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“Crela en infinitas series de tiempos, en uma red creciente y vertiginosa de tiempos divergentes,
convergentes y paralelos. Esa trama de tiempos que se aproximan, se bifurcan, se cortan o que
secularmente se ignoran, abarca todas la posibilidades. No existimos en la mayoria de esos
tiempos; en algunos existe usted y no yo; en otros, yo, no usted; en otros, los dos. En éste, que un
favorable azar me depara, usted ha llegado a mi casa; en otro, usted, al atravesar el jardin, me
ha encontrado muerto; en otro, yo digo estas mismas palabras, pero soy un error, un
fantasma.” (El jardin de senderos que se bifurcan, Jorge Luis Borges, 1941)



Abstract

Industrial policy has re-emerged as a central pillar of development strategy, renewing long-
standing debates about its design, implementation, and effectiveness. This dissertation con-
tributes to that debate by advancing the Economic Complexity and Relatedness framework
to better inform structural transformation and policy targeting. The first paper, Complexity
Traps in the Product Space: Why Some Countries Get Stuck in Local Maxima, investigates how
economies can become structurally constrained when certain products offer returns that
are disproportionately high relative to their neighbors in the product space. These localized
incentives make it more attractive to exploit products that function as local maxima—but
with low complexity—than to explore nearby opportunities that would promote capability
accumulation. While appealing in the short term, this pattern ultimately constrains diver-
sification, limiting the range of activities a country can develop over time. Over the long
run, such constraints give rise to persistent regions of structural stasis - complexity traps -
where countries struggle to transition into more complex activities. These findings highlight
the need for industrial strategies that deliberately counteract the distorting effects of local
optima and promote broader diversification. The second paper, Less is More: How Relat-
edness Filtering Enhances Productive Upgrading Predictions, demonstrates that statistical
noise in the product space can hinder accurate identification of viable diversification paths.
By filtering weak and spurious connections, we significantly improve the ability to predict
future productive transitions—especially for less diversified economies—offering a more
precise empirical foundation for strategic industrial policy. The third paper, From Capabili-
ties to Economic Convergence: A Structural Growth Framework Linking Economic Complexity,
Institutions, and Human Capital, proposes an integrated model that explains both current
income levels and future growth using a multidimensional view of capabilities. It introduces
a new complexity measure based on input-output data, which captures the sophistication
of production networks beyond trade flows. The results show that multidimensional com-
plexity, institutional quality, and human capital jointly shape development trajectories, and
that countries with unexpectedly high complexity relative to their income tend to grow
faster. Together, the three studies offer both diagnostic and prescriptive contributions to
the Economic Complexity literature, helping to identify structural bottlenecks, improve
targeting of policy tools, and reframe long-run development strategies.

Keywords: economic complexity; relatedness; industrial policy; diversification; product

space.



Resumo

A politica industrial voltou a ocupar um papel central nas estratégias de desenvolvimento,
reacendendo debates classicos sobre seu desenho, implementacio e efetividade. Esta tese
contribui para essa discussdo ao aprimorar o arcabougo de Complexidade Econdmica e Re-
latedness, com o objetivo de oferecer melhores instrumentos para orientar a transformacgao
estrutural e o direcionamento de politicas publicas. O primeiro artigo, Complexity Traps in
the Product Space: Why Some Countries Get Stuck in Local Maxima, investiga como certas
estruturas produtivas podem restringir o avanco econdémico quando produtos especificos ofe-
recem retornos desproporcionalmente altos em relacao aos seus vizinhos no espaco-produto.
Esses incentivos localizados tornam mais atraente explorar produtos que funcionam como
maximos locais, contudo de baixa complexidade, em detrimento de alternativas proximas
que poderiam favorecer o acimulo de capacidades. Embora vantajosa no curto prazo, essa
logica acaba por prejudicar a diversificac@o e limita o leque de atividades que um pais € capaz
de desenvolver ao longo do tempo. No longo prazo, esse tipo de configuracdo d4 origem a
armadilhas de complexidade, em que paises permanecem presos em trajetorias de baixo
dinamismo estrutural. Os resultados reforcam a necessidade de estratégias industriais que
enfrentem essas distor¢cdes e ampliem o horizonte de diversificacdo produtiva. O segundo
artigo, Less is More: How Relatedness Filtering Enhances Productive Upgrading Predictions,
mostra que o excesso de ruido no espago-produto pode obscurecer caminhos relevantes de
diversificacdo. Ao aplicar técnicas de filtragem para remover conexdes espurias ou pouco
informativas, o estudo melhora significativamente a capacidade de prever quais atividades
produtivas um pais tende a desenvolver — sobretudo em economias menos diversificadas
—, oferecendo uma base empirica mais robusta para o desenho de politicas industriais mais
precisas. O terceiro artigo, From Capabilities to Economic Convergence: A Structural Growth
Framework Linking Economic Complexity, Institutions, and Human Capital, propée um mo-
delo integrado que busca explicar tanto os niveis atuais de renda quanto o crescimento de
longo prazo a partir de uma abordagem multidimensional das capacidades. O trabalho intro-
duz uma nova medida de complexidade baseada em dados de insumo-produto, que permite
capturar a sofisticacdo das redes produtivas internas, além das exportagdes. Os resultados
indicam que a complexidade produtiva, o capital humano e a qualidade institucional intera-
gem de forma decisiva na definicdo das trajetorias de desenvolvimento — e que paises com
niveis de complexidade acima do esperado, dado seu nivel de renda, tendem a apresentar
maior dinamismo econémico ao longo do tempo. Em conjunto, os trés estudos oferecem
contribuicdes analiticas e aplicadas a literatura de Complexidade Econ6mica, ao mesmo

tempo em que propdem ferramentas ateis para diagnosticar gargalos estruturais, qualificar



o uso de instrumentos de politica industrial e repensar estratégias de desenvolvimento no

longo prazo.

Palavras-chave: complexidade econdmica; relatedness; politica industrial; diversificacdo; espaco-

produto.
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1 Introduction

Industrial policy has experienced a resurgence in recent years. Previously marginalized
in economic discourse, its revival has ignited intense debate among academics and policy-
makers alike. Moving away from Gary Becker’s 1985 assertion that “the best industrial policy
is none at all™, the global debate has shifted in favor of such policies. As Ricardo Hausmann
noted in 2023, "we now know that the real question is not whether such policies should exist,

but how to manage them"?.

The ongoing debate around industrial policy doesn’t center on its underlying rationale,
but rather on two practical objections (Juhasz; Lane; Rodrik, 2023). The first relates to infor-
mational limitations, and the second to political capture. The informational critique argues
that even if market failures exist, real-world governments may lack sufficient knowledge
to accurately identify these failures. The political critique contends that even with access
to relevant information, industrial policy risks encouraging self-interested lobbying and
political influence, steering government efforts toward private gains rather than public
benefit.

An emerging body of literature on Economic Complexity and Relatedness offers promis-
ing solutions to the informational challenges of industrial policy. By applying network theory
and machine learning techniques, this field helps identify which sectors to prioritize along
two key dimensions: those that can introduce greater embedded knowledge — complexity
— into an economy, and those sectors closely related to existing productive capabilities. This
dual approach not only aims to make industrial policy more targeted and less risky but also
provides a guiding framework for skeptics by offering a via negativa, revealing paths that
national governments should avoid.

As multilateralism wanes, advanced economies have taken the lead in the resurgence
of industrial policy (Evenett et al., 2024). Yet, the need for effective industrial policy design
is more pressing in emerging and developing countries, where fiscal space is often limited
and the opportunity costs, relative to other government initiatives, are high. In Brazil, for
example, past challenges with industrial policy have left the current debate deeply polarized.

To address these challenges and advance the field, this thesis is organized around three
interconnected essays, each tackling a distinct but related aspect of economic complexity
and industrial policy design. This dissertation advances this framework by exploring its

boundaries and potential refinements across three dimensions: (i) how pecuniary incentives

L https://www.nytimes.com/1985/09/15/business/l-industrial-policy-004530.html

2 https://www.project-syndicate.org/commentary/why-economists-have-rediscovered-industrial-policy-b

y-ricardo-hausmann-2023-01


https://www.nytimes.com/1985/09/15/business/l-industrial-policy-004530.html
https://www.project-syndicate.org/commentary/why-economists-have-rediscovered-industrial-policy-by-ricardo-hausmann-2023-01
https://www.project-syndicate.org/commentary/why-economists-have-rediscovered-industrial-policy-by-ricardo-hausmann-2023-01
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over the product space can hinder diversification and induce complexity traps, (ii) how
network filtering can improve the predictive power of relatedness, and (iii) how a multi-
dimensional view of capabilities — combining trade and input-output linkages to capture
multidimensional economic complexity, and embedding this structure with institutions and
human capital — can better account for differences in income levels and long-term growth

dynamics.

In the first essay, I investigate why some economies remain trapped in narrow produc-
tive patterns, consistently failing to diversify into new products. Adopting an exploration-
exploitation perspective within the Product Space framework, I introduce the Product Peak
Index (PPI) to identify products representing local maxima—products whose pecuniary
returns significantly exceed those of their immediate neighbors. Aggregating these product-
level measures at the country level through the Country Peak Index (CPI), I show that
economies overly focused on exploiting such high-peak yet low-complexity products sub-
stantially diminish their incentives for exploring more complex and capability-enhancing
economic activities. Consequently, this persistent exploitation constrains long-term capabil-
ity accumulation and limits opportunities for structural upgrading and economic diversifi-

cation.

Empirical analysis of the proposed mechanism reveals distinct structural traps within a
CPI-Diversity phase space, including regions of resource-based stasis and middle-development
inertia. Findings also show a hump-shaped relationship between CPI and the likelihood of
diversifying into new products, emphasizing diminishing returns to diversification efforts
beyond a certain threshold of CPI. This highlights important policy implications, cautioning
against premature specialization in high-return, low-complexity products. Strategic indus-
trial policies, therefore, should focus on carefully timing diversification strategies to avoid
these structural traps, promoting targeted interventions that encourage the exploration of
complex, capability-enhancing economic activities.

The second essay tackles critical shortcomings inherent in traditional relatedness mea-
sures commonly applied to predict productive diversification in the Product Space. Recogniz-
ing that standard metrics often incorporate spurious correlations and informational noise, I
propose integrating network backbone extraction methods to filter these weak or irrelevant
product relationships. By systematically applying various filtering techniques—including
naive heuristics, statistical backbone extraction, and directional adaptations—I show that
removing noisy connections significantly enhances predictive accuracy. Among these meth-
ods, the Directed Disparity Filter In-Degree (DDF-In-Degree) proves most effective, clearly
outperforming the traditional, unfiltered relatedness density.

These findings hold substantial implications for industrial policymaking. Filtering
the Product Space refines the precision of relatedness indicators, illuminating clearer and

more realistic pathways for productive upgrading. Through detailed case studies of Brazil
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and the Philippines, I illustrate how filtered relatedness can reshape strategic industrial
policy, enabling policymakers to more effectively identify viable diversification targets.
Consequently, this approach minimizes the risk of misallocating resources, providing a
robust foundation for policies that support sustainable economic upgrading and structural

transformation.

The third essay proposes a structural framework to jointly analyze the role of three
key capability vectors—economic complexity, institutional quality, and human capital—in
shaping long-term economic convergence. Central to this framework is the introduction of a
new measure of complexity, the Input-Output Economic Complexity Index (I0 ECI), which
captures intersectoral linkages beyond traditional trade-based metrics. Together with the
established Trade ECI, 10 ECI constitutes a multidimensional view of economic complexity.
To empirically assess these key development vectors, I develop a two-stage structural growth
framework. In the first stage, cross-sectional regressions isolate the portion of per capita
income not explained by multidimensional economic complexity, institutional quality, or
human capital, capturing structural misalignments for each vector. In the second stage,
panel regressions evaluate how these capability-driven residuals, combined with subsequent

changes in complexity, institutions, and human capital, predict long-term economic growth.

This structural framework redefines industrial policy as orchestrating multidimen-
sional capability systems built upon three pillars of economic convergence: productive
complexity, institutional robustness, and human capital accumulation. Empirical findings
highlight the critical importance of integrating industrial policies with complementary
measures aimed at strengthening institutional quality and enhancing human capital to
promote sustained long-term growth. Moreover, the framework provides policymakers with
a diagnostic tool, allowing them to identify which structural vector currently represents the
largest constraint—whether productive capabilities, institutional foundations, or human
capital—and thus prioritize policy interventions accordingly. By leveraging this targeted
approach, countries can systematically address their specific developmental weaknesses
and foster more effective and accelerated economic convergence.

Taken together, the three essays offer both theoretical and practical contributions to the
Economic Complexity and Relatedness literature. They help identify structural bottlenecks,
refine empirical tools for targeting, and broaden the conceptual foundation for industrial
policy in diverse development contexts.
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2 Complexity Traps in the Product Space:
Why Some Countries Get Stuck in Local
Maxima

Abstract

The principle of relatedness has become a dominant framework for explaining productive
diversification. Yet, some economies remain locked into narrow sets of products, failing to
explore adjacent opportunities—a paradox we seek to address. We hypothesize that when
certain products offer substantially higher pecuniary returns than their neighbors in the
product space, countries may prioritize their exploitation over exploration, ultimately getting
stuck in local maxima and limiting long-term diversification. To capture this mechanism,
we introduce the Product Peak Index (PPI), which identifies local maxima based on relative
income returns, and the Country Peak Index (CPI), which measures a country’s exposure
to these peaks. We show that specialization in such products is associated with reduced
diversification and the emergence of development traps—including resource-based stasis
and middle-development inertia—identified through a dynamic phase-space approach. At
the micro level, Probit models reveal a hump-shaped effect of CPI on the probability of
product activation, indicating diminishing returns to exploration beyond a certain threshold.
These findings underscore the importance of pecuniary incentives in shaping development
paths and offer actionable insights for industrial policy—particularly regarding the timing
and targeting of diversification strategies in economies vulnerable to premature, sub-optimal
peak specialization.

Keywords: economic complexity, diversification, product space, economic convergence,
development traps

2.1 Introduction

When it comes to diversification, resource-rich economies such as those of Chile,
Angola, and Australia, exhibit an interesting pattern: while these economies tend to have
relatively high levels of GDP per capita for their levels of economic complexity, they tend to
diversify less into other economic activities. This lack of diversification is important because
it can limit the accumulation of the capabilities that economies need to stay adaptive in a
changing technological environment. Diversification is often explained using the principle of
relatedness: the notion that economies tend to diversify into related products. Yet, the reduced
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diversification of some resource rich countries cannot be explained by this principle alone,
if we mechanistically assume that spillovers are constant at the same level of relatedness.

Here we explain this paradox by expanding the principle of relatedness by introducing
a product peak index, capturing the idea that the pecuniary return of some products is much
larger than that of its related products. We hypothesize that the high returns associated
with specializing in peak products reduces the incentive of these economies to explore
new activities, contributing to less diversification. We test this hypothesis by showing that
countries specialized in peak products tend to diversify less than countries specialized in
non-peak products, holding for the same level of relatedness.

This reduced tendency to diversify doesn’t necessarily imply an income trap, since
countries specialized in high peak index products can achieve high income levels through
the intensive exploitation of these activities (e.g. Saudi Arabia, Australia). Yet, when peak
products are not enough to reach high-income, economies specialized in such activities
may lack the capabilities and incentives needed to bridge into the related and lower income
activities needed to reach higher complexity sectors of the product space. These findings con-
tribute to our understanding of diversification and of the role of product level characteristics
to the resource curse (Ploeg, 2011) by adding a mechanism that reduces the diversification
incentives of poorly diversified, low-complexity, and resource-rich economies.

To investigate this mechanism, we proceed in four steps. First, we construct a novel
representation of the product space — the Product-PRODY-Space — to visualize pecuniary
diversification incentives and identify local maxima in the product space layout. Next, we
structurally derive the Product Peak Index (PPI), a product-level metric that captures how
much a product outperforms its neighbors in terms of export-weighted income returns.
Second, we aggregate the PPI at the country level to create the Country Peak Index (CPI),
and explore how countries’ positions in the CPI-Diversity phase space shape their structural
development trajectories. Using a dynamic vector field approach, we uncover empirical
attractors, or structural traps, that constrain complexity accumulation. Third, we examine
the predictive power of the CPI at the country—product level by estimating Probit models of
product activation, controlling for relatedness and relative relatedness. We test for nonlinear-
ities and find a hump-shaped effect of CPI on diversification probabilities, consistent with the
structural traps observed in the macro analysis. Finally, we discuss the policy implications
of these findings, emphasizing the risks of premature specialization and the importance of

carefully timing the transition from exploration to exploitation in industrial strategies.

2.2 Literature Review

The study of development traps and convergence are fundamentally interconnected,
each representing the flip side of the other’s coin. Poverty traps and middle-income traps
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have been thoroughly examined to pinpoint the primary obstacles preventing countries from
ascending the income ladder (Gill; Kharas, 2015; Im; Rosenblatt, 2015; Kraay; McKenzie,
2014; Barrett; Carter, 2013; Rodrik, 2011; Lin, 2011). The Economic Complexity literature
contributed to this debate by finding the existence of income convergence conditional to the
level of the complexity of a country (Hausmann et al., 2014). Nevertheless, the debate about
complexity convergence - instead of income convergence — and complexity traps remains
an active and evolving area of debate.

In contrast to earlier methods that focus on pinpointing specific factors for economic
convergence, economic complexity has adopted a more open-ended stance. Rather than
assuming the nature of the contributing factors a priori, this theory aims to gauge their
joint impact Hidalgo (2021). Its main assumption rests on the ability of products, activities,
industries, among others, to serve as vehicles for the transmission and accumulation of

productive knowledge.

For Hausmann et al. (2014), increases in collective knowledge result in an expansion
of the range of activities that a country can undertake, venturing into the adjacent possible
- new, attainable activities that are related to existing capabilities. The potential for such
diversification is, in turn, shaped by the underlying capabilities in the country’s current
productive structure. Such dynamics create a feedback loop between the productive structure
and the complexity level of a country, dictating what is produced in the future and leading to
a cycle that can be either virtuous or vicious in terms of economic development. Therefore,
explicit path dependency and exploration of the adjacent possible are key aspects of the

Economic Complexity methods.

Adjacent possible is an evolutionary concept coined by Kauffman (2000) to explain
how complex adaptative systems are shaped by the exploration and the never-ending updates
of the set of possibilities available to agents in these systems, with highly path-dependency
features. Recent studies used the principle of relatedness to uncover the adjacent possible
and model the structural outcomes of geographical entities inscribed in various complex
economic systems (Hidalgo et al., 2007; Neffke; Henning; Boschma, 2011; Muneepeerakul et
al., 2013; Boschma; Balland; Kogler, 2015; Kogler; Rigby; Tucker, 2015). The principle of
relatedness (Hidalgo et al., 2018) states that when two activities share similar productive
requisites, they are likely to co-occur. In this sense, a geographical entity (country, region,
city) raises its probability of performing a new activity in tandem with the number of related
activities that it already makes. Fundamentally, relatedness revolves around productive com-
plementarities, framing economic convergence within the Economic Complexity literature
as a challenge of diffusion through the network of relatedness between products, referred to

as the product space.

Building on international trade data, Hidalgo et al. (2007) explained country economic

development as a process of productive upgrading within the adjacent possible of exports.
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The interaction between a country’s productive structure and its complexity level exacer-
bates a “Matthew effect” in economic development, whereby more developed countries
are better suited than less developed ones to diversify into new products and accumulate
more capabilities (Sousa; Mueller, 2025). Countries with low levels of capabilities may lack
the necessary productive capabilities to diversify into new products and break free from
path dependency. Moreover, acquiring an additional productive capability yields greater
returns for highly diversified nations than for those with limited diversification, due to the
exponentially increasing number of possible capability combinations.

Economic divergence emerges as the rule rather than the exception when knowledge
is difficult to transmit and acquire. This dynamic reveals the risk of a quiescence trap
(Hausmann; Hidalgo, 2011), in which countries with limited capabilities find themselves
locked into a state of low developmental inertia. It also aligns with the possibility of multiple
equilibrium states, echoing Baumol’s concept of convergence clubs (Baumol, 1986; Ben-
David, 1998), where countries tend to cluster into groups with similar levels of economic
development.

To identify such convergence clubs or groups of countries prone to developmental
stasis, Quah (1992) and Kremer, Onatski, and Stock (2001) employed transition matrices
based on Markov chains to describe the dynamics of income per capita convergence across
countries. Similarly, Im and Rosenblatt (2015) applied this approach to investigate middle-
income traps. In this context, identifying both macro and micro determinants that lead
countries not only into income traps but also into economic complexity traps becomes crucial,
given that a country’s productive structure sophistication is closely linked to its GDP per
capita.

Despite its importance, the literature on complexity traps remains limited. Building on
the research surrounding middle-income traps, Hartmann et al. (2021) introduce the notion
of middle-development traps, wherein countries with medium levels of complexity face
significant challenges in further advancing their economic sophistication to reach developed
status. Their study emphasizes that the transition toward a highly complex productive
structure coevolves with increasing relatedness between a country’s current capabilities and
the complexity level of its potential products. This relationship is captured by the so-called
S-curve of economic sophistication, which illustrates a pivotal nonlinear shift at the critical
stages of structural transformation toward high complexity.

Balland and Boschma (2024) introduce an evolutionary perspective on development
traps, emphasizing the structural inability of European regions to diversify into more com-
plex economic activities. The authors propose a typology of economic traps that captures
how regions can be stuck, not just because they are poor, but because their productive
structure offers limited opportunities for upgrading. By shifting attention to these structural
constraints, the paper offers a dynamic framework to understand why some regions remain
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stagnant while others continue to evolve.

One way of analyzing development trajectories and how to reach full developmental
status is by documenting the relationship between country diversification and income (Imbs;
Wacziarg, 2003; Al-Marhubi, 2000; Herzer; D, 2006; Hesse et al., 2009). As income increases,
countries tend to diversify their productive structures. At later stages of development, how-
ever, specialization re-emerges, leading to an inverted-U relationship commonly referred to
as the “diversification hump.” The timing of the hump is, thus, important for a country to es-
cape any kind of developmental stasis. Within the complexity framework, Dam and Frenken
(2022) introduce a combinatorial model showing that this hump reflects a constraint on
the range of product complexities compatible with a country’s capabilities. In their model,
late-stage specialization occurs through product exits, specifically, the abandonment of less
complex products.

Therefore, further deepening the empirical understanding of how countries journey
through the diversification hump and their concurrent economic complexity index can
aid the identification of complexity convergence clubs. Although diversification is mathe-
matically orthogonal to the ECI (Mealy; Farmer; Teytelboym, 2019), its role in productive
upgrading becomes evident when economic systems exhibit nestedness, a structural pattern
in which complex and rare products appear only in highly diversified countries (Hidalgo,
2021). This mirrors patterns found in ecological systems, where rare species tend to inhabit
more diverse environments. Nestedness implies that complex capabilities are harder to
diffuse and remain structurally concentrated in a few locations (Lee, 2016; Bustos et al.,
2012), reinforcing the idea that development trajectories are shaped by the joint distribution
of diversity and complexity.

Economic Complexity methods gave researchers powerful tools to understand the
intricacies of development paths, but is there more to uncover about complexity paths and
complexity traps? Is it possible to further understand which productive structures are more
akin to become stuck in the complexity journey? In pursuit of answers, we draw upon
a statement from (Hidalgo et al., 2007, Supplementary Material, p. 13): “If the structural
transformation only moves countries to more sophisticated goods, a local maximum would
trap countries.”

Let us recall the metaphor of the product space as a forest, as in Hausmann et al.
(2014). Each tree of the forest represents a different product, with those requiring similar
skills clustered together. Firms are monkeys that live in specific trees, exploiting those
products. The productive structure variation among countries is captured by the number
and distribution of these monkeys within the forest. The journey of economic development,
aiming for greater product diversity and complexity, is akin to monkeys expanding their
territory across the forest. This expansion is more straightforward when monkeys can easily

jump to adjacent trees, which implies a gradual acquisition of new productive capabilities
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without needing to bridge large gaps. However, when the distance between trees increases,
firms may struggle to diversify or innovate, potentially limiting their economic development
by confining them to their existing range of activities.

Alongside the influence of increasing capability distances on the diminishing likelihood
of transitioning between products, we delve into how a monkey, indulging in a tree laden
with exceptionally juicy fruits, might grow overly dependent on this singular bounty, given its
superior rewards compared to the offerings of adjacent trees. Such a dependency may deter
the monkey from exploring further afield, particularly when the immediate alternatives are
less enticing, and only more distant options offer superior benefits. This situation highlights
how certain configurations of productive structures can result in the overexploitation of
suboptimal local maxima, thereby hindering broader exploration and diversification within
the product space. When the incentives of the extensive margin are prematurely outweighed
by the benefits of the intensive margin in the economic development journey of a country,
traps arise.

This idea is intimately linked to the exploitation versus exploration dilemma in adaptive
processes (Schumpeter; Swedberg, 2021; March, 1991; Berger-Tal et al., 2014). In the con-
text of finite and constraining resources, systems must continuously navigate the trade-off
between exploiting familiar, reliable opportunities and exploring unfamiliar, potentially
superior ones. Exploitation supports efficiency, stability, and incremental gains, but over-
reliance on it can entrench systems in routines that become increasingly misaligned with
evolving environments. Exploration, on the other hand, enables adaptation, discovery, and
long-term resilience, though it often entails risk, uncertainty, and short-term costs. The most
adaptive systems are those that sustain a dynamic balance—leveraging the known while
probing the unknown. Within the product space metaphor, development traps emerge when
countries—like monkeys overly fixated on a single fruitful tree—fail to invest in exploring
new branches of the forest. In such cases, the pursuit of immediate rewards undermines the
broader journey toward diversification and structural transformation.

There is also a crossover between this idea and the resource curse literature. The term
resource curse, first coined by Auty (2002), refers to the phenomenon in which natural
resource dependence hampers economic growth. Several empirical studies have confirmed
this relationship (Sachs; Warner, 1995; Gylfason, 2001; Mehlum; Moene; Torvik, 2006), while
others have challenged it (Lederman, 2007; Cavalcanti; Mohaddes; Raissi, 2011; James, 2015).
Economic dependence on natural resources can represent a major source of developmental
stagnation. Badeeb, Lean, and Clark (2017) outlines the main channels through which this
dependence may hinder growth: the Dutch Disease, commodity price volatility, economic
mismanagement, rent-seeking, and corruption and deteriorating institutional quality.

A particularly compelling mechanism through which productive structure dynamics
operate is the Dutch Disease, which manifests through two main channels: the spending
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effect and the resource pull effect. The spending effect arises when a natural resource boom
increases national income and, consequently, domestic demand. This surge in demand
leads to inflationary pressures and an appreciation of the real exchange rate, making non-
resource tradable goods relatively more expensive on the international market. As a result,
these sectors lose competitiveness and become less attractive to investment. The resource
pull effect, in turn, refers to the reallocation of domestic inputs—such as labor and raw
materials—toward the booming resource sector. This reallocation drives up the domestic cost
of these inputs, raising production costs for other export-oriented industries, particularly
manufacturing and agriculture, thereby contracting them. Connecting back to the core
argument of this study, both effects distort the balance between exploration of new productive
opportunities and continued exploitation of existing ones in the product space. In this
context, products prone to overexploitation and low in complexity are likely to overlap
with natural resources and their derivatives, reinforcing structural dependence and limiting

diversification.

This perspective invites a closer examination of the product space—not only in terms
of capability distances, but also in terms of relative returns and structural inertia. Certain
products may offer outsized pecuniary gains compared to their neighbors, forming local
maxima that anchor countries into narrow specialization. When the benefits of intensive
exploitation outweigh the incentives for extensive diversification, countries may fall into a

dual trap: one of quiescence and another of local optimality.

To better understand how such structural traps manifest, we propose two empirical
contributions. First, we develop the Product Peak Index (PPI), which captures the extent
to which a product represents a local maximum in terms of complexity-adjusted returns
relative to its neighbors in the product space. Second, we aggregate this information at the
country level to construct the Country Peak Index (CPI), which reflects how concentrated a
country’s productive structure is around such local peaks. These indices allow us to identify
when and where productive configurations are likely to inhibit further upgrading—despite
the presence of higher-potential paths within reach. In the following sections, we present the
methodology used to construct these measures and empirically examine their relationship
with observed development trajectories.

2.3 The Product-PRODY-Space and the Product Peak Index

The product space is a network model that can be used to map an economy’s productive
frontier or adjacent possible. Since the focus of this work is on understanding country
development paths and traps, we make use of international trade data to build the product
space, just as in Hidalgo et al. (2007). We extracted the HS92 4-digit dataset for period
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1995-2020 from the Observatory of Economic Complexity — OEC!.

The international trade dataset has been cleaned to reduce statistical noise originating
from poor statistical quality reporting, variations in the size of the economies, and export
breaks caused by war or highly politically unstable situations. The filters include discarding
all countries that in any year of the period had a population smaller than 0.016% of the world
population, a total yearly trade below 0.0067% of the world trade, and that scored equal or
higher than 26 in the Fragile States Index? when summing up the dimensions of “Security
Apparatus”, “Refugees and Internally Displaced Persons”, and “External Intervention”. We
also applied the baseline of OEC’s product space to account for the set of products used in
this work. After these steps, the HS92 dataset captures the trade of 866 products between

119 countries, which represented 96.9% of global GDP and 94.6% of global trade in 2010.

We follow Balassa’s concept (Balassa, 1965) of Revealed Comparative Advantage (RCA)
to consider if a country is a competitive exporter of a product or if it is not. It compares the
export share of country c for a product p with the world’s export share of that product:

Xep

Xe
RCAp = ?—Xj (2.1)

Zc Zp ch

If RCA is equal to or higher than unity, the country is a competitive exporter of that
product, and thus has the required capabilities to produce it. The following binary matrix
summarizes which country makes what and is the starting point to calculate both the product

space and the measures of economic complexity:

1, seRCA. > 1;
M,y = (2.2)
0, otherwise.

