp)p = −id, spksp tem a
mesma diferencial em p que k. Logo, k e spksp coincidem em um aberto de S contendo p.
Segue do Lema A.1.6 que spksp = k e, portanto, σ = Ad(sp) age como +1 em k.

Uma transvecção pl ao longo da geodésica γ tal que γ(0) = p, pode ser escrita como
sl/2sp, logo, sp plsp = spsl/2 = p−l . Seja Y a transvecção infinitesimal determinada por pl ,
então, para q ∈ S,

σ(Y (q)) =
d
dt

sp plsp(q)
∣∣∣
t=0

=
d
dt

p−l(q)
∣∣∣
t=0

=−Y (q).

Segue que σ age como −id em s.
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Esta seção mostra que a um espaço simétrico S está associada de maneira natural uma
álgebra ortogonal involutiva (g,σ) (veja a Seção 1.4). Escolhendo p ∈ S como ponto base
e identificando S = G/K, a ação de G sobre S se identifica com a ação de multiplicação
à esquerda de G sobre G/K dada por (g,hK) 7→ (gh)K; em particular, se g ∈ K, temos
(gh)K = ghg−1K. A projeção natural π : G → S dada por π(g) = gK nos permite identificar
s e TpS por meio da derivada dπ1 : g→ TpS, que é sobrejetiva e tem núcleo k.

Sendo K a isotropia de p, temos que k age sobre TpS via os diferenciais de seus elementos,
ou seja, se k ∈ K e v ∈ TpS, k(v) = dkp(v). Observe que, para X ∈ s e k ∈ K, temos que

k exp(X)K = k exp(X)k−1K = exp(Ad(k)X)K,

então a ação de K sobre TpM se identifica com a ação de K sobre s via a representação
adjunta de K, ou seja, k ∈ K age via a isometria Ad(k) : s→ s. Portanto, denotando por B a
métrica de S em p e sendo k compacta (pois K é compacto pelo Teorema 1.2 do capítulo II
de [11]), segue do Teorema 1.4.7 que (g,σ) é uma álgebra ortogonal involutiva com produto
interno ad(k)−invariante B em s.

As transvecções agem de forma transitiva sobre S e isto nos permite provar o seguinte
resultado.

Proposição 2.3.12. Denote por P ⊆ G o conjunto das transvecções por p ∈ S e por K o grupo
das isometrias que fixam p. Temos que G = PK = KP.

Demonstração. Segue do fato que as transvecções agem de forma transitiva, ou seja, para
cada g ∈ G, existe q ∈ P tal que qg(p) = p. Segue que qg ∈ K, então g ∈ PK. Analogamente,
existe q ∈ P tal que q(p) = g−1(p), i.e., gq ∈ K, donde segue que g ∈ KP.
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2.4 Locus Conjugado

Nesta seção vamos caracterizar o locus conjugado de um ponto num espaço simétrico conexo
e compacto S = G/K. Assumimos que G é conexo e compacto, que a ação de G sobre G/K
por multiplicação à direita é uma ação isométrica e que a isotropia K é fechada. Como a
ação de G é transitiva e isometrias preservam pontos conjugados (Corolário 2.2.6), basta
determinar o locus conjugado de um ponto de S, já que quaisquer outros locus conjugados
são isométricos. Determinaremos o locus conjugado do ponto p = 1K.

Um flat F de S é uma subvariedade conexa, completa, com curvatura nula e totalmente
geodésica. A condição que F é subvariedade totalmente geodésica significa que toda geo-
désica de F é também uma geodésica de S (para mais detalhes, veja a Proposição 2.9 do
capítulo 6 de [10]). O flat F será chamada de flat maximal se for um flat que não está contido
em nenhum outro. Os próximos resultados mostram que os flats maximais passando por p
têm como espaço tangente as subálgebras de Cartan de s. É de interesse, portanto, ter uma
compreensão melhor sobre o operador curvatura.

Lema 2.4.1. Seja X uma transvecção infinitesimal por p e Y um campo diferenciável definido
numa vizinhança de p. Denotando por ∇ a conexão de Levi-Cività, temos que

(∇XY )p = [X ,Y ](p).

Demonstração. Pela Proposição 2.3.10, temos que (∇X)p = 0. Usando a simetria da cone-
xão,

[X ,Y ](p) = (∇XY −∇Y X)p = (∇XY )p.

Usando este Lema, podemos expressar a curvatura em termos do Colchete de Lie.

Teorema 2.4.2. Sejam q ∈ S e x,y,z ∈ TqS, então

R(x,y)z = [[x,y],z].

Demonstração. Existe uma transvecção infinitesimal X em S tal que X(q) = x, pois cada
vetor de TqS determina uma transvecção infinitesimal por q. Seja γ(t) = exp(tX)q uma
geodésica por q e observe que γ

′(0) = X(q) = x. Seja Y um campo de Jacobi ao longo de γ

com Y (0) = y. Do Lema 2.4.1, sabemos que

[X ,Y ](q) = (∇XY )q.
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Usando este resultado e a equação de Jacobi para Y , temos que

R(x,y)x =−D
dt

D
dt

Y (γ(t))
∣∣∣
t=0

=−D
dt
(∇XY )γ(t)

∣∣∣
t=0

=−D
dt
[X ,Y ](γ(t))

∣∣∣
t=0

=−(∇X [X ,Y ])γ(t)

=−[x, [x,y]]

= [[x,y],x].

O resultado então segue da equação acima usando Lema 3.3 do capítulo 4 de [10]. A
curvatura seccional determina o tensor curvatura e o lado direito da equação acima tem as
simetrias do tensor curvatura.

Um sistema triplo de Lie (STL) é um subespaço m de uma álgebra de Lie que satisfaz
[[X ,Y ],Z] ∈ m para todos X ,Y,Z ∈ m. O próximo resultado mostra que, para encontrar
subvariedades totalmente geodésicas, conexas e completas de S, basta encontrar subespaços
de s ⊆ g que sejam STL. Pelo Teorema 13.8 de [6], se N ≤ G é um subgrupo conexo de
G, então para q ∈ S, temos que Nq é uma subvariedade de S. Denotamos por ⟨exp(m)⟩ o
subgrupo de G gerado por produtos de elementos do tipo exp(X),X ∈m (veja a Subseção
"Subálgebras e Subgrupos gerados"da Seção 1.1). Como trata-se de um subgrupo de Lie
conexo de G, qualquer órbita ⟨exp(m)⟩p, para p ∈ S, é uma subvariedade de S.

Proposição 2.4.3 (Teorema 3.2.2 de [1]). As subvariedades totalmente geodésicas, conexas
e completas de S passando por p são da forma ⟨exp(m)⟩p, em que m⊆ s é um STL.

Demonstração. Seja S′ ⊆ S uma subvariedade totalmente geodésica contendo p e s′ ⊆ s um
subespaços que se identifica com TpS′. Sendo S′ totalmente geodésica, as geodésicas de S′

são também geodésicas de S, então as simetrias geodésicas sq : S → S, q ∈ S′, se restringem
a simetrias geodésicas de S′. Segue que S′ tem uma estrutura induzida de espaço simétrico e
suas geodésicas passando por p são da forma exp(tH)p com H ∈ s′. A Equação de Gauss
da Proposição 3.1 do capítulo 6 de [10] mostra que o tensor curvatura de S′ é a restrição
do tensor curvatura de S, uma vez que a segunda forma fundamental é sempre nula. Pelo
Teorema 2.4.2, temos [[s′,s′],s′]⊆ s′. Por fim, se S′ é completa e conexa, seus pontos podem
ser conectados a p por geodésicas, logo, S′ = ⟨exp(s′)⟩p.

Por outro lado, seja m⊆ s um STL, então a=m+[m,m] é uma subálgebra de g. Seja
A = ⟨exp(a)⟩ ≤ G e defina S′ = Ap, trata-se da órbita de p pela ação de A. A variedade S′ é
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uma subvariedade (mergulhada) homogênea e conexa de S e, por definição, as geodésicas
exp(tH)p de S, H ∈ m, estão contidas em S′, já que exp(tH) ∈ A e toda geodésica de S′

passando por p tem essa forma (pois [m,m]⊆ k). Segue da homogeneidade de S e do fato
que os elementos de A são isometrias de S′ com a métrica induzida que as geodésicas de S′

são da forma aexp(tH)p,a ∈ A, logo, S′ é totalmente geodésica. Além disso, S′ é conexa por
definição (já que A é conexo) e é completa por conta de sua homogêneidade. Observe que
S′ ≈ A/Ap, em que Ap denota a isotropia de p em A, que é gerada pela subálgebra [m,m],
temos então que S′, como um conjunto, coincide com ⟨exp(m)⟩p.

Observe que s⊆ g é um STL, então esta proposição nos mostra que S = ⟨exp(s)⟩p, uma
vez que a dimensão de ⟨exp(s)⟩ é maior ou igual que dim(s) = dim(S). Além disso, temos a
seguinte caracterização algébrica dos flats maximais de S.

Corolário 2.4.4. Os flats maximais de S passando por p são da forma T p, em que t é um
subespaço de Cartan de g e T = ⟨exp(t)⟩.

Demonstração. Seja t um subespaço de Cartan e denote T = ⟨exp(t)⟩. Sendo t abeliana, fica
claro que é um STL, logo, F = T p é subvariedade totalmente geodésica, conexa e completa
pela Proposição 2.4.3 e T p é flat maximal porque t é maximal abeliana em s e o Teorema
2.4.2 garante que T p tem curvatura nula.

Por outro lado, se F ⊆ S é um flat maximal, deve ser da forma ⟨exp(t)⟩p para algum
STL t contido em s satisfazendo [X , [Y,Z]] = 0 para todos X ,Y,Z ∈ t. Esta condição sobre
t implica que a subálgebra t+[t, t] é nilpotente, já que [t, t] ⊆ zg(t) e, para X ,Y,Z,W ∈ t,
temos que [[X ,Y ], [Z,W ]] = [X , [Y, [Z,W ]]]− [Y, [X , [Z,W ]]] = 0, então [t, t] é abeliana. As
subálgebras de Cartan de g são nilpotentes maximais, como mostra a Proposição 6.1.6 de [4].
Deste modo, deve existir uma subálgebra de Cartan de g contendo t+[t, t] e tal subálgebra
deve ser abeliana porque g é redutível (veja a discussão após o Exemplo 1.2.6), logo, [t, t] = 0
e t é subálgebra abeliana maximal de g contida em s, já que F é flat maximal.

Vimos no Teorema 1.4.11 que os subespaços de Cartan de s são K−conjugados. No
contexto de espaços simétricos temos um resultado semelhante.

Teorema 2.4.5. Seja S = G/K um espaço simétrico e p = K o ponto base. A isotropia K age
de forma transitiva sobre os flats maximais de S passando por p e, dado um flat maximal T p
passando por p, temos que S = KT p.

Demonstração. Sejam T p,T ′p ⊆ S flats maximais passando por p com respectivos subespa-
ços de Cartan associados t e t′. Existe k ∈ K tal que Ad(k)t= t′ (Teorema 1.4.11). Observe
que, para H ∈ t, temos

k exp(H)K = k exp(H)k−1K = exp(Ad(k)H)K,
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então kT p = T ′p. O Corolário 1.4.13 implica que Ad(K)t= s, logo, KT p = S.

Supomos agora que S seja um espaço simétrico compacto e consideramos o flat maximal
T p, com T = ⟨exp(t)⟩, sendo t um subespaço de Cartan. Pela decomposição de g (Teorema
1.4.10), podemos escrever s= t+ ∑

α∈∆σ (g,t)

(mα ∩ s).

Uma geodésica de T p passando por p tem a forma γ(t) = exp(tH)p com H ∈ t. Para
obter a forma dos campos de Jacobi ao longo de γ , usamos o Teorema 2.4.2 e a discussão
que resultou na Equação (2.3). Para H ∈ t,X ∈ s, temos que os autovalores do operador de
Jacobi R(H,X)H =−ad(H)2X têm a forma α(H)2 (Teorema 1.4.10). Portanto, um campo
de Jacobi que não é da forma tW (t) deve ter a forma

J(t) = sen(t|α(H)|)W (t)

para algum campo paralelo W ao longo de γ e α(H) ̸= 0. Logo, γ(1) = exp(H)p ∈ T p
é conjugado a p se, e somente se, 0 ̸= α(H) ∈ πZ. A multiplicidade de exp(H)p como
conjugado de p coincide com a quantidade de raízes positivas β para as quais 0 ̸= β (H)∈ πZ.
Lembre-se do Diagrama de Stiefel ρ definido na Subseção 1.3.3, o Locus conjugado de p
em F coincide com exp(ρ)p. Por outro lado, exp(H)p é um primeiro conjugado a p se, e
somente se, existe alguma raiz β para a qual |β (H)| = π; naturalmente isto implica que
β (λH) ̸∈ πZ para λ ∈ (0,1). Portanto, o locus conjugado primário de de p em T p coincide
com exp(∂D0)p, em que D0 foi definido na Equação (1.15),

D0 = {H ∈ t : α(H)< π, para toda α ∈ ∆}.

Este argumento caracteriza o locus conjugado de p em um flat maximal. O Corolário
2.2.6 mostra que isometrias preservam pontos conjugados, em particular K age sobre o
conjunto de pontos conjugados a p, pois fixa p. Pelo Teorema 2.4.5, esta ação é transitiva,
logo, temos o seguinte resultado.

Teorema 2.4.6. Seja S = G/K um espaço simétrico compacto, em que K é a isotropia de
p ∈ S.

1. O locus conjugado de p em S é a imagem por K dos conjugados a p em T p.

2. O locus conjugado primário de p em S é o conjunto K exp(∂D0)p.

Nas subseções 3.5.1 e 3.5.2 calculamos os Locus conjugados na esfera S2 e no plano
projetivo RP2.





Capítulo 3

Espaços Simétricos Compactos

3.1 Preliminares

3.1.1 Construindo um Espaço Simétrico

Nesta Subseção vamos construir um espaço simétrico simplesmente conexo a partir de uma
álgebra ortogonal involutiva (u,σ) dada. Este espaço pode ser visto como recobrimento
riemanniano dos espaços simétricos associados a (u,σ) (veja a Seção 1.5 de [1]). Denotamos
por B o produto interno em u que torna (u,σ) uma álgebra ortogonal involutiva. Seja
u= k⊕ s a decomposição de u em autoespaços ±1.

Seja Ũ um grupo de Lie simplesmente conexo com álgebra u; pelo Teorema 7.13 de [6],
σ se estende a um automorfismo (involutivo) Ũ → Ũ , que denotamos ainda por σ . Pela
Proposição 3.2.5, temos que fix(σ) é conexo, logo, coincide com K̃ = ⟨exp(k)⟩, donde segue
que K̃ é um subgrupo fechado de Ũ .

Defina o espaço homogêneo conexo S = Ũ/K̃. Temos que S é simplesmente conexa
pelo Teorema A.3.1. Como σ(K̃) ⊆ K̃, σ induz uma involução s : Ũ/K̃ → Ũ/K̃ dada por
s(uK̃) = σ(u)K̃.

Ũ Ũ

Ũ/K̃ Ũ/K̃

σ

π π

s

Observe que s é diferenciável, uma vez que satisfaz s◦π = π ◦σ , em que a projeção natural
π : Ũ → Ũ/K̃ é uma submersão (veja o Teorema 6.22 de [6]).

Seja p = 1K̃ = π(1) o ponto base padrão de S. Nosso próximo passo é definir, em S, um
produto interno Ũ−invariante. A diferencial da projeção π nos permite identificar TpS com
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s, logo, o produto interno B de g define um produto interno em TpS ≈ s. Observe que K̃ age
por isometrias em TpS, uma vez que B é ad(k)−invariante. A ideia agora é utilizar Ũ para
mover este produto interno aos outros pontos de S.

Para up ∈ S e w,v ∈ TupS, definimos

⟨w,v⟩up = B(du−1
up (w),du−1

up (v)).

trata-se de uma métrica em S. Esta métrica é Ũ−invariante, uma vez que, para quaisquer
u,u′ ∈ Ũ , temos

⟨du′up(w),du′up(v)⟩u′up = B(d(u′u)−1
u′updu′up(w),d(u

′u)−1
u′updu′up(v)) (3.1)

= B(du−1
up (w),du−1

up (v)) (3.2)

= ⟨w,v⟩up. (3.3)

Por fim, vamos mostrar que S é um espaço simétrico. Seja Y ′ = d1π(Y ) ∈ TpS, em que
Y ∈ s, temos que

dsp(Y ′) = d(s◦π)1Y = d(π ◦σ)1Y = dπ1(−Y ) =−Y ′, (3.4)

logo, dsp =−id. Observe agora que

s(uu′p) = s(π(uu′)) = π(σ(uu′)) = σ(u)π(σ(u′)) = σ(u)s(u′p), (3.5)

de modo que s ◦ u = σ(u) ◦ s. Portanto, dsup = dσ(u)pdspdu−1
up é uma composição de

isometrias. Segue que s é a simetria geodésica em torno de p e a simetria geodésica em um
ponto qualquer up é dada por usu−1. Logo, S é um espaço simétrico.

3.1.2 Reticulados em Espaços Simétricos Compactos

A partir de agora nosso interesse será completamente voltado para os espaços simétricos
compactos, aos quais adicionaremos algumas hipóteses. Sejam U um grupo de Lie compacto
e conexo com álgebra u e σ : U → U um automorfismo involutivo. Denotamos também
por σ a involução u→ u obtida tomando a diferencial de σ em 1 ∈ U , de modo que u se
decompões como k⊕ s, a soma dos autoespaços ±1. Seja K um subgrupo fechado de U
que satisfaz fix(σ)0 ⊆ K ⊆ fix(σ), em que fix(σ)0 denota a componente da identidade do
conjunto de pontos fixos fix(σ) de σ .
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Assumimos que existe em u um produto interno B que é ad(k)−invariante e σ−invariante,
ou seja,

B(ad(X)Y,Z)+B(Y,ad(X)Z) = 0

e
B(σ(Y ),σ(Z)) = B(Y,Z)

para todos X ∈ k e Y,Z ∈ u. Isto torna (u,σ) uma álgebra ortogonal involutiva com produto
interno B. Chamaremos de espaço simétrico compacto o espaço homogêneo S = U/K
munido de uma métrica U−invariante.

Identificando TpS ≈ s e procedendo como na Subseção 3.1.1, temos que B se restringe a
um produto interno ad(k)−invariante em u que se estende a um produto interno U−invariante
em U/K. A involução σ : U →U induz a simetria geodésica s em p = 1K a partir da qual
obtemos as simetrias geodésicas nos outros pontos por conjugação via elementos de U .

Como visto na Seção 2.3, a exponencial Riemanniana de S em p é dada por

expp : s→ S, expp(X) = exp(X)K,

em que exp denota a exponencial de U . Seja t⊆ s um subespaço de Cartan, o reticulado de
S em t é definido por

Γ = {H ∈ t : expp(H) = p}= {H ∈ t : exp(H) ∈ K}. (3.6)

Observe que, caso H ∈ Γ, temos que exp(H) ∈ K, logo,

exp(H) = σ(exp(H)) = exp(σ(H)) = exp(−H).

Portanto, uma definição equivalente para Γ é

Γ = {H ∈ t : exp(2H) = 1}.

Relembre o sistema ∆σ = ∆σ (u, t) de raízes restritas com respeito a um subespaço de
Cartan t⊆ s. Definimos o reticulado central

Γ1 = {H ∈ t : α(H) ∈ πZ ∀ α ∈ ∆σ} (3.7)

e o reticulado fundamental Γ0, que é gerado pelas co-raízes com coeficientes em πZ. Observe
que chamamos Γ1 e Γ0 de reticulados, mas eles podem não ser reticulados em t no sentido da
Definição 1.3.10 dependendo se t∩ z(u) é nulo ou não (veja a Observação 1.3.16). Queremos
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demonstrar um resultado análogo ao Teorema 1.3.15, mas no contexto de espaços simétricos
compactos. Para tanto, vamos considerar o chamado espaço simétrico adjunto de S.

Sendo u compacta, é também redutível, então podemos escrever u= z(u)⊕u′ em que
u′ = [u,u] é semi-simples. Como [σ(X),Y ] = σ([X ,σ(Y )]), temos que z(u) é invariante por
σ . A parte semi-simples u′ também é invariante, uma vez que σ(u′) = [σ(u),σ(u)] = u′,
logo,

u= (z(u)∩ k)⊕ (z(u)∩ s)⊕ (u′∩ k)⊕ (u′∩ s).

Segue que t = t′ ⊕ (t′ ∩ z(u)), em que t′ = t∩ u′ é um subespaço de Cartan da álgebra
ortogonal involutiva (u′,σ |u′), em que o produto interno considerado é a restrição do produto
interno de (u,σ).

Uma vez que z(u) é invariante por σ , temos que Z = Z(U) também é. Segue que σ induz
um automorfismo σ

′ : U ′ → U ′ dado por σ
′(uZ(U)) = σ(u)Z(U), em que U ′ = U/Z(U).

Como Ad(U)≃U/Z(U), podemos identificar U ′ =Ad(U), então o automorfismo σ
′ satisfaz

σ
′(Ad(u)) = Ad(σ(u)) para u ∈U . Observe ainda que

ead(σ(X)) = Ad(exp(σ(X)))

= Ad(σ(exp(X)))

= σ
′(Ad(exp(X)))

= σ
′(ead(X)).

Seja K′ = fix(σ ′), o espaço simétrico adjunto de S é o espaço simétrico S′ =U ′/K′ associado
à álgebra ortogonal involutiva compacta e semi-simples (u′,σ |u′). A métrica considerada em
S′ é obtida como na Subseção 3.1.1.

O reticulado de S′ é dado por

Γ
′ = {H ∈ t′ : expp(H) = p}= {H ∈ t′ : expU ′(H) ∈ K′},

em que expU ′(H) = ead(H), já que U ′ = Ad(U)≤ GL(u). Fica claro que H ∈ Γ
′ se, e somente

se, ead(H) ∈ K′ e isto ocorre se, e somente se,

ead(H) = σ
′(ead(H)) = ead(σ(H)) = e−ad(H), (3.8)

ou seja, ead(2H) = 1. Usando a decomposição em espaço de raízes restritas de u, sejam
X ,Y ∈mα um par hiperbólico, então

X = ead(2H)X = cos(2α(H))X − sen(2α(H))Y (3.9)
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(veja as equações (1.8) e (1.9)). de modo que ead(2H) = 1 se, e somente se, α(H) ∈ πZ.
Portanto, Γ

′ coincide com o reticulado central

Γ
′
1 = {H ∈ t′ : α(H) ∈ πZ ∀ α ∈ ∆σ (u

′, t′)}. (3.10)

Sejam π : U → S e π
′ : U ′ → K′ as projeções canônicas. Como Ad(K)⊆ K′, temos que

a projeção adjunta Ad : U → Ad(U) induz a projeção r : S → S′ definida por

r(uK) = r(π(u)) = π
′(Ad(u)) = Ad(u)K′.

Observe que, se X ∈ s∩ z(u), temos que r(exp(tX)K) = Ad(exp(tX))K′ = 1K′, logo, o
diferencial de r em p = 1K coincide com a projeção P : s → s∩ u′ paralela a s∩ z(u).
Podemos restringir P à projeção t→ t′ paralela a t∩ z(u). Seja H ∈ Γ, então exp(H) ∈ K e
temos

ead(P(H)) = ead(H) = Ad(exp(H)) ∈ Ad(K)⊆ K′,

de modo que P(H) ∈ Γ
′. Como Γ

′ = Γ
′
1, a discussão do parágrafo anterior nos mostra

que α(P(H)) ∈ πZ. As raizes se anulam em z(u), então α(H) = α(P(H)) ∈ πZ, ou seja,
H ∈ Γ1.

