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“After almost half a century of existence,
the main question about quantum field theory
seems still to be: What does it really describe?
And not yet: Does it provide a good description
of nature?”

Swieca, Jorge André
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Resumo

Este trabalho apresenta algumas propriedades analíticas do operador Hamil-
toniano modular, com base em avanços recentes na área. Nos últimos anos,
contribuições significativas foram feitas, e este trabalho procura fornecer uma
visão geral dos resultados e aplicações mais notáveis da teoria modular. Dada
a falta de uma interpretação geométrica para o fluxo modular no caso massivo,
é natural concentrar-se na derivação de suas propriedades analíticas. Seguindo
uma abordagem numérica recente, encontramos que a primeira derivada do
Hamiltoniano modular em relação à massa é divergente. Para lidar com essa não-
diferenciabilidade, investigamos a estrutura analítica do núcleo de um operador
relevante. Este núcleo também está relacionado à parte não-diagonal da trans-
formação de Bogoliubov que conecta duas representações com massas diferentes.
As propriedades analíticas dessas transformações de Bogoliubov são exploradas
utilizando transformações de Mellin e funções G de Meijer. No entanto, encon-
tramos que a primeira derivada dos coeficientes de Bogoliubov em relação à massa
se comporta de forma bem comportada. Como o núcleo do operador estudado
deslocaliza os campos, ele aparece naturalmente em conjunto com projetores. Con-
cluímos que a divergência da primeira derivada do Hamiltoniano modular está
enraizada em considerações mais profundas da análise funcional. Esta afirmação
sugere uma investigação futura sobre as propriedades desses projetores.

Palavras-chave: Teoria modular; Tomita-Takesaki; Entropia; Função G de Meijer;
Teoria Algébrica de Campos Quânticos.

Áreas do conhecimento: Física; Física Matemática; Teoria Algébrica de Campos
Quânticos.
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Abstract

This work presents some analytical properties of the modular Hamiltonian
operator, building on recent advancements in the field. In recent years, significant
contributions have been made, and this paper aims to provide an overview of
the most notable results and applications of modular theory. Given the lack of a
geometric interpretation for the modular flow in the massive case, it is natural
to focus on deriving its analytical properties. By following a recent numerical
approach, we find that the first derivative of the modular Hamiltonian with re-
spect to mass is divergent. To address this non-differentiability, we investigate the
analytical structure of the kernel of a relevant operator. This kernel is also linked
to the non-diagonal part of the Bogoliubov transformation that connects two rep-
resentations with different masses. The analytical properties of these Bogoliubov
transformations are explored using Mellin transformations and Meijer G-functions.
However, we find that the first derivative of the Bogoliubov coefficients with re-
spect to mass is well-behaved. Since the studied kernel of the operator delocalizes
the fields, it naturally appears in conjunction with projectors. We conclude that
the divergence of the modular Hamiltonian’s first derivative is rooted in deeper
functional analysis considerations. This assertion prompts a future investigation
into the properties of these projectors.
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Chapter 1

Introduction

Consider the Klein-Gordon equation,

(□+ m2)Φ(x, t) = (∂2
t − ∂2

x + m2)Φ(x, t) = 0. (1.1)

Taking only real solutions, one has the massive Hermitian scalar free field. At first
glance, we could imagine the field behaving as a usual function defined at each
spacetime point. For each spacetime point, some information would be associated.
In fact, the solutions are operator-valued distributions [1]. This means that the
field is always smeared with some test function that localizes it in a spacetime
region. There does not exist such a concept as a field at a point. If one desires to
quantize it, it is expected that the Hilbert space associated with it will be influenced
by those test functions mentioned.

By the same arguments for the nonexistence of a field at a point, we cannot
guarantee that the Energy-Momentum Tensor is positive. A positive definite
local energy is incompatible with the notion of a field being an operator-valued
distribution [2]. If one assumes that this is not a problem in Quantum Field
Theory, it is possible to invoke conjectures and conditions placing bounds on the
Energy-Momentum Tensor of the field [3]. For instance, one can introduce the
Bekenstein bound [4]. The Bekenstein bound states that the entropy of a matter
system localized in a spacetime region is bounded by the mass-energy of the field
and the radius of the smallest sphere that fits around the matter system.

Also, there is the Quantum Null Energy Condition [5], which states a lower
bound on the Energy-Momentum Tensor in terms of the second variation in a null
direction of the entropy of a region. As we can see, there is always a necessity
for defining the field smeared over a spacetime region. A first conclusion is that
there is a necessity for defining the entropy of a vector, or even better, the entropy
of a wave. In this way, we can analyze the Energy-Momentum Tensor density in
the framework of distributions. Besides this, the problem of UV divergence in
Quantum Field Theory arises when evaluating entropy.

1



Chapter 1. Introduction 2

Starting with Cauchy data of a Hermitian scalar free field on a time slice, the
field, the momentum field, and the Hilbert space of one-particle states are defined.
The quantization procedure is divided into two maps [6]. The first quantization
map relates an open spacetime region to a closed real subspace of the one-particle
space. The second quantization map relates this closed real subspace of the one-
particle space to a von Neumann algebra on the Fock space.

Introduce a standard subspace of a Hilbert space, i.e., a closed, real linear sub-
space of the Hilbert space which is cyclic and separating. Hence, the quantization
process associates the von Neumann algebra of a spacetime region with the von
Neumann algebra of the standard subspace associated with that spacetime region.

In 1967, during an operator algebras conference, M. Tomita distributed a
preprint on modular theory, and R. Haag presented a talk on the characterization
of equilibrium states in quantum statistical mechanics at infinite volume, extending
the Gibbs condition to the KMS (Kubo-Martinez-Schwinger) condition [7].

With respect to the standard subspace, one can define the anti-linear Tomita
operator. The Tomita operator S can be decomposed into a polar form

S = J∆1/2. (1.2)

The operator J is an anti-unitary involution, i.e., it maps elements of a standard
subspace to its symplectic complement. The operator ∆ is the modular operator,
the intrinsic unitary evolution operator. In this way, the Tomita operator maps
vectors from a standard subspace to a complementary region and evolves them
while respecting the KMS condition. The KMS condition states that the evolution
of a state is dictated by the thermal time flow.

Hence, the so important Tomita-Takesaki theorem associates a flow given by
the modular operator ∆ to an algebra of operators. One can write

∆it = e−itK, (1.3)

where K, the modular Hamiltonian, is the generator of an intrinsic evolution. If
one knows the modular Hamiltonian of the theory, one knows the dynamics of
the theory. Only a few cases are known and, in particular, for the double cone
and a massive field, it is completely unknown due to the lack of a geometrical
interpretation of the modular flow.

Also, if the modular Hamiltonian is known, one can introduce the Araki-
Uhlmann formula for the entropy of a vector k ∈ H with respect to a closed real
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linear subspace H [8, 9, 10],

Sk = Im(k, PHi log ∆Hk). (1.4)

These operators PH are projection operators that cut the Cauchy data. Also, in
Quantum Field Theory, we have an infinite number of degrees of freedom, which
makes relative entropy important. Due to the lack of a geometrical interpretation in
the massive case, it is natural to try to extract analytical properties of the modular
Hamiltonian.

The dissertation is divided into three parts. In the first one, Part I, the concept
of Cauchy data, the representation of an algebra, and the previously mentioned
quantization maps are defined. The notion of relative entropy and the bounds on
the Energy-Momentum Tensor are also discussed.

Part I I focuses on the Tomita-Takesaki theorem and how the known results on
modular flow are established.

Part I I I aims to present recent approaches to the unresolved massive case. The
notion of a standard subspace is introduced, along with the definition of wave
entropy for known cases, and the discussion of recent numerical approaches.

As a result, it is observed that for the massive modular Hamiltonian, despite
being unknown, its first derivative with respect to the mass diverges at mass zero.
This suggests that although it is continuous, it cannot be defined perturbatively.
The final chapter of this work attempts to trace the origin of this divergence.



Chapter 2

Algebra of Local Observables

2.1 Spacetime

The purpose of this section is to introduce the concept of time-evolving phe-
nomena, which arise from conditions on a slice of spacetime. Just as in classical
physics, particularly in Newton’s second law, one seeks to describe time evolution
from initial conditions. This is achieved through the concept of a Cauchy hypersur-
face, which, due to Einstein’s causality, leads to the refined notion of the domain of
dependence.

The following construction is based on Rejzner [11, chap. 2] and Witten [12]
and can be extended, if desired, to any general relativity textbook. Let us begin
with the notion of spacetime.

Definition 2.1.1 A spacetime is a pair (M, g), where M is a smooth manifold and g is
a smooth Lorentzian metric in a sense of smooth tensor field g ∈ Γ(T∗M ⊗ T∗M) such
that for every p ∈ M, gp is a symmetric non-degenerate bilinear form. Here M is a
four dimensional manifold, and it is required the metric g to be of Lorentzian signature
(+,−,−,−).

Assume the manifold M to be time-oriented, which means that at each point
in M, there exist a preferred notion of what represents a future and past timelike
directions.

Definition 2.1.2 Let γ : R ⊃ I → M be a smooth curve in M, for I an interval in R,
let γ̇ be the vector tangent to the curve. We say γ is

• Timelike, if g(γ̇, γ̇) > 0,

• Spacelike, if g(γ̇, γ̇) < 0,

• Lightlike (null), if g(γ̇, γ̇) = 0,

• Causal, if g(γ̇, γ̇) ≥ 0.

4
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Given a global timelike vector field u on M, a causal curve γ is called future-
directed if the vector tangent γ̇ projected on u direction is positive all along γ, i.e.
g(u, γ̇) > 0. The curve γ is past-directed if g(u, γ̇) < 0.

Definition 2.1.3 Let p ∈ M be a point in a time-oriented spacetime

• J±(p) is defined to be the set of all points in M which can be connected to p by a
future(+)/past(−)-directed causal curve γ : I → M so that x = γ(inf I),

• The set J+(p) is called the causal future and J−(p) the causal past of p,

• The future (past) of a subset B ⊂ M is defined by

J±(B) =
⋃
p∈B

J±(p). (2.1)

Finally, one of the most important statement on physics can be made. Principle
of causality: an event happening at a point p can be influenced only by the events in
J−(p) and the consequences of the event p can influence only the events in J+(p).

Definition 2.1.4 A subset A ⊂ M is called past(future)-compact if A
⋂

J±(p) is com-
pact for all p ∈ M.

Consider now, causal paths from a point q to a point p in its causal future. Such
a path will lie within a subset of spacetime that we will call the causal diamond, or
the double cone, Dp

q . This diamond is the intersection of the causal future of q with
the causal past of q.

Essential points to consider:

1. The space of causal points from q to p is in a suitable sense compact,

2. Causality is essential here.

Causality guarantees that a sequence of paths converges, since it constraints
velocity to be less or equal to the speed of light. Hence, if p is in the causal future
of q, the space of causal paths from q to p is compact.

Definition 2.1.5 Two subsets O1 and O2 in M are called causally (or spacetime) sep-
arated if they cannot be connected by a causal curve, i.e., for all x ∈ O1 one has
J±(x)

⋂O2 = ∅. The overline here means the closure of a set.
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Definition 2.1.6 The causal complement O⊥ (or O′) of O is defined as the largest open
set in M that is causally separated from O.

From the principle of causality, events happening at spacelike separated points
cannot influence each other.

Consider a hypersurface (submanifold of co-dimension 1) S which has the
property of nearby points in S to be spacelike separated. A typical example is the
so-called time slice at t = 0. In a Minkowski space with metric ds2 = dt2 − dx⃗2

so that the metric induced at t = 0 is ds2 = −dx⃗2, a Euclidean one. In addition
to the above, S needs to be achronal. This means there is no timelike path in M
connecting distinct points p, q ∈ S. If S is of codimension 1 in M, it follows that
there is no causal path from p to q. A curve γ in M passing through r ∈ M is called
extendible, since can be indefinitely made into past and future. After remove
r ∈ M, γ splits in two causal curves, γ1 and γ2, in which γ1 is inextendible in the
future and γ2 is inextendible in the past.

Definition 2.1.7 A Cauchy hypersurface or initial value hypersurface in M is an achronal
spacelike hypersurface S with the property that if p is a point in M which is not in S then
every inextendible causal path γ through p intersects S.

Definition 2.1.8 A spacetime M with a Cauchy hypersurface S is said to be globally
hyperbolic.

If p is to the future of S, so every sufficiently extended past going causal path
through p meets S. What one will observe at p can be predicted from a knowledge
of what there was on S. An inextendible causal path γ ⊂ M will always intersect
S in precisely one point. Since S is achronal there is no such p, p′ ∈ S that γ

intersects, because it would imply the existence of a path connecting p and p′ in S,
which is not possible.

If p is a point just slightly to the future of q ∈ S, then any inextendible causal
path through p will meets S. This is because a very small neighborhood of q can
be approximated by a small open set in Minkowski space, with S approximately
the spacelike hyperplane t = 0.

Definition 2.1.9 Domain of dependence DS of S consist of all points p ∈ M with the
property that every inextendible causal curve through p meets S.

The domain of dependence is the largest region in M in which the physics can be
predicted from a knowledge of initial conditions on S. The Cauchy hypersurface S
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divides DS into a future and past, which are known as the future and past domains
of dependence of S, denoted D+

s and D−
s . The boundary of the closure of DS is

called the Cauchy horizons, HS.

2.2 Quantum Theory

Now, we turn our attention to the mathematical foundations of quantum theory.
The physics is left aside, and we will concern just with the notions of bounded and
unbounded operators, conditions on the metric, Hermitian operators and other
concepts which are widely used to define the physical quantities. The construction
of bounded and unbounded operators is based on Bogolubov et al. [13, chap. 1].

Consider first a complex linear space X and a function ω that associates a pair
of elements in X to a complex number. The function ω is a hermitian form if the
following holds

ω(u, v) = ω(u, v). (2.2)

The function ω(u, v) defines a scalar product of u, v ∈ X if it is hermitian and
non-degenerate, i.e., if ω(u, v) = 0 ∀ v ∈ X then u = 0. The scalar square of
ω(u, u) ∀ u ∈ X is a real number. The ω is called non negative-definite if the scalar
square of any vector is non-negative

ω(u, u) ≥ 0, ∀u ∈ X , (2.3)

and positive definite if also holds

ω(u, u) = 0, only if u = 0. (2.4)

A space X with a positive-definite hermitian form ω(u, v) is called a complex
pre-Hilbert space. Every pre-Hilbert space is a normed space with the norm

||u|| =
√

ω(u, u). (2.5)

A complete (every fundamental sequence on a normed space converges) pre-
Hilbert space H is called a Hilbert space.

For Φ and Ψ ∈ X , these vectors are said to be orthogonal if their scalar product
(Φ, Ψ) is zero. Let X be a subset on a Hilbert space H, X is total if the linear span
of X is everywhere dense in H, i.e. the closure of this linear span is the whole of



Chapter 2. Algebra of Local Observables 8

H. Every closed linear subspace H1 of a Hilbert space H is itself a Hilbert space.
The set

H⊥
1 = {Φ ∈ H : (Φ, Ψ) = 0 ∀Ψ ∈ H1} (2.6)

is called the orthogonal complement of H1. The following holds

1. H⊥
1 is a closed complement of H1,

2. H1
⋂H⊥

1 = 0,

3. Every vector on H can be uniquely represented in the form Φ = Φ1 + Φ2

where Φ1 ∈ H1, Φ2 ∈ H⊥
1 .

It follows that the Hilbert space H can be decomposed into a direct sum of
orthogonal subspaces H1 and H⊥

1 in the form

H = H1 ⊕H⊥
1 . (2.7)

In the decomposition Φ = Φ1 + Φ2, the vectors on the right-hand side are called
the (orthogonal) projections of the vector Φ onto the subspace H1 and H⊥

1 respec-
tively.

Consider a linear operator A defined on a certain dense linear domain DA of a
Hilbert space H and taking values in H

H ⊃ DA ∋ Φ → AΦ ∈ H. (2.8)

The operator A is said to be bounded (in DA) if the square of the norm

||AΦ||2 = (AΦ, AΦ) (2.9)

is bounded when Φ ∈ DA and ||Φ|| ≤ 1.
The least upper bound of ||AΦ|| as Φ runs through the intersection of DA and

the unit sphere is called the norm of the operator A and is denoted by ||A||

||A|| = sup
||Φ||=1, Φ∈DA

||AΦ||. (2.10)

If in the above right-hand side is going to infinity, then the operator is called
unbounded.

Bounded operators can be defined everywhere on H and we do not refer to
their domain without loss of generality. For unbounded operators we cannot do
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the same, it is essential to indicate their domain.

Definition 2.2.1 The graph Γ(A) of an operator A is the set of all pairs (Φ, AΦ), where
Φ ∈ DA and AΦ ∈ H.

In addition, the graph is a closed subset of H⊕H. The domain DA of a closed and
unbounded operator A is everywhere dense in H. The operator B is an extension
of A (A ⊂ B) if Γ(A) ⊂ Γ(B), i.e., if DA ⊂ DB and AΦ = BΦ ∀Φ ∈ DA.

A naive way to define the adjoint operator is

(Ψ, AΦ) = (A∗Ψ, Φ), (2.11)

without reference to the domain of A and A∗, which is fine for A bounded, and
we can suppose in this case DA = H and furthermore that the adjoint exist and is
defined on the whole of H.

In the case of unbounded operators, the adjoint operator does not always exist.
If DA∗ is dense in H, then we say that the adjoint operator A∗ exists. A necessary
and sufficient condition for an operator A to possess and adjoint is that A should
have a closure in H.

If {Φn} is a convergent sequence of vectors in DA then {AΦn} either converges
or has no accumulation point in H. Strictly speaking, it means that the possibility
of two different subsequences converging to different limits is excluded, and in
this case the closure of A is equal to A∗∗. An operator A is said to be symmetric or
Hermitian if A ⊂ A∗, that is, if

(AΨ, Φ) = (Ψ, AΦ), Φ, Ψ ∈ DA. (2.12)

If A = A∗ (further, DA and DA∗ are equal) then we say the operator is self-adjoint.
A linear operator U defined on the whole of a Hilbert space H and with range

coinciding with H is said to be unitary if it preserves the scalar product

(UΦ, UΨ) = (Φ, Ψ), Φ, Ψ ∈ H. (2.13)

Definition 2.2.2 An operator E such that E = E∗ = E2 is called projector.

Clearly E behaves like the identity operator in EH and like the zero operator in
(1 − E)H. Also EH and (1 − E)H are mutually orthogonal closed subspaces in H.

A nice realization of the above operators construction on a Hilbert space is
that it can be viewed as an algebra of operators. The realization of an algebra
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of operators as C∗ − algebra is given by Rejzner [11], Bertozzini [14], Haag [7]
and also the applications to non-commutative geometry, quantum gravity theory,
particle physics and deformation quantization are therein contained.

Definition 2.2.3 Define a complex unital algebra U if there exists an element 1 ∈ U such
that 1A = A1 = A for all A ∈ U .

Also the algebra U is abelian (commutative) if ab = ba for all a, b ∈ U .

Definition 2.2.4 A complex algebra U is called an involutive algebra (or a ∗ − algebra)
if it is equipped with an involution, i.e. a conjugate linear map ∗ : U → U such that
(a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ U .

One can also introduce the norm concept to the algebraic setting as a powerful
tool to construct the topology.

Definition 2.2.5 A normed algebra U is a normed vector space whose norm || · || and
any A, B ∈ U vectors satisfies

||AB|| ≤ ||A||||B||. (2.14)

If U is unital, then it is a normed algebra if in addition ||1|| = 1.

Definition 2.2.6 A Banach space is a normed vector space equipped with the norm-
induced topology that is complete with respect to this topology. A Banach (unital) algebra
is a Banach space and a normed (unital) algebra with respect to the same norm.

Definition 2.2.7 An involutive complex unital algebra U is called a C∗ − algebra if U is
a Banach space with a norm a 7→ ||a|| such that ||ab|| ≤ ||a|| · ||b|| and ||a∗a|| = ||a||2,
for all a, b ∈ U .

As defined, a Hilbert space H is a complex vector space with a Hermitian inner
product such that the norm induced by this product makes H into a Banach space.
With the definitions above, it is clear the realization that a subset of a Hilbert
space can be raised to an algebraic subspace. But one must care with the topology
induced, specially when operators are under concern.

The set of all bounded linear operators acting in a Hilbert space H is denoted by
B(H). Also, follows that the space of bounded linear operators B(H) on a Hilbert
space forms a C∗ − algebra. The most evident topology in H(B) is provided by
the norm of operators.
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Given B(H) a normed linear space, the norm or uniform topology is determined
by specifying a ϵ − neighborhood of A, B ∈ B(H) such that ||A − B|| < ϵ. The
closure of a set S ⊂ B(H) in this topology means that we add to S all elements
which are limits of uniformly converging Cauchy sequences in S. A nice fact is
that if a ∗ − alegbra is uniformly closed then is called C∗ − algebra.

The strong topology on B(H) is defined in terms of seminorms. Pick an arbitrary
vector Ψ ∈ H and a sequence of operators An, then one have the vector norm
||AnΨ||. The sequence is strongly convergent if for every Ψ ∈ H the sequence of
vectors Ψn = AnΨ is strongly convergent, i.e., if ||Ψn − Ψm|| → 0 as n, m → ∞.

The weak operator topology on B(H) is obtained via a system of seminorms
||(Φ, AΨ)||. For a sequence of operators An, the weak operator topology is estab-
lished if all matrix elements (Φ, AnΨ) between arbitrary vectors state converges.

Definition 2.2.8 A weakly closed ∗ − subalgebra of B(H) which contains the unit
operator will be called a von Neumann algebra, denoted by R.

Definition 2.2.9 For any subset S ⊂ B(H), is the commutant

S′ = {x ∈ B(H) : sx = xs ∀ s ∈ S}, (2.15)

the set of all bounded operators on a Hilbert space H commuting with elements of S.

If S is a self-adjoint subset, i.e., S is a ∗ − subalgebra, then S′ is a C∗ − algebra of
B(H) that is closed.

Definition 2.2.10 A von Neumann algebra R on a Hilbert space H is a ∗ − subalgebra
of B(H), such that

R = (R′)′ = R′′. (2.16)

The below theorem is known as the bicommutant theorem.

Theorem 2.2.1 Let R be unital ∗ − subalgebra of B(H), then following conditions are
equivalent:

• R = R′′,

• R is closed on the weak operator topology,

• R is closed on the strong operator topology.
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Denoting the smallest von Neumann algebra containing R1 and R2 by R1 ∨R2

and R1 ∧R2 the largest von Neumann algebra containing R1 and R2. Thus one
has

R1 ∨R2 = (R1 ∪R2)
′′, (2.17)

and
(R1 ∨R2)

′ = R′
1 ∧R′

1 ∧R′
2 = R′

1 ∩R′
2. (2.18)

At this point, we consider states and representations. Define a state ω which
associates to an observable A a real number ω(A) obtained by averaging the
results of measurements of A for state prepared to be in the state ω. In the
following, one can assume as the algebraic approach to quantum theory:

• A physical system is defined by its unital C∗ − algbera U ,

• States are identified with positive normalized linear functional on U , i.e.,
ω(A∗A) ≥ 0 for all A ∈ U and ω(1) = 1.

Definition 2.2.11 A state on an involutive algebra U is a linear functional ω, such that

ω(A∗A) ≥ 0, ω(1) = 1. (2.19)

Observables are self adjoint elements of U and possible measurement results
for an observable A are characterized by its spectrum σ(A).

Definition 2.2.12 The spectrum σ(A) of A ∈ U is the set of all λ ∈ C such that
(A − λ1) has no inverse in U .

Abstract elements of an involutive algebra U are realized as operators on some
Hilbert space by a choice of a representation, [see 15, chap. 2].

Definition 2.2.13 A representation of an involutive unital algebra U is a unital ∗ −
homomorphism π into the algebra of linear operators on a dense subspace K of a Hilbert
space H.

In particular, a representation of a C∗ − algebra U is a unital ∗ − homomorphism
π : U → B(H). A representation is called faithful if Ker(π) = {0}. It is called
irreducible if there are no non-trivial subspaces of H invariant under π(U ).

Definition 2.2.14 Two representations (π1,H1) and (π2,H2) of a C∗ − algebra U are
called unitarily equivalent, if Uπ1(A) = π2(A)U holds for all A ∈ U with some unitary
map U : H1 → H2.
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Let H1 be a subspace of H. The subspace H1 is invariant, or stable, under π

if π(A)H1 ⊆ H1 for all A ∈ U . If H1 is a closed subspace of H and PH1 is the
orthogonal projector with range H1 then the invariance of H1 under π implies
that

PH1π(A)PH1 = π(A)PH1 , A ∈ U . (2.20)

Hence,

π(A)PH1 = (PH1π(A∗)PH1)
∗

= (π(A∗)PH1)
∗

= PH1π(A),

(2.21)

for all A ∈ U . That means PH1 commutes with each of the representations π(A).
Conversely, this commutation property implies that H1 is invariant under π.
Hence, H1 is invariant under π if and only if

π(A)PH1 = PH1π(A), A ∈ U . (2.22)

Furthermore, we may deduce that if H1 is invariant under π and if π1 is
defined by,

π1(A) = PH1π(A)PH1 , (2.23)

then (H1, π1) is a representation of U .
If H1 is invariant under π then its orthogonal complement H⊥

1 is also invariant.
Setting H2 = H⊥

1 one can define a second subrepresentation (H2, π2) by π2(A) =

PH2π(A)PH2 . But H has a direct sum decomposition H = H1 ⊕H2, and each
operator π(A) decomposes as a direct sum π(A) = π1(A)⊕ π2(A). Thus, we can
write π = π1 ⊕ π2 and (H, π) = (H1, π1)⊕ (H2, π2).

Consider the set of bounded linear operators B(H), we say B(H) acts non-
degenerately if for set of vectors {Ψ} such that AΨ = 0 for any A ∈ B(H) is given
by the zero element {0}. An important class of such a case is the class of cyclic
representations. Define a vector Ω in a Hilbert space H to be cyclic for a set of
bounded operators B(H) if the set linear span {AΩ, A ∈ B(H)} is dense in H.

Definition 2.2.15 A cyclic representation of a C∗ − algebra U is defined to be a triple
(H, π, Ω) where (H, Ω) is a representation of U and Ω is a vector in H which is cyclic
for π in H.

Suppose the nondegenerate representation (H, π) for the C∗ − algebra U . Then
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follows that π is the direct sum of a family of cyclic representation.
We say a set B(H) of bounded operators on H is defined to be irreducible if

the only invariants subspaces, closed or not, are {0} and H.

Proposition 2.2.1 For the selfadjoint set of bounded operators B(H) on the Hilbert space,
the following are equivalent

1. B(H) is irreducible,

2. The commutant B(H)′ of B(H), consists of multiples of the identity operator

3. Every nonzero vector Ψ ∈ H is cyclic for B in H, or B = 0 and H = C.

If U is a unitary operator on H and we introduce πU by πU(A) = Uπ(A)U∗

then (H, πU) is a second representation. Two representations (H1, π) and (H2, π2)

are equivalent or unitarily equivalent, if there exists a unitary operator U from H1

to H2 such that
π1(A) = Uπ2(A)U∗, (2.24)

for all A ∈ U . Equivalence of π1 and π2 is denoted by π1 ≃ π2.
Let ω1 and ω2 be positive linear functionals over the C∗ − algebra U . It follows

that ω1 + ω2 is a positive linear functional and ||ω1 + ω2|| = ||ω1||+ ||ω2||. In
particular, the states over U form a convex subset of the dual of U . The concept of a
state to be convex is clear from the following: there is a state ω = λω1 + (1− λ)ω2

positive for 0 ≤ λ ≤ 1 and ||ω|| = λ||ω1||+ (1 − λ)||ω2|| = 1, also one has the
property that ω ≥ λω1 and ω ≥ (1 − λ)ω. Call a state of pure whenever it cannot
be written as a convex combination of other states.