The Economic Complexity Index (ECI) and the Product Complexity Index (PCI) are
measures of the productive knowledge embedded in geographical entities and economic
activities, respectively. Defined as iterative averages, ECI and PCI measures behave as mirrors
of each other. The ECI is the average of the PCI of the products that a country exports, and
vice versa. These measures relate deeply to the economic development journey, since ECI
explains cross-country differences in GDP per capita and predicts long-term economic
growth (Hidalgo; Hausmann, 2009; Hausmann et al., 2014; Stojkoski; Koch; Hidalgo, 2023).

L http://oec.world

2 http://fragilestatesindex.org/
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1
ECLe = Z M., PCI,, (2.3)
C
b
1
PCIp = — Mcp ECIc. (2.4)
kp Zc:

Replacing the PCI definition in the ECI one, and vice-versa, the measures can be
computed by solving the following eigenvalue equations (Hidalgo, 2021):

14CP
ECI, = —_— E M., ECI,, 2.5
c kpkc ‘ cp c ( )
cp
PCI, = > —F § M., PCL,. (2.6)
p - kpkc > cp p

The product space ¢, , is a matrix that measures the relative similarity between two
products. It uses an adjacency matrix that counts how many times each pair of products
is co-exported and divides this co-occurrence by the number of countries that export each
of these two products, picking the smallest resulting number. The result is the minimum
conditional probability of having RCA in each pair of products:

_ Zc McpMcp’
max (Zc Mcp, Zc Mcp’)

The value of pairwise relative similarity is called proximity and goes from nil to unity.

(2.7)

¢p,p’

The greater the value of proximity, the more that pair of products share capabilities. Proximity
is the feature that originally captures if firms occupying one product are more likely to jump
into another product. The product space is a flattened, two-dimensional representation of
the map for productive upgrading. Here, diversification is uniquely constrained by the subset
of pairwise product proximities that matches a country’s productive structure. Therefore,
the density, denoted as w, indicates the closeness of a productive structure to the required
capabilities for producing a potential target:

Zc MCP ¢P,P’
Zp’ ¢p,p’

One of the most important applications of economic complexity methods is predicting

Wep = (2.8)

product appearances by using the density measure. The greater the density of a country over
a product, the greater the chances of having the required capabilities of that product, and
thus of starting to export it in the future (Hidalgo et al., 2007; Neffke; Henning; Boschma,
2011). Pinheiro et al. (2022) further refine this concept by proposing the relative density - the
country density of a product compared to the products that the country does not export yet
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(RCA<1) - to find that related diversification is more frequent than unrelated diversification
for countries at lower levels of ECI. The relative density formula is:

2 » Wep!
~ w(,‘p - ( I;\TOC : )
Dcp = (2.9)
Uwcp/
where Z‘]’V% is the average density of set of products that a country does not export yet and

Ow,, 18 the standard deviation of the density of this set of products.

However, as firms contemplate their prospective payoffs in the journey of productive
upgrading, a second-order problem of diversification emerges — an exploitation versus
exploration dilemma. This dilemma arises when the potential payoff from exploiting existing
products outweighs the incentives for exploring new possibilities. In such cases, there’s a
tendency to prioritize the exploitation of known products over the exploration of adjacent
possibilities, hindering the recombination of existing knowledge and impeding the venture
into the production of new products.

The exploration-exploitation dilemma is elucidated through the application of fitness
landscapes, a concept first introduced by geneticist Wright et al. (1932) to examine species’
adaptive evolution. These landscapes serve as a representation of the solution space for a
problem, like topographical maps of physical terrain. Each location on the map corresponds
to a potential solution, with its elevation reflecting the solution’s payoff. A simple visual ob-
servation allows us to discern superior solutions. The use of fitness landscapes has expanded
beyond its original purpose over time, becoming a versatile analytical instrument across
diverse fields. As a model of more general evolutionary processes, fitness landscapes can
depict any evolutionary dynamics, encompassing a wide range of areas such as economic
development, organizational structures, belief systems, culture, language, among others, as
noted by Mueller (2025).

We chose the PRODY measure (Hausmann; Hwang; Rodrik, 2007) to portray the payoff
structure of the fitness landscape of product space. PRODY is the weighted average GDP of
countries that exports a product with RCA > 1, where the weights correspond to the RCA of
each country c in product p:

ZC Mcp RCACP Yc
ZC Mcp RCACP

PRODY,, = (2.10)

In determining PRODY, we chose to use the current GDP per capita rather than Pur-
chasing Power Parity (PPP) GDP to represent financial incentives more accurately, drawing
on data from the World Bank. Using current prices allows for a more effective capture of the
fluctuations in global prices, particularly in the commodities sector. To provide a detailed
perspective on the financial returns landscape within the product space, we developed a
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three-dimensional visualization network, which we call the Product-PRODY-Space. Figure
2.1A showcases the Product-PRODY-Space for the year 2006.

Figure 2.1 — The Product-PRODY-Space
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Panel A depicts the Product-PRODY-space, a three-dimensional visualization of the traditional
product space layout, based on PRODY values for year 2006. B and C illustrate two different local
maxima: electric soldering equipment (high-PRODY, core) and refined petroleum (low-PRODY,
periphery), showing how average PRODY varies with distance from each product.

Initially, it is essential to visually examine the topology of the Product-PRODY-Space.
If this landscape mimics Mount Fuji, characterized by one or a few local maxima, the
choice between exploitation and exploration would not pose a dilemma. Yet, the actual
terrain is generally characterized by a rugged landscape with abundant local maxima.
Within the Product-PRODY-Space, a distinct core-periphery pattern emerges, where high-
PRODY products cluster at the highly connected core of this three-dimensional network, and
numerous low-PRODY local maxima scatter across its periphery. This configuration suggests
a greater danger of a country getting trapped in network areas marked by lower payoffs,
emphasizing the critical need to carefully navigate development paths in this complex
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landscape.

The examples of refined petroleum and electric soldering equipment underscore the
nuances of local maxima, as detailed in Figures 2.1B and 2.1C. These figures demonstrate
how the average PRODY of other products changes as their distance from these two exam-
ples increases. Electric soldering equipment is at the core of the network and represents a
local maximum with good payoffs, featuring a high PRODY of approximately US$34,000
(compared to the US$46,300 PRODY of the global maximum - hormones). It also has a high
PCI, of 4.16. Increasing distances to electric soldering equipment consistently result in a
decrease in the average PRODY of products compared.

On the other hand, refined petroleum is in the periphery of the network, featuring a
local maximum with a low PRODY, of US$9,100, compared to a PRODY average of US$15,473
and a median of US$14,109. It also has a low PCI, of -1.00. The products in the immediate
vicinity have lower PRODYs than refined petroleum, whereas those positioned further
away tend to achieve higher PRODY values. A product’s average PRODY only surpasses
that of refined petroleum when its distance to this product is near 0.8. We are particularly
interested in low-PRODY, low-complexity local maxima such as refined petroleum because
low-diversified countries that are overly dependent on this kind of products may face little
payoff incentives to diversify, curbing their economic complexity enhancing.

While the Product-PRODY-Space provides insights for rugged landscapes and potential
development traps, it may overlook some linkages between products. To address this, we
suggest a more structured approach by introducing an index at the product level that evalu-
ates the likelihood of a product being a local maximum relative to its closest counterparts.
Begin by fixing the k top proximity ® values of product p in the product space. If the kth
value occurs more than once, consider the subset of all products that have proximities within
this value range.

TOPyg, = {P’ (¢pp | rank(¢,) < k)} (2.11)

Next, establish the Product Peak Count (PPC) as the number of times that the PRODY of
product p is equal to or higher than the PRODY of the products within the top k proximities.

1, if PRODY, > PRODY
PPCp ) = Z p p
pefope,, (0s if PRODY, < PRODY)

(2.12)

Finally, formulate the Product Peak Index (PPI) as a relative measure of the local

maximum feature of a product in comparison to its closest neighbors.

PPCpk

PPI,, = — Pk
P TOPy 4|

(2.13)
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By setting k=30, we enable the PPI to capture the PRODY fitness of products based
on their local vicinity. The bigger k is, the less important will be these local restrictions to
the networked process of product diffusion. In this sense, incorporating the PPI into the
analysis of the productive upgrading process allows for the inclusion of a layer of productive
substitutability, complementing the implied productive complementarity introduced by
Hidalgo et al. (2007).

In Figure 2.2, we plot the PPI versus the PCI of a product for the year 2006, splitting
products into quadrants. The correlation between the PPI and the PCI is 0.3. The high-peak,
high-PCI situation is portrayed in the first quadrant. It has products with good local maxima,
such as cars and electric soldering equipment. The high complexity of these products means
that they require a diverse set of capabilities. Therefore, occupying these local maxima
generally does not represent lower chances of further diversification.

Figure 2.2 — Product Peak Index vs Product Complexity Index — Year 2006
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Panel A plots each product’s PPI against its PCI for year 2006, dividing the space into four quadrants.
Product dots are colored by their corresponding product section, according to the HS92 (4-digit)
classification. Panel B summarizes the quadrant classification.

The second quadrant is the high-peak, low-PCI zone. It presents the most relatable
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products to development traps. Most products in this quadrant belong to a few product
sections—Mineral Products, Animal Products, Vegetable Products, and Textiles—which,
despite their sectoral differences, share the structural feature of combining low complexity
with high current returns. Lack of incentives for diversification coming from the high-peak
feature can lead to a low-complexity equilibrium for a productive structure that is highly
dependent on this kind of product.

This quadrant resonates strongly with the resource curse literature, which argues that
dependence on natural resources, especially extractive commodities like oil and gas, can
hamper long-term economic growth. Products located in this region offer strong short-term
incentives due to relatively high current returns , but they lie in sparsely connected areas
of the product space and embody low complexity. This combination creates an incentive
structure that favors persistent exploitation over exploration, potentially trapping countries
highly specialized in these products in a low-complexity equilibrium. The local maximum
nature of these products, as captured by a high PPI and low PCI, adds a structural dimension
to the resource curse hypothesis, relatable to the Dutch Disease: they anchor productive
structures in areas of the product space that offer limited paths to future upgrading.

Interestingly, not all products in this quadrant are natural resources. While many
paradigmatic cases—such crude and refined petroleum—fit the classical narrative of the
resource curse, the identification of non-resource-based products that share similar structural
characteristics raises important policy considerations. These are goods that, despite not being
commodities in the traditional sense, also exhibit high local payoff and low complexity,
and lie in poorly connected regions of the product space. If intensely exploited, they may
reproduce the same developmental inertia observed in resource-rich economies, reinforcing
specialization patterns that discourage diversification and hinder the accumulation of new
capabilities.

The low-peak, low-PCI zone has products suitable to diversification but with an un-
determined path for ECI growth. Ammonia, for example, stands in the fourth quadrant.
The closest products to ammonia are refined and crude petroleum. Therefore, even having
diversification prospects, it does not necessarily imply a virtuous path to economic develop-
ment. The fourth and last quadrant is the low-peak, high-PCI region, which has products
with high impact for diversification and ECI growth. Strategic industrial policy should target
products in this zone.

In this section, we presented the Product-PRODY-Space, a rugged fitness landscape
far removed from the simplicity of a singular peak, emphasizing the existence of many
local maxima products with low payoffs in the less connected areas of this network. The
introduction of the PPI further enhances our analysis by quantitatively evaluating the
likelihood of a product being a local maximum in its product neighborhood, thereby shedding
light on a second-order problem of diversification. It highlights the aspects of product
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substitutability within the process of productive diffusion, in addition to the productive
complementary implied by the original product space. In the next section, we leverage the
PPI to establish a country-level metric, aiding in the exploration of country development
trajectories and the pinpointing of complexity traps.

2.4 The Country Peak Index, Development Paths, and Complexity
Traps

In this section, we analyze development paths and complexity traps through the lens of
the intertwined relationship between local maxima and relatedness. We begin by examining
how a country’s level of diversification, when combined with its degree of specialization in
peak products, relates to its overall level of economic complexity. This aggregate analysis
enables the identification of distinct forms of low-complexity developmental stasis, including
one rooted in overexploitation of high-PPI products. In the second part of the analysis, we
investigate whether specialization in such products hinders the exploration of untapped
opportunities at the country—product level, curbing diversification even after controlling for
relatedness.

Previous literature has highlighted that the relationship between diversification and
income is not linear, but rather follows a hump-shaped trajectory: countries tend to diversify
as they develop, up to a point where further advancement is associated with re-specialization
Imbs and Wacziarg (2003). This same principle can be extended to the structure of economic
complexity. When projected into a phase space of diversification and local maxima special-
ization, countries are expected to follow non-linear paths shaped by the types of products
they populate. In particular, countries that populate high-peak but low-complexity products
too early in their development may face strong incentives to keep exploiting these local
maxima, thereby reducing the returns from adjacent exploration.

Depending on the stage of diversification, populating local maxima products can yield
very different outcomes for knowledge accumulation. In the course of diversification, pro-
ductive upgrading is expected to occur by populating products with better payoffs, thus
moving closer to local maxima. However, if a country in the early stages of capability ac-
cumulation specializes prematurely in such products—especially those in the high-Peak,
low-PCI quadrant of Figure 2.2—the incentives for venturing into nearby, more complex
products rapidly decay. This premature hump reinforces the lack of prospects for accumu-
lating capabilities through the means of diversification, launching the country into a harsh
mix of quiescence and local maxima developmental trap.

We build on the PPI to create a country-level measure for acknowledging the local
maxima stance of development paths. The Country Peak Index (CPI) measures how much
a set of products exported by a country occupies local maximum positions in the product
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space. CPI is the average of the PPI of the products a country exports with RCA, weighted
by the share of each product in the country’s export basket. The export share s., works as
normalizing factor to account for the country-varying financial incentives of exporting a
product.

Zp Mcp Scp

Country development trajectories often follow structurally constrained paths, shaped

CPI, = (2.14)

not only by capabilities accumulated over time but also by their surrounding configuration of
productive possibilities and diversification incentives. We analyze these dynamics empirically
by constructing a phase space composed of two key structural indicators: CPI and Diversity.
Figure 2.3 presents the evolution of selected countries within this phase space in the period
between 1998 and 2014.

Figure 2.3 — Country Peak Index vs Diversity — 1998-2014
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Figure 2.3 displays all country-year observations in the CPI-Diversity space from 1998 to 2014, with
2-year intervals. Color and size reflect the corresponding ECI. Development trajectories are shown
for selected countries.

The figure reveals a triangular structure. Countries with low diversity tend to exhibit
low complexity, populating the base of the triangle, while the upper-right corner concentrates
the most diversified and complex countries. This suggests that different combinations of
CPI and Diversity can lead to high levels of complexity, but the viable region is bounded.
Although a developmental direction may appear self-evident, it reinforces the notion that
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countries starting from low levels of both CPI and Diversity must experience a joint increase
in these dimensions in order to reach high ECI levels, a path that is far from automatic and
often subject to structural constraints.

Country development trajectories exhibit different patterns. Uganda is the typical
country escaping from the quiescence trap, but still in the initial stages of development in
which country diversification increases in hand with the CPI and the ECI. Latvia is the case
of a country that has been successfully climbing the ladder of economic complexity, but with
still unclear prospects if it is time to start retreating from diversification with a respective
increase in the CPI for becoming a highly complex economy. China, a case by its own, is a
highly diversified economy with a clearer challenge of passing through the hump phase and
start specializing in products of the high peak, high PCI quadrant of Figure 2.2.

Regardless of their distinct positions in Figure 2.3, Brazil and Australia follow compara-
ble development trajectories. Both nations are significant players in the global commodities
markets and have experienced a pronounced concentration of their export portfolios into
a more restricted set of commodities. These trends raise concerns regarding a premature
occurrence of the hump effect and the subsequent ability of these countries to sustain a
beneficial process of productive upgrading. Saudi Arabia and Kuwait, on the other hand,
exemplify countries with low diversity and high CPI, where the composite quiescence and
local maxima trap takes place. During the 1998-2014 period, both countries have not made
considerable advances in diversity nor economic complexity.

While Figure 2.3 provides a representation of the CPI-Diversity space, capturing the
variety of developmental trajectories, a more structured analysis is required to uncover deeper
regularities and patterns that may govern the evolution of productive structures. To this end,
we adopt a discretized approach, segmenting both CPI and Diversity into Q = 5 quantiles
and generating a Q x Q grid. Each cell (i,j) in this grid defines a discrete developmental

state S; ;, characterized by three analytical components:

1. Average Economic Complexity (ECI):

1
ECI,; = T Z ECL (2.15)

where C; ; is the set of country-year observations falling into cell (i, ).
2. Average Transition Vector: For each country-year c, we define the transition vector
as:
AX. = (CPI4ar — CPLy, Diversity, ,, ,, — Diversity, ,) (2.16)

where At is the length of the time window : four years. The average transition vector
in cell (i,j) is then:
AX, (2.17)



35

This vector field captures the average directional movement of countries across devel-
opmental states.
3. Attractor Identification:
A cell S; ; is classified as an attractor if it satisfies two conditions:
» Low local velocity:
101l <€ (2.18)
where € = 0.01, indicating stagnation or directional neutrality.

« Local convergence dynamics: we estimate the Jacobian matrix J; j of local transi-

tions:
JACPI JACPI
- 6CPI dDiversity
Jl,] ~ | dADiversity  dADiversity (2.19)
0CPI dDiversity

A cell is classified as a common attractor if all eigenvalues of J; ; have negative
real parts:
Re(Ak(Jij)) <0, Vk

and as a spiral attractor if the eigenvalues have negative real parts but non-zero

imaginary components:
Re(/lk(Ji,j)) <0 and Im(/lk(fi,j)) #0

Figure 2.4 displays the empirical implementation of this framework. It allows us to
uncover convergence patterns, structural inertia, and development traps in a topological
fashion, moving beyond individual trajectories to a systemic understanding of productive
transformation. The background color gradient denotes the average ECI levels in each cell,
while the black arrows represent the average transition vectors v j, i.e country transitions
over four-year periods. Red markers indicate attractors, either spiral or common, representing
zones of convergence in the development space. Attractor regions can be interpreted as
empirical analogs to steady states in dynamical growth models, where structural inertia
stabilizes trajectories. Common attractors exhibit minimal motion and direct convergence,
while spiral attractors involve rotational dynamics with dampened trajectories. Both types
are identified where vector magnitudes fall below 0.01 and the Jacobian has eigenvalues
with negative real parts.

Our analysis identifies three attractor regions within this phase space, each associ-
ated with distinct development dynamics and structural constraints. Region 1, the Middle-
Development Stasis, corresponds to countries with intermediate levels of both CPI and
Diversity. This is the most common trap for developing economies — a structural analog to
the well-known middle-income trap. In this zone, vector directions are weak and multidi-
rectional, indicating that countries struggle to build the structural momentum necessary to
advance. As countries transition from low to medium levels of economic complexity, diver-
sification strategies that follow closely the logic of relatedness tend to become exhausted.
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Figure 2.4 — Phase Space of Productive Development: Vector Fields and Structural Traps
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Figure 2.4 depicts a discretized CPI-Diversity phase space in 5x5 grid of quantile-based cells,
providing a basis for the analysis of structural development trajectories via vector fields and attractor
identification. Background colors represent average ECI; black arrows show average country transition
vectors over four-year periods. Red dots indicate attractor regions, defined as zones of low vector
magnitude (< 0.01) and local convergence (negative eigenvalues of the Jacobian). Three key attractor
regions are identified: R1, R2, and R3.

In other words, while initially effective, these related diversification pathways cease to be
sufficiently ECI-enhancing once a country reaches intermediate complexity. Escaping Re-
gion 1, therefore, often requires a strategic shift toward more ambitious and structurally
transformative moves — including unrelated diversification into products that lie further
from the current productive frontier (Pinheiro et al., 2022).

Region 2, the Resource-Based Stasis, is located in the bottom-right quadrant — char-
acterized by high CPI and low Diversity. It typically includes countries whose productive
structures are highly concentrated in a few high-peak products, most often natural-resource
intensive. This region aligns closely with the logic of the natural resource curse: while initial
specialization in commodities may provide high returns and elevate the CPI, it often comes
at the cost of long-term structural transformation. The stasis here is of a different kind
than in Region 1 — it is not the exhaustion of relatedness, but the entrenchment of early
specialization. If resource exploitation is not sufficient to propel the country to high-income
status — or if the gains are not reinvested in productive diversification — the country may
become trapped in a fragile equilibrium with limited structural resilience and little scope for
complexity upgrading.

Region 3, the High-Complexity Equilibrium, occupies the upper-right corner of the
phase space. This is the "let it be" zone: countries here combine high levels of CPI and
Diversity, forming the most desirable and stable structural configuration. These countries
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have successfully accumulated a broad set of capabilities and managed to integrate them into
complex products. Vector magnitudes are minimal and convergence is strong, indicating that
once this region is reached, little structural adjustment is required to sustain high economic
performance. While entry into this region is rare and typically nonlinear, it represents the

empirical manifestation of long-run development success.

The configuration of attractors and directional vectors highlights the path dependency
nature of economic development. An underdeveloped economy begins in the bottom-left,
where both CPI and Diversity are low. From there, countries must diversify (move upward)
and eventually specialize in increasingly complex activities (move rightward). However, the
empirical evidence shows that many fail to complete this trajectory. Some fall prematurely
into Region 2, attracted by early gains from resource-based specialization, while others stall
in Region 1, unable to generate the structural momentum needed to transition further. Only
a few manage to navigate through these zones and reach Region 3, where the productive
structure becomes self-reinforcing.

This representation also allows for a reinterpretation of the hump effect in the devel-
opment literature — the idea that export diversification rises during early and intermediate
stages of growth but eventually declines as countries reach advanced stages. In this frame-
work, the timing of the hump becomes crucial. If diversification contracts prematurely, for
example, while still in Region 1 or 2, it reinforces structural traps and prevents the transi-
tion to a high-complexity equilibrium. In contrast, a late-stage hump, occurring only after
a country has attained high levels of diversification and structural readiness, may reflect
efficient specialization rather than stasis. Hence, the policy implication is that the hump is
not a problem in itself — but mistiming it is.

From a developmental policy standpoint, countries positioned in Regions 1 and 2 may
require policies aimed at breaking structural stasis. Incremental or path-following efforts
may not suffice; rather, these countries must consider more ambitious strategies that promote
unrelated diversification — that is, the deliberate entry into sectors that are not adjacent in
the product space but hold high structural potential (Alshamsi; Pinheiro; Hidalgo, 2018;
Pinheiro et al., 2022). Thus, policy must carefully calibrate when to shift from related to
unrelated strategies, ensuring that the economy is sufficiently prepared to absorb and sustain
more complex capabilities. The goal is not merely to follow comparative advantage, but to
strategically reshape it in a way that unlocks new developmental trajectories.

In sum, the Diversity-CPI phase space offers a rich empirical landscape of structural
transformation, stasis, and divergence. Economic development is not a smooth or automatic
process, but one punctuated by zones of resistance and convergence. Understanding where a
country is located in this phase space — and how its productive structure responds to policy
choices and opportunity — is essential for navigating viable development trajectories. This

macro-level mapping helps uncover the structural conditions under which countries may
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fall into complexity stagnation or advance toward higher levels of economic sophistication.

Yet, while the phase space reveals systemic, aggregate dynamics, it also raises a com-
plementary micro-level question: how does the structure of opportunity operate at the
level of individual products? Next, we shift focus from national development trajectories
to product-level activation, examining how the CPI interacts with relatedness to explain
whether a country is likely to start exporting a new product. This micro-level lens allows us
to explore how countries move through the product space and whether the CPI helps refine
the predictive power of traditional diffusion measures like density.

We want to test whether there is a hump-shaped effect of the CPI on the probability of
exporting a new product, conditional on the density and relative density of a country with
respect to that product. This investigation is motivated by the macro-level dynamics revealed
in Figure 2.4, where we observed that most countries initially progress by simultaneously
increasing both their CPI and export Diversity, a path consistent with a phase of exploratory
growth. In this early stage, higher CPI levels may reflect a productive structure that supports
entry into a broader range of new products, reinforcing diversification.

However, if the CPI continues to rise without a commensurate expansion of the product
basket, diversification incentives may begin to weaken. A hump-shaped effect would suggest
that, while increases in CPI initially promote exploration by enhancing the structural base
for diversification, there comes a point where the incentive structure shifts. At higher levels
of CPI, countries may begin to prioritize the exploitation of existing specializations rather
than the exploration of new activities, leading to a decline in the likelihood of diversifying
into additional products. In this sense, the hump marks a transition from exploration-led
upgrading to a potential narrowing of focus.

We use a Probit model to test CPI’s effect on predicting product appearances on the
country-product level, as in O’Clery, Yildirim, and Hausmann (2021). The complete regres-
sion model takes the following form:

P(RCACPI+4 Z 1 | RCACP[ S 0.5) = 61wcpl +ﬁ2cz)cp[ +‘83(C0cp[ * Cacpt)

) (2.20)
+ B4CPIp, + 55CPIcpt + g

where P(RCA.p,,, > 1| RCA.p, < 0.5) is the probability of becoming a competitive exporter
of that product in the next four years, given that the country’s RCA of that product was lower
or equal than 0.5 in year t. The explanatory variables are, in order, density, relative density,
the interaction term between these densities, the CPI and its quadratic term, and a dummy
that controls for year fixed effects. We use a 2-year window for t, ranging from 1998 to 2016.

We collect pseudo-R2, AUC-ROC (Area Under the Receiver Operating Characteristic
Curve) and best F1 score statistics to compare the tested Probit models, following O’Clery,
Yildirim, and Hausmann (2021) and Albora et al. (2023). The AUC-ROC and the F1 score
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are both performance indicators used to evaluate the quality of binary classification models.
AUC-ROC is a plot of the ratio of true positive predictions to the total number of actual
positive instances (True Positive Rate, or Recall) against the ratio of false positives to the
total number of actual negative instances (False Positive Rate, or 1 - Specificity) at various
threshold settings. Its value can go from nil to unity, with 0.5 representing a random classifier,
and 1.0 representing a perfect model. The F1 Score is a harmonic mean of the ratio of true
positive predictions to the total number of positive predictions (Precision) and the Recall
measure. The Best F1 score is computed by finding the threshold that maximizes the F1
score. F1 scores are interesting to compute when there is an imbalanced distribution, where
one class is much more frequent than the other. In this case, out of 773,974 observations
with RCA.p, < 0.5, only 11,954 (1.54%) ended up being successful, i.e. RCAcp,,, > 1.

Table 2.1 summarizes the results obtained for four different specifications of the model.
Model 1 serves as the baseline, incorporating only density and the year dummies. Model 2
builds on the baseline by adding relative density and its interaction term with density. Model
3 adds a linear term for CPI, keeping density, relative density and year dummies. Model
4 presents the complete specification by further including the quadratic term of CPI. An
increase in predictive power is evident in the pseudo-R2 measure, rising from 0.9% in Model 1
to 3.8% in Model 2, to 4.8% in Model 3, and finally to 5.0% in Model 4. Additionally, the AUC-
ROC for Model 1 is 0.602, increasing to 0.682 in Model 2, 0.695 in Model 3, and further to
0.699 in Model 4. The Best F1 Score follows a similar trend, with values of 0.0420 for Model 1,
0.0696 for Model 2, and 0.0762 for both Models 3 and 4, indicating improved balance between
precision and recall with each subsequent model specification. The improvements of the
complete model when compared to the baseline are similar to alternative frameworks for
predicting product appearances, such as using the ‘EcoSpace’ (O’Clery; Yildirim; Hausmann,
2021) or Random Forest approaches (Albora et al., 2023).

In Model 3, the coefficient for CPI is negative and statistically significant, indicating
that higher levels of CPI are associated with a lower probability of product appearances. In
Model 4, we further account for nonlinearities by including the quadratic term of CPI. The
results reveal a concave (inverted-U) relationship: while initial increases in CPI positively
affect the likelihood of product activation, this relationship eventually reverses. The negative
and significant coefficient on CPI* confirms the presence of a hump-shaped effect of CPI on
diversification prospects.

In Figure 2.5, we illustrate this non-linearity by plotting the predicted probabilities for
different levels of CPI. The peak of the curve occurs at CPI ~ 0.235, where the probability
of success is maximized. As CPI increases beyond this threshold, the predicted probability
declines steadily, falling back to the baseline level at CPI ~ 0.43, and approaching zero near
the upper bound of the sample (CPI = 0.81). Interestingly, the CPI level of 0.43 aligns with
Region 1 of the macro-level phase space, where structural inertia dominates and development
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Table 2.1 - Probit results for predicting country-product appearances.

Probit - Predicting appearances in t+4

Coefficients Marginal Effects
1 2 3 4 1 2 3 4
Density; 1.0473***  0.6663*** 0.9236*** 0.7367*** [0.0394*** (0.0222*** (0.0297*** 0.0234***
(0.035) (0.04) (0.042) (0.044) (0.0013) (0.0013) (0.0013) (0.0014)
Relative Density, 0.2513***  (0.2593*** (.2677*** 0.0084*** 0.0083*** (0.0085***
(0.006) (0.006) (0.007) (0.0002)  (0.0002)  (0.0002)
Density Interaction, -0.1767*** -0.2713*** -0.2912%*** -0.0059*** -0.0087*** -0.0092***
(0.036) (0.037) (0.038) (0.0012)  (0.0012)  (0.0012)
CPI, -0.8901%** 1,152%** -0.0286*** 0.0365***
(0.029) (0.147) (0.0009) (0.0046)
cpPi%, -2.4465%** -0.0776%**
(0.172) (0.0054)
Pseudo R 0.008 0.040 0.048 0.050
AUC-ROC 0.602 0.682 0.695 0.699
F1 Score 0.0420 0.0696 0.0762 0.0762

Table 2.1 reports Probit regression results with period-fixed effects, using intervals of two years
between each ¢ from 1998 to 2016, totaling 773,974 observations. Standard errors are in parentheses.

*¥p < 0.01.

trajectories tend to stall. This reinforces the interpretation that, beyond a certain point, rising

CPI signals diminishing returns to exploration, as exploitation incentives begin to dominate,

echoing the attractor dynamics and complexity traps identified in the macro framework.

