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"I seem to have been only like a boy playing on the seashore, and diverting myself in now
and then finding a smoother pebble or a prettier shell than ordinary, whilst the great

ocean of truth lay all undiscovered before me”.
(Isaac Newton)
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Resumo

Neste trabalho, investigam-se fluidos complexos inovadores, de grande relevân-
cia para futuras aplicações em engenharia. Esses fluidos são classificados em dois grupos:
ativos e passivos. No que diz respeito aos fluidos ativos, abordam-se duas suspensões mag-
netoreológicas (MRS): uma contendo partículas de magnetita dispersas em óleo mineral,
e outra formada pela dispersão de ferro carbonílico no mesmo fluido base. Vale destacar
que as estruturas induzidas nesses fluidos pela aplicação de um campo magnético pos-
suem escala micrométrica. São considerados fluidos ativos devido à capacidade de suas
propriedades reológicas serem moduladas ativamente por campos magnéticos externos.
Verifica-se ainda um aumento expressivo nas propriedades reológicas em comparação com
os ferrofluidos, cujos solutos possuem escala nanométrica. Quanto aos fluidos passivos,
estudam-se a reologia de suspensões de nanotubos de carbono de parede múltipla e de
oleogéis — suspensões de fibras de celulose em uma matriz de amido de batata e óleo de
soja. Além do interesse acadêmico, esses fluidos apresentam grande potencial para apli-
cações práticas, como na redução de arrasto em fluidos com fibras rígidas, no caso dos
nanotubos, e em setores como a indústria alimentícia e cosmética, no caso dos oleogéis.

O trabalho adota uma abordagem teórico-empírica, empregando três metodolo-
gias experimentais principais. A primeira metodologia envolve ensaios de cisalhamento
contínuo, realizados tanto na presença quanto na ausência de campo magnético. Esses
testes permitem examinar a viscosidade aparente e a tensão de cisalhamento dos fluidos
em função da taxa de cisalhamento e da fração volumétrica de partículas, além da de-
pendência dessas propriedades em relação à intensidade do campo magnético, no caso
das MRs. Essa análise possibilita a verificação da aderência ao comportamento predito
por modelos de fluido newtoniano generalizado. A segunda metodologia aborda ensaios
de escoamento transiente, baseados na aplicação de impulsos de deformação, tanto com
quanto sem campo magnético. A partir desses experimentos, são obtidas as funções de
relaxação de tensão para os diferentes fluidos, as quais, no caso das MRs, dependem tam-
bém da intensidade do campo magnético. Com base nessas funções, calculam-se os tempos
de relaxação dos fluidos. Observa-se, nas suspensões magnetoreológicas, que a tensão de
cisalhamento não se reduz a zero na presença de um campo magnético, mas converge
para um valor residual, o qual é avaliado em função da intensidade do campo. A ter-
ceira metodologia refere-se aos testes de cisalhamento oscilatório, realizados no regime de
viscoelasticidade linear, também sob diferentes intensidades de campo magnético. Nesses
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ensaios, são determinados os módulos viscoelásticos dos fluidos em função da frequência
de oscilação, sendo que, para as MRs, a intensidade do campo magnético também é con-
siderada. Além disso, o módulo de cisalhamento elástico no limite de baixa frequência é
calculado e analisado em termos da fração volumétrica de partículas e da intensidade do
campo magnético.

Palavras-chaves: Suspensão magnetoreológica, Nanotubos de carbono de parede múlti-
pla, oleogéis efeito magnetoviscoso, efeito pseudoplástico, módulos viscoelásticos, função
relaxação de tensão, tensão residual, anisotropia.

vi



Abstract

This work investigates innovative complex fluids that are highly relevant for future
engineering applications. These fluids are classified into two groups: active and passive.
Regarding active fluids, two magnetorheological suspensions (MRS) are studied: one con-
taining magnetite particles dispersed in mineral oil and the other formed by dispersing
carbonyl iron in the same base fluid. It is important to highlight that the structures in-
duced in these fluids by the application of a magnetic field are on a micrometric scale.
These fluids are considered active because their rheological properties can be actively
modulated by external magnetic fields. Additionally, a significant increase in the rheo-
logical properties of MRS is observed compared to ferrofluids, whose solutes are on a
nanometric scale. As for passive fluids, the study focuses on the rheology of multi-walled
carbon nanotube suspensions and oleogels — which consist of cellulose fibers dispersed
in a matrix of potato starch and soybean oil. Beyond academic interest, these fluids have
great potential for practical applications, such as drag reduction in fluids with rigid fibers
(as in the case of carbon nanotubes) and in the food and cosmetic industries (as in the
case of oleogels).

This work follows a theoretical-empirical approach and employs three main ex-
perimental methodologies. The first methodology involves steady shear tests, conducted
both in the presence and absence of a magnetic field. These tests allow for the evalua-
tion of the apparent viscosity and shear stress of the fluids as a function of shear rate
and particle volume fraction. In the case of MRS, the dependence of these properties on
the magnetic field intensity is also assessed. This analysis verifies whether the rheologi-
cal behavior of these fluids adheres to generalized Newtonian fluid models. The second
methodology focuses on transient flow tests, applying deformation pulses both with and
without a magnetic field. From these experiments, the stress relaxation functions of the
different fluids are obtained, which, in the case of MRS, also depend on the magnetic field
intensity. Based on these functions, the relaxation times of the fluids are calculated. It
is observed that, in magnetorheological suspensions, the shear stress does not decay to
zero in the presence of a magnetic field but instead converges to a residual stress, which
is evaluated as a function of the field intensity.The third methodology involves oscillatory
shear tests, conducted under conditions of linear viscoelasticity and varying magnetic field
intensities. In these tests, the viscoelastic moduli of the fluids are determined as a function
of the oscillation frequency, with the magnetic field intensity also considered in the case
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of MRS. Additionally, the elastic shear modulus is calculated in the low-frequency limit
and analyzed in terms of particle volume fraction and magnetic field intensity.

Key-words:Magnetorheological suspension, Multi-walled carbon nanotubes, Oleogels,
Magnetoviscous effect, Pseudoplastic effect, Viscoelastic moduli, Stress relaxation func-
tion, Residual stress, Anisotropy.
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Figure 56 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional
stress relaxation function Φ* for 𝛼 = 2.63 (relative to a current of 1A).
The curve is a fit of the experimental data to the following expression:
Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 3.51×

102 ± 3.96 × 100, 𝐴2 = 1.59 × 102 ± 2.20 × 100, 𝜏 *
1 = 𝜏 *

𝑚 = 1, 𝜏 *
2 =

1.87 × 10−1 ± 8.65 × 10−2 and Φ*
𝑅 = 1.47 × 100 ± 7.11 × 10−1. . . . . . 103

Figure 57 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional
stress relaxation function Φ* for 𝛼 = 4.55 (relative to a current of 2A).
The curve is a fit of the experimental data to the following expression:
Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 3.04×

102±1.86×100, 𝐴2 = 1.14×102±5.21×100, 𝜏 *
1 = 1.23×100±1.93×10−1,

𝜏 *
2 = 3.31 × 10−1 ± 2.67 × 10−2 and Φ*

𝑅 = 1.76 × 100 ± 1.75 × 10−1. . . 103
Figure 58 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional

stress relaxation function Φ* for 𝛼 = 6.11 (relative to a current of 3A).
The curve is a fit of the experimental data to the following expression:
Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 2.46×

102 ±2.77×100, 𝐴2 = 1.14×102 ±5.21×100, 𝜏 *
1 = 6.32×10−1 ±3.07×

10−2, 𝜏 *
2 = 6.99 × 10−2 ± 3.76 × 10−3 and Φ*

𝑅 = 2.22 × 100 ± 1.43 × 10−1.104
Figure 59 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional

stress relaxation function Φ* for 𝛼 = 7.19 (relative to a current of 4A).
The curve is a fit of the experimental data to the following expression:
Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 3.33×

102±1.80×100, 𝐴2 = 2.22×102±7.93×100, 𝜏 *
1 = 5.38×10−1±2.57×100,

𝜏 *
2 = 6.99 × 10−2 ± 1.96 × 10−3 and Φ*

𝑅 = 1.28 × 100 ± 4.44 × 10−1. . . 104
Figure 60 – Magnetorheological suspension of magnetite: dimensionless mean time
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Figure 61 – Magnetorheological suspension of iron: dimensionless time of relax-
ation 𝜏 * as a function of the magnetic parameter 𝛼. The data points
correspond to different values of magnetic particle volume fraction:
(□) - 0.2%, (■) - 0.4%, (∘) - 0.6%, (∙) - 0.8% and (△) - 1%. The
curves are fits of the experimental data to the following equation:
𝜏 *

𝑚 = 𝑐0 +𝑐1𝛼. The parameters are: ( ): 𝑐0 = 9.25×10−1 ±7.10, ×10−2

and 𝑐1 = 3.99 × 10−2 ± 1.32 × 10−2; ( ): 𝑐0 = 1.05 × 100 ± 2.01 × 10−1

and 𝑐1 = 2.23 × 10−1 ± 3.73 × 10−2; ( ): 𝑐0 = 4.83 × 100 ± 5.31 × 10−2

and 𝑐1 = 9.86 × 10−1 ± 9.84 × 10−3; ( ): 𝑐0 = 1.20 × 101 ± 2.36 × 10−1

and 𝑐1 = 1.14×10−1±4.37×10−2 and ( ): 𝑐0 = 1.26×101±3.84×10−1

and 𝑐1 = 4.50 × 10−2 ± 7.11 × 10−3. . . . . . . . . . . . . . . . . . . . . 108
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𝑅 as a function of the magnetic parameter 𝛼. The data points cor-
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- 0.2%, (□) - 1%. The curves are fits of the experimental data to
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𝑅 = 𝑐0𝛼
𝑐1 . The parameters are: ( ): 𝑐0 =

3.69 × 100 ± 9.94 × 10−2 and 𝑐1 = 1.41 × 101 ± 1.37 × 10−2; ( ):
𝑐0 = 1.70 × 10−1 ± 1.17 × 10−2 and 𝑐1 = 5.68 × 100 ± 3.61 × 10−1. . . . 109
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𝑅

as a function of the magnetic parameter 𝛼. The data points correspond
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Figure 67 – Apparent viscosity evaluated evaluated at the strongest flow applied
𝜂∞/𝜂𝑤 as a function of the volumetric fraction 𝜑 of multi-walled carbon
nanotubes (MWCN). The curve is a fit of the first four experimental
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Figure 74 – Nondimensional residual stress 𝜎*
𝑅 as a function of the particle volume
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Figure 84 – Micrography of a sample of the oleogel S50C50 for the same magnifi-
cation of 50X magnification. . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 85 – Viscosity as a function of shear rate for soybean oil at different tem-
peratures. ∙ - T= 20∘C, ■ - T= 30∘C, and ▲ - T= 40∘C. Experimental
error bars are shown. The behavior is notably Newtonian across all
tested temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 86 – Viscosity as a function of temperature for soybean oil. Experimental
error bars are displayed for each point. The fitted curve follows the
Arrhenius model: 𝜂(𝑇 ) = 𝑝1 exp(−𝑝2𝑇

𝑝3), with constants 𝑝1 = 1.81 ×
103, 𝑝2 = 1.77 × 100, and 𝑝3 = 2.34 × 10−1. . . . . . . . . . . . . . . . . 138

Figure 87 – Viscosity as a function of shear rate for the base mixture S80C20. ∙ -
T= 20∘C, × - T= 30∘C, ■ - T= 40∘C, ⋆ - T= 50∘C, and ▲ - T= 60∘C.
Experimental error bars are shown. . . . . . . . . . . . . . . . . . . . . 139

Figure 88 – Viscosity as a function of temperature for the base mixture S80C20
under two shear rate conditions: ∙ - �̇� ≪ 1 and ⋆ - �̇� ≫ 1. Experimental
error bars are shown. The fitted curves follow the Arrhenius model, with
the first (-) given by 𝜂(𝑇 ) = 𝑝1 exp(−𝑝2𝑇

𝑝3), where 𝑝1 = 1.76 × 10−1,
𝑝2 = −1.21 × 101, and 𝑝3 = −9.39 × 10−2. The second (- -) is given by
𝜂(𝑇 ) = 𝑝4 exp(−𝑝5𝑇

𝑝6), where 𝑝4 = 1.41 × 102, 𝑝5 = 2.17 × 100, and
𝑝6 = 1.83 × 10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 89 – Apparent viscosity as a function of shear rate for the oleogel with com-
position S100C0 in soybean oil. The experiment was conducted at a
constant temperature of 20∘C. Experimental error bars are shown. . . . 141

Figure 90 – Apparent viscosity as a function of shear rate for the oleogel with com-
position S80C20 in soybean oil. The experiment was conducted at a
constant temperature of 20∘C. Experimental error bars are shown. . . . 142

Figure 91 – Oleogel S80C20 - Apparent viscosity as a function of time for three
different shear rates: the critical rate, one just below the critical rate,
and one above. For this fluid, the critical shear rate was determined
to be �̇�𝑐 = 1.26 × 100 𝑠−1. The shear rates in the vicinity, based on
experimental data, are: �̇�1 = 9.98 × 10−1 𝑠−1 and �̇�2 = 1.58 × 100 𝑠−1.
Note that ○−𝜂(�̇�𝑐) > ♢−𝜂(�̇�1) > □−𝜂(�̇�2), characterizing anomalous
behavior. The lines correspond to the average viscosity value assigned
to each applied shear rate. The experiment was conducted at a constant
temperature of 20∘C. Experimental error bars are shown. . . . . . . . . 143

xix



Figure 92 – Apparent viscosity as a function of shear rate for all tested oleogels,
with only the typical behavior range (�̇� > 1 𝑠−1) depicted. Experiments
were conducted at a constant temperature of 20∘C. Experimental error
bars are shown. The curves represent fits of the experimental data to
the generalized Sisko fluid rheological model. ∙ - S100C0 + soybean oil,
× - S80C20 + soybean oil, ■ - S50C50 + soybean oil, ⋆ - S20C80 +
soybean oil, and ▲ - S0C100 + soybean oil. . . . . . . . . . . . . . . . 145

Figure 93 – The figure shows the effective viscosity as a function of the mass fraction
of cellulose fibers, 𝑤𝑐, with error bars. The solid line represents the fit
to the experimental data using a third-order virial expansion: 𝜂∞ =
𝑏0(1 + 𝑏1𝑤𝑐 + 𝑏2𝑤

2
𝑐 + 𝑏3𝑤

3
𝑐 ), where 𝑏0 = 0.34, 𝑏1 = −1.22, 𝑏2 = 37.09,

and 𝑏3 = −18.26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 94 – Apparent viscosity as a function of shear rate for all tested oleogels, with

only the anomalous behavior range (�̇� ≤ 1 𝑠−1) depicted. Experiments
were conducted at a constant temperature of 20∘C. Experimental error
bars are shown. ∙ - S100C0 + soybean oil, × - S80C20 + soybean oil,
■ - S50C50 + soybean oil, ⋆ - S20C80 + soybean oil, and ▲ - S0C100
+ soybean oil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 95 – Elastic modulus 𝐺′ as a function of shear strain 𝛾 for a fixed excitation
frequency 𝜔 of 100 rad/s, with experimental error bars. The temper-
ature is fixed at 20∘𝐶. This graph shows the behavior of all tested
oleogels. ▲ - S0C100, ⋆ - S50C50, and × - S100C0. Based on these re-
sults, the reference strain 𝛾0 = 0.001 was selected for frequency sweep
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure 96 – Elastic modulus 𝐺′ as a function of excitation frequency 𝜔 for all ana-
lyzed oleogels, with experimental error bars. The reference strain 𝛾0 is
fixed at 0.001. ▲ - S0C100, ⋆ - S20C80, ■ - S50C50, × - S80C20, and
∙ - S100C0. The temperature is fixed at 20∘𝐶. . . . . . . . . . . . . . . 150

Figure 97 – Shear elastic modulus 𝐺0 for the oleogels as a function of cellulose
mass fraction 𝑤𝑐, with experimental error bars. The experiment was
conducted at a controlled temperature of 20∘𝐶. The curve is a fit of the
experimental data to an expression of the type: 𝐺0(𝑤𝑐) = 𝑝1 exp(𝑝2𝑤𝑐).
The fitting parameters are: 𝑝1 = 8.05 × 102 and 𝑝2 = 4.62 × 100. . . . . 151

Figure 98 – Loss modulus (viscous) 𝐺′′ as a function of excitation frequency 𝜔 for
all analyzed oleogels, with experimental error bars. The reference strain
𝛾0 is fixed at 0.001. ▲ - S0C100, ⋆ - S20C80, ■ - S50C50, × - S80C20,
and ∙ - S100C0. The temperature is fixed at 20∘𝐶. The lines represent
the average values of 𝐺′′ evaluated under small amplitude oscillatory
shear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xx



Figure 99 – Oleogel viscosity 𝜂0 for excitation frequency tending to zero as a func-
tion of cellulose mass fraction 𝑤𝑐. Experimental error bars are shown for
the data points. The experiment was conducted at a controlled tem-
perature of 20∘𝐶. The curve is a fit of the experimental data to an
expression of the type: 𝜂0(𝑤𝑐) = 𝑝1 + 𝑝2 exp(𝑝3𝑤𝑐). The fitting param-
eters are: 𝑝1 = 4.09 × 105, 𝑝2 = 3.67 × 100, and 𝑝3 = 1.27 × 103. . . . . 153

Figure 100 – Main relaxation time 𝜏 of the oleogels as a function of cellulose mass
fraction 𝑤𝑐, with experimental error bars. The experiment was con-
ducted at a controlled temperature of 20∘𝐶. The curve is a fit of the ex-
perimental data to an expression of the type: 𝜏(𝑤𝑐) = 𝑝1+𝑝2 exp(𝑝3𝑤𝑐).
The fitting parameters are: 𝑝1 = 1.20 × 102, 𝑝2 = 2.82 × 100, and
𝑝3 = 3.08 × 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xxi



List of Tables

Table 1 – Optimal gaps for carrying out rheological experiments on fluids, as a
function of the order of magnitude of their kinematic viscosity. . . . . . 46

Table 2 – Properties of the aqueous suspensions of DWCN . . . . . . . . . . . . . 48
Table 3 – Fitting parameters: adjustment of the experimental data concerning 𝐻𝑥

as a function of 𝑥 to a seventh-order polynomial, given by 𝐻𝑥 × 10−5 =
𝑎1𝑥

7 + 𝑎2𝑥
6 + 𝑎3𝑥

5 + 𝑎4𝑥
4 + 𝑎5𝑥

3 + 𝑎6𝑥
2 + 𝑎7𝑥 + 𝑎8. . . . . . . . . . . . 54

Table 4 – Valores de 𝐻𝑥 para diferentes valores de 𝑥 . . . . . . . . . . . . . . . . . 56
Table 5 – Mean chain length �̄� and mean anisotropy parameter of the chains �̄�

𝑎

and their associated errors as functions of the magnetic field strength
𝐻 and magnetic particle volume fraction 𝜑 for the magnetorheological
suspensions of magnetite powder. . . . . . . . . . . . . . . . . . . . . . . 59

Table 6 – Mean chain length �̄� and mean anisotropy parameter of the chains �̄�
𝑎

and their associated errors as functions of the magnetic field strength
𝐻 and magnetic particle volume fraction 𝜑 for the magnetorheological
suspensions of iron particles. . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 7 – Optimal gap 𝜖 as a function of the volume fraction 𝜑 of magnetic par-
ticles. The results apply to both suspensions composed of magnetite
powder and iron powder. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 8 – Optimal gaps used in the experimental evaluations of the magnetovis-
cous effect of both magnetorheological suspensions (magnetite powder
and iron powder) for different flow intensities. . . . . . . . . . . . . . . . 75

Table 9 – Optimal gaps for both magnetorheological suspensions used in the pseudo-
plasticity experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 10 – Gaps chosen for each magnetorheological suspension (MRS) consider-
ing four different magnetic field intensities, denoted by the originating
electric current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 11 – Power-law coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 12 – Nondimensional shear viscosity and nondimensional extensional viscos-

ity as funcrions of 𝜑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xxii



Table 13 – Parameters of the fits of experimental data to the modified Maxwell’s
viscoelastic model. The minimum principal relaxation time is 𝜏1 = 2.34×
10−1 s. Each parameter is defined as follows: 𝜑 - particle volume fraction;
𝐴1 = 𝜂*

𝑗 /𝜏 *
𝑗 - amplitude; 𝜏 *

1 = 𝜏 *
𝑗 /𝜏 *

1 - nondimensional relaxation time;
Φ*

𝑅 - nondimensional residual stress relaxation parameter. . . . . . . . . 124
Table 14 – Nondimensional residual stress 𝜎*

𝑅 for the MWCN suspensions. . . . . . 126
Table 15 – Fitting parameters for the Sisko model. . . . . . . . . . . . . . . . . . . 145

xxiii



List of abbreviations and acronyms

SAOS Small amplitude oscillatory shear

GNF Generalized Newtonian fluid

xxiv



Symbols

Latine symbols

𝐴𝑗 Amplitude of tension Generalized Maxwell’s model
𝐷 Stokes-Einstein’s diffusion coefficient
𝐷 Strain rate tensor
𝐷𝑆 Hydrodynamic dipole of particle
𝐸() Experimental error
𝐸𝑖() Instrumental error
𝐸𝑟() Random error
𝑓 force over a particle
𝐿 Macroscopic characteristic scale
ℱ Functional
𝐽 Density of electric current
𝑘𝐵 Boltzmann’s constant
𝐿 Antisymmetric part of the hydrodynamic dipole
𝑚 Magnetic moment of dipole
𝑀 Magnetization
𝐺′′(𝜔) Loss modulus
𝐺′(𝜔) Storage modulus
𝐻 Magnetic field
𝒫 Material particle
𝑝 Mechanic pressure
𝑝0 Thermodynamic pressure
𝑆 Symmetric part of the hydrodynamic dipole
𝑡 Torque over a particle
𝑄(𝑡) Orthogonal tensor
𝐹 (𝑡) Gradient of deformation tensor
𝑥 Position vector
𝒱 Measured variable
𝑉 Volume of a continuous body
𝑣𝑝 Particle volume

xxv



𝑊 Work

Greek symbols

𝑎 particle diameter
𝛼 Nondimensional magnetic field
𝛾 Angular deformation
𝛿 Virtual variation
𝛿(𝑥−𝑥𝑖) Dirac’s delta function
Δ𝜂 Viscosity increment
𝜆 Dipolar interaction parameter
ℎ Gap between the disks of the rheometer
𝜔 Angular frequency
𝜑 Volume fraction
𝜑ℎ Hydrodynamic volume fraction
Φ(𝑠) Stress relaxation function
Φ𝑅 Residual stress relaxation parameter
𝜌 Density
𝜌𝑠 Density of free charges
𝜂′′(𝜔) Complex viscosity
𝜂′(𝜔) Viscosity modulus
𝜂𝜑 Einstein’s viscosity
𝜂𝜑 rotational viscosity
�̇� Shear rare
Ω Angular velocity
𝜏𝑓 Characteristic time of the flow
𝜏 Time of relaxation
𝜏𝐵 Brownian time of relaxation
𝜏𝑚 Time of relaxation for the weaker magnetic field condition
𝜏𝑁 Néel’s time of relaxation
𝜏𝑗 time of relaxation assossiated with the j-th Maxwell’s element
𝜏𝑝 Main relaxation time
𝐼 Identity tensor
Σ Stress tensor
𝜎 Deviatoric part of the stress tensor
𝜎𝑅 Residual stress
𝜉 initial position
𝜇 Vacuum magnetic permeability
𝜂0 Viscosity in the absence of magnetic field
𝑢 Velocity vector

xxvi



𝛿𝑉 Volume of a continuum particle
𝛿𝑣′ Volume of the smallest continuum particle

xxvii



Summary

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bibliografic review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Magneto-rheological suspensions . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 MR fluids preparations and compositions . . . . . . . . . . . . . . . . . . . 5
1.2.3 Rheological behavior of MR fluids . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3.1 Physical mechanisms, micromechanical models and structures formation . . . . . . . . 7

1.2.3.2 Yield stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3.3 Flow regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Aqueous suspensions of double-walled carbon nanotubes . . . . . . . . . . 16
1.2.5 Oleogels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 CONSTITUTIVE MODELS . . . . . . . . . . . . . . . . . . . . 21
2.1 The generalized Newtonian fluids . . . . . . . . . . . . . . . . . . . . 22
2.1.1 Power-law model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Sisko’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 The general linear viscoelastic fluids . . . . . . . . . . . . . . . . . . . 24
2.2.1 Linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Maxwell’s viscoelastic model . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Generalized Maxwell’s viscoelastic model . . . . . . . . . . . . . . . . . . . 28
2.2.4 Determination of the viscoelastic modules . . . . . . . . . . . . . . . . . . 29
2.2.5 Relationship between the stress relaxation function and viscoelastic modules 31
2.2.6 Determination of the relaxation time from the stress relaxation function . . 32
2.3 Constitutive equation of a statistical homogeneous suspension: the

bulk stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Force and torque free particles . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Einstein’s equivalent Newtonian fluid . . . . . . . . . . . . . . . . . . . . . 36
2.4 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Heat transfer problem - suspension of anisotropic particles . . . . . . . . . 37

xxviii



2.4.1.1 Determination of the coefficient of heat transfer . . . . . . . . . . . . . . . . . . 38

2.4.1.2 Effective conduction of the composite material . . . . . . . . . . . . . . . . . . . 39

2.4.2 Stokes flow problem - slender body theory . . . . . . . . . . . . . . . . . . 39
2.4.2.1 Suspension of non-interacting fibers . . . . . . . . . . . . . . . . . . . . . . . . 40

3 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . 42
3.1 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.1 Rheometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.1.1 Standard assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1.2 Magneto-rheology assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Rheometer calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Fluids under analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Magnetorheological suspensions . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Aqueous suspensions of doubel-walled carbon nanotubes . . . . . . . . . . 47
3.4 Rheometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Measurement of the apparent viscosity on a parallel plate rheometer . . . . 48
3.4.2 Measurement of the viscoelastic moduli on a parallel plate rheometer in

regime of small amplitude oscillatory shear - SAOS . . . . . . . . . . . . . 49

4 RHEOLOGY OF MAGNETORHEOLOGICAL SUSPENSIONS . 50
4.1 A brief overview on ferrofluid’s rheology . . . . . . . . . . . . . . . . 50
4.2 Characterization of magnetic structures . . . . . . . . . . . . . . . . . 52
4.2.1 The magnetic field generated by a rectangular neodymium permanent mag-

net - an experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Determination of initial conditions - static measurement of the length of

magnetic structures depending on the strength of the applied magnetic field 55
4.3 Permanent shear analysis . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Particle volume fraction analysis . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.1.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Magnetoviscous effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2.2 Magnetoviscous effect - discussion I: diluted suspensions . . . . . . . . . . . . . . . 77

4.3.2.3 Magnetoviscous effect - discussion II: concentrated suspensions . . . . . . . . . . . . 83

4.3.3 Pseudo-plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.3.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3.2 Pseudoplasticity discussion I: diluted suspensions . . . . . . . . . . . . . . . . . . 87

4.3.3.3 Pseudoplasticity discussion II: concentrated suspensions . . . . . . . . . . . . . . . 94

4.4 Transient shear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.1 Step-strain: Magnetic field influence . . . . . . . . . . . . . . . . . . . . . 97
4.4.1.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xxix



4.4.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 RHEOLOGY OF AQUEOUS SUSPENSIONS OF DOUBLE-
WALLED CARBON NANOTUBES . . . . . . . . . . . . . . . 111

5.1 Multi-walled carbon nanotubes length characterization . . . . . . . . 111
5.2 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.1 Permanent shear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.1.1 Pseudoplastic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.2 Transient shear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.3 Step-strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.3.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.4 Oscillatory shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 RHEOLOGY OF OLEOGELS . . . . . . . . . . . . . . . . . . . 133
6.1 Rheological analysis under steady simple shear flow . . . . . . . . . . 133
6.1.1 Micrographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.1.2 Base fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 Rheological analysis under permanent shear . . . . . . . . . . . . . . 140
6.3 Rheological analysis under small amplitude oscillatory shear (SAOS) 147
6.3.1 Oleogels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.1.1 Determination of the reference strain - linear regime . . . . . . . . . . . . . . . . 148

6.3.1.2 Linear viscoelastic response in frequency . . . . . . . . . . . . . . . . . . . . . . 149

7 FINAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . 155
7.1 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Suggestion for future works . . . . . . . . . . . . . . . . . . . . . . . . 157

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

APPENDIX 167

APPENDIX A – UNCERTAINTY ANALYSIS . . . . . . . . . . . . 168
A.1 Uncertainty associated with the viscosity measured in simple shear 169

xxx



1 INTRODUCTION

1.1 Motivation

A suspension is chemically a kind of mixture formed by two or more phases. At
least one of these phases is a liquid or a semi-solid and the other phases are solid particles.
In this work, two types of suspensions are treated: magneto-rheological suspensions (MRS)
and suspensions of double-walled carbon nanotubes (DWCN).

Since the seminal work of Rabinow (RABINOW, 1948) in the 1940s, magnetorhe-
ology has become a multidisciplinary field that has incited strong research interest in the
last 20 years. According to Vicente, Klingenberg and Hidalgo-Alvarez (2011), the rheology
of magnetorheological fluids is very attractive since they are intelligent materials which
show a reversible and very fast (in a fraction of milliseconds) transition from liquid to a
nearly solid-state under the presence of external magnetic fields (magnetoviscous effect).
Their strength (yield stress) can change from 0 to 100 kPa by the action of an exter-
nal magnetic field. This advantage of these fluids over conventional mechanical interfaces
makes them very suitable for applications in mechanical systems that deal with vibration
control or torque transmission. Important examples are dampers (DYKE et al., 1996; JR
et al., 1997), brakes and clutches (WANG; MENG, 2001), seismic vibration dampers, con-
trol valves and artificial joints (KLINGENBERG, 2001). De Vicente et al. (VICENTE;
KLINGENBERG; HIDALGO-ALVAREZ, 2011) present other applications of this type of
fluids, which are in the fields of energy transfer, biomedics , precision polishing, sound
propagation, isothermal magnetic advection and chemical sensing among others.

Suspensions of carbon nanotubes are polyphasic systems generated by the disper-
sion of a given type of nanotubes (rod-shaped) in a matrix, which can vary from liquids
of small viscosity to polymer solutions of high viscosity (HOBBIE, 2010). There are two
types of nanotubes that are used in the production of the suspensions: single walled car-
bon nanotubes (SWCN) and the multi-walled ones (MWCN) (FAN; ADVANI, 2007).
This difference of solute is observed to impact the resulting rheological properties of the
suspensions due to the fact that the SWCN tend to be stronger than the MWCN. This
type of suspension is part of the field of nanomaterials and nanotechnology, presenting the
following most important applications: solar energy (KARAMI et al., 2014), biomechan-
ics / biomedicine (ARUTYUNYAN; BAKLASHEV; OBRAZTSOVA, 2010), electronics
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(MANZETTI; GABRIEL, 2019) and optics (WANG; CHEN; BLAU, 2009).

This work is motivated by interests on the complex rheology of magnetorheological
suspensions and suspensions of carbon nanotubes, when subjected to different types of
shearing flows. Specifically, in the case of the MRSs there is a preponderant interest on
their rheological behavior under the application of an external magnetic field. It is im-
portant to remark that these topics are actual and researches in their field are constantly
generating new and ever evolving applications. In this work, it will be studied the rheo-
logical behavior of two MRSs, which differ on the solid particles used on its formulation:
one is made of magnetite and the other of carbonyl iron. The rheological behavior of a
suspension of double walled carbon nanotubes will be also extensively examined.

As an exemple of the greatest possibilities of applications of magnetic fluids is given
by Contreras-Mateus et al. (2024). This review examines the potential integration of fer-
rofluid technologies into key oil industry processes: recovery and transportation, which
are essential components of the oil supply chain. It discuss critical theoretical aspects,
focusing on the stability of ferrofluids—a pivotal yet underexplored topic, particularly in
the context of nanoparticle applications in oil recovery and transportation. The review
also delves into magnetic properties, constitutive equations of ferrohydrodynamics, and
magnetoviscous effects that explain the diverse rheological behaviors of ferrofluids under
uniform and oscillating magnetic fields. Additionally, experimental studies are highlighted,
simulating real-world scenarios to analyze the physicochemical interactions between fer-
rofluids and crude oils under external magnetic fields and reservoir-like thermodynamic
conditions.

It is important to emphasize that this work is also deeply motivated by other stud-
ies dealing with rheology of complex fluids. These works comprehend theoretical, numer-
ical and experimental studies. Pereira and Cunha (2020) shows important methodologies
useful on dealing with experimental determination of material functions of complex fluids,
arising from both permanent and transient shearing flows. Cunha, Sinzato and Pereira
(2022) present experimental evidence that ferrofluids may be represented as a colloidal sus-
pension of ellipsoidal particles. This paper presents experimental evidence obtained from
capillary and rheometry in the presence of an external magnetic field, which are compared
to a numerical simulation. It is important to remark that an innovative stress tensor of
the magnetic fluid, based on principles of microhydrodynamics and electromagnetism, is
proposed and used, showing a good agreement with the experimental data. Sinzato and
Cunha (2020) investigate the flow of a non-symmetric ferrofluid undergoing a uniform
magnetic field in axial symmetry through both theoretical and experimental approaches.
The magneto viscous effect is investigated for a fully developed laminar flow. A regular
perturbation method is used to obtain new asymptotic solutions on the limits of very
low and very high flow intensities. Additionally, numerical integration of the governing
equations system provides a solution for the entire range of flow intensities. The magne-
tization profiles and more global quantities like wall viscosity and the relative viscosity
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are determined. The numerical and asymptotic solutions present an excellent agreement
in the application range of the asymptotic solution. Finally, the magneto viscous effect in
capillary flow is also determined through an experimental investigation, showing a very
good agreement with the asymptotic solution corresponding to the limit of a low flow
intensity. Sinzato and Cunha (2021) provide a clear view of a phenomena that impacts
the rheology of particulate systems. In the case of the referred work, magnetic suspensions
flowing in circular capillars are the focus of analysis. The phenomena is the shear-induced
dispersion, which arises either due to particle roughness or non-sphericity (i.e., shape
anisotropy). The study is carried out numerically, considering first rough spheres, with
the results showing that the dispersive flux by shear rate gradient produces a particle mi-
gration toward the center of the tube. When prolate spheroidal particles are considered,
the anisotropy of the particles are found to intensify or reduce the viscous dissipation
depending upon the physical parameters. For weak applied fields and weak shear rates,
the relative viscosity presented a rising dependence with the aspect ratio. In contrast, at
strong flows and/or large applied fields, the net result was a relative viscosity reduction
in comparison with a suspension of spheres.

Rosa and Cunha (2019) discuss the role of the dipolar particle interactions on the
rheological behavior of a ferrofluid. They present the results of magnetization and rheology
in terms of a rotational viscosity obtained by applying Brownian dynamics simulations
for a periodic magnetic suspension, where the many body long-range dipole-dipole inter-
actions are numerically calculated. The dependence of these macroscopic properties on
the dipolar interactions is explored in ferrofluids undergoing both weak and strong shear
flows in the presence of a uniform magnetic field. We show that for weak shear flows
the dipole-dipole interactions produces a magnetization increasing. In contrast, for strong
shear flows, the dipolar interactions always have an effect of decreasing magnetization.
The numerical simulations show chain-structure formation oriented in the direction of
the magnetic field (i.e., perpendicular to the direction of the shear) for weak flows, which
explains the remarkable increasing of the suspension rotational viscosity as a function of
the applied magnetic field and of the dipolar interactions parameters. Cunha and Rosa
(2021) investigate the viscoelastic behavior of a magnetic colloidal fluid undergoing an
oscillatory simple shear flow and also under the influence of an external magnetic field.
The main goal of the referred work is to examine the influence of the dipolar interac-
tions and formation of anisotropic structures on the macroscopic rheological response of
these complex fluids. This study is performed by direct numerical simulation of neutrally
buoyant, Brownian magnetic spheres in the limit of vanishingly small Reynolds numbers
using Brownian dynamics The results show that the viscoelastic transition in the fluid
is anticipated in the presence of dipolar interactions. the authors offer evidence that the
relaxation time has a quadratic power law scaling dependence on the dipolar interac-
tion parameter and that the dipolar interactions are the main physical mechanics, which
creates elastic response of the ferrofluid investigated here as a direct consequence of the
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gain of memory at the microscopic level due to the action of the magnetic torque on
the particles and the formation of oriented aggregative structures like anisotropic chains.
Malvar and Cunha (2021) present an study in which a nonlinear phenomenological model
for neutrally buoyant force-free active suspension of nematodes is proposed and tested.
This paper is very important due to the fact that it presents innovative techniques on
developing constitutive equations for the stress tensor of the active suspension and also
very useful methodologies to deal with non-linear oscillatory shear.

1.2 Bibliografic review

1.2.1 Magneto-rheological suspensions

Kumar et al. (2019) explain that magnetorheological (MR) fluids are composed of
three primary components: magnetic particles, a carrier fluid, and additives. The magnetic
particles typically consist of carbonyl iron with 99% purity, owing to its high saturation
magnetization (𝜇0𝑀𝑆 = 2.1 T) (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ,
2011; ASHTIANI; HASHEMABADI; GHAFFARI, 2015). These particles, usually spher-
ical in shape, are produced through the chemical vapor decomposition of iron pentacar-
bonyl. Their concentration in MR fluids generally falls between 20% and 40% by volume,
with particle sizes typically ranging from 3 to 5 𝜇m and averaging around 4.25 𝜇m (KU-
MAR et al., 2019). The carrier fluid can be mineral oil, silicone oil, polyesters, polyethers,
synthetic hydrocarbons, or water. The choice of base fluid depends on the intended ap-
plication of the MR fluid—for example, water is commonly used for polishing due to its
properties, while silicone oil is preferred for vibration control due to its high viscosity and
other beneficial characteristics (ASHTIANI; HASHEMABADI; GHAFFARI, 2015). It is
crucial that the carrier fluid does not chemically react with the iron particles. Additives
are essential to prevent sedimentation and particle aggregation, as well as to enhance
lubricating properties. These include thixotropic agents, surfactants, and polymers.

