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ABSTRACT 

The present work consists of an implementation of Data-Driven Modeling (DDM) with 

Machine Learning (ML) techniques, in particular Artificial Neural Networks, as an approach to 

the study of net section capacity of cold-formed Steel Bolted Angles (SBA) under axial tension; 

concrete pavement surface temperature; and difference in temperature from surface to bottom 

of pavement concrete slabs. Two other datasets were collected from a known public repository 

to compare other authors’ results with the ones obtained in the present thesis. The datasets are 

composed of instances from experimental tests, numerical simulations, and analytical and 

standards’ equations. The present thesis aims to obtain accurate models capable of surrogating 

these methods with reduced financial and computational costs. 

A baseline methodology was presented with 5-fold cross-validation, hyperparameter tuning 

with Bayesian Optimization (BO) and regularization techniques, such as early stopping, weight 

decay and batch normalization. Different sets of input variables were used, implementing 

feature selection and feature importance algorithms and aiming to achieve sufficiently accurate 

models with a reduced number of inputs. Besides that, another methodology was used, a BO-

based algorithm that was named SOFAH, Simultaneous Optimization of Feature Augmentation 

and Hyperparameters. It addresses simultaneously and automatically the optimization of 

hyperparameters and feature selection of an augmented set of the original features. SOFAH 

aims to further improve the baseline models while providing information on important features 

for predictions of the response variable. 

The developed models, both on gathered datasets and on public repository data, achieved very 

high accuracy and provided information on most relevant features for each analyzed 

engineering problem. The overall results of the present work show the effectiveness of ML and 

DDM as powerful tools for studying and predicting physical properties relevant to engineering 

problems. 

 

Keywords: machine learning; artificial neural networks; Bayesian optimization; climate data; 

concrete pavements; steel connections. 
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RESUMO 

REDES NEURAIS ARTIFICIAIS COM OTIMIZAÇÃO BAYESIANA E SELEÇÃO DE 

VARIÁVEIS APLICADAS NA REGRESSÃO DE PROBLEMAS DE ENGENHARIA 

O presente trabalho consiste na implementação de Modelagem Baseada em Dados (MBD) com 

técnicas de Aprendizado de Máquina (AM), especificamente Redes Neurais Artificiais (RNA), 

como uma abordagem ao estudo da resistência da seção líquida de cantoneiras de aço 

parafusadas sob tração axial; da temperatura da superfície de pavimentos de concreto; e da 

diferença de temperatura entre a superfície e a base de lajes de concreto de pavimentos. Dois 

outros conjuntos de dados foram coletados de um repositório público conhecido para comparar 

os resultados de outros autores com os obtidos na presente dissertação. Os conjuntos de dados 

são compostos por amostras de testes experimentais, simulações numéricas e equações. 

Uma metodologia de base foi apresentada com validação cruzada 5-fold, ajuste de 

hiperparâmetros com Otimização Bayesiana (OB) e técnicas de regularização, como early 

stopping, decaimento de peso e batch normalization. Diferentes conjuntos de inputs foram 

utilizados, implementando algoritmos de seleção de atributos e importância de atributos, com 

o objetivo de alcançar modelos de acurácia satisfatória com um número reduzido de entradas. 

Além disso, outra metodologia foi utilizada, um algoritmo baseado em BO denominado 

SOFAH, Simultaneous Optimization of Feature Augmentation and Hyperparameters. Ele 

realiza simultaneamente a otimização de hiperparâmetros e a seleção de inputs das RNAs. O 

SOFAH visa aprimorar os modelos da metodologia de base, ao mesmo tempo que fornece 

informações sobre as variáveis importantes para a previsão da variável de resposta.  

Os modelos desenvolvidos, tanto nos conjuntos de dados coletados quanto em dados de 

repositórios públicos, atingiram alta acurácia e proveram informações acerca das variáveis mais 

relevantes. Em geral, os resultados deste trabalho demonstram a eficácia das técnicas de AM e 

da modelagem baseada em dados como ferramentas ponderosas para o estudo e previsão de 

propriedades físicas relevantes para problemas de engenharia. 

Palavras-chave: pavimento de concreto; conexões parafusadas; aço formado a frio; 

aprendizado de máquina; redes neurais artificiais.
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1. INTRODUCTION 

Throughout history, physicists, engineers and scientists have studied physical phenomena in 

pursuit of a better understanding of reality. As their comprehension of these phenomena grew, 

various models and analytical equations were developed. To this day, countless phenomena are 

still being studied and lack definitive mathematical formulations. In this context, experimental 

tests are employed as an approach to studying the physical properties of materials, and 

numerical models are developed to simulate these tests as realistically as possible. In another 

approach, data-driven models have increasingly gained prominence, due to the vast availability 

of data, the rise of low-cost computational power and advancements in Machine Learning (ML) 

techniques. Data-driven models can incorporate information from various tests, enabling 

predictions across a broader domain than equations derived from a single set of tests. 

ML is a subfield of Artificial Intelligence (AI) that encompasses a wide range of algorithms 

and computational techniques where the computer is taught to perform tasks without being 

explicitly programmed to do so. Among these techniques are Artificial Neural Networks 

(ANNs), models composed of successive layers of interconnected neurons. The parameters of 

these models are weights and biases that apply linear transformations to the data, followed by 

non-linear activation functions, which grant these models the representational capacity needed 

to handle highly complex and non-linear problems. The traditional architecture of an ANN is 

called Multilayer Perceptron (MLP), which works well with multivariate numerical data that 

do not have time relation. In general, the aforementioned techniques can be applied to 

traditional regression and classification problems, but they can also perform tasks such as 

outlier detection, clustering and object detection, making them useful tools for a wide range of 

study areas, including Structural Engineering. 

Obtaining better understanding of engineering problems and materials properties is 

fundamental to prevent accidents and ensure overall safety, as the design of structures rely on 

using equations and models for predicting relevant variables. A known accident caused by 

failure of metallic connections is the collapse of the Interstate 35W Highway Bridge in 2007 in 

Minneapolis, Minnesota, where 13 people died and 145 were injured (Figure 1.1). As reported 

by the National Transportation Safety Board (NTSB, 2008), its probable cause was the failure 

of the gusset plates (Figure 1.2) at the U10 nodes under a combination of significant increases 
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in the bridge's weight, caused by earlier structural alterations, along with the traffic and intense 

construction loads on the bridge on the day of the failure. 

 
Figure 1.1. Interstate 35W Bridge after collapse (NTSB, 2008) 

 

 
Figure 1.2. Gusset plates in five-member node on Interstate 35W Bridge (NTSB, 2008) 

An example of complex physical phenomenon is shear lag, a nonuniform stress distribution 

across the cross-section of a structural member due to shear deformation. Generally, it happens 

when the element is unable to deform uniformly, for example when it is connected by only part 

of it, a common condition in bolted steel elements. Steel bolted angles under tension present a 

reduction in net section capacity due to shear lag and eccentricity of connection, because they 

are commonly connected by only one of its legs. This type of connection is very common in 

transmission towers, communication towers, and bridge diagonal members (QU; GUO; SUN, 

2022; LI et al., 2024), as shown in Figure 1.3. Many authors have studied the theme and 



3 

 

published their results, resulting in available data. 

 
Figure 1.3. SBAs in transmission tower 

Another complex phenomenon is the conduction of heat from solar radiation and environment 

to the bottom layers of concrete pavement. A combination of conduction, convection and 

radiation affect the temperature of all of its layers. The temperature of the concrete slab surface 

can be calculated with equations based on minimal inputs (SOLAIMANIAN; KENNEDY, 

1993), being them hourly solar radiation and air temperature, as illustrated in Figure 1.4. With 

the assist of numerical simulations, it is possible to determine the temperature at the bottom of 

the concrete slab, comprising an interesting database for the development of surrogate data-

driven models. 

 
Figure 1.4. Illustration of surface temperature prediction in concrete pavements  

In this context, ML techniques and Data-Driven Modeling (DDM) are tools capable of creating 

regression models that substitute experimental tests, numerical simulations, and standard 

equations. Such models can achieve high predictive accuracy, incorporate hybrid data, and 

significantly reduce financial and computational costs. Experimental tests require acquisition 

of material and availability of laboratory machines. Simulations based on Finite Element 

Method (FEM), for example, can take several days to run, while the training and optimization 

of MLPs take a few hours. 
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Aiming to demonstrate the effectiveness of ML-based DDM as a tool for the development of 

predictive models of reduced computational cost, two datasets were collected, comprising data 

from cold-formed steel bolted angles net section capacity and temperature variation on concrete 

pavement. ANN of MLP architecture were trained on these datasets. Bayesian Optimization 

(BO) and k-fold cross-validation were used to tune automatically hyperparameters of all the 

models. Regularization techniques era implemented to avoid overfitting, like early stopping and 

batch normalization. The accuracy of the models was evaluated with regression performance 

metrics on training and test sets, like Root Mean Squared Error and Mean Absolute Percentage 

Error. Predictive accuracy was visualized in scatter plots of predictions versus observed values, 

residuals and relative residuals. The regression models were interpreted applying feature 

importance techniques to extract the most important inputs for prediction of the output and also 

guide feature selection procedures, resulting in computationally cheaper and accurate enough 

models. 

Building an accurate ANN model requires the adjustment of a lot of hyperparameters that define 

its architecture and learning process, such as learning rate, batch size, number of hidden layers 

and number of neurons in each hidden layer, thus requiring a hyperparameter tuning phase. This 

tuning process can be done with basic brute-force methods, like grid search and random search, 

metaheuristic algorithms, like Particle Swarm Optimization (PSO) and Genetic Algorithms 

(GA), or with sequential optimization strategies, such as Bayesian Optimization (BO). The 

choice of using BO for Hyperparameter Optimization (HPO) in the current work was due to its 

effectiveness in optimizing expensive black-box functions (SNOEK; LAROCHELLE; 

ADAMS, 2012; NGUYEN, 2019) and overall superiority to random search methods (TURNER 

et al., 2021). 

Another important step in ML modeling is Feature Selection (FS), the process of obtaining a 

relevant subset from an original feature set based on certain criterions (CAI et al., 2018), as it 

improves predictive performance, provides faster and cost-effective predictors and facilitates 

data visualization and understanding (GUYON; ELISSEEFF, 2003). Very few studies that 

investigated BO directly applied to FS problems were encountered (GÖRMEZ, 2024; YANG, 

2024). Based on these facts, the aforementioned methodology was used as baseline in 

comparisons with an algorithm that addresses FS and HPO on the same phase of ML model 

creation using BO. It was named SOFAH, Simultaneous Optimization of Feature Augmentation 
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and Hyperparameters, and it aims to improve models while adding information to the features 

set and reliably selecting a good performing subset. 

Models based on baseline methodology and on SOFAH algorithm were developed for both 

mentioned collected datasets, comparing results. Also, public repository databases were used 

to compare results of baseline and SOFAH methodologies with the ones obtained by other 

authors. 

1.1. MOTIVATION 

Steel is one of the main structural materials in civil engineering, because of that it is important 

to understand its mechanical properties and failure mechanisms. Cold-formed steel is 

manufactured by bending, rolling or pressing steel, achieving light weight, high strength and 

ease of installation (ELLOBODY; YOUNG, 2005). In modern constructions, cold-formed steel 

is progressively being used as a primary structural component (XIAO et al., 2022). Steel Bolted 

Angles (SBA) are L-shaped laminated steel elements that, when bolted and subjected to axial 

tension, may present net section failure, as one of some possible failure modes, caused by 

rupture of the section where the holes are located. These elements are widely used in various 

structures, like, power transmission towers, communication towers, and bridge diagonal 

members (QU; GUO; SUN, 2022). 

SBA members with eccentric connections are common in civil engineering (BEHZADI-

SOFIANI et al., 2021) and are influenced by complex debilitating phenomena such as shear lag 

(KE et al., 2018). Shear lag causes a nonuniform distribution of the tension stresses across the 

net section and, added to the effects of eccentricity, acts reducing angles tension capacity. In 

reason of that, the quantification of this reduction in efficiency of steel angles is a highly studied 

topic. Over the year, many researches were reported studying the theme and proposing new 

equations. Also, standards and codes around the world propose different equations for 

predicting the net section load capacity of SBAs. 

Another material commonly used in civil engineering is concrete, that can compose rigid 

pavements, systems where the surface layers consists of a high stiffness concrete slab, followed 

by base, subbase and subgrade. Commonly, the slabs are directly exposed to solar radiation, 

thus conducting heat from the top to the bottom layers and presenting variation in volume and 
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length. Roadway pavements and the surrounding environment can be considered a 

microclimate system, since all layers are affected by their respective thermal properties and also 

climatic variables (CHEN; WANG; XIE, 2019). According to Mallick and El-Korchi (2023), 

the structural design of high-performance and long-lasting concrete pavements is based on the 

concept of limiting stresses and deformations to prevent excessive damage and deterioration of 

the system. One of the sources of stresses that need to be taken in consideration is stress due to 

temperature curling. 

During the day, the surface temperature, at the top of the pavement increases due to solar 

radiation and high air temperatures. The bottom of the pavement, due to the relatively low 

thermal conductivity of concrete, takes longer to experience a temperature increase. As a result, 

expansion occurs more intensely at the top of the concrete than at its base, causing downward 

warping. At night, the situation reverses, with the surface of the slab cooling more rapidly than 

its base and causing contraction. The slab weight prevents curling, contraction or expansion, 

that is why tensile and compressive stresses are developed in the pavement (MALLICK; EL-

KORCHI, 2023). The fact that temperature variates every single day puts these pavement 

systems under thousands of fatigue cycles over the decades. Combined with vehicular loading 

(CHEN; WANG; XIE, 2019), these stresses can damage the pavement and lead to cracking and 

deterioration, which reduces its performance over time. So, accurately evaluating variations in 

temperature in concrete pavements is fundamental to prevent fatigue failure and ensure the 

system does not reach the ultimate limit state. 

The experimental analysis of temperature variations in rigid pavement, if done manually, can 

be extremely labor intensive, as it requires many temperature measurements approximately 

every hour. If done in automatic or semi-automatic ways, it becomes less labor intensive but 

more expensive. Experimental analysis of the net section capacity of SBAs depends on the 

occurrence of this specific mode of failure, while also requiring considerable infrastructure, like 

machines, steel angle samples, bolts, displacement measurement equipment, etc. Numerical 

modeling is a viable alternative that reduces many of the costs required for experimental tests, 

requiring only a computer of decent performance while also providing accurate results. 

Numerical techniques, such as FEM, demand good constitutive models that accurately describe 

the material responses to the loading conditions. So, considering that shear lag causes a complex 

stress state in SBAs under axial tension, numerical modeling of these elements may prove 
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challenging. High nonlinearity and complexity of the mentioned problems can be easily handled 

by powerful Machine Learning (ML) techniques, such as Artificial Neural Networks (ANN), 

being capable of provide cheaper and faster solutions, creating surrogate models that substitute 

equations, experiments and simulations. This is one of the main motivations of the present work 

and the reasoning behind the choice of using these tools. 

Based on the considerable amount of experimental and numerical researches reported regarding 

both temperature in concrete pavement and SBAs under tensions, DDM is a great tool that 

makes good use of all the data already collected by other authors. This type of modeling, when 

based on ANN, has enough representation capacity to build excellent predictive models. 

Besides that, when aligned with statistical and sensitivity analyses, DDM can provide 

informative insights on the relations between inputs and outputs, indicating most relevant 

variables for example. Being one of the motivations of the current research the possibility of 

obtaining better understanding of the discussed physical phenomena. 

The computational cost of ANN-based modeling is high during the hyperparameter 

optimization and training stages, but after one optimization cycle of hyperparameters and 

parameters, all their values are saved in files, resulting in cheap weight importation and very 

quick inference. Because of this, another one of the motivations of this research is to prove that 

ANN models can provide equal or greater accuracy in less time and computational effort than 

other numerical solutions. 

When researching studies investigating the net section capacity of BSA connections, it was 

noted that there is a lack of studies addressing the topic using ANNs. As will be shown in 

chapter 0, there is only one single scientific paper (LI et al., 2024) that approaches the theme 

using ML techniques, but it studies specifically bearing capacity. This means that, so far, there 

is no published attempt of creating predictive models based on ML to study net section load 

capacity of these elements. As will also be shown in chapter 0, many studies already approached 

temperature prediction on pavements, but the vast majority were on asphalt pavement. Only a 

single study was found (HAN et al., 2024) on the temperature prediction of concrete pavements 

using ML techniques, where the authors trained ML models to predict the total effective 

temperature difference based on FEM modeling results. Their aim was to evaluate the effects 

of curling on the concrete pavement. This lack of studies regarding the specific themes of the 
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current thesis was one very important motivation for it. 

Building an accurate ANN model requires some steps that will be later discussed in the present 

work, but some of them are parameters optimization, commonly done with gradient-based 

optimizers, and hyperparameter tuning, commonly done with grid search or random search. 

Grid search is a brute-force-based search method that explores all configurations within a 

defined range. Random search is also a brute-force method, but instead of exploring all 

possibilities, it randomly chooses some of them from the total search space (RASCHKA; 

PATTERSON; NOLET, 2020). Although, these methods are exhaustive and inefficient, they 

are still widely used techniques, even in recent relevant scientific papers (BELETE; 

HUCHAIAH, 2022; SHAMS et al., 2024). Another step comprehending ANN training is 

Feature Selection (FS), the process of selecting a subset of features reducing the original feature 

space, that is, performing dimensionality reduction. According to Cai et al (2018), FS consists 

of an optimization problem in which the perfect optimal solution can only be achieved by an 

exhaustive search and, because of that, researchers still use heuristic methods, like adding or 

removing features one at a time. 

Based on this discussion, the final motivation of the present thesis is the demand for efficient 

algorithms capable of performing both hyperparameter optimization and Feature Selection 

simultaneously, specially using automatic searches, like the one performed in BO algorithm. 

1.2. OBJECTIVES 

The main goal of this work is to develop Machine Learning (ML) models with optimized 

hyperparameters and feature selection in regression models of selected and relevant engineering 

problems. It addresses the understanding of important physical properties using ANNs and 

Bayesian Optimization, creating accurate models that provide useful information about the 

analyzed variables. In this way, the research aims to demonstrate the effectiveness of this type 

of DDM in the study of physical phenomena. 

The following specific objectives can be cited: 

• Use of Bayesian optimization for hyperparameter optimization and feature selection; 

• Quantify global uncertainties of the performance metrics for the developed models; 
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• Formulate and implement an algorithm, named SOFAH, that augments the feature space 

and simultaneously performs hyperparameters optimization and feature selection; 

• Develop and evaluate ML-based data-driven models and strategies with different datasets 

of engineering problems from: public repository, experimental results, numerical 

simulations, and equations from standards; 

• Compare the performance of baseline ML models with SOFAH-based models for 

different datasets; 

• Verify if the present baseline methodology and SOFAH algorithm are competitive when 

compared to algorithms and models developed by other authors on the datasets from UCI 

ML repository; 

• Collect and organize datasets from literature of cold-formed steel bolted angles, including 

various geometric properties of the angles, tensile strength of the steel material and 

ultimate capacity regarding net section failure; 

• Create ANN models with data from numerical simulations and from standards’ equations 

added to experimental data to obtain better predictive ML models of steel bolted angles 

net section strength; 

• Collect and organize time series of climatological data to be used to predict surface 

temperature and differential temperature though the thickness of concrete pavements; 

• Predict temperature in concrete pavements for posterior years and quantify the 

uncertainty present in these predictions. 

1.3. STRUCTURE OF THE DISSERTATION 

Chapter 0 addresses the foundations of the present work, encompassing literature review and 

theoretical and mathematical background of the main topics studied, detailing the concepts 

necessary to understand the present thesis. Chapter 3 discusses the methodology used in this 

work with respect to ML modeling, explaining baseline methodology and the implemented 

SOFAH algorithm. Chapter 4 approaches models created on UC Irvine ML Repository, 
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comparing baseline methodology, SOFAH-based models and other authors results. Chapter 0 

presents the remaining methodology details of cold-formed steel bolted angles theme, specific 

to dataset and models developed, as well as results obtained, largely composed of tables and 

graphs. Chapter 6 shows the same, but for temperature variations of concrete pavement. Finally, 

chapter 7 presents the conclusions of the work and recommendations for future studies on the 

topic. 
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2. FOUNDATIONS 

In this chapter, literature review is conducted by initially presenting previous studies and 

characterizing the state of the art on the topics addressed in this work. The main topics are: 

Bayesian Optimization (BO) applied to hyperparameters optimization and feature selection; 

steel angles connection tensile resistance; and temperature variations in concrete pavement. 

Then, theoretical and mathematical background is presented on generally the same topics, but 

now encompassing a lot more machine learning modeling concepts, not only BO, and 

approaching specifically SBA net section resistance. The background draws on various 

literature sources to explain in detail algorithms, techniques, methods, and mathematical 

formulations used in the research. 

2.1. LITERATURE REVIEW 

2.1.1. Bayesian optimization applied to feature selection and hyperparameter 

optimization 

Bayesian Optimization (BO) originated with the work of Kushner (1964), Močkus (1975) and 

Zhilinskas (1975). Jones, Schonlau and Welch (1998) performed one of the main initial 

applications of BO, where they developed the efficient global optimization algorithm to solve 

engineering optimization problems, where the number of function evaluations is severely 

limited by time or cost. They used stochastic processes to create possible next search points that 

balance local and global search, that is, balancing exploration and exploitation. But it was only 

with the research of Snoek, Larochelle and Adams (2012) that BO received more attention 

within ML. The authors demonstrated that BO could be useful for deep neural networks, tuning 

nine hyperparameters of a three-layer convolutional network and achieving better accuracy on 

test set than when these hyperparameters were tuned by an expert. 

In ML models, hyperparameters tuning can be formulated as an optimization problem where 

the objective function is an unknown derivative-free black-box function, so traditional 

optimization techniques like Newton method or gradient descent cannot be applied (WU et al., 

2019). As stated by Betrò (1991), Bayesian methods are very effective in solving this kind of 

problem, as they impose a probabilistic structure to information gained about the problem 

through function evaluations. 
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Since the mentioned studies, a lot more have been published indicating improvement in 

performance of ML models due to hyperparameter tuning with BO (VICTORIA; 

MARAGATHAM, 2021; GAO et al., 2021; LOEY; EL-SAPPAGH; MIRJALILI, 2022). But 

even with many studies regarding BO effectiveness, there is relatively little use of the technique 

in ML modeling. Bouthillier and Varoquaux (2020) showed that from all papers published at 

the Neural Information Processing Systems (NeurIPS) 2019 and the International Conference 

on Learning Representations (ICLR) 2020, although 80% of the NeurIPS papers and 88% of 

the ICLR papers tuned their hyperparameters, the large majority used manual tuning, random 

search, or grid search. Only 7% of the NeurIPS papers and 6% of the ICLR papers used a 

different method such as BO. 

Motivated by the mentioned statistics, Turner et al. (2021) launched the black-box optimization 

challenge in 2020, a competition focused on tuning real-word ML tasks. The challenge showed 

that BO and similar methods are superior choices over random search and grid search for tuning 

hyperparameters of ML models. They found out that out of the 65 teams, 61 beat the baseline 

random search method and that all of the top-20 participants used some sort of surrogate-

assisted optimization. 