Vamos finalizar mostrando que Γ0 ⊆ Γ. Sejam X ,Y ∈ mα um par hiperbólico, H ∈ t

e denote por B o produto interno ad(k)−invariante e σ−invariante de (u,σ). Observe
que X −σ(X) ∈ s∩mα , Y +σ(Y ) ∈ k∩mα e, portanto, [X −σ(X),Y +σ(Y )] ∈ t, uma
vez que está em s e comuta com os elementos de t. Por simplicidade de notação, denote
Xα = X −σ(X) e Yα = Y +σ(Y ). Temos que, para qualquer H ∈ t,

[H,Xα ] = α(H)Yα , [H,Yα ] =−α(H)Xα .

Usando que Yα ∈ k e a invariância de B, temos que

B(H, [Xα ,Yα ]) = B([Yα ,H],Xα)

= α(H)B(Xα ,Xα)

= B(H,Hα)B(Xα ,Xα)

= B(H,B(Xα ,Xα)Hα).
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Sendo B um produto interno, concluimos que [Xα ,Yα ] = B(Xα ,Xα)Hα = B(Yα ,Yα)Hα . De-
notando

X ′
α =

1
B(Hα ,Hα)

Xα√
B(Xα ,Xα)

,

Y ′
α =

1
B(Hα ,Hα)

Yα√
B(Yα ,Yα)

,

temos que B(X ′
α ,X

′
α) = B(Y ′

α ,Y
′
α) = 1/B(Hα ,Hα). Seja H ′

α = Hα̌/2, então são válidas as
seguintes relações de colchete.

[H ′
α ,X

′
α ] = Y ′

α , [H
′
α ,Y

′
α ] =−X ′

α , [X
′
α ,Y

′
α ] = H ′

α ,

em que Hα̌ denota a co-raiz correspondente a α vista como elemento de t. Definimos então
u(α) = ⟨H ′

α ,X
′
α ,Y

′
α⟩ ⊆ u, trata-se de uma álgebra isomorfa a so(3)≃ su(2).

Considere o grupo S3 ≃ SU(2). Podemos ver o grupo S3 como o conjunto dos elementos
unitários dentro do anel de divisão

H= {a+bi+ c j+dk : a,b,c,d ∈ R},

chamado de Quaternions (para mais detalhes sobre quaternions, veja a Seção 4.4 de [7] ou o
Capítulo 1 de [12]). Os elementos i, j e k de H satisfazem i2 = j2 = k2 = i jk =−1 e H pode
ser identificado com o R4 como espaço vetorial. Neste contexto, consideramos

S3 = {a+bi+ c j+dk ∈H : a2 +b2 + c2 +d2 = 1}.

É possível mostrar que todo quaternion unitário q pode ser escrito na forma

q = cosθ + ysenθ = eθy

para algum θ ∈ R e y um quaternion unitário com parte real nula, isto é, y pertence a

u= Ri+R j+Rk

e tem norma 1. Além disso, eθy é definido pela série de potências usual da exponencial
∞

∑
n=0

(θy)n

n!
.
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Observe que u é uma álgebra de Lie não abeliana com o colchete dado por [q,q′] =
qq′−q′q. Temos as seguintes relações de colchete para os geradores de u

[i/2, j/2] = k/2, [i/2,k/2] =− j/2, [ j/2,k/2] = i/2.

Portanto, u≃ su(2) é a álgebra de S3 ≃ SU(2).
Considere a involução σ de S3 dada por σ(q) = kqk−1. O conjunto K de pontos fixos

de σ é uma circunferência obtida via a intercessão do plano R+Rk com S3 e sua álgebra é
k= Rk. A derivada de σ em 1, que denotamos ainda por σ , é então uma involução de u que
age como id em k e como −id no complemento s= Ri+R j. Temos então que t= Ri é um
subespaço de Cartan de (u,σ).

A aplicação linear φ : u→ u definida por

φ(i/2) = H ′
α , φ( j/2) = X ′

α , φ(k/2) = Y ′
α

é um homomorfismo de álgebras de Lie e satisfaz φ(u) = u(α) e φ(k) ⊆ k. Sendo S3

simplesmente conexo, φ pode ser integrado a um homomorfismo ψ : S3 →U tal que ψ(K)⊆
K e

ψ(eti) = exp(φ(ti)) = exp(tHα̌) (3.11)

(veja o Teorema 7.13 de [6]). Segue que

exp(πHα̌) = ψ(eπi) = ψ(−1) ∈ K, (3.12)

logo, πHα̌ ∈ Γ. Observe que usamos que −1 ∈ K e que ψ(K)⊆ K. Segue desta discussão o
seguinte Teorema.

Teorema 3.1.1. Seja S um espaço simétrico compacto. Os reticulados associados a S
satisfazem Γ0 ⊆ Γ ⊆ Γ1.

Seja S um espaço simétrico compacto associado à álgebra ortogonal involutiva (u,σ) e
t⊆ u um subespaço de Cartan. O Diagrama de Stiefel de S é definido por

ρ = {X ∈ t : α(X) ∈ πZ para algum α ∈ ∆σ (u, t)}. (3.13)

Observe a semelhança com o diagrama de uma álgebra compacta (veja a Equação (1.11)).
Temos consequência do Teorema anterior o seguinte Corolário

Corolário 3.1.2. Γ ⊆ ρ e ρ é invariante pelas translações de Γ.
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3.1.3 Grupos de Lie e Espaços Simétricos

Nesta Subseção, veremos como um grupo de Lie U conexo com álgebra compacta e que
admite uma métrica bi-invariante pode ser visto como o espaço simétrico (U ×U)/K, em
que K será definido abaixo. Veremos também como os reticulados definidos em (U ×U)/K
se relacionam com os reticulados em U definidos na Subseção 1.3.1. Juntamente com os
resultados da Seção 3.4 a respeito dos grupos fundamentais de espaços simétricos, isto
nos permitirá entender o motivo do uso do fator 2 na definição do reticulado Γ (equação
(1.10)). Para tanto, vamos estudar sobre as raízes e os sistemas de raízes associados à álgebra
ortogonal involutiva u⊕u.

Considere o grupo U2 = U ×U com produto definido coordenada a coordenada e a
involução σ : U2 → U2 dada por σ(u1,u2) = (u2,u1). Denotaremos a ágebra de U2 por
u2 = u⊕u, sendo u a álgebra de U , e um elemento desta álgebra será denotado X ⊕Y . O
colchete de Lie é dado coordenada a coordenada: [X1 ⊕X2,X ′

1 ⊕X ′
2] = [X1,X ′

1]⊕ [X2,X ′
2].

A diferencial na identidade da involução σ induz uma involução u2 → u2 que também
denotaremos por σ e é definida por σ(X1 ⊕X2) = X2 ⊕X1. A álgebra u2 se decompõe como
a soma k⊕ s de autoespaços ±1, em que

k= {X ⊕X : X ∈ u} ≃ u

s= {X ⊕−X : X ∈ u} ≃ u.

Em particular, todo elemento X1 ⊕X2 ∈ u⊕u pode ser escrito como soma de elementos de k

e de s da seguinte forma:

X1 ⊕X2 =
X1 +X2

2
⊕ X1 +X2

2
+

X1 −X2

2
⊕−X1 −X2

2
,

em que + denota a soma em u⊕u.
Observe que k≃ u, então, pelo Teorema 1.4.7, para que u2 seja ortogonal involutiva é

necessário que u seja compacto.
Por outro lado, supondo u é compacto, existe um produto interno ad−invariante em u,

denote-o por B. Obtemos então um produto interno ad−invariante em u⊕u, que denotamos
ainda por B, e é dado por

B(X1 ⊕X2,X ′
1 ⊕X ′

2) = B(X1,X ′
1)+B(X2,X ′

2).
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A invariância de B em u⊕u segue da invariância em cada componente:

B([H1 ⊕H2,X1 ⊕X2],X ′
1 ⊕X ′

2) = B([H1,X1]⊕ [H2,X2],X ′
1 ⊕X ′

2)

= B([H1,X1],X ′
1)+B([H2,X2],X ′

2)

=−B(X1, [H1,X ′
1])−B(X2, [H2,X ′

2])

=−B(X1 ⊕X2, [H1,X ′
1]⊕ [H2,X ′

2])

=−B(X1 ⊕X2, [H1 ⊕H2,X ′
1 ⊕X ′

2]).

Segue que B é, em particular, ad(k)−invariante. Observe por fim que, para X ,Y ∈ u, te-
mos B(X ⊕−X ,Y ⊕Y ) = B(X ,Y )−B(X ,Y ) = 0, logo, B(k,s) = 0 e B deve ser também
σ−invariante (veja a Observação 1.4.5). Este argumento em conjunto com o Teorema 1.4.7
demonstra o seguinte Teorema.

Teorema 3.1.3. A álgebra (u2,σ) é ortogonal involutiva se, e somente se, u é compacto.

Vamos descrever agora um subespaço de Cartan t⊆ s. Sendo s≃ u e u compacto, t deve
ser isomorfa a uma subálgebra de Cartan h de u, uma vez que t é uma subálgebra abeliana
maximal contida em s (Proposição 1.2.7). Defina

t= {H ⊕−H : H ∈ h}.

Como h é abeliana maximal em u, t é abeliana maximal em s. Para um par hiperbólico
X ,Y ∈mα , temos que

[H ⊕−H,X ⊕Y ] = [H,X ]⊕−[H,Y ]

= α(H)Y ⊕α(H)X = α(H)(Y ⊕X)

[H ⊕−H,Y ⊕X ] = [H,Y ]⊕−[H,X ]

=−α(H)X ⊕−α(H)Y =−α(H)(X ⊕Y ).

Proposição 3.1.4. Os espaços de raízes restritas de u2 com respeito a t são da forma
mα ⊕mα em que mα é um espaço de raíz de u com relação a h e α ∈ ∆(u,h). Temos que u2

se decompõe como
m+ t+ ∑

α∈∆(u,h)

mα ⊕mα ,

em que m := zk(t) = {X ⊕X : X ∈ zu(h) = h}.
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Demonstração. Temos que mα ⊕mβ é um espaço de raíz (generalizado) se, e somente se,
α = β , uma vez que, se X1,X2 ∈mα e Y1,Y2 ∈mβ são pares hiperbólicos, então

[H ⊕−H,X1 ⊕Y1] = [H,X1]⊕−[H,Y1] = α(H)X2 ⊕β (H)Y2.

Além disso, se X ⊕Y ∈mα ⊕mβ , podemos escrever X ⊕0+0⊕Y ∈mα ⊕mα +mβ ⊕mβ .
Pelo Teorema 1.4.10, a decomposição de u2 com respeito a t é dada por

u2 = zk(t)+ t+ ∑
α∈∆(g,h)

mα ⊕mα ,

Obsereve que 0 = [H ⊕−H,X ⊕X ] = [H,X ]⊕−[H,X ] para todo H ∈ h se, e somente
se, [H,X ] = 0 para todo H ∈ h, donde segue que zk(t) = {X ⊕X : X ∈ zu(h) = h} ≃ h.

Como consequência desta proposição, temos que o sitema de raízes restritas ∆σ (u
2, t)

é isomorfo a ∆(u,h). Em particular, podemos ver uma raíz de α̃ ∈ ∆σ (u⊕u, t) como um
elemento α ∈ ∆(u,h) fazendo α̃(H ⊕−H) := α(H). Por simplicidade, identificaremos α̃

com α .
A involução σ : U2 →U2 tem conjunto de pontos fixos fix(σ) = {(u,u) : u ∈U} conexo,

uma vez que é isomorfo a U . Existe uma ação ψ : U2 ×U → U do grupo U2 sobre U à
esquerda e à direita por translações via ψ((u1,u2),x) = u1xu−1

2 . Esta ação é claramente
transitiva, uma vez que a órbita de 1 coincide com ψ(U ×{1},{1}) = U . A isotropia
de 1 é exatamente K := fix(σ) = ⟨expU2(k)⟩, em que a exponencial de U2 é definida por
expU2(X ⊕Y ) = (exp(X),exp(Y )) e exp denota a exponencial de U . Segue que a aplicação
µ : (U ×U)/K →U dada por µ((u1,u2)K) = ψ((u1,u2),1) = u1u−1

2 é um difeomorfismo
(Proposição 13.9 de [6]).

É interessante observar que µ fornece uma equivalência entre a ação ψ de U2 sobre
U com a ação de multiplicação à esquerda de G sobre U2/K. Isto decorre das seguintes
igualdades.

µ((u1,u2) · (x1,x2)K) = u1(x1x−1
2 )u−1

2 = ψ((u1,u2),µ((x1,x2)K)). (3.14)

Nosso próximo passo é mostrar em detalhes a métrica usada em (U ×U)/K para que
seja um espaço simétrico e como esta métrica corresponde a uma métrica bi-invariante em
U . Denote S =U2/K e p = (1,1)K e identifique TpS ≈ s via a projeção natural U2 → S. O
produto interno B define um produto interno em TpS dada por

⟨X ⊕−X ,Y ⊕−Y ⟩p = B(X ⊕−X ,Y ⊕−Y ) = 2B(X ,Y ),
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para X ⊕−X ,Y ⊕−Y ∈ s. Podemos transladar este produto interno de forma diferenciável
aos outros pontos de S via a ação de U2 sobre S por multiplicação à esquerda, definindo

⟨w,v⟩(u1,u2)p = B(d(u1,u2)
−1
(u1,u2)p(w),d(u1,u2)

−1
(u1,u2)p(v)),

para w,v ∈ T(u1,u2)pS. Procedendo como na equação (3.1), mostra-se que esta é uma métrica
U2−invariante em S.

A simetria geodésica s ao redor de p é definida usando a involução de U2 de acordo com
o seguinte diagrama.

U2 U2

U2/K U2/K

σ

π π

s

A involução s satisfaz s◦π = π ◦σ , está bem definida porque σ(K)⊆ K e é diferenciável
porque π é uma submersão (veja o Teorema 6.22 de [6]). Explicitamente, ela é dada por
s((u1,u2)K) = σ(u1,u2)K = (u2,u1)K. Procedendo como nas equações (3.4) e (3.5), mostra-
se que s é uma isometria e que a simetria geodésica s(u1,u2)p é dada por (u1,u2)s(u1,u2)

−1.
Portanto, temos que U ≈U2/K é um espaço simétrico.

Vamos definir uma métrica em U de modo que o difeomorfismo µ : S → U seja uma
isometria. Para u ∈U e X ,Y ∈ TuU , defina

⟨w,v⟩u = ⟨dµ
−1
u (w),dµ

−1
u (v)⟩(u,1)p.

Por construção, fica claro que µ : U2/K →U é uma isometria. Vamos mostrar que se trata
de uma métrica bi-invariante em U (veja a Seção 2.1).

Inicialmente, observamos que, para x,u ∈U , temos

µ
−1 ◦Eu(x) = µ

−1(ux) = (ux,1)K = (u,1)µ−1(x),

ou seja, µ
−1 ◦Eu = (u,1)µ−1(x), onde denotamos por (u,1) a isometria de S que é dada pela

multiplicação à esquerda por (u,1) ∈U2. Analogamente,

µ
−1 ◦Du(x) = µ

−1(xu) = (xu,1)K = (1,u−1x−1)K = (1,u−1)µ−1(x),
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então µ
−1 ◦Du = (1,u−1)µ−1. Usaremos estas conclusões nas equações abaixo. Sejam

w,v ∈ TxU . A invariância à esquerda pode ser vista da seguinte forma:

⟨(dEu)xw,(dEu)xv⟩ux = ⟨dµ
−1
ux (dEu)xw,dµ

−1
ux (dEu)xv⟩(ux,1)p

= ⟨d(u,1)(x,1)pdµ
−1
x w,d(u,1)(x,1)pdµ

−1
x v⟩(ux,1)p

= ⟨dµ
−1
x w,dµ

−1
x v⟩(x,1)p

= ⟨w,v⟩x.

A invariância à direita segue de maneira análoga.

⟨(dDu)xw,(dDu)xv⟩xu = ⟨dµ
−1
xu (dDu)xw,dµ

−1
xu (dDu)xv⟩(xu,1)p

= ⟨d(1,u−1)(x,1)pdµ
−1
x w,d(1,u−1)(x,1)pdµ

−1
x v⟩(xu,1)p

= ⟨dµ
−1
x w,dµ

−1
x v⟩(1,x−1)p

= ⟨w,v⟩x.

Demonstramos então o seguinte Teorema.

Teorema 3.1.5. Uma métrica em S =U2/K em que a ação de U2 por multiplicação à direita
é uma ação isométrica corresponde a uma métrica bi-invariante em U.

A recíproca deste Teorema também é válida, uma vez que a métrica em S pode ser vista
como uma métrica vinda de U , definindo

⟨w,v⟩(u1,u2)p = ⟨dµ(u1,u2)pu,dµ(u1,u2)pv⟩u1u−1
2
.

Suponha que a métrica em U seja bi-invariante e observe que a equação (3.14) implica que
µ ◦ (u1,u2) = (Du−1

2
◦Eu1)◦µ , logo,

⟨d(u1,u2)(x1,x2)pw,d(u1,u2)(x1,x2)pv⟩(u1x1,u2x2)p

= ⟨dµ(u1x1,u2x2)pd(u1,u2)(x1,x2)pw,dµ(u1x1,u2x2)pd(u1,u2)(x1,x2)pv⟩u1x1x−1
2 u−1

2

= ⟨d(Du−1
2

Eu1)x1x−1
2

dµ(x1,x2)pw,d(Du−1
2

Eu1)x1x−1
2

dµ(x1,x2)pv⟩u1x1x−1
2 u−1

2

= ⟨dµ(x1,x2)pw,dµ(x1,x2)pv⟩x1x−1
2

= ⟨w,v⟩(x1,x2)p.

Isto demonstra o seguinte resultado.
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Teorema 3.1.6. Uma métrica bi-invariante em U corresponde a uma métrica U2−invariante
em S =U2/K.

Portanto, um grupo de Lie conexo é um espaço simétrico se, e somente se, sua álgebra
é compacta e ele admite uma métrica bi-invariante. Vamos agora estudar como a simetria
geodésica de S induzida pela involução σ de U2 se apresenta em U . Denote a simetria
geodésica de U por i, ela deve satisfazer i ◦ µ = µ ◦ i, ou seja, o seguinte diagrama é
comutativo.

U2/K U2/K

U U

s

µ µ

i

Fica claro que i é diferenciável, uma vez que µ é um difeomorfismo e, em particular, uma
submersão (Proposição 5.19 de [13]). Explicitamente, temos que

i(gh−1) = i(µ((g,h)K)) = µ(s((g,h)K)) = µ((h,g)K) = hg−1,

logo, i coincide com a inversão em U .
Denotando por exp a exponencial de U (como grupo de Lie), temos que ela coincide

com a exponencial Riemanniana de U , uma vez que a métrica é bi-invariante (Teorema
A.2.6). Portanto, as geodésicas de U passando por 1 e com direção X ∈ u são da forma
γ(t) = exp(tX) e, como era de se esperar, temos que i(exp(X)) = exp(−X). A simetria
geodésica ao redor de qualquer ponto u ∈U é então dada por Eu ◦ i◦Eu−1 = Du ◦ i◦Du−1 e,
para uma geodésica γu(t) = uexp(tX) passando por u com direção X(u) = (dEu)1X , temos

Eu ◦ i◦Eu−1(γu(t)) = γu(−t).

Assim fica caracterizado U como espaço simétrico.
Para finalizar esta subseção, vamos tratar dos reticulados em U e em S = U2/K e ver

como eles se relacionam. Denotando p = K, temos que a exponencial Riemanniana de U2/K
em p é dada por

expp(X ⊕Y ) = expU2(X ⊕Y )K = (exp(X),exp(Y ))K.
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Definimos agora os reticulados de U2/K como na Subseção anterior, seja

Γ = {H ⊕−H ∈ t : expp(H ⊕−H) = p}
= {H ⊕−H ∈ t : expU2(H ⊕−H) = (exp(H),exp(−H)) ∈ K}
= {H ⊕−H ∈ t : exp(H) = exp(−H)},

como na equação (3.6). Assim como na equação (3.7), definimos

Γ1 = {H ⊕−H ∈ t : α(H ⊕−H) = α(H) ∈ πZ para toda α ∈ ∆(u,h)}.

O reticulado central Γ0 é definido como o reticulado gerado, com coeficientes em πZ pelas
co-raízes Hα̌ ⊕−Hα̌ , α ∈ ∆(u,h).

Vamos entender agora como estes reticulados se apresentam em U visto como grupo de
Lie. Os reticulados Γ1 e Γ0 dependem apenas da estrutura dos sistemas de raízes ∆σ (u

2, t)≃
∆(u,h), então correspondem, em U , aos reticulados central e fundamental definidos na
Subseção 1.3.1. Para ver a que reticulado Γ corresponde, observe que a isometria µ nos
fornece um isomorfismo entre s e u que é dado por

dµp(X ⊕−X) =
d
dt

µ(expp(tX ⊕−X))
∣∣∣
t=0

=
d
dt

exp(2tX)
∣∣∣
t=0

= 2X . (3.15)

Temos que expp(X ⊕−X) = p se, e somente se, exp(X) = exp(−X), de modo que o reticu-
lado Γ aqui definido é isomorfo ao reticulado

Γ = {H ∈ h : exp(2H) = 1}= {H ∈ h : exp(H) = exp(−H)}

definido na equação (1.10). Fica então claro o motivo de termos adicionado o fator 2 na
definição de Γ.
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3.2 Grupo de Weyl

O grupo de Weyl W de ∆σ (g, t) pode ser visto tanto como o grupo gerado pelas reflexões
rα ,α ∈ ∆σ ou como o grupo quociente M∗/M em que M∗ e M são, respectivamente, o
normalizador e o centralizador de t em K. Este grupo age em U/K por multiplicação à
esquerda

w ·uK = wuK = wuw−1K, (3.16)

em que w pode ser pensado como um elemento de K. Se T = ⟨exp(t)⟩ e T p denota o
respectivo flat maximal, temos que W deixa T p invariante. De fato, se H ∈ t, temos que

wexp(H)K = wexp(H)w−1K = exp(Ad(w)H)K ∈ T p.

Nesta Seção vamos estender o Corolário 1.4.20 para a ação de W sobre U/K. Mais especifi-
camente, queremos demonstrar o seguinte resultado.

Teorema 3.2.1 (Teorema 3.9 de [2]). Seja S = U/K um espaço simétrico compacto com
ponto base p = K. Suponha que k ∈ K e h ∈ T sejam tais que khp ∈ T p, então existe w ∈W
tal que khp = whp.

Observação 3.2.2. Algo similar é válido no contexto de grupos e Lie compactos e conexos.
Seja G um grupo de Lie compacto e conexo e T um toro maximal, o grupo de Weyl analítico
associado ao par (G,T ) é definido por W (G,T ) = NG(T )/T . Este grupo age sobre T por
conjugação. A Proposição 1.2.9 mostra que todos os toros maximais de G são conjugados e
que G é uma união de toros maximais. O item (i) do Teorema 12.2.13 de [4] mostra que, se
t ∈ T e g ∈ G são tais que gtg−1 ∈ T , então existe w ∈W (G,T ) tal que gtg−1 = wtw−1.

A isotropia K não é necessariamente conexa, denotamos sua componente conexa por
K0. Para qualquer k ∈ K, temos que t′ = Ad(k)t⊆ s é um subespaço de Cartan, logo, pelo
Teorema 1.4.11, existe l ∈ K0 tal que Ad(l)t′ = Ad(lk)t= t, ou seja, lk ∈ M∗. Pelo Teorema
1.4.19, existe u ∈ K0 que normaliza t tal que Ad(lk)H = Ad(u)H para todo H ∈ t. Segue que
u−1lk ∈ M, logo, k = (l−1u)(u−1lk) ∈ K0M. Esta discussão demonstra o seguinte resultado.