Vicente, Klingenberg and Hidalgo-Alvarez (2011) attribute the magnetoviscous
effect observed in MR fluids under an external magnetic field to the field-induced magne-
tization of the suspended particles. When a magnetic field is applied, the particles become
magnetized and align along the field lines to minimize their magnetic interaction energy,
forming anisotropic structures (GENÇ; PHULÉ, 2002). MR fluids exhibit a high static
yield stress, defined as the minimum shear stress required to induce flow in the suspen-
sion. Genç and Phulé (GENÇ; PHULÉ, 2002) state that this static yield stress increases
with the intensity of the applied magnetic field. Additionally, MR fluids demonstrate
shear rate-dependent viscosity and enhanced viscoelastic behavior under the influence of
a magnetic field. In the absence of such a field, MR fluids resemble liquid paints in terms
of consistency, with apparent viscosities ranging between 0.1 and 1 Pa.s−1 at low shear
rates.
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Various other types of MR fluids have also been described in the literature. Cunha,
Rosa and Dias (2016) discuss highly diluted MR fluids containing micrometric clusters
formed by nanometric magnetite particles, which assemble under the influence of an ex-
ternal magnetic field. The rheological behavior of these suspensions is strongly influenced
by the field-induced microstructure (degree of anisotropy) and the particle volume frac-
tion. Another significant class of MR fluids is inverse ferrofluids, which consist of micron-
sized non-magnetizable particles dispersed in a ferrofluid (VICENTE; KLINGENBERG;
HIDALGO-ALVAREZ, 2011). The mechanical properties of these fluids can be tailored
by adjusting the strength of the magnetic field or the saturation magnetization of the
ferrofluid. Inverse ferrofluids are particularly attractive for applications due to the wide
variety of available non-magnetizable particles, which offer a broad range of sizes and
shapes.

1.2.2 MR fluids preparations and compositions

The preparation of magnetorheological fluids includes two main components: solid
phase and liquid phase. Since these fluids are micron-scale particulate suspensions, their
components present a density mismatch, turning the problem of settling a very important
issue (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011). Besides that, other
significant phenomena to be addressed is the tendency of aggregation of the particles,
which is primarily due to the action of the magnetic dipolar interactions between them.

De Vicente (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011) argues
that a very direct way to avoid the settling of particles and enhance the overall kinetic
stability of the suspension is by reducing the magnetic particles’ size. Nonetheless, it is
important to note that the size reduction is limited to the range near to the nanometer,
because of the prevalence of Brownian forces in this condition.

Most MR fluid compositions show poor redispersibility, that is, once the particles
settle out, they form a very tightly bound network or “cake", which is extremely difficult
to remix (PHULÉ; MIHALCIN; GENC, 1999). This phenomenon is related to small levels
of remnant magnetization of the fluid’s particles, which boosts the magnetic interactions,
which summed with the action of Van-der-Waal’s forces create a strong bond between the
particles. Therefore, a large amount of mechanical energy is required to breakdown the
chain structures and agglomerates (ASHTIANI; HASHEMABADI; GHAFFARI, 2015),
which is translated in the necessity of using shear-rates of large magnitude for the fluid
flow even in the “off" state. It is important to note that the “cake" remains even after the
magnetic field is turned off, resulting in non-homogeneous behavior of the magnetorheo-
logical fluid.

According to Kumar et al. (KUMAR et al., 2019), to prevent settling and formation
of aggregates, several strategies are discussed in the literature. Surfactants have been used
to delay the time of settling and to facilitate redispersion (LÓPEZ-LÓPEZ et al., 2008;
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LÓPEZ-LÓPEZ; KUZHIR; BOSSIS, 2009). To mitigate the clustering of iron particles,
oleic acid, and tetramethylammonium hydroxide have been used as surfactants (SARKAR;
HIRANI, 2013). Aiming to slow down the sedimentation process of the magnetic particles
in suspension, it is reported the use of thickeners like fluorocarbon grease (IYENGAR;
YURGELEVIC; FOISTER, 2010), colloidal clays (organoclays) (FOISTER; IYENGAR;
YURGELEVIC, 2003; HATO et al., 2011), and fumed silica (IYENGAR; FOISTER,
2002), being the clays the most effective ones.

Thixotropic agents networks can be prepared by using nano-structured fumed sil-
ica, anisotropic carbon fibers, acicular iron oxide nanoparticles, and surfactants such as
stearate and oleate (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011). These
agents are used to separate the magnetic particles by forming strand or chain-like struc-
tures that encompass and trap the particles. As an alternative to surfactants, coatings
have also been considered. The use of polyvinyl butyral as a coating for iron particles
showed improved anti-corrosion characteristics and reduction of the density of the parti-
cles, preventing, thus, the formation of hard clusters (ZHANG et al., 2009).

Another approach is the production of MR fluids based on a mixture of magnetic
nanoparticles (up to 3% volume) and magnetic micron-particles (up to 32% volume).
These suspensions have shown excellent stability against sedimentation and aggregation
(KUMAR et al., 2019). This occurs since the nanoparticles occupy the voids between
the micron-particles and form regular chains on the application of an external magnetic
field. The addition of nanoparticles also affects the overall rheological behavior of the
suspension. Ashtani et al. (ASHTIANI; HASHEMABADI; GHAFFARI, 2015) show that
the addition increases the yield stress of the fluid and Portillo and Iglesias (PORTILLO;
IGLESIAS, 2017) found that the shear stress was higher in suspension with the addition
of nanoparticles in comparison to those formed just by micron-sized particles. The latter
authors also discovered that the nanoparticles formed a “halo" around the magnetic iron
particles, as shown in figure (1). This helps in preventing agglomeration and aids in
re-dispersion. Nanoparticles addition is considered nowadays a better solution to avoid
sedimentation problems than surfactant addition.
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Figure 1 – (a) SEM picture of the iron micro particles; bar length 5 𝜇m. (b) TEM picture
of the magnetite nanoparticles; bar length 20 𝜇m. (c) SEM picture of the iron
micro particles and magnetite nanoparticles; bar length 5 𝜇m (inset picture:
cloud of nanoparticles around one Fe micro particle). Adapted from (POR-
TILLO; IGLESIAS, 2017).

The durability of an MR fluid is directly related to the oxidation process of its
magnetic particles. This process causes the rusting of the iron particles and, as a result,
severely affects the performance of the magnetorheological fluids. An effect that results
from the oxidation of the particles is the “in-use-thickening", which is the increase of
the off-state viscosity of MR fluids over time (VICENTE; KLINGENBERG; HIDALGO-
ALVAREZ, 2011; WAHID et al., 2016). This is believed to be caused by the increase of
the solid volume (particle’s oxide layer) and perhaps by colloidal forces acting between the
small particles generated in the oxidation process. It is also reported that the magnetic
field-induced yield stress decreases with the increasing extent of oxidation, which is caused
by the fact that when the particle oxidizes, its shell grows, which results in weaker particle
magnetizability (SUNKARA et al., 2009).

1.2.3 Rheological behavior of MR fluids

1.2.3.1 Physical mechanisms, micromechanical models and structures formation

Magnetorheological fluids are known for having field-induced magnetization and
tunable anisotropic behavior. A widely accepted mechanism to account for these effects
is the so-called particle magnetization model (VICENTE; KLINGENBERG; HIDALGO-
ALVAREZ, 2011). According to this model, the magnetorheological effect (MR effect) is
attributed to the magnetic permeability mismatch between the constituent (continuous
and dispersed) phases.

Although the particles in magnetorheological suspensions behave as magnetic mul-
tidomains, to study the interactions between particles in suspension, it is usual to neglect
multipole and multibody magnetostatic interactions between them. In the linear mag-
netization regime, an isolated particle of relative permeability 𝜇𝑝 surrounded by a fluid
of relative permeability 𝜇𝑓 , which is placed in an external magnetic field 𝐻0, acquire a
magnetic moment: 𝑚 = 4𝜋𝜇0𝜇𝑓𝛽𝑎3𝐻2

0, where 𝑎 is the radius of the particle, 𝜇0 is the
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permeability of the vacuum and 𝛽 = (𝜇𝑝 − 𝜇𝑓 )/(𝜇𝑝 + 2𝜇𝑓 ) is a coupling parameter. Con-
sidering this model, the interaction energy between two dipoles of moment 𝑚 is given by
(BOSSIS et al., 2002):

𝑊 = 1
4𝜋𝜇0𝜇𝑓

(︃
𝑚𝛼𝑚𝛽

𝑟3 − 3(𝑚𝛼𝑟)(𝑚𝛽𝑟)
𝑟5

)︃
, (1.1)

where 𝑟 is the separation vector between the centers of the two particles. This energy is
minimum when the two dipoles are aligned with 𝑟 and maximum when they are perpen-
dicular, leading to a preferential aggregation of chains of particles in the direction of the
field. The formation of aggregates of particles will depend on the ratio of this interaction
to the thermal energy 𝑘𝑇 . Taking as reference the energy of two dipoles in the linear
regime, the referred rate is given by:

𝜆 = 1
4𝜋𝜇0𝜇𝑓

𝑚2

𝑟3
1

𝑘𝑇
= 𝜋𝜇0𝜇𝑓𝛽2𝑎3𝐻2

0

2𝑘𝑇
. (1.2)

This parameter is commonly addressed in the literature as the parameter of dipolar in-
teraction (ROSENSWEIG, 2013). It is important to note that for usual magnetic field
intensities the magnetic forces dominate the Brownian forces. In conditions of small values
of 𝜆, Brownian motion dominates and field-induced aggregates do not form. In equation
(1.2), 0 < 𝛽 < 1 represents conventional MR fluids and −0.5 < 𝛽 < 0 for inverse ferroflu-
ids, in which the base fluid is magnetizable and the particles are non-magnetizable.

Bossis et al. (BOSSIS et al., 2002) argue that the quantity 𝜆 is the key quantity,
which together with the volume fraction of particles 𝜑 = 𝑁𝑣𝑝/𝑉 , will determine the
equilibrium structure of a suspension of monodisperse particles as a function of the applied
magnetic field. Aiming to understand all the quantities which rule the suspension behavior,
it is important to start from the equation of motion for one particle and then put it in a
non-dimensional form. Considering an approach of Brownian and Stokesian dynamics, for
a given particle in suspension, it can be written (BRADY; BOSSIS, 1988; BONNECAZE;
BRADY, 1992):

𝑚
𝑑𝑣

𝑑𝑡
= 𝐹𝐻 + 𝐹 𝑒𝑥𝑡 + 𝐹 𝐼 + 𝐹𝐵, (1.3)

where 𝑣 is the particle’s velocity. 𝐹𝐻 is the hydrodynamic force acting upon the test
particle, which results from the hydrodynamic friction, being proportional to −𝜉(𝑣−𝑣0),
where 𝜉 = 6𝜋𝜇𝑎 with 𝜇 representing the viscosity of the suspending fluid and 𝑣0 the
imposed velocity field at the location 𝑥 of the particle. 𝐹 𝑒𝑥𝑡 is the hydrodynamic force
due to the symmetric part of the velocity gradient tensor, which in the case of a pure shear,
characterized by the shear-rate �̇�, scales as 6𝜋𝜇�̇�𝑎2. The force 𝐹 𝐼 is the interparticle force
coming from the dipole-dipole interaction, being given as minus the gradient of equation
(1.1). Considering two particles 𝛼 and 𝛽, the force on 𝛼 will be (BOSSIS et al., 2002):

𝐹 𝐼
𝛼 =12𝜋𝜇0𝜇𝑓𝑎2𝛽2𝐻2

0

(︂
𝑎

𝑟

)︂4 [︁
(2 cos2 𝜃𝛼𝛽 − sin2 𝜃𝛼𝛽

)︁
𝑒𝑟+ (1.4)

+ sin 2𝜃𝛼𝛽𝑒𝜃]. (1.5)
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The different vectors are displayed on figure (2).

Figure 2 – Two particles in a magnetic field. Adapted from (BOSSIS et al., 2002).

Considering the case of interest, in which two identical spheres are placed side-by-
side (𝑟 = 2𝑎,𝜃𝛼𝛽 = 90∘), it comes that 𝐹 𝐼

𝛼 = 𝑓𝑑 = −(3/4)𝜋𝜇0𝜇𝑓𝑎2𝛽2𝐻2
0 , which implicates

in the choice of −𝑓𝑑 as the scaling factor of the interparticle force. 𝐹𝐵 is the Brownian
random force which scales with 𝑘𝑇/𝑎. Generally, the inertial force can be neglected, since
the time 𝜏 needed for the particle to reach a constant velocity is much smaller than the
other characteristic times, for example for an iron particle of radius 1 𝜇𝑚, 𝜏 = 1.7 𝜇s
(BOSSIS et al., 2002). Dividing all the terms of equation (1.3) by 6𝜋𝜇�̇�𝑎2 and rearranging,
one obtains:

𝑣 − 𝑣0

�̇�𝑎
=

[︁
𝐹 𝐼
]︁

𝑀𝑛
+

[︁
𝐹𝐵

]︁
𝑃𝑒

+
[︁
𝐹 𝑒𝑥𝑡

]︁
, (1.6)

where the terms in brackets indicate that the force has been divided by its own scaling
factor.

𝑀𝑛 is the mason number, defined as:

𝑀𝑛 = −6𝜋𝜇�̇�𝑎2

𝑓𝑑

= 8𝜇�̇�

𝜇0𝜇𝑓𝛽2𝐻2
0

. (1.7)

This non-dimensional parameter expresses the ratio of shear to magnetic forces. 𝑃𝑒 is the
Peclét number, expressed by:

𝑃𝑒 = 6𝜋𝜇�̇�𝑎3

𝑘𝑇
, (1.8)

which represents the ratio of shear to Brownian forces. It is important to note that for
particles larger than one micron and usual shear-rates, 𝑃𝑒 is large, meaning that the
Brownian force can be neglected. From the definition of the dimensionless parameters, it
can be seen that the dimensionless equation of motion depends on two of those quantities
because they are related as follows: 𝑀𝑛𝜆 = 2𝑃𝑒/3. According to Bossis et al. (BOSSIS et
al., 2002), this implicates that for a given suspension, all the trajectories and hence all the
properties and, in particular, the viscosity will be the same for the same values of 𝑀𝑛 and
𝜆. It is important to note that this conclusion only applies to systems of particles starting
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in the same initial conditions, that is, the same volume fraction and initial configuration.
The last constraint is not critical when the interest is on equilibrium properties, therefore
it can be said that for monosized hard spheres with particles having the same magnetic
permeability, the viscosity (normalized by the one of the carrier fluid) will depend only
on three quantities, which are 𝜑, 𝑀𝑛 and 𝜆.

When a magnetorheological fluid is under the action of an external magnetic fluid,
its particulate phase will aggregate and form a different kind of structures depending on
the initial volume fraction 𝜑 and on the parameter of dipolar interaction 𝜆. This is only
true if the equilibrium state is reached, which is achieved by raising the magnetic field in-
tensity. Mohebi et al. (MOHEBI; JAMASBI; LIU, 1996) observed, from an experimental
point of view, that the rate of increase of the magnetic field and the container size pro-
foundly impact the final particle structuration. Increasing the field too quickly will give a
kind of labyrinthine structure, whereas increasing the field too slowly gives well-separated
columns. Another important feature is that large volume fractions always tend to form
labyrinthine structures.

The Kinetic aggregation process is typically divided into two well-differentiated
regimes. the first one is characterized by the formation of linear chains of particles. Accord-
ing to Bossis et al. (BOSSIS et al., 2002), the average lengths of the referred chains follow
the Smoluchowski equation. The second effect is the formation of columnar structures by
laterally aggregation of single-width chain-like structures. De Vicente et al. (VICENTE;
KLINGENBERG; HIDALGO-ALVAREZ, 2011) affirm that mechanisms explaining this
lateral aggregation are the coalescence through torque-driven zippering motion and ther-
mal fluctuations of particle positions.

1.2.3.2 Yield stress

The yield stress (𝜏𝑦) of MR fluids developed in the presence of a magnetic field is
by far its most important rheological property, being considered a parameter of efficiency
since it is the main parameter observed in the design of applications. Colloquially, this
material function is known as the strength of the fluid owing to the fact that it is the
maximum shear stress that must be applied for the fluid to start flowing. From a mi-
cromechanical point of view, the restoring force per unit of surface which resists to the
deformation of the structure is given by the derivative of the magnetic energy per unit of
volume, given by equation (1.1), relative to the strain 𝛾: 𝜏 = −𝑑𝑊/𝑑𝛾. The yield stress
represents the maximum of the stress versus strain: 𝜏𝑦 = 𝑚𝑎𝑥(𝜏), since above a critical
shear strain 𝛾𝑐, the microstructure will start to break (BOSSIS et al., 2002).

According to Bossis et al., in order to understand and predict the yielding behavior
of MR fluids, it is necessary to deal with two scales. The first one is the particle scale
that will give the force between two particles as a function of their physical properties
and respective positions. The second one is the scale of the device (container), in which is

10



necessary to know the behavior of the mesostructure of the particles’ aggregates and its
deformation. Besides that, two situations can be distinguished depending on the perme-
ability of the particles. If the permeability is high (𝜎 = 𝜇𝑝/𝜇𝑓 ≫ 1), it is the particle scale
which is important since the forces strongly depend on the particle gap. If 𝜎 is low, dipo-
lar approximations can be used and the separation between the particles does not change
significantly the energy, therefore it is the shape of the mesostructure and its inclination
relative to the field which generates the yield stress.

The case of interest here is the one of high permeability (𝜎 ≫ 1) since it represents
the behavior of strong MR fluids (micron-sized magnetizable particles dispersed on a non-
magnetizable carrier fluid). In this case, the standard model for the structure is used,
which is based on a cubic network of infinite chains of particles aligned in the direction
of the field. When the material is strained, the chains are supposed to deform affinely
with the strain, that is, the particles take place only along the velocity lines as shown
in figure (3). Therefore, the distance between any pair of neighbors in the chains is the
same and increases at the same rate. Considering these hypotheses and accounting for the
dipolar interactions between the particles, Bossis (et al.) (BOSSIS et al., 2002) calculate
analytically the yield stress for an MR fluid composed of equal spheres as:

𝜏𝑦 = 2.31𝜑𝜇0𝑀
1/2
𝑆 𝐻3/2, (1.9)

where 𝑀𝑆 is the magnetization of saturation of the particles.

Figure 3 – Modelling the yield stress. Affine deformation of a chain. Adapted from
(BOSSIS et al., 2002).

Bossis and his coworkers (BOSSIS et al., 2002) also punctuate that generally, the
yield stress has a dependence on the intensity of the magnetic field in a power-law fashion,
𝜏𝑦 ∼ 𝐻𝑛. Several groups (CHEN et al., 1998; RANKIN; HORVATH; KLINGENBERG,
1999; PHULÉ; MIHALCIN; GENC, 1999) have found a power law with an exponent close
to 3/2 as predicted by equation (1.9). Nonetheless, linear dependence has been observed
(JIANG et al., 1997) and also an exponent 1.27 in conditions of weak low magnetic field
intensity for a suspension of iron spheres (BOSSIS et al., 2002). For strong magnetic
fields, the yield stress was found to be independent of the magnetic field intensity, being
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proposed by Ginder et al. (GINDER; DAVIS; ELIE, 1996), that in this regime the yield
stress is well modeled by:

𝜏𝑦 = 0.086𝜑𝑀2
𝑆. (1.10)

From finite element analysis and analytical deductions, the yield stress was found
to be proportional to the volume fraction of particles (see equation (1.9)). This fact is
observed experimentally at not too high volume fractions (𝜑 < 0.2 − 0.3)(RANKIN;
HORVATH; KLINGENBERG, 1999; KORDONSKY et al., 1990; GENÇ; PHULÉ, 2002).
For higher volume fractions a more rapid increase than linear is observed, which can be
understood by the fact that thick aggregates are more difficult to break than individual
chains. It can also be associated with the non-affine motion of the aggregates.

Yield stress can be measured by direct and indirect experimental approaches,
which involve steady and/or oscillatory shearing flow tests. From figure (4)(a), which is
a plot of the shear stress as a function of the strain, it can be defined three yield stresses
(VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011):

• Elastic limit yield stress: this rheological property represents the maximum shear
stress that can be applied while still obtaining complete recovery when the stress is
removed;

• Static yield stress: this material function is the minimum stress required to cause
the fluid to flow; and

• Dynamic yield stress: this property corresponds to the stress needed to continuously
break the aggregates which constantly reform in the presence of the magnetostatic
forces once the stress exceeds the static yield stress.

Figure (4)(b) presents an example of experimental data concerning the growth
of the yield stress after the start-up of a shearing flow as a function of the shear strain
at a weak shear rate for inversed ferrofluids. In this context, according to De Vicente et
al. (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011), it is important to note
that the static yield stress is usually estimated using creep tests, the tangent method, and
low-shear-extrapolation of stress-controlled data in double logarithmic representations
of stress versus shear rate. Besides that, the dynamic yield stress can be obtained by
adjusting a viscoplastic constitutive model, such as Bingham, Herschel-Bulckley, or Casson
to experimental data at non-zero shear rates.
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Figure 4 – (a) Typical yield stresses under stress growth (start-up) shearing flow tests.
Adapted from (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011)
(b) An example of the shear stress growth after start-up as a function of
the shear strain at a shear rate of �̇� = 0.0103𝑠−1 for inverse ferrofluids. The
magnetic field is 76.7 kAm−1 and the volume fraction of the nonmagnetic
particles is 𝜑 = 0.18. Particle radii: 53 nm (+), 84 nm (△), 138 nm (∙), 189
nm (♢). Adapted from (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ,
2011; GANS et al., 2000).

1.2.3.3 Flow regime

Magnetorheological fluids, when in the presence of an external magnetic field,
show a strong shear-thinning behavior. According to Bossis et al. (BOSSIS et al., 2002),
in steady shear flow regime, the relation between shear stress and shear-rate is usually well
described by the Bingham model: 𝜏 = 𝜏𝑑 + 𝜂0�̇� . Calling 𝜂𝑠 the effective viscosity (defined
by 𝜏 = 𝜂𝑠�̇�) and then normalizing by the stress at zero field, one obtains the following
expression for the relative viscosity: 𝜂𝑟 = 𝜂𝑠/𝜂0. This rheological property decreases as
𝜏𝑑/𝜂0�̇�, that is, proportional to 𝑀𝑛−1, where 𝑀𝑛 is the mason number defined by equation
(2.28). However, experiments (FELT et al., 1996; GANS et al., 1999) and simulations
(BAXTER-DRAYTON; BRADY, 1996) show that the Mason number does not allow to
collapse all the results on the same flow curve. The reduced viscosity still follow a law of
the kind 𝜂𝑟 = 𝑀𝑛𝜈 , where 𝜈 varies from 0.68 to 1.

Marshall et al. (MARSHALL; ZUKOSKI; GOODWIN, 1989) employed dimen-
sional analysis to show that, in the limit of 𝜆 → ∞, when the Bingham model can explain
the steady shear flow behavior and the yield stress scales as 𝛼𝜇0𝜇𝑓𝛽2𝐻2, the dimensionless
viscosity can be written as:

𝜂/𝜂∞ = 1 + 𝑀𝑛*(𝜑)𝑀𝑛Δ, (1.11)

where Δ = −1, 𝜂∞ is the high shear viscosity (independent of the magnetic field inten-
sity) and 𝑀𝑛* is the critical Mason number. This parameter according to De Vicente
et al. (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011), determines the tran-
sition from magnetization to hydrodynamic control of the suspension structure. Models
based on the micromechanics of chain-like interactions have been developed aiming to
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comprehend the dependence of 𝑀𝑛* on the particle volume fraction (VICENTE et al.,
2004; VOLKOVA et al., 2000). Such models are based on balancing hydrodynamic and
magnetostatic forces and torques on field-induced structures. These models give the fol-
lowing relation: 𝑀𝑛* = 𝐶𝜑𝜂0/𝜂∞, in which different values for C depend on the distinct
assumptions and simplifications of the mechanical model.

A very efficient way to investigate the structure of magnetorheological fluids is to
observe their response to the application of oscillatory flow. This is so because this kind
of flow allows the assessment of a wide range of time scales for a given structure. This
type of rheological flow also permits the determination of yield stress with less ambigu-
ity in comparison to strategies using simple shear flow (VICENTE; KLINGENBERG;
HIDALGO-ALVAREZ, 2011).

A panorama of the oscillatory response of viscoelastic fluids, which is the case of
field-dependent fluids (electrorheological and magnetorheological), is given by the Pipkin
diagram (PIPKIN, 2012), which is a plot of the strain amplitude versus the excitation
frequency. This plot can depict the overall dynamic response of a viscoelastic fluid, that
is, it summarizes the qualitative dependence of the flow behavior on operating conditions
(PARTHASARATHY; KLINGENBERG, 1999). The curves inside a Pipkin diagram de-
limit the different possible dynamic behavior of the fluid. Parthasarathy and Klingenberg
(PARTHASARATHY; KLINGENBERG, 1999) plotted the Pipkin diagram representing
the dynamic flow response of an electrorheological fluid under the action of an external
electric field. Although the focus of this work is on MR fluids, the referred work can be
used as a reference because the general behavior of the two kinds of fluids under the action
of an external field, electrical for ER fluids and magnetic for MR fluids, is usually quali-
tatively similar, being different only the intensity of the rheological effects. The referred
diagram is shown in figure (5).

Figure 5 – The Pipkin diagram (stain versus dimensionless frequency) of the dynamic
rheological behavior of ER fluids. The curves demarcate regions of different
rheological behavior. Adapted from (PARTHASARATHY; KLINGENBERG,
1999).

It can be seen from figure (5) that in a regime of small strain for a great range of
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dimensionless frequencies, the fluid has a linear viscoelastic response (LVE). As the strain
is enhanced until a critical value (𝛾𝑐𝑟𝑖𝑡

1 ), the response of the system changes to a nonlinear
viscoelastic regime (NLVE), which is characterized by the appearance of other (higher)
harmonics in the shear stress response of the fluid. Rising the strain even further, it
reaches another critical value (𝛾𝑐𝑟𝑖𝑡

2 ), from which a viscoplastic (VP) response is observed
in the fluid. In the case characterized by severely high strains or dimensionless excitation
frequencies, the fluid has a Newtonian behavior, owing to the fact that in this case, the
elastic properties of the fluid are negligible (PARTHASARATHY; KLINGENBERG, 1999;
VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011).

In the regime of linear viscoelasticity, the storage modulus G’ in the presence
of a magnetic field has a high value, typically at least one order of magnitude larger
than the loss modulus G”, which is related to the appearance of field-induced structures
in the fluid. Upadhyay et al. (UPADHYAY; LAHERISHETH; SHAH, 2013) carried out
several experiments in oscillatory shear of an MR fluid consisting of flake shaped iron
particles. They observed from tests on amplitude sweep mode that for very small shear
amplitude strain, G’ is independent of the applied strain, which signifies that the system
is under a viscoelastic regime. In this condition, magnetic-field induced structures remain
undisturbed. However, as the strain amplitude is enhanced, the chain structures start to
break, which leads the system to nonlinear behavior. A special condition is reached for
the strain where the storage and the loss modulus intersect, which is 𝐺′ = 𝐺′′, due to the
fact that above this point the system starts to flow. This point rises when the magnetic
field intensity enhances.

Macroscopic (using the energy minimization principle) and microscopic (taking
into account inter-particle interactions) approaches have been used to the investigation
of the yield stress as discussed in section (1.2.3.2). Such models have also been applied
to understand and to predict the values of G’. In the case of intermediate magnetic field
strengths, it was found that 𝐺′ = 3𝜑𝜇0𝑀𝑆𝐻 (GINDER; DAVIS; ELIE, 1996). Instead of
the quadratic dependence on the magnetic field predicted for the yield stress, the storage
modulus presents a linear dependence to it, which is a result of the fact that when the
magnetic field rises, the magnetic particles start to saturate near the poles in chain-like
aggregates. In the case o very high magnetic field intensities, the magnetization of the
particles is fully saturated, resulting in an elastic modulus independent of the magnetic
field intensity, being given by 𝐺′ = 0.3𝜑𝜇0𝑀𝑆 (GINDER; DAVIS; ELIE, 1996).

The response of MR fluids in the presence of an external magnetic field to a fre-
quency sweep with constant shear strain is not clear. Some experiments and simulations
show that the viscoelastic moduli may remain constant and then passes through a max-
imum or even decrease or increase depending on the MR fluid (systems) under analysis.
Nonetheless, Chin et al.(CHIN; WINTER, 2002), reported by experimental analysis that
the evolution of 𝐺′(𝜔) and 𝐺′′(𝜔) has similarity with the evolving moduli of crosslinking
copolymer, even presenting a region where the loss tangent is found to be independent of
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the frequency, which corresponds to a gelation transition point (Winter - Chambon cri-
teria). At frequencies that characterize the relaxation of internal modes on length scales
where the systems have self-similar structure, power-law dependence of G’ and G” on the
frequency is expected (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011).

Large amplitude oscillatory shear regime (LAOS) is very important to understand
the dynamical response of an MR fluid. The reason can be directly understood by analyz-
ing the Pipkin diagram, displayed on figure (5), where it is shown that the regime of linear
viscoelasticity is really small, in terms of applied strain amplitude, in comparison to the
non-linear viscoelastic regime. Thus LAOS is the main operational mode of the majority
of applications. Deshmukh and McKinley (DESHMUKH; MCKINLEY, 2004) report a
microscopic visco-elastoplastic model inspired by soft-glassy rheology models that were
successfully used on predicting LAOS behavior of MR fluids.

The material functions of MR fluids obtained in conditions of permanent simple
shear and oscillatory shear flows are found to be related by a modified Cox-Merz rule.
Flow curves 𝜂 versus �̇� closely overlap |𝜂*| versus 𝛾𝜔 plots. This agreement is found to
apply since LAOS and steady shear behavior share a common structural mechanism,
which is the aggregation and fragmentation of clusters (VICENTE; KLINGENBERG;
HIDALGO-ALVAREZ, 2011).

According to (VICENTE; KLINGENBERG; HIDALGO-ALVAREZ, 2011), a re-
search line that still can be addressed is the investigation of MR fluids composed by
magnetic particles whose average size is in the range between the one characteristic of
ferrofluids and the one usual of classic MR fluids. Besides that, the investigation of the
use of non-spherical magnetic particles is also an open problem.

1.2.4 Aqueous suspensions of double-walled carbon nanotubes

Research into the rheology of suspensions involving double-walled carbon nan-
otubes (DWCNs) is still emerging, though a variety of studies on multiwalled carbon
nanotubes (MWCNs) provide useful insights. The behavior of these suspensions is pri-
marily influenced by the interactions between the nanotubes and the surrounding fluid
matrix, which impacts both viscosity and shear thinning effects.

For example, suspensions of untreated carbon nanotubes (CNTs) typically exhibit
a pronounced shear-thinning behavior, largely due to the formation of networks or ag-
gregates of CNTs in the fluid. In contrast, chemically treated CNTs tend to show less
pronounced shear-thinning, likely because of changes in their structure that reduce ag-
gregation. These treatments result in CNTs that behave more like rigid, short fibers that
align in the flow direction, influenced by Brownian motion and hydrodynamic interactions
(YEARSLEY et al., 2012; MA; CHINESTA; MACKLEY, 2008).

Modeling of the rheological properties often involves sophisticated approaches,
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such as the Fokker-Planck-based orientation model. This model considers the alignment
of CNTs as fibers in the suspension and accounts for the concentration and aspect ratio
of the nanotubes. The viscosity of these suspensions is also significantly dependent on
the CNT concentration, with higher concentrations leading to increased viscosity (MA;
CHINESTA; MACKLEY, 2009; RAZMARA; NAMARVARI; MENEGHINI, 2019).

Additionally, research suggests that when CNTs aggregate into larger structures in
untreated suspensions, this aggregation adds another layer of complexity to the rheological
behavior. In these cases, the so-called Aggregation/Orientation (AO) model is applied to
better describe the observed flow behavior (YEARSLEY et al., 2012).

These insights are crucial for developing applications in various industries, includ-
ing the creation of composite materials and fluid systems where the rheology of CNT
suspensions plays a critical role in processing and performance.

1.2.5 Oleogels

Oleogels have emerged as a promising alternative to trans and saturated fats,
which are well-documented for their adverse effects on human health (PUs, CAs, et al.,
2020). These systems are classified as semisolid materials formed by immobilizing liquid
oil within a three-dimensional network, without altering the chemical properties of the
oil (MANZOCCO et al., 2017; PATEL et al., 2013). Oleogels are extensively studied not
only in the food sector but also across various fields, including pharmaceuticals (drug
delivery systems), cosmetics (stability enhancers), environmental engineering, mechanical
lubrication, and materials science (PATEL et al., 2015; WANG; CHEN; NAGUIB, 2021).

Typically, the structuring of oleogels relies on oleogelators, which can be catego-
rized into low molecular weight compounds (such as waxes, lecithin, esters, and ceramides)
and high molecular weight substances (such as proteins and polysaccharides) (LI et al.,
2022). Biopolymers, particularly polysaccharides, are effective even at lower concentra-
tions and are well-established in the food industry as stabilizing and thickening agents
in aqueous systems. Due to their polymeric nature, oleogels derived from these materials
exhibit viscoelastic properties influenced by factors such as molecular weight, conforma-
tion, and concentration. Their GRAS (Generally Recognized as Safe) status and consumer
perception as natural food additives also make them suitable for structuring edible oils
(DAVIDOVICH-PINHAS, 2019; PATEL, 2018).

Oleogels can be produced using direct methods, which involve high temperatures
and mechanical agitation. However, these processes may degrade nutraceutical compounds
and promote oil oxidation (KAVYA et al., 2024; LIU et al., 2023). To address these is-
sues, indirect methods like emulsion templates, solvent exchange, and porous solid ma-
trices (e.g., foams and aerogels) have been developed (KAVYA et al., 2024). Patel et al.
(2013) introduced a method involving hydroxypropyl methylcellulose (HPMC) foamed

17



and freeze-dried to create porous structures that absorb oil and yield rheologically solid-
like oleogels.

Aerogels, known for their high surface area, porosity, and low density, are typi-
cally fabricated using supercritical CO2 drying or freeze-drying techniques (LAVOINE;
BERGSTRÖM, 2017). These porous materials have shown potential in oleogel produc-
tion by offering enhanced nutrient protection and antioxidant capacity compared to direct
methods (ZHAO et al., 2023). Additionally, bio-based aerogels made from biopolymers like
starch are safe, biocompatible, and biodegradable. Starch, a widely used edible polysac-
charide, is non-toxic, non-allergenic, and capable of forming gels in aqueous environments.
However, its hydrophilicity and low mechanical strength limit its application. These is-
sues can be mitigated by incorporating cellulose nanomaterials (AGO; FERRER; ROJAS,
2016).

Recent studies highlight the benefits of combining cellulose and starch to improve
the properties of aerogels. For instance, cellulose nanofibers in starch/clay aerogels have
been shown to enhance structural stability, compressive strength, and thermal properties
(ZHAO; TIAN; HUANG, 2021). Similarly, starch aerogels supplemented with chitosan
exhibit reduced shrinkage and improved oil structuring capabilities (ALAVI; CIFTCI,
2023). Shan et al. (2024) demonstrated that dual-reinforced aerogels using sodium car-
boxymethylcellulose and soy protein isolate significantly enhanced mechanical properties,
elasticity, and oil-holding capacity. Nevertheless, the potential of composite bio-aerogels
based on cellulose and starch for edible oleogelation remains underexplored.

Cellulose, an abundant biopolymer derived from plant, animal, or microbial sources
(e.g., straw, wood, bagasse), offers remarkable reinforcing capabilities, particularly in
its microfibrillated form (MFC). These nanostructures create strong entangled networks
with desirable rheological properties, even at low concentrations, making them ideal as
stabilizers, thickeners, and gelling agents (LAVOINE et al., 2012; WÜSTENBERG, 2014).
Furthermore, dietary fiber derived from cellulose provides health benefits, including the
prevention of gastrointestinal disorders (GILL et al., 2021; ONG et al., 2020). However,
no studies have yet explored the incorporation of microfibrillated cellulose in starch-based
bio-aerogels for food-grade oleogel production.

This study investigates the effect of combining starch and cellulose on the rheolog-
ical properties and functionality of oleogels. Experimental procedures, both in permanent
and transient shear will be applied to samples, allowing the study of several material
functions, such as viscosity and moduli viscoelastic depending both on particle volume
fraction of cellulose, shear rate and frequecy of excitation.
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1.3 Objectives

The primary goal of this study is to characterize the rheological behavior of two
distinct magnetorheological suspensions (MRS), differentiated by the type of particles
used in their formulation: one containing magnetite powder and the other, carbonyl iron.
Additionally, the rheology of aqueous suspensions of double-walled carbon nanotubes
(DWCN) and oleogels will be explored.

A key unifying theme across these fluids is anisotropy. For the MRS, anisotropy
is induced by the application of an external magnetic field, while for DWCN suspensions
and oleogels, anisotropy arises naturally due to their intrinsic structural properties. This
study aims to provide insights into the role of anisotropy in governing the rheological
behavior of these complex fluid systems.

The analysis will primarily rely on experimental techniques, utilizing a parallel
plate rheometer equipped with two distinct assemblies:

1. Standard Assembly: Used for conventional rheological testing;

2. Magnetic Assembly: Designed to enable the application of controlled magnetic fields
while subjecting the fluid sample to various shear flow regimes.

The magnetic assembly facilitates precise control over both the shear conditions and the
magnetic field intensity within the testing zone, allowing for detailed investigation of the
anisotropic behavior of magnetorheological suspensions. This setup is critical for studying
how external fields influence the structural and flow properties of these complex fluids.

This report has the following specific objectives concerning the study of magne-
torheological suspensions:

1. Conduct a comprehensive review of the constitutive modeling of magnetorheologi-
cal suspensions and the rheological phenomena arising from their interaction with
magnetic fields. This will include an analysis of theoretical models and experimental
findings;

2. Characterize, using optical microscopy, the average length of the magnetic field-
induced chain-like structures as a function of particle volume fraction and magnetic
field intensity;

3. Investigate the rheological behavior of magnetorheological suspensions under steady
shear in the presence of a magnetic field. The study will focus on:

a) Apparent viscosity as a function of magnetic field intensity and shear rate;

b) Characterization of the magnetoviscous effect and pseudoplastic behavior in-
duced by the external magnetic field.
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4. Perform step-strain tests to obtain stress relaxation functions under varying mag-
netic field intensities. Analyze the likely complex relaxation behavior and determine
primary and secondary relaxation times as functions of magnetic field intensity. As-
sess the fit of the stress relaxation data to Maxwell’s generalized viscoelastic model.
Evaluate residual stress and its dependence on magnetic field intensity.