When performing the literature review on Bayesian Optimization (BO) applied to Feature 

Selection (FS) and Hyperparameters Optimization (HPO), many studies were found with BO 

and FS on their titles, but most of them did not apply BO to FS problems, the researches instead 

used FS methods and sequentially performed HPO with BO. Some of these works were Mate 

and Somai (2021) and Chaibi et al. (2022). 

Mate and Somai (2021) created ML-based classification models for early-stage detection of 

breast cancer, aiming to increase survival rate and reduce treatment costs in patients and 

implementing FS and HPO algorithms. Initially, they use a voting system with six FS 

algorithms to determine optimal feature subset. Then, with this result, the models are trained 

and have their hyperparameters optimized with BO. Highlights of the work primarily are the 

high accuracy obtained by their best model, of 97%, the voting system for FS and that a high 

quantity of ML techniques were implemented, 15 in total, all with hyperparameters optimized. 

The methodology implemented by the authors consist of a quasi-standard methodology for ML 

modeling, since it follows data preprocessing, feature selection, model building and model 
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evaluation, with FS being performed in a completely separated step from HPO. Chaibi et al. 

(2022) used five ML techniques to develop regression models that predict daily global solar 

radiation based on FS and HPO algorithms. They first evaluate feature importance based on 

random forests, then, with this result, perform FS. With optimal inputs defined, the models are 

trained and have their hyperparameters optimized with BO. In practice, this method 

implemented by the authors consist of a standard two-step FS and HPO, performed separated 

from each other. 

Just a few studies were found applying BO directly as a tool for FS problems. Görmez (2024) 

directly used BO for FS in classification models, using 9 distinct ML techniques in two datasets 

available in sklearn library. He states that his methodology is new and based on the optimization 

of a vector of size M x 1, where M is the number of features, consisting of 0 and 1 values, 0 

indicating that the corresponding feature is not included and 1 that it is included. Feature 

selection, model training, performance score calculation, and expected improvement 

calculation steps are repeated a predetermined number of times, for the features that yield 

highest performance score to be chosen. Despite the novel methodology, the author used all 

hyperparameters values as their default in the sklearn library. Yang, Liu and Wen (2024) 

investigated embedded-based FS algorithms that have hyperparameters, extreme gradient 

boosting, Lasso and elastic net, optimizing their values with BO. They analyzed high-

dimensional molecular data, established 100 iterations for BO and pre-specified the number of 

selected features to 100, 200, 500 and 1000. The authors concluded that BO generally improved 

recall rate but, depending on the complexity of hyperparameters space, results may vary. 

2.1.2. Steel angles connection tensile resistance 

The net section reduction coefficient U, has been studied for over 60 years (CHESSON JR., 

1959), with one of its first formulations being the equation U = 1 − 𝑥̅/𝐿, proposed by Munse 

and Chesson Jr. (1963). Many years later, LaBoube and Yu (1996) proposed a new equation 

based on the results of Holcomb, LaBoube and Yu (1995) and the original equation by Chesson 

(1959). Yip and Cheng (2000) conducted experiments on 12 angles, and Paula et al. (2008) 

performed 66 experimental tests, both proposing new equations for the reduction factor due to 

shear lag. Teh and Gilbert (2013) analyzed the accuracy of the equations presented by the 

American and Australasian standards, highlighting the high accuracy of the equation proposed 
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in their work, an equation with a format very similar to the one currently presented in the 

American Iron and Steel Institute (2016) standards. 

Ke et al. (2018) investigated the shear lag effect on ultimate tensile capacity of high strength 

steel angles with bolted and welded connections, evaluating the effects of steel grade, 

connection length and out-of-plane eccentricity. Jiang and Zhao (2022) presents experimental 

and numerical studies of stainless angles connected by one leg and failing by net section 

fracture, comparing results with European and American codes. Paula et al. (2008) performed 

an experimental study on cold-formed steel angles fastened with bolts and under tension, 

focusing on the effects of the shear lag phenomenon and its consequent reduction in net section 

capacity, proposing a new equation for this reduction factor. Fleitas et al. (2020) conducted a 

parametric numerical study on the same theme and proposed two similar equations with 

different coefficients, for angles with one and two bolt lines. 

Machine Learning (ML) has been widely applied in civil and structural engineering, many 

important mechanical properties have proved to be predictable with DDM, like concrete 

compressive strength (SILVA et al., 2023; CHOU et al., 2014) and compressive and flexural 

strengths of steel fiber-reinforced concrete (KANG; YOO; GUPTA, 2021). Moreover, ML have 

been used predict other variables that are not mechanical properties of structural materials, 

predicting failure probabilities (LIMA; EVANGELISTA JR.; SOARES, 2023), quantifying 

uncertainties (EVANGELISTA JR.; ALMEIDA, 2021), and consequently assisting structural 

reliability analyses. 

Sarothi et al. (2022a) used eleven ML techniques as an approach to studying the bearing 

capacity of double shear bolted connections and performed grid search tuning, an exhaustive 

and expensive technique, with 10-fold cross-validation to select optimal hyperparameters 

values. They developed a user interface for generalized data-driven design of bolted 

connections, irrespective to the region, steel grade, bolt arrangements and type of failure. The 

same authors (2022b) implemented ten ML approaches to classify the failure mode of double 

shear bolted steel connections, again using grid search with 10-fold cross-validation. They 

developed a new user interface that identifies failure type of double shear bolted connections, 

independent of specific connection geometric and material configuration. In both researches, 

only flat sheet connections were studied, in opposition to the present work, that addresses SBA, 
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elements which load capacity is highly affected by shear lag and eccentricity of connection. 

Xiao et al. (2022) also used ML methods applied to cold-formed steel members, but to study 

the loading capacity prediction and optimization of built-up section columns, using Shapley 

Additive Explanations to investigate feature importance and dependency. Li et al. (2024) 

conducted the only published study that approaches SBA resistance with ML techniques, 

however they analyzed bearing capacity, as the present work analyzes net section capacity. The 

authors created a new database of SBA with one and two bolts disposed in a single line, 

comprising a total of 175 instances, 51 experimental and 124 numerical. The authors established 

a convenient Graphic User Interface based on their two best performing models. So, no work 

from SBA’s literature addresses net section load capacity with ML techniques. 

2.1.3. Temperature variation in concrete pavements 

The structural design of concrete pavements has been studied for many years, with researches 

published since the early 20th century. Westergaard (1925) was the first one to develop a 

rational theory capable of calculating stresses in concrete pavement slabs. He assumed the slab 

to act as a homogeneous isotropic elastic solid in equilibrium and the reactions of the subgrade 

to be vertical only and proportional to the deflections of the slab. With these assumptions, the 

problem was reduced to a problem of mathematical theory of elasticity. Westergaard (1926) 

developed further his theoretical analysis, providing formulas, charts and tables which comprise 

a convenient method that addressed critical stresses in existing pavements and allowed for 

reduction in thickness of pavements, thus resulting in more efficient highway engineering. 

Westergaard (1927) observed that cracks developed in new pavement before any load was put 

on it, showing how important were the stresses due to temperature variations. The author 

investigated a specific case of quick changes of temperature, like the change from a cold night 

to a hot day, analyzing concrete slab curling and solving equations to obtain stress values. 

Teller and Sutherland (1935) published a long and detailed report on extensive investigation on 

the structural action of concrete pavement slabs. In part 2 out of 5 of their report, the authors 

described their results regarding observed effects of variations in temperature and moisture on 

the size, shape and stress resistance of concrete pavement slabs. They reached many important 

conclusions for the time, such as: average pavement temperature annual change of about 26.67 

ºC, maximum temperature differentials in hot afternoons of early summer, cyclic variation in 
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slab length from temperature changes, experimental verification of the thermal coefficient of 

expansion of the concrete, etc. 

Bradbury (1938) researched the structural design of reinforced concrete pavements, developing 

the theoretical background of the subject. He emphasized the application of rational stress 

determinations to the structural analysis of concrete pavements as a useful analytical tool for 

evaluating the merits of slab thickness, joint spacing, reinforcement and other features affecting 

structural strength. 

Regarding analytical models, earliest studies on analytical solutions of pavement temperature 

were developed by Barber (1957), deriving a solution based on weather data. He applied a 

thermal diffusion theory to a semi-infinite mass, the pavement, in contact with air. Some of the 

limitations of his method are that it uses total daily radiation and it does not consider latitude 

effects. Based on this, Solaimanian and Kennedy (1993) proposed a simple analytical method 

to predict maximum temperature on pavement surface based on an equilibrium state and using 

minimal inputs, only maximum air temperature and maximum hourly direct solar radiation, as 

that translates to knowing latitude and air temperature. Their results were compared to measured 

pavement surface temperatures, achieving a difference of 4ºC in 96% of the measurements and 

a difference of 3ºC in 83%. 

After that, a series of relevant studies were published by mostly the same authors, all solving 

the partial differential equation for heat conduction through analytical methods (CHEN; 

WANG; XIE, 2019) as some of the methods used were Hankel integral transform (WANG; 

ROESLER; GUO, 2009), separation of variables (WANG; ROESLER, 2014; WANG D., 

2015), Duhamel’s principle (WANG D., 2015), Laplace transform and inverse Laplace 

transform (WANG D., 2012; WANG; ROESLER, 2012), and eigenfunction expansion 

technique (WANG D., 2016). All these analytical solutions approached the prediction of 

temperature profiles in multilayered pavement systems or of just a single layer pavement. 

Machine Learning has been in used in a variety of studies to predict performance-related 

properties of pavement, as Piryonesi and El-Diraby (2021) implemented several algorithms to 

predict a single index, pavement condition index, based on climate data, considering both a 

current climate scenario and a climate change scenario in 2098. Zeiada et al. (2020) investigated 

pavement design factors that most influence its performance in warm regions using five ML 
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algorithms and analyzing many structure, climate and traffic related inputs to predict the 

international roughness index. Both mentioned researches studied the performance of asphalt 

pavement. 

A lot of recent studies were found regarding ML applications on the prediction of temperature: 

in pavement surface (TABRIZI et al., 2021), integrating convolutional neural networks with 

long short-term memory networks; at different depths (NOJUMI et al., 2022), implementing 

five usual ML algorithms; both in pavement surface and varying depths (MILAD et al., 2021), 

with a hybrid ML model that used Markov chain Monte Carlo and Random Forest; in base and 

subgrade layers (HUANG et al., 2023), using few inputs and five usual ML algorithms. Even 

though all these researches were found, all of them are specific for asphalt pavement. 

From the performed literature review, it can be concluded that there is significant lack of studies 

regarding temperature prediction in concrete pavements using ML techniques, as compared to 

flexible pavement, almost no studies were found on the theme. Han et al. (2024) very recently 

used ML in a study that evaluated the degree of total curling specifically in concrete pavement. 

The author simulated falling weight deflectometer testing in 3D FEM models, thus obtaining a 

large dataset to train models with ML techniques that surrogate the computationally demanding 

FEM models. He achieved accurate models capable of predicting the total effective temperature 

difference to quantify the effects of curling on the concrete pavement. 

2.2. THEORETICAL AND MATHEMATICAL BACKGROUND 

2.2.1. Machine learning modeling 

This section focuses exclusively on aspects related to ML modeling, explaining most of the 

background of the techniques used in the research, with various references of the literature of 

Bishop (2006) and Goodfellow, Bengio and Courville (2016). Also, the methodology related to 

such modeling is fully addressed, detailing the algorithm developed by the present author, 

which was applied to all datasets studied in the research. 

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that encompasses a wide 

range of algorithms and computational techniques where the computer is taught to perform 

tasks without being explicitly programmed to do so. These algorithms learn through 
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“experience”, that is, they always learn through data, thus always involving DDM. In this 

context, the first step in ML modeling is the acquisition and preparation of a high-quality 

dataset. 

Data gathering for ML modeling is most of the times an iterative process that follows the 

general steps of Figure 2.1. Starting with the acquisition of a considerable number of samples 

that need to go through statistical analysis, using descriptive statistics to measure distribution, 

variability and central tendency of each variable. The statistical analysis enables a more 

efficient process of feature engineering, easing the detection of outliers and near-zero or zero 

variance features. Some data handling algorithms and libraries requires non-missing values, 

thus requiring solutions to this type of values, either by removing samples with missing values 

or by imputing them on the training set, usually based on mean or median for quantitative 

variables and most frequent value for categorical features. Feature transforming methods can 

be used to add useful information to the dataset and consequently to the model, by performing, 

for example, square, cube, reciprocal and logarithm transforms or by performing operations 

such as multiplication or division between two variables. The dataset is split into training, 

validation, and test sets and undergoes normalization before finally being used in model 

development. If the model's accuracy is not satisfactory, there is a wide range of solutions to be 

employed, one of which is acquiring more data, starting the steps all over again. 

 
Figure 2.1. High-quality dataset construction steps 
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The number of samples obtained directly affects the quality of the final model, as a higher 

number allows training models with a greater number of parameters without overfitting, an 

undesirable behavior that will be explained in detail in following paragraphs. Additionally, the 

broader the range of the variables, the larger the domain in which the regression model performs 

well, without the need for extrapolation. 

Train-validation-test split does not have stablished best proportions to be performed, varying a 

lot in the literature. However, it is an important step that defines different sets of samples to be 

used in each of these phases, as normalization and imputation of missing values need to be done 

based on training set in order to not leak information from test or validation. The training phase 

is when model’s parameters 𝜽 are optimized minimizing a cost function, usually Mean Squared 

Error (MSE) in regression problems, learning iteratively how to predict the target variable 𝑦, 

where model’s prediction 𝑦̂ are given by the set of parameters 𝜽. The objective of this phase is 

to create a model that captured the patterns present in input variables 𝒙, resulting in the 

capability of predicting accurately 𝑦 given an unseen sample of inputs 𝒙. 

Validation and test are very similar phases that aim to evaluate model’s performance 

performing predictions on unseen data. The only thing that differentiate them is that validation 

results are used for model calibration, as in test model’s final performance is measured. 

Validation phase ensures that the model is not only learning training set patterns but also 

maintaining adequate generalization capability, while also being useful to adjust model’s 

hyperparameters. 

When data is limited, cross-validation techniques present much better use of data, as they allow 

the usage of subsets of the training set as validation set, instead of requiring a separated set 

exclusive to the validation task and another for test. In this context, k-fold cross-validation 

divides the data in a number k of folds, with one of them being selected as the validation set 

and the rest as training set, this process is repeated k times always selecting a different fold for 

validation. The algorithm is illustrated in Figure 2.2. 
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Figure 2.2. K-fold cross-validation algorithm 

The ideal model achieves a good balance between two sources of error in predictive models, 

bias and variance, that when one is high, the other is low, and vice versa. Bias refers to errors 

caused by simplistic assumptions in the learning algorithm, so high bias models fail to capture 

underlying patterns in the data, resulting in underfitting. Variance refers to errors caused by 

model’s sensitivity to small fluctuations in the training set, so high variance models adjust 

excessively to the training data, learning even its noise and leading to overfitting. In 

mathematical terms, considering that 𝜽 represents the true values of model’s parameters and 

that 𝜽̂ represents a point estimate of parameters 𝜽, let  {𝑥(1), … , 𝑥(𝑚)} be a set of 𝑚 independent 

and identically distributed (i.i.d.) data points, a point estimator is any function of the data: 

𝜽̂𝑚 = 𝑔(𝑥(1), … , 𝑥(𝑚)) (2.1) 

The bias of an estimator is defined as: 

Bias(𝜽̂𝑚) = 𝐸[𝜽̂𝑚] − 𝜽 (2.2) 

Bias(𝜽̂𝑚)
2

= 𝐸[𝜽̂𝑚]
2

− 2𝜽𝐸[𝜽̂𝑚] + 𝜽𝟐 (2.3) 

The variance of an estimator is defined as simply 

Var(𝜽̂𝑚) = 𝐸 [(𝜽̂𝑚 )
2

 ] − 𝐸[𝜽̂𝑚]
2

 (2.4) 

The MSE of the estimates: 

MSE = 𝐸 [(𝜽̂𝑚 − 𝜽)
2

 ] (2.5) 
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MSE = 𝐸 [(𝜽̂𝑚 )
2

 ] − 2𝜽𝐸[𝜽̂𝑚 ] + 𝜽𝟐 (2.6) 

MSE = 𝐸 [(𝜽̂𝑚 )
2

 ] − 2𝜽𝐸[𝜽̂𝑚 ] + 𝜽𝟐 + 𝐸[𝜽̂𝑚]
2

− 𝐸[𝜽̂𝑚]
2
 (2.7) 

MSE = 𝐸[𝜽̂𝑚]
2

− 2𝜽𝐸[𝜽̂𝑚 ] + 𝜽𝟐 + 𝐸 [(𝜽̂𝑚 )
2

 ] − 𝐸[𝜽̂𝑚]
2
 (2.8) 

MSE = Bias(𝜽̂𝑚)
2

+ Var(𝜽̂𝑚) (2.9) 

Based on Equation (2.9), it is clear that the cost function MSE incorporates both bias and 

variance, thus reducing MSE tends to also reduce bias and variance. Figure 2.3 illustrates the 

bias-variance tradeoff in function of model’s capacity, since an increase in capacity is 

equivalent to more parameters and consequently more variance, that is, ease of overfitting. This 

concept is fundamental to ML modeling, because it ensures that, when using optimal model 

capacity, an optimized MSE value translates to low bias and low variance. 

 
Figure 2.3. Bias-variance tradeoff and model capacity (GOODFELLOW; BENGIO AND 

COURVILLE, 2016) 

2.2.1.1.Artificial Neural Networks 

Artificial Neural Networks (ANN) are widely one of the main computational models with 

structure inspired by human brains, presenting neurons disposed in layers connected to each 

other. The Multilayer Perceptron (MLP) is a fully connected feedforward ANN, where there 

are at least three layers (Figure 2.4), one input layer, one or more hidden layers and one output 

layer. These layers are densely connected, with all its neurons connected with all neurons of the 

next layer, opposing sparsely connected layers. 
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Figure 2.4. Multilayer Perceptron architecture 

Every connection in the network has associated weight (𝑤) and bias (b), which form the 

parameters of the model, calculated usually with gradient-based optimizers in the training 

phase. In feedforward networks, the information goes through the model in one direction only, 

from input to output, with no cycle among the neurons. The output of the input layer, i.e., the 

input of the first hidden layer, is given by 

𝒚̂ = 𝑓𝑎(𝑿𝑾 + 𝒃) (2.10) 

where 𝑿 is a matrix with each row representing an instance and each column a feature, 𝑓𝑎 is the 

nonlinear activation function, 𝑾 is the weight matrix and 𝒃 the bias vector. 

Gradient-based optimization algorithms refer to minimizing the loss function, usually MSE 

when approaching regression problems, by changing parameters’ values in small steps in the 

opposite direction of gradient. The size of these steps is defined by a hyperparameter α called 

learning rate, that can be fixed or, in modern algorithms, adaptive. This process is only viable 

because of the backpropagation algorithm (RUMELHART; HINTON; WILLIAMS, 1986), that 

presents an efficient technique of passing information forward through the network to produce 

a scalar loss and then backward to compute inexpensively the gradients, applying recursively 

the chain rule of calculus. Also, because of fundamental contributions of Bishop (1995, 2006). 

Activation functions, 𝑓𝑎, are functions that provide nonlinearity between layers, enabling ANNs 

to approach complex nonlinear problems. These functions are commonly chosen as logistic, 

hyperbolic tangent or Rectified Linear Unit (ReLU). ReLU is the actual default 
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recommendation for most feedforward ANNs (BISHOP; BISHOP, 2023), because of its nearly 

linear format, preserving properties that make linear models generalize well and optimize easily 

with gradient-based techniques. Extremely relevant papers and authors have showed that ReLU 

makes training faster and more stable (NAIR; HINTON, 2012; KRIZHEVSKY; SUTSKEVER; 

HINTON, 2012), while also being cheap to evaluate (BISHOP; BISHOP, 2023). 

An important element of ANNs training is the initialization of its parameters, determining 

whether learning does converge or not, quickly or slowly and to a point with high or low cost. 

Common practice is to initialize the weights of a fully connected layer sampling each weight 

from a uniform or normal distribution of parameters defined by the number of inputs and 

outputs of the given layer. He et al. (2015) proposed that, for the variance of the outputs of each 

layer to be equal to the variance of its inputs, weights should be initialized sampling them from 

a zero-mean Gaussian distribution of standard deviation √2/𝑛𝑙, being 𝑛𝑙 the number of inputs 

of the layer 𝑙 if preserving the magnitude of the weights in the forward pass. 

Regarding optimization algorithms with adaptive learning rates, Adam (KINGMA; BA, 2014), 

derived from Adaptive moment estimation, is a method for efficient stochastic optimization. It 

computes individual adaptive learning rates for different parameters from estimates of first and 

second moments of the gradients. The algorithm keeps track of an Exponentially Weighted 

Moving Averages (EWMA) of the gradient and an EWMA of the squared gradients. The steps 

of the algorithm are: 

𝒎 ← 𝜸𝟏𝒎 + (𝟏 − 𝜸𝟏)𝜵𝜽𝑱(𝜽) 

2.11(a-e) 

𝒗 ← 𝛾2𝒗 + (1 − 𝛾2)(𝛻𝜽𝐽(𝜽))
2

 

𝒎̂ ←
𝒎

1 − 𝛾1
𝑡
 

𝒗̂ ←
𝒗

1 − 𝛾2
𝑡
 

𝜽 ← 𝜽 − 𝛼
𝒎̂

√𝒗̂ + 𝛿
 

where 𝛾1 and 𝛾2 are the exponential decay rates for the moment estimates, m and v are the 

biased first and second moment estimates, 𝛻𝜽𝐽(𝜽) is the gradient of the loss function 𝐽(𝜽) with 
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respect to parameters 𝜽, 𝒎̂ and 𝒗̂ are the bias-corrected first and second moment estimates, δ 

is a small constant for numerical stability and α is the learning rate. Reddi, Kale and Kumar 

(2019) have shown that Adam does not always converge to the optimal solution and proposed 

AMSGrad, a variant of Adam with guaranteed convergence. The variant provides a new 

exponential moving average, taking the maximum of all second moment estimates until present 

time step and normalizing the running average of the gradient. 

2.2.1.2.Regularization 

Regularization techniques are methods that assist the development of models of great 

generalization capability, preventing overfitting, situation where there is excessive learning of 

the patterns in training set, capturing also noise and outliers, thus performing poorly on unseen 

data. Some of these techniques are: 

• Early Stopping, consists in stopping model training when validation error is not 

improving after a given number of consecutive iterations, also called patience, thus 

preventing the model to perform excessive training; 

• Weight Decay, modifying the loss function in training by adding a criterion that penalizes 

large weight values based on squared L2 norm and on a hyperparameter λ that controls 

the strength of this preference for smaller weights; 

• Batch Normalization (IOFFE; SZEGEDY, 2015), is a method of adaptive 

reparametrization that speeds up training and improves model performance. It normalizes 

the inputs of each layer to have mean 0 and variance 1, then, in order to maintain 

representation capacity of the model, it learns parameters γ and β in training to 

respectively scale and shift the result. 

2.2.1.3.Bayesian Optimization 

Bayesian Optimization (BO) is a black-box optimization algorithm that relies on a probabilistic 

surrogate model for the objective function, providing a measure of uncertainty. Based on this 

surrogate model, usually Gaussian Processes (GP), an acquisition function determines the most 

promising point to be evaluated next (TURNER et al., 2021). In general, the technique works 

well in optimization problems where function evaluations are expensive, in a way that it is 
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desirable to spend computational time making good choices on where to perform new 

evaluations in order to find the best parameters (SNOEK; LAROCHELLE; ADAMS, 2012).  