Figure 2.5 — Probit Model 4 - Predicted Probability vs. CPI
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Figure 2.5 illustrates the hump-shaped effect of the Country Peak Index (CPI) on the predicted
probability of a product appearance within four years. The dashed line marks the inflection point.

The hump effect of CPI in the country-product microlevel suggests that when a country



41

shows high levels of CPI, incentives to keep exploiting its current set of product exports may
supersede incentives to explore new products, even after controlling for density and relative
density. It suggests that there is more to gathering all the required productive capabilities to
start exporting a product. Diversification cannot be explained by the principle of relatedness
alone. An additional layer, of relative pecuniary returns, also plays an important role in
defining diversification. Connecting with Dam and Frenken (2022), the hump effect may be
the resulting concentration process of the export set not only in the last stages of development
but also in any development stage for a country with an excessively high level of CPI.

Linking the findings of the country-product microlevel with the macrolevel of country
phase space, a low-diversified country may face a premature diversification unwinding or
stall when its CPI spikes without further increases in diversity, impeding the accumulation
of productive knowledge at the extensive margin, and thus hampering economic complexity
growth. Such dynamics are particularly evident in Region 2 of the Diversity-CPI phase space
(Figure 2.4), which we identify as a natural resource-based trap. If the exploitation of high
peak products is not sufficient for the economy to achieve high-income status, the country

may find itself in an income trap as well.

This section explored the intricate dynamics between local maxima, diversification,
and the corresponding economic complexity of countries. We modeled the phase space of de-
velopment by discretizing the Diversity—CPI space into quantile-defined cells and estimating
the average directional transitions and structural attractor zones across countries over time.
This approach revealed regions of stasis and convergence, allowing us to identify where
development trajectories are likely to stall and under what structural configurations. We also
analyzed the non-linear impacts of CPI in product appearances at the country-product level,
concluding that high levels of CPI curb diversification probabilities even after controlling
for relatedness. These insights underline the delicate balance between diversifying and
specializing, whereas premature specialization into products with high PPI but low PCI
risks leading countries into a newly identified complexity trap, characterized by the joint
effects of quiescence and local maxima developmental stasis. In the next section, we discuss
these findings.

2.5 Discussion

Our study ventures into the critical domain of economic convergence within develop-
ment economics, highlighting complexity convergence and the diverse pathways through
which productive structures evolve. We propose a nuanced hypothesis that alongside the
inherent complementarity in the product space, there’s a concurrent phenomenon of pro-
ductive substitutability. This theory sheds light on the tendency of economies to prioritize

the exploitation of existing products due to their relative higher returns, often neglecting the
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exploration of novel opportunities in the adjacent possible.

We demonstrate how certain configurations of productive structures can inadvertently
lead to the overexploitation of suboptimal peaks, thereby constraining diversification and
limiting the integration of new productive knowledge. To capture this mechanism, we intro-
duce a new metric that quantifies exposure to local maxima development traps, extending
the discourse beyond the traditional quiescence trap. This tool enables a fine-grained analysis
of development trajectories and helps identify both aggregate and individual aspects under
which countries are more likely to experience stagnation in complexity upgrading.

Our findings also offer actionable insights for industrial policy, particularly regard-
ing the timing and targeting of interventions. In addition to advising against premature
specialization in low-complexity peak products—thereby contributing to the “what” and
“when” framework of Hidalgo (2023)—our results suggest that countries situated within
or near empirically identified zones of developmental stasis may require more intensive
and proactive industrial strategies. Specifically, these situations may justify the pursuit of
unrelated diversification (Pinheiro et al., 2022). In such contexts, policy may play a decisive
role in overcoming inertia, unlocking new paths for capability accumulation and structural
transformation.

Further exploration is warranted to dissect the implications of product overexploitation
on diversification at the microlevel of country-product interactions. It would also be insightful
to investigate how incentives for diversification and specialization shift during the critical
transition from a middle to a high-complexity economy, integrating the hump phenomenon
with the economic sophistication’s S-curve. Lastly, given the multidimensional nature of
economic complexity (Stojkoski; Koch; Hidalgo, 2023), which spans beyond international
trade to encompass various economic processes, it’s important to examine the applicability
of the local maxima framework across different datasets, thus enriching our comprehension

of economic complexity in a broader context.

Beyond its role in explaining productive upgrading dynamics, the CPI may serve as a
diagnostic tool for broader development challenges. Countries with high CPI but without
a corresponding level of economic complexity may not only face structural inertia in their
diversification processes, but also exhibit deficits in key dimensions of human development.
These may include weaker educational outcomes, lagging health indicators, lower institu-
tional quality, and even heightened political instability—factors that often coevolve with
productive structures. Future research could explore these associations systematically, using
the CPI to investigate how pecuniary specialization patterns intersect with multidimen-
sional development outcomes. In doing so, the CPI could contribute to a more integrated
understanding of structural development traps across both economic and social domains.
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3 Less is More: How Relatedness Filtering
Enhances Productive Upgrading Predic-
tions

Abstract

Relatedness measures indicate how close a country is to developing a new activity, with
implications for industrial policymaking. However, estimating relatedness is challenging,
and relying on its traditional, Product Space-based measure to design industrial policies can
be misleading. To overcome its limitations, several attempts have been made to completely
reformulate relatedness, including the use of machine learning techniques. Yet, simplicity
can be just as effective. Rather than proposing an entirely new approach, we suggest using
network filtering as an intermediary step in the standard relatedness calculation, testing
several network filtering methods for the Product Space. We find that filtered relatedness
significantly outperforms baseline relatedness in predicting which new activities a country
will develop, providing policymakers with a valuable tool to design more effective and
lower-risk industrial strategies.

Keywords: relatedness, product space, economic complexity, network filtering, backbone

extraction

3.1 Introduction

Industrial Policy Is Back. Now What?'

The resurgence of industrial policy as a key component of economic strategy has
sparked debates among economists and policymakers about how best to design effective
interventions. Once considered a marginal approach, industrial policy has now become
a focal point of policy discourse, with the question shifting from ‘if’ to ‘how’ it should be
implemented. One promising framework aiding this shift is the use of Economic Complexity
and Relatedness metrics, using network theory to identify strategic industries that match with
a country’s current capabilities. In practice, governments, think tanks, and state institutions

have already begun employing these metrics as tools for crafting targeted industrial policies.
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Despite the appeal of these metrics, relying solely on the traditional relatedness measure
presents limitations that could misguide policy decisions. The traditional approach often
fails to capture the nuances required for accurate prediction of productive upgrading. This is
especially risky for countries with constrained resources and high opportunity costs in policy
choices, where missteps could exacerbate economic challenges rather than alleviate them.
In response, recent literature has explored alternative, complex approaches. In this study,
we explore a simpler, yet powerful alternative: applying network filtering as an intermediary
step in the calculation of relatedness density of a country over a product.

Rather than proposing a new relatedness metric entirely, we examine how filtering
techniques, particularly those designed to extract the backbone of networks, can enhance
the predictive performance of traditional relatedness measures. By focusing only on the most
meaningful connections within the Product Space, filtered relatedness reduces informational
noise and highlights actionable insights, offering policymakers a streamlined yet effective
tool for identifying high-potential targets. This minimalist approach, as the title suggests,
operates on the principle that ‘less is more’, suggesting that, in the context of productive

upgrading, simplicity can lead to more accurate and practical results.

While this study applies network filtering techniques to international trade and product
diversification, the methodology developed here could also be extended to the analysis of
knowledge diffusion and patent networks. Filtering noisy connections in these contexts
could help uncover more precise patterns of technological development and innovation
dynamics, addressing similar informational challenges to those encountered in trade-based
relatedness measures. This perspective resonates with the work of Balland and Rigby (2017)
and Balland et al. (2019), who demonstrated the importance of accounting for network
structure in studying the diffusion of complex knowledge across technologies. Extending

filtering techniques to these domains represents a promising avenue for future research.

In the following section, we review the existing literature on relatedness metrics,
highlighting the underutilization of network filtering as a tool to improve predictions of
productive upgrading. We then present our methodological approach, applying distinct
network filtering techniques to the product space. Some of these techniques adapt estab-
lished statistical backbone extraction methods to incorporate directionality into the filtering
process. Among these, one adapted method — the Directed Disparity Filter In-Degree (DDF-
In-Degree) — stands out, outperforming the others in predicting which products are likely to
become competitive exports for a country. To illustrate the practical implications, we conduct
a brief case study on Brazil and the Philippines, comparing industrial policy recommen-
dations derived from DDF-Out-Degree relatedness density with those based on traditional
relatedness density. Finally, we conclude with a discussion and propose directions for future
research.
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3.2 Literature Review

Relatedness was introduced as an empirical description of the probability that a region
enters (or exits) an economic activity as a function of the number of related activities present
in that location (Hidalgo et al., 2018). It helps identify optimal pathways for countries to
diversify their productive structure (Hausmann et al., 2014), ultimately promoting economic
development. The core idea behind relatedness is that a country’s potential to start producing
a specific product can be estimated through colocation — if a country already produces a set
of products that are typically produced alongside the target product, it is likely to meet the
productive requirements of that new product.

The concept of relatedness is gaining traction in industrial policy debates, as it offers a
framework to identify strategic directions for countries to expand into new products and
industries. In 2019, the World Bank’s Global Economic Prospects (World Bank, 2019) applied
relatedness and complexity metrics to assess development trajectories across selected nations.
The European Commission’s Joint Research Center has also used this framework, publishing
studies to guide member states in formulating development strategies (Pugliese; Tacchella,
2020; Caldarola et al., 2024). Recently, the Draghi Report (Draghi, 2024) further spotlighted
relatedness, discussing optimal approaches for Europe’s future economic development.
Online platforms such as DataViva (for Brazil) and DataMexico (for Mexico) have also made
complexity and relatedness metrics accessible within national contexts, supporting informed
policymaking.

Traditional approaches, pioneered by Hidalgo et al. (2007), measure relatedness based
on the idea of Revealed Comparative Advantage (RCA), as defined by Balassa (1965). A
country is defined to be competitive in exporting product p, if the weight of the exports of
product i relative to its export portfolio is greater than or equal to the share of that same
product in global exports, i.e. RCA. , > 1 with RCA_ , defined as

Xep . e Xep _ Xep© Zc’p Xep
2pXep 2epXep - 2ipXep e Xep
Based on the RCA, Hidalgo et al. (2007) first define an unweighted bipartite graph
between countries and products, M, p, in which a country is linked to a product if the country

RCA.; = (3.1)

exports the product with a revealed comparative advantage:

1 ifRCA:p > 1;
M., = _ (3.2)
0 otherwise.

To measure relative similarity between products, the authors count how many times
each pair of products is co-exported and divides this co-occurrence by the number of countries
that export each of these two products, picking the smallest resulting number. The result is
the minimum conditional probability of having RCA in each pair of products:
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p-p max (ZC Mc’p, ZC Mc,p’)

(3.3)

The resulting network ¢,, v is called Product Space, a unipartite graph that translates
into a correlation matrix between products. The value of pairwise relative similarity is called
proximity and goes from nil to unity. The assumption is the greater the value of proximity,
the more productive requirements are expected to be shared between the two products.
Baseline relatedness density, denoted as w, p, allegedly indicates the closeness of a productive
structure — a country — to the required capabilities for producing a potential target:

2y Mep®pp
Zp’ Pp.p’

What explains the predictability of the presence or absence of specific industries in each

We,p = (3.4)

country is the nestedness of the international trade network (Bustos et al., 2012). Nestedness
is a well-established concept in ecology used to analyze the structure of ecological systems.
In these systems, species are categorized as either generalists or rare, much like locations can
be diverse or less diverse. Nestedness describes a pattern in which rare species are found only
in highly diverse locations, while widespread species inhabit both diverse and less diverse
areas. This triangular arrangement within a bipartite matrix suggests that more complex
information tends to diffuse with greater difficulty and, as a result, is accessible only in a
limited number of highly diverse locations. The nested structure of the international trade
network remains stable over time, driven by two key biases: industries that exist despite
breaking the nested pattern are more likely to vanish, while those absent but expected within
the pattern are more likely to emerge.

This inherent structure of the trade network shapes how countries expand their pro-
ductive capabilities. Rather than making random leaps, countries tend to develop products
that are similar to those they already export — a process that reflects their embedded position
in the Product Space. The implications for industrial policy purposes, according to Sousa
and Mueller (2025), is that if a country’s productive structure has little connection to a target
industry (low density), any industrial policy directed toward that industry is unlikely to
succeed. However, if a country with a challenging productive structure chooses to pursue
products with low densities, it must be prepared to face significant risks and, consequently,
build resilience against industrial policy setbacks.

A country’s productive structure determines product densities, which in turn define
future diversification opportunities and, ultimately, shape its productive structure. This self-
reinforcing process creates a path-dependent pattern in economic development. In line with
this process, a “Matthew effect” becomes evident, where more developed countries are better
positioned than less developed ones to diversify into new products and accumulate productive
capabilities. Countries with limited capabilities often lack the density needed to diversify
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into new products, leaving them constrained by path dependency. Thus, this literature
introduces a new hypothesis about the economic development divergence among countries
— a gap that could only close if all countries could reach any area of the Product Space
(Hidalgo et al., 2007). In this sense, Sousa and Mueller (2025) argue that industrial policy re-
emerges as a viable strategy to counteract this Matthew effect in economic diversification and
development. For countries unable to access desired areas of the product space, industrial
policy may be justified, even when low densities and high risks are involved.

An accurate measure of relatedness is crucial, particularly for countries caught in the
"dark side” of this Matthew Effect, where misguided industrial policy could further constrain
their already limited fiscal space. However, the traditional relatedness density measure has
significant limitations when it comes to predicting which products a country will begin
exporting competitively in the near future. These limitations reduce its reliability and risk
steering industrial policy in the wrong direction (Albora et al., 2023; Tacchella et al., 2023).
One major issue is that traditional relatedness density correlates strongly with a country’s
overall level of diversification (Hidalgo, 2021), making it more of a global indicator of a
country’s connection to all products rather than a specific measure of its connection to

individual products.

Another potential limitation is the presence of spurious correlations within the Product
Space matrix. The traditional measure of relatedness density, calculated as a weighted
average of proximities between a country’s exported products and the target product, may
be influenced by correlations that do not truly reflect shared productive requirements.
Depending on how these proximities are distributed, such non-informative links may carry
disproportionate weight, introducing noise into the density calculation. A natural solution
to this issue lies in applying network filtering and backbone extraction techniques.

Although network backbone extraction and filtering methods have been introduced in
the relatedness literature, these methods have not yet been systematically employed as a
central approach to improve predictions of product appearances within the trade network.
In their seminal work, Hidalgo et al. (2007) used a maximum spanning tree to extract
the backbone of the product space, but solely for visualization purposes. Later, Alshamsi,
Pinheiro, and Hidalgo (2018) incorporated this visualization-filtered product space to model
product diffusion and define optimal diversification strategies, without having as a goal the
enhancement of relatedness density’s predictive accuracy for product appearances.

Several academic efforts have sought to enhance predictive performance within the
international trade network by rethinking relatedness measures, with network backbone
extraction and filtering typically playing only a secondary role. Zaccaria et al. (2014), for
instance, proposed the Taxonomy Space, which adjusts the Product Space by using each
country’s diversification to normalize their co-location contributions in assessing pairwise

product relationships. They apply a filtering procedure that retains only the highest proximity
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value for each product, which is then used to calculate relatedness density.

The Eco Space (O’Clery; Yildirim; Hausmann, 2021), on the other hand, refines relat-
edness by identifying which products were active in the period preceding the activation of a
specific product, using only the top 25 proximities for each product to calculate a country’s
relatedness density over a new product. The top-k filtering approach is largely responsible for
the improvement in prediction performance of the Eco Space model when compared to the
baseline relatedness density, though this detail is noted only in the study’s Supplementary
Information.

More recently, machine learning approaches (Albora et al., 2023; Tacchella et al., 2023)
have demonstrated that algorithms such as Random Forest and XGBoost, when applied
directly to the international trade network, offer even stronger predictive power for product
appearances.. These models do not rely on explicit notions of relatedness or filtering, but
their success underscores the importance of refining input representations for prediction
tasks.

Interestingly, studies that do place network filtering at the core of relatedness modeling
have mostly focused on multilayer network settings, aiming to uncover structural correlations
across dimensions, not to boost predictive accuracy. Pugliese et al. (2019) explores the
relationships among research, patents, and export products; Cunzo et al. (2022) investigates
the links between green technologies and exported products; and Barbieri et al. (2023)
analyzes interactions between green and non-green patent networks in European regions.
While these studies contribute to a richer, multidimensional view of industrial ecosystems,
they do not directly address the challenge of predicting product appearances.

In summary, while network filtering techniques are present within this literature,
they have yet to be fully leveraged as a central tool for enhancing the predictive power of
relatedness. In the next section, we outline a straightforward approach that applies filtering
directly to the Product Space values, enabling a comparative assessment of various filtering
methods based on their effectiveness in predicting product appearances.

3.3 Methods

Instead of introducing complex or disruptive new methods for measuring relatedness,
we apply network backbone extraction and filtering techniques to retain only the most
essential information within the Product Space. This approach adds a straightforward step
to the calculation of relatedness density, potentially enhancing the baseline measure. By
doing so, it addresses a key limitation of the baseline relatedness measure: the spurious
correlations within the Product Space that are otherwise incorporated into the standard

relatedness density calculation.

Following Hidalgo et al. (2007), we used international trade data to test the filtering
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approach for relatedness, drawing the HS92 4-digit dataset for 1995-2020 from the Observa-
tory of Economic Complexity (OEC)?. To reduce statistical noise due to data quality issues,
variations in economic size, and export disruptions from war or political instability, we
applied several filters. Specifically, we excluded countries that, in any year of the period,
had a population below 0.016% of the global population, an annual trade volume below
0.0067% of global trade, or a score of 26 or higher on the Fragile States Index®, considering

b AN 13

the dimensions “Security Apparatus,” “Refugees and Internally Displaced Persons,” and
“External Intervention.” We also used the OEC’s product space baseline to determine the set
of products analyzed in this study. After these steps, the HS92 dataset captures trade data for
866 products across 119 countries, representing 96.9% of global GDP and 94.6% of global
trade in 2010.

We propose refining the Product Space by introducing an additional step between
equations 3.3 and 3.4, where a backbone extraction or filtering method is applied to remove
spurious correlations. This filtering process, based on the idea that some correlations may
arise from random network properties, ensures that only the most meaningful proximities
are preserved, enhancing the accuracy of the relatedness measure.

After applying the filtering method F, some previously non-zero proximities in the
Product Space gog, p, will be set to zero, resulting in a more accurate representation of product

similarities:

(Pl;,p' =Flepp] (3.5)

Finally, we plug the filtered Product Space into the baseline relatedness density 3.4,
resulting in the filtered relatedness density:
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Figure 3.1 presents a schematic workflow of the proposed approach. The ABC flow is
the baseline approach, while ABDE is the proposed one.

Depending on the filtering method applied to the Product Space in step D, it becomes
possible to introduce directionality into the proximity matrix — that is, the proximity from
product i to product j may differ from the proximity from j to i if one of them is zeroed out
by the filtering process. This asymmetry is analytically valuable, as it may reflect a directed
and non-reciprocal nature of capability accumulation. In particular, it allows the analysis to
emphasize the perspective of the target product in identifying necessary capabilities, which

resonates with the logic of productive ecosystems introduced by O’Clery, Yildirim, and

2 http://oec.world/

3 https://fragilestatesindex.org/
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Figure 3.1 — Network Filtering Schematic Workflow
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Figure 3.1 presents a schematic workflow illustrating the proposed network filtering approach to
refine the relatedness density measure. The traditional method follows the sequence ABC, while our
approach introduces a refined path through steps ABDE.

Hausmann (2021). This reinforces the idea that productive diversification is not reciprocal,
and that meaningful upgrading relies on identifying signals that point specifically toward
the conditions that enable the emergence of a given product.

There are two ways of applying the final filtered relatedness density formula 3.6. One
adopts the perspective of the product as an outgoing signal emitter, and the other as an
ingoing signal receiver:

F(p’ F
2Mep - (?) 2Mep - (?)
I D pp Out P pp
n _ ut _
Wepr = 5 ) Wep 5 0 (3.7)
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The filtered density coig, measures how much of the productive structure of country
c aligns with the specific capability requirements of product p’, based solely on the set
of related products that p’ itself recognizes as informative. This formulation captures a
demand-side view of path-dependent upgrading, in which diversification into a new product
is more likely if the country already exports products that constitute its required building
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blocks. These building blocks represent complementary bundles of productive capabilities.
The denominator aggregates all proximities that p’ considers relevant, defining the full

reference space of inputs or technological affinities it relies upon.

Out
cp’
whether the products already exported by country ¢ perceive p’ as a natural extension of

In contrast, the filtered density w4 reflects a supply-side perspective. It evaluates
their embedded capabilities. Here, the path-dependent logic flows from the existing portfolio
of activities, capturing the extent to which the country’s current productive base tends to
emit strong capability signals toward p’. This dual perspective — assessing whether the
product seeks the country or whether the country is positioned to reach the product —
contributes to a more nuanced understanding of economic relatedness and the structural
paths through which countries may diversify.

In this study, whenever directionality is established by the filtering method, we adopt
the ingoing, signal-receiver, demand-side cog‘) specification. This choice emphasizes the
perspective of the target product and assesses how well a country’s current export basket
aligns with its capability requirements. The approach is particularly suited for investigating
whether countries are structurally positioned to absorb new productive activities, based on
what those activities demand, rather than on how the country’s current production profile

is inclined to evolve.

To assess how different filtering techniques affect predictive accuracy, we apply three
classes of methods to compute qog o the filtered product proximity measure: naive heuristics,
statistical backbone extraction techniques, and their directional adaptations. Each of these
groups reflects a different philosophy about how to reduce noise and extract meaningful

signals from the Product Space.

The first class, based on naive heuristics such as top-k thresholds and cumulative prox-
imity cutoffs, introduces directionality by construction, as proximities are filtered separately
for each product. In this context, we adopt the ingoing specification cog;, to interpret the
resulting asymmetric matrices from the perspective of the target product. The second class,
comprising statistical backbone extraction methods, operates on undirected networks and
produces symmetric proximity matrices by design. Despite lacking directional structure,
these methods offer a valuable complement to naive filters by introducing statistical criteria
to separate signal from noise. The third class combines the strengths of both approaches:
it adapts statistical filtering procedures to allow for asymmetric evaluation of proximities,
thereby preserving directionality while incorporating statistical rigor. This unified frame-
work enables us to examine how directionality and statistical significance interact to shape
the predictive power of relatedness density.

We refer to the first class as naive filters, not because they are simplistic, but because
they rely on mechanical thresholds or rankings without any statistical modeling of the
underlying distribution. These methods are straightforward, intuitive, and widely used as



52

baseline benchmarks:

« Top-k Filter: For each product, retain all proximities corresponding to the top k values,
including ties when applicable.

« Cumulative Proximity Filter: For each product, retain the highest proximities that
together account for at least a fraction p of the total proximity mass.

« Threshold Filter: For each product, retain proximities greater than a threshold ¢. If

no proximity exceeds ¢, retain the maximum value to ensure at least one connection.

The second class of methods for filtering the Product Space comprises statistical back-
bone extraction techniques, which aim to preserve only those proximities that are statistically
significant relative to a node’s local distribution or to a global null model. Unlike naive meth-
ods, these approaches attempt to distinguish signal from noise by testing each link against a
reference distribution.

« Disparity Filter (Serrano; Bogund; Vespignani, 2009): Evaluates the significance of
each edge by comparing its normalized weight to what would be expected if weights
were uniformly distributed across a node’s connections. An edge is retained if it is
significant for at least one of the two connected nodes.

+ Locally Adaptive Network Sparsification (LANS) (Foti; Hughes; Rockmore, 2011):
Does not assume any theoretical distribution, but compares each edge to the empirical
distribution of normalized weights from its node. An edge is preserved if it is unusually
strong for at least one of its endpoints.

+ Noise-Corrected Filter (NC) (Coscia; Neftke, 2017): Evaluates edge significance by
estimating its expected weight under a binomial model, given the overall strength of
both source and target nodes. A Bayesian framework is used to compute posterior
variances and construct confidence intervals around the expected weight.

The statistical backbone extraction techniques discussed above were originally devel-
oped for undirected networks, such as the Product Space. In their standard implementation,
these methods evaluate proximities symmetrically, as if the informational value of a con-
nection between two products were equivalent in both directions. Even though the original
network is undirected, each product has a unique distribution of proximities, and the pres-
ence of a connection does not guarantee that it carries meaningful information for both
endpoints. In highly nested structures such as the international trade network, its product
monopartite projection — the Product Space — has products that appear close to many
others simply due to their ubiquity, leading to distorted measures of relatedness.

To address this, we develop directional adaptations of the Disparity Filter and LANS
that evaluate proximity from the viewpoint of the receiving product. This logic is consistent
with the »'?, formulation introduced earlier, where the target product plays an active role in

p
selecting which signals are relevant.
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+ Directed Disparity Filter In-Degree (DDF-In-Degree): Applies the Disparity Filter
to the set of proximities received by each product. An edge from i to j is retained only
if it is significant from the perspective of j, capturing the idea that i carries information
relevant to j, but not necessarily the other way around.

+ Directed LANS In-Degree (D-LANS-In-Degree): Similarly applies LANS only to the
ingoing proximities of each product. It evaluates edge significance using the empirical
distribution of proximities from each target.

It is important to note that the Noise-Corrected (NC) filter cannot be straightforwardly
extended to directed networks. By design, the NC filter assesses the significance of each edge
based on the combined strength of both nodes, treating the edge symmetrically. In a directed
network, however, edges inherently differentiate a source from a target, which would require
testing significance based only on one node’s characteristics. Such an adaptation would break
the core logic of the NC method, which fundamentally relies on bilateral node properties to
model noise and compute z-scores.

In summary, we compare naive filtering, statistical backbone, and directional statistical
backbone techniques to investigate how each one shapes the structure of the Product Space
and affects the predictive power of relatedness density. All methods were implemented
within a Python environment. For the original Disparity and LANS filters, we utilized the
NetBone package* (Yassin et al., 2023). For the Noise-Corrected filter, we used publicly
available code’ (Coscia; Neffke, 2017).

To evaluate the predictive performance of each filtering method, we use a Probit model
to estimate the likelihood of product appearances at the country-product level, following
O’Clery, Yildirim, and Hausmann (2021). The full specification of the regression model is
given by:

where P(RCA¢pria+4 2 1 | RCAcp, < 0.5) is the probability of becoming a competitive
exporter of that product in four years after year ¢, given that the country’s RCA of that
product was lower than or equal to 0.5 in ¢. The explanatory variables are, in order, filtered
relatedness density and a dummy that controls for year fixed effects. We apply this model
across rolling two-year windows, from 1998 to 2016.

For each filtering technique, we adjust its parameters to maximize the AUC-ROC

score. We then compute a suite of performance metrics to compare methods, including

4 http://gitlab.liris.cnrs.fr/coregraphie/netbone/

> https://www.michelecoscia.com/?page_id=287/


http://gitlab.liris.cnrs.fr/coregraphie/netbone/
https://www.michelecoscia.com/?page_id=287/

54

Precision, Best F1 Score, AUC-ROC, AUC-PR, and Pseudo-R?, following Albora et al. (2023)
and O’Clery, Yildirim, and Hausmann (2021). These metrics are described below:

 Precision (TP/(TP+FP)): The proportion of true positives among all predicted pos-
itives. High precision indicates a low false-positive rate, which is crucial in contexts
where incorrect recommendations carry significant costs.

» Best F1 Score: The maximum F1 value achieved across thresholds, where the F1 Score
is the harmonic mean of precision (TP/(TP+FP)) and recall (TP/(TP+FN)). This metric
captures the optimal trade-off between correctly identifying positives and minimizing
false positives.

« AUC-ROC (Area Under the Receiver Operating Characteristic Curve): Measures
the model’s ability to discriminate between classes by plotting the true positive rate,
which is the recall (TP/(TP+FN)), against the false positive rate (FP/(FP+TN)). A value
closer to 1 indicates stronger predictive discrimination.

+ AUC-PR (Area Under the Precision-Recall Curve): Especially informative in
imbalanced classification settings, this metric reflects how well the model maintains
both high precision and recall. A higher AUC-PR signals better identification of positive
instances with fewer false alarms.

« Pseudo R2: A goodness-of-fit indicator for models with binary dependent variables.
Although not directly comparable to the R? of linear regression, it provides a useful

approximation of explanatory power in the Probit context.

3.4 Network Filtering Results

Table 3.1 presents the results for each filtering method, with parameters optimized to
maximize the AUC-ROC score. All tested approaches outperformed the baseline relatedness
density across every evaluation metric. The baseline achieved an AUC-ROC of 0.602. Among
the naive filters, performance was relatively similar: global thresholding yielded an AUC-
ROC of 0.658, while the top-k and cumulative proximity methods reached 0.666 and 0.667,
respectively. Statistical backbone extraction methods performed slightly better, with LANS,
Disparity, and Noise-Corrected filters achieving AUC-ROC scores of 0.673, 0.674, and 0.679.
The best results were obtained by the directional statistical filters: DLANS-In-Degree and
DDF-In-Degree achieved AUC-ROC values of 0.685 and 0.688, respectively.