The study of aqueous suspensions of double-walled carbon nanotubes has the fol-
lowing specific objectives:

1. Perform a systematic review of the literature concerning the rheology of DWCN
suspensions;

2. Characterize, using optical microscopy the average length of the double-walled car-
bon nanotubes;

3. Through a series of experiments in permanent simple shear, study the dependence
of the viscosity of the suspensions on the particle volume fraction and on the applied
shear rate. Observe if the fluid exhibits pseudoplastic behavior;

4. Using experimental trials in the regime of step-strain, determine the stress relaxation
function and the relaxation times in terms of the particle volume fraction. Determine
the residual stress as a function of the particle volume fraction;

5. Applying small amplitude oscillatory shear, determine the viscoelastic properties of
the suspensions as functions of the excitation frequency. Determine the shear elastic
modulus and the zero-shear viscosity, if possible.

The study of the rheology of oleogels has the following objectives:

1. Perform a thorough review of the literature concerning the rheology of oleogels
composed of potato starch and cotton cellulose;

2. Analyze how the viscosity of the oleogels responds to changes in temperature;

3. Investigate the behavior of the oleogels under varying shear rates to determine if
the fluid exhibits pseudoplasticity;

4. In small amplitude oscillatory shear, determine the viscoelastic moduli as functions
of the excitation frequency. Additionally, if possible, determine the zero-shear vis-
cosity and the shear elastic modulus.
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2 CONSTITUTIVE MODELS

In this chapter, classical types of non-Newtonian fluid constitutive formalism are
presented. The first class is the generalized Newtonian fluid, also called viscous non-
Newtonian fluid. They are models based on the fact that viscosity, for non-Newtonian
fluids, are not constant as a function of shear rate. Based on this, very useful models
for modeling this relationship are proposed in the literature, which are developed from
empirical observations of the behavior of the most diverse fluids, usually performed in
simple permanent shear experiments. However, a defining feature of these models is that
they do not clearly capture the characteristics arising from the elastic properties of many
non-Newtonian fluid classes, such as memory effects.

Then, the linear-viscoelastic models will be treated, aiming the proposition of
constitutive equations capable of modeling the behavior of viscoelastic fluids, that is,
of materials that present, at the same time, elastic characteristics, associated with the
typical behavior of solids and dissipative effcts, typical of fluids. These models will be
demonstrated from the approach of small deformations, which, in turn, will allow the
linearization of the problem.

In addition, analogies with other physical systems such as mass spring-damper
systems will be discussed to obtain the constitutive equations in order to capture the
elastic and dissipative moduli. Also, the stress relaxation function will be described, from
which it is possible to determine the relaxation time spectrum for the most complex fluids
is shown. It will also be presented the general model, proposed by Oldroyd (1956), for the
constitutive equations in linear-viscoelasticity regime.

The next topic of interest is the description of constitutive models for suspensions,
which briefly can be described as systems composed of a solid phase (particles) dispersed
in a base fluid. It is presented, based on microhydrodynamic concepts, the form of the
stress tensor for a diluted suspension os rigid spheres, leading to the definition of Einstein’s
viscosity. We will also discuss a constutive model for a suspension of highly anisotropic
particles with rheological magnetic effects (chains of magnetic particles) and with no
magnetic interaction (double wall carbon nanotubes).
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2.1 The generalized Newtonian fluids

The constitutive equation for generalized Newtonian fluids (GNF), according to
Morrison (2001), was developed based on the constitutive equation of incompressible
Newtonian fluids, which is given by :

𝜎 = 𝜇�̇�, (2.1)

where,
�̇� =

√
2𝐷 : 𝐷. (2.2)

In those equations, 𝜎 is the stress tensor, �̇� is the shear-rate tensor and 𝐷 is
the tensor rate of strain, defined as the symmetric part of the tensor gradient of velocity
∇𝑢. However, equation (2.1) predicts a constant viscosity, independent from the shear-
rate �̇�. This feature must be changed in order to cope with the dynamical description of
materials whose viscosity is not constant, what leads to the adequacy of equation (2.1)
to the following form:

𝜎 = 𝜂(�̇�)�̇�, (2.3)

where, 𝜂(�̇�) is a scalar function and �̇� = |�̇�|. The material function 𝜂(�̇�) is called apparent
viscosity, due to the fact that it varies as a function of the shear-rate. Nonetheless, it is
related to the effective viscosity of the fluid 𝜇 as follows:

lim
�̇�→0

𝜂(�̇�) = 𝜇. (2.4)

It is important to note that, even though the form of the stress tensor for the
generalized Newtonian fluids are given by equation (2.3), for it to truly represent the rhe-
ological characteristics of a given material, it is necessary to propose constitutive models
for the apparent viscosity function 𝜂(�̇�). Bird, Armstrong and Hassager (1987) argues that
the majority of models for this material function come from experimental observations,
being referred as ad-hoc expressions. The models used in the analysis carried out in this
dissertation are describe in the next subsections.

2.1.1 Power-law model

One of the best known viscous non-Newtonian fluid models in the literature is
the power-law model, also called the Ostwald-De-Waele model (BIRD; ARMSTRONG;
HASSAGER, 1987). This model describes viscosity as a function proportional to some
power of the shear-rate (�̇�), being mathematically expressed by:

𝜂(�̇�) = 𝐾�̇�𝑛−1, (2.5)

which presents two parameters that must be adjusted to experimental data. The first one
is the power (𝑛 − 1) of �̇�, which represents the slope of the line obtained by representing

22



equation (2.5) on a log-log graph. The second parameter is the consistency index, 𝐾,
whose logarithm indicates the intersection with the ordinates axis in the graph of log(𝜂)
vs log(�̇�). Besides that, 𝐾 directly related to the magnitude of the fluid’s viscosity.

The power law model can be used to describe a Newtonian fluid, in this case 𝐾 = 𝜇

and 𝑛 = 1. For 𝑛 > 1, the graph of log(𝜂) vs log(�̇�) is a rising line and the material is
said Shear-thickening, since it has the property of its apparent viscosity increasing with
the intensification of the applied shear-rate. For 𝑛 < 1, the log(𝜂) vs log(�̇�) graph is a
descending line and the fluid behavior is said to be shear-thinning, showing a decrease in
apparent viscosity as a function of increased shear-rate. These behaviors are shown in the
figure (6).

η = Kγ̇n−1, n < 1

log(η)

log(γ̇)

Shear-thickening

η = Kγ̇n−1, n > 1

η = K, n = 1

Newtonian

Shear-thinning

Figure 6 – Schematic representation of the three possible rheological behaviors of a power-
law fluid.

According to Morrison (2001), this model is well suited for modeling non-Newtonian
fluids subjected to medium to high shear-rate regimes, such as polymer extrusion pro-
cesses. In addition, this model allows simplified calculations and good modeling in pre-
dicting flow measurements as a function of pressure drop in various industrial applications.
However, this has some limitations, such as not capturing the Newtonian plateau at small
shear-rates 𝜂0. Another disadvantage is that this model is purely experimental and, there-
fore, its description of a particular material is specific, that is, it is not possible to predict
the behavior of a material knowing the parameters of the power-law model of a similar
material. It may be added, furthermore, that this model has no temporal constant be-
tween its parameters, what makes it unable to capture any material relaxation time, i.e.
this model is not able to predict how quickly the fluid will relax after the flow is finished.
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2.1.2 Sisko’s model

This model was proposed by Sisko (1958) as an excellent alternative for modeling
the rheological behavior of shear-thinning fluids, such as greases, emulsions and many
other complex fluids when subjected to medium-high shear-rates. The constitutive equa-
tion for the relation between the apparent viscosity and the shear-rate suggested by this
model is

𝜂(�̇�) = 𝜂∞ + 𝐾𝑠�̇�
(𝑛−1). (2.6)

As it can be immediately seen, this model comes from the addition of another parameter
to the power-law model. This parameter is the infinite shear viscosity 𝜂∞, that represents
the constant value to which the viscosity tends when the shear-rate increases. The other
parameters 𝐾𝑠 and (𝑛 − 1) have the same interpretation that was for the parameters of
the power-law model.

2.2 The general linear viscoelastic fluids

The word viscoelasticity refers to the simultaneous existence of viscous and elas-
tic characteristics in a material. According to Barnes, Hutton and Walters (1989), it is
reasonable to assume that all materials are viscoelastic, 𝑖.𝑒. in all of them, both viscous
and elastic properties coexist. This is because the response of a given material sample in
a given experiment depends on the relationship between the observer’s time scale and the
characteristic time scale of the material (the time it takes the material to respond to a
given external stimulus. ). For example, if an experiment is relatively slow, the sample
will be more viscous than elastic, however, if the experiment is relatively fast, the effect
will be opposite and therefore the sample will behave more elastic than viscous. However,
if the experiment scale has an order of magnitude compatible with the material’s natural
time scale, a viscoelastic response is observed.

The above description leads to the definition of a very important dimensionless
number, the Deborah number (𝐷𝑒), defined as the ratio of a material’s timescale 𝜏 , whose
origin is closely related to its microstructure, and a characteristic time scale of the flow
𝜏𝑓 , of macroscopic origin, that is:

𝐷𝑒 = 𝜏

𝜏𝑓

. (2.7)

In this context, it is clear that a Hookean solid has 𝐷𝑒 = ∞, since its characteristic
relaxation time is theoretically infinite, on the other hand, Newtonian fluids have 𝐷𝑒 = 0,
since its characteristic time is very small compared to common experiment scales. It also
appears that viscoelastic materials have 𝐷𝑒 ≈ 1, as both time scales have the same order
of magnitude.
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2.2.1 Linear viscoelasticity

According to (CUNHA, 2016), linear viscoelasticity is a description of the vis-
coelastic response (𝐷𝑒 ≈ 1) of non-Newtonian fluids, whose main feature is to be a small
deformation regime. It was, according to Barnes, Hutton and Walters (1989), the first
study for transient description of non-Newtonian fluids, where the elastic response of the
fluid becomes important. In this type of approach, the fluid response, i.e., the stress at
any time is directly proportional to the strain or strain rate.

Due to linearity, the differential equations that govern the phenomenon are linear
and the coefficients of the temporal derivatives are constant,i.e. they are independent of
strain and stress. Nevertheless, according to Barnes, Hutton and Walters (1989), the main
consequence of linearity is that the principle of effects superposition can be applied to the
system, a fact explored in the proposition made by Oldroyd (1956) of an general equation
for the linear viscoelasticity regime, which is:(︃

1 + 𝜏1
𝜕

𝜕𝑡
+ 𝜏2

𝜕2

𝜕𝑡2 + ... + 𝜏𝑛
𝜕𝑛

𝜕𝑡𝑛

)︃
𝜎(𝑡) =

(︃
𝛽0 + 𝛽1

𝜕

𝜕𝑡
+ 𝛽2

𝜕2

𝜕𝑡2 + ... + 𝛽𝑚
𝜕𝑚

𝜕𝑡𝑚

)︃
𝛾(𝑡)

(2.8)
where 𝜏𝑛 and 𝛽𝑚 are material parameters, which can be measured experimentally, 𝜎(𝑡)
and 𝛾(𝑡) are, respectively, the stress tensor and the strain tensor.

Bird, Armstrong and Hassager (1987) state that there are many reasons to deter-
mine the viscoelastic-linear response of fluids, firstly, it allows the understanding of the
effects of the microstructure of the material on its behavior when flowing. In addition,
the experimentally measured parameters and material functions in small deformation flow
have been very useful in the quality control of industrial processes. Another important
reason is the fact that a good basis in linear viscoelasticity is of paramount importance
for understanding nonlinear viscoelastic models.

2.2.2 Maxwell’s viscoelastic model

Maxwell was a pioneer on the proposition of a constitutive model to described
the characteristics of viscoelastic materials. According to Bird, Armstrong and Hassager
(1987), Maxwell developed the theory of elasticity, in the belief that gases could exhibit
viscoelastic behavior.

In order to obtain the constitutive equation of Maxwell’s model in a two-dimensional
approach,Barnes, Hutton and Walters (1989) propose a system composed by a spring
whose elastic constant is 𝐺, and a damper with damping constant 𝜇, connected in series
and subjected to periodic small amplitude excitations, in which the spring continuously
shifts 𝛾 and the damper observes a damping rate �̇�. This system is known as the Maxwell
element and is represented in the figure (7).
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Figure 7 – Schematics of a Maxwell’s element.

Considering a Hookean spring, it comes that

𝜎𝐸 = 𝐺𝛾𝐸. (2.9)

Then, differentiating equation (2.9), one obtains:

𝜎𝐸 = 𝐺�̇�𝐸, (2.10)

on the other hand, for the damper:

𝜎𝑉 = 𝜂�̇�𝑉 . (2.11)

Since the system is composed of elements in a series arrangement, the spring and
the damper will suffer the same stress and the total damping rate will be the sum of the
damping rate of both components, i.e.:

𝜎𝐸 = 𝜎𝑣 = 𝜎 𝑒 �̇� = �̇�𝐸 + �̇�𝑉 , (2.12)

Therefore, substituting the results obtained from the equations (2.10) and (2.11) in the
equation (2.12), we obtain that:

�̇� = �̇�𝐸

𝐺
+ 𝜎𝑉

𝜂
= �̇�

𝐺
+ 𝜎

𝜂
. (2.13)

By reorganizing the terms of the equation (2.13), we arrive at the differential one-dimensional
formulation of Maxwell’s model, given by the following ordinary differential equation:

𝜎 + 𝜂

𝐺

𝜕𝜎

𝜕𝑡
= 𝜂�̇�. (2.14)

In this analogy, the viscous effects and hence the dissipative characteristics, related
to the liquid behavior of the viscoelastic material, are represented by the damper and the
elastic characteristics, linked to the solid behavior, are represented by the spring.
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A general formulation of Maxwell’s model, in tensor notation, is obtained by ob-
serving that this constitutive model is based on the precepts of linear viscoelasticity, and
therefore its constitutive equation must meet Oldroyd’s general form, equation (2.8), dis-
cussed in the previous section. Keeping nonzero only the terms 𝜏1 and 𝛽1 in the equation
(2.8) and equating 𝛽1 with the viscosity 𝜂, one obtains the following differential equation:

𝜎 + 𝜏1
𝜕𝜎

𝜕𝑡
= 𝜂

𝜕𝛾

𝜕𝑡
, (2.15)

where
�̇� = 𝜕𝛾/𝜕𝑡 = 2D. (2.16)

In these expressions, D is the rate of strain tensor and 𝜏1 = 𝜂/𝐺 is a material time
constant, more specifically named time of relaxation, and 𝐺 is the elastic modulus. With
this alteration, equation (2.15) becomes:

𝜎 + 𝜏1
𝜕𝜎

𝜕𝑡
= 2𝜂𝐷. (2.17)

The solution of the ordinary differential equation (2.17) is obtained by the method
of the integrating factor (𝐹.𝐼.). Defining 𝐹.𝐼. = 𝑒(1/𝜏1𝑡) and multiplying both sides of
equationi (2.17) by this factor, one obtains:

𝑒(𝑡/𝜏1) 𝑑𝜎

𝑑𝑡
+ 1

𝜏1
𝑒(𝑡/𝜏1) = 2𝜂

𝜏1
𝐷(𝑡)𝑒(𝑡/𝜏1), (2.18)

and, thus:
𝑑

𝑑𝑡

(︁
𝜎𝑒(𝑡𝜏1)

)︁
= 2𝜂

𝜏1
𝐷(𝑡)𝑒(𝑡/𝜏1). (2.19)

Integrating equation (2.19), it is obtained the constitutive equation for the stress tensor
for a Maxwell’s fluid, which is expressed by:

𝜎(𝑡) = 2𝜂

𝜏1

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏1𝐷(𝑡′)𝑑𝑡′. (2.20)

From this equation, it is defined the stress relaxation function as:

Φ(𝑡 − 𝑡′) = 2𝜂

𝜏1
𝑒−(𝑡−𝑡′)/𝜏1 (2.21)

where, Φ(𝑡 − 𝑡′) is a positive function that depends on the nature of the fluid. Besides
that, it decreases monotonically for zero as 𝑡 − 𝑡′ −→ 0. Based on this, the stress tensor
of a Maxwell’s fluid can be rewritten as:

𝜎(𝑡) =
∫︁ 𝑡

−∞
Φ(𝑡 − 𝑡′)𝐷(𝑡′)𝑑𝑡′. (2.22)

That is, according to Salas (2006), for a viscoelastic incompressible fluid subject to
small displacement gradients or arbitrary strain rates, the expression for the total stress
tensor Σ is given by:

Σ(𝑡) = −𝑝𝐼 + 𝜎(𝑡), (2.23)
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where −𝑝𝐼 is the isotropic part of the stress tensor and 𝜎(𝑡) is its deviatoric part, that
in this case is given by equation (2.22).

The equation (2.22) is interpreted from the perspective of the causality principle,
which states that stress depends on the history of loading, i.e., the stress in the present-
time (𝑡) depends on the strain-rate or history of deformation in earlier times (𝑡′). In this
context, the exponential shown in the equation (2.21), which mathematically represents
the stress relaxation function, can be understood as a multiplicative factor of that equa-
tion, which assumes higher values ??for times closer to the present time and smaller for
later times, thus indicating that stress is more susceptible to the more recent history of
deformation. As a result, Maxwell fluids are said to have memory, as their current state
depends on past states and, moreover, their memory decreases rapidly for events that
occurred at a time away from the present, showing that this model fits the principle of
fadding memory.

2.2.3 Generalized Maxwell’s viscoelastic model

It was previously stated that Maxwell’s fluid has memory and that a good measure
of this parameter is the relaxation time 𝜏1. Now consider a complex material composed
of 𝑁 Maxwell’s elements, as shown in the figure (8).

Figure 8 – Schematics of a complex fluid composed by 𝑁 Maxwell’s elements.

The two-dimensional form of Maxwell’s model is obtained by integrating equation
(2.15) through the integrating factor technique, whose procedure is analogous to that
approached for the general solution addressed in the section (2.14). Solving the said
ordinary differential equation, one obtains that:

𝜎(𝑡) = 𝜂

𝜏1

∫︁ 𝑡

−∞
𝑒(−𝑡−𝑡′)/𝜏1 �̇�(𝑡′)𝑑𝑡′. (2.24)
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Regarding the principle of superposing effects, which is one of the foundations of linear
viscoelasticity theory, it can be stated that the total stress felt by the material formed by
𝑁 Maxwell’s elements is given by the sum of the stress for each element, that is:

𝜎(𝑡) =
𝑁∑︁

𝑗=1

𝜂𝑗

𝜏𝑗

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏𝑗 �̇�(𝑡′)𝑑𝑡′, (2.25)

which, in terms of the stress relaxation function can be rewritten as follows:

𝜎(𝑡) =
∫︁ 𝑡

−∞

𝑁∑︁
𝑗=1

Φ𝑗(𝑡 − 𝑡′)�̇�(𝑡′)𝑑𝑡′. (2.26)

This equation shows us that in a linear viscoelastic regime the relaxation of a
given stress applied to a complex material develops as a combined relaxing effect of the 𝑁

elements that compose it, i.e. there are 𝑁 relaxation times which characterize the typical
time scale of a complex fluid in this flow regime. One can, therefore, write the stress
relaxation function by considering Maxwell’s 𝑁 elements as follows:

Φ(𝑠) =
𝑁∑︁

𝑗=1
Φ𝑗(𝑠) =

𝑁∑︁
𝑗=1

𝜂𝑗

𝜏𝑗

𝑒−𝑠/𝜏𝑗 , (2.27)

where 𝑠 = 𝑡 − 𝑡′.

2.2.4 Determination of the viscoelastic modules

Consider a Maxwell’s fluid subjected to a small amplitude oscillatory shear. In this
conditions, from equation (2.24), one obtains:

𝜎(𝑡) = 𝜂1

𝜏1

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏1 �̇�(𝑡′)𝑑𝑡′, (2.28)

where, 𝜂1 is the viscosity of the fluid for a condition of null frequency (equilibrium) and
𝜏1 its characteristic time of relaxation. Given the characteristics of the small amplitude
oscillatory shear, it is defined that:

𝜎(𝑡) = �̇�(𝑡)𝜂*(𝜔), (2.29)

in which, 𝜂*(𝜔) is the complex viscosity modulus of the fluid.

Besides that, the angular strain is given by:

𝛾(𝑡′) = 𝛾0𝑒
𝑖𝜔𝑡′

. (2.30)

Now, the shear-rate is defined by differentiating equation (2.30), which results in:

�̇�(𝑡′) = 𝑖𝜔𝛾0𝑒
𝑖𝜔𝑡′

. (2.31)

Replacing this expression into equation (2.28), one obtains:

𝜎(𝑡) = 𝜂1

𝜏1

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏1𝑖𝜔𝛾0𝑒

𝑖𝜔𝑡′
𝑑𝑡′. (2.32)
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Applying a substitution of variables 𝑠 = 𝑡 − 𝑡′ in equation (2.32), that results in
𝑑𝑠 = −𝑑𝑡′, and inverting the limits of integration, one obtains:

𝜎(𝑡) = 𝜂1

𝜏1

∫︁ ∞

0
𝑒−𝑠/𝜏1𝑖𝜔𝛾0𝑒

𝑖𝜔(𝑡−𝑠)𝑑𝑠. (2.33)

Removing constant terms from the integral,

𝜎(𝑡) = 𝜂1

𝜏1
𝑖𝜔𝛾0𝑒

𝑖𝜔𝑡
∫︁ ∞

0
𝑒−𝑠/𝜏1𝑒−𝑖𝜔𝑠𝑑𝑠, (2.34)

and using equation (2.31), (2.34) can be rewritten in the following form:

𝜎(𝑡) = 𝜂1

𝜏1
�̇�(𝑡)

∫︁ ∞

0
𝑒−𝑠/𝜏1𝑒−𝑖𝜔𝑠𝑑𝑠. (2.35)

Now, adding the powers of the exponentials in the integrand of (2.35), factorizing 𝑠 and
rearranging the terms, one obtains:

𝜎(𝑡) = 𝜂1

𝜏1
�̇�(𝑡)

∫︁ ∞

0
𝑒[−𝑠(1+𝑖𝜔𝜏1)/𝜏1]𝑑𝑠. (2.36)

Integrating (2.36),

𝜎(𝑡) = 𝜂1

𝜏1
�̇�(𝑡)

[︃
−𝜏1

(1 + 𝑖𝜔𝜏1)
𝑒[−𝑠(1+𝑖𝜔𝜏1)/𝜏1]

]︃ ⃒⃒⃒⃒
⃒
𝑠→∞

𝑠=0
, (2.37)

and taking equation (2.37) into account, one obtains:

𝜎(𝑡) = 𝜂1

(1 + 𝑖𝜔𝜏1)
�̇�(𝑡). (2.38)

Besides that, using the definition stated on equation (2.29), it comes that:

𝜂* = 𝜂1

(1 + 𝑖𝜔𝜏1)
. (2.39)

Multiplying and dividing equation (2.39) by the conjugate of the denominator:

𝜂* = 𝜂1 − 𝑖𝜔𝜏1𝜂1

(1 + 𝜔2𝜏 2
1 ) , (2.40)

and observing that:
𝜂*(𝜔) = 𝜂′(𝜔) − 𝑖𝜂′′(𝜔), (2.41)

it is easily shown that:
𝜂′(𝜔) = 𝜂1

(1 + 𝜔2𝜏 2
1 ) (2.42)

and
𝜂′′(𝜔) = 𝜂1𝜏1𝜔

(1 + 𝜔2𝜏 2
1 ) . (2.43)

Finally, using the definition 𝐺* = 𝑖𝜔𝜂*, one obtains that:

𝐺*(𝜔) = 𝑖𝜔𝜂1

(1 + 𝑖𝜔𝜏1)
, (2.44)
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from which, through a process analogous to the one carried out on equation (2.40), it is
obtained that:

𝐺′(𝜔) = 𝜔𝜂′′(𝜔) = 𝜂1𝜏1𝜔
2

(1 + 𝜔2𝜏 2
1 ) , (2.45)

and
𝐺′′(𝜔) = 𝜔𝜂′(𝜔) = 𝜂1𝜔

(1 + 𝜔2𝜏 2
1 ) . (2.46)

Now admitting a fluid composed of 𝑁 elements of Maxwell, as discussed in the
section (2.2.3), it is shown by the superposition principle that:

𝜂′(𝜔) =
𝑁∑︁
𝑗

𝜂𝑗

(1 + 𝜔2𝜏 2
𝑗 ) , (2.47)

𝜂′′(𝜔) =
𝑁∑︁
𝑗

𝜂𝑗𝜏𝑗𝜔

(1 + 𝜔2𝜏 2
𝑗 ) , (2.48)

𝐺′(𝜔) =
𝑁∑︁
𝑗

𝜂𝑗𝜏𝑗𝜔
2

(1 + 𝜔2𝜏 2
𝑗 ) , (2.49)

e
𝐺′′(𝜔) =

𝑁∑︁
𝑗

𝜂𝑗𝜔

(1 + 𝜔2𝜏 2
𝑗 ) . (2.50)

2.2.5 Relationship between the stress relaxation function and viscoelastic
modules

Consider again a Maxwell fluid subjected to a small amplitude oscillatory shear.
In this case, the system excitation given in terms of the shear-rate is expressed as:

�̇�(𝑡′) = 𝛾0𝑐𝑜𝑠(𝜔𝑡′). (2.51)

Replacing the expression (2.51) into the bidimensional constitutive equation for
the stress tensor of a Maxwell’s fluid, equation (2.24), one obtains:

𝜎(𝑡) =
∫︁ 𝑡

−∞
Φ(𝑡 − 𝑡′)𝛾0𝑐𝑜𝑠(𝜔𝑡′)𝑑𝑡′. (2.52)

Defining 𝑠 = 𝑡 − 𝑡′ on equation (2.52), it comes that:

𝜎(𝑠) =
∫︁ 𝑡

−∞
Φ(𝑠)𝛾0𝑐𝑜𝑠(𝜔(𝑡 − 𝑠))𝑑𝑠. (2.53)

Developing the term 𝑐𝑜𝑠(𝜔(𝑡 − 𝑠)), ic can be easily shown that:

𝜎(𝑠) =
∫︁ 𝑡

−∞
[Φ(𝑠)𝑐𝑜𝑠(𝜔𝑠)𝑑𝑠] 𝛾0𝑐𝑜𝑠(𝜔𝑡)𝑑𝑠 +

∫︁ 𝑡

−∞
[Φ(𝑠)𝑠𝑒𝑛(𝜔𝑠)𝑑𝑠] 𝛾0𝑠𝑒𝑛(𝜔𝑡)𝑑𝑠. (2.54)

Comparing this result with equation (??), it is obtained that:

𝜂′(𝜔) =
∫︁ 𝑡

−∞
Φ(𝑠)𝑐𝑜𝑠(𝜔𝑠)𝑑𝑠, (2.55)

𝜂′′(𝜔) =
∫︁ 𝑡

−∞
Φ(𝑠)𝑠𝑒𝑛(𝜔𝑠)𝑑𝑠. (2.56)
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Alternatively, using complex variables, one obtains:

𝜂*(𝜔) = 𝜂′(𝜔) − 𝑖𝜂′′(𝜔) =
∫︁ 𝑡

−∞
Φ(𝑠)𝑒−𝑖𝜔𝑠𝑑𝑠. (2.57)

Using the inverse Fourier transform, it is immediate that:

Φ(𝑠) = 2
𝜋

∫︁ 𝑡

−∞
𝜂′(𝜔)𝑐𝑜𝑠(𝜔𝑠)𝑑𝜔 (2.58)

Φ(𝑠) = 2
𝜋

∫︁ 𝑡

−∞
𝜂′′(𝜔)𝑠𝑒𝑛(𝜔𝑠)𝑑𝜔 (2.59)

2.2.6 Determination of the relaxation time from the stress relaxation function

The relaxation time (𝜏) for a simple Maxwell’s fluid (composed of one Maxwell
element) or the main relaxation time for a complex memory fluid can be calculated from
the stress relaxation function. For that, lets calculate the following relation:

lim
𝜔→0

𝜂′′(𝜔)/𝜔

𝜂′(𝜔) , (2.60)

where 𝜂′(𝜔) and 𝜂′′(𝜔) are given by (2.55), thus:

lim
𝜔→0

𝜂′′(𝜔)/𝜔

𝜂′(𝜔) = lim
𝜔→0

⎡⎢⎢⎢⎣
∫︁ 𝑡

−∞

Φ(𝑠) sin(𝜔𝑠)
𝜔

𝑑𝑠∫︁ 𝑡

−∞
Φ(𝑠) cos(𝜔𝑠)𝑑𝑠

⎤⎥⎥⎥⎦ . (2.61)

Evaluating the limit of the denominator of the fraction located on the left side of equity
on equation (2.61), one obtains:

lim
𝜔→0

𝜂′(𝜔) = lim
𝜔→0

∫︁ 𝑡

−∞
Φ(𝑠) cos(𝜔𝑠)𝑑𝑠 =

∫︁ 𝑡

−∞
Φ(𝑠)𝑑𝑠 = 𝜂(0) = 𝜂0, (2.62)

where 𝜂0 is the viscosity of the fluid in the limit of flow absence (equilibrium). The limit
of the numerator is calculated as follows:

lim
𝜔→0

𝜂′′(𝜔)
𝜔

= lim
𝜔→0

∫︁ 𝑡

−∞

Φ(𝑠) sin(𝜔𝑠)
𝜔

𝑑𝑠 (2.63)

to which, applying the rule of L’Hôpital, it is obtained that:

lim
𝜔→0

𝜂′′(𝜔)
𝜔

= lim
𝜔→0

∫︁ 𝑡

−∞
𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠 =

∫︁ 𝑡

−∞
𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠. (2.64)

Now, substituting the results obtained in (2.63) and (2.64) into (2.61), one obtains
that:

lim
𝜔→0

𝜂′′(𝜔)/𝜔

𝜂′(𝜔) =
∫︀ 𝑡

−∞ 𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠∫︀ 𝑡
−∞ Φ(𝑠)𝑑𝑠

= 𝛽

𝜇
, (2.65)

By dimensional analysis, knowing that 𝑠 has unit of time and Φ(𝑠) unit of tension, it
is obtained, as a result, that [𝛽] = 𝑃𝑎.𝑠2 and [𝜇] = 𝑃𝑎.𝑠, then the quotient shown on
equation (2.65) has unit of time, being defined as the relaxation time 𝜏 of the material.
Based on that:

𝜏 =
∫︀ 𝑡

−∞ 𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠∫︀ 𝑡
−∞ Φ(𝑠)𝑑𝑠

. (2.66)
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2.3 Constitutive equation of a statistical homogeneous suspension:
the bulk stress tensor

2.3.1 Force and torque free particles

The idea of this section is to discuss how a suspension can be modeled as a con-
tinuous equivalent fluid considering by hypotheses that no external forces and torques are
acting upon the particles. The particles in suspension are considered neutrally buoyant,
that there is no net effect resulting from the action of the gravity over the particles. Besides
that, the suspension is considered statistical homogeneous, which means that any mate-
rial volume of the suspension presents the same probability density function of particles.
This signifies that there are no void of particles nor agglomeration in any representative
volume of the suspension.

As a primary assumption, we will consider that the base fluid is Newtonian and
incompressible, whose stress tensor is given by

Σ𝑁 = −𝑝𝐼 + 2𝜂0𝐷, 𝑥 ∈ 𝑉𝑓 . (2.67)

Observe that 𝑥 is a position in the suspension and 𝑉𝑓 is the volume of fluid.

That being said, consider an element of the suspension, its volume can be repre-
sented as

𝑉 = 𝑉𝑓 +
𝑁∑︁

𝑘=1
𝑉𝑘, (2.68)

where 𝑉𝑓 is the volume of fluid and 𝑉𝑘 is the volume of each particle. We define the
volumetric average of he stress tensor as

Σ = 1
𝑉

∫︁
𝑉
Σ 𝑑𝑉 = lim

𝑉 ′→𝑉

1
𝑉 ′Σ 𝑑𝑉. (2.69)

that can be evaluated separately over 𝑉𝑓 and 𝑉𝑠 = ∑︀𝑁
𝑘 𝑉𝑘, that is:

Σ = 1
𝑉

∫︁
𝑉𝑓

Σ 𝑑𝑉 + 1
𝑉

∫︁
𝑉𝑠

Σ 𝑑𝑉 (2.70)

Substituting equation (2.67) into the first integral on (2.70) and regarding that

2𝜂0𝐷 = 𝜂0
[︁
∇𝑣 + (∇𝑣)𝑇

]︁
, (2.71)

one obtains:

Σ = 1
𝑉

∫︁
𝑉𝑓

{︁
−𝑝𝐼 + 𝜂0

[︁
∇𝑣 + (∇𝑣)𝑇

]︁}︁
𝑑𝑉 + 1

𝑉

∫︁
𝑉𝑘

𝑁∑︁
𝑘=1

Σ 𝑑𝑉. (2.72)

Rearranging the therms, one gets:

Σ = − 1
𝑉

∫︁
𝑉𝑓

𝑝𝐼 𝑑𝑉 + 𝜂0
1
𝑉

∫︁
𝑉𝑓

∇𝑣 𝑑𝑉 + 𝜂0
1
𝑉

∫︁
𝑉𝑓

(∇𝑣)𝑇 𝑑𝑉 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑉𝑘

Σ 𝑑𝑉. (2.73)
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Let us consider the calculation of the first integral. The average pressure of the
fluid is given by:

1
𝑉

∫︁
𝑉𝑓

𝑝𝐼 𝑑𝑉 = −𝑝𝑓𝐼 (2.74)

As a result, the volumetric average of the stress tensor can be rewritten as

Σ = −𝑝𝑓𝐼 + 𝜂0
1
𝑉

∫︁
𝑉𝑓

∇𝑣 𝑑𝑉 + 𝜂0
1
𝑉

∫︁
𝑉𝑓

(∇𝑣)𝑇 𝑑𝑉 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑉𝑘

Σ 𝑑𝑉. (2.75)

Now, observe that

∇𝑣 = 1
𝑉

∫︁
𝑉𝑓

∇𝑣 𝑑𝑉 − 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑉𝑘

∇𝑣 𝑑𝑉. (2.76)

Applying the theorem of Gauss, this expression can be rewritten as

∇𝑣 = 1
𝑉

∫︁
𝑉𝑓

∇𝑣 𝑑𝑉 − 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑆𝑘

𝑣�̂� 𝑑𝑆. (2.77)

Analogously,

(∇𝑣)𝑇 = 1
𝑉

∫︁
𝑉𝑓

(∇𝑣)𝑇 𝑑𝑉 − 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑆𝑘

�̂�𝑣 𝑑𝑆. (2.78)

As a result, the expression for the volumetric average stress tensor can be modified
to

Σ = −𝑝𝐼 + 2𝜂0𝐷 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑉𝑘

Σ 𝑑𝑉 − 𝜂0
1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑆𝑘

(𝑣�̂� + �̂�𝑣) 𝑑𝑆. (2.79)

Let’s analyze the last integral in the right side of equation (2.79). To do that, firs
let us recall the following identity:

Σ = ∇ · (Σ𝑥) − 𝑥 (∇ · Σ) . (2.80)

Now, applying it, one obtain:∫︁
𝑉𝑘

Σ 𝑑𝑉 =
∫︁

𝑉𝑘

∇ · (𝑥Σ) 𝑑𝑉 −
∫︁

𝑉𝑘

𝑥 (∇ · Σ) 𝑑𝑉. (2.81)

Due to the fact that there is no force acting upon the particles, the last integral on (2.81)
is identically zero. Analyzing the first integral on the right side of equation (2.81), one
obtains by the application of Gauss theorem:∫︁

𝑉𝑘

∇ · (𝑥Σ) 𝑑𝑉 =
∫︁

𝑆𝑘

𝑥(�̂� · Σ) 𝑑𝑆 =
∫︁

𝑆𝑘

𝑥𝑡 𝑑𝑆. (2.82)

In this equation 𝑡 is the tension vector also called traction. The last integral is the hy-
drodynamic dipole related to the k-th particle 𝒟𝑘. As a second order tensor, 𝒟𝐾 can be
written in therms of its symmetric and anti-symmetric parts:

𝒟𝑘 = 1
2

∫︁
𝑆𝑘

(𝑥𝑡 + 𝑡𝑥) 𝑑𝑆 + 1
2

∫︁
𝑆𝑘

(𝑥𝑡 − 𝑡𝑥) 𝑑𝑆 = 𝑆𝑘 + 𝐿𝑘 (2.83)
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The symmetric part is called stresslet 𝑆𝑘 and the anti-symmetric of rotlet 𝐿𝑘 associated
to the k-th particle. 𝐷𝑘 is also called particle tension and is associated with the extra
stresses acting on the fluid due to the presence of the particles, whereas 𝐿𝑘 is the torque
tensor.

The volumetric average stress tensor for the continuous equivalent fluid can be
then expressed by

Σ = −𝑝𝐼 + 2𝜂0𝐷 + 1
𝑉

𝑁∑︁
𝑘=1

(︁
𝑆𝑘 + 𝐿𝑘

)︁
− 𝜂0

1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑆𝑘

(𝑣�̂� + �̂�𝑣) 𝑑𝑆. (2.84)

For torque-free particles:
𝐿𝑘 = 0. (2.85)

Thus,
𝒟𝑘 = 𝑆𝑠. (2.86)

Hence,

Σ = −𝑝𝐼 + 2𝜂0𝐷 + 1
𝑉

𝑁∑︁
𝑘=1

𝑆𝑘 − 𝜂0
1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑆𝑘

(𝑣�̂� + �̂�𝑣) 𝑑𝑆. (2.87)

The total stresslet is defined as:

𝑆𝑘
𝑇 = 𝑆𝑘 − 𝜂0

∫︁
𝑆𝑘

(𝑣�̂� + �̂�𝑣) 𝑑𝑆. (2.88)

Using equation (2.86), the latter equation can be rewritten as:

𝑆𝑘
𝑇 =

∫︁
𝑆𝑘

[𝑥 (�̂� · Σ) − 𝜂0 (𝑣�̂� + �̂�𝑣)] 𝑑𝑆. (2.89)

There are two cases to analyze when dealing with force and torque-free particles:.
In the first one, the particles in suspension ar deformable. In this case, the bulk stress
tensor is written as a function of the total stresslet 𝑆𝑘

𝑇 as follows:

Σ = − 𝑝𝐼 + 2𝜂0𝐷 + 1
𝑉

𝑁∑︁
𝑘=1

𝑆𝑘
𝑇 (2.90)

Σ = − 𝑝𝐼 + 2𝜂0𝐷 + 𝑛

𝑁

𝑁∑︁
𝑘=1

𝑆𝑘
𝑇 . (2.91)

where 𝑛 is number of density, defined as 𝑛 = 𝑁/𝑉 .