The technique requires user-defined ranges for the search space for a given number of iterations 

or until convergence. These facts represent disadvantages of the algorithm, as they require prior 

knowledge or multiple configuration tests, resulting in large spaces of inefficient optimization 

or small spaces that do not contain the optimum point (NGUYEN, 2019). On the other hand, 

once the ranges are defined reasonably and either a sufficient number of iterations or a 

satisfactory convergence criterion are established, the algorithm automatically finds optimal 

solutions. 

In Figure 2.5, it is shown generally how the BO algorithm works, where the bottom of each plot 

shows the acquisition function and the top shows a GP approximation of the objective function. 

The figure starts at iteration 2, where 2 observations from the function were evaluated, 

represented by the black points. Based on these observations, mean and standard deviation of 

the GP are evaluated, approximating the objective function and providing the blue area of 

posterior distribution uncertainty. Then, with assist of GP regression, the acquisition function 

is evaluated and its maximum is selected as the next point to be evaluated, providing a new 

observation that will be included in a new GP approximation that start the iterative process 

again. So, even if the new observation is not a point of minimum, it still added information to 

the GP, aiding the search for the minimum on next iterations. 
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Figure 2.5. Illustration of 3 iterations of Bayesian Optimization algorithm (BROCHU; 

CORA; FREITAS, 2010) 

In Figure 2.6, a pseudocode of the BO algorithm can be seen, where the inputs are: 𝑺, the search 

space; 𝑥0, the arbitrarily chosen initial point from the search space 𝑺; N_ITERS, the first 

criterion of convergence, a maximum number of iterations for the algorithm; and PATIENCE, 

a second criterion of convergence, a limit of consecutive iterations of no improvement in the 

point of minimum. The functions are: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥𝑖), an evaluation of the objective function at 

point 𝑥𝑖; 𝑟𝑎𝑛𝑑𝑜𝑚(𝑺), the sampling of a random point of search space 𝑆; 𝑎𝑐𝑞_𝑓𝑢𝑛𝑐(𝒙), the 

acquisition function over all observed points 𝒙; and 𝐺𝑃(𝒙, 𝒚), a new fit of Gaussian Process 

(GP) with all observed points (𝒙, 𝒚). In each iteration, at 𝑥𝑖, the objective function is evaluated, 

𝑦𝑖, and both coordinates are appended to lists that have all observed values. In the first 10 

iterations, random points 𝑥𝑖 are used, then, in each subsequent iteration, a new GP is fit on all 

observed points and new points 𝑥𝑖 are selected based on the maximum of the acquisition 

function. The value returned by the algorithm is the last point of minimum 𝑚𝑖𝑛_𝑥, selected 

from search space 𝑺. 
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Figure 2.6. Pseudocode of Bayesian optimization algorithm 

According to Snoek, Larochelle and Adams (2012), as in other optimization problems, the 

desired solution is the minimum of a function 𝑓(𝒙) on some bounded set 𝜒, taken to be a subset 

of ℝ𝐷. BO, in particular, constructs a probabilistic model for 𝑓(𝒙) to use all of the information 

available from previous evaluations of the function. The computational cost of determining the 

next point to evaluate is easy to justify due to the cost of performing each evaluation. Selecting 

a GP prior distribution, taken to be of the form 𝑓: 𝜒 → ℝ, it is defined by the property that any 

finite set of 𝑁 points {𝑥𝑛 ∈ 𝜒}𝑛=1
𝑁  induces a multivariate Gaussian distribution on ℝ𝑁. 

Based on the paper of William and Rassmussen (1996), on their book (RASSMUSSEN; 

inputs: 𝑆, 𝑥0, N_ITERS , PATIENCE 

functions: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥𝑖), 𝑟𝑎𝑛𝑑𝑜𝑚(𝑆), 𝑎𝑐𝑞_𝑓𝑢𝑛𝑐(𝑥), 𝐺𝑃(𝑥, 𝑦) 

LOSS_MIN = ∞  

𝑥, 𝑦 = 𝑙𝑖𝑠𝑡(), 𝑙𝑖𝑠𝑡() 

for 𝑖 = 0: N_ITERS − 1: 

      𝑦𝑖 = 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥𝑖) 

      𝑥, 𝑦 = 𝑥. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥𝑖), 𝑦. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑦𝑖) 

      if 𝑦𝑖 < LOSS_MIN: 

            𝑥_𝑚𝑖𝑛 = 𝑥𝑖   

            LOSS_MIN = 𝑦𝑖   

            TOL = PATIENCE  

      else: 

            TOL = TOL − 1  

            if TOL = 0: 

                  break 

      if 𝑖 < 10: 

            𝑥𝑖+1 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑆)  

      else: 

            𝐺𝑃(𝑥, 𝑦) 

            𝑥𝑖+1 = argmax 𝑎𝑐𝑞_𝑓𝑢𝑛𝑐(𝑥)  

return 𝑥_𝑚𝑖𝑛 
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WILLIAMS, 2006) of Gaussian Processes for Machine Learning, and the literature of Bishop 

(2006), GPs are a collection of random variables, any finite number of which have a joint 

Gaussian distribution, and they are completely specified by mean and covariance functions. 

Mean function 𝑚(𝒙) and covariance function 𝐶(𝒙, 𝒙′) of a real process 𝑓(𝒙) is defined as 

𝑚(𝒙) = E[f(𝐱)] (2.12) 

𝐶(𝒙, 𝒙′) = E[(f(𝐱) − m(𝐱))(f(𝐱′) − m(𝐱′))] (2.13) 

and the GP can be written as 

𝑓(𝒙)~𝐺𝑃(𝑚(𝒙), 𝐶(𝒙, 𝒙′)) (2.14) 

For simplicity, mean function, 𝑚(𝒙) is taken to be zero. In order to apply GP models to the 

problem of regression, the random noise 𝜖𝑛 on the observed target values needs to be 

considered. The noise process is considered to have a Gaussian distribution and to be based on 

a hyperparameter 𝛽𝐺 that represents the precision of the noise. 

The objective is to predict target variables for new inputs given a set of training data, So, 

supposing that the training set is composed of targets 𝒚𝑁 = (𝑦1, … , 𝑦𝑁)𝑇 that corresponds to 

input values 𝑥1, … , 𝑥𝑁, the objective is to predict 𝑦𝑁+1 given 𝑥𝑁+1. This requires evaluating the 

predictive distribution 𝑝(𝑦𝑁+1|𝒚𝑁), given by a Gaussian with mean and covariance  

𝑚(𝑥𝑁+1) = 𝒌𝑇𝑪𝑁
−1𝒚 (2.15) 

𝜎²(𝑥𝑁+1) = 𝑐 − 𝒌𝑇𝑪𝑁
−1𝒌 (2.16) 

where vector 𝒌 has elements 𝑘(𝑥𝑛, 𝑥𝑁+1) for 𝑛 = 1, … , 𝑁, scalar 𝑐 = 𝑘(𝑥𝑁+1, 𝑥𝑁+1) + 𝛽𝐺
−1 and 

𝐶𝑁 is the 𝑁 × 𝑁 covariance matrix 𝐶(𝑥𝑛, 𝑥𝑚) = 𝑘(𝑥𝑛, 𝑥𝑚) + 𝛽𝐺
−1𝛿𝑛𝑚 for 𝑛, 𝑚 = 1, … , 𝑁. Note 

that 𝛿𝑛𝑚 is a Kronecker delta which is 1 if and only if 𝑛 = 𝑚 and 0 otherwise. The term 

𝑘(𝑥𝑛, 𝑥𝑚) is a kernel function for GP regression, that can assume many functions, for example 

the Matérn class of covariance functions and the specific Matern 5/2, respectively 

𝑘𝑀𝑎𝑡𝑒𝑟𝑛(𝑟) =
21−𝑣

Γ(𝑣)
(

√2𝑣𝑟

𝑙
)

𝑣

𝐾𝑣 (
√2𝑣𝑟

𝑙
) (2.17) 
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𝑘𝑣=5/2(𝑟) = (1 +
√5𝑟

𝑙
+

5𝑟2

3𝑙2
) exp (−

√5𝑟

𝑙
) (2.18) 

With Gaussian Processes and Gaussian Process Regression defined, it is clearer how the 

techniques quantify the uncertainty of unobserved areas based on previous observations and  

provide a Bayesian posterior probability distribution. They combine prior information about 

the unknown function with sample information, to acquire posterior information of the function 

distribution with Bayesian formula. Optimal value location is deduced based on this posterior 

information (BETRÒ, 1991). Although, this optimal value is based on an acquisition function, 

not on the original function, because the acquisition function 𝑎(𝑥) is inexpensive and of known 

structure, thus it provides the next query point, i.e., next point to be evaluated in the original 

function. 

A usual and popular acquisition function is Expected Improvement (EI). As explained by 

Brochu, Cora and Freitas (2010), the improvement function 𝐼(𝑥) is given by 

𝐼(𝒙) = max(0, 𝑓𝑁+1(𝒙) − 𝑓∗) (2.19) 

where 𝑓𝑁+1(𝒙) is the evaluation of a given point 𝒙 and 𝑓∗ is the best value known thus far. So, 

choosing a next point 𝒙 to be evaluate, it returns the difference between its evaluation 𝑓(𝑥) and 

𝑓∗ if 𝑓(𝑥) > 𝑓∗, otherwise, returns zero. The new query point 𝒙 is found by maximizing the 

expected improvement: 

𝒙 = argmax E[max(0, 𝑓𝑁+1(𝒙) − 𝑓∗)|𝒟𝑁] (2.20) 

where 𝒟𝑁 is the prior distribution. The likelihood of improvement 𝐼 on a normal posterior 

distribution characterized by 𝜇(𝑥) and 𝜎²(𝑥) can be computed from the normal probability 

density function 𝜙 

𝜙 =
1

√2𝜋𝜎(𝑥)
exp (−

(𝜇(𝑥) − 𝑓(𝑥) − 𝐸𝐼)2

2𝜎2(𝑥)
) (2.21) 

The Expected Improvement (𝐸𝐼) is the integral over this function: 
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𝐸𝐼 = ∫ 𝐼
1

√2𝜋𝜎(𝑥)
exp (−

(𝜇(𝑥) − 𝑓(𝑥) − 𝐸𝐼)2

2𝜎2(𝑥)
) 𝑑𝐼

𝐼=∞

𝐼=0

 (2.22) 

As shown by Jones, Schonlau and Welch (1998), this function can be evaluated analytically, 

yielding: 

𝐸𝐼(𝑥) = {
(𝜇(𝑥) − 𝑓∗)Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)      𝑖𝑓 𝜎(𝑥) > 0

0                                                              𝑖𝑓 𝜎(𝑥) = 0
 (2.23) 

𝑍 =
𝜇(𝑥) − 𝑓∗

𝜎(𝑥)
 (2.24) 

where 𝜙 and Φ are respectively the probability density function and cumulative density 

function of the standard normal distribution. 

2.2.1.4.Performance metrics and feature importance 

Performance of regression models, specially ML-based ones, is commonly measured with some 

error measures, like R², Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), and Standard Deviation 

of Absolute Percentage Error (SDAPE), given by: 

R2 = 1 −
∑ (𝑦𝑖̂ − 𝑦𝑖)

2
𝑖

∑ (𝑦̅ − 𝑦𝑖)2
𝑖

 
(2.25) 

MAE =
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|

𝑛

𝑖=1

 (2.26) 

MSE =
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)

2

𝑛

𝑖=1

 (2.27) 

RMSE = √
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)2

𝑛

𝑖=1

 (2.28) 

MAPE =
100

𝑛
∑ |

𝑦𝑖̂ − 𝑦𝑖

𝑦𝑖
|

𝑛

𝑖=1

 (2.29) 
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SDAPE = √
1

𝑛 − 1
∑ (100 |

𝑦𝑖̂ − 𝑦𝑖

𝑦𝑖
| − MAPE)

2𝑛

𝑖=1

 (2.30) 

where 𝑛 is the number of samples, 𝑦𝑖 is an observed value of the response variable, 𝑦𝑖̂ is a 

predicted value of the response variable and 𝑦̅ the mean of the observed values. 

In this final stage, with the fitted model, feature importance technique may be performed, like 

Permutation Feature Importance (PFI), in order to answer what features present the biggest 

impact on predictions of the response variable. Based on Breiman (2001) and Fisher, Rudin, 

and Dominici (2019), PFI algorithm measures the importance of a feature based on the effect 

that random disturbances on this feature have on model performance. If performance decreased 

a lot with the disturbances, the feature is very important, if performance was not affected, the 

feature is irrelevant for the predictions. Model performance, in regression problems, is usually 

evaluated with MSE. As shown in Figure 2.7, PFI randomly shuffles the instances of a single 

feature column and measures the difference between model error before and after the 

permutation (∆MSE), the process is repeated N times for robust results based on the mean ∆MSE 

of the N results. The technique uses the trained model, thus not demanding additional 

computational resources for retraining. 

 
Figure 2.7. Permutation Feature Importance technique 
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2.2.2. Steel bolted angles net section capacity 

Many different equations and models try to predict accurately the resistance of the net section 

of SBAs connected by one leg, the ones that were used in the current work are presented in this 

section. Figure 2.8 illustrates a steel angle connected to a gusset plate, showing connected and 

unconnected legs, location of the critical cross-section, where the holes are located, and some 

variables that will be shown in equations, like the diameter of the holes, 𝑑ℎ. The load, 𝑃, is 

applied in z axis, thus it being considered the longitudinal direction, as y axis is considered the 

transverse direction, perpendicular to the load. Figure 2.8 also illustrates the critical cross-

section with geometric variables that were used in the present study. 

 
Figure 2.8. Illustration of BSA connected to gusset plate 

When available, specific cold-formed steel standards were preferred over general steel structure 

standards. All equations presented do not include factors of safety, thus providing nominal 

resistance, not design resistance. The reason for this is one of the objectives of this work, that 

is to compare predictions of the standards with experimental values, so these predictions should 

be as accurate as possible, not conservative. 

United States of America (USA), Canada and Mexico adopt American Iron and Steel Institute 

(AISI) standards, using S100-16 Standard (AISI, 2016) for the design of cold-formed steel 

structural members. The net section capacity of BSAs 𝑃𝑛𝑡, that is, the value of the load 𝑃 when 



33 

 

net section failure occurs, specifically for elements of thickness less than or equal to 4.76 mm 

connected by one leg is given by 

𝑃𝑛𝑡 = (
1

1.1 +
0.5𝑏𝑑

𝑏𝑐 + 𝑏𝑑
+

2𝑥̅
𝐿

) 𝐴𝑛𝑡𝐹𝑢 (2.31) 

where 𝑏𝑐 is the width of the connected leg, 𝑏𝑑 the width of the non-connected leg, 𝐿 the length 

of connection in longitudinal direction, 𝐴𝑛𝑡 the net area of the cross-section, 𝐹𝑢 the tensile 

strength of the steel material and 𝑥̅ the eccentricity from shear plane to centroid of the cross-

section.  

In Europe, the European Committee for Standardization (CEN, Comité Européen de 

Normalisation, in French) established EN 1993-1-8:2005 (CEN, 2005a), that presents three 

equations for BSA with one line of bolts, for respectively 1, 2 and 3 bolts: 

𝑃𝑛𝑡 = {

2(𝑒2 − 0.5𝑑ℎ)𝑡𝐹𝑢,           𝑖𝑓 1 𝑏𝑜𝑙𝑡

𝛽2𝐴𝑛𝑡𝐹𝑢,                              𝑖𝑓 2 𝑏𝑜𝑙𝑡𝑠

𝛽3𝐴𝑛𝑡𝐹𝑢,                              𝑖𝑓 3 𝑏𝑜𝑙𝑡𝑠

  (2.32) 

and, in EN 1993-1-1:2005 (CEN, 2005b), one equation for two lines of bolts: 

𝑃𝑛𝑡 = 0.9𝐴𝑛𝑡𝐹𝑢 (2.33) 

where 𝑡 is the thickness of SBA’s section, 𝑑ℎ the hole diameter for the bolts, 𝑒2 the distance 

from center of the hole to the edge of the SBA in transverse direction and β2 and β3 are 

reduction factors, (not factors of safety) dependent on 𝑝1, the longitudinal distance between two 

consecutive bolts center to center, that follow values in Table 2.1. For 2.5𝑑ℎ < 𝑝1 < 5.0𝑑ℎ, β2 

and β3 may be determined by linear interpolation. Also, for unequal angles connected by its 

smaller leg, 𝐴𝑛𝑡 should be taken as the net section area of an equivalent equal-leg angle of size 

equal to that of the smaller leg. 
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Table 2.1. Values of reduction factors 𝛽2 and 𝛽3 

Pitch p1 ≤ 2.5 d0 ≥ 5.0 d0 

β2 (2 bolts) 0.4 0.7 

β3 (3 bolts) 0.5 0.7 

Paula et al. (2008), based on past experiments reported in the literature (YIP; CHENG, 2000; 

MAIOLA, 2004), stated that the equation proposed by LaBoube and Yu (1995), given by 

𝑃𝑛𝑡 = (1 − 1.20
𝑥̅

𝐿
) 𝐴𝑛𝑡𝐹𝑢 (2.34) 

could be modified for a better representation of the shear lag phenomenon. Also, the authors 

doubted that the simple equation could describe accurately a complex phenomenon like shear 

lag, without considering SBA section’s thickness, legs’ widths or bolt diameter. Motivated by 

this, they proposed the following equation 

𝑃𝑛𝑡 = (1.19 − 0.26
𝑥̅

𝐿
−

0.63(𝑏𝑐 − 𝑛𝑏𝑑ℎ) + 0.17𝑏𝑑 − 0.47𝑑 − 1.7𝑡

𝑏𝑐
) 𝐴𝑛𝑡𝐹𝑢 (2.35) 

where 𝑛𝑏 is the number of bolts present in the cross-section, that is, the number of bolt lines, 

𝑑ℎ, as said before, is the hole diameter, and 𝑑 is the nominal bolt diameter. 

Teh and Gilbert (2013a), based on their own research on net section tension capacity of cold-

reduced sheet steel channel braces bolted at the web (TEH; GILBERT, 2013b), adapted their 

proposed equation for channels to be used on angles, resulting in an equation of similar format 

to the actual equation presented by AISI Standards and given by 

𝑃𝑛𝑡 = (
1

1.1 +
𝑏𝑑

𝑏𝑐 + 𝑏𝑑
+

𝑥̅
𝐿

) 𝐴𝑛𝑡𝐹𝑢 (2.36) 

The authors stated that the equation takes into account in-plane and out-of-plane shear lag 

effects, detrimental bending moment effect caused by the connection eccentricity and 

counteracting bending moment effect. Moreover, they stated that the equation is simples, 

continuous and transparent, showing no artificial lower or upper bound values for the efficiency 
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reduction factor that go along 𝐴𝑛𝑡𝐹𝑢. 

Fleitas et al. (2020) performed a parametric study based on finite element models implemented 

in ABAQUS software, considering geometric nonlinearity, contact between different parts and 

material nonlinearity. They investigated individually the relation of 𝑥̅, 𝑦̅, 𝐿 and 𝐿𝑡 with the 

efficiency factor of the net section resistance of BSA under tension. The authors verified that 

there was a linear relationship between them. Additionally, they investigated the relation of the 

ratios 𝑥̅/𝐿, 𝑦̅/𝐿, 𝑥̅/𝐿𝑡 and 𝑦̅/𝐿𝑡 with the mentioned factor and observed a quasi-linear relation. 

Based on these results, they performed regression analysis on the studied data and proposed an 

equation with two sets of coefficients, 0.9, 0.2, 0.1, 0.26 and 0.05 for one bolt lines and 0.9, 

0.025, 0.2, 0.3 and 0.15 for two bolt lines, given by 

𝑃𝑛𝑡 = (𝑘0 − 𝑘1

𝑥̅

𝐿
− 𝑘2

𝑥̅

𝐿𝑡
− 𝑘3

𝑦̅

𝐿
− 𝑘4

𝑦̅

𝐿𝑡
) 𝐴𝑛𝑡𝐹𝑢 (2.37) 

where 𝐿𝑡 is the distance from bolts in transverse direction center to center or, in case of only 

one bolt, it is equal to the nominal bolt diameter 𝑑. 

2.2.3. Temperature variation in concrete pavements 

Based on heat transfer theory and assuming that the surface could reach an equilibrium state, 

the calculation of net rate of heat flow to and from a body, 𝑞𝑛𝑒𝑡, can be calculated from 

𝑞𝑛𝑒𝑡 = 𝑞𝑠 + 𝑞𝑎 ± 𝑞𝑐 ± 𝑞𝑘 − 𝑞𝑟 (2.38) 

where 𝑞𝑠 is the energy absorbed from direct solar radiation, 𝑞𝑎 the energy absorbed from diffuse 

radiation, 𝑞𝑐 the energy transferred to or from the body due to convection, 𝑞𝑘 energy transferred 

to or from the body due to conduction, and 𝑞𝑟 energy emitted from body through outgoing 

radiation. The terms 𝑞𝑐 and 𝑞𝑘 were assumed to be negative because of the general warm 

climate of Brasília and Brazil in general, thus the pavement surface temperature tends to be 

higher than at other depths. The result in the following equation 

𝑞𝑛𝑒𝑡 = 𝑞𝑠 + 𝑞𝑎 − 𝑞𝑐 − 𝑞𝑘 − 𝑞𝑟 (2.39) 

Energy absorbed from direct solar radiation, 𝑞𝑠, can be calculated as 
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𝑞𝑠 = 𝛼𝑎𝑅0𝜏𝑎
1/ cos 𝑧 cos 𝑖 

2.40(a-b) 
cos 𝑧 = sin 𝜙𝑙 sin 𝛿𝑠 + cos 𝛿𝑠 cos ℎ cos 𝜙𝑙 

where 𝛼𝑎 is the surface absorptivity, 𝑅0 the solar constant, 𝜏𝑎 the transmission coefficient for 

unit air mass, 𝑧 the zenith angle, 𝑖 the angle between the normal to the surface and the direction 

of radiation, 𝜙𝑙 the latitude, 𝛿𝑠 the solar declination, and ℎ the hour angle. In horizontal surfaces, 

cos 𝑖 = cos 𝜙𝑙. 

Atmospheric radiation absorbed by the pavement surface, 𝑞𝑎, was calculated through an 

empirical formula developed by Geiger (1959) and reported by Dempsey (1970) given by 

𝑞𝑎 = 𝜀𝑎𝜎0𝑇𝑎𝑖𝑟
4 

2.41(a-b) 
𝜀𝑎 = 𝐺 − 𝐽(10−𝜌𝑃) 

where 𝐺, 𝐽, and 𝑃 are constant values of respectively 0.77, 0.82, and 0.0074, according to Geiger 

(1959), 𝜎0 is the Stefan-Boltzman constant, 𝑇𝑎𝑖𝑟 the air temperature, and 𝜌 the vapor pressure 

varying between 1 and 10 mm of mercury. 