Proposição 3.2.3 (Proposição 3.1 de [9]). Seja K0 a componente conexa de K e M o
centralizador de t em K, então K = K0M.

No próximo Teorema vamos estender o resultado descrito na Observação 3.2.2 para um
toro T =< exp(t)> de U cuja álgebra t é um subespaço de Cartan.

Teorema 3.2.4 (Proposição 3.2 de [9]). Sejam k ∈ K e h ∈ T e suponha que khk−1 ∈ T , então
existe algum w ∈W tal que khk−1 = whw−1.
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Demonstração. Seja h′ = khk−1. A ideia da demonstração é proceder de forma análoga à
demonstração do Teorema 1.4.19 e procurar um elemento de (Uh′)0 (onde Uh′ é o centralizador
de h′) que nos possibilite construir o elemento w de W que nos interessa. Inicialmente,
observe que, como t⊆ s e σ age como −id em s, temos que σ age como a inversão em T .

É fácil ver que (Uh′)0 = k(Uh)0k−1 e, portanto, T,kT k−1 ⊆ (Uh′)0 := P. Além disso,
Uh′ =U(h′)−1 , então Uh′ é invariante por σ , uma vez que, para u ∈Uh′ , temos

σ(u)h′σ(u)−1 = σ(u(h′)−1u−1) = σ(h′)−1 = h′.

Como σ(P)⊆Uh′ é conexo e contém a identidade, segue que σ(P) = P. Denote por σ
′ a

restrição σ |P. Por definição K satisfaz fix(σ)0 ⊆ K ⊆ fix(σ), então temos que fix(σ ′)0 ⊆
K ∩P ⊆ fix(σ ′). Definindo K′ := (Kh′)0 ⊆ K ∩P (onde Kh′ é o centralizador de h′ em K),
temos que S = P/K′ é um espaço simétrico e T K′,kT k−1K′ são flats maximais de S (veja o
Corolário 2.4.4).

Segue do Teorema 2.4.5 que existe l ∈K′ tal que lkT k−1l−1 = T . Observe que lk ∈NK(T )
e, como K′ ⊆Ukhk−1 , temos que lkhk−1l−1 = khk−1. Basta escolher w = lkM.

3.2.1 Recobrimento Universal de U

Seja π̃ : Ũ → U o recobrimento simplesmente conexo de U , trata-se de um grupo não
compacto sempre que u não é semi-simples. Este fato é consequência de que u= z(u)⊕u′ é
redutível; Ũ é igual a Z ×Ũ ′, em que Z é um grupo vetorial central com álgebra z(u) e Ũ ′ é
conexo e simplesmente conexo com álgebra semi-simples e compacta g, logo, é compacto
(veja o Teorema 1.3 do capítulo V de [5]). De fato, sendo U compacto com álgebra u, deve
difeomorfo a T ×U ′ em que T é um toro com álgebra z(u) e U ′ é compacto semi-simples,
logo, Ũ é um produto do recobrimento Z de T com o recobrimento Ũ ′ de U ′ (veja o Corolário
1.4 do capítulo V de [5]). Podemos identificar Z com a componente conexa da identidade do
centro Z(Ũ), uma vez que Ũ ′ tem centro finito. Além disso, Ũ ′ contém todos os subgrupos
compactos de Ũ uma vez que Z não contém nenhum subgrupo compacto, exceto por {1}.
Nesta Seção, vamos mostrar que vale uma versão do Teorema 3.2.4 para o recobrimento Ũ .

O Teorema 12.4.26 de [4] nos mostra que o conjunto de pontos fixos de um automorfismo
de um grupo de Lie compacto e simplesmente conexo é conexo. Vamos estender este
resultado para grupos simplesmente conexos com álgebra compacta.

Proposição 3.2.5 (Proposição 3.3 de [2]). Seja σ̃ um automorfismo de Ũ , então o conjunto
fix(σ̃) de pontos fixos de σ̃ é conexo.
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Demonstração. Para u ∈ Ũ e z ∈ Z, temos que

σ̃(z)u = σ̃(zσ̃
−1(u)) = σ̃(σ̃−1(u)z) = σ̃(z)u,

logo, σ̃(z) está no centro de Ũ , mas, sendo σ̃(Z) conexo e contido em Z(Ũ), temos que
σ̃(Z) = Z. Por outro lado, temos que σ̃(Ũ ′) é um subgrupo compacto e conexo de Ũ , então
σ̃(Ũ ′) = Ũ ′.

Portanto, temos que σ̃ se decompõe como σ̃ = σ̃ |Z × σ̃ |Ũ ′ e segue que fix(σ̃) =

fix(σ̃ |Z)× fix(σ̃ |Ũ ′). Sendo Ũ ′ compacto e semi-simples, fix(σ̃ |Ũ ′) é conexo pelo Teo-
rema 12.4.26 de [4]. Além disso, σ̃ |Z é um automorfismo de um espaço vetorial visto como
grupo aditivo, então é linear pelo Lema B.2.2, então fix(σ̃ |Z) é conexo, pois trata-se de um
subespaço vetorial.

Denote por T̃ o subgrupo conexo de Ũ com álgebra t. A derivada (dσ)1 da involução
de U é um homomorfismo involutivo de u e, pela teoria de recobrimentos de grupos de Lie,
existe uma involução σ̃ de Ũ que satisfaz (dσ)1 = (dσ̃)1 (veja o Teorema 7.13 de [6]). As
involuções σ e σ̃ estão relacionadas via o recobrimento universal segundo a seguinte equação
π̃ ◦ σ̃ = σ ◦ π̃ , uma vez que d(σ ◦ π̃)1 = d(π̃ ◦ σ̃)1 (Proposição 7.8 de [6]). Para demonstrar
o próximo resultado, fazemos uma redução, assumimos que k ⊆ u′, ou seja, o centro de u

está contido em s e k intercepta apenas a parte semi-simples de u.

Proposição 3.2.6 (Proposição 3.5 de [2]). Suponha que k ⊆ u′ e que z(u) ⊆ s, então T̃ =

Z × (T̃ ∩Ũ ′) e K̃ := fix(σ̃)⊆ Ũ ′. Além disso, temos a decomposição Ũ = K̃T̃ K̃ para Ũ .

Demonstração. Como t é abeliano maximal e z(u) ⊆ s, temos que z(u) ⊆ t, logo, t =
z(u)⊕ (t∩g). Segue do Corolário 1.4 do capítulo V de [5] que T̃ = Z × (T̃ ∩Ũ ′). Observe
que K̃ é conexo pela Proposição 3.2.5 e que sua álgebra consiste dos pontos fixos de
σ = (dσ̃)1, logo, K̃ = ⟨exp(k)⟩. Como k ≤ u′, segue que K̃ ≤ Ũ ′, uma vez que ambos os
grupos são conexos.

Na demonstração da Proposição 3.2.5, vimos que u′ é invariante por σ̃ , logo, (u′, σ̃ |u′) é
uma álgebra ortogonal involutiva que se decompõe como u′ = k⊕ (u′∩ s). Os subespaços
de Cartan contidos em u′∩ s são todos conjugados via Innu′(k) ≃ Ad(K̃) e cobrem u′∩ s

(Corolário 1.4.13). Usando a Proposição 2.3.12, concluimos que

Ũ ′ = K̃(T̃ ∩Ũ ′)K̃.

Observe que Ũ ′ ≃ Ũ/Z, então considere a projeção natural π : Ũ → Ũ/Z. Como Ũ ≃ Z×
Ũ ′, podemos considerar que π coincide com a projeção Z×Ũ ′ → Ũ ′ na segunda coordenada
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de Z ×Ũ ′. Segue que π(K̃) = K̃ e π(T̃ ) = T̃ ∩Ũ ′, de modo que

π(Ũ) = Ũ ′ = K̃(T̃ ∩Ũ ′)K̃ = π(K̃T̃ K̃).

Como kerπ = Z, dado u ∈ Ũ , existem k, l ∈ K̃, z ∈ Z e h ∈ T̃ tais que u = khlz = k(hz)l ∈
K̃T̃ K̃, uma vez que Z ⊆ T̃ .

O próximo Lema nos mostra porque podemos sempre assumir que k ⊆ u′. A ideia é
mostrar que, dado um espaço simétrico compacto U/K, sempre existe um espaço simétrico
U/K isométrico a U/K em que a hipótese é válida. Lembre-se que

u= (z(u)∩ k)⊕ (z(u)∩ s)⊕ (u′∩ k)⊕ (u′∩ s).

Definimos a álgebra compacta

u= (z(u)∩ s)⊕ (u′∩ k)⊕ (u′∩ s),

que é uma subálgebra de u isomorfa a u/(z(u)∩ k). Observe que a involução σ de u se
restringe a uma involução σ = σ |u de u.

Lema 3.2.7. Existe um espaço simétrico compacto isométrico a U/K cuja álgebra ortogonal
involutiva associada tem o autoespaço +1 contido na parte semi-simples.

Demonstração. A parte semi-simples de u coincide com u′ e z(u) = z(u)∩ s. Além disso,
o autoespaço −1 de σ coincide com s, enquanto o autoespaço +1 é igual a k∩g := k, i.e.,
intercepta apenas a parte semi-simples. O subgrupo Z(U)∩K é normal em U , defina então
U =U/(Z(U)∩K). A involução de U deixa Z(U)∩K invariante, pois age como a identidade
em K (lembre-se que fix(σ)0 ⊆ K ⊆ fix(σ)), então σ induz uma involução σ : U →U que
satisfaz σ ◦φ = φ ◦σ , em que φ é a projeção natural U →U .

Defina K = φ(K), então temos que K ⊆ φ(fix(σ)) ⊆ fix(σ). Todos estes grupos têm
mesma álgebra k, logo, fix(σ)0 ⊆ K. Segue que U/K é um espaço simétrico compacto. Para
finalizar, vamos mostrar que é isométrico a U/K. Considere o seguinte diagrama, em que π

e π denotam projeções naturais e ψ é definida por ψ ◦π = π ◦φ .

U U

S =U/K U/K = S

φ

π π

ψ
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Observe que
ψ(u′K) = ψ(uK) ⇐⇒ φ(u−1u′) ∈ K ⇐⇒ u−1u′ ∈ K,

logo, ψ está bem definida e é injetiva. Sendo π ◦φ sobrejetivo, temos que ψ é sobrejetiva.
Vamos mostrar que ψ é uma isometria. π é uma submersão e ψ ◦ π é diferenciável,

então ψ é diferenciável. Além disso, ambos π e φ são submersões e ψ
−1 ◦ (π ◦φ) = π é

diferencáivel, logo, ψ
−1 é diferenciável. Segue que ψ é um difeomorfismo. Seja p = K e

p = K os pontos base padrão, identifique s= TpS = TpS via as projeções π,π e considere
X ∈ s, então

(dψ)pX = (dψ)p ◦ (dπ)1(X + k)

= (dπ)1 ◦ (dφ)1(X + k)

= (dπ)1(X + k)

= X .

Segue que (dψ)p é uma isometria. Para u ∈ U , temos que ψ(up) = φ(u)ψ(p), então
(dψ)u(p) = (dφ(u))p ◦ (dψ)p é uma isometria, uma vez que a ação de U por multiplicação à
direita em U/K é isométrica.

Para finalizar esta subseção, vamos demonstrar que o análogo do Teorema 3.2.4 é válido
no recobrimento simplesmente conexo π̃ : Ũ →U . Observe que o referido Teorema não é
diretamente válido para Ũ se u não for semi-simples, pois, neste caso, Ũ não é compacto
(como visto no início desta subseção). Usando a notação da Proposição 3.2.6, defina
W̃ = NK̃(T̃ ) = NK̃(t).

Teorema 3.2.8 (Proposição 3.6 de [2]). Sejam k̃ ∈ K̃ e h̃ ∈ T̃ e suponha que k̃h̃k̃−1 ∈ T̃ , então
existe algum w̃ ∈ W̃ tal que k̃h̃k̃−1 = w̃h̃w̃−1. Além disso, π̃(W̃ )⊆W.

Demonstração. Seja T̃ ′ = T̃ ∩Ũ ′. Pela Proposição 3.2.6, temos que T̃ = T̃ ′×Z e K̃ ⊆ Ũ ′.
Restringindo σ̃ a Ũ ′, obtemos o espaço simétrico compacto G/K̃ que tem toro maximal T̃ ′.

Denote t̃ = k̃h̃k̃−1 ∈ T̃ e escreva h̃ = h̃′z, t̃ = t̃ ′z̃ com h̃′, t̃ ′ ∈ T̃ ′ e z, z̃ ∈ Z. Como Z é
subgrupo central, temos que t̃ ′z̃= k̃h̃′k̃−1z, então t̃ ′ = k̃h̃′k̃−1 e z= z̃, uma vez que Ũ = Z×Ũ ′.
Segue do Teorema 3.2.4 que existe w̃ ∈ NK̃(T̃

′) = NK̃(T̃ ) tal que k̃h̃′k̃−1 = w̃h̃′w̃−1, segue
que

k̃h̃k̃−1 = k̃h̃′k̃−1z = w̃h̃′w̃−1z = w̃h̃w̃−1.

Para finalizar, sendo K̃ conexo, temos que π̃(K̃)⊆ fix(σ)0 ⊆ K e π̃(T̃ ) = T , pois ambos
são abelianos e conexos com álgebra t. Seja k̃ ∈ W̃ e t = π̃(t̃) ∈ T , em que t̃ ∈ T̃ , então
π̃(k̃)tπ̃(k̃)−1 = π̃(k̃t̃ k̃−1) ∈ T , logo, π̃(W̃ )⊆W .
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3.2.2 Recobrimento Universal de Klein de U/K

Nesta seção vamos tratar de um recobrimento simplesmente conexo especial de U/K cha-
mado de Recobrimento Universal de Klein. Estudar este recobrimento é interessante para
nós porque permitirá estender o Teorema 3.2.4 para U/K considerando a ação do grupo de
Weyl em U/K.

Para u ∈U , denotaremos por ∗ o anti-homomorfismo de U definido por u∗ = σ(u−1), em
que σ é a involução de U . É fácil ver que ∗ é uma operação involutiva, ou seja, u∗∗ = u para
todo u ∈U . Além disso, ∗ coincide com a inversão em fix(σ); em particular, coincide com a
inversão em K, uma vez que K ⊆ fix(σ). Existe então uma ação natural de U sobre si mesmo
dada por u · h = uhu∗. Defina a aplicação η : U → U dada por η(u) = uu∗, então η(U) é
a órbita de 1 pela ação definida acima. Observe ainda que fix(σ) é a isotropia de 1. Para
reduzir a redundância de η , podemos fatorá-la via o quociente de U por algum subgrupos de
fix(σ), tal qual K.

U

U/K U

η
π

η

Por simplicidade, denotamos ambas as aplicações com o mesmo símbolo η , deve satisfazer
η(uK) = η(u) e está claramente bem definida, uma vez que K ⊆ fix(σ). Observe que
η(uK) = uu∗ = u · 1, então η é U−equivariante. Chamaremos ambas as aplicações η

definidas acima de Recobrimento de Cartan de U .
Como fix(σ)0 ⊆ K, temos que η : U/K →U tem diferencial sempre não nula, logo, é

um homeomorfismo local sobre sua imagem. Dois pontos uK e vK têm mesma imagem por
η sempre que u ∈ fix(σ)v, então fix(σ) parametriza os conjunto de pontos de U/K com
uma mesma imagem via η , em outras palavras, η : U/K →U é um recobrimento sobre sua
imagem com fibra difeomorfa a fix(σ)/K em cada ponto, que é discreta porque K contém a
componente da identidade de fix(σ).

Se π̃ : Ũ → U é o recobrimento simplesmente conexo de U e σ̃ é a extensão de σ a
Ũ , então fix(σ̃) é conexo pela Proposição 3.2.5. Logo, K̃ = ⟨exp(k)⟩ coincide com fix(σ̃).
Temos então que π̃(K̃) = fix(σ)0 ⊆ K e Ũ/K̃ é simplesmente conexo pelo Teorema A.3.1,
então π̃ : Ũ →U induz a aplicação π̃ : Ũ/K̃ →U/K, que denotamos ainda por π̃ , e satisfaz
π̃(uK̃) = π̃(u)K.
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Ũ U

Ũ/K̃ U/K

π̃

f̃ f

π̃

Observe que π̃ é claramente sobrejetiva e é diferenciável uma vez que π̃ ◦ f̃ = f ◦ π̃ é
diferenciável e f̃ é uma submersão (veja o Teorema 5.19 de [13]). Vamos mostrar que π̃ é
um recobrimento.

O grupo π̃
−1(K) normzaliza K̃, como mostra a demonstração do Lema 3.2.13 e ambos

K̃ e π̃
−1(K) têm a mesma álgebra, então π̃

−1(K)/K̃ é discreto. Pelo Teorema 13.22 de [6],
a aplicação ξ : Ũ/K̃ → Ũ/π̃

−1(K), definida por ξ (uK̃) = uπ̃
−1(K), é um fibrado principal

com grupo estrutural π̃
−1(K)/K̃, logo, é um recobrimento diferenciável (veja o Teorema

A.3.3). Seja ψ : Ũ/π̃
−1(K) → U/K dada por ψ(uπ̃

−1(K)) = π̃(u)K, esta aplicação está
bem definida e é injetiva, uma vez que

uπ̃
−1(K) = vπ̃

−1(K) ⇐⇒ π̃(u−1v) ∈ K ⇐⇒ π̃(u−1v)K = K.

Além disso, ψ é claramente sobrejetiva e é diferenciável (Teorema 5.19 de [13]), pois satisfaz
π̃ = ψ ◦ξ e ξ é uma submersão sobrejetiva, já que K̃ e π̃

−1(K) têm a mesma álgebra e os
espaços tangentes de Ũ/K̃ e Ũ/π̃

−1(K) se identificam com u/k. Como π̃ = ψ ◦ξ , a derivada
de ψ é sobrejetiva em todo ponto, logo, é também injetiva, já que é uma aplicação entre
espaços de mesma dimensão; segue da Proposição 5.16 de [13] que ψ é um difeomorfismo.
Sendo ξ um recobrimento, π̃ é também um recobrimento.

Ũ/K̃

Ũ/π̃
−1(K) U/K

π̃
ξ

ψ

Como K̃ = fix(σ̃), ao fatorar o recobrimento de Cartan η̃ de Ũ via Ũ/K̃, obtemos o
mergulho η̃ : Ũ/K̃ → Ũ . Denote S̃ = η̃(Ũ/K̃), então temos o seguinte diagrama comutativo
de recobrimentos simplesmente conexos, que define o Recobrimento Universal de Klein
denotado por λ .
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Ũ/K̃ S̃ ⊆ Ũ

U/K

π̃

η̃

λ

Observe que λ é um recobrimento porque π̃ é e porque η̃ é um homeomorfismo. O
próximo passo é descrever como são as fibras destes recobrimentos. No que segue, usaremos
os resultados descritos na Subseção A.3.1 do Apêndice.

Denotando por p = K o ponto base padrão de U/K, observe que ambas as fibras π̃
−1(p) e

λ
−1(p) são isomorfas ao grupo das deck transformations do respectivo recobrimento, já que

este grupo age de maneira transitiva e fiel e trata-se de recobrimentos simplesmente conexos.
Além disso, ambos π̃

−1(p) e λ
−1(p) são isomorfos ao grupo fundamental π1(U/K) e U/K

é difeomorfo ao quociente S̃/λ
−1(p).

Sejam u = k+ s a decomposição de u e t ⊆ s um subespaço de Cartan. Denote por
T̃ = ⟨exp(t)⟩ o grupo conexo gerado por t em Ũ e defina F̃ = T̃ ∩Z(Ũ).

Teorema 3.2.9. O mergulho η̃ se fatora a um isomorfismo de grupos NŨ(K̃)/K̃ → F̃ . Além
disso, η̃ se restringe a um isomorfismo entre π̃

−1(p) e λ
−1(p).

A demonstração deste Teorema seguirá de uma série de Lemas que mostramos a seguir.

Lema 3.2.10. NŨ(K̃)∩ T̃ = {t ∈ T̃ : t2 ∈ F̃}

Demonstração. Seja t ∈ NŨ(K̃)∩ T̃ e k ∈ K̃. Como t ⊆ s, temos que σ(t) = t−1 e, além
disso, tkt−1 ∈ K̃. Segue que tkt−1 = σ(tkt−1) = t−1kt, então t2 ∈ ZŨ(K̃) pela arbitrariedade
de k. Observe, no entanto, que Ũ = K̃T̃ K̃ (Proposição 3.2.6), então t2 ∈ T̃ ∩Z(Ũ) = F̃ .

Seja agora t ∈ T̃ e suponha que t2 ∈ F̃ . Temos que Ad(t2) = id, pois t2 ∈ Z(Ũ), então
Ad(t) = Ad(t−1). Observe por fim que

σAd(t)σ−1 = Ad(σ(t)) = Ad(t−1) = Ad(t),

uma vez que t ∈ T̃ , ou seja, σ comuta com Ad(t), logo, Ad(t) deixa k invariante. Segue que
t ∈ NŨ(k) = NŨ(K̃), em que esta igualdade vale pela conexidade de K̃.

Lema 3.2.11. NŨ(K̃) = (NŨ(K̃)∩ T̃ )K̃ ⊆ T̃ K̃.
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Demonstração. Seja u ∈ NŨ(K̃) e escreva u = ktl com k, l ∈ K̃ e t ∈ T̃ (Proposição 3.2.6),
isto mostra que t ∈ NŨ(K̃)∩ T̃ . Como u normaliza K̃, temos que k−1u = um para algum
m ∈ K̃, segue que um = tl, ou seja, u = tlm.

Considere agora o recobrimento de Cartan η̃ : Ũ → Ũ . Pelo Lema 3.2.11, temos que
η̃(NŨ(K̃)) = η̃(NŨ(K̃)∩ T̃ ), uma vez que η̃ é constante nas classes laterais uK̃. Para
qualquer t ∈ T̃ , temos que η̃(t) = t2, então segue do Lema 3.2.10 que η̃(NŨ(K̃))⊆ F̃ . Por
fim, veja que, se u ∈ Ũ e n ∈ NŨ(K̃), temos que

η̃(un) = uη̃(n)u∗ = uu∗η̃(n) = η̃(u)η̃(n),

em que usamos que η̃(n) ∈ Z(Ũ). Portanto η̃ induz um homomorfismo NŨ(K̃)→ F̃ com
núcleo K. Para mostrar que NŨ(K̃)/K̃ ≃ F̃ , resta mostrar que η̃ é sobrejetiva, isto que segue
do Lema a seguir.

Lema 3.2.12. η̃(NŨ(K̃)) = F̃ .

Demonstração. Pelo Corolário 12.2.3 de [4], a exponencial t→ T̃ é sobrejetiva, logo, todo
elemento de T̃ tem raiz quadrada em T̃ . Seja t ∈ F̃ e h ∈ T̃ tal que t = h2; segue do Lema
3.2.10 que h ∈ NŨ(K̃)∩ T̃ .

Vamos mostrar agora que o isomorfismo η̃ : NŨ(K̃)/K̃ →F se restringe a um isomorfismo
entre as fibras π̃

−1(p) e λ
−1(p). Pelo que foi discutido anteriormente, já sabemos que trata-

se de grupos isomorfos e é fácil ver que η̃(π̃−1(p)) = λ
−1(p) pela construção de λ . Portanto,

basta mostrar o seguinte Lema.

Lema 3.2.13. π̃
−1(p)≤ NŨ(K̃)/K̃.