The second case is the one in which the particles are rigid. Let us evaluate the
deformation term over the particles:∫︁

𝑆𝑘

(𝑣�̂� + �̂�𝑣) 𝑑𝑆 =
∫︁

𝑣𝑘

[︁
∇𝑣 + (∇𝑣)𝑇

]︁
𝑑𝑉 =

∫︁
𝑣𝑘

2𝐷 𝑑𝑉. (2.92)

As the particles as rigid, 𝐷 = 0, thus:∫︁
𝑆𝑘

(𝑣�̂� + �̂�𝑣) 𝑑𝑆 = 0. (2.93)
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As a result, the total stresslet becomes:

𝑆𝑘
𝑇 =

∫︁
𝑆𝑘

𝑥 (�̂� · Σ) = 𝒟𝑘 = 𝑆𝑘, (2.94)

and, as a result, the bulk stress tensor for a suspension of force and torque free rigid
particles can be expressed as:

Σ = − 𝑝𝐼 + 2𝜂0𝐷 + 1
𝑉

𝑁∑︁
𝑘=1

𝑆𝑘 (2.95)

Σ = − 𝑝𝐼 + 2𝜂0𝐷 + 𝑛

𝑁

𝑁∑︁
𝑘=1

𝑆𝑘. (2.96)

2.3.2 Einstein’s equivalent Newtonian fluid

Consider the case of a rigid sphere of radius 𝑎 subjected to a linear flow

𝑣∞(𝑥) = 𝐷∞ · 𝑥 + 𝜔∞ × 𝑥. (2.97)

From the third faxèn law (KIM; KARRILA, 2013), the stresslet produced by the
sphere on the fluid is given by

𝑆 = 20
3 𝜋𝜂0𝑎

3(1 + 𝑎2

10∇2)𝐷∞(𝑥0). (2.98)

Due to the fact that 𝐷∞ is linear in this flow, the stresslet reduces to

𝑆 = 20
3 𝜋𝜂0𝑎

3𝐷∞(𝑥0). (2.99)

Now, considering a diluted solution (𝜑 << 1) of 𝑁 rigid spheres of small radius
dispersed on a Newtonian fluid, the stresslet produced by the i-th sphere is

𝑆𝑖 = 20
3 𝜋𝜂0𝑎

3𝐷∞
𝑖 . (2.100)

By an ensemble average over the number of particles, one obtains

𝑆 = 1
𝑁

𝑁∑︁
𝑖=1

𝑆𝑖 = 20
3 𝜋𝜂0𝑎

3 1
𝑁

𝑁∑︁
𝑖=1

𝐷∞
𝑖 = 20

3 𝜋𝜂0𝑎
3�̄�∞. (2.101)

As a result, the average particle stress tensor can be evaluated as a volumetric average of
𝑆, that is

Σ̄𝑝 = 𝑛𝑆 = 20
3 𝜋𝜂0𝑎

3�̄�∞ = 5𝜂0

(︂4
3𝜋𝑎3

)︂
𝑛�̄�∞ = 5𝜂0𝜑�̄�

∞. (2.102)

Therefore, the average stress tensor of the equivalent fluid is given by

Σ̄ = − 𝑝𝐼 + 2𝜂0�̄� + Σ̄𝑝

Σ̄ = − 𝑝𝐼 + 2𝜂0�̄� + 5𝜇𝜑�̄�

Σ̄ = − 𝑝𝐼 + 2𝜂𝑒𝑓𝑓
0 �̄� (2.103)

Then, the effective viscosity can be calculated as

𝜂𝑒𝑓𝑓
0 = 𝜂0

(︂
1 + 5

2𝜑
)︂

. (2.104)

This expression is called Einstein’s viscosity.
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2.4 Anisotropy

In the study of nanotubes and fibers, in this work, we will recall the slender body
theory. The lecture should comprehend that this theory is general and can be applied to
study the behavior of highly elongated drops (before the beak up in extensional flow) and
the flagellar propulsion of micro-organisms. The basis for slender body theory is to make
two asymptotic approximations in two regions: inner and outer (BATCHELOR, 1970a;
CUNHA, 2024).

The inner region is at separations from the fiber that are small compared with
the fiber length . The outer region is for separations large compared with the radius of
the fiber a. There is a matching region 𝑎 << 𝜌 << 𝑙 for wich both the inner and outer
solutions are valid. The constants in our assymptotic solutions are obtained by applying
boundary conditions on the fiber to inner solution, boundary conditions at infinity to the
outer solution and a conditionthat the two solutions coincide in the matching region.

We will consider a fiber of length 𝐿 = 2ℓ and radius a(s). s is a coordinate measured
parallel to the fiber’s axis that varies from −ℓ to ℓ as you traverse the fiber. We allow the
fiber radius to be a function of s, so that we can treat spheroids as well as cylinders and
other shapes. The 𝜌 vector is the two-dimensional plane perpendicular to the fiber and
we have a vector 𝑟 that is position relative to the center of the fiber in three dimensional
space. Observe equation (9)

Figure 9 – Schematics of a fiber for slender body theory.

2.4.1 Heat transfer problem - suspension of anisotropic particles

We shall consider that the fiber is highly conducting, so that its temperature
remains approximately constant 𝑇 = 𝑇0.

In the inner solution (|𝜌 << ℓ|) we are close to the fiber compared to its length so it
looks like it is infinitely long to a first approximation (as long as you are not near an end.)
Furthermore, although the temperature field may be changing as we go along the fiber,
we will assume that the variations in T along the fiber are on length scales comparable to
the fiber length 𝐿. Thus, we can look at this as a two-dimensional problem. The solution
for a circle, that is a source of heat per unit of Q is:

𝑇𝑖𝑛 = 𝑇0 − 𝑄(𝑠)
2𝜋𝑘

ln
(︂

𝜌

𝑎

)︂
(2.105)
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When we are in the outer solution (|𝜌 >> 𝑎|), the fiber looks like it is infinitessi-
maly thin. Thus, we can adopt an approximation in which we treat the fiber as a line of
sources (singularities) as shown in Figure (10).

Figure 10 – Schematics of a fiber for slender body theory.

Observe that: 𝑠′𝑝 + 𝑟′ = 𝑟, thus 𝑟′ = 𝑟 − 𝑠′𝑝. Besides that, |𝑟′|2 = (𝑠 − 𝑠′)2 + 𝜌2.

The infinitesimal source of heat is given by 1
4𝜋𝑘

𝑄(𝑠′)
|𝑟′|

𝑑𝑠′. Thus, the temperature in an
outer position is:

𝑇𝑜𝑢𝑡 = 𝑇 ∞ + 1
4𝜋𝑘

∫︁ 𝑙

−𝑙

𝑄(𝑠′)√︁
(𝑠 − 𝑠′)2 + 𝜌2

𝑑𝑠′ (2.106)

Note that this integral is singular , substracting the singularity:

𝑇𝑜𝑢𝑡 = 𝑇 ∞ + 1
4𝜋𝑘

∫︁ 𝑙

−𝑙
𝑑𝑠′ 𝑄(𝑠′)√︁

(𝑠 − 𝑠′)2 + 𝜌2
+ 1

4𝜋𝑘

∫︁ 𝑙

−𝑙
𝑑𝑠′ [𝑄(𝑠′) − 𝑄(𝑠)]

(𝑠 − 𝑠′)2 + 𝜌2 , (2.107)

𝑇𝑜𝑢𝑡 = 𝑇 ∞ + 𝑄(𝑠)
2𝜋𝑘

ln
[︃

2(ℓ2 − 𝑠2)1/2

𝜌

]︃
+ 1

4𝜋𝑘

∫︁ 𝑙

−𝑙
𝑑𝑠′ [𝑄(𝑠′) − 𝑄(𝑠)]

|𝑠 − 𝑠′|
(2.108)

In the matching position, we have 𝑇𝑜𝑢𝑡 = 𝑇𝑖𝑛, thus:

𝑇𝑜𝑢𝑡 = 𝑇 ∞ + 𝑄(𝑠)
2𝜋𝑘

ln
[︃

2(ℓ2 − 𝑠2)1/2

𝑎(𝑠)

]︃
+ 1

4𝜋𝑘

∫︁ 𝑙

−𝑙
𝑑𝑠′ [𝑄(𝑠′) − 𝑄(𝑠)]

|𝑠 − 𝑠′|
. (2.109)

Non dimensionalizing s by ℓ and a with a* (typical):

𝑇𝑜𝑢𝑡 = 𝑇 ∞ + 𝑄(𝑠)
2𝜋𝑘

{︃
ln(2𝛾) + ln

[︃
(1 − 𝑠2)1/2

𝑎(𝑠)

]︃}︃
+ 1

4𝜋𝑘

∫︁ 1

−1
𝑑𝑠′ [𝑄(𝑠′) − 𝑄(𝑠)]

|𝑠 − 𝑠′|
, (2.110)

where 𝛾 = 𝑙/𝑎. Equation (2.110) is an integral equation for the distribution of heat sources
Q(s) as a function of the position throughout he fiber s for a given field 𝑇∞ applied.

2.4.1.1 Determination of the coefficient of heat transfer

We want to determine the flux of heat necessary to keep a fiber heated at a given
temperature 𝑇0. From the solution for the leading order, we have:

𝑄(𝑠) = 2𝜋𝑘𝑇0

ln(2𝛾) , (2.111)

which is local. Thus, for computing the global heat:

𝑄 =
∫︁ 𝑙

−𝑙
𝑄(𝑠)𝑑𝑠 → 𝑄 = 4𝜋𝑘ℓ𝑇0

ln(2𝛾) . (2.112)
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2.4.1.2 Effective conduction of the composite material

According to (CUNHA, 2024), we shall assume that there are no interactions
between the fibers in the suspension. Thus, in the bulk, we have:

𝑘∇2⟨𝑇 ⟩ = 𝑛
∫︁

𝑑𝑝Ω(𝑝)
∫︁ 𝑧+𝑙

𝑧−𝑙
𝑑𝑧⊥𝑄(𝑠 = 𝑧 − 𝑧⊥, 𝑧⊥). (2.113)

𝑧⊥is the coordinate for the center of the fiber measured in the direction 𝑝. Replacing the
leading order for Q, we have:

𝑘∇2⟨𝑇 ⟩ = 2𝜋𝑘𝑛

ln(2𝛾)

∫︁
𝑑𝑝Ω(𝑝)

∫︁ 𝑧+𝑙

𝑧−𝑙
𝑑𝑧′

[︃
⟨𝑇 ⟩ − 1

2ℓ

∫︁ 𝑙

−𝑙
𝑑𝑠′⟨𝑇 ⟩(𝑧′ + 𝑠′)

]︃
, (2.114)

where Ω is the fiber orientation distribution. Developing ⟨𝑇 ⟩(𝑧′ + 𝑠′) in Taylor series, we
obtain:

⟨𝑇 ⟩(𝑧′ + 𝑠′) ≈ ⟨𝑇 ⟩(𝑧′) + 𝑠′ 𝜕⟨𝑇 ⟩
𝜕𝑧

⃒⃒⃒⃒
⃒⃒𝑧 = 𝑧′ + 1

2𝑠′2 𝜕2⟨𝑇 ⟩
𝜕𝑧2

⃒⃒⃒⃒
⃒⃒
𝑧=𝑧′

(2.115)

Substituting and computing the derivatives and algebric manipulations, we obtain (gen-
eralizing for 3D):

− 𝑘∇2⟨𝑇 ⟩ − 4𝜋𝑘𝑛𝑙3

3 ln(2𝛾)

∫︁
𝑑𝑝Ω(𝑝)𝑝𝑝 : ∇∇⟨𝑇 ⟩ = 0 = (2.116)

− 𝑘∇2⟨𝑇 ⟩ − 4𝜋𝑘𝑛𝑙3

3 ln(2𝛾)⟨𝑝𝑝⟩ : ∇∇⟨𝑇 ⟩ = 0. (2.117)

Observing that −∇ · ⟨𝑞⟩ and that 𝑞 = −𝐾 · ∇⟨𝑇 ⟩, we have:

𝐾 = 𝑘

[︃
𝐼 + 4𝜋𝑛𝑙3

3 ln(2𝛾)⟨𝑝𝑝⟩
]︃

. (2.118)

The reader should pay attention that in a suspention of anisotropic fibers, the
first order correction of the bulk propriety, in this case the effective conduction, is not
dependent on 𝑛𝜑, but on 𝑛𝑙3. Because of it, the conduction coefficient is very impacted,
even using a low amount of fibers.

2.4.2 Stokes flow problem - slender body theory

In the problem of applying a Stokes flow around an slender body is similar to the
problem analyzed for heat transfer. We will have an inner and outer region. In the inner
region (separation much smaller than ℓ), the flow is nearly two-dimensional in a sense
that the velocity varies slowly in the direction along the fiber. According to Batchelor
(1970a), Cunha (2024), the inner velocity (𝜌 << 𝑎) is given by:

𝑢𝑖𝑛
𝑖 = 𝑈𝑖+𝜖𝑖𝑗𝑘Ω𝑗𝑝𝑘𝑠− 1

4𝜋𝜇
𝐹𝑗(𝑠)(𝛿𝑖𝑗+𝑝𝑖𝑝𝑗) ln

(︂
𝜌

𝑎

)︂
+ 1

4𝜋𝜇
𝐹𝑗(𝑠)

[︃
𝜌𝑖𝜌𝑗

𝜌2 − (𝛿𝑖𝑗 − 𝑝𝑖𝑝𝑗)
2

]︃
+𝒪(1/𝜌2).

(2.119)
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Here, 𝐹 is the force per unit of area along the fiber.

In the outer region (𝜌 >> 𝑎), we cannot detect the finite thickness of the fiber and
so, in this problem we will trear the fiber as a line of point forces. Thus, we express the
velocity disturbance caused by the fiber in the outer region as an integral over the fiber
length of the Green’s function (Oseen tensor) dotted into the force per unit length that
the fiber exerts on the fluid.

𝑢out
𝑖 = 𝑈∞

𝑖 (𝑟) + 1
8𝜇𝜋

∫︁ 𝑙

−𝑙
𝑑𝑠′

⎡⎣𝛿𝑖𝑗

𝑟′ +
𝑟′

𝑖𝑟
′
𝑗

𝑟′3

⎤⎦𝐹𝑗(𝑠′), (2.120)

where:
𝑟′

𝑖 = 𝑟𝑖 − 𝑠′𝑝𝑖. (2.121)

Now we can match the inner and outter solutions. As before we do this by taking
the limit 𝜌 << ℓ in the outer solution, neglecting algebraically small terms in 𝛾, avoinding
logarithimically singular integrals. The integral equation is given by:

𝑈𝑖 + 𝜖𝑖𝑗𝑘Ω𝑗𝑝𝑘𝑠 =𝑈∞
𝑖 (𝑠𝑝𝑖) + 1

4𝜋𝜇
𝐹𝑗(𝛿𝑖𝑗 + 𝑝𝑖𝑝𝑗)

⎧⎨⎩ ln(2𝛾) + ln
⎡⎣(1 − 𝑠2)1/2

𝑎(𝑠)

⎤⎦⎫⎬⎭+ (2.122)

+ 1
8𝜋𝜇

𝐹𝑗(𝛿𝑖𝑗 − 3𝑝′
𝑖𝑝

′
𝑗) + 1

8𝜋𝜇
(𝛿𝑖𝑗 + 𝑝𝑖𝑝𝑗)

∫︁ 1

−1

𝐹𝑗(𝑠′) − 𝐹𝑗(𝑠)
|𝑠 − 𝑠′|

𝑑𝑠′. (2.123)

Aiming to avoid resolving this integral, it is possible to expand the solution in
powers of 1/ ln(2𝛾). With this strategy we obtain the leading solution for the force as:

1
4𝜋𝜇

𝐹𝑗(𝛿𝑖𝑗 + 𝑝𝑖𝑝𝑗) ln(2𝛾) = 𝑈𝑖 + 𝜖𝑖𝑗𝑘Ω𝑗𝑝𝑘𝑠 − 𝑈∞
𝑖 . (2.124)

Considering a neutrally buoant fiber (force and torque free) subjected to a linear
shear flow, the force distribution in the fiber is, according to (BATCHELOR, 1970a):

𝐹𝑖 = −2𝜋𝜇𝑠

𝑙𝑛(2𝛾) 𝑝𝑖𝑝𝑗𝐷𝑗𝑘𝑝𝑘 (2.125)

2.4.2.1 Suspension of non-interacting fibers

We will obtain the average stress from the calculation for a linear velocity field by
using the relationship of the contribution of a particle to the stress to the symmetric part
of the first moment of the force distribution.

Σ𝑖𝑗 = −𝑛
∫︁

𝑑𝑝Ω(𝑝)
∫︁ 𝑙

−𝑙

𝑑𝐴

2 (𝑟𝑖𝑓𝑖 + 𝑟𝑗𝑓𝑗) (2.126)

Here 𝑓 is the force per unit area on the particle surface, 𝑟 is the position measured relative
to the center of the particle and 𝑇 𝑝 is the contributionof the particle to the local stress
in the suspension. The position can be approximated as 𝑟 ≈ 𝑝𝑠 and integrating over the
circumference of the fiber, gives:

Σ𝑝
𝑖𝑗 = 2𝜋𝑛𝜇

ln(2𝛾)

∫︁
𝑝Ω(𝑝)

∫︁ 𝑙

−𝑙
𝑠2𝑑𝑠𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙𝐷𝑘𝑙. (2.127)
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Thus:
Σ𝑝

𝑖𝑗 = 4𝜋𝜇𝑛𝑙3

3 ln(2𝛾)⟨𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙⟩𝐷𝑘𝑙. (2.128)

We have calculated so far the extra stress on the fluid coming from the fiber. Now
we are going to separated the total stress into a part isotropic and other deviatoric:

Σ𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜎𝑖𝑗. (2.129)

And
𝜎𝑖𝑗 = 2𝜇𝐷𝑖𝑗 + 2𝜇𝑖𝑗𝑘𝑙𝐷𝑘𝑙, (2.130)

As a result:
𝜇𝑖𝑗𝑘𝑙 = 2𝜋𝜇𝑛𝑙3

3 ln(2𝛾)

[︂
⟨𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙⟩ − 1

3𝛿𝑖𝑗⟨𝑝𝑘𝑝𝑙⟩
]︂

. (2.131)

Equation (2.127) reveals that the extensional viscosity, 𝜂𝑒, is influenced by 𝑛𝑙3. Thus, it
can be argued that, when treating the system as an equivalent homogeneous fluid, the
tubes introduce an additional stress (stresslet) similar to that of an Einstein suspension
composed of boundary spheres with radius ℓ.
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3 MATERIALS AND METHODS

3.1 Experimental apparatus

3.1.1 Rheometer

The rheological properties of the fluids under analysis in this work are obtained
using a high performance Physica Modular Compact Rheometer - MCR 301, illustrated
in figure (11). As its name states, this rheometer works based on modules, a feature that
makes this device really versatile. Each module is composed by a measuring system and
a measuring cell, which combined permit the user to measure several material functions
of both, Newtonian and non-Newtonian fluids, in a variety of shear flow conditions (per-
manent and transient). Depending on the module mounted on the rheometer, not only
flow-related effects on the rheological behavior of a given fluid can be measured, but also,
one can measure the dependence of the material functions on different external variables,
like temperature and magnetic field.

Figure 11 – Schematic view of the rheometer.

The MCR 301 rheometer is very robust. The measuring system is powered by a
permanent magnet synchronous drive motor placed on the measuring head, which is able
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to apply torques from 0.1𝜇N.m to 200 𝑚N.m with resolution of 0.001 𝜇N.m and accuracy of
0.2 𝜇N.m. The capability of the device to apply a wide range of torques is the key factor
that allows the measurement of several rheological properties of a considerable variety
of fluids. The motor can also apply oscillations in a range from 0.0001 to 100 Hz. Those
characteristics can only be achieved due to the fact that the shaft of the measuring system
is sustained by an pressurized air bearing, what strongly reduces the friction between the
components of the drive system.

Temperature greatly influences the rheological behavior of almost all substances
(BIRD et al., 1987; BARNES; HUTTON; WALTERS, 1989). As a result, it is of high
importance, for obtaining significant measurements, the rheometric devices can provide
means of effectively control the temperature of samples under analysis. In this context,
The Physica MCR 301 rheometer presents different systems of temperature control, also
called environmental systems, whose utilization depend on the measuring cell mounted on
the flange ring of the device. It is important to note that the temperature control systems
are highly accurate, with minimal thermal gradients. In addition, traceable automatic
temperature calibration sensors are available to ensure that the system is always operating
within specifications.

An environmental system designed to work with all the measuring cells is the
liquid temperature control, which operates based on the flow of a liquid with controlled
temperature through the measuring cell. The fluid exchange heat with the metal disk,
where the material sample is placed. When thermal equilibrium is reached, the temper-
ature of the sample under analysis tends to the temperature of flowing fluid (despite a
small uncertainty). The refrigeration/heating fluid must have a well controlled tempera-
ture and flow with a high mass flux in order to fulfill the heat exchange needs for keeping
the sample at a prescribed temperature. These properties of the flowing fluid are provided
by an external thermal bath, which is coupled to the rheometer. This device is capable of
working with water or oil as circulating fluid.

Other environmental system available is the Peltier temperature control. In this
technical solution, the temperature of the sample is controlled by a Peltier thermoelectric
plate, that is attached to the fixed disk of the measuring cell. This system operates based
on the Peltier effect, characterized by maintaining a temperature difference in the union
of two conductors (or semiconductors) of distinct materials in a closed circuit when it is
passed through by an electric current. This device allows fast, precise and active control
of the sample temperature in a range from −40 to 200 ∘C. It is interesting to note that the
Peltier system cannot be used in applications where external magnetic fields are applied
to the sample. In this case, temperature control is only done using the thermal bath.

Figure (11) summarizes the systems involved in the acquisition of the data con-
cerning the rheological properties of a fluid sample. Despite the pneumatic control system
already discussed in this section, the referred schematic representation shows that the
rheometer is connected to a microcomputer, through which it is operated with the help of
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the software Rheoplus. In this software, all conditions necessary for performing different
types of rheological experimental trials are defined, such as the shear rate, the oscillation
frequency, the amplitude of strain , the magnetic field intensity, the temperature of the
sample or the heating-rate profile, among other parameters. Additionally, the software
presents in real-time the collected data arranged in the form of graphs and tables. Several
ad-hoc rheological models are available and automated in its database, what enables a pre-
liminary post-processing analysis and, as a result, a previous verification of the adequacy
of theoretical models to the data obtained from measurements.

The assemblies of the rheometer used in this work are all of the parallel plate
type. They are characterized by the fact that its test region, in which the fluid under
analysis is placed, is a fictitious cylinder delimited by two discs, one mobile (measuring
system) and the other fixed (measuring cell). The height of this cylinder, which is also
the gap between the discs is a function of the fluid viscosity and should be optimized
for each type of fluid under analysis. It is important to note that the device is equipped
with the TruGap technology (Anton Paar GmbH, Germany), which permits the precise
adjustment of the gap between the parallel plates to the value prescribed by the operator,
independently of the temperature and thermal expansion of the assembly components.
With this feature, small gaps (< 0.5 mm) can be achieved with micrometric precision.
The volume of the fluid sample required to obtain a consistent experimental trial can be
approximated by the volume of the fictitious cylinder, however it is a good practice to use
a slightly larger volume to ensure that the space between the plates is fully filled during
data collection.

3.1.1.1 Standard assembly

This mouting s measuring system is denominated PP-50, which is a stainless steel
rod that in one of its ends presents a disk with a diameter of 49.963 ± 0.005 mm.

The measuring cell in this assembly is a Peltier-temperature-controlled bottom
plate. This assembly is used to measure rheological properties of Newtonian and non-
Newtonian fluids in regimes of permanent and transient shear. Those properties can be
assessed as functions of time, shear-rate and, especially of temperature, due to the fact
that this parameter is precisely controlled in this assembly.

3.1.1.2 Magneto-rheology assembly

This assembly is used to investigate the effects caused by the application of an
external homogeneous magnetic field on the rheological behavior of a given magnetizable
fluid. Generally, ferrofluids and magneto-rheological suspensions are investigated utilizing
this apparatus. In this assembly, the measuring system is denominated PP-20. It has the
same geometry of PP-50, differing only in the diameter of the disk, that in this device
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measures 19.946 ± 0.005mm.

In this assembly, the measuring cell is denominated MRD (magneto-rheological
device) and it consists of a liquid-temperature-controlled bottom plate with built-in coils
that produce magnetic field. A magnetic yoke covers the plate to ensure a homogeneous
field and perpendicular field lines with respect to the plate. The parallel-plate system is
made of non-magnetized metal, preventing radial forces acting on the shaft. The yoke
can be temperature-controlled up to 70∘C with the liquid used in the bottom plate. It is
important to note that the Peltier temperature controller cannot be used in this assembly
owing to the fact that it works based on an eletric circuit, that would be certainly damaged
by the external magnetic field applied by the coils located under the bottom plate. The
MRD is fully integrated in the rheometer’s software, which controls the magnetic field and
records all important parameters. Measurements of the magnetic field are made using an
external Hall sensor. All the features summarized here ar displayed on figure (12).

temperature sensors
Slot for Hall and

Temperature controlled
bottom plate

Thermal enclosure

Measuring device PP-20
Magnetic fluid

Coils

flux density
Plate for magnetic

measurements

Figure 12 – MRF assembly: schematic of the measuring cell.

The continuous current needed to generate the magnetic field by the coils of the
measuring cell is provided by a DC power supply. This device can furnishes continuous
currents up to 5A between its terminals. In this maximum condition of operation, the coils
produce an magnetic field of up to 1.3 Tesla in the air gap between the parallel disks.

3.2 Rheometer calibration

In order to obtain meaningful measurements, the gap of the rheometer have been
calibrated through the measurement of the viscosity of a series of different Newtonian
fluids. Figure (13) shows the result of the measurement of the viscosity of water, at a
constant temperature of 25∘C, when subjected to a fixed shear rate of 100 s−1. The gap
used in the referred measurement was 0.08 mm, that resulted on a viscosity of 0.89 ± 0.01
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mPa.s. This result is in agreement with the consolidated value presented for the viscosity
of water at the referred temperature, what can be easily verified on Tanner (2000). As a
result, such value of gap is the ideal for performing rheological measurements on fluids
whose viscosities are of the same order of magnitude of the one observed for water.
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Figure 13 – Viscosity of distilled water as a function of time, measured on the rheometer
of parallel plates Physica MCR-301. The shear rate is fixed at 100 s−1 and
the temperature, at 25∘C. The gap between the parallel plates is 0.8 mm.

Using the same methodology, it was possible to establish a reference of optimal
gaps to be used in the measurement of the rheological properties of fluids with a wide
range of viscosity. The results of this calibration are summarized on table (1).

Table 1 – Optimal gaps for carrying out rheological experiments on fluids, as a function
of the order of magnitude of their kinematic viscosity.

Fluid Viscosity [mPa·s]
(order of magnitude) Optimal gap [mm]

Water 1 0.08
Ethylene glycol 10 0.1
Mineral oil 100 0.3
Glycerin 1000 0.5
Silicon oil > 10000 0.8

It is also important to analyze the fact that the geometry of measurement, parallel
disks has a gradient of shear rate in the radial direction. In order to estimate the time
that a particle would take to move by one radii, we shall use the concept of shear induced
diffusion (CUNHA; HINCH, 1996). The diffusivity is given by 𝐷 = �̇�𝑎2𝜑, in which �̇� is
the shear rate, a is the particle diameter and 𝜑, the particle volume fraction. Considering
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the time to displace the particle 𝛿𝑡 and the radius of the rheometer as r. The diffusivity
D scales with a length L multiplied by a velocity U, thus:

𝐷 ∼ 𝐿𝑈 ∼ 𝑟
𝑟

𝛿𝑡𝑑

(3.1)

Then:
𝛿𝑡𝑑 ∼ 𝑟2

�̇�𝑎2 ∼
(︂

𝑟

𝑎

)︂2 1
�̇�𝜑

>>
1
�̇�

(3.2)

Considering �̇� = 100𝑠−1, 𝑟 = 20𝑚𝑚, 𝑎 = 5𝜇𝑚 and 𝜑 = 0.01, which are good
approximations of the scales in the experiments, we have that the time for a particle to
migrate of radius of displacement is much bigger that the experimental time 𝛿𝑡𝑒 = 1

�̇�
.

Shear-induced diffusion and potential slip effects due to solids are second-order
phenomena and are therefore accounted for in the error bars accompanying each experi-
mental data point. It is also worth noting that each data point represents the average of
a series of measurements, as detailed in Appendix (A).

3.3 Fluids under analysis

3.3.1 Magnetorheological suspensions

Two types magnetorheological suspensions are analyzed in this work. The first
one is composed of magnetite nanoparticles with 8 nm of average diameter and density
5.3 g/ml dispersed in a Newtonian mineral oil of density 0.87 g/ml and viscosity of
147.69 ± 4.51 mPa.s at 25 ∘C as the fluid base. The magnetization of saturation of the
magnetite particles is 4.46×105A/m.

The second one is made of particles of iron with an average size between 5-9 𝜇m
and density of 7.86 g/ml. These particles are also dispersed in the same mineral oil matrix
used to compose the magnetorheological suspensions of magnetite. The magnetization of
saturation of the magnetite particles is 175 emu/g (BOMBARD et al., 2003). This value
was converted to S.I. units resulting in 1.37×106A/m.

3.3.2 Aqueous suspensions of doubel-walled carbon nanotubes

The aqueous suspensions of double-walled carbon nanotubes are biphasic systems
composed by distilled water and DWCN powder. In order to produce suspensions with
varied particle volume fractions, it was necessary to determine the density of its compo-
nents. As a result we obtained at 25∘C: for the distilled water - 𝜌𝑤= 0.99 ± 0.01g/ml and
- for the DWCN powder - 𝜌𝐷= 1.91 ± 0.05g/ml. The suspensions produced are the ones
detailed at table (2).
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Table 2 – Properties of the aqueous suspensions of DWCN

Suspension label Volume fraction, 𝜑 Mass of DWCN, 𝑚𝐷

A 0.004 0.38
B 0.005 0.47
C 0.006 0.57
D 0.007 0.66
E 0.008 0.76

3.4 Rheometry

3.4.1 Measurement of the apparent viscosity on a parallel plate rheometer

The following equation is used to determine the apparent viscosity of a fluid in a
torsional rheometer of parallel disks:

𝜂(�̇�𝑅) = 𝒯
2𝜋𝑅3�̇�𝑅

⎡⎢⎢⎣3 +
𝑑 log( 𝒯

2𝜋𝑅3 )
𝑑 log �̇�𝑅

⎤⎥⎥⎦ . (3.3)

Therefore, to measure the apparent viscosity of any given fluid on a parallel disk rheometer
based on the shear-rate evaluated on the border of the disk �̇�𝑅, it is necessary to obtain
experimental data of the viscosity for multiple values of �̇�𝑅, that is, for a wide range of
Ω, so that the torque derivative shown in equation (3.3) can be calculated. Based on this,
one can finally apply the correction represented by the bracketed term in this equation
to each pair of data (𝒯 , �̇�𝑅).

It is important to note that the material particles do not experience the same
angular deformation (𝛾) because it varies with the radius, as shown in equation (??). On
the other hand, the torque 𝒯 is an integral quantity and, as a result, it represents the con-
tribution of all fluid elements subjected to shear, which is also verified for viscosity, since
it is obtained from the measurement of the torque. Therefore, this property represents an
average viscosity that would be calculated for each element subjected to a different shear
rate. This only poses a problem for fluids that are very sensitive to angular deformation,
such as liquid crystals and multiphase fluids.

The formula (3.3) permits the obtainment of the viscosity as a function of torque
for any fluid in a parallel disc rheometer. Therefore, it is also applicable to Newtonian
fluids, for which it is considerably simpler. By developing the exact differentials of the
numerator and denominator on the right side of the equation (3.3), we obtain that:

𝑑
[︂
log

(︂ 𝒯
2𝜋𝑅3

)︂]︂
= 2𝜋𝑅3

ln(10)𝑑
(︂ 𝒯

2𝜋𝑅3

)︂
, (3.4)

and
𝑑 [𝑙𝑜𝑔 (𝛾𝑅)] = 1

ln(10)𝛾𝑅

𝑑 (𝛾𝑅) . (3.5)
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Dividing equations (3.4) and (3.5), we obtain that:

𝑑 log( 𝒯
2𝜋𝑅3 )

𝑑 log �̇�𝑅

= 2𝜋𝑅3�̇�𝑅

𝒯

𝑑
(︂ 𝒯

2𝜋𝑅3

)︂
𝑑 (�̇�𝑅) . (3.6)

For a Newtonian fluid, it is easily shown that the applied torque on a parallel disks
configuration (Couette flow) is ggiven by:

𝒯 = 𝜋�̇�𝑅𝜂
𝑅3

2 . (3.7)

Replacing this result on equation (3.6), it comes that:

𝑑 log( 𝒯
2𝜋𝑅3 )

𝑑 log �̇�𝑅

= 4
𝜂

𝑑
(︂

�̇�𝑅𝜂

4

)︂
𝑑 (�̇�𝑅) . (3.8)

Since viscosity 𝜂 is constant with respect to shear-rate variations for a Newtonian fluid,
one obtains:

𝑑 log( 𝒯
2𝜋𝑅3 )

𝑑 log �̇�𝑅

= 𝑑 (�̇�𝑅)
𝑑 (�̇�𝑅) = 1. (3.9)

Because of this result, it can be shown that equation (3.3) for a Newtonian fluid
reduces to:

𝜂(�̇�𝑅) = 𝒯
2𝜋𝑅3�̇�𝑅

[3 + 1] = 2𝒯
𝜋𝑅3�̇�𝑅

. (3.10)

Therefore, one obtains:
𝜂(�̇�𝑅) = 2𝒯 ℎ

𝜋Ω𝑅4 . (3.11)

3.4.2 Measurement of the viscoelastic moduli on a parallel plate rheometer
in regime of small amplitude oscillatory shear - SAOS

SAOS experiments were also carried out to examine the dynamic viscoelastic mod-
uli 𝐺′(𝜔) (elastic component) and 𝐺′′(𝜔) (viscous component) of the ferrofluids in the
presence of an external uniform magnetic field 𝐻0 and a strain 𝛾(𝑡) = 𝛾0 sin(𝜔𝑡). The
stress response 𝜎(𝑡) = 𝜎0 sin (𝜔𝑡 + 𝛽0), where 𝜔 is the forcing frequency, 𝛽0 is the phase
angle, 𝛾0 ∼ 𝑅/ℎ denotes the strain amplitude and 𝜎0 is the stress amplitude. Here 𝑅

is the disk radius and ℎ is the gap height. Under SAOS regime, 𝐺′(𝜔) = 𝜎0 cos (𝛽0)/𝛾0

and 𝐺′′(𝜔) = 𝜎0 sin (𝛽0)/𝛾0. More specifically, for parallel-disk apparatus as the rheome-
ter used here, the viscoelastic material functions can be evaluated experimentally by the
following expressions (BIRD; ARMSTRONG; HASSAGER, 1987):

𝐺′(𝜔) = 2ℎ𝑇0 cos (𝛽0)
𝜋𝑅4𝜃0

, (3.12)

and
𝐺′′(𝜔) = 2ℎ𝑇0 sin (𝛽0)

𝜋𝑅4𝜃0
, (3.13)

where 𝑇0 is the applied torque and 𝜃0 the is the angular displacement.
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4 RHEOLOGY OF
MAGNETORHEOLOGICAL

SUSPENSIONS

4.1 A brief overview on ferrofluid’s rheology

This study of the rheology of magnetorheological suspensions represents a natural
extension of previous research on ferrofluid rheology conducted by the Laboratory of Mi-
crohydrodynamics and Rheology (MicroRheo) within the Vortex group at the University
of Brasília. Ferrofluids, which consist of ferri/ferromagnetic nanoparticles dispersed in a
non-magnetic carrier fluid, have been extensively investigated. In a comprehensive study
of the rheological properties of two commercial ferrofluids, Pereira and Cunha (2023)
examined both permanent simple shear and transient shear conditions. Their findings re-
vealed that ferrofluids exhibit viscoelastic behavior in the presence of an external magnetic
field, with the elastic properties linked to the formation of a microstructure via dipolar
interactions. Notably, it was also observed that ferrofluids display residual stress in the
presence of a magnetic field, as their shear stress does not relax to zero.

Another important characteristic shared by ferrofluids and magnetorheological sus-
pensions is their shear-thinning behavior under an external magnetic field. The results
presented by Pereira and Cunha (2023) align with other literature, thereby validating the
equipment and methodologies employed in the MicroRheo laboratory.