The conduction rate of heat flow from the pavement surface down, 𝑞𝑘, was approximately 

calculated as 

𝑞𝑘 = −𝑘𝑐

𝑇𝑑 − 𝑇𝑠𝑢𝑟𝑓

ℎ𝑑
  (2.42) 

where 𝑘𝑐 is the thermal conductivity, ℎ𝑑 the depth, 𝑇𝑑 the temperature at depth ℎ𝑑, and 𝑇𝑠𝑢𝑟𝑓 

the surface temperature. The rate at which the surface emits radiation, 𝑞𝑟, is given by 

𝑞𝑟 = 𝜀𝜎𝑇𝑠𝑢𝑟𝑓
4 (2.43) 

where 𝜀 is the emissivity. The rate of heat flow by convection to the surrounding air, 𝑞𝑐, is 

given by 

𝑞𝑐 = ℎ𝑐(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑎𝑖𝑟) (2.44) 
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where ℎ𝑐 is the surface coefficient of heat transfer, which depends on geometry of the surface, 

wind velocity, and physical properties of the air. 

Considering an equilibrium state, the net rate of heat flow, 𝑞𝑛𝑒𝑡, is equal to zero. So, getting all 

the mentioned equations together, the equilibrium temperature can be obtained by 

𝑅0𝛼𝑎𝜏𝑎

1
cos 𝑧 cos 𝑧 + 𝜀𝑎𝜎0𝑇𝑎𝑖𝑟

4 − ℎ𝑐(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑎𝑖𝑟) −
kc

ℎ𝑑
(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑑) − 𝜀𝜎0𝑇𝑠𝑢𝑟𝑓

4 = 0 

2.45(a-c) cos 𝑧 = sin 𝜙𝑙 sin 𝛿𝑠 + cos 𝛿𝑠 cos ℎ cos 𝜙𝑙 

ℎ𝑐 = 698.24 [0.00144Tm
0.3U0.7 + 0.00097(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑎𝑖𝑟)

0.3
] 

where 𝑇𝑚 is the average of the surface temperature 𝑇𝑠𝑢𝑟𝑓 and air temperature 𝑇𝑎𝑖𝑟 in ºK, and 𝑈 

the average daily wind velocity in m/s. Equation 2.45(c) is an empirical formula developed by 

Vehrencamp (1953) and reported by Dempsey (1970).   
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3. METHODOLOGY 

The present chapter describes all of the methodology related to Machine Learning modeling 

done in this thesis. First, it explains baseline models and, then, explains the implemented 

SOFAH algorithm. 

All programming activities were executed by the author of the present document in Python 

3.12.0, developing in-house code with assist of some libraries: 

• Matplotlib and seaborn for plotting and data visualization; 

• Pandas and NumPy for data manipulation and analysis 

• Scikit-learn for inputs normalization, training-validation-test splitting and performance 

measurement; 

• Scikit-optimize for hyperparameters tuning and optimization; 

• Joblib for parallelization; 

• Finally, PyTorch for all activities related to ANN modeling, some of them are weights 

initialization, training, validation, testing, construction of neural network architecture, 

implementation of regularization techniques, etc. 

The general methodology adopted for each engineering problem analyzed is very similar, 

Figure 3.1 shows an example using the Steel Bolted Angles (SBA) problem. Initially, the 

importance of the engineering problem is evaluated, as, in the example, SBAs are commonly 

connected by only one leg in transmission and communication towers. Then, a dataset is 

gathered, being it composed of numerical or experimental data. An ANN model is developed 

based on the collected data, resulting in a predictive model. The performance of these models 

and the importance of each feature used are measured, providing error quantification and 

information on most relevant features for prediction of the output. 
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Figure 3.1. General steps of adopted methodology 

 

3.1. BASELINE MODELS 

In this section, many specific details of the baseline methodology of ML modeling are 

explained. The general steps are shown in Figure 3.2, where initially a dataset is gathered, data 

exploration is performed and the possibility of feature selection is investigated. These data-

related steps are iterative, as mentioned in section 2.2.1, because of the impact of high-quality 

and abundant data in ML modeling. After the establishment of a good database, model training 

stage is initiated, starting with the definition of the loss function, the optimizer for model’s 

parameters and method of parameter initialization. Then, cross-validation is used in 

hyperparameters optimization phase, while the model is trained in multiple folds (k-fold cross-

validation was used). Regularization techniques are fundamental to avoid overfitting in model 

training. With the trained model, is final performance is measured on unseen instances, that is, 

on the test set. This performance analyses always come accompanied of graphical and residuals 

analyses, while also evaluating feature importance. This described methodology, in its 

development phase can be seen as iterative, because, if accuracy is not satisfactory, many 

variables can be modified and the entire methodology repeated to provide a better final model. 
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Figure 3.2. General steps of the baseline methodology for ML modeling 

 

The data was fed through a feedforward fully connected Artificial Neural Network (ANN), also 

known as a Multilayer Perceptron (MLP) architecture. The input layer and every hidden layer 

of the MLP were built sequentially with a linear transformation (applying weights and biases), 

a batch normalization layer and, a ReLU (Rectified Linear Unit) activation function. In reason 

of this choice of activation function, initialization of linear layers weights was done with 

Kaiming He Initialization, while biases were initialized to zero. In batch normalization layers, 

weights were initialized to ones and biases to zeros. Training was performed with AMSGrad 

variant of the Adam optimizer until convergence. 

The criteria of convergence were both maximum number of epochs and patience number of 

epochs in early stopping technique. For most of the datasets used, bolted steel angles, yacht 

hydrodynamics and energy efficiency, all models defined 10,000 as the maximum number of 

epochs and 200 as patience. For concrete pavement temperature, since it is a much larger 

dataset, maximum of epochs was established as 300 in HPO and 1000 in training, and patience 

as 20. These high values of maximum epochs were used to guarantee convergence during 

training, since the implementation of early stopping prevented overfitting and stopped training 

much before the established maximum of epochs. 
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In concrete pavement temperature dataset, the mentioned choice of smaller values of epochs 

was due to batch size. In their models, batch size of 256 and 512 were used and, since they are 

composed of thousands of instances, a large number of weight updates was performed in each 

epoch. This means that, in these models, a smaller number of epochs was needed for 

convergence. In the rest of the datasets, because of their small number of instances, batch size 

was set as the number of instances in the training set of cross-validation. Since all models used 

5-fold cross-validation, this number is equal to 80% of the whole training set size. 

Bayesian Optimization (BO) was used to optimize hyperparameters listed in Table 3.1 with 

their respective search space in all developed models. The technique was implemented with 

parallelization, where each iteration of the algorithm used 2 CPU cores, each with 2 processes, 

to evaluate 4 different points of the search space simultaneously. The 12 first points, that is, the 

3 first iterations, are chosen randomly, and only after that the objective function is approximated 

with Gaussian Processes and new points are chosen based on the acquisition function Expected 

Improvement (EI). For this parallelization of BO algorithm, a multi-point EI with constant liar 

min strategy was implemented (CHEVALIER and GINSBOURGER, 2012). 

The algorithm was programmed to perform 50 iterations, that is, evaluate 200 points, or stop 

early if the criterion of convergence was met, no new point of minimum in 50 consecutive 

points evaluated. The objective function used was the mean of the Mean Squared Errors (MSE) 

of the 5 validation folds. 

Table 3.1. Optimized hyperparameters and respective search space 

Hyperparameter Range 

Learning rate (α) [10-4, 10-1] 

Weight decay (λ) [10-9, 1] 

Hidden layers [1, 4] 

Neurons in each hidden layer [10, 1000] 

Parallelization was also implemented for model training and inference on GPU with PyTorch’s 

support to CUDA, a parallel computing platform and programming model created by NVIDIA 

that allows for straightforward GPU-accelerated data-driven modeling. All models of the 

smaller datasets were trained on present author’s personal computer equipped with a NVIDIA 

GeForce MX110 of only 2 GB of dedicated memory. Models of the pavement temperature 
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dataset were trained on a high-performance computer of the Laboratory of Computational 

Methods and Artificial Intelligence located at the Postgraduate Program on Structures and Civil 

Construction at the University of Brasília, equipped with a NVIDIA GeForce RTX 4060 Ti of 

16 GB of dedicated memory. 

When performing k-fold cross-validation with early stop, each fold will have its training 

stopped at a different number of epochs, so, after performing hyperparameters optimization, if 

the whole training set is being used and there is no validation set, it is not intuitive at how many 

epochs training should be stopped. Motivated by this problem, all models developed in this 

work act like an ensemble of 5 models, using the training and validation sets of each fold of the 

cross-validation. So that, training is stopped based on each validation set and inference is 

performed calculating the mean of predictions given by each model. 

 

3.2. SIMULTANEOUS OPTIMIZATION OF FEATURE AUGMENTATION AND 

HYPERPARAMETERS (SOFAH) 

Simultaneous Optimization of Feature Augmentation and Hyperparameters (SOFAH) is an 

algorithm proposed by the author of the current thesis that addresses both Feature Selection 

(FS) and Hyperparameter Optimization (HPO) problems concurrently. SOFAH aims to reliably 

and automatically select either the optimal subset of features or a subset of very similar 

performance. As many Feature Selection algorithms are exhaustive, performing a large amount 

of evaluations in search of the optimal subset configuration, SOFAH uses BO, an optimization 

technique known for being good at evaluating expensive black box functions in carefully 

selected points (NGUYEN, 2019). 

There is a lack of studies that apply BO in FS problems, although a very recent one showed 

promising results (YANG; LIU; WEN, 2024). There are indications in the literature that BO is 

best-suited for optimization over continuous domains of at most 20 dimensions (FRAZIER, 

2018; NGUYEN, 2019), but, also, there is a very recent published research that ventured on 

high-dimensional spaces and obtained good results (GÖRMEZ, 2024). Furthermore, this 

problem of the high dimensionality was ignored because SOFAH algorithm do not aim to 

necessary obtain an optimal solution, as a close-to-optimal solution suffices. 
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The idea of using Bayesian Optimization to perform Feature Selection is not new. However, 

performing feature generation to augment the feature space and then applying BO to 

concurrently address HPO and FS could not be found in any other published research until the 

present moment. 

The steps of the algorithm consist in initially performing feature generation, this is done with 

square, cube, inverse and logarithm transforms and also performing multiplication between two 

variables (Figure 3.3). Features that present zeros are excluded from inverse and logarithm 

transforms. After this step, an augmented feature space of added information was formed. Then, 

when optimizing the hyperparameters described in the previous section, 3.1, a large number of 

dimensions is added to the search space, being the first one the number of features and each one 

of the others a feature. This means that the algorithm finds the optimal number of features and 

also which features these will be. 

 
Figure 3.3. Illustration of feature augmentation in SOFAH algorithm 

Observing Figure 3.2, shown in the previous section, 3.1, it can be said that SOFAH is a simple 

algorithm, since it only increases the dimensions of the feature space and of the search space in 

HPO phase, that has added dimensions to search for optimal number of inputs and optimal 

inputs. All the other steps of ML modeling baseline methodology are kept unchanged in the 

proposed algorithm. Still regarding to the mentioned figure, FS and HPO steps can be seen in 

the baseline methodology steps. FS step consisted of performing manual feature engineering 

based on data exploration results, while in SOFAH, FS is an automated process based on a 

powerful optimization technique. 

Let the hyperparameters search space 𝑆𝐻𝑃 be 
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𝑆𝐻𝑃 = {∝, 𝜆, 𝑛𝑙𝑎𝑦𝑒𝑟𝑠, 𝑛𝑛
1 , 𝑛𝑛

2 , 𝑛𝑛
3 , 𝑛𝑛

4} (3.1) 

where 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 is the number of hidden layers, and 𝑛𝑛
1  to 𝑛𝑛

4  are the number of neurons in each 

layer. Now, let the search space 𝑆𝑜𝑟𝑖𝑔 of original features 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 be 

𝑆𝑜𝑟𝑖𝑔 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} (3.2) 

The augmented feature search space 𝑆𝐹𝑆 can be defined as a union between 𝑆𝑜𝑟𝑖𝑔 and every set 

of transformation performed on the original features, that is, 

𝑆𝐹𝑆 = 𝑆𝑜𝑟𝑖𝑔 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆−1 ∪ 𝑆𝑙𝑜𝑔 ∪ 𝑆𝑚𝑢𝑙   (3.3) 

where 𝑆2 is the set of square transformation, 𝑆3 the set of cube transformation, 𝑆−1 the set of 

inverses, 𝑆𝑙𝑜𝑔 the set of logarithm transformation, and 𝑆𝑚𝑢𝑙 the set of multiplications between 

two original variables. Finally, the search space of SOFAH methodology 𝑆𝑠𝑒𝑎𝑟𝑐ℎ is defined as  

𝑆𝑠𝑒𝑎𝑟𝑐ℎ = 𝑆𝐹𝑆 ∪ 𝑆𝐻𝑃  (3.4) 

Representing the SOFAH algorithm in a pseudocode, in Figure 3.4, it can be seen that it is very 

similar to the presented pseudocode for BO, the main difference is the mentioned 

implementation of parallelization and the different search space. As mentioned, the 

methodology was implemented with N_ITERS = 50 iterations, each evaluating N_POINTS = 4 

points in parallel and with PATIENCE = 50. Also, the 𝑟𝑎𝑛𝑑𝑜𝑚 function now samples 

randomly multiple points, because of the parallelization. As stated, the main difference from 

baseline methodology is the search space composed of many dimensions related to optimal 

features. Also, the vector of initial points 𝒙𝟎 include these extra dimensions. The exponent 𝑗 

represents an instance of 𝒙𝒊 or 𝒚𝒊 vectors. 
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Figure 3.4. Pseudocode of SOFAH algorithm 

Note that 𝑆𝐹𝑆 has many more dimensions than 𝑆𝐻𝑃, so, to counter a possible loss in accuracy 

due to very high-dimensional search space in HPO, another version of the SOFAH algorithm 

was proposed, named SOFAH2. This second version adds a second step to standard SOFAH, 

where an additional HPO phase is performed but with none of the added dimensions related to 

optimal feature selection. This two-step version of the algorithm allows for finer tuning of the 

hyperparameters, performing a second search but now in low-dimensional space. It is important 

inputs: 𝑆𝑠𝑒𝑎𝑟𝑐 ℎ , 𝒙𝟎, N_ITERS, PATIENCE, N_POINTS 

functions: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥𝑖
𝑗
), 𝑟𝑎𝑛𝑑𝑜𝑚(𝑆, 𝑛), 𝑎𝑐𝑞_𝑓𝑢𝑛𝑐(𝑥), 𝐺𝑃(𝑥, 𝑦) 

LOSS_MIN = ∞  

𝑥, 𝑦 = 𝑙𝑖𝑠𝑡(), 𝑙𝑖𝑠𝑡() 

for 𝑖 = 0: N_ITERS − 1: 

      for 𝑗 = 1: N_POINTS: 

            𝑦𝑖
𝑗

= 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥𝑖
𝑗
) 

            𝑥, 𝑦 = 𝑥. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥𝑖
𝑗
), 𝑦. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑦𝑖

𝑗
) 

      if min(𝑦𝑖) < LOSS_MIN: 

            LOSS_MIN = 𝑦𝑖
j
, where 𝑗 is the point where 𝑦𝑖

j
= min(𝑦𝑖) 

            𝑥_𝑚𝑖𝑛 = 𝑥𝑖
𝑗
, where 𝑗 is the point where 𝑦𝑖

j
= min(𝑦𝑖) 

            TOL = PATIENCE 

      else: 

            TOL = TOL − N_POINTS  

            if TOL = 0: 

                  break 

      if 𝑖 < 10: 

            𝑥𝑖+1 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑆𝑠𝑒𝑎𝑟𝑐 ℎ , N_POINTS)  

      else: 

            𝐺𝑃(𝑥, 𝑦) 

            𝑥𝑖+1 = argmax 𝑎𝑐𝑞_𝑓𝑢𝑛𝑐(𝑥)  

return 𝑥_𝑚𝑖𝑛 
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to point that in this second step, the inputs being used are the optimal ones, found by the 

optimization of step one. Also, the hyperparameters found as optimal in step one are used as an 

initial point for BO in step two. 

The added amount of computational resources used in SOFAH2, that requires first executing 

SOFAH, should achieve greater accuracy than SOFAH to be viable. But, in general, the 

computational cost of SOFAH and SOFAH2 is highly dependent on the number of iterations 

performed by the BO until convergence. It is not possible to affirm beforehand if it takes more 

time than the baseline methodology. 

In the present work, in every use of SOFAH and SOFAH2, the optimal number of features was 

searched from 1 to the total number of features (after augmentation). Furthermore, one of the 

initial points was always, in part, chosen deterministically, as the hyperparameters were still 

random but features-related dimensions were fixed. The number of optimal features was always 

initiated as half of the total number of features and the optimal inputs initiated as the most 

correlated features with the output. Finally, all other phases of the methodology for ML 

modeling were done exactly the same as described in the baseline methodology, in previous 

section, 3.1. 
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4. UC IRVINE REPOSITORY DATASETS 

For further comparison between baseline model methodology and Simultaneous Optimization 

of Feature Augmentation and Hyperparameters (SOFAH) algorithm, some publicly available 

datasets were used as real-world benchmarks. These datasets can be downloaded for free at the 

UC (University of California) Irvine Machine Learning Repository site (KELLY; 

LONGJOHN; NOTTINGHAM, n.d.). An advantage of using these public datasets is that other 

researchers already implemented a wide range of algorithm on them, thus providing results to 

be compared with the ones obtained in the present research. 

4.1. YACHT HYDRODYNAMICS 

The Yacht Hydrodynamics (YAH) dataset (GERRITSMA; ONNINK; VERSLUIS, 1981) 

consists of 308 instances of results of full-scale experiments performed on ships with 22 

different hull forms at the Delft Ship Hydromechanics Laboratory. It presents 7 variables, all 

dimensionless, the inputs concern the Froude number and 5 hull geometry coefficients, and the 

output the of residuary resistance per unit weight of displacement, as shown in Table 4.1. 

Table 4.1. Variables in yacht hydrodynamics dataset 

Variable Description 

𝐶𝑃 Longitudinal position of the center of buoyancy 

𝑃𝐶 Prismatic coefficient 

𝐿/𝑑 Length-displacement ratio 

𝐵/𝑑 Beam-draught ratio 

𝐿/𝑏 Length-beam ratio 

𝐹 Froude number 

𝑅𝑅 Residuary resistance per unit weight of displacement 

The residuary resistance, 𝑅𝑅, of sailing yachts at the initial design stage is very valuable for 

evaluating ship’s performance and for estimating the required propulsive power. As affirmed 

by Rawson and Tupper (2001), it consists of wave-making resistance, form resistance, eddy 

resistance and frictional form resistance, and is given by 

𝑅𝑅 = 𝑅𝑇 − 𝑅𝐹 (4.1) 

where 𝑅𝑇 is the total resistance and 𝑅𝐹 the frictional resistance of an equivalent flat plate. 



48 

 

Three ML-based models were trained for YAH dataset, using all the 7 variables and, 

respectively, with baseline methodology, single-step SOFAH algorithm and two-step SOFAH 

(SOFAH2). Training-test split remained the same as in the other chapters of the current study 

80% for training (246 instances) and 20% for test (62 instances). Some regression evaluation 

metrics for training and test sets are shown in Table 4.2, Mean Absolute Error (MAE), RMSE, 

R², MAPE and Standard Deviation of Absolute Percentage Error (SDAPE). 

Table 4.2. Regression evaluation metrics of YAH dataset 

Performance metrics 𝐌𝐘𝐀𝐇 𝐌𝐘𝐀𝐇
𝐒𝐎𝐅𝐀𝐇 𝐌𝐘𝐀𝐇

𝐒𝐎𝐅𝐀𝐇𝟐 

MAE - Training 0.120 0.118 0.135 

MAE - Test 0.211 0.267 0.231 

RMSE - Training 0.182 0.179 0.174 

RMSE - Test 0.533 0.540 0.479 

R² - Training 1.000 1.000 1.000 

R² - Test 0.998 0.998 0.998 

MAPE - Training 23.97% 9.37% 33.82% 

SDAPE - Training 163.94% 49.92% 205.37% 

MAPE - Test 39.26% 28.38% 54.25% 

SDAPE - Test 127.77% 83.45% 164.18% 

As observed, all the developed models presented outstanding performance, with R² of 0.998 on 

test set. Following the successive order of MYAH, MYAH
SOFAH and MYAH

SOFAH2, RMSE always went 

down in training set, as in test set it went up in MYAH
SOFAH but down in MYAH

SOFAH2. R² stayed the 

same, but only because of its already extremely good value close to its upper bound of 1.000. 

MAPE metric presented bad results, but SDAPE is also very high, indicating that there is high 

dispersion and possibly just a few points of high APE. Despite being widely used, MAPE is 

biased towards low predictions and cannot be used with zero or close-to-zero values. Based on 

exploratory analysis, the minimum value of the response variable is 0.01, its first quartile is 

0.78 and its skewness is 1.76, thus presenting a considerable amount of close-to-zero values. 

MAE is only shown for comparison purposes, with results from other authors. 

From these results, single-step SOFAH algorithm did not improve error metric RMSE when 

compared to MYAH, however, SOFAH2 was able to improve the already excellent model MYAH, 
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proving that the algorithm is capable of achieving high performance in regression problems. 

Predictions of model MYAH
SOFAH2 are shown in Figure 4.1 and Figure 4.2, compared to observed 

values, residuals and relative residuals. In Figure 4.1, it is clear that the variable is very right 

skewed and that there is an almost perfect fit to both training and test sets. Based on Figure 4.2 

a), there is only point that, compared to the others, show high residual. Based on Figure 4.2 b), 

outliers of very high positive relative residuals can be seen all in close-to-zero values, 

reaffirming the reason for bad MAPE metrics in the highly accurate developed models. 

 
Figure 4.1. Predicted vs. observed plot for training and test for model MYAH

SOFAH2 
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Figure 4.2. Model MYAH

SOFAH2 on test set predictions and: a) Residuals; b) Relative residuals 

 

Fan et al. (2019) presented a Two-Layer Wang-Mendel (TL-WM) fuzzy approach to improve 

the traditional Wang-Mendel (WM) model (WANG L. X., 2003). The WM model is a widely 

used fuzzy system due to its simplicity, high interpretability and efficiency in extracting fuzzy 

rules from numerical data (FAN et al., 2019). Fan et al. (2019) used the YAH dataset to compare 

performance of its proposed TL-WM model with eight other algorithms: three well known ML 

techniques, Random Forest, Artificial Neural Network and Support Vector Machine; traditional 

WM model; improved WM based on Fuzzy C-Means (GOU et al., 2015); improved WM based 

on Fast Search and Find of Density Peaks clustering algorithm and sample correlation (GOU et 

al, 2016); reduced weighted WM (FAN et al., 2016); and fuzzy model identification based on 

fuzzy-rule clustering (FAN et al., 2017). 

Mukhoti et al. (2018) published a study on the importance of strong baselines, exposing that 

the common experimental procedure in ML of benchmarking proposed models against 

baselines is flawed when the identical experimental setups of proposed models are not used in 

the baselines. The authors use many UCI datasets (KELLY; LONGJOHN; NOTTINGHAM, 

n.d.) to compare results from: 3 settings of Neural Networks with Monte Carlo dropout (GAL; 

GHAHRAMANI, 2016); Bayesian neural networks using Variational Matrix Gaussian 

posteriors (LOUIZOS; WELLING, 2016); Bayesian networks with horseshoe priors (GHOSH; 

DOSHI-VELEZ, 2017); and probabilistic backpropagation with the Matrix Variate Gaussian 
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distribution (SUN; CHEN; CARIN, 2017). 