The algebra U is a Banach space and with the aid of the state ω it may be
converted into a pre-Hilbert space by introduction of the positive semi-definite
scalar product

(A, B) = ω(A∗B). (2.25)

Define Iω by
Iω = {A; A ∈ U , ω(A∗A) = 0}, (2.26)

as the left ideal of U . Since I ∈ Iω and A ∈ U one have that

0 ≤ ω((AI)∗ AI) ≤ ||A||2ω(I∗ I) = 0, (2.27)

then one can conclude AI ∈ Iω.
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Now we can define the strict pre-Hilbert space by the equivalence class

ψA = {Â, Â = A + I, I ∈ Iω}, (2.28)

provided with operations,

ψA + ψB = ψA+B,

αψA = ψαA,

(ψA, ψB) = ω(A∗B),

(2.29)

and the scalar product is independent of the particular representation class used
in its definition. A nice property of the strict pre-Hilbert space is that it can be com-
pleted in a sense to be linearly embedded as a dense subspace of a Hilbert space
preserving the scalar product. The completion is defined as the representation
space Hω. The representation πω(A) acts on the dense subspace of Hω formed by
vectors ψB for B ∈ U in the following manner

πω(A)ψB = ψAB, (2.30)

which is independent of the representation used for the class ψB, as one can see,

πω(A)ψB+I = ψAB+AI = ψAB = πω(A)ψB, (2.31)

for I ∈ Iω. Each πω(A) is a linear operator

πω(A)(λψB + ψC) = π(A)ψλB+C = ψλAB+AC,

= λψAB + ψAC,

= λπω(A)ψB + πω(A)ψC.

(2.32)

Also πω(A) has a bounded closure

||πω(A)ψB||2 = (ψAB, ψAB),

= ω(B∗A∗AB),

≤ ||A||2ω(B∗B),

= ||A||2||ψB||2.

(2.33)



Chapter 2. Algebra of Local Observables 16

If U contains the identity we define Ωω by

Ωω = ψ1, (2.34)

and this gives the correct identification of ω:

(Ωω, πω(A)Ωω) = (ψ1, ψ(A)) = ω(A). (2.35)

The set {πω(A)Ωω, A ∈ U} is exactly the dense set of equivalence classes {ψA, A ∈
U} and hence Ωω is cyclic for (Hω, πω). By construction the set πω(Ũ )Ωω =

πω(C1 + U )Ωω is dense and thus the cyclicity of Ωω, for πω(U ), follows if Ωω is
in the closure of πω(U )Ωω.

Finally, the GNS construction theorem can be announced:

Theorem 2.2.2 Let ω be a state over the C∗ − algebra U . It follows that exists a cyclic
representation (Hω, πω, Ωω) of U such that

ω(A) = (Ωω, πω(A)Ωω), (2.36)

for all A ∈ U and consequently, ||Ωω||2 = ||ω|| = 1. Moreover, the representation is
unique up to unitary equivalence.

For the proof of uniqueness consider a second representation (Ω′
ω, π′

ωΩ′
ω) such

that
ω(A) = (Ω′

ω, π′
ω(A)Ω′

ω), (2.37)

for all A ∈ U , then must exist a unitary operator from Hω onto H′
ω such that

U−1π′
ω(A)U = πω(A), (2.38)

for all A ∈ U , and
UΩω = Ω′

ω. (2.39)

Which is established by defining U through

Uπω(A)Ωω = π′
ω(A)Ω′

ω, (2.40)
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and by noticing that

(Uπω(A)Ωω, Uπω(B)Ωω) = (π′
ω(A)Ω′

ω, π′
ω(B)Ω′

ω),

= ω(A∗B),

= (πω(A)Ωω, πω(B)Ωω).

(2.41)

Thus U preserves the scalar product. Also, the closure of U is unitary and has all
desired algebraic properties.

2.3 Local Quantum Field Theory

How is it possible to develop an entirely new theory that unifies the previous
two sections? The first section focuses on causality and the way interactions can
be described, while the second deals with measurements, observables, and a space
known as Hilbert space.

Motivated by the idea that a measurement in one spacetime region cannot
influence a measurement in another spacetime region that is causally separated
from the former, one seeks to construct an algebra of operators that aligns with
the spacetime framework introduced above.

The first naïve assumption one might make is that the algebra of operators
associated with the Cauchy initial data region is the same as the algebra associated
with its domain of dependence [see 16]. Additionally, it is important to consider
only bounded operators, ensuring that they can be multiplied without any compli-
cations and are well-defined on the entire Hilbert space. Otherwise, as previously
discussed, unbounded operators may be defined on different dense subspaces of
the Hilbert space, leading to inconsistencies.

Worth to recall the assumption that, in a general spacetime, one can always
consider the neighborhoods of a point to looks like the Minkowski spacetime
(locality principle or just manifold property, partition of unity, if one prefer).
Consider a double cone Dy

x ≡ O ⊂ Rd. Introduce a quasi-local C∗ − algebra U ,
and assign to each (nonempty) double cone O ⊂ Rd a C∗ − algebra U (O) ⊂ U
which are called the local algebra. The collection (net) of local algebras must satisfy
the following axioms:

1. Generating property: U = ∪OU (O)
||.||

where the union is over the set of all
double cones, i.e., inductive limit. The overline is the completion in the norm
topology,
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2. Isotony: for any pair of double cones O1 ⊂ O2, then U (O1) ⊂ U (O2),

3. Causality: if O1 and O2 are spacelike separated, then [U (O1),U (O2)] = {0},

4. Poincare covariance: there is a (norm) continuous linear representation αg

of the Poincare group P↑
+ in U , such that αg(U (O)) = U (gO) for any open

bounded region O and all g ∈ P↑
+, where the action of g ∈ P↑

+ over a region
O is given by gO = {Λx + a; x ∈ O},

5. Vacuum: there is a pure state ω in U invariant under all αg. Then in its
GNS representation (π,H, Ω) the linear representation αg is implemented
by a positive energy unitary representation of P↑

+ in H in the sense of
U(g)π(A)U∗(g) = π(αg(A)) for all A ∈ U and all g ∈ P↑

+ (the notion
of positive energy is to be given below),

6. Time slice: the algebra of a neighborhood of a Cauchy surface of a given re-
gion coincides with the algebra of the full region. This physically correspond
to the well-posedness of an initial value problem, i.e., we only need to deter-
mine observables in some small time interval (t0 − ε, t0 + ε) to reconstruct
the full algebra.

Positive energy means that the representation is strongly continuous and the
infinitesimal generators Pµ of the transformation subgroup (i.e., U(0, a) = eipµaµ)
have their spectral projections on the closed forward light cone Ṽ+ = {p ∈
Rd; p · p > 0 and p0 > 0}.

As usual, since we have a unique and invariant state, we want to consider the
collection of C∗ − algebras π(U (O)) ⊂ B(H) acting on the vacuum Hilbert space.

It is important, as discussed before, to define the topology of operators. We
want some statistical interpretation such that considering a physical quantity, for
their n measurements, we associate a sequence a1, a2, . . . an of operators in which
the matrix (ψ, anξ) converge to the corresponding matrix element (ψ, aξ) of the
operator a. Then it is of interest to incorporate the von Neumann algebra, which
takes the weak operator topology. Consider the von Neumann algebra on O such
that R(O) = π(U (O))′′. The double prime corresponds to the double commutant
which coincides with the weak closure.

Theorem 2.3.1 (Reeh-Schlieder) The vacuum vector Ω is cyclic for any algebra π(U (O))′′

corresponding to any (nonempty) open region. Moreover, if O′ is also open and nonempty,
then Ω is also separating for π(U (O))′′.
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We can state the above Reeh-Schlieder theorem in terms of local Cauchy data
[16]. Consider a restriction to an arbitrary small open set V ⊂ Σ, for a complete
Cauchy surface Σ. Also consider a small neighborhood UV of V in spacetime. Then
restrict the states to be created from a vacuum in UV still suffices to generate the
same H0 that the vacuum sector of Hilbert space. Assume V ⊂ Σ to be the closure
of the set V and V ′ disjoint of V . The Reeh-Schlieder theorem applies equally well
to V or to V ′, as they are both nonempty sets in the initial value surface Σ.

If an operator a supported in UV annihilates the vacuum, then also annihilates
any vector state created from the vacuum which is supported in UV ′ , but theses
are dense in H0. The consequence is that a is separating for both algebras in V
and V ′. The theorem then says if a state is cyclic for one of these algebras then is
separating for the other, so one have that the vacuum is cyclic and separating for
both algebras defined in V and V ′.

Now it is of interest to see how one can define hermitian scalar field, or even
better, distribution operator-valued defined on spacetime regions. First let us
define the space of Schwartz functions which will delimit where the operator is
defined.

Definition 2.3.1 Denote S(Rd, R) the space of test functions, i.e., the Schwartz space of
real, smooth and exponentially decreasing functions at infinity.

Next is defined the one-particle Hilbert space. Consider the d-tuples x = (x0, x) and
p = (p0, p).

Definition 2.3.2 The Hilbert space h of one-particle states of mass m > 0 and zero spin
is made up of the square integrable functions on the mass shell hyperboloid Hm = {p ∈
R; p2 = m2, p0 > 0} with the invariant measure dµ(p) = Θ(p0)δ(p2 − m2)dd p
where Θ is the usual Heaviside step function and δ is the usual Dirac delta distribution.

The one-particle Hilbert space and the scalar product can be defined respectively
as follows,

h = L2
(

Rd−1,
dd−1p

ω

)
,

< f , g >h=
∫

Rd−1

dd−1p
ω

f ∗( p⃗)g( p⃗),

(2.42)

the dispersion relation ω =
√

p⃗2 + m2 is defined and always hold.
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The Schwartz space carries a representation of the Poincare group P↑
+ given by

f 7→ f(Λ,a) ∈ P↑
+, with f(Λ,a)(x) = f (Λ(x − a)) for any (Λ, a) ∈ P↑

+. The one par-
ticle Hilbert space carries a unitary representation of P↑

+ given by (u(Λ, a) f )(p) =
eipa f (Λ−1p) for any f ∈ h and (Λ, a) ∈ P↑

+.

Definition 2.3.3 Denote now H the Fock Hilbert space as the direct sum of the symmetric
tensor powers of one-particle Hilbert space h:

H = ⊕∞
n=0 h⊗ n, sym. (2.43)

For each f ∈ h define operator a( f ) and a∗( f ), on H by initially setting
a( f )ψ(0) = 0, a∗( f )ψ(0) = f , where ψ(0) ∈ h0 = C and

a( f )( f1 ⊗ f2 ⊗ . . . ⊗ fn) = n1/2 < f , f1 > f2 ⊗ f3 ⊗ . . . ⊗ fn,

a∗( f )( f1 ⊗ f2 ⊗ . . . ⊗ fn) = (n + 1)1/2 f ⊗ f1 ⊗ f2 ⊗ . . . ⊗ fn.
(2.44)

Let Ω = (1, 0, 0, . . .) be the zero-particle state called the vacuum state. The vectors

ψ( f ) = a∗( f )Ω, (2.45)

identify with elements of the one-particle space h and hence a∗( f ) creates a particle
in the state f . Similarly, a( f ) reduces the number of particles.

The rest of the section will be devoted to describe the first and second quantization
map [6]. The former map means the canonical commutation relations (CCR) defined
with respect to the creation and annihilation operators. The latter map is in the
sense of canonical commutation relations of the scalar hermitian fields and its
conjugated momentum. A nice example on what will be defined is describe in the
following.

Example. Consider h = L2(R2), then H(h)consists of sequences {ψ(n)}n≥0 of
functions of n variables xi ∈ Rd totally symmetric. The action of the annihilation
and creation operators is given by

(a( f )ψ)n(x1, . . . , xn) = (n + 1)1/2
∫

dx f (x)ψ(n+1)(x, x1, . . . , xn),

(a∗( f )ψ)n(x1, . . . , xn) = (n)−1/2
n

∑
i=1

f (xi)ψ
(n−1)(x1, . . . , x̂i, . . . , xn),

(2.46)
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where x̂i denotes the variable to be omitted. Note the maps

f 7→ a( f ), f 7→ a∗( f ), (2.47)

are antilinear and linear, respectively. One may also introduce operator-valued
distributions, i.e., fields a(x) and a∗(x), such that

a( f ) =
∫

dx f (x)a(x), a∗( f ) =
∫

dx f (x)a∗(x), (2.48)

and the action is given by

(a(x)ψ)(n)(x1, . . . , xn) = (n + 1)1/2ψ(n+1)(x, x1, . . . , xn),

(a∗(x)ψ)(n)(x1, . . . , xn) = (n)−1/2
n

∑
i=1

δ(x − xi)ψ(n−1)(x1, . . . , x̂i, . . . , xn).
(2.49)

The first quantization map will be related to the first CCR identities and the second
quantization map will be related to the second CCR identities above.

The assignment O → R(O) is determined by the composition of two different
maps

O ⊂ Rd → K(O) ⊂ h,

K ⊂ h → R(K) ⊂ B(H),
(2.50)

called the first and second quantization maps, respectively. A region O is called
causally complete if O ≡ O′′.

For any closed linear subspace K ⊂ h we define its symplectic complement as

K′ = {h ∈ h, Im < h, k >h= 0, ∀ k ∈ K}. (2.51)

Consider the real dense embedding E : S(Rd, R) → h as follows

(E f )( p⃗) = (2π)
1
2 f̂
∣∣∣∣

Hm

( p⃗) = (2π)
1
2 f̂ (p0, p⃗), (2.52)

where f̂ (p) = (2π)−d/2
∫

Rd f (x)eip · xddx is the usual Fourier transform. Such
embedding is Poincaré invariant, i.e. E( f(Λ,a)) = u(Λ, a)E( f ). Now, one can use
the above embedding to associate functions on the Schwartz functions S(Rd, R)

with vectors on the one-particle Hilbert space.
The first quantization map is an assignment O ⊂ Rd → K(O) ⊂ h, where
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K(O) is a real closed linear subspace. Define the map action by

O ⊂ Rd → K(O) = {E( f ) : f ∈ S(Rd, R), supp( f ) ⊂ O} ⊂ h. (2.53)

Following, we define the embedding W : h → B(H) by the Weyl unitaries W(h)

W(h) = ei(a(h)+a∗(h)), (2.54)

which satisfies the CCR

W(h1)W(h2) = e−i Im<h1,h2>hW(h1 + h2), (2.55)

W(h)∗ = W(−h). (2.56)

A Poincare unitary U(Λ, a) acts covariant on a Weyl operator according to

U(Λ, a)W(h)U(Λ, a)∗ = W(u(Λ, a)h), (2.57)

W(h)Ω = eh. (2.58)

The second quantization map is an assignment K ⊂ h → R(O) ⊂ B(H), for the
set of real closed linear subspace of h to the set of von Neumann subalgebra of
B(H). It is defined by

K ∈ h → R(K) = {W(k), k ∈ K}′′ ⊂ B(H). (2.59)

The net of local algebras O ⊂ Rd → R(O) ⊂ B(H) of the free Hermitian
scalar field is defined as the composition of the first and second quantization map,
i.e.,

R(O) = R(K(O)), (2.60)

which satisfies the previous section axioms and also the Haag duality, [see 7]:

K(O′) = K(O)′, (2.61)

R(K′) = R(K)′. (2.62)

For f ∈ S(Rd, R), the field operator ϕ( f ) is defined through the relation

W(E( f )) = eiϕ( f ) = W( f ). (2.63)

Now we want to describe the initial conditions on the Cauchy data surface,
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and it is done by the time slice axiom described before. Suppose a time slice at a
diamond, in special at t = 0 time. Also, it is of interest to provide the statement
that the local algebra at a time slice is the same in its domain of dependence.

First decompose the one-particle Hilbert space into two R−linear closed sub-
space h = hϕ ⊕R hπ

hϕ = {h ∈ h, h( p⃗) = h(− p⃗)}, hπ = {h ∈ h, h( p⃗) = −h(− p⃗)}. (2.64)

By construction, each h ∈ h can be uniquely written as h = hϕ + hπ

hϕ( p⃗) =
h( p⃗) + h∗(− p⃗)

2
, hπ( p⃗) =

h( p⃗)− h∗( p⃗)
2

. (2.65)

Also holds the following useful relations

Im < hϕ, h′ϕ >= Im < hπ, h′π >= Re < hϕ, hπ >= 0, (2.66)

for all hϕ, h′ϕ ∈ hϕ and hπ, h′π ∈ hπ.
Consider the real dense embedding Eϕ,π : S(Rd−1, R) → hϕ,π, such that

(Eϕ f ) = f̂ ( p⃗), and (Eπ f )( p⃗) = ip0 f̂ ( p⃗), (2.67)

where f̂ ( p⃗) = (2π)−
d−1

2
∫

Rd−1 f (x⃗)e−i p⃗ · x⃗ dd−1x.
From now on, identify functions on S(Rd−1, R) with vectors on hϕ, hπ through

these embeddings. The map Eϕ, (or Eπ) is actually defined on a bigger class of test
functions, namely H− 1

2 (Rd−1, R) [or H
1
2 (Rd−1, R)], i.e.,

Eϕ : H− 1
2 (Rd−1, R) → hϕ, (2.68)

Eπ : H
1
2 (Rd−1, R) → hπ, (2.69)

where Hα(Rd−1, R) is the real Sobolev space of order α. We have that actually
when defined on the whole Sobolev space it generates the whole one-particle
Hilbert space, Eϕ(H− 1

2 (Rd−1, R)) = hϕ and Eπ(H
1
2 (Rd−1, R)) = hπ. For each

hϕ ∈ hϕ and hπ ∈ hπ and using W(h) = ei(a(h)+a∗(h)), we define the Weyl unitaries
again

Wϕ(hϕ) = W(hϕ), W(hπ) = W(hπ), (2.70)
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which satisfies the CCR in the Weyl form

Wϕ(hϕ)Wπ(hπ)Wϕ(h′ϕ)Wπ(h′π) = Wϕ(hϕ + h′ϕ)Wπ(hπ + h′π)e
2iIm<h′ϕ,hπ>h , (2.71)

W∗
ϕ(hϕ) = Wϕ(−hϕ), (2.72)

W∗
π(hπ) = Wπ(−hπ). (2.73)

The field operator at a fixed time ϕ( fϕ) and its canonical conjugate momentum
field π( fπ) are defined through the formulas

Wϕ(Eϕ( fϕ)) = eiϕ( fϕ) = Wϕ( fϕ), (2.74)

Wπ(Eπ( fπ)) = eiπ( fπ) = Wπ( fπ). (2.75)

Now to finish we define the local algebras properly and the quantization maps at
fixed time.

Consider a spatially complete region C ⊂ Rd−1 and its (open) space comple-
ment C ′ = Rd−1 − C. The first quantization map is given by

C ⊂ Rd−1 → Kϕ(C) = {Eϕ( f ) : f ∈ S(Rd−1, R), supp( f ) ⊂ C} ⊂ hϕ, (2.76)

C ⊂ Rd−1 → Kπ(C) = {Eπ( f ) : f ∈ S(Rd−1, R), supp( f ) ⊂ C} ⊂ hπ. (2.77)

The following can be realized as well

Kϕ(C) = {Eϕ( f ) : f ∈ H− 1
2 (Rd−1, R), supp( f ) ⊂ C}, (2.78)

Kπ(C) = {Eπ( f ) : f ∈ H
1
2 (Rd−1, R), supp( f ) ⊂ C}. (2.79)

For the second quantization map, associates for each pair Kϕ ⊂ hϕ and Kπ ⊂ hπ

of R-linear closed subspace a von Neumann algebra

(Kϕ, Kπ) → R(Kϕ, Kπ) = {Wϕ(kϕ)Wπ(kπ) : kϕ ∈ Kϕ, kπ ∈ Kπ}′′ ⊂ B(H). (2.80)

The net of local algebras C ⊂ Rd−1 → R0(C) ⊂ B(H) of the free Hermitian scalar
field at a fixed time is then defined as the composition of the first and second
quantization map, i.e.,

R0(C) = R0(Kϕ(C), Kπ(C)). (2.81)
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Also, holds the following relations,

R0(C1) ⊂ C2, if C1 ⊂ C2,

R0(C1 ∪ C2) = R0(C1) ∨R0(C2),

R0(C′) = R0(C)′,
R0(R

d−1) = B(H).

(2.82)

Given any spatially complete region C ⊂ Rd−1, we define OC ⊂ Rd its domain of
dependence. Then the following relation holds,

K(CO) = Kϕ(C)⊗R Kπ(C), (2.83)

and hence the desired claim in the beginning of the section is now established:

R0(C) = R(OC). (2.84)

A final example is of importance.
Example. Given f ∈ S(Rd, R), define

F(x) =
∫ d

R
∆(x − y) f (y)ddy, (2.85)

where ∆(x) = −i(2π)−(d−1)
∫ d

R
eip · xδ(p2 − m2)sign(p0)dd p. Indeed one can see

(□+ m2)F = 0 and we can take its initial Cauchy data at x0 = 0 through

fϕ(x⃗) = − ∂F
∂x0 (0, x⃗), fπ(x⃗) = F(0, x⃗). (2.86)

Finally, also can be shown fϕ, fπ ∈ S(Rd, R) and

E( f ) = Eϕ( fϕ) + Eπ( fπ). (2.87)

Moreover, since F(x) = 0 if x ∈ supp( f )′, then we have supp( f ) ⊂ OC and
supp( fϕ), supp( fπ) ⊂ C.



Chapter 3

Entropy and Energy Conditions

Since the algebra of a finite region is defined, it is important to describe the so-
called microstates contained within it. This is linked, in a sense, to the information
associated with a vector or a wave. However, as will be demonstrated, there are
numerous complications arising from the degrees of freedom, energy localization,
boundedness, and unboundedness.

3.1 Relative Entropy

First, we shall define entropy with respect to a Hilbert space and try to relate
the concept of distinguishability of two different states as in [17].

Let A be a subsystem of interest with a Hilbert space HA and B the whole rest
with a Hilbert space HB. We can build a whole new Hilbert space HAB from the
product of HA with HB:

HAB = HA ⊗HB. (3.1)

Consider the case of vectors ψAB from HAB that can be written as a product of
unit vectors ψA ∈ HA and ψB ∈ HB. Any measure made on ψA can be evaluated
completely without make any mention to ψB. In the cases it cannot be done, in a
sense of states ψAB that cannot be written as product of states ψA with ψB then it
is said to be a generic pure state entangled. For any pure state, one can write

ψAB = ∑
i

√
piψ

i
A ⊗ ψi

B, (3.2)

where ψi
A and ψi

B are orthonormal by assumption,

(ψi
A, ψ

j
A) = (ψi

B, ψ
j
B) = δij, (3.3)

and that pi > 0.

26
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Suppose an operator OA on HA. The expectation value is

(ψAB, OA ⊗ 1ψAB) = ∑
i

pi(ψ
i
A, OAψi

A). (3.4)

One can use the density matrix definition,

ρA = ∑
i

pi

∣∣∣ψi
A

〉 〈
ψi

A

∣∣∣ , (3.5)

to write the (ψAB, OA ⊗ 1ψAB) as

TrHA ρAOA. (3.6)

From the definition of the density matrix ρ one can see that it is hermitian and
positive semi definite and also has trace 1.

Now let us introduce the von Neumann entropy of a density matrix ρA defined
as

S(ρA) = −TrρA log ρA. (3.7)

Worth to notice that since the trace represents the class of a representation, the den-
sity matrix is invariant under a unitary transformation. Then one can diagonalize
ρA as follows,

ρA = ∑
i

pi

∣∣∣ψi
A

〉 〈
ψi

A

∣∣∣ , (3.8)

therefore,
S(ρA) = −∑

i
pi log pi. (3.9)

Since the p′is represents probability and the states ψi
A are orthonormal, the von

Neumann entropy is bounded
S(ρA) ≥ 0, (3.10)

with the equality for a pure state, only one of pi are 1 and the rest are zero. The
upper bound can be seen considering a system with K states,

S(ρA) ≤ log K, (3.11)

with the equality only if

ρA =
1
K

diag(1, 1, . . . , 1). (3.12)
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In this case, A is in a maximally mixed state. For a system AB in a pure state
ψAB = ∑i

√
piψ

i
A ⊗ ψi

B ∈ HA ⊗HB then S(ρA) = S(ρB) in a sense of they have
the same probability and consequently the entropy SAB vanishes.

Let us move forward and start to define ways to distinguish or quantify the
entanglement. First, suppose a general case in which A and B has an amount of
information. Also suppose A can make measurements on B and vice versa.

Definition 3.1.1 The quantum conditional entropy is given by

S(A|B) = SAB − SB, (3.13)

which represents the entropy that remains in B once A is known.

The conditional entropy can be negative, for instance if the system AB is an
entangled pure state. The entropy of the system vanishes, SAB = 0, but as the
system B is in a mixed state, SB > 0, and in this case one have S(A|B) < 0. The
quantity SAB − SB is the information unknown for B after make a measurement.
Also, it is of interest to know the inverse, i.e., quantify how much is known.

Definition 3.1.2 The quantum mutual information given by

I(A; B) = SA − SAB + SB. (3.14)

That measures how much is known about A after a measurement in B.

The quantum mutual information is non-negative

I(A; B) ≥ 0. (3.15)

Moreover I(A; B) = 0 if and only if the density matrix factorizes

ρAB = ρA ⊗ ρB. (3.16)

And now the most important concept of this section arise, the relative entropy.

Definition 3.1.3 For ρ and σ two density matrices of the same Hilbert space. The
quantum relative entropy can be defined by

S(ρ||σ) = Tr ρ(log ρ − log σ), (3.17)

and it quantifies the difference between two probability distributions ρ and σ.
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If σ is put on a diagonal form, nothing says ρ is diagonal on the same basis. Denote
ρD the diagonal elements of ρ. Using that Tr ρ log σ = Tr ρD log σ, the difference
S(ρ||σ)− S(ρD||σ) can be written as

S(ρ||σ) = S(ρD||σ) + S(ρD)− S(ρ). (3.18)

But follows from the entropy concavity property that if one diagonalize a density
matrix its entropy increase

S(ρD)− S(ρ) > 0, (3.19)

and the right-hand side of (3.18) is positive, guaranteeing the relative entropy
positivity. Also, if σ = diag(q1, . . . , qn) and ρD = (p1, . . . , pn), then,

S(ρD||σ) = ∑
i

pi(log pi − log qi), (3.20)

being zero only if ρ = σ and one have a lower bound for the relative entropy,

S(ρ||σ) ≥ 0. (3.21)

Considering a Canonical ensemble such that σ is a Gibbs thermal density matrix
at some fixed temperature T = 1/β and a Hamiltonian H for the system,

σ =
exp{−βH}

Z
. (3.22)

So, log σ = −βH − log Z and therefore the relative entropy between any density
matrix ρ and σ is

S(ρ||σ) = Tr ρ(log ρ − log σ)

= −S(ρ) + Tr ρ(βH + log Z),

= β(E(ρ)− TS(ρ)) + log Z,

(3.23)

where the average energy computed in the density matrix ρ is

E(ρ) = Tr ρH. (3.24)

One can then define the free energy as

F(ρ) = E(ρ)− TS(ρ), (3.25)
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and the log Z term is independent of ρ and gives a constant that ensure that
S(σ||σ) = 0. So

S(ρ||σ) = β(F(ρ)− F(σ)), (3.26)

relates the relative entropy with the difference of the available energy for the
system described by the respective density matrix. It holds for any evolution
of the system which preserves thermal equilibrium at a fixed temperature β, for
instance time. The density matrix σ is mapped into itself, but it maps ρ to a
generally different density matrix ρ′. The consequence is that the relative entropy
can only go down under an evolution, i.e.,

S(ρ||σ) ≥ S(ρ′||σ), (3.27)

and therefore
F(ρ) ≥ F(ρ′). (3.28)

As well the evolution that preserves thermal equilibrium can only reduce the free
energy.

Let us apply the above construction to a drastically different situation: a black
hole. The density matrices can be seen as describing the inside and outside of the
black hole, and it is of interest to understand how the information can be detailed
in both regions. The example of a black hole is of interest in what follows because
of the notion of the split of spacetime, i.e., the split into the inside and outside of a
region.