Demonstração. Seja u ∈ Ũ e suponha que π̃(u) ∈ K. Temos que

π̃(uK̃u−1)⊆ π̃(u)Kπ̃(u)−1 = K,

logo, uK̃u−1 e K̃ são subgrupos conexos de Ũ com álgebra k, então coincidem e segue que
u ∈ NŨ(K̃).

O grupo NŨ(K̃)/K̃ age à direita de Ũ/K̃ por isometrias da seguinte maneira. Seja
n ∈ NŨ(K̃) e u ∈ Ũ , então uK̃ · nK̃ = unK̃ = uK̃n. O grupo F̃ também age sobre S̃ por
multiplicação à direita e podemos vizualizar esta ação por meio do recobrimento de Cartan.
Seja f = η̃(nK̃) ∈ F e s = η̃(uK̃) ∈ S̃, então

s · f = η̃(uK̃)η̃(nK̃) = η̃(unK̃) = η̃(uK̃ ·nK̃),
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onde usamos que o recobrimento de Cartan η̃ : Ũ → Ũ satisfaz η̃(un) = η̃(u)η̃(n) para
u ∈ Ũ e n ∈ NŨ(K̃). Portanto, η̃ funciona como uma equivalência entre estas duas ações.

Os resultados que vimos até aqui nos permitem demonstrar um resultado análogo ao
Teorema 3.2.4 para o espaço simétrico U/K. Seja W = M∗/M o grupo de Weyl de U/K, em
que M∗ e M são, respectivamente, o normalizador e o centralizador de t em K. Denote por T
o subgrupo conexo de U com álgebra t. Finalizamos demonstrando o Teorema 3.2.1, que
enunciamos no início desta Seção.

Demonstração do Teorema 3.2.1. Pela Proposição 3.2.3, podemos escrever k = k0m, com
k0 ∈ K0 e m ∈ M. Como m centraliza T , podemos supor, sem perda de generalidade, que
k = k0 ∈ K. Seja t ′ ∈ T tal que kt p = t ′p e considere k̃ ∈ K̃, t̃, t̃ ′ ∈ T̃ no recobrimento
π̃ : Ũ → Ũ tais que π̃(k̃) = k, π̃(t̃) = t e π̃(t̃ ′) = t ′. Denotando p̃ = K̃, temos que

π̃(k̃t̃ p̃) = kt p = t ′p = π̃(t̃ ′ p̃).

Isto mostra que ambos t̃ ′ p̃ e k̃t̃ p̃ estão em π̃
−1(p), logo, η̃(t̃ ′ p̃), η̃(k̃t̃ p̃) ∈ λ

−1(p). Vimos
que π̃

−1(p)≤ NŨ(K̃), então λ
−1(p)≤ F̃ ; segue que existe f ∈ F̃ ⊆ T̃ tal que

k̃t̃2k̃−1 = η̃(k̃t̃ p̃) = η̃(t̃ ′ p̃) · f = (t ′)2 f ∈ T̃ .

Pelo Teorema 3.2.8, temos que existe w̃ ∈ W̃ , em que W̃ = NK̃(T̃ ), tal que

η̃(k̃t̃ p̃) = k̃t̃2k̃−1 = w̃t̃2w̃−1 = η̃(w̃t̃ p̃).

Como η̃ é um mergulho, temos que k̃t̃ p̃ = w̃t̃ p̃. Projetando esta igualdade em U/K, temos
que kt p = π̃(w̃)t p, em que π̃(w̃) ∈W pelo Teorema 3.2.8.
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3.3 Imagem Inversa da Exponencial

O objetivo desta Seção é descrever o conjunto das geodésicas que conectam dois pontos
arbitrários p e q de um espaço simétrico compacto S. Para motivar a discussão, considere o
seguinte exemplo

Exemplo 3.3.1 (Esfera S2 ⊆ R3). Sejam p,q ∈ S2 e suponha que q ̸= p e que q ̸=−p. Seja
X ∈ TpS2 o vetor de menor norma tal que expp(X) = q e denote X0 = X/|X |. As geodésicas
que conectam p e q têm a forma expp(t(X + 2πX0)), t ∈ [0,1], logo, todos os pontos do
reticulado X +2πZX0 são levados em q por expp.

Por outro lado, se q=−p, todo X ∈ TpS2 com |X |= π é tal que expp(tX) é uma geodésica
que vai de p a q =−p. O mesmo vale se |X |= (2k+1)π para k ∈N. De maneira análoga, se
q = p, as geodésicas fechadas passando por p têm a forma expp(tX) com |X |= 2kπ , k ∈ N.
Mais adiante, voltaremos a este exemplo nos apropriando da teoria geral a ser desenvolvida
nesta Seção.

Fixado o ponto base p = 1K e, dado um ponto q ∈ S =U/K, denote por Kq o subgrupo
de K que fixa q, então, para qualquer geodésica γ que conecta p e q, a órbita Kq

γ consiste
de geodésicas que vão de p a q. Podemos identificar uma geodésica γ com o vetor tangente
X = γ

′(0) ∈ TpS ≈ s e escrevemos γ(t) = expp(tX) = exp(tX)p, de modo que q = γ(1) =
expp(X) e X ∈ exp−1

p (q). Dado k ∈ K, a exponencial Riemanniana satisfaz

kγ(t) = k exp(tX)k−1K = exp(tAd(k)X)p,

logo, Kq age em exp−1
p (q) via a sua representação adjunta, ou seja, kX = Ad(k)X . Como os

subespaços de Cartan são conjugados e cobrem s (Corolário 1.4.13), podemos supor, sem
perda de generalidade, que X = H ∈ t, em que t⊆ s é um subespaço de Cartan. Deste modo,
a órbita Kq

γ se identifica com a chamada órbita focal

F(H) = KqH ⊆ TpS. (3.17)

Considere o reticulado de S,

Γ = {γ ∈ t : expp(γ) = p}= {γ ∈ t : exp(γ) ∈ K},

definido na Subseção 3.1.2. Lembre-se do centralizador mod Γ

W q = {w ∈W : wH ∈ H +Γ}.
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e do subgrupo W q
0 de W q gerado pelas reflexões em hiperplanos de raíz α = 0 tais que

α(H) ∈ πZ. Como vimos na Subseção 1.3.3, trata-se de um subgrupo normal de W q.

Teorema 3.3.2. Dado q = exp(H)p,

exp−1
p (q) =

⋃
γ∈Γ

F(H + γ)

Demonstração. Denote h = exp(H). Inicialmente, mostramos que cada uma das órbitas
focais é levada em q = hp pela exponencial. Dado k ∈ Kq e γ ∈ Γ, temos que

expp(Ad(k)(H + γ)) = k exp(H + γ)k−1 p = k exp(H)k−1 p = k(hp) = q.

Por outro lado, seja X ∈ s tal que expp(X) = exp(X)p = hp. Existe k ∈ K tal que Ad(k)X ∈ t

(Corolário 1.4.13), de modo que exp(Ad(k)X)p = khp ∈ T p. Segue do Teorema 3.2.1 que
existe w ∈W que satisfaz khp = whp, em que w pode ser pensado como um elemento de K
e, portanto, k−1w ∈ Kq. De modo equivalente, podemos escrever

exp(Ad(k)X)p = exp(wH)p,

em que ambos Ad(k)X ,wH ∈ t, logo,

Ad(k)X = wH + γ
′ = w(H + γ),

em que γ = w−1
γ
′ ∈ Γ. Observe que usamos que Γ é W−invariante, isto segue do fato que

podemos considerar W ⊆ K e exp(Γ)⊆ K. Temos então que

X = Ad(k−1)w(H + γ) = Ad(k−1w)(H + γ) ∈ F(H + γ).

Por definição de órbita, se duas órbitas focais se intersectam, elas claramente coincidem.
O subgrupo W q de W nos fornece uma maneira de determinar quando duas órbitas focais
coincidem.

Proposição 3.3.3. Duas órbitas focais F(H + γ) e F(H + γ
′) coincidem se, e somente se,

H + γ
′ ∈W q(H + γ).

Demonstração. Suponha que exista w ∈W (podemos pensar que w ∈ K) tal que w(H +γ) =

H + γ
′, então

q = exp(H + γ
′)p = wexp(H + γ)p = wq.
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Segue que w ∈ Kq e, portanto, H + γ
′ ∈ F(H + γ).

Por outro lado, suponha que F(H + γ) = F(H + γ
′). Existe k ∈ Kq tal que H + γ

′ =

Ad(k)(H + γ) e, pelo Corolário 1.4.20, existe w ∈W que satisfaz Ad(k)(H + γ) = w(H + γ).
Como wγ ∈ Γ, temos que w ∈W q.

O próximo passo é determinar a dimensão das órbitas focais e descrever suas componentes
conexas. Para tanto, é necessário entender melhor alguns subgrupos de Kq e de W q. Seja
KH = {k ∈ K : Ad(k)H = H} o centralizador de H em K e Kh = {k ∈ K : khk−1 = h} o
centralizador de h em K. Para k ∈ KH , temos que

h = exp(H) = exp(Ad(k)H) = khk−1,

de modo que KH ⊆ Kh. Os elementos de KH fixam a geodésica γ(t) = exp(tH) ponto a ponto
e o mesmo não é, necessariamente, verdade para os elementos de Kh. Temos então que F(H)

é difeomorfo ao espaço homogêneo Kq/KH .
Seja t⊆ s um subespaço de Cartan de u, denote m= zu(t)∩k e lembre-se dos autoespaços

generalizados mα da família de operadores ad(t) definidos no Teorema 1.4.10. Temos que u

se decompõe da seguinte forma:

u=m+ t+ ∑
α∈∆σ

mα ,

em que ∆σ = ∆σ (u, t) é o conjunto das raízes restritas e σ é a invoução de u, conforme a
Seção 1.4. Para α ∈ ∆σ (u, t), denotamos kα = k∩mα e sα = s∩mα , de modo que

k=m⊕ ∑
α∈∆σ

kα , s= t⊕ ∑
α∈∆σ

sα .

kα e sα têm a mesma dimensão, uma vez que, para H regular (ou seja, zu(H)∩ s= t, veja a
Seção 1.4), temos que ad(H) é invertível em cada mα e temos que

ad(H)kα ⊆ sα , ad(H)sα ⊆ kα .

Denotamos por nα a dimensão comum de sα e kα .
A álgebra de KH é denotada kH = {X ∈ k : [X ,H] = 0} e a álgebra kh de Kh pode ser

descrita como {X ∈ k : ead(H)X = X}. Estas álgebras podem ser decompostas da seguinte
forma.

kH =m⊕ ∑
α(H)=0

kα , kh =m⊕ ∑
α(H)∈2πZ

kα . (3.18)
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Se k ∈ Kq, temos que kq = q, logo, aplicando o recobrimento de Klein η : U/K →U com
q = hp, temos que

kh2k−1 = η(khp) = η(kq) = η(q) = η(hp) = h2, (3.19)

então Kq ⊆Uh2 , o centralizador de h2. Como khp = hp se, e somente se h−1kh ∈ K, podemos
descrever Kq como o conjunto {k ∈ K : h−1kh ∈ K}. Para X é um elemento da álgebra kq

de Kq, temos que exp(−H)exp(tX)exp(H) = exp(tead(−H)X) ∈ K para todo t ∈ R, então
ead(−H)X ∈ k. Segue que kq = {X ∈ k : ead(−H)X ∈ k}. Para X ∈ kq, usando a involução,
temos que

ead(−H)X = σ(ead(−H)X) = ead(H)X

(veja a Equação (3.8)). Portanto, ead(2H)X = X , então

kq = {X ∈ k : ead(2H)X = X}= kh2.

Lembrando da equação (3.9) e da discussão que vem em seguida, temos que

kq = kh2 =m⊕ ∑
α(H)∈πZ

kα (3.20)

Estes espaços que descrevemos nos serão úteis na demonstração da próxima Proposição,
que é um passo na direção de entender as propriedades das órbitas focais. Os elementos do
grupo de Weyl W são reprsentados em K pelos elementos do normalizador M∗ de t, ou seja,
W = Ad(M∗)|t. Defina M∗q = M∗∩Kq.

Proposição 3.3.4. Podemos decompor Kq = (Kq)0M∗q.

Demonstração. A ideia desta demonstração é, a partir do espaço simétrico U/K, encontrar
um espaço simétrico que tenha Kq como isotropia para, assim, proceder de maneira similar à
Proposição 3.2.3.

Denote por s a simetria geodésica ao redor de p = K, ela satisfaz s(uK) = σ(u)K, em que
σ é a involução de U . Seja q = hp, em que h = exp(H) com H ∈ t e defina q′ = s(q) = h−1 p.
Se k ∈ Kq, temos que

kq′ = s(khp) = s(hp) = σ(h)p = q′,

logo, Kq ⊆ Kq′ . Por simetria do argumento, temos que Kq = Kq′ .
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O centralizador Uh2 é fechado em U , logo, é um grupo compacto. Além disso, se u ∈Uh2 ,
temos que

σ(u)h2
σ(u−1) = σ(uh−2u−1) = σ(h−2) = h2,

σ(u)h−2
σ(u−1) = σ(uh2u−1) = σ(h2) = h−2,

logo, Uh2 é invariante por σ . Por fim, a equação (3.19) nos mostra que Kq ≤Uh2 .
Denote por uh2 a álgebra de Uh2; sendo Uh2 invariante por σ , uh2 também é, então

uh2 = kh2 ⊕ sh2 , em que kh2 = k∩uh2 e sh2 = s∩uh2 . Relembrando a equação (3.20), temos
que kh2 = kq, logo, fix(σ |Uh2 )0 ⊆ Kq ⊆ fix(σ |Uh2 ) e, portanto, Uh2/Kq é um espaço simétrico
compacto. Observe ainda que t⊆ sh2 , uma vez que h2 ∈ T = ⟨exp(t)⟩ ≤Uh2 .

Dado k ∈Kq, Ad(k)t⊆ sh2 é um subespaço de Cartan, então, pelo Corolário 1.4.13, existe
k′ ∈ (Kq)0 tal que Ad(k′k)t = t, logo, k′k = w ∈ Kq ∩M∗ = M∗q. Portanto, k = (k′)−1w ∈
Kq = (Kq)0M∗q

A próxima proposição nos fornece informações sobre os grupos W q e W q
0 , os quais são

importantes nas descrições das órbitas focais.

Proposição 3.3.5. Os subgrupos W q e W q
0 de W satisfazem

W q = Ad(M∗q)|t W q
0 = Ad((Kq)0 ∩M∗q)|t.

Demonstração. Seja w ∈W q, então wH = H + γ para algum γ ∈ Γ. Seja k ∈ M∗ um repre-
sentante de w, ou seja, w = Ad(k). Segue que

kq = k exp(H)k−1 p = exp(wH)p = exp(H + γ)p = exp(H)p = q,

logo, k ∈ Kq. Por outro lado, se k ∈ M∗q, temos que exp(Ad(k)H)p = k(exp(H)p) =
exp(H)p = q, então Ad(k)H ∈ H +Γ, ou seja, Ad(k) ∈W q.

Com a notação da Proposição 3.3.4, seja

zkh2 (t)+ t⊕∑
α

m′
α

a decomposição de uh2 em espaços de raízes restritas com respeito a t (vide Teorema
1.4.10). O grupo Uh2 pode ser descrito como o conjunto dos u ∈U tal que uh2u−1 = h2 ou,
equivalentemente, h2uh−2 = u, de modo que, para X ∈ uh2 , temos

exp(tX) = exp(Ad(h2)tX) = exp(ead(2H)tX) = h2 exp(tX)h−2.
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Portanto, todo X ∈ uh2 deve satisfazer ead(2H)X = X . Esta equação impõe condições sobre
as raízes de ∆σ (uh2, t). Para um par hiperbólico X ,Y ∈ m′

α , temos que X = ead(2H)X =

cos(2α(H))X − sen(2α(H))Y , de modo que α(H) ∈ πZ. Segue que o conjunto de raízes de
(uh2 , t) pode ser descrito como {α ∈ ∆σ (u, t) : α(H) ∈ πZ} e, portanto, o seu grupo de Weyl
coincide com W q

0 , o qual pode ser visto tanto como representação adjunta do normalizador
Kq∩M∗ ⊆ Kq quanto de (Kq)0∩M∗ = (Kq)0∩ (Kq∩M∗) = (Kq)0∩M∗q (veja a Proposição
1.4.17).

Pelo Teorema 13.8 de [6] e pelo comentário que vem logo em seguida a este Teorema, se
G é um grupo de Lie (não necessariamente conexo) e age de forma diferenciável e transitiva
sobre uma variedade N, então, para x ∈ N, temos

N = Gx =
⋃

g∈G

gG0x =
⋃

g∈G

G0gx,

uma vez que G0 ⊴ G, ou seja, N é união de componentes conexas difeomorfas a G0x. O
mesmo ocorre com as órbitas focais, cada uma de suas componentes conexas é difeomorfa a
(Kq)0H e, como Kq = (Kq)0M∗q (Proposição 3.3.4) e W q = Ad(M∗q)|t (Proposição 3.3.5),
as outras componentes são da forma (Kq)0wH para algum w ∈W q. Portanto,

F(H) = KqH =
⋃

w∈W q

(Kq)0wH. (3.21)

Esta descrição pode ser ainda mais refinada se determinarmos sob quais condições (Kq)0wH =

(Kq)0w′H para w,w′ ∈W q.

Teorema 3.3.6. As componentes conexas de F(H) estão em bijeção com o grupo quociente
W q/W q

0 . Cada componente corresponde a uma órbita (à esquerda) de W q
0 em W qH e é

difeomorfa a (Kq)0H.

Demonstração. Inicialmente, observamos que F(H) intercepta t na órbita W qH. Claramente,
W qH ⊆ t. Por outro lado, seja k ∈ Kq e suponha que Ad(k)H ∈ t, então existe w ∈W tal que
Ad(k)H = wH (Corolário 1.4.20). Temos que

q = exp(H)p = kq = exp(Ad(k)H)p = exp(wH)p,

logo, wH ∈H+Γ e segue que w ∈W q. Usando a equação (3.21), para contar as componentes
conexas de F(H), basta determinar sob quais condições (Kq)0wH = (Kq)0w′H para w,w′ ∈
W q.
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O centralizador WH de H em W satisfaz WH ≤ W q
0 ⊴ W q. Se w′ = lwg para g ∈ WH

e l ∈ W q
0 , é fácil ver que (Kq)0wH = (Kq)0w′H, pois gH = H e W q

0 = Ad((Kq)0 ∩M∗q)|t
(Proposição 3.3.5). Vamos mostrar que as componentes conexas de F(H) estão em bije-
ção com o espaço de classes laterais duplas W q

0 \W q/WH . Suponha, de modo geral, que
(Kq)0wH = (Kq)0w′H e relembre o espaço simétrico Uh2/Kq definido na demonstração da
Proposição 3.3.4, o seu grupo de Weyl é W q

0 . Temos que t ∋ w′H = Ad(y)wH para algum
y ∈ (Kq)0, então existe l ∈ W q

0 tal que lwH = Ad(y)wH (Corolário 1.4.20) e segue que
w′H = lwH. Se H é regular, segue da Proposição 1.4.18 que w′ = lw, caso contrário, temos
que (lw)−1w′ ∈WH , ou seja, w′ = lwg para algum g ∈WH .

Segue que há uma bijeção entre as componentes conexas de F(H) e o conjunto de classes
laterias duplas W q

0 \W q/WH . Para qualquer w ∈W q, temos que W q
0 wWH = wW q

0 WH = wW q
0 ,

uma vez que W q
0 ⊴W q, logo, há uma correspondência bijetiva entre W q/W q

0 e W q
0 \W q/WH .

Por fim, descrevemos uma fórmula para a dimensão das órbitas focais. Num sistema de
raízes, temos a noção de raízes positivas e negativas (veja a Definição 6.4.9 de [4]). Com as
devidas escolhas feitas, denotamos por ∆σ (u, t)

+ o conjunto de raíze positivas de ∆σ (u, t).
Defina

LH = {α ∈ ∆σ (u, t)
+ : 0 ̸= α(H) ∈ πZ}.

Cada órbita focal é difeomorfa a Kq/KH como visto anteriormente e a dimensão de Kq/KH

coincide com a dimensão de kq/kH , a qual pode ser calculada observando as equações (3.18)
e (3.20). Isto demonstra o seguinte Teorema.

Teorema 3.3.7.
dimF(H) = ∑

α∈LH

nα ,

onde nα é a dimensão comum de kα e sα .

3.3.1 Imagem Inversa da Exponencial na Esfera S2

Nesta Subseção, vamos aplicar à esfera unitária S2 ⊆R3 com a métrica induzida pelo produto
interno padrão de R3 a teoria desenvolvida a respeito da imagem inversa da exponencial.

Escolhemos p = (0,0,1) como ponto base. O grupo U = SO(3) age de forma transitiva
sobre S2, de modo que podemos escrever S2 ≈U/K, em que

K =

{(
A

1

)
: A ∈ SO(2)

}
≃ SO(2).



106 Espaços Simétricos Compactos

A simetria geodésica em torno de p é dada pela restrição da transformação linear

sp =

−1 0
0 −1

1

 ∈ K

a S2 (veja o Exemplo 2.2.2). A ação de sp sobre S2 se identifica com a ação de multiplicação
à esquerda por sp em U/K. Podemos recuperar a involução σ de U observando que ela
compõe o seguinte diagrama comutativo

U U

S2 S2

σ

r r

sp

em que r : U → S2 é a projeção natural. Temos que σ satisfaz σ(u) = spus−1
p .

Considere a base

X1 =

 0 1
−1 0

0

 , X2 =

 0 0 1
0 0 0
−1 0 0

 , X3 =

0
0 1
−1 0

 ,

de so(3) com as relações de colchete

[X1,X2] =−X3, [X1,X3] = X2, [X2,X3] =−X1.

A involução σ : so(3)→ so(3) satisfaz

σ(X1) = X1, σ(X2) =−X2, σ(X3) =−X3,

de modo que k= ⟨X1⟩ e s= ⟨X2,X3⟩. Os subespaços de Cartan são unidimensionais da forma
t= ⟨H⟩ com H ∈ s. Escolhendo H = θX2, temos que so(3) se decompõe como t+mα com
mα = ⟨X1,X3⟩, em que o sistema de raízes restritas é ∆σ = {±α} com α(H) = θ . Portanto,
o grupo de Weyl tem apenas dois elementos, W = {1,rα}, em que rα(H) =−H. Fica claro
que Γ1 = πZX2.

Para determinar os reticulados Γ e Γ0 precisamos entender como a métrica se expressa
em t. Identificando s≈ TpS2 e considerando Y ∈ s, a exponencial Riemanniana se escreve

expp(Y ) = exp(Y )p = cos(|Y |)p+ sen(|Y |) Y
|Y |

. (3.22)
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Além disso, denotando exp : so(3)→ SO(3) a exponencial de SO(3), temos que

exp(sX2) =

 cos(s) 0 sen(s)
0 1 0

−sen(s) 0 cos(s)

 , exp(sX3) =

1
cos(s) sen(s)
−sen(s) cos(s)

 ,

logo, expp((π/2)X2) = exp((π/2)X2)p = (1,0,0) e expp((π/2)X3) = (0,1,0). Portanto, o
produto interno em s induzido pela métrica de S2 em p é tal que X2,X3 forma uma base
ortonormal.

Como α(X2) = 1, temos que Hα = X2 e segue que Hα̌ = 2Hα , logo, Γ0 = 2πZX2. Pela
Equação (3.22), o reticulado Γ pode ser definido como

Γ = {Y ∈ t : |Y | ∈ 2πZ},

pois expp(Y ) = p se |Y | ∈ 2πZ. Segue que Γ = Γ0.
Vamos agora variar o valor de θ na definição de H = θX2 de modo a considerar os

diferentes resultados possíveis de acordo com cada escolha para q = expp(H). Suponha
que H = 2πX2, ou seja, q = p, então Kq = K é conexo e segue da Proposição 3.3.5 que
W = W q = W q

0 , de modo que F(H) tem apenas uma conponente conexa (Teorema 3.3.6).
Para ver isso, considere

u =

 cos(s) sen(s)
−sen(s) cos(s)

1

 ∈ K.