Between all the 9 mentioned models from Fan et al. (2019), the best performing one was TL-

WM, showing MAE of 1.363 and RMSE of 2.783. The second-best MAE value was of 1.931 

and second best RMSE was 3.520. Regarding all 6 models from Mukhoti et al. (2018), the best 

performance was shown in one of the settings of Neural Network with Monte Carlo dropout, 

where it was achieved a RMSE of 0.67 +/- 0.05, and the second best was another one of these 

settings, achieving RMSE of 0.70 +/- 0.05. These values are all higher than the ones obtained 

by the 3 models developed in the current research, MYAH, MYAH
SOFAH and MYAH

SOFAH2, as a graphical 

comparison between them is shown in Figure 4.3. 

 

 
Figure 4.3. Comparison with results of other authors in YAH dataset 

 

4.2. ENERGY EFFICIENCY 

The energy efficiency (ENEFF) dataset (TSANAS; XIFARA, 2012a) consists of 12 distinct 

building shapes simulated in Autodesk Ecotect Analysis, a sustainable design software analysis 

software that was discontinued by Autodesk, not allowing the acquisition of new licenses since 

March 2015 due to the integration of energy efficiency and high-performance design tools into 

the known Revit product family (AUTODESK SUPPORT, 2023). ENEFF general theme is the 
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design of energy-efficient buildings with improved energy conservation properties (TSANAS; 

XIFARA, 2012b). 

According to the Building Technologies Program of the United States Department of Energy 

(BURDICK, 2011), HL and CL are the measure of energy needed to be added or removed from 

a space by the heating, ventilation and air conditioning system in order to achieve the desired 

level of comfort. The value of these two variables dictate equipment selection and duct design, 

while also influencing costs, operating energy efficiency, occupant comfort, indoor air quality 

and building durability. 

The dataset is composed of 768 instances and 10 variables, being 8 intended to be used as inputs 

to predict 2 outputs, Heating Load (HL) and Cooling Load (CL). The description of all variables 

is shown in Table 4.3. 

Table 4.3. Variables in energy efficiency dataset 

Variable Description 

𝑅𝐶 Relative compactness 

𝑆𝐴 Surface area 

𝑊𝐴 Wall area 

𝑅𝐴 Roof area 

𝑂𝐻 Overall height 

𝐺𝐴 Glazing area 

𝑂 Orientation 

𝐺𝐴 Glazing area distribution 

HL Heating load 

CL Cooling load 

 

All the developed models for ENEFF used all the 8 inputs available and 1 output. A total of 6 

models were trained, 3 for each one of the 2 outputs, HL or CL, being one with baseline 

methodology and the other two with SOFAH and SOFAH2 respectively. Performance 

evaluation metrics are shown in Table 4.4, for models that predict HL, and in Table 4.5, for 

models that predict CL. 
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Table 4.4. Regression evaluation metrics for HL of ENEFF dataset 

Performance metrics 𝐌𝐇𝐋 𝐌𝐇𝐋
𝐒𝐎𝐅𝐀𝐇 𝐌𝐇𝐋

𝐒𝐎𝐅𝐀𝐇𝟐 

RMSE - Training 0.328 0.264 0.264 

RMSE - Test 0.454 0.433 0.433 

R² - Training 0.999 0.999 0.999 

R² - Test 0.998 0.998 0.998 

MAPE - Training 1.18% 0.91% 0.91% 

SDAPE - Training 1.20% 0.98% 0.98% 

MAPE - Test 1.61% 1.50% 1.50% 

SDAPE – Test 1.38% 1.34% 1.34% 

 

Table 4.5. Regression evaluation metrics for CL of ENEFF dataset 

Performance metrics 𝐌𝐂𝐋 𝐌𝐂𝐋
𝐒𝐎𝐅𝐀𝐇 𝐌𝐂𝐋

𝐒𝐎𝐅𝐀𝐇𝟐 

RMSE - Training 0.273 0.270 0.216 

RMSE - Test 0.787 0.743 0.748 

R² - Training 0.999 0.999 0.999 

R² - Test 0.993 0.994 0.994 

MAPE - Training 0.82% 0.95% 0.72% 

SDAPE - Training 0.76% 0.91% 0.73% 

MAPE - Test 1.96% 1.96% 1.90% 

SDAPE – Test 1.83% 1.73% 1.71% 

 

As observed, all the developed models presented outstanding performance, with R² greater than 

0.990 on test set. Following the successive order of baseline model, SOFAH-based model and 

SOFAH2-based model, RMSE always went down or stayed the same in training and test set for 

HL, and varied for CL, achieving minimum in MCL
SOFAH. Models MHL

SOFAH and MHL
SOFAH2 showed 

the same metrics because their set of optimal hyperparameters were the same. R² stayed the 

same or increased in test set. MAPE metric and SDAPE always went down, indicating lower 

and less dispersed percentage errors. 
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From these results, single-step and two-step SOFAH algorithm improved all error metrics when 

compared to baselines MHL and MCL, proving again that the algorithm is capable of achieving 

high performance in regression problems, with even better metrics than the baseline 

methodology. 

Predictions of models MHL
SOFAH and MCL

SOFAH are shown in Figure 4.4, compared to observed 

values on training and test sets and with margins of error of +/- 10%. It is clear that the models 

showed an almost perfect fit to both training and test sets, with only a few points of noticeable 

prediction error. 

 
Figure 4.4. Predicted vs. observed values of training and test for: a) MHL

SOFAH; b) MCL
SOFAH 

 

Žegklitz and Pošík (2017) performed a systematic comparison between symbolic regression 

and machine learning algorithms on common sets of problems, including ENEFF. The authors, 

like the present thesis, analyzed separately HL and CL outputs. The investigated algorithms 

were: Linear Regression, Support Vector Machine Regression, Random Forest, Fast Function 

Extraction (MCCONAGHY, 2011), Evolutionary Feature Synthesis (ARNALDO; O’REILLY; 

VEERAMACHANENI, 2015), and Multi-Gene Genetic Programming (HINCHLIFFE et al., 

1996). 

The authors found that, among all these algorithms Support Vector Machine Regression 
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provided the best RMSE value for CL, 1.278, and RF the best RMSE for HL, 0.510. The second-

best value of RMSE for CL was 1.633 and for HL was 0.546. In the previous section, 4.1, the 

study of Mukhoti et al. (2018) was already mentioned and, as it used a lot of datasets, they used 

ENEFF, but only for predictions on HL. The best performing analyzed model achieved RMSE 

of 0.45 +/- 0.01, and the second-best RMSE of 0.54 +/- 0.02. These values are all higher than 

the ones obtained by the 6 models developed in the current research, as can be seen in Figure 

4.5. The CL models showed a considerable difference, but the HL models presented very 

similar performance with the developed ML models in the present work. 

 

 
Figure 4.5. Comparison with results of other authors in ENEFF dataset 
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5. COLD-FORMED STEEL BOLTED ANGLE CONNECTIONS UNDER AXIAL 

TENSION 

The manufacture of iron by ancient civilizations began thousands of years before Christ, used 

by civilizations in Egypt. However, the use of iron on an industrial scale only occurred in the 

19th century, with the advent of the first industrial revolution, especially due to the need of 

buildings with large spans, warehouses, bridges and railways (PAULA, J. H. M., 2021). 

Primarily consisting of iron and carbon, steel is one of the main structural materials in civil 

engineering. The material shows many advantages over reinforced concrete, such as low 

structural weight, high precision and technological quality control, reduced construction site, 

large spans, flexibility for adaptations and possibility of different shapes, generating greater 

freedom in architectural projects (FONTES, 2020). 

Steel, for structural use, can take on different forms, such as sheets, bars and rolled profiles, all 

manufactured in rolling mills, devices that shape the steel according to the desired cross-section 

(PFEIL; PFEIL, 2019). A type of steel is cold-formed steel, a material manufactured by 

bending, rolling or pressing steel, achieving light weight, high strength and ease of installation. 

Steel angles are L-shaped laminated steel elements composed of two legs forming a 90-degree 

angle between them and are commonly used to connect metal parts. The most common ways 

to connect metal parts to each other are using bolts or welding, both of which have their 

advantages and disadvantages. Drilling holes for using bolts is expensive and reduces the cross-

section of the element. On the other hand, using welding does not allow for the assembly and 

disassembly of structures, losing versatility and flexibility. (PAULA, J. H. M., 2021). 

As mentioned, to use bolted connections, it is necessary to drill holes in the elements, thus the 

concept of net cross-sectional area arises, which represents the gross cross-sectional area minus 

the area of the holes. As stated by Fleitas et al. (2020), bolted connections in Steel Bolted 

Angles (SBA) under tension present a complex stress state, therefore the resistance of the net 

cross-section is not calculated in such a simple way. When bolted and subjected to axial tension, 

the elements may present net section failure, as one of some possible failure modes, caused by 

rupture of the section where the holes are located. These elements are widely used in various 

structures, like, power transmission towers, communication towers, and bridge diagonal 
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members (QU; GUO; SUN, 2022; LI et al., 2024). 

SBA members with eccentric connections are common in civil engineering, particularly in 

lattice towers and masts (QU; GUO; SUN, 2022), thus being influenced by complex debilitating 

phenomena such as shear lag. The phenomenon causes a nonuniform distribution of the tension 

stresses across the net section and, added to the effects of eccentricity, acts reducing angles 

tension capacity. Because of that, in steel structures standards across the world, a reduction 

factor is applied to the resistance of the net section, while many researches have been conducted 

over the years trying to obtain better formulations for this factor. 

5.1. METHODOLOGY 

The current section describes the gathered dataset and both sets of developed models, model 

set I and model set II. As already mentioned, all models were built with the baseline 

methodology detailed in section 3.1, unless explicitly specified that it used SOFAH algorithm. 

5.1.1. Dataset 

The gathered dataset is composed of 314 instances and was collected from five studies, four of 

which were experimental, composing 154 instances, and one numerical with 160 instances from 

finite element models implemented in ABAQUS software. The size of each collected sample, 

type of each study and corresponding authorship are listed in Table 5.1. The dataset composes 

a 314x10 matrix, each instance presents ten variables (Table 5.2), nine of which were initially 

used as inputs to predict the target variable 𝑇𝑜𝑏𝑠. 

Table 5.1. Source and number of instances of sampled steel angles data 

Authors Type Sample size 

LaBoube and Yu (1995) Experimental 12 

Yip and Cheng (2000) Experimental 15 

Paula et al. (2008) Experimental 66 

Teh and Gilbert (2013) Experimental 61 

Fleitas et al. (2020) Numerical 160 

AISI (2016) Equation (2.31) - 

Eurocode (CEN, 2005a, 2005b) 
Equations 

(2.32)(2.33) 
- 

 TOTAL 314 
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Table 5.2. Identification and description of each used feature 

Feature Unit Description 

𝑏𝑐 mm Width of the connected leg 

𝑏𝑑 mm Width of the not connected leg 

𝑡 mm Thickness 

𝑛𝑙𝑖𝑛𝑒𝑠 - Number of bolt lines (1 or 2) 

𝑛ℎ𝑜𝑙𝑒𝑠 - Number of holes per bolt line (1 to 4) 

𝑥̅ mm 
Connection eccentricity, from shear plane to centroid of 

cross-section 

𝐿 mm Length of connection in longitudinal direction 

𝑦̅ mm 
Connection eccentricity, from centroid of the connection 

to centroid of cross-section 

𝐹𝑢 MPa Ultimate tensile strength of the steel material 

𝑇𝑜𝑏𝑠 kN Resistance of the net section 

 

In order to stabilize and improve model training, min-max normalization was applied to each 

input feature, transforming minimum value to 0 and maximum to 1. The transformation 

parameters were calculated only in the training set of each fold during cross-validation, to 

guarantee that no data leakage would occur. 

It is worth mentioning that not all of the variables used were explicitly available in the 

mentioned studies, requiring some calculations. To calculate 𝑦̅, it was assumed that the bolt 

connection was always exactly in the middle of the connected leg, that is, in 𝑏𝑐/2, resulting in 

 
𝑦̅ =

bc

2
− 𝑥𝑔 (5.1) 

where 𝑥𝑔 is the horizontal coordinate of the centroid of the section measured from the 

unconnected leg. The cross-section was considered as a composition of 3 elements, 2 rectangles 

and a quarter of a hollow circle, thus 𝑥𝑔 is given by 

 
𝑥𝑔 =

∑(𝐴𝑖𝑥𝑖̅)

∑ 𝐴𝑖
 (5.2) 

where 𝐴𝑖 is the area of each element and 𝑥𝑖̅ the horizontal coordinate of each element’s centroid. 

It was assumed that the inner radius 𝑟𝑖 of the hollow circle is equal to the thickness of the angle. 
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5.1.2. Model set I 

Model set I is composed of 10 models. Initially, 6 of them were created, as shown in Table 5.3, 

where model MExp is the standard model, trained with all inputs and experimental data; models 

MExp/5 and MExp/3 are models that, based on Permutation Feature Importance (PFI), try to 

perform with sufficient accuracy while using only, respectively, the 5 and 3 most important 

inputs from model MExp; and models MExp−Num, MExp−Num/5 and MExp−Num/3 represent 

incorporation of numerical data to the training set, expanding the number of instances and 

aiming to evaluate if there is improvement in performance. 

Table 5.3. Characteristics of the developed models 

Model No. of inputs Training data (#Instances) 

MExp 9 Exp. (123) 

MExp/5 5 Exp. (123) 

MExp/3 3 Exp. (123) 

MExp−Num 9 Exp. (123) + Num. (160) 

MExp−Num/5 5 Exp. (123) + Num. (160) 

MExp−Num/3 3 Exp. (123) + Num. (160) 

Then, the other 4 models were created, using SOFAH and SOFAH2 algorithms. Two of them 

using only experimental data on training set and the other two with the addition of numerical 

data to the training set. 

There are two types of models, one trained with only experimental data and one trained with 

experimental and numerical data. When the training set comprehends only experimental data, 

the 154 instances were divided in a 4:1 proportion, with 80% (123 instances) composing the 

training set and 20% (31 instances) the test set. For the models trained with both experimental 

and numerical data, the same 31 instances were used as test set, resulting in 283 instances for 

training. K-fold cross-validation was done with 𝑘 = 5 folds in all the developed models. All 

the partitions were done randomly and, in the same way of all random processes of the current 

work, following the random seed 42. 

5.1.3. Model set II 
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Model set II is composed of models that incorporate predictions from standards’ equations. 

SOFAH algorithm was not used in the models of this set. With the dataset information presented 

in section 5.1.1, models MExp−AISI and MExp−AISI−EC were trained on collected experimental 

data added to predictions given by equations from AISI standards and Eurocode 3, as shown in 

Table 5.4. 

Table 5.4. Characteristics of the developed models that incorporate standards predictions 

Model No. of inputs Training data (#Instances) 

MExp−AISI 9 Exp. (123) + AISI (123) 

MExp−AISI−EC 9 Exp. (123) + AISI (123) + Eurocode (123) 

Additionally, based on the main dataset, a new one was created to compare performance outside 

of the training data range on developed ML model, AISI and Eurocode standards equations. 

Each instance of the new alternative dataset consists of mostly randomly sampled data. 

Connected and unconnected leg’s width, respectively, 𝑏𝑐 and 𝑏𝑑,  were sampled following 

uniform distribution of range 103 to 200 mm, extrapolating the range of the experimental data, 

that goes up to 102 mm. The number of bolt lines  𝑛𝑙𝑖𝑛𝑒𝑠 was chose as 2 for all the instances, 

because the experimental dataset lacked in instances with 𝑛𝑙𝑖𝑛𝑒𝑠 = 2, representing only 18.2% 

of the set. The number of holes per line 𝑛ℎ𝑜𝑙𝑒𝑠 was randomly chosen to assume the values of 1 

or 4, because these values also were lacking in the experimental dataset, representing together 

only 17.5%. Variables 𝑡, 𝐿 and 𝐹𝑢 were randomly sampled from their respective unique values 

observed in the experimental dataset. Finally, 𝑥̅ and 𝑦̅ were recalculated based on the values of 

𝑏𝑐, 𝑏𝑑 and 𝑡. 

 

5.2. RESULTS AND DISCUSSION 

5.2.1. Data exploratory analysis 

For better understanding of the constructed dataset, variables statistics of experimental and 

numerical data are shown respectively in Table 5.5 and Table 5.6, showing minimum, 

maximum, median, mean, Standard Deviation (SD), skewness, Coefficient of Variation (CV), 

lower quartile (Q1) and upper quartile (Q3). 
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Table 5.5. Variables statistics of collected experimental data 

Variable Units Min Max Median Mean SD Skew CV Q1 Q3 

𝑏𝑐 mm 38.10 102.00 60.00 67.99 21.41 0.22 0.31 50.00 80.00 

𝑏𝑑 mm 38.10 102.00 60.00 67.18 22.62 0.34 0.34 50.00 82.50 

𝑡 mm 1.07 3.91 3.00 2.64 0.78 -0.48 0.30 2.25 3.00 

𝑛ℎ𝑜𝑙𝑒𝑠 - 1.00 4.00 2.00 2.50 0.78 0.80 0.31 2.00 3.00 

𝑛𝑙𝑖𝑛𝑒𝑠 - 1.00 2.00 1.00 1.18 0.39 1.67 0.33 1.00 1.00 

𝑥̅ mm 6.45 34.90 15.60 18.03 7.91 0.35 0.44 10.60 26.10 

𝐿 mm 12.70 191.00 76.20 72.99 32.64 0.91 0.45 40.00 80.00 

𝑦̅ mm 8.62 24.88 13.70 15.21 4.77 0.64 0.31 11.54 18.38 

𝐹𝑢 MPa 316.00 630.00 502.00 504.20 88.92 -0.68 0.18 463.00 580.00 

𝑇𝑒𝑥𝑝 kN 15.97 179.14 85.33 85.42 36.25 0.31 0.42 61.68 107.16 

Table 5.6. Variables statistics of collected numerical data 

Variable Units Min Max Median Mean SD Skew CV Q1 Q3 

𝑏𝑐 mm 70.00 150.00 100.00 103.81 17.48 1.20 0.17 100.00 100.00 

𝑏𝑑 mm 50.00 130.00 100.00 96.19 17.48 -1.20 0.18 100.00 100.00 

𝑥̅ mm 7.40 43.70 26.60 25.38 7.70 -0.40 0.30 26.60 26.60 

𝐿 mm 33.87 76.20 38.10 46.01 13.56 1.24 0.29 38.10 50.80 

𝑦̅ mm 13.70 38.70 23.70 24.14 5.21 0.97 0.22 23.70 23.70 

𝑇𝑜𝑏𝑠 kN 77.96 137.25 110.36 108.02 12.42 -0.38 0.11 99.52 116.25 

Note: In all instances, thickness, number of lines, number of holes per line and ultimate tensile 

strength of the steel material are equal, 𝑡 = 2.66 mm, 𝑛𝑙𝑖𝑛𝑒𝑠 = 2, 𝑛ℎ𝑜𝑙𝑒𝑠 = 2 and 𝐹𝑢 = 502 MPa 

respectively. 

Note that the finite elements data (Fleitas et al., 2020) expands the dataset to other ranges, for 

example, both 𝑏𝑐 and 𝑏𝑑 goes from 38.10 mm to 102.00 mm in the experimental set, as in the 

numerical one, simulations were performed with 𝑏𝑐 up to 150 mm and 𝑏𝑑 up to 130 mm. 

No single-bolted angle was used in the dataset, only 4 angles presented 1 hole per bolt line, as 

they all have 2 bolt lines. In these 4 angles, the length of connection 𝐿 was considered to be the 

same as the nominal bolt diameter, 12.7 mm, 

For visualization of the experimental dataset and of the correlation between its variables, a 

scatterplot matrix is presented in Figure 5.1, with histograms on main diagonal. Figure 5.2 

shows Pearson Correlation Matrix of all variables used. Based on the matrix, it can be affirmed 

that input variables 𝑥̅, 𝑏𝑑, 𝑏𝑐 and 𝑦̅ show high correlation between them, as expected, because 

of geometry proportion and because 𝑏𝑐 and 𝑏𝑑 are both used for evaluation of 𝑥̅ and 𝑦̅ values. 

The values are 𝑥̅ − 𝑏𝑑 (0.94), 𝑦̅ − 𝑏𝑑 (0.87) and 𝑦̅ − 𝑏𝑐 (0.84), as the correlations are all 
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positive, a relation that is again expected, because of geometry proportion. Furthermore, input 

variables 𝑡, 𝑏𝑐 and 𝑦̅ show high correlation with the output variable 𝑇𝑜𝑏𝑠, indicating that these 

variables may present information that helps predict 𝑇𝑜𝑏𝑠. The values are 𝑡 − 𝑇𝑜𝑏𝑠 (0.76), 𝑏𝑐 −

𝑇𝑜𝑏𝑠 (0.62) and 𝑦̅ − 𝑇𝑜𝑏𝑠 (0.60). 

 
Figure 5.1. Scatterplot matrix of the experimental dataset 
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Figure 5.2. Pearson Correlation Matrix of the experimental dataset 

 

5.2.2. Permutation feature importance and feature selection for model set I 

After fitting model MExp, PFI was implemented with 𝑁 = 500, with the increases in MSE after 

permutation (ΔMSE) shown as a box plot in Figure 5.3 and mean and Standard Deviation (SD) 

of these values shown in  

Table 5.7, ordered from most to least important variable. Higher value of mean indicates that 

the analyzed input feature significantly contributes to lower MSE on the model. In reason of 

the mentioned results: models MExp/5 and MExp−Num/5 are composed of 𝑡, 𝑏𝑐, 𝐹𝑢, 𝐿 and 𝑛ℎ𝑜𝑙𝑒𝑠 

and models MExp/3 and MExp−Num/3 use 𝑡, 𝑏𝑐 and 𝐹𝑢. 
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Figure 5.3. PFI box plot for increase in MSE (ΔMSE) 

 

Table 5.7. Mean and SD of ΔMSE after PFI 

Features Mean SD 

𝑡 1035.36 230.17 

𝑏𝑐 552.28 117.45 

𝐹𝑢 93.28 31.13 

𝐿 89.26 28.75 

𝑛ℎ𝑜𝑙𝑒𝑠 75.78 24.84 

𝑦̅ 38.12 11.86 

𝑛𝑙𝑖𝑛𝑒𝑠 35.95 11.68 

𝑏𝑑 19.07 8.86 

𝑥̅ 4.49 5.68 

 

Steel angle thickness 𝑡 and width of the connected leg 𝑏𝑐 were clearly the most important 

features for net section resistance prediction in the developed model. This result is aligned with 

the fact that the 2 variables were the ones of greater correlation with the output. On the other 

side, 𝐹𝑢 was the third most important variable and showed the lowest Pearson’s correlation with 

𝑇𝑒𝑥𝑝. A reasonable explanation to this is that Pearson’s correlation coefficient measures only 

linear correlation between variables, thus 𝐹𝑢 may be nonlinearly correlated with 𝑇𝑒𝑥𝑝. 

5.2.3. Model set I 

Since the SBA dataset is very small, containing only a few hundred instances, all the models 
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developed here took less than 30 seconds in training. The baseline methodology and SOFAH 

algorithm took a maximum of 2.5 hours in HPO. SOFAH2, since it performs a second BO after 

SOFAH’s own BO, took 4 hours and 21 minutes in HPO. 