Consider a black hole of some mass M and area (in the sense of a boundary)
A. If something with a huge amount of entropy, like a box, falls inside a black
hole, then its information is completely erased from the universe. This statement
completely goes against the second law (SL) of thermodynamics. Based on the fact
that the area of a black hole is entirely proportional to its mass, there is an Area
Theorem which states that the black hole event horizon never decreases with time.
Since the mass of the box falling inside the black hole increases its mass, its area
will increase respectively. But since, until now, things only enter and never leave
the black hole, the black hole area, not emitting particles, can never have its area
decreasing. In terms of information (entropy), when an object falls inside a black
hole, to an outside observer, the information is lost forever. A naive example is
that of a hot cup of tea put inside a fridge; after some time, the fridge and the cup
of tea will be cold enough, and the “hot” information is lost. What happened was
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that the observer forgot that the fridge warms the kitchen, and there is a balance
guaranteeing the SL of thermodynamics. Based on this, there is the Bekenstein
black hole entropy, suggesting that the black hole by itself has entropy which is
proportional to its area,

SBH =
A
4

. (3.29)

Moreover, Bekenstein proposed that the SL of thermodynamics is valid only when
the entropy of matter exterior to the black hole and the black hole entropy are
taken into consideration:

Sgen = SBH + Sout,

Sgen =
A
4
+ Sout.

(3.30)

The last statement is called the generalized second law (GSL) of thermodynamics,
which can be stated as follows:

Sgen = Sin + Sout. (3.31)

From the first law of thermodynamics, the black hole must have a temperature
proportional to its entropy and mass. By the notion of a black body, if a black
body has a nonzero temperature, then it radiates. But, until now, a black hole
does not radiate, i.e., no matter escapes from its event horizon. Then, there is
Hawking radiation, asserting that a distant observer will detect a thermal spectrum
of particles coming from the black hole at a certain temperature. This occurs only
very far away from the black hole. Now, a radiating black hole will lose mass,
shrink, and disappear, just as the fridge information would do if there were no
motors. Also, a certain box of mass and size can have arbitrary entropy as one
desires, and the GSL could still be violated. From the idea of an object of any
amount of entropy falling inside a black hole, it would increase the black hole
area, and one may conclude that the black hole can have any undefined amount of
information, and it should have no dependence on the energy stored in the black
hole.

Bekenstein then came up with a nice inequality concerning a universal bound
for the entropy. The GSL implies the Bekenstein bound:

Smatter ≤ λ2π E R, (3.32)
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where E is the mass-energy, R is the radius of the smallest sphere that fits around
the matter system, and λ is some constant.

A nice proof of the Bekenstein bound is given by Casini, and it is in terms of the
relative entropy of the density matrix of some region V, and the inequality follows
for some local form of energy. This local form of energy is by no means obvious to
evaluate, and some general concept of time evolution needs to be defined.

3.2 Bekenstein Bound

Here will be reproduced the Casini’s proof on the Bakenstein bound [see 4].
Consider a spatial region V lying on a Cauchy surface. Associate to V an

algebra of operators A(V). Suppose the Hilbert space can be decomposed as
a tensor product H = H⊗H−V , where −V is the complement on the Cauchy
surface of V. Now define the reduced density matrix,

ρV = Tr−V ρ, (3.33)

where the trace is over the Hilbert space H−V . The entropy then is given by,

S(ρV) = −Tr ρV log ρV , (3.34)

which is divergent by a couple of reasons. The first reason we can mention is
due to the degree of freedom, which in usual quantum field theory is infinity
and consequently the von Neumann algebra is of type I I I, see Appendix A,
the traceless one. The second divergence reason that we can mention is due to
the cloud of vacuum fluctuations, which is present for any state. For the first
divergence kind, one can consider a situation of a cutoff theory. For the second
divergence kind, just subtract from the system entropy the entropy in the vacuum
state ρ0

V = Tr−V |0⟩ ⟨0| corresponding to the same region V. The well-defined
entropy is then

SV = S(ρV)− S(ρ0
V) (3.35)

Now let us analyze how the energy on V can be defined. The energy of a
localized state ρV cannot be computed, since the Hamiltonian operator is defined
in the whole Hilbert space, while the local density matrices act on the operator
algebra generated by the observable localized in V. A localized definition of
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energy is needed. Take the local vacuum density matrix to be like

ρ0
V =

e−K

Tr e−K . (3.36)

The Hermitian and positive definite matrix ρ0
V can always be written in this way

since it has no zero eigenvalues (except when V is the whole space, where it
becomes the vacuum state projector). The Hermitian and dimensionless operator
K is the local Hamiltonian for V. We suppose here the state on V to be thermal
with respect to a given notion of time. We hypothesize that exist an automorphism
which takes care of the evolution of the system at a fixed temperature, and a
Hamiltonian can be defined with respect to this automorphism. The reduced
density matrix is of the form

ρV =
eβE

Tr e−βE , (3.37)

with E the time translation operator and β the inverse temperature. Comparing
with the vacuum density matrix (3.36), the Hamiltonian is given by,

K = βE. (3.38)

For example, one have this kind of Hamiltonian for a black hole in a Hartle-
Hawking state. For a Schwarzschild one, it is given by K = 8πGME, where E
is the energy operator eigenvalue as measured by asymptotic observers, and M
the black hole mass. The energy operator must be integrated over the exterior of
the black hole region. Now, it is a matter of fact the equation (3.36) does not care
with some replacement K → K + c for c a constant. Then is made a new kind of
vacuum subtracting

KV = Tr(K ρV)− Tr(K ρ0
V). (3.39)

The Bekenstein bound now reads

SV ≤ KV , (3.40)

which is,
S(ρV)− S(ρ0

V) ≤ Tr KρV − Tr Kρ0
V . (3.41)

Taking the trace of (3.36), we have,

K = − log ρ0
V − log Tr e−K. (3.42)
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Using now the fact the density matrices has trace one, Tr ρV = Tr ρ0
V = 1, the

bound is written as,

Tr(ρV log ρV)− Tr(ρV log ρ0
V) ≥ 0. (3.43)

The final result is the statement of the positivity of the relative entropy (3.21) for
S(ρV |ρ0

V) between local density matrices corresponding to the state of the system
and the vacuum, both reduced to V.

The proof is based on the difficult process of localization. It relates the coher-
ent states as perturbation of the vacuum and the vacuum itself and how much
distinguishable they are depends on how much energy (effort) one wants to use to
localize it, as well, by providing more spatial room to distinguish them [see 3].

3.3 Quantum Null Energy Condition

Considering two neighboring points and a congruence of curves, in a sense of
a family of curves, one through each point of a neighborhood subspace. Define a
vector representing the separating of corresponding points in neighboring curves.
Then one can evaluate, via Lie derivative, the distance of the corresponding points
on neighboring curves with respect to the tangent vector of null geodesics. It is
obtained the Raychaudhuri equation for timelike geodesics [18, 5],

dθ

dλ
= − 1

D − 2
θ2 − σabσab − Rabkakb, (3.44)

where θ is the trace of the rate of separation expansion, D is the spacetime dimen-
sion, Rab the Ricci tensor and σ the shear.

Suppose now a null vector W and from the Einstein equation

Rab −
1
2

gabR + Λgab = 8πTab, (3.45)

one can assert, [18, ch. 4], that the energy density is always measured as non-negative
by any observer. But only for the following case:

TabWaWb ≥ 0, i f f RabWaWb ≥ 0 ∀Λ. (3.46)

The right-hand side of the condition above is called null curvature condition. Finally,
the classical focusing theorem is announced [5].
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Theorem 3.3.1 In a spacetime satisfying the null curvature condition, the expansion is
non-increasing at all regular (except where two neighbors curves intersects, the so-called
caustic points) points of a surface orthogonal null congruence:

dθ

dλ
≤ 0. (3.47)

Basically light rays always get focused, never anti-focused by matter.
There are now two problems. The first resides in quantum field theory. Take,

for instance, a free field ϕ(x) and its energy-momentum density tensor Tµν(x), for
which the vacuum expectation value is zero. Although the energy operator P0 is
self-adjoint and positive, T00(x) is not positive, even when smeared out in space
and time with a positive test function. Consider, for instance, the expectation
value of a product of fields at the same spacetime point. It is also shown to be an
unavoidable phenomenon for any local quantum field theory [see 2]. The second
problem resides in black hole theory. The event horizon is a null surface, and
the expansion θ can be expressed in terms of the area. It follows that the black
hole entropy (which is related to the area) is always increasing. If one considers
Hawking radiation, the black hole will lose mass and evaporate, contradicting the
second law of thermodynamics. To fix this, one considers the generalized second
law of thermodynamics (3.31). It remains to obtain a quantum focusing conjecture,
which will lead to a quantum version of energy positivity.

First, consider a σ spacelike codimension-2 surface that splits a Cauchy surface
Σ into two portions Σinside and Σout so that σ need not be connected nor compact.
Choose out of four null hypersurfaces orthogonal to σ the one which terminated
by caustic. For each point y of σ exist one generator of N. Take λ to be an affine
parameter along the generator such that λ = 0 on σ and λ is increasing away from
σ. Basically now one have a coordinate system (λ, y) for N. Define a function
V(y) ≥ 0 which is a slice in N and consists of generators y for each λ = V, in
such a way, a surface is defined, and the entropy is defined by S[V(y)]. Consider
a second slice which differs from the first only in a neighborhood of generators
near a given y1, forming an infinitesimal area A

Vε(y) = V(y) + εηy1(y), (3.48)

which ηy1 = 1 in an infinitesimal neighborhood of area A around y1 and is
zero otherwise. The quantum expansion is now defined by the derivative of the
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generalized entropy after the deformation, Vε(y),

Θ[V(y), y1] = lim
A→0

4Gh̄
A

dSgen

dε

∣∣∣∣
y1

=
4Gh̄√
g(y1)

δSgen

δV(y1)
. (3.49)

It is with
√

g being the metric induced by the area element. Using now the
generalized entropy formula (3.31) one can write,

Θ = θ +
4Gh̄

A
S′

out, (3.50)

quantifying some change of the quantum area and relates to the classical geometric
change of area that would be happening plus some change in the boundary
between what is out and in. The Quantum Focusing Conjecture (QFC) becomes

0 ≥ Θ′ = θ′ +
4Gh̄

A
(S′′

out − S′
outθ). (3.51)

Choosing some congruence with tangent vector ka, such that the shear and con-
gruence both vanish at some point, one obtain

< Tkk > ≥ h̄
2πA

S′′
out, (3.52)

by using (3.44) and (3.45). For the limit h̄ → 0, the positivity of energy < Tkk >≥ 0
is given at any point. For the limit of h̄ considerable, it is obtained the QFC implies
the Quantum Null Energy Condition (QNEC)

< Tkk > ≥ h̄
2πA

S′′, (3.53)

which does not depend on G and is entirely a statement about quantum field
theory. The second variation of the entropy of a region places a lower bound on
the energy-momentum tenor null component of a field localized there. At the
moment is the closest to an important connection between locally, energy density
and information [5, 3]. The knowledge of all information in a given region places
a lower bound on the energy in the complementary region.
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3.4 Motivation to the Modular Hamiltonian

In Casini’s proof of the Bekenstein bound, an operator K was considered, be-
ing the Hamiltonian operator for a specific region V. For the relative entropy
calculation, a problem was then faced: the degree of freedom of quantum field
theory turns the von Neumann entropy into a traceless quantity. To better un-
derstand this, consider a physical system of volume V with N particles inside.
Consequently, we have a finite number of degrees of freedom. Consider again K
to be the Hamiltonian describing the entropy S. The mean value of an observable
a when S is in an equilibrium state is, as usual,

ω(a) =
1
Z

Tr(e−βKa), (3.54)

where β is the inverse temperature and Z = Tr(e−βK) is the partition function.
The entire statistical interpretation and Casini’s proof work well for the above
consideration of a finite number of particles.

Now, extend the number of particles N and the volume V to infinity in such
a way that the density N/V is fixed. The partition function (just as in quantum
field theory) becomes an undefined quantity. A new way to characterize the
equilibrium state is needed to investigate the QNEC, for instance, in the quantum
field theory scenario.

Another fact very interesting is that the time flow in quantum theory for an
observable A is given by,

At = αt(A) = eitH0 Ae−itH0 , (3.55)

and the density (which we can, and we shall associate it for a state of the algebra)
is

ρ[A] = Tr[Aρ] = ω(A). (3.56)

The relation between a Gibbs state ρ0 and H0 is

ρ0 = Ne−βH0 . (3.57)
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The correlation amplitude can be written as

ωβ((αt A)B) = Z−1Tr(eβHeiHt Ae−iHtB) = Z−1Tr(BeiH(t+iβ)Ae−iHt)

= Z−1Tr(BeiH(t+iβ)Ae−iHte−iβHeiβH)

= ωbeta(BeiH(t+iβ)Ae−iH(t+iβ))

= ωβ(Bαt+iβ A).

(3.58)

Then we can state the KMS equilibrium condition: a state ω from a certain algebra
is a KMS (Kubo-Martin-Schwinger) state at inverse temperature β = 1/kbT (kb

the usual Boltzmann constant and T the temperature) with respect to some one-
parameter group of automorphism in the algebra if the function f (t) = ω(B(γt A))

is analytic in the strip 0 < Im t < β. The condition of analyticity implies
ω((γt A)B) = ω(B(γt+iβ A)).

The consequences of the above construction ares various. As Carlos Rovelli in
the thermal time hypothesis study says: in a quantum system with an infinite number of
degrees of freedom, what we generally measure is the effect of small perturbations around a
thermal state. Suppose a free scalar field. The propagator is given by

F(t) = ⟨0| ϕ(x⃗, t)ϕ(x⃗, 0) |0⟩ = ω0(γt(ϕ(x⃗, 0))ϕ(x⃗, 0)). (3.59)

The ω0 is the vacuum sector over the field algebra and γt is the time flow being
the one from KMS condition as described before. The evolution of a prepared state
A to a state B, B being a perturbation of the state A, is dictated by the thermal time
flow. In order to better understand, consider a gas in a room. There is a preferred
Lorentz frame in which the average momentum of the gas is at rest. For the others
frame, there is a thermal bath happening. That is the relation between Lorentz
time (the one with no thermal bath) and other time flow with thermal bath.

There is a very important theorem, the Tomita-Takesaki theorem, which asso-
ciates a specific flow to an algebra of operators acting in a Hilbert space with a
preferred cyclic and separating vector (usually the vacuum). The flow is given by
a modular operator ∆. We can write ∆ = e−K (note that this is the exact expression
used in Casini’s proof of the Bekenstein bound), and U(t) = e−itK, where K is
the modular Hamiltonian, a self-adjoint operator whose spectrum will generally
extend from −∞ to +∞ and has a zero eigenvalue for the cyclic and separating
eigenvector. Then, one can say that the KMS condition generalizes Gibbs states,
which describe the equilibrium condition for infinite systems. Also, it is worth
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writing K = − log(∆) and calling it the generator of an intrinsic evolution, where
the positivity of energy is now the KMS condition.

Everything seems nice, but what if one wants to consider the above construc-
tion of entanglement, entropy, and energy of states in a local region? Associate
a von Neumann algebra A(O) to the spacetime region O with a cyclic and sep-
arating vacuum sector. Additionally, one can assign to O the modular group
associated with the time flow and, consequently, a modular Hamiltonian log(∆O).
As discussed before, the measurement of a state can be seen as the measurement
of perturbation from the vacuum. Hence, it is of interest to quantify how dis-
tinguishable a state (perturbed from the vacuum) is from the vacuum itself. A
formula for this has already been given, i.e., the relative entropy (3.17). But, as
discussed, in general quantum field theory, the von Neumann algebra is of type
III (see Appendix A), and the trace does not exist. Now arises a very important
formula, the Araki-Uhlmann relative entropy between two faithful normal states
on the von Neumann algebra:

S(ϕ||ψ) = − ⟨ϕ| log ∆ |ψ⟩ = S(ρϕ||ρψ). (3.60)

The problem of infinity in the calculation of relative entropy is avoided, but a new
problem of how to obtain the exact expression for the modular Hamiltonian is
introduced. The interest in how we can define the entropy of a wave packet (real
solutions of the Klein-Gordon equation) is natural. But how can one define the
entropy carried by a wave? What about the energy-entropy conditions stated in the
previous sections? Can they be defined? There are many questions surrounding
this construction, and the remainder of the chapters will be dedicated to addressing
them.



Chapter 4

Modular Hamiltonian Theory

It is relevant to build such an intrinsic (time) evolution, which encodes the
thermal states. We proceed to describe the thermal flow associated to these states.
Also, the Araki-Uhlmann relative entropy formula is derived.

4.1 The Tomita-Takesaki Theorem

Consider the following density matrix ρ,

ρβ =
e−βH

Tr(e−βH)
=

e−βH

Z
, (4.1)

to be thermal with respect to the Hamiltonian H at inverse temperature β. Now
consider the time-evolved two-point function of the thermal state. For instance, it
quantifies the projection of a system prepared in the state B to be measured in the
quantum excitation of A. In some sense, after a time evolution (in the Heisenberg
picture sense) of initial state A, how likely it is to be evolved to the state B. A
natural question to be answered in the future is which time parameter is this?

The time evolved two-point function of the thermal state is then given by

< a(t) b >β=< eiHtae−iHtb >β=
Tr(e−(β−it)Hae−iHtb)

Z
. (4.2)

The Kubo, Schwinger and Martinez observation is that we can relate the well behavior
of the Hamiltonian H and the finite trace question with the analytic continuation
from it to more general complex z. If H is bounded, then the following

F(z) =
Tr(e−(β−z)Hae−zHb)

Z
(4.3)

is an analytic function of the entire complex plane. But if H is only bounded from
below, one have the following cases

40
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1. Re(z) < 0 : e−zH diverges,

2. Re(z) > 0 : e−(β−z)H diverges.

The KMS observation is then translated to a vertical strip of the complex plane
given by 0 ≤ Re(z) ≤ β, which delimits the two-point function analytic range.

A problem arises at this moment, because thermal functions only can be com-
puted at finite volume [see 19]. In some sense, at large volume the vacuum
fluctuations will be considerable and this is what is on concern in the Casini’s
proof of the Bekenstein bound when the vacuum subtraction is made. But, there,
a finite volume is considered. Before, it was only used that the thermal density
matrix ρ can be computed in finite volume by a path integral on W × I where W
correspond to a finite spatial lattice and I is the analytic range 0 ≤ τ ≤ β. Then
one just subtract the free density energy from T00 volume integral to subtract out
the vacuum fluctuations. This procedure suffices to obtain a normalized density
matrix at finite volume.

Introduce the Thermal Double Field construction such that the thermal double
field resulting can be seen as a purification of the thermal density matrix. First,
double the degrees of freedom such that from the usual Hilbert space H one
have now the doubling Hilbert space Hl ⊗Hr which is preferable to see the left
Hilbert space Hl to be just the complex conjugation of the right Hilbert space Hr and
consequently the left Hilbert space is just the time reversal conjugate to the right
system. Suppose the Hamiltonian with eigenstate ψi and eigenvalue Ei. Hence,
the double thermofield is ΨTFD, a vector in Hr ⊗Hl defined as,

|ΨTFD⟩ =
1√
Z

∑
i

e−βEi/2 |i⟩l ⊗ |i⟩r , (4.4)

i.e., a pure state in the double thermal system with right (and left) density matrix
being indistinguishable from a thermal state as follows

ρr = TrHl |ΨTFD⟩ ⟨ΨTFD| =
1
Z ∑

i
e−βEi |i⟩r ⟨i|r =

1
Z

e−βHr . (4.5)

To avoid the problem of vacuum fluctuations in Hr and Hl, on volume V when
V → ∞ which causes the divergence, we can say that for a and b acting on H exist
a Hamiltonian H = Hr − Hl acting on Hr ⊗Hl and a state ΨTFD in Hr ⊗Hl . Also,
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one have the following relations

ar |ΨTFD⟩ = e−βH/2a†
l |ΨTFD⟩ , (4.6)

al |ΨTFD⟩ = e−βH/2a†
r |ΨTFD⟩ , (4.7)

(4.8)

such that
H |ΨTFD⟩ = 0. (4.9)

Now it is possible to write the partition function of a thermal field in the form
of a vacuum-vacuum transition amplitude and the zero temperature case will be
a special case. For more details about double thermal field and its application,
see Das [20] and Guo [21]. After all the motivations above, now one can define
the KMS condition, the desire conditions for the total Hilbert space H, the von
Neumann algebra A and the states needs to satisfy to be well-behaved. The rest
of the section is devoted to construct the Tomita-Takesaki theory and is strongly
based on the very recent approach due to Sorce [22].

Definition 4.1.1 Let H be a Hilbert space, |Ω⟩ a state, and A a von Neumann algebra.
Let H be a self adjoint, possibly unbounded operator. The state |Ω⟩ is said to satisfy the
KMS condition with respect to A and H at inverse temperature β if the following hold.

1. H generates a symmetry of the state for all t ∈ R such that

e−iHt |Ω⟩ = |Ω⟩ , (4.10)

2. H generates an automorphism of the algebra such that for all t ∈ R and for all
a ∈ A one have

eiHtae−iHt ∈ A, (4.11)

3. The two-point functions of A in the state |Ω⟩ look thermal with respect to the flow
generated by H: for all a, b ∈ A the function

F(it) = ⟨Ω| eiHtae−iHtb |Ω⟩ = ⟨Ω| ae−iHtb |Ω⟩ , (4.12)

admits a bounded analytic continuation to the vertical strip 0 ≤ Re(z) ≤ β and on
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the right boundary of this strip the analytic continuation is given by

F(β + it) = ⟨Ω| beiHtae−iHt |Ω⟩
= ⟨Ω| beiHta |Ω⟩ .

(4.13)

Finally, the thermal nature is expressed as a property of the analytic structure of
the two-point function. We can notice that there is a requirement that for any a ∈ A
there is b† ∈ A′, yielding to establish: SA |Ω⟩ = A′ |Ω⟩. That is the motivation to
define an anti-linear operator S0, on the domain DS0 = A |Ω⟩, by,

S0x |Ω⟩ = x† |Ω⟩ , x ∈ A. (4.14)

Assume |Ω⟩ to be cyclic and separating for A and consider the densely defined
operators

S0 (a |Ω⟩) = a† |Ω⟩ , (4.15)

F0 (a′ |Ω⟩) = (a′)† |Ω⟩ . (4.16)

For any a′ ∈ A, and any a |Ω⟩ in the domain of S0, one can have

〈
S0aΩ

∣∣a′Ω〉 = 〈a†Ω
∣∣∣a′Ω〉 =

〈
(a′)†Ω

∣∣∣aΩ
〉

. (4.17)

So S†
0 can act on a′ |Ω⟩ and its action is determined by〈

aΩ
∣∣∣S†

0a′Ω
〉
=
〈

aΩ
∣∣∣(a′)†Ω

〉
. (4.18)

Uniquely fixing S†
0 to act (antilinearly) on a′ |Ω⟩ as S†

0(a′ |Ω⟩) = (a′)† |Ω⟩ implies
S†

0 ⊇ F0. From the fact above, there is a dense subspace of H on which the adjoint
S†

0 of S0 is defined, we conclude that S0 is preclosed. Moreover, S†
0 is defined on

the domain of F0, which is A′ |Ω⟩ and is dense. By symmetry the converse is also
true and F†

0 ⊇ S0 and then F0 is preclosed as well. Denote their closures by S and
F, such that F ⊆ S† and S ⊆ F†.

Recall that for a closed operator T, with domain D(T), to affiliate to A one just
need that T commutes with any element of A′, the commutant of A [see 23, cap. 2].
Suppose now |Ω⟩ in the domain of T and T′, also suppose |ψ⟩ in the domain of S
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such that

|ψ⟩ = T |Ω⟩ ,

S |ψ⟩ = T† |Ω⟩ .
(4.19)

Assume at first sight T and T′ to be affiliated to A such that it act on a′ |Ω⟩ as

Ta′ |Ω⟩ = (a′)T |Ω⟩ = (a′) |ψ⟩ (4.20)

and
T†a′ |Ω⟩ = a′T† |Ω⟩ = a′S |ψ⟩ . (4.21)

Define the operators α0 and β0 on the domain A′ |Ω⟩ by

α0a′ |Ω⟩ = a′ |ψ⟩ ,

β0a′ |Ω⟩ = a′S |ψ⟩ .
(4.22)

For b′ ∈ A′, one have 〈
b′Ω

∣∣ α0
∣∣a′Ω〉 = 〈b′Ω∣∣a′ψ〉

=
〈
(a′)†Ω

∣∣∣ψ〉
=
〈

F(b′)†a′Ω
∣∣∣ψ〉

=
〈

F†ψ
∣∣∣(b′)†Ω

〉
.

(4.23)

But since F† ⊇ S, and |ψ⟩ is in the domain of S one have

〈
b′Ω

∣∣ α0
∣∣a′Ω〉 = 〈Sψ

∣∣∣(b′)†a′Ω
〉

=
〈
b′Sψ

∣∣a′Ω〉
=
〈

β0b′Ω
∣∣a′Ω〉 .

(4.24)

The above gives the inclusion α†
0 ⊇ β0 and by symmetry β† ⊇ α0. Then α0 is

preclosed and denote by T its closure. To prove effectively that T is affiliated to A,

Ta′b′ |Ω⟩ = α0a′b′ |Ω⟩ = a′b′ |ψ⟩ = a′α0b′ |Ω⟩
= a′Tb′ |Ω⟩ .

(4.25)

So T commutes with any element of A′ and by definition is affiliated to A. Also,
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notice that |Ω⟩ is in the domain of both T and T†. The final conclusion is the
following

ST |Ω⟩ = Sα0 |Ω⟩ = S |ψ⟩ = β0 |Ω⟩ = T† |Ω⟩ . (4.26)

Hence, we can start from the fact T is closed and affiliated to A. Since T is
closed, we can make the polar decomposition as T = u|T|. Considering Tn = u|T|n
to be defined by projections of |T| on the spectral subspace [0, n], each Tn is in A,
so each Tn |Ω⟩ is in the domain of S and maps to T†

n = u†|T†|n |Ω⟩. The spectral
theorem guarantees these sequences converges

Tn |Ω⟩ → T |Ω⟩ ,

STn |Ω⟩ → T† |Ω⟩ .
(4.27)

The final conclusion is that since S is a closed operator, this implies that T |Ω⟩ is in
the domain of S, with ST |Ω⟩ = T† |Ω⟩.

Suppose |ψ⟩ to be in the domain of F† and using the result that T |ψ⟩ = |ψ⟩ ∈
DF† one can conclude |ψ⟩ is in the domain of S. But it is a fact that |ψ⟩ ∈ DS so
then S = F†. Moreover, DS2 = DS and follows that S2 = 1DS . Now worth to note
that since S is a closed, densely defined, conjugate-linear operator, and F = S†,
it follows that FS and SF are positive self-adjoint linear operators [24]. From the
previous domain characterization, S and F has the range as the same as its domain,
is invertible , and coincides with its inverse.

Define the polar decomposition of S to be

S = J∆1/2 = ∆−1/2 J, (4.28)

where ∆1/2 is a positive, self-adjoint given by ∆1/2 =
√

SS† and J is an antilinear
partial isometry whose support is supp(J) = Ker(S)⊥. Since S2 = 1DS , the domain
of S is equal to the image of S, the kernel of S is trivial and J is supported on all
Hilbert space.

Also one have
1DS = J∆1/2 J∆1/2, (4.29)

since the kernel of ∆ is the same as the kernel of S, so ∆ is invertible on its domain
and follows that

J∆1/2 J ⊇ ∆−1/2. (4.30)

If one take an arbitrary |ψ⟩ in the domain of J∆1/2 J then J |ψ⟩ is in the domain of
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∆1/2, which is equal to the domain of S. Must exist an arbitrary |η⟩ in the domain
of S such that

J |ψ⟩ = S |η⟩ = J∆1/2 |η⟩ , (4.31)

and it is possible to conclude |ψ⟩ = ∆1/2 |η⟩. Hence, every vector which is in the
domain of J∆1/2 J is in the image of ∆1/2 and in the domain of ∆−1/2 so that

J∆1/2 J = ∆−1/2. (4.32)

Now one can observe the following,

∆−1/2 = J∆1/2 J = J(J J†)∆1/2 J = J2(J†∆1/2 J). (4.33)

By uniqueness of the polar decomposition of the closed operator ∆−1/2, one must
have J2 = 1. Also follows that

F = S† = ∆−1/2 J† = ∆1/2 J = J∆−1/2. (4.34)

To summarize, the notations are as follows

• S is the Tomita operator,

• J is the modular conjugation,

• ∆ is the modular operator.

