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Resumo Expandido

DISTRIBUIÇÕES ASSIMÉTRICAS MULTIVARIADAS SOBRE O HIPERCUBO
UNITÁRIO: PROPRIEDADE E APLICAÇÕES.

A simetria é crucial na modelagem de dados, pois muitas técnicas estatísticas, como
testes de hipóteses e intervalos de confiança, assumem a normalidade ou simetria dos dados.
Distribuições simétricas simplificam a análise e a interpretação. Em contextos multivariados, a
simetria é avaliada através de momentos de ordem superior, matrizes de covariância e funções
de densidade de probabilidade, por exemplo.

No contexto multivariado, onde a simetria está presente, algumas distribuições podem ser
utilizadas para modelar os dados, como, por exemplo, distribuições esféricas e distribuições
elípticas, ambas multivariadas. Porém, quando os dados apresentam algum grau de assimetria,
que pode ser observado através de uma representação gráfica, por exemplo, funções classifi-
cadas de acordo com essas denominações podem não modelar de forma otimizada o conjunto
de dados em estudo. Portanto, alguns erros podem ocorrer na análise decorrente do ajuste dessas
distribuições.

Em geral, a assimetria está frequentemente presente em contextos multivariados, mas mode-
lar dados multivariados que apresentam assimetria não é uma tarefa trivial. Para lidar com essas
características, métodos específicos foram desenvolvidos. Alguns destes métodos baseiam-se
em abordagens originalmente criadas para dados simétricos, generalizando assim modelos pro-
postos anteriormente. Esses modelos são conhecidos por incorporarem certo grau de assimetria
em modelos simétricos, o que facilita a descrição e ajuste de dados que possuem essa carac-
terística.

O primeiro capítulo do presente trabalho apresentará ferramentas básicas e consecutiva-
mente mais sofisticadas relacionadas à modelagem de dados multivariados, com e sem simetria.
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Serão definidas distribuições mais complexas, como a distribuição elíptica, e serão apresentados
exemplos e resultados importantes relacionados a essas distribuições. Por fim, são discutidas
distribuições que generalizam distribuições elípticas, incorporando a propriedade de modelar
dados assimétricos. Estas distribuições assimétricas serão definidas e alguns exemplos serão
apresentados.

No capítulo seguinte, uma nova família de distribuições assimétricas é apresentada. Inicial-
mente é apresentado o modelo do qual deriva esta família de distribuições. Este modelo consiste
em uma relação condicional entre variáveis aleatórias, onde são incorporados parâmetros de lo-
cação, escala, assimetria e um parâmetro adicional que pode ser utilizado para refinar o ajuste
do modelo ao conjunto de dados. Nessa fase do trabalho são discutidos aspectos importantes,
como a definição da função densidade de probabilidade que pode ser derivada do modelo apre-
sentado. Também são discutidas as possíveis configurações dessas funções, destacando como
elas podem, dependendo dos intervalos, assumir a forma de uma função de densidade de prob-
abilidade já conhecida, destacando o caráter generalista do modelo. Serão exploradas outras
propriedades, incluindo os critérios de escolha das funções a utilizar no modelo, alguns casos
especiais da função densidade de probabilidade, a sua representação gráfica, a não identificabil-
idade do modelo, em determinadas condições; os quantis marginais, entre outras características
relevantes. Além disso, são apresentadas justificativas matemáticas para alguns fatos discutidos
ao longo do texto. Por fim, é apresentada a função de máxima verossimilhança, com a caracteri-
zação explícita desta função e suas respectivas derivadas parciais, destacando a impossibilidade
de descrever explicitamente os estimadores dos parâmetros em termos de expressões analíti-
cas. Como consequência direta, as estimativas dos parâmetros precisarão ser obtidas utilizando
métodos computacionais, que serão discutidos e detalhados no capítulo seguinte.

Na parte final do presente trabalho, são empregados estudos de simulação, bem como a
aplicação de duas famílias de distribuições apresentadas no capítulo 3 em dados reais. O estudo
de simulação foi realizado com versões da função de densidade de probabilidade representando
a distribuição dos dados do modelo. A estimativa de máxima verossimilhança foi utilizada em
conjunto com o algoritmo de Monte Carlo. As análises utilizadas para avaliar as estimativas dos
parâmetros foram o viés relativo e o erro quadrático médio. Para melhor ilustrar os resultados,
são apresentados gráficos que mostram o comportamento dessas duas métricas para cada um
dos parâmetros. Além disso, diversas funções foram empregadas para realizar o estudo de
simulação. Uma pequena seleção representativa dessas funções é apresentada no corpo principal
do texto, enquanto as demais podem ser encontradas no apêndice deste trabalho.
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A aplicação aos dados reais foi realizada com um conjunto de dados reais do software R.
A estatística descritiva dos dados foi apresentada e comentada. Duas funções de densidade
derivadas do modelo foram então ajustadas e o ajuste é avaliado usando algumas métricas,
que são brevemente apresentadas e discutidas. Após a discussão dos dados, indica-se qual
distribuição melhor se ajusta ao conjunto de dados com base nos critérios considerados e nas
funções G escolhidas para o modelo. Por fim, são apresentadas conclusões quanto à aplicação
dos dados e à estimação dos parâmetros dentro de uma perspectiva geral do trabalho desen-
volvido.

Palavras-chave: Distribuição Multivariada G-elíptica-assimétrica; Distribuição Multivari-
ada G-elíptica-assimétrica normal; Distribuição Multivariada G-elíptica-assimétrica t-Student.
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Abstract

In this work, a family of multivariate asymmetric distributions over the unitary hypercube
defined in terms of well-known symmetric elliptical distributions is proposed. Here we seek to
study fundamental properties, such as the characterization of the density function for some types
of distributions, as well as other properties, such as loss of identifiability, quantiles, conditional
and marginal distributions, and moments. Furthermore, simulation studies were carried out to
verify the asymptotic behavior of the estimated parameter values as the sample size increased.
Finally, the developed model was used on real data where, using convenient metrics, the degree
of quality of the model’s adjustment to real data was verified.

Keywords: Multivariate extended G-skew-elliptical distribution; Multivariate extended G-
skew-normal; Multivariate extended G-skew Student-t.
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Chapter 1

Introduction

The formal properties of the normal distribution are fundamental to statistical theory. How-
ever, real-world data often exhibit characteristics such as skewness, multimodality, or censor-
ship (Hill and Dixon, 1982). When extending the normal distribution to address these non-
normal features, it becomes crucial to preserve its essential properties. One approach to model-
ing skewness is through the multivariate skew-normal distribution introduced by Azzalini and
Dalla Valle, 1996, striking a balance between mathematical tractability and shape flexibility.
Nevertheless, the skewness and kurtosis coefficients of the skew-normal distribution have limi-
tations Azzalini, 1985, and it does not accommodate multimodality.

To address these challenges, Genton and Loperfido, 2002 introduced the generalized skew-
elliptical (GSE) distributions. These GSE distributions serve as generalizations not only for
skew-elliptical distributions (Azzalini and Capitanio, 1999; Branco and Dey, 2001) but also
for other skewed extensions of normal distributions, including multivariate skew-t (Branco and
Dey, 2001) and multivariate skew-Cauchy (Barry and Robert, 2000). Azzalini and Capitanio,
1999 proposed skew-elliptical densities as alternatives to skew-normal distributions, and Branco
and Dey, 2001 provided a comprehensive discussion of such densities.

In general, skew-elliptical distributions, distinguished by their elliptical structure, define
probability density functions within ellipsoids in a p-dimensional space. The introduction of
asymmetry in skew-elliptical distributions is achieved through an asymmetry parameter.

In addition to introducing a multidimensional parameter that incorporates information about
asymmetry, it is possible to treat this concept in a multidimensional way, also considering linear
transformations represented by orthogonal matrices. These concepts can be synthesized through
distributions that assimilate this information mathematically, known as spherical distributions.
Generalizations of these distributions, which present broader characteristics and allow more
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cap. 1. Introduction §1.0.

flexible modeling of the data, are elliptical distributions. Finally, the association of a param-
eter that captures asymmetry with the concepts of spherical and elliptical distributions makes
it possible to define asymmetric distributions. This work will seek to present a new family of
asymmetric distributions that have a high degree of generality where, depending on the config-
uration of parameters belonging to their density function, it is possible to obtain already known
asymmetric models and their respective properties.

In Chapter 3 , we will introduce a new family of multivariate asymmetric distributions over
the unit hypercube, defined in terms of well-known elliptically symmetric distributions. To
facilitate understanding, in Chapter 2, we will first present fundamental concepts before delving
into the model that yields a family of skew-elliptical distributions and their respective properties.

Furthermore, the present work sought to computationally implement the functions derived
from the developed model so that it was possible to establish a simulation study related to the
evaluation of the parameters of its convergence to the real models as the sample size and the
number of simulations increased (Monte Carlo method). Therefore, we sought to carry out
the above study in principle for the unit-G-skew-normal extended density function and subse-
quently for the unit-G-skew-t-student extended density function. Once the simulation phase and
its respective analyzes were completed, we sought to analyze the application of density func-
tions to real data and the results arising from this application in terms of distribution function
adjustments. In this sense, the data were used (enter the data) and the results are presented in
Chapter 4.
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Chapter 2

Preliminary Concepts

Symmetry is crucial in data modeling, as many statistical techniques, like hypothesis testing
and confidence intervals, assume data normality or symmetry. Symmetric distributions simplify
analysis and interpretation. In multivariate contexts, symmetry is assessed through higher-order
moments, covariance matrices, and probability density functions.

In the multivariate context, where symmetry is present, some distributions can be used to
model the data, such as, for example, spherical distributions and elliptical distributions, both
multivariate. However, when the data presents some degree of asymmetry, which can be ob-
served through a graphical representation, for example, functions classified according to these
denominations may not optimally model the data set under study. Therefore, some mistakes
may occur in an analysis arising from the adjustment of these distributions.

In general, asymmetry is often present in multivariate contexts. Modeling multivariate data
that presents asymmetry is not a trivial task. To deal with these characteristics, specific meth-
ods have been developed. Some of these methods are based on approaches originally created
for symmetric data, thus generalizing previously proposed models. These models are known
for incorporating a certain degree of asymmetry into symmetric models, which facilitates the
description and adjustment of data that have this characteristic.

This chapter will present both basic and more sophisticated tools related to modeling mul-
tivariate data, with and without symmetry. More complex distributions will be defined, such
as the elliptical distribution, and examples and important results related to these distributions
will be presented. Finally, distributions that generalize elliptical distributions will be discussed,
incorporating the ability to model asymmetric data. These asymmetric distributions will be
defined, and some examples will be presented.

17



cap. 2. Preliminary Concepts §2.1. Spherically and elliptically symmetric distribution

2.1 Spherically and elliptically symmetric distribution

Definition 2.1.1. An n × 1 random vector X = (X1, . . . , Xn)
⊤ is said to have a spherically

symmetric distribution (or simply spherical distribution) if for every Λ ∈ O(n),

ΛX
d
=X. (2.1.1)

Here d
= means that the two sides have the same distribution (Section 1.2 of Fang, Kotz,

and Ng, 1990), and O(n) denotes the set of n × n orthogonal matrices. The set O(n) is a
group, called the orthogonal group, with the group operation being the ordinary matrix multi-
plication. In general, a spherical distribution is a probability distribution that is symmetrically
distributed in all directions from a central point in a multidimensional space. Another way to
define this family of distributions is as follows: A random variate W is spherically distributed
if its distribution is invariant under rotations of Rn, which is equivalent to having the stochastic
representation

W = RU ,

where R is a non-negative random variable, U is uniform on sphere Sn−1, and R and U are in-
dependent. Random variable R is called the generating variate, with the generating distribution
F , and vector random variable U is the uniform base of the spherical distribution.

The characteristic function can be written in the form

ΨW (λ) = g(λ⊤λ),

where g is a scalar function called characteristic generator.

Theorem 2.1.1. An n-dimensional random vector X has a spherical distribution if and only if

its characteristic function Ψ(t) satisfies one of the following equivalent conditions:

1) Ψ(ΛT t) = Ψ(t), for any Λ ∈ O(n) and t ∈ Rn;

2) There exists a function ϕ(·) of a scalar variable such that Ψ(t) = ϕ(t⊤t).

Proof. Note that for any square matrix A, the characteristic function of AX equals Ψ(A⊤t),
that is,

E[exp(it⊤AX)] = E[exp(i(A⊤t)⊤X)] = Ψ(A⊤t).

Thus Item 1) is equivalent to Definition (2.1.1). Now Item 2) implies 1), because

Ψ(Λ⊤t) = ϕ((Λ⊤t)⊤(Λ⊤t)) = ϕ(t⊤ΛΛt) = ϕ(t⊤t) = Ψ(t).

18



§2.1. Spherically and elliptically symmetric distribution

Conversely, Item 1) implies that Ψ(t) is an invariant function with respect to the group
O(n) which has the maximal invariant ϕ(t⊤t). Thus ϕ(t) must be a function of t⊤t, implying
the statement in Item 2).

From now on, we will use the notation X ∼ Sn(ϕ) to indicate that X has a character-
istic function of the form ϕ(t⊤t), where ϕ(·) is a function of a scalar variable known as the
characteristic generator of the spherical distribution.

Example 2.1.1. LetU (n) = (U1, . . . , Un)
⊤ be a random vector uniformly distributed on the unit

sphere Sn−1
1 ≡ {u ∈ Rn : ∥u∥ = 1} in Rn, where ∥ · ∥ is the Euclidean norm. For simplicity,

we denote this fact by U (n) ∼ U(Sn−1
1 ). It follows that for any orthogonal matrix Λ ∈ O(n),

the vectors ΛU (n) and U (n) are equal in distribution.

Proof. It is well-known that U (n) ∼ U(Sn−1
1 ) has density given by fU (n)(u) = 1/Vol(Sn−1

1 ),
∀u ∈ Sn−1

1 . By denoting Y ≡ ΛU (n), we want to show that Y d
= U (n), for any orthogonal

matrix Λ. Indeed, if y = (y1, . . . , yn)
⊤ and u = (u1, . . . , un)

⊤ are the corresponding values of
Y = (Y1, . . . , Yn)

⊤ and U (n) = (U1, . . . , Un)
⊤, respectively, we can write

y1 = a11u1 + · · ·+ a1nun

y2 = a21u1 + · · ·+ a2nun
...

...

yn = an1u1 + · · ·+ annun.

Moreover, note that

∥y∥2 = y⊤y = (Λu)⊤Λu = u⊤(Λ⊤Λ)u = u⊤u = ∥u∥2 = 1,

where we have used the fact that Λ⊤ = Λ−1. In simple terms, y ∈ Sn−1
1 .

If J∗ is the inverse of the Jacobian matrix of y = (y1, . . . , yn)
⊤, then, we have

det(J∗) =

∣∣∣∣∣∣∣∣
a11 . . . a1n

... . . . ...
an1 . . . ann

∣∣∣∣∣∣∣∣ = |Λ| = ±1,

where in the last equality above we have used the fact that every orthogonal matrix has a deter-
minant equal to ±1.
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Jacobian method gives

fY (y) = fU (n)(u)
1

|det(J∗)|
= fU (n)(u) =

1

Vol(Sn−1)
, ∀y ∈ Sn−1

1 .