Temos que Ad(u)H = uHu−1 = 2π(cos(s)X2−sen(s)X3), donde segue que F(H) consiste de
uma circunferência com centro na origem de s e com raio 2π . De maneira similar, mostra-se
que, para cada γ = 2kπX2 ∈ Γ, a órbita focal F(H + γ) consiste de uma circunferência com
raio 2|k+ 1|π . Segue que exp−1

p (q) é uma união disjunta de circunferências. Observe a
Figura 3.1, ela ilustra o plano TpS2 ≈ s e o eixo destacado representa o subespaço de Cartan
t. Os pontos verdes representam elementos de Γ1 que não estão em Γ e, os vermelhos, os
elementos de Γ0 = Γ. O ponto preto central representa a origem de s.
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Figura 3.1 : Órbitas focais em S2 no caso H = 2πX2

Suponha agora que H = πX2, isto é, q =−p. Qualquer rotação de SO(3) que fixa p deve
fixar também o seu antípoda q, logo, Kq = K. Como no exemplo anterior, W =W q =W q

0 e
cada órbita focal tem apenas uma componente conexa. Novamente, exp−1

p (q) é uma união
disjunta de circunferências centradas na origem de s, mas, desta vez, com raios |2k+1|π ,
k ∈ Z, veja a Figura 3.2 abaixo.
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Figura 3.2 : Órbitas focais em S2 no caso H = πX2.

Suponha agora que q ̸∈ {±p}, ou seja, H ̸∈ πZX2. Um elemento de K que fixa dois
pontos de S2 que não são antípodas deve ser a identidade, então Kq = {1}. Segue que cada
órbita focal consiste de um único ponto e exp−1(q) = H +Γ.

3.3.2 Imagem Inversa da Exponencial no Plano Projetivo RP2

Nesta subseção, vamos tratar do plano projetivo, do qual a esfera do exemplo anterior
é o recobrimento universal Riemanniano. Isto nos permitirá aproveitar o que fizemos
anteriormente e adaptar para este novo contexo.

O plano projetivo, denotado RP2 pode ser descrito de diferentes maneiras, uma delas é
como o conjunto obtido ao se identificar pontos antípodas da esfera. Um ponto de RP2 é
denotado [q] = {±q}, onde q ∈ S2. Temos então uma projeção natural π : S2 → RP2 dada
por π(q) = [q], que é um difeomorfismo local (veja os Exemplos 4.7 e 4.8 do capítulo 1
de [10] para mais detalhes). Podemos definir uma métrica em RP2 para que π seja uma
isometria local da seguinte maneira. Para w,v ∈ T[q]RP2,

⟨w,v⟩[q] = ⟨dπ
−1
[q] w,dπ

−1
[q] v⟩q.
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Podemos escolher tanto q quanto −q para definir a métrica em [q], mas a definição não
depende desta escolha, como veremos a seguir. Seja a =−1 ∈ O(3), é fácil ver que π ◦a = π

e, consequentemente, π
−1 = a◦π

−1. Usando que da−q =−id, concluimos que

⟨dπ
−1
[q] w,dπ

−1
[q] v⟩−q = ⟨da−qdπ

−1
[q] w,da−qdπ

−1
[q] v⟩q

= ⟨dπ
−1
[q] w,dπ

−1
[q] v⟩q.

Sendo π uma isometria local, a exponencial Riemanniana de RP2 em [p] satisfaz
exp[p] ◦dπp = π ◦ expp (Lema A.1.7). Usando dπp para identificar TpS2 e T[p]RP2, po-
demos considerar que exp[p] = π ◦ expp. A simetria geodésica s[p] satifaz s[p] ◦π = π ◦ sp.
De fato, seja X ∈ TpS2, então

π(sp(expp(X))) = π(expp(−X))

= exp[p](−X)

= s[p](exp [p](X))

= s[p](π(expp(X))).

Temos o seguinte diagrama comutativo.

S2 S2

RP2 RP2

sp

π π

s[p]

Compondo a projeção r : U → S2 do exmplo anterior com π , obtemos o seguinte diagrama
comutativo.

U U

RP2 RP2

σ

π◦r π◦r

s[p]

Isto nos mostra que, no nível da álgebra u nada é alterado em relação ao exemplo da esfera.
A projeção π nos permite transferir a ação de U = SO(3) sobre S2 para uma ação sobre

RP2 fazendo u[q] = π(uq) = [uq]. Deste modo, temos que RP2 ≈U/K′, em que a isotropia
de [p] é dada por

K′ =

{(
A

±1

)
∈ SO(3)

}
,
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em que A é uma matriz 2×2. Seja A′ como definido na Equação (3.26), então todo elemento
de K′ ou está em K (a isotropia de p no exemplo da esfera S2) ou pode ser escrito como(

A′

−1

)
︸ ︷︷ ︸

:=J

(
B

1

)
︸ ︷︷ ︸

∈K

,

de modo que K′ = K ∪ JK tem duas componentes, sendo K a componente da identidade de
K′.

A álgebra de K′ coincide com a álgebra k = ⟨X1⟩ do exemplo anterior e s = ⟨X2,X3⟩.
Identificando os espaços tangentes em p e em [p] com s, escolhemos o subespaço de Cartan
t = ⟨X2⟩, de modo que Γ1 = πZX2 e Γ0 = 2πZX2. Para determinar o reticulado Γ, basta
notar que [p] = exp[p](θX2) = π(expp(θX2)) se, e somente se, expp(θX2) ∈ {±p}, logo,
Γ = πZX2 = Γ1.

Vamos agora obter a órbita focal F(H) no caso em que H = (π/2)X2. Observe que
exp[p](H) = [q] com q = (1,0,0), como visto no exemplo anterior. Temos que (K′)[q]

consiste dos elementos k ∈ K′ tais que kq ∈ {±q}; cálculos simples mostram que

(K′)[q] =


1,

−1
−1

1


︸ ︷︷ ︸

=k1

,

−1
1

−1


︸ ︷︷ ︸

=k2

,

1
−1

−1


︸ ︷︷ ︸

=k3

,


.

Temos que

Ad(1)X2 = Ad(k2)X2 = X2,

Ad(k1)X2 = Ad(k3)X2 =−X2,

de modo que F(H) = (K′)[q] = {±H}. Como Γ = πZX2, temos que, para γ = πnX2 ∈ Γ,
F(H + γ) = {±(H + γ)}.

Vimos no exemplo da esfera que W = {±1} e, claramente, 1 ∈W [q]. Como

−1 ·H =−H = H − πX2︸︷︷︸
∈Γ

,
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temos que −1 ∈W [q] também. Além disso, α(H) = π/2, então −1 ̸∈W [q]
0 e temos W [q]

0 =

{1}, como esperado, já que as órbitas focais têm apenas duas componentes conexas (que são
dois pontos).

Para H = πX2, temos que [q] = exp[p](H) = [p], já que expp(H) =−p, logo, (K′)[q] = K′.
Contas simples mostram que Ad(J)X2 = X2 e Ad(J)X3 = −X3, de modo que a órbita de
qualquer ponto de X ∈ s pela ação de Ad(K′) consiste de uma circunferência passando por
X e com centro na origem. Portanto, uma órbita focal F(H + γ), γ ∈ Γ, consiste de uma
circunferência com centro na origem e passando por H + γ , como na Figura 3.3 abaixo, a
qual descreve o plano T[p]RP2 ≈ s. Os pontos verdes representam elementos do reticulado
Γ = Γ1 que não estão em Γ0 e os pontos vermelhos representam elementos de Γ0. Observe
como as órbitas focais na Figura 3.3 podem ser formados pela sobreposição das órbitas focais
nas Figuras 3.1 e 3.2. Isto está relacionado com o fato que construímos RP2 identificando os
pontos antípodas de S2.

Figura 3.3 : Órbitas Focais em RP2 no caso H = πX2.
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3.3.3 Imagem Inversa da Exponencial em Grupos de Lie

Nesta Subseção, vamos aplicar a teoria da Imagem inversa da exponencial a uma classe de
grupos de Lie que podem ser vistos como espaços simétricos. Pelo Teorema A.2.6, sabemos
que, num grupo de Lie com métrica bi-invariante, a exponencial do grupo coincide com
a exponencial Riemanniana. Seja U um grupo de Lie conexo com álgebra compacta u e
métrica bi-invariante, tal como na Subseção 3.1.3. Vimos que existe uma isometria µ entre
U e o espaço simétrico U2/K em que K = {(u,u) : u ∈U} e µ é dada por

µ((u1,u2)K) = u1u−1
2 .

Além disso, vimos que a álgebra u2 se decompõe como a soma k+ s de autoespaços ±1, em
que

k= {X ⊕X : X ∈ u} ≃ u

s= {X ⊕−X : X ∈ u} ≃ u,

e k é a álgebra de K. Denotando p= (1,1)K, podemos identificar Tp(U2/K)≈ s e a isometria
µ nos fornece um isomorfismo s→ u dado por

dµp(X ⊕−X) = 2X ,

veja a Equação (3.15).
Sejam h ≤ u uma subálgebra de Cartan e h = exp(H), com H ∈ h, vamos calcular

exp−1(h) utilizando o que vimos na Seção 3.3. Seja H0 = H/2 e h0 = exp(H0). Escolhendo
q = (h0,h−1

0 )K ∈ U2/K, temos que µ(q) = h2
0 = h. Para determinar exp−1(h), vamos

determinar exp−1
p (q) e usar a isometria µ para obter o resultado desejado. Pelo Teorema

3.3.2, temos que
exp−1

p (q) =
⋃

γ⊕−γ∈Γ

F(H0 ⊕−H0 + γ ⊕−γ),

em que F(H0 ⊕−H0) = Kq(H0 ⊕−H0) e Kq age via a representação adjunta.

Teorema 3.3.8. Temos que

exp−1(h) = dµp(exp−1
p (q)).

Demonstração. Seja X ∈ exp−1(h). Observe que X = dµp(X/2⊕−X/2) e que

µ(expp(X/2⊕−X/2)) = exp(X) = h = µ(q).
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Da injetividade de µ segue que expp(X/2⊕−X/2) = q e, portanto, X ∈ dµp(exp−1
p (q)).

Por outro lado, seja Y ∈ dµp(exp−1
p (q)) e denote Y = dµp(X ⊕−X), em que q =

expp(X ⊕−X). Usando que exp coincide com a exponencial Riemanniana de U segue
do Lema A.1.7 que

exp(Y ) = exp(dµp(X ⊕−X))

= µ(expp(X ⊕−X))

= µ(q)

= h,

logo, Y ∈ exp−1(h)

Para entender melhor exp−1(h), devemos então entender o subgrupo Kq; ele consiste
dos elementos (k,k) ∈ K que fixam q, ou seja, (k,k)(h0,h−1

0 )K = (h0,h−1
0 )K. Temos que

(k,k) ∈ Kq se, e somente se,

khk−1 = kh2
0k−1 = h2

0 = h.

Portanto,
Kq = {(k,k) ∈ K : k ∈Uh},

é a diagonal de Uh ×Uh, em que Uh é o centralizador de h em U . De maneira geral,
Ad(u,u′)X ⊕Y = Ad(u)X ⊕Ad(u′)Y , então

dµp(Ad(k,k)H0 ⊕−H0) = dµp(Ad(k)H0 ⊕−Ad(k)H0) = Ad(k)H.

e
dµp(Ad(k,k)(H0 ⊕−H0 + γ ⊕−γ)) = Ad(k)(H +2γ).

Temos então que

Teorema 3.3.9. Se γ ∈ Γ, a órbita focal F(H0 ⊕−H0 + γ ⊕−γ) em U2/K corresponde, em
U, via a isometria µ , à órbita Uh(H +2γ). Segue que

exp−1(h) =
⋃
γ∈Γ

Uh(H +2γ).

Além disso, UhH é difeomorfo ao espaço homogêneo Uh/UH .

Vamos tratar agora sobre como usar a fórmula do Teorema 3.3.7 para calcular a dimensão
da órbita focal UhH. Relembre a decomposição de u2 com respeito ao subespaço de Cartan t
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(Proposição 3.1.4) e observe que (mα ⊕mα)∩ k≃mα . Seja

LH0 = {α ∈ ∆
+ : 0 ̸= α(H0 ⊕−H0) = α(H0) ∈ πZ}

e observe que, como H = 2H0, 0 ̸= α(H0)∈ πZ se, e somente se, 0 ̸= α(H)∈ 2πZ. Portanto,

LH0 = {α ∈ ∆
+ : 0 ̸= α(H) ∈ 2πZ}

Deste modo, aplicando a fórmula, temos que

dim(UhH) = dimF(H0 ⊕−H0) = ∑
α∈LH0

nα = ∑
α∈LH0

dim(mα), (3.23)

em que nα é igual à dimensão de (mα ⊕mα)∩ k, que é igual à dimensão de mα .

Imagem Inversa da Exponencial em SO(4)

Aplicamos agora o que foi visto até aqui nesta Seção em um exemplo mais específico.
Sejam U = SO(4) e u = so(4). Como no Exemplo 1.2.6, as matrizes Ui j = Ei j − E ji,
com i, j ∈ {1, . . . ,4} e i < j, formam uma base de u e as matrizes U12 e U34 formam uma
subálgebra de Cartan que denotaremos h. Sejam

H = θU12 =


0 θ

−θ 0
0 0
0 0

 , h = exp(H) =


cosθ senθ

−senθ cosθ

1 0
0 1

 .

Cálculos simples mostram que Uh consiste de matrizes da forma

u =

(
A

B

)
. (3.24)

Se θ ̸∈ πZ, temos que A,B ∈ SO(2), ou seja, Uh ≃ SO(2)×SO(2). Como a matriz

R =

(
0 1
−1 0

)
= exp

(
0 π/2

−π/2 0

)
(3.25)

pertence a SO(2) e SO(2) é abeliano, temos que Uh coincide com UH e segue que UhH = {H}.
Como as componentes conexas de UhH estão em bijeção com o quociente W q/W q

0 , deduzimos
que W q =W q

0 (Teorema 3.3.6).
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Por outro lado, se θ = π , temos que

h =


−1 0
0 −1

1 0
0 1

 ,

de modo que H ∈ Γ e, conforme a Equação (3.24),

Uh = {u : A,B ∈ O(2), AB ∈ SO(2)}.

Como no caso anterior, UH ≃ SO(2)×SO(2). Para determinar UhH, observe que, como
SO(2) é a componente da identidade de O(2), então O(2) = SO(2)∪A′SO(2) para alguma
A′ ∈ O(2)−SO(2). Podemos escolher, por exemplo,

A′ =

(
−1 0
0 1

)
(3.26)

Seja u∈Uh conforme a Equação (3.24), podemos escrever A=A′A0 se A∈O(2)−SO(2),
em que A0 ∈ SO(2) comuta com a matriz R da Equação (3.25) ou A = A0 se A ∈ SO(2).
Segue que

Ad(u)H = uHu−1 = u

(
πR

O

)
u−1 =

(
πARA−1

O

)
,

em que O denota a matriz nula 2×2. Temos então que UhH consiste de 2 pontos, sendo um
deles H e o outro (

πA′R(A′)−1

O

)
=

(
−πR

O

)
=−H.

Segue que W q/W q
0 ≃ {±1}.

Por fim, suponha que θ = 2π . Neste caso, temos que h = 1, logo, Uh =U e temos que
UhH ≈Uh/UH ≈U/(SO(2)×SO(2)) tem dimensão 4, o que concorda com a fórmula da
equação (3.23), uma vez que ambas as raízes α e λ (Exemplo 1.2.6) assumem o valor 2π

sobre 2πU12 e dimmα = 2 = dimmλ .
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3.4 Grupo Fundamental de Espaços Simétricos

Nesta Seção vamos calcular o grupo fundamental de um espaço simétrico conexo e compacto.
A estratégia é baseada no capítulo 13 de [3], em que é obtido o grupo fundamental de grupos
de Lie compactos. Veremos que, assim como no caso de grupos de Lie compactos, os grupos
fundamentais de espaços simétricos compactos e conexos são quocientes de reticulados.
Seguiremos os passos descritos no Teorema 5.2 de [2] e, quando necessário, usaremos alguns
resultados de [3]. Manteremos as mesmas notações da Seção anterior.

Denotando por T o subgrupo conexo de U gerado pelo subespaço de Cartan t, é fácil
calcular o grupo fundamental do flat maximal T p de U/K. A exponencial Riemanniana expp :
t→ T p é sobrejetiva e é um homeomorfismo local, logo, é um recobrimento simplesmente
conexo de T p. O grupo das deck transformations consiste dos pontos H ∈ t tais que
expp(H) = p, ou seja, coincide com o reticulado Γ. Sendo t simplesmente conexo, temos
que π1(T p) ≃ Γ. Observe que usamos a notação π1(T p) sem mencionar o ponto base do
grupo fundamental, fazemos isso porque T p é conexo (e, portanto, conexo por caminhos),
então, a menos de isomorfismos, a escolha de ponto base é irrelevante (Proposição 1.5 de
[8]). A menos que seja dito o contrário, o ponto base é sempre p. Além disso, chamaremos
de loop uma curva fechada. Para mais detalhes sobre a relação entre recobrimentos e grupos
fundamentais, veja a Subseção A.3.1 do Apêndice.

Por simplicidade, denote S =U/K. Vamos descrever uma relação entre π1(T p) e π1(S).
Seja [α] uma classe de homotopia de loops passando por p, ou seja, [α] ∈ π1(S). Pelo
Teorema 2.2 do Capítulo 12 de [10], todo elemento de π1(S) pode ser representado por uma
geodésica fechada passando por p, então seja X ∈ s≈ TpS e γ(t) = expp(tX), t ∈ [0,1], uma
geodésica fechada tal que [α] = [γ]. Observe que expp(X) = p. Pelo Corolário 1.4.14, existe
k ∈ K0 tal que Ad(k)X = H ∈ t, de modo que

expp(H) = k expp(X) = kp = p,

donde segue que H ∈ Γ. Sendo K0 conexo, denote por k(s),s ∈ [0,1], uma curva em K0 tal
que k(0) = 1 e k(1) = k. A aplicação

ls(t) = k(s)expp(tX)

é contínua e satisfaz l0(t) = γ(t) e l1(t) = expp(tH), logo, é uma homotopia entre γ e a
geodésica expp(tH) de T p. Note que k(s)expp(X) = k(s)p = p, então ls(t) é uma curva
fechada por p para todo s.
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A inclusão T p → S induz a inclusão π1(T p)→ π1(S). A discussão do parágrafo anterior
demonstra o seguinte resultado.

Teorema 3.4.1. Todo loop em S é homotópico a um loop em T p e a inclusão T p → S induz
o homomorfismo sobrejetivo π1(T p)→ π1(S).

Isto nos mostra que, para calcular π1(S), basta determinar o núcleo do homomorfismo
π1(T p)→ π1(S), é para isso que trabalharemos nesta Seção. Demonstramos agora um Lema
análogo à Proposição 13.14 de [3], que nos será útil mais adiante.

Lema 3.4.2. Todo loop em T p é homotópico em T p a um loop da forma

t 7→ expp(tγ),

para algum γ ∈ Γ.

Demonstração. Seja l(t), t ∈ [0,1], um loop em T p passando por p. Existe uma curva l̃(t) em
t que é o levantamento de l(t), ou seja, l(t) = expp(l̃(t)) (Proposição 13.2 de [3]). Observe
que usamos que expp : t→ T p é o recobrimento simplesmente conexo de T p. Se l̃(1)= γ ∈Γ,
temos que l̃ é homotópica com extremidades fixadas ao segmento de reta r(t) = tγ , t ∈ [0,1].
Denotando esta homotopia por l̃s, ela satisfaz l̃0 = l̃ e l̃1 = r. A composição expp ◦l̃s nos
fornece uma homotopia entre l e a geodésica fechada expp(tγ), t ∈ [0,1].

Observação 3.4.3. A composição de loops em T p corresponde à operação de soma em
Γ = π1(T p). Sejam H1,H2 ∈ Γ e α j(t) = expp(tH j) ( j = 1,2) loops em T p. Considere
a composição (produto em π1(T p)) [α1 ·α2] dos loops [α1] e [α2]. O levantamento desta
composição deve ser uma composição dos levantamentos t 7→ tH1 e t 7→ H1 + tH2, ou seja, o
levantamento t 7→ tH2 de α2 foi transladado por H1. Este levantamento é homotópico em t

ao segmento t 7→ t(H1 +H2). Então a composição de loops em T p corresponde à operação
de soma em Γ = π1(T p).

Na Subseção 3.1.2, construimos um homomorfismo ψ : S3 →U , o qual satisfaz

ψ(ety) = exp(tφ(y)),

em que y é um quaternion unitário com parte real nula. Considere o arco de grande círculo
c(t) = etπi, t ∈ [0,1], que vai de 1 ∈ S3 ao ponto antípoda −1 ∈ S3. Seja π : U → U/K a
projeção natural, então π(ψ(etπi)) = π(exp(tπHα̌)) = expp(tπHα̌). Portanto, a composição
π ◦ψ mapeia a semicircunferência c([0,1]) na geodésica fechada t 7→ expp(tπHα̌) passando
por p.



3.4 Grupo Fundamental de Espaços Simétricos 119

Teorema 3.4.4. Se γ ∈ Γ0, então a geodésica fechada γ(t) = expp(tγ), t ∈ [0,1], é homotó-
pica, em S, a um ponto.

Demonstração. Seja πHα̌ ∈ Γ0, vamos mostrar que γ(t) = expp(tπHα̌), t ∈ [0,1], é homo-
tópica, em S, a um ponto. Temos que γ(t) = π(ψ(etπi)). Lembre-se do subgrupo K de
pontos fixos da involução σ : S3 → S3 definidos na Subseção 3.1.2, temos que ψ(K)⊆ K. O
conjunto K é um grande círculo de S3 e pode ser parametrizado por s 7→ esπk, em que k é um
quaternion unitário.

Seja ls(t) a homotopia em S3 definida da seguinte maneira. Para s = 0, l0(t) = etπi,
t ∈ [0,1], e, para s ∈ (0,1], ls(t) é o grande círculo de S3 que conecta esπk ao ponto −1 ∈ K.
Deste modo, temos que ls(t) é uma homotopia, com extremidades em K, da curva etπi à
curva constante l1(t)≡−1, já que eπk =−1. A composição π ◦ψ ◦ ls(t) é uma homotopia
de γ à curva constante π(ψ(−1)) ∈ π(K) = {p}.

Seja agora γ ∈ Γ0 um ponto qualquer. Pelo Lema 3.4.2 e pela Observação 3.4.3, temos
que γ(t) = expp(tγ) é homotópico a uma composição de loops do tipo expp(tπHα̌) para
variadas co-raizes Hα̌ . Sendo cada uma delas homotópica a um ponto, temos que γ(t)
também é.

Nosso próximo passo é mostrar que os elementos de Γ−Γ0 correspondem a loops em
T p que não são homotópicos a um ponto. Para tanto, vamos considerar um subconjunto de S
denotado Sreg cujo grupo fundamental é isomorfo ao de S e que tem propriedades que nos
ajudarão a obter os resultados desejados. Para estudar Sreg, construiremos um recobrimento
para ele.