In their work, Pereira and Cunha (2023) provide Figure (14), illustrating the in-
crease in the magnetic viscosity increment as a function of the magnetic parameter (𝛼).
The plot depicts the viscosity increment due to magnetic effects for the ferrofluid EFH1
(Ferrotec - USA), composed of magnetite hard particles (with a magnetic dipole locked
in the particle) at a volume fraction of 7.9%, under conditions of very weak flow (Pe =
4.64 × 10−4). An insert within the figure compares their experimental measurements with
those from Odenbach (2009). Included in this comparison is the theoretical prediction
provided by the equation:

𝜂𝑟(𝛼, 𝜑) = Δ𝜂 = 𝜂(𝛼, 𝜑) − 𝜂0 = 3
2𝜂0𝜑

𝛼𝐿2(𝛼)
𝛼 − 𝐿(𝛼) , (4.1)

50



where 𝜂𝑟 is the rotational viscosity (magnetoviscous effect), 𝜑 is the volume fraction
of magnetic nanoparticles, 𝛼 is the non-dimensional external magnetic field, 𝜂0 is the
viscosity of the carrier fluid, and 𝐿(𝛼) = 1 − coth(1/𝛼) represents the Langevin equation.
The circles in the insert represent experimental data from Odenbach and Thurm (2002)
for a ferrofluid comprising magnetite particles at a volume fraction of 7.2% and Pe =
1.85 × 10−2, conditions that are consistent with our experiments.
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Figure 14 – Non-dimensional magnetic viscosity increment Δ𝜂/𝜂0 as a function of the
non-dimensional magnetic parameter 𝛼 subjected to weak flow with Pe =
4.64 × 10−4 (■). The insert compares the behavior of Δ𝜂/𝜂0 as a function
of 𝛼 for two magnetic fluids: (■) represents data for the ferrofluid EFH1
composed of magnetite particles with a mean diameter of 10 nm, 𝜑 = 7.9%,
and Pe = 4.64 × 10−4; (∘) represents data from (ODENBACH, 2009) for a
colloidal suspension of magnetite particles with a mean diameter of 10 nm,
𝜑 = 7.2%, subjected to a similar weak flow with Pe = 1.85 × 10−2. The solid
line in the plot corresponds to the theoretical prediction given by equation
(4.1) with 𝜑 = 7.9%. The theoretical curve fits the data only in the linear
regime of the plot (i.e., 𝑂(𝛼)). The viscosity in the absence of a magnetic
field, 𝜂0, is constant at 0.94 × 10−2 Pa.s at 25∘𝐶.

From Figure (14) and its insert, it is evident that the dependence of the viscosity
increment on the intensity of the magnetic field is significantly stronger than predicted
by the non-interacting model in equation (4.1). While this equation suggests a viscosity
increment Δ𝜂 ≈ 0.1𝜂0, experimental results indicate a much stronger nonlinear regime
with Δ𝜂 ≈ 0.8𝜂0. The theoretical curve only aligns with experimental data within the
linear regime of the plot (i.e., 𝑂(𝛼)), which corresponds to small values of 𝛼 (i.e., ≤ 0.5).

As noted by Odenbach (2009), the discrepancies between theoretical predictions
and experimental observations arise from the neglect of dipolar interactions between parti-
cles in the dilute limit, leading to a linear dependence of the magnetic viscosity increment
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on 𝛼. However, real ferrofluids typically have particle volume fractions ranging from 7% to
10%, indicating they are not dilute. In these non-dilute ferrofluids, interparticle interac-
tions become crucial, resulting in the formation of particle chains and agglomerates. These
structures require considerably stronger hydrodynamic torques from the shear flow to ro-
tate against the magnetic torque that aligns them with the applied field. This competition
between the magnetic field and the flow leads to a significant increase in fluid viscosity,
as clearly demonstrated in Figure (14). Thus, the rheological properties of ferrofluids are
profoundly influenced by their internal structures induced by flow and magnetic fields, as
emphasized by Odenbach (2009).

All the rheological effects discussed for ferrofluids also apply to magnetorheolog-
ical suspensions (MRS), but are intensified due to the larger average magnetic particle
dimensions, which are micrometric compared to the nanometric dimensions observed in
ferrofluids.

4.2 Characterization of magnetic structures

4.2.1 The magnetic field generated by a rectangular neodymium permanent
magnet - an experimental analysis

The static characterization of the elements of the microstructure of the magne-
torheological suspensions both, in the presence and in the absence of an external mag-
netic field, was carried out using the microscope described in the section (??) associated
with an apparatus consisting of a rule and a rectangular neodymium magnet, as shown in
figure (15). This apparatus was important in order to obtain and calibrate an expression
which gives the intensity of the effective magnetic field 𝐻𝑥 as a function of the coordinate
𝑥.

As a result, a gaussmeter probe was placed in the origin of the coordinate system,
which corresponds to the 𝑥 position of the geometric center of the microscope slide. First
the magnet is placed in the x-position 10.5 cm and the magnetic field intensity is measured,
after that, the magnet is approximated in steps corresponding to decrements of 0.5 cm
until the position 1cm is reached. The measuments continue from that decreasing the
distance of the magnet to the center of the slide by decrements of 0.2cm.

Based on the values obtained for 𝐻𝑥 as a function of the distance 𝑥, it is proposed
a seventh-order polynomial fit for the experimental data:

𝐻𝑥 × 10−5 = 𝑎1𝑥
7 + 𝑎2𝑥

6 + 𝑎3𝑥
5 + 𝑎4𝑥

4 + 𝑎5𝑥
3 + 𝑎6𝑥

2 + 𝑎7𝑥 + 𝑎8. (4.2)

This idea is inspired by the work of Furlani (2001), where it is shown that polynomial
expressions for this relationship are more suited than the well know formula derived
by McCaig and Clegg (1987) in conditions where the magnet is very near the point of
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measurement (probe of the gaussmeter). The measured data is displayed in figure (16),
where is also shown the curve resulting of the adjustment of the experimental to expression
(4.2). The resulting fit parameters are displayed on table (3).

Figure 15 – Schematics of the apparatus used for measuring the effective magnetic field
intensity for a given neodymium permanent magnet placed at a given x dis-
tance from the fluid sample.
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Figure 16 – 𝐻𝑥- component of the effective magnetic field as a function of the x position.
The circles depict experimental data and the curve is a fit of the referred data
to a seventh-order polynomial model, given by 𝐻𝑥 × 10−5 = 𝑎1𝑥

7 + 𝑎2𝑥
6 +

𝑎3𝑥
5 +𝑎4𝑥

4 +𝑎5𝑥
3 +𝑎6𝑥

2 +𝑎7𝑥+𝑎8. The resulting fit parameters are displayed
on table (3).

Table 3 – Fitting parameters: adjustment of the experimental data concerning 𝐻𝑥 as a
function of 𝑥 to a seventh-order polynomial, given by 𝐻𝑥 ×10−5 = 𝑎1𝑥

7 +𝑎2𝑥
6 +

𝑎3𝑥
5 + 𝑎4𝑥

4 + 𝑎5𝑥
3 + 𝑎6𝑥

2 + 𝑎7𝑥 + 𝑎8.

Parameter Numeric value
𝑎1 −6.91 × 108

𝑎2 2.95 × 108

𝑎3 −5.18 × 107

𝑎4 4.86 × 106

𝑎5 −2.65 × 105

𝑎6 8.62 × 103

𝑎7 −1.65 × 102

𝑎8 1.67 × 100
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4.2.2 Determination of initial conditions - static measurement of the length of
magnetic structures depending on the strength of the applied magnetic
field

In the absence of external magnetic field, the suspension of iron has the following
size distribution 1:

Figure 17 – Size distribution of the iron particles in the absence of external magnetic
field. The average particle length ℓ̄ is 6.98𝜇m with standard deviation of
𝑅𝑀𝑆 = 1.2𝜇m. "The inset in the plot shows a typical sample of the particles
wit average length of 6.98 𝜇𝑚 and 𝑅𝑀𝑆 = 1.2𝜇𝑚. The scale bar in the figure
of the inset is 50𝜇𝑚.

As a direct consequence of the dipolar interactions between the particles that
compose the the magnetorheological suspensions of magnetite and cabonyl-iron, chain-like
agglomerates are formed when an external magnetic field is applied to any sample of these
materials. This implicates that the initial configuration is composed by very anisotropic
structures, which ressonates in the appearance of deeply non-Newtonian behavior as we
will opportunely discuss in this thesis.

That being said and regarding the papers of Batchelor (1970a) and Shaqfeh and
Fredrickson (1990), one can easily ponctuates that measure the mean lenght of the
anisotropic structures as a function of the intensity of the applied magnetic field is impera-
1 The number of columns was found by using Sturges rule (STURGES, 1926)
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tive due to the fact that this information impacts directly on the bulck stresslet generated
by the microstructure and, as a result on the rheology of these suspensions when seen as
a continuous equivalent fluid.

Using the optical microscope and the apparatus shown on figure (15), five individ-
ual micographies are captured considering the following distances from the center of the
sample (microscope slide): 7, 6.5, 6, 5.5 and 5cm. Besides that, it is easy to determine the
magnetic field intensity considering equation (16) and the parameters shown at table (3).
The results a resumed at table (4).

𝑥, [𝑚] 𝐻𝑥, [𝑘𝐴/𝑚]
0.050 7.56
0.055 6.63
0.060 6.14
0.065 5.84
0.070 5.54

Table 4 – Valores de 𝐻𝑥 para diferentes valores de 𝑥

Consider the case of the magnetorheological suspension (MRS) of magnetite. Fig-
ure (18) presents two micrographs of this MRS, both corresponding to the lowest volume
fraction of magnetic particles, 𝜑 = 0.2%. Observe that, although the magnetite particles
are nanometric, in the presence of an external magnetic field, it mean length becomes
micrometric. Figure (18a) depicts the MRS when the magnet is positioned closest to the
sample (5 cm), whereas Figure (18b) shows the same suspension with the magnet in the
farthest position (7 cm).

In Figure (18a), due to the proximity of the magnet, the structures formed by the
magnetic field are highly aligned with the magnetic field lines, resulting in pronounced
anisotropy. In contrast, Figure (18b) reveals that not all particle structures are aligned
with the magnetic field. This misalignment occurs because, at this greater distance and
small particle volume fraction, the magnetic field is insufficient to induce the same degree
of alignment observed in Figure (18a).

(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 18 – Micrographies of the SMR of magnetite powder with 𝜑 = 0.2%.
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In Figures (19a) and (19b), we observe that, under both intensities of the effective
magnetic field, a highly anisotropic and aligned microstructure is formed. This demon-
strates that the rheology of these fluids strongly depends on the magnetic particle volume
fraction, as well as the direction and intensity of the applied magnetic field.

Figure (20a) shows the size distribution of the chain-like structures in the mag-
netorheological suspension (MRS) of magnetite with 𝜑 = 0.2% under a strong magnetic
field, while Figure (20b) depicts the same under the weakest magnetic field. It is evident
that the stronger the magnetic field, the larger the chain-like structures that form. This
phenomenon is attributed to the intensified dipolar interactions between magnetic parti-
cles in a stronger magnetic field, facilitating the formation of longer particle chains. The
same conclusions can be drawn from the results presented in Figure (21).

(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 19 – Micrographies of the SMR of magnetite powder with 𝜑 = 1%.

(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 20 – Size distribution of the chain-like structures for the SMR of magnetite with
𝜑 = 0.2%.
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(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 21 – Size distribution of the chain-like structures for the SMR of magnetite with
𝜑 = 1%.

Table (5) presents, for each magnetic particle volume fraction used, the mean chain
length ℓ̄, the mean anisotropy parameter ℓ̄/�̄�, and their associated errors, represented as
the standard deviation (SD), under five different magnetic field intensities. As observed,
for a fixed 𝜑, an increase in 𝐻 results in an increase in both ℓ̄ and ℓ̄/�̄�. This indicates that
as 𝐻 intensifies, not only does the mean length of the chain-like structures grow, but the
structures also become more anisotropic.
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Table 5 – Mean chain length �̄� and mean anisotropy parameter of the chains �̄�
𝑎

and their
associated errors as functions of the magnetic field strength 𝐻 and magnetic
particle volume fraction 𝜑 for the magnetorheological suspensions of magnetite
powder.

𝜑 𝐻 (kA/m) �̄� (µm) 𝑅𝑀𝑆(𝑙) (µm) �̄�/𝑎 𝑅𝑀𝑆(�̄�/𝑎)
0.01 7.55 4.81 × 102 1.63 6.01 × 104 1.59 × 102

6.63 3.35 × 102 1.51 5.45 × 104 2.24 × 102

6.14 2.75 × 102 1.63 4.19 × 104 1.68 × 102

5.84 2.17 × 102 1.78 2.72 × 104 2.56 × 102

5.54 1.66 × 102 1.68 1.83 × 104 1.27 × 102

0.008 7.55 3.10 × 102 2.03 3.88 × 104 1.27 × 102

6.63 2.81 × 102 1.73 3.52 × 104 2.67 × 102

6.14 2.48 × 102 1.59 3.10 × 104 3.74 × 101

5.84 1.98 × 102 2.00 2.48 × 104 2.36 × 101

5.54 1.07 × 102 1.75 1.33 × 104 6.08 × 101

0.006 7.55 2.44 × 102 1.92 3.05 × 104 2.16 × 101

6.63 2.22 × 102 1.54 2.77 × 104 4.37 × 101

6.14 1.67 × 102 1.99 2.09 × 104 8.93 × 101

5.84 1.37 × 102 1.99 1.71 × 104 7.93 × 101

5.54 8.78 × 101 1.99 1.10 × 104 3.59 × 101

0.004 7.55 1.82 × 102 1.75 2.28 × 104 8.21 × 101

6.63 1.53 × 102 1.86 1.91 × 104 7.26 × 101

6.14 9.29 × 101 1.43 1.16 × 104 1.06 × 102

5.84 8.12 × 101 1.75 1.01 × 104 6.47 × 101

5.54 6.55 × 101 1.81 8.18 × 103 2.99 × 101

0.002 7.55 1.19 × 102 1.21 1.49 × 104 1.23 × 102

6.63 9.10 × 101 1.70 1.14 × 104 8.97 × 101

6.14 8.33 × 101 1.79 1.04 × 104 5.19 × 101

5.84 5.76 × 101 1.79 7.20 × 103 2.82 × 101

5.54 5.58 × 101 1.65 6.97 × 103 5.16 × 101

The same conclusions drawn for the magnetorheological suspension (MRS) of mag-
netite can also be applied to the MRS of iron. As shown in Figures (22) and (23), under
the influence of an external magnetic field, both the MRS with 𝜑 = 0.2% and 𝜑 = 1%
exhibit a highly anisotropic, chain-like microstructure. The histograms in Figures (24)
and (25) demonstrate that an increase in the intensity of the magnetic field leads to a
greater mean length of the chain-like structures. This trend is further corroborated by the
data presented in Table (6).
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(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 22 – Micrographies of the SMR of iron particles with 𝜑 = 0.2%.

(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 23 – Micrographies of the SMR of iron particles with 𝜑 = 1%.

(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 24 – Size distribution of the chain-like structures for the SMR of iron with 𝜑 =
0.2%.
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(a) 𝑥 = 5cm, 𝐻𝑥 = 7.56kA/m (b) 𝑥 = 7cm, 𝐻𝑥 = 5.54kA/m

Figure 25 – Size distribution of the chain-like structures for the SMR of iron with 𝜑 = 1%.

Table 6 – Mean chain length �̄� and mean anisotropy parameter of the chains �̄�
𝑎

and their
associated errors as functions of the magnetic field strength 𝐻 and magnetic
particle volume fraction 𝜑 for the magnetorheological suspensions of iron par-
ticles.

𝜑 𝐻 (kA/m) �̄� (µm) 𝑅𝑀𝑆(𝑙) (µm) �̄�/𝑎 𝑅𝑀𝑆(�̄�/𝑎)
7.55 5.35 × 102 1.61 7.65 × 101 1.04 × 10−1

6.63 3.52 × 102 2.05 5.03 × 101 1.66 × 10−1

0.01 6.14 2.96 × 102 1.78 4.23 × 101 7.30 × 10−2

5.84 1.81 × 102 1.92 2.58 × 101 2.15 × 10−2

5.54 1.31 × 102 1.57 1.88 × 101 5.73 × 10−2

7.55 5.01 × 102 1.73 7.15 × 101 3.72 × 10−1

6.63 3.11 × 102 1.76 4.45 × 101 8.02 × 10−2

0.008 6.14 2.01 × 102 1.86 2.87 × 101 2.22 × 10−1

5.84 1.69 × 102 1.73 2.41 × 101 3.24 × 10−2

5.54 1.22 × 102 1.80 1.75 × 101 2.80 × 10−2

7.55 4.00 × 102 1.54 5.71 × 101 1.80 × 10−1

6.63 2.84 × 102 1.99 4.06 × 101 1.61 × 10−1

0.006 6.14 1.68 × 102 1.99 2.40 × 101 1.64 × 10−1

5.84 1.44 × 102 1.82 2.06 × 101 8.27 × 10−2

5.54 1.01 × 102 1.68 1.45 × 101 1.29 × 10−1

7.55 2.04 × 102 1.84 2.92 × 101 1.61 × 10−1

6.63 1.51 × 102 1.91 2.15 × 101 1.62 × 10−1

0.004 6.14 1.37 × 102 1.86 1.95 × 101 1.19 × 10−1

5.84 1.09 × 102 1.59 1.56 × 101 5.16 × 10−2

5.54 5.83 × 101 1.72 8.32 4.50 × 10−2

7.55 5.04 × 101 1.74 7.20 5.64 × 10−2

6.63 4.08 × 101 1.61 5.83 4.84 × 10−4

0.002 6.14 2.67 × 101 1.55 3.81 5.87 × 10−5

5.84 2.48 × 101 1.66 3.54 1.78 × 10−2

5.54 2.21 × 101 1.66 3.16 1.77 × 10−2
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To better understand the dependence of the mean length of the chain-like struc-
tures ℓ̄ on the applied magnetic field 𝐻, Figures (26) and (27) illustrate this relationship
for the magnetorheological suspension (MRS) of magnetite and iron, respectively. In both
figures, it is evident that for a fixed 𝜑, ℓ̄ increases linearly with 𝐻. This demonstrates
that the external magnetic field 𝐻 induces the formation of structures via dipolar in-
teractions, which intensify as 𝐻 increases. Another noteworthy observation is that the
effect of 𝐻 is significantly more pronounced at higher particle volume fractions. This is
because a larger 𝜑 provides more particles available to form chains under the influence of
the magnetic field.
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Figure 26 – Mean length of the chain-like structures for the MRS of magnetite. (△) -
𝜑 = 0.2%, (□) - 𝜑 = 0.6% and (∘) - 𝜑 = 1%. The fitting curves are of
the form: ℓ̄ = 𝑎1𝐻 + 𝑎2. For the MRS with 𝜑 = 0.2%: 𝑎1 = 32.34 and
𝑎2 = −123.75. For the MRS with 𝜑 = 0.6%: 𝑎1 = 75.51 and 𝑎2 = −307.36.
For the MRS with 𝜑 = 1%: 𝑎1 = 154.37 and 𝑎2 = −683.73.
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Figure 27 – Mean length of the chain-like structures for the MRS of iron. (△) - 𝜑 = 0.2%,
(□) - 𝜑 = 0.6% and (∘) - 𝜑 = 1%.For the MRS with 𝜑 = 0.2%: 𝑎1 = 15.10 and
𝑎2 = −62.79. For the MRS with 𝜑 = 0.6%: 𝑎1 = 153.18 and 𝑎2 = −751.52.
For the MRS with 𝜑 = 1%: 𝑎1 = 202.25 and 𝑎2 = −989.22.

To enable a comparison between the anisotropy coefficients of the two magnetorhe-
ological suspensions (MRS), the chain structure width 𝑎 was assumed constant, that is,
not varying with H, corresponding to the particle diameter specified by the manufacturer.
For magnetite, 𝑎 = 8 nm, and for iron, 𝑎 = 7 𝜇m. As illustrated in Figures (28) and (29),
the anisotropy of both MRS is highly dependent on the intensity of the external magnetic
field 𝐻. This dependency arises because an increase in 𝐻 enhances dipolar interactions,
promoting the formation of larger chain-like structures. Consequently, the anisotropy of
the system increases as a secondary effect of the stronger dipolar interactions.
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Figure 28 – SMR of magnetite powder - mean anisotropy parameter of the chains �̄�/�̄�
as a function of the volume fraction of magnetic particles 𝜑 for two distinct
conditions of external magnetic field: ( ) 𝐻 = 7.55 kA/m and ( )𝐻 = 5.54
kA/m. The curves are fittings of the experimental data to a virial of second
order: ( ): �̄�/�̄� = 𝑏0(1 + 𝑏1𝜑 + 𝑏2𝜑

2), with the following parameters: 𝑏0 =
1.05×104, 𝑏1 = 4.15×10−1 and 𝑏2 = 1.18×10−1. ( ): �̄�/�̄� = 𝑏3(1+𝑏4𝜑+𝑏5𝜑

2),
with the following parameters: 𝑏3 = 2.94 × 104, 𝑏4 = 5.71 × 10−1 and 𝑏5 =
1.67 × 10−1.
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Figure 29 – SMR of iron particles - mean anisotropy parameter of the chains �̄�/�̄� as a func-
tion of the volume fraction of magnetic particles 𝜑 for two distinct conditions
of external magnetic field: ( ) 𝐻 = 7.55 kA/m and ( )𝐻 = 5.54 kA/m.
The curves are fittings of the experimental data to a virial of second order:
( ): �̄�/�̄� = 𝑏0(1+𝑏1𝜑+𝑏2𝜑

2), with the following parameters: 𝑏0 = 1.39×101,
𝑏1 = 4.61×10−1 and 𝑏2 = −1.39×10−1. ( ): �̄� = 𝑏3(1+ 𝑏4𝜑+ 𝑏5𝜑

2), with the
following parameters: 𝑏3 = 5.71×101, 𝑏4 = 4.83×10−1 and 𝑏5 = −1.67×10−1.

4.3 Permanent shear analysis

In this section, it will be shown and discussed the experimental results concerning
the rheological behavior of the apparent viscosity 𝜂 as a function of the magnetic particles’
volume fraction, of the magnetic field intensity 𝐻 and of the shear flow intensity �̇�. As a
result, three effects will be analyzed:

1. The dependence of the magnetorheological suspensions’ viscosity on the magnetic
particles’ volume fraction;

2. The magnetoviscous effect, which is the elevation of the viscosity of a magnetorhe-
ological suspension when it is placed under the influence of an external magnetic
field; and
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3. Pseudoplastic effect, which is the shear rate dependence of the magnetorheological
suspension’s viscosity, which appears both in the presence and in the absence of an
external magnetic field.

In order to focus on the physical meaning of the material functions and the vari-
ables on which they depend, they are going to be denoted by nondimensional parameters.
Regarding this context, the intensity of the effective applied magnetic field is expressed
by the magnetic parameter 𝛼, defined as:

𝛼 = 𝜇0𝑚𝐻

𝑘B𝑇
, (4.3)

where, 𝜇0 is the vacuum magnetic permeability, 𝜇0 = 4𝜋 × 105 H/m, 𝑚 is the intensity of
the magnetic dipole momentum of a magnetic particle, 𝐻 is the modulus of the effective
magnetic field, 𝑘B is the Boltzmann constant, 𝑘B = 1.38 × 10−23 Nm/K, and 𝑇 is the
absolute temperature, which was held constant in all experiments at 298 K . Besides that,
the intensity of the magnetic dipole of a single-domain particle can be expressed in terms
of its magnetization of saturation by

𝑚 = 𝑣𝑝𝑀𝑑, (4.4)

in which, 𝑣p = 4𝜋𝑎3/3 is the volume of a magnetic particle of radius 𝑎 and 𝑀d is the
magnetization of the material that composes the particles. For the powder of mgnetite
𝑎 = 4nm and 𝑀𝑑 = 446kA/m (ROSENSWEIG, 2013). For the iron powder, the physical
parameters are: 𝑎 = 5nm and 𝑀𝑑 = 1715kA/m (DUNLOP; ÖZDEMIR; SCHUBERT,
2015). Replacing equation (4.4) into (4.3) one obtains:

𝛼 = 𝜇0𝑣𝑝𝑀𝑑𝐻

𝑘B𝑇
. (4.5)

It is important to remark that this parameter is a ratio between the magnetic and the
Brownian forces.

Other important parameter is the ratio between the magnetic dipolar force and
the Brownian force, named parameter of dipolar interaction,

𝜆 = 𝜇0𝜋𝑣𝑝𝑀2
𝑑

24𝑘𝐵𝑇
(4.6)

It is important to note that this parameter is intrinsically related to the formation of
particles chains. Big values of 𝜆 indicate that the magnetic force is much intenser than
the Brownian one, making it possible for aggregates to form. Regarding this context, in
this work, the parameter of dipolar interaction is constant for both magnetorheological
suspensions, being equals to 2.1 fot the suspension composed by the magnetite powder
and 7.7 for the suspension of iron powder.

The intensity of the flow is measured by its shear-rate (�̇�), which unit of measure-
ment is 1/𝑠. However, this property will be made nondimensional by dividing it by the
minimum shear-rate applied �̇�0.
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The apparent viscosity of a magnetorheological suspension is composed, when in
the presence of an external magnetic field, by Einstein’s viscosity 𝜂𝜑, which is a correction
to the viscosity of the base fluid originated from the presence of the rigid particles in
the suspension, by a correction of the viscosity of the base fluid due to hydrodynamic
iterations 𝜂ℎ between the particles, by the rotational viscosity 𝜂𝑟, induced by the external
magnetic field and also, by a correction to the viscosity of the suspension owing to dipolar
interactions between the magnetic particles, 𝜂𝑑. This apparent viscosity function is made
nondimensional by defining its characteristic scale 𝜂𝑐 as the viscosity of the base fluid 𝜂0,
which is the viscosity of the mineral oil at 25∘𝐶 (see subsection (3.3.1)). As a result, the
nondimensional viscosity is given by:

𝜂* = 𝜂

𝜂𝑐

= 𝜂

𝜂0
. (4.7)

4.3.1 Particle volume fraction analysis

In this subsection, it will be analyzed the influence of the particle volume fraction
𝜑 on the rheological behavior of both magnetorheological suspensions: the one composed
by agglomerates of magnetite powder and the other composed by agglomerates of iron
powder. It is important to remark that the base fluid for both suspensions is mineral oil.

4.3.1.1 Experimental procedure

As stated on subsection (3.3.1), two ferromagnetic materials were used to produce
the magnetorheological suspensions, being: the magnetite powder and the iron powder.
For each kind of magnetic particles, suspensions with the following particle volume fraction
𝜑 were prepared: 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8% and 1%.

Samples of the suspensions are tested in the rheometer using the magnetorheo-
logical assembly, described on subsection (3.1.1.2). As a wide range of magnetic particle
volumetric fractions were analyzed, an study of the the optimal testing gap between the
disks of the rheometer was carried out. In this type of test each sample of suspension
is sheared using different gaps between the disks of the rheometer and the viscosity is
obtained as a function of time. The gap that provides a measure of viscosity with the
lowest uncertainty is defined as the optimal gap. The results are shown on table (7).
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Table 7 – Optimal gap 𝜖 as a function of the volume fraction 𝜑 of magnetic particles.
The results apply to both suspensions composed of magnetite powder and iron
powder.

𝜑 [%] 𝜖 [mm]
0.1 0.3
0.2 0.3
0.3 0.3
0.4 0.4
0.5 0.4
0.6 0.4
0.7 0.5
0.8 0.5
1.0 0.5

The dependence of the suspensions viscosity on the magnetic particles’ volume
fraction was determined as follows:

1. A sample of a magnetorheological suspension with a defined magnetic particles’
volume fraction is chosen;

2. The volume necessary to fill the optimum gap is calculated. Using a volume variable
pipette, the right volume of fluid is placed in the test zone (gap);

3. A shear-rate of 5𝑠−1 is applied and the viscosity is measured as a function of time;

4. This process is repeated 10 times for each value of magnetic particles’ volume frac-
tion.

A post-processing data analysis is performed for each time series of viscosity. The
mean value of the viscosity, for the k-th realization, is defined as:

𝜂𝑘(𝜑) = 1
𝑡𝑓 − 𝑡𝑖

∫︁ 𝑡𝑓

𝑡𝑖

𝜂𝑘(𝑡, 𝜑)𝑑𝑡, (4.8)

where 𝜂(𝑡)𝑘 is the k-th time series of viscosity, 𝑡𝑖 is the initial time and 𝑡𝑓 is the final time.
As ten realizations were carried out for each value of magnetic particle’s volume fraction,
the value of the viscosity associated with 𝜑 is then:

𝜂(𝜑) =
∑︀10

𝑘 𝜂𝑘(𝜑)
10 . (4.9)

The uncertainty of the viscosity associated with a given magnetic particles’ volume frac-
tion is given by:

𝐸(𝜂) = max(𝐸𝑖(𝜂), 𝐸𝑟(𝜂)), (4.10)

where, 𝐸𝑖(𝜂) is the instrumental error and 𝐸𝑟(𝜂) is the random error. 𝐸𝑖(𝜂) is calculated
as described in the appendix (A.1). In this case, 𝐸𝑟(𝜂) is calculated as:

𝐸𝑟(𝜂) =
√︃∑︀10

𝑘 (𝜂𝑘 − 𝜂)2

10 . (4.11)
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The viscosity and its associated error are made non-dimensional using the viscosity
of the base fluid 𝜂0, which is mineral oil at 25∘𝐶. The non-dimensional variables are then:
𝜂* = 𝜂/𝜂0 and 𝐸(𝜂)/𝜂0 = 𝐸*(𝜂). A point in the graph of 𝜂* as a function of 𝜑 is given by
𝜂* ± 𝐸*(𝜂).

4.3.1.2 Discussion

Figures (30) e (31) present a series of pictures displaying the microstructure of
some magnetorheological suspensions in the absence and in the presence of an external
magnetic field 𝐵. Figure (30) shows the micrographies of the magnetorheological suspen-
sion composed by magnetite powder in four different volume fractions: 0.1%, 0.4%, 0.8%
and 1%. Figure (31) presents the same results, but for the suspension composed by iron
powder.

It can be observed from figures (30) and (31) that in the absence of an exter-
nal magnetic field, the micrographies portrait microstructures formed by almost sphere-
shaped agglomerates of magnetic particles well dispersed in the base fluid. Nonetheless,
the application of the external magnetic field induced the formation of highly anisotropic
microstructures. The agglomerates of particles that start relatively homogeneously dis-
tributed in the absence of magnetic field turn to fiber-shaped structures aligned with the
direction of the applied magnetic field.

(a) 𝜑 = 0.1% in the absence of external mag-
netic field.

(b) 𝜑 = 0.1% in the presence of 𝐻 = 4.7 × 104

kA/m.
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(c) 𝜑 = 0.4% in the absence of external magnetic
field.

(d) 𝜑 = 0.4% in the presence of 𝐻 = 4.7 × 104

kA/m

(e) 𝜑 = 0.8% in the absence of external magnetic
field.

(f) 𝜑 = 0.8% in the presence of 𝐻 = 4.7 × 104

kA/m.

(g) 𝜑 = 1% in the absence of external magnetic
field.

(h) 𝜑 = 1% in the presence of 𝐻 = 4.7 × 104

kA/m.

Figure 30 – Microstructures of samples of the magnetorheological suspensions composed
of magnetite powder agglomerates.
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(a) 𝜑 = 0.1% in the absence of external mag-
netic field.

(b) 𝜑 = 0.1% in the presence of 𝐻 = 4.7 × 104

kA/m.

(c) 𝜑 = 0.4% in the absence of external magnetic
field.

(d) 𝜑 = 0.4% in the presence of 𝐻 = 4.7 × 104

kA/m.

(e) 𝜑 = 0.8% in the absence of external magnetic
field.

(f) 𝜑 = 0.8% in the presence of 𝐻 = 4.7 × 104

kA/m.
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(g) 𝜑 = 1% in the absence of external magnetic
field.

(h) 𝜑 = 1% in the presence of 𝐻 = 4.7 × 104

kA/m.

Figure 31 – Microstructures of samples of the magnetorheological suspensions composed
of iron powder agglomerates.

All the magnetorheological suspensions produced can be considered diluted due to
the fact that the maximum particle volume fraction is 1% for both types of suspension.
Figures (32) and (33) depict, respectively for the suspension of magnetite powder and for
the one made of iron powder, the relative viscosity as a function of the magnetic particle
volume fraction.

For very diluted regimes, 𝜑 ≤ 0.4%, it is shown in figures (32) and (33) that the
relation between the relative viscosity and the particle volume fraction follows closely
the linear Einsteins’ relation 𝒪(𝜑). This result comes as a direct consequence of the
microstructure overall shape, which is, as can be seen in figures (30a), (30c), (31a) and
(31c), composed of almost small bounding spherical micro-aggregates. The distribution
of these agglomerates are approximately homogeneous, what makes the order 𝒪(𝜑) of
Einstein’s law (EINSTEIN, 1911) applicable.

As the particle volume fraction rises above 𝜑 ≈ 0.4%, the nondimensional viscosity
is observed to increase in an non-linear fashion, requiring corrections of higher order such
as 𝒪(𝜑2) or even 𝒪(𝜑3). According to Cunha, Rosa and Dias (2016), Considering the limit
of very small volume fraction (𝜑 → 0), one can relate the relative viscosity to particle
volume fraction by an expansion in Taylor’s series of the following relation:

𝜂*(𝜑, 𝛼, 𝑃𝑒) = 𝑘1(𝛼, 𝑃𝑒)𝑒𝑘2(𝛼,𝑃 𝑒)𝜑, (4.12)

which n-th term is equal to (𝑛!)−1𝑘𝑛
2 𝜑𝑛. Thus:

𝜂* = 1 + 𝑘1𝜑

(︃
1 + 𝑘2𝜑 + 𝑘2

2𝜑2

2

)︃
+ 𝒪(𝜑4). (4.13)

This equation is used to fit the experimental data concerning both magnetorheological
suspensions.
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Figure 32 – Relative viscosity 𝜂* as a function of the magnetite particles’ volumetric
fraction 𝜑. The continuous curve ( ) is a fit of the experimental data, for
𝜑 ≤ 0.004, to an equation of the following form: 𝜂 = 1 + 𝑘1𝜑. The dashed
curve ( ) is a fit of the experimental data to an equation of the given form:
𝜂 = 1 + 𝑘1𝜑(1 + 𝑘2𝜑 + 𝑘2

2𝜑2/2). Here, 𝑘1 = 8.70 × 101 ± 1.96 × 100 and
𝑘2 = 6.86 × 101 ± 2.89 × 100.
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Figure 33 – Relative viscosity 𝜂* as a function of the iron particles’ volumetric fraction
𝜑. The continuous curve ( ) is a fit of the experimental data , for 𝜑 ≤
0.004, to an equation of the following form: 𝜂 = 1 + 𝑘1𝜑. The dashed curve
( ) is a fit of the experimental data to an equation of the given form:
𝜂 = 1 + 𝑘1𝜑(1 + 𝑘2𝜑 + 𝑘2

2𝜑2/2). Here, 𝑘1 = 8.63 × 101 ± 5.18 × 100 and
𝑘2 = 1.02 × 102 ± 1.56 × 101.
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4.3.2 Magnetoviscous effect

In this subsection, it is presented the magnetoviscous effect of the magnetorheo-
logical suspensions, that is, the increase of their viscosity in response to an elevation on
the intensity of the applied magnetic field.

4.3.2.1 Experimental procedure

The magnetoviscous effect of a sample of magnetorheological suspension is eval-
uated by fixing the shear flow intensity and applying a continuous increase of magnetic
field intensity 𝐻2, which is varied, in the experiments here detailed, from 0 to 1.96 × 105

A/m, considering three fixed intensities of the shear flow �̇�: 10, 100 and 1000s−1.

The determination of the optimized gap between the disks of the rheometer, which
is used in the experimental trials must be chosen carefully, due to the fact that both
magnetorheological suspensions present a severe change on their viscosity as the intensity
of the magnetic field strengthens. For each of the three flow intensities, the process of
choosing the optimal gap for each magnetorheological suspension was carried out following
these steps:

1. In the absence of external magnetic field, the viscosity of both magnetorheological
suspensions, at 25∘C, is at least approximately the viscosity of the base fluid, which
is the mineral oil. For this range of viscosity the minimum gap usually used is 0.3mm.
This gap value was considered the bottom limit for choosing the optimal gap;

2. For a condition of medium magnetic field intensity, five gaps were tried for both
magnetorheological suspensions, 0.3, 0.4, 0.5, 0.6 and 0.7. The ones that resulted in
a lower variation of the viscosity were chosen;

3. The same process was repeated for the highest intensity of magnetic field applied.
Gaps that implicated on lower variability of the viscosity being measured were
chosen as alternatives for the optimized gap;

4. Regarding the results obtained in the last two steps, one chooses an intermediate gap
for each fluid that, when applied to the limit conditions of low and high magnetic
field intensities, generates variability in the viscosity results lower than 5%.

For each of the flow intensities, the gaps chosen for the magnetorheological suspensions
are displayed on table (8)
2 The intensity of the magnetic field is a part of the intensity of the induced magnet field B, generated

by the application of a current to the coils located under the lower fixed disk of the rheometer.
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Table 8 – Optimal gaps used in the experimental evaluations of the magnetoviscous effect
of both magnetorheological suspensions (magnetite powder and iron powder)
for different flow intensities.

�̇� (s−1) Volume fraction (𝜑) Optimal gap (mm)

10

0.1% 0.4
0.2% 0.4
0.3% 0.5
0.4% 0.5
0.5% 0.5
0.6% 0.6
0.7% 0.6
0.8% 0.6
1.0% 0.7

100

0.1% 0.3
0.2% 0.3
0.3% 0.3
0.4% 0.4
0.5% 0.4
0.6% 0.5
0.7% 0.5
0.8% 0.6
1.0% 0.6

1000

0.1% 0.3
0.2% 0.3
0.3% 0.3
0.4% 0.3
0.5% 0.4
0.6% 0.4
0.7% 0.4
0.8% 0.5
1.0% 0.5

Having chosen the optimal gap, the experimental evaluation of the magetoviscous
effect, for each fixed condition of flow intensity (constant shear rate), presented by both
magnetorheological suspensions was done by applying the following experimental protocol:

1. The volume of magnetorheological suspension needed to fulfill the optimum gap is
calculated and, after, this quantity is pipetted in the testing area;

2. The upper disk is lowered until the prescribed gap is achieved between the two disks.
The gap is visually inspected in order to identify possible leakages of the sample,
which, if found, must be cleaned due to the fact that they can severely increase the
experimental error;

3. The magnetic yoke is placed around the measuring device. A demagnetization pro-
cedure is applied to the sample, in order to free the magnetorheological suspensions
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of any previous magnetic effects;

4. The temperature of the experiment, 25∘C, is set on the thermal bath attached to the
rheometer. After this, enough time is waited for the temperature of the sample, here
defined as the temperature of the lower plate, which is measured by the rheometer,
to reach the target temperature;

5. Using the software Rheoplus, the flow condition is set, which is resumed to define a
constant value of shear-rate for the experimental trial;

6. Using the software Rheoplus, the magnetic field conditions are programmed indi-
rectly by controlling the electric current that the power supply (PS-MRD) provides
to the coils located under the bottom disk of the rheometer (see figure 5.8). The cur-
rent is programmed to vary from 0 to 4A, following a linear increase ramp. Between
these limits, data points are collected, each one with a variable time of measure-
ment, due to the fact that the option "no time setting" is active during the data
acquisition. This feature ensures that enough time is being waited at each data ac-
quisition in order to guarantee that the steady state has been achieved when the
data collection is done.