Therefore, we have proven that

fY (y) = fU (n)(y), ∀y ∈ Sn−1
1 .

The required result then follows readily.

Following the same reasoning as the proof in Example 2.1.1, the following example can be
verified.

Example 2.1.2. Let X denote a random vector distributed uniformly inside the unit sphere in

Rn. The random vectorX has a spherical distribution.

Example 2.1.3. LetX = (X1, . . . , Xn)
⊤ be a random vector distributed according toNn(0, I).

Since the characteristic function of X1, is exp(−t21/2), then the characteristic function of X ,

denoted by Ψ(t), is

Ψ(t) = exp

(
−1

2
t⊤t

)
= ϕ(t⊤t), t = (t1, . . . , tn)

⊤ ∈ Rn,

where we have defined ϕ(u) = exp(−u/2), u ∈ R. Hence, from Item (2) of Theorem 2.1.1, X

has a spherical distribution Sn(ϕ) with characteristic generator ϕ(u) = exp(−u/2).

Definition 2.1.2. An n×1 random vectorX is said to have an elliptically symmetric distribution

(or simply elliptical distribution) with parameters µn×1 and Σn×n if

X
d
= µ+A⊤Y , Y ∼ Sk(ϕ), (2.1.2)

where A is a k × n matrix such that A⊤A = Σ with rank(Σ) = k. We shall write X ∼
ECn(µ,Σ, ϕ).

Example 2.1.4. (The multinormal distribution). If a random vector X has the following de-

composition:

X
d
= µ+A⊤Y ,

where µ ∈ Rn, A is a m × n matrix and Y ∼ Nm(0, I), then we say that X follows a

multinormal distribution Nm(µ,Σ) with Σ = A⊤A. From Example 2.1.3, Y ∼ Sk(ϕ) with
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§2.1. Spherically and elliptically symmetric distribution

ϕ(u) = exp(−u/2), and we have thatX ∼ ECn(µ,Σ, ϕ). Equivalently,

X
d
= µ+ rA⊤U (k),

where r d
= ||y|| ∼ χ2

n (chi-squared distribution with n degrees of freedom) and U (k) is dis-

tributed uniformly on the unit sphere surface in Rk.

Example 2.1.5. Let Z ∼ Nn(0, I) and S ∼ χ2
m be independent. Let

Y = m
1
2
Z

S
. (2.1.3)

We say that Y has a multivariate t-distribution with m degrees of freedom and write Y ∼
Mtn(m,0, I). Evidently, we can write (2.1.3) as follows:

Y
d
= m

1
2
RU (n)

S
= R∗U (n),

where R ∼ χn, S and U (n) are independent, and R∗ = m1/2R/S (R∗/n has an F-distribution

with n and m degrees of freedom). Thus, Y has a spherical distribution. Let

X = µ+A⊤Y ,

whereA is a n× n matrix and µ ∈ Rn.

We say that X has a multivariate t-distribution with parameters µ,Σ = A⊤A, and m

degrees of freedom, and write X ∼ Mtn(m,µ,Σ). Clearly, Mtn(m,µ,Σ) = ECn(µ,Σ, ϕ)

with a special ϕ.

The following result shows the structure of any elliptically distributed random vector. The
proof is adapted from (Armerin, 2017) and can be found in detail in that same reference.

Theorem 2.1.2. Let µ ∈ Rn and let Σ be an n× n symmetric and positive semidefinite matrix.

For an n-dimensional random vectorX the following statements are equivalent.

1. X ∼ ECn(µ,Σ,Ψ).

2. We have

h⊤X
d
= h⊤µ+

√
h⊤ΣhZ, ∀h ∈ Rn,
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where Z is a symmetric random variable with

E[exp(itZ)] = Ψ(t2).

Proof. [1 =⇒ 2] If X ∼ ECn(µ,Σ,Ψ), then for every h ∈ Rn and some matrix A such that
AA⊤ = Σ, we have

h⊤X
d
= h⊤µ+ h⊤AY = h⊤µ+ (A⊤h)⊤Y

d
= h⊤µ+ ||A⊤h||Ỹ

d
= h⊤µ+

√
h⊤AA⊤hỸ

d
= h⊤µ+

√
h⊤ΣhỸ .

Since Y exhibits a spherical distribution, it follows that Ỹ is a symmetric random variable
with a characteristic function:

E[exp(itỸ )] = Ψ(t2).

[2 =⇒ 1] IfX has the property that

h⊤X
d
= h⊤µ+

√
h⊤ΣhZ, ∀h ∈ Rn,

where E[exp(itZ)] = Ψ(t2), then

E[exp(ih⊤X)] = exp(ih⊤µ)E[exp(i
√
h⊤Σh)Z] = exp(ih⊤µ)Ψ(h⊤Σh),

That is,X ∼ ECn(µ,Σ,Ψ).

2.2 Properties of elliptically symmetric distribution

2.2.1 Moments

The mean vector of a n-dimensional elliptical random vector x, where ΛΛT = Σ corre-
sponds to

E(X) = E
[
µ+PΛU (k)

]
= µ+ΛE(P)E

[
U (k)

]
,

where P represents a vector that adjusts the magnitude of U (k). Here P andU (k) are supposed
to be independent. Here we assume that E(P) is finite. Since E

[
U (k)

]
= 0, we obtain E(X) =
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§2.2. Properties of elliptically symmetric distribution

µ.

The covariance matrix ofX is

Var(X) = E
[(
PΛU (k)

) (
PΛU (k)

)⊤]
= E

(
P2
)
ΛE

[
U (k)(U (k))⊤

]
Λ⊤,

provided E
(
P2
)

is finite. Since
√
χ2
kU

(k) ∼ Nk (0, Ik) and

Ik = E

[(√
χ2
kU

(k)

)(√
χ2
kU

(k)

)⊤
]
= E

(
χ2
k

)
E
[
U (k)(U (k))⊤

]
= kE

[
U (k)(U (k))⊤

]
,

therefore E
[
U (k)(U (k))⊤

]
= Ik/k and thus

Var(X) =
E
(
P2
)

k
Σ.

Note that k refers to the number of components inU (k), not necessarily the rank of Σ or the
dimension ofX . Additionally, the dispersion matrix usually differs from the covariance matrix.
The normal distribution is an exception: in this case, E

(
P2
)
= E (χ2

k) = k, which implies that

Var(X) = Σ. However, by scaling P with
√
k/E

(
P2
)
, we can always obtain a representation

where Var(X) = Σ (see Bingham and Kiesel, 2002).

Consider a spherical random vector underlying a location-scale family with the stochastic
representation:

X
d
= P (n)U (n), ∀n ∈ N,

where U (n) is uniformly distributed on the unit sphere Sn−1, and P (n) is a scaling factor such
that X always has the characteristic function t 7→ ϕ

(
t⊤t
)
. This implies that the characteristic

generator ϕ is independent of n. Consequently, the characteristic function of the marginal
cumulative distribution function (c.d.f.) of any component of X is given by s 7→ ϕ (s2), for
s ∈ R, irrespective of n. Therefore, the marginal distribution functions and their moments do
not depend on the dimension n. As a result, if the second moment of P (n) is finite, it must be
proportional to n.

Example 2.2.1. (The 2nd moment of P (n) for the normal distribution) Since the generating

variate ofX ∼ Nn (0, I) corresponds to
√
χ2
n, we obtain

E
[(

P (n)
)2]

= E
(
χ2
n

)
= n.
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The following theorem proves to be highly valuable for determining the asymptotic covari-
ances of covariance matrix estimators for (generalized) elliptical distributions.

Theorem 2.2.1. (Dickey and Chen, 1985). LetX = (X1, . . . , Xn)
⊤ be a spherically distributed

random vector with stochastic representation PU (n). Its mixed moment of order (m1, . . . ,mn)

corresponds to

E

(
n∏

i=1

Xmi
i

)
=

E (Pm)(
n
2

)(m/2)

n∏
i=1

mi!

2mi(mi
2 )!

wherem =
∑n

i=1mi and everym1, . . . ,mn is supposed to be an even nonnegative integer. Here

(·)(k) is the ’rising factorial’, i.e. (x)(k) = x(x + 1) · · · (x + k − 1) for k ∈ N and (x)(0) = 1.

If at least one of the mi ’s is odd then the mixed moment vanishes. The proof can be seen in

(Fang, Kotz, and Ng, 1990).

Theorem 2.2.2. Denote the family of all possible characteristic generators for an n×1 random

vector by Φn = {ϕ(·) : ϕ(t21 + ...+ t2n)} is an n-dimensional characteristic function. Note that

Φi ⊂ Φi+1, where 1 ≤ i ≤ n. A scalar function ϕ(·) can determine an elliptically symmetric

distributions ECn(µ,Σ, ϕ) for every µ ∈ Rn and Σ ≥ 0 with rank(Σ) = k if and only if

ϕ ∈ Φk. The proof can be seen in (Fang, Kotz, and Ng, 1990).

Corollary 2.2.3. The following statements are equivalent

1. X ∼ ECn(µ,Σ, ϕ) with rank(Σ) = k,

2. X d
= µ+ rA⊤U (k),

where r ≥ 0 is independent of U (k), andA is a k × n matrix such thatA⊤A = Σ.

Corollary 2.2.4. Assume thatX ∼ ECn(µ,Σ, ϕ) with rank(Σ) = k, then

r2
d
= (X − µ)⊤Σ−1(X − µ),

where Σ−1 is the generalized inverse of Σ.

Theorem 2.2.5. Assume thatX is nondegenerate.

1. If X ∼ ECn(µ,Σ, ϕ) and X ∼ ECn(µ
∗,Σ∗, ϕ∗) , then there exists a constant c > 0,

such that

µ∗ = µ, Σ∗ = cΣ, ϕ∗(·) = ϕ(c−1).

24



§2.2. Properties of elliptically symmetric distribution

2. If X d
= µ + rA⊤U (k) d

= µ∗ + r∗A∗⊤U (l∗) , where l ≥ l∗, then there exists a constant

c > 0 such that

µ∗ = µ, A∗⊤A∗ = cA⊤A, r∗
d
= c−1/2rb,

where b ≥ 0 is independent of r and b2 ∼ Beta (l∗/2, (l − l∗)/2) if l > l∗ and b ≡ 1 if l = l∗.

This theorem shows that Σ, ϕ, r,A are not unique unless we impose the condition that
|Σ| = 1 or that |A⊤A| = 1. The next theorem points out that any linear combination of
elliptically distributed variates is still elliptical.

Theorem 2.2.6. Assume that X ∼ ECn(µ,Σ, ϕ) with rank(Σ) = k, B is an n ×m matrix

and v is an m× 1 vector, then

v +B⊤X ∼ ECm(v +B
⊤µ,B⊤ΣB, ϕ).

Proof. The proof of theorem follows directly from relation

v +B⊤X
d
= (v +B⊤µ) + r(AB)⊤U (k).

Theorem 2.2.7. Assume thatX ∼ ECn(µ,Σ, ϕ) and E (r2) <∞. Then

E(X) = µ, Cov(X) =
E (r2)

rank(Σ)
Σ = −2ϕ′(0)Σ,

Λ2(X) = E
(
XX⊤) = µµ⊤ − 2ϕ′(0)Σ,

where ϕ′(0) is the derivative of ϕ at the origin and

Γ1(x) = i−1 ∂ϕ(t)

∂t

∣∣∣∣
t=0

,

Γ2(x) = i−2 ∂
2ϕ(t)

∂t∂t⊤

∣∣∣∣
t=0

.

Proof. Denoting k = rank(Σ), we have

X
d
= µ+ rA⊤U (k).
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As E(U (n)) = 0 and Cov(U (n)) = In/n (Fang, Kotz, and Ng, 1990), it follows that

E(X) = µ+ E(r)A⊤E
(
U(k)

)
= µ,

and

Cov(X) = Cov
(
rA⊤U(k)

)
= E

(
r2
)
A⊤ Cov

(
U (k)

)
A

= E
(
r2
) 1
k
A⊤IkA =

1

k
E
(
r2
)
Σ.

In general, a given variable X ∼ ECn(µ,Σ, ϕ) does not necessarily possess a density (cf.
Section 2.3, Fang, Kotz, and Ng, 1990). We shall now consider two cases:

1. X has a probability density function;

2. Σ > 0 and P(X = µ) = 0.

A necessary condition that X ∼ EC(µ,Σ, ϕ) possesses a probability density function is
that rank(Σ) = n. In this case, the stochastic representation becomes

X
d
= µ+A⊤Y ,

where A is a nonsingular matrix with A⊤A = Σ and Y ∼ Sn(ϕ) (cf. 2.10, Fang, Kotz, and
Ng, 1990).

The probability density function of Y is of the form g
(
y⊤y

)
, where g(·) is the probability

density function generator. Since X = µ +A⊤Y , the probability density function of X is of
the form

|Σ|−1/2g
(
(x− µ)⊤Σ−1(x− µ)

)
.

In this case we shall sometimes use the notation ECn(µ,Σ, g) instead of ECn(µ,Σ, ϕ). If
X does not possess a probability density function, P(r = 0) = 0 (cf. 2.33, Fang, Kotz, and
Ng, 1990) and |Σ| > 0, carrying out the same transformation X = µ + A⊤Y , we obtain
that P(Y = 0) = 0 and Y has all the marginal probability density functions and so does
X . In this case, the marginal density of X(k) = (X1, . . . , Xk)

⊤ − µ(k), 1 ⩽ k < n, where
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§2.3. Multivariate skew-elliptical distributions

µ(k) = (µ1, . . . , µk)
⊤, is given by

Γ(n/2) |Σk|1/2

Γ((n− k)/2)πk/2

∫ ∞

(
x⊤
(k)

Σ−1
k x(k)

)1/2
r−(n−2)

(
r2 − x⊤

(k)Σ
−1
k x(k)

)(n−k)/2−1
dF (r), (2.2.1)

where Σk is the first principal minor of Σ of dimension k (cf. 2.44, Fang, Kotz, and Ng,
1990).

Any function g(·) satisfying ∫ ∞

0

yn/2−1g(y)dy <∞,

defines a probability density functions (2.2.1) of an elliptically symmetric distribution with a
normalizing constant Cn, where

Cn =
Γ(n/2)

2πn/2
∫∞
0
rn−1g (r2) dr

. (2.2.2)

Example 2.2.2. For r, s > 0, 2N + n > 2, let

g(t) = tN−1 exp (−rts) .

From Equation (2.2.2),

Cn =
sπ−n/2r(2N+n−2)/(2s)Γ(n

2
)

Γ
(
2N+n−2

2s

) .

The multivariate normal distribution is the special case n = 1, s = 1, r = 1/2. The case
s = 1 was introduced and studied by (Kotz, 1975).

2.3 Multivariate skew-elliptical distributions

According (Branco and Dey, 2001) the multivariate skew-elliptical distribution is defined as
follows:

Definition 2.3.1. Consider X = (X1, . . . , Xk)
⊤ a random vector. Let X∗ =

(
X0,X

⊤)⊤ be a

(k+1)-dimensional random vector, such thatX∗ ∼ECk+1 (µ
∗,Σ;ϕ), whereµ∗ = (0,µ),µ =

(µ1, . . . , µk)
⊤ , ϕ is the characteristic function, and the scale parameter matrix Σ has the form

Σ =

(
1 δ⊤

δ Ω

)
,
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with δ = (δ1, . . . , δk)
⊤. Here Ω is the scale matrix associated to the vector X . We say that

the random vector Y = X|X0 > 0 has a skew-elliptical distribution and denote for Y ∼
SEk(µ,Ω, δ;ϕ), where δ is the skewness parameter.