These results highlight not only the predictive gains from applying statistical and
directional filters, but also the value of incorporating asymmetry in proximity evaluation.
While naive methods already improve upon the baseline by pruning weak or noisy signals,
methods that combine statistical significance with directional filtering achieve the highest
predictive accuracy. This suggests that the process of productive upgrading is better captured
when proximities are interpreted from the perspective of the target product, reinforcing the
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Table 3.1 - Comparative Metrics for Filtering Techniques

Method Pa\r’:‘r::jzter F1Score AUC-ROC AUC-PR Precision Pseudo R®
Baseline - .0366 .602 .0196 .0202 .0083
Global Thresholding t=0.32 .0566 .658 .0278 .0347 .0256
Top-k k =31 .0603 .666 .0300 .0370 .0281
Cumulative Filtering p =0.11 .0603 .667 .0303 .0369 .0286
LANS a =0.03 .0634 .673 .0311 .0384 .0318
Disparity a=0.14 .0643 .674 .0308 .0386 .0327
Noise-Corrected z=0.36 .0683 .679 .0320 .0405 .0364
DLANS-In-Degree a =0.06 .0722 .685 .0340 .0492 .0395
DDF-In-Degree a =0.17 .0749 .688 .0345 .0498 .0415

Table 3.1 presents comparative metrics for tested network backbone extraction and filtering tech-
niques. The table reports goodness-of-fit measures for predicting product appearances in a 4-year
window, using intervals of two years between each ¢ from 1998 to 2016, totaling 773,974 observations.

theoretical argument for directional, demand-side relatedness.

Beyond improvements in AUC-ROC, the more advanced filtering techniques also
deliver superior performance across all other evaluation metrics. The baseline F1 Score is
notably low at 0.0366, reflecting a poor balance between precision and recall. While naive
methods provide moderate improvements, the directional statistical filters, DLANS-In-
Degree and DDF-In-Degree, raise the F1 Score to 0.0722 and 0.0749, more than doubling the
baseline.

This trend continues in the AUC-PR metric, which is particularly informative for
imbalanced classification problems. The baseline AUC-PR is just 0.0196, whereas the best-
performing methods reach values above 0.034, indicating a stronger ability to correctly
identify rare positive cases. Precision also increases consistently with the sophistication
of the filtering strategy: from 0.0202 in the baseline to nearly 0.050 in the DDF-In-Degree
model. Higher precision implies that a greater share of predicted positive cases actually
correspond to true positives, reducing the number of false positives. This improvement is
particularly important for industrial policy design, as it helps policymakers prioritize targets
with a higher likelihood of successful upgrading, minimizing the risk of misallocating
resources to unpromising opportunities. Likewise, Pseudo-R? improves from 0.0083 to
0.0415, underscoring a substantial gain in model fit.

Albora et al. (2023) compare the performance of relatedness-based predictors using
three approaches: a baseline relatedness density, Eco Space (O’Clery; Yildirim; Hausmann,
2021), and a Random Forest model. The latter represents a machine learning technique that
automatically selects and weighs predictive features through an ensemble of decision trees.
In their analysis, the baseline density measure achieves an AUC-ROC of 0.637 and an F1
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Score of 0.022. Random Forest performs best, with an AUC-ROC of 0.689 and an F1 Score of
0.042, followed by Eco Space, which yields 0.663 and 0.035, respectively. While differences
in modeling strategy and sample construction prevent a direct comparison with our study,
it is notable that the DDF-In-Degree method achieves an AUC-ROC nearly equivalent to
that of Random Forest. Moreover, the performance gain over the baseline is even larger
in our framework: DDF-In-Degree increases AUC-ROC by 0.086, whereas Random Forest
improves it by only 0.052 in the other study.

Taken together, these results suggest that filtering techniques that incorporate both
statistical rigor and directional logic provide a more informative and reliable foundation for
predicting productive upgrading and modeling economic diversification paths. The benefits
extend beyond improvements in AUC-ROC, encompassing gains across all goodness-of-fit
measures, while also offering straightforward interpretability.

Table 3.2 presents the correlation matrix for the year 2010, including diversity, baseline
relatedness density, and all optimized filtering methods. A well-documented limitation of
the baseline measure is its extremely high correlation with diversity, which, in our analysis,
reaches a coefficient of 0.95. When relatedness density is so tightly linked to diversity, the
metric ceases to capture a product-specific signal and instead becomes a near-linear proxy
for a country’s overall productive breadth. In such cases, measuring how many capabilities a
country possesses that are relevant to a specific product adds little new information beyond
what diversity already conveys. Relative relatedness density (Pinheiro et al., 2022), a form
of Z-score normalization at the country level, can partially mitigate this issue by centering
measurements within each country. However, while this adjustment reduces the collinearity
with diversity, it also removes the broader, cross-country context that baseline density offers,
limiting its policy relevance.

In contrast, the filtering methods reduce this entanglement to varying degrees. The
correlation between diversity and filtered relatedness is inversely associated with model
performance. The DDF-In-Degree method, which achieves the highest AUC-ROC, also
exhibits the lowest correlation with diversity — 0.51. This suggests that directional statistical
filters are more effective at isolating product-specific signals from aggregate country-level
effects.

However, the table also shows that the filtered relatedness densities remain highly
correlated with one another, with pairwise correlations never dropping below 0.91. This
indicates that, despite methodological differences, all filters still capture a largely overlap-
ping structure of the Product Space. These findings reinforce the importance of moving
beyond diversity-correlated baselines while acknowledging that filtering techniques often
converge toward a common signal space, which may benefit from further refinement or
complementary layers of differentiation.

In the next section, we explore how the application of the DDF-In-Degree filter, the
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Table 3.2 — Correlation Table - Year 2010

Global Cum. Noise- DLANS- DDF-
Diversity Baseline  Thres. Top-k Filtering  LANS Disparity Corrected In-Degree In-Degree
Diversity
0.95 0.68 0.62 0.62 0.60 0.59 0.58 0.55 0.51
Baseline
0.85 0.80 0.81 0.79 0.78 0.77 0.74 0.72
Global
Thres. 0.94 0.95 0.95 0.93 0.91 0.92 0.91
Top-k
0.99 0.98 0.96 0.94 0.94 0.93
Cum.
Filtering 0.98 0.96 0.94 0.94 0.93
LANS
0.97 0.95 0.96 0.95
Disparit
isparity 0.98 0.95 0.96
Noise-
Corrected 0.94 0.96
DLANS-
In-Degree 0.98
DDF-
In-Degree

Table 3.2 presents the correlation matrix between different filtered relatedness densities for the 2010
data. Number of observations: 105,652.

top-performing method identified in our analysis, reshapes the structure of the Product
Space. We compare the resulting filtered network to the original, unfiltered one, assessing
the extent to which this backbone extraction method preserves core connectivity while

eliminating noisy or redundant links.

3.5 From Noise to Signal: Revisiting the Product Space

Building on the results from the filtering analysis, we now revisit the Product Space
through a refined lens. Applying the DDF-In-Degree filter, identified as the top-performing
method, we extract the core signals of the network, removing much of the surrounding noise.
For this purpose, we focus on the Product Space as it stood in 2010, using this year as a baseline
to compare the structure of the original, unfiltered network with the backbone revealed
through the filtering process. This comparison allows us to assess how network filtering
reshapes the connectivity patterns that underpin opportunities for economic upgrading.

Figure 3.2 presents the network visualization of the DDF-In-Degree filtered Product
Space based on year 2010 data. Node colors represent product sections according to the HS4-
92 classification, while node sizes are proportional to the total weighted in-degree of each
product. The network layout was constructed by first running a maximum spanning tree on
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the filtered Product Space, then adding all edges with values higher than 0.55, following the
methodology originally proposed by Hidalgo et al. (2007).

Figure 3.2 - Filtered Product-Space - Year 2010
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Figure 3.2 presents the network visualization of the DDF-In-Degree filtered Product Space based on
year 2010 data. Node colors represent product sections according to the HS4-92 classification, while
node sizes are proportional to the total weighted in-degree of each product. The network layout was
constructed by first running a maximum spanning tree on the filtered Product Space, then adding all
edges with values higher than 0.55.

The filtered Product Space highlights the structural position and connectivity patterns
of different product sections, with some emerging as particularly cohesive or peripheral
clusters. Textiles products (in dark green) form a dense and cohesive community in the
upper-left region, clearly separated from the rest of the network, suggesting strong internal
relatedness but limited outward connectivity. Another notable cluster in the filtered Product
Space corresponds to what can be described as Electronic and Precision Devices, located in
the upper-right periphery of the network. This group blends products from the Machines
section, such as Semiconductors, Electric Batteries, and Printed Circuit Boards, with items
from Instruments, including Oscilloscopes, Measuring Instruments, and Broadcasting Ac-
cessories. Despite its partial detachment from the dense industrial core, this cluster forms a
cohesive subnetwork characterized by high internal connectivity and functional relatedness.
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Its somewhat peripheral position suggests that, while these products are technologically
advanced and economically significant, their productive capabilities are less intertwined
with the broader set of industrial goods in the product space.

In contrast, Machines, Metals and Chemical Products (in light blue, mustard and
purple, respectively) dominate the central core of the network, with several large nodes
indicating products with high weighted in-degree, such as Valves and Small Iron Containers.
These sections appear as structural backbones of the network, linking a wide variety of
other product categories. Meanwhile, Crude Petroleum, a globally significant export from
the Mineral Products section, appears in a highly peripheral position, weakly connected to
the rest of the network, illustrating how some economically important commodities may
lack dense interconnections within the filtered product space. Similarly, Bananas from the
Vegetable Products section occupy a sparsely connected branch, highlighting their limited
overlap with the core industrial structure.

The positioning and size of nodes of the filtered layout of the Product Space underscore
how filtering with DDF-In-Degree preserves core productive capabilities and interconnec-
tivity. Remarkably, the network remains fully connected after filtering, with the largest
component still comprising all 866 products, which is the node size of the original unfiltered
Product Space. At the same time, the filtering process significantly reduces the overall density
of the network. Out of 717,336 non-zero proximity values in the original matrix, only 55,557
remain after applying the filter, representing a reduction of approximately 92.3% in the num-
ber of connections. This highlights the method’s ability to retain the structural backbone of

the network while eliminating the vast majority of weaker or potentially spurious links.

Figure 3.3 compares the degree and weighted degree distributions of the original and
filtered Product Space for the year 2010. As shown in panel A, the baseline network is
extremely dense, with a mean degree of 828.3, indicating that each product is, on average,
connected to nearly all others. After applying the DDF-In-Degree filter, this number drops
substantially to a mean in-degree of 64.2 (the same 92.3% reduction). A similar pattern
is observed in panel B, where the average weighted degree decreases from 168.4 in the
baseline to just 26.4 in the filtered network, corresponding to a reduction of approximately
84.3%. These shifts reflect the substantial sparsification achieved by the filtering process.
The correlation between degrees in the filtered and unfiltered versions remains weak, with
Pearson and Spearman correlation coefficients of .19 and .05, respectively, for degree, and
values of .12 and .07 for the weighted degree. This suggests that the filter does not simply
downscale the original structure, but also redefines the network’s topology by retaining only
the most statistically significant and structurally meaningful connections.

Figure 3.4 explores the relationship between weighted in-degree and weighted out-
degree in the filtered Product Space for 2010. This comparison becomes especially meaningful
in the context of our directional filtering approach, as it allows us to detect asymmetries in
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Figure 3.3 — Baseline vs Filtered Product Space - Degree Distribution Histogram - Year 2010
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Figure 3.3 shows the degree (Panel A) and weighted degree (Panel B) distributions of the baseline
and filtered Product Space in 2010. Filtering with the DDF-In-Degree method reduces average degree
from 828.3 to 64.2 and weighted degree from 168.4 to 26.4, while preserving full network connectivity.
Vertical dashed lines indicate the mean of each distribution.
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the role each product plays within the network, depending on whether it functions more as
a signal emitter (high out-degree) or as a signal receiver (high in-degree). Panel A shows a
strong positive correlation between the two measures (Pearson = 0.65, Spearman = 0.68),
but also reveals substantial variation along the diagonal, suggesting that many products tend
to concentrate more heavily on one directional role than the other.

Figure 3.4 — Weighted In-Degree vs Weighted Out-Degree - Filtered Product Space - Year 2010
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Figure 3.4 compares weighted in-degree and weighted out-degree in the filtered Product Space for
2010. A plots the relationship between the two measures, with node colors representing product
sections according to the HS4-92 classification and node sizes proportional to product complexity
(PCI). B lists the top ten products ranked by weighted in-degree and by weighted out-degree.

Several products from the textile cluster, such as Packing Bags, Non-Knit Women’s
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Shirts, Knit T-shirts, and Knit Men’s Coats, have high weighted out-degree but relatively
low in-degree. Although these products emit a large volume of relatedness signals, the
visualization reveals that most of these connections remain confined within their own
textile cluster. This suggests that their productive capabilities are highly interconnected
among themselves, but less integrated into the broader network. In contrast, industrial goods
like Valves, Small Iron Containers, and Other Aluminum Products exhibit high in-degree,
indicating that they function as convergence points for signals of relatedness coming from a
wider range of product sections. Panel B complements this analysis by listing the top ten
products according to each measure, reinforcing the contrast between outward-oriented
but locally clustered textile products and inward-oriented industrial components embedded
across the network. This asymmetry illustrates how the directional filtering method offers a
more nuanced interpretation of each product’s structural position and its potential strategic

relevance.

The relationship between weighted in-degree and out-degree in the filtered Product
Space also reveals meaningful patterns when considered alongside product complexity.
Products located in the upper-left region of the plot, which exhibit relatively high weighted
out-degree compared to their in-degree, are concentrated in lower-complexity sections such
as Textiles, Animal Products, and other primary goods. These products tend to emit many
relatedness signals but are not widely targeted by others, suggesting that their productive
capabilities are relevant within narrowly defined clusters but have limited structural cen-
trality in the broader network. In contrast, products in the lower-right region, with relatively
high weighted in-degree compared to their out-degree, are more frequently associated with
Machines, Metals, and Chemical Products, which typically display higher levels of complex-
ity. These products attract relatedness signals from a wide range of other goods, indicating
that they occupy more central positions in the Product Space and require more sophisti-
cated and diverse capabilities. This pattern suggests that the directionality of connections is
not only structurally informative but also aligned with the underlying technological and
organizational complexity of products.

The directional analysis of the filtered Product Space reveals not only a clearer structural
organization but also new dimensions of asymmetry and complexity that are obscured in
the unfiltered network. By disentangling signal from noise, the DDF-In-Degree filtering
process exposes the central pathways through which productive capabilities are related
and transferred across products. These insights offer a more refined map of diversification
opportunities and potential bottlenecks. In the next section, we build on these results to
explore their implications for industrial policy design, examining how the structure of the
filtered Product Space can inform more strategic and evidence-based targeting decisions.
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3.6 Policy Implications

The filtering of the Product Space carries important implications for industrial policy
design. At a general level, it reveals that the path toward economic upgrading may be
less daunting than what the unfiltered relatedness density metric suggests, with many
opportunities becoming more visible once noisy or redundant connections are removed. By
exposing a clearer structure of relatedness, the filtering process offers a more optimistic and
actionable map for diversification strategies. To further illustrate these practical implications,
the following analysis examines two country cases, Brazil and the Philippines, comparing
the recommendations derived from the baseline and the filtered versions of relatedness
density. This approach highlights how backbone extraction can reshape targeting priorities
and uncover overlooked opportunities for productive transformation.

Figure 3.5 provides a comparative overview of baseline and filtered density metrics
across five ECI groups in the year 2020. For each country, the analysis focuses on its top-10
density products with RCA < 0.5, as these represent the most immediate and potentially
viable opportunities for diversification. The comparison considers two key dimensions: the
average density of these products and the average difference between their PCI and the
country’s ECI. These indicators are evaluated for both the original Product Space and the
version filtered through the DDF-In-Degree method, along with their respective variations
across complexity groups. In addition to the boxplot representation, each panel includes a red
curve depicting the fitted quadratic regression estimated across all data points, accompanied
by the corresponding equation and R? statistic. This figure serves as a starting point for
understanding how filtering reshapes the perceived structure of diversification opportunities
at different levels of economic complexity.

The first insight highlights the emergence of two distinct development traps for coun-
tries at low and middle levels of economic complexity, as revealed by the unfiltered density
metric. In the baseline configuration, countries across almost all ECI ranges, except those
at the very high end, tend to face negative average (PCI - ECI) values among their most
proximate products, with sharp variations in available density across ECI groups. Middle-ECI
countries, in particular, exhibit higher density than low-ECI countries, yet the structure
of their nearby opportunities is more detrimental to further complexity upgrading. While
low-ECI countries suffer from a low-complexity trap, characterized by scarce and unsophis-
ticated opportunities, middle-ECI countries encounter a middle-complexity trap, where the
relative abundance of accessible products masks a deeper structural constraint: most nearby
options would deeply lower their economic complexity. The combination of low mean (PCI
- ECI) values and the configuration of baseline density thus reveals distinct developmental

challenges that permeate countries of both low and middle levels of economic complexity.

Countries at middle levels of complexity may become structurally constrained to target
less sophisticated products, reinforcing a self-perpetuating cycle of limited upgrading. This
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Figure 3.5 — Baseline vs. DDF-In-Degree Density: Boxplot Results by ECI Group - Year 2020
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Figure 3.5 presents boxplots comparing, across five ECI groups, the top-10 density products of
each country with RCA < 0.5 in the year 2020. The analysis considers two dimensions — mean
density and mean difference between product PCI and country ECI — for both baseline and DDF-In-
Degree methods, as well as their respective variations across ECI groups. In addition to the boxplot
representation, each subplot includes a red curve depicting the fitted quadratic regression trend
estimated over all country data points. The corresponding regression equation and the R? statistic are
displayed within each panel. The ECI ranges for the groups are defined as follows: Low: -1.9084 to
-0.8720; Lower-Middle: -0.8175 to -0.4403; Middle: -0.4229 to 0.0835; Upper-Middle: 0.1409 to 0.9768;
High: 0.9866 to 2.3298.
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connects with findings in the economic complexity literature on when countries should
target nearby or distant products (Hidalgo, 2023), which often argues that economies in
intermediate complexity ranges may need to leap toward more distant opportunities to avoid
being trapped in a complexity stasis (Pinheiro et al., 2022; Alshamsi; Pinheiro; Hidalgo, 2018).
The strong U-shaped relationship observed between ECI and mean (PCI-ECI), with an R?
of 0.78, further indicates that this constraint is structural. As a result, pursuing complexity-
enhancing diversification would require betting on distant, less accessible products, a strategy
often marked by higher risks and lower probabilities of success. For a deeper discussion on

related and unrelated diversification, please see Appendix 3.3.

The filtered approach offers a less pessimistic view of the diversification prospects
for countries with intermediate levels of economic complexity. First, the average density
of the top-10 products for these countries, when measured after applying the DDF-In-
Degree filtering, is much closer to that of countries with higher ECI levels. This suggests
that, once spurious or redundant links are removed, the proximity landscape faced by
middle-complexity economies becomes significantly more favorable. Rather than being
overwhelmingly surrounded by marginal or unattainable opportunities, these countries
appear to have a set of relatively accessible paths for upgrading, comparable in density
magnitude to those available to more advanced economies. Second, although the relationship
between ECI and the mean difference between product PCI and country ECI still displays
a U-shaped pattern, this curve becomes significantly flatter after filtering. While middle-
complexity countries continue to face a slight bias toward less sophisticated products, the
severity of this constraint is much reduced compared to the baseline.

Finally, the analysis of variations further reveals that all ECI groups experience gains in
filtered density relative to the unfiltered baseline, smoothing the initially strong correlation
between density and ECI levels. Moreover, countries at lower and intermediate ECI levels
display particularly pronounced improvements in the mean PCI-ECI difference among
their most proximate products. This suggests that filtering not only enhances the density
landscape but also opens more realistic and complexity-enhancing pathways for countries
that were previously seen as structurally disadvantaged.

While the previous analysis focused on the characteristics of the top-10 most proximate
products, a comprehensive evaluation of diversification prospects also requires examining
the predicted probabilities of product activation. Beyond mere density, the probability of
successfully exporting a product depends on how strongly the density signal relates with
future activation, as estimated through the Probit models. Specifically, we use the coefficients
obtained from the Probit regressions, separately estimated for baseline density and filtered
density, to predict the probability of activation for each country-product pair. These regres-
sions control for year fixed effects, thereby accounting for time-specific shocks and global
trends that could otherwise bias the estimated relationship between density and activation
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likelihood. However, when generating the predicted probabilities for the year 2020, which
lies outside the estimation sample, we apply only the estimated density coefficients without
adjusting for a year-specific intercept, under the assumption that the average propensity for
product activation remained stable.

Figure 3.6 presents the results of this exercise for the year 2020. In Panel A, we plot the
theoretical predicted probabilities as a function of density, applying the respective Probit
coefficients for the baseline and filtered measures. The results reveal that, for density values
above approximately 0.18, the predicted probability of activation becomes consistently higher
under the filtered specification, with the gap widening at higher density levels. Panels B and
C depict the relative frequency histograms of the predicted probabilities across all country-
product pairs with RCA < 0.5, using baseline density and filtered density, respectively.

Under the baseline configuration (Panel B), the distribution of predicted probabilities
is relatively flat and continuous, with low predicted probabilities even at the right tail
(95th percentile). In contrast, the filtered configuration (Panel C) exhibits a highly skewed
distribution, where most observations concentrate at low probability levels, but with a
substantially higher right tail. This pattern emerges as a direct consequence of the proper
filtering of proximities, which refines and reduces the set of products generally required
for the production of a given target product. From a policy perspective, this distinction is
crucial: although opportunities with high predicted probabilities remain relatively rare, their
magnitude under the filtered approach is considerably higher, improving the identification
of products that offer realistic prospects for complexity-enhancing diversification.

To illustrate the practical implications of filtering the Product Space, we now turn to a
more micro-level analysis through country-specific case studies. Specifically, we apply an
adapted version of the Diversification Frontier, also known as the Relatedness-Complexity
Diagram, to assess how policy recommendations change when filtered proximity measures
are used.

The original Diversification Frontier (Balland et al., 2019; Hidalgo, 2023) plots, for
each product that a country does not yet export with revealed comparative advantage, two
dimensions: on the horizontal axis, the density, which captures how closely the country’s
current capabilities are connected to that product; and on the vertical axis, the PCI of
the product itself. In this framework, products with higher density values are considered
more accessible for future competitive upgrading, while products with higher PCI values
contribute more significantly to the country’s overall complexity. This tool thus aims to help
policymakers prioritize targets for industrial policy based on a balance between feasibility
and impact.

In our adapted version, we replace baseline density with the predicted probability
of product activation, as estimated through filtered proximity measures. This adjustment
allows for a more precise evaluation of future diversification paths, correcting for the noise
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Figure 3.6 — Baseline vs DDF-In-Degree - Predicted Probabilities and Histogram - Year 2020
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Figure 3.6. A shows the predicted probabilities of product activation within four years, calculated
from the coefficients of Probit regressions, based on varying theoretical baseline and disparity den-
sities, from nil to one. B and C present relative frequency histograms of the implied probabilities
for all country-product pairs with RCA <= 0.5 in 2020, using the baseline and disparity methods,
respectively. The subplots represent the right tail of each distribution, corresponding to the 95%

quantile.
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and redundancy inherent in the traditional Product Space. By applying this methodology
to Brazil and the Philippines, we aim to show how filtering reshapes the identification of
strategic products and ultimately leads to different industrial policy recommendations.

Figure 3.7 illustrates the impact of filtering the Product Space on industrial policy
recommendations for Brazil and the Philippines, focusing on all products for which each
country had an RCA < 0.5 in 2020. Panel A shows the predicted probabilities of achieving
RCA > 1 within four years for each product, comparing results based on baseline density and
DDF-In-Degree density. Panels B and C present two versions of the Diversification Frontier
for each country: Panel B plots baseline-based predicted probabilities against PCI values,
while Panel C plots DDF-In-Degree filtered predicted probabilities against PCI values.

Panel A of Figure 3.7 reveals substantial shifts between the baseline and disparity-
filtered approaches for both Brazil and the Philippines in terms of predicted probabilities
of product activation. The most immediate contrast is the difference in scale: while the
maximum predicted probability based on baseline density remains slightly below 2% for
both countries, it approaches 12% under the filtered approach. This indicates that, once
spurious proximities are corrected, certain products are considered far more realistically
accessible than initially suggested by the baseline configuration.

The correlation metrics provide additional context to these findings. For Brazil, the
Pearson and Spearman correlations between baseline and filtered probabilities are 0.72
and 0.82, respectively. For the Philippines, they reach 0.76 and 0.77. Although these values
indicate a strong positive association, they also suggest that filtering introduces important
changes to the prioritization landscape. While the relative ranking of products is broadly
preserved, the adjustments made by filtering are substantial enough to reshape strategic
decisions regarding diversification opportunities.

The relative rankings of some products shift considerably. For Brazil, wool maintains
a predicted probability of approximately 1.9% across both approaches but falls from a top-
ranked position under the baseline to a mid-range position under the filtered measure.
Sorghum remains highly ranked across both specifications, but its predicted probability
jumps from around 1.9% to nearly 12%, reflecting a substantial improvement in perceived
accessibility. In the case of the Philippines, products such as flat panel display modules and
watch movements emerge as particularly promising under the filtered measure, with watch
movements attaining a probability close to 10% compared to much lower values under the
baseline. These examples highlight how filtering not only amplifies success probabilities but
also reshapes the prioritization among potential diversification targets.

Turning to the Diversification Frontiers in Panels B and C, Brazil’s prospects show
specific adjustments. Under the baseline configuration shown in Panel B, sorghum and
wool appear similarly positioned, both in terms of probability and complexity. However,
using filtered probabilities in Panel C, sorghum clearly outperforms wool. Despite this
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Figure 3.7 - Diversification Frontiers - Brazil and Phillipines - Year 2020
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Figure 3.7 illustrates the differences between the baseline and disparity methods for industrial
policymaking in Brazil and Philippines, considering all products for which each country had an
RCA <= 0.5 in 2020. For each country, A displays the predicted probabilities of product activation
(RCA >= 1) within four years for both density methods. B depicts the diversification frontier of
both countries, combining baseline density probabilities with PCI, and C presents an alternative
diversification frontier, using DDF-In-Degree density probabilities and PCI.
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improvement, the PCI values of both products remain below Brazil’s current ECI, indicating
that neither would be ideal targets if the objective is to enhance complexity. If a choice were
necessary, sorghum would represent a more promising option. Casein presents a stronger
profile, with a PCI that exceeds Brazil’s current ECI. The predicted probability of activation
for casein nearly doubles when moving from the baseline to the filtered approach, increasing
from approximately 1.9% to 3.8%. This substantial improvement strengthens its case as a
viable diversification target. Filtering therefore not only adjusts predicted success rates but
also refines the strategic prioritization of opportunities for Brazil.

For the Philippines, Panels B and C reveal an important evolution in the diversification
frontier. Under the baseline specification in Panel B, there is a clear trade-off between
complexity and feasibility. Flat panel display modules exhibit a higher PCI compared to
portable lighting but are associated with a lower baseline density, making the decision
between them less straightforward. When considering filtered probabilities in Panel C, this
trade-off disappears. Flat panel display modules maintain a high PCI while achieving a
substantially higher predicted probability of activation, making them a strictly superior
candidate for industrial policy targeting. In addition, watch movements consistently appear
among the most attractive targets in both the baseline and filtered configurations, combining
relatively high probabilities of activation with high PCI values. This stability reinforces their
strategic relevance within the diversification frontier of the Philippines.

Comparing Brazil and the Philippines, the filtered diversification frontier of the Philip-
pines is visibly more favorable. The Philippines shows a larger set of products combining
high predicted probabilities and high PCI values, concentrated mainly in the machinery,
electronics, and precision instruments sectors. Furthermore, the evolution of correlations
from Panels B to C provides additional insights. For both countries, Pearson correlations
between activation probability and PCI become less negative after filtering. In Brazil, the
Pearson correlation improves from -0.55 to -0.40, while in the Philippines it improves from
-0.45 to -0.26. This shift, consistent with the patterns observed in Figure 3.5, indicates that,
for countries like Brazil and the Philippines with intermediate levels of economic complexity,
correcting for spurious proximities results in a set of diversification opportunities that are
less misaligned with complexity upgrading. Although the filtered prospects do not neces-
sarily offer a strong orientation toward complexity enhancement, they represent a notable
improvement compared to the baseline, reducing the extent to which diversification paths
are biased toward low-complexity activities.

These comparisons illustrate how filtering the Product Space not only adjusts perceived
feasibility but also refines the trade-offs faced by policymakers, offering clearer and more

robust pathways for structural transformation.
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3.7 Discussion

This analysis reinforces the idea that less is more when applying network filtering
techniques in the context of economic complexity and relatedness. By selectively amplifying
the strongest signals and filtering out the surrounding noise, methods like DDF-In-Degree
reveal a clearer map of countries’ true productive capacities. Weak or spurious proximities,
which often cloud strategic insights, are discarded, sharpening the focus on opportunities
that are both feasible and high-impact. This minimalist approach yields more actionable
guidance, offering an advantage in addressing the informational challenges noted by Juhész,
Lane, and Rodrik (2023) in the development of effective industrial policy.

The principle that less is more underscores a subtle truth: simplifying complex data does
not dilute its value, it enhances it by strengthening the reliability of the underlying signals.
By foregrounding only the most meaningful relationships, filtering techniques remove
informational noise and better align policy recommendations with the actual capabilities of
each country. In doing so, they transform the Product Space from a dense and often distorted
network into a more navigable and strategically powerful tool, allowing for more precise
targeting of sectors where the impact can be profound and sustainable.

Rather than redefining relatedness, filtering enhances its precision. In the traditional
Product Space, the excessive density of connections often obscures genuine diversification
opportunities. Filtering counteracts this by removing redundant proximities, allowing the
density measure to more accurately reflect the feasibility of transitioning into new products
relative to a country’s existing capabilities.

Empirically, filtering substantially improves prediction performance, with higher AUC-
ROC and F1 scores compared to the baseline. It also mitigates the strong correlation between
relatedness density and overall diversification, allowing a clearer, product-specific view
of feasible upgrading paths. Beyond improving predictive metrics, filtering also softens
structural barriers to complexity upgrading: countries at intermediate levels of economic
complexity, in particular, face a diversification landscape that becomes less skewed toward
low-complexity activities and offers a broader set of more realistic pathways for upgrading
than suggested by the unfiltered Product Space.

The country cases of Brazil and the Philippines illustrate this effect: the filtered ap-
proach identifies more realistic and higher-probability diversification targets, correcting the
distorted prioritization of opportunities that characterizes the traditional framework.