Suppose the modular operator to be written as ∆1/2 = e−K/2 such that a, b ∈ A
obey 〈

b†Ω
∣∣∣aΩ

〉
=
〈

SbΩ
∣∣∣Sa†Ω

〉
=
〈

J∆1/2bΩ
∣∣∣J∆1/2a†Ω

〉
=
〈

e−K/2a†Ω
∣∣∣e−K/2bΩ

〉
.

(4.35)

Take the vector T |Ω⟩ in the domain of e−H and the action of e−H is given by〈
a†Ω

∣∣∣ e−H |TΩ⟩ =
〈

T†Ω
∣∣∣aΩ

〉
. (4.36)
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But also one have 〈
a†Ω

∣∣∣∆ |TΩ⟩ =
〈

∆1/2a†Ω
∣∣∣∆1/2TΩ

〉
=
〈

T†Ω
∣∣∣aΩ

〉
.

(4.37)

Since a† |Ω⟩ are dense in the Hilbert space, one have the vector equation

e−H |TΩ⟩ = ∆ |TΩ⟩ . (4.38)

So if a vector is in the domain of ∆, it is also in the domain of e−H and their action
agree. The final conclusion is

∆ = e−H. (4.39)

The most important theorem of the section can be now announced.

Theorem 4.1.1 (Tomita-Takesaki) Let A be a von Neumann algebra, |Ω⟩ a cyclic and
separating vector, ∆ and J as above. For all a ∈ A one have,

eiKtae−iKt = ∆−ita∆it ∈ A, (4.40)

i.e., the following holds for all real t

JAJ = A′, (4.41)

∆itA∆−it = A, (4.42)

∆itA′∆−it = A′. (4.43)

One wants to find the evolution operator which obeys the analytic structure
as defined before. The states a† |Ω⟩ and b |Ω⟩ are in the domain of ∆w for all
0 ≤ Re(w) ≤ 1/2 so that the following

w 7→
〈

∆wa†Ω
∣∣∣∆wbΩ

〉
, (4.44)

is bounded and analytic in the strip 0 ≤ Re(w) ≤ 1/2. Consequently the following

F(z) =
〈

∆z/2a†Ω
∣∣∣∆z/2bΩ

〉
, (4.45)
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is bounded and analytic in the strip 0 ≤ z ≤ 1. On the left strip one have

F(it) =
〈

∆−it/2a†Ω
∣∣∣∆it/2Ω

〉
,

= ⟨Ω| a∆itb |Ω⟩ ,

= ⟨Ω| ae−iKtb |Ω⟩ .

(4.46)

On the right strip one have as well

F(1 + it) =
〈

∆1/2∆−it/2a†Ω
∣∣∣∆1/2∆it/2bΩ

〉
,

=
〈

∆1/2(∆−it/2a†∆it/2)Ω
∣∣∣∆1/2(∆it/2b∆−it/2)Ω

〉
,

=
〈
(∆it/2b†∆−it/2)Ω

∣∣∣(∆−it/2a∆it/2)Ω
〉

,

=
〈

b†
∣∣∣∆−it |a⟩ ,

= ⟨Ω| beiKta |Ω⟩ .

(4.47)

So the function F(z) provides an analytic continuation of the two-point function
satisfying the KMS condition. Recall that for a von Neumann algebra A, we have
an automorphism γt(A) = eitHAe−itH for t a real parameter and H the generator.
The final conclusion is that the thermal flow αt(A) = eiβtHAe−iβtH given by the
modular group which satisfy the necessary bound to the Hamiltonian to exist is
exactly the time evolution group γβt(A) with the time parameter rescaled by β

which is associated to the thermal temperature, i.e. the following holds

αt = γβt, (4.48)

since the Tomita-Takesaki theorem holds. The modular Hamiltonian operator is
defined to be

K = − log ∆. (4.49)

4.2 Araki-Uhlmann Relative Entropy Formula

The usual definition for the entropy of a given density matrix associated to
some region can be written in the von Neumann fashion way,

S(ρ) = −tr(ρ log ρ). (4.50)
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In fact it faces many problems due to the vacuum fluctuations. Motivated by this,
one can introduce the relative entropy. Given two density matrices ρψ and ρϕ

associated to two different states ψ and ϕ the relative entropy is

S(ρϕ|ρψ) = tr(ρψ log ρψ)− tr(ρψ log ρϕ), (4.51)

and as discussed it measures the distinguishability of these states. But in contin-
uum, e.g., quantum field theory, the trace is not defined. Strictly speaking, the von
Neumann algebra associated to the region is of type I I I. The construction that
follows is due Araki [8, 9] that shown a nice way to define the relative entropy. In
Araki way, the relative entropy is not defined under trace class but purely in terms
of the relative modular operator and the modular automorphism.

Start defining a ∗−algebra M of matrices to which A, B and ρ belong. Define a
linear functional ω on M which is positive ω(x∗x) ≥ 0 ∀ x ∈ M and that can be
written in terms of a density matrix ρω ∈ M as follows

ω(x) = tr (ρωx), x ∈ M. (4.52)

Take the linear functional to be normal faithful positive: ω(x∗x) = 0 if x = 0, i.e.,
ρω ≥ 0 and it is in fact satisfied if one consider ρω = eA. Also follows the usual
definition for a density matrix: tr eAB = ω(B).

Introduce now Ψ and Φ to be cyclic and separating vectors of M on a Hilbert
space H. Let SΦ,Ψ be the relative Tomita operator, as before it is an antilinear
operator defined on MΨ as follows

SΦ,ΨxΨ = x∗Φ, x ∈ M. (4.53)

Also one have that SΦ,ΨSΨ,Φ = 1. The absolute square defines the relative modular
operator

∆Φ,Ψ = (SΦ,Ψ)
∗SΦ,Ψ. (4.54)

Given a vector state Ψ, the relative modular operator ∆Φ,Ψ depends only on the
normal faithful positive linear functional

ω(x) = (Φ, xΦ), x ∈ M, (4.55)

and does not depend on the representative vector Φ.
Once the Tomita-Takesaki theorem is established, for a given x ∈ M one can
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introduce the modular automorphism σω
t

σω
t (x) ≡ (∆Φ,Ψ)

itx(∆Φ,Ψ)
−it ∈ M, (4.56)

for all real t and σω
t is a continuous one-parameter group of automorphism of M.

By its structure, the automorphism depends only on ω.
Now introduce the polar decomposition,

SΨ,Ψ = JΨ(∆Ψ)
1/2. (4.57)

The operator JΨ is antiunitary involution such that (JΨ f , JΨg) = ( f , g) and (JΨ)
2 =

1. For all x ∈ M,
jΨ(x) = JΨxJΨ ∈ M′. (4.58)

Where the M′ is defined as the commutant of M.
Define the positive cone VΨ as follows,

VΨ = {(∆Ψ)1/4xΨ, ∀ x ∈ M : ω(x∗x) ≥ 0}. (4.59)

Some properties of the cone are given below.

• ( f , g) ≥ 0 ∀ g ∈ VΨ iff f ∈ VΨ,

• ∀Φ ∈ VΨ and x ∈ M
xjΨ(x)Φ ∈ VΨ, (4.60)

• The set of vectors xjΨ(x)Ψ ∀ x ∈ M is dense in VΨ,

• For all vectors Φ ∈ VΨ is cyclic iff it is separating,

• For all vectors Φ ∈ VΨ, JΦ = JΨ and VΦ = VΨ,

• Given a cyclic and separating Φ exist a unitary u′ in M′ such that VΦ = u′VΨ

and JΦ = u′ JΨ(u′)∗ and

SΦ,Ψ = u′ JΨ(∆Φ,Ψ)
1/2. (4.61)

From the independence of the functional ω on the representative vector when
it is defined for some cone V one obtain that in fact it has a unique representative
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vector ξ(ω) ∈ V such that

ω(x) = (ξ(ω), xξ(ω)). (4.62)

In that way for a faithful ω, ξ(ω) is given by

ξ(ω) = (∆Φ,Ψ)
1/2Ψ. (4.63)

Now introduce the inner product for M as

< η(x), η(y) >= tr(x∗y), (4.64)

such that

π(x)η(y) ≡ η(xy),

π′(x)η(y) ≡ η(yx).
(4.65)

Here π(M) is isomorphic to M and π′ is the generator of π(M)′.
Let ρΨ and ρω density matrices as

ω(x) = tr(ρωx). (4.66)

Let Ψ be η(ρ1/2
ψ ). Then for x ∈ M one have

∆Φ,Ψη(x) = η(ρωxρ−1
Ψ ),

Jη(x) = η(x∗),

V = η(M+),

ξ(ω) = η(ρ1/2
ω ),

σω
t (π(x)) = π(ρωxρ−1

ω ).

(4.67)

Finally the relative entropy in Araki’s way can be defined

S(ω|Ψ) = −(Ψ, (log ∆Φ,Ψ)Ψ). (4.68)

Strictly speaking, the cone introduction is needed to guarantee the constraint
that the relative entropy is always positive or zero.
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Known Results

5.1 The Rindler Wedge

The first proper expression for the modular Hamiltonian was given by Bisog-
nano and Wichmann [1]. At first glance, they were concerned with the duality
condition, [see 7],

R′(O) = R(O′), (5.1)

where the prime denotes the commutant of the von Neumann algebra associated
with the region, as well as the spacelike separated region associated with it. The
above duality condition is deeply connected to the question of whether the duality
condition alone is a necessary condition to prove the TCP-theorem [25, 26]. In
particular, the region considered in Bisognano and Wichmann’s paper was the
so-called wedge-shaped region WR of Minkowski space. Given a boost generator
in the Poincaré group, one can identify the boost with a unitary operator that acts
on the Hilbert space. Then, if one ensures that the boost is strongly continuous on
a specific strip and is also an analytic function on the open interior of the strip, one
obtains a statement similar to the KMS condition. Furthermore, one arrives at the
final conclusion of Bisognano and Wichmann: the geometrical interpretation of
the modular operator is given by the Poincaré boost, and the modular conjugation
operator J is the CTP operator. In fact, the modular conjugation is identified from
the fact that one has a rotation by an angle π over the x3 space component, i.e., one
is identifying the right wedge with the left wedge and vice versa, such that JRR J =
RL holds for RR and RL being the right and left wedge von Neumann algebras,
respectively. In what follows, some specific comments on the construction will be
given, particularly regarding the analytic continuation and the wedge of the edge
problem.

The Minkowski space coordinates are given by x = (x1, x2, x3, x4) such that
x · y = x4y4 − x1y1 − x2y2 − x3y2. Define the right wedge and the left wedge
to be WR = {x|x3 > |x4|} and WL = {x|x3 < −|x4|} respectively, and also for

52
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the causal complement one have Wc
R = WL and Wc

L = WR. The Λ = Λ(M, y)
are elements of the Poincaré group L0 such that for any x it acts as rotation and
translation Λx = Λ(M, y)x = Mx + y. The separable Hilbert space, H which
carries a strongly continuous unitary representation Λ → U(Λ) of the Poincaré
group L0. Given the translation subgroup, T(x) = U(I, x) the spectral condition
says T(x) = U(I, x) =

∫
ei x · p µ(d4p) such that the support of the spectral measure

µ is contained in the closed forward light cone V+. Introduce the vacuum vector
Ω such that is uniquely defined by U(Λ)Ω = Ω.

Since one is interested in a local Hermitian scalar field, the fields are to be an
operator-valued tempered distribution. Assume (X, D, Ω) for X operators defined
on D ⊂ H and R(R4) being the algebra of operators of (X, D, Ω). For all element
of the space of test functions S(R4) there is a mapping into R(R4) defined by
ϕ[ f ],

ϕ[ f ] =
∫

d4x f (x)ϕ(x). (5.2)

Let R be any subset of Minkowski space. Denote R(R) to be the linear span of the
identity operator and all the operators (ϕ[ f ], D1) such that D1 is a linear manifold
and dense in the Hilbert space H, also the support of the test function supp( f ) ⊂ R
is contained in the subset R.

An important step is to characterize the spectral condition in such a way the
timelike tube theorem [27, 28] will make sense, i.e., one wants to characterize some
kind of equivalence between the local region algebra to either its domain of depen-
dence or its timelike envelope made up of timelike curves with same endpoints.
After such characterization, it will be clear that the velocity transformation plays
the modular operator role.

The unitary representation x → T(x) of the translation group can be extended
to a representation of the semigroup of all complex translation z = x + iy with x
and y real, in some sense an analytic completion, also one have y ∈ V+, and the
extension is

T(z) =
∫

eipz µ(d4p) = eiz · P, (5.3)

where the operator-valued function T(z) satisfies ||T(z)|| = 1 and is a strongly
continuous function of z on closed forward imaginary tube V+i = {z|Im(z) ∈ V+}.
It is important to note also that the function T(z) is analytic in the sense of the
uniform topology on the open forward imaginary tube V+i, which implies that the
vector-valued function T(z)ψ of z is strongly analytic on V+i for any ψ ∈ H. For
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f ∈ S(R4n), one have
T(z)ϕ{ f }Ω = ϕ{ fz}Ω, (5.4)

such that the equality follows from the existence of fz ∈ S(R4n) so that

f̃z(p1, . . . , pn) = f̃ (p1, . . . , pn) exp

{
(iz ·

n

∑
r=1

pr)

}
, (5.5)

for (p1, . . . , pn) ∈ Vn, where Vn is the subset of R4n defined by

Vn = {(p1, . . . , pn)|
n

∑
r=1

pr ∈ V+, k = 1, . . . , n}, (5.6)

and f̃ is the Fourier transform of f

f̃ (p1, . . . , pn) =
∫

d4x1 . . . d4xn f (x1, . . . , xn) exp

{
(i

n

∑
r=1

xr pr)

}
. (5.7)

Define a function E(p; z) of the real four-vector p and the complex four-vector z by

E(p; z) = u0(p · p)u0(p(4)) exp{i · p}, (5.8)

in some sense u0 have the theta function role, it is equal to one for positive
argument and equal to zero for negative arguments. Hence, in some sense, is
guaranteed that p2 ≥ 0 and for the four component it obeys p(4) ≥ 0 such that
E(p; z) = exp{iz · p} for p ∈ V+. Follows that for fz its Fourier transform obeys,

f̃z(p1, . . . , pn) = E(p; z) f̃ (p1, . . . , pn), p =
n

∑
r=1

pr, (5.9)

for any z ∈ V+i.
Now that the spectral condition is well established, rest to implement the

analicity condition. Let Tn be the open tube region in 4n − dimensional complex
space C4n, regarded as the direct sum of n replicas of the complex Minkowski
space,

Tn = {(z1, . . . , zn) | zk ∈ V+i, k = 1, . . . , n}. (5.10)

Consider a n − tuplet of test functions { fk| fk ∈ S(R4), k = 1, . . . , n}. The vector

β(z1, . . . , zn) = T(z1)ϕ[ f1]T(z2)ϕ[ f2] . . . T(zn)ϕ[ fn]Ω, (5.11)
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is well-defined for all (z1, . . . , zn) ∈ Tn, also for β(z1, . . . , zn) = ϕ{ f }Ω, denote
f = f (x1, . . . , xn; z1, . . . , zn) such that its Fourier transform is given by

f̃ (p1, . . . , pn; z1, . . . , zn) = Πn
k=1 f̃k(pk)E

( n

∑
r=k

pr; zk

)
. (5.12)

Also the vector valued function β(z1, . . . , zn) of (z1, . . . , zn) is strongly continuous
on the closed tube Tn and analytic on the open tube Tn. Given the open tube Tn

definition, for each n ≥ 1, let En be the set of all functions f (x1, . . . , xn; z1, . . . , zn)

defined for (x1, . . . , xn) ∈ R4n and (z1, . . . , zn) ∈ Tn and such that f ∈ S(R4n) and
such that

f̃ (p1, . . . , pn; z1, . . . , zn) = exp

{
i

n

∑
r=1

n

∑
r=k

zk · pk

}
, (5.13)

for all (p1, . . . , pn) ∈ Vn. The set En is nonempty, and contains the function

f̃0(p1, . . . , pn; z1, . . . , zn) = Πn
k=1E

( n

∑
r=k

pr; zk

)
. (5.14)

With respect to the set En, there is a unique vector-valued function ϕ(z1, . . . , zn) on
Tn, defined by

ϕ(z1, . . . , zn) = φ{ f }Ω. (5.15)

Now is clear that the vector-valued function ϕ(z1, . . . , zn) is strongly continu-
ous on Tn. To see that the vector valued function ϕ(z1, . . . , zn) is analytic on,
Tn consider some function g(x) ∈ D(R4) such that g̃(0) = 1. Let λ > 1
such that β(z1, . . . , zn; λ) with all the β properties previous presented. Consider
fk(x) = λ4g(λx) for k = 1, . . . , n. On Tn, the vector-valued function follows to
be an analytic function. Now from the property of convolution for tempered
distributions and the fact ϕ is strong continuous on Tn, β(z1, . . . , zn; λ) tends to
ϕ(z1, . . . , zn) as λ tends to infinity uniformly on any closed polydisc contained in
Tn and hence ϕ is analytic on Tn. Note, the vector ϕ might be written as

ϕ(z1, . . . , zn) = φ(z1)φ(z1 + z2) . . . φ(z1 + z2 + . . . + zn)Ω. (5.16)

Now is clear that the conditions for the vector-valued functions to be analytic and
strongly continuous inside the forward light cone is established. In order to define
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the Poincare group action, just take any element Λ = Λ(M, x) ∈ L0. One have

U(Λ)ϕ(z1, . . . , zn) = ϕ(Mz1 + x, Mz2, . . . , Mzn). (5.17)

Also for any (z1, . . . , zn) ∈ Tn the vector ϕ(z1, . . . , zn) is an analytic vector for the
Lie algebra of the group U(L0).

Consider now all the velocity transformation V(e3, t) in the 3 − direction given
by the one-parameter Abelian subgroup {V(e3, t)|t ∈ R1}. The V(e3, t) have a
representation by

V(e3, t) =


1 0 0 0
0 1 0 0
0 0 cosh t sinh t
0 0 sinh t cosh t

 . (5.18)

By Stone’s theorem there exists a unique self-adjoint operator (K3, Dk) such that

V(t) = U(V(e3, t), 0) = exp{−itK3}, ∀t ∈ R1. (5.19)

Now consider the analytic continuation of the function V(t) to the complex plane
such that (K3, DK) corresponds to a representation of the additive group of all
complex numbers: τ → exp{−iτK3} = V(τ). The spectral resolution is

V(τ) = exp{−iτK3} =
∫

exp{−iτs}µk(ds), (5.20)

the domain of the closed operator V(τ) depends only on Im(τ). For any com-
plex τ = ρ + iλ, with ρ and λ real, let DV(λ) be the linear manifold such that
(V(τ), DV(λ)) is closed and normal. Let now λ ̸= 0. Then DV(λ) is a core for
all operators (V(τ), DV(Im(τ))) such that 0 ≤ Im(τ)/λ ≤ 1. If ψ ∈ DV(λ), then
the vector valued function V(τ)ψ of τ is well-defined, strongly continuous and
bounded on the closed strip 0 ≤ Im(τ)/λ ≤ 1 and an analytic function τ on the
interior of the strip. Consider now the action of V(τ) on the vectors ϕ(z1, . . . , zn).
Let z = x + iy, with x and y real, and z any complex number. Then one have

z(τ) = V(e3, τ)z, (5.21)
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such that for τ = iλ, which is the one that matters, one have

z1(iλ) = x1 + iy1, z2(iλ) = x2 + iy2,

z3(iλ) = (x3 cos λ − y4 sin λ) + i(y3 cos λ + x4 sin λ),

z4(iλ) = (x4 cos λ − y3 sin λ) + i(y4 cos λ + x3 sin λ).

(5.22)

Now let (z1, . . . , zn) be an n-tuple of complex four-vectors zk = xk + iyk, where xk

and yk are real, for the right wedge one put the condition y1
k = y2

k = 0, y4
k > |y3

k|,
for k = 1, . . . , n. Now restricting xk to the right wedge WR: x3 > |x4|, then
Im(z(iλ)) ∈ V+ for all λ ∈ [0, π/2]. Thence, since the tube Tn is made up of
(z1, . . . , zn) such that zk ∈ V+i = {z|Im(z) ∈ V+} for all k = 1, . . . , n. Is clear
that (z1(iλ), . . . , zn(iλ)) ∈ Tn for all λ on the closed interval [0, π/2]. Recall now
that the vector valued functions ϕ(z1, . . . , zn) is an analytic function of (z1, . . . , zn)

on the tube Tn. Is clear that if one consider some open neighborhood N (in the
complex λ plane) of [0, π/2] such that (z1(iλ), . . . , zn(iλ)) ∈ Tnfor all λ ∈ N, the
vector ϕ(z1(iλ), . . . , zn(iλ)) is well-defined and regarded as a function of λ is an
analytic function. Also follows that ϕ(z1, . . . , zn) ∈ DV(Im(iλ)) for λ ∈ N, hence,
ϕ(z1, . . . , zn) is in the domain DV(π/2) and

V(iλ)ϕ(z1, . . . , zn) = ϕ(z1(iλ), . . . , zn(iλ)), (5.23)

for all λ ∈ [0, π/2].
A nice Bisognano & Wichmann realization is that the above consideration on

velocity transformation defined on the strip can be related to a mapping between
regions. Consider the involutory mapping x → J x of Minkowski space onto itself,
defined by,

J x = −R(e3, π)x,

J (x1, x2, x3, x4) = (x1, x2,−x3,−x4),
(5.24)

where here R(e3, π) denotes the rotation by angle π about the 3 − axis. Hence, we
have now a mapping between the right wedge WR to the left Wedge WL. Also, one
can realize that the definition of the involutory mapping can be defined by

J = V(e3, iπ). (5.25)

Now one just need to see how the involutory mapping act on fields.
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Assume the existence of an antiunitary involution Θ0, interpreted as an inver-
sion transformation with respect to the origin in Minkowski space. The operator
Θ0 satisfies

Θ2 = I , Θ0Ω = Ω, Θ0U(M, x)Θ0 = U(M,−x),

Θ0ϕ(x)Θ0 = ϕ(−x).
(5.26)

Introduce now another antiunitary involution J, such that

J = U(R(e3, π), 0)Θ0 = Θ0U(R(e3, π), 0), (5.27)

is implementing both mapping between two spacelike regions and also the map-
ping the charge sector into its conjugate sector. Follows now the properties of the
involution J

J2 = I , JΩ = Ω, JU(M, x)J = U(J MJ ,J x), (5.28)

which also preserves the domain, JD1 = D1, such that

Jϕ[ f ]J = ϕ[ f j]∗ on D1, (5.29)

for any test function f ∈ S(R4) and where f j(x) = f (J x).
Let us now consider the involution act on well-defined operators. For the case

of a (real) velocity transformation in the 3-direction one have

JV(t)J = V(t), all real t, (5.30)

also held the following properties

JDK = DK, J(K3, DK)J = −(K3, DK),

JDV(λ) = DV(−λ), J(V(τ), DV(λ))J = (V(τ∗), DV(−λ)),
(5.31)

for any complex τ = ρ + iλ, ρ and λ real. The mapping J is an object on Hilbert
space that act as J on Minkowski space. Note that if supp( f ) ⊂ WR, then
supp( f j) ⊂ WL, and vice versa. The final conclusion is that conjugation with
J thus maps operators locally associated with the right wedge WR into operators
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locally associated with the left wedge WL. Also holds the following

JU(Λ)J = U(Λ), all Λ ∈ L0(WR), (5.32)

where here L0(WR) is the group of all Poincaré transformation which maps WR

onto WR.
Let R be a von Neumann algebra of operators on a separable Hilbert space

which has a cyclic and separating vector Ω, and let R′ be its commutant. Then
there exist a unique antiunitary involution J, and a unique self-adjoint operator
(K, DK), satisfying the following relations

JΩ = Ω, Ω ∈ DK, KΩ = 0; (5.33a)

JRJ = R′; (5.33b)

JDK = DK, J(K, DK)J = (−K, DK); (5.33c)

exp{−itK}R exp{itK} = R, (5.33d)

exp{−itK}R′ exp{itK} = R′, (5.33e)

for all real t, and the one-parameter group of unitary operators exp{−itK} is thus,
acting by conjugation, a group of automorphism of R and of R′.

Now is clear that exp{2πK} is the Tomita operator ∆ and consequently one
can identify the operator K by 2πK = ln ∆. Also, finally, the Haag duality is
established Rc(WR) = Rc(WL)

′.

5.2 The Lightcone and the massless Fields

To fathom the Hislop and Longo [29] result concerning the modular operator
expression for the double cone case, it is reasonable to comprehend first the
Buchholz [30] result on what concern the modular operator for the lightcone. Both
constructions have a massless scalar field under consideration.

Buchholz was interested mainly on the problem of minimal and local condi-
tions to characterize the interacting and non-interacting fields. Under the same
mathematical arguments of the section 5.1, one can invoke the Poincaré group
representation and the spectrum condition to establish the asymptotic fields ϕin

and ϕout and then state that there is interaction if these two fields do not coincide.
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Also, one can invoke the Huyghen’s Principle in the first algebraic form

F out(O) ⊂ F (O+)
′, (5.34)

where O is any bounded or unbounded region with future O+ and F out(O) is the
smallest von Neumann algebra containing all algebras F out(O1) with O1 ⊂ O.
Also, it is useful to state the Huyghen’s principle in the second form

[ϕin(x), ϕ(y)] = [ϕout(y), ϕ(x)] = 0, (x − y) ∈ V+, (5.35)

in few words (actio in distans) the commutator between fields and asymptotic fields
vanishes at spacelike distances.

The first part of the criterion found by Buchholz, which doesn’t deal with the
algebraic tool, says that the local fields ϕ on the Fock space does not interact if

[ϕ(x), ϕ(y)] = 0, (x − y) ∈ V+ ∪ V−. (5.36)

Once the Huyghen’s principle is under consideration one just need to recall the
fact the vacuum vector is separating for (ϕin − ϕout) and also ϕin and ϕout create
both the same one-particle state from the vacuum: ϕin(x)Ω = ϕout(x)Ω. Therefore
ϕin = ϕout. The if condition here is essential, one have the criterion that the local
fields at timelike distance do not interact if their commutator vanishes.

To see the only if part start from the fact concerning net of von Neumann alge-
bras: F in(V−) ⊆ F (V−), F out(V+) ⊆ F (V+) and because of Huygens principle
F (V−) ⊆ F in(V+)′, F (V+) ⊆ F out(V−)′. Establish the timelike duality

F in(V+)
′ = F in(V−), (5.37)

to see that indeed

F (V−) = F in(V−), F (V+) = F out(V+). (5.38)

The condition to have no interaction now reads as

F (V−) = F in(V−) = F out(V−) = F out(V+)
′ = F (V+)

′. (5.39)

One can now consider an arbitrary translation by a factor a ∈ R such that C± ⊂
V± + a. Thence follows that F (C−) ⊂ F (C+)′ and using weak additivity, see [7],
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one can ensure (5.38). Rest now to establish the condition of no interaction, i.e., the
timelike duality. Here essentially appears the Tomita-Takesaki theory because of
the Bisognano and Wichmann result that was obtained from the work concerning
the same kind of duality that is under concern here.

Start recalling the definition of the Tomita’s operator: SFinΩ = Fin∗Ω for
Fin ∈ F in(V+). Take the polar decomposition as usual to be S = J∆1/2. The main
result of the Tomita-Takesaki theory is the desired equality

JF in(V+)J = F in(V+)
′. (5.40)

As in the Bisognano and Wichmann construction one have J = W inθin where W in

is an operator with eigenvalue ±1 corresponding if there is an odd or even number
of particles and θin is the TCP operator. From the fact Jϕin(x)J = −ϕin(−x) the
desired duality is established

F in(V+)
′ = JF in(V+)J = F in(V−). (5.41)

Consider the dilation D(λ) which leaves the vacuum vector invariant and act
on ϕin as

Din(λ)ϕin(x)Din(λ)−1 = eλϕin(eλx), (5.42)

so that the dilation is continuous, unitary and λ ∈ R. By Stone’s theorem one can
introduce a selfadjoint generator for the group of these operators and so λ can be
complex according. Now one have

Din(λ)ϕin(x1) . . . ϕin(xn)Ω = eλnϕin(eλx1) . . . ϕin(eλxn)Ω, (5.43)

requiring the configuration to be on the forward lightcone V+ one can extend this
expression analytically to 0 ≥ Imλ ≥ π. Now is clear that for λ → iπ one obtain

Din(iπ)ϕin(x1) . . . ϕin(xn)Ω

= (−1)nϕin(−x1) . . . ϕin(−xn)Ω

= (−1)nϕin(−xn) . . . ϕin(−x1)Ω,

(5.44)

now just apply the W inθin operator to get

W inθinDin(iπ)ϕin(x1) . . . ϕin(xn)Ω = (ϕin(x1) . . . ϕin(xn))
∗Ω. (5.45)
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Which is exactly what is expected from S operator.
The final conclusion is that S = W inθinDin(iπ) such that J = W inθin and

∆1/2 = Din(iπ) because of the uniqueness of the polar decomposition. The
modular flow is related to the dilation from the conformal transformations. By
the same arguments, the modular Hamiltonian is proportional to the generator of
dilations.