If the probability density function of the random vector X∗ exists and P (X∗ = 0) = 0,
then the p.d.f. of Y will be of the form

fY (y) = 2fg(k)(y)Fgq(y)

(
λ⊤(y − µ)

)
, (2.1)

where fg(k)(·) is the p.d.f. of ECk

(
µ,Ω; g(k)

)
and Fgq(z) is the c.d.f. of El1

(
0, 1; gq(z)

)
, with

λ⊤ =
δ⊤Ω−1

√
1− δ⊤Ω−1δ

, (2.2)

g(k)(u) =
2πk/2

Γ(k/2)

∫ ∞

0

g(k+1)(r2 + u)rk−1dr, u ⩾ 0, (2.3)

gq(y)(u) =
g(k+1)(u+ q(y))

g(k)(q(y))
, (2.4)

and q(y) = (y − µ)TΩ−1(y − µ). In this case, we denote Y ∼ SEk(µ,Ω, δ; g(k+1) ), where
g(k+1) is the density generator function. The notation X ∼ Elk(µ,Σ;ϕ) to indicate that X is a
k-dimensional random vector, elliptically distributed with location vector µ ∈ Rk and a k × k

(positive definite) dispersion matrix Σ and characteristic function (c.f.) ϕ.

2.3.1 Examples of Skew-Elliptical Distributions

A mixed distribution can be created by combining two or more probability distributions.
This involves extracting random variables from multiple populations to compose a new com-
posite distribution. The original distributions (which are created to create the new distribution)
can be univariate or multivariate, but the mixed distribution must maintain consistent dimen-
sionality across all components. Furthermore, the constituent distributions must be of the same
type, that is, all discrete or all continuous. Several examples of distorted elliptical distributions
will be presented below.
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Skew-Scale Mixture of Normal Distribution

In (Liu and Dey, 2004) the Skew-Scale Mixture of Normal Distribution density function is
presented. It has the following configuration.

fY (y) =2|Σ|−1/2

∫ α⊤(y−µ)

−∞

∫ ∞

0

[2πK(η)]−(k+1)/2 exp

(
− r2 + (y − µ)⊤Σ−1(y − µ)

2K(η)

)
dH(η)dr

=2

∫ ∞

0

|Σ|−1/2[2πK(η)]−k/2 exp

(
− (y − µ)⊤Σ−1(y − µ)

2K(η)

)
Φ

(
α⊤(y − µ)
K(η)1/2

)
dH(η).

Thus the probability density function reduces to

fY (y) = 2

∫ ∞

0

ϕk(y;µ, K(η)Σ)Φ

(
α⊤(y − µ)
K(η)1/2

)
dH(η).

One particular case of this distribution is the skew-normal distribution, for which H is de-
generate, with K(η) = 1. In this case the corresponding probability density function is given
by

2ϕk(y;µ,Σ)Φ(α⊤(y − µ)).

Thus, if g(k+1)(·) serves as the density generating function for a scale mixture of normal
distributions, it follows that fY (·) is once again a scale mixture of skew-normal distributions.
The subsequent examples illustrate particular instances of the skew-scale mixture of normal
distributions.

Skew-Finite Mixture of Normal

If the density generator function is

g(k+1)(u) =
n∑

i=1

pi [2πK (ηi)]
−(k+1)/2 exp(−u/2K (ηi)), u ≥ 0,

with 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1, then the distribution H is a discrete measure on {η1, . . . , ηn}
with probabilities p1, . . . , pn, respectively (Liu and Dey, 2004). The probability density function
of the skew-finite mixture of normal is given by

fY (y) = 2
n∑

i=1

piϕk (y;µ, K (ηi)Σ) Φ

(
α⊤(y − µ)
K (ηi)

1/2

)
,
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which is again a finite mixture of skew-normal distributions. In this case, for simplicity, often
take K (ηi) = 1, i = 1, . . . , n.

Skew-Logistic Distribution

The density generator function is

g(k+1)(u) =
exp(−u)

1 + exp(−u)
, u > 0.

(Choy, 1995) highlighted that the logistic distribution represents a specific instance of the
scale mixture of normal distributions, when K(η) = 4η2 and η follows an asymptotic Kol-
mogorov distribution with a probability density function.

f(η) = 8
∞∑
k=1

(−1)k+1k2η exp(−2k2η2).

2.4 Parameter estimation

2.4.1 The Maximum Likelihood Method

There are several ways to estimate distribution parameters. These forms depend on some
circumstances, such as the approach you want to apply. In the case of frequentist approaches,
one of the most traditional ways to estimate parameters is through the optimization of the max-
imum likelihood function. This section will seek to detail this method, which will be used in
future computational analyses. The examples provided, along with additional intriguing cases,
can be found in (Bolfarine and Sandoval, 2010).

Definition 2.4.1. Let X1, . . . , Xn be a random sample of size n of the random variable X with

probability density function f(x|θ), with θ ∈ Θ, where Θ is the parameter space. The likelihood

function for θ corresponding to the observed random sample is given by

L(θ;x) =
n∏

i=1

f (xi|θ) . (2.4.1)

Definition 2.4.2. The maximum likelihood estimator of θ (case exists) is the value θ̂ ∈ Θ that

maximizes the likelihood function L(θ;x).
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The natural logarithm of the likelihood function of θ is denoted by

l(θ;x) ≡ logL(θ;x). (2.4.2)

It is not difficult to verify that the value of θ that maximizes the likelihood function L(θ;x)
also maximizes l(θ;x) given by (2.4.2). Furthermore, in the uniparametric case where Θ is an
interval of the line and l(θ;x) is derivable, the maximum likelihood estimator can be found as
the root of the likelihood equation

l′(θ;x) ≡ ∂l(θ;x)

∂θ
= 0. (2.4.3)

In certain straightforward cases, the solution to the likelihood equation can be determined
explicitly. However, in more complex scenarios, the solution to equation (2.4.3) typically re-
quires numerical methods. To verify that the solution to equation (2.4.3) corresponds to a max-
imum, it is essential to confirm whether

l′′(θ̂;x) ≡ ∂2 logL(θ;x)

∂θ2

∣∣∣∣
θ=θ̂

< 0. (2.4.4)

In cases where Θ is discrete or where the maximum of l(θ;x) occurs at the boundary of Θ,
the maximum likelihood estimator cannot be derived from the solution of (2.4.3). In these
instances, the maximum is determined by directly examining the likelihood function (2.4.1).

Example 2.4.1. Let X1, . . . , Xn be a random sample from the distribution of the random vari-

able X ∼ N(µ, 1). In this case, the likelihood function is given by

L(µ;x) =

(
1√
2π

)n

exp

[
−1

2

n∑
i=1

(xi − µ)2
]
,

with Θ = {µ : −∞ < µ <∞}. As

l(µ;x) = −n log
√
2π − 1

2

n∑
i=1

(xi − µ)2 ,

it follows from (2.4.3) that the likelihood equation is given by

n∑
i=1

(xi − µ̂) = 0.
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Then the maximum likelihood estimator of µ is given by

µ̂ =
1

n

n∑
i=1

Xi = X.

It is not difficult to verify in this case that (2.4.4) is satisfied.

In certain instances, particularly when the likelihood is linked to more intricate models,
the likelihood function may not have a clear analytical solution. In these situations, maximum
likelihood estimators are typically obtained through numerical methods. Let U(θ) represent the
score function, defined as

U(θ) ≡ ∂ logL(θ;x)

∂θ

we have that, for the maximum likelihood estimator θ̂,

U(θ̂) = 0,

so that, by expanding U(θ̂) in Taylor series around a point θ0, we obtain

0 = U(θ̂) ∼= U (θ0) + (θ̂ − θ0)U
′ (θ0) .

That is, we arrive at the equation

θ̂ ∼= θ0 −
U (θ0)

U ′ (θ0)
. (2.4.5)

From the equation (2.4.5), we obtain the iterative procedure (Newton-Raphson)

θj+1 = θj −
U (θj)

U ′ (θj)
, (2.4.6)

which begins with the value θ0, followed by a new value θ1 obtained from (2.4.6), and continues
iteratively until the process stabilizes. This occurs when, for a given small ϵ, the condition
|θj+1 − θj| < ϵ is satisfied. In this scenario, the point θ̂ at which the process stabilizes is
considered the maximum likelihood estimator of θ. In some cases, substituting U ′ (θj) in (2.4.5)
with E [U ′ (θj)], which represents the Fisher information at θj corresponding to the observed
sample, multiplied by −1, can significantly simplify the procedure. This approach is known as
the score method.
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2.4.2 Multiparametric case

In the previous sections, we explored how to derive maximum likelihood estimators and
examined their properties when the likelihood function depends on a single parameter. In this
section, we will address scenarios where θ = (θ1, . . . , θr)

⊤, r ∈ N, meaning that the likelihood
function involves two or more parameters. The parameter space will be denoted by Θ. When the
regularity conditions are met, the maximum likelihood estimators of θ1, . . . , θr can be obtained
by solving the following equations.

∂ logL(θ;x)

∂θi
= 0, i = 1, . . . , r.

In cases where the support of the distribution of X depends on θ or the maximum occurs
at the boundary of Θ, the maximum likelihood estimator is generally obtained by inspecting
the graph of the likelihood function, as in the case uniparametric. In cases where the likelihood
function depends on two parameters, θ1 and θ2, by using the equation

∂ logL (θ1, θ2;x)

∂θ1
= 0,

we obtain a solution for θ1 as a function of θ2, which we can denote by θ̂1 (θ2). Substituting the
solution for θ1 into the joint likelihood, we now have a function of just θ2, that is,

g (θ2;x) = l(θ̂1 (θ2) , θ2;x),

referred to as the profiled likelihood of θ2, which can be utilized to obtain the maximum
likelihood estimator of θ2. The optimization of g (θ2;x) can then be performed in the standard
manner, that is, by differentiation, when feasible.

Example 2.4.2. Let X1, . . . , Xn be a random sample of the random variable X ∼ N (µ, σ2),

where µ and σ2 are unknown. We then have that θ = (µ, σ2), with

L(θ;x) =

(
1

2πσ2

)n/2

exp

[
−

n∑
i=1

(xi − µ)2

2σ2

]
,

so that

l (θ;x) = −n
2
log(2πσ2)−

n∑
i=1

(xi − µ)2

2σ2
.
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Consequently,
∂l (θ;x)

∂µ
= 2

n∑
i=1

(xi − µ̂)

2σ2
= 0,

which leads to the estimator µ̂ = X . Therefore, the logarithm of the profiled likelihood of σ2 is

given by

g
(
σ2;x

)
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − x)2 .

Then the maximum likelihood estimator of σ2 is obtained as a solution to the equation

∂g (σ2;x)

∂σ2
= − n

2σ̂2
+

n∑
i=1

(xi − x)2

2σ̂4
= 0,

which leads to the estimator

σ̂2 =
1

n

n∑
i=1

(
Xi −X

)2
.

Therefore, the maximum likelihood estimators of µ and σ2 are given, respectively, by

µ̂ = X =
1

n

n∑
i=1

Xi and σ̂2 =
1

n

n∑
i=1

(
Xi −X

)2
.

In the multiparametric scenario, properties such as invariance, sufficient statistics, and oth-
ers remain applicable. The same holds true for the situation involving multiple independent
samples, as demonstrated in the following example.

Example 2.4.3. Let X1, . . . , Xn and Y1, . . . , Ym be random samples of X ∼ N (µX , σ
2) and

Y ∼ N (µY , σ
2), respectively. In this case, θ = (µX , µY , σ

2). Therefore, the likelihood corre-

sponding to the observed sample is given by

L(θ;x, y) =

(
1√
2πσ

)n(
1√
2πσ

)m

exp

[
− 1

2σ2

n∑
i=1

(xi − µX)
2 − 1

2σ2

m∑
i=1

(yi − µY )
2

]
.

Hence,

l(θ;x, y) = −(n+m)

2
log(2π)− (m+ n)

2
log(σ2)−

n∑
i=1

(xi − µX)
2

2σ2
−

m∑
i=1

(yi − µY )
2

2σ2
.
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By deriving l(θ;x, y) with respect to µX , µY and σ2, we arrive at the equations

∂l(θ;x, y)

∂µX

=
n∑

i=1

(xi − µ̂X) = 0,

∂l(θ;x, y)

∂µY

=
m∑
j=1

(yi − µ̂Y ) = 0,

and
∂l(θ;x, y)

∂σ2
= −(m+ n)

2

1

σ̂2
+

1

2σ̂4

[
n∑

i=1

(xi − µ̂X)
2 +

m∑
j=1

(yj − µ̂Y )
2

]
= 0,

whose solution presents the estimators

µ̂X = X, µ̂Y = Y ,

and

σ̂2 =

∑n
i=1

(
Xi − X̄

)2
+
∑m

j=1

(
Yj − Ȳ

)2
m+ n

.

2.4.3 Multivariate case

Let X = (X1, . . . ,Xn) be a multivariate random sample (independently and identically
distributed) of size n, where Xi ∈ Rd is a random vector of dimension d with observed value
xi, i = 1, . . . , n. Suppose X has a joint density f(x;θ), where θ is the vector of unknown
parameters.

The likelihood function is defined as:

L(θ;x) =
n∏

i=1

f(xi;θ).

The corresponding log-likelihood function is:

ℓ(θ;x) = logL(θ;x) =
n∑

i=1

log f(xi;θ).

This is the general format for an arbitrary multivariate distribution, where the joint density
f(x;θ) is replaced by the specific density of the distribution in question.
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Example 2.4.4. For a bivariate normal distribution with mean vector µ = (µ1, µ2)
⊤ and co-

variance matrix Σ, the joint density is given put:

f(x;µ,Σ) =
1

2π|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
,

where x = (x1, x2)
⊤ is the vector of observations, µ = (µ1, µ2)

⊤ is the vector of means and Σ

is the covariance matrix, defined as:

Σ =

(
σ2
1 σ12

σ12 σ2
2

)
.

In the above, σ2
1 and σ2

2 are the variances and σ12 is the covariance between X1 and X2.

The log-likelihood function for (µ,Σ)⊤ is given by

ℓ(µ,Σ;x) = −n
2
log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

(xi − µ)⊤Σ−1(xi − µ),

where the term −n
2
log(2π) is constant, |Σ| is the determinant of the covariance matrix and

(xi − µ)⊤Σ−1(xi − µ) is the quadratic term that measures the Mahalanobis distance between

xi and µ.

To obtain parameter estimates from the maximum likelihood function in the multivariate
case, we follow the standard procedure of maximizing the log-likelihood function as presented
in Section 2.4.1. This process involves finding the parameters that maximize this function,
deriving it with respect to the parameters, and solving the resulting system of equations.

Example 2.4.5. To illustrate this process, consider the specific case of multivariate normal

distribution with mean vector µ and covariance matrix Σ. The log-likelihood function for

(µ,Σ)⊤ is written as

ℓ(µ,Σ;x) = −nd
2

log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

(xi − µ)⊤Σ−1(xi − µ).