Overall, filtering relatedness measures refines rather than replaces the foundations
of economic complexity analysis, enhancing its strategic usefulness for industrial policy-
making by clarifying priorities and reducing the risks associated with identifying productive
upgrading opportunities.

Beyond its immediate contributions, this approach opens several avenues for future
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research. Although this study applies network filtering techniques to the context of interna-
tional trade and product diversification, the methodology is not inherently limited to this
domain. Network filtering techniques could be applied to other datasets, such as patent
networks, research collaboration matrices, or subnational economic structures, providing in-
sights into productive diversification across different technological and geographic domains.
For instance, applying directional filtering to regional innovation systems, such as those
underpinning EU smart specialization policies (Balland et al., 2019), could test whether
their core relatedness findings persist under stricter statistical thresholds.

In addition, while this chapter focused primarily on improving the targeting of what
countries should diversify into, filtering can also inform broader strategic dimensions. It
may clarify when countries should pursue diversification opportunities, where productive
upgrading is most likely to succeed geographically, and who is better positioned to lead these
processes, in line with the 4Ws framework proposed by Hidalgo (2023). Expanding the use
of filtering across these dimensions offers a promising pathway for refining industrial policy
design and enhancing its alignment with the evolving structure of economic opportunities.



73

Appendix 3.1: Formal Definitions of Network Filtering Methods

This appendix presents the formal equations used in the network filtering methods
implemented in this study, including: Disparity Filter, LANS, Directed Disparity Filter In-
Degree, and Directed LANS In-Degree. For consistency, all notations refer to nodes (products)

as p, p’, or p”.

Disparity Filter (Serrano; Boguna; Vespignani, 2009)

For a node p with degree k,, each edge weight ¢, , is normalized:

Pp.p
Zp”e.Af(p) Pp.p”

ap’p/ =

Assuming a uniform distribution over the interval [0,1], the significance level for the edge

is given by:
) _ e’ kp—2
p-value: ppp=1-(kp—1) (1-x)*"“dx
0

Because the network is undirected, the edge (p,p’) is evaluated from both sides. The

edge is retained if:

(p) (P

i S Do) <
mm(pp,p’pp,p) a

That is, the edge is kept if it is statistically significant for at least one of the two nodes.

Directed Disparity Filter In-Degree (DDF-In-Degree)

This method adapts the Disparity Filter to capture directionality by evaluating proxim-
ities from the perspective of the receiving node. Instead of considering outgoing flows, it
focuses on the distribution of incoming proximities for each product p’, emphasizing the
significance of signals received.

Given a directed network where each node p’ receives proximity values ¢, ,» from
other nodes, the normalized inflow is:

Pp.p’

x ;=
p.p
Z ¢p//’pr
plleN'ln (p/)

Assuming these weights are uniformly distributed over [0,1], the significance of the edge
(p— p)is: A
kin -1
DPpp = (1- Ofp,p’) P

where kg} is the indegree of node p’. The edge is retained if p, , < «.

LANS (Foti; Hughes; Rockmore, 2011)
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LANS evaluates the statistical significance of each edge weight ¢, ,» by comparing it to
all other weights from the same node p. The p-value is defined as the proportion of other

edges with lower or equal weights:

(p) _ |{p” eNDP\{P'} : pppr < @p,p’}
PP kp—1

posr = max (p}7y. P

The edge (p,p’) is retained if p,, ,» < a.

Directed LANS In-Degree (DLANS-In-Degree)

DLANS-In-Degree adapts the original LANS method to directed networks by focusing
exclusively on the incoming proximities of each node. For each target node p’, the empirical
significance of the edge from p to p’ is calculated by comparing it to the other incoming

proximities to p’:

_ |{p” € Nin(p/) \{p} : oprp < (Pp,p’}
Pp.p = kin — 1
p/

This value represents the proportion of other incoming signals to p’ that are weaker than or
equal to the one from p. As in the original LANS method, edges are retained if p, ,» < a.
These statistical methods allow the extraction of a more meaningful and interpretable
backbone from the Product Space, minimizing the influence of noisy or spurious proximities
and emphasizing the perspective of the product receiving the signal.
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Appendix 3.2: Parameter Calibration and AUC-ROC Results

This appendix presents the calibration curves used to identify optimal parameter values
for each network filtering method, based on their predictive performance. The figure below
shows how AUC-ROC values vary across different parameter settings.

As illustrated in Figure 3A.1, most filtering techniques exhibit a single-peaked or near
single-peaked behavior in their AUC-ROC response. In many cases, a relatively broad plateau
of high-performing parameter values can be observed, indicating that predictive accuracy
remains stable around the global maximum. This robustness simplifies the calibration
process and enhances the practical usability of the filtering methods.
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AUC-ROC

Figure 3A.1 - Parameter Calibration and AUC-ROC Results
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Figure 3A.1. AUC-ROC values obtained across different parameter configurations for each network
filtering technique.
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Appendix 3.3: Related and Unrelated Diversification

There is a growing literature investigating at which stages of economic complexity it
becomes advantageous for countries to target unrelated products. Pinheiro et al. (2022) and
Alshamsi, Pinheiro, and Hidalgo (2018) argue that unrelated diversification tends to be more
prevalent, and necessary, during the intermediate stages of complexity development. This
insight is closely complemented by the stylized fact of an S-shaped relationship between
a country’s ECI and the correlation between density and PCI among its latent products
(Hartmann et al., 2021). Specifically, this pattern shows that for most countries, particularly
those with medium and upper-medium levels of complexity, the products that appear closest
in the Product Space tend to be less sophisticated. As a result, countries at these stages often
face a developmental plateau, where nearby opportunities no longer contribute meaningfully
to further complexity upgrading. The complementarities between these two findings suggest
that economies at intermediate ECI levels are structurally pushed toward seeking complexity-
enhancing diversification among less related, and often more distant, products.

However, a fundamental limitation underlies this discussion: the reliance on baseline
density to evaluate proximity between countries and products. As previously discussed,
baseline density is heavily influenced by spurious correlations embedded in the original
Product Space, meaning that judgments about whether a product is relatively near or far
for a country are subject to significant bias. Consequently, conclusions drawn solely from
the baseline configuration may misrepresent the true diversification landscape available
to countries, particularly at intermediate stages of complexity. To address this concern,
this appendix section applies the DDF-In-Degree filtering method to reassess whether the
patterns and implications described above, particularly regarding the need for unrelated
diversification during middle stages of complexity, remain robust after removing redundant
and statistically insignificant proximities.

To further investigate the relationship between economic complexity and the related-
ness of successfully upgraded products, Figure 3A.2 presents an empirical analysis based
on data from 1998 to 2016. Following the relative relatedness methodology proposed by
Pinheiro et al. (2022), we selected, for each country-year, products with RCA <= 0.5 at time
t that achieved RCA >= 1.0 at t+4, and calculated the average density and relative average
density of these products. Countries were then grouped into 20 equally sized ECI bins, with
the x-axis reporting the average ECI within each bin. The left panels display results using
the baseline approach, while the right panels apply the filtered DDF-In-Degree approach. In
each case, a quadratic regression is fitted (in red), with the estimated coefficients and R?
reported alongside. This setup allows us to assess whether the observed patterns of related-
ness upgrading vary when controlling for the noise and redundancy inherent in the baseline
Product Space structure.

The first thing that stands out from Figure 3A.2 is the strong positive relationship
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Figure 3A.2 - Relatedness and Relative Relatedness - Baseline vs Filtered Approach - 1998-2016
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Figure 3A.2 presents the relationship between countries’ ECI)and the relatedness of products they
successfully upgraded to, based on data from 1998 to 2016. For each country-year, we selected products
with RCA 0.5 at time t that achieved RCA > 1.0 at t+4. We then calculated the average density (top
panels) and average relative density (bottom panels) of these newly exported products. Countries
were grouped into 20 equally sized ECI bins, with the average ECI of each bin displayed on the
x-axis. The left panels shows results based on the traditional baseline density measure, while the
right one applies the filtered DDF-In-Degree method. In each panel, the red lines represent fitted
quadratic regression curves, and the accompanying boxes report the estimated coefficients and the
corresponding R2. The construction of the relative relatedness measure and the empirical strategy
employed in this figure follow the methodology proposed by Pinheiro et al. (2022).
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between countries’ ECI and the baseline density of the products they successfully upgraded
to. The fitted regression yields an R? of 0.59. However, this strong correlation likely reflects
a substantial burden of spurious proximity effects and high correlation between density and
diversity, as previously discussed. It is worth recalling that the predictive performance of
baseline density in Probit models was relatively modest, with an AUC-ROC of only 0.602. In
contrast, when we turn to the filtered density measure, the relationship between ECI and the
density of newly exported products becomes much weaker, with an R? of only 0.12, while its
AUC-ROC is substantially higher, at 0.688. This suggests that, after correcting for redundant
and noisy links, the level of density faced by countries in their diversification efforts, now
measured in a more precise way, is much less dependent on their current ECI level.

Regarding the relative relatedness analysis, we observe that the fitted relationship be-
tween ECI and relative relatedness is much better defined when using the baseline measure:
the baseline regression achieves an R? of 0.145, compared to only 0.059 when using the
filtered measure. In the baseline, the relationship follows a clear quadratic pattern, whereas
in the filtered case, it becomes linear and much weaker, although still slightly decreasing, as
indicated by the negative slope.

These combined results suggest that, once some of the spurious correlations embedded
in the original Product Space are corrected, relative relatedness no longer reveals strong
patterns about the types of products that countries tend to upgrade into, nor does it point to a
specific development stage where focusing on unrelated diversification would be particularly
advantageous. A plausible interpretation is that the explanatory power of relative related-
ness under the baseline configuration stems largely from the strong, association between
baseline density and overall diversification levels. Consequently, relying on baseline-based
measures of relative relatedness may lead to misleading conclusions about the role of unre-
lated diversification in the development process. Nevertheless, it remains possible that the
DDF-In-Degree filtering has not fully eliminated all sources of noise in the Product Space,
which may explain why a small residual correlation persists even after filtering.

Figure 3A.3 further explores the relationship between countries’ economic complexity
and the structure of their diversification opportunities by plotting the S-curve pattern based
on the correlation between density and PCI among latent products (Hartmann et al., 2021;
Pinheiro et al., 2022). Compared to the baseline configuration, the filtered version of the
S-curve appears notably flatter. This suggests that the overall diversification prospects for
countries, particularly those at lower levels of complexity, are not as pessimistic as implied
by the baseline measure.

The evidence from Figure 3A.3 complements the previous analysis of the characteristics
of newly exported products in Figure 3A.2. While the earlier results highlighted that, after
filtering, the density of successfully upgraded products no longer varies strongly with a

country’s ECI, the S-curve shown here provides a broader perspective on the underlying
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Figure 3A.3 - S-Curve - Baseline vs Filtered Approach - 1998-2016
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Figure 3A.3 presents the S-shaped relationship between a country’s ECI and the correlation between
density and PCI among products with RCA <= 0.5, based on data from 1998 to 2016. For each
country-year observation, we calculated the Pearson correlation between density and PCI across all
latent products and plotted it against the corresponding ECI. Blue dots represent observations based
on the traditional baseline density measure, while orange dots correspond to the filtered density
measure obtained through the DDF-In-Degree approach. The solid lines show the local mean trends
for each method, highlighting how the baseline configuration (blue) produces a sharper S-curve
pattern, whereas the filtered configuration (orange) reveals a flatter and smoother relationship.

diversification landscape faced by countries.

In particular, the flattening of the S-curve after filtering suggests that, for most countries,
the average quality of latent diversification opportunities is not as systematically biased
against low-ECI economies as initially implied by the baseline measure. However, both
analyses converge in indicating that countries reaching intermediate complexity levels
(around ECI = 1.0) encounter a narrowing funnel of development paths: diversification into
complexity-enhancing products becomes significantly more challenging precisely at this
stage. Thus, while filtering the Product Space reduces the apparent severity of structural
barriers for low-ECI countries, the existence of a development bottleneck at intermediate
stages remains a persistent feature across both upgraded products and latent opportunities.
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4 From Capabilities to Economic Conver-
gence: A Structural Growth Framework
Linking Economic Complexity, Institu-
tions, and Human Capital

Abstract

Why do some countries achieve sustained economic convergence while others remain stuck
in low-growth traps? This paper investigates how structural capabilities — encompassing
input-output economic complexity, trade-based complexity, institutional quality, and human
capital — jointly influence countries’ long-run development paths. We introduce a novel
measure of economic complexity based on intersectoral input-output linkages and integrate
it with existing trade-based metrics to capture the multidimensional structure of productive
capabilities. To assess how these capabilities shape economic convergence, we develop
a two-stage empirical strategy that explicitly distinguishes the role of baseline structural
conditions from their subsequent evolution. In the first stage, we isolate the portion of
per capita income not explained by complexity, institutions, or human capital using cross-
sectional regressions for each base year. In the second stage, we estimate panel regressions to
evaluate how both these residuals and ten-year structural transformations affect subsequent
growth. Applying this framework to a panel of over 60 countries from 1999 to 2020, we find
robust evidence that economic complexity, institutional quality, and human capital operate
as complementary structural drivers of long-term development. Our results highlight the
importance of investing in productive capabilities, institutional foundations, and human

capital to enable sustained economic convergence.

Keywords: economic complexity, input-output structure, economic growth, industrial policy

4.1 Introduction

Input-output methods are one of the first in Economics — if not the first one — to rec-
ognize the interconnectedness of markets and sectors as crucial to understanding economic
systems. Formalized by Leontief in the 1930s, these methods anticipated key principles that
would later become central to the field of network theory. Fundamental network theory
concepts such as ‘nodes’, ‘edges’, ‘adjacency matrix’, ‘centrality’, and ‘contagion’, all have
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their doppelgangers in input-output analysis, respectively matched by ‘industries’, ‘inter-
industries flows’, ‘input-output table’, ‘industry multipliers’, and ‘shock propagation analysis’.
Input-output analysis is an important tool, used for economic planning, forecasting, and
policy analysis. It helps policymakers understand the ripple effects of economic changes
and make informed decisions about resource allocation and economic development.

Economic complexity, on the other hand, arises in the 2000s as a field that applies
machine learning and network theory techniques to understand economic systems and
their processes (Hidalgo, 2021). The conceptual cornerstone of economic complexity is the
importance of learning to economic development and the impediments to accumulating
and transmitting productive knowledge through a selected economic network. Sharing with
input-output analysis network theory as part of its foundations, it also relies deeply on the
patterns of interaction between nodes and their spillovers within an economic network. For
Hidalgo (2023), economic complexity research represents an example of unbalanced growth
theory, as posed by Hirschman (1977) with forward and backward linkages in the use of
input-output methods, providing methods to identify tailored diversification strategies based
on a region’s current pattern of specialization. After all, both approaches focus on structural
relationships and feedback loops that drive economic development.

The toolkits of input-output analysis and economic complexity have great potential to
be integrated, enhancing their contributions to understanding economic development and
designing better economic policies. However, irrespective of the sheer similarities of both
approaches and their potential to be combined, there are not many studies that leverage them
simultaneously (Gala et al., 2018; Koch; Schwarzbauer, 2021; Pereira; Silva; Larruscaim,
2023). In this work, we contribute to filling this gap by applying economic complexity
methods to the Inter-Country Input-Output (ICIO) tables, extracted from the Organisation
for Economic Co-operation and Development (OECD) database.

We show that Input-Output Economic Complexity complements trade-based ECI
by capturing structural features of production networks that go beyond the merchandise
export basket. While trade ECI reflects the sophistication of what countries export, I0-based
complexity incorporates how sectors contribute to value creation through both domestic
and international input-output linkages, including services, which play an increasingly
important role in modern production.

This broader view of productive capabilities reveals how countries differ not only
in what they export but also in how their economies are embedded in complex, multi-
sectoral value chains. Taken together, trade and I0-based measures form a multidimensional
notion of economic complexity (Stojkoski; Koch; Hidalgo, 2023) that combines the external
structure of exports with the internal architecture of production, helping to explain persistent

differences in income levels across countries.

To assess how this multidimensional notion of complexity translates into long-term
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development, we propose a two-stage empirical framework. In the first stage, we estimate
the portion of GDP per capita that cannot be accounted for by structural capabilities, namely
economic complexity, institutional quality, and human capital, using cross-sectional regres-
sions for each base year. In the second stage, we analyze how changes in these structural
capabilities over time, along with the residuals from the first-stage regressions, influence
subsequent economic growth. This two-stage approach allows us to separate the effects of
initial conditions from those of structural transformation, providing a dynamic perspective
on how productive capabilities shape long-term convergence, and serves also as a diagnostic
tool for identifying capability-income gaps, highlighting areas where countries possess latent
potential for structural upgrading and convergence.

The next section reviews the literature on economic complexity and long-term economic
growth. Section 3 presents the methodological approach, detailing both the construction of
the Input-Output Economic Complexity Index and the design of the two-stage framework.
In Section 4, we analyze the empirical properties of the IO ECI and its relationship with
income levels across countries. Section 5 turns to the two-stage framework, evaluating how
complexity, institutions, and human capital contribute to long-term growth trajectories.
Finally, we conclude by discussing the broader implications of our findings for economic
development.

4.2 Literature Review

The economic complexity literature builds on the idea that a country’s development
path is shaped by the diversity and sophistication of its productive capabilities: those em-
bedded, often tacit, forms of know-how that enable the production of complex goods. De-
velopment, in this view, is not neutral with respect to productive structure. What countries
make, and how diversified and knowledge-intensive those products are, matters funda-
mentally. The seminal work by Hidalgo and Hausmann (2009) formalized this intuition
into a measurable concept of economic complexity, proposing that the network connecting
countries and the products they export can reveal the underlying distribution of capabilities.
This framework rests on the insight that capabilities are not easily transferable, and that the
accumulation of productive knowledge is a path-dependent, embedded process.

Since its introduction, the ECI has gained prominence as a structural indicator of a
country’s productive capabilities and development prospects. One of the main reasons for its
growing influence is its strong empirical association with income levels and future economic
growth. The Atlas of Economic Complexity (Hausmann et al., 2014) popularized the use
of ECI in policy and academic circles by showing that more complex economies tend to
be richer and grow faster. Subsequent studies have reinforced this relationship and refined
the methodology, demonstrating that economic complexity remains a robust predictor of
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growth even when controlling for human capital and institutional quality (Albeaik et al.,
2017; Gala; Rocha; Magacho, 2018; Stojkoski; Koch; Hidalgo, 2023). A common empirical
strategy in this literature involves Barro-style growth regressions, where ECI is shown to be
a robust predictor of long-run GDP per capita growth, even when controlling for traditional

variables like human capital and institutional quality.

In parallel to the ECI framework, an alternative complexity metric known as fitness
was proposed by Tacchella et al. (2012). Based on a non-linear iterative algorithm, the fitness
approach seeks to capture the hidden capabilities of countries and the complexity of products
by leveraging the structure of the export network without relying on eigenvector methods.
A growing body of research has used this metric to analyze development trajectories and
growth potential. Cristelli, Tacchella, and Pietronero (2015), Sbardella et al. (2018), and
Tacchella, Mazzilli, and Pietronero (2018) showed that fitness is consistently associated
with long-term GDP per capita growth, often outperforming conventional predictors in
forecasting models. These contributions confirm that, despite methodological differences,
both ECI and fitness highlight productive sophistication as a central structural determinant

of economic performance.

Economic complexity methods are not restricted to the exchange of goods among
countries. A significant portion of the literature has been developed for other applications,
providing valuable policy recommendations that extend beyond the scope of international
trade. When it comes to international trade, it is important to note that product exports
serve as a vehicle for the interactive process between product types and countries. Similarly,
other economic complexity applications always define an economic vector through which
other two dimensions interact. Patent data, for instance, can reveal how technology and
innovation spread through interactions between technological classes and geographical
locations (Rigby, 2015; Balland; Rigby, 2017; Balland et al., 2019). Employment variables
by type of industry are also useful to be studied as a vehicle to economic processes (Neffke;
Henning; Boschma, 2011; Mealy; Farmer; Teytelboym, 2019; Queiroz; Romero; Freitas,
2023).

In this sense, recent work has highlighted the need to move beyond a one-dimensional
view of complexity to explain economic development. A multidimensional approach, com-
bining different complexity metrics, offers a more complete picture of the knowledge em-
bedded in an economy. Stojkoski, Koch, and Hidalgo (2023), for example, show that both
Trade ECI and Technology ECI (based on patent data) contribute jointly to explaining long-
run economic growth. Building on this perspective, recent work by Angelini et al. (2024)
forecasts GDP growth using a combination of international trade fitness and technological
fitness, reinforcing the idea that different facets of complexity can complement each other

in capturing the full scope of a country’s development potential.

Among alternative applications, input-output data stands out as a particularly promis-
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ing yet underexplored avenue for measuring economic complexity. By capturing the flows of
value added across sectors within and across countries, input-output frameworks provide a
structural map of how industries are interconnected, offering a systemic perspective that
complements trade-based approaches. While merchandise trade data reflects gross exports
and is often biased toward tangible goods, input-output data encompasses the full spectrum
of economic activity, including services and sectoral interdependencies. From a statistical
standpoint, combining trade and input-output perspectives offers a richer representation of
productive capabilities, one that balances domestic and international dimensions and better

reflects the organization of modern economies.

Despite this potential, only a handful of studies have extended the complexity frame-
work in this direction. Gala et al. (2018) used sectoral employment data from input-output
matrices to show that the composition of employment across industries—particularly in
manufacturing and sophisticated services—correlates with long-run growth and higher
complexity. Koch and Schwarzbauer (2021) constructed value-added trade complexity in-
dices using input-output flows for 56 industries and 43 countries, showing that these metrics
complement traditional ones in explaining income levels. Pereira, Silva, and Larruscaim
(2023) proposed an innovative mapping between HS product codes and ISIC activities to
derive activity-based complexity measures for Brazil, revealing structural bottlenecks linked
to the country’s specialization in low-complexity value chains.

These extensions demonstrate that economic complexity can be meaningfully captured
through a variety of empirical lenses. Yet, even as the literature has evolved to incorporate
new data sources and dimensions, most studies continue to treat other key structural drivers
of growth, particularly institutions and human capital, as secondary. Typically, these factors
are included in growth regressions as control variables, while the primary focus remains
on complexity metrics. This empirical treatment stands in contrast to a vast literature in
development economics that identifies both institutional quality and human capital ac-
cumulation as fundamental engines of long-run growth. As such, there is a clear need for
frameworks that go beyond isolated effects and instead consider how these foundational
dimensions interact with one another, potentially reinforcing or constraining each other, in
shaping development outcomes.

The institutional foundations of economic growth have long been emphasized in
development economics. Pioneering works by North (1990) and Acemoglu, Johnson, and
Robinson (2001), Acemoglu and Johnson (2005), Acemoglu, Johnson, and Robinson (2005)
argue that inclusive institutions — those that ensure secure property rights, political stability,
and broad access to opportunity — are fundamental for sustained development. Institutions
shape the incentives that govern investment, innovation, and coordination, and thus play
a critical role in enabling the accumulation and deployment of productive capabilities.
Rodrik, Subramanian, and Trebbi (2004) provide compelling empirical evidence for this



86

argument, showing that institutional quality dominates geography and trade integration
as a determinant of long-term income differences across countries. This finding — that
“institutions rule” — has since become a cornerstone in growth diagnostics and development
strategy.

Building on this tradition, recent research has begun to bridge institutional theory and
the complexity framework. Frenken, Neffke, and Dam (2023) propose a synthesis in which
institutions are not external constraints but integral to the realization of capabilities. They
argue that producing complex goods increasingly depends not only on the availability of
technological capabilities but also on institutional arrangements that support knowledge
sharing, coordination across firms, and trust within production systems. Further evidence of
this enabling or constraining role comes from Boschma and Capone (2015), who demonstrate
how different institutional architectures, such as coordinated market economies and liberal
market economies, shape the direction of diversification. Coordinated market economies
tend to facilitate related diversification through dense networks and collaborative innovation
systems, while liberal market economies more often enable jumps into unrelated sectors,
though typically at higher risk. This integrative view is further reinforced by Vu (2022),
who provides empirical evidence that institutional quality is not only a driver of economic
performance in general, but a direct determinant of a country’s economic complexity. The
study shows that better institutions foster economic complexity through two intertwined
mechanisms: by incentivizing innovative entrepreneurship, particularly in the high-risk
cost discovery process of identifying viable new products, and by promoting human capital
accumulation and directing it toward productive uses.

These institutional effects also shape the practical effectiveness of industrial policy.
Sousa and Mueller (2025) argue that the tools of economic complexity, though powerful
in identifying viable paths for productive upgrading, are not sufficient in the absence of
institutional arrangements that support implementation, learning, and commitment. In
their view, institutions influence whether complexity-informed policies lead to sustained
transformation or remain trapped by rent-seeking, policy discontinuity, or political capture.
These contributions highlight that institutions do not merely “allow” development. They
co-determine the paths through which complexity unfolds. Any attempt to model long-term
growth trajectories must therefore treat institutions as fundamental structural factors that
delimit and shape the possibilities for productive transformation.

The role of human capital in fostering long-term economic growth has been extensively
discussed in both classical and endogenous growth theories. These frameworks converge
in recognizing that a better-educated and more skilled labor force enhances productivity,
facilitates technological adoption, and drives innovation (Jr, 1988; Romer, 1990; Mankiw;
Romer; Weil, 1992). Foundational empirical studies (Becker, 1994; Mincer, 1981) further
emphasized education and training as critical forms of investment, yielding both private
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and social returns. More recent reviews confirm that higher levels of educational attainment
correlate with increased GDP per capita, although the strength and direction of causality
can vary depending on institutional and structural contexts (Osiobe et al., 2019). Benhabib
and Spiegel (1994) highlight that human capital not only contributes directly as a factor of
production but also enhances a country’s ability to absorb and adapt frontier technologies.
This view is reinforced by Hanushek and Woessmann (2008), who stress that cognitive skills
and educational quality are more predictive of growth than schooling duration alone.
Importantly, Cadil, Petkovov4, and Blatna (2014) argue that the returns to education
depend on the structure of the economy, particularly its ability to absorb skilled labor. In
countries with limited structural sophistication, education may lead to underemployment
or skill mismatch, limiting productivity gains. While not framed in terms of complexity,
this insight resonates with the core intuition of the complexity literature: human capital
yields greater returns when embedded in a production structure capable of utilizing it. Just
as complexity relies on the recombination of diverse capabilities, the full value of education
emerges in economies with a sufficiently complex and integrated productive system. Human
capital is thus necessary, but not always sufficient, for economic growth, with its impact

contingent on the broader productive and institutional environment.

Recent empirical evidence reinforces this complementarity between human capital
and the productive structure. Drawing on cross-country panel data, Lin (2011) show that
educational attainment and economic complexity interact positively in promoting long-term
growth. In particular, they find that secondary education plays a pivotal role in enabling coun-
tries to benefit from more complex productive activities, especially in developing economies.
Their results suggest that human capital and complexity are mutually reinforcing: the effec-
tiveness of education increases when embedded in a more sophisticated economic structure,
and productive upgrading becomes more viable when supported by an educated workforce.
This perspective aligns with the notion that economic growth depends not only on the accu-
mulation of skills, but also on the capacity of the productive system to absorb and deploy

those skills in complex and value-generating activities.

Taken together, this body of evidence supports a multidimensional framework for
structural development. Whereas much of the economic complexity literature focuses on
productive capabilities alone, our approach treats three structural vectors — productive ca-
pabilities, institutions, and human capital — as equally fundamental, while estimating their
distinct empirical contributions. We operationalize capabilities through a multidimensional
lens of economic complexity, combining the standard Trade ECI with a novel 10 ECI. While
Trade ECI captures the complexity of exports, IO ECI reflects the intersectoral sophistication
of economy, considering both domestic and external dimensions, and including services.
These two measures jointly define the productive vector. Institutions provide the enabling
or restraining environment for coordination, learning, and credible commitments. Human
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capital equips the labor force to operate and expand production complexity. Together, these
vectors shape both current development levels and future trajectories.

In sum, we build on a rich tradition linking capabilities, institutions, and human capital
to economic development. Our contribution lies in proposing a unified framework where
these vectors are treated symmetrically and interactively. Central to this is the introduction of
the IO ECI, which complements trade-based measures to capture the full scope of a country’s
production structure. The next section details the construction of this index and presents the
empirical strategy — the two-stage structural growth framework — designed to disentangle
the role of each vector in explaining both income levels and long-term growth.

4.3 Methods

This section presents the methodological approach we use to examine how structural
capabilities shape long-term economic growth. We begin by developing a new Input-Output
Economic Complexity Index (IO ECI), which treats each intersectoral flow—from a supply-
ing to a demanding industry—as a distinct economic activity. This formulation allows us
to capture the structural sophistication embedded in how production is organized across
sectors. Building on this measure, we adopt a multidimensional view of productive complex-
ity by combining the IO ECI with the traditional trade-based Economic Complexity Index
(Trade ECI). Together, they form a more comprehensive vector of productive capabilities.
Our analysis is structured around three vectors of structural capabilities: (i) productive capa-
bilities, captured by this combination of Trade ECI and 10 ECI; (ii) institutional capabilities,
measured through six dimensions of governance quality; and (iii) human capital, proxied by
the Human Capital Index. We then implement a two-stage empirical strategy that separates
the baseline contribution of these capabilities from the impact of their evolution over time.
This framework allows us to identify how each structural vector contributes to economic
convergence and growth.

To create the Input-Output Complexity Index, we use data from the OECD ICIO ta-
bles! (OECD, 2023), which encompasses input-output data for 76 countries and 45 industries
between years 1995 and 2020. This database was updated in 2023 and is unique among other
input-output databases because of its comprehensive coverage in terms of country and time
dimensions. Although its coverage is still far from resembling international trade databases
in both dimensions, the country sample of ICIO is large and diverse enough to account for
the process of economic development. We apply the same filter of Hausmann et al. (2014),
excluding from the calculations all countries with population smaller than 1.2 million in

2010 or with unavailable data, resulting in 70 remaining countries.