7. The viscosity and the shear stress are acquired as a function of the magnetic field
intensity for a given constant condition of shear rate.

This process was carried out 5 times, for each magnetic particles’ volume fraction of
both magnetorheological suspension, at every condition of flow intensity prescribed. The
experimental errors were calculated using the methodology presented on appendix (A.1).
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4.3.2.2 Magnetoviscous effect - discussion I: diluted suspensions
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Figure 34 – Magnetorheological suspension of magnetite: effective viscosity 𝜂* as a func-
tion of the magnetic parameter 𝛼 considering a constant shear-rate �̇� equals
to 10 s−1. (△) - 0, 2%, (∙) - 0, 4%, (∘) - 0, 6%, (■) - 0, 8% e (□) - 1%.
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Figure 35 – Magnetorheological suspension of iron: effective viscosity 𝜂*as a function of
the magnetic parameter 𝛼 considering a constant shear-rate �̇� equals to 10
s−1. (△) - 0, 2%, (∙) - 0, 4%, (∘) - 0, 6%, (■) - 0, 8% e (□) - 1%.

Figures (34) and (35) show plots of the non-dimensional effective viscosity of the
magnetic suspension as a function of the non-dimensional magnetic field 𝛼 for a constant
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shear-rate of 10𝑠−1. The results are presented for five particle volume fractions 𝜑. It
is immediate from this result that, in both suspensions, enhancing the magnetic field
strength yields an increase of the suspension viscosity. This is called the magnetoviscous
effect. It happens due to a competition between the magnetic torque and the mechanical
torque that act upon a magneitc particle dispersed in a fluid when an external magnetic
field and a flow is applied. The magnetic particle is subjected to the magnetic torque
that tends to align the particles magnetic dipole vector with the direction of the external
magnetic field and held the particles in this configuration. However, the mechanical torque,
acting upon the particle via viscous forces, tries to make the particle rotate according to
the flow’s vorticity evaluated on the particles center of mass. This hindrance of movement
caused by the action of the magnetic torque increases the local dissipation in the particle,
due to the fact that it is no-longer allowed to rotate freely with the flow. The bulk effect
of this mechanism is the increase of the effective viscosity.

It is important to remark that in magnetorheological suspensions the magnetovis-
cous effect is usually much stronger in comparison to ferrofluids when subjected to the
same conditions of flow and external magnetic field. This is due to the fact that, by the ac-
tion of the dipolar interactions, the microstructure of the magnetorheological suspensions
are populated by chains and agglomerate of magnetic particles when in the presence of an
external magnetic field. That is, the mean size of magnetic-induced structures is bigger for
the magnetorheological suspensions when compared to ferrofluids, which is directly linked
to the fact that the increase increase in viscosity is more intense for magnetorheological
suspensions.

From figures (34) and (35) we can also see that the higher the particle volume
fraction 𝜑, the strongest is the magnetoviscous effect obtained as the magnetic field in-
tensity 𝛼 is enhanced. This is related to the fact that in magnetorheological suspensions
that have higher 𝜑, more magnetic particles are avaliable in a given volume of suspension
when compared to suspensions with lower 𝜑. This can be also understood by the fact that
it is easier for the dipolar interactions to form more complex structures like chains and
aggregates of magnetic particles in more concentrated magnetorheological suspensions.

As it can be seen from the plots on figures (34) and (35), for high values of the
magnetic field strength 𝛼 and for each value of the particle volume fraction, the viscosity
curves tend, each one, to a plateau. This constant value is called viscosity of saturation
𝜂∞. According to Cunha, Rosa and Dias (2016), the saturated values of the viscosity 𝜂∞

for each volume fraction correspond to an equilibrium configuration of particle orientation
and size distribution of structures defined, in average, as the balance between mechanical
torque of shear and the magnetic torque on the aggregate-like structures at large values
of 𝛼, when the effect of Brownian motion can be neglected.
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Figure 36 – Magnetorheological suspension of magnetite: relative viscosity of satura-
tion 𝜂*

∞ = 𝜂*(𝜑, 𝛼 → ∞) as a function of the magnetic particles’ vol-
ume fraction. For: �̇� = 10 s−1 (□), �̇� = 100 s−1 (■) and �̇� = 1000 s−1

(∘). The curves are fits of the experimental data to the following equa-
tion: 𝜂*

∞ = 1 + 𝑘1𝜑 (1 + 𝑘2𝜑 + 𝑘2
2𝜑2/2). The fitting parameters are: ( )

𝑘1 = 5.52 × 10−2 ± 3.61 × 10−3 and 𝑘2 = 3.76 × 103 ± 1.23 × 100; ( )
𝑘1 = 6.06 × 101 ± 1.92 × 10−1 and 𝑘2 = 3.56 × 102 ± 7.82 × 10−1; ( )
𝑘1 = 8.52 × 10−1 ± 3.57 × 10−3 and 𝑘2 = 2.071 × 103 ± 4.59 × 100.
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Figure 37 – Magnetorheological suspension of iron: relative viscosity of saturation 𝜂*
∞ =

𝜂*(𝜑, 𝛼 → ∞) as a function of the magnetic particles’ volume fraction.
For: �̇� = 10 s−1 (□), �̇� = 100 s−1 (■) and �̇� = 1000 s−1 (∘). The
curves are fits of the experimental data to the following equation: 𝜂*

∞ =
1+𝑘1𝜑 (1 + 𝑘2𝜑 + 𝑘2

2𝜑2/2). The fitting parameters are: ( ) 𝑘1 = 1.40×103 ±
7.65 × 100 and 𝑘2 = 1.83 × 102 ± 9.22 × 100; ( ) 𝑘1 = 3.22 × 102 ± 8.17 × 100

and 𝑘2 = 6.61 × 100 ± 3.21 × 10−1; ( ) 𝑘1 = 8.33 × 101 ± 1.72 × 10−1 and
𝑘2 = 5.85 × 101 ± 2.57 × 10−1.

Figures (36) and (37) present the behavior of the viscosity of saturation 𝜂∞ as
a function of the magnetic particle volume fraction 𝜑 considering three conditions of
shear-rate: 10𝑠−1, 100𝑠−1 and 1000𝑠−1. The fluid under analysis in figure (36) is a mag-
netorheological suspension of magnetite and in (37) is a magnetorheological suspension
of iron. From both figures, it can be seen that the viscosity of saturation increases as the
magnetic particle volume fraction 𝜑 grows, which is associated to the fact that in the
resulting dynamic equilibrium between the magnetic and the shear torques the magnetic
structures (chains and agglomerate of particles) are bigger, resulting in an increased vis-
cous dissipation. Considering a fixed magnetic particle volume fraction, the viscosity of
saturation is observed to decrease as the shear-rate enhances. This fact can be understood
by looking upon the effect of the shear over the magnetic field induced microstructure,
which is the promotion of break-up. This mechanism decreases the average size of the
magnetic structures, leading to a microstructure that generates less viscous dissipation
the higher the intensity of the shear is. Another effect related to the shear is the re-
distribution of particles via hydrodynamic interactions, which tends to homogenize the
structures in the fluid, decreasing the overall number of agglomerates in the fluid.
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Figure 38 – Magnetorheological suspension of magnetite: relative viscosity 𝜂* as a func-
tion of the nondimensional magnetic parameter 𝛼 for a magnetorheologic
suspension with 𝜑 equals to 0.2%. Each data set corresponds to a level of
constant applied shear-rate �̇�: (□) - 10s−1, (■) - 100s−1 e (∘) - 1000s−1.
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Figure 39 – Magnetorheological suspension of magnetite: relative viscosity 𝜂* as a func-
tion of the nondimensional magnetic parameter 𝛼 for a magnetorheologic
suspension with 𝜑 equals to 1%. Each data set corresponds to a level of con-
stant applied shear-rate �̇�: (□) - 10s−1, (■) - 100s−1 e (∘) - 1000s−1.
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Figure 40 – Magnetorheological suspension of iron: relative viscosity 𝜂* as a function of
the nondimensional magnetic parameter 𝛼 for a magnetorheologic suspension
with 𝜑 equals to 0.2%. Each data set corresponds to a level of constant applied
shear-rate �̇�: (□) - 10s−1, (■) - 100s−1 e (∘) - 1000s−1.
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Figure 41 – Magnetorheological suspension of iron: relative viscosity 𝜂* as a function of
the nondimensional magnetic parameter 𝛼 for a magnetorheologic suspension
with 𝜑 equals to 1%. Each data set corresponds to a level of constant applied
shear-rate �̇�: (□) - 10s−1, (■) - 100s−1 e (∘) - 1000s−1.

Figures (38), (39), (40) and (41) depict the behavior of the relative viscosity as a
function of the magnetic field intensity considering three intensities of the shear: 10𝑠−1,
100𝑠−1 and 1000𝑠−1. Figures (38) and (39) present the referred result for the magnetorhe-
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ological of magnetite while figures (40) and (41) present these results for the magnetorhe-
ological suspension of iron. Figure (38) corresponds to a suspension with 𝜑 of 0.2% as well
as (40). Figure (39) corresponds to a suspension with 𝜑 of 1% as well as (41).

Comparing figures (38) and (39), it is obvious the impact of increasing the particle
volume fraction 𝜑, especially for the lowest intensity of the flow. In this case the, for 𝛼

equals to 5, the suspension with 𝜑 equals to 1% presented a relative viscosity 20 times
higher than the suspension with 𝜑 equals to 0.2%. This difference decreases to 5 times as �̇�

approaches 100𝑠−1 and to 1 time as �̇� increases to 1000𝑠−1. It is important to remark that
the increase of the relative viscosity as the magnetic particle volume fraction 𝜑 heightens is
related to the fact that for higher values of 𝜑, more magnetic particles are available to form
structures. This tends, for higher values of 𝜑 and lower of �̇�, to generate microstructures
with higher characteristic size, which leads to an increased viscous dissipation and, as a
result, to a higher bulk viscosity. The increase of �̇� decreases the difference of the results
shown in both figures due to the fact that in medium-high conditions of �̇�, the flow
breaks-up the microstructure of the fluid and, thus, the magnetic field is unable to induce
the formation of chains and aggregates of particles. The same insights can be drawn by
comparing figures (40) and (41).

Comparing figures (39) and (41), it can be seen that the magnetic effects on the
rheology of the magnetorheological suspension of iron are much stronger then the ones
presented by the magnetorheological suspension of magnetite. This can be understood as
a direct effect of the fact that the magnetization of saturation of the iron is about one
order of magnitude bigger that the magnetization of saturation of magnetite. As a result
the intensity of the magnetic dipole vector on each particle of the iron is higher than
in the particles of magnetite. As a result the magnetic attraction between the particles
in the suspension of iron is more relevant and thus, the process of formation of chains
and agglomerates of magnetic particles is facilitated. This leads to a more robust mag-
netoviscous effect in the magnetorheological suspension of iron. The same can be said
for the comparison of figures (38) and (40), however all the rheological behaviors of each
magnetorheological suspension are weaker when compared to figures (39) and (41). This
is due to the fact that the magnetic particle volume fraction on the suspensions of figures
(38) and (40) is much smaller than in the suspensions of figures (39) and (41).

4.3.2.3 Magnetoviscous effect - discussion II: concentrated suspensions

Figures (42) and (43) present the magneto-viscous effect of magnetorheological
suspensions (MRS) of iron and magnetite, respectively, at a constant shear rate of 10 s−1.
Comparing these figures, we observe that the viscosity increases much more intensely for
the iron MRS as a function of 𝛼. This behavior can be attributed to the higher concen-
tration of iron particles, which allows their magnetic properties, such as magnetization,
to significantly influence the rheological response of the fluid as a result of heightening
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the dipolar interactions.

It is important to note that for diluted suspensions, the rheological responses of
both suspensions were quite similar. This is because, at low concentrations, the micro-
metric size of iron particles results in an insufficient number of particles in suspension to
exhibit significant magnetic interactions.

Figure 42 – Magnetorheological suspension of iron: relative viscosity 𝜂* as a function of
the magnetic parameter 𝛼 for a shear rate of 10 s−1. ∘ - 𝜑 = 5%, ⋆ - 𝜑 = 4%,
× - 𝜑 = 3%, □ - 𝜑 = 2%, and △ - 𝜑 = 1%.
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Figure 43 – Magnetorheological suspension of magnetite: relative viscosity 𝜂* as a function
of the magnetic parameter 𝛼 for a shear rate of 10 s−1. ∘ - 𝜑 = 5%, ⋆ - 𝜑 = 4%,
× - 𝜑 = 3%, □ - 𝜑 = 2%, and △ - 𝜑 = 1%.

4.3.3 Pseudo-plasticity

In this subsection, it is discussed the experimentally observed pseudoplastic be-
havior of magnetorheological suspensions. This effect appears when those fluids flow in
the presence of an external magnetic field, being characterized by an intense decrease on
their apparent viscosity 𝜂 when subjected to the action of a strengthening shear flow.

4.3.3.1 Experimental procedure

The pseudoplastic effect of a magnetorheological suspension (MRS) sample is eval-
uated by fixing the magnetic field intensity and applying a continuous increase of shear
rate. Both magnetorheological suspensions were tested in three conditions of magnetic
field intensity: 𝐻 = 0 (absence of magnetic field), 𝐻 = 9.69 × 103 A/m (𝑖 = 0.125A)
and 𝐻 = 1.97 × 104 A/m (𝑖 = 0.25A). The shear rate was varied from 0.1 to 1000s−1.
As both magnetorheological suspension present shear rate dependence when they are in
the presence of a magnetic field, it is important to choose an appropriate length of gap
to obtain consistent results from the experiments. The process of choosing the optimal
gap is similar to the one described on subsection (4.3.2.1) for dealing with the same issue
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on the analysis of the magnetoviscous effect. This process, for each magnetorheological
suspension followed these steps:

1. In the absence of external magnetic field, both magnetorheological suspensions
present viscosity similar to mineral oil, thus a gap of 0.3mm is an appropriate choice
for this condition;

2. For the first non-zero magnetic field condition applied, that is, 𝐻 = 9.69 × 103

A/m (𝑖 = 0.125A), the viscosity was evaluated for the minimum and the maximum
values of �̇�, which are, respectively, 0.1 and 1000s−1. This tests are carried out for
five values of the gap: 0.3, 0.4, 0.5, 0.6 and 0.7 . A value of gap that permits the
evaluation of the viscosity in both conditions is searched;

3. The last step is repeated, but considering the highest value of magnetic field inten-
sity, 𝐻 = 1.97 × 104 A/m (𝑖 = 0.25A);

4. The gaps chose are displayed in table (9).

Table 9 – Optimal gaps for both magnetorheological suspensions used in the pseudo-
plasticity experiments.

Volume fraction (𝜑) Optimal gap (mm)
0.1% 0.3
0.2% 0.3
0.3% 0.4
0.4% 0.4
0.5% 0.4
0.6% 0.5
0.7% 0.5
0.8% 0.6
1.0% 0.6

Having chosen the optimal gap, the experimental evaluation of the pseudoplastic
effect, for each fixed condition of magnetic field intensity, presented by both magnetorhe-
ological suspensions, was done by applying the following experimental protocol:

1. The volume of magnetorheological suspension necessary to fulfill its optimum gap
is calculated and, then, this quantity is pipetted in the testing area;

2. The upper disk is lowered until the prescribed gap is achieved between the two disks.
The gap is visually inspected in order to identify possible leakages of MRS, which,
if found, must be trimmed and cleared;

3. The magnetic yoke is placed around the measuring rod and a process of demagne-
tization is applied in order to free the magnetic fluid of any previous influences of
external magnetic fields;
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4. The temperature of the experiment, 25∘C, is set on the thermal bath attached to the
rheometer. After this, enough time is waited for the temperature of the sample, here
defined as the temperature of the lower plate, which is measured by the rheometer,
to reach the target temperature;

5. Using the software Rheoplus, the magnetic field intensity condition is set. It is re-
sumed to define a constant value of current in order to provide a constant magnetic
field intensity when passing through the coils underneath the bottom plate of the
measuring device (see figure 5.8);

6. Using the software Rheoplus, the shear rate is programmed to vary from 0.1 to 1000
s−1 according to a logarithmic ramp, with increase rate of 10 points per decade.
Each data point has a variable time of collection due to the fact that the option "no
time setting" is active during the data acquisition process. This feature ensures that
enough time is being waited at each data acquisition, what aims to guarantee that
the steady state has been achieved while data collection is being done.

7. The viscosity is acquired as a function of shear rate for a given constant magnetic
field intensity.

This process was carried out 10 times, for each MRS, at every condition of magnetic field
intensity prescribed.

The experimental errors were calculated using the methodology presented on ap-
pendix (A.1).

4.3.3.2 Pseudoplasticity discussion I: diluted suspensions

When an external magnetic field is applied to a magnetorheological suspension,
another phenomenon emerges: pseudo-plasticity, closely tied to the magnetoviscous effect
analyzed in the previous subsection. Figures (44) and (45) illustrate that, under a constant
external magnetic field, the apparent viscosity 𝜂* of the analyzed magnetorheological sus-
pensions decreases significantly as the non-dimensional shear rate, �̇�*, increases, revealing
a shear-thinning behavior in both fluids.

Shear-thinning is typically attributed to microstructural changes driven by the
intensity of the flow, specifically the shear rate. This behavior is observed in both mag-
netorheological suspensions, but it is crucial to note that the microstructural formation
and complexity of these fluids depend strongly on the applied magnetic field strength,
𝛼. When the magnetic field is present, ferromagnetic particles align with it, and dipolar
interactions promote the formation of anisotropic chains and clusters at the micrometer
scale. According to equation (4.6), an increase in the particle structure’s length scale
significantly intensifies the dipolar interactions. As chains of aligned particles form, the
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length scale of the resulting structure rapidly increases, which in turn amplifies the dipolar
interactions, leading to the development of larger, stiffer, and more stable structures.

To enable a comparison of the shear-thinning behavior observed in both magne-
torheological suspensions, the relaxation time 𝜏𝑚, obtained from tests on the magnetite-
based MRS and 𝜏𝑐, obtained for the MRS of iron, both under the weakest magnetic
field intensity, are used to nondimensionalize the shear rate for both suspensions. The
relationship between these non-dimensional shear rates is given by:

�̇�*
𝑐 = �̇�*

𝑠

(︂
𝜏𝑐

𝜏𝑠

)︂
= 0.15�̇�*

𝑠 , (4.14)

where �̇�*
𝑐 is the non-dimensional shear rate for the MRS of iron and �̇�*

𝑠 for the MRS of
magnetite.

Figure 44 – Magnetorheological suspension of magnetite: relative viscosity 𝜂* as a function
of the non-dimensional shear-rate for a suspension with 𝜑 = 1%. Each data
set corresponds to a condition of external magnetic field intensity 𝛼: (∙) -
2.63, (∘) - 0.72, (♢) - 0.36 and (△) - 0.
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Figure 45 – Magnetorheological suspension of iron: relative viscosity 𝜂* as a function of
the non-dimensional shear-rate for a suspension with 𝜑 = 1%. Each data set
corresponds to a condition of external magnetic field intensity 𝛼: (∙) - 2.63,
(∘) - 0.72, (♢) - 0.36 and (△) - 0.

In the context of constant external magnetic fields, the apparent viscosity of mag-
netorheological suspensions shows a significant reduction as non-dimensional shear rate
increases as illustrated in figures (44) and (45). This behavior can be attributed to two in-
terrelated mechanisms. First, as shear flow intensifies, it aligns the magnetically induced
microstructure along the flow streamlines. This alignment reduces the drag associated
with the microstructure, leading to a notable decrease in the suspension’s viscosity. The
smoother flow facilitated by this alignment minimizes resistance and enhances fluidity.

In stronger flow regimes, the magnetic microstructure begins to break down due to
increasing shear stresses associated with elevated �̇�*,. This breakdown results in smaller
particle agglomerates, which decrease local drag and mitigate the hindrance effects that
particles impose on flow. The reduction in energy dissipation mechanisms manifests as a
marked decrease in apparent viscosity.

Importantly, at high values of �̇�*—indicating very strong flows—the apparent vis-
cosity approaches that of the fluid in the absence of a magnetic field, denoted as 𝜂0. Under
these conditions, the magnetic field-induced microstructure is nearly entirely disrupted,
resulting in behavior similar to that of the fluid without magnetic influence.

As shown in Figure (46), the behavior of viscosity as a function of time was studied
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for three nondimensional shear rates (�̇�*): 2.5, 6.3, and 25.5, to better understand the
transition zone observed between �̇�* = 102 and �̇�* = 103 in Figure (45). These three
values were selected to span the transition range, providing detailed insights into the
dynamics of viscosity during this critical phase.

For �̇�* = 2.5, pronounced fluctuations in viscosity are observed, indicating tran-
sient behaviors potentially linked to structural rearrangements in the fluid. At �̇�* = 6.3,
the fluctuation continue, showing that the instability between alignment and breakup
of structures. Only for �̇�* = 25.5, it can be seen that the viscosity stabilizes relatively
quickly, suggesting a steady-state flow regime.

These temporal profiles reveal that the transition region is characterized by a com-
plex interplay between the fluid’s microstructure and external forces, leading to significant
variations in viscosity. This highlights the importance of time-resolved measurements for
capturing the intricate dynamics within non-Newtonian fluids. Further investigation into
the underlying mechanisms is necessary to fully understand the contributions of particle
interactions and flow instabilities in this regime.

Thixotropy is a reversible long time-dependent decrease in the apparent viscosity
due to microstructural change when the material is subjected to constant or increasing
shear stress, followed by a recovery of the original viscosity once the stress is removed.
We could say that this phenomenon corresponds to a time-dependent shear thinning
property of certain fluids. In this context, the phenomenon illustrated in Figure (46)
can be interpreted as a case of local thixotropy. Specifically, the viscosity changes over
time even though the shear rate is held constant. For �̇�*

𝑐 = 2.5 and �̇�*
𝑐 = 6.3, which

are maintained constant, it is clear the existence of a long time dependent viscosity as a
consequence of microstructure changes such as structure breakups and orientation.
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Figure 46 – Viscosity as a function of time for the MRS of iron. (♢) - De=25.5, (□)-
De=6.3 and (∘)-De=2.5.
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Figure 47 – Magnetorheological suspension of magnetite: relative viscosity 𝜂* as a func-
tion of the nondimensional shear-rate for different magnetic particles’ volume
fraction subjected to an homogeneous magnetic field. The nondimensional
magnetic parameter 𝛼 is held constant and equals to 2.63. Each set of data
corresponds to a magnetorheological suspension with different particles’ vol-
ume fraction: (▼) - 1%, (△) - 0.8%, (♦) - 0.6%, (□) - 0.4% e (∙) - 0.2%.
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Figure 48 – Magnetorheological suspension of iron: relative viscosity 𝜂* as a function of
the nondimensional shear-rate for different magnetic particles’ volume frac-
tion subjected to an homogeneous magnetic field. The nondimensional mag-
netic parameter 𝛼 is held constant and equals to 2.63. Each set of data cor-
responds to a magnetorheological suspension with different particles’ volume
fraction: (▼) - 1%, (△) - 0.8%, (♦) - 0.6%, (□) - 0.4% e (∙) - 0.2%.

Figures (47) and (48) illustrate the dependence of dimensionless viscosity on the
non-dimensional shear rate (�̇�*) for various volume fractions of magnetic particles (𝜑),
with the magnetic parameter held constant at 𝛼 = 2.63. The shear-thinning effect is
evident in both suspensions across all evaluated 𝜑 values. Notably, samples with higher
𝜑 consistently exhibit greater viscosity throughout the entire �̇�* range compared to those
with lower 𝜑.

This behavior can be understood by considering the physical implications of in-
creased 𝜑, which directly relates to the availability of particles for forming magnetic-
induced structures. Suspensions with higher 𝜑 contain more particles per unit volume
than their more diluted counterparts. Consequently, the likelihood of generating complex
microstructures—such as chains and agglomerates of particles—due to the application
of an external magnetic field is significantly higher in concentrated suspensions. As pre-
viously discussed, these more complex microstructures lead to increased local viscous
dissipation within the fluid. The collective effect of this mechanism is a marked increase
in the overall viscosity of the suspension.
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4.3.3.3 Pseudoplasticity discussion II: concentrated suspensions

In the previous section, we presented results regarding the pseudoplastic effect of
the magnetorheological suspensions (MRS) of iron and magnetite. It was observed that the
dependence of 𝜂* on 𝐷𝑒 was remarkably similar for both systems, despite the significant
difference in their dipolar parameter 𝜆. This suggests that the MRS of iron should exhibit
a much more pronounced pseudoplastic effect compared to that of magnetite, given the
significantly higher magnetization of iron relative to magnetite.

The issue lies in the particle size used to form the MRS. To produce MRS of iron
and magnetite with the same particle volume fraction, significantly fewer iron particles are
required due to their micrometric size. In contrast, the magnetite particles are nanometric,
necessitating a much larger quantity of material to achieve the desired composition. It
is important to note that the MRS of magnetite attains a micrometric minimum length
only in the presence of an external magnetic field.

When evaluating more concentrated suspensions, the impact of magnetization on
the rheology becomes evident, as there are sufficient iron particles in the suspension.
Figure (49) presents the nondimensional relative viscosity of the magnetite MRS as a
function of De for different external magnetic field intensities. The viscosities shown are
lower than those in Figure (50), which depicts the same relationship for the iron MRS.
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Figure 49 – Magnetorheological suspension of magnetite: relative viscosity 𝜂* as a function
of the nondimensional shear rate for a suspension with 𝜑 = 4%. Each data
set corresponds to a condition of external magnetic field intensity 𝛼: (△) -
2.63, (♦) - 0.72, (□) - 0.36 and (∙) - 0.
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Figure 50 – Magnetorheological suspension of iron: relative viscosity 𝜂* as a function of
thenondimensional shear rate for a suspension with 𝜑 = 4%. Each data set
corresponds to a condition of external magnetic field intensity 𝛼: 𝛼: (△) -
2.63, (♦) - 0.72, (□) - 0.36 and (∙) - 0.

Figure (51) displays the nondimensional zero-shear viscosity, 𝜂*
0, as a function of

𝜑. As observed, the viscosity is significantly higher for the iron MRS, indicating that
in concentrated suspensions, the higher magnetization of the iron particles substantially
influences the rheology. This effect becomes more pronounced as 𝜑 increases, due to the
larger number of particles present in the suspension.

Both suspensions exhibited a virial fitting of 𝒪(2), indicating that the system is
no longer statistically homogeneous. In these cases, particle interactions extend beyond
individual behavior, as the localization of one particle depends on the positions of others.
It is important to note that not only dipolar interactions occur but also hydrodynamic
interactions, which further influence the suspension’s rheological properties.
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Figure 51 – Nondimensional zero shear viscosity 𝜂*
0 as a function of the magnetic particle

volume fraction 𝜑 for: (∙) - magnetorheological suspension of iron and (■)
- magnetorheological suspension of magnetite. The curves are fittings of the
experimental data to a virial equation like 𝜂*

0 = 1 + 𝑘1𝜑(1 + 𝑘2𝜑 + 𝑘2𝜑
2/2).

For the MRS of iron, 𝑘1 = 1.28 × 105 and 𝑘2 = 3.28 × 103. For the MRS of
magnetite, 𝑘1 = 1.67 × 103 and 𝑘2 = 6.21 × 104.

4.4 Transient shear analysis

Experimental trials have been executed in the regime of transient shear flow in
order to evaluate how the shear stress relaxes when the fluid is subjected to different con-
ditions of external magnetic field intensities 𝛼. Those experiments have made possible the
determination of the spectrum of relaxation times of each magnetorheological suspension
and also the measurement of their residual stresses as functions of the applied magnetic
field and of the shear flow intensities.

4.4.1 Step-strain: Magnetic field influence

Step-strain experiments are used in this section to evaluate the dependence of the
stress relaxation function Φ(𝑠)3 of both magnetorheological suspensions on the intensity of
3 It is important to remember that 𝑠 is the time shift, defined as 𝑠 = 𝑡 − 𝑡′, in which 𝑡 is the actual

time and 𝑡′ is a reference time, usually the instant in which the instantaneous strain is applied to the
fluid on a step-strain experiment. Further details are given on subsection (2.2.3).
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the applied magnetic field. Based on the time behavior of the referred material function, it
was possible to determine the spectrum of times of relaxation for each fluid at each condi-
tion of magnetic field intensity. Besides that, the residual stress relaxation parameter Φ∞

was also obtained as function of the magnetic field intensity for both magnetorheological
suspensions.

4.4.1.1 Experimental procedure

The step-strain experiment is used to obtain the stress relaxation function Φ(𝑠)
of a given complex fluid. Based on this material function, it is possible to determine the
spectrum of relaxation times characteristic of the fluid.

This experimental protocol is composed by the following steps:

1. For each magnetorheological suspension (fixed magnetic particles volume fraction
𝜑), the optimized gap between the disks of the rheometer is chosen based on the
viscosity exhibited by them on each of the four magnetic field intensities applied.
The gaps used on this experiment are displayed on table (10);

2. The volume of magnetorheological suspension needed to fulfill the gap is calculated
and, after, this quantity is pipetted and placed in the test area;

3. The upper disk is lowered until the precise gap between the disks is reached. Eventual
leakages of fluid from the gap are trimmed and cleaned;

4. The magnetic yoke is placed around the measuring rod and a process of demagne-
tization is applied in order to free the magnetic fluid of any previous influences of
external magnetic fields;

5. Through the software Rheoplus a fixed current is set to be provided by the PS-MRD
DC power supply to the coils in the magneto-rheology assembly, which generate
a homogeneous magnetic field in the gap, where a sample of magnetorheological
suspension is located;

6. The temperature of the experiment, 25∘C, is set on the thermal bath attached to the
rheometer. After this, enough time is waited for the temperature of the sample, here
defined as the temperature of the lower plate, which is measured by the rheometer,
to reach the target temperature;

7. A step-strain with a fixed angular strain 𝛾0 is applied to the sample. It is important
to note that the angular strain, which is applied instantaneously to the fluid, should
be as small as possible to ensure that the flow regime is linear viscoelastic. However,
it should be noted that the smaller this parameter is, the smaller the applied torque
will be. Therefore, one can easily enter a torque condition lower than the minimum
torque required for meaningful measurements to be made. Regarding this context,
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for both magnetorheological suspension in all the specified magnetic particles volume
fraction 𝜑: 0.2%, 0.4%, 0.6%, 0.8%, 1%, 𝛾0 was set as 0.1;

8. The data concerning the stress relaxation function is acquired as a function of time
every 0.01s.

Table 10 – Gaps chosen for each magnetorheological suspension (MRS) considering four
different magnetic field intensities, denoted by the originating electric current.

Current (A) 𝜑 (%) MRS - Magnetite (h [mm]) MRS - Iron (h [mm])

1

0.2 0.3 0.3
0.4 0.3 0.3
0.6 0.4 0.5
0.8 0.5 0.6
1.0 0.6 0.6

2

0.2 0.4 0.4
0.4 0.4 0.4
0.6 0.5 0.5
0.8 0.6 0.7
1.0 0.7 0.7

3

0.2 0.4 0.4
0.4 0.5 0.5
0.6 0.6 0.6
0.8 0.7 0.7
1.0 0.8 0.8

4

0.2 0.4 0.4
0.4 0.5 0.5
0.6 0.6 0.6
0.8 0.7 0.7
1.0 0.8 0.8

The experimental errors were calculated using the methodology presented on ap-
pendix (A.1).

4.4.1.2 Discussion

In this subsection, it will be analyzed and discussed the results obtained by ap-
plying a step-strain reometric flow to samples of the magnetorheological suspension of
magnetite and iron, in the presence of a constant homogeneous magnetic field. The real-
ization of this kind of experiments, led to the obtainment of the stress relaxation functions
Φ(𝑠) for different intensities of the external magnetic field 𝐻.

The results are presented here on their dimensionless form. The magnetic field
intensity is traduced, as usually, by the magnetic parameter 𝛼. Regarding this context,
the stress relaxation function, for a fixed intensity of external magnetic field, Φ(𝑠)|𝛼 was
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made dimensionless using the following time and viscosity characteristic scales:

𝑡𝑐 ∼ 𝜏𝑚, (4.15)
𝜂𝑐 ∼ 𝜂0, (4.16)

where 𝜏𝑚 is the principal time of relaxation of the fluid evaluated in the presence of
the lowest magnetic field intensity applied, 𝜂0 is the viscosity of the base fluid of the
magnetorheological suspesnsions, mineral oil, at 25∘C. Using those scales, the typical
scale of the stress relaxation function, which has unit of stress is given by:

[Φ|𝛼]𝑐 ∼ 𝜂0

𝜏𝑚

. (4.17)

Besides that, the time shift, 𝑠 = 𝑡 − 𝑡′, has the following typical scale:

𝑠𝑐 ∼ 𝑡𝑐 ∼ 𝜏𝑚. (4.18)

Therefore, the nondimensional form of the stress relaxation function, considering a fixed
condition of 𝛼, is given by:

Φ*(𝑠*)|𝛼 = Φ(𝑠/𝑠𝑐)|𝛼
[Φ|𝛼]𝑐 = Φ(𝑠/𝜏𝑚)𝜏𝑚

𝜂0
= Φ(𝑠*)𝜏𝑚

𝜂0
, (4.19)

where 𝑠 is the nondimensional time shift.

Figures (52) to (55) present the nondimensional stress relaxation function Φ* as a
function of time shift for the magnertorheological suspension of magnetite with magnetic
particles volume fraction 𝜑 equals to 0.2%. Figures (56) to (59) show the same analysis
but for a suspension with 𝜑 equals to 1%. The referred material function is evaluated
considering four intensities of the homogeneous magnetic field applied H: 7.18 × 104A/m
(𝛼 = 2.63), 1.24 × 105A/m (𝛼 = 4.55), 1.66 × 105A/m (𝛼 = 6.11) and 1.96 × 105A/m
(𝛼 = 7.19).
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Figure 52 – Magnetorheological suspension of magnetite (𝜑 = 0.2%): non-dimensional
stress relaxation function Φ* for 𝛼 = 2.63 (relative to a current of 1A). The
curve is a fit of the experimental data to the following expression: Φ*(𝑠*) =
Φ*

𝑅 +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *

𝑗 ). The fit parameters are: 𝐴1 = 1.97×102 ±6.20×100,
𝐴2 = 5.07 × 101 ± 1.14 × 10−1, 𝜏 *

1 = 𝜏 *
𝑚 = 1, 𝜏 *

2 = 9.52 × 10−2 ± 1.21 × 10−3

and Φ*
𝑅 = 5.96 × 100 ± 1.96 × 10−1.
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Figure 53 – Magnetorheological suspension of magnetite (𝜑 = 0.2%): non-dimensional
stress relaxation function Φ* for 𝛼 = 4.55 (relative to a current of 2A). The
curve is a fit of the experimental data to the following expression: Φ*(𝑠*) =
Φ*

𝑅 +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 1.35×103 ±5.20×101,

𝐴2 = 6.59 × 100 ± 1.11 × 10−2, 𝜏 *
1 = 1.07 × 100 ± 2.48 × 10−1, 𝜏 *

2 = 2.01 ×
10−2 ± 1.95 × 10−3 and Φ*

𝑅 = 7.61 × 100 ± 3.32 × 10−2.
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Figure 54 – Magnetorheological suspension of magnetite (𝜑 = 0.2%): non-dimensional
stress relaxation function Φ* for 𝛼 = 6.11 (relative to a current of 3A). The
curve is a fit of the experimental data to the following expression: Φ*(𝑠*) =
Φ*

𝑅 +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 1.71×103 ±8.56×101,

𝐴2 = 6.54 × 101 ± 6.43 × 10−1, 𝜏 *
1 = 5.08 × 10−1 ± 1.12 × 10−2, 𝜏 *

2 = 4.12 ×
10−2 ± 5.87 × 10−3 and Φ*

𝑅 = 9.69 × 102 ± 2.93 × 100.
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Figure 55 – Magnetorheological suspension of magnetite (𝜑 = 0.2%): non-dimensional
stress relaxation function Φ* for 𝛼 = 7.19 (relative to a current of 4A). The
curve is a fit of the experimental data to the following expression: Φ*(𝑠*) =
Φ*

𝑅 +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 9.75×104 ±7.28×102,

𝐴2 = 1.52 × 102 ± 4.78 × 100, 𝜏 *
1 = 2.52 × 100 ± 1.17 × 10−1, 𝜏 *

2 = 2.68 ×
101±3.45×10−2 and Φ*

𝑅 = 9.19 × 103 ± 4.21 × 100.
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Figure 56 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional stress
relaxation function Φ* for 𝛼 = 2.63 (relative to a current of 1A). The curve
is a fit of the experimental data to the following expression: Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 3.51 × 102 ± 3.96 × 100,

𝐴2 = 1.59 × 102 ± 2.20 × 100, 𝜏 *
1 = 𝜏 *

𝑚 = 1, 𝜏 *
2 = 1.87 × 10−1 ± 8.65 × 10−2

and Φ*
𝑅 = 1.47 × 100 ± 7.11 × 10−1.
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Figure 57 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional stress
relaxation function Φ* for 𝛼 = 4.55 (relative to a current of 2A). The curve
is a fit of the experimental data to the following expression: Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 3.04 × 102 ± 1.86 × 100,

𝐴2 = 1.14 × 102 ± 5.21 × 100, 𝜏 *
1 = 1.23 × 100 ± 1.93 × 10−1, 𝜏 *

2 = 3.31 ×
10−1 ± 2.67 × 10−2 and Φ*

𝑅 = 1.76 × 100 ± 1.75 × 10−1.
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Figure 58 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional stress
relaxation function Φ* for 𝛼 = 6.11 (relative to a current of 3A). The curve
is a fit of the experimental data to the following expression: Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 2.46 × 102 ± 2.77 × 100,

𝐴2 = 1.14 × 102 ± 5.21 × 100, 𝜏 *
1 = 6.32 × 10−1 ± 3.07 × 10−2, 𝜏 *

2 = 6.99 ×
10−2 ± 3.76 × 10−3 and Φ*

𝑅 = 2.22 × 100 ± 1.43 × 10−1.
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Figure 59 – Magnetorheological suspension of iron (𝜑 = 0.2%): non-dimensional stress
relaxation function Φ* for 𝛼 = 7.19 (relative to a current of 4A). The curve
is a fit of the experimental data to the following expression: Φ*(𝑠*) = Φ*

∞ +∑︀2
𝑖=1 𝐴𝑗 exp(𝑠*/𝜏 *). The fit parameters are: 𝐴1 = 3.33 × 102 ± 1.80 × 100,

𝐴2 = 2.22 × 102 ± 7.93 × 100, 𝜏 *
1 = 5.38 × 10−1 ± 2.57 × 100, 𝜏 *

2 = 6.99 ×
10−2 ± 1.96 × 10−3 and Φ*

𝑅 = 1.28 × 100 ± 4.44 × 10−1.
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It can be observed from the two set of figures, (52) to (55) and (56) to (59), that
in every case the magnetorheological suspensions undergo a long-time stress relaxation
process after the aplication of the step-strain, which is an almost instantaneous shear
flow. This process was carried out under the permanent action of a series of external
magnetic field intensities. The fact that the stress relaxation function does not relax
to zero instantaneously, when in the presence of an external magnetic field, indicates
that the rheology of the magnetorheological suspensions change towards a viscoelastic
behavior. Bird et al. (1987) affirms that the time retardation on the stress relaxation of
complex fluids are intimately related to elastic effects arising from its microstructure. The
formation of a magnetic filed-induced microstructure injects elasticity in the system of
the fluid. This mechanism delays the process of stress relaxation due to the fact that the
microstructure, by means of elastic deformation, absorb a part of the energy of the shearing
flow, liberating it after the flow is ceased. The fact that the fluid is non-instantaneous
is very well characterized by the fact that it presents a spectrum of relaxation times,
which can be seen, in a dimensionless fashion, in the inserts of the figures (52) to (59).
It is important to remark that the mean time of relaxation is the one characterized by
having the biggest amplitude of stress (𝐴𝑗). This context strongly suggests the utilization
of a viscoelastic constitutive model for describing the relaxation of the shear stress on
these fluids. As a result, it has been used Maxwell’s generalized viscoelastic model, due
to the fact that it predicts the stress relaxation function behavior as a summation of
exponentials, which are pondered by the a series of characteristics viscosities and times,
that simulate the effects of relaxation due to viscous dissipation and elastic energy storage.