Average estimate µ. Deriving the log-likelihood function with respect to µ:

∂ℓ(µ,Σ;x)

∂µ
= Σ−1

n∑
i=1

(xi − µ).

Equating the derivative to zero for maximization:
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µ̂ =
1

n

n∑
i=1

xi.

The maximum likelihood estimate for the mean µ is the sample mean µ̂. Deriving the log-

likelihood function with respect to Σ:

∂ℓ(µ,Σ;x)

∂Σ
= −n

2
Σ−1 +

1

2
Σ−1

n∑
i=1

(xi − µ)(xi − µ)⊤Σ−1.

Equating the derivative to zero:

n∑
i=1

(xi − µ)(xi − µ)⊤ = nΣ.

Solving for Σ:

Σ̂ =
1

n

n∑
i=1

(xi − µ)(xi − µ)⊤.

The maximum likelihood estimate for the covariance matrix Σ is the sample covariance

matrix Σ̂.

For multivariate normal distributions, maximum likelihood parameter estimates are

µ̂ =
1

n

n∑
i=1

xi, Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)⊤.

These are the maximum likelihood estimates (MLEs) for a multivariate normal distribution.

For other types of distributions, the process will be similar, but with different forms for f(x;θ).

It is important to note that it is not always possible to estimate parameters analytically. It is
often necessary to use computational resources to make this estimate, especially when applying
the maximum likelihood function. In this context, the optimization problem can be converted
into other well-known questions, such as the search for roots of polynomials, among others.
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Chapter 3

The multivariate unit-asymmetric model

In this chapter, a new family of asymmetric distributions is presented. Initially, the model
from which this family of distributions is derived is presented. This model consists of a condi-
tional relationship between researched variables, where parameters of location, scale, asymme-
try and an additional parameter that can be used to refine the model’s adjustment to the data set
are incorporated.

Important aspects will be discussed, such as the definition of probability density function
that can be derived from the presented model. The possible configurations of these functions
will also be discussed, highlighting how they can, depending on the intervals, take the form of
an already known probability density function, highlighting the generalist nature of the model.
Other properties will be explored, including criteria for choosing the functions to be used in
the model, the special cases of probability density function, their graphical representation, the
non-identifiability of the model, the marginal quantiles, among other relevant characteristics. In
addition, mathematical justifications will be presented for some facts discussed throughout the
text. For example, it will be demonstrated that the finiteness of moments is directly determined
by the choice of functions initially defined in the model, and that a change in the configuration of
the domain of these functions can result in fundamental changes in properties such as moments.

Finally, the maximum likelihood function will be presented, with the explicit characteri-
zation of this function and its respective partial derivatives, highlighting the impossibility of
explicitly describing the parameter estimators in terms of the samples. As a direct consequence,
parameter estimates will need to be obtained using computational methods, which will be dis-
cussed and detailed in the following chapter.
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§3.1. The multivariate unit-asymmetric model

3.1 The multivariate unit-asymmetric model

LetG1, . . . , Gn : (0, 1) → R, n ∈ N, be monotonically and strictly increasing functions, and
let X = (X1, . . . , Xn)

⊤ and Z denote a n-dimensional (absolutely) continuous random vector,
with support Rn, and a continuous random variable, respectively. Based on G−1

1 , . . . , G−1
n (the

inverse functions ofG1, . . . , Gn),X andZ, we define a new random vectorY = (Y1, . . . , Yn)
⊤,

with support (0, 1)n (the unit hypercube), as follows

Y = T |λ⊤(X − µ) + τ > Z, (3.1.1)

where T = (G−1
1 (X1), . . . , G

−1
n (Xn))

⊤, τ ∈ R is the extension parameter, λ =

(λ1, . . . , λn)
⊤ ∈ Rn is the skewness parameter vector and µ = (µ1, . . . , µn)

⊤ ∈ Rn is a
constant vector. That is, Y is the conditional random vector for T given λ⊤(X −µ) + τ > Z.
Let fY denote the joint probability density function (PDF) of Y . Bayes’ rule provides

fY (y) =

∫ ∞

0

fT ,λ⊤(X−µ)−Z+τ (y, s)ds

P(λ⊤(X − µ) + τ > Z)
, y = (y1, . . . , yn)

⊤ ∈ (0, 1)n,

= fT (y)

∫ ∞

0

fλ⊤(X−µ)−Z+τ |T=y(s)ds

P(Z − λ⊤(X − µ) < τ)

= fT (y)
FZ(λ

⊤(yG − µ) + τ |X = yG)

FZ−λ⊤(X−µ)(τ)
, yG ≡ (G1(y1), . . . , Gn(yn))

⊤ ∈ Rn.

(3.1.2)

Chain rule gives fT (y) = fX(yG)
∏n

i=1G
′
i(yi). So, from (3.1.2) we have

fY (y) = fX(yG)
FZ(λ

⊤(yG − µ) + τ |X = yG)

FZ−λ⊤(X−µ)(τ)

n∏
i=1

G′
i(yi), y ∈ (0, 1)n, (3.1.3)

where yG is as given in (3.1.2).

Table 3.1 presents some examples of functions Gi’s for use in (3.1.3).
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Table 3.1: Some functions Gi’s with its respective inverses and derivatives.

Gi(x) G−1
i (x) G′

i(x)

tan((x− 1
2
)π) 1

2
+ arctan(x)

π
π

sin2(πx)

log( x3

1−x3 )
[ exp(x)
1+exp(x)

] 1
3 3

x(1−x3)

log( x5

1−x5 )
[

exp(x)
1+exp(x)

] 1
5 5

x(1−x5)

log(− log(1− x)) 1− exp(− exp(x)) 1
(1−x) log( 1

1−x
)

Determining functions with the initially presented characteristics can follow a specific rule.
One suggestion is to consider the inverse functions as cumulative distribution functions. It is
important to note that the range of these functions is restricted to the interval (0, 1). By impos-
ing constraints on Gi, we can achieve the desired domains. Consider the following examples
presented in Table 3.2.

Table 3.2: Some functions Gi’s and their inverses are obtained from cumulative distribution
functions.

Distribution Gi(x) G−1
i (x) G′

i(x)

Hyperbolic secant distribution 2
π
log(tan π

2
x)) 2

π
arctan(exp(π

2
x))

sec2(π
2
x)

tan(π
2
x)

Gumbel (µ = β = 1 ) 1− log(− log(x)) exp(− exp(−x+ 1)) −1
x log(x)

Gompertz (η = β = 1 ) log(log( 1
−x+1

) + 1) 1− exp(− exp(x) + 1) (−x+1)−1

log( 1
−x+1

)+1

Logistic (k = L = 1, x0 = 0 ) log( x
1−x

) exp(x)
1+exp(x)

1
x(1−x)

In what follows we present some two-dimensional illustrations of the outputs from the
model with some variations in the parameters values and functions, where the distribution is
bivariate normal. In the first column G−1

i (x) = (x− 2)/(2x) +
√
x2 + 4/(2x) and the second

columnG−1
i (x) = (1/2)+arctan(x)/π. Note that the graphs appear to exhibit an elliptical con-

figuration with a certain degree of asymmetry. This data distribution model will be fundamental
for the development of this work. In Chapter 2, we used the notation ECn a for symmetric
elliptic distributions. From now on, we will use the notation ELLn for these distributions.
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µ = (1, 2)T ;λ = (1,−0.7)T ; τ =
0.5.

µ = (0.8, 2)T ;λ = (1.5, 1)T ; τ =
0.7.

µ = (1, 2)T ;λ = (1, 2)T ; τ = 1.
µ = (2.5, 1)T ;λ = (1, 0.7)T ; τ =
1.2.

µ = (1, 2)T ;λ = (50, 20)T ; τ =
−10.

µ = (1.5, 1.8)T ;λ = (40, 30)T ; τ =
−8.

Figure 3.1: Scatterplots for data with elliptical distribution.

So far we have not established any probabilistic dependency relationship between Z andX .
From now on we assume that the (n + 1)-dimensional vector X∗, defined as X∗ = (Z,X)⊤,
has a multivariate elliptical (symmetric) (ELLn+1) distribution (Fang, Kotz, and Ng, 1990) with
location vector µ∗ = (0,µ)⊤, for µ = (µ1, . . . , µn)

⊤ ∈ Rn, positive definite (n+ 1)× (n+ 1)
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dispersion matrix

Σ∗ =

(
1 0⊤

0 Σ

)
, Σ = (Σi,j)n×n, Σi,j = Cov(Xi, Xj), i, j = 1, . . . , n,

and density function generator g(n+1). For simplicity we use the notation X∗ ∼
ELLn+1(µ

∗,Σ∗, g(n+1)). The PDF of X∗ ∼ ELLn+1(µ
∗,Σ∗, g(n+1)) at x∗ =

(x1, . . . , xn+1)
⊤ ∈ Rn+1 is given by

fX∗(x∗) = fX∗(x∗;µ∗,Σ∗, g(n+1))

=
1

|Σ∗|1/2Zg(n+1)

g(n+1)((x∗ − µ∗)⊤[Σ∗]−1(x∗ − µ∗)), (3.1.4)

where

Zg(n+1) =
π(n+1)/2

Γ((n+ 1)/2)

∫ ∞

0

u(n+1)/2−1g(n+1)(u)du

is a normalization constant.
Table 3.3 presents some examples of densities generators for use in (3.1.4).

Table 3.3: Normalization functions (Zg(n)) and density generators (g(n)).

Multivariate distribution Zg(n) g(n)(x) Parameter

Extended unit-G-skew-Student-t Γ(ν/2)(νπ)n/2

Γ((ν+n)/2)
(1 + x

ν
)−(ν+n)/2 ν > 0

Extended unit-G-skew-Cauchy π(n+1)/2

Γ((n+1)/2)
1

(1+x)(n+1)/2 −
Extended unit-G-skew-normal (2π)n/2 exp(−x/2) −

It is well-known that all elliptic distributions are invariant to linear transformations (see
Fang, Kotz, and Ng, 1990), that is, if S ∼ ELLn(µ,Σ, g

(n)) then c + AS ∼ ELLn(c +

Aµ,AΣA⊤, g(n)), where A is a square matrix and c ∈ Rn is a constant vector. In particular,
this implies that a linear combination of the components of X is again elliptically distributed.
More precisely, we have

Z − λ⊤(X − µ) ∼ ELL1

(
0, 1 + λ⊤Σλ, g(1)

)
. (3.1.5)

As a consequence of the last statement, we have that marginals of an elliptic distribution are
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elliptic. Hence,

X ∼ ELLn(µ,Σ, g
(n)). (3.1.6)

On the other hand, it is well-known that conditionals of an elliptic distribution are again
elliptic (see Theorem 2.18 of Fang, Kotz, and Ng, 1990). This provides that

Z|X = x ∼ ELL1(0, 1, gq(x)), (3.1.7)

where

q(x) = (x− µ)⊤Σ−1(x− µ) and gq(x)(s) =
g(2)(s+ q(x))

g(1)(q(x))
. (3.1.8)

Let FELL1(·; 0, 1, g) be the CDF of ELL1(0, 1, g) with density generator function g, where g
can be gq(x) or g(1). So, from (3.1.5), (3.1.6) and (3.1.7), the identity in (3.1.3) can be written as

fY (y) = fX(yG)
FELL1(λ

⊤(yG − µ) + τ ; 0, 1, gq(yG))

FELL1(τ ; 0, 1 + λ
⊤Σλ, g(1))

n∏
i=1

G′
i(yi), y ∈ (0, 1)n,

with yG being as in (3.1.2) andX ∼ ELLn(µ,Σ, g
(n)).

Note that FELL1(τ = 0; 0, 1 + λ⊤Σλ, g(1)) = 1/2 because Z − λ⊤(X − µ) is symmetric
about 0.

Definition 3.1.1. We say that a random vector Y = (Y1, . . . , Yn)
⊤ has a multivariate extended

unit-G-skew-elliptical (EUGSEn) distribution if Y has the probability density function

fY (y) = fX(yG)
FELL1(λ

⊤(yG − µ) + τ ; 0, 1, gq(yG))

FELL1(τ ; 0, 1 + λ
⊤Σλ, g(1))

n∏
i=1

G′
i(yi), y ∈ (0, 1)n, (3.1.9)

where X ∼ ELLn(µ,Σ, g
(n)). For simplicity, we write Y ∼ EUGSEn(µ,Σ,λ, τ, g

(n)) and

we commonly say that Y is an EUGSEn random vector.

Explicit formulas for the PDF of Y ∼ EUGSEn(µ,Σ,λ, τ, g
(n)) corresponding to multi-

variate extended unit-G-skew-Student-t, multivariate extended unit-G-skew-Cauchy and multi-
variate extended unit-G-skew-normal models (see Table 3.3), are provided in Subsection 3.2.1.

The EUGSEn distribution provides a very flexible class of statistical models. Depending on
the choice of the functions G1, . . . , Gn we have a family of multivariate extended unit distribu-
tions with presence of asymmetry. For λ = 0, τ = 0, G1(x) = G2(x) = log(− log(1 − x)),
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0 < x < 1, and n = 2, we obtain the bivariate unit model studied in reference (Vila et al.,
2023b). In general, for the EUGSEn model, it is not necessary to consider all Gi’s equal as
in (Vila et al., 2023b). For g(n)(x) = (1 + x/ν)−(ν+n)/2, ν > 0, we get the multivariate ex-
tended unit-G-skew-Student-t, which reduces to the multivariate extended G-skew-Cauchy and
multivariate extended G-skew-normal distributions by letting ν = 1 and ν → ∞, respectively.

3.2 Some structural properties

3.2.1 Special cases

In this subsection we develop some examples of multivariate EUGSEn distributions as spe-
cial cases.

Proposition 3.2.1 (Multivariate extended unit-G-skew-Student-t). Let Y ∼
EUGSEn(µ,Σ,λ, τ, g

(n)), where g(n)(x) = (1 + x/ν)−(ν+n)/2, x ∈ R, is the PDF gen-

erator of the multivariate Student-t distribution with ν > 0 degrees of freedom. Then, the PDF

of Y at y ∈ (0, 1)n is given by

fY (y) = tn(yG; µ,Σ, ν)
Fν+1

(
[λ⊤(yG − µ) + τ ]

√
ν+1

ν+q(yG)

)
Fν

(
τ√

1+λ⊤Σλ

) n∏
i=1

G′
i(yi), (3.2.1)

where yG and q(yG) are as given in (3.1.2) and (3.1.8), respectively. Moreover,

tn(yG; µ,Σ, ν) = g(n)(q(yG))/(|Σ|1/2Zg(n)), with Zg(n) being as in Table 3.3, denotes the PDF

of the usual n-dimensional Student-t distribution with location µ ∈ Rn, positive definite n× n

dispersion matrix Σ, and degrees of freedom ν > 0, and Fν denotes the univariate standard

Student-t CDF with degrees of freedom ν > 0.