1 http://oe.cd/icio/
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The limited number of 45 industries constrains the application of economic complexity
methods, since these methods extract information from matricial variance. To circumvent
this limitation, we redefine the unit of analysis. Rather than treating each industry as
an isolated activity, we designate the directed connection between two industries, from
supplying sector s; to demanding sector s;, as the basic unit of economic activity. This
approach effectively treats the intersectoral flow itself as the analog of a “product” in standard
trade-based complexity analysis, allowing us to construct a bipartite country-activity matrix.

The resulting structure yields up to 2,250 (44 x 50) unique Input-Output Activities,
corresponding to all feasible sector combinations, including flows to final demand categories
(e.g., household consumption, investment), while excluding the sector “Activities of house-
holds as employers.” This formulation captures not only what is produced, but also how
production is integrated across sectors, an essential feature of productive entangling. Not all
2250 activities are included in the calculations, since activities of minor importance produce
noise for complexity methods. We filter all activities that have a world share of the final
output higher than 0.00568%, which is an eighth of the expected share if all activities con-
tributed equally to the final world output, totaling 1129 activities. Figure 4.1 provides a visual
overview of this conceptual transformation from raw input-output data into a structured

space of intersectoral activities.

We define the set of Input-Output Activities .A as:

A={s1X82[s1,82€ Z}U{si1 Xy|s1 €2,y €V} (4.1)

where Z denotes the set of intermediate demand, and Y denotes the set of final demand.
In this formulation, s; represents the supplying sector, while s, or y represent, respectively,
the demanding production sector or the final demand category. The unit of analysis is thus a
directed flow from s; to s; or from s; to y, capturing both intermediate and final activities.

Let ¢. o represent the total value generated by country c in activity a, aggregating over
all destination countries c’:

Pe,a = Z Fe ;e (4.2)

c’eC

The revealed comparative advantage (RCA) of country c in activity a is given by:

Peal LareA Pea
Zc’eC goc',a/Zc’eC Za’eA P’ a’

Finally, the binary matrix M, 4 is defined as:

RCA.q = (4.3)

1 0 if RcAc’a Z 1
Mg = _ (4.4)
0, otherwise



90

Figure 4.1 — Conceptual Map of Input-Output Data Extraction
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Figure 4.1 illustrates the conceptual process through which input-output data is transformed into
complexity measures. The diagram depicts how intersectoral linkages—such as the flow of raw
agricultural inputs into industrial processing—are used to construct a network representation of
productive activities. These flows are the basis for measuring Input-Output Complexity and its role
in economic development analysis.
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A central feature of our approach lies in the setting of the inter-industry flow as an
activity, since we allow for a different set of required capabilities when distinguishing between
the same industry supplying (or demanding) inputs to different industries. The relationship
between ‘Chemical and chemical products’, for instance, and any other demanding industry,
such as ‘Agriculture, hunting, forestry’ or ‘Computer, electronic and optical equipment’,
carries diverse embedded economic information and capabilities, and may yield completely
different levels of sophistication, i.e. different PCIs.

We compute the Input-Output Economic Complexity Index (I0 ECI) and the Input-
Output Activity Complexity Index (IO ACI) by applying the standard complexity method-
ology of (Hidalgo; Hausmann, 2009) to the binary matrix M. ,. Following the method of
reflections, we construct the matrix M o:

~ Mc,a Mc’,a
MC,C’ = ; W (45)

where k. = >, M. 4 is the diversification of country ¢, and k, = }. M, 4 is the ubiquity
of activity a.

The IO ECI is given by the eigenvector associated with the second largest eigenvalue
of the matrix M, .. The I0 ECI and the IO ACI can be expressed as iterative averages that
mirror each other:

1
10 ECI, = k_ Z M., - 10 ACI, (4.6)
¢ a

1
10 ACLy = 1~ Z M, - 10 ECL, (4.7)
a ¢

To evaluate the contribution of the newly developed 10 ECI to long-term economic
growth, we implement an econometric strategy designed to isolate its structural role in
shaping cross-country growth trajectories. This strategy builds on a two-stage framework
that distinguishes between the static effects of baseline embedded capabilities and the
dynamic impact of their transformation over time.

A common approach in the economic complexity literature is to run Barro-style growth
regressions, which includes the initial GDP per capita together with measures such as
ECI to explain future economic performance. However, this raises important econometric
concerns. Since ECI and income are strongly correlated, including both variables in the
same regression introduces a risk of multicollinearity and complicates the interpretation
of coefficients. More critically, ECI may reflect information already embedded in income
levels, leading to issues of endogeneity and simultaneity. In other words, complexity and
income are jointly determined at the initial time point, making it difficult to identify the
independent role of complexity in shaping future growth.
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To isolate the true contribution of economic complexity at the starting point to future
economic growth, we implement a residualization procedure inspired by the two-stage
residual inclusion (2SRI) strategy (Terza; Basu; Rathouz, 2008): first, regress complexity on
initial income; second, use residuals to predict economic growth. Figure 4.2 provides a visual
summary of this two-stage structural growth framework, illustrating how each capability
vector is used to generate income-adjusted residuals that enter the second-stage growth
regressions.

Figure 4.2 — Conceptual Map of Two-Stage Structural Growth Framework

Institutional Capacity:
World Governance
Indicators - 6 indicators

First-stage regressions Second-stage regressions

Cross-Section OLS + HC3 Two-Way FE OLS Panel + WCU-31 Bootstrap
Trade ECI: Observatory of

Economic Complexity data H: Multidimensional
T . = Regress each structural Regress first-stage residuals
: O Comp|EXIty, component on initial GDP per === on 5- and 10-year annualized
Multidimensional institutional capacity i GDP per capita growth.

Economic Complexity:
Trade ECl and Input-

R and human capital are

R structural drivers of e
long-term economic Index
Create the Input-Output growth CC + GE + ) Same-period
Economic Complexity PV 4+ RL+ oo N ¥ Flrst.-stage change in
RQ + VA* L, residuals selected
: a variables
Each intersectoral ik * Trade ECI +
ach intersectoral lin f
OECD Inter-Countr Lo Human Capital: Penn IOECI+
Input-Output table: HEELEE 23l d'?‘!nCt Table data - Human Interaction
economic activity Capital Index *
F1: Trade ECl and 10 ECI F2: Economic Complexity,
reflect complementary Institutions and Human
complexity dimensions Capital jointly contribute to
shaping initial GDP per capita. long-term economic growth

*Voice and Accountability, Political Stability and Absence of Violence/Terrorism, Government Effectiveness, Regulatory Quality, Rule of Law, Control of Corruption

Figure 4.2 presents the two-stage structural growth framework developed in this study. In the
first stage, initial GDP per capita is explained by structural variables: multidimensional economic
complexity, institutional quality, and human capital. The second stage relates economic growth to
both the residuals from stage one and structural transformations over the same period. This approach
allows disentangling baseline capabilities from dynamic changes in explaining long-run development.

Specifically, we aim to identify the portion of complexity that diverges from the coun-
try’s income level at time t. The underlying idea is that economic complexity captures a
country’s productive capabilities, and such capabilities should, in principle, be associated
with a certain level of income. When a country’s complexity level is higher than its corre-
sponding income per capita, this may reflect untapped potential — a productive structure
capable of supporting a higher level of output. In this case, we expect the country to grow
faster in the future, converging toward the income level implied by its capabilities (Haus-
mann et al., 2014). Conversely, countries with income levels above what their complexity
would suggest may grow more slowly. This logic provides a structural interpretation of
economic convergence, grounded in productive fundamentals rather than income alone.

Stojkoski, Koch, and Hidalgo (2023) have emphasized the idea that economic com-
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plexity may be inherently multidimensional, with different indicators capturing distinct
facets of a country’s productive capabilities. In this study, we build on that perspective by
proposing that the IO ECI complements the traditional Trade ECI in capturing different
layers of productive structure. From a statistical standpoint, input-output data captures
value-added flows across all stages of production, spanning primary, secondary, and tertiary
activities, and reflects both domestic and international linkages. In contrast, international
trade data focuses on cross-border merchandise transactions, with a bias toward tradable,
industrial products and gross export values. By combining IO ECI and Trade ECI, we aim to
capture a broader and more nuanced picture of the productive capabilities embedded in an
economy, and the level of income that such capabilities should support.

Beyond testing the role of multidimensional economic complexity, captured jointly by
Trade ECI and 10 ECI, we extend the analysis to other foundational capabilities that shape
long-term development. In particular, we consider institutional capabilities and human
capital capabilities as complementary to productive capabilities. Each of these is treated
analogously: rather than including them directly as explanatory variables of growth, we
isolate their residual component with respect to initial income. This comprehensive ap-
proach offers three key advantages. First, it prevents institutional quality and human capital
from acting as hidden confounders for residual ECI estimates. Second, it allows for an equal
footing comparison of the individual influence of each long-term growth structural driver.
Third, it avoids the interpretational paradox of including initial income alongside structural
variables that are, by construction, strongly associated with it. By including these residuals
in the second stage, we test whether countries whose institutional capacity or human capital
levels exceed (or fall short of) what their income would suggest experience systematically
different growth paths, extending the logic of capability-driven convergence beyond pro-
ductive structures alone. Additionally, since the residuals are orthogonal to initial income,
multicollinearity is substantially reduced.

To implement the first stage of our empirical strategy, we run separate cross-sectional
regressions for each base year, in which the log of GDP per capita is explained by structural
capability measures. We report heteroskedasticity-robust standard errors using the HC3
estimator. The goal is to isolate the portion of each vector capability that is not already
reflected in a country’s income level at time ¢. For each structural vector X, ;, we estimate:

log(ﬁcat) =a+PXes (4.8)

and compute the residual as:

éc. = log(GDPpc,,) - log(GDPpc,) (4.9)

where:
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log(GDPpc, ) is the actual log of GDP per capita (PPP, constant USD) for country ¢ in

year t;

log(ﬁcw) is the predicted income based on the country’s capability level;
« X, represents one of the structural vectors: productive, institutional, or human capital;

* €. is the residual term, interpreted as the income gap.

The residual €., represents the difference between a country’s actual income and the
income predicted by its capabilities at time ¢. A positive residual indicates that the country’s
GDP per capita is higher than what its capabilities would predict, suggesting that it may be
overperforming relative to its structural foundations. In such cases, we expect slower growth
going forward, as the country may regress toward the income level implied by its underlying
capabilities. Conversely, a negative residual indicates that the country is underperforming,
its productive, institutional, or human capital capabilities would support a higher level
of income. These countries are expected to grow faster, converging upward toward the
level of income compatible with their capabilities. This interpretation provides a structural
foundation for economic convergence dynamics, centered on latent development potential
rather than on income gaps alone.

We define the three foundational capability vectors, each with its own first-stage
specification, as detailed below:

+ Productive capabilities: The productive vector combines complexity measures from
merchandise international trade and input-output data. It includes Trade ECI (sourced
from the Observatory of Economic Complexity?), our IO ECI, and their interaction
term. The specification is:

X' = |Trade ECI.,, 10 ECI, Trade ECI.; x IO ECL| (4.10)

- Institutional capabilities: The institutional vector includes all six dimensions of
the World Bank Worldwide Governance Indicators (WGI) (Kaufmann; Kraay, 2024):
Control of Corruption (CC), Government Effectiveness (GE), Political Stability and
Absence of Violence (PV), Rule of Law (RL), Regulatory Quality (RQ), and Voice and
Accountability (VA).

XS = [CCey, GEcy, PVey, RLey, RQ. ., VA ] (4.11)

« Human capital capabilities: The human capital vector consists of a single variable:
the Human Capital Index from the Penn World Table (Feenstra; Inklaar; Timmer,
2015). This index is based on the average years of schooling and an assumed rate of

return to education. The specification is:

2 http://oec.world/en/
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X5F = [HCL,] (4.12)

To assess how deviations from capability-implied income levels translate into sub-
sequent economic performance, we implement a second-stage panel regression in which
five- and ten-year growth rates are explained by the residuals obtained from the first-stage
regressions. These residuals, computed at the initial year ¢, capture the portion of each
capability not reflected in income at baseline and serve as capability-adjusted predictors of
convergence. All second-stage models are estimated using two-way fixed effects (country
and base-year) with WCU-S (Wild Cluster Unrestricted — Score) bootstrap, clustered at the
country level to ensure robust inference under potential heteroskedasticity, within-country
serial correlation, and a limited number of clusters.

To ensure that the residuals truly reflect deviations from capability-implied income
at the baseline, rather than capturing later structural shifts, we include the variation over
the five- or ten-year period in selected components of the capability vectors. We control for
changes in 10 ECI, Trade ECI, and two key institutional dimensions: Political Stability and
Absence of Violence (PV), and Regulatory Quality (RQ). This approach is critical to avoid
omitted variable bias that could arise if countries undergo significant reforms during the
growth window—transformations that are not captured by initial capability levels but may
substantially influence economic performance. By separating the cross-sectional component
(residuals) from the intertemporal component (changes), we can identify whether growth
stems from the structural conditions at the starting point or from improvements in those
conditions over time. Moreover, the estimated coefficients on these capability changes may
provide additional insights into the coevolution between structural transformation and
economic growth.’

We also control for natural endowments using the share of natural resource rents in
GDP, sourced from the World Bank World Development Indicators. This control is important
because commodity price cycles can significantly affect medium- and long-term growth in
resource-dependent countries, independently of their underlying capabilities.

Given the limited availability of complete data between 1999 and 2020 (or up to 2019
when the Human Capital Index is included), we designed our panel strategy to balance the
desire for long-term growth analysis with the need for a sufficient number of time observa-
tions to estimate two-way fixed effects models. Ideally, we would analyze non-overlapping
ten-year growth periods to capture long-run dynamics. However, this would drastically
reduce the number of time points available, limiting within-country variation. To address

3 We do not include the change in human capital directly, as the Human Capital Index from the Penn

World Table is only available through 2019. Including this variable would substantially reduce the degrees
of freedom in several panel blocks, as it would eliminate the final observation in each panel sequence.
Furthermore, when tested in alternative specifications, the change in human capital did not exhibit statistical
significance.
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this constraint, we construct two distinct sets of panels, each with ¢t = 4 periods, which allows
us to estimate models with both country and time fixed effects while preserving variation
in the explanatory variables. This overlapping structure, while relatively uncommon, has
precedent in empirical macroeconomic research, including studies such as Panizza and
Presbitero (2014), Bekaert, Harvey, and Lundblad (2005), and Tornell, Westermann, and
Martinez (2004), which adopt overlapping windows to study long-term effects under data
limitations.

The first panel set focuses on ten-year growth windows with overlapping periods. We
construct three separate regressions with different initial base years — 1999, 2000, and 2001
— each forming a moving panel with a three-year step (e.g., 1999, 2002, 2005, 2008). This
setup allows us to test convergence over a long horizon while maintaining ¢ = 4, although it
introduces substantial overlap across observations (e.g., 1999 and 2002 share seven years of
economic growth in common). As a complementary robustness check, we build a second
panel set using five-year growth windows without overlap. These non-overlapping panels
begin in 1999 and 2000, progressing every five years (e.g., 1999, 2004, 2009, 2014). While this
design sacrifices the long-term perspective of the ten-year models, it eliminates intertemporal
dependence between observations and offers an alternative structure to assess the consistency
of our results. Each panel is balanced across time, including the same set of countries within
each specification. While the country sample may vary slightly across panel blocks—ranging
from 63 to 65 countries—each panel maintains internal consistency over the four time
periods considered.

To ensure reliable inference given the relatively small number of clusters in our panels,
we employ the WCU-S (Wild Cluster Unrestricted — Score) bootstrap (MacKinnon; Nielsen;
Webb, 2023), clustering at the country level. This method addresses heteroskedasticity,
within-cluster correlation, and violations of cross-cluster independence that are common in
fixed effects panel regressions. When the number of clusters is small, conventional CRV1-
based inference often understates uncertainty, leading to over-rejection of null hypotheses
(Type I error inflation). The WCU-S bootstrap mitigates this issue by applying wild bootstrap
weights to jackknife-modified score contributions while retaining the CRV1 variance estima-
tor. This approach yields finite-sample-robust p-values and is particularly effective in panels
with overlapping observations, where time dependence can exacerbate the limitations of
standard methods. The jackknife transformation helps accommodate complex dependence
structures, enabling more reliable inference than conventional cluster-robust techniques.*

The second-stage regression is specified as follows:

4 We did not use WCU-B because, although it pairs jackknife scores with CRV3, it often suffers from matrix
inversion issues in unbalanced panel designs. In contrast, WCU-S avoids these numerical instabilities while
still delivering finite-sample-robust p-values.
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Growth ;p =y + 51659 + 52€£IST + 53€gtc +61A10 EClL; ¢ t4n

+0,ATrade EClc g i + 03APV et pyn + 04ARQ, ;4 (4.13)
+A1og NRR(; + pte + 71 + Uc

where:

» Growth,; s+p is the annualized growth rate of GDP per capita between year ¢t and ¢ + h,

with h = 5 or 10;

ECI LINST
ct 2ot

regressions of economic complexity, institutional capacity and human capital, respec-

e e, €, and eCHtC are the capability-adjusted income residuals from the first-stage
tively;

» AIO ECl¢ 4+n, ATrade ECI¢ ¢ 1+n, APV 14n, and ARQ,, ;,p, are the changes in the cor-
responding capability measures over the growth period;

» logNRR,; denotes the natural logarithm of the share of natural resource rents in GDP;

« uc and 7; denote country and base-year fixed effects;

» U, is the error term.

In sum, this methodological approach allows us to examine how different types of
structural capabilities contribute to long-term economic growth. We define three foun-
dational capability vectors: productive, institutional, and human capital. The productive
vector combines a newly proposed Input-Output Economic Complexity Index (I0 ECI)
with a traditional trade-based measure, capturing complementary dimensions of economic
sophistication. By separating the role of initial conditions from the effects of change over
time, the two-stage framework provides a structured way to evaluate how each vector shapes
the path of economic convergence.

In the next section, we present the empirical results. We begin by examining key
properties and cross-country patterns of the I0 ECI, highlighting how it complements
traditional trade-based measures. We then assess how the three vectors of capabilities shape
future economic growth through the lens of the two-stage structural framework.

4.4 Input-Output Economic Complexity

Development is not a random walk. Countries do not stumble into prosperity by
accident, nor do they diversify into new activities by rolling dice. Productive structures evolve
along discernible paths, constrained by history, capabilities, and the tacit logic embedded in
economic networks. Yet, to unpack these constraints, we must first look beneath the surface
of GDP and trade flows, and examine the architecture of what countries actually do.

Figure 4.3 presents the country-economic activity matrix M., for the year 2010. This
binary matrix indicates whether a given country displays revealed comparative advantage
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(RCA > 1) in a particular economic activity, based on input-output data. To explore its
structure, we apply spectral co-clustering (k = 6), which is a method that identifies latent
structural patterns in a bipartite graph by exploiting the duality between row and column
entities (Dhillon, 2001); in our case, countries and economic activities. Rather than assigning
each row and column to independent clusters, spectral co-clustering models the data as a
bipartite graph and uses the second left and right singular vectors of a normalized matrix
to simultaneously uncover patterns of co-association. This approach corresponds to a real-
valued relaxation of the NP-complete minimum cut problem in bipartite graphs and tends to
yield globally meaningful partitions. Unlike traditional clustering, it captures the recursive
structure whereby groups of countries are defined by the activities they specialize in, and

vice versa.
Figure 4.3 — Country-Economic Activity Matrix - 2010
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Figure 4.3 presents the country-economic activity binary matrix for 2010. A shows the spectral
coclustering of countries and economic activities. The matrix is reordered into 6 clusters for each
dimension, with average density values shown in each country-activity block. The most common
sectors associated with each activity cluster are listed below. B depicts illustrative examples of country
cluster densities across product clusters for six representative economies. C displays the reordered
binary matrix used to compute nestedness; the NODF value is reported in the bottom right.

The result is a structured checkerboard of six country clusters and six activity clusters,
which we order by the average complexity of their components (measured by 10 ECI for
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countries and IO ACI for activities). Each block displays its concurrent density, i.e the
share of activities within a given cluster for which countries in a given group hold revealed
comparative advantage. Stronger-than-average density associations (above 0.5 standard
deviations) are highlighted with thicker borders, suggesting areas of productive coherence.

The first activity cluster, in blue, captures low-complexity domains — primary sectors
and low value-added manufacturing. Clusters two, three, and four (orange hues) span more
sophisticated manufacturing and infrastructure-related activities: cluster two concentrates
electronics and chemicals; cluster four focuses on vehicles and machinery; cluster three
connects construction with broader infrastructure services. Clusters five and six, in dark and
light green, represent service activities. The fifth emphasizes professional, administrative,
and public services; the sixth is composed of high knowledge-intensity activities, digital
services and finance.

Country clusters display striking heterogeneity. At the base sits a broad group of de-
veloping economies, with dense engagement in primary sectors but limited presence in
manufacturing or services, being the the cluster with the lowest average ECI. Above it, we
encounter a classic “factory economy” configuration, composed primarily of East Asian
countries such as China, South Korea, and Japan. These nations exhibit high density in
core industrial activities, particularly clusters two and four, yet remain anchored in primary
sectors and show limited diversification into services.

Climbing further, we reach a hybrid cluster of Southern European and Baltic countries
(e.g., Portugal, Estonia), and emerging economies like Brazil and Turkey. Compared to
the former country cluster, these countries show declining reliance on raw materials and
growing participation in construction, logistics, and administrative services. Although their
manufacturing footprint is narrower, they engage moderately in high-value manufacturing
segments, especially those linked to vehicles and machinery.

The next cluster reveals two intertwined paths to complexity. On one side, Western
European and Nordic economies like Denmark and France rely on advanced manufacturing,
professional services, and a dense web of knowledge-based service activities. On the other,
resource-rich countries like Norway and Australia, though specialized in primary exports,
show unexpectedly high engagement in advanced service sectors. These economies remind
us that complexity does not always require industrialization in the classical sense: it can
emerge from unusual pairings of natural resource wealth and high-end services activities.

Above them lies a tightly integrated block of highly industrialized Central European
economies, centered around Germany. This group exhibits consistently high densities across
all manufacturing clusters, especially in machinery and vehicles, reflecting deep industrial
specialization. These countries pair technical sophistication with strong administrative
service capacity, yet they display a modest presence in the domain of high-end, knowledge-
intensive services.
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Finally, we find a small group of advanced economies that seem to have left the factory
behind, not by abandoning production, but by moving the frontier of value creation else-
where, to knowledge-intensive services. Their goods are still made, but the real value-added
work happens in code, contracts, coordination, and ideas. In these economies, complex-
ity no longer sits on the factory floor; it lives in design studios, research labs, regulatory
frameworks, and global service architectures.

Taken together, this 6-by-6 structure illustrates that there is no single path to economic
development. Some countries climb through manufacturing; others through services. But
the most successful appear to combine both. The real question is how and whether countries
stuck in industrial specialization or natural resource dependence can make the leap toward
enhanced input-output complexity. For East Asian factory economies, the challenge is to shift
from manufacturing dominance to service diversification. For resource-rich countries, the
existence of complexity in the almost absence of manufacturing is rare, but not impossible.
The structure of the M., suggests that such transitions, while difficult, may be within reach
for those who know where to look.

To understand what makes a country complex in the input-output, intersectoral linkage
sense, one must look at the structure of the activities in which it holds a revealed compar-
ative advantage. The 10-based Economic Complexity Index (IO ECI) of a country is, by
construction, an average of the complexity of its activities—measured through the 10-based
Activity Complexity Index (IO ACI). In this sense, a country’s productive complexity reflects
the complexity of the activities in which it engages. Figure 4.4 provides a first look into this
mirror by ranking economic sectors according to the average complexity of the activities
in which they are involved—either as input providers (supply side) or as input users (de-
mand side). In doing so, it reveals which sectors tend to be embedded in high-complexity
interactions, offering a structural perspective on how complexity concentrates across the
economy’s productive architecture.

By separating the supply and demand perspectives, Figure 4.4 exposes a duality in
how sectors relate to complexity. Some sectors exhibit high complexity as input demanders,
orchestrating diverse and sophisticated sourcing networks, while others are more complex as
input providers, supporting high-value production in other sectors. These asymmetries are
not merely descriptive. They evoke Albert Hirschman’s classic notions of backwardness and
forwardedness (Hirschman, 1958; Hirschman, 1977), in which the developmental potential
of a sector depends on its structural position within the web of intersectoral linkages. Inspired
by this intuition, we introduce the notion of forward- and backward-complexity: the idea that
the complexity associated with a sector depends on whether it absorbs sophistication from
upstream inputs or transmits it downstream through the production of enabling outputs.
In this view, complexity is not just a property of sectors in isolation, but a function of their
relational embeddedness: whether they anchor upstream capabilities or channel downstream
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Figure 4.4 — Average Complexity of Input-Output Activities by Industry - 2010
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Sector Descriptions
A01_02: Agriculture, hunting, forestry e  D: Electricity, gas, steam and air conditioning supply
AO03: Fishing and aquaculture E: Water supply; sewerage, waste management and remediation activities
B05_06: Mining and quarrying, energy producing products F: Construction
B07_08: Mining and quarrying, non-energy producing products G: Wholesale and retail trade; repair of motor vehicles
B09: Mining support service activities H49: Land transport and transport via pipelines
C10T12: Food products, beverages and tobacco H50: Water transport
C13T15: Textiles, textile products, leather and footwear H51: Air transport
C16: Wood and products of wood and cork H52: Warehousing and support activities for transportation
C17_18: Paper products and printing H53: Postal and courier activities
C19: Coke and refined petroleum products I: Accommodation and food service activities
C20: Chemical and chemical products J58T60: Publishing, audiovisual and broadcasting activities
C21: Pharmaceuticals, medicinal chemical and botanical products J61: Telecommunications
C22: Rubber and plastics products J62_63: IT and other information services
C23: Other non-metallic mineral products K: Financial and insurance activities
C24: Basic metals L: Real estate activities
C25: Fabricated metal products M: Professional, scientific and technical activities
C26: Computer, electronic and optical equipment : Administrative and support services
C27: Electrical equipment : Public administration and defence; compulsory social security
C28: Machinery and equipment, nec : Education
C29: Motor vehicles, trailers and semi-trailers : Human health and social work activities
C30: Other transport equipment : Arts, entertainment and recreation
C31T33: Manufacturing nec; repair and installation of machinery and equipment : Other service activities

voz

v oo

Figure 4.4 presents the average ACI for each sector when acting as an input demander (vertical
axis) versus an input supplier (horizontal axis), based on input-output linkages in 2010. Each point
represents a sector, labeled by its code, with a full description provided below the plot.
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capabilities across the economy.

The structural patterns in Figure 4.4 reveal a clear hierarchy of sectoral complexity.
At the bottom end of the spectrum, we find primary sectors and related services, which
tend to exhibit the lowest average complexity, given their limited interdependence with
other high-complexity activities. Interestingly, the agriculture sector (A01_02) displays
greater complexity when acting as a demander of inputs rather than as a supplier. Among
manufacturing industries, those most closely tied to primary activities, such as food products
(C10T12), petroleum products (C19), non-metallic mineral products (C23), and basic metals
(C24), also rank low in both demand- and supply-side complexity. Additionally, Textiles

(C13T15) stands out as the least complex manufacturing sector by a wide margin.

On the opposite end, knowledge-intensive service sectors such as publishing and
audiovisual (J58T60) and information technology (J62_63) top the complexity ranking.
These sectors show slightly higher complexity on the supply side, indicating their role in
feeding capabilities into other high-value-added segments of the economy, possibly linked
to advanced manufacturing. Just behind them, we observe other high-end services, such
as professional, scientific, and technical activities (M), reinforcing the importance of such
capabilities in modern productive structures. The financial sector (K) illustrates a distinct
asymmetry in its complexity profile. As a demander of inputs, it exhibits higher backward-
oriented complexity, relying heavily on sophisticated services such as information technology,
legal expertise, and professional consulting to deliver financial solutions. In contrast, its role
as an input supplier reflects its more traditional function, which is providing capital to other
sectors. While essential to the functioning of the broader economy, this upstream role appears
less embedded in complex intersectoral structures, reflecting lower forward-complexity in

its role as an input provider.

A distinct cluster of sectors positioned in the upper-right quadrant of Figure 4.4 com-
prises services typically provided publicly or associated with strong externalities, such as
public administration and defense (0O), education (P), and human health and social work
activities (Q). These sectors exhibit positive average complexity both as input suppliers and
as demanders, indicating their embeddedness in diverse and interdependent value chains.
While not traditionally viewed as drivers of productive upgrading, these services play an
essential supporting role for high-value manufacturing and knowledge-intensive activities.
At the same time, their prominence in mature economies may also reflect the structural shift
described by Baumol (1967), in which sectors with lower productivity growth gain relative
importance as economies develop. A similar dynamic may apply to administrative services
(N) and other service activities (S), which also appear in the first quadrant. These sectors
may not lead complexity, but they help sustain it, suggesting a nuanced interplay between
support functions, systemic externalities, and the evolving fabric of economic sophistication.

In general, manufacturing sectors occupy the middle of the complexity spectrum. Yet
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this middle is far from uniform. Among them, the motor vehicles industry (C28) stands
out as the most complex in both its input and output roles. Other manufacturing sectors
show marked asymmetries. The pharmaceutical industry (C21), for instance, exhibits high
average complexity as a supplier of inputs, but relatively lower complexity in its demand
structure. A similar pattern emerges for electronics (C26) and other transport equipment
(C30), where complexity is concentrated on the supply side. Perhaps the most pronounced
case of sectoral imbalance appears in the construction sector (F), which displays a forward-
oriented complexity profile: its average complexity as a supplier is close to 1, while its
complexity as a demander hovers near -1. This makes construction a candidate for high
forward-complexity: it contributes to sophisticated production processes while depending

on a relatively uncomplex input base.