To compare models MExp, MExp/5, MExp/3, MExp−Num, MExp−Num/5 and MExp−Num/3 some 

regression evaluation metrics were calculated in training and testing stages: RMSE, R² and 

MAPE. All the mentioned metrics results are shown in Table 5.8. 

Table 5.8. Regression evaluation metrics of developed models in training and test 

Performance 

metrics 
𝐌𝐄𝐱𝐩 𝐌𝐄𝐱𝐩/𝟓 𝐌𝐄𝐱𝐩/𝟑 𝐌𝐄𝐱𝐩−𝐍𝐮𝐦 𝐌𝐄𝐱𝐩−𝐍𝐮𝐦/𝟓 𝐌𝐄𝐱𝐩−𝐍𝐮𝐦/𝟑 

RMSE - Training 3.44 4.39 10.09 4.59 6.89 11.44 

RMSE - Test 6.37 7.70 13.81 6.87 5.43 13.18 

R² - Training 0.99 0.99 0.92 0.97 0.94 0.83 

R² - Test 0.97 0.96 0.86 0.97 0.98 0.88 

MAPE - Training 3.61% 3.93% 9.43% 3.82% 5.13% 9.65% 

MAPE - Test 6.11% 7.78% 10.84% 6.61% 5.70% 10.53% 

 

As observed in Table 5.8, the standard model, MExp, using the original set of 9 features and 

only experimental data, was the best performing model among the models trained only on 

experimental data, showing R² of 0.97, RMSE of 6.37 and MAPE of 6.11% in test set. 

Respectively, these results can be interpreted as, for unseen instances, 97% of the variation of 

𝑇𝑜𝑏𝑠 was accounted for by the independent variables, the SD of prediction errors was 6.37 kN, 

and, on average, each instance showed a relative error of 6.11%. When comparing the models, 

all of them showed good performance, with R² greater than 0.85 and MAPE lower than 11.00%, 

but MExp−Num/5, a model with only 5 of the 9 available features and with numerical and 

experimental data in the training set, was the one of best metrics, showing the lowest values for 

the error metrics, MAPE and RMSE, and the higher R². The addition of numerical data to the 

training set provided similar results when using all 9 inputs and 3 inputs, but, when using 5 

inputs, it improved the results and provided the best performing model. 

For visualization of predictive accuracy in all of the points of the test set, Figure 5.4 shows 

predicted values plotted against observed values of the target variable, presenting side-by-side 
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comparisons of MExp and MExp−Num, MExp/5 and MExp−Num/5, and MExp/3 and MExp−Num/3. 

In the plot, the closer the point is to the 𝑦 = 𝑥 diagonal line, the more accurate was its 

prediction. The dashed lines show margins of error of +10% and −10%. 

 
Figure 5.4. Predicted vs. Observed values for models: a) MExp; b) MExp−Num; c) MExp/5; 

d) MExp−Num/5; e) MExp/3; f) MExp−Num/3 
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Comparing a) and b), although very similar, on average MExp presents predictions slightly more 

accurate than MExp−Num. Comparing d) with all the others, it is visually clear that MExp−Num/5 

really shows the best accuracy when analyzing all the test points. Investigating e) and f), both 

models MExp/3 and MExp−Num/3 do not show accuracy as bad as the metrics indicated, because 

there is a single point of extremely bad prediction that pulled MAPE and RMSE towards high 

values. The mentioned point corresponds to one of four highlighted angles (the other three are 

on training set) that had only 1 hole per line and 2 lines, where length of connection 𝐿 was 

considered equal to the nominal bolt diameter of 12.7 mm. In short, the result is expected, since 

both models of 3 inputs used only 𝑡, 𝑏𝑐 and 𝐹𝑢, they had insufficient information to predict this 

specific angle of single bolt in longitudinal direction. 

Model MExp predictions were then compared to the ones given by equations from AISI (2016) 

and Eurocode 3 (2005a, 2005b) standards; and equations proposed by Fleitas et al. (2020), 

Paula et al. (2008) and Teh and Gilbert (2013). The comparison between predictions and 

observed values was done through some performance metrics evaluated on test set, MSE, 

RMSE, R² and MAPE and its results are shown in Table 5.9. 

Table 5.9. Comparison of evaluation metrics of each prediction and observed values 

Models/Equations MSE - Test RMSE - Test R² - Test MAPE - Test 

Model MExp 40.63 6.37 0.97 6.11% 

Model MExp−Num/5 29.53 5.43 0.98 5.70% 

Model MExp−AISI 101.92 10.10 0.93 9.89% 

Model MExp−AISI−EC 341.70 18.49 0.75 13.28% 

AISI (Eq. (2.31)) 277.65 16.66 0.80 14.85% 

Eurocode 3 (Eqs. 

(2.32)(2.33)) 
2053.58 45.32 -0.48 29.81% 

Paula et al. (Eq. (2.35)) 316.30 17.78 0.77 17.60% 

Teh and Gilbert (Eq. (2.36)) 160.72 12.68 0.88 13.20% 

Fleitas et al. (Eq. (2.37)) 298.80 17.29 0.79 15.53% 

Note: The values compared with the predictions of each model/equation are the 

observed values from all samples of the test set. 

As observed in Table 5.9, AISI Standards clearly provide the best evaluation metrics among 

the standards. The equations proposed by some relevant works of the area in general perform 
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better than the equations from standards, specially Teh and Gilbert (2013), that shows the 

highest R², 0.88, and the lowest RMSE, 12.68. This behavior is expected, because these 

equations have the advantage of already having seen some of the instances from the test set, 

since they were used for regression of the analyzed equations. Equation (2.36), proposed by 

Teh and Gilbert (2013), used approximately one third of the experimental data for its regression. 

When compared to the ML model, model MExp shows outstanding accuracy, with R² of 0.97 

and RMSE of 6.37 on test set. The bad performance of Eurocode equation may be explained by 

the specific and small test set analyzed, as standards equations are effective in wider domain. 

Figure 5.5 shows predicted values plotted against observed values of the target variable, 

comparing results of AISI (2016), Eurocode (2005a, 2005b), Paula et al. (2008), Teh and 

Gilbert (2013) and Fleitas et al. (2020). 
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Figure 5.5. Predicted vs. Observed values for: a) AISI; b) Eurocode 3; c) Paula et al.; d) Teh 

and Gilbert; e) Fleitas et al. 

Observing Figure 5.5 a) and d), it is visually clear that AISI and Teh and Gilbert equations are 

generally conservative, presenting most of the results below the diagonal lines, that is, predicted 

values lower than observed ones. As seen in b), Eurocode provided inaccurate predictions for 
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considerable portion of the 31 instances of the test set. In c) and e), it is plausible to say that 

Paula et al. and Fleitas et al. proposed good equations, but they showed one point of very bad 

prediction and considerable amount of predictions above the diagonal lines, thus being not 

favorable to safety. This point is one of only four instances that presented a single bolt per line, 

where it was considered that the length of connection 𝐿 is equal to the bolt diameter (12.7 mm). 

Comparing these results to the best ML model in Figure 5.4 d), it clear how much more accurate 

MExp−Num/5 is. 

Figure 5.6 shows a comparison between predictions on test set of the best performing standard, 

AISI, proposed equation, Teh and Gilbert, and model, MExp−Num/5, highlighting if they are 

favorable to safety or not, as a margin of error of +/- 10% is considered. 

 
Figure 5.6. Comparison of observed/predicted on test set vs. 𝑥̅/𝐿: a) AISI; b) Teh and Gilbert 

As shown, it can be said that: AISI predictions are really mostly conservative; Teh and Gilbert 

predictions, although more accurate, are also mostly conservative; Model MExp−Num/5 is much 

more accurate than the analyzed equations, presenting almost all predictions between the 10% 

error margin. The outlier of 𝑥̅/𝐿 greater than 2.0 is one of only four instances that presented a 

single bolt per line, where it was considered that the length of connection 𝐿 is equal to the bolt 

diameter (12.7 mm). This sample showed the least accurate and most conservative prediction 

of the AISI equation. 
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5.2.4. Model set I with SOFAH algorithm 

The best performing model of only experimental training data, MExp and best one with addition 

of numerical data to the training set, MExp−Num/5 were compared with their SOFAH and 

SOFAH2 counterparts, that is, MExp
SOFAH, MExp

SOFAH2, MExp−Num
SOFAH  and MExp−Num

SOFAH2 . The results of 

evaluated performance metrics are shown in Table 5.10. 

Table 5.10. Performance metrics of SOFAH models 

Performance 

metrics 
𝐌𝐄𝐱𝐩 𝐌𝐄𝐱𝐩

𝐒𝐎𝐅𝐀𝐇 𝐌𝐄𝐱𝐩
𝐒𝐎𝐅𝐀𝐇𝟐 𝐌𝐄𝐱𝐩−𝐍𝐮𝐦/𝟓 𝐌𝐄𝐱𝐩−𝐍𝐮𝐦

𝐒𝐎𝐅𝐀𝐇  𝐌𝐄𝐱𝐩−𝐍𝐮𝐦
𝐒𝐎𝐅𝐀𝐇𝟐  

RMSE - Training 3.44 2.42 3.19 6.89 3.96 3.98 

RMSE - Test 6.37 6.15 6.70 5.43 5.27 4.77 

R² - Training 0.99 1.00 0.99 0.94 0.98 0.98 

R² - Test 0.97 0.97 0.97 0.98 0.98 0.98 

MAPE - Training 3.61% 2.60% 3.12% 5.13% 3.06% 3.30% 

MAPE - Test 6.11% 5.88% 6.13% 5.70% 5.44% 5.29% 

As seen, all SOFAH-based models resulted in better metrics in both training and test set, 

indicating better fit to the data and also higher generalization capacity. In experimental-only 

models, MExp
SOFAH, compared to MExp, achieved the best results, with a lower RMSE and MAPE. 

When adding numerical data to the training set, the previous best performing model, 

MExp−Num/5, was improved by MExp−Num
SOFAH , and even further by MExp−Num

SOFAH2 , resulting in the best 

metrics yet, RMSE of 4.77 and MAPE of 5.29% on test set. Predicted vs. observed values plot 

of the best performing model, MExp−Num
SOFAH2 , is shown in Figure 5.7. It is possible to see how all 

the points provided very accurate predictions. 
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Figure 5.7. Predicted vs. observed values of model MExp−Num
SOFAH2  

Also, in Figure 5.8 and Figure 5.9, it is shown the optimal feature subsets found by SOFAH 

algorithm in MExp
SOFAH and MExp−Num

SOFAH  respectively. The former is composed of 16 variables out 

of the 81 obtained by the feature augmentation performed by the algorithm. The latter is 

composed of only 11 variables, where 5 of them include the length of connected leg 𝑏𝑐, the 

second most important variable of the baseline model, as shown previously in Figure 5.3. 
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Figure 5.8. Optimal feature subset of MExp

SOFAH 
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Figure 5.9. Optimal feature subset of MExp−Num

SOFAH  

5.2.5. Model set II 

Aiming to develop ML models favorable to safety and capable of performing predictions in a 

wider domain, models MExp−AISI and MExp−AISI−EC were built adding to the training set 

predictions from the equations given by North American and European standards. Their 

performance metrics, MSE, RMSE, R² and MAPE, were evaluated on the 31 instances of 

observed experimental data that compose the test set and are shown in Table 5.11. 

Table 5.11. Evaluation metrics of model set II 

Models/Equations MSE - Test RMSE - Test R² - Test MAPE - Test 

Model MExp−AISI 101.92 10.10 0.93 9.89% 

Model MExp−AISI−EC 341.70 18.49 0.75 13.28% 

 

Comparing the results with metrics of  Table 5.9, it can be said that both models MExp−AISI and 

MExp−AISI−EC presented worse values for all metrics than the standard ML models MExp, 
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MExp/5 and MExp−Num/5. However, model MExp−AISI showed better metrics than all other 

equations and models, thus representing an interesting more conservative ML model that 

incorporated standards’ predictions. 

The two models from model set II were used to perform predictions on an alternative dataset, 

outside of the range of training data. Figure 5.10 shows plots of 𝑇𝐴𝐼𝑆𝐼/𝑇𝑝𝑟𝑒𝑑 vs. 𝑥̅/𝐿 for 

predictions of models MExp−Num/5, MExp, MExp−AISI, and MExp−AISI−EC on the alternative 

dataset, comparing results two by two. 

 

 
Figure 5.10. Comparison of 𝑇𝐴𝐼𝑆𝐼/𝑇𝑝𝑟𝑒𝑑 between: a) MExp−Num/5 and MExp−AISI; b) MExp and 

MExp−AISI; c) MExp−AISI−EC and MExp−AISI; d) MExp−Num/5 and MExp 
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As discussed on the analysis of Figure 5.6 a), AISI equation is generally conservative and even 

more in high values of 𝑥̅/𝐿, predicting low values of resistance. Based on that, the behavior 

shown in Figure 5.10 of decrease in 𝑇𝐴𝐼𝑆𝐼/𝑇𝑝𝑟𝑒𝑑 for higher values of 𝑥̅/𝐿  is expected. Based 

on Figure 5.10 c) Model MExp/AISI/EC provided the most conservative predictions, with almost 

all the points below the horizontal lines, that is, predicting smaller values than AISI in almost 

all simulated instances. Comparatively, in a), models MExp/AISI and MExp−Num/5 presented the 

most instances between and above the 10% margins of error. In b) and d), model MExp clearly 

predicted lower values than these two models, with points more distant from the horizontal 

lines, that is, higher error when compared to AISI predictions. 

5.2.6. Comparison of model sets I and II with AISI equation 

Another comparison of the same metrics was done, but now, instead of comparing predictions 

and observed values, the predictions from each equation and model were compared with AISI 

predictions. The evaluations were performed on the same 31 samples that compose the test set 

and the results are shown in Table 5.12. 

Table 5.12 Comparison of evaluation metrics of each prediction and AISI predictions 

Models/Equations MSE - Test RMSE - Test R² - Test MAPE - Test 

Model MExp 257.09 16.03 0.79 17.75% 

Model MExp/5 223.98 14.97 0.82 17.66% 

Model MExp−Num/5 235.27 15.34 0.81 18.15% 

Model MExp−AISI 88.38 9.40 0.93 8.64% 

Model MExp−AISI−EC 874.89 29.58 0.29 21.31% 

Eurocode 3 (Eqs. 

(2.32)(2.33)) 

3270.54 57.19 -1.64 40.38% 

Paula et al. (Eq. (2.35)) 425.11 20.62 0.66 27.68% 

Teh and Gilbert (Eq. (2.36)) 52.66 7.26 0.96 6.22% 

Fleitas et al. (Eq. (2.37)) 209.21 14.46 0.83 18.56% 

Note: The values compared with the predictions of each model/equation are the AISI 

predictions from all samples of the test set. 

As observed, Teh and Gilbert predictions were the closest to AISI predictions, that occurred 

because of the extreme similarity between both equations, (2.31) and (2.36). Model MExp/AISI 
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showed the second closest predictions, thus assuring that this model incorporated successfully 

AISI predictions. Note that, compared to AISI predictions, the best performing model was 

MExp/5, differing from the best performing compared to observed values, that was MExp−Num/5. 
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6. TEMPERATURE VARIATIONS ON RIGID PAVEMENT CONCRETE SLABS 

According to data from the National Transport Confederation (CNT, Confederação Nacional 

do Transporte, in Portuguese) released in the 26th edition of the CNT Highway Survey on 

November 29, 2023 (CNT, 2023), road transport is responsible for moving 65% of the country's 

freight and 95% of its passengers. However, 67.5% of the road network is classified as average, 

poor or bad, while only 32.5% is classified as good or excellent. The classification considers 

three main characteristics of the road network: pavement, signalization and road geometry. 

Specifically, regarding pavement quality, 56.8% of the evaluations were average, poor or bad. 

The primary objective of a pavement is to deliver a durable and functional surface tailored to 

specific transportation requirements. Its fundamental role is to sustain applied loads under 

varying seasonal and environmental conditions without experiencing deformation or cracking, 

as such distresses would compromise the pavement's performance and longevity (MALLICK; 

EL-KORCHI, 2023). 

According to the Brazilian Association of Portland Cement (ABPC, Associação Brasileira de 

Cimento Portland, in Portuguese), the National Department of Transport Infrastructure’s 

(DNIT, Departamento Nacional de Infraestrutura de Transportes, in Portuguese) Director of 

Planning and Research, engineer Luiz Guilherme Melo, noted the growing trend of using 

concrete pavement on federal highways managed by the agency, which currently accounts for 

4.5% of the network, with the prospect of reaching 10% (ABPC, 2024). In 2024, eight concrete 

pavement projects were being executed, totaling 673 kilometers, with a focus on the North and 

Northeast regions of Brazil. These projects used modern technologies, bringing improvements 

to the infrastructure. 

Rigid pavements, commonly constructed using concrete experience minimal deflection under 

load due to their inherent stiffness, in opposition to flexible (or asphalt) pavement, that deflects 

under traffic load. The surface layer, which directly interacts with traffic, consists of a Portland 

cement concrete slab. The high stiffness of the concrete slab, characterized by its elastic 

modulus, enables it to distribute loads over a wider area, thereby reducing the stress transferred 

to the underlying base and subgrade layers. While rigid pavements can be constructed directly 

on the subgrade, high-performance designs often incorporate a base or subbase layer to enhance 

structural integrity. In addition to serving as a wearing surface, the concrete slab contributes to 
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critical functions such as providing skid resistance, facilitating drainage, ensuring ride 

smoothness, mitigating noise, and offering waterproofing protection to the underlying layers 

(MALLICK; EL-KORCHI, 2023). 

Concrete pavements are commonly known for being more durable, thus needing reduced 

maintenance and consequently reducing its general costs. For this reason, concrete has been 

used in areas with intense bus and truck traffic, such as exclusive lanes and highways. The 

temperature distribution along the depth of the concrete pavement, that is, the temperature 

profile, is extremely important for determining deformations and stresses resulting from 

thermal variations between the upper and lower layers of the pavement (WANG; ROESLER, 

2014). In case of not considering these variations, there can be a significant impact on the 

behavior and structural performance of the pavement, even reaching the ultimate limit state and 

collapsing. In regions of high daily thermal amplitude and high solar radiation, like many 

countries in Brazil, the study of rigid pavement behavior relative to temperature variations 

becomes even more relevant. 

6.1. METHODOLOGY 

6.1.1. Dataset 

The general methodology is shown in Figure 6.1 and consists of using the equations of heat 

flow theory and climate data to predict surface temperature, 𝑇𝑠𝑢𝑟𝑓, over the span of a few years. 

The values obtained are used in a Finite Element Method (FEM) model in ABAQUS software 

to simulate the climate conditions and evaluate the temperate at varying depths of the concrete 

slab layer. With these results, it is possible to calculate the difference in temperature from 

surface to bottom of the slab, ∆𝑇. Finally, ANN models are created with all this generated data, 

aiming to be used as efficient surrogate models of reduced costs. For better understanding, the 

described process is also shown with other details in the workflow diagram in Figure 6.2, even 

specifying the name of the models created. 
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Figure 6.1. Surrogate modeling of temperature variations in concrete pavement 

 

 
Figure 6.2. Workflow of ML modeling of temperature variations on concrete pavement 

The National Institute of Meteorology (INMET, Instituto Nacional de Meteorologia, in 

Portuguese), a federal agency under the direct administration of the Ministry of Agriculture, 
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Livestock and Food Supply, publicly provides a meteorological database acquired hourly from 

all automatic weather stations across the country, organized by year. The dataset used in the 

present research corresponds to all data from station 001, located in Brasília, Brazil, situated at 

latitude and longitude (-15,789343, -47,925756), from year 2019 to year 2023. Since this 

database was measured hourly, it can be said that each non-leap year presents 8760 instances. 

The climate data was collected from INMET database already containing air temperature 

values. 

Using the disposed climatic variables, the temperature 𝑇𝑠𝑢𝑟𝑓 at the surface of the concrete slab 

was calculated following the formulation of heat transfer theory explained in section 2.2.3 and 

resumed in Equation 2.45(a-c). The values of deterministic variables present in this equation 

are shown in Table 6.1. Some considerations about the variables are: 𝛼𝑎 for concrete material 

goes from 0.65 to 0.80, thus being used its average of 0.725; emissivity value 𝜀 was considered 

the same as solar absorptivity 𝛼𝑎; 𝑘𝑐 was considered as 1.42 W/mºC for concrete; 𝑅0 and 𝜎0 

are constants with respective units W/m² and W/m²ºK4; and 𝜏𝑎 ranges from 0.81 on clear days 

to 0.62 on cloudy ones. 

Table 6.1. Deterministic variables used for pavement surface temperature prediction 

Variable Value 

𝛼𝑎 0.725 

𝜀 0.725 

𝑘𝑐 1.42 

𝑅0 1394 

𝜎0 5.68 ∙ 10-8 

𝜏𝑎 0.81 

𝜀𝑎 0.70 

The values of 𝑇𝑠𝑢𝑟𝑓 were used to determine the temperature at different depths of the slab 

through simulations conducted in the ABAQUS software by Teche and Evangelista Jr. (2025). 

The authors employed 5 pavement configurations, varying the thickness ℎ1 of the concrete slab 

and thickness ℎ2 of the base, as shown in Table 6.2. The objective of these configurations was 

to include ℎ1 and ℎ2 in the models, achieving regression models that are not limited to a single 

specification of pavement system. Additionally, the material properties used for each pavement 

layer in the simulations are detailed in Table 6.3. 
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Table 6.2. Thickness of each layer and respective configuration 

Configuration Concrete slab (cm) Base (cm) Subbase (cm) 

I 25 10 300 

II 23 10 300 

III 18 20 300 

IV 25 20 300 

V 20 20 300 

 

Table 6.3. Material properties used in ABAQUS simulations 

Properties 
Concrete 

pavement 

Roller-compacted 

concrete base 
Soil 

Density (kg/m³) 2291 2400 1700 

Thermal conductivity 

(W/mºC) 
1.42 2.10 1.10 

Specific heat (J/mºC) 957.00 920.48 750.00 

Using simulation results, Δ𝑇 was calculated, the difference between surface temperature 𝑇𝑠𝑢𝑟𝑓 

and bottom temperature of the concrete slab. The dataset assembled all variables disposed in 

Table 6.4. 

Table 6.4. Identification and description of each variable of the dataset 

Feature Unit Description 

𝐷 - Current day 

𝐻 - Current hour 

𝑇𝑎𝑖𝑟 ºC Air temperature 

𝑃𝑎𝑡𝑚 mbar Atmospheric pressure 

𝑅𝐻 % Relative humidity 

𝑓𝑓 m/s Wind speed 

𝑇𝑠𝑢𝑟𝑓 ºC Concrete slab surface temperature 

Δ𝑇 ºC 
Temperature difference between surface 

and bottom of the concrete slab 

As observed in Table 6.2, the only difference between the configurations are the thickness of 

the layers, so, all climatic variables show the same values from one configuration to another, 

𝐷, 𝐻, 𝑇𝑎𝑖𝑟, 𝑃𝑎𝑡𝑚, 𝑅𝐻 and 𝑓𝑓. Furthermore, 𝑇𝑠𝑢𝑟𝑓 is not affected by the different configurations, 

as it is calculated with latitude coordinate and air temperature, two variables that are also not 
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affected. The only variable affected by different thickness of pavement layers is Δ𝑇. 