5.3 The Massless Double Cone

The main goal of this section is to make a complete exposition (under the tools
obtained up to now) on what concern the double cone case. One should keep in
mind that just like the others two previous sections, the modular operator was
obtained as a gift from the geometrical insight concerning the massless scalar field.

Start from an observation. For free fields, the local algebra for O being the
double cone region is determined by the value of the field and its time derivative
on the time slice t = 0 hypersurface. The Cauchy data for such local algebra R(O)

is mapped by the modular conjugation operator such that R(Oc) = R(O)′.
Consider 1+ 1 dimensions and take the time zero hypersurface to be an interval

(−1, 1). The inversion map x → x−1 sends the interval (−1, 1) onto (−∞,−1) ∪
(1, ∞). A nice fact is that the interval (−1, 1) is preserved by the one-parameter
group of coordinate transformation x → x′(λ) given by (x′ − 1)(x′ + 1)−1 =

eλ(x − 1)(x + 1)−1 for λ ∈ R. Just like in the previous sections, one can take the
analytic continuation for λ = iπ to obtain x → x′(iπ) = x−1.

Consider the field operator ϕ[ f ], essentially self-adjoint on the dense domain
D0 ⊂ Γ(H). Here Γ(H) denotes the boson Fock space constructed from H =

L2[H0, θ(p0)δ(p2)d4p] where H0 = {p ∈ R4|p0 > 0, p2 = 0} is the mass-shell
hyperboloid. The Cauchy data is given by ϕ|x0=0 = f and ∂0ϕ|x0=0 = g.

Let O denote the double cone on the Minkowski spacetime Rd+1 with base
on the open unit ball B centered at the origin in the time zero hyperplane Rd.
Consider the one-parameter group of conformal transformation that preserves O,
namely

(u, v) 7→ ((Z(u, λ), Z(v, λ))), (5.46)

where

Z(zi, λ) =
(1 + zi)− e−λ(1 − zi)

(1 + z) + e−λ(1 − zi)
=

g(zi, λ)

f (zi, λ)
, (5.47)
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with

f (zi, λ) =
(1 + zi) + e−λ(1 − zi)

2
, g(zi, λ) =

(1 + zi)− e−λ(1 − zi)

2
. (5.48)

The zi, with i = 1, 2, defined in such a way it simplifies

z1 = x0 + r = u,

z2 = x0 − r = v,

r = |⃗x| =
√

x2
1 + . . . x2

d.

(5.49)

Now let V(λ) with λ ∈ R, be the linear operator on H determined by

V(λ)ϕ[ f ]Ω = ϕ[ fλ]Ω

= γ(u, v, λ)ϕ(Z(u, λ), Z(v, λ))Ω.
(5.50)

The double cone is invariant under the mapping f → fλ and the above defines
V(λ) on a dense domain of H. The cocycle γ is given by

γ(u, v, λ) = F(u, λ)F(−v,−λ), f (z, λ) = f−D(z, λ), (5.51)

where D = (d − 1)/2. Follows that

γ(u, v, λ) = 26[(1 + u) + e−λ(1 − u)]−3[(1 − v) + eλ(1 + v)]−3, (5.52)

then one can see that indeed for λ = iπ

γ(u, v, iπ) = 26[(1 + u)− 1 + u]−3[(1 − v)− 1 − v]−3

= − 1
(x0 − r2)3 .

(5.53)

The above realization (due [29, 31]) is great because if one take the relativistic ray
inversion map ρ(x) = −x(x2)−1 for x2 = x2

0 − |⃗x|2 and consider the T = {x|x2 >

0} and S = {x|x2 < 0} as sets of timelike and spacelike vectors respectively.
For f ∈ D(T ∪ S), the test function transforms like fρ(x) = I(x)x2 f [ρ(x)] =

−(x2)−3 f [ρ(x)] where I(x) = −(x2)−4 is the Jacobian of ρ. So is a nice fact
that the one-parameter group of conformal transformation led to the geometrical
interpretation of the modular operator for the double cone: ∆−iλ

B = V(2πλ).
Indeed, we can go further and compute K0 = d

dλ V(λ)|λ=0, the generator of V
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[31]. First note

Z(z, 0) = z, Z′(z, 0) =
g′

f
− g

f 2 f ′ =
1 − z2

2
,

f (z, 0) = 1, g(z, 0) = z,

f ′(z, 0) = −1 − z
2

, g′(z, 0) =
1 − z

2
.

(5.54)

Also, for the cocycle follows,

γ(u, v, 0) = 1, F′(z, s)|λ=0 =
D
2
(1 − z),

γ′(u, v, 0) = F′(u, s)|λ=0 − F′(−v,−s)|λ=0 = −D
2
(u + v) = −Dx0.

(5.55)

Following, define the derivative,

(V(λ)ϕ)(u, v)′ =γ′(u, v, λ)ϕ(Z(u, λ), Z(v, λ))

+ γ(u, v, λ)(∂uϕ(Z(u, λ), Z(v, λ)))Z′(u, λ)

+ ∂vϕ(Z(u, λ), Z(v, λ))Z′(v, λ),

(5.56)

to finally define the generator (K0ϕ)(u, v), such that,

(K0ϕ)(u, v) = (V(λ)ϕ)(u, v)′|λ = −D
2
(u + v)ϕ(u, v) +

1
2

∂uϕ(u, v)(1 − u2)

+
1
2

∂vϕ(u, v)(1 − v2)

= −D
2
(u + v)ϕ − 1

2
u2∂uϕ − 1

2
∂vϕ +

1
2

∂uϕ +
1
2

∂vϕ.

(5.57)

Now, recall u = x0 + r and v = x0 − r, such that,

∂u =
1
2
(∂0 + ∂r), ∂v =

1
2
(∂0 − ∂r), (5.58)
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so that

(K0ϕ)(x0, r) = −1
4
((x0 + r)2(∂0 + ∂r)ϕ + (x0 − r)2(∂0 − ∂r))ϕ − Dx0ϕ +

1
2

∂0ϕ

= −1
2
(x0 + r2)∂0ϕ − x0r∂rϕ − Dx0ϕ +

1
2

∂0ϕ

=
1
2
(1 − (x2

0 − r2))∂0ϕ − x0r∂rϕ − Dx0ϕ.

(5.59)

Now, just impose the time slice x0 = 0 condition to obtain,

(K0ϕ)|x0=0 =
1
2
(1 − r2)∂0ϕ|x0=0, (5.60)

(∂0Kϕ)|x0=0 =
1
2
(1 − r2)∂2

r ϕ − r∂rϕ − Dϕ |x0=0. (5.61)

Finally, we can write
log ∆ = 2πK0. (5.62)

5.4 The Role of the Second Quantization

From the three previous sections one can realize that the known cases for the
modular Hamiltonian theory, the modular operator is obtained majority from
geometrical arguments and also the authors are usually concerning some other
problem, like duality and interactions conditions, but ended up finding the so
important expression for the modular operator. Hence, it is of interest in describing
the modular operator under arguments of the CCR algebra, Weyl representation
of the algebra and the second quantization, i.e., under the language of the section
2.3. It was mainly done by [32, 33, 34]. The main points and realizations are about
to be reproduced in what follows of this section.

Recall from section 2.3 the complete Hilbert space H = L2 = L2(R3, d3p/( p⃗2 +

m2)1/2) with m ≥ 0. From that complete Hilbert space, construct the symmetric
Fock space

Hs =
∞⊕

n=0
H(n)

s =

(⊕
n

H
)

s
,

H(0)
s = R.

(5.63)
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Define the Segal field operator,

ϕs( f̃ ) =
1√
2
[a( f̃ ) + a∗( f̃ )], (5.64)

such that a∗( f̃ ) : H(n) → H(n+1) and a( f ) is its adjoint.
Consider the closed subset of L2,

K = { f ∈ L2| f̃ (−p) = f̃ (p)},

K′ = { f ∈ L2| f̃ (−p) = − f̃ (p)}.
(5.65)

In fact, K and K′ are not (complex) subspaces of L2. Define the real Hilbert space L
of L2(Rd) considered as the real linear space with the real scalar product,

( f̃1, f̃2)L = Re( f̃1, f̃2)L2 . (5.66)

Also, K and K′ are orthogonal closed subspaces of L and satisfy

K′ = βK = K⊥, (5.67)

where β is the operator of multiplication by the imaginary unit. Then, if f̃ ∈ L2,
there is a unique decomposition

f̃ = g̃ + ih̃, g̃ ∈ K, h̃ ∈ K, (5.68)

which implies

ϕs( f̃ ) = ϕs(g̃) + ϕs(ih̃)

= ϕ(g̃) + π(h̃),
(5.69)

where

ϕ(g̃) =
1√
2
[a∗(g̃) + a(g̃)], (5.70)

π(h̃) =
1√
2

i[a∗(h̃)− a(h̃)]. (5.71)

Introduce the wave equation,

(□+ m2)Φ(x) = 0. (5.72)
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The function Φ(x) is uniquely determined by the knowledge of its initial condition
a(x) = Φ̇(0, x) and b(x) = Φ(0, x). Now the following holds

f̃ (p) = g̃(p) + ih̃(p), (5.73)

and
ã(p) = −g̃(p), b̃(p) = (p2 + m2)−1/2h̃(p). (5.74)

Then easily follows that L can be identified with the real Hilbert space L. Define
H = H(m)

ϕ ⊕H(m)
π , where H(m)

ϕ and H(m)
π are the real Hilbert spaces obtained

by completing the space Sr(R3) of the real C∞ functions of rapid decrease with
respect to the scalar product

( f , g)ϕ =
∫

f̃ (p)g̃(p)ω−1 d3p,

( f , g)π =
∫

f̃ (p)g̃(p)ω d3p.
(5.75)

The correspondence is now the following

f̃ = g̃ + ih̃ ∈ L = K ⊕ βK →< −g̃, ω−1h̃ >∈ H = H(m)
ϕ ⊕H(m)

π . (5.76)

The multiplication by ω−1 is a unitary operator from H(m)
ϕ onto H(m)

π , then one
can write

H = H(m)
ϕ ⊕H(m)

π . (5.77)

It means that if f ∈ Sr(R4) and supp f ⊂ O ⊂ R4, the function Φ(x) has initial
condition a(x) = Φ̇(0, x) and b(x) = Φ(0, x) which satisfies

supp a, supp b ⊂ (O′)′ ∩ Sx0=0, (5.78)

where Sx0=0 is the three-dimensional hypersurface at x0 fixed and O′ is the causal
complement of O.

Now is time to deal to the von Neumann algebra for the above construction.
Take a linear subspace L of H, associate with L the von Neumann algebra R(L)
defined by

R(L) = {exp{iϕs(h)}|h ∈ L}′′. (5.79)
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Analogous, if K1 and K2 are two linear subspaces of K, define

R(K1, K2) = {exp{iϕ(g)} exp{iπ(h)}|g ∈ K1, h ∈ K2}′′. (5.80)

If L is a linear subspace of H and K1 and K2 are two linear subspaces of K such
that LK̃1 ⊕ βK2 imply that

R = R(K1, K2). (5.81)

Also define
Hc

α = βH⊥
α , R(Hα)

c = R(Hα)
′, (5.82)

such that the duality now reads

R(K1, K2)
′ = R(K⊥

2 , K⊥
1 ). (5.83)

Now if one take a closed region O ⊂ R4 an as open set and the subspace L =

Dr(O)/S0
r (R

4), where now one can associate to the region a class of test functions,
Dr(O) = {ϕ ∈ C∞

r (R4) |suppϕ is a compact set contained in O} and S0
r (R

4) =

{h ∈ Sr(R4) |(h, h)H = 0}. The algebra R(L), which is also the same as R(O) has
the physical interpretation of the algebra of the observable, which can be measured
in the spacetime region O.

Consider O = C(B) for B ⊂ R3 is an open set and

C(B) = {x ∈ R4|(x − y)2 < 0, y ∈ S0 ∩ Bc}. (5.84)

If one consider also L = Dr(C(B))|S0
r (R

4) follows that L = H(m)(B)⊕H(m)
π (B),

F(m)
ϕ,π (B) = ϕ ∈ Dr(B)

H(m)
ϕ,π , (5.85)

then
R(C(B)) = R(H(m)

ϕ (B), ωH(m)
π (B)). (5.86)

Now is time to consider the coherent vectors and operators using Weyl uni-
taries. Consider the coherent vectors

ex =
∞⊕

n=0

1√
n!

x⊗n . x ∈ H, (5.87)

such that it form a total set. Define the vacuum vector state to be Ω = e0 ∈ eH.
Then the Weyl unitarires W(x) are defined for x ∈ H on eH, by their action on the
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vacuum Ω and by their canonical commutation relations (CCR) as follows

W(x)e0 = e−
1
4 ||x||

2
eix/

√
2, x ∈ H, (5.88)

W(x)W(y) = e−
i
2 Im<x,y>W(x + y), x, y ∈ H. (5.89)

Now as before, for any closed subspace K of H, define a von Neumann algebra

R(K) = {W(h)|h ∈ K}′′, (5.90)

on eH, the second quantized algebra of K.

Definition 5.4.1 The real closed subspace K ≤R H is standard if the following conditions
are fulfilled

• K + iK is dense in H,

• K ∩ iK = {0}.

Also one have the following theorem concerning the vacuum vector state and the
standard property.

Theorem 5.4.1 The vacuum vector state e0 is cyclic and separating for R(K), in some
sense it means the R(K) is in standard form with respect to the vacuum, if and only if K
is standard.

The symplectic complement of the standard subspace K is the standard subspace
K′ = {h′ ∈ H : Im < k, h′ >= 0 ∀k ∈ K}, also K is called a factor (or factorial) if
K ∩ K′ = {0}, which is equivalent to R(K) being a factor von Neumann algebra,
i.e. R ∩R(K)′ = C1. In this case, K is equipped with a non-degenerate form
σ(h, k) = Im < h, k > for h, k ∈ K, and for K it becomes a (real) symplectic space.

Let A be a closed densely defined linear operator on H with domain D(A).
Then

eA : eH → eH (5.91)

is the closure of the linear operator acting on linear combinations of coherent
vectors with exponent in D(A) such that

Γ(A)eh = eAeh = eAh, (5.92)
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the exponentiation preserves selfadjointness, passivity, unitarity but not bound-
ness. The Γ(A) is the closure of the operator on eH defined on the linear span of
coherent vectors eh, h ∈ D(A).

Now just recall that for a von Neumann algebra R in standard form with
respect to the vacuum, there are associated the Tomita operators S, J, ∆, where S is
the closure of the operator S0 such that

S0 : RΩ → RΩ,

S0AΩ = A∗Ω,
(5.93)

and S = J∆1/2 is its polar decomposition. So then for the standard subspace K
associate a closed, densely defined conjugate linear operator,

s :K + iK → K + iK,

h + ik → h − ik, h, k ∈ K.
(5.94)

Moreover, if s = jδ1/2 is the polar decomposition of s, they satisfy,

j∗ = j = j−1, jδ = δ−1 j, jK = K′, δitK = K, t ∈ R. (5.95)

The operators J = Γ(j), ∆ = Γ(δ) are respectively the modular conjugation and
the modular operator of A(K) with respect to Ω.

Consider the complex Hilbert space H = L2(RD). The Sobolev spaces Hα
m =

Hα
m(R

3) are the completion of D(ωα
m) ⊂ L2(R3) such that ωα

m is the multiplication
operator by ωm(p)α = (m2 + p2)α/2 in Fourier form and Hα

m is defined under the
convergence of the norm ||x||α,m = ||ωα

mx||. The following duality holds

(Hα
m)

∗ = H−α
m , ∀α ∈ R, (5.96)

so that there is an inner product defined for both Hα
m and H−α

m

< f , g >∈ Hα
m × H−α

m 7→
∫

R
f̂ g. (5.97)

In fact, the usual Sobolev space definition is for m = 1 so that H±
m (R) are totally

equivalent with respect to the mass m because the Sobolev space is defined with
respect to the convergence of (p2 + 1)α/2 in such a way a rescale on p is always
possible (to better details see [31, 33]).
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Now it is of interest to study the local Sobolev space. Consider an open, non-
empty subset of R3 denoted by O and O′ its complement with respect to the
interior. Since O and O′ is non-empty, Hm(O) is the closed, real linear subspace
of the complex Hilbert space. For each region O contained in R3, define

Hα
m(O) = L2(O) ∩ D(ωα

m)
|| · ||α,m . (5.98)

Which makes clear that one have

Hm(O) = H1/2
m (O)⊕ H−1/2

m (O). (5.99)

But happens that for m = 0, the Sobolev space Hα
0 (R

3) is different from Hα
m(R

3)

when m > 0 and α ̸= 0.
The great result [32, 33] is that if the region O in R3 is bounded, and α > −3/2,

then
Hα

m(O) ∼= Hα
0 (O), (5.100)

that is they are the same vector space with equivalent norms. For large p, which
correspond to small distance, it is clear the convergence in O stills. For small p,
which correspond to large distance, one could expect some noise from outside of
O, but in fact O is bounded and the result holds.

Proposition 5.4.1 [Figliolini and Guido [32], Longo and Morsella [31]] If O ⊂ R3 is
bounded, and α = ±1/2, then

Hα
m(O) ∼= Hα

0 (O), (5.101)

that is, they are the same vector space with equivalent norms, more precisely,

(i) || f ||1/2,0 ≤ || f ||1/2,m ≤ c(m,O)|| f ||1/2,0

(ii) || f ||−1/2,m ≤ || f ||−1/2,0 ≤ c(m,O)|| f ||−1/2,m

Under the same arguments of p and distances, it is clear that the first inequality of
the two items holds. For the second inequality, it is sufficient to consider small p′s.

The following real subspaces of L2(R3) is given by

Hϕ = ω−1/2H−1/2
m (O), Hπ = ω1/2H1/2

m (O), (5.102)

so that one can define
Kσ/2(O) = ωσ/2Hσ/2(O), (5.103)
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for σ = ±1 and follows the definition of the local subspace Km(O) written in
terms of these spaces,

Km(O) = ω−1/2H−1/2
m,R (O) + iω1/2H1/2

m,R(O). (5.104)

The unitary equivalence between H−1/2(O)⊕ H1/2(O) and Km + iKm is defined
by

H−1/2(O)⊕ H1/2(O) ∋< f , g > 7→ (ω−1/2 f − iω1/2g) ∈ Km + iKm. (5.105)

In some sense a unitary operator is defined

im =

[
0 ω−1

m

−ωm 0

]
, (5.106)

since one have ω1/2
m : H1/2

m → H−1/2
m , given by

ˆ(ωm f )(p) =
√

p2 + m2 f̂ (p). (5.107)

Proposition 5.4.2 If O has C1 boundary, the interior, and the complement of the interior
of O is non-empty, then follows that K(O) is standard in L2(R3).

Recall the necessary conditions to be standard (5.4.1). Before to verify, worth to
note the following remark [32].

(Hα(O))0 = H−α(Oc), (5.108)

Dσ = Hσ/2(O) + Hσ/2(Oc) is dense in Hσ/2(R3) if σ = ±1, (5.109)

ω is antilocal, i.e. supp f ⊂ O, supp(ω f ) ⊂ O ⇒ f = 0, (5.110)

K(O) = ReK−1/2(O)⊕R iReK+1/2(O), (5.111)

(H1/2(O))0 = H−1/2(Oc) ⇒ (Kσ/2(O))⊥ = K−σ/2(Oc), (5.112)

Kσ/2(O) ∩ Kσ/2(Oc) = ωσ/2(Hσ/2(O) ∩ Hσ/2(Oc)) = {0}. (5.113)

Now is clear that K1/2(O) ∩ K−1/2(O) = {0} which follows that K1/2(O) +

K−1/2(O) is dense in L2(R3). Also, one would have K(O) ∩ iK(O) if and only
if there are hσ, kσ ∈ ReKσ/2(O) such that h+ + ih− = ik+ − k−. But also one
can write h+ − ik+ = −(k− + ih−) resulting that these objects are elements
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of the sets K1/2(O), K−1/2(O) respectively. A necessary condition then is that
K(O) ∩ iK(O) = {0} if and only if K1/2(O) ∩ K−1/2(O) = {0}. Moreover, one
can write [32]

K(O) + iK(O) =ReK−1/2(O) + iReK1/2(O)

+ iReK−1/2(O) + ReK+1/2(O) = K1/2(O) + K−1/2(O).

(5.114)

Since now the complete identification of the standard subspace of the Hilbert
space is made, one is ready to start to make the identification of the Tomita operator
δm (or even better: s) associated with the standard space Km(O).

Starting from L2(R3) one can introduce a multiplication operator χO which
localizes in O and follows the interest to define a similar operator for the Hσ/2(R3).
Define the operator Pσ which acts on Dσ = Hσ/2(O) + Hσ/2(Oc) by

Pσ : Dσ ⊂ Hσ/2(R3) → Hσ/2(R3),

Pσ|Hσ/2(O) = I, Pσ|Hσ/2(Oc) = 0.
(5.115)

Recall now the antilocality of ω: ωH1/2(O) ∩ H−1/2(O) = {0}. Playing with the
previous antilocality and with the σ = ±1 one can define the operator

Fσ = ω−σD−σ ∩ Hσ/2(O). (5.116)

Now make the identification

ω−σD−σ|O = ω−σH−σ/2(O),

ω−σD−σ|Oc = ω−σH−σ/2(Oc).
(5.117)

From the antilocality, we have that after the acting of the operator F the only
non-zero elements are in ω−σD−σ|Oc ∩ Hσ/2(O) = ω−σH−σ/2(Oc) ∩ Hσ/2(O)

and it is of interest to take the only functions of the set Hσ/2(O) that satisfy the
previous intersection, i.e., that are also elements of the set ω−σH−σ/2(Oc). In some
sense, it is of interest in defining the so important operator Aσ as follows,

Aσ : Fσ ⊂ Hσ/2(O) → H−σ/2(O), Aσ = P−σωσ|Hσ/2(O). (5.118)

Also, follows a theorem concerning Aσ.
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Theorem 5.4.2 Aσ is a densely defined closed operator and

(Aσ)
∗ = A−σ. (5.119)

Inherently one have a complete characterization of Hσ/2(O) from the Hσ/2(R3)

using ωσ, for both σ = ±1, and recalling these are orthogonal subspaces which
one can define the Cauchy data, the consequences are enormously (as will be
discussed) and will have concrete implications under the norms.

Now recalling from (5.114) introduce the Tomita operator s associated with
the standard space K(O). As it was discussed, there is a unitary equivalence
between H−1/2(O) ⊕ H1/2(O) and Km + iKm = K1/2(O) + K−1/2(O). Given
( f , g) ∈ H−1/2(O)⊕ H1/2(O) one have

T =
1√
2
(ω−1/2 ⊕−iω1/2), (5.120)

which acts on ( f , g) as

( f , g) 7→ 1√
2
(ω−1/2 f − iω1/2g) ∈ K1/2(O) + K−1/2(O). (5.121)

In fact, the domain of the Tomita operator is D(s) = K1/2(O) + K−1/2(O). Thence
follows that D(s) equipped with the graph norm || · ||g(s) of s is isometrically
isomorphic to H−1/2(O) ⊕ H1/2(O) via the unitary operator T which can be
checked from the isometry

2ωσ/2 : Hσ/2(O) → (D(s), || · ||g(s)). (5.122)

Let h + ik ∈ Hσ/2(O), with h, k real, then

1
2
(||ωσ/2(h + ik)||g(s))2 = ||h||2σ + ||k||2σ = ||h + ik||2σ, (5.123)

so that is true that given elements on Hσ/2(O) space the unitary operator T gives
an element on the standard space Kσ(O) which is the domain of the Tomita
operator s.

Now, if one introduce in H−1/2(O)⊕ H1/2(O) the quadratic form defined by
the operator,

N =
1
2

(
1 0
0 1

)
+

1
2

i

(
0 −ω

ω−1 0

)
(5.124)
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the map
T : (H−1/2(O)⊕ H1/2(O), ( · , N · )0) → H (5.125)

results an isometry with dense range and now one can successfully to associate H
with H−1/2(O)⊕ H1/2(O) with respect to the scalar product below to be shown.
Consider < f , g >,< h, k >∈ H−1/2(O)⊕ H1/2(O) then under the identification
of T is obtained

(< f , g >, N < h, k >)m =
1
2
((h, f ) + (k, g) + i[(k, ω−1 f )− (h, ωg)]), (5.126)

where ( · , · )m is the standard L2 norm.
But in fact, only the operator N is not enough (or even better, minimal) to define

the desired quadratic form. Recall the graph norm. Given a standard subspace
K ⊂ H, introduce K + iK, the graph norm of s is

< x, y >s=< x, y > + < x, s∗sy >, x, y ∈ K + iK. (5.127)

Follows that, given f ∈ H−1/2(O) and g ∈ H1/2(O), we can define x = ω−1/2 f −
iω1/2g ∈ K(O). Now the graph norm of s is

< x, x >s= (||x||g(s))2 = || f ||2−1 + ||g||2+1

=< x, x > + < x, s∗sx >

=< x, x > + < x, δx >

=< x, (I + δ)x >

(5.128)

It is of interest in introducing a zoo of projectors in such a way one have the minimal
conditions to take any test function and define the above construction, i.e., the es-
tablished norm. Also, the most important motivation for the following definitions
is the fact that

δ = s∗s, (5.129)

so that since s acts on H−1/2(O)⊕ H1/2(O) one have that s∗ acts on H−1/2(Oc)⊕
H1/2(Oc), where Oc means the causal complement of the region O.

It is straightforward the introduction of the operator 1
2 R such that given ( f ⊕

g) ∈ H−1/2(R3)⊕ H1/2(R3) one obtain the product in the whole Hilbert space
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(actually elements of K(O) but in fact is dense),

( f ⊕ g,
1
2

R ( f ⊕ g)) = (x, x). (5.130)

Recalling the definition of N on H−1/2(O)⊕ H1/2(O) (5.124), (5.126) one can write

R =

(
Q− 0
0 Q+

)(
1 −iω

iω−1 1

)(
Q− 0
0 Q+

)
=

(
1 −iQ−ωQ+

iQ+ω−1Q− 1

)
.

(5.131)
Where dom(Q±) = H±σ/2(O) + H±σ/2(Oc) is just the projection on H±1/2(O) <

H±1/2(R3). Now the action of s∗s = δ is clear and well-defined. For the graph
norm one have now

(x, (I + δ)x)0 = ( f ⊕ g,
1
2

R(I + δ)( f ⊕ g)) = (||x||g(s))2. (5.132)

So then is expected that 1
2 R(I + δ) = 1.

Definition 5.4.2 Let B be thself-adjointnt operator defined by

B : F−1/2 ⊕F+1/2 ⊂ H−1/2(O)⊕ H1/2(O) → H−1/2(O)⊕ H1/2(O)

B =

(
0 iA+1

−iA−1 0

)
. (5.133)

Now if one define
δ =

B + 1
B − 1

, (5.134)

is clear that
I + δ =

2B
B − 1

, (5.135)

and follows that 1
2 R 2B

B−1 = 1 is the same as

RB = B − 1,

1 = B(1 − R),

−1 = B(R − 1) = (R − 1)B.