The constitutive equation for Maxwell’s generalized viscoelastic model is presented
on (2.27). In order to obtain its dimensionless form, expression (2.27) will be substituted
on equation (4.19), which leads to

Φ*(𝑠*)|𝛼 = Φ(𝑠*)𝜏𝑚

𝜂0
=

𝑁∑︁
𝑗=1

𝜂𝑗/𝜂0

𝜏𝑗/𝜏𝑚

exp
(︃

− 𝑠*

𝜏𝑗/𝜏𝑚

)︃
=

𝑁∑︁
𝑗=1

𝜂*
𝑗

𝜏 *
𝑗

exp (−𝑠*/𝜏 *
𝑗 ). (4.20)

Defining,
𝐴𝑗 =

𝜂*
𝑗

𝜏 *
𝑗

, (4.21)

equation (4.20) can be rewritten as

Φ*(𝑠*)|𝛼 =
𝑁∑︁

𝑗=1
𝐴𝑗 exp (𝑠*/𝜏 *

𝑗 ), (4.22)

where, Φ*(𝑠*)|𝛼 is the nondimensional stress relaxation function, considering a fixed 𝛼, for
a generalized Maxwell’s fluid, 𝐴𝑗 is the j-th amplitude of nondimensional shear stress,𝑠*

is the nondimensional time shift and 𝜏 *
𝑗 is the nondimensional time associated to the

j-th Maxwell’s element. However, analyzing carefully the results present on figures (52)
to (59), it can be seen that the stress relaxation function does not reaches zero for long
times. Instead of this, the referred material function relaxes for a constant non-zero value,
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which was named, in this work, as the residual stress relaxation parameter Φ*
𝑅|𝛼. From

this observation, an adaptation of the constitutive equation (4.22) was proposed in order
to take into account Φ*

𝑅|𝛼, which resulted in:

Φ*(𝑠*)|𝛼 = Φ*
𝑅|𝛼 +

𝑁∑︁
𝑗=1

𝐴𝑗 exp (𝑠*/𝜏 *
𝑗 ). (4.23)

Using equation (4.23) to fit the experimental data obtained for each magnetorheo-
logical suspension , at four different conditions of magnetic field intensity 𝛼, it was possible
to determine the dimensionless times of relaxation 𝜏𝑗 and nondimensional shear stress am-
plitudes 𝐴𝑗. It is important to note that the main time of relaxation 𝜏𝑚 for each value of
𝛼 was obtained previously by numerical integration of equation (2.66). As a result, the
fitting process have been carried out already considering defined the referred parameter.

Figures (60) and (61) present, for several magnetic particles volume fraction 𝜑,
the behavior of the dimensionless time of relaxation as a function of the magnetic param-
eter 𝛼. Figure (60) deals with the results for the MRS of magnetite and Figure (61) for
the MRS of iron. From figure (60), it can be seen that for the lower magnetic particles
volume fraction 𝜑, the increase of the magnetic parameter increases more intensely the
dimensionless time of relaxation, when compared with the same effect on suspensions with
higher 𝜑. Bird, Armstrong and Hassager (1987) emphasize that, in a relaxation process,
each characteristic time is intimately related to a physical relaxation mechanism. This
is related to the fact that in diluted magnetic suspensions, the magnetic field has to be
more intense in order to produce a magnetic-induced microstructure of saturation, that
is a configuration of particles, chains and agglomerates that does not change with further
increases of the magnetic field intensity. As 𝜑 grows, the intensity of the magnetic field
in order to achieve saturation (dynamical equilibrium) decreases, so almost no change
is observed in the values of 𝜏 as 𝛼 heightens. The conclusions for the MRS of iron are
almost the same, however, it can be seen from figure (61) that the MRS with lower 𝜑

presents an approximately constant time of relaxation in relation to the applied magnetic
field intensity. This anomalous behavior suggests that the MRS of iron may not form
complex structures, such as agglomerates, presenting only a more simple microstructure
that rapidly saturates, which leads to a lower injection of elasticity in the system of the
suspension, resulting in lower values of 𝜏 that do not change much as 𝛼 increases.
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Figure 60 – Magnetorheological suspension of magnetite: dimensionless mean time of re-
laxation 𝜏 * as a function of the magnetic parameter 𝛼. The data points cor-
respond to different values of magnetic particle volume fraction: (□) - 0.2%,
(■) - 0.4%, (∘) - 0.6%, (∙) - 0.8% and (△) - 1%. The curves are fits of the
experimental data to the following equation: 𝜏 *

𝑚 = 𝑐0 + 𝑐1𝛼. The parameters
are: ( ): 𝑐0 = 8.82 × 10−1 ± 4.08 × 10−2 and 𝑐1 = 4.20 × 10−2 ± 7.59 × 10−3;
( ): 𝑐0 = 1.42 × 100 ± 4.37 × 10−2 and 𝑐1 = 5.10 × 10−2 ± 8.13 × 10−3;
( ): 𝑐0 = 1.75 × 100 ± 9.68 × 10−3 and 𝑐1 = 1.00 × 10−2 ± 1.80 × 10−3; ( ):
𝑐0 = 1.81 × 101 ± 9.85 × 10−3 and 𝑐1 = 4.68 × 10−3 ± 1.83 × 10−3 and ( ):
𝑐0 = 1.85 × 101 ± 7.98 × 10−3 and 𝑐1 = 6.32 × 10−2 ± 1.48 × 10−3.
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Figure 61 – Magnetorheological suspension of iron: dimensionless time of relaxation 𝜏 *

as a function of the magnetic parameter 𝛼. The data points correspond to
different values of magnetic particle volume fraction: (□) - 0.2%, (■) - 0.4%,
(∘) - 0.6%, (∙) - 0.8% and (△) - 1%. The curves are fits of the experimental
data to the following equation: 𝜏 *

𝑚 = 𝑐0 + 𝑐1𝛼. The parameters are: ( ):
𝑐0 = 9.25 × 10−1 ± 7.10, ×10−2 and 𝑐1 = 3.99 × 10−2 ± 1.32 × 10−2; ( ):
𝑐0 = 1.05 × 100 ± 2.01 × 10−1 and 𝑐1 = 2.23 × 10−1 ± 3.73 × 10−2; ( ):
𝑐0 = 4.83 × 100 ± 5.31 × 10−2 and 𝑐1 = 9.86 × 10−1 ± 9.84 × 10−3; ( ):
𝑐0 = 1.20 × 101 ± 2.36 × 10−1 and 𝑐1 = 1.14 × 10−1 ± 4.37 × 10−2 and ( ):
𝑐0 = 1.26 × 101 ± 3.84 × 10−1 and 𝑐1 = 4.50 × 10−2 ± 7.11 × 10−3.

As it can be seen from figures (62) and (63), the dimensionless residual stress
increases both as a function of the magnetic intensity parameter 𝛼 and of the magnetic
particles volume fraction 𝜑. It is important to remark that the stress relaxation function
of saturation Φ*

𝑟|𝛼 is related to the residual stress 𝜎𝑅|𝛼 by the following relation:

𝜎𝑅|𝛼 = 𝛾0Φ*
𝑟|𝛼, (4.24)

where, 𝛾0 is the angular strain. Therefore, regarding the results displayed on figures (52)
and (59), it can be said that a residual stress �̃�𝑅 is observed for both fluids at each constant
intensity of magnetic field applied. According to Borin et al. (2014), this increase is related
to the enhancement of the size and intensification of the stability of the magnetic field-
induced aggregates as the intensity of the magnetic field rises. This effect is stronger on
the MRS of iron than on the MRS of magnetite, owing to its bigger magnetization of
saturation. Figures (62) and (63) show the dependence of the residual stress �̃�*

𝑅 as a
function of the nondimensional magnetic field 𝛼. It was proposed a power-law relation to
model such dependence, resulting on the following expression:

�̃�𝑅 = 𝑐0𝛼
𝑐1 , (4.25)
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where 𝑐0 and 𝑐1 are constants obtained from a non-linear regression of the experimental
data to the model. The values obtained for these constants are shown on on the captions
of figures (62) and (63). It is important to note that for each MRS, the volume fraction of
magnetic particles play a very important role on the overall behavior of the suspensions.
As it can be seen, an increase in 𝜑 elevates dramatically the viscosity of the suspension.
As stated previously, an improvement in 𝜑 signifies a situation characterized by more
availability of magnetic particles to form chains and agglomerates. As this microstructures
cause more viscous dissipation locally, in a bulk analysis, they cause an elevation of the
suspension viscosity.
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Figure 62 – Magnetorheological suspension of magnetite: dimensionless residual stress 𝜎*
𝑅

as a function of the magnetic parameter 𝛼. The data points correspond to
different values of magnetic particle volume fraction: (∙) - 0.2%, (□) - 1%.
The curves are fits of the experimental data to the following equation: 𝜎*

𝑅 =
𝑐0𝛼

𝑐1 . The parameters are: ( ): 𝑐0 = 3.69 × 100 ± 9.94 × 10−2 and 𝑐1 =
1.41 × 101 ± 1.37 × 10−2; ( ): 𝑐0 = 1.70 × 10−1 ± 1.17 × 10−2 and 𝑐1 =
5.68 × 100 ± 3.61 × 10−1.
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Figure 63 – Magnetorheological suspension of iron: dimensionless residual stress 𝜎*
𝑅 as a

function of the magnetic parameter 𝛼. The data points correspond to different
values of magnetic particle volume fraction: (∙) - 0.2%, (□) - 1%. The curves
are fits of the experimental data to the following equation: 𝜎*

𝑅 = 𝑐0𝛼
𝑐1 . The

parameters are: ( ): 𝑐0 = 4.85 × 10−1 ± 9.39 × 10−2 and 𝑐1 = 5.87 × 10−1 ±
1.21×10−1; ( ): 𝑐0 = 6.72×10−3 ±2.55×10−3 and 𝑐1 = 5.53×100 ±2.44×
10−2.
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5 RHEOLOGY OF AQUEOUS
SUSPENSIONS OF

MULTI-WALLED CARBON
NANOTUBES

5.1 Multi-walled carbon nanotubes length characterization

The double-walled carbon nanotubes (DWCN) used in this work were charac-
terized using an Olympus LEXT OLS4000 3D confocal laser microscope.1 To begin, an
aqueous suspension of DWCN, with a total volume of 50 mL, was prepared. The parti-
cle volume fraction of DWCN in this suspension was 1%. Five sets of glass slides, each
containing a small portion of the suspension, were prepared for analysis under the micro-
scope. The optical magnifications used to visualize the sample details were 5x, 10x, 20x,
and 50x.

Using the microscope software, a total of 30 measurements were made across the
five glass slides to determine the mean length of the nanotubes, ℓ = 36.88 ± 15.43 𝜇m
(arithmetic average). This result contrasts significantly with the manufacturer’s claim
that the mean length, based on arithmetic average evaluation, is around 6 𝜇m, with a
maximum length of approximately 30 𝜇m (CASTRO et al., 2019). For the nanotube
diameter 𝑎, the manufacturer’s data was used: 𝑎 = 19 nm. Notably, the measured aspect
ratio

(︁
ℓ
𝑎

)︁
𝑚

is 1941.11, while the aspect ratio provided by the manufacturer
(︁

ℓ
𝑎

)︁
𝑝

is 316.79.

It is important to highlight that Batchelor (1970a) demonstrated that the effective
viscosity of a suspension of rigid rods with high aspect ratios depends directly on ℓ3.
Batchelor’s model, however, does not account for hydrodynamic interactions between the
rods. A subsequent correction, which considers pairwise hydrodynamic interactions, was
proposed by Shaqfeh and Fredrickson (1990), yet still predicts the same dependence on
ℓ3. Therefore, it is critical to use the measured value of ℓ, given its substantial impact on
1 Equipment provided through a partnership with the Laboratory of Materials and Microscopy, part of

the Group of Fatigue, Fracture, and Materials of the Department of Mechanical Engineering at the
University of Brasília.
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the calibration of rheological models and the interpretation of the results.

(a) Micrography of an aqueous suspension of DWCN (augmentation of 5x). The red ellipsis
indicates a typical agglomerate of carbon nanotubes. Observe that the background scale is
500𝜇m.

(b) Micrography of an aqueous suspension of DWCN (augmentation of 10x). The red arrows
indicate the location of individual carbon nanotubes. Observe that the background scale is
200𝜇m.
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(c) Micrography of an aqueous suspension of DWCN (augmentation of 20x). The red arrows
indicate the location of individual carbon nanotubes. Observe that the background scale is
100𝜇m.

(d) Micrography of an aqueous suspension of DWCN (augmentation of 50x). The red arrows
indicate the location of individual carbon nanotubes. Observe that the background scale is
50𝜇m.

Figure 64 – Micrographies of an aqueous suspension of DWCN observed using different
optical augmentations.
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5.2 Rheology

5.2.1 Permanent shear analysis

In this analysis, our objective is to capture the pseudoplastic behavior of suspen-
sions containing multi-walled carbon nanotubes (MWCN). To achieve this, we employed
the standard assembly of the rheometer, utilizing the PP-50 measuring system. Initially,
a test was conducted to determine the optimal gap for the experiments. The gap that
resulted in the lowest variance was 0.4 mm, and it was subsequently chosen for all exper-
iments.

The test procedure began by depositing the required amount of suspension to
completely fill the gap. The sample was maintained at a constant temperature of 20∘C.
Following this, the Rheoplus software was programmed to apply an increasing shear rate,
ranging from 0.1 s−1 to 100 s−1. Each test was repeated five times to ensure reliability.
The collected data were processed as described in Appendix (??).

5.2.1.1 Pseudoplastic effect

In this section, we examine the behavior of aqueous suspensions of multi-walled
carbon nanotubes (MWCNs) under a steady simple shearing flow. Figure (65) clearly
demonstrates that all analyzed suspensions exhibit shear-thinning behavior. The presence
of a single slope in the power-law region for each suspension suggests that one primary
physical phenomenon governs the reduction in viscosity as the Deborah number (De)
increases.

This phenomenon arises from the random dispersion of nanotubes when no flow
is applied. In this state, the tubes are oriented randomly, leading to a large collision area
between the nanotubes and the flow, which results in significant localized energy dissi-
pation and, consequently, high viscosity. However, as the flow intensifies, the nanotubes
rotate and begin to align with the flow’s streamlines, reducing their collisional area and
thereby decreasing the viscosity.

Unlike magnetic responsive suspensions (MRS), where particle chains may be dis-
rupted under shear, carbon nanotubes are well-known for their exceptional mechanical
strength, especially when subjected to loads along their preferred orientation (CASTRO
et al., 2019). Therefore, it is reasonable to predict that the applied shear flow is insufficient
to break the nanotubes, meaning this phenomenon does not contribute to the viscosity
reduction as De increases.
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Figure 65 – Relative viscosity 𝜂/𝜂𝑤 as a function of 𝐷𝑒 for suspensions of multi-walled
carbon nanotubes. (∘) - 0.4%, (□) - 0.5%, (♢) - 0.6%, (⋆) - 0.7% and (▽) -
0.8%. The curves are fits of the experimental data to the following expression:
𝜂/𝜂𝑤 = 𝐾𝐷𝑒𝑛−1. The fitting parameters are shown in table.

𝜑 𝐾 𝑛

0.004 1.234 0.678
0.005 2.345 0.789
0.006 3.456 0.89
0.007 4.567 0.901
0.008 5.678 1.012

Table 11 – Power-law coefficients

Analyzing Figure (65), we observe that for a fixed Deborah number (De), the
relative viscosity 𝜂/𝜂𝑤 increases as the particle volume fraction 𝜑 rises. This behavior is
attributed to the greater availability of particles in the suspension as 𝜑 increases. As a
result, the fluid encounters more particles, leading to stronger interactions between the
flow and the dispersed particles. Consequently, higher particle volume fractions lead to
higher viscosities. The increased energy dissipation due to viscosity stems from the process
of rotating and aligning the nanotubes, which explains why the curves for suspensions with
higher 𝜑 values lie above those for lower 𝜑.

Two examples of this process are illustrated in Figures (66) and (67). At very
low shear rates, close to equilibrium, figure (66) shows that the viscosity is exceptionally
high for all suspensions, and this property is amplified as 𝜑 increases. It is important to
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observe that even for small values of 𝜑, the dependence of the relative viscosity on the
particle volume fraction is given by: 𝜂0/𝜂𝑤 = 1 + 𝑏1𝜑 + 𝑏2

1𝜑
2

2 , which implies that in the
condition of weak-flows at least par-wise interactions occur between the nanotubes. Above
𝜑 = 0.003, the relative viscosity increase in an exponential fashion. This occurs because,
in such conditions, nanotube aggregates are present in the suspension (see Figure (64a)),
creating a substantial collisional area, which significantly impacts the bulk viscosity.

As the shear rate increases, however, the microstructure of the aggregates is broken
down, and the influence of individual nanotubes becomes more prominent. This reduction
in collisional area results in a general decrease in viscosity as shown in figure (67). We can
clearly see in this plot that the relative viscosity depend on 𝜑 linearly for 𝜑 ≤ 0.002. This
implicates that, in this specific region, there are no hydrodynamic interactions between
the nanotubes and the increment on the bulk viscosity is only a consequence of the average
stresslet generated by the tubes (rods) individually. Above 𝜑 = 0.002 the relative viscosity
starts to depend very non-linearly on 𝜑, indicating that the interactions between the tubes
in suspension get much more complex.

Figure 66 – Apparent viscosity evaluated in the vicinity of equilibrium 𝜂0/𝜂𝑤 as a function
of the volumetric fraction 𝜑 of multi-walled carbon nanotubes (MWCN). The
curve is a fit of the first four experimental points to the following equation:
𝜂0/𝜂𝑤 = 1 + 𝑏1𝜑 + 𝑏2

1𝜑
2

2 . The fitting parameter is: 𝑏1 = 9.26 × 103.
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Figure 67 – Apparent viscosity evaluated evaluated at the strongest flow applied 𝜂∞/𝜂𝑤

as a function of the volumetric fraction 𝜑 of multi-walled carbon nanotubes
(MWCN). The curve is a fit of the first four experimental points to the fol-
lowing equation: 𝜂∞/𝜂𝑤 = 1 + 𝑏1𝜑. The fitting parameter is: 𝑏1 = 1.92 × 102.

As nanotubes are naturally anisotropic, it can be calculated the modification that
the presence of the tubes add to the stress tensor of the suspension 𝜎𝑓 , that is: Σ =
−𝑝𝐼 + 2𝜇𝐷 + 𝜎𝑓 . Batchelor (1970a), using slender body theory, calculates for fibers of
lenght “2ℓ” and diameter “𝑎” the following tensor for a highly diluted and statistically
homogeneous dispersed suspension:

𝜎𝑓 = 4𝜋𝜂𝑛𝑙3

3 ln(2ℓ/𝑎) (𝑝 · 𝐷 · 𝑝)𝑝𝑝, (5.1)

where 𝑛 is the density number, 𝑝 is the director vector in the direction of the fibers and
𝐷 is the strain rate tensor. Observe that 𝑛 = 𝜑/𝑣𝑝, where 𝑣𝑝 is the volume of the particle,
given by 𝑣𝑝 = 𝜋𝑎2ℓ. Thus:

𝜎𝑓 = 4𝜋𝜂𝜑𝑙3

3𝑣𝑝 ln(2ℓ/𝑎) (𝑝 · 𝐷 · 𝑝)𝑝𝑝 = (5.2)

𝜎𝑓 = 2
3

(︃
ℓ

𝑎

)︃2
𝜂𝜑

ln(2ℓ/𝑎) (𝑝 · 𝐷 · 𝑝)𝑝𝑝 = (5.3)

𝜎𝑓 = 𝜂𝑒 (𝑝 · 𝐷 · 𝑝)𝑝𝑝. (5.4)

Observe that equation (5.1) tells us that the extensional viscosity 𝜂𝑒 depends on 𝑛𝑙3.
In this sense, one can argument that considering an homogeneous equivalent fluid, the
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tubes generate an extra stress (stresslet) comparable to a suspension formed by boundary
spheres with radius ℓ.

It is important to remark that the calculation we are using, based on (BATCH-
ELOR, 1970a), refers to the magnitude of the extensional viscosity 𝜂𝑒, which is, in fact,
an anisotropic fourth-order quantity. The anisotropic formulation implies that viscosity
depends not only on intensity but also on the flow direction and particle orientation,
requiring the use of fourth-order tensors to properly describe the material’s behavior.

As we have information on ℓ/𝑎 from the manufactures and from our measurements,
we ploted in Figure (68) the nondimensional extensional viscosity as a function of 𝜑(ℓ/𝑎)2,
which is the same as 𝑛ℓ3. One can easily see that the extensional viscosity based on the
values collected by our measurements is much higher then based in the manufacturer’s in-
formation on ℓ/𝑎. This implies that the real suspensions are able to generate a much more
intense stress along the streamlines of the flow. This can be very beneficial in situations
like drag reduction, since less material (nanotubes) are needed.

It can be seen from Table (12) that for 𝜑 ≤ 0.005, the nondimensional extensional
viscosity is higher than the nondimensional shear viscosity, but this trend reverses for
𝜑 > 0.005. This implies that the particle volume fraction of DWCN has a more pronounced
effect on shear viscosity than on extensional viscosity.
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Figure 68 – Non-dimensional extensional viscosity 𝜂𝑒/𝜂𝑤 as a function of 𝜑(𝑙/𝑎)2 for the
multi-walled carbon nanotubes (MWCN) suspensions. (△) - Measured ℓ/𝑎 =
1.94 × 103, (∘) - manufacturer ℓ/𝑎 = 3.16 × 102 (CASTRO et al., 2019). The

curves are lines given by 𝜂𝑒/𝜂𝑤 = 2
3 ln(2ℓ/𝑎)𝜑

(︃
ℓ

𝑎

)︃2

= 𝑐𝜑

(︃
ℓ

𝑎

)︃2

. Following the

manufactor information, 𝑐 = 1.16 × 10−1 and based on our measurementes,
𝑐 = 8.81 × 10−2.

𝜑 𝜑 · (ℓ/𝑎)2 = 𝑛ℓ3 𝜂0/𝜂𝑤 𝜂𝑒/𝜂𝑤

0.004 1.51 × 104 1.23 × 103 2.65 × 103

0.005 1.88 × 104 3.22 × 103 3.32 × 103

0.006 2.26 × 104 1.61 × 104 3.98 × 103

0.007 2.64 × 104 5.60 × 104 4.64 × 103

0.008 3.01 × 104 1.34 × 105 5.31 × 103

Table 12 – Nondimensional shear viscosity and nondimensional extensional viscosity as
funcrions of 𝜑.

5.2.2 Transient shear analysis

5.2.3 Step-strain

5.2.3.1 Experimental procedure

To obtain the stress relaxation function Φ(𝑠) of a given complex fluid, a step-
strain experiment is performed. Determining this material function is crucial, as it allows
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the relaxation spectrum of the suspension to be evaluated. According to (BIRD; ARM-
STRONG; HASSAGER, 1987), this spectrum is associated with the physical mechanisms
governing stress relaxation.

The experimental protocol involves the following steps:

1. The volume of the MWCN suspension required to fill the 0.4 mm gap is calculated.
This volume is then pipetted and deposited in the testing area;

2. The upper disk is lowered until the precise gap between the disks is achieved. Any
fluid leakage from the gap is carefully trimmed and cleaned;

3. The experiment temperature is set to 25∘C using the Peltier system integrated into
the lower plate of the rheometer. Adequate time is allowed for the sample tempera-
ture—defined as the temperature of the lower plate, measured by the rheometer—to
stabilize at the target value;

4. A step-strain with a fixed angular strain, 𝛾0, is applied to the sample. The angular
strain, applied instantaneously to the fluid, must be as small as possible to ensure
the linear viscoelastic regime. However, reducing 𝛾0 excessively can lead to applied
torques below the rheometer’s minimum measurable threshold, compromising data
reliability. To balance these factors, 𝛾0 was set to 0.1 for all MWCN suspensions
with volume fractions (𝜑) of 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, and 1%;

5. Data for the stress relaxation function is recorded as a function of time, with mea-
surements taken every 0.01 s.

The experimental errors were calculated following the methodology outlined in
Appendix (??).

5.2.3.2 Discussion

In this section, we discuss the results concerning the relaxation of shear stress
following the sudden application of a small strain, which falls within the linear regime.
All suspensions exhibited elastic behavior, as clearly shown in Figures (69), (70), (71),
and (72), which present the nondimensional stress relaxation function Φ* as a function
of the time shift 𝑠*. These figures demonstrate that the shear stress does not relax in-
stantaneously. Moreover, the stress relaxes to a plateau where the shear stress remains
non-zero, further highlighting the elastic nature of the suspensions.

The elastic properties arise from the microstructure, which in this case consists
of agglomerates of multi-walled carbon nanotubes. The fact that the stress does not
fully vanish over long times suggests the presence of a residual structure that requires
a minimum stress to initiate flow. In light of these observations, the modified Maxwell
viscoelastic model can be applied to fit the experimental data. As discussed in Section

120



(4.4.1), the relationship between the nondimensional time shift and the nondimensional
stress relaxation function is given by:

Φ*(𝑠*) =
𝑁∑︁
𝑗

𝜂*

𝜏 * exp (−𝑠*/𝜏 *) + Φ*
𝑅 =

𝑁∑︁
𝑗

𝐴𝑗 exp (−𝑠*/𝜏 *) + Φ*
𝑅, (5.5)

where 𝐴𝑗 is j-th amplitude of stress and 𝜏 *
𝑗 the j-th nondimensional time of relaxation of

the suspension.

Figure 69 – Stress relaxation function for the suspension of MWCN with 𝜑 = 0.002. In the
insert is shown the amplitude of stress 𝐴𝑗 as a function of the time of relax-
ation 𝜏 *

𝑗 . The curve is a fit of the experimental data to the modified Maxwell’s
viscoelastic model given by equation (5.5). The adjustment parameters are
shown at table (13).
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Figure 70 – Stress relaxation function for the suspension of MWCN with 𝜑 = 0.004. In the
insert is shown the amplitude of stress 𝐴𝑗 as a function of the time of relax-
ation 𝜏 *

𝑗 . The curve is a fit of the experimental data to the modified Maxwell’s
viscoelastic model given by equation (5.5). The adjustment parameters are
shown at table (13).
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Figure 71 – Stress relaxation function for the suspension of MWCN with 𝜑 = 0.006. In the
insert is shown the amplitude of stress 𝐴𝑗 as a function of the time of relax-
ation 𝜏 *

𝑗 . The curve is a fit of the experimental data to the modified Maxwell’s
viscoelastic model given by equation (5.5). The adjustment parameters are
shown at table (13).
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Figure 72 – Stress relaxation function for the suspension of MWCN with 𝜑 = 0.008. In the
insert is shown the amplitude of stress 𝐴𝑗 as a function of the time of relax-
ation 𝜏 *

𝑗 . The curve is a fit of the experimental data to the modified Maxwell’s
viscoelastic model given by equation (5.5). The adjustment parameters are
shown at table (13).

Table (13) presents the fitting parameters concerning the experimental data of
each MWCN suspension. It can be observed that only one term of the modified Maxwell
model was necessary to fit the nondimensional stress relaxation functions. Additionally,
it is evident that the relaxation times 𝜏 *

1 increased as the particle volume fraction 𝜑

rose. From Figure (73), we can see that the dependence of 𝜏 *
1 on 𝜑 is linear within the

investigated range of 𝜑. The increase in 𝜏 *
1 with higher 𝜑 indicates that adding more

nanotubes injects more memory into the dynamic system of the suspension, causing a
retardation in stress relaxation that is directly linked to elastic effects.

Table 13 – Parameters of the fits of experimental data to the modified Maxwell’s vis-
coelastic model. The minimum principal relaxation time is 𝜏1 = 2.34 × 10−1 s.
Each parameter is defined as follows: 𝜑 - particle volume fraction; 𝐴1 = 𝜂*

𝑗 /𝜏 *
𝑗 -

amplitude; 𝜏 *
1 = 𝜏 *

𝑗 /𝜏 *
1 - nondimensional relaxation time; Φ*

𝑅 - nondimensional
residual stress relaxation parameter.

𝜑 𝐴1 𝜏 *
1 Φ*

𝑅

0.002 1.01 × 105 1.00 211
0.004 1.14 × 105 1.75 365
0.006 1.18 × 105 1.85 752
0.008 1.60 × 105 2.76 10500
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Figure 73 – Nondimensional times of relaxation 𝜏 * as functions of the particle volume
frtaction 𝜑 with errorbars. The fit is an adjustment of the experimental data
to a linear equation: 𝜏 * = 𝑎𝜑+𝑏. The fitting parameters are: 𝑎 = 268.09±23.61
and 𝑏 = 0.45 ± 0.22.

Table (13) presents the nondimensional residual stress relaxation parameter Φ*
𝑅.

Based on the definition of the stress relaxation function, it is possible to determine the
nondimensional residual stress 𝜎*

𝑅 using the following relation:

𝜎*
𝑅 = 𝛾0Φ*

𝑅. (5.6)

The values of 𝜎*
𝑅 calculated for each particle volume fraction 𝜑 are shown in Table (14). It

can be observed that 𝜎*
𝑅 depends directly on 𝜑, as illustrated in Figure (74). Notably, the

first four data points in the plot shown in Figure (74) are well-fitted by a second-order
polynomial in relation to 𝜑. However, as 𝜑 increases, 𝜎*

𝑅 exhibits a sudden spike. This
trend can be understood by the increasingly complex microstructure of the nanotubes
agglomerates as 𝜑 rises. Such complexity leads to greater coherence in the suspension,
requiring a higher minimum stress tension to initiate flow. It is important to note that
𝜎*

𝑅 provides an indication of the yield stress of complex fluids. However, these values are
not necessarily equivalent in all cases, as the rheological parameters of a complex fluid
depend on the type of flow applied. Therefore, since yield stress is measured in permanent
shear tests, it can differ from 𝜎*

𝑅, which is evaluated in a step-strain experiment.
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Table 14 – Nondimensional residual stress 𝜎*
𝑅 for the MWCN suspensions.

𝜑 𝜎*
𝑅

0 0
0.002 6.32 × 101

0.004 1.09 × 102

0.006 2.26 × 102

0.008 3.14 × 103

Figure 74 – Nondimensional residual stress 𝜎*
𝑅 as a function of the particle volume fraction

𝜑 of MWCN. In the insert, it is presented a zoom of the first four points, with
a third order virial curve adujsted to them: 𝜎*

𝑅 = 𝑐𝜑(1 + 𝑏𝜑 + 𝑏𝜑2/2). The
fitting parameters are: 𝑐 = 1.98 × 104 and 𝑏 = 1.02 × 102.

5.2.4 Oscillatory shear

5.2.4.1 Procedure

First, the temperature at which the experiment will be conducted must be set. In
this study, the tests were performed at 20°C. Additionally, the optimal gap between the
rheometer plates must be determined. Once the gap is set, the sample is pipetted into
the rheometer, and sufficient time is allowed for it to reach thermal equilibrium at the
experimental temperature.

Following this preliminary stage, the angular strain, 𝛾, must be determined to
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ensure the test remains in the linear viscoelastic regime. This is done by fixing the highest
frequency intended for the test and performing a strain sweep, varying the strain from
0.01% to 1%. The goal is to identify the region where the elastic modulus, 𝐺′, remains
invariant with respect to angular strain. In this region, a specific angular strain value is
chosen for the frequency sweep experiments.

In the next stage, the previously determined angular strain is fixed, and the fre-
quency is varied logarithmically, from a small frequency to the maximum frequency that
ensures the system remains linear. The Rheoplus software collects data on viscometric
properties, 𝜂′(𝜔), 𝜂′′(𝜔), 𝐺′(𝜔), and 𝐺′′(𝜔), for each frequency. Five experimental runs are
performed for each sample during this stage.

5.2.4.2 Discussion

Experiments in small amplitude oscillatory shear (SAOS) are indeed crucial for
understanding the viscoelastic behavior of complex fluids. The key aspect of SAOS is
that the strain amplitude 𝛾0 is kept small enough to ensure that the material response
remains within the linear viscoelastic regime. In this regime, the stress oscillates with the
same frequency as the applied strain but can exhibit a phase lag due to the viscoelastic
nature of the fluid.

The in-phase component of the stress corresponds to the storage modulus 𝐺′,
which represents the elastic or energy-storing behavior. The out-of-phase component cor-
responds to the loss modulus 𝐺′′, reflecting the viscous or energy-dissipating behavior.
These viscoelastic functions—𝐺′ and 𝐺′′—are essential for characterizing the material’s
response.

To ensure that the SAOS experiment is conducted within the linear regime, it is
necessary to establish a range of strain amplitudes 𝛾0 for which the storage modulus 𝐺′

(and typically the loss modulus 𝐺′′ as well) remains independent of 𝛾0. This independence
implies that the material response is purely linear and unaffected by nonlinearities that
may arise at higher strain amplitudes.

In your case, as shown in Figure (75), the nondimensional elastic modulus 𝐺′*

is observed to be constant within the strain amplitude range 10−4 ≤ 𝛾0 ≤ 3 × 10−3,
confirming that this range corresponds to the linear viscoelastic regime. This allows for
reliable analysis of the viscoelastic properties within this strain range. A strain amplitude
𝛾0 = 0.003 is suitable for the frequency sweep experiments, particularly given that it falls
within the linear viscoelastic range determined from the analysis of the MWCN suspension
at 𝜑 = 0.008. This ensures that the results reflect the intrinsic viscoelastic properties of
the material without introducing nonlinear effects.
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Figure 75 – Nondimensional elastic modulus 𝐺′* as a function of the angular strain 𝛾0
for the MWCN suspension with 𝜑 = 0.008. The linear dashed curve shows
the region where 𝐺′* is independent of 𝛾0. The fitting curve is 𝐺′* = 𝑏, with
𝑏 = 4.06 × 105.

Figures (76), (77), (78), and (79) depict the dependence of the nondimensional
elastic modulus and the nondimensional loss modulus on the Deborah number (De). It is
evident across the entire range of De that the nondimensional elastic modulus consistently
exceeds the loss modulus. This observation indicates that the microstructures formed by
agglomerates of double-walled carbon nanotubes impart a significant memory effect to
the suspension system, thereby enhancing its elastic behavior.

The dominance of the elastic modulus over the loss modulus suggests a predom-
inantly elastic response, which may enhance the material’s performance in applications
that require structural integrity and resilience. The memory effect associated with these
microstructures allows the material to store and recover energy, a vital characteristic for
various applications, including advanced composites and biomedical devices.
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Figure 76 – (∙) - Nondimensional elastic modulus and - (∘) - nondimensional loss modulus
as functions of Deborah number (De) for the MWCN suspension with 𝜑 =
0.004, with errorbars.
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Figure 77 – (∙) - Nondimensional elastic modulus and - (∘) - nondimensional loss modulus
as functions of Deborah number (De) for the MWCN suspension with 𝜑 =
0.004, with errorbars.

129



10
-1

10
0

10
1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
10

4

Figure 78 – (∙) - Nondimensional elastic modulus and - (∘) - nondimensional loss modulus
as functions of Deborah number (De) for the MWCN suspension with 𝜑 =
0.006, with errorbars.
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Figure 79 – (∙) - Nondimensional elastic modulus and - (∘) - nondimensional loss modulus
as functions of Deborah number (De) for the MWCN suspension with 𝜑 =
0.008, with errorbars.
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The nondimensional shear elastic modulus 𝐺*
0, representing the limit of the storage

modulus 𝐺′*(𝐷𝑒) as the Deborah number 𝐷𝑒 approaches zero, underscores the distinctive
behavior of the system due to the microstructure of double-walled carbon nanotubes
(DWCN). In contrast to typical complex fluids, where the elastic modulus approaches
zero as 𝐷𝑒 → 0, 𝐺*

0 retains a non-zero value. This indicates the elastic contribution from
DWCN agglomerates that have already established a stable equilibrium.