Several manufacturing industries occupy the middle range of the complexity spectrum.
Sectors such as chemicals (C20), plastics (C22), wood products (C16), electrical equipment
(C27), paper and printing (C17_18), and furniture and other manufacturing (C31T33) ex-
emplify this intermediate zone. Rather than acting as complexity attractors, these industries
function as connective tissue in the productive structure, bridging upstream and down-
stream flows with moderate, yet indispensable, complexity. A similar role is played by
infrastructure-oriented services such as air transport (H51), water transport (H50), electric-
ity and gas supply (D), and wholesale and retail trade (G). These sectors serve as functional
enablers of the economy, facilitating the circulation of goods, energy, and information. While
not highly complex in themselves, their importance lies in enabling complex activities else-
where, anchoring the invisible logistics and infrastructure backbone that holds the economic
system together. In a system of interdependence, these sectors may not stand at the peak of
complexity, but they make the productive core possible.

This perspective challenges a common inference drawn from trade-based complexity
data, where manufacturing sectors often appear as the pinnacle of productive sophistication.
When we shift the lens to input-output structures, however, a different picture emerges.
Here, manufacturing is no longer the final destination of economic upgrading. It becomes a
conduit. Its value lies less in what it produces in isolation and more in how it integrates,
connects, and enables other sectors to accumulate and recombine knowledge. In this view,
complexity is not embedded in manufacturing per se, but in the web of interdependencies it
supports. Rather than being the end goal, industry becomes a means, an essential scaffold
in the architecture of input-output economic complexity.

To better understand the differences between IO ECI and Trade ECI, as well as how
these measures jointly capture the sophistication of a country’s productive structure and its
relationship with income levels, we present Figure 4.5.

Panels A and B reveal how different notions of economic complexity relate to income.
Both IO ECI and Trade ECI are strongly associated with the log of GDP per capita, with
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Figure 4.5 — 10 ECI, Trade ECI and GDP per capita - 2010
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Figure 4.5 explores the relationship between economic complexity and income per capita in 2010.
The A and B panels relate log GDP per capita (PPP, constant 2021 international dollars) to I0 ECI
and Trade ECI, respectively. C shows the relation between the two complexity measures. D compares
observed and fitted values from an OLS model including IO ECI, Trade ECI, and their interaction,
with robust standard errors (HC3). In all panels, dashed lines represent fitted values. Country codes
are shown in the first three panels for observations with standardized residuals > 1.
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correlations of 0.85 and 0.81. But what matters is not just the strength of the correlation
— it’s the shape of the deviation. Some countries fall neatly along the fitted line, as if their
income levels were simply a function of their productive sophistication. Others resist this
expectation.

China and Japan are two such cases. When measured by Trade ECI, they appear richer
in productive knowledge than in income, with their merchandise export baskets suggesting a
level of prosperity not yet reflected in GDP. But 10 ECI tells a different story. Once productive
knowledge embedded in the intersectoral linkages of production are accounted for, both
countries align more closely with their income, suggesting that value-added complexity, not
just merchandise export sophistication, matters for economic development. New Zealand
offers another perspective. Its Trade ECI places it well below the fitted line, reflecting a
narrow and low-complexity export profile. Yet its IO ECI pulls it back toward the expected
path. This adjustment reflects the country’s input-output productive capabilities, particularly
in high value-added services, that are hidden from merchandise trade data alone.

These contrasting patterns strengthen the case for a multidimensional view of economic
complexity. Trade ECI and 10 ECI do not always tell the same story, but that is precisely
what makes their combination so valuable. In some cases, the two measures balance each
other out. In others, they reinforce one another, amplifying the distance between productive
structure and observed income. Saudi Arabia is a case in point: both metrics place it far from
the expected path, suggesting that its income is shaped by forces that lie beyond the scope
of productive complexity. This duality, which is sometimes counterbalancing, sometimes
compounding, is what gives the joint use of IO and Trade ECI its analytical power.

Panel C places the two complexity measures side by side. Countries that lie signif-
icantly above the fitted line export goods that are more complex than their input-output
structures would suggest. These cases represent the most pronounced expressions of the
factory economy model — nations deeply integrated into global value chains, yet with do-
mestic production systems that remain relatively shallow, particularly in services. Their
growth trajectories rely heavily on external demand, manufacturing specialization, and the
dynamics of international production.

Below the line, the logic is reversed. Countries such as Australia, New Zealand, and
Chile exhibit domestic production networks that are more complex than their export baskets
imply. These economies tend to combine natural resource wealth with high value-added
service sectors that are largely invisible to trade-based metrics. Costa Rica also falls into this
category, though not because of natural endowments. Its position reflects a strategic choice
to pursue development through the expansion of knowledge-intensive services.

What these patterns reveal is that no single measure of complexity can fully account for
the structural nuances behind economic development. All complexity metrics are shaped by
the data they draw from, and thus inherit their blind spots. Trade-based measures emphasize



106

the physical goods that a country sells to the world, but overlook value-added aspects and
economic processes that remain within its borders. Input-output measures capture the
architecture of production, including services and domestic linkages, but miss aspects of
external competitiveness encoded in trade. The divergence between these two perspectives

is not a flaw, but a feature. It highlights the need for a multidimensional approach.

Panel D brings these two perspectives together. By combining 10 ECI, Trade ECI,
and their interaction in a single model, we are able to explain income levels with higher
precision. Countries that deviate under one dimension are often realigned when the other
is considered, and the interaction term captures complementarities that neither measure
can reveal on its own. In this view, development is not the result of a single dimension of
productive complexity, but of how different economic layers work in tandem. It is in the
tension between 10 ECI and Trade ECI that the deeper logic of their economic potential
becomes visible. Crucially, the residuals that emerge from this multidimensional complexity
model serve as structural signals. These residuals indicate whether a country income is
ahead or behind its productive structure and form the basis for predicting the direction and
intensity of future economic growth.

In the next section, we operationalize these residuals within a two-stage empirical
framework. By using them as inputs in growth regressions, we assess whether countries with
income levels above or below what their productive complexity would predict tend to grow
faster or slower over time. We extend this approach to test structural misalignments not only
in terms of complexity, but also with respect to institutional quality and human capital. This
allows us to evaluate whether gaps between income and foundational underlying capabilities
contain predictive power for long-term development trajectories.

4.5 Two-Stage Structural Growth Framework

This section introduces the empirical framework through which we test whether multi-
dimensional complexity, captured by the combination of Trade ECI and IO ECI, contributes
to sustained economic growth. The central question is whether countries whose current
income falls short of what their economic complexity would predict tend to grow faster over
time, as they converge toward the income levels implied by their productive capabilities. To
answer this, we place economic complexity on equal footing with two other foundational
capabilities widely acknowledged in the development literature: human capital and insti-
tutional quality. Rather than treating these factors merely as controls, we conceptualize
all three — complexity, institutions, and human capital — as structural conditions that
shape a country’s growth potential. The framework is designed to assess how each of these

dimensions helps explain long-run growth trajectories.

The empirical strategy begins with a first-stage estimation designed to quantify the



107

structural alignment between foundational capabilities and income. For each of the three vec-
tors—multidimensional economic complexity, institutional quality, and human capital—we
estimate cross-sectional regressions of log GDP per capita on the respective indicators, us-
ing data for a given base year. The residuals from these regressions capture the degree of
misalignment between a country’s level of income and what would be expected given its
capabilities. A positive residual suggests that income exceeds the level predicted by a partic-
ular structural dimension, while a negative residual indicates that the country’s productive,
institutional, or human capital base could support a higher level of income. These residuals
are interpreted as structural signals, and serve as the core inputs for the second stage. In that
stage, we test whether such misalignments systematically predict future economic growth,
assessing the extent to which countries converge toward the income levels implied by their
underlying capabilities.

To implement the second stage, we rely on two distinct panel structures that allow
us to estimate two-way fixed effects models while preserving temporal and cross-sectional
variation. The first set of panels follows ten-year growth periods starting every three years
— for example, 1999-2009, 2002-2012, 2005-2015, and 2008-2018. This overlapping design
captures long-run growth dynamics while maintaining a reasonable number of periods to
estimate two-way fixed effects. As a robustness check, we also estimate models based on five-
year, non-overlapping windows, such as 1999-2004, 2004-2009, 2009-2014, and 2014-2019,

which avoid intertemporal dependence at the cost of a shorter growth horizon.

In what follows, we focus on the overlapping design using the panel that begins in
2000. Accordingly, the first-stage regressions presented in Table 4.1 correspond to the base
years 2000, 2003, 2006, and 2009, which define the temporal anchors for the second-stage
estimation. For each year, we regress log GDP per capita on one vector of foundational
capabilities at a time — multidimensional economic complexity, institutional quality, and
human capital — allowing us to assess how strongly each dimension explains cross-sectional
variation in income. The estimated coefficients capture the average structural relationship
between capabilities and income at each point in time, while the residuals from these
regressions form the basis for the misalignment measures used in the second stage.

The results in Table 1 reveal that all three vectors of foundational capabilities are
significantly associated with income per capita, though with varying strength across base
years. Within the economic complexity vector, both Trade ECI and 10 ECI display positive
and statistically significant coefficients in most years. This suggests that each dimension
of complexity captures a distinct and relevant channel through which productive structure
shapes development. The interaction term between the two indices is also consistently
significant and negative, implying diminishing marginal returns. For human capital, the
coefficient on log HCI is positive, stable, and highly significant across all years, reinforcing
its well-documented role in explaining income variation. Among the institutional indicators,



108

Table 4.1 - First-Stage Regressions - Foundational Capabilities and Income per Capita

Dependent variable: GDP per capita (PPP)
Vector Variable 2000 2003 2006 2009
0.559***  0.449*** 0.263 0.258*
(0.000) (0.000) (0.191) (0.053)
0.416** 0.543*** 0.631*** (0.683***

Trade ECI

Input-Output ECI

E (0.014) (0.000) (0.002) (0.000)

Interaction Term -0.166** -0.217*** -0.177*** -0.217***

(0.015) (0.000) (0.005) (0.000)

Adj. R® 0.739 0.76 0.703 0.738

Control of Corruption (CC) 0.020 0.007 0-134 0200

(0.943) (0.979) (0.448) (0.426)

Government Effectiveness 0.417 0.129 0.286 0.262

_ (GE) (0.242) (0.714) (0.478) (0.418)

g Political Stability and 0.267* 0.142 0.250** 0.213**

_'r‘u Absence of Violence (PV) (0.089) (0.219) (0.019) (0.032)

S -0.219 0.026 -0.322 0.031
E= Rule of Law (RL)

2 (0.580) (0.954) (0.542) (0.938)

g 0.409* 0.631 0.535* 0.645

Regulatory Quality (RQ)| 0 hge)  (0.114)  (0.076)  (0.112)

Voice and Accountability 0.090 -0.022 0.038 -0.031
(VA) (0.758) (0.921) (0.881) (0.889)

Adj.R? 0.732 0.763 0.756 0.759

2.971*** 3.104*** 3.225*** 3.250***
(0.000) (0.000) (0.000) (0.000)
Adj. R? 0.616 0.646 0.672 0.708

log Human Capital Index

Human
Capital

Table 1 reports the results of cross-sectional OLS regressions for four base years, in which log GDP
per capita is regressed separately on each foundational capability vector: multidimensional economic
complexity, human capital, and institutional quality. Each coefficient is reported alongside its HC3
p-value in parentheses. Asterisks denote statistical significance: p*** < 0.01, p** < 0.05, and p* <
0.10. Adjusted R2 values are shown at the bottom of each block. The sample includes 63 countries
observed consistently across all four years, forming a balanced panel for the second-stage growth
analysis.

regulatory quality and rule of law emerge as the most consistent predictors, while other
dimensions such as voice and accountability or political stability show more erratic results.

Adjusted R? values remain relatively stable over time within each vector, always ex-
ceeding 0.6, which confirms the strong structural alignment between capabilities and in-
come. However, these correlations are far from perfect and substantial variation remains
unexplained. It is precisely this residual variation, interpreted as a measure of structural
misalignment, that we carry forward to the second-stage analysis in order to test whether
such gaps predict future economic growth.

Having established the rationale for structural residuals through first-stage regressions,
we now turn to the second stage to examine whether these misalignments predict future
economic growth. Table 4.2 presents the set of models estimated using two-way fixed-effects
OLS panel regressions, where the dependent variable is the ten-year annualized growth rate
of GDP per capita (PPP). Regressions are conducted on a balanced panel of 63 countries,
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using four partially overlapping base years: 2000, 2003, 2006, and 2009. Standard errors are
clustered by country, and p-values (reported in parentheses) are computed using the WCU-31
wild cluster bootstrap. This framework allows us to test whether countries systematically
converge toward the income levels implied by their productive, institutional, and human

capital structural foundations.

Table 4.2 - Second-Stage Regressions: Foundational Capabilities and GDP Growth

Dependent variable: 10-year annualized GDP per capita growth (PPP)

1 2 3 4 5 6 7 8 9
log NRR -0.025 -0.061 -0.039 -0.042 -0.089 -0.095 -0.180 -0.233 -0.186
(0.877) (0.746) (0.496) (0.863) (0.639) (0.559) (0.468) (0.473) (0.461)
wo| -2-203%** -1.305%%  -4.189%**  3.174%** D J00*** -2 632*** . 577HR**
€ (0.005) (0.038) (0.000) (0.000) (0.000) (0.000) (0.000)
e -4.744%%* -4.083%** S2.964%F* D AQI*K* D GTGH*E D AAGH**
€ (0.000) (0.000) (0.004) (0.005) (0.003) (0.007)
ST -0.808 -0.373 -0.303 -1.831%** .1.894%** .1 844%**
€ (0.131) (0.406) (0.446) (0.000) (0.001) (0.001)
ATrade ECly, 15.426* 11.612 8.693 8.296 8.289
: (0.071) (0.192) (0.146) (0.156) (0.170)
18.641%** 15.735%** 13.972%%% 13 641%** 14.791%**
A1O EClyg,

: (0.000) (0.000) (0.000) (0.000) (0.000)
AWGI PV, 4.490%**  4.506%**  4.618%**
: (0.006) (0.005) (0.004)
13.097*** 12.553%** 13 625%**
AWGIRQuo, (0.002) (0.006) (0.002)

42.686

Alog HClyo, (0.136)
Interaction -62.309
(A Trade ECI, A 1O ECI) (0.282)
Adj. R 0.790 0.818 0.768 0.826 0.840 0.856 0.883 0.886 0.883
R” within 0.109 0.229 0.013 0.267 0.326 0.403 0.521 0.533 0.524

Table 4.2 presents all models tested using two-way fixed-effects OLS panel regressions, where the
dependent variable is the ten-year annualized growth rate of GDP per capita (PPP). Regressions are
estimated on a balanced panel of 63 countries using four partially overlapping base years: 2000, 2003,
2006, and 2009. P-values, in parentheses, are computed using the WCU-31 wild cluster bootstrap.
Significance levels: p*** < 0.01, p** < 0.05, p* < 0.10.

The second-stage results begin with a straightforward test of the predictive power of
each structural residual in isolation. Models 1 through 3 include one residual at a time
— economic complexity, human capital, and institutions — together with a control for
the share of natural rents in GDP. All coefficients are negative, but only the residuals for
economic complexity and human capital are statistically significant at the 1% level. When
all three misalignments are included simultaneously in Model 4, the pattern persists: only
complexity and human capital residuals remain significant, and all three coefficients retain
their expected negative signs. This is fully consistent with the theoretical logic underpinning
the framework. A positive residual indicates that a country’s income is higher than what its
capabilities would suggest; in such cases, we expect slower subsequent growth. Conversely,
a negative residual signals latent potential—a structural foundation that exceeds current
income—and is therefore associated with faster convergence.
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Models 5 and 6 extend this logic by adding the ten-year variation in complexity measures
Trade ECI and IO ECI. These dynamics are critical to include, as residuals may correlate with
the evolution of structural conditions over time. Controlling for these changes helps isolate
the predictive role of the misalignment itself. It also offers a glimpse into the co-evolutionary
process linking capabilities and income growth. In both models, the variation terms enter
with positive coefficients, but only I0 ECI variation remains significant once human capital
and institutional residuals are included (Model 6). The pattern of significance among the
residuals remains consistent with Model 4, reaffirming the salience of complexity and human

capital in shaping long-run trajectories.

Model 7 introduces institutional dynamics by including the only two components of
the Worldwide Governance Indicators that showed statistical relevance in the first-stage
regressions: changes in regulatory quality (RQ) and voice and accountability (VA). Once
these institutional variations are accounted for, the residual capturing structural misalign-
ment in institutions becomes statistically significant for the first time—suggesting that its
previous insignificance may have stemmed from omitted dynamic effects. Both WGI change
variables are also significant and carry the expected positive signs, reinforcing the idea that
improvements in institutional quality contribute meaningfully to growth. In Model 8, we
include the ten-year change in the log of HCI. While the coefficient displays the expected
sign, it is not statistically significant. Finally, Model 9 adds an interaction term between the
changes in Trade ECI and IO ECI to test for potential non-linear complexity co-movement.
However, this term also remains statistically insignificant.

Model 7 delivers one of the most consequential findings of this study. Once institutional
dynamics are properly accounted for, all three vectors of foundational capabilities emerge
as significant predictors of long-term growth. This result offers compelling evidence that
development is not driven by any single structural dimension, but by the joint influence of
productive sophistication, human capital formation, and institutional effectiveness.

Multidimensional economic complexity captures the depth and tacit structure of knowl-
edge embedded in a country’s productive fabric — what it is capable of building, often without
being able to codify it fully. This knowledge enables specialization and differentiation, but
its value depends on how well it is mobilized. Human capital, in turn, provides the cogni-
tive foundation and general-purpose skills that enhance productivity, allowing countries to
make better use of their existing structures and to adapt more quickly to new opportunities.
Institutions shape the environment in which both productive knowledge and human capital
are deployed. By reducing transaction costs, providing stability, and aligning incentives, they
amplify the effectiveness of the other two pillars, turning capabilities into actual engines of
economic transformation.

This configuration constitutes what we call the three pillars of economic conver-

gence. While some countries may reach high levels of development despite weaknesses in
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one of these dimensions, doing so is the exception rather than the rule. For most nations,
sustained and inclusive growth becomes far more attainable when economic complexity,
human capital, and institutional quality advance together, each reinforcing and stabilizing
the others. Public policies that address these three domains in an integrated way offer not just

complementary support, but a coherent foundation for long-term economic transformation.

To assess the robustness of our second-stage findings, we replicate the full specification
of Model 7 across five alternative panel structures — three based on overlapping ten-year
windows and two using non-overlapping five-year periods. These panel designs vary both the
base years and the growth horizon, allowing us to evaluate the consistency of our findings
across different temporal configurations. This exercise ensures that our conclusions are not
an artifact of a particular panel construction, and provides a broader test of the model’s
stability.

In addition to this robustness check, we use the same five panels to test interaction
terms between each pair of structural residuals, with the goal of identifying potential comple-
mentarities between the three foundational capabilities. Since only the interaction between
the institutional and human capital residuals achieved statistical significance in at least two
of the five panels, we add this specific interaction term to Model 7 and estimate it across all
five panel designs. Results are reported in Table 4.3.

Just as macroeconomists use the concept of an output gap to capture the short-run
distance between actual and potential output, the structural residuals in our framework can
be interpreted as long-term income gaps relative to a country’s productive, institutional,
and cognitive capabilities. Rather than reflecting cyclical fluctuations, these residuals signal
whether a country is operating below the income level implied by its foundational char-
acteristics. When the residual is negative, it indicates that the country has more capability
than is reflected in its current income—a form of untapped long-run potential that may lead
to faster growth as this gap closes.

The results in Table 4.3 provide strong empirical support for this interpretation. Across
all five panel specifications — with varying base years and growth horizons — the structural
residuals for multidimensional economic complexity, human capital, and institutional qual-
ity are consistently negative and statistically significant. In other words, countries whose
income lags behind what their capabilities would predict tend to grow faster, as they close
the gap between realized and potential income. The magnitude and consistency of these
effects across all three vectors reinforce the core premise of the framework: long-term growth
is shaped not only by the level of foundational capabilities, but also by the distance that
separates a country from fully translating those capabilities into economic outcomes.

The inclusion of an interaction term between the institutional and human capital
residuals adds an additional layer of nuance. Although this term is not significant in every
specification, it reaches statistical significance in two of the five panels, always with a
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Table 4.3 — Panel Comparison - Second-Stage Results

Dependent variable: 10-year growth 5-year growth

5 | 1999,2002,  2000,2003,  2001,2004, 1999,2004, 2000, 2005,
aseyears:l  H005,2008  2006,2009  2007,2010|  2009,2014 2010, 2015
-0.149 -0.183 -0.052 -0.221 -0.057

log NRR
(0.307) (0.466) (0.678) (0.328) (0.806)
- -2.939%** -2.684*** -2.252%** -1.801%** -1.225*
& (0.001) (0.000) (0.001) (0.010) (0.089)
Hal -2.622%** -2.479%** -2.972** -2.311** -1.674*
& (0.004) (0.003) (0.014) (0.033) (0.053)
INST -1.043** -1.814%** -1.293* -2.042%* -2.133**
& (0.015) (0.001) (0.065) (0.040) (0.020)
Interaction -1.550*** -1.058 -0.441 -2.845** -1.452
(", g™ (0.010) (0.282) (0.876) (0.043) (0.220)
7.314 8.356 10.197 5.455 8.038**

ATrade EClyyq
: (0.154) (0.159) (0.162) (0.132) (0.045)
10.87*** 13.384*** 8.325* 7.233%** 7.139**

A0 EClyyo,
: (0.009) (0.000) (0.072) (0.001) (0.04)0
021 %** 4.126%* .097*** 2.748* .394%**

AWGI PV, 5.0 6 5.09 8 5.39

' (0.01) (0.012) (0.002) (0.058) (0.002)
12.654*** 13.258*** 4.793 12.180*** 8.440%**

AWGI RQy,
(0.002) (0.002) (0.299) (0.000) (0.016)
Adj. R 0.892 0.886 0.874 0.613 0.626
R” within 0.584 0.534 0.405 0.374 0.284
N (countries) 63 63 65 63 63

Table 4.3 compares the full second-stage specification across different panel constructions. Each
column reports the results of two-way fixed-effects regressions using a distinct set of base years
and growth periods. The first three columns correspond to overlapping ten-year panels starting in
1999, 2000, and 2001, respectively. The last two columns present non-overlapping five-year panels
beginning in 1999 and 2000. Significance levels: p*** < 0.01, p** < 0.05, p* < 0.10.

negative coefficient. Since the residuals are typically negative in growing countries, a negative
interaction implies that the positive effect of a gap in one domain becomes weaker when a
gap also exists in the other. This finding points to diminishing marginal returns across these
two capabilities—suggesting that having unrealized potential in both areas does not yield
additive growth benefits. Instead, the developmental gains from addressing one constraint
may be less pronounced if the other constraint remains unresolved.

Beyond the structural residuals, dynamic changes in capabilities also play an important
role. The ten-year variation in 10 ECI is statistically significant in all five panel specifi-
cations, consistently exhibiting a positive coefficient, reinforcing the idea that complexity
improvements in intersectoral productive structures support long-term growth. Although
the change in Trade ECI reaches statistical significance in only one panel, its coefficient is
positive across all models, suggesting a consistent directional effect despite limited statistical
power. Changes in institutional quality also show robust associations with growth: regulatory
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quality (RQ) and political voice (PV) are statistically significant in most panels and carry
positive coefficients throughout. Due to data limitations for the year 2020, it was not possible
to include the ten-year change in the log of the Human Capital Index (HCI) in two of the
five panel configurations. For consistency across specifications, this variable was therefore
omitted from the models reported in Table 4.3. However, as shown in Table 4.2, it was tested
using the ten-year growth panel with a base year starting in 2000. In that specification,
the coefficient on the HCI variation was positive, as expected, but failed to reach statistical

significance.

Taken together, these results suggest that foundational capabilities and economic
growth may evolve jointly over time. Even after controlling for structural misalignments —
i.e., the gaps between income and what each capability vector would predict — improvements
in economic complexity and institutional quality remain positively associated with future
income gains. This pattern implies that growth does not depend solely on catching up to
structurally expected income levels, but is also reinforced by ongoing transformations in
the underlying capabilities themselves. The evidence is consistent with a co-evolutionary
dynamic in which countries not only grow because they have untapped potential, but also
because they continue to build and strengthen that potential along the way.

The empirical findings presented above underscore the central role of foundational
capabilities—productive complexity, human capital, and institutional quality—in shaping
long-run economic growth. In the following section, we reflect on the broader implications
of these results, considering how they inform our understanding of structural convergence

and the design of development strategies.

4.6 Discussion

This study investigated how long-run economic growth is shaped by three foundational
capabilities: productive (reflected in a country’s economic complexity) institutional and
human capital. We argue that these dimensions should be treated as equally fundamental
structural pillars of development, rather than as secondary controls. To operationalize this
idea, we developed a two-stage empirical framework. In the first stage, we measured how
much each capability vector explains contemporary income levels. In the second, we tested
whether the residuals from these regressions, interpreted as long-term income gaps relative
to each capability, predict future growth. These residuals function as structural signals: when
negative, they reveal the existence of untapped potential that may drive convergence over
time.

Just as macroeconomists use the concept of an output gap to measure short-term inef-
ficiencies, our framework offers a long-term analogue: a capability-income gap. Rather than

reflecting cyclical slack, this gap captures a more persistent misalignment between what a
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country is and what it could achieve, given its structural endowments. This perspective offers
a new diagnostic lens for understanding development, not in terms of singular constraints,
but through the lens of multidimensional capacity and misalignment.

This structural interpretation is empirically supported by robust results. Countries
with negative residuals — indicating that their income lags behind what their capabilities
would suggest — tend to grow faster, consistent with a process of structural convergence.
The results of the two-stage model consistently show that each of the three vectors is a
significant predictor of long-term growth. Countries tend to converge toward the income
levels implied by their structural capabilities, and this convergence is stronger when those
capabilities are well-developed across all three dimensions. These findings reinforce the
idea that sustained economic development is supported by what we call the three pillars
of economic convergence. Efforts focused on only one domain, be it productive upgrading,
institutional reform, or education, are unlikely to succeed in isolation. Instead, development
policies must be coordinated across these three fronts, reinforcing one another in a mutually
supportive process.

In this framework, productive capabilities are expressed through the notion of multi-
dimensional economic complexity, which we capture by combining two complementary
measures: the traditional Trade ECI and the newly proposed 10 ECI. While Trade ECI reflects
the knowledge embedded in a country’s export basket, IO ECI complements it by capturing
the intersectoral sophistication of also domestic production networks, incorporating both
goods and services, and offering a value-added perspective that is increasingly relevant in
service-driven economies. One of the key findings of this study is that 10 ECI adds explana-
tory power beyond Trade ECI in accounting for current income levels, confirming its value

as a complementary dimension of productive capabilities.

This broadened understanding of productive capabilities also invites a reappraisal of
how we conceptualize the role of services in development. While much of the economic
complexity literature has focused on manufacturing and tradable goods, recent contribu-
tions suggest that certain labor-absorbing services, particularly those embedded in industrial
linkages, may offer viable pathways for productive upgrading in developing economies (Ro-
drik; Sandhu, 2024). These services, such as logistics, industrial maintenance, and technical
support, can accumulate organizational and technical capabilities over time, generating
both employment and structural transformation when effectively integrated into broader
production systems. This perspective aligns with our emphasis on intersectoral complexity
and reinforces the idea that development strategies should not be confined to high-tech
or export-oriented activities alone. Instead, they should recognize and cultivate the up-
grading potential of service sectors that combine absorptive capacity with the possibility of
incremental sophistication.

The Input-Output ECI also sheds light on the asymmetric roles that sectors play in
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complex production systems. Drawing from Hirschman’s notions of backward and forward
linkages, we introduce the concepts of backward- and forward-complexity to capture whether
a sector tends to absorb or transmit sophistication through the value chain. Some sectors,
such as construction or finance, exhibit high complexity depending on whether they function
primarily as input providers or as demanders. The most complex activities identified in this
framework are concentrated in knowledge-intensive service sectors, such as information
technology and professional business services, highlighting the growing importance of

intangible capabilities and coordination in modern productive architectures.

Beyond explaining growth, this two-stage framework has diagnostic and normative
potential. The residuals generated in the first stage provide a structured way to identify where
a country’s development potential is most latent. They allow policymakers to prioritize areas
of structural capability investment, not based on stylized policy prescriptions, but on the
actual distance between capabilities and outcomes. Moreover, while the model treats the
three pillars symmetrically, the results suggest that their relative importance may vary
across countries and over time. This opens a path to future research on the sequencing of

interventions and the dynamics of structural interplay.

Several extensions are possible. One is to refine the multidimensional economic com-
plexity vector itself, incorporating measures based on other datasets, such as patents or
scientific research. Another is to explicitly model the interactions and co-evolution of capa-
bilities: how institutional improvements enable productive upgrading, or how human capital
expansion changes the returns to complexity. Finally, applying this framework at regional
and subnational levels could help illuminate internal patterns of structural divergence and
convergence.



116

Appendix 4.1: List of Countries

Figure 4A.1 - List of Countries

Country Code |Country Country Code |Country
ARG Argentina JPN Japan

AUS Australia KAZ Kazakhstan
AUT Austria KHM Cambodia
BEL Belgium KOR Korea

BGD Bangladesh LAO Lao (People's Democratic Republic)
BGR Bulgaria LTU Lithuania
BLR Belarus LUX Luxembourg
BRA Brazil LVA Latvia

BRN Brunei Darussalam MAR Morocco
CAN Canada MEX Mexico

CHE Switzerland MLT Malta

CHL Chile MMR Myanmar
CHN China (People's Republic of) MYS Malaysia
CIv Cote d'Ivoire NGA Nigeria
CMR Cameroon NLD Netherlands
COL Colombia NOR Norway

CRI Costa Rica NZL New Zealand
CYP Cyprus PAK Pakistan
CZE Czechia PER Peru

DEU Germany PHL Philippines
DNK Denmark POL Poland

EGY Egypt PRT Portugal

ESP Spain ROU Romania
EST Estonia RUS Russian Federation
FIN Finland SAU Saudi Arabia
FRA France SEN Senegal
GBR United Kingdom SGP Singapore
GRC Greece SVK Slovakia
HKG Hong Kong, China SVN Slovenia
HRV Croatia SWE Sweden
HUN Hungary THA Thailand
IDN Indonesia TUN Tunisia

IND India TUR Tirkiye

IRL Ireland TWN Chinese Taipei
ISL Iceland UKR Ukraine

ISR Israel USA United States
ITA Italy VNM Viet Nam
JOR Jordan ZAF South Africa

Figure 4A.1 lists the countries used for the input-output economic complexity exercise.