Seja U um grupo compacto. Um elemento x ∈U é chamado de regular se está contido
em apenas um toro maximal de U e, caso contrário, x é chamado de singular. Os conjunto de
elementos regulares e singulares serão denotados Ureg e Using respectivamente. Por exemplo,
se x = utu−1 para t em algum toro maximal T e u ∈U , temos que x é regular se, e somente
se, T é o único toro maximal que contém t, uma vez que todos os toros maximais de U são
conjugados e cobrem U (veja a Proposição 1.2.9). Além disso, escrevendo t = exp(2H) para
H na álgebra de T , temos que x = uexp(2H)u−1 é singular se, e somente se, existe alguma
raiz α tal que α(H) ∈ πZ (Proposição 13.24 de [3]).

Inspirado nessas ideias definimos treg o conjunto de elementos regulares de t, trata-se do
complemento em t do diagrama de Stiefel ρ (equação (3.13)). Em outras palavras

treg = {H ∈ t : α(H) ̸∈ πZ para todo α ∈ ∆σ (u, t)},

em que t é um subespaço de Cartan de (u,σ). Uma componente conexa de treg é chamada
de alcova e treg é uma união de alcovas.
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Observação 3.4.5. Observe que o conceito de elemento regular é um pouco mais restritivo
neste novo contexto. Anteriormente, definimos H ∈ t como regular se t= zg(H)∩ s, o que
equivale à condição que nenhuma raiz de ∆σ se anule sobre H.

Considere o grupo Γ⋊W e seja H ∈ t. Este grupo age à direita de t via

H · (γ,w) = γ +w−1H.

Observe que

H · (γ,w) · (γ ′,w′) = (γ +w−1H) · (γ ′,w′)

= γ
′+(w′)−1

γ +(ww′)−1H

= H · (γ ′+(w′)−1
γ,ww′).

É importante observar que W deixa Γ invariante. Se γ ∈ Γ e w = kM ∈W , temos que

expp(wγ) = k expp(γ) = kp = p,

uma vez que K é a isotropia de p. Definimos então o produto em Γ⋊W por

(γ,w) · (γ ′,w′) = (γ ′+(w′)−1
γ,ww′)

Como consequência da próxima proposição, podemos restringir a ação de Γ⋊W a uma ação
sobre treg.

Proposição 3.4.6. Os grupos Γ e W deixam treg invariante.

Demonstração. Seja H ∈ treg. Sabemos que Γ deixa ρ invariante, uma vez que Γ ⊆ Γ1, logo,
se H + γ ∈ ρ para alguma γ ∈ Γ, temos que H = (H + γ)− γ ∈ ρ , o que é absurdo. Segue
que Γ deixa treg invariante.

Seja w ∈W e suponha que α(wH) ∈ πZ para alguma raiz α , ou seja, wH ∈ ρ . Temos
que (w−1)∗α ∈ ∆σ (u, t) e ((w−1)∗α)(H) = α(wH) ∈ πZ, de modo que H ̸∈ treg, o que é
contraditório.

Enunciamos agora um resultado que nos será útil posteriormente.

Teorema 3.4.7. O grupo Γ0 ⋊W age transitivamente e simplesmente no conjunto de alcovas
de t. Portanto, Γ⋊W age transitivamente no conjunto de alcovas.

Demonstração. Este Teorema é consequência direta do Teorema 13.34 de [3] observando
que Γ0 ⋊W ≤ Γ⋊W . Aqui a ação que consideramos é à direita e não à esquerda como em
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[3], mas o resultado não é alterado. Considere a ação à esquerda

(γ,w)∗H = wH + γ.

É fácil ver que
(γ,w)∗H = H · (γ,w−1),

donde segue que o Teorema também é válido considerando a ação à direita.

Seja
Sreg := K expp(treg) = expp(Ad(K)treg) (3.27)

o conjunto dos elementos regulares de S, trata-se de um aberto de S, uma vez que treg é uma
união de abertos conexos em t, K age por isometrias e Ad(K)t= s. O complemento de Sreg

em S é chamado de conjunto dos pontos singulares de S e será denotado Ssing. Segue da
Proposição 13.24 de [3] que Ssing = π(Using), em que π : U → U/K é a projeção natural.
Observe que k expp(H) = expp(H) sempre que k ∈ M, então, com o objetivo de construir
um recobrimento para Sreg, consideramos o quociente K/M. Sendo W = M∗/M, em que M∗

e M são, respectivamente, o normalizador e o centralizador de t em K, temos que W age
naturalmente à direita de K/M da seguinte maneira:

kM ·w = kwM.

Esta ação está bem definida uma vez que M ⊴ M∗. Portanto, temos que Γ⋊W age simples-
mente à direita de treg ×K/M via

(H,kM) · (γ,w) = (γ +w−1H,kwM).

A simplicidade da ação segue do fato que, se (γ,w) fixa (H,kM), temos que kwM = kM, ou
seja, w ∈ M. Segue que w−1H = H e, portanto, γ +H = H, então γ deve ser nulo.

Considere a aplicação

Ψ :treg ×K/M → Sreg

(H,kM) 7→ k expp(H).
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Vamos mostrar que Ψ é um recobrimento de Sreg. A ação do grupo Γ⋊W deixa Ψ invariante:

Ψ(γ +w−1H,kwM) = kwexpp(γ +w−1H)

= kwexpp(w
−1H)

= k expp(ww−1H)

= Ψ(H,kM)

A próxima proposição mostra que o grau ao qual Ψ deixa de ser injetiva é medido pela ação
de Γ⋊W .

Proposição 3.4.8. Sejam H,H ′ ∈ treg e k,k′ ∈ K e suponha que Ψ(H,kM) = Ψ(H ′,k′M),
então existe (γ,w) ∈ Γ⋊W tal que

(H ′,k′M) = (H,kM) · (γ,w)

Demonstração. Por hipótese, temos k expp(H) = k′ expp(H
′), de modo que

q = expp(H) = expp(Ad(k−1k′)H ′) ∈ Sreg.

Pelo Teorema 3.3.2 e pela Proposição 3.3.3, temos que

Ad(k−1k′)H ′ = Ad(u)(H + γ)

para algum u ∈ Kq, uma vez que W q = Ad(M∗q)|t. Sendo expp(H) ∈ Sreg, temos que
α(H) ̸∈ πZ para nenhuma raiz α , donde segue que a álgebra de Kq satisfaz kq = m =

zu(t)∩ k (veja a equação (3.20)). Segue que (Kq)0 = M0 e, pela Proposição 3.3.4, temos que
Kq = M0M∗q = M∗q. Portanto, u ∈ M∗q e, pela Proposição 3.3.3, segue que Ad(u)|t ∈W q,
de modo que

Ad(u)(H + γ) = H + γ
′,

para alguma γ
′ ∈ Γ. Portanto, Ad(k−1k′)H ′ = H + γ

′ ∈ t e segue do Corolário 1.4.20
que Ad(k−1k′)H ′ = wH ′ para algum w ∈ W . Temos, enfim, que wH ′ = H + γ

′, ou seja,
H ′ = w−1

γ
′+w−1H = γ

′′+w−1H para γ
′′ = w−1

γ
′. Segue que

Ad(w−1k−1k′)H ′ = H ′.
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Observe que t = zs(H ′), uma vez que H ′ é regular e, se k0 ∈ K centraliza H ′ e Y ∈ t,
temos que

[Ad(k0)Y,H ′] = Ad(k0)[Y,Ad(k−1
0 )H ′] = Ad(k0)[Y,H ′] = Ad(k0)0 = 0,

de modo que Ad(k0)t ⊆ t e k0 ∈ M∗. Temos que w−1k−1k′ ∈ M∗ e Ad(w−1k−1k′) é um
elemento do grupo de Weyl que fixa um elemento regular, logo, é a identidade (Proposição
1.4.18). Segue que w−1k−1k′ ∈ M e k′M = kwM. Finalmente, temos que

(H ′,k′M) = (H,kM) · (γ ′′,w).

Considere o espaço Q obtido identificando os pontos das órbitas de Γ⋊W em treg×K/M.
A proposição anterior nos mostra que a projeção natural treg ×K/M → Q se identifica com
a aplicação Ψ : treg ×K/M → Sreg, uma vez que os pontos que têm mesma imagem por Ψ

devem estar numa mesma órbita de Γ⋊W . Pela Proposição 1.40 de [8], para mostrar que Ψ

é um recobrimento, basta mostrar que a ação de Γ⋊W é propriamente descontínua (veja a
Subseção A.3.1 para mais detalhes).

Lema 3.4.9. A ação à direita de Γ⋊W sobre treg ×K/M é propriamente descontínua.

Demonstração. Seja (H,kM) ∈ treg ×K/M. Observe que HW consiste de uma quantidade
finita de pontos e a imagem de H por Γ⋊W é igual a

⋃
w∈W

Hw−1 +Γ,

que é um reticulado segundo a Definição 1.3.10. Portanto, podemos escolher um aberto U
de treg contendo H tal que H(γ,w) = γ +w−1H ̸∈U para todo (γ,w) ∈ Γ⋊W diferente de
(0,1).

Por outro lado, para kM ∈ K/M, temos que a órbita kM ·W consiste de uma quantidade
finita de pontos, então basta mostrar que kM = kwM apenas se w = 1. É fácil ver que isto
ocorre se, e somente se, w ∈ M, mas, como W = M∗/M, isto é equivalente a dizer que
w = 1.

Teorema 3.4.10. Seja A ⊆ treg uma alcova, então a restrição Ψ|A×K/M é também um reco-
brimento de Sreg.

Demonstração. Pelo Teorema 3.4.7, temos que a ação de Γ⋊W pode levar qualquer ponto
de treg em A, de modo que ψ(A×K/M) = Sreg, ou seja, Ψ|A×K/M é sobrejetiva.
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Para y ∈ Sreg, existe V ⊆ Sreg aberto e contendo y tal que Ψ
−1(V ) é uma união de abertos

disjuntos Uα ⊆ treg ×K/M que são homeomorfos, via Ψ a V . Diminuindo V de forma
adequada, podemos assumir que V é conexo, de modo que cada Uα ou está contido em
A×K/M ou não o intercepta. Segue que a imagem inversa de V por Ψ|A×K/M é uma união
disjunta de abertos de A×K/M.

O próximo resultado nos mostra que, para estudar loops em S, basta considerar loops em
T p.

Proposição 3.4.11. Todo loop em S é homotópico a um loop da forma t 7→ expp(tγ) para
algum γ ∈ Γ.

Demonstração. Pelo Teorema 3.4.1, um loop qualquer de S é homotópico a um loop em
T p e, pelo Lema 3.4.2, temos que todo loop em T p é homotópico a um loop da forma
t 7→ expp(tγ) para algum γ ∈ Γ.

Sejam A ⊆ t uma alcova, H ∈ A e γ ∈ Γ−Γ0. Pelo Lema 13.38 de [3], existem γ
′ ∈ Γ0 e

w ∈W tais que
H ′ = w · (H + γ + γ

′) ∈ A,

mas H ′ ̸= H. Seja p(t) = H + t(H ′−H), t ∈ [0,1], de modo que p(0) = H e p(1) = H ′.
Pensando em M∗ como o normalizador de t em K0, se k ∈ M∗ representa w, seja k(t) um
caminho em K0 de 1 a k e defina

q(t) = (p(t),k(t)−1M) ∈ A×K/M. (3.28)

Observe que q(0) ̸= q(1), uma vez que p(0) ̸= p(1).

Teorema 3.4.12. O caminho Ψ ◦ q(t) é um loop em Sreg e é homotópico, em S, ao loop
t 7→ expp(tγ).

Demonstração. Observe inicialmente que

Ψ(q(1)) = Ψ(H ′,k−1M)

= k−1 expp(H
′)

= expp(w
−1w(H + γ + γ

′))

= expp(H + γ + γ
′)

= expp(H)

= Ψ(q(0)),
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logo, Ψ◦q é um loop. Temos que

Ψ(q(t)) = Ψ(p(t),k(t)−1M) = expp(Ad(k(t)−1)p(t)),

em que Ad(k(t)−1)p(t) começa em H e termina em H + γ + γ
′, logo, é homotópico em t ao

segmento t 7→ H + t(γ + γ
′), pois t é simplesmente conexo. Segue que Ψ◦q é homotópico a

t 7→ expp(H + t(γ + γ
′)) = exp(H)expp(t(γ + γ

′)).

Como podemos deformar exp(H) continuamente para a identidade 1 via s 7→ exp((1− s)H),
temos que Ψ ◦ q é homotópico a t 7→ expp(t(γ + γ

′)). Pela Observação 3.4.3, temos que
t 7→ expp(t(γ + γ

′)) é homotópico à composição dos loops t 7→ exp(tγ) e t 7→ exp(tγ ′), em
que o segundo desses loops é homotópico a um ponto pelo Teorema 3.4.4. Portanto, Ψ◦q é
homotópico, em S, ao loop t 7→ exp(tγ).

Para demonstrar o próximo resultado, precisamos de uma condição para determinar
quando um loop em um dado espaço topológico não é homotópico a um ponto a partir de
informações no recobrimento.

Lema 3.4.13. Sejam X e Y espaços topológicos conexos e π : Y → X um recobrimento.
Suponha que l é um loop homotópico a um ponto em X e seja l̃ seu levantamento em Y ,
então l̃ é um loop em Y .

Demonstração. Seja ls uma homotopia de l a um ponto que satisfaz

l0(t) = l(t), l1(t)≡ x ∈ X

Podemos levantar ls a uma homotopia l̃s em Y com extremidades fixadas (veja o Teorema
13.3 de [3]). Sendo l1 uma curva constante, temos que l̃1([0,1]) ⊆ π

−1(x), ou seja, l̃1 é
constante e igual a um ponto. Como l̃s é uma homotopia com extremos fixados, temos que l̃
deve ser um loop em Y .

Corolário 3.4.14. Se l é um loop em X e seu levantamento não é um loop em Y , então l não
pode ser homotópica a um ponto.

Vamos mostrar agora que S e Sreg têm o mesmo grupo fundamental. Mais especificamente,
vamos demonstrar o seguinte Teorema.

Teorema 3.4.15. Todo loop em S é homotópico a um loop em Sreg. Um loop em Sreg é
homotópico, em S, a um ponto apenas se for homotópico, em Sreg, a um ponto.
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Para demonstrar estes resultados, precisamos de alguns Lemas auxiliares. O Lema a
seguir foi retirado de [3] e será enunciado para referência futura. Mudamos ligeiramente a
notação para servir melhor a nossos propósitos.

Lema 3.4.16 (Lema 13.29 de [3]). Sejam L,Y e D variedades compactas, sendo que D pode
ter bordo, que satisfazem

dim(Y )+dim(D)< dim(L).

Sejam f : Y → L e g : D → L funções diferenciáveis. Suponha que E ⊆ D é fechado e a
imagem g(E) de E por g é disjunta de f (Y ), então g é homotópica a uma função g′ : D → L
tal que g e g′ coincidem em E, mas g′(D)∩ f (Y ) = /0.

Como consequência do Lema 13.28 de [3], temos o seguinte resultado.

Lema 3.4.17. Existe uma subvariedade compacta N ⊆U tal que Ssing ⊆ π(N) e

dim(π(N))≤ dim(S)−3.

Demonstração. Sejam M1, . . . ,Mn variedades compactas e f j : M j →U , j = 1, . . . ,n, funções
diferenciáveis conforme o Lema 13.28 de [3]. Temos que

dim(M j)≤ dim(U)−3 e Using ⊆
n⋃

j=1

f j(M j).

Defina N = ∪n
j=1 f j(M j), sendo que N é compacta porque é uma união finita de compactos.

Segue que
Ssing = π(Using)⊆ π(N)

e, além disso,

dim(π(N))≤ dim(N)−dim(K)

≤ dim(U)−3−dim(K)

= dim(S)−3.

Com estes dois lemas, temos o suficiente para fazer a demonstração do Teorema 3.4.15.

Demonstração do Teorema 3.4.15. Seja l um loop qualquer em S, podemos pensar em l
como uma função g : S1 → S. Vamos aplicar o Lema 3.4.16 com D = S1, L = S, E = /0,
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Y = π(N) (como no Lema 3.4.17) e escolheremos f como a inclusão π(N) → S. Isto é
possível porque

dim(π(N))+dim(S1)≤ dim(S)−3+1 < dim(S).

O Lema 3.4.16 então nos diz que podemos deformar g continuamente a uma aplicação
g′ : S1 → S tal que g′(S1) não intercepta π(N)⊇ Ssing. Ou seja, obtemos uma homotopia do
loop l = g a um loop l′ = g′ ⊆ Sreg.

Se l é um loop em Sreg que é homotópico a um ponto em Sreg, também será homotópico a
um ponto em S, já que Sreg ⊆ S. Suponha agora que l é um loop em Sreg que é homotópico, em
S, a um ponto. Vamos mostrar que l também é homotópico, em Sreg, a um ponto. Podemos
pensar na homotopia, em S, de l a um ponto como uma aplicação contínua g : D → S, em
que D é um disco fechado no plano tal que g(∂D) = l e a imagem do centro de D é o fim da
homotopia. Podemos aplicar o Lema 3.4.16 com E = ∂D, D como o disco descrito acima,
L = S, Y = π(N) e f como a inclusão π(N)→ S, uma vez que

dim(π(N))+dim(D)≤ dim(S)−3+2 = dim(S)−1 < dim(S).

Existe então uma aplicação g′ : D → S tal que g′|∂D = l = g|∂D, mas g′(D) não intercepta
π(N)⊇ Ssing. Em outras palavras, g′ é uma homotopia de l a um ponto em Sreg.

Finalmente, temos todos os requisitos para provar o seguinte Teorema.

Teorema 3.4.18. Seja γ ∈ Γ−Γ0 e l(t) = expp(tγ), então l não é homotópico a um ponto.

Demonstração. Considere o caminho q em A×K/M construido na equação (3.28), em que
A ⊆ t é uma alcova. Lembre-se que Ψ|A×K/M é um recobrimento (Teorema 3.4.10) e que
Ψ◦q é um loop em Sreg que é homotópico, em S, a t 7→ expp(tγ) (Teorema 3.4.12). Como
q não é um loop em em A×K/M, temos que Ψ◦q não é homotópico, em Sreg, a um ponto
(Corolário 3.4.14). Como S e Sreg têm grupos fundamentais isomorfos, segue do Teorema
3.4.15, que Ψ◦q não é homotópico, em S a um ponto, logo, t 7→ expp(tγ) não é homotópico,
em S, a um ponto.

Segue que o homomorfismo sobrejetivo

Γ ≃ π1(T p)−→ π1(S)

do Teorema 3.4.1 tem como núcleo o reticulado Γ0, de modo que é válido o seguinte Teorema.
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Teorema 3.4.19 (Teorema 5.2 de [2]). Se S é um espaço simétrico compacto, então

π1(S)≃ Γ/Γ0.

Como consequência deste teorema, e dos reticulados calculados nas Subseções 3.3.1 e
3.3.2, temos que π1(S2)≃ 1 (como esperado) e π1(RP2)≃ Z/2Z. Para finalizar esta Seção,
enunciamos algumas consequências do Teorema anterior.

Corolário 3.4.20 (Corolário 5.3 de [2]). Se S é simplesmente conexo, então

Γ = Γ0, D =D0, W q =W q
0

Segue que cada uma das órbitas focais F(H) são conexas.

Demonstração. Está claro que Γ = Γ0, uma vez que 1 = π1(S)≃ Γ/Γ0. O fato que W q =W q
0

segue do Teorema 1.3.22 e a igualdade D =D0 segue da demonstração do mesmo Teorema.
As órbitas focais foram definidas na equação (3.17) e elas são conexas porque estão em
bijeção com o grupo quociente W q/W q

0 (Teorema 3.3.6).

Por definição, se w ∈ W q, temos que wH −H ∈ Γ, isto nos fornece uma maneira de
construir uma aplicação φ : W q → Γ/Γ0 ≃ π1(S) dada por φ(w) = wH −H +Γ0. A Proposi-
ção 1.3.18 nos mostra que o grau de injetividade de φ é medido pelo subgrupo W q

0 de W q.
Suponha que w,w′ ∈W q e que

wH −H +Γ0 = w′H −H +Γ0 ⇐⇒ wH +Γ0 = w′H +Γ0.

Portanto, w−1w′H +Γ0 = H +Γ0, ou seja, w−1w′H ∈ H +Γ0, de modo que w−1w′ ∈ W q
0 .

Consideramos então a aplicação injetiva

φ : W q/W q
0 −→ Γ/Γ0 ≃ π1(S)

w 7−→ wH −H +Γ0

Lembre-se que as componentes conexas da órbita focal F(H) estão em bijeção com o
grupo quociente W q/W q

0 (Teorema 3.3.6). Vamos mostrar a seguir que cada componente
conexa de F(H) corresponde a uma classe de homotopia de curvas entre p e q = expp(H).
Seja γH = expp(tH) e denote por πp,q o conjunto das classes de homotopia de curvas que
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vão de p a q. Considere a aplicação

ν : πp,q −→ π1(S)

[α] 7−→ [α ∗ γ
−1
H ],

em que γ
−1
H denota a geodésica γH percorrida na ordem reversa e ∗ denota a concatenação de

curvas, isto é, em α ∗ γ
−1
H , primeiro percorremos α e depois γ

−1
H .

Lema 3.4.21. A aplicação ν : πp,q → π1(S) é uma bijeção.

Demonstração. A condição [α ∗ γ
−1
H ] = [α ′ ∗ γ

−1
H ] implica que existe uma homotopia entre

α e α
′ com extremidades fixadas, ou seja, [α] = [α ′]. Segue que ν é injetiva.

Por outro lado, seja ξ : π1(S)→ πp,q dada por ξ ([α]) = [α ∗ γH ], então

ν(ξ ([α])) = ν([α ∗ γH ])

= [α ∗ γH ∗ γ
−1
H ]

= [α].

Portanto, ξ é uma inversa à direita de ν , o que implica que ν é sobrejetiva.

A composição ν
−1 ◦ φ é uma aplicação injetiva W q/W q

0 → πp,q, o que nos dá uma
correspondência entre componentes conexas de F(H) e classes de homotopias de curvas
entre p e q. Em particular, se S é simplesmente conexa, há apenas um elemento em πp,q, de
modo que o grupo quociente W q/W q

0 é trivial, ou seja, W q =W q
0 e F(H) tem apenas uma

componente conexa. Dessa forma, reobtemos parte dos resultados do Corolário 3.4.20.
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3.5 Locus de Corte e Locus Conjugado

Nesta Seção vamos obter o locus de corte de um espaço simétrico compacto. O locus
conjugado foi definido na Seção 2.2 e o que chamamos de locus de corte aqui é comumente
chamado de "cut locus" em inglês. Denotaremos S =U/K e manteremos também as outras
notações da seção anterior.

Seja α : [a,b]→ S uma curva diferenciável, definimos o seu comprimento por

ℓ(α) =
∫ b

a

√
⟨α ′(t),α ′(t)⟩ dt

Um segmento de geodésica γ : [a,b]→ S ligando os pontos p = γ(a) e q = γ(b) é chamada
de geodésica minimizante se satisfaz

ℓ(γ)≤ ℓ(α)

para toda curva α ligando os pontos p e q.
Em uma variedade Riemanniana completa as geodésicas estão definidas para qualquer

valor de parâmetro. Considere então a geodésica γ : [0,∞) → S. Pela Proposição 3.6 do
capítulo 3 de [10], temos que, para t > 0 suficientemente pequeno, o segmento geodésico
γ([0, t]) é minimizante. Além disso, se γ([0, t1]) não é minimizante, então γ([0, t2]) não é
minimizante para nenhum t2 > t1. Por continuidade, o conjunto maximal dos pontos t ∈ [0,∞)

tais que a geodésica γ([0, t]) é minimizante deve ser da forma [0, t0] ou [0,∞).

Definição 3.5.1. Se existe t0 > 0 tal que γ([0, t0]) é uma geodésica minimizante e γ([0, t1])
não é minimizante para t1 > t0, dizemos que γ(t0) é um ponto de corte de p = γ(0) ao longo
de γ . O conjunto dos pontos de corte de p ao longo de todas as geodésicas iniciando em p é
chamado de locus de corte de p e é denotado C(p).