6.1.2. Model set I 

Initially, model set I was built, consisting of 9 distinct models that use only configuration I data 

(Table 6.2). The inputs and output of 3 of these models are described in Table 6.5, where 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 

corresponds to predicted values of 𝑇𝑠𝑢𝑟𝑓, that is, model MΔ uses the predictions from Msurf, 

MΔ
SOFAH from Msurf

SOFAH, and MΔ
SOFAH2 from Msurf

SOFAH2. The inputs of the rest of the models were 

defined only after executing SOFAH algorithm. 

Table 6.5. Inputs and output of model set I (configuration I) 

Model Inputs Output 

Mair 𝐷, 𝐻, 𝑃𝑎𝑡𝑚, 𝑅𝐻, 𝑓𝑓 𝑇𝑎𝑖𝑟 

Msurf 𝐷, 𝐻, 𝑃𝑎𝑡𝑚, 𝑅𝐻, 𝑓𝑓, 𝑇𝑎𝑖𝑟 𝑇𝑠𝑢𝑟𝑓 

MΔ 𝐷, 𝐻, 𝑃𝑎𝑡𝑚, 𝑅𝐻, 𝑓𝑓, 𝑇𝑎𝑖𝑟, 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 Δ𝑇 

It is fundamental to state that in all the 9 models that compose models set I, the training set is 

composed of 80% of the data from 01/04/2019 to 12/31/2020, as the other 20% were used as 

the test set. This means that model set I was trained on 13977 instances and tested on 3495 

instances. All the data from 01/04/2021 to 12/31/2023 was exclusively used for inference on 

model set II. 

6.1.3. Model set II 

Model set II was trained, comprehending 2 new models, FMsurf and FMΔ, that use data from 

all configurations, I to V (Table 6.2), and are based on the features selected as optimal by their 

respective SOFAH-based models from model set I, that is, FMsurf uses selected features from 

Msurf
SOFAH, and FMΔ from MΔ

SOFAH, both with the addition of ℎ1 and ℎ2. Note that surface 

temperature 𝑇𝑠𝑢𝑟𝑓 is not affected by the different configurations, as varying base and slab 

thickness has no effect on it. The main purpose of FMsurf is to predict 𝑇𝑠𝑢𝑟𝑓 values to be used 

in FMΔ, so that the latter does not rely on observations of surface temperature. 

The division of data in training and test was 80% and 20% respectively, so model set II was 

trained on 69888 instances and tested on 17472 instances. All the data from 01/04/2021 to 
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12/31/2023 was used for inference. In conclusion, model set II and model set I were trained on 

data from the same time period, 01/04/2019 to 12/31/2020, being the difference between the 

sets the fact that set I uses data only from configuration I, while set II uses data from all 

configurations, I-V. 

6.2. RESULTS AND DISCUSSION 

6.2.1. Data exploratory analysis 

Since both models sets I and II were trained on data from 2019 and 2020. Pearson Correlation 

Matrix of configuration I in this time period is shown in Figure 6.3. Based on the matrix, it can 

be said that: 

• Regarding models that predict 𝑇𝑎𝑖𝑟, relative humidity (𝑅𝐻) shows a high negative 

correlation with the output, 𝑅𝐻 − 𝑇𝑎𝑖𝑟 (-0.69), and 𝐻 a moderate correlation, 𝐻 − 𝑇𝑎𝑖𝑟 

(0.51); 

• Regarding models that predict 𝑇𝑠𝑢𝑟𝑓, none of the features show even moderate correlation 

with the output, being the highest one 𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑢𝑟𝑓 (0.37); 

• With respect to models that predict Δ𝑇, most of the inputs show low or very low 

correlation, from 𝐷 − Δ𝑇 (-0.04) to 𝑃𝑎𝑡𝑚 − Δ𝑇 (0.24), but there is one exception that 

shows very high positive correlation, 𝑇𝑠𝑢𝑟𝑓 − Δ𝑇 (0.96). This very high correlation was 

one of the reasons for the choice of using 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 as input to predict Δ𝑇, even if there is 

some error accumulation in using predictions as inputs of another prediction. 
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Figure 6.3. Pearson Correlation Matrix of the configuration I dataset 

 

Some statistics were measured for each variable, being them: minimum, maximum, median, 

mean, SD, skewness, CV, lower quartile (Q1) and upper quartile (Q3). These values are shown 

only on configuration I in Table 6.6, that is, data used in model set I. Table 6.7 and Table 6.8 

presents values for all configurations, I-V, that is, data used in model set II, while also showing 

values for years 2021, 2022 and 2023, as they were used for inference. 
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Table 6.6. Variables statistics of training and test data for configuration I 

Output Min Max Median Mean SD Skew CV Q1 Q3 

2019-2020 (Training set) 

𝐷 1.00 366.00 185.00 184.21 105.10 0.00 0.57 93.00 275.00 

𝐻 0.00 23.00 12.00 11.50 6.91 0.00 0.60 6.00 17.00 

𝑇𝑎𝑖𝑟 8.70 35.50 21.10 21.65 3.95 0.26 0.18 19.00 24.40 

𝑃𝑎𝑡𝑚 879.80 896.50 887.60 887.77 2.39 0.19 0.00 886.10 889.30 

𝑅𝐻 11.00 97.00 68.00 65.53 21.64 -0.38 0.33 49.00 85.00 

𝑓𝑓 0.10 7.30 2.10 2.22 1.11 0.50 0.50 1.40 3.00 

𝑇𝑠𝑢𝑟𝑓 12.83 77.33 27.02 30.36 9.83 1.04 0.32 22.83 36.30 

Δ𝑇 -15.92 49.53 -3.80 0.33 9.66 1.07 29.06 -6.64 6.76 

2019-2020 (Test set) 

𝐷 1.00 366.00 181.00 183.14 105.06 0.01 0.57 92.00 274.50 

𝐻 0.00 23.00 11.00 11.49 6.98 0.01 0.61 5.00 18.00 

𝑇𝑎𝑖𝑟 8.90 35.00 21.10 21.68 4.02 0.29 0.19 19.00 24.40 

𝑃𝑎𝑡𝑚 880.00 896.50 887.70 887.77 2.43 0.16 0.00 886.10 889.40 

𝑅𝐻 10.00 97.00 68.00 65.65 21.85 -0.43 0.33 49.00 85.00 

𝑓𝑓 0.10 6.80 2.10 2.23 1.11 0.50 0.50 1.40 3.00 

𝑇𝑠𝑢𝑟𝑓 12.23 70.69 26.97 30.07 9.45 1.06 0.31 22.93 35.34 

Δ𝑇 -14.86 36.91 -3.89 -0.02 9.33 1.13 -508.27 -6.69 5.61 

 

Table 6.7. Variables statistics of training and test data for configurations I-V 

Output Min Max Median Mean SD Skew CV Q1 Q3 

2019-2020 (Training set) 

𝐷 1.00 366.00 184.00 183.87 105.09 0.00 0.57 93.00 275.00 

𝐻 0.00 23.00 12.00 11.50 6.92 0.00 0.60 5.00 17.00 

𝑇𝑎𝑖𝑟 8.70 35.50 21.10 21.66 3.97 0.27 0.18 19.00 24.40 

𝑃𝑎𝑡𝑚 879.80 896.50 887.70 887.78 2.40 0.18 0.00 886.10 889.40 

𝑅𝐻 10.00 97.00 68.00 65.55 21.68 -0.39 0.33 49.00 85.00 

𝑓𝑓 0.10 7.30 2.10 2.22 1.11 0.50 0.50 1.40 3.00 

𝑇𝑠𝑢𝑟𝑓 12.23 77.33 27.04 30.31 9.76 1.04 0.32 22.87 36.08 

Δ𝑇 -15.97 49.53 -3.86 0.25 9.34 1.11 37.16 -6.37 6.32 
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Table 6.8. Variables statistics of training and test data for configurations I-V (continuation) 

Output Min Max Median Mean SD Skew CV Q1 Q3 

2019-2020 (Test set) 

𝐷 1.00 366.00 184.00 184.49 105.05 0.00 0.57 94.00 275.00 

𝐻 0.00 23.00 11.00 11.49 6.94 0.00 0.60 6.00 18.00 

𝑇𝑎𝑖𝑟 8.70 35.10 21.10 21.65 3.95 0.27 0.18 19.00 24.30 

𝑃𝑎𝑡𝑚 879.80 896.50 887.60 887.75 2.40 0.19 0.00 886.10 889.30 

𝑅𝐻 10.00 97.00 68.00 65.57 21.67 -0.38 0.33 49.00 85.00 

𝑓𝑓 0.10 7.10 2.10 2.20 1.11 0.50 0.50 1.30 3.00 

𝑇𝑠𝑢𝑟𝑓 12.23 68.52 26.87 30.27 9.74 1.04 0.32 22.87 36.11 

Δ𝑇 -15.71 37.56 -3.91 0.19 9.32 1.10 48.45 -6.41 6.31 

2021 

𝐷 1.00 365.00 183.00 183.00 105.37 0.00 0.58 92.00 274.00 

𝐻 0.00 23.00 11.50 11.50 6.92 0.00 0.60 5.75 17.25 

𝑇𝑎𝑖𝑟 8.10 34.80 20.70 21.22 4.02 0.19 0.19 18.60 24.00 

𝑃𝑎𝑡𝑚 880.20 896.20 887.10 887.21 2.55 0.21 0.00 885.40 888.90 

𝑅𝐻 12.00 97.00 67.00 65.54 21.64 -0.35 0.33 48.00 85.00 

𝑓𝑓 0.10 7.00 2.00 2.10 1.05 0.52 0.50 1.30 2.80 

𝑇𝑠𝑢𝑟𝑓 12.43 79.78 26.57 30.04 10.17 1.06 0.34 22.33 36.24 

Δ𝑇 -14.51 46.71 -4.30 -0.03 9.73 1.13 -375.15 -6.78 6.51 

2022 

𝐷 4.00 365.00 184.50 184.50 104.50 0.00 0.57 94.00 275.00 

𝐻 0.00 23.00 11.50 11.50 6.92 0.00 0.60 5.75 17.25 

𝑇𝑎𝑖𝑟 5.30 32.70 20.80 21.26 3.96 0.01 0.19 18.60 24.20 

𝑃𝑎𝑡𝑚 877.30 894.00 887.20 887.18 2.34 -0.19 0.00 885.60 888.80 

𝑅𝐻 13.00 96.00 64.00 63.34 20.87 -0.26 0.33 47.00 82.00 

𝑓𝑓 0.10 8.10 2.20 2.25 1.04 0.36 0.46 1.50 3.00 

𝑇𝑠𝑢𝑟𝑓 9.70 67.94 26.67 29.97 9.93 1.03 0.33 22.43 35.75 

Δ𝑇 -14.68 39.69 -3.52 0.47 9.55 1.05 20.52 -6.42 6.76 

2023 

𝐷 1.00 365.00 183.00 183.00 105.37 0.00 0.58 92.00 274.00 

𝐻 0.00 23.00 11.50 11.50 6.92 0.00 0.60 5.75 17.25 

𝑇𝑎𝑖𝑟 9.60 34.40 21.50 21.96 4.13 0.17 0.19 19.10 24.90 

𝑃𝑎𝑡𝑚 879.70 895.80 887.50 887.62 2.32 0.15 0.00 886.00 889.20 

𝑅𝐻 17.00 98.00 66.00 64.85 19.70 -0.26 0.30 49.00 83.00 

𝑓𝑓 0.10 7.70 1.90 2.01 1.02 0.61 0.51 1.20 2.70 

𝑇𝑠𝑢𝑟𝑓 12.93 74.15 27.39 30.81 10.20 0.98 0.33 23.03 37.20 

Δ𝑇 -14.23 46.96 -4.34 0.05 9.83 1.09 187.34 -6.93 6.74 

 

Based on Table 6.6,  it can be said that Δ𝑇 showed large CV, but that is due to the close-to-zero 
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value of its mean. Also, training and test sets showed very similar statistics, thus the unseen 

data is almost in its entirety in the range of the training data, presenting very little extrapolation 

to be performed by models of set I. Now, based on Table 6.7 and Table 6.8, for model set II, 

test set data is all in the range of the training data, but the same cannot be affirmed about 

posterior years data.  

In 2021, only 𝑇𝑎𝑖𝑟 shows a minimum value of 8.10, lower than the one from training data, 8.70, 

presenting some degree of extrapolation to be made by the regression model, although it is 

expected to still provide good accuracy, as the difference from 8.70 to 8.10 is small compared 

to the mean value of 𝑇𝑎𝑖𝑟. Furthermore, probably just a few points show values of 𝑇𝑎𝑖𝑟 lower 

than 8.70 and this is only one of the input variables. In 2022 and 2023, inference may not present 

results as accurate as for 2021 data, because they show more variables outside of the training 

data range. In 2022: 𝑇𝑎𝑖𝑟 minimum of 5.30 is lower than 8.70, the minimum from training data; 

𝑃𝑎𝑡𝑚 minimum of 877.30 is lower than the minimum of 879.80; and 𝑓𝑓 maximum of 8.10 is 

higher than the maximum of7.30. In 2023: 𝑃𝑎𝑡𝑚 minimum of 879.70 is slightly lower than 

879.80, the minimum from training data; 𝑅𝐻 minimum of 98 is lower than the minimum of 97; 

and 𝑓𝑓 maximum of 7.70 is higher than the maximum of 7.30. 

6.2.2. Model set I 

In model set I, the time it took for the FEM models to provide the temperature at the bottom of 

the concrete slab to evaluate ∆𝑇 was of 2 full days. The baseline ML model took 3 hours and 

27 minutes in HPO and 2 minutes and 12 seconds in training, thus being much cheaper than the 

FEM model. When using SOFAH algorithm, the evaluated times were 4 hours and 16 minutes 

in HPO and 2 minutes and 33 seconds in training, so, there was still a reduction in time 

compared to the FEM model. For SOFAH2, since it adds a second BO after the one from 

SOFAH, its total time in HPO was 6 hours and 2 minutes, as the training took the same time as 

the others. 

After performing SOFAH, the inputs of Mair
SOFAH, Msurf

SOFAH, and M∆
SOFAH were defined, as shown 

in Table 6.9. Models Mair
SOFAH2, Msurf

SOFAH2, and M∆
SOFAH2 use the same inputs. As shown, SOFAH 

algorithm found that 13 was the optimal number of inputs for 𝑇𝑎𝑖𝑟 predictive models and 12 for 

𝑇𝑠𝑢𝑟𝑓 and Δ𝑇. The addition of 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 to the input space of Δ𝑇 predictive models was done after 
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the feature augmentation step of SOFAH algorithm. 

Table 6.9. Inputs and outputs of SOFAH-based models of model set I 

Model Inputs Output 

Mair
SOFAH 

𝐷−1, 𝐷2, 𝑙𝑜𝑔𝐷, 𝐻, 𝑃𝑎𝑡𝑚
3, 𝑃𝑎𝑡𝑚 ⋅ 𝑓𝑓, 𝑃𝑎𝑡𝑚 ⋅ 𝑅𝐻, 

𝑅𝐻−1, 𝑙𝑜𝑔𝑅𝐻, 𝑅𝐻, 𝑓𝑓−1, 𝑓𝑓2, 𝑓𝑓3 
𝑇𝑎𝑖𝑟 

Msurf
SOFAH 

𝑙𝑜𝑔𝐷, 𝐷 ⋅ 𝑇𝑎𝑖𝑟, 𝐷 ⋅ 𝑓𝑓, 𝐷 ⋅ 𝐻, 𝐻3, 𝐻 ⋅ 𝑇𝑎𝑖𝑟, 𝑃𝑎𝑡𝑚
3, 

𝑃𝑎𝑡𝑚
−1, 𝑅𝐻 ⋅ 𝑓𝑓, 𝑓𝑓2, 𝑓𝑓3, 𝑇𝑎𝑖𝑟

3 
𝑇𝑠𝑢𝑟𝑓 

MΔ
SOFAH 

𝐷−1, 𝐷2, 𝐷 ⋅ 𝑇𝑎𝑖𝑟, 𝐷 ⋅ 𝑓𝑓, 𝐷 ⋅ 𝐻, 𝐻3, 𝐻 ⋅ 𝑃𝑎𝑡𝑚, 

𝑃𝑎𝑡𝑚
3, 𝑅𝐻2, 𝑓𝑓3, 𝑙𝑜𝑔𝑓𝑓,  𝑙𝑜𝑔𝑇𝑎𝑖𝑟, 𝑇𝑠𝑢𝑟𝑓

𝑝𝑟𝑒𝑑
 

Δ𝑇 

For the analysis of model set I results, they were divided by response variable, so, initially 

models Mair, Mair
SOFAH and Mair

SOFAH2 were analyzed. These models were built mostly to evaluate 

if the proposed methodology and the ANN technique was able to predict air temperature based 

on current day, current hour, atmospheric pressure, relative humidity and wind speed. 𝑇𝑎𝑖𝑟 

predictive modeling also served as another opportunity for SOFAH performance evaluation, 

comparing it to baseline methodology. Some performance metrics are shown in Table 6.10, 

RMSE, R², MAPE and SD of Absolute Percentage Error (SDAPE) on training and test sets. 

Table 6.10. Regression evaluation metrics of 𝑇𝑎𝑖𝑟 predictive models of model set I  

Performance metrics 𝐌𝐚𝐢𝐫 𝐌𝐚𝐢𝐫
𝐒𝐎𝐅𝐀𝐇 𝐌𝐚𝐢𝐫

𝐒𝐎𝐅𝐀𝐇𝟐 

RMSE - Training 0.894 0.910 0.872 

RMSE - Test 0.989 0.994 0.980 

R² - Training 0.949 0.947 0.951 

R² - Test 0.940 0.939 0.941 

MAPE - Training 3.31% 3.37% 3.22% 

SDAPE - Training 3.55% 3.67% 3.50% 

MAPE - Test 3.66% 3.68% 3.62% 

SDAPE - Test 4.06% 4.18% 4.16% 

As seen, all three models presented similar very good accuracy, with, on average, R² of 0.94 

and MAPE of 3.65% on test set. The two-step SOFAH algorithm (SOFAH2) reduced RMSE 

when compared to the baseline Mair, but single-step SOFAH did not, although these differences 

are almost neglectable. MAPE also was reduced in Mair
SOFAH2, but the SDAPE increased, 
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indicating more dispersion on the percentage errors. Model Mair predictions of all points are 

shown in Figure 6.4, plotted against observed values and with +/- 10% error margins. Residuals 

of test set are shown in Figure 6.5 on a scatter plot and also on a histogram. 

 
Figure 6.4. Predicted vs. observed values of model Mair on training and test sets 

 

 
Figure 6.5. Model Mair on test set predictions vs.: a) Residuals; b) Relative residuals  
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As seen in predictions vs. observed plot, the vast majority of test set prediction are inside the 

+/- 10% error margins, however, it seems that the most inaccurate predictions are all at low 

values of the response variable, both in training and test. In Figure 6.5 a), it is clear that the 

largest residuals were positive and at low values of Tair. When observing Figure 6.5 b), this 

behavior is even more noticeable, going past 50% of relative residual. These results indicate 

that the model did not learn as accurately how to predict low values of 𝑇𝑎𝑖𝑟, but this is generally 

not a bad result, as both predictions and residuals histograms showed frequency close to that of 

a Normal distribution. 

Permutation Feature Importance (PFI) was evaluated on 𝑁 = 30 permutations of the test set 

and still using model Mair, results are shown in Figure 6.6. As expected, based on the correlation 

analysis performed previously, 𝑅𝐻 and 𝐻 were the most important features for 𝑇𝑎𝑖𝑟 prediction, 

while, surprisingly, 𝐷 also proved to be relevant to this task. The optimal subset of variables 

found by SOFAH for 𝑇𝑎𝑖𝑟 prediction can be seen in Figure 6.7, with 12 features out of 45. 

 
Figure 6.6. PFI results on test set and model Mair 
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Figure 6.7. Optimal feature subset found by SOFAH for 𝑇𝑎𝑖𝑟 prediction 

 

Regression performance metrics were evaluated on 𝑇𝑠𝑢𝑟𝑓 predictive models and shown in Table 

6.11. The accuracy of these models was outstanding, showing R² of nearly 1 and MAPE of less 

than 1% in all three of them. These results are interesting as no input variable showed high 

Pearson’s correlation with the output. Comparing the models, it can be said that SOFAH clearly 

improved Msurf performance in both training and test sets, reducing RMSE, MAPE, SDAPE 

and increasing R², while SOFAH2 improved even further the already excellent models. To 

visualize the difference in accuracy between Msurf and Msurf
SOFAH2, two side-by-side comparisons 

were done in  Figure 6.8 and Figure 6.9. 
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Table 6.11. Regression evaluation metrics of 𝑇𝑠𝑢𝑟𝑓 predictive models of model set I  

Performance metrics 𝐌𝐬𝐮𝐫𝐟 𝐌𝐬𝐮𝐫𝐟
𝐒𝐎𝐅𝐀𝐇 𝐌𝐬𝐮𝐫𝐟

𝐒𝐎𝐅𝐀𝐇𝟐 

RMSE - Training 0.424 0.366 0.279 

RMSE - Test 0.498 0.495 0.412 

R² - Training 0.998 0.999 0.999 

R² - Test 0.997 0.997 0.998 

MAPE - Training 0.87% 0.73% 0.62% 

SDAPE - Training 1.08% 0.89% 0.60% 

MAPE - Test 0.95% 0.85% 0.75% 

SDAPE - Test 1.28% 1.25% 0.97% 

 

 
Figure 6.8. Comparison of predictions vs. residuals of: a) Msurf; b) Msurf

SOFAH2 
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Figure 6.9. Comparison of predictions vs. relative residuals of: a) Msurf; b) Msurf

SOFAH2 

It is evident that Msurf
SOFAH2 showed much less dispersed residuals than Msurf, thus being 

generally a more reliable model. Predictions of Msurf
SOFAH2 were plotted against observed values 

on test set with +/- 10% error margins and shown in Figure 6.10. It is possible to the see how 

the points align with the diagonal line, indicating highly accurate predictions. This accuracy 

was one of the motives that led to adding 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 as input in predictions of Δ𝑇. 

 
Figure 6.10. Predicted vs. observed values of model Msurf

SOFAH2 on test set 
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PFI was evaluated with 𝑁 = 30 permutations on test set with model Msurf
SOFAH2, thus evaluating 

feature importance on the optimal inputs selected by SOFAH algorithm (Figure 6.11). As 

observed, top-5 most important variables consisted of 2 variables of evidently higher 

importance than the rest, 𝐻3 and 𝐻 ∙ 𝑇𝑎𝑖𝑟, then 2 variables of moderately higher importance, 

𝐷 ∙ 𝐻 and 𝐷 ∙ 𝑇𝑎𝑖𝑟, and finally, 𝑇𝑎𝑖𝑟
3. All these 5 variables are composed of only 3 original 

features, 𝐻, 𝑇𝑎𝑖𝑟 and 𝐷, from which, 𝑇𝑎𝑖𝑟 had the highest Pearson’s correlation with the output 

𝑇𝑠𝑢𝑟𝑓. Also, the optimal subset of variables found by SOFAH in 𝑇𝑠𝑢𝑟𝑓 prediction can be seen 

in Figure 6.12, with 12 features out of 54. 