Excluded from complexity calculations after data cleaning.
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Appendix 4.2: Supplementary Regressions

This appendix reports supplementary regressions conducted as robustness checks to
support the main findings of the paper. The results are organized into four sections, each
addressing a specific dimension of model robustness. First, we present regressions that
incorporate changes in the Human Capital Index (HCI), testing the sensitivity of results to
the inclusion of human capital dynamics. Second, we report models estimated without the
Input-Output Economic Complexity Index (IO ECI), using both restricted and expanded
country samples. Third, we provide regressions using an aggregated residual vector that
combines all capability components into a single structural gap, simplifying the interpretation
of misalignment. Finally, we include specifications that test interaction terms between the
residuals of economic complexity, human capital, and institutions, exploring potential
complementarities between these structural drivers of growth.

A. Regressions with HCI Change Included

This section presents regressions that incorporate changes in the Human Capital
Index (HCI), testing the sensitivity of results to the inclusion of human capital dynamics in
explaining growth trajectories.

The main second-stage results presented in Table 4.3 compare growth regressions
across different panel constructions. However, that specification did not include the change
in HCI as a control because two of the panels cover time spans for which HCI data are not
available — the HCI dataset (Penn World Table 10.01) extends only up to 2019. As a result,
including HCI change in those panels would significantly reduce the sample and distort
comparability across the different constructions.

To assess how the model behaves when HCI change is included, we estimate regres-
sions for the three panel configurations where complete data are available. The results
on Table 4A.1 confirm that HCI change contributes to explaining growth trajectories, and
importantly, the inclusion of this variable does not alter the significance or direction of the
coefficients associated with the structural residual vectors. This reinforces the robustness of
the main findings and highlights the complementary role of human capital dynamics in the

structural convergence process.

B. Regressions without Input-Output ECI

This section reports models estimated without the IO ECI, using both restricted and
expanded country samples. These specifications assess the added explanatory power provided

by IO ECI relative to trade-based measures alone.

Itisimportant to test the model without using the 10 ECI, both in constructing the resid-
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Table 4A.1 — Panel Comparison - Second-Stage Results with HCI Change

Dependent variable: 10-year growth 5-year growth
5 | 1999,2002,  2000,2003,( 1999, 2004,
aseyears: - 7005,2008  2006,2009| 2009, 2014
-0.210 -0.235 -0.258

log NRR
(0.188) (0.476) (0.355)
o -2.805%** -2.618%** -1.813%**
& (0.001) (0.000) (0.010)
el -2.929%** -2.657%** -2.283**
& (0.002) (0.002) (0.036)
ST -1.009%* -1.876%** -2.038**
& (0.013) (0.001) (0.044)
Interaction -1.435*** -1.024 -2.798**
(M g™ (0.009) (0.289) (0.036)
7.229 7.984 5.717

ATrade EClyyq
: (0.119) (0.161) (0.115)
11.054%** 13.083*** 7.318%%*

A 10 EClyy,
: (0.005) (0.000) (0.002)
52.842%* 41.144 17.666

AWGI PVyyp,
: (0.037) (0.125) (0.554)
5.071%%* 4.153%** 2.735*

AWGI RQyyo;
: (0.009) (0.009) (0.058)
12.035%** 12.729%** 12.199%**

AHClyp,
: (0.003) (0.005) (0.000)
Adj. R? 0.896 0.888 0.612
R? within 0.601 0.546 0.376
N (countries) 63 63 63

Table 4A.1 compares the full second-stage specification across different panel constructions, with
HCI change included. Each column reports the results of two-way fixed-effects regressions using
a distinct set of base years and growth periods. The first two columns correspond to overlapping
ten-year panels starting in 1999 and 2000, respectively. The last column present a non-overlapping
five-year panel beginning in 1999. Significance levels: p*** < 0.01, p** < 0.05, p* < 0.10.

ual vector for productive complexity and in accounting for IO ECI change in the second-stage
regressions. This is essential to evaluate whether the IO ECI indeed provides complementary
information to the model or whether it is redundant relative to existing international trade-
based complexity measures. To this end, we estimate specifications relying exclusively on
Trade ECI, thereby abandoning the multidimensional approach to productive complexity.
First, in Table 4A.2, we keep exactly the same country sample as in Table 4.3, ensuring
a precise comparison of the impact of excluding IO ECI. The results show that the model’s
within R-squared weakens, indicating a loss of explanatory power. Nevertheless, the sig-
nificance of the structural residuals remains robust overall, including the residual vector
based on Trade ECI. Interestingly, Trade ECI change becomes statistically significant in
this specification, “taking over” the role played by IO ECI change in the full model. These
results reinforce the complementary value of IO ECI in capturing dimensions of productive
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complexity beyond trade, while also confirming that the model retains reasonable predictive
power even when 10 ECI is omitted.

Table 4A.2 — Panel Comparison - Second-Stage Results withouth 10 ECI - Same Country Sample

Dependent variable: 10-year growth 5-year growth

8 | 1999,2002,  2000,2003,  2001,2004,| 1999,2004, 2000, 2005,
aseYears:  7005,2008  2006,2009  2007,2010  2009,2014 2010, 2015
-0.156 -0.185 -0.081 -0.259 -0.052

log NRR
(0.220) (0.356) (0.469) (0.231) (0.822)
- S3.11%xx -2.815%** -2.573%%* -2.275%** -1.648*
& (0.000) (0.000) (0.003) (0.004) (0.063)
. -2.585%** -2.522%** -2.975%%* -2.229%** -1.611%*
& (0.001) (0.002) (0.009) (0.010) (0.022)
ST -1.028** -1.647%** -1.077 -1.798* -1.937**
& (0.018) (0.002) (0.165) (0.068) (0.044)
Interaction -1.110%* -0.684 0.105 -2.084* -1.177
(", g™ (0.028) (0.652) (0.997) (0.085) (0.328)
19.139%** 17.319** 19.802** 10.285** 10.848**

ATrade EClyyq
' (0.000) (0.050) (0.034) (0.024) (0.034)
4.212%* 3.659* 4.387** 2.972%* 5.444%%*

AWGI PVyyq,
' (0.045) (0.067) (0.021) (0.036) (0.004)
12.548%** 12.723*** 3.136 11.541%** 8.137**

AWGI RQuo;
(0.001) (0.004) (0.471) (0.000) (0.016)
Adj. R? 0.891 0.876 0.868 0.615 0.625
R” within 0.575 0.490 0.375 0.374 0.278
N (countries) 63 63 65 63 63

Table 4A.2 reports an alternative second-stage specification estimated across different panel con-
structions. In this specification, the IO ECI variable is excluded from the productive vector residuals,
and the IO ECI change is omitted from the second-stage regressions. The set of countries is kept
constant across panels relative to the full specification. Each column reports the results of two-way
fixed-effects regressions using a distinct set of base years and growth periods. The first three columns
correspond to overlapping ten-year panels starting in 1999, 2000, and 2001, respectively. The last two
columns present non-overlapping five-year panels beginning in 1999 and 2000. Significance levels:
p*** < 0.01, p** < 0.05, p* < 0.10.

In Table 4A.3, we test the same model but without restricting the country sample to
those with available IO ECI data. This expands the set of countries to a range between 84 and
89, depending on the panel tested. The residual vector for productive complexity remains
statistically significant only for the first two panels, and although it loses significance in the
broader panels, the coefficient signs consistently remain negative, aligning with the structural
convergence mechanism proposed in the main model. Furthermore, Trade ECI change loses
its significance entirely in these broader samples. These findings suggest that the results
of the model are sensitive to the composition of the sample, reinforcing the importance of
considering structural differences across countries when applying capability-based growth
models. At the same time, the findings highlight the importance of exploring heterogeneity
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in structural convergence processes across different groups of countries, providing a potential
avenue for future research.

Table 4A.3 — Panel Comparison - Second-Stage Results withouth IO ECI - Unrestricted Country

Sample
Dependent variable: 10-year growth 5-year growth
8 | 1999,2002,  2000,2003,  2001,2004,( 1999,2004, 2000, 2005,
aseyears:t 500s,2008  2006,2009  2007,2010|  2009,2014 2010, 2015
-0.093 -0.032 0.042 -0.060 0.117
log NRR
(0.416) (0.882) (0.712) (0.793) (0.659)
el -1.592%* -1.495* -0.358 -1.514 -1.033
€ (0.010) (0.063) (0.628) (0.113) (0.265)
el -5.216%*** -4.332%** -4.890*** -2.946%* -3.085%*
& (0.001) (0.002) (0.000) (0.030) (0.012)
ST -0.831%* -1.595%** -1.044%* -2.252%** -1.556%*
& (0.021) (0.008) (0.023) (0.003) (0.033)
Interaction -0.408 -0.130 -0.090 0.000 -0.733
(", g™ (0.595) (0.881) (0.950) (1.000) (0.862)
2.606 3.207 0.980 2.669 4.693%*
ATrade EClyyg¢
' (0.573) (0.411) (0.837) (0.432) (0.011)
6.165%** 5.024** 6.061** 4.617*** 10.326***
AWGI PV,
' (0.001) (0.010) (0.013) (0.000) (0.003)
12.385%** 10.639** 5.410 13.161%** 0.030
AWGI RQuyq
' (0.004) (0.019) (0.107) (0.000) (0.981)
Adj. R’ 0.866 0.843 0.840 0.524 0.555
R” within 0.621 0.518 0.409 0.346 0.278
N (countries) 84 86 89 84 87

Table 4A.3 reports an alternative second-stage specification estimated across different panel con-
structions. In this specification, the IO ECI variable is excluded from the productive vector residuals,
and the 10 ECI change is omitted from the second-stage regressions. The set of countries is no longer
restricted by the availability of IO ECI data. Each column reports the results of two-way fixed-effects
regressions using a distinct set of base years and growth periods. The first three columns correspond
to overlapping ten-year panels starting in 1999, 2000, and 2001, respectively. The last two columns
present non-overlapping five-year panels beginning in 1999 and 2000. Significance levels: p*** <
0.01, p** < 0.05, p* < 0.10.

C. Regressions with Aggregated Structural Residual

In this section, we test an aggregated residual vector by consolidating all structural
variables — economic complexity, human capital, and institutions — into a single first-stage
regression, as reported in Table 4A.4. This approach simplifies the model by generating a
unified structural gap that captures the joint explanatory power of these key capabilities.

The first-stage regression shows a stronger fit to current GDP per capita when these
variables are combined into an aggregated vector, as reflected by the higher adjusted R-
squared in Table 4A.4 compared to Table 4.2.
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Table 4A.4 - First-Stage Regressions - Aggregate Vector

Dependent variable: GDP per capita (PPP)

Vector Variable 2000 2003 2006 2009
0.371* 0.255 0.174 0.116
(0.083) (0.156) (0.458) (0.333)
-0.100 -0.127 -0.087  -0.159*
(0.318) (0.110) (0.288) (0.052)
0.009 0.173 0.123  0.371**
(0.976) (0.434) (0.645) (0.014)
0.073 0.130 0.387* 0.384
(0.822) (0.552) (0.055) (0.178)
Government Effectiveness 0.266 0.014 -0.159 -0.344
(GE) (0.376) (0.963) (0.687) (0.295)
Political Stability and Absence 0.212* 0.120 0.118 0.061
of Violence (PV) (0.076) (0.200) (0.190) (0.412)
-0.122 0.116 -0.007 0.120
(0.719) (0.763) (0.988) (0.694)
0.223 0.155 0.142 0.150
(0.524) (0.656) (0.631) (0.632)
-0.110 -0.124 -0.129 -0.247
(0.718) (0.560) (0.608) (0.167)
0.619 0.776  1.222** 1.424***
(0.181) (0.114) (0.017) (0.008)
Adj. R® 0.828 0.844 0.829 0.858

Trade ECI

Input-Output ECI

Interaction Term

Control of Corruption (CC)

Aggregate

Rule of Law (RL)

Regulatory Quality (RQ)

Voice and Accountability (VA)

log Human Capital Index

Table 4A.4 reports the results of cross-sectional OLS regressions for four base years, in which log
GDP per capita is regressed jointly on all foundational capability vectors: multidimensional economic
complexity, human capital, and institutional quality. Each coefficient is reported alongside its HC3
p-value in parentheses. Asterisks denote statistical significance: p*** < 0.01, p** < 0.05, and p* <
0.10. Adjusted R2 values are shown at the bottom of each block. The sample includes 63 countries
observed consistently across all four years, forming a balanced panel for the second-stage growth
analysis.

In Table 4A.5, we present the second-stage results using the aggregated residual vector.
The structural residuals show negative coefficients across all panels, as expected, and are
statistically significant in every specification. However, the association between this model
and economic growth weakens considerably when compared to the baseline results in
Table 4.3. For example, in the first panel, the within R-squared decreases from 0.584 to
0.332. This may reflect overfitting in the first stage, where the aggregated residual absorbs
much of the variation in current income but fails to capture the distinct facets of a country’s
capabilities that drive long-term growth.

D. Regressions with Interaction Terms between Residual Vectors

This section includes specifications testing additional pairwise interaction terms be-
tween the residuals of economic complexity, human capital, and institutions, exploring the

complementarities among these structural drivers of long-run growth.

In Table 4A.6, we replace the interaction term between the residuals of human capital
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Table 4A.5 — Panel Comparison - Second-Stage Results with Aggregate Residuals

Dependent variable: 10-year growth 5-year growth
1999,2002,  2000,2003, 2001,2004,| 1999,2004, 2000, 2005,
Basevears:l  5005,2008  2006,2009  2007,2010|  2009,2014 2010, 2015
log NRR -0.117 -0.223 0.004 -0.104 0.025
(0.508) (0.420) (0.980) (0.685) (0.919)
. D.4B2*** -3.144%** -2.196%* -2.606** -2.945%**
& (0.003) (0.000) (0.019) (0.014) (0.007)
ATrade EClg, 3.066 3.792 6.090 3.349 5.985
: (0.585) (0.601) (0.370) (0.465) (0.143)
AIOECH, 7.726* 10.205** 3.497 6.346%** 8.036%*
' (0.097) (0.010) (0.474) (0.006) (0.038)
AWGI PV, 7.787%%* 5.355%* 7.418%** 3.026** 5.332%%*
: (0.008) (0.031) (0.003) (0.03) (0.004)
AWGI RO, 13.626%**  12.281%** 0476  11.702%** 7.413%*
: (0.003) (0.010) (0.932) (0.000) (0.014)
Adj. R? 0.830 0.833 0.829 0.543 0.603
R? within 0.332 0.306 0.182 0.248 0.227
N (countries) 63 63 65 63 63

Table 4A.5 reports an alternative second-stage specification estimated across different panel con-
structions. In this specification, the residuals are aggregated into one variable, according to fist-stage
regressions of Table A.4. Each column reports the results of two-way fixed-effects regressions using
a distinct set of base years and growth periods. The first three columns correspond to overlapping
ten-year panels starting in 1999, 2000, and 2001, respectively. The last two columns present non-
overlapping five-year panels beginning in 1999 and 2000. Significance levels: p*** < 0.01, p** < 0.05,
p* < 0.10.

and institutions with the interaction between the residuals of economic complexity and
human capital. The coefficient for this interaction does not exhibit statistical significance
in any of the panels. Meanwhile, the other variables in the model retain coefficient magni-
tudes and significance levels that are very similar to those observed in the baseline results,
indicating that the inclusion of this alternative interaction term does not materially affect

the overall model performance.

In Table 4A.7, we include the interaction term between the residuals of economic
complexity and institutions. This interaction term is statistically significant in two of the
five panels, with negative coefficients in all specifications. Overall, the inclusion of this
interaction does not lead to loss of significance or changes in the sign of the coefficients of
the other variables in the model, which remain consistent with the baseline results.

In Table 4A.8, we include all pairwise interaction terms between the residuals of
economic complexity, human capital, and institutions. The only interaction term that shows
statistical significance in any of the panels is that between human capital and institutions,
which presents a negative coefficient, consistent with the baseline results. There are no
notable changes in the significance levels or the signs of the other regressors. The only
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Table 4A.6 — Panel Comparison - Second-Stage Results with Interaction Term between ECI and HCI

Residuals
Dependent variable: 10-year growth 5-year growth
8 | 1999,2002,  2000,2003,  2001,2004,| 1999,2004, 2000, 2005,
aseyears:l  5005,2008  2006,2009  2007,2010|  2009,2014 2010, 2015
-0.137 -0.170 -0.036 -0.182 -0.056
log NRR
(0.375) (0.465) (0.790) (0.427) (0.817)
- -3.247%** -2.835%** -2.364%** -1.982** -1.186
& (0.000) (0.000) (0.000) (0.024) (0.161)
Hel -2.732%%* -2.646*** -3.112%** -2.766** -1.785*
& (0.007) (0.001) (0.006) (0.019) (0.054)
INST -1.066*** -1.822%** -1.341** -1.910* -2.148**
& (0.010) (0.001) (0.029) (0.056) (0.017)
Interaction -0.441 -0.573 -0.683 -1.359 -0.339
(5, €% (0.765) (0.679) (0.683) (0.244) (0.793)
7.483 8.977 10.875 5.669 8.017**
ATrade EClyq
: (0.116) (0.128) (0.128) (0.121) (0.045)
12.084*** 14.182%** 8.786* 7.571%%* 7.402**
A0 EClyq,
: (0.006) (0.000) (0.054) (0.001) (0.034)
5.617*** 4.328%** 5.018*** 3.007** 5.608***
AWGI PV,yq,
: (0.003) (0.009) (0.004) (0.033) (0.002)
12.646%** 13.032%** 4.750 12.099%** 8.175**
AWGI RQyo,;
: (0.002) (0.003) (0.302) (0.000) (0.02)
Adj. R? 0.886 0.884 0.874 0.593 0.619
R” within 0.559 0.525 0.407 0.341 0.271
N (countries) 63 63 65 63 63

Table 4A.6 reports an alternative second-stage specification estimated across different panel con-
structions. In this specification, the interaction term between human capital (HCI) and institutional
residuals is replaced by the interaction term between economic complexity (ECI) and HCI residuals.
Each column reports the results of two-way fixed-effects regressions using a distinct set of base years
and growth periods. The first three columns correspond to overlapping ten-year panels starting in
1999, 2000, and 2001, respectively. The last two columns present non-overlapping five-year panels
beginning in 1999 and 2000. Significance levels: p*** < 0.01, p** < 0.05, p* < 0.10.

exception is in the last panel, where the residuals for complexity and human capital lose
statistical significance.

Taken together, the results from Tables 4A.6 to 4A.8 suggest that introducing pairwise
interaction terms between the structural residuals does not substantially alter the core find-
ings of the model. The interactions generally do not exhibit consistent statistical significance
across panels, with the exception of the human capital-institution interaction, which aligns
with the baseline results when significant. Importantly, the inclusion of these interaction
terms does not affect the significance or direction of the coefficients associated with the main
residual vectors in most specifications, reinforcing the robustness of the baseline structural

convergence framework.
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Table 4A.7 — Panel Comparison - Second-Stage Results with Interaction Term between ECI and
Institutions Residuals

Dependentvariable: 10-year growth 5-year growth

5 | 1999,2002,  2000,2003,  2001,2004,[ 1999,2004, 2000, 2005,
as€Years:l  5005,2008  2006,2009  2007,2010|  2009,2014 2010, 2015
-0.145 -0.178 -0.045 -0.183 -0.053

log NRR
(0.316) (0.466) (0.720) (0.428) (0.823)
el -2.896%** -2.767%%* -2.320%** -1.793%** -1.227
& (0.002) (0.000) (0.000) (0.009) (0.114)
Hel -2.837*** -2.516%** -2.976** -2.568** -1.704*
€ (0.003) (0.002) (0.011) (0.036) (0.059)
INST -1.026** -1.829%** -1.284** -1.970* -2.210%*
& (0.018) (0.001) (0.045) (0.059) (0.011)
Interaction -1.497* -0.648 -0.532 -1.864* -0.760
(€5, ™) (0.064) (0.313) (0.541) (0.069) (0.410)
6.832 9.010 10.590 5.518 8.035**

ATrade EClyyq
' (0.154) (0.131) (0.141) (0.144) (0.045)
11.183*** 13.740%** 8.647** 7.501%** 7.425%*

A0 EClyg,
' (0.008) (0.000) (0.049) (0.001) (0.034)
. * %k 4'2 * %k 4' 7 * % % 2' 7 * % . * %k

AWGI Vg, 5.063 56 973 975 5.588

' (0.006) (0.009) (0.002) (0.033) (0.001)
12.756%** 13.315%** 5.052 12.307*** 8.336**

AWGIRQy,
' (0.001) (0.002) (0.261) (0.000) (0.016)
Adj. R? 0.892 0.884 0.874 0.597 0.620
R? within 0.581 0.526 0.405 0.349 0.273
N (countries) 63 63 65 63 63

Table 4A.7 reports an alternative second-stage specification estimated across different panel con-
structions. In this specification, the interaction term between human capital (HCI) and institutional
residuals is replaced by the interaction term between economic complexity (ECI) and institutional
residuals. Each column reports the results of two-way fixed-effects regressions using a distinct set of
base years and growth periods. The first three columns correspond to overlapping ten-year panels
starting in 1999, 2000, and 2001, respectively. The last two columns present non-overlapping five-year
panels beginning in 1999 and 2000. Significance levels: p*** < 0.01, p** < 0.05, p* < 0.10.
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Table 4A.8 — Panel Comparison - Second-Stage Results with Interaction Term between All Residuals

Dependent variable:

10-year growth

5-year growth

1999,2002,  2000,2003,  2001,2004, 1999,2004, 2000, 2005,
Basevears:l  5005,2008  2006,2009  2007,2010|  2009,2014  2010,2015
-0.150 -0.184 -0.037 -0.224 -0.065

log NRR
(0.293) (0.462) (0.790) (0.331) (0.787)
ol -2.776%** -2.667*** -2.373%*x -1.797** -1.076
& (0.004) (0.000) (0.000) (0.025) (0.214)
Hel -2.602%** -2.481%** -3.079%** -2.305** -1.565
€ (0.006) (0.003) (0.007) (0.029) (0.121)
INST -1.014** -1.811%** -1.315* -2.036** -2.100**
& (0.018) (0.001) (0.057) (0.040) (0.032)
Interaction 0.572 -0.050 -0.527 -0.048 0.540
(5, €% (0.549) (0.958) (0.706) (0.971) (0.704)
Interaction -0.914 0.261 -0.150 0.250 0.386
(€5, €™ (0.307) (0.685) (0.81) (0.868) (0.828)
Interaction -1.179* -1.216 -0.168 -2.989** -1.987
(e, g™ (0.099) (0.208) (0.950) (0.025) (0.277)
ATrade ECly, 7.222 8.203 10.708 5.455 7.737*
(0.159) (0.157) (0.140) (0.129) (0.058)
10.753*** 13.408*** 8.683* 7.205%** 6.721*

A0 EClyg,
(0.008) (0.000) (0.064) (0.001) (0.052)
AWGI PV, 4.751%* 4.151** 4.926%** 2.746* 5.421%**
(0.012) (0.012) (0.003) (0.060) (0.002)
AWGI RO, 12.674%** 13.189*** 4.833 12.154%** 8.500**
(0.001) (0.002) (0.288) (0.000) (0.016)
Adj. R* 0.893 0.885 0.873 0.609 0.623
R? within 0.589 0.535 0.407 0.374 0.286
N (countries) 63 63 65 63 63

Table 4A.8 reports an alternative second-stage specification estimated across different panel con-
structions. In this specification, all pairwise interaction terms among the residual vectors (economic
complexity, human capital, and institutions) are included simultaneously. Each column reports the
results of two-way fixed-effects regressions using a distinct set of base years and growth periods.
The first three columns correspond to overlapping ten-year panels starting in 1999, 2000, and 2001,
respectively. The last two columns present non-overlapping five-year panels beginning in 1999 and
2000. Significance levels: p*** < 0.01, p** < 0.05, p* < 0.10.
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5 Discussion

Development is not a destination. It is a trajectory traced across a space of possibilities.
This dissertation explores how the structure of that space influences the paths countries
take and, more importantly, the paths they avoid. If we think of economic development as a
process of accumulating and recombining knowledge, then industrial policy becomes the
art of helping countries move through that space with direction, precision, and purpose. The
three essays presented here offer tools for navigating that journey—not just more efficiently,
but more wisely.

Navigating Traps: When Local Maxima Become Global Problems

The first essay highlights a simple but profound insight: not all local maxima in product
space are good stepping stones. When a country gets comfortable at the top of a low hill,
it may lose the incentive to climb the mountain next door. Local optima—products that
deliver high short-term returns but offer low complexity prospects and poor connectivity in
the product space can create complexity traps. Their danger lies not in what they instantly
offer, but in what they crowd out: the incentives to explore, to take risks, to build capabilities
beyond the comfort zone.

This mechanism has deep implications for industrial policy. It suggests that growth
strategies based only on comparative advantage may be misleading, not because they are
wrong, but because they are incomplete. Policymakers must recognize that some products,
while lucrative, are structurally isolating and complexity short-sighted — they offer im-
mediate gains at the expense of long-term capability accumulation, anchoring countries
in trajectories that reward exploitation over exploration. Avoiding or escaping these traps
requires:

« Sequenced exploration, where initial diversification is deliberately guided toward
products that open multiple future paths towards complexity enhancing;

« Strategic patience, resisting the temptation to overexploit high-peak, low PCI products
before building the capabilities to move beyond them;

+ And a long-term vision, where economic complexity is treated not as a byproduct of
growth, but as a policy objective in itself.

In a way, industrial policy must function like a GPS with a zoom function — it cannot
just show the next turn; it must help countries see the shape of the terrain and choose the
paths that lead beyond local hills, toward systemic transformation.
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Filtering Noise: Seeing the Possibilities that Matter

If the first essay deals with traps, the second tackles illusions. The product space, rich
in connections, is also rich in noise. Not all proximities are meaningful. Some are statistical
artifacts. Others reflect transient coincidences. When policymakers use such noisy maps to
guide diversification, they may end up chasing mirages.

After all, less can be more. By applying network filtering techniques, this study shows
that we can reveal the real structure hiding behind the noise. The filtered product space
becomes a cleaner, more reliable guide for identifying viable opportunities. The gains are
not just statistical. They are profoundly practical. Countries with low diversity, in particular,
benefit from a map that does not confuse proximity with potential.

The policy implications are immediate:

« Use filtered relatedness to prioritize diversification targets based on empirical strength,
not surface similarity;
« Develop opportunity dashboards that rank potential products by filtered density and

strategic relevance.

In this filtered landscape, industrial policy becomes an exercise in strategic discern-
ment, eliminating noise to reveal the pathways that truly matter. But more than that, it
becomes a tool to help countries navigate complexity not by chasing every option, but by
amplifying the signals that resonate with their real, accumulated capabilities.

Aligning Structures: Complexity Is Only Part of the Story

While the first two essays focus on productive structure, the third essay makes a
broader claim: economic convergence requires coherence between what countries produce
(economic complexity), the rules and norms that govern collective action (institutions), and
the cognitive foundation of the population (human capital). Development is not a puzzle of
pieces that fit neatly into silos. It is an ecosystem of interdependent systems.

By introducing a multidimensional framework — including multidimensional com-
plexity, institutions, and human capital — this essay shows that growth happens when
these vectors align. More than that, it shows that positive capability gaps — instances in
which a country’s structural endowments exceed its income level — are strong predictors of
future convergence. This insight reframes development not as a linear process of catching
up, but as a dynamic race between the accumulation of diverse structural capabilities and
the resolution of constraints.

For policy, the message is clear:

« Think beyond brick and mortar investments —industrial policy should induce coordi-
nated systems of production, learning, and adaptation. Support economic complexity
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with institutions that foster coordination, trust, and adaptability, and with human
capital that sustains learning, problem-solving, and the continuous recombination of
knowledge;

« Identify the binding constraint. Is it productive capabilities? Institutional quality?
Human capital? Then prioritize accordingly;

« Use structural diagnostics not only to assess where a country is, but where it could be,
and what’s holding it back.

In this view, industrial policy becomes less about sectoral targeting and more about
orchestrating a coalition of complexity: a policy ensemble in which productive capabilities,
institutions, and cognitive skills move together toward convergence.

A Final Note: Paths That Could Have Been

Industrial policy, as understood through the lens of this dissertation, is less about
planning the future than choosing among futures that already exist in potential form. The
product space, filtered or not, is a landscape of branching possibilities — some inviting, others
deceptive, many invisible until the moment has passed. Some countries reach complexity
through deliberate coordination. Others fall into traps not because they lacked ambition,
but because the structure of their incentives led them astray.

As Jorge Luis Borges once wrote:

“Creia en infinitas series de tiempos, en una red creciente y vertiginosa de tiempos di-
vergentes, convergentes y paralelos... Esa trama de tiempos que se aproximan, se bifurcan, se
cortan o que secularmente se ignoran, abarca todas la posibilidades.” (El jardin de senderos
que se bifurcan, 1941)

This idea mirrors the developmental challenge faced by nations. Each economy stands
at a fork in the path, surrounded by routes it could take, some of which converge toward
high complexity and shared prosperity, others that spiral into stasis or specialization without
depth. The job of the policymaker is not to predict the future, but to intervene in the present
so that better futures remain accessible.

In this light, economic complexity is not just a measure of what a country does; it is a
map of what it could become. And industrial policy is not merely technical strategy; it is the
craft of shaping futures — a deliberate act of choosing which possible stories a nation will
strive to make real. This thesis offers tools to clarify that map, to avoid the mirages, and to
help countries choose among their many possible selves.
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