Exemplo 3.5.2. Para ilustrar a Definição 3.5.1 e as outras ideias desta Seção, considere a
esfera S2 ⊆ R3. Uma geodésica que se inicia em um ponto p ∈ S2 deixa de ser minimizante
assim que passa pelo antípoda −p. Na Figura 3.4 abaixo, vemos que a geodésica em azul
conecta p a q, porém, a geodésica em vermelho cumpre o mesmo papel percorrendo um
caminho mais curto. As duas geodésicas fazem parte do mesmo grande círculo.
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Figura 3.4 : Geodésicas na Esfera.

Pela figura, já somos capazes de perceber que o locus de corte de p em S2 consiste
exatamente de seu antípoda −p.

Podemos nos referir a um segmento de geodésica minimizante entre dois pontos como
geodésica minimizante entre os pontos em questão. Vamos agora demonstrar algumas propri-
edades do locus de corte de um ponto em um espaço homogêneo Riemanniano. Inicialmente,
temos o seguinte resultado.

Lema 3.5.3. Sejam N uma variedade Riemanniana e γ : [a,b]→N um segmento de geodésica
minimizante ligando os pontos p = γ(0) e q = γ(1). Se ϕ : N → N é uma isometria, então
ϕ ◦ γ é uma geodésica minimizante ligando os pontos ϕ(p) e ϕ(q).

Demonstração. Seja α uma curva que conecta ϕ(p) e ϕ(q), então ϕ
−1 ◦α é uma curva que

conecta p e q, logo, ℓ(γ)≤ ℓ(ϕ−1 ◦α), já que γ é minimizante. Como isometrias preservam
o comprimento de curvas, temos que

ℓ(ϕ ◦ γ)≤ ℓ(ϕ ◦ϕ
−1 ◦α) = ℓ(α).

Segue que ϕ ◦ γ([a,b]) é minimizante.

Corolário 3.5.4. Sejam p ∈ S e ϕ : S → S uma isometria, então ϕ(C(p)) =C(ϕ(p)).
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Demonstração. Seja γ(t0) ∈ C(p). Pelo Lema anterior, temos que ϕ(γ([0, t0])) é minimi-
zante, uma vez que γ([0, t0]) é minimizante. Se t1 > t0, então ϕ(γ([0, t1])) deixa de ser
minimizante, pois, caso contrário, γ([0, t1]) seria minimizante, o que é impossível porque
γ(t0) é um ponto de corte. Segue que ϕ(γ(t0)) ∈C(ϕ(p)).

Suponha agora que γ̃(t0) ∈C(ϕ(p)). Podemos escrever γ̃ = ϕ ◦ γ . Pelo Lema anterior e
pelos argumentos do paragrafo anterior, γ(t0) ∈C(p), de modo que γ̃(t0) ∈ ϕ(C(p)).

Segue do Corolário anterior que, num espaço homogêneo Riemanniano U/K os locus de
corte são todos isométricos, ou seja, se conhecemos C(p) e queremos calcular C(q), basta
escolher u ∈U tal que up = q e temos

C(q) =C(up) = uC(p).

De modo que basta estudar o locus de corte de apenas um ponto.
Relembre que dois pontos de H,H ′ ∈ t são chamados de Γ−equivalentes se H −H ′ ∈ Γ

e são chamados de equivalentes focais se, além disso, |H|= |H ′|. Além disso, relembre dos
conjuntos

D = {H ∈ t : |H|< |H + γ|, para todo γ ∈ Γ\{0}}
D = {H ∈ t : |H| ≤ |H + γ|, para todo γ ∈ Γ}

definidos na Subseção 1.3.3, em que D é o interior de D (Proposição 1.3.20). Antes de
determinar o locus de corte de S, vamos determiná-lo em T p para depois aplicar a ação de K
e obter o locus de corte em S.

Proposição 3.5.5. Seja t≤ u um subespaço de Cartan e T ≤U o toro gerado por t. O locus
de corte de p no flat maximal T p é igual a expp(∂D).

Demonstração. Seja expp(H) ∈C(p), então expp(tH) é uma geodésica minimizante para
t ∈ [0,1] e deixa de ser minimizante para t > 1. Portanto, os pontos tH, t ∈ [0,1], devem ter
normas minimais entre seus Γ−equivalentes, ou seja, tH ∈ D para t ∈ [0,1] e tH ̸∈ D para
t > 1. Segue que H ∈ ∂D.

Seja agora H ∈ ∂D. Sendo D convexo, temos que os pontos tH têm normas minimais
entre seus Γ−equivalentes para 0 ≤ t ≤ 1, logo, a geodésica expp(tH) é minimizante para
t ∈ [0,1]. Como ∂D = D−D, existe γ ∈ Γ não nulo tal que Y = H + γ é um equivalente
focal de H (veja a Proposição 1.3.20). Pelo Lema 1.3.19, temos que, para qualquer ε > 0,
(1+ ε)H e Y + εH são equivalentes focais, então

expp((1+ ε)H) = expp(Y + εH).
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Além disso, |(1+ ε)H|> |Y + εH|, de modo que expp(tH) não pode ser geodésica minimi-
zante para t > 1. Portanto, H ∈C(p).

Para caracterizar o locus de corte de p em S precisamos determinar qual a relação ele
tem com o locus de corte de p em T p. Em uma variedade Riemannina, temos a noção de
distância. A distância dN(p,q) entre dois pontos p e q de uma variedade N é definido como
o ínfimo dos comprimentos de todas as curvas que conectam p e q. Portanto, se γ é uma
geodésica minimizante de p a q, então dN(p,q) = ℓ(γ). Segue do Lema 3.5.3 que isometrias
preservam a função distância, uma vez que preservam comprimentos de curvas.

Se N′ ⊆ N é uma subvariedade, podemos obter uma noção de distância em N′ por meio
da restrição da função distância de N a N′. Uma outra noção de distância pode ser obtida
considerando apenas a variedade N′ sem levar em conta o espaço ambiente N em que está
inserida. Sejam p,q ∈ N′, definimos a distância intrínsica dN′(p,q) como o ínfimo dos
comprimentos de curvas contidas em N′ e que conectam p e q. Como todas as curvas de N′

que conectam p e q são também curvas de N, temos que

dN(p,q)≤ dN′(p,q).

Lema 3.5.6. Sejam dS e dT as distâncias intrínsecas de S e de T p respectivamente, então dT

coincide com a restrição de dS a T p.

Demonstração. Sejam x,y ∈ T p, então dS(x,y)≤ dT (x,y). Como T age transitivamente por
isometrias (de S) em T p, podemos supor, sem perda de generalidade, que x = hp e que y = p
para algum h ∈ T . Como a exponencial de U é sobrejetiva, escolha X ∈ s que satisfaça
expp(X) = hp e que tenha norma mínima. A geodésica expp(tX) conecta p a hp e, pela
minimalidade de X deve ser minimizante para 0 ≤ t ≤ 1. Esta afirmação segue do Corolário
3.9 do capítulo 3 de [10], uma vez que uma curva que conecta dois pontos em uma variedade
com comprimento mínimo deve ser uma geodésica e dentre as geodésicas que conectam p e
hp, expp(tX) tem comprimento minímo e igual a |X |. Segue que dS(hp, p) = |X |.

Seja H ∈ t com norma mínima satisfazendo hp = expp(H). De maneira similar ao
parágrafo anterior, mostra-se que dT (hp, p) = |H|. Com estas construções, temos que

expp(X) = expp(H) = hp,

de modo que X ∈ F(H + γ) para algum γ ∈ Γ pela Proposição 3.3.3. Como F(H + γ) é a
órbita da ação de Kq sobre H+γ e K age por isometrias em s, temos que |X |= |H+γ| ≥ |H|,
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uma vez que H tem norma mínima. Finalmente, temos a desigualde reversa

|X |= dS(hp, p)≥ dT (hp, p) = |H|.

Teorema 3.5.7. Seja S =U/K um espaço simétrico compacto e p = 1K. O locus de corte
C(p) de p em S coincide com o conjunto K expp(∂D).

Demonstração. Denote por CT (p) e CS(p) os locus de corte de p em T p e em S respecti-
vamente. Pelo Lema 3.5.6, a distância intrínseca de T p coincide com a distância induzida
em T p pela distância intrínseca de S, portanto, CT (p) ⊆CS(p). Como K fixa p, segue do
Corolário 3.5.4 que K age sobre o locus de corte de p, de modo que KCT (p)⊆CS(p). Como
Ad(K)t= s, esta inclusão é, na verdade, uma igualdade, ou seja,

CS(p) = KCT (p) = K expp(∂D),

aplicando a Proposição 3.5.5.

Relembre agora dos conjuntos

D0 = {H ∈ t : α(H)< π, para toda α ∈ ∆σ (u, t)},
D0 = {H ∈ t : α(H)≤ π, para toda α ∈ ∆σ (u, t)},

definidos na Subseção 1.3.3. Mostramos na Seção 2.4 que o locus conjugado primário de p
em T p coincide com expp(∂D0) e no Teorema 2.4.6 que o locus conjugado primário de p
em S é órbita K expp(∂D0). O próximo Teorema caracteriza a topologia de S com base nos
seus locus de corte e locus conjugado.

Teorema 3.5.8. Sejam S um espaço simétrico compacto e p ∈ S, então S é simplesmente
conexo se, e somente se, o locus de corte de p coincide com o locus conjugado primário de
p.

Demonstração. Denote por C1(p) o locus conjugado primário de p em S. Temos que
C1(p) = K expp(∂D0) e C(p) = K expp(∂D), então

C(p) =C1(p) ⇐⇒ D =D0.

Se S é simplesmente conexa, o Teorema 3.4.19 implica que Γ = Γ0 e segue da demonstração
do Teorema 1.3.22 que D =D0.
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Por outro lado, suponha que C(p) =C1(p) ou, equivalentemente, que D =D0, vamos
mostrar que Γ ⊆ Γ0. Seja H ∈ t e defina

m0 := min
γ0∈Γ0

|H + γ0|, m := min
γ∈Γ

|H + γ|.

vamos mostrar que m0 = m. Considere a demonstração do item 1 da Proposição 1.3.20,
restringindo função f a Γ0 obtemos que existe γ0 ∈ Γ0 tal que m0 = f (γ0) = |H + γ0|.

O Teorema 1.3.22 implica que existe um domínio fundamental de Γ0 contido entre D0

e D0. Se H + γ0 ̸∈ D0, existe γ1 ∈ Γ0 tal que H + γ0 + γ1 ∈ D0, mas, como D0 = D, isto
implica que |H + γ0 + γ1|< |H + γ0|, o que é absurdo já que |H + γ0| é minimal. Portanto,
H + γ0 ∈ D0. Pela definição de D, segue que

m0 = |H + γ0|= min
γ∈Γ

|(H + γ0)+ γ|= min
γ∈Γ

|H + γ|= m,

uma vez que Γ0 ⊆ Γ.
Seja γ ∈ Γ e considere H = γ nas discussões acima. Temos que

min
γ0∈Γ0

|γ + γ0|= min
γ ′∈Γ

|γ + γ
′|= 0,

logo, γ ∈ Γ0. Segue que Γ = Γ0 e, portanto, S é simplesmente conexa.

3.5.1 Locus Conjugado e de Corte na Esfera S2

Vamos descrever os Locus Conjugado e de Corte de p = (0,0,1) em S2. Lembre-se da
Subseção 3.3.1 em que descrevemos o sistema de raízes e reticulados associados. Para tanto,
basta observar que

D0 = {H ∈ t : |α(H)|< π}= {tX2 : t ∈ (−π,π)}

é um intervalo centrado na origem e com tamanho 2π em t= ⟨X2⟩. Como ∂D0 = {±πX2},
segue que o locus conjugado primário de p em T p coincide com {−p}= expp(±X2). Como
K fixa −p, locus conjugado primário de p em S2 contém apenas −p (Teorema 2.4.6). Os
únicos pontos conjugados a p são p e −p, uma vez que expp(Γ1 −0) = {±p}.

Como Γ = 2πZX2, se H ′ ∈ t é tal que |H ′|> π , existe γ ∈ Γ tal que |H ′+ γ|< π . Neste
caso, dado qualquer 0 ̸= γ

′ ∈ Γ, temos que |H ′+ γ + γ
′|> |H ′+ γ|. Portanto,

D = {H ∈ t : |H|< |H + γ|,γ ∈ Γ−0}=D0



136 Espaços Simétricos Compactos

e segue que o Locus de Corte de p coincide com o Locus conjugado primário, o que já era
esperado, já que S2 é simplesmente conexo (Teorema 3.5.8). A região D=D0 é representada
na Figura 3.2 pelo segmento amarelo cujo ponto médio é a origem de s. Outra forma de obter
que π1(S2)≃ 1 é observando que Γ = Γ0, logo, é uma consequência do Teorema 3.4.19.

3.5.2 Locus Conjugado e de Corte no Plano Projetivo RP2

Usaremos aqui as mesmas notações da Subseção 3.3.2 em que descrevemos o sistema de
raízes e os reticulados associados a RP2. Vamos descrever os locus conjugado e de corte
de [p] em RP2, em que p = (0,0,1) ∈ S2. Observe que D0 depende apenas da estrutra do
sistema de raízes, então D0 = {tX2 : t ∈ (−π,π)} coincide com o exemplo da esfera, de modo
que ∂D0 = {±πX2}. Como expp(∂D0) = {±p}, temos que exp[p](∂D0) = {[p]}, logo, o
Locus conjugado primário de [p] em T [p] contém apenas o ponto [p], em que T = ⟨exp(t)⟩.
Como K fixa [p], o Locus conjugado primário de [p] em S contém apenas [p] (Teorema 2.4.6).
O conjunto D0 está representado na Figura 3.3 como o segmento rosa compreendido entre H
e −H, note que ele contém o segmento amarelo, o qual representa D.

O Locus de Corte, no entanto, muda em relação ao exemplo anterior, uma vez que
Γ = πZX2 muda em relação ao exemplo da esfera. Temos que

D = {tX2 : t ∈ (−π/2,π/2)},

então ∂D = {±(π/2)X2}. Segue que o Locus de Corte de [p] em T [p] é igual a {[q]}, com
q = (1,0,0) = expp((π/2)X2). Vamos determinar agora o Locus de corte K′[q] de [p] em
S. Os elementos de K e a isometria J deixam invariante o plano xy que contém q e Kq é o
grande círculo vermelho na Figura 3.5, ele está contido no plano xy e passa por q. Além
disso, J preserva este grande círculo, de modo que JKq = Kq. Como K′ = K∪JK, K′q = Kq
e segue que K′[q] = π(K′q), ou seja, K′[q] é a projeção do grande círculo K′q de S2 em
RP2. Observe que, neste caso, o locus conjugado primário e o locus de corte de [p] não
coincidem, isto já era esperado, pois RP2 não é simplesmente conexo (veja o Teorema 3.5.8).
Na verdade, π1(RP2) ≃ Z/2Z, pelo Teorema 3.4.19 (observe que usamos os reticulados
calculados na Subseção 3.3.2).
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Figura 3.5 : Locus de corte de [p] no plano projetivo RP2.





Apêndice A

A.1 Isometrias e conexão de Levi-Cività

Seja φ : M → N uma aplicação diferenciável entre variedades, dizemos que dois campos de
vetores X em M e Y em N são φ−relacionados se dφp(X(p)) = Y (φ(p)) para todo p ∈ M.
Além disso, se φ é difeomorfismo, existe um único campo em N φ−relacionado a um dado
campo X de M, que é denotado por φ∗X e definido da seguinte forma:

(φ∗X)(q) = (dφ)φ−1(q)X(φ−1(q)).

O campo φ∗X é chamado de pushfoward de X via o difeomorfismo φ .

Teorema A.1.1. Sejam (M,g,∇g) e (N,h,∇h) Variedades Riemannianas equipadas com as
respectivas conexões de Levi-Cività e seja ϕ : M → N uma isometria local. Seja U ⊆ M um
aberto tal que ϕ : U → ϕ(U) é uma isometria, então

ϕ∗∇
g
XY = ∇

h
ϕ∗X ϕ∗Y

para X ,Y ∈ χ(U) campos de vetores diferenciáveis definidos em U.

Demonstração. Por simplicidade, vamos supor que ϕ é uma isometria. Observe inicialmente
que h(ϕ∗X ,ϕ∗Y ) = g(X ,Y ). Pela fórmula de Koszul (equação (9) do cap. 2 de [10]), temos
que

2h(ϕ∗Z,∇h
ϕ∗X ϕ∗Y ) = (ϕ∗Y )h(ϕ∗X ,ϕ∗Z)+(ϕ∗X)h(ϕ∗Z,ϕ∗Y )

− (ϕ∗Z)h(ϕ∗X ,ϕ∗Y )−h(ϕ∗[X ,Z],ϕ∗Y )

−h(ϕ∗[X ,Z],ϕ∗X)−h(ϕ∗[X ,Y ],ϕ∗Z),

em que usamos que o pushforward comuta com o colchete de campos. Basta mostrar que
[(ϕ∗Y )h(ϕ∗X ,ϕ∗Z)](q) = Y g(X ,Z)(ϕ−1(q)) para todo q ∈ N e quaisquer campos diferen-
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ciáveis X ,Y,Z de M, pois, neste caso, obteremos que 2g(Z,∇g
XY ) = 2h(ϕ∗Z,ϕ∗∇

g
XY ), donde

segue que ϕ∗∇
g
XY = ∇

h
ϕ∗X ϕ∗Y .

Seja yt o fluxo de Y em algum aberto de M e ỹt = ϕ ◦yt ◦ϕ
−1. É fácil ver que (ϕ∗Y )(q) =

d
dt

ỹt(q)|t=0, então

[(ϕ∗Y )h(ϕ∗X ,ϕ∗Z)](q) =
d
dt

h(ϕ∗X ,ϕ∗Z)(ỹt(q))
∣∣∣
t=0

=
d
dt

g(X ,Z)(yt(ϕ
−1(q)))

∣∣∣
t=0

= [Y g(X ,Z)](ϕ−1(q)).

Corolário A.1.2. Seja V (t) ∈ Tα(t)M um campo paralelo ao longo da curva α(t), então
W (t) = (dϕ)α(t)V (t) é um campo paralelo ao longo de de ϕ ◦α .

Demonstração. Seja (x,U) uma carta coordenada de M, em que U ⊆Rn e x : U → M. Nesta

carta, denote por (x1(t), . . . ,xn(t)) as coordenadas locais de α e X j =
∂

∂x j
. Escrevendo

V (t) = ∑
j

v jX j, temos que

DV (t)
dt

= ∑
j

dv j

dt
X j +∑

i, j

dxi

dt
v j

∇
g
Xi

X j.

Denotando β (t) = ϕ ◦α(t), podemos escrever

W (t) = ∑
j

v j(t)(dϕ)α(t)X j(α(t)) = ∑
j

v j(t)(ϕ∗X j)(β (t)),

logo,

DW (t)
dt

= ∑
j

dv j

dt
(ϕ∗X j)+∑

i, j

dxi

dt
v j

∇
h
ϕ∗Xi

ϕ∗X j

= ϕ∗

(
DV (t)

dt

)
= 0.

O operador curvatura de uma Variedade Riemanniana é o operador

R(X ,Y )Z = ∇Y ∇X Z −∇X ∇Y Z +∇[X ,Y ]Z,
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definido na equação (2.1), em que ∇ denota a conexão de Levi-Cività.

Corolário A.1.3. Seja ϕ uma isometria local entre as Variedades Riemannianas (M,g,∇g)

e (N,h,∇h) equipadas com as respectivas conexões de Levi-Cività, e sejam R o operador
curvatura de M e R̃ o operador curvatura de N. Então

ϕ∗R(X ,Y )Z = R̃(ϕ∗X ,ϕ∗Y )ϕ∗Z.

Demonstração. Este resultado é consequência da aplicação repetida do Teorema A.1.1.

ϕ∗R(X ,Y )Z = ϕ∗(∇
g
Y ∇

g
X Z −∇

g
X ∇

g
Y Z +∇

g
[X ,Y ]Z)

= ∇
h
ϕ∗Y ϕ∗∇

g
X Z −∇

h
ϕ∗X ϕ∗∇

g
Y Z +∇

h
ϕ∗[X ,Y ]ϕ∗Z

= ∇
h
ϕ∗Y ∇

h
ϕ∗X ϕ∗Z −∇

h
ϕ∗X ∇

h
ϕ∗Y ϕ∗Z +∇

h
[ϕ∗X ,ϕ∗Y ]ϕ∗Z

= R̃(ϕ∗X ,ϕ∗Y )ϕ∗Z.

Corolário A.1.4. Sejam p ∈ M e ϕ : U ⊆ M → N uma isometria local entre variedades
Riemannianas, em que U é um aberto contendo p. Se γ(t) é uma geodésica em M, com
γ(0)= p, então, escolhendo um domínio adequado para γ , temos que ϕ ◦γ(t) é uma geodésica
de N.

Demonstração. Seja I = (−δ ,δ ) o domínio de γ , em que δ > 0 é tal que γ(I) ⊆ U . Este
resultado segue do fato que uma isometria preserva campos paralelos. Sendo γ

′(t) paralelo
ao longo de γ , dϕγ(t)γ

′(t) é o vetor tangente da curva ϕ ◦ γ(t) e é paralelo ao longo de ϕ ◦ γ

pelo Corolário A.1.2, logo, ϕ ◦ γ é uma geodésica.

Lema A.1.5. Um espaço homogêneo Riemanniano é completo como espaço métrico.

Demonstração. Seja M um espaço homogêneo riemanniano e xn uma sequência de Cauchy
em M, ou seja, dado ε > 0, existe N ∈ N tal que

n,m ≥ N =⇒ d(xn,xm)< ε. (A.1)

Seja p ∈ M. Para cada n, existe uma isometria gn tal que gn(p) = xn. Dado, ε > 0, fixe
N ∈ N que satisfaz (A.1); para m ≥ N, temos

ε > d(xN ,xm) = d(gN(p),xm)

= d(p,g−1
N xm).
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Segue que, se m ≥ N, temos g−1
N (xm) ∈ Bε(p), ou seja, xm ∈ gN(Bε(p)) = Bε(gN(p)). Logo,

escolhendo ε suficientemente pequeno para que B = Bε(gN(p)) seja compacto, existe uma
subsequência convergente de xn, donde segue que xn é convergente.

Lema A.1.6. Uma isometria que fixa pontualmente um aberto da Variedade Riemanniana
completa M é a identidade.

Demonstração. Seja ϕ uma isometria e U ⊆ M um aberto cujos pontos são fixados por ϕ .
Sejam u ∈U , q um ponto qualquer de M e γ uma geodésica conectando u e q. Como ϕ fixa
a porção de γ que está em U , deve fixar γ por inteiro, logo, fixa q. Segue que ϕ = id.

Lema A.1.7. Seja ϕ : V ⊆ M → N uma isometria local entre variedades Riemannianas e
p ∈ M . Seja U ⊆ TpM uma berto de 0 tal que expp(U)⊆V e dϕp(U) está no domínio de
expϕ(p), então

ϕ ◦ expp |U = expϕ(p) ◦dϕp|U

Demonstração. Este resultado segue fazendo uma comparação das geodésicar de N inici-
ando em ϕ(p). Para v ∈ TpM escolhido adequadamente e s ∈ (−δ ,δ ), temos que σ(s) =
ϕ(expp(sv)) é uma geodésica que satisfaz σ(0) = ϕ(p) e σ

′(0) = dϕp(v). Por outro lado,
γ(s) = expϕ(p)(sdϕp(v)) satisfaz γ(0) = p e γ

′(0) = dϕp(v), ou seja, σ(s) = γ(s), o que
demonstra o Lema.