Proof. By using formula (3.1.9), it is enough to verify that

FELL1(λ
⊤(yG − µ) + τ ; 0, 1, gq(yG)) = Fν+1

(
[λ⊤(yG − µ) + τ ]

√
ν + 1

ν + q(yG)

)
(3.2.2)

and

FELL1(τ ; 0, 1 + λ
⊤Σλ, g(1)) = Fν

(
τ√

1 + λ⊤Σλ

)
. (3.2.3)

The identity (3.2.3) follows directly when standardizing the corresponding random vari-
able of FELL1(·; 0, 1 + λ⊤Σλ, g(1)). Therefore, it remains to verify (3.2.2). Indeed, as
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FELL1(·; 0, 1, gq(yG)) is the CDF of ELL1(0, 1, gq(yG)) with density generator function gq(yG)

as given in (3.1.8), we have

FELL1(λ
⊤(yG − µ) + τ ; 0, 1, gq(yG)) =

1

Zg(2)/Zg(1)

∫ λ⊤(yG−µ)+τ

−∞

g(2)(s2 + q(yG))

g(1)(q(yG))
ds,

(2.2.4)

which, by simple algebraic manipulations, can be written as

=
1

Zg(2)/Zg(1)

∫ λ⊤(yG−µ)+τ

−∞

(1 + s2+q(yG)
ν

)−(ν+2)/2

(1 + q(yG)
ν

)−(ν+1)/2
ds

=
1

Zg(2)/Zg(1)

∫ λ⊤(yG−µ)+τ

−∞

(
1 + 1

ν+1

[
s
√

ν+1
ν+q(yG)

]2)−(ν+2)/2

√
1 + q(yG)

ν

ds.

By making the change of variable t = s
√

(ν + 1)/(ν + q(yG)), the last integral is

=
1

Zg(2)/Zg(1)

√
ν

ν + 1

∫ (λ⊤(yG−µ)+τ)
√

ν+1
ν+q(yG)

−∞

(
1 +

t2

ν + 1

)−(ν+2)/2

dt. (3.2.4)

A simple observation shows that

1

Zg(2)/Zg(1)

√
ν

ν + 1
=

[
((ν + 1)π)1/2Γ((ν + 1)/2)

Γ((ν + 2)/2)

]−1

.

So, the integral in (3.2.4) is written as

=

[
((ν + 1)π)1/2Γ((ν + 1)/2)

Γ((ν + 2)/2)

]−1 ∫ (λ⊤(yG−µ)+τ)
√

ν+1
ν+q(yG)

−∞

(
1 +

t2

ν + 1

)−(ν+2)/2

dt

= Fν+1

(
[λ⊤(yG − µ) + τ ]

√
ν + 1

ν + q(yG)

)
.

Then, the required formula in (3.2.2) follows.

By letting ν = 1 in Proposition 3.2.1, we have the following result.

Proposition 3.2.2 (Multivariate extended unit-G-skew-Cauchy). Let Y ∼
EUGSEn(µ,Σ,λ, τ, g

(n)), where g(n)(x) = 1/(1 + x)(n+1)/2, x ∈ R, is the PDF gener-
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ator of the multivariate Cauchy distribution. Then, the PDF of Y at y ∈ (0, 1)n is given

by

fY (y) = cn(yG; µ,Σ)
F2

(
[λ⊤(yG − µ) + τ ]

√
2

1+q(yG)

)
F1

(
τ√

1+λ⊤Σλ

) n∏
i=1

G′
i(yi), (3.2.5)

where yG and q(yG) are as given in (3.1.2) and (3.1.8), respectively. Moreover, cn(yG; µ,Σ) =

g(n)(q(yG))/(|Σ|1/2Zg(n)), with Zg(n) being as in Table 3.3, denotes the PDF of the usual n-

dimensional Cauchy distribution with location µ ∈ Rn and positive definite n × n dispersion

matrix Σ, and Fν denotes the univariate standard Student-t CDF with degrees of freedom ν ∈
{1, 2}.

By letting ν → ∞ in Proposition 3.2.1, the following result follows.

Proposition 3.2.3 (Multivariate extended unit-G-skew-normal). Let Y ∼
EUGSEn(µ,Σ,λ, τ, g

(n)), where g(n)(x) = exp(−x/2), x ∈ R, is the PDF generator

of the multivariate Gaussian distribution. Then, the PDF of Y at y ∈ (0, 1)n is given by

fY (y) = ϕn(yG; µ,Σ)
Φ
(
λ⊤(yG − µ) + τ

)
Φ
(

τ√
1+λ⊤Σλ

) n∏
i=1

G′
i(yi), (3.2.6)

where yG is as given in (3.1.2). Here, ϕn(yG; µ,Σ, ν) = g(n)((yG − µ)⊤Σ−1(yG −
µ))/(|Σ|1/2Zg(n)), with Zg(n) being as in Table 3.3, denotes the PDF of the usual n-dimensional

Gaussian distribution with location µ ∈ Rn and positive definite n × n dispersion matrix Σ,

and Φ denotes the univariate standard Gaussian CDF.

Table 3.4 summarizes the results found in Propositions 3.2.1, 3.2.2 and 3.2.3.

Table 3.4: Probability density functions fY of the EUGSEn distributions of Table 3.3.

Multivariate distribution fY (y)

Extended unit-G-skew-Student-t tn(yG; µ,Σ, ν)
Fν+1

(
[λ⊤(yG−µ)+τ ]

√
ν+1

ν+q(yG)

)
Fν

(
τ√

1+λ⊤Σλ

) ∏n
i=1G

′
i(yi)

Extended unit-G-skew-Cauchy cn(yG; µ,Σ)
F2

(
[λ⊤(yG−µ)+τ ]

√
2

1+q(yG)

)
F1

(
τ√

1+λ⊤Σλ

) ∏n
i=1G

′
i(yi)

Extended unit-G-skew-normal ϕn(yG; µ,Σ)
Φ(λ⊤(yG−µ)+τ)
Φ
(

τ√
1+λ⊤Σλ

) ∏n
i=1G

′
i(yi)
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Below, in Figure 3.2, are some graphs that represent the Extended unit-G-skew-normal
distribution where the transformation G−1(x) = (1/2) + arctan(x)/π where the parameters
used were: µ = (2, 3)⊤; λ = (0.5, 0.6)⊤; σ1 = 1; σ2 = 1; ρ = 0.5; τ = 0.

x y
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Figure 3.2: Extended unit-G-skew-normal density function with G−1(x) = (1/2) +
arctan(x)/π.

Based on the presented graphs, a clear asymmetry in the data distribution can be observed.
Additionally, it is worth noting that the graphical representation was constructed using 45 sam-
ples generated through computational simulations.
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3.2.2 Stochastic representation

LetX = (X1, . . . , Xn)
⊤ be a n-dimensional random vector and Z be a real-valued random

variable. Assume that the (n + 1)-dimensional vector (Z,X)⊤ has a multivariate elliptical
(symmetric) (ELLn+1) distribution (Fang, Kotz, and Ng, 1990) with location vector (0,µ)⊤,
positive definite (n+ 1)× (n+ 1) dispersion matrix(

1 0

0 Σ

)
, Σ = (Σi,j)n×n, Σi,j = Cov(Xi, Xj), i, j = 1, . . . , n,

and density generator g(n+1). For simplicity, we write(
Z

X

)
∼ ELLn+1

((
0

µ

)
,

(
1 0

0 Σ

)
, g(n+1)

)
.

Well-known results by Fang, Kotz, and Ng (1990) on marginals and conditionals of multivariate
elliptic distributions provide the following statements:

Z − λ⊤(X − µ) ∼ ELL1

(
0, 1 + λ⊤Σλ, g(1)

)
, (3.2.7)

X ∼ ELLn(µ,Σ, g
(n)), (3.2.8)

Z ∼ ELL1(0, 1, g
(1)), (3.2.9)

Z |X = x ∼ ELL1(0, 1, gq(x)), x = (x1, . . . , xn)
⊤ ∈ Rn, (3.2.10)

where q(x) and gq(x) are as in (3.1.8). From (3.1.6), X is multivariate elliptic, then its corre-
sponding PDF is

fX(x) =
1

|Σ|1/2Zg(n)

g(n)(q(x)), x ∈ Rn.

Setting T = (G−1
1 (X1), . . . , G

−1
n (Xn))

⊤, by chain rule it is clear that

fT (y) = fX(yG)
n∏

i=1

G′
i(yi).
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Hence, from (3.2.7), (3.2.8) and (3.2.10), the PDF (3.1.9) of Y ∼ EUGSEn(µ,Σ,λ, τ, g
(n)) is

written as

fY (y) = fT (y)
FZ(λ

⊤(yG − µ) + τ |X = yG)

FZ−λ⊤(X−µ)(τ)
, y = (y1, . . . , yn)

⊤ ∈ (0, 1)n.

By using the above expression of fY (y) and then Bayes’ rule, we get

fY (y) = fT (y)

∫ ∞

0

fλ⊤(X−µ)−Z+τ |T=y(s)ds

P(Z − λ⊤(X − µ) < τ)

=

∫ ∞

0

fT ,λ⊤(X−µ)−Z+τ (y, s)ds

P(λ⊤(X − µ) + τ > Z)
= fT |λ⊤(X−µ)+τ>Z(y).

This shows that Y ∼ EUGSEn(µ,Σ,λ, τ, g
(n)) admits the stochastic representation:

Y = T |λ⊤(X − µ) + τ > Z, (3.2.11)

where T = (G−1
1 (X1), . . . , G

−1
n (Xn))

⊤, and X and Z are distributionally related by Items
(3.2.7)-(3.2.10).

3.2.3 Reparameterization for to enforce identifiability

In general, identifiability is lost when a multivariate normal distribution is reduced by con-
ditioning (Florens, Mouchart, and Rolin, 1990). This leads us to believe that for any choices
of density generators

(
g(n)
)

the EUGSEn model (3.1.3) loses identifiability. In this subsection
we will prove the non-identifiability of the EUGSEn model. To this end, by considering the
notations λ∗ ≡ ωλ,

Σ∗ ≡ ω−1Σω−1 =


1 σ12√

σ11σ22
· · · σ1n√

σ11σnn

σ21√
σ22σ11

1 · · · σ2n√
σ22σnn

...
... . . . ...

σn1√
σnnσ11

σn2√
σnnσ22

· · · 1

 ,
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ω ≡
√

diag(Σ) =


√
σ11 0 · · · 0

0
√
σ22 · · · 0

0 0 · · · √
σnn

 ,

It is natural to ask whether through reparameterization the model gains the property of
identifiability. At least for the extended G-skew-normal distribution (see Table 3.4) the answer
is positive. To verify this statement we consider the reparameterization (µ,Σ,λ, τ)⊤ 7−→ ψ =

(µ,Σ∗, δ,γ)
⊤, where Σ∗ = ω

−1Σω−1 is the correlation matrix defined in above section, and

δ ≡ Σ∗λ√
1 + λ⊤Σ∗λ

, γ ≡ τ√
1 + λ⊤Σ∗λ

. (3.2.12)

In what remains of this subsection we will prove that the parametrization ψ is identifiable.
Indeed, note that

δ⊤ =
λ⊤Σ∗√

1 + λ⊤Σ∗λ
=⇒

√
1 + λ⊤Σ∗λ =

1√
1− δ⊤Σ−1

∗ δ
. (3.2.13)

By using (3.2.13), we obtain

λ⊤ = δ⊤Σ−1
∗

√
1 + λ⊤Σ∗λ =

δ⊤Σ−1
∗√

1− δ⊤Σ−1
∗ δ

, (3.2.14)

τ = γ
√

1 + λ⊤Σ∗λ =
γ√

1− δ⊤Σ−1
∗ δ

. (3.2.15)

Hence, by (3.2.12), (3.2.14) and (3.2.15), the extended G-skew-normal PDF (see Table 3.4)
can be written as a function of ψ as follows:

fY (y;ψ) = ϕn (yG;µ,Σ∗)

Φ

(
δ⊤Σ−1

∗ (yG−µ)+γ√
1−δ⊤Σ−1

∗ δ

)
Φ(γ)

n∏
i=1

G′
i (yi) = fSN (yG;ψ)

n∏
i=1

G′
i (yi) ,

where fSN(·;ψ) is the skew-normal distribution defined as see (Castro, San Martín, and
Arellano-Valle, 2013)

fSN(z;ψ) ≡ ϕn (z;µ,Σ∗)

Φ

(
δ⊤Σ−1

∗ (z−µ)+γ√
1−δ⊤Σ−1

∗ δ

)
Φ(γ)

, z ∈ Rn. (3.2.16)

By using the r th cumulants of random vector corresponding to PDF fSN(·;ψ), in Section 2

50



§3.2. Some structural properties

(Castro, San Martín, and Arellano-Valle, 2013), it was proven that the skew-normal distribution
(3.2.16) is identifiable. In other words, it was shown that

fSN(z;ψ) = fSN (z;ψ′) ,∀z ∈ Rn =⇒ ψ = ψ′.

As an immediate consequence of the above result, we obtain

fY (y;ψ)=fSN (yG;ψ)
n∏

i=1

G′
i (yi) = fSN (yG;ψ

′)
n∏

i=1

G′
i (yi)

= fY (y;ψ′) ,∀y ∈ Dn =⇒ ψ = ψ′.

This shows the identifiability of the extended G-skew-normal distribution model when con-
sidering reparameterization ψ = (µ,Σ∗, δ,γ)

⊤.

3.2.4 Marginal Quantiles

We can rewrite Yi = Ti|λT (X − µ) + τ > Z; i = 1, ..., n. Where Ti = G−1
i (Xi), i = 1, ..., n.

Let p ∈ (0, 1). The p-quantile for Yi (which we call marginal quantile for Y =

(Y1, ..., Yn)
⊤), denoted by QYi

(p), is a real number such that:

P(Yi ≤ QYi
(p)) = p, i = 1, . . . , n.

We can define the (conditional) random variable Wi = Xi|λT (X−µ)+ τ > Z, i = 1, ..., n.
Since Gi is monotone, we can rewarite the above relation, hence:

p = P(Yi ≤ QYi
(p)) = P(Ti ≤ QYi

(p)|λT (X − µ) + τ > Z)

= P(Xi ≤ Gi(QYi
(p))|λT (X − µ) + τ > Z)

= P(Wi ≤ Gi(QYi
(p))).

Equivalently,
QYi

(p) = G−1
i (QWi

(p)), i = 1, . . . , n.

In other words, the p-quantile for Yi is determined by the p-quantile for Wi, and vice-versa.
Therefore, is suficient find the distribuition of the Wi to determinate the p-quantile for Yi. The
distribuition of Wi, for the cases considered in this work, are known (see Subsection 3.2.5).
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3.2.5 Conditional distributions

In the context of multivariate sample selection models (Heckman, 1976), the interest lies
in finding the PDF of Yi |Yj > κ, i ̸= j ∈ {1, . . . , n}, given that Y = (Y1, . . . , Yn)

⊤ ∼
EUGSEn(µ,Σ,λ, τ, g

(n)), with κ ∈ (0, 1). For this purpose, let W = (W1, . . . ,Wn)
⊤ =

X |λ⊤X + τ > Z be a multivariate extended skew-elliptical random vector.