In relation to Figures (76), (77), (78), and (79), we determined 𝐺*
0 by extrapolating

as 𝐷𝑒 → 0, allowing us to derive the relationship between 𝐺*
0 and the volume fraction 𝜑.

As depicted in Figure (80), the relationship between 𝐺*
0 and 𝜑 is notably nonlinear. This

nonlinearity further supports the assertion that the suspensions exhibit a well-coherent
microstructure of MWCN at equilibrium.
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Figure 80 – The nondimensional shear elastic modulus, denoted as 𝐺*
0, is presented as

a function of the particle volume fraction of multi-walled carbon nanotubes
(MWCN), complete with error bars. The experimental data points are well
fitted to a fourth-order virial expansion. The fitting function for the virial
expansion is given by 𝐺*

0 = 𝑐𝜑
(︁
1 + 𝑏𝜑 + 𝑏2𝜑2

2 + 𝑏3𝜑3

6

)︁
, with parameters 𝑐 =

3.51 × 103 and 𝑏 = 2.78 × 103.

The nondimensional viscosity 𝜂*
0, which represents the equilibrium viscosity, is

defined as the limit of the viscous modulus 𝜂′*(𝐷𝑒) as the Deborah number 𝐷𝑒 approaches
zero:

𝜂*
0 = lim

𝐷𝑒→0
𝜂′*(𝐷𝑒),
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where 𝜂′*(𝐷𝑒) is the viscous modulus. We can easily obtain 𝜂′* from 𝐺′′* using the defi-
nition 𝜂′* = 𝐺′′*/𝐷𝑒. As shown in Figure (81), 𝜂′*(𝐷𝑒) exhibits a strong dependence on
the particle volume fraction 𝜑. This relationship arises because higher 𝜑 values lead to
the formation of more cohesive and complex microstructures, which increase local dis-
sipation during flow. Larger microstructures not only contribute to increased resistance
but also present larger collision areas, intensifying energy dissipation under shear flow.
This process is so pronounced as 𝜑 increases that the relationship between 𝜂′* and 𝜑 was
found to be exponential. In the insert of Figure (81), we can see that even for the most
diluted suspensions, the relationship between 𝜂*

0 and 𝜑 is already non-linear, fitting well
with a fourth-order virial on 𝜑. This indicates that these suspensions cannot be treated
as highly diluted because at least hydrodynamic interactions between four particles begin
to take place. From another perspective, we can say that the probability distribution of
particles in the suspension becomes conditional, contrasting with Batchelor’s model for
the suspension of rods (BATCHELOR, 1970a), where the probability is unconditional,
that is the position of a given particle does not depend on the position of the others.
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Figure 81 – The nondimensional viscosity near equilibrium, denoted as 𝜂*
0, is presented as

a function of the particle volume fraction of multi-walled carbon nanotubes
(MWCN), complete with error bars. The main graph demonstrates that this
relationship is well-represented by an exponential function of the form 𝜂*

0 =
𝑎 exp(𝑏𝜑), where 𝑎 = 1.43 × 103 and 𝑏 = 8.51 × 10−2. An inset highlights
the four initial data points, illustrating that a fourth-order virial expansion
fits the experimental data exceptionally well within this region. The fitting
function for the virial expansion is given by 𝜂*

0 = 1+𝑐𝜑
(︁
1 + 𝑏𝜑 + 𝑏2𝜑2

2 + 𝑏3𝜑3

6

)︁
,

with parameters 𝑐 = 1.04 × 105 and 𝑏 = 1.99 × 103.
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6 RHEOLOGY OF OLEGELS

6.1 Rheological analysis under steady simple shear flow

6.1.1 Micrographies

In this section, we examine the microstructures of oleogels through images captured
using an Olympus BX51 optical microscope equipped with a UC30 digital camera. The
micrographs provide valuable insights into the microstructural arrangement of these com-
plex fluids, particularly regarding particle orientation and its effects on flow anisotropy.
Figure (82) illustrates that the S100C0 oleogel forms a reticulated structure due to the
arrangement of potato starch macromolecules. Figure (83) presents a digital image of the
S50C50 sample, where cotton cellulose fibers are dispersed within this starch network.
Figure (84) shows a sample of S0C100, which consists solely of cellulose fibers.

It is crucial to note that the particle distributions depicted in Figures (82), (83),
and (84) correspond to the equilibrium conditions of the oleogels (i.e., the initial state of
the microstructure) in the absence of shearing flows. As clearly seen in the micrographs,
the initial particle configurations within the oleogels do not follow the common statis-
tically homogeneous distribution typical of a fluid at equilibrium. In fact, the presence
of both starch reticulates and cellulose fibers results in strongly anisotropic suspensions.
Consequently, the viscosity in the vicinity of equilibrium, referred to as 𝜂0 (i.e., as �̇� → 0),
cannot be accurately evaluated in steady shear experiments, as demonstrated in the plot
of viscosity as a function of shear rate shown in Figure (92). In other words, the apparent
viscosity does not appear to stabilize as �̇� approaches zero.
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Figure 82 – Micrography of a sample of the oleogel S100C with 50X magnification.

134



Figure 83 – Micrography of a sample of the oleogel S50C50 for the same magnification of
50X magnification.
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Figure 84 – Micrography of a sample of the oleogel S50C50 for the same magnification of
50X magnification.

6.1.2 Base fluids

The base fluids of the oleogels are soybean oil and a mixture of potato starch and
cellulose fibers, present in different volume fractions. Initially, we investigate the behavior
of each base fluid under variations in temperature and shear rate. It is well known that
soybean oil behaves as a Newtonian fluid, meaning its viscosity remains constant regardless
of the applied shear rate. Therefore, the primary rheological interest for this fluid lies in
how its viscosity changes with temperature.

As shown in Figure (85), the viscosity of soybean oil decreases with increasing
temperature. Moreover, by analyzing Figure (86), we observe that this decrease follows
an exponential trend with temperature. This is evidenced by the fact that the experimen-
tal data can be well-fitted to an Arrhenius-type equation, confirming the temperature
dependence of the viscosity.

The mixture of potato starch and cellulose fibers, on the other hand, exhibits
non-Newtonian behavior across all volume fractions of the components in suspension.
As shown in Figure (87), the mixture (S80C20—80% potato starch, 20% cellulose fiber)
demonstrates shear-thinning behavior, which is consistent across five different tempera-
tures. However, if we fix the shear rate, it becomes apparent that the viscosity of this
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complex fluid also decreases with increasing temperature.

Figure (88) illustrates that in both weak flow regions (�̇� ≪ 1) and strong flow
regions (�̇� ≫ 1), the viscosity still exhibits an exponential dependence on temperature.
This behavior holds true regardless of the flow regime, indicating that temperature plays
a significant role in controlling the viscosity of the mixture.
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Figure 85 – Viscosity as a function of shear rate for soybean oil at different temperatures.
∙ - T= 20∘C, ■ - T= 30∘C, and ▲ - T= 40∘C. Experimental error bars are
shown. The behavior is notably Newtonian across all tested temperatures.
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Figure 86 – Viscosity as a function of temperature for soybean oil. Experimental error bars
are displayed for each point. The fitted curve follows the Arrhenius model:
𝜂(𝑇 ) = 𝑝1 exp(−𝑝2𝑇

𝑝3), with constants 𝑝1 = 1.81 × 103, 𝑝2 = 1.77 × 100, and
𝑝3 = 2.34 × 10−1.

138



10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Figure 87 – Viscosity as a function of shear rate for the base mixture S80C20. ∙ - T= 20∘C,
× - T= 30∘C, ■ - T= 40∘C, ⋆ - T= 50∘C, and ▲ - T= 60∘C. Experimental
error bars are shown.
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Figure 88 – Viscosity as a function of temperature for the base mixture S80C20 under
two shear rate conditions: ∙ - �̇� ≪ 1 and ⋆ - �̇� ≫ 1. Experimental error bars
are shown. The fitted curves follow the Arrhenius model, with the first (-)
given by 𝜂(𝑇 ) = 𝑝1 exp(−𝑝2𝑇

𝑝3), where 𝑝1 = 1.76 × 10−1, 𝑝2 = −1.21 × 101,
and 𝑝3 = −9.39 × 10−2. The second (- -) is given by 𝜂(𝑇 ) = 𝑝4 exp(−𝑝5𝑇

𝑝6),
where 𝑝4 = 1.41 × 102, 𝑝5 = 2.17 × 100, and 𝑝6 = 1.83 × 10−1.

6.2 Rheological analysis under permanent shear

In this section, we will examine the behavior of the oleogels (soybean oil + potato
starch + cellulose fibers) under permanent shear. These fluids are quite complex, and as
such, it is expected that their viscosity will depend on the shear rate. Figures (89) and
(90) demonstrate that both S100C0 and S80C20 exhibit shear-thinning behavior. As the
shear rate increases, the flow induces the rotation the breakup of the starch reticulates,
the alignment and stretch of the microstructure along the streamlines of the flow, which
reduces the collisional area and local energy dissipation, ultimately decreasing the viscosity
of the fluid.

However, upon comparing the two figures, we observe that the rheogram for the
oleogel S80C20 displays two distinct slopes, whereas the rheogram for oleogel S100C0
shows a consistent slope without any changes. This suggests that the shear-thinning pro-
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cess in fluid S80C20 is more complex, involving at least two underlying mechanisms.
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Figure 89 – Apparent viscosity as a function of shear rate for the oleogel with compo-
sition S100C0 in soybean oil. The experiment was conducted at a constant
temperature of 20∘C. Experimental error bars are shown.
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Figure 90 – Apparent viscosity as a function of shear rate for the oleogel with compo-
sition S80C20 in soybean oil. The experiment was conducted at a constant
temperature of 20∘C. Experimental error bars are shown.

The shear rate that marks the transition between different slopes in the rheological
behavior is termed the critical shear rate �̇�𝑐. To further investigate the rheology of fluid
S80C20 in the vicinity of �̇�𝑐, we experimentally measured the viscosity as a function of
time at three distinct shear rates: �̇�1 < �̇�𝑐 < �̇�2. As illustrated in Figures (90) and (91),
the relationship 𝜂(�̇�𝑐) > 𝜂(�̇�1) > 𝜂(�̇�2) indicates an anomalous behavior, where viscosity
experiences a sudden increase even as the shear rate rises.

Additionally, the fluid requires a longer duration to achieve a steady-state regime
specifically at �̇�𝑐, with the time estimated to be 𝑡𝑅𝑃 = 200 s. Notably, throughout our
experiments, the rheometer’s "no time setting" option was consistently activated. This
feature ensures that the system allows sufficient time for the steady-state condition to be
reached, thereby respecting the material’s characteristic response times.

In the region marked by �̇� < �̇�𝑐, the rheology is primarily influenced by the flow of
the corn starch, essentially by the breakup of the starch reticulates. However, when the
shear rate becomes sufficiently strong (�̇� ≥ �̇�𝑐), the rheological behavior transitions to
being dominated by the rotation and alignment of the cellulose fibers in suspension. This
shift highlights the complex interactions between the different components of the oleogel
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and their respective contributions to the overall rheological response.
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Figure 91 – Oleogel S80C20 - Apparent viscosity as a function of time for three dif-
ferent shear rates: the critical rate, one just below the critical rate, and
one above. For this fluid, the critical shear rate was determined to be
�̇�𝑐 = 1.26 × 100 𝑠−1. The shear rates in the vicinity, based on experimen-
tal data, are: �̇�1 = 9.98 × 10−1 𝑠−1 and �̇�2 = 1.58 × 100 𝑠−1. Note that
○ − 𝜂(�̇�𝑐) > ♢ − 𝜂(�̇�1) > □ − 𝜂(�̇�2), characterizing anomalous behavior.
The lines correspond to the average viscosity value assigned to each applied
shear rate. The experiment was conducted at a constant temperature of 20∘C.
Experimental error bars are shown.

Figure (92) illustrates the behavior of all oleogels subjected to a shear flow with
intensities exceeding �̇�𝑐. As shown, all fluids exhibit pseudoplastic behavior, which is char-
acterized by a decrease in viscosity as the shear rate increases. In this regime, the rheology
is predominantly influenced by the rotation and alignment of the cotton cellulose fibers.
This experimental data is well fitted by Sisko’s rheological model (BARNES; HUTTON;
WALTERS, 1989), with parameters shown at table (15).

The figure illustrates the behavior of the saturated viscosity, 𝜂∞, at high shear
rates (i.e., in the strong flow regime) for oleogels as a function of the mass fraction of
cotton cellulose, 𝑤𝑐. As shown, the addition of cellulose fibers significantly increases the
viscosity of the fluid, from values below 1 Pa·s to approximately 6 Pa·s—about six
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times higher. Notably, this increase in viscosity occurs even under strong flow conditions,
where the mechanisms of intensive fiber alignment and microstructure disruption are likely
dominant.

The reason behind this lies in the increased complexity of the microstructure with
higher cellulose content, which makes it more difficult for the flow to deform it, leading to
greater local energy dissipation. The particle stress, or stresslet (BATCHELOR, 1970b),
is directly proportional to the structure’s volume, 𝐿3, where 𝐿 is the average size of the
structure at a given shear rate.

An important observation is the nonlinear dependence of viscosity on the mass
fraction of cellulose, indicating the presence of complex internal mechanisms within the
fluid. These involve structures of varying sizes interacting hydrodynamically—through far-
field viscous interactions—and through near-field mechanisms such as structure collisions.
The virial expansion 𝑂(𝑤3

𝑐 ) reflects how strong this nonlinear behavior is, driven by the
different particle interaction mechanisms shaping the internal structure of the oleogel.
Interestingly, the relationship between 𝜂∞ and 𝑤𝑐 is found to be linear.
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Figure 92 – Apparent viscosity as a function of shear rate for all tested oleogels, with only
the typical behavior range (�̇� > 1 𝑠−1) depicted. Experiments were conducted
at a constant temperature of 20∘C. Experimental error bars are shown. The
curves represent fits of the experimental data to the generalized Sisko fluid
rheological model. ∙ - S100C0 + soybean oil, × - S80C20 + soybean oil, ■ -
S50C50 + soybean oil, ⋆ - S20C80 + soybean oil, and ▲ - S0C100 + soybean
oil.

Table 15 – Fitting parameters for the Sisko model.

Oleogel 𝜂∞ [𝑃𝑎.𝑠] K [𝑃𝑎.𝑠𝑛] n
S0C100 + Soybean oil 6.32 1185.7 0.09
S20C80 + Soybean oil 4.97 129.05 0.01
S50C50 + Soybean oil 2.44 483.17 0.02
S80C20 + Soybean oil 0.77 903.79 0.08
S100C0 + Soybean oil 0.32 38.04 0.02
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Figure 93 – The figure shows the effective viscosity as a function of the mass fraction of
cellulose fibers, 𝑤𝑐, with error bars. The solid line represents the fit to the
experimental data using a third-order virial expansion: 𝜂∞ = 𝑏0(1 + 𝑏1𝑤𝑐 +
𝑏2𝑤

2
𝑐 + 𝑏3𝑤

3
𝑐 ), where 𝑏0 = 0.34, 𝑏1 = −1.22, 𝑏2 = 37.09, and 𝑏3 = −18.26.

Figure (94) shows that the viscosity below the critical shear rate is pseudoplastic.
However, it also reveals that the oleogels with the highest cellulose fiber content, S0C100
and S20C80, exhibit lower viscosity than S50C50 over most of this range. In this region,
the rheology is primarily governed by the flow of the corn starch reticulates. Once the
shear rate exceeds �̇�𝑐, the flow becomes dominated by the effects of the cotton cellulose
fibers.
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Figure 94 – Apparent viscosity as a function of shear rate for all tested oleogels, with
only the anomalous behavior range (�̇� ≤ 1 𝑠−1) depicted. Experiments were
conducted at a constant temperature of 20∘C. Experimental error bars are
shown. ∙ - S100C0 + soybean oil, × - S80C20 + soybean oil, ■ - S50C50 +
soybean oil, ⋆ - S20C80 + soybean oil, and ▲ - S0C100 + soybean oil.

6.3 Rheological analysis under small amplitude oscillatory shear
(SAOS)

Dynamic small amplitude oscillatory shear (SAOS) tests are crucial in character-
izing the viscoelastic behavior of complex fluids. By applying a small oscillatory strain,
we can observe both the elastic (storage modulus 𝐺′) and viscous (loss modulus 𝐺′′)
components of the stress response. These moduli are frequency-dependent and help in
distinguishing the solid-like (elastic) from the liquid-like (viscous) behavior of the fluid.
The data from SAOS tests reveal how a material will react under various conditions,
including short-term (instantaneous) and long-term (steady-state) deformations, which
is essential for applications in materials science, food technology, pharmaceuticals, and
more.
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6.3.1 Oleogels

6.3.1.1 Determination of the reference strain - linear regime

Establishing the linear viscoelastic region is a critical step before conducting small
amplitude oscillatory shear (SAOS) tests. In this linear regime, the elastic modulus 𝐺′ is
independent of the strain amplitude 𝛾, allowing the intrinsic viscoelastic properties to be
measured without introducing nonlinear effects.

In Figure (95), the dependence of 𝐺′ on 𝛾 for the three oleogels (S0C100, S50C50,
and S100C0) indeed reveals that within the range 0.001 < 𝛾 < 0.01, 𝐺′ remains nearly
constant, confirming that this is the linear range. The choice of 𝛾 = 0.001 for frequency
sweep experiments is appropriate, as it ensures measurements within this range, where
the response is purely linear and free of strain-induced nonlinearities.

By setting 𝛾 = 0.001, our frequency sweep experiments will yield more accurate
and reliable data on the viscoelastic characteristics of these oleogels across different fre-
quencies, ensuring that the elastic and viscous moduli are representative of the material’s
intrinsic properties.
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Figure 95 – Elastic modulus 𝐺′ as a function of shear strain 𝛾 for a fixed excitation
frequency 𝜔 of 100 rad/s, with experimental error bars. The temperature
is fixed at 20∘𝐶. This graph shows the behavior of all tested oleogels. ▲ -
S0C100, ⋆ - S50C50, and × - S100C0. Based on these results, the reference
strain 𝛾0 = 0.001 was selected for frequency sweep experiments.

6.3.1.2 Linear viscoelastic response in frequency

In Figure (96), the elastic modulus 𝐺′ of the oleogels is plotted as a function of
the forcing frequency, illustrating the viscoelastic properties of these materials in the low-
frequency, near-equilibrium regime. Due to the anisotropic and coherent microstructure
of the oleogels, 𝐺′ remains constant across the frequency range of 0 to 100 rad/s, which
is typical for viscoelastic materials that exhibit solid-like behavior at lower frequencies.
This behavior allows us to determine the shear elastic modulus, 𝐺0 = lim𝜔→0 𝐺′(𝜔), an
important parameter that quantifies the solid-like response of a viscoelastic fluid.

As shown in Figure (96), increasing the mass fraction of cotton cellulose fibers 𝑤𝑐

results in a higher 𝐺′ and consequently a larger 𝐺0. This is because higher fiber content
induces significant changes in the shape and distribution of internal structures within the
oleogel, leading to stronger interactions and correlations between fiber-like agglomerates.
These enhanced structural interactions increase the resistance of the oleogel to shear
deformation from its equilibrium state. The yield stress 𝜎0 required to initiate flow can be
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approximated by the relationship 𝜎0 = 𝛾0𝐺0, directly connecting 𝐺0 with the material’s
resistance to flow.
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Figure 96 – Elastic modulus 𝐺′ as a function of excitation frequency 𝜔 for all analyzed
oleogels, with experimental error bars. The reference strain 𝛾0 is fixed at
0.001. ▲ - S0C100, ⋆ - S20C80, ■ - S50C50, × - S80C20, and ∙ - S100C0.
The temperature is fixed at 20∘𝐶.

Figure (97) further emphasizes the dependence of 𝐺0 on 𝑤𝑐, showing a notably
strong, typically exponential relationship. This trend indicates that as 𝑤𝑐 increases, the
network density within the oleogel grows, significantly enhancing its elastic response.
Understanding this relationship provides crucial insights into how cellulose fiber content
affects the mechanical properties of oleogels, which is essential for applications where
specific structural stability and resistance to deformation are required.
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Figure 97 – Shear elastic modulus 𝐺0 for the oleogels as a function of cellulose mass
fraction 𝑤𝑐, with experimental error bars. The experiment was conducted at
a controlled temperature of 20∘𝐶. The curve is a fit of the experimental data
to an expression of the type: 𝐺0(𝑤𝑐) = 𝑝1 exp(𝑝2𝑤𝑐). The fitting parameters
are: 𝑝1 = 8.05 × 102 and 𝑝2 = 4.62 × 100.

The datasets from the SAOS experiments also allow us to analyze the dissipative
(viscous) behavior of the oleogels. To this end, we plot the loss modulus 𝐺′′ as a function
of the forcing frequency, as shown in Figure 16. It is evident from Figure 16 that increasing
the mass fraction of cotton cellulose fibers 𝑤𝑐 leads to a notable enhancement of the fluid’s
dissipative response. As discussed earlier, a higher 𝑤𝑐 promotes the formation of more
complex fiber agglomerates of larger size, which increases the particle stresslet, scaling
with the average structure size 𝐿3. Additionally, these larger fiber structures interact over
a greater collisional area, contributing to a higher dissipation rate in the bulk flow. Figure
16 clearly shows that 𝐺′′ values rise substantially with 𝑤𝑐 across the entire frequency
range studied, while remaining nearly constant with respect to the forcing frequency.

Furthermore, comparing the values of 𝐺′(𝜔) and 𝐺′′(𝜔) from Figures (96) and (98),
respectively, reveals that 𝐺′ is at least an order of magnitude greater than 𝐺′′ across the
full frequency range examined. This demonstrates that at low frequencies, the oleogels
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exhibit behavior that is much more elastic and solid-like than viscous and liquid-like.
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Figure 98 – Loss modulus (viscous) 𝐺′′ as a function of excitation frequency 𝜔 for all
analyzed oleogels, with experimental error bars. The reference strain 𝛾0 is
fixed at 0.001. ▲ - S0C100, ⋆ - S20C80, ■ - S50C50, × - S80C20, and ∙ -
S100C0. The temperature is fixed at 20∘𝐶. The lines represent the average
values of 𝐺′′ evaluated under small amplitude oscillatory shear.

The effective zero-shear viscosity (𝜂0) can be extracted from the 𝐺′′(𝜔) data, de-
fined as 𝜂0 = lim𝜔→0 𝜂′(𝜔), where 𝜂′(𝜔) is the viscous modulus given by 𝜂′(𝜔) = 𝐺′′(𝜔)

𝜔
. This

quantity, 𝜂0, reflects the viscous characteristics of oleogels when in equilibrium. Therefore,
in applications where the fluid remains at rest for long periods, this viscoelastic modulus
is crucial for evaluating dissipative properties such as the fluid viscosity as a function of
the mass fraction of additives like cotton cellulose fibers.

In contrast to the algebraic dependence 𝑂(𝜔3
𝑐 ) of 𝜂∞ under strong flow (as shown

in Figure (93)), Figure (99) suggests an exponential dependence of 𝜂0 on 𝜔𝑐, resembling
the behavior of 𝐺0 with 𝜔𝑐 depicted in Figure (97).

We conjecture that this remarkable difference observed in viscosity behavior at low
shear rates (weak flow conditions) and at high shear rates (strong flow) is intrinsically
linked to the microstructural changes in oleogels from equilibrium to strong flow condi-
tions. We expect that the interactions among fiber aggregates, which have non-uniform
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and anisotropic shapes, are much more complex under low shear conditions than in high
shear rates. Specifically, strong flows typically cause breakage and alignment of struc-
tures, resulting in a distribution of smaller-sized structures oriented in the flow direction.
In contrast, when the flow is weak, the structures remain large, leading to a significant
collisional area during the interactions of fiber agglomerations dispersed in the surround-
ing medium. This results in much larger values of effective viscosity since the additional
particle stresslet contribution increases with 𝐿3, where 𝐿 is a typical large structure size
that tends to grow with the increase in the mass fraction of cotton fibers in the oleogels.
The differing behaviors of effective viscosity in weak and strong flows, characterized by
a transition from exponential to algebraic dependence of viscosity on the fiber additive
fraction, represent an important finding in this rheological characterization of oleogels.

Figure 99 – Oleogel viscosity 𝜂0 for excitation frequency tending to zero as a function of
cellulose mass fraction 𝑤𝑐. Experimental error bars are shown for the data
points. The experiment was conducted at a controlled temperature of 20∘𝐶.
The curve is a fit of the experimental data to an expression of the type:
𝜂0(𝑤𝑐) = 𝑝1 + 𝑝2 exp(𝑝3𝑤𝑐). The fitting parameters are: 𝑝1 = 4.09 × 105,
𝑝2 = 3.67 × 100, and 𝑝3 = 1.27 × 103.

The primary relaxation times 𝜏 for each oleogel can be calculated using the formula
𝜏 = 𝜂0

𝐺0
. Figure (100) illustrates that the average relaxation time of the oleogels exhibits
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an exponential dependence on the mass fraction of cotton cellulose. This finding indicates
that cellulose fibers introduce a memory effect into the dynamic system of the oleogel,
suggesting the presence of elastic properties that increase significantly with the addition
of more cellulose.

Figure 100 – Main relaxation time 𝜏 of the oleogels as a function of cellulose mass fraction
𝑤𝑐, with experimental error bars. The experiment was conducted at a con-
trolled temperature of 20∘𝐶. The curve is a fit of the experimental data to
an expression of the type: 𝜏(𝑤𝑐) = 𝑝1 + 𝑝2 exp(𝑝3𝑤𝑐). The fitting parameters
are: 𝑝1 = 1.20 × 102, 𝑝2 = 2.82 × 100, and 𝑝3 = 3.08 × 100.
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7 Final Considerations and Next
Steps of the Work

7.1 Final Considerations

The viscosity of the magnetorheological fluids of magnetite and carbonyl-iron in-
creased when they were subjected to an increasing external magnetic field. This behavior
is called magnetoviscous effect and it has its origin in the fact that when a magnetic
particle is subjected to an external magnetic field, its moment of dipole aligns with the
direction of the applied field, what implies that the particle is no longer free to rotate
with the vorticity of the flow. This effect was very intense in both magnetovrheological
suspensions, due to the fact that the magnetic suspensions form chains and aggregates of
particles by the action of dipolar interactions. Moreover, this structures provoke higher
hindrances of rotation when aligned to the magnetic field owing to its larger character-
istic lengths, what increases the local drag. These mechanisms induce energy dissipation
and are the motives behind the strong magnetoviscous effect observed. It is important
to remark that the magnetoviscous effect of the MRS of carbonyl-iron was much more
pronounced than the one observed for the MRS of magnetite. This result is correlated
to the more pronounced magnetization of saturation of the MRS of carbonyl-iron, what
facilitates the formation of bigger and stabler complex microstructures on this fluid.

It has also been observed a pseudoplastic behavior for both magnetorheological
suspensions when under the action of a magnetic field and also in the absence of it. This
shear-tinning behavior was characterized by the observation of a strong decrease of the
apparent viscosity of the magnetorheological suspensions, when they were subjected to
increasingly strong shear rates. This effect is associated to the fact that in concentrated
MRS, like the ones treated in this work, the application of a magnetic field is followed by
the formation of chains and aggregates of particles. For weak flow conditions, the viscosity
of both fluids was observed to reach high values, what is a natural consequence of the
magnetoviscous effect previously discussed. However, when the flow starts to intensify,
the viscosity starts to decrease rapidly, showing a power-law fashion. This behavior is
explained by two process: the first one is related to the weak flow region, in which the flow
starts to induce an alignment of the field induced microstructure with its streamlines, in
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a process that results on the reduction of local drag and, as a result, of the suspension’s
viscosity. Nontheless, the main process responsible for the reduction of viscosity is the
breakup of the field induced microstructures, leading to chains and agglomerates with
ever small length scales, that generate less energy dissipation effects, leading to the strong
reduction of the apparent viscosity. All the effects describe for the shear-thinning behavior
were observed to be more intense the higher the intensity of the magnetic field, what is
related to the fact that stronger magnetic fields produce microstructures formed by stabler
and larger particle’s chains and agglomerates.

It was also observed that, in the presence of a magnetic field, the magnethorhe-
ological suspension of magnetite and the magnetorheological suspension of carbonyl-iron
become viscoelastic liquids. This was first verified in the experiments of step-strain, con-
ducted with a small angular strain, for increasing values of magnetic field intensity. In
all field conditions, the fluids presented a delay on its process of stress relaxation, which
is a direct sign of the presence of elastic behavior. This elastic properties arise from the
formation of a microstructure, due to the action of the magnetic field. The process of
relaxation is generally characterized by a single time of relaxation, which traduces the
action of the main mechanism of stress relaxation acting in the fluid. In this case, the
shear stress relaxes to zero after the cessation of flow. Nonetheless, the relaxation process,
of the MRS in analysis, was found to be highly complex, characterized by more than one
time of relaxation and by the relaxation of the shear stress for a non-zero value, after
the cessation of the flow. The residual stress can be understood as the yield stress of the
fluid, due to the fact that it represents the minimum stress to which the stress relax, or
from other point of view, the minimum stress that must be applied, in order for the fluid
starts to flow. This process of relaxation was found to be well modeled by an adaptation
of Maxwell’s viscoelastic constitutive model. The adaptation made the inclusion of a term
regarding the residual stress. Using this model it was possible to determine the times of
relaxation, of each fluid, at each condition of magnetic field intensity. The MRS of mag-
netite was well described by two relaxation times as well as the MRS of carbonyl-iron, for
every condition of field.

The study of aqueous suspensions of double-walled carbon nanotubes revealed
that their viscosity depends on both the particle volume fraction (𝜑) and the applied
shear rate. These fluids exhibit pseudoplastic behavior. Through experiments conducted
under step-strain regimes, the relaxation time of each suspension was determined as a
function of 𝜑, with the relationship found to be linear. Additionally, it was observed that
the shear stress did not relax to zero over time. This behavior indicates the presence
of a coherent microstructure of nanotube aggregates within the fluid, responsible for a
residual stress that varies with 𝜑. The suspensions demonstrated viscoelastic properties
with a predominantly elastic response, as evidenced by the determination of the shear
elastic modulus as a nonlinear function of 𝜑. Finally, the zero-shear viscosity was also
quantified and found to exhibit a nonlinear dependence on 𝜑, reflecting the complex
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rheological behavior of these suspensions under varying flow conditions.

The study of oleogels composed of potato starch and cotton cellulose revealed that
their viscosity is significantly influenced by temperature changes and shear rate. These
fluids exhibit pseudoplastic behavior, demonstrated by a reduction in viscosity as shear
rate increases. This phenomenon is associated with the disruption and alignment of the
oleogel’s internal network structures under shear flow.

Small amplitude oscillatory shear experiments facilitated the indirect determi-
nation of relaxation times as a function of the mass fraction of cellulose, 𝑤𝑐, through
the analysis of the viscoelastic moduli. Furthermore, the zero-shear viscosity and the
shear elastic modulus were determined as functions of 𝑤𝑐. Both relationships exhibited
non-linear dependencies, reflecting the complex interplay between the composition of the
oleogels and their microstructural properties.

7.2 Suggestion for future works

• Study the complex fluids in the regime of large amplitude oscillatory shear, using
methodologies like Fourier transform and Lissajous curves;

• In order to study and account for the influence of formation of very anisotropic
structures, like chains of non-magnetic particles, fibers and nanotubes of carbon, we
shall add to the stress tensor the following therm, according Albernaz and Cunha
(2013):

⟨𝜎⟩𝐴 = 𝛽 [⟨𝑠⟩ · ⟨𝐷⟩ · ⟨𝑠⟩] ⟨𝑠𝑠⟩. (7.1)

In this case, the stress tensor becomes:

⟨𝜎⟩ = −⟨𝑝⟩𝐼 + 2𝜂𝜑⟨𝐷⟩ + 𝛽 [⟨𝑠⟩ · ⟨𝐷⟩ · ⟨𝑠⟩] ⟨𝑠𝑠⟩. (7.2)

In this case, we have a kinematic equation for the evolution of 𝑠 that shall be
considered:

𝐷⟨𝑠⟩
𝐷𝑡

= 𝑊 · ⟨𝑠⟩ + 𝐷 · ⟨𝑠⟩ − (⟨𝑠⟩ · 𝐷 · ⟨𝑠⟩) ⟨𝑠⟩, (7.3)

where 𝐷 is the rate of deformation tensor and 𝑊 denotes the rate of rotation tensor.

In the case of magnetorheological suspension, the anisotropic therm (7.1) will be
added to the expression of the stress tensor of a suspension of magnetic particles
presented by Cunha and Gontijo (2024). As a result, the constitutive model becomes:

⟨𝜎⟩ = −⟨𝑝⟩*𝐼 + 2𝜂𝜑⟨𝐷⟩ + 𝜇0

2 (𝐻𝑀 − 𝑀𝐻) + 𝛽 [⟨𝑠⟩ · ⟨𝐷⟩ · ⟨𝑠⟩] ⟨𝑠𝑠⟩. (7.4)

Observe that 𝛽 = 𝛽(ℓ, 𝑛) and, in the magnetic case, ℓ = ℓ(𝐻, �̇�). Besides that, note
that ⟨𝜎′⟩ = 𝑄 · ⟨𝜎⟩ · 𝑄𝑇 . We want to apply numerically a simple shearing flow to a
fluid modeled by equation (7.4) in the presence of an external magnetic field. The
equation for the evolution of the magnetization is the one by Shliomis (1971):
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𝜕𝑀

𝜕𝑡
= 1

2𝜉 × 𝑀 − 𝑣 · ∇𝑀 − 𝜇0

6𝜂0𝜑
𝑀 × (𝑀 × 𝐻) (7.5)

First, it is important to study two asymptotic cases: the first one accounts for a
situation where the flow is weak and, thus, the rheology is dominated by the external
magnetic field, that is 𝑠 = 𝐻

|𝐻|
. The second situation occurs when the flow is very

strong and the magnetic field is weak, as a result 𝑠 = 𝑣

|𝑣|
. At any stage between

these situations, one shall use: 𝑠 = 𝑀

|𝑀 |
.

We aim to obtain rheological information of the suspension such as viscosity, vis-
coelastic moduli and difference of normal stresses in order to compare with experi-
mental data.
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A Uncertainty analysis

The analysis of the experimental error associated to a measured variable follows, in
this dissertation, the protocol prescribe on Kline and McClintock (1953). In the referred
work, the experimental error of the measured variable 𝒱 , 𝐸(𝒱), is defined as:

𝐸(𝒱) = max (𝐸𝑖(𝒱), 𝐸𝑟(𝒱)), (A.1)

where, 𝐸𝑖(𝒱) is the instrumental error, linked to the intrinsic variabilities of the instru-
ments of measurement, and 𝐸(𝒱)𝑟 is the random error, which is associated to the fluc-
tuations of the measured value of the variable 𝒱 over a finite number of measurement
realizations.

Generally, if a variable is measured directly, the value of the instrumental er-
ror is the uncertainty of the instrument used to perform the measurement. However,
if the variable is measure indirectly, the estimative of the instrumental error can be
obtained by knowing the functional dependence between the indirectly measured vari-
ables and the directly measured ones. Regarding this context, consider an indirectly
measured variable 𝒱 , which was calculated based on the directly measures of 𝑛 quan-
tities 𝑞1, 𝑞2, ..., 𝑞𝑛−1, 𝑞𝑛, with instrumental uncertainties 𝐸𝑖(𝑞1), 𝐸𝑖(𝑞2), ..., 𝐸𝑖(𝑞𝑛−1), 𝐸𝑖(𝑞𝑛).
Thus, according to Kline and McClintock (1953), the instrumental error associated with
𝒱(𝑞1, 𝑞2, ..., 𝑞𝑛−1, 𝑞𝑛)is given by

𝐸𝑖(𝒱) =
⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞1

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞1)| +

⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞2

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞2)| + ... +

⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞𝑛−1

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞𝑛−1)| +

⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞𝑛

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞𝑛)| . (A.2)

Besides that, considering a process of measurement composed of n evaluations of
𝒱 , the random error associated with this quantity is defined as the standard deviation of
the measuments carried out over the realizations, SD(𝒱), which is calculated by:

𝐸𝑟(𝒱) = SD(𝒱) =
√︃∑︀𝑛

𝑘=1(𝒱𝑘 − 𝒱)2

𝑛 − 1 , (A.3)

where 𝒱𝑘 is the value of the referred variable in the k-th realization and 𝒱 is the mean
value of 𝒱 , defined as:

𝒱 =
∑︀𝑛

𝑘=1 𝒱𝑘

𝑛
. (A.4)

It is important to remark that, when the relationship between the quantity being indi-
rectly measured and the ones that are actually being directly measured, is unknown, the
experimental error will be defined uniquely by the random error.
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In this dissertation, an experimental point, representing the measured variable 𝒱
is defined as: 𝒱 ± 𝐸(𝒱). This representation is used to display, in graphs and on tables,
the experimental uncertainty of the quantities measured in the experiments.

A.1 Uncertainty associated with the viscosity measured in simple
shear

The uncertainty of the viscosity 𝐸(𝜂), measured with the parallel disks rheome-
ter, was considered as the maximum of its random error 𝐸𝑟(𝜂) and instrumental error
𝐸𝑖(𝜂). The instrumental error is estimated here from the expression relating the viscosity
to the mechanic torque and the shear rate applied, equation (3.11). Based on this, the
instrumental error is given by:

𝐸𝑖(𝜂) =
⃒⃒⃒⃒
⃒ 𝜕𝜂

𝜕𝒯

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝒯 )| +

⃒⃒⃒⃒
⃒ 𝜕𝜂

𝜕𝑅

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑅)| +

⃒⃒⃒⃒
⃒𝜕𝜂

𝜕�̇�

⃒⃒⃒⃒
⃒ |𝐸𝑖(�̇�)| . (A.5)

According to the manufacturer of the rheometer, the torque uncertainty is 0.2 𝜇N,
and the one of the radius of the disk used in the experiment is 1 × 10−5. The uncertainty
associated with the shear rate is 1 × 10−3 s−1.
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