No próximo Teorema usamos as ideias de formas diferenciais em uma variedade para
construir uma métrica bi-invariante em um grupo de Lie compacto e conexo. Para os detalhes
que não forem expostos aqui sobre formas diferenciais, indicamos o capítulo 4 de [14].

Se ω é uma forma diferencial em uma variedade G e f : G → G é uma função diferenciá-
vel, denotamos por f ∗ω o pushforward de ω por f . Para a ∈ G, temos, em detalhes,

( f ∗ω)(a)(v1, . . . ,vn) = ω( f (a))(d fav1, . . . ,d favn),

em que v1, . . . ,vn ∈ TaG.
Uma forma ω é chamada de invariante à esquerda ou invariante à direita se, respecti-

vamente E∗
a ω = ω ou D∗

aω = ω , em que Ea e Da denotam a multiplicação à esquerda e à
direita de G respectivamente. Em detalhes, esta condição sigifica que

ω(a)(v1, . . . ,vn) = (E∗
g ω)(a)(v1, . . . ,vn) = ω(ga)((dEa)gv1, . . . ,(dEa)gvn),

ω(a)(v1, . . . ,vn) = (D∗
gω)(a)(v1, . . . ,vn) = ω(ag)((dDa)gv1, . . . ,(dDa)gvn).

Teorema A.1.8. Seja G um grupo de Lie compacto e conexo, então existe uma métrica
bi-invariante em G.
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Demonstração. Esta demonstração é baseada no exercício 7 do capítulo 1 de [10]. Primeiro,
vamos mostrar que sempre existe uma forma invariante à esquerda em G. Seja ω0 um tensor
alternado em T1G = g e defina

ω(a)(v1, . . . ,vn) = ω0((dEa−1)av1, . . . ,(dEa−1)avn).

As equações a seguir mostram que ω é invariante à esquerda.

(E∗
g ω)(a)(v1, . . . ,vn) = ω(ga)((dEg)av1, . . . ,(dEg)avn)

= ω0((dE(ga)−1)ga(dEg)av1, . . . ,(dE(ga)−1)ga(dEg)avn)

= ω0((dEa−1)av1, . . . ,(dEa−1)avn)

= ω(a)(v1, . . . ,vn).

Seja agora n = dim(G) e ω uma n−forma invariante à esquerda em G. Observe que

E∗
g D∗

aω = D∗
aE∗

g ω = D∗
aω,

uma vez que Eg◦Da =Da◦Eg, logo, D∗
aω é também invariante à esquerda. Sendo a dimensão

do espaço vetorial das n−formas em G unidimensional, devemos ter que D∗
aω = f (a)ω para

alguma função contínua f : G → R−{0}. A função f deve ser um homomorfismo, uma vez
que

f (ab)ω = D∗
abω

= D∗
bD∗

aω

= f (a)D∗
bω

= f (a) f (b)ω.

Como G é compacto e o único subgrupo compacto de R−{0} é {1}, temos que f ≡ 1 e
segue que ω é também invariante à direita.

Construimos agora uma métrica bi-invariante em G da seguinte forma. Seja ⟨,⟩ uma
métrica invariante à esquerda em G (foi mostrado na Seção 2.1 que uma tal métrica sempre
existe) e defina

(u,v)y =
∫

G
⟨(dDx)yu,(dDx)yv⟩yxω

Como a função ⟨(dDx)yu,(dDx)yv⟩yx que depende de x não tem singularidades, a compaci-
dade de G garante que (,) sempre assume valores finitos. As própriedades de produto interno
seguem do fato que ⟨,⟩ é uma métrica e da linearidade da integral.
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Vamos verificar agora que esta métrica é bi-invariante. Primeiro, a invariância à direita.

((dDg)yu,(dDg)yv)yg =
∫

G
⟨(dDx)yg(dDg)yu,(dDx)yg(dDg)yv⟩ygxD∗

gω

=
∫

G
⟨(dDgx)yu,(dDgx)yv⟩ygxD∗

gω

=
∫

G
⟨(dDx)yu,(dDx)yv⟩yxω

= (u,v)y

A invariância à esquerda segue da seguintes equações.

((dEg)yu,(dEg)yv)gy =
∫

G
⟨(dDx)gy(dEg)yu,(dDx)gy(dEg)yv⟩gyxE∗

g ω

=
∫

G
⟨(dEg)yx(dDx)yu,(dEg)yx(dDx)yv⟩ygxE∗

g ω

=
∫

G
⟨(dDx)yu,(dDx)yv⟩yxω

= (u,v)y
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A.2 Campos de Vetores

Lema A.2.1. Um campo de Killing tem norma constante ao longo de seu fluxo.

Demonstração. Esta afirmação é consequência do fato que o fluxo ϕt de um campo de
Killing X é uma isometria para cada t e também de uma das propriedades fundamentais das
funções do tipo fluxo que é ϕt ◦ϕs = ϕt+s = ϕs ◦ϕt . Observe que

X(ϕs(x)) =
∂

∂ t
ϕt(ϕs(x))

∣∣∣
t=0

=
∂

∂ t
ϕs(ϕt(x))

∣∣∣
t=0

= (dϕs)xX(x).

Portanto,

|X(ϕs(x))|2 = ⟨X(ϕs(x)),X(ϕs(x))⟩= ⟨(dϕs)xX(x),(dϕs)xX(x)⟩= |X(x)|2.

Proposição A.2.2. Seja X um campo de Killing na Variedade Riemanniana completa M,
então X é completo.

Demonstração. Suponha que o fluxo ϕt(x) de X esteja definido para t ∈ (a,b) e x ∈U ⊆ M,
em que U é aberto. Seja {tn} ⊆ (a,b) uma sequência satisfazendo tn → b. Usando o Lema
anterior, temos que

d(ϕtn(x),ϕtk(x))≤

∣∣∣∣∣
∫ tn

tk
|X(ϕs(x))| ds

∣∣∣∣∣= |tn − tk||X(x)|,

então ϕtn(x) é de Cauchy, logo, convergente pela completude de M.
Denote y = lim

n→∞
ϕtn(x). Para ver que y = lim

t→b
ϕt(x), considere sn → b com sn ∈ (a,b).

Seja un a sequência definida por u2k = tk e u2k−1 = sk. Pelo argumento acima, ϕun(x) é de
Cauchy e converge para y pois uma de suas subsequências converge para y; em particular,
ϕsn(x)→ y, donde segue que y = lim

t→b
ϕt(x).

Observe que X(ϕt(x)) = (∂/∂ t)ϕt(x), então, por continuidade,

lim
t→b

∂

∂ t
ϕt(x) = X(y).

Isto mostra que (a,b) não é domínio maximal de ϕt e devemos ter b = ∞. Analogamente,
mostra-se que a =−∞.

Proposição A.2.3. Seja X um campo de Killing numa Variedade Riemanniana conexa M.
Se existe q ∈ M tal que X(q) = 0 e (∇X)q = 0, então X é identicamente nulo.
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Demonstração. X(q) = 0 implica que q é um ponto fixo do fluxo ϕt de X . Este fato segue
unicidade de soluções de equações diferenciais usando que a solução constante ϕt(q) ≡
q satisfaz (∂/∂ t)ϕt(q) = X(ϕt(q)). Portanto, (dϕt)q : TqM → TqM; vamos mostrar que
(dϕt)q = id. Usando a simetria da conexão e a hipótese, temos que

[X ,Y ](q) = (∇XY −∇Y X)(q) = (∇XY )q =
d
dt

Y (ϕt(q))
∣∣∣
t=0

=
d
dt

Y (q)
∣∣∣
t=0

= 0.

Por outro lado, 0 = [X ,Y ](q) = (d/dt)(ϕ−t)∗Y |t=0. Como ϕt+s = ϕt ◦ϕs, temos que dϕ−t

não depende de t, logo, dϕ−t = id, pois dϕ0 = id. Usando a exponencial riemanniana,
pode-se mostrar que uma isometria é localmente determinada pela diferencial em um ponto
(Lema A.1.7), então segue que ϕt = id para todo t, ou seja, X ≡ 0.

Proposição A.2.4. Seja M uma Variedade Riemanniana de dimensão n e p ∈ M. Existe uma
vizinhança U de p e campos diferenciáveis e1, . . . ,en ortonormais definidos em U tais que
(∇eie j)(p) = 0. Tal conjunto de campos é chamado de Referencial geodésico.

Demonstração. Seja U ⊆ M uma vizinhança normal de p. Para cada q ∈U , existe uma única
geodésica minimizante e normalizada tal que γ(0) = p e γ(d(p,q)) = q, em que d(p,q) é
a distância Riemanniana de p a q, que está bem definida na vizinhança normal U . Seja
v1, . . . ,vn uma base ortonormal de TpM e denote por Vj(t) o transporte paralelo de v j ao
longo de γ de p a γ(t). Por fim, para q ∈U , defina e j(q) =Vj(d(p,q)).

Seja σ a geodésica normalizada que satisfaz σ(0) = p e σ
′(0) = e j(p) = Vj(0) = v j,

então
(∇e jei)(p) =

D
ds

ei(σ(s))
∣∣∣
s=0

=
D
ds

Vj(d(p,σ(s)))
∣∣∣
s=0

= 0.

Para enunciar o próximo Teorema, sejam M e N duas Variedades Riemannianas e p ∈ M,
q ∈ N. Seja i : TpM → TqN uma isometrai linear e considere uma vizinhança normal V
de p tal que expq esteja definida em i ◦ exp−1

p (V ). Defina f : V → N dada por f (x) =
expq ◦i◦exp−1

p (x). Para cada x ∈V , existe uma única geodésica normalizada γ : [0, t]→ M tal
que γ(0)= p e γ(t)= x, então denote por Pt o transporte paralelo ao longo de γ iniciando em p
e terminando em γ(t). Defina a aplicação φt : TxM → Tf (x)N dada por φt(v) = Pt ◦ i◦P−1

t (v),
em que Pt é o transporte ao longo da geodésica normalizada γ : [0, t] → N que satisfaz
γ(0) = q e γ

′(0) = i(γ ′(0)).

Proposição A.2.5 (Teorema 2.1 de [10]). Com a notação acima e denotando por R e R as
curvaturas de M e N, respectivamente, se, para todo x ∈V e w,y,u,v ∈ TxM, tivermos

⟨R(w,y)u,v⟩= ⟨R(φt(w),φt(y))φt(u),φt(v)⟩
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então f : V → f (V )⊆ N é uma isometria local tal que d fp = i.

Teorema A.2.6. Num grupo de Lie G com métrica bi-invariante, a exponencial do grupo
coincide com a exponencial Riemanniana.

Demonstração. Vamos considerar que a álgebra de Lie g de G é composta dos campos
de vetores invariantes à esquerda. Para qualquer g ∈ G e X ,Y ∈ g, temos que ⟨X ,Y ⟩g =

⟨(dLg)1X(1),(dLg)1Y (1)⟩g = ⟨X ,Y ⟩1, logo, ⟨X ,Y ⟩ é constante e temos que Z⟨X ,Y ⟩= 0 para
todo campo diferenciável Z de G. Pela equação de Koszul (equação (9) do capítulo 2 de
[10]), temos que

2⟨X ,∇YY ⟩= 2⟨Y, [X ,Y ]⟩.

A bi-invariância então implica que ⟨[X ,Y ],Y ⟩+ ⟨Y, [X ,Y ]⟩ = 0, logo, ⟨X ,∇YY ⟩ = 0 para
qualquer X ∈ g, então ∇YY = 0 para todo Y ∈ g. Portanto, todo subgrupo a um parâmetro
exp(tY ) é uma geodésica e, reciprocamente, toda geodésica tem esta forma por conta da
unicidade de geodésicas dados um ponto e uma direção.
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A.3 Fibrados e Topologia

Teorema A.3.1. Seja G um grupo de Lie simplesmente conexo e K um subgrupo conexo e
fechado, então G/K é um espaço homogêneo simplesmente conexo.

Não demonstraremos este Teorema diretamente; em vez disso, vamos demonstrar um
resultado mais geral do qual o Teorema acima é um caso particular.

Um fibrado principal, P(M,K) se constitui do espaço total P, da base M e do grupo
estrutural K. Os espaços topológicos P e M são relacionados pela projeção π : P → M. o
grupo K age de forma livre à direita de P (apenas a identidade tem pontos fixos) e as órbitas
de K são as fibras π

−1(x), x ∈ M. Exige-se ainda que P seja localmente trivial, ou seja, para
cada x ∈ M, existe uma vizinhança x ∈U ⊆ M e uma aplicação bijetora ψ : π

−1(U)→U ×K
tal que, se π1 denota a projeção na primeira coordenada de M×K, temos que π1 ◦ψ = π .
Observe que trivialização local pode ser vista tanto como uma aplicação π

−1(U)→U ×K
quanto como uma aplicação U ×K → π

−1(U).
No caso em que P e M são variedades diferenciáveis, consideramos que π é diferenciável,

que K é um grupo de Lie que age diferenciavelmente e que ψ é um difeomorfismo. A
aplicação ψ pode ser descrita de maneira mais explícita da seguinte maneira.

ψ(x) = (π(x),φ(x)),

em que, φ : π
−1(U)→ K satisfaz φ(xk) = φ(x)k para k ∈ K. Segue que

ψ(xk) = (π(xk),φ(xk)) = (π(x),φ(x)k)).

Pela Proposição 13.22 de [6], se K ≤ G é um subgrupo fechado, então a projeção natural
π : G → G/K é um fibrado principal com grupo estrutural K.

Proposição A.3.2. Seja π : P → M um fibrado principal com grupo estrutural K. Suponha
que P é simplesmente conexo e que K é conexo por caminhos, então M é simplesmente
conexo.

Demonstração. Seja m ∈ M e σ : [0,1]→ M um caminho fechado tal que σ(0) = m = σ(1),
vamos mostrar que σ é homotópica a um ponto. Pela Proposição 4.48 de [8], existe um
levantamento σ̃ : [0,1]→ P que satisfaz π ◦ σ̃ = σ .

Seja U1 uma vizinhança de m que admite a trivialização local ψ1 : U1 ×K → π
−1(U1).

Denote ψ
−1
1 (σ̃(0)) = (m,k0) e ψ

−1
1 (σ̃(1)) = (m,k1). Intuitivamente, σ̃ se projeta no cami-

nho fechado σ , mas não é necessariamente fechado (a menos que k0 = k1). Seja k : [0,1]→ F
tal que k(0) = k0 e k(1) = k1 e defina δ (t) = ψ1(m,k(2t −1)).
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A seguir vamos definir um caminho fechado em P que nos fornecerá a homotopia que
deforma σ no caminho constante m. Seja

φ(t) =

σ̃(2t), t ∈ [0,1/2]

δ (t), t ∈ [1/2,1].

É fácil verificar que φ é contínua e também é fechada, uma vez que

φ(0) = σ̃(0) = ψ1(m,k0) = ψ1(m,k(0)) = δ (1) = φ(1) := p.

Sendo P simplesmente conexo, existe uma homotopia h : [0,1]2 → P que satisfaz h(0, t) =
φ(t), h(1, t) = p para t ∈ [0,1] e h(s,0) = p = h(s,1) para s ∈ [0,1]. Defina H = π ◦h, então

H(0, t) =

σ(2t), t ∈ [0,1/2]

m, t ∈ [1/2,1]

e H(1, t) = π(p) = m para t ∈ [0,1], H(s,0) = m = H(s,1) para s ∈ [0,1]].
Segue que H é a homotopia que deforma σ ao ponto m e, portanto, M é simplesmente

conexo.

Teorema A.3.3. Um fibrado principal com fibra discreta é uma aplicação de recobrimento.

Demonstração. Para cada x ∈ M, seja U ∋ x uma vizinhança que admite uma trivialização
local ψ . Por definição π

−1(U) é homeomorfo a U ×G e sendo a fibra discreta, G também
é discreto. O produto cartesiano U ×G, e portanto, π

−1(U) pode ser visto como a união
disjunta ⋃

g∈G

U ×{g},

em que, claramente, U ×{g} é homeomorfo a U via π , já que π coincide com π1 ◦ψ em
π
−1(U). Segue que π é uma aplicação de recobrimento.

A.3.1 Grupo Fundamental e Deck Transformations

Seja r : X̃ → X um recobrimento, em que ambas X e X̃ são variedades conexas. O grupo das
deck transformations deste recobrimento é o conjunto G(X̃) dos homeomorfismos f : X̃ → X̃
que satisfazem r ◦ f = r, pode ser visto também como o conjunto de levantamentos da
aplicação de recobrimento r. Esta condição implica que G(X̃) age sobre as fibras r−1(x)
para x ∈ X ; em particular, esta ação é fiel por conta da unicidade de levantamentos (veja a
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Proposição 1.34 de [8]). Uma ação fiel é aquela em que apenas a identidade do grupo tem
pontos fixos.

O recobrimento r induz um homomorfismo entre π1(X̃) e π1(X) que é denotado r∗ e
satisfaz r∗[γ] = [r ◦ γ], em que [γ] denota uma classe de homotopia de um caminho fechado.
Denote H = r∗(π1(X̃)) ≤ π1(X). Temos que G(X̃) é isomorfo a N(H)/H, em que N(H)

denota o normalizador de H em π1(X). No caso em que H é normal em π1(X), o grupo de
deck transformations age de forma transitiva sobre as fibras r−1(x),x∈X , e G(X̃)≃ π1(X)/H.
Em particular, se X̃ é simplesmente conexo, temos que H é trivial e G(X̃)≃ π1(X) (veja a
Proposição 1.39 de [8]).

A ação de G(X̃) sobre X̃ é propriamente descontínua, isto significa que, dado qualquer
x̃ ∈ X̃ , existe uma vizinhança V de x̃ tal que g(V )∩h(V ) = /0 se g e h são elementos distintos
de G(X̃). Equivalentemente, g(V )∩V = /0 sempre que g ̸= 1. Para x ∈ X , existe um aberto
W ∋ x tal que p−1(W ) =

⋃
j

Vj é união de vizinhanças Vj disjuntas e homeomorfas, via p, a W .

Seja x̃ ∈ p−1(x)∩Vj, então é fácil ver que g(Vj)∩Vj ̸= /0 se, e somente se, g = 1, pois G(X̃)

preserva p−1(x) e apenas a identidade tem pontos fixos. Como resultado desta discussão,
segue que, no caso em que G(X̃) age transitivamente, X é homeomorfo ao quociente X̃/G(X̃),
onde identificamos os pontos das órbitas de G(X̃) (veja a Proposição 1.40 de [8]).



Apêndice B

B.1 Álgebras e Grupos de Lie

Lema B.1.1. Seja g uma álgebra de Lie com grupo de automorfismos Aut(g). A álgebra de
Lie de Aut(g) é Der(g).

Demonstração. Seja D ∈ gl(g), vamos mostrar que D é derivação se, e só se, etD é um
automorfismo de g para todo t ∈ R. Sejam X ,Y ∈ g.

Se etD é automorfismo, temos que etD[X ,Y ] = [etDX ,etDY ]; derivando em t = 0 e usando
a bilinearidade do colchete, temos que D[X ,Y ] = [DX ,Y ]+ [X ,DY ].

Por outro lado, se D é derivação, basta notar que etD[X ,Y ] e [etDX ,etDY ] coincidem para
t = 0 e satisfazem a mesma equação diferencial, ou seja,

d
dt

etD[X ,Y ] =
d
dt
[etDX ,etDY ].

Lema B.1.2. Seja g= g1 ⊕g2 uma soma direta de álgebras de Lie. Qualquer subálgebra de
Cartan de g é da forma h1 ⊕h2, em que h j é subálgebra de Cartan de g j, j = 1,2.

Demonstração. Se h1 e h2 são subálgebras de Cartan de g1 e g2 respectivamente, então
h1 ⊕h2 deve ser uma subálgebra autonormalizante, já que [g1,g2] = 0 e cada uma das h j é
autonormalizante em g j, logo, é uma subálgebra de Cartan.

Suponha então que h ≤ g é subálgebra de Cartan. h deve interceptar ambos g1 e g2,
caso contrário, [h,g j] = 0 para algum j, ou seja, g j ≤ ng(h) = h, o que é absurdo. Portanto,
podemos escrever h = h1 ⊕h2, sendo h j = g j ∩h. Dado X ∈ ng j(h j), temos que [X ,h] =

[X ,h1 +h2] = [X ,h1]⊆ h, então X ∈ (g j ∩h) = h j.
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B.2 Complexificação

Nesta seção vamos tratar das complexifições de espaços vetoriais e de operadores. Veremos
que tipos de conclusões podemos tirar sobre a estrutura dos subespaços com relação a um
dado operador a partir das propriedades na complexificação.

Dado um espaço vetorial V sobre R, definimos a sua complexificação VC como a soma
direta formal V ⊕ iV . A conjugação c : VC →VC é o automorfismo antilinear definido por
c(u+ iv) = u− iv com u,v ∈V . A terminologia antilinear está relacionada ao fato que, para
z ∈ C, temos c(z(u+ iv)) = zc(u+ iv), em que z denota o conjugado de z em C. É fácil
ver que w ∈VC é fixado se, e somente se, w ∈V ⊆VC. Um subespaço de VC da forma WC

para algum subespaço W ⊆V é claramente preservado por c e, por outro lado, se E ≤VC e
c(E) = E, então existe W ≤V tal que E =WC. De fato, basta observar que, se u+ iv ∈ E,
então u− iv ∈ E e segue que u,v ∈ E ∩V , logo, E = (E ∩V )C.

Um endomorfismo M : V → V induz um endomorfismo MC : VC → VC chamado de
complexificação de M. Para z ∈ C, definimos MC(z(u+ iv)) = z(M(u)+ iM(v)). Observe
que

c◦MC(z(u+ iv)) = c(z(M(u)+ iM(v)))

= z(M(u)− iM(v))

= MC ◦ c(z(u+ iv)),

logo, c◦MC = MC ◦ c. Se MC tem um autovalor complexo z = a+ ib associado ao autovetor
u+ iv, então u e v satisfazem M(u) = au−bv e M(v) = bu+av. Este fato segue da equação
abaixo

M(u)+ iM(v) = MC(u+ iv) = (a+ ib)(u+ iv) = au−bv+ i(bu+av).

Portanto, W = ⟨u,v⟩ é um subespaço de V em que M se expressa matricialmente como(
a b
−b a

)
. (B.1)

Em particular, se a = 0, M|W é anti-simétrica. Resumimos as consequências desta discussão
na Proposição abaixo.

Proposição B.2.1. Sejam V um espaço vetorial real, VC sua complexificação e M : V →V
um endomorfismo linear. Então valem as seguintes afirmações.

1. MC comuta com a conjugação c.



B.2 Complexificação 153

2. Um subespaço E ≤VC é da forma WC para W ≤V se, e somente se, c(E) = E.

3. Se MC tem um autovetor complexo, então existe um subespaço de dimensão 2 de V
invariante por M em que M tem a representação matricial da Equação (B.1).

Lema B.2.2. Sejam V,W espaços vetoriais reais de dimensão finita e f : V →W um homo-
morfismo contínuo de espaços vetoriais vistos como grupos aditivos, então f é linear.

Demonstração. Sem perda de generalidade, assumimos que V =Rn e W =Rm. Por hipótese,
temos que f (u+v) = f (u)+ f (v) para todos u,v ∈Rn. Sejam n,m ∈Z, então f (nu) = n f (u)

e f (u) = f
(m

m
u
)
= m f

(
1
m

u
)

, logo,
1
m

f (u) = f
(

1
m

u
)

. Segue que, para todos q =
n
m

∈Q,

temos f (qu) = q f (u). Sendo Q denso em R e f contínua, concluímos que f (ru) = r f (u)
para todo r ∈ R.
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