Analogously to the steps developed in (3.1.2), Bayes’ rule provides

fYi |Yj>κ(y) = fYi
(y)

∫ ∞

κ

fYj |Yi=y(s)ds

P(Yj > κ)
, y ∈ (0, 1), κ ∈ (0, 1). (3.2.17)

If Yi = y then Wi = Gi(y). So, the distribution of Yj |Yi = y is the same as the distribution of
G−1

j (Wj) |Wi = Gi(y). Consequently, the PDF of Yj given Yi = y is given by

fYj |Yi=y(s) = fWj |Wi=Gi(y)(Gj(s))G
′
j(s). (3.2.18)

Since fYi
(y) = fWi

(Gi(y))G
′
i(y) and fYj

(s) = fWj
(Gj(s))G

′
j(s), from (3.2.17) and (3.2.18)

we get

fYi |Yj>κ(y) = fWi
(Gi(y))G

′
i(y)

∫ ∞

κ

fWj |Wi=Gi(y)(Gj(s))G
′
j(s)ds∫ ∞

κ

fWj
(Gj(s))G

′
j(s)ds

.

Equivalently,

fYi |Yj>κ(y) = fWi
(Gi(y))G

′
i(y)

SWj |Wi=Gi(y)(Gj(κ))

SWj
(Gj(κ))

, y ∈ (0, 1), κ ∈ (0, 1), (3.2.19)

where SX denotes the survival function (SF) of X . In other words, to determine the distribution
of Yi |Yj > κ it is sufficient to know the unconditional and conditional distributions of the
multivariate extended skew-elliptical random vectorW .

In what remains of this subsection we present closed-forms for the PDF (3.2.19) of Yi |Yj >
κ by considering the Student-t, Cauchy and Gaussian generator densities.
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Student-t density generator

Let g(n)(x) = (1 + x/ν)−(ν+n)/2, x ∈ R (see Table 3.3), be the Student-t density generator
of the EUGSEn (multivariate extended unit-G-skew-Student-t) distribution.

Definition 3.2.1. A random variable X follows a univariate extended skew-Student-t (EST1)

distribution, denoted by X ∼ EST1(µ, σ
2, λ, ν, τ), if its PDF is given by (Arellano-Valle and

Genton, 2010)

fEST1(x;µ, σ
2, λ, ν, τ) =

1

σ
fν(z)

Fν+1

(
(λz + τ)

√
ν+1
ν+z2

)
Fν

(
τ√

1+λ2

) , x ∈ R; µ, λ, τ ∈ R, σ, ν > 0,

where z = (x − µ)/σ, and fν and Fν denote the PDF and CDF of the standard Student-t

distribution with ν > 0 degrees of freedom, respectively. Let SESN1(x;µ, σ
2, λ, τ) be the SF

corresponding to EST1 PDF.

Let W = (W1, . . . ,Wn)
⊤ = X |λ⊤X + τ > Z. From Arellano-Valle and Genton, 2010,

the unconditional and conditional distributions ofW are respectively given by

Wi ∼ EST1

µi, σ
2
i ,

λiσi + λjσjρij

σi
√

1 + λ2jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2jσ
2
j (1− ρ2ij)

 , (3.2.20)

Wj ∼ EST1

µj, σ
2
j ,

λjσj + λiσiρij

σj
√

1 + λ2iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2iσ
2
i (1− ρ2ij)

 , (3.2.21)

and

Wj |Wi = y ∼ EST1

(
µy, σ

2
y;ν , λjσj

√
1− ρ2ij, ν + 1, τy;ν

)
, (3.2.22)
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where we are adopting the following notation:

µy = µj + σjρij

(
y − µi

σi

)
;

σ 2
y;ν =

ν +
(

y−µ1i

σi

)2
ν + 1

σ2
j (1− ρ2ij);

τy;ν =
[
(λiσi + λjσjρij)

(
y−µi

σi

)
+ τ
]√

ν+1

ν+
(

y−µi
σi

)2 .

(3.2.23)

Hence, by combining (3.2.19) with (3.2.21), (3.2.22) and (3.2.23), we obtain

fYi |Yj>κ(y) = fEST1

Gi(y); µi, σ
2
i ,

λiσi + λjσjρij

σi
√

1 + λ2jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2jσ
2
j (1− ρ2ij)

G′
i(y)

×
SEST1

(
Gj(κ); µGi(y)

, σ 2
Gi(y);ν

, λjσj

√
1− ρ2ij, ν + 1, τ

Gi(y);ν

)
SEST1

Gj(κ); µj, σ2
j ,

λjσj + λiσiρij

σj
√

1 + λ2iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2iσ
2
i (1− ρ2ij)

 ,

(3.2.24)

for y ∈ (0, 1) and κ ∈ (0, 1).

Example 3.2.1. By taking Gi(x) = log(− log(1− x)), 0 < x < 1, i = 1, . . . , n (see Table 3.3),
we get the multivariate asymmetric version of the unit-Student-t model addressed in (Vila et al.,
2023b). So, from (3.2.24) and Table 3.1, we have

fYi |Yj>κ(y) = fEST1

log(− log(1− y)); µi, σ
2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

 1

(1− y) log( 1
1−y )

×
SEST1

(
log(− log(1− κ)); µ

log(− log(1−y))
, σ 2

log(− log(1−y));ν
, λjσj

√
1− ρ2ij , ν + 1, τ

log(− log(1−y));ν

)
SEST1

log(− log(1− κ)); µj , σ2
j ,

λjσj + λiσiρij

σj

√
1 + λ2

iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

for y ∈ (0, 1), κ ∈ (0, 1), and µy, σ 2
y;ν and τy;ν being as in (3.2.23).
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Cauchy density generator

Let g(n)(x) = 1/(1 + x)(n+1)/2, x ∈ R (see Table 3.3), be the Cauchy density generator of
the EUGSEn (multivariate extended unit-G-skew-Cauchy) distribution.

By taking ν = 1 in formula (3.2.24), we have

fYi |Yj>κ(y) = fEST1

Gi(y); µi, σ
2
i ,

λiσi + λjσjρij

σi
√

1 + λ2jσ
2
j (1− ρ2ij)

, 1,
τ√

1 + λ2jσ
2
j (1− ρ2ij)

G′
i(y)

×
SEST1

(
Gj(κ); µGi(y)

, σ 2
Gi(y);1

, λjσj

√
1− ρ2ij, 2, τGi(y);1

)
SEST1

Gj(κ); µj, σ2
j ,

λjσj + λiσiρij

σj
√

1 + λ2iσ
2
i (1− ρ2ij)

, 1,
τ√

1 + λ2iσ
2
i (1− ρ2ij)

 ,

(3.2.25)

for y ∈ (0, 1) and κ ∈ (0, 1).

Example 3.2.2. By taking Gi(x) = (2x− 1)/(x(1− x)), 0 < x < 1, i = 1, . . . , n, from
(3.2.25) and Table 3.1, we have

fYi |Yj>κ(y) = fEST1

 2y − 1

y(1− y)
; µi, σ

2
i ,

λiσi + λjσjρij

σi
√
1 + λ2

jσ
2
j (1− ρ2ij)

, 1,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

[ 1

(x− 1)2
+

1

x2

]

×
SEST1

(
2κ−1
κ(1−κ) ; µ 2y−1

y(1−y)

, σ 2
2y−1

y(1−y)
;1
, λjσj

√
1− ρ2ij , 2, τ 2y−1

y(1−y)
;1

)

SEST1

 2κ−1
κ(1−κ) ; µj , σ2

j ,
λjσj + λiσiρij

σj
√

1 + λ2
iσ

2
i (1− ρ2ij)

, 1,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

for y ∈ (0, 1), κ ∈ (0, 1), and µy, σ 2
y;ν and τy;ν being as in (3.2.23).

Gaussian density generator

Let g(n)(x) = exp(−x/2), x ∈ R (see Table 3.3), be the Gaussian density generator of the
EUGSEn (multivariate extended unit-G-skew-normal) distribution.

Definition 3.2.2. A random variable X follows a univariate extended skew-normal (ESN1) dis-

tribution, denoted by X ∼ ESN1(µ, σ
2, λ, τ), if its PDF is given by (Vernic, 2005; Arellano-
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Valle and Genton, 2010)

fESN1(x;µ, σ
2, λ, τ) =

1

σ
ϕ(z)

Φ(λz + τ)

Φ
(

τ√
1+λ2

) , x ∈ R; µ, λ, τ ∈ R, σ > 0,

where z = (x− µ)/σ, and ϕ and Φ denote the PDF and CDF of the standard normal distribu-

tion, respectively. Let SESN1(x;µ, σ
2, λ, τ) denote the SF corresponding to ESN1 PDF.

Since

lim
ν→∞

σ 2
y;ν = σ2

j (1− ρ2ij), lim
ν→∞

τy;ν = (λiσi + λjσjρij)

(
y − µi

σi

)
+ τ,

and limν→∞ fEST1(x;µ, σ
2, λ, ν, τ) = fESN1(x;µ, σ

2, λ, τ), by letting ν → ∞ in (3.2.24), we
obtain

fYi |Yj>κ(y) = fESN1

Gi(y); µi, σ
2
i ,

λiσi + λjσjρij

σi
√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

G′
i(y)

×
SESN1

(
Gj(κ); µj + σjρij

(
Gi(y)−µi

σi

)
, σ2

j (1− ρ2ij), λjσj
√

1− ρ2ij , (λiσi + λjσjρij)
(
Gi(y)−µi

σi

)
+ τ
)

SESN1

Gj(κ); µj , σ2
j ,

λjσj + λiσiρij

σj
√
1 + λ2

iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

(3.2.26)

for y ∈ (0, 1) and κ ∈ (0, 1).

Example 3.2.3. By taking Gi(x) = tan((x − 1/2)π), 0 < x < 1, i = 1, . . . , n, from (3.2.26)
and Table 3.1, we have

fYi |Yj>κ(y) = fESN1

tan

((
y −

1

2

)
π

)
; µi, σ

2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

 π

sin2(πy)

×
SESN1

(
tan((κ− 1

2
)π); µj + σjρij

(
tan((y− 1

2
)π)−µi

σi

)
, σ2

j (1− ρ2ij), λjσj

√
1− ρ2ij , (λiσi + λjσjρij)

(
tan((y− 1

2
)π)−µi

σi

)
+ τ

)

SESN1

tan((κ− 1
2
)π); µj , σ2

j ,
λjσj + λiσiρij

σj

√
1 + λ2

i σ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
i σ

2
i (1− ρ2ij)


,

for y ∈ (0, 1) and κ ∈ (0, 1).
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3.2.6 Expected value of a function of an EUGSEn random vector

Let Y = (Y1, . . . , Yn)
⊤ ∼ EUGSEn(µ,Σ,λ, τ, g

(n)). If φ : (0, 1)n → R is a real-valued
measurable-analytic function, from stochastic representation in Subsection 3.2.2 it follows that

φ(Y )
d
= φ(G−1

1 (W1), . . . , G
−1
n (Wn)),

where W ∼ EUGSEn(µ,Σ,λ, τ, g
(n)). Let ψ = φ ◦ (G−1

1 ◦ π1, . . . , G−1
n ◦ πn) denote the

composition function of φ with (G−1
1 ◦ π1, . . . , G−1

n ◦ πn), where πk denotes the kth projection
function. The above representation is written as

φ(Y )
d
= ψ(W ),

which implies that

E[φ(Y )] = E[ψ(W )] =

∫
Rn

ψ(w)fW (w)dw. (3.2.27)

Consider v = (v1, . . . , vn)
⊤ ∈ Rn an n-dimensional vector. Upon using the multivariate Tay-

lor expansion of function w 7−→ ψ(w) around the point v, that is (committing an abuse of
notation),

ψ(w + v) =

(
∞∑
k=0

1

k!

n∑
i1,...,ik=1

wi1 · · ·wik

∂k

∂vi1 · · · vik

)
ψ(v)

=

(
∞∑
k=0

1

k!
(w⊤∇v)

k

)
ψ(v), with ∇v =

(
∂

∂v1
, . . . ,

∂

∂vn

)⊤

,

= exp(w⊤∇v)ψ(v), (3.2.28)

the expectation in (3.2.27) becomes

E[φ(Y )] =

∫
Rn

[
ψ(w + v)

∣∣
v=0

]
fW (w)dw

=

∫
Rn

[
exp(w⊤∇v)ψ(v)

∣∣
v=0

]
fW (w)dw

=

[∫
Rn

exp(w⊤∇v)fW (w)dw

]
ψ(v)

∣∣∣∣∣
v=0

=MW (∇v)ψ(v)
∣∣
v=0

, (3.2.29)
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where

ψ(v) = φ(G−1
1 (v1), . . . , G

−1
n (vn)) (3.2.30)

and MW (s) is the moment generating function (MGF) of the multivariate random vector W ,
whenever it exists.

In the case that Y has a multivariate extended unit-G-skew-normal distribution (see Table
3.3) case, W follows an multivariate extended skew-normal distribution (see Table 3.4) with
parameter vector (µ,Σ,λ, τ)⊤. So, by using the definition of PDF fW given in (3.4), we have

MW (s) =

∫
Rn

exp(s⊤w)fW (w)dw

=

∫
Rn

exp(s⊤w)ϕn(w; µ,Σ)
Φ
(
λ⊤(w − µ) + τ

)
Φ
(

τ√
1+λ⊤Σλ

) dw.

A simple observation shows that

exp(s⊤w)ϕn(w; µ,Σ) = exp

(
s⊤µ+

1

2
s⊤Σs

)
ϕn(w; µ∗,Σ), µ∗ = µ+Σs.

Then, upon using the above identity, the MGF ofW is

MW (s) = exp

(
s⊤µ+

1

2
s⊤Σs

) Φ
(

τ∗√
1+λ⊤Σλ

)
Φ
(

τ√
1+λ⊤Σλ

) ∫
Rn

ϕn(w; µ∗,Σ)
Φ
(
λ⊤(w − µ∗) + τ ∗

)
Φ
(

τ∗√
1+λ⊤Σλ

) dw,

with τ ∗ = λ⊤Σs + τ . Let W ∗ be a random vector following a multivariate extended skew-
normal distribution (see Table 3.3) with parameter vector (µ∗,Σ,λ, τ ∗). Using this notation,
the MGF ofW is expressed as

MW (s) = exp

(
s⊤µ+

1

2
s⊤Σs

) Φ
(

τ∗√
1+λ⊤Σλ

)
Φ
(

τ√
1+λ⊤Σλ

) ∫
Rn

fW ∗(w)dw

=
1

Φ
(

τ√
1+λ⊤Σλ

) exp

(
s⊤µ+

1

2
s⊤Σs

)
Φ

(
λ⊤Σs+ τ√
1 + λ⊤Σλ

)
.
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Replacing the above formula in (3.2.29), we have

E[φ(Y )] =
[
exp(∇⊤

vµ)ψ(v)
∣∣
v=0

] [
exp

(
1

2
∇⊤

vΣ∇v

)
ψ(v)

∣∣∣∣∣
v=0

]Φ
(

λ⊤Σ∇v+τ√
1+λ⊤Σλ

)
Φ
(

τ√
1+λ⊤Σλ

) ψ(v)

∣∣∣∣∣
v=0

 .
By using the multivariate Taylor expansion (3.2.28), exp(∇⊤

vµ)ψ(v) = ψ(µ + v). Then, we
obtain the following closed formula for the expected value of a function of Y :

E[φ(Y )] = ψ(µ)

[
exp

(
1

2
∇⊤

vΣ∇v

)
ψ(v)

∣∣∣∣∣
v=0

]Φ
(

λ⊤Σ∇v+τ√
1+λ⊤Σλ

)
Φ
(

τ√
1+λ⊤Σλ

) ψ(v)

∣∣∣∣∣
v=0

 , (3.2.31)

with ψ being as in (3.2.30).