(5.136)

Now is clear that

−B(R − I) =

(
A+Q+ω−1Q− 0

0 A−Q−ωQ+

)
, (5.137)
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must equal the unity I. Just take f , g ∈ H−1/2(O) and recall that A− = χOω−1χO.
Since one is already inside O all the projectors χO and Q± will act as corrections
to ω±1 mess. Follows that

( f , A+Q+ω−1Q−g)−1 = (A− f , g)0 = (ω−1 f , g)0 = ( f , g)−1, (5.138)

A+Q+ω−1Q− = I

∣∣∣∣
H−1/2(O)

. (5.139)

Theorem 5.4.3 [32] The operator δ is strongly continuous with respect to mass.

First, follows the continuity of the operator ωλω−1
m as λ → m. Consider f ∈

H
1
2
m(O), ∣∣∣∣∣∣∣∣(1 −

ω1/2
λ

ω1/2
m

)
f
∣∣∣∣∣∣∣∣2

1/2, m
= ||(ω1/2

λ − ω1/2
m ) f ||L2

≤ (
√

m −
√

λ)2|| f ||21
2
.

(5.140)

But since B−1 is well-defined, it is continuous on L2(R3). Hence, follows B−1 =
δm−1
δm+1 is strongly continuous with respect to mass, and the same must hold for the
operator δ.

From that section we can suppose δm = δ0 + m2 δ′ since limm→0 m2δ′ → 0. But
this is a strong assertion and before such a try in writing this, let us analyze the
modern approaches to the Tomita operator and the modular operator.



Chapter 6

The Role of the Second Quantization II

6.1 The Standard subspace

The main starting point of this section is the realization based on the Figliolini
and Guido theorem. It is known that the vacuum vector state in the second
quantization is cyclic and separating if the subspace associated with the von
Neumann algebra is standard. Then, it is clear that having a nice description of
the standard subspace is of interest. For more details and discussions about the
following results, see [35, 36].

First, let H be a real vector space and β its symplectic form on H, such that β is
real, bilinear, and antisymmetric. Now, one has a tuple (H, β) defined as the real
linear space H equipped with a symplectic form β.

Consider the Klein-Gordon equation (□+ m2)Φ = 0. The solutions satisfy
the appropriate equal-time canonical commutation relations. One has a tuple of
Cauchy data at the zero time slice and a mapping from the tuple to the space of
Klein-Gordon solutions. For that case, a symplectic form is identified with respect
to the conserved four-vector current.

Now if we introduce the α to be real scalar product on H, it is said to be
compatible if

β(h, k)2 ≤ α(h, h)α(k, k), h, k ∈ H, (6.1)

holds.
Finally, from the above, a one-particle structure (H, κ) can be defined. The

(H, κ) is the one-particle structure on H associated with the compatible scalar
product α. In fact, H is a complex Hilbert space and κ : H → H is a real linear map
such that

• Re(κ(h1), κ(h2)) = α(h1, h2)

Im(κ(h1), κ(h2)) = β(h1, h2)

• κ(H) + iκ(H) is dense in H
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for h1, h2 ∈ H. Also, κ is injective, i.e., if κ(h) = 0 for some h ∈ H then h = 0.
A completion H for H is always possible such that k : H → H and define a
one-particle structure for H.

Now a very nice theorem can be stated.

Theorem 6.1.1 Given H with a compatible scalar product α.

• There exist a (H, κ) on H associated with α

• It is unique such that if exist (H′, κ′) another one-particle structure on H, exist a
unitary U : H → H′ such that the following commutes

It is a nice theorem because it makes it possible to identify different one-particle
structures such that the existence of a unitary operator connecting the different
structures is guaranteed. In fact, one also has the guarantee of the existence of
intertwines between the different flows generated by the dynamical operator for
the local Cauchy data. The uniqueness is also a result of the choice of the time
evolution operator for the classical phase space.

Let H ⊂ H a closed, real linear subspace of H. By the Riesz lemma [see 35],
there exist a unique bounded real linear operator DH on H such that

β(h, k) = α(h, DHk), h, k ∈ H, (6.2)

Also, holds
||DH|| ≤ 1, D∗

H = −DH. (6.3)

Recall that α( · , · ) = Re( · , · )H and β( · , · ) = Im( · , · )H so that the restriction of
the operator D on H is called the polarizer of the symplectic form Im( · , · )H with
respect to the real scalar product Re( · , · )H and DH is called the polarizer of H.

A remark is necessary here. From a real vector space H together with a scalar
product α and a symplectic form β, it is possible to construct a complex Hilbert
space H such that there exists a real linear map κ in such a way that: κ(H) + iκ(H)

is dense in H, i.e., it serves as a basis for H. Then, by identifying a polarizer for
a real subspace H of H, it is possible to turn the real part of the product into the
imaginary part of the product. It is clear that two different subspaces are being
identified: the subspace H and the subspace iH. These elements belong to κ(H)

and iκ(H).
Define the EH orthogonal projection onto H, such that

β(h, k) = α(h, DHk) = α(h, (−Ehi)k) = −Re(h, ik), h, k ∈ H. (6.4)
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Follows that
DH = −EHi|H. (6.5)

In the above is clear that the two different notions of subspaces H and iH has
been used and that’s why the orthogonal name for the projector EH. Define
H′ = (iH)⊥R as the symplectic complement of H and ⊥ as orthogonal with respect
to the scalar product. Now several different spaces can be defined.

Let H ⊂ H a closed subspace. Then one have

H0 = (H + iH)⊥,

H∞ = H ∩ iH,

Ha = H ∩ H′, β is degenerated,

Ha = Ha + iHa,

H f = H0 + Ha + H∞, β is non-degenerated,

H f = H f ∩ H.

(6.6)

Is clear that Ha is complex orthogonal to H∞ and real orthogonal to iHa. The a
stands for Abelian and f stands for f actorial.

As DH = −Ehi|H then D2
H = EHiEHi|H = −EHEiH|H and now, one have the

orthogonal projection onto iH identified. If h ∈ H then

(D2
H + 1) = h = 0 ⇐⇒ EHEiHh = h ⇐⇒ h ∈ H ∩ iH. (6.7)

In some sense it means that h ∈ H∞. Also notice that

Kerβ = ran(DH)
⊥ = Ker(D∗

H) = Ker(DH), (6.8)

so clearly Ker(β) = H ∩ H′ ≡ Ha, and that’s why for Ha the symplectic form is
degenerated.

Lemma 6.1.1 For
Ker(D2

H + 1) = H ∩ iH, (6.9)

the subspace H is separating if and only if Ker(D2
H + 1) = {0}. Also H is factorial, i.e.

H ∩ H′ = {0}, if and only if Ker(DH) = {0}.

To finish the section, rest to define what means a subspace to be standard and how
it relates to the above definitions.

Let H be a complex Hilbert space closed, real linear subspace. The subspace H
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is cyclic if H + iH is dense in H and H separating if H ∩ iH = {0}. Follows that H
is standard if it is both cyclic and separating. For Hs a standard subspace, follows
that

Hs = Ha + H f , (6.10)

and
Hs ∩ iHs = {0}, Hs + iHs is dense in Hs. (6.11)

6.2 Zoo of projectors

Here the point start is the desire to define the dynamic operator and to do that
one invoke the Tomita operator. A great fact (see [10]) is that one can define the
previous orthogonal projector in terms of the modular objects.

Given a standard subspace Hs of H. Introduce the Tomita operator SH associ-
ated to Hs that is closed, densely defined and an anti-linear involution on H such
that

SH : h + ik 7→ h − ik, h, k ∈ Hs. (6.12)

From the polar decomposition SH = JH∆1/2 define JH and ∆H the modular conju-
gation and the modular operator of Hs. From now on the subscript s for standard
will be omitted. The modular operator ∆H is a non-singular, positive self-adjoint
operator and the modular conjugation JH is an antiunitary involution. The follow-
ing holds

JH∆H JH = ∆−1
H ,

∆is
H = H, JH H = H′, s ∈ R.

(6.13)

Denote by
LH = log ∆H, (6.14)

the modular Hamiltonian of H.
Now assume H to be standard and factorial. Define PH as the cutting projection

PH : h + h′ 7→ h, h ∈ H, h′ ∈ H′. (6.15)

One have PH : D(PH) ⊂ H → H, a closed, densely defined, real linear operator
with domain D(PH) = H + H′. Now follows the great result that the cutting
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projector PH can be written as a function of the modular objects. First introduce

a(λ) = (1 − λ)−1, b(λ) = λ1/2a(λ), (6.16)

such that
PH = (a(∆H) + JHb(∆H))

−, ∆ f = ∆H|H f , (6.17)

or
PH = (1 + SH)(1 − ∆H)

−1, (6.18)

so that for
EH = (1 + SH)(1 + ∆H)

−1, (6.19)

one have the cutting projector as a function of the modular Hamiltonian

PH = EH(1 + ∆H)(1 − ∆H)
−1 = EH coth LH/2. (6.20)

In fact the cutting projector also can be written as an complex-linear operator

Q = P − iPi − 1 =
1 + ∆
1 − ∆

= coth
log ∆

2
. (6.21)

By the same line of arguments one can write

1 − E + iEi =
∆ − 1
∆ + 1

= tanh
log ∆

2
. (6.22)

It allows to determine properties about boundness of ∆ and of log ∆. For instance
one can see that H is i tanh log ∆/2 is invariant since the hyperbolic tangent
function is bounded and then i tanh log ∆/2|H is bounded and skew-selfadjoint
in H. By the same arguments follows that its inverse −i coth log ∆/2|H is a skew-
selfadjoint operator on H. The domain of Q self-adjoint closure contains at least

dom(P) ∩ dom(iPi) = (H + H′) ∩ (iH + iH′). (6.23)

Follows now finally the relation

log ∆ = −2 arcoth Q = −2 arcoth (P − iPi − 1). (6.24)

Of course there is a lot of open question at this moment. The main thing that is
missing here is how one can localize the Klein-Gordon solution or even better



Chapter 6. The Role of the Second Quantization II 83

which scheme of localization one can use, because it is clear that one can choose
to work on either R3 or use the unitary Weyl representation to describe fields as
elements W( f ) where the support of f localizes.

6.3 The question on localization

First, consider the whole R3 after a slice time. Now impose some criteria such
that it selects the desired test functions, i.e., for a given projector Qσ = [Lσ/2]

that localizes via a characteristic function χσ the test functions to be supported on
O ⊂ R3 the convergence criteria is

f ∈ L−1/2(O), g ∈ L1/2(O),

||x||σ = ||ωσx|| < ∞.
(6.25)

Also follows that Lσ/2(O) < Lσ/2(O) and σ = ±1. Follows from the properties
of the Local Sobolev space (see section 5.4 for a discussion) that Qσ is the same for
any mass greater than zero, m > 0, but differ from Qσ corresponding to mass zero,
m = 0.

Now is clear the tuple of functions to be taken. Consider ( f , g) ∈ L(O) =

Lϕ(O) ⊕ Lπ(O) where one can identify +1/2 with ϕ and −1/2 with π. Now
finally the standard subspace can be identified.

(Kϕ, Kπ) = (ω−1/2L−1/2(O), ω1/2L1/2(O)), (6.26)

such that
ω−1/2L−1/2(O) ⊃ ω1/2L(O) = {0}. (6.27)

Again, it is worth recalling the importance of identifying the standard subspace
from the theorem by Figliolini and Guido. It is related to the vacuum vector state
being cyclic and separating with respect to the second quantization. The standard
subspace is identified with respect to the local space, and it is of interest to represent
these elements in the whole R3. This is because, in general, the operators (in our
case, the Tomita operator and its adjoint) will act on O and Oc, where c stands for
the spatial complement, and these are dense in R3.

Now introduce P the projector in H with image L, kernel L′ and P is closed.
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The domain of P is such that

dom(P) = L+ L′ = L1/2(O) + L1/2(Oc)⊕L−1/2(O) + L−1/2(Oc). (6.28)

In some sense it is playing the same role of the previous elements introduced,
i.e., it is taken from the whole R3 the test functions that converges, so is clear
that if one introduce the operators ωσ/2 that delocalize the test functions, one can
identify these elements on K = H = L2(R3). To do that one have

P = χ1/2 ⊕ χ−1/2, (6.29)

U = ω1/2 ⊕ ω−1/2, (6.30)

UPU−1 = ω1/2χ1/2ω−1/2 ⊕ ω−1/2χ−1/2ω1/2. (6.31)

Before presenting the striking final result of this section, attributed to Bostel-
mann et al. [37], let us take a step back. If one considers the domain of dependence
DO of O ⊂ R3, it is known that the von Neumann algebra R(O) of the local
region is the same as the von Neumann algebra of its domain of dependence,
R(DO) (strictly speaking, this is Haag duality).

It follows that if one takes a local region from the entire spatial region after a
slice time and describes the von Neumann algebra in such a precise manner, as
previously done, one obtains the complete algebra of its domain of dependence
for the Hermitian scalar field, ensuring that its Cauchy data evolves in a physical
manner. Additionally, the Weyl unitary representation for the von Neumann
algebra associated with the region encapsulates the entire CCR structure and the
information regarding the causal structure.

Next, we invoke the Tomita-Takesaki theorem and realize that its action is
such that the Tomita operator maps elements and returns the elements associated
with the causally separated algebra, i.e., the action of the modular operator J.
Furthermore, it respects the time parameter, specifically the modular Hamiltonian
in the second quantization, and is continuous with respect to the mass.

The conclusion is that once one identifies, from the polar decomposition, the
action of the modular operator, the dynamics of the local region is determined. As
discussed previously, the entanglement entropy can then be evaluated, and, for
instance, energy bounds can be analyzed.

Recall the polar decomposition ∆ = eδ, J = ej, S = J ∆1/2 such that δ = s∗s one
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have

dom(s) = L−1/2(O)⊕L1/2(O),

dom(s∗)L−1/2(Oc)⊕L1/2(Oc).
(6.32)

The necessity to identify the local Standard subspace to the global Standard sub-
space is clear, now both s and s∗ can act.

Now follows the strong final result to be discussed on this section and it is
due Bostelmann, Cadamuro and Minz [37]. Consider the one-particle structure
(H,L, ω) for an operator B, 6.21, on H such that

B = ω1/2χ1/2ω−1/2 + ω−1/2χ−1/2ω1/2 − 1, (6.33)

and its domain is such that

dom(B) = (ω1/2(L1/2 + L⊥,1/2)) ∩ (ω−1/2(L−1/2 + L⊥,−1/2)). (6.34)

Follows that

log ∆ = iω

(
0 M−

−M+ 0

)
,

M± = 2 ω± arcoth (B)ω±.

(6.35)

The importance of the equation (6.35) is outstanding. If one introduce a space
of functions L and take a set of test functions, the Hilbert space can be discretized
in such a way the problem in determine the modular Hamiltonian is now the
problem in evaluating M±, in special M− since from that one the M+ element is
determined, and in fact it is a matrix problem.



Chapter 7

Calculating the Relative Entropy

The goal here is to reproduce the recent description concerning relative en-
tropies. The results primarily stem from Ciolli et al. [10], Longo and Morsella
[31], and Bostelmann et al. [36]. As we shall see, the entire concept of standard
subspace and its factorization into different subspaces is under consideration. The
Bekenstein bound, as discussed in section 3.2, is also tested. Furthermore, the last
section addresses the notion of information theory and the realization of operators
as entropy operators, as referenced in [38].

7.1 Entropy of a Vector

First, recall the definitions in section 6.1. Given a vector space H over R,
introduce two bilinear forms in H, such that now one have a separable Hilbert
space (H, τ) and a symplectic space (H, σ). In that way, one has a symplectic
Hilbert space (H, τ, σ) such that τ( f , g) = Re < f , g > and σ( f , g) = Im < f , g >,
where < · , · > is the complex scalar product of H as the Hilbert space over C.
Introducing now a subspace H ⊂ H and decomposing it as in (6.6). Define the
standard subspace as in (6.10) and (6.11).

Define KH = − log ∆H, extend it by 0 in H and as undefined in H⊕
∞ \ {0}.

Denote the modular group by UH(x) = exp{−i⊕xKH} defined in H⊕
0 ⊕ H⊕

s .
Now we introduce the Fock-Bose space associated to the Hilbert space. To that

Fock-Bose space introduce the Weyl unitaries representation W( f ), f ∈ H such
that

W( f )W(g) = e−iσ( f ,g)W( f + g), (7.1)

W( f )∗ = W(− f ). (7.2)

For H ⊂ H, define A⊕
H = CCR(H⊕, σ⊕) ⊃ AH and AH = CCR(H, σ) ⊂ AH, etc.

On AH, the bilinear form τ induces the quasifree state ω (vanishing one-point
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function)
ω(W( f )) = e−τ( f , f )/2. (7.3)

For each g ∈ H, consider a coherent state (quasifree with nonvanishing one-point
function)

ωg = ω(W(g)∗ · W(g)), (7.4)

also, ω0 = ω.
For (H, τ, σ) a symplectic Hilbert space, let H ⊂ H then one have the following

factorization

K⊕ ≃ H⊕
0 ⊕ H⊕

a ⊕ H⊕
f ⊕ H⊕

∞, (7.5)

H ≃ 0 ⊕ Ha ⊕ H f ⊕ H∞. (7.6)

Now since pure quasifree states are faithful on the respective subalgebras, the
algebra A⊕

H is isomorphic to the spatial tensor product of C∗−algebras

A⊕
H ≃ A⊕

0 ⊗A⊕
a ⊗A⊕

f ⊗A⊕
∞, (7.7)

under this isomorphism

AH ≃ C 1 ⊗Aa ⊗A f ⊗A∞, (7.8)

and
ωg ≃ ωP⊕

0 g ⊗ ωP⊕
a g ⊗ ωP⊕

f g ⊗ ωP⊕
∞ g. (7.9)

Due to the additivity of the relative entropy, we have

SAH(ωg||ω) = SAa(ωP⊕
a g||ω) + SA f (ωP⊕

f g||ω) + SA∞(ωP⊕
∞ g||ω). (7.10)

Now rest to calculate the three terms in equation (7.10).
First, let us calculate the relative entropy of the abelian part: SAa(ωg||ω).

Consider any g ∈ H⊕
a . The (real-linear) projector Pa is onto Ha. Recall

Ha = H ∩ H′,

H⊕
a = Ha + i⊕Ha.

(7.11)

Under the considerations of the algebra, Aa, the state ωg coincides with ωĝ,
where ĝ = (1 − Pa)g. Here Ha is real-orthogonal for i⊕Ha. For the calcula-
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tion of the entropy SAa(ωg||ω), without loss of generality, one can assume that
g ∈ (1− Pa)H⊕

a = i⊕Ha. The GNS representation π for (Aa, ω) acts on L2(Rn, dµ),
where dµ = (2π)−n/2 exp

{
−||x||2/2

}
dn x, with π(W( f )) being multiplication

with exp{i < f , · >}, and π(Aa)′′ = L∞(Rn, dµ). The states here are ω and ωg

such that Ω(x) = 1, Ωg(x) = exp
{
< i⊕g, x > −(||g||⊕)2}. The modular group

turns out to act by multiplication with exp
{
−2it < i⊕g, x > +2it(||g||⊕)2}. Now

follows the relative entropy for the abelian part Ha of the subspace H ⊂ H.

SAa(ωg||ω) = 2(||(1 − Pa)g||⊕)2. (7.12)

Second, let us calculate the relative entropy of the factorial part: SA f (ωg||ω).
Consider any g ∈ H⊕

f ∩ dom(KH). Recall the usefulness of KH from (KH =

− log ∆). Since (H⊕
f , τ⊕, σ⊕) is pure, the GNS representation π of (A f , ω) acts on

the Fock space over H⊕
f and in that representation both ω and ωg are vector states,

ω corresponding to the Fock vacuum vector Ω and ωg corresponding to the vector
Ωg = π(W(g))Ω. The vector Ω is cyclic and separating for π(A f )

′′, the associated
Tomita-Takesaki modular group is ∆it

Ω = Γ(∆it
H), the second quantization of the

unitary ∆it
H ↾ H⊕

f . Let g ∈ H f ∩ dom(KH) and W(g) ∈ A f . Follows now that

SA f (ωg||ω) = i
d
dt

< Ωg, ∆it
Ω,Ωg

Ωg >

∣∣∣∣
t=0

=

= i
d
dt

< Ω, π(W(g))∗∆it
Ωπ(W(g))Ω >

∣∣∣∣
t=0

=

= i
d
dt

< Ω, π(W(g))∗∆it
Ωπ(W(g))∆−it

Ω Ω >

∣∣∣∣
t=0

.

(7.13)

Using that

π(W(g))∗∆it
Ωπ(W(g))∆−it

Ω = π(W(g))∗π(W(∆it
Hg)) =

= π(W(∆it
Hg − g)) exp

{
iσ⊕(g, ∆it

Hg)
}

.
(7.14)

The relative entropy with respect to the abelian part is given.

SA f (ωg||ω) = i
d
dt

e−(||∆it
H g−g||⊕)2

eiσ⊕(g,∆it
H g)
∣∣∣∣
t=0

=

= σ⊕(g, i⊕KHg).
(7.15)

Holding for g ∈ H f ∩ dom(KH). Also holds for g ∈ H′
f ∩ dom(KH), vanishing. For
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the general case g ∈ H⊕
f ∩ dom(KH), recall that the projector Pf is defined where

∆ f = ∆H ↾ H⊕
f .

Now the last entropy calculation, SA∞(ωg||ω). Take g ∈ H⊕
∞. As before,

(H∞, τ⊕, σ⊕) is pure. The GNS representation π of (A∞, ω) is irreducible, ω and
ωg are given by the vector states Ω and Ψ = π(W(g))Ω. The support projections
of these states are hence projectors PΩ and PΨ. The relative entropy with respect
to the A∞ part is given.

SA∞(ωg||ω) =

0, if g = 0,

∞, otherwise.
(7.16)

7.2 Entropy of a Wave Packet

Now it is of interest in calculating the previous construction for the case of a
wave, i.e., a Klein-Gordon solution. We shall start from Rd+1 solution and move
to the Rd, the time-zero solution. In that case, due to the conserved current give
rise to the symplectic form, we are on the factorial case.

Let Φ ∈ S′(Rd+1) be a solution of the Klein-Gordon equation. Due to the split
of frequency, one have hm ∪−hm, where hm = {p : p · p + m2 = 0, p0 ≥ 0} is the
positive Lorentz hyperboloid. A vector of the Hilbert space H = L2(hm, dΩm) is
defined to be [Φ] =

√
2Φ̂|hm . Again, due to the split of frequency of the solution,

Φ = Φ− + Φ+, where Φ± = Φ̂ on ±hm and Φ± = 0 on ∓hm. The map of the
solutions to vectors Φ 7→ [Φ] is one to one. The one-particle product between
waves is given by

([Φ], [Ψ]) =
∫

hm
Φ̂(p)Ψ̂(p) dΩm, (7.17)

also follows that
([Φ], [Ψ]) = −

∫
−hm

Φ̂(p)Ψ̂(p) dΩm. (7.18)

Now the identification of the symplectic form is straightforward,

Im([Φ], [Ψ]) =
i
2
(([Φ], [Ψ])− ([Φ], [Ψ])) =

1
2

∫
x0
(ΨΦ′ − ΦΨ′)dx. (7.19)

The Φ′ is to be understood as the time derivative ∂0Φ.
Now consider a spacetime region O ∈ Rd+1. The closed real Hilbert space

H(O) is made up of smooth real functions on Rd+1 compactly supported in O.
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The Cauchy data Φ0 = Φ|x0=0 and Φ′
0 = Φ′|x0=0 are defined by

Φ0(x) =
1
2

Re
∫

C(ω(p), p) eip · x dp
ω(p)

,

Φ′
0(x) =

1
2

Im
∫

C(ω(p), p) eip · x dp.
(7.20)

Now is clear that given O ∈ Rd+1 and H(O), one have

[Φ] ∈ H + H′, (7.21)

such that PH[Φ] = [Φ+] ∈ H corresponding to Φ+
0 , Φ′+

0 , where

Φ+ ∈ H(O), Φ− ∈ H(O′). (7.22)

Consider now a real smooth wave Φ solution of (□+ m2)Φ = 0 with Cauchy
data Φ0 = f , Φ′

0 = g. Denotes Γ and Λ the waves with Cauchy data respectively
Γ0 = f , Γ′

0 = 0 and Λ0 = 0, Λ′
0 = g. The entropy is given by

SΦ = Im(Φ, PH AΦ)

= Im(Γ + Λ, Ph A(Γ + Λ))

= Im(Γ, PH A(Γ)) + Im(Γ, PH A(Λ)) + Im(Λ, PH A(Γ)) + Im(Λ, PH A(Λ))

= SΓ + SΛ + Im(Γ, PH A(Λ)) + Im(Λ, PH A(Γ)).

(7.23)

Now just recall the role of A in the above, i.e., A = −iK, where

i =

[
0 ω−1

m

−ωm 0

]
, (7.24)

defines the complex structure (i2 = −1) and

K : ( f , g) 7→ (K(1)g, K(2) f ). (7.25)

The conclusion is that one have two ways in evaluating the entropy: by directly
introducing the modular Hamiltonian operator K or introducing the modular flow
of H(O).
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7.3 Application: Rindler Wedge

For the first case, let us consider the Rindler Wedge case in 1 + 1 dimension
and the Bisognano Wichmann result for the modular operator.

Let W denote the wedge in Minkowski space,

W = {x ∈ R1+1 : x1 > |x0|}, (7.26)

and all others wedges are from Poincaré translations of the above. Now invoke
the Bisognano and Wichmann result,

U(ΛW(2πs)) = ∆−is
H(W)

, (7.27)

where U is the unitary representation of the Poincaré group on H and H(W) ⊂ H
is the standard subspace associated with W. Introduce f ∈ S′(R1+1) so that,

∂W f =
d
ds

f ΛW(s). (7.28)

The one-parameter subgroup Λ(s) of special transformation, i.e., boosts in x1

direction, is given as

Λ(s) =

[
cosh s sinh s
sinh s cosh s

]
(7.29)

that transform W into itself, see Ciolli et al. [10] and Haag [7]. If U(Λ(s)) and
U(x) are unitary operators implementing respectively the boost and the spacetime
translations, then,

U(Λ(s))U(x)U(Λ(s))−1 = U(x(s)), (7.30)

where,

x0(s) = x0 cosh s + x1 sinh s, (7.31)

x1(s) = x0 sinh s + x1 cosh s. (7.32)

Finally, one obtain

∂W
0 = ∂W

s |s=0 =
d
ds

f ΛW(s)|s=0

= x1∂x1 + x0∂x1 .
(7.33)
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Where ∂xk is the partial derivative with respect to xk and now on it will be written
as ∂k for the same.

Now, following Ciolli et al. [10], back to the equation (7.23) and recalling the
symplectic product (7.19), define Γ0 = f , Γ′

0 = 0 and Λ0 = 0, Λ′
o = g for the waves

at x0 = 0. For Im(Γ, PH AΛ) it is obtained,

Im(Γ, PH AΛ) = 2π
1
2

∫
x0=0

(Γ′∂WΛ − (∂WΛ)′Γ) dx = 0. (7.34)

Since Γ′
0 = 0 and also one can verify that,

(∂WΛ)′ = (x0∂1Λ + x1∂0Λ)′

= ∂1Λ + x0∂1Λ′ + x1(∂2
1 − m2)Λ

= 0 at x0 = 0.

(7.35)

For Im(Λ, PH AΓ) one have the same

Im(Λ, PH AΓ) = 2π
1
2

∫
x0=0

(Λ′∂WΓ − (∂WΓ)′Λ) dx = 0. (7.36)

Since Λ0 = 0 and also one can verify by the same argument as before that

∂WΓ = x0∂1Γ + x1∂0Γ = 0, (7.37)

at x0 = 0 and Γ′
0 = 0.

Now the entropy is given by

SΦ = SΓ + SΛ. (7.38)

For the first entropy term one have, (using that Γ′
0 = 0),

SΓ = Im(Γ, PH AΓ)

= −2π
1
2

∫
x0=0

(∂1Γ + x1(∂2
1 − m2)Γ)Γ dx

= 2π
1
2

∫
x0=0

x1((∂1 f )2 + m2 f 2) dx.

(7.39)
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Now, for the second term one have, (using that Λ′
0 = 0),

SΛ = Im(Λ, PH AΛ)

= 2π
1
2

∫
x0=0

Λ′∂WΛ dx

= 2π
1
2

∫
x0=0

gx1g dx.