 
Figure 6.11. PFI results on test set and model Msurf

SOFAH2 
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Figure 6.12. Optimal feature subset found by SOFAH for 𝑇𝑠𝑢𝑟𝑓 prediction 

 

Regression evaluation metrics were evaluated on 𝑇Δ predictive models and shown in Table 6.12. 

Values of R² of 0.98 were found in the three models, but MAPE metrics showed inaccurate 

results of more than 30%. Despite being widely used, MAPE is biased towards low predictions 

and cannot be used with zero or close-to-zero values. Based on performed exploratory analysis, 

the response variable ∆𝑇 showed negative minimum, positive maximum and close-to-zero 

mean. Moreover, very high values of SDAPE indicate that there may be some outliers of 

extreme relative residuals, as can be seen in Figure 6.13. 
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Table 6.12. Regression evaluation metrics of Δ𝑇 predictive models of model set I  

Performance metrics 𝐌𝚫 𝐌𝚫
𝐒𝐎𝐅𝐀𝐇 𝐌𝚫

𝐒𝐎𝐅𝐀𝐇𝟐 

RMSE - Training 0.883 0.968 0.863 

RMSE - Test 1.045 1.047 1.006 

R² - Training 0.992 0.990 0.992 

R² - Test 0.987 0.987 0.988 

MAPE - Training 30.06% 32.03% 28.15% 

SDAPE - Training 265.71% 303.79% 245.85% 

MAPE - Test 33.66% 36.62% 32.87% 

SDAPE - Test 165.19% 220.60% 179.17% 

 

 
Figure 6.13. Predictions vs. relative residuals for model MΔ on test set 

When comparing the models, it can be said that M∆
SOFAH did not improve M∆ performance, 

providing worse metrics in training and almost no change in test. On the other hand, M∆
SOFAH2 

did improve the baseline model MΔ, reducing RMSE on test set from 1.045 to 1.006. Predictions 

are plotted against observed values in Figure 6.14. PFI was evaluated with 𝑁 = 30 

permutations on test set with model M∆
SOFAH2, thus evaluating feature importance on the optimal 
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inputs, but know it is compared with PFI on original feature space, that is, implemented on 

model M∆, as shown in Figure 6.15. 

 
Figure 6.14. Predicted vs. observed values of model MΔ

SOFAH2 on test set 

 

 
Figure 6.15. Comparison between PFI on test set and models: a) M∆; b) M∆

SOFAH 
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As expected, 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 showed outstanding importance in both models, as it presented very high 

correlation with ∆𝑇. Analyzing Figure 6.15 a), features 𝐷 and 𝑇𝑎𝑖𝑟 showed noticeable 

importance and it is worth noting that, in Figure 6.15 b), second, third and forth most relevant 

variables consisted of transformations of 𝐷 and 𝑇𝑎𝑖𝑟. The optimal subset of variables found by 

SOFAH in ∆𝑇 prediction can be seen in Figure 6.16, with 13 features out of 55, 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 included. 

 
Figure 6.16. Optimal feature subset found by SOFAH for ∆𝑇 prediction 

 

Another interesting way to visualize the results is by plotting curves with all test set points over 

a 1-month period, showing both observed and predicted values. This was done for model 

Msurf
SOFAH2 predicting January 2020 and for M∆

SOFAH2 predicting July 2020, respectively shown 

in Figure 6.17 and Figure 6.18. The daily cycles of increase and decrease in pavement surface 

temperature and difference in temperature from surface to bottom of the slab can be seen on the 

plots. 



100 

 

 
Figure 6.17. Predictions of 𝑇𝑠𝑢𝑟𝑓 in January 2020 using model Msurf

SOFAH2 

 

 
Figure 6.18. Predictions of ∆𝑇 in July 2020 using model M∆

SOFAH2 

6.2.3. Model set II 

In model set II, since it used data from 5 configurations, the time it took for the FEM models to 

provide ∆𝑇 was of 10 full days. The amount of data used here was in the tens of thousands, so 

the ML model took considerable time in HPO and training. The training was performed from 8 



101 

 

to 10 minutes and HPO varied, approximately 7 hours in baseline methodology, 9.5 hours in 

SOFAH algorithm and 16 hours in SOFAH2. So, even when using datasets of considerable 

number of instances, the ANNs still were much faster than the FEM models. 

The inputs and outputs of model set II, as mentioned, are the same as the ones obtained by the 

SOFAH algorithm on model set I, with the addition of ℎ1 and ℎ2 (Table 6.13). Both ℎ1 and ℎ2 

were added after the feature augmentation step of SOFAH. 

Table 6.13. Inputs and output of each full model (configurations I-V) 

Model Inputs Output 

FMsurf 
𝑙𝑜𝑔𝐷, 𝐷 ⋅ 𝑇𝑎𝑖𝑟, 𝐷 ⋅ 𝑓𝑓, 𝐷 ⋅ 𝐻, 𝐻3, 𝐻 ⋅ 𝑇𝑎𝑖𝑟, 𝑃𝑎𝑡𝑚

3, 

𝑃𝑎𝑡𝑚
−1, 𝑅𝐻 ⋅ 𝑓𝑓, 𝑓𝑓2, 𝑓𝑓3, 𝑇𝑎𝑖𝑟

3, ℎ1, ℎ2 
𝑇𝑠𝑢𝑟𝑓 

FMΔ 
𝐷−1, 𝐷2, 𝐷 ⋅ 𝑇𝑎𝑖𝑟, 𝐷 ⋅ 𝑓𝑓, 𝐷 ⋅ 𝐻, 𝐻3, 𝐻 ⋅ 𝑃𝑎𝑡𝑚, 

𝑃𝑎𝑡𝑚
3, 𝑅𝐻2, 𝑓𝑓3, 𝑙𝑜𝑔𝑓𝑓,  𝑙𝑜𝑔𝑇𝑎𝑖𝑟, 𝑇𝑠𝑢𝑟𝑓

𝑝𝑟𝑒𝑑
, ℎ1, ℎ2 

Δ𝑇 

Using data from all five configurations, model set II was created and the predictive accuracy of 

the models was evaluated on test set, 2021, 2022 and 2023 data separately. Results for model 

FMsurf are shown in Figure 6.15, from which can be said the accuracy on unseen data from 

2019-2020 data was outstanding, achieving R² of approximately 1 and MAPE lower than 

0.50%. Predictions performed on 2021, 2022 and 2023 data were also outstanding, although 

not as good as on 2019-2020 data, specially on 2023. This is expected, because of the previously 

performed analysis on the range of the features that showed some inputs were outside of the 

training range, specially in 2022 and 2023. Predictions on the mentioned data sets are shown in 

Figure 6.19. 

Table 6.14. Performance metrics of FMsurf predictions on test set, 2021, 2022 and 2023 data 

Performance 

metrics 

𝐅𝐌𝐬𝐮𝐫𝐟 (2019-

2020 test set) 

𝐅𝐌𝐬𝐮𝐫𝐟 

(2021) 

𝐅𝐌𝐬𝐮𝐫𝐟 

(2022) 

𝐅𝐌𝐬𝐮𝐫𝐟 

(2023) 

MSE 0.056 0.100 0.118 0.555 

RMSE 0.236 0.316 0.343 0.745 

R² 0.999 0.999 0.999 0.995 

MAPE 0.39% 0.48% 0.52% 1.00% 

SDAPE 0.51% 0.73% 1.15% 2.21% 
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Figure 6.19. Predicted vs. observed values for FMsurf on data from: a) 2019-2020 test set; b) 

2021; c) 2022; d) 2023 

As observed in Figure 6.19, a) provided most accurate predictions, b) and c) showed slightly 

worse accuracy, and d) had some outliers in regression residuals, with predictions far above the 

diagonal line and +/- 10% error margins, that is, predicting higher values than observed ones. 

The same analyses were done for model FM∆, as its performance metrics are shown in Table 

6.15. In similar way to FMsurf, predictions on 2019-2020 test set and 2021 were very good, 

particularly 2019-2020 and, as expected, 2022 and 2023 showed worse accuracy, although still 

very accurate, showing R² higher than 0.970. MAPE metric provided high values but probably 
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because of the close-to-zero values of ∆𝑇. Predictions on all these four sets of data are shown 

in Figure 6.20. 

Table 6.15. Performance metrics of FM∆ predictions on test set, 2021, 2022 and 2023 data 

Performance 

metrics 

𝐅𝐌∆ (2019-

2020 test set) 
𝐅𝐌∆ (2021) 𝐅𝐌∆ (2022) 𝐅𝐌∆ (2023) 

MSE 0.054 1.413 2.430 2.146 

RMSE 0.233 1.189 1.559 1.465 

R² 0.999 0.985 0.973 0.978 

MAPE 6.31% 37.22% 95.94% 49.71% 

SDAPE 43.60% 302.56% 901.45% 436.05% 

 

 
Figure 6.20. Predicted vs. observed values for FM∆ on data from: a) 2019-2020 test set; b) 

2021; c) 2022; d) 2023 
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As seen in Figure 6.20 a), predictions on the test set (2019-2020 data) were extremely accurate, 

but in b), c) and d), the predictions seem to be more accurate on higher values of Δ𝑇, as the 

points are between the 10% error margins. In 2022 data, on average, predictions were the least 

accurate of them all. In 2023 data, it is visually clear that there were some outliers of poor 

accuracy. Figure 6.21 shows most important features for Δ𝑇 predictions, indicating that 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 

kept the very high importance shown by the models developed only with configuration I data 

(Figure 6.15). Current day and air temperature also kept considerable importance, but current 

hour (𝐻) showed increased importance. 

 
Figure 6.21. PFI on test set and model FMΔ 

 

6.2.4. Uncertainty quantification analysis 

By observing the distribution of this model’s predictions compared to the distribution of 

observed values, it is possible to quantify the uncertainty in these models. Both distributions 

were plotted and shown in Figure 6.22, Figure 6.23, and Figure 6.24 for pavement surface 

temperature, 𝑇𝑠𝑢𝑟𝑓, respectively in 2021, 2022 and 2023. 
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Figure 6.22. Distribution of observed and predicted values of 𝑇𝑠𝑢𝑟𝑓 in 2021 

 

 
Figure 6.23. Distribution of observed and predicted values of 𝑇𝑠𝑢𝑟𝑓 in 2022 

 

 
Figure 6.24. Distribution of observed and predicted values of 𝑇𝑠𝑢𝑟𝑓 in 2023 
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As observed, all the three distributions are very similar to each other, in addition, the 

distribution of predicted values was very close to the distribution of observed values in 2021, 

2022 and 2023, highlighting how small the error was in the developed models. Statistics of 

observations and predictions for 2021, 2022 and 2023 are shown in Table 6.16, complementing 

the graphical analysis. As observed, almost all the statistics are very similar, for all the three 

analyzed years, with the only considerable difference in the minimum value in 2022. 

Table 6.16. Statistics of observed and predicted 𝑇𝑠𝑢𝑟𝑓 in posterior years 

Output 
2021 2022 2023 

𝑻𝒔𝒖𝒓𝒇
𝒑𝒓𝒆𝒅

 𝑻𝒔𝒖𝒓𝒇 𝑻𝒔𝒖𝒓𝒇
𝒑𝒓𝒆𝒅

 𝑻𝒔𝒖𝒓𝒇 𝑻𝒔𝒖𝒓𝒇
𝒑𝒓𝒆𝒅

 𝑻𝒔𝒖𝒓𝒇 

Min 12.67 12.43 11.87 9.70 12.81 12.93 

Max 75.92 79.78 67.66 67.94 70.39 74.15 

Median 26.54 26.57 26.61 26.67 27.43 27.39 

Mean 30.01 30.04 29.95 29.97 30.81 30.81 

SD 10.13 10.17 9.90 9.93 10.19 10.20 

Skew 1.04 1.06 1.02 1.03 0.97 0.98 

CV 0.34 0.34 0.33 0.33 0.33 0.33 

Q1 22.36 22.33 22.43 22.43 23.01 23.03 

Q3 36.26 36.24 35.78 35.75 37.37 37.20 

 

For ∆𝑇 predictive models, the same analyses were done, as shown in Figure 6.25, but positive 

and negative values of ∆𝑇 were separated to provide better visualization of days and nights, as 

days present mostly positive values, since the temperature is higher on the surface than on the 

bottom of the concrete slab. In nights, it is the opposite, the bottom still has elevated temperature 

but the air and surface temperatures decrease, thus showing mostly negative values. 
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Figure 6.25. Distribution of observed and predicted values of ∆𝑇 in 2021: a) negative; b) 

positive 

As observed, the day shows a bimodal distribution, where the first peak occurs due to the first 

and last hours of the day, when the temperature at the bottom of the concrete slab is almost the 

same as at the surface. For most of the day, the second peak occurs, with a positive value of 

approximately 15 ºC. The night distribution shows only one peak, as ∆𝑇 is always negative. 

During day, observed and predicted distributions are almost identical, as in night it differs a bit. 

Figure 6.26 and Figure 6.27 show the same comparison, but for 2022 and 2023. 

 

 
Figure 6.26. Distribution of observed and predicted values of ∆𝑇 in 2022: a) negative; b) 

positive 
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Figure 6.27. Distribution of observed and predicted values of ∆𝑇 in 2023: a) negative; b) 

positive 

As expected, in 2022 and 2023 the distribution of predicted values is quite different from the 

one of observed values in some intervals. The peaks observed in Figure 6.26 a) and b) are 

clearly some of the intervals of worse predictions. Statistics of observations and predictions are 

shown in Table 6.17 and Table 6.18, respectively with negative and positive values. Observing 

the negative values statistics, it is possible to see that they are mostly very similar, with only 

small differences. Analyzing the positive values statistics, they presented the most differences, 

highlighting Q1 and mean in 2022. In general, the measured values are similar enough. 

Table 6.17. Statistics of observed and predicted negative values of ∆𝑇 in posterior years 

Output 
2021 2022 2023 

∆𝑻𝒑𝒓𝒆𝒅 ∆𝑻 ∆𝑻𝒑𝒓𝒆𝒅 ∆𝑻 ∆𝑻𝒑𝒓𝒆𝒅 ∆𝑻 

Min -13.96 -14.51 -17.27 -14.68 -13.66 -14.23 

Max 0.00 -0.01 0.00 -0.01 0.00 -0.01 

Median -5.86 -5.89 -5.89 -5.48 -5.44 -6.09 

Mean -5.88 -6.01 -5.89 -5.62 -5.53 -6.07 

SD 2.55 2.67 2.55 2.74 2.53 2.67 

Skew -0.08 -0.08 -0.21 -0.24 -0.10 0.04 

CV -0.43 -0.44 -0.43 -0.49 -0.46 -0.44 

Q1 -7.53 -7.84 -7.53 -7.51 -7.30 -7.87 

Q3 -4.18 -4.26 -4.19 -3.70 -3.81 -4.36 
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Table 6.18. Statistics of observed and predicted positive values of ∆𝑇 in posterior years 

Output 
2021 2022 2023 

∆𝑻𝒑𝒓𝒆𝒅 ∆𝑻 ∆𝑻𝒑𝒓𝒆𝒅 ∆𝑻 ∆𝑻𝒑𝒓𝒆𝒅 ∆𝑻 

Min 0.00 0.01 0.00 0.01 0.00 0.01 

Max 42.13 46.71 38.79 39.69 42.41 46.96 

Median 12.14 12.04 12.04 11.83 12.73 12.48 

Mean 12.20 12.14 12.02 11.59 12.34 12.21 

SD 7.11 7.21 6.85 7.25 7.27 7.24 

Skew 0.37 0.41 0.32 0.31 0.21 0.28 

CV 0.58 0.59 0.57 0.63 0.59 0.59 

Q1 6.81 6.74 6.67 5.53 6.54 6.65 

Q3 16.99 16.87 16.67 16.59 17.48 17.18 
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7. CONCLUSION 

In the present work, GPU-accelerated data-driven models with Artificial Neural Networks 

(ANN) of vanilla architecture, Multilayer Perceptron (MLP), were created for four different 

datasets, to predict: residuary resistance of sailing yachts; heating load and cooling load on 

energy-efficient building; net section capacity of Steel Bolted Angles (SBA) under axial 

tension; and air temperature, concrete pavement surface temperature (𝑇𝑠𝑢𝑟𝑓) and difference 

between temperature on surface and bottom of the concrete slab (Δ𝑇). These models were 

developed with a baseline methodology and with an algorithm that addresses Hyperparameter 

Optimization (HPO) and Feature Selection (FS) simultaneously, named SOFAH, Simultaneous 

Optimization of Feature Augmentation and Hyperparameters. 

In general conclusion, it can be stated that: 

• PFI algorithm indeed did not handle well highly correlated input features; 

• Although a usual metric, MAPE metric proved to be misleading when the response 

variable presented close-to-zero values, as it showed poor results in very accurate models; 

• Baseline methodology proved to be very efficient, providing greatly accurate ML models; 

• The chosen details of the baseline methodology performed well: optimization of 

hyperparameters with BO, parallelization strategies, convergence criterium for BO, usage 

of AMSGrad optimizer in training, inference with ensemble behavior, choice of 

regularization techniques, etc; 

• Insights on important features on the analyzed engineering problems were acquired; 

• Even if not providing a proper equation for prediction, the accuracy of the ANN models 

was outstanding; 

• Machine Learning techniques and data-driven modeling proved to be powerful tools for 

predicting variables in different engineering-related problems. 

7.1. UC IRVINE REPOSITORY DATASETS 
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Yacht Hydrodynamics (YAH) and Energy Efficiency (ENEFF) datasets were used for 

performance evaluation of the presented baseline methodology and SOFAH algorithm, as both 

datasets are publicly available in the widely known UC Irvine repository (KELLY; 

LONGJOHN; NOTTINGHAM, n.d.). Because of that, many results are available in published 

researches to compare with the ones obtained in the present work. So, it can be concluded that: 

• Very Accurate ANN models were created for the given datasets, achieving, in test set, R² 

of at least 0.99; 

• When comparing to other authors results, the presented methodology and SOFAH 

algorithm showed better metrics and accuracy overall; 

• Based on the comparison, the two main methodologies of ML modeling implemented in 

the present work are competitive. 

7.2. COLD-FORMED STEEL BOLTED ANGLES NET SECTION CAPACITY 

The investigation of SBA net section resistance was motivated by the debilitating effects of 

shear lag and eccentricity of connection that make the evaluation of this property not trivial. 

Furthermore, there is no consensus on its mathematical formulation on standards equations 

across the world nor on equations proposed by other researchers. These elements are commonly 

connected by only one leg in transmission towers and communication towers. Based on the 

developed research, it can be affirmed that: 

• PFI evaluation showed that, among the analyzed features, thickness and width of the 

connected leg were the most important variables when calculating net section capacity of 

cold-formed steel bolted angles under axial tension in the developed models; 

• The addition of numerical data to the experimental training data did not improve accuracy 

in all cases, but provided the best performing non-SOFAH model, MExp−Num/5, showing, 

on the test set, R² of 0.98, MAPE of 5.70% and RMSE of 5.43; 

• Models with reduced number of inputs showed satisfactory accuracy, as even the ones 

with only 3 inputs had good values of regression evaluation metrics; 
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• Even when compared with some of the most known standards in use across the world and 

proposed equations by relevant works on the theme, ML modeling proved to be very 

efficient and accurate; 

• The incorporation of predictions from standards’ equations to the training set created 

more conservative ML models that perform better in a wider domain; 

• Specifically for the test set analyzed, AISI equation was much more accurate than 

Eurocode one; 

• AISI equation tends to give highly conservative results for angles with high values of 

𝑥̅/𝐿. 

7.3. TEMPERATURE VARIATIONS IN CONCRETE PAVEMENT 

Complex phenomena are involved in heat transfer on concrete pavement, affected by solar 

radiation, conduction between layers and convection. As there is a growing trend in Brazil of 

using more rigid pavements, predicting accurately the surface temperature and differential 

temperature through the system’s layers is fundamental to design these pavements. Regarding 

the theme, it can be said that: 

• The trained ANNs predicted accurately 𝑇𝑎𝑖𝑟, 𝑇𝑠𝑢𝑟𝑓 and Δ𝑇, either when considering a 

single configuration of concrete pavement or when varying base and concrete slab 

thicknesses; 

• Concrete slab and base thickness of the pavement system were successfully incorporated 

as features in the ML models; 

• Considering all the models, the performance metrics achieved were of at least 0.94 for R² 

on test set, thus representing highly accurate models; 

• For air temperature, 𝑇𝑎𝑖𝑟, prediction, relative humidity showed very high importance, and 

current day and current hour moderate importance; 

• In 𝑇𝑠𝑢𝑟𝑓 predictive models, it was clear that current hour, air temperature and current day 

were the most important variables; 
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• For Δ𝑇 predictions, 𝑇𝑠𝑢𝑟𝑓
𝑝𝑟𝑒𝑑

 , that is, predicted surface temperature, was fundamental to the 

high accuracy achieved, but also, current day and air temperature showed noticeable 

importance; 

• Models trained on 2019 and 2020 data were able to predict quite accurately 𝑇𝑠𝑢𝑟𝑓 and Δ𝑇 

on 2021, 2022 and 2023 data, even if performing some extrapolation; 

• The distribution of predictions in posterior years was analyzed and compared with the 

distribution of observed values, measuring the uncertainty present in the developed 

models and their predictions; 

• The developed MLP proved to be great surrogate models for the FEM models developed 

on ABAQUS, as they had much lower computational cost. 

7.4. SIMULTANEOUS OPTIMIZATION OF FEATURE AUGMENTATION AND 

HYPERPARAMETERS 

The implemented SOFAH algorithm worked as a second methodology in the present work, 

where additional information was introduced into the original feature set by performing square, 

cube, reciprocal, and logarithm transforms, and multiplications of all combinations of two 

features. Optimal, or close to optimal, subsets of features were found by the algorithm 

automatically, based on Bayesian optimization. About this topic, it can be stated that: 

• The algorithm was successfully implemented, applying BO to simultaneous HPO and FS; 

• SOFAH improved almost all of the already very accurate baseline models, while adding 

information to them, but with additional computational cost; 

• The best increase in performance achieved by SOFAH was an improvement of 12% in 

RMSE of a SBA model; 

• Most of the times, the two-step methodology, SOFAH2, was required to show any 

improvement, resulting in an even bigger increase in computational cost; 

• The time taken by the algorithm varied a lot and proved to be highly dependent on the 



114 

 

number of iterations performed in Bayesian Optimization, thus depending on the 

achievement of the convergence criterion; 

• If the objective is to obtain the most accurate model, SOFAH is a viable and competitive 

algorithm, but if a very accurate model suffices, it added computational cost with little 

improvement in performance. 

7.5. SUGGESTIONS FOR FUTURE WORKS 

In future works, it is suggested that: 

• More data is acquired regarding net section failure in SBA to form a larger database, 

aiming to train ML models in wider ranges of variables and obtain better accuracy; 

• The numerical database of ABAQUS simulations on concrete pavement is expanded 

through new simulations, including temperatures on varying depths of the concrete slab 

and, possibly, resulting in multi-output regression models that predict all of them 

simultaneously; 

• SOFAH algorithm is further developed, testing other optimization algorithms, like 

genetic algorithms; 

• More feature importance techniques are tested, like Shapley additive explanations; 

• More uncertainty quantification analyses are performed; 

• Some principles of transfer learning and physics-informed neural networks are 

implemented in the study. 
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