Remark 3.2.4. (i) When the extension parameter is absent, that is, τ = 0, we have

E[φ(Y )] = 2ψ(µ)

[
exp

(
1

2
∇⊤

vΣ∇v

)
ψ(v)

∣∣∣∣∣
v=0

][
Φ

(
λ⊤Σ∇v√
1 + λ⊤Σλ

)
ψ(v)

∣∣∣∣∣
v=0

]
.

(ii) When the skewness parameter is absent, that is, λ = 0, we have

E[φ(Y )] = ψ(µ)

[
exp

(
1

2
∇⊤

vΣ∇v

)
ψ(v)

∣∣∣∣∣
v=0

]
,

Remark 3.2.5. (i) The exponential operator exp
(
∇⊤

vΣ∇v/2
)

that appears in (3.2.31) can

be written as

exp

(
1

2
∇⊤

vΣ∇v

)
=

∞∑
k=0

1

k!

(
1

2
∇⊤

vΣ∇v

)k

=
∞∑
k=0

1

k!

1

2k

n∑
j1,l1,...,jk,lk=1

σj1l1 · · ·σjklk
∂2k

∂vj1∂vl1 · · · ∂vjk∂vlk
.

(3.2.32)
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(ii) By using the series representation of the Gaussian CDF:

Φ(x) =
1

2
+

1√
π

∞∑
k=0

(−1)3k2−
1
2
−k

(1 + 2k)k!
x2k,

the operator Φ((λ⊤Σ∇v + τ)/
√
1 + λ⊤Σλ ) that appears in (3.2.31) can be written as

Φ

(
λ⊤Σ∇v + τ√
1 + λ⊤Σλ

)
=

1

2
+

1√
π

∞∑
k=0

(−1)3k2−
1
2
−k

(1 + 2k)k!

(
λ⊤Σ∇v + τ√
1 + λ⊤Σλ

)2k

=
1

2
+

1√
π

∞∑
k=0

(−1)3k2−
1
2
−k

(1 + 2k)k!

2k∑
r=0

(
2k

r

)(
τ√

1 + λ⊤Σλ

)2k−r

×

n∑
j1,l1,...,jr,lr=1

σl1j1 · · ·σlrjrλl1 · · ·λlr
∂r

∂vj1 · · · ∂vjr
(
√
1 + λ⊤Σλ )r

, (3.2.33)

where in the last equality a binomial expansion was used.

Remark 3.2.6. Since E[φ(Y )] in (3.2.31) depends on the operator formulas in (3.2.32) and

(3.2.33), these can be used to facilitate its calculation.

Mixed-moments

Let φ(y) =
∏n

i=1 π
m
i (y) =

∏n
i=1 y

mi
i , where πi is the ith projection function. From (3.2.29)

we have the next formula for the mixed-moments of Y :

E

(
n∏

i=1

Y mi
i

)
=MW (∇v)

n∏
i=1

[G−1
i (vi)]

mi

∣∣∣
v=0

.

In the case that Y has a multivariate extended unit-G-skew-normal distribution (see Table
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3.3) case, from (3.2.31) we have

E

(
n∏

i=1

Y mi
i

)
=

n∏
i=1

[G−1
i (µi)]

mi

[
exp

(
1

2
∇⊤

vΣ∇v

) n∏
i=1

[G−1
i (vi)]

mi

∣∣∣∣∣
v=0

]

×

Φ
(

λ⊤Σ∇v+τ√
1+λ⊤Σλ

)
Φ
(

τ√
1+λ⊤Σλ

) n∏
i=1

[G−1
i (vi)]

mi

∣∣∣∣∣
v=0

 . (3.2.34)

It is clear that the above formula is extremely complicated for functions Gis as chosen in
Table 3.1. For illustration purposes, let us consider Gi(x) = log(x), x > 0. So, by using
formula in (3.2.32), we have

exp

(
1

2
∇⊤

vΣ∇v

) n∏
i=1

[G−1
i (vi)]

mi = exp

(
1

2
m⊤Σm+m⊤v

)
.

On the other hand, by using formula in (3.2.33), we obtain

Φ

(
λ⊤Σ∇v + τ√
1 + λ⊤Σλ

) n∏
i=1

[G−1
i (vi)]

mi = Φ

(
λ⊤Σm+ τ√
1 + λ⊤Σλ

)
exp(m⊤v).

Replacing the last two expressions in (3.2.34), we obtain

E

(
n∏

i=1

Y mi
i

)
= exp

(
m⊤µ+

1

2
m⊤Σm

) Φ

(
λ⊤Σm+τ√
1+λ⊤Σλ

)
Φ

(
τ√

1+λ⊤Σλ

) .
The above formula has appeared in (Marchenko and Genton, 2010) for the special case τ = 0.
In particular,

E (Y m
i ) = exp

(
mµi +

1

2
m2σii

) Φ

(
m

∑n
k=1 λkσki+τ√
1+λ⊤Σλ

)
Φ

(
τ√

1+λ⊤Σλ

) .
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Marginal moments

By letting φ as the kth power of the ith projection function, that is, φ(y) = πk
i (y) = yki ,

i = 1, . . . , n, from (3.2.29) we have the next formula for the marginal moments:

E(Y k
i ) =MT (∇v)π

k
i (v)H(v)

∣∣
v=0+ .

Note that the moments are finite. Indeed, since G−1 : R −→ (0, 1)

(Y1, ..., Yn)
d
= (G−1

1 (W1), ..., G
−1
n (Wn)),

and

0 ≤
n∏

i=1

Y mi
i ≤ 1,

we have

0 ≤ E
[ n∏

i=1

Y mi
i

]
= E

[ n∏
i=1

(G−1
i (Wi))

mi

]
≤ 1.

Therefore the moments are finite.

Let φ be the ith projection function raised to the mth power, that is, φ(y) = πm
i (y) = ymi ,

i = 1, . . . , n. From (3.2.29) we have the next formula for the marginal moments of Y :

E(Y m
i ) =MW (∇v)[G

−1
i (vi)]

m
∣∣
vi=0

.

In the case that Y has a multivariate extended unit-G-skew-normal distribution (see Table
3.3) case, from (3.2.31) we have

E(Y m
i ) = [G−1

i (µi)]
m

[
exp

(
1

2
∇⊤

vΣ∇v

)
[G−1

i (vi)]
m

∣∣∣∣∣
vi=0

]
(3.2.35)

×

Φ
(

λ⊤Σ∇v+τ√
1+λ⊤Σλ

)
Φ
(

τ√
1+λ⊤Σλ

) [G−1
i (vi)]

m

∣∣∣∣∣
vi=0

 , i = 1, . . . , n. (3.2.36)

By using formula in (3.2.32), we have

exp

(
1

2
∇⊤

vΣ∇v

)
[G−1

i (vi)]
m = exp

(
σ2
ii

2

∂2

∂v2i

)
[G−1

i (vi)]
m. (3.2.37)

62



§3.3. Maximum likelihood estimation

On the other hand, by using formula in (3.2.33), we obtain

Φ

(
λ⊤Σ∇v + τ√
1 + λ⊤Σλ

)
[G−1

i (vi)]
m = Φ

(
(
∑n

l=1 σliλl)
∂
∂vi

+ τ
√
1 + λ⊤Σλ

)
[G−1

i (vi)]
m. (3.2.38)

Replacing the expressions (3.2.37) and (3.2.38) in (3.2.35), we obtain the following simple
closed formula for the marginal moments of the multivariate extended unit-skew-normal ran-
dom vector Y :

E(Y m
i ) = [G−1

i (µi)]
m

[
exp

(
σ2
ii

2

∂2

∂v2i

)
[G−1

i (vi)]
m

∣∣∣∣∣
vi=0

]

×

Φ
(

(
∑n

l=1 σliλl)
∂

∂vi
+τ√

1+λ⊤Σλ

)
Φ
(

τ√
1+λ⊤Σλ

) [G−1
i (vi)]

m

∣∣∣∣∣
vi=0

 . (3.2.39)

Correlation function

By considering φ(y) = πi(y)πj(y), i, j = 1, . . . , n, where πk denotes the kth projection
function, from (3.2.29) we have the following formula for the cross-moments:

E(YiYj) =MT (∇v)πi(v)πj(v)H(v)
∣∣
v=0+ .

Consequently, from the above identity and from Subsubsection 3.2.6, the correlation func-
tion between Yi and Yj , denoted by ρYi,Yj

, is written as

ρYi,Yj
=

MT (∇v)
[
πi(v)πj(v)− πi(v)πj(v)

]
H(v)∏

r=i,j

√
MT (∇v)π2

r(v)H(v)− [MT (∇v)πr(v)H(v)]2

∣∣∣∣∣
v=0+

.

3.3 Maximum likelihood estimation

Let {Yk = (Y1k, Y2k, . . . , Ynk)
⊤ : k = 1, . . . ,m} be a multivariate random sample of

size m from Y ∼ EUGSEn(µ,Σ,λ, τ, g
(n)) with joint PDF as given in (3.1.9), and let yk =

(y1k, y2k, . . . , ynk)
⊤ be a realization of Yk. To obtain the maximum likelihood estimates (MLEs)

of the model parameters with parameter vector θ = (µ,Σ,λ, τ)⊤, we maximize the following
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log-likelihood function

ℓ(θ) =
m∑
k=1

log(fX(yG,k)) +
m∑
k=1

log(FELL1(λ
⊤(yG,k − µ) + τ ; 0, 1, gq(yG,k)))

−m log(FELL1(τ ; 0, 1 + λ
⊤Σλ, g(1))) +

m∑
k=1

n∑
i=1

log(G′
i(yik)),

where yG,k = (G1(y1k), . . . , Gn(ynk))
⊤. As X ∼ ELLn(µ,Σ, g

(n)), by (3.1.3), the log-
likelihood function (without the additive constant) is written as

ℓ(θ) =
m

2
log(|Σ−1|) +

m∑
k=1

log(g(n+1)((yG,k − µ)⊤Σ−1(yG,k − µ)))

+
m∑
k=1

log

(∫ λ⊤(yG,k−µ)+τ

−∞
g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

)

−
m∑
k=1

log(g(1)((yG,k − µ)⊤Σ−1(yG,k − µ)))

+
m

2
log(1 + λ⊤Σλ)−m log

(∫ τ

−∞
g(1)

(
s2

1 + λ⊤Σλ

)
ds

)
.

The likelihood equations are given by

∂ℓ(θ)

∂µ
= 0n×1,

∂ℓ(θ)

∂Σ−1
= 0n×n,

∂ℓ(θ)

∂λ
= 0n×1,

∂ℓ(θ)

∂τ
= 0.

In what follows we determine ∂ℓ(θ)/∂µ, ∂ℓ(θ)/∂Σ−1, ∂ℓ(θ)/∂λ and ∂ℓ(θ)/∂τ . Indeed, by
using the identities

∂a⊤x

∂x
= a⊤,

∂x⊤Ax

∂x
= 2Ax,

∂x⊤Ax

∂A
= xx⊤,

∂x⊤A−1x

∂A
= −A−⊤xx⊤A−⊤,

∂ log(|A|)
∂A

= A−⊤,

withA being a n× n invertible matrix and x an n-dimensional vector, we have
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(i)

∂ℓ(θ)

∂µ
= −2Σ−1

m∑
k=1

(yG,k − µ)
[g(n+1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))
g(n+1)((yG,k − µ)⊤Σ−1(yG,k − µ))

− λ⊤
m∑
k=1

g(2)([λ⊤(yG,k − µ) + τ ]2 + (yG,k − µ)⊤Σ−1(yG,k − µ))∫ λ⊤(yG,k−µ)+τ

−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

− 2Σ−1

m∑
k=1

(yG,k − µ)
∫ λ⊤(yG,k−µ)+τ

−∞ [g(2)]′(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds∫ λ⊤(yG,k−µ)+τ

−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

+ 2Σ−1

m∑
k=1

(yG,k − µ)
[g(1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))
g(1)((yG,k − µ)⊤Σ−1(yG,k − µ))

,

(ii)

∂ℓ(θ)

∂Σ−1
=
m

2
Σ+

m∑
k=1

(yG,k − µ)(yG,k − µ)⊤
[g(n+1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))
g(n+1)((yG,k − µ)⊤Σ−1(yG,k − µ))

+
m∑
k=1

(yG,k − µ)(yG,k − µ)⊤
∫ λ⊤(yG,k−µ)+τ

−∞ [g(2)]′(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds∫ λ⊤(yG,k−µ)+τ

−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

−
m∑
k=1

(yG,k − µ)(yG,k − µ)⊤
[g(1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))
g(1)((yG,k − µ)⊤Σ−1(yG,k − µ))

− m

2

Σλλ⊤Σ

1 + λ⊤Σλ
−m

Σλλ⊤Σ

(1 + λ⊤Σλ)2

∫ τ

−∞ s2 [g(1)]′
(

s2

1+λ⊤Σλ

)
ds∫ τ

−∞ g(1)
(

s2

1+λ⊤Σλ

)
ds

,

(iii)

∂ℓ(θ)

∂λ
=

m∑
k=1

(yG,k − µ)
g(2)([λ⊤(yG,k − µ) + τ ]2 + (yG,k − µ)⊤Σ−1(yG,k − µ))∫ λ⊤(yG,k−µ)+τ

−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

+m
Σλ

1 + λ⊤Σλ
+ 2m

Σλ

(1 + λ⊤Σλ)2

∫ τ

−∞ s2[g(1)]′
(

s2

1+λ⊤Σλ

)
ds∫ τ

−∞ g(1)
(

s2

1+λ⊤Σλ

)
ds

,
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(iv)

∂ℓ(θ)

∂τ
=

m∑
k=1

g(2)([λ⊤(yG,k − µ) + τ ]2 + (yG,k − µ)⊤Σ−1(yG,k − µ))∫ λ⊤(yG,k−µ)+τ

−∞ g(2)(s2 + (yG.k − µ)⊤Σ−1(yG,k − µ))ds

−m
g(1)
(

τ2

1+λ⊤Σλ

)∫ τ

−∞ g(1)
(

s2

1+λ⊤Σλ

)
ds
.

No closed-form solution to the maximization problem is available. As such, the maximum
likelihood (ML) estimator of θ, denoted by θ̂, can only be obtained via numerical optimiza-
tion. If I(θ0) denotes the expected Fisher information matrix, where θ0 is the true value of the
population parameter vector, then, under well-known regularity conditions (Davison, 2008), it
follows that

√
m[I(θ0)]

1/2(θ̂ − θ0)
d−→ N(0(n+1)2×1, I(n+1)2×(n+1)2), as m→ ∞,

where 0(n+1)2×1 is the (n + 1)2× zero vector, and I(n+1)2×(n+1)2 is the (n+ 1)2 × (n+ 1)2

identity matrix. Since the expected Fisher information can be approximated by its observed
version (obtained from the Hessian matrix), we can use the diagonal elements of this observed
version to approximate the standard errors of the ML estimates.