(7.40)

The entropy of a wave can be written in a very interesting way if one recall the
energy density of a wave from the energy-momentum tensor

T00(x) =
1
2
((Φ′)2 + |∂1Φ|2 + m2Φ2), (7.41)

so that

SΦ = 2π
∫

x0=0
x1T00(x)dx

= 2π
∫

x0=0
x1 1

2
((∂0Φ)2 + (∂1Φ)2 + m2Φ2) dx.

(7.42)

It is very clear that the entropy of a wave is characterized by its momentum
entropy SΛ and its field entropy SΓ.

Also, now one can write the modular Hamiltonian operator nicely,

K : ( f , g) 7→ (x1g, x1(∂2
1 − m2) f + ∂1 f ), (7.43)

only by considering the Bisognano and Wichmann result.

7.4 Application: Massless Double Cone

Now consider the double cone case and massless Hermitian scalar free fields
solutions of the wave equation. Denote O the double cone in Minkowski space-
time, R1+3, with base the open unit ball B centered at the origin in the time zero
hyperplane R3. Here H(O) = H(B) is the standard subspace in the one-particle
Hilbert space H. The modular group V(2πs) and the modular Hamiltonian K0 as-
sociated to H(B) is the one discussed in section 5.3, based on Longo and Morsella
[31] and Hislop and Longo [29]. Since the modular Hamiltonian is known, one
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only have to invoke it

(K0Φ)(x0, r) =
1
2
(1 − ((x0)2 + r2))∂0Φ − x0r∂rΦ − Dx0Φ,

(∂0K0Φ)(x0, r) = −x0∂0Φ +
1
2
(1 − ((x0)2 + r2))∂2

0Φ − r∂rΦ − DΦ.
(7.44)

At time zero x0 = 0 one have,

(K0Φ)(0, r) =
1
2
(1 − r2)∂0Φ

∣∣∣∣
x0=0

, (7.45)

(∂0K0Φ)(0, r) =
1
2
(1 − r2)∂2

r Φ − r∂rΦ − DΦ
∣∣∣∣
x0=0

. (7.46)

Because of the projectors PH, the action can be written as

K0 : ( f , g) 7→ (
1
2
(1 − r2)g,

1
2
(1 − r2)∂2

r f − r∂r f − D f ). (7.47)

As before, consider the wave packet to have Cauchy data as Φ = Γ + Λ such
that Γ0 = f , Γ′

0 = 0 and Λ0 = 0, Λ′
0 = g. Let us notice first that some terms of the

entropy (7.10) vanish. First, one have,

Im(Γ, Ph AΛ) =
∫

x0=0
(0 − (K0Λ)′Γ) dx

= −
∫

x0=0
((∂0K0)Λ)Γ + (Λ′K0Γ) dx

= −
∫

x0=0
g(

1
2
(1 − r2)∂0)Γ dx

= 0.

(7.48)

As well, one have,

Im(Λ, PH AΓ) =
∫

x0=0
g(

1
2
(1 − r2)∂0)Γ dx

= 0.
(7.49)
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Now let us calculate the non-zero terms of the entropy. For Γ one have

SΓ = Im(Γ, PH AΓ)

=
∫

x0=0
(Γ′K0Γ − (k0Γ)′Γ) dx

= −
∫

x0=0
f (

1
2
(1 − r2)∂2

r − r∂r − D) f dx

= −
∫

x0=0

1
2
(1 − r2) f ∂2

r f dx +
∫

x0=0
r f ∂r f dx + D

∫
x0=0

f 2 dx.

(7.50)

For Λ one have

SΛ = Im(Λ, PH AΛ)

=
∫

x0=0
(Λ′K0Λ) dx

=
∫

x0=0
f (

1
2
(1 − r2)g) dx.

(7.51)

To write in a better way, [see 31, Appendix A], use the identity

∫ 1
2
(1 − r2)|∂r f |2 dx = −

∫ 1
2
(1 − r2) f ∂2

r f dx +
∫

r f ∂0 f dx, (7.52)

to write the full entropy as follows

SΦ =
1
2

∫
(1 − r2)(g2 + |∂r f |2) dx + D

∫
f 2 dx, (7.53)

or even better

SΦ =
1
2

∫
(1 − r2)((∂0Φ)2 + |∂rΦ|2) dx +

D
2

∫
f 2 dx. (7.54)

Recall the energy density (7.41) for massless fields, m = 0, and write finally the
entropy of a wave as

SΦ = π
∫

B
(1 − r2)T00 dx + πD

∫
Φ2 dx. (7.55)

Again, one could define the SΓ entropy as the field entropy and SΛ entropy as
the momentum entropy. But in fact, these concepts need more polish, and that is
the motivation for the next section.
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7.5 General comments

From the discussion of the last section, the entropy of a vector Φ ∈ H with
respect to the standard subspace H ⊂ H is defined by

SΦ = Im(Φ, PH AΦ)

= Im(Φ, PH(i log ∆)Φ)

= (Φ, iPHi log ∆Φ).

(7.56)

Where is used that AH = −i log ∆. Note that iPHi log ∆ is a real linear, positive
and self-adjoint operator whose expectation values give the entropy of states. [38]

Definition 7.5.1 The entropy operator EH is defined by

EH = iPHi log ∆, (7.57)

so that the entropy is the expectation value of the entropy operator,

SΦ = (Φ, EΦ), Φ ∈ H. (7.58)

log ∆B = −2πi

[
0 1

2(1 − r2)
1
2(1 − r2)∂2

r − r∂r − 2D 0

]
= −2πi

[
0 M

LD 0

]
(7.59)

One can define LD = L − 2D and explicit write the Legendre operator as an
entropy operator. Also, the advantage in doing that is that one can recall from
information theory (or any usual Fourier course) that the following measures the
energy of a wave/signal in a spacetime region B,

SΦ = 2πD
∫

| f |2 dx = 2πD( f , EB f ) = 2πD|| f ||2B. (7.60)

That one we can call the Born type entropy. Now, for f ∈ L2(Rd) we set

π( f , M f )B = π
∫

B
(1 − r2) f 2 dx, (7.61)

as the Parabolic entropy of f in B. This is equal to the entropy SΦ of the flat wave
and in fact is related to the momentum entropy Sg accordingly to the Cauchy data.
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Similarly, we set

−π( f , L f )B = π
∫

B
(1 − r2)|∂r f |2 dx, (7.62)

as the Legendre entropy of f in B. This is equal to the entropy SΦ of the stationary
wave and as well is related to the field entropy S f accordingly to the Cauchy data.

A nice realization from Longo [38] is that one can introduce prolate entropy W
as

−W + M = −L + 1. (7.63)

For a given f ∈ S(Rd) one have

−π( f , W f )B + π( f , M f )B = −π( f , L f )B + π( f , f )B. (7.64)

The sum of the prolate entropy and the parabolic entropy is equal to the sum of
the Legendre entropy and the Born entropy, all with respect to B [38]. Also, one
can write the entropy density of a wave for the Double Cone case in a suitable
way,

SΦ = π(−( f , W f )B + ( f , M f )B + (g, Mg)B +
d − 2

2
|| f ||2B). (7.65)

A notable realization from this is the presence of the parabolic distribution
(1 − r2) in both the parabolic and the Legendre entropy expressions. Near the
origin, the parabolic entropy closely resembles the Born-type entropy. Conversely,
near the boundary of B, the prolate entropy approaches the Born-type entropy. The
significance of this realization stems from the fact that the modular Hamiltonian,
modular flow, and entropy of a massive free scalar Hermitian field are currently
unknown. From the discussion above, one expects that a similar analysis can be
conducted in the massive case.

From a Cauchy slice, one introduces the Cauchy data for a field. Building on
the earlier discussion regarding the standard subspace in relation to the Hilbert
space, one introduces the Weyl unitary representation. Now, we turn to the
Tomita-Takesaki discussion. The anti-linear Tomita operator is an involutive and
closed operator that acts in two ways: it evolves in time, and for each infinitesimal
step, it maps localized vectors to a causally separated region. In fact, it can be
decomposed in a modular (or polar) manner, yielding the modular operator and
the modular conjugation, which respectively act in the two ways described earlier.
If one understands from its geometric realization how the modular flow acts, one
can describe how the time evolution of the states occurs. Additionally, one can
describe how the entropy of the field is localized and evolves.
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Since we have the entropy for a wave in the Rindler Wedge and for the Double
Cone case, one can test the bounds discussed in Chapter 3. The first bound one
can see directly is from the equation (7.65) and can be announced in a Corollary
way as follows, [see 38].

Corollary 7.5.1 The entropy Φ = f ⊕ g in some region B and f , g ∈ L2(B), is lower
bounded by

SΦ ≥ 2πD|| f ||2B. (7.66)

Also, the inequality is an equality if f = χB and g = 0 and for this case

S f⊕g = 2πVol(B) D. (7.67)

Consider the entropy of a wave packet in a region B of radius R > 0 and center
x, [see 38],

SΦ(R) = π
∫

BR

dx
R2 − r2

R
< T00 >Φ +

πD
R

∫
BR

dx Φ2. (7.68)

Here is considered r = |x − x|. If one now consider the large R case, SΦ(R)/R gets
proportional to the total local energy E =

∫
BR

dx < T00 >Φ (t, x). That is

SΦ(R)
R

∼ πE, (7.69)

as R → ∞. That is in agreement with the Bekenstein Bound, see Chapter 3,

SΦ(R) ≤ π E R. (7.70)

Now for the small R case, at fixed time t. The local entropy get proportional to

SΦ(R, x) = πDΦ2(t, x)VdRd−1 + . . . = π
D
d

Ad−1(R)Φ2(t, x) + . . . , (7.71)

where is used Ad−1(R) = 2 πd/2

Γ(d/2)Rd−1, the area of the d-dimensional sphere ∂BR

and Vd = Ad−1(1)/d is the volume of B. The final conclusion is that the entropy
density of a wave packet Φ around a point gets proportional to the area of the
sphere boundary BR, as expected by holographic area theorems for the entropy.
The discussion for the Black Hole case is considered in Chpater 3.



Chapter 8

Numerical Approach

As motivation for this chapter, we recall section 6.3. In fact, the last assertion
was that starting from the expression (6.35), one could discretize the Hilbert
space and obtain the spectrum of the components M− and M+ of the modular
Hamiltonian via a numerical approach, since the analytical calculation is very
challenging. This approach is utilized by Bostelmann et al. [37], and it will be
discussed in detail in the following sections. Considering massive fields in the
double cone case, the two main questions to be addressed are: Is the component
M− a multiplicative operator? Is the component M− mass-dependent? In the last
section, we expect to employ the discretization approach to uncover analytical
properties, such as the behavior of the derivative with respect to the mass. If it is a
differential operator, we will investigate whether the derivative is of first, second,
or another order and if one can formulate an ansatz.

8.1 Discretization of the Hilbert space

Start from

log ∆ = iA

(
0 M−

−M+ 0

)
, (8.1)

where,

M± = 2A±1/4arcoth B A±1/4, (8.2)

B = A1/4χA−1/4 + A−1/4χA1/4 − 1. (8.3)

Hence, ∆ is determined solely from χ and A, where A is the Helmholtz operator:
A = ∂2 + m2. The goal now is to use numerical approximation for A±1/4 and χ to
write it as finite dimensional matrices.

99
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Define the discretized objects as

H(n)
r = P(n)Hr, H(n)

r = P(n)Hr,

A(n) = (P(n)A∓1/4P(n))±1/4,
(8.4)

for a suitable finite-dimensional orthogonal projectors P(n) in Hr.
Choose an orthonormal basis {e(n)j} of H(n)

r = H(n)
r + H⊥(n)

r . For sufficiently
regular test functions h and h′ to be introduced, it is expected that

Σj,k < h, e(n)j >< e(n)j , M(n)
− e(n)k >< e(n)k , h′ >−→

∫ ∫
h(x)M−(x, y)h′(y) dµ(x)dµ(y),

(8.5)
for n going to infinity. Also, one should care of the spectrum of the discretized
operator B(n) that falls into (−∞,−1) ∪ (1, ∞). Because of that, the algorithm
should consider high floating points during its eigendecomposition. For the
matrix inversion of A−1/4 also one should care that for high floating points the
matrix A+1/4 is indeed its inverse.

The next step is to introduce the boxes. Introduce some interval {0, . . . , n − 1}
of size n ∈ N and points ai such that a0 < . . . < an and define bi = ai+1. Define a
orthogonal basis functions e(n)i to be supported in [ai, bi] ⊂ R. For instance, one
wants a box as basis of size [ai, bi]. It will be given by

e(n)i (x) = niθ(x − ai)θ(bi − x), (8.6)

i.e., a region of points greater than ai and less than bi, such that

< e(n)i , e(n)i >= 1. (8.7)

In fact, one wants initially a equally spaced grid, i.e., ai = −b + 2i
n b.

Example. Suppose one wants to discretize the interval [−b, b] with b = 1,
using n = 10 box functions e(n,b)

i = e(10,1)
i . Hence, it is obtained for i = 0:

[a0, b0] = [a0, a1] = [−1,−0.8] and e(10)
0 (x) = n0θ(x + 1)θ(−0.8 − x). The grid

spacing is 2b/n = 0.2. Call i the resolution and n the discretization size. With that
definition one have a nice way in determining the discretization of a function in a
finite dimensional basis.

The last step in to determine the discretization of the Helmholtz operator, i.e.,
the kernel

A−1/4 = (p2 + m2)−1/4. (8.8)
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In configuration space it is given by

A−1/4(x, y) = (π1/2 Γ(1/4))−1
(

2m
|x − y|

)1/4

K−1/4(m|x − y|). (8.9)

One can write that kernel as A−1/4(x, y) = f (|x − y|) with f integrable on [0, ∞).
Over the boxes it is

(A−1/4)
(n,b)
ij =< e(n,b)

i , A−1/4 (n,b)ej >

= ninj

∫ ∫
[ai,bi]×[aj,bj]

f (|x − y|) dxdx.
(8.10)

In few words, the integration is over the boxes determined by the indices i and j.
As argued in [37], one can separate in a diagonal and non-diagonal part.

The discretization step is over now. One just have to introduce the standard
subspace and a set of test functions to localize it inside the boxes. The algorithm
will take care of the discretization, eigendecomposition of the operator B and the
spectrum with respect to the position of the component M− will be obtained.

8.2 The Wedge

Consider the (1+ 1) dimensional Minkowski space. The Wedge region is given
by

O = {(t, x) ∈ R2 | x > |t|}. (8.11)

For Hr = L2
R(R) one have the standard subspace given by

Hr = { f ∈ Hr | supp f ⊂ [0, ∞]}. (8.12)

For M(n,b)
− , take n = 256 and b = 4. The resolution will be 0 ≤ i ≤ 40. The aim

is to evaluate < hi, M−hi >. Introduce a set of Gaussian functions with a fixed
width (standard deviation) σ and a position parameter µi,

hi(x) =
1

(πσ2)1/4 exp
{
− (x − µi)

2

2σ2

}
. (8.13)
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−1.0 −0.5 0.0 0.5 1.0
positions μi

−5

0

5

<
h i
,M

(2
56

,4
)

−
h i
>

Main diagonal element < hi,M− hi>  for different masses
< hi,M−hi>
m = 0.25
m = 0.5
m = 1.0
m = 2.0
m = 4.0
m = 8.0

Figure 8.1: Right Wedge. The parameters values are σ = 6/32, n = 256 and 41
position points. Graph reproduced from the numerical algorithm of [37].

These are normalized with respect to the inner product of Hr. To be effective, the
width σ has to be larger than the grid spacing,

σ >
2
n

b, (8.14)

i.e., σ > 1
32 . Choose σ = 6/32 and µi over [−2, 2] equally spaced.

The result is expressed in Figure 8.1. In fact, is observed that,

< hi, M−hj >≈< hi, M−hi >= 2πµi. (8.15)

Some observation we make are

• The graph is highly concentrated in the diagonal part,

• Massless,

• Proportional to 2π,

• Non-differential operator.

In that way one can conclude it is indeed the M− component of the modular Hamil-
tonian operator corresponding to the modular flow as described by Bisognano
and Wichmann. It is a multiplicative operator, mass independent.
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8.3 The Double Cone

First, consider the (1 + 1) dimensional scalar field. As usual, for Hr = L2
R(R)

one have the following standard subspace

Hr = { f ∈ Hr | supp f ⊂ [−1, 1]}. (8.16)

But now, since we are in a region of different size, keep the grid points ai to be
equally spaced only in [−1, 1]. For b = 4, choose a spacing outside such that
increases linearly towards the cut-off at ±b starting from the fixed value of the
inner spacing. Hence, a quarter value of the basis functions is supported to the left
of the interval, the half is supported inside the interval and the another quarter is
supported to the right of the interval. Use n = 256. The non-equal grid spacing
yields twice the resolution over the interval region when compared to the case of
the right wedge. Use σ = 6

64 . The set of Gaussians functions still given by (8.13).

−1.0 −0.5 0.0 0.5 1.0
positions μi

0

2

4

6

<
h i
,M

(2
56

,4
)

−
h i
>

Main diagonal element < hi,M− hi>  for different masses
< hi,Mref0

− hi>
m =  0.25
m =  0.5
m =  1.0
m =  2.0
m =  4.0
m =  8.0
< hi,Mref1

− hi>

Figure 8.2: Double Cone (1+ 1)-dimensional. The parameters values are σ = 6/64,
n = 256 and 2009 position points. Graph reproduced from the numerical algorithm
of [37].

The result is expressed in Figure 8.2. Some facts concerning the graph are,

• It is highly concentrated in the diagonal part,

• Is mass dependent,

• For m → 0: < M− >≈ π(1 − x2 − σ2/2).
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For non-zero mass the spectrum is obtained and for mass near zero it is indeed
the M− component of the modular Hamiltonian operator corresponding to the
modular flow as described by Hislop and Longo. The question on whether it is a
multiplicative operator or a differential operator still open. If it were the case of a
differential operator, would be expected the spectrum to be scattered outside the
diagonal part, in some sense there would be derivatives of the Dirac delta.

Consider the (1 + 3) dimensional scalar field. For Hr = L2
R(R

3), one have the
following standard subspace,

Hr = { f ∈ Hr | supp f ⊂ B1}, (8.17)

where B1 is the ball of radius 1 around the origin. Express the Helmholtz operator
in spherical coordinates,

A = − 1
r2

∂

∂r
r2 ∂

∂r
+

L2

r2 + m2, (8.18)

L2 = − 1
sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin θ2
∂2

∂ϕ2 . (8.19)

Where L2 is the square angular momentum that can be decomposed on its eigenba-
sis, i.e., the spherical harmonics Yk

l for l ∈ N0, k ∈ Z,−l ≤ k ≤ l with eigenvalues
l(l + 1). Our spaces are now identified,

Hr =
⊕
l,k

L2
R((0, ∞), r2dr), Hr =

⊕
l,k

{ f | supp f ⊂ (0, 1]}, A =
⊕
l,k

Al. (8.20)

In that way one can introduce the modified spherical Bessel operator

Al = − 1
r2

(
r2 ∂2

∂r2 + 2r
∂

∂r
− m2r2 − l(l + 1)

)
. (8.21)

Now we have an additional parameter, the eigenvalue l, but the algorithm can
work in a suitable way.

For the boxes, use the discretization range [0, b] being the radial direction. The
measure of the Hilbert space is now r2dr and it will change the normalization of
the box. The discretization grid is taken as r ∈ [0, 1]. Use n = 256, b = 4 and the
spacing is such that increases linearly from r = 1 and r = b.
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For the discretization of the Helmholtz operator, start from A−1/4
l such that,

(Al A−1
l )(r, s) =

1
r2 δ(r − s). (8.22)

The expression for A−1(r, s) is well known in terms of modified Bessel functions
of the first and second kind, Il+1/2 and Kl+1/2 respectively,

A−1
l (r, s) =

√
1
rs
(Θ(r− s)Kl+1/2(mr)Il+1/2(ms)+Θ(s− r)Il+1/2(mr)Kl+1/2(ms)).

(8.23)
The required discretization of A−1/4

l by computing the fractional power of the
matrix (A−1

l )
(n,b)
ij numerically. Following, for A1/4

l the procedure is the same as
before, using high floating numbers and making sure it is in fact the inverse of
A−1/4

l with sufficient numerical precision.
Introduce the set of (normalized) log-Gaussian test functions, with parameters

σ and µi as before,

hi(r) =
1

(π log αi)1/4

√
1
r3 exp

−
log2

(
αi

r
µi

)
4 log αi

, αi =

√
1 +

σ2

µ2
i

. (8.24)

For this one, set σ = 6
128 .

The results are expressed in Figure 8.3 for l = 1. Some facts concerning the
graph are,

• Highly concentrated in diagonal part,

• Mass dependent,

• For small radii, the mass dependence is more pronounced,

• For large r, e.g. r > 0.7, it becomes mass-independent,

• As it is getting close to r = 1, it gets similar to the case of a left Wedge at
r = 1,

• The maximum moves to the left as the mass increases,

• The dependence on l is very small.
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Figure 8.3: Double Cone (1 + 3)-dimensional. The parameters values are σ =
6/128, n = 256 and 325 position points. Graph reproduced from the numerical
algorithm of [37].

Also, as the mass decreases to zero, one have the reference for the massless solution,

M(r, s) = π(1 − r2)
1
r2 δ(r − s). (8.25)

The question on whether M− is a differential operator or a multiplicative operator
still open. By the same line of arguments one can say due the spectrum to be
concentrated in diagonal part, it is expected to be a multiplicative operator.

8.4 In search of an Ansatz

Suppose for a moment that the Hislop and Longo result is unknown, meaning
there is no geometrical interpretation for the modular flow in the double cone case.
However, suppose the method discussed earlier still exists. Would it be possible
to obtain the M− component solely through the previous algorithm? There would
be no assumptions regarding the mass dependence, whether it is a multiplicative
or a differential operator, or if it diverges for some mass or position point. In what
follows, the idea is to exploit which parameters indeed have explicit influence on
the spectrum of the modular Hamiltonian operator.

Question: Is there any kind of derivative? To answer the question suppose a



Chapter 8. Numerical Approach 107

test function as before,

h(y) =
1

(πσ2)1/4 exp
{
− (y − x)2

2σ2

}
. (8.26)

Then a dictionary is made:

1. < h, ch >= c, c ∈ R,

2. < h, xh >= x, for x position point,

3. < h, y2h >= x2 + σ2

2 ,

4. < h, ∂yh >= 0,

5. < h, ∂2
yh >= − 1

2σ2 ,

6. < h, y∂yh >= −1
2 ,

7. < h, y2∂yh >= −x,

8. < h, y∂2
yh >= − x

2σ2 ,

9. < h, y2∂2
yh >= 1

4 −
x2

2σ2 .

It is a fact that if there is an even number of derivatives, it will be exploited by the
σ dependence of the result. There is no presence of any term above resulting in x
after integration since the graph is symmetric.

For the supposition the Hislop and Longo result is unknown, one would
observe that < M− >= −ax2 − bσ2 + c for a, b and c real constants. In fact, there
is no such derivative. By varying σ and x one would obtain easily the correct
component: M− = π(1 − x2). By doing the same for the massive case, we obtain
that it must have some kind of derivative. Unfortunately, no progress in that
direction is possible at the moment, see Figure 8.4 and the dictionary defined
above.

Another interesting idea is to look for analytical behavior of the component
M−. For the (1 + 1)-dimensional case, it can be found in Figure 8.5. We take the
difference of the massive diagonal element< Mm

− > by the massless reference
< M0

− > for different position points. We found that the tangent line of the graph
is going to infinity as m → 0. That indicates a possible divergence at m = 0 for the
component M− of the modular Hamiltonian. By considering equation (6.35), we
see the only possible mass dependence of M− is from A±1/2 and χ. Since the role
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Figure 8.4: Double Cone (1 + 1)-dimensional. Parameter b = 4 fixed, position
µ = 0.0 fixed and parameter σ varying in [0.005, 1.804]. Graph reproduced from
the numerical algorithm of [37].

Figure 8.5: Double Cone (1 + 3)-dimensional. Graph of the difference < Mm
− >

− < M0
− > for different position points and parameter l = 0. The tangent line

to the graph is going to infinity as mass m goes to zero value. Graph reproduced
from the numerical algorithm of [37].

of χ projectors is only to localize, it is natural to suppose it to be massless. If is the
case, the kernel A± must be divergent at m = 0. That’s the motivation for the next
chapter.



Chapter 9

Analytical properties of the Bogoliubov
transformations

In the last chapter, we were led to state that the first derivative of the modular
Hamiltonian operator is divergent at mass zero. Now, the goal is to address the
origin of that divergence. Using the expression (6.35) for the M− component,
we shall study the analytical structure of the operator µm. The operator µm has
significant applications in Quantum Field Theory. The same operator is employed
in the analysis of the local equivalence of vacuum states of free Hermitian scalar
fields of different masses [39]. Additionally, in a recent work [40], a similar
construction was used, but within the context of modular theory and standard
subspace.

9.1 Isomorphism between local Algebras

For a bounded region O ⊆ Rd, one can define an algebra associated to the
second quantization, i.e., the CCR in Weyl form. Now, follows the prescription of
the standard subspace. Let µ = (p2 +m2)1/2 be a real positive self-adjoint operator
on H = L2(Rd) such that for some dense Kµ ⊆ L2(R), define Dµ = Kµ + iKµ one
have

D(µ±1/2) ⊇ D. (9.1)

Now, introduce two operators µ−1
1 and µ−1

2 . Assume that for some dense K ⊆
L2(Rd), one has D = K + iK,

D(µ±1/2
1 ) ⊇ D ∪ µ∓1/2

2 D, D(µ±1/2
2 ) ⊇ D ∪ µ∓1/2

1 D (9.2)

In that way, one have the definition of the von Neumann algebra associated to a
standard subspace associated to m1 and m2. See Definition 5.4.1, Theorem 5.4.1
and equation (5.90).
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Introduce the Bogoliubov transformation β = (β+, β−) on L2(Rd) satisfying

β∗
+β+ − β∗

−β− = 1, β∗
+β− = β∗

−β+. (9.3)

Recall (5.70) and (5.71), the action of the Bogoliubov transformation is the follow-
ing,

a∗β( f ) = a∗(β+ f ) + a(β− f ), (9.4)

aβ( f ) = a∗(β− f ) + a(β+ f ), (9.5)

(9.6)

for a given β and f ∈ D(β±). For µ1 and µ2 satisfying (9.2), we set

β± =
1
2
(µ−1/2

2 µ1/2
1 ± µ1/2

2 µ−1/2
1 ). (9.7)

From that, a map between second quantization is defined: (ϕµ1( f ), πµ1(g)) →
(ϕµ2( f ), πµ2(g)). The goal of [39] was then to find the minimum criteria to say
when those von Neumann algebras will be isomorphic or unitary equivalent.
There the minimum criteria are proved, the Bogoliubov coefficients have to be
Hilbert-Schmidt, essentially L2(Rd).

In a very recent work [40], the same approach is considered but within the
context of modular theory. Given two standard subspaces associated with µ1 and
µ2, respectively, and a linear bijection between them, it is shown that the resolvents
of the local modular operators on the one-particle space depend continuously
on the field mass with respect to the Hilbert-Schmidt norm of the relevant local
standard subspace. Furthermore, the resolvent of the modular operator at mass
m1 (non-zero) is a perturbation of the resolvent of the modular operator at mass
m2 = 0. This establishes the continuity mentioned earlier.

9.2 Motivation for some Analytical Expression

Starting from (6.35), one can recall that δ = log ∆. Hence, if the first derivative
of M− diverges at some mass value, one should expect some relation with δ

diverging as well. From the section 5.4, define

B−1
m =

δm − 1
δm + 1

= 1 − 2
δm + 1

=

(
0 iQ−µmQ+

−iQ+µ−1
m Q− 0

)
. (9.8)
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Then, follows

B−1
m − B−1

0 =

(
0 iQ−(µm − µ0)Q+

−iQ+(µ−1
m − µ−1

0 )Q+ 0

)
. (9.9)

Assuming Q± do not have mass dependence.
If µm is differentiable, i.e.,

µm = µ0 + m2D, (9.10)

for some D, then B−1
m would be differentiable as well,

B−1
m = B−1

0 + m2γ, (9.11)

for some γ such that

γ =

(
0 iQ−DQ+

−iQ+DQ+ 0

)
. (9.12)

That is the aim in studying the analytical structure of µm and it will be discussed
as follows.

Suppose one wants to differentiate the µm operator, i.e., calculate the expression

µm − µ0

m2 = µ0(µmµ−1
0 − 1)m−2 (9.13)

Worth to recall the Bogoliubov coefficient β− from (9.7) and express it like the
following,

β− =
1
2
((µ1/2

m µ−1/2
0 − 1)− (µ1/2

0 µ−1/2
m − 1)). (9.14)

Worth to recall that the behavior of µm do not change for any power of that, so
change the analysis from µm to ±1/2

µ is advantageous because it is related to the
Bogoliubov coefficients.

The conclusion at this point is that if one has an analytical expression for
µ1/2

m µ−1/2
0 − 1 contained in (9.14), then it is possible to analyze its analytical behav-

ior. In particular, one can divide by m2 and take the limit as m2 approaches zero.
Additionally, since our assertion that the derivative of M− is divergent at mass
zero relies on configuration space, it is essential to have an explicit expression for
the above relations.
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9.3 (1 + 1)-dimensional Case

We shall obtain the analytical expression for the terms of the Bogoliubov
coefficient of the equation (9.14). To write it in the configuration space, one uses
the method of Mellin transformation and Meijer G-functions as described in B.

The first term is (µ1/2
m µ−1/2

0 − 1). Following Appendix B, it is found to be,

(µ1/2
m µ−1/2

0 − 1)(x, y) =
∫ ∞

−∞
dp
[(

p2 + m2

p2

)1/4

− 1
]

eipx

= −
√

π

Γ(−1
4)

mG2,1
1,3

(
m2(|x − y|)2

4

∣∣∣∣ 3
4

1
2 , 0,−1

2

)
.

(9.15)

For the second term (µ1/2
0 µ−1/2

m − 1) one just have to change the parameters of the
result found in Appendix B, i.e., µ = ν = 1

4 . Hence, the expression found is the
following,

(µ1/2
0 µ−1/2

m − 1)(x, y) =
∫ ∞

−∞
dp
[(

p2

p2 + m2

)1/4

− 1
]

eipx

= −
√

π

Γ(1
4)

mG2,1
1,3

(
m2(|x − y|)2

4

∣∣∣∣ 1
4

1
2 , 0,−1

2

)
.

(9.16)

Follows now the final expression for the β− Bogoliubov coefficient in (1 + 1)
dimension,

βm
−(x, y) =

√
π m
2

(
1

Γ(1
4)

G2,1
1,3

(
m2(|x − y|)2

4

∣∣∣∣ 1
4

1
2 , 0,−1

2

)

− 1
Γ(−1

4)
G2,1

1,3

(
m2(|x − y|)2

4

∣∣∣∣ 3
4

1
2 , 0,−1

2

))
.

(9.17)

9.4 (1 + 3)-dimensional Case

Now, let us do the same procedure but in (1 + 3) dimension.
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The first term is (µ1/2
m µ−1/2

0 − 1). Following Appendix B, it is found to be,

(µ1/2
m µ−1/2

0 − 1) =
∫ ∞

−∞
d3p

[(
m2 + p2

p2

)1/4

− 1
]

eip · x

= −4π

x

∫ ∞

0
dp
[(

m2 + p2

p2

)1/4

− 1
]

p sin px

=
2π3/2m2

xΓ(−1
4)

G2,1
1,3

(
m2(|x − y|)2

4

∣∣∣∣ 1
4

1
2 , 0,−1

)
.

(9.18)

For the second term, (µ1/2
0 µ−1/2

m − 1), one just have to change the parameters
of the result found in Appendix B, i.e., µ = ν = 1

4 . Hence, the expression found is
the following,

(µ1/2
0 µ−1/2

m − 1) =
∫ ∞

−∞
d3p

[(
p2

p2 + m2

)1/4

− 1
]

eip · x

= −4π

x

∫ ∞

0
dp
[(

p2

p2 + m2

)1/4

− 1
]

p sin px

=
2π3/2m2

xΓ(−3
4)

G2,1
1,3

(
m2(|x − y|)2

4

∣∣∣∣ 3
4

1
2 , 0,−1

)
.

(9.19)

Follows now the final expression for the β− Bogoliubov coefficient in (1 + 3)
dimension,

βm
−(x, y) =

π3/2

x
m2
(

1
Γ(−1

4)
G2,1

1,3

(
m2(|x − y|)2

4

∣∣∣∣ 1
4

1
2 , 0,−1

)

− 1
Γ(−3

4)
G2,1

1,3

(
m2(|x − y|)2

4

∣∣∣∣ 3
4

1
2 , 0,−1

))
.

(9.20)

9.5 General comments

Motivated by the presence of a divergence in the derivative of the component
M− of the modular Hamiltonian operator, a schematic analysis of the kernel
operator µm has been developed in previous sections. In fact, if one considers
the derivative of this kernel operator, it can be associated with the Bogoliubov
coefficient β−. By utilizing Mellin transformations and Meijer G-functions, it is
possible to express its formulation in configuration space to study its analytical
behavior. The conclusion is that the kernel operator β− is well-behaved for any
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mass value. One is led to conclude that the divergence with respect to the mass
is not due to the kernel operator µm; rather, it stems from the projectors Q±,
which were assumed to be mass-independent. These projectors remain mysterious
objects in the construction. Since section 5.4, it has been possible to argue that
their behavior exhibits a jump from the massless to the massive case. This jump
is a potential origin of the divergence. Of course, this is a strong assertion, and a
study concerning these projectors is necessary. Another point to consider is the
difference (µ1/2

m − µ−1/2
0 ), which may affect the convergence of f ∈ H1/2

m (O). This
will be addressed in the future [41].



Chapter 10

Outlook and Perspectives

We have examined many definitions, properties, and applications of modular
theory. In this work, the term "algebraic" in Algebraic Quantum Field Theory
(AQFT) was extensively studied. Using the definition of entropy of a wave as
motivation, we reviewed the significant results of Bisognano and Wichmann for
the Rindler wedge, as well as those of Hislop and Longo for the Double Cone,
and discussed how to define the entropy of a wave for these cases. As a final step,
several contributions to the field are presented.

After an extensive introduction to the algebra of operators, we have examined
how the Cauchy data of a scalar field generates the standard subspace. As a
result, various consequences arise. The von Neumann algebra associated with
this standard subspace is standard with respect to the vacuum, and through the
GNS construction, we obtain a representation of the Fock space in which the CCR
holds. Since Quantum Field Theory involves infinite degrees of freedom, what
we actually measure is some difference—specifically, vacuum subtraction. At
this point, the concept of relative entropy becomes relevant. By introducing the
Araki-Uhlmann formula, we can evaluate the relative entropy of two states in the
context of infinite degrees of freedom. Using the Cauchy data of the field that
generates the standard subspace, we can assess the relative entropy through its
intrinsic dynamics, which follow the KMS condition. The presence of the cutting
projectors plays a crucial role, as they cut the Cauchy data, providing a geometric
interpretation for the modular Hamiltonian. For a massless field associated with a
ball of a certain radius in space, its evolution is constrained by the causal structure.
As described, the entropy of a wave in this case is found to be the sum of the so-
called prolate entropy and the parabolic entropy. These are related to the concept
that the entropy is partially attributable to the field and partially to the momentum
field.

Unfortunately, there is a lack of geometric interpretation for the thermal time
flow, as defined by the KMS condition, in the case of massive fields. We have
made progress in addressing this problem by exploring different approaches. The
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first idea is to extract analytical properties of the spectrum resulting from recent
numerical analyses. We have found indicative evidence suggesting that one of
the components of the modular Hamiltonian behaves as a differential operator.
Additionally, for the same component, we have found evidence that the first
derivative diverges at a mass value of zero. Despite the advancements in formal
expressions for the modular Hamiltonian in the massive field case, we have not
yet been able to formulate a conjecture for that component.

Assuming the cutting projector to be massless, we study the kernel associated
with the dispersion relation for the field, as it could be the source of the previously
mentioned divergence. Furthermore, this kernel is related to the non-diagonal part
of the Bogoliubov transformations. Since the numerical approach focuses on the
global aspects of the theory, understanding that divergence can be enhanced by
expressing the relevant kernel in configuration space. To achieve this, we utilized
the Mellin transform and the Meijer G-functions to determine its Fourier transform.
We hope that introducing this integration tool into the field for evaluating formal
expressions becomes a standard practice. Additionally, we note the difficulty of
writing the Bogoliubov coefficients for different non-zero masses [41].

To summarize, future studies should focus on the projectors. If one were to
hypothesize or anticipate the behavior of the massive modular Hamiltonian, it
would likely take the form m2 · log m2. A numerical approach to the problem
of entropy is also suggested, particularly in light of recent developments in the
information problem [38], which could shed light on the questions surrounding
prolate, Legendre, and parabolic distributions in the massive case. Furthermore,
obtaining the spectrum of the other component of the modular Hamiltonian would
enhance our understanding of the differential presence in the expressions. For the
known cases, that component is indeed a differential operator. Describing how
various terms influence the spectrum is an important objective for future research.



Appendix A

Types of the von Neumann Algebras

The goal of this Appendix is to develop the concept of Types of the von Neu-
mann Algebras. We shall start from the very basic definition of a von Neumann
algebra, following, there will be defined the concept of factors and finally the
concept of types and its main properties. To finish the Appendix, we shall see how
it impacts the entropy concept due to the notion of trace and traceless class. For
more details of the construction, see Haag [7] and Sorce [42].

A.1 Factors and Types

First, recall some concepts. Introduce an algebra, make it to be involutive, and
call it a ∗-algebra, giving some operation ∗. If it has a norm, it is a normed vector
space. It will be a Banach algebra if its normed induced topology converges. That
Banach algebra will be a C∗-algebra if its norm satisfies the triangle inequality and
the concept of square of the norm is well-defined. The ∗-algebra is a von Neumann
algebra if the double commutant relation holds. If R is a von Neumann algebra,
then R′ is a von Neumann algebra. Define the prime, ′, to be the commutant.

Definition A.1.1 The von Neumann algebra R is called a factor if its center is trivial,
contains only multiples of the identity element,

Z = R∩R′ = λI, λ ∈ R. (A.1)

Denote B(H) the space of all bounded operators defined in the Hilbert space
H. Also, R will be a factor if only A and A′ together generate all of B(H),
i.e., R∨R′ = B(H). The symbol ∨ means the smallest algebra. A self adjoint
set S ⊂ B(H) is irreducible if and only if either its commutant is made up of
multiples of the identity or its double commutant is equal to the space of all
bounded operators defined in the Hilbert space. It follows from Schur’s Lemma.
For a von Neumann algebra R, introduce P an orthogonal projector in B(H). Then
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PH is an invariant subsapce for R, i.e. RPH ⊆ B(H), if and only if P ∈ R′. Take
a bounded operator T ∈ B(H). It has a polar decomposition if it has an extension
T = V|T|, where |T| =

√
T∗T, and V is a partial isometry. The isometry V means

its domain is restricted to the orthogonal complement of its kernel, V∗V is an
orthogonal projection. That decomposition is unique.

If one introduce an operator-valued distribution ϕ[ f ], where f (x) is support
in some spacetime region O. It is expected that for some von Neumann algebra
R(O), associated to operators-valued distributions with support in O, it does
have a factor. The center would consist of observables. For matter fields carrying
charges, no such arguments can be made.

Define two projectors P1 and P2 such that H1 = P1H and H2 = PH respectively.
These projectors Pi are equivalent, P1 ∼ P2, if P1 = V∗V and P2 = VV∗. The
projector V is a partial isometry between H1 and H2. Write P1 > P2 if the Pi are
not equivalent but there exist a subspace of H1 whose projectors P1 is equivalent
to P2. For Pi ∈ R, one of the following holds: P1 > P2, P1 ∼ P2, P2 > P1. If R is a
factor, for A ∈ R and B ∈ R, AB = 0 implies that either A = 0 or B = 0.

Define dimension relative to be a positive number, possibly infinity, associated to
a projector, and it is relative to a von Neumann algebra. Two projectors P1, P2 ∈ R
are said to have the same dimension relative to R if P1 ∼ P2. Also follows that the
dimension relative of P1 to R is greater (less) than the dimension relative of P2 to
R if P1 > (<)P2. If P1 is orthogonal to P2, P1P2 = 0, then the dimension relative
of (P1 + P2) is the sum of the dimension relatives. The last property is that the
dimension relative of 0 is 0.

A projector P ∈ R is called minimal if it is not zero but R contains no nonzero
projector P1 < P, strictly speaking it means P is equivalent in some of its subspace
only for the space of the zero projector. A projection P ∈ R is finite-dimensional
relative to R if for every proper subprojection Q ∈ R, both have not the same
dimensional relative value, i.e., Q is inequivalent to P. Also, P will be infinite-
dimensional relative to R if there exist a projector Q ∈ R that both do not have
the same dimensional relative, i.e. Q is inequivalent to P. Hence, follows that for
P, Q ∈ R, if both are equivalent, one of them is finite, then the other is also finite.

If P ∈ R is finite, follows that for any Q ∈ R < P is finite as well. The main
conclusion is that a factor is finite if every projection is finite, i.e., every projection
have the same dimensional relative number as its proper subprojection. A factor is
infinite if it contains at least one infinite projection, i.e., there contains a projector
that do not have the same dimension relative to other projection.
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A factor R is:
Type I if it contains a nonzero minimal projector.
Type II if it contains nonzero finite projector, but no nonzero minimal projectors.
Type III if it contains no nonzero finite projectors.

By the definition, the Type I differs from an irreducible algebra only by the
tensoring with some degeneracy space, i.e., R = B(Hirr)⊗ Ideg. Also follows for
Type III that if H is separable, all the projectors (infinite) are equivalent.

The Type II can be divided into two types: Type I I1 if it is finite and Type I I∞ if
it is of Type II and has no nonzero central finite projection.

Introduce now the trace for operators in R. If R is a factor, the trace is uniquely
determined up to some normalization. By the definition, in Type III all the nonzero
elements have infinite trace. For Type I one can normalize such that minimal
projectors have trace 1.



Appendix B

Meijer G-functions

B.1 Definitions and Mellin Transform

First, let us define the Meijer G-function, see Gradshteyn and Ryzhik [43].

Definition B.1.1

Gm,n
p,q

[
z
∣∣∣∣a1, ap

b1, bq

]
=

1
2πi

∫
C

∏m
j=1 Γ(bj − s) ∏n

i=1 Γ(1 − ai + s)

∏
q
j=m+1 Γ(1 − bj + s) ∏

p
i=n+1 Γ(ai − s)

zsds. (B.1)

Where C is contour, and it is such that leaves all poles Γ(bj − s) for j = 1, m to the right
of all the poles of Γ(1− ai + s) for i = 1, n. Also, one can say that ak − bj ̸= 1, 2, 3, . . . for
the non intersection of poles definition. The coefficients m, n, p, q are all integers numbers.

The choice of the path integral is as follows.

1. C runs from −i∞ to i∞ such that all poles of Γ(bj − s) are on the right and all
the poles of Γ(1− ak + s) are on the left. That integral converges for |arg z| <
δ π, where δ = m + n − 1

2(p + q) and δ > 0. Also, the integral converges
for |arg z| > δπ ≥ 0 if (q − p)(σ + 1

2) > Re(ν) + 1, for σ representing Re(s),
the integration variable. The ν is defined to be ν = ∑

q
j=1 bj − ∑

p
j=1 aj. For

|arg z| = δπ and p = q the integral converge independent of σ whenever
Re(ν) < −1.

2. For either q > p ≥ 0 or q = p > 0 and |z| < 1 the path is such that begins and
ends at −∞ encircling all the poles of Γ(bj − s) exactly once in the negative
direction, but not encircling any pole of Γ(1 − ak + s). It also converges for
|z| = 1 if Re(ν) < −1. Where ν is as defined before.

3. For either p > q ≥ 0 or p = q > 0 and |z| > 1 the path is such that begins
and ends at −∞ encircling all the poles of Γ(1 − ak + s) exactly once in the
positive direction, but not encircling the poles of Γ(bj − s). For p = q the
integral converges for |z| = 1 when Re(ν) < −1, for ν defined in item 1.
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The motivation to study Meijer G-function is the Mellin transformation of a
convolution.

Definition B.1.2 The Mellin transformation of the function f (x), denoted by f̂ (s), is
defined by the integral

f̂ (s) =
∫ ∞

0
dx f (x) xs−1. (B.2)

The inversion of the Mellin transformation is given by,

f (x) =
1

2πi

∫ c+i∞

c−i∞
ds f̂ (s) x−s. (B.3)

The Mellin transformation preserves the convolution on the multiplicative group
R+, i.e.,

( f ∗ g) (z) =
∫ ∞

0
dy f (y)g(

y
z
)y−1. (B.4)

In that way, one can say the Mellin transform of the Mellin convolution is the
product of the Mellin transforms.

ˆf (x)g(x) =
1

2πi

∫ c+∞

c−i∞
du f̂ (u)ĝ(s − u). (B.5)

Now is easy to establish the Mellin transform of the Meijer G-function

Ĝm,n
p,q

[
z
∣∣∣∣a1, ap

b1, bq

]
=

∏m
j=1 Γ(bj − s) ∏n

i=1 Γ(1 − ai + s)

∏
q
j=m+1 Γ(1 − bj + s) ∏

p
i=n+1 Γ(ai − s)

. (B.6)

Now follows a series of propositions concerning the Mellin transforms and the
usual functions. For some of them, see Erdélyi and et al. [44].

B.2 Applications

Before the calculations, worth to recall the poles of the Gamma functions. If
one write a Gamma function as follows,

Γ(−s) =
∫ ∞

0
dt t−s−1e−t, (B.7)

it does have poles because of t−s−1 of the integrand. If it is in the denominator of
a fraction, then there are no poles. Now one can use the residue theorem to write
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it, as

Res
s=n≥0

Γ(−s) =
(−1)n

n!
. (B.8)

In that way one can change the integral for a summation of the residues of the
Gamma functions contained inside the Meijer G-function.

Also, worth to recall the Pochhammer symbol,

(x)n =
Γ(x + n)

Γ(x − n + 1)
. (B.9)

In special, the property we are interesting is the following,

(1 + t)x =
∞

∑
n=0

(x)n
tn

n!
. (B.10)

Proposition B.2.1

cos (z) =
√

π G1,0
0,2

[
z2

4

∣∣∣∣ −0, 1
2

]
. (B.11)

□

Here we have p > q, the path of the integral is such that encircles all the poles
of Γ(bj − s).

G1,0
0,2

[
z2

4

∣∣∣∣ −0, 1
2

]
=

1
2πi

∫
C

ds
Γ(−s)

Γ(1
2 + s)

(
z
2

)2s

=
∞

∑
n=0

(−1)n z2n
√

π(2 n)!

=
cos (z)√

π
.

(B.12)

Where is used that Γ(n + 1
2) = 2−2n√π

(2n)!
n! . ■

Proposition B.2.2

sin (z) =
√

π G1,0
0,2

[
z2

4

∣∣∣∣ −1
2 , 0

]
. (B.13)

□ Follows from the same line of arguments of the cos (z) case. ■

Proposition B.2.3

In(z1/2) = 2−nzn/2 G1,0
0,2

[
− z

4

∣∣∣∣ −
0,−n

]
. (B.14)
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□ Here again: q > p.

G1,0
0,2

[
− z

4

∣∣∣∣ −
0,−n

]
=

1
2πi

∫
C

ds
Γ(−s)

Γ(1 + n + s)

(
−z
4

)s

=
∞

∑
k=0

zkzk/2z−k/22n2−n

k!Γ(1 + n + k)22k

=

( ∞

∑
k=0

zk+n/22−2k−n

k!Γ(1 + n + k)

)
z−n/22n

= In(z1/2)z−n/22n.

(B.15)

■

Proposition B.2.4

Ja−b(2 z1/2) = z−
1
2 (a+b) G1,0

0,2

[
z
∣∣∣∣ −a, b

]
. (B.16)

□ Here again: q > p.

Ja−b(2 z1/2) =

( ∞

∑
k=0

(−1)k z
1
2 (a−b)+k

k!Γ(1 + a − b + k)

)

=
∞

∑
k=0

(−1)k(z)kz
1
2 (a−b)z

1
2 az−

1
2 a

k!Γ(1 + a − b + k)

=
1

2πi

∫
C

ds
Γ(a − s)

Γ(1 − b + s)
zsz−

1
2 (a+b)

= G1,0
0,2

[
z
∣∣∣∣ −a, b

]
z−

1
2 (a+b).

(B.17)

■

Proposition B.2.5

zρ−1(z + 1)−σ =
1

Γ(σ)
G1,1

1,1

[
z
∣∣∣∣ρ − σ

ρ − 1

]
. (B.18)

□

Here one have p = q. Hence, it is necessary to take account of the contours:

1. |z| < 1: take contour such that encircle all the poles of Γ(bj − s),
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2. |z| > 1: take contour such that encircle all the poles of Γ(1 − a + s).

Also, one should guarantee that Re(b) > Re(a)− 1.
1)|z| < 1.

G1,1
1,1

[
z
∣∣∣∣ab
]
=

1
2πi

∫
C

ds Γ(b − s)Γ(1 − a − s)zs

=
∞

∑
n=0

(−1)n

n!
Γ(1 − a + b + n)zb+n

= Γ(b − a + 1)
∞

∑
n=0

zb+n

n!
(a − b − 1)n

= Γ(b − a + 1)zb(1 + z)a−b−1.

(B.19)

Where (a)n is the Pochhammer symbol introduced in the beginning of the section.
1)|z| > 1.

G1,1
1,1

[
z
∣∣∣∣ab
]
=

1
2πi

∫
C

ds Γ(b − s)Γ(1 − a − s)zs

=
∞

∑
n=0

(−1)n

n!
Γ(1 − a + b + n)z−1+a−n

= Γ(b − a − 1)za−1
∞

∑
n=0

z−n

n!
(a − b − 1)n

= Γ(b − a − 1)zb(1 + z)a−b−1.

(B.20)

Holding whenever Re(b) > Re(a − 1) and |arg ∥ < π. One can take a = ρ − σ and
b = ρ − 1 since σ > 0.

■

Proposition B.2.6

∫ ∞

0
dx (x2 + β2)−µ−1 cos (ax) =

√
π

2Γ(µ + 1)
β2ν−2µ−1 G2,1

1,3

[
a2β2

4

∣∣∣∣ −ν + 1
2

µ − ν + 1
2 , 0, 1/2

]
.

(B.21)

□

Here q > p.
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∫ ∞

0
dx (x2 + β2)−µ−1 cos (ax) =

√
π
∫ ∞

0
x2ν(x2 + β2)−µ−1G1,0

0,2

[
a2x2

4

∣∣∣∣ −0, 1
2

]

=
π

2

∫ ∞

0
dx xν− 1

2 (x + β2)−µ−1G1,0
0,2

[
a2x
4

∣∣∣∣ −0, 1
2

]

=

√
π

2Γ(µ + 1)
β2ν−2µ−1

×
∫ ∞

0
dx G1,1

1,1

[
x
∣∣∣∣ν − µ − 1

2

ν − 1
2

]
G1,0

0,2

[
a2β2

4
x
∣∣∣∣ −0, 1

2

]

=

√
π

2Γ(µ + 1)
β2ν−2µ−1G2,1

1,3

[
a2β2

4

∣∣∣∣ ν − 1
2

µ − ν + 1
2 , 0, 1

2

]
(B.22)

Holding a > 0, Re(β) > 0 and −1
2 < Re(ν) < Re(µ + 1). ■

Proposition B.2.7

zν− 1
2 [(z + 1)−µ − z−µ] = − 1

Γ(µ)
G1,1

1,1

[
z
∣∣∣∣ν − µ + 1

2

ν − 1
2

]
. (B.23)

□

Here q = p and again one should take care of the contour as explained previ-
ously.

|z| > 1

zν− 1
2 [(z + 1)−µ − z−µ] = zν− 1

2−µ[(1 + z−1)−µ − 1]

= zν− 1
2−µ

( ∞

∑
n=1

(−1)n

n!zn n!
)

= zν− 1
2−µ

(
1
n!

(−µ)n

zn

)
= − 1

Γ(µ)
zν−µ− 1

2

∞

∑
n=0

z−n−1 Γ(µ + n + 1)Γ(n + 1)
Γ(n + 2)

,

(B.24)

where one can identify the sum as the sum of residues of the gamma function
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corresponding to s = −n. Follows that

zν− 1
2 [(z + 1)−µ − z−µ] = − 1

Γ(µ)
1

2πi

∫
C

ds zν−µ− 3
2

Γ(µ + 1 − s)Γ(1 − s)Γ(+s)
Γ(1 − s + 1)

zs

= − 1
Γ(µ)

zν−µ− 3
2 G1,1

1,1

[
z
∣∣∣∣ 2
µ + 1

]
.

(B.25)

|z| < 1
From the unicity of the integral one have,

G2,1
2,2

[
z
∣∣∣∣ν − µ − 1

2 , ν − µ + 1
2

ν − 1
2 , ν − µ − 1

2

]
=

∞

∑
n=0

(−1)n

n!
zν− 1

2+n Γ(−µ − n)Γ(µ + n + 1)
Γ(−µ + 1 − n)

+
∞

∑
n=0

(−1)n

n!
zν−µ− 1

2 zn Γ(µ − n)Γ(n + 1)
Γ(1 − n)

= Γ(µ)zν− 1
2 (z−µ − (1 + z)−µ).

(B.26)

■

B.3 The Integral for the (1 + 1)-dimensional Case

As discussed in the main text, one have the integral to be solved,

I(1+1) =
∫ ∞

0
dp [p2ν(p2 + β2)−µ − p2ν−2µ] cos (px)

=
1
2

β2ν−2µ+1
∫ ∞

0
dz zν− 1

2 [(z + 1)−µ − z−µ] cos (a
√

z).
(B.27)

For a = xβ and {µ − 1
2 < ν < µ + 1

2} ∩ {ν − 1
2}. One just has to insert the

respectively Meijer G-function of each term inside the integral.

I(1+1) = −
√

π

2Γ(µ)
β2ν−2µ+1

∫ ∞

0
dz G2,1

2,2

[
z
∣∣∣∣ν − µ − 1

2 , ν − µ + 1
2

ν − 1
2 , ν − µ − 1

2

]
G1,0

0,2

[
x2β2

4
z
∣∣∣∣ −0, 1

2

]

= −
√

π

2Γ(µ)
β2ν−2µ+1G2,2

2,4

[
x2β2

4

∣∣∣∣ −ν + 1
2 , µ − ν + 1

2

µ − ν + 1
2 , 0, 1

2 ,−ν + µ − 1
2

]
(B.28)
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It is possible to simplify the Meijer G-function found since there equals a and b
values.

I(1+1) = −
√

π

2Γ(µ)
β2ν−2µ+1G2,1

1,3

[
x2β2

4

∣∣∣∣ −ν + 1
2

1
2 , 0,−ν + µ − 1

2

]
(B.29)

B.4 The Integral for the (1 + 3)-dimensional Case

For the (1 + 3)-dimensional case, the procedure is very similar to the (1 + 1)-
dimensional case.

I(1+3) = −4π

x

∫ ∞

0
dp [p2ν(p2 + β2)−µ − p2ν−2µ] sin (px)

= −4π

x
β2ν−2µ+2

2

∫ ∞

0
dz G2,1

2,2

[
z
∣∣∣∣ν − µ − 1

2 , ν − µ + 1
2

ν − 1
2 , ν − µ − 1

2

]
G1,0

0,2

[
x2β2

4
z
∣∣∣∣ −1

2 , 0

]

=
π3/2

Γ(µ)
β2ν−2µ+2

x
G2,2

2,4

[
x2β2

4

∣∣∣∣ −ν + 1
2 ,−ν + µ + 1

2

−ν + µ + 1
2 , 1

2 , 0,−ν + µ − 1
2

]

=
π3/2

Γ(µ)
β2ν−2µ+2

x
G2,1

1,3

[
x2β2

4

∣∣∣∣ −ν + 1
2

1
2 , 0, ν − µ − 1

2

]
.

(B.30)
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