No closed-form solution to the maximization problem is available. As such, the maximum
likelihood (ML) estimator of θ, denoted by θ̂, can only be obtained via numerical optimization.
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Chapter 4

Simulation study and Applications

This chapter deals with simulation and application aspects of the family of distributions
presented in the previous chapter. Simulation studies and the application of the model to real
data are proposed. The simulation study was performed with versions of the probability density
function representing the distribution of the data from the model. Maximum likelihood estima-
tion was used in conjunction with the Monte Carlo algorithm. The analyzes used to evaluate
the parameter estimates were relative bias and mean square error. To better illustrate the results,
plots showing the behavior of these two metrics for each of the parameters are presented. In ad-
dition, several functions were provided to perform the simulation study. A small representative
selection of these functions is presented in the main body of the text, while the others can be
found in the appendix of this work.

The application to real data was performed with a real data set from the R software. The
descriptive statistics of the data is presented and commented on. Two density functions derived
from the model are then fitted and the fit is evaluated using some metrics, which are briefly
presented and discussed. After discussing the data, it is indicated which distribution best fits the
data set based on the criteria considered and the G functions chosen for the model. Finally, con-
clusions regarding the application of the data and the estimation of the parameters are presented
within a general perspective of the developed work.

4.1 Monte Carlo simulation

In this section, a simulation study is conducted for evaluating the performance of the maxi-
mum likelihood estimators. The simulation study considers the estimation of model parameters
in the bivariate case. Different sample sizes and parameter settings using the extended unit-G-
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skew-normal distribution were evaluated.

The performance and recovery of the maximum likelihood estimators are evaluated by
means of the relative bias (RB) and the root mean square error (RMSE), given by

R̂B(θ̂) =
1

N

N∑
i=1

∣∣∣∣∣(θ̂(i) − θ)

θ

∣∣∣∣∣ , R̂MSE(θ̂) =

√√√√ 1

N

N∑
i=1

(θ̂(i) − θ)2,

where θ and θ̂(i) are the true parameter value and its i-th estimate. The simulation scenario was
configured as follows: the sample size varies between n ∈ {200, 500, 1000, 2000}, with the true
parameters defined as

(µ1, µ2, λ1, λ2, τ, σ1, σ2)
⊤ = (1, 1, 0.5, 0.6, 0.5, 1, 1)⊤,

and ρ assuming values {0.10, 0.25, 0.50, 0.75, 0.90}. In all cases 100 Monte Carlo replications
were performed for each configuration. In the simulation study, two specific functions were
used, as detailed in Table 3.1: Gi(x) = tan ((x− 1/2)π); Gi(x) = log (x3/(1− x3)); Gi(x) =

log (x5/(1− x5)).

The numerical methods used to estimate the parameters were the Nelder-Mead and BFGS
optimization methods. The Nelder-Mead method is a widely used technique for numerical
optimization, especially effective in minimizing unconstrained nonlinear functions. Its main
advantage is that it does not require the calculation of derivatives, making it ideal for situa-
tions in which these are unknown or difficult to obtain. Belonging to the class of direct search
methods, Nelder-Mead is based exclusively on evaluations of the function to be minimized.

The method operates with the concept of simplex, which can be understood graphically as
a geometric figure formed by n+ 1 vertices in a space of n dimensions. In two dimensions, the
simplex is a triangle; in three, a tetrahedron; and, in higher dimensions, it follows the same logic.
The core of the algorithm consists of iteratively adjusting the shape and position of this simplex
to locate the minimum point of the function. At each iteration, the function is evaluated at the
vertices of the simplex, and geometric operations such as reflection, expansion, and contraction
are applied to guide the simplex toward the minimum (Mathews and Fink, 2004).

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is a widely used numerical opti-
mization technique for minimizing nonlinear differentiable functions. It belongs to the class
of quasi-Newton methods, which seek to approximate the solution of equations derived from
gradient-based methods. Its main objective is to find the minimum of a function without having
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to directly calculate the Hessian matrix, which contains the second derivatives of the objective
function. BFGS uses objective function gradient information to iteratively construct an approxi-
mation of the inverse Hessian matrix, which is crucial for determining the most efficient descent
direction. The traditional Newton method requires the exact inverse of the Hessian, which can
be computationally expensive or even infeasible for high-dimensional functions. BFGS, in turn,
builds an updated approximation of the inverse of the Hessian at each iteration, based on the
differences between the gradients of consecutive points (Nocedal and Wright, 1999).

Figures 4.1–4.6 show maximum likelihood estimation results considering the BFGS
method. In general, for both optimization methods it was possible to observe the same patterns,
with little or almost no difference in the results observed. From this figures, it is possible to
observe a clear convergence of the RB towards zero for all parameters as sample sizes increase.
This pattern is also evident when analyzing the RMSE, indicating a decrease in the correspond-
ing variance as the sample size increases. From Figure 4.4, it is observed that the RMSE of λ̂1
does not consistently decrease across all possibilities for ρ. Several factors may influence this
behavior, such as the sample size, the number of iterations, or the inverse transformation G−1

i

used.
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Figure 4.1: Relative bias for G−1
i (x) = 1

2
+ arctan(x)

π
.
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Figure 4.2: Root mean squared error for G−1
i (x) = 1
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Figure 4.3: Relative bias for G−1
i (x) =

[ exp(x)
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Figure 4.4: Root mean squared error for G−1
i (x) =

[ exp(x)
1+exp(x)

] 1
3 .

It is important to note that, when τ = 0 the model is simplified, allowing estimates to be
obtained that characterize a particular case. This simplified model can be useful in situations
where the generalization parameter does not need to be considered. Simulation studies were
also carried out to evaluate the quality of parameter estimation in this context. The results of
these simulations are attached to this work.
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Figure 4.5: Relative bias for G−1
i (x) =

[ exp(x)
1+exp(x)

] 1
5 .

74



§4.1. Monte Carlo simulation

500 1500

0.
5

1.
0

1.
5

2.
0

2.
5

n

R
M

S
E

µ̂1(ρ = 0.1)
µ̂1(ρ = 0.25)
µ̂1(ρ = 0.5)
µ̂1(ρ = 0.75)
µ̂1(ρ = 0.9)

500 1500

0.
5

1.
0

1.
5

2.
0

2.
5

n

R
M

S
E

µ̂2(ρ = 0.1)
µ̂2(ρ = 0.25)
µ̂2(ρ = 0.5)
µ̂2(ρ = 0.75)
µ̂2(ρ = 0.9)

500 1500

0
5

10
15

20
25

n

R
M

S
E

λ̂1(ρ = 0.1)
λ̂1(ρ = 0.25)
λ̂1(ρ = 0.5)
λ̂1(ρ = 0.75)
λ̂1(ρ = 0.9)

500 1500

0
5

10
15

20

n

R
M

S
E

λ̂2(ρ = 0.1)
λ̂2(ρ = 0.25)
λ̂2(ρ = 0.5)
λ̂2(ρ = 0.75)
λ̂2(ρ = 0.9)

500 1500

0.
1

0.
2

0.
3

0.
4

n

R
M

S
E

τ̂(ρ = 0.1)
τ̂(ρ = 0.25)
τ̂(ρ = 0.5)
τ̂(ρ = 0.75)
τ̂(ρ = 0.9)

500 1500

0
10

20
30

40
50

n

R
M

S
E

σ̂1(ρ = 0.1)
σ̂1(ρ = 0.25)
σ̂1(ρ = 0.5)
σ̂1(ρ = 0.75)
σ̂1(ρ = 0.9)

500 1500

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

n

R
M

S
E

σ̂2(ρ = 0.1)
σ̂2(ρ = 0.25)
σ̂2(ρ = 0.5)
σ̂2(ρ = 0.75)
σ̂2(ρ = 0.9)

500 1500

0.
1

0.
2

0.
3

0.
4

n

R
M

S
E

ρ̂(ρ = 0.1)
ρ̂(ρ = 0.25)
ρ̂(ρ = 0.5)
ρ̂(ρ = 0.75)
ρ̂(ρ = 0.9)
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4.2 Application to real data

In this section, we illustrate the proposed model and the inferential method using real data on
fertility and socioeconomic indicators for each of Switzerland’s 47 French-speaking provinces
in 1888. This data set is called swiss and is available in the R software. The aim of the study
was to explore the relationships between fertility (measured as the birth rate) and several other
socioeconomic variables in 47 districts. The variables contained in the dataset are:

• Fertility: Fertility rate (average number of births per 1000 women).

• Agriculture: Percentage of men involved in agricultural activities.

• Examination: Percentage of military draftees draftees who received a high score on apti-
tude exams.

• Education: Percentage of men with education beyond primary education.

• Catholic: Percentage of Catholics (as a measure of religion and tradition).

• Infant.Mortality: Infant mortality rate (number of baby deaths per 1000 live births).

For the application presented here, the variables Education and Agriculture were considered.
The data can be found at Swiss Fertility and Socioeconomic Indicators (1888).

Table 4.1 presents the descriptive statistics of the two variables: Education and Agriculture,
both with a set of 47 observations. For the Education variable, it is observed that the minimum
value recorded is 0.010, while the maximum reaches 0.530, with a median of 0.080 and an
average of 0.1098. The dispersion of the Education data is reflected by the standard deviation
(SD) of 0.0962, which suggests considerable variation in relation to the mean. This is further
evidenced by the coefficient of variation (CV) of 87.5822, indicating a high relative variability
of the data. Positive skewness, with a skewness coefficient (CS) of 2.3428, suggests that the data
distribution is skewed to the right, which is reinforced by the kurtosis coefficient (CK) of 6.5414,
indicating a more elongated distribution with heavy tails. Considering the Agriculture variable,
the minimum value is 0.012 and the maximum is 0.897, with a median of 0.541, very close
to the average of 0.5066, which suggests a more balanced distribution. The standard deviation
is higher, 0.2271, reflecting greater data dispersion compared to Education. The coefficient of
variation is 44.8311, less high than that of Education, suggesting less relative variability. The
Agriculture distribution presents negative skewness, with an asymmetry coefficient of -0.3309,

76

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/swiss.html


§4.2. Application to real data

Variables n Minimum Median Mean Maximum SD CV CS CK
Education 47 0.010 0.08 0.11 0.53 0.096 87.58 2.33 6.54
Agriculture 47 0.012 0.54 0.51 0.90 0.230 44.83 -0.33 -0.79

Table 4.1: Summary statistics.

indicating a slight leftward bias. The negative kurtosis coefficient (-0.7926) suggests a flatter
distribution with lighter tails, in contrast to the more elongated distribution of Education.

The extended unit-G-skew-normal and extended unit-G-skew-Student-t distributions were
used to fit the data. The model parameters were estimated according to the methodology pre-
sented in Section 3.3 – for simplification purposes τ was set to zero. The estimation of the ν
parameter of the extended unit-G-skew-Student-t distribution was carried out by using the pro-
file likelihood method. First, an initial grid of values was defined for ν ∈ {1, 2, . . . , 50}, then
for each fixed value of ν it is computed the maximum likelihood estimates of the remaining pa-
rameters and also the log-likelihood function. The final estimate of ν is the one that maximizes
the log-likelihood function and the associated estimates of the remaining parameters are then
the final ones (see Saulo et al., 2021).

Tables 4.2-4.5 report the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests, the
maximum likelihood estimates, and the standard errors for the extended unit-G-skew-normal
and extended unit-G-skew-Student-t distributions. Moreover, Figures 4.7-4.22 display the
quantile versus quantile (QQ) plots of the randomized quantile (Saulo et al., 2022b) residu-
als for these models. From these results, we observe that the extended unit-G-skew-normal
model provides better adjustment compared to the unit-G-skew-Student-t model. Note that the
results of the QQ plots indicate that Gi(x) = log( x

1−x
) shows better agreement with the ex-

pected standard normal distribution; note also that the p-values of the KS and AD tests favor
the extended unit-G-skew-normal with Gi(x) = log( x

1−x
).

77



cap. 4. Simulation study and Applications §4.2. Application to real data

Table 4.2: KS and AD test results.

Extended unit-G-skew-Student-t

Gi(x) p-value.KS p-value.AD

tan
(
π
(
x− 1

2

))
0.18 0.08

log
(

x3

1−x3

)
0.18 0.07

log
(

x5

1−x5

)
0.18 0.02

log(− log(1− x)) 0.17 0.03
2
π
ln
(
tan(π

2
x)
)

0.18 0.03

1− log(− log(x)) 0.18 0.04

log
(
log
(

1
−x+1

)
+ 1
)

0.00 0.00

log
(

x
1−x

)
0.16 0.03

Table 4.3: KS and AD test results.

Extended unit-G-skew-normal

Gi(x) p-value.KS p-value.AD

tan
(
π
(
x− 1

2

))
0.03 0.01

log
(

x3

1−x3

)
0.23 0.03

log
(

x5

1−x5

)
0.23 0.04

log(− log(1− x)) 0.35 0.03
2
π
ln
(
tan(π

2
x)
)

0.35 0.06

1− log(− log(x)) 0.35 0.06

log
(
log
(

1
−x+1

)
+ 1
)

0.00 0.00

log( x
1−x

) 0.35 0.05

78



§4.2. Application to real data

Table 4.4: Parameters estimates (with standard errors in parentheses).

Extended unit-G-skew-Student-t
Gi(x) µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂ ν̂

tan(π(x− 1
2
)) -1.63 -0.06 -2.23 -2.72 3.77 0.85 -0.31 2

(0.41) (0.27) (0.94) (1.57) (0.87) (0.14) (0.30) -

log
(

x3

1−x3

)
-4.68 -4.10 -0.65 -0.10 4.53 4.01 -0.88 31

(1.04) (1.67) (0.29) (0.28) (1.96) (2.31) (0.13) -

log
(

x5

1−x5

)
-5.21 -8.19 -0.92 -0.20 10.45 6.89 -0.92 16

(1.56) (1.85) (0.87) (0.20) (3.28) (2.84) (0.06) -

log(− log(1− x)) -1.46 -0.61 -5.51 -3.22 1.34 0.90 -0.49 46

(0.22) (0.39) (3.05) (1.61) (0.11) (0.05) (0.28) -
2
π
ln(tan π

2
x)) -1.14 0.41 -7.45 -7.27 0.48 0.68 -0.38 11

(0.23) (0.27) (5.42) (4.37) (0.04) (0.14) (0.13) -

1− log(− log(x)) 0.08 1.52 0.39 -0.08 0.32 0.71 -0.67 15

(0.25) (0.51) (3.46) (1.91) (0.03) (0.08) (0.10) -

log(log( 1
−x+1

) + 1) 0.04 0.93 0.73 0.19 -0.10 0.46 0.76 23

(0.02) (0.06) (2.25) (0.32) (0.01) (0.01) (0.03) -

log( x
1−x

) -3.12 1.20 0.26 -1.06 1.18 1.72 -0.84 24

(0.40) (0.34) (1.15) (0.91) (0.34) (0.37) (0.10) -
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Table 4.5: Parameters estimates (with standard errors in parentheses).

Extended unit-G-skew-normal
Gi(x) µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂

tan(π(x− 1
2
)) -1.26 0.32 -2.75 -3.02 6.67 3.75 -0.14

(0.39) (0.51) (2.41) (3.80) (0.63) (0.35) (0.14)

log
(

x3

1−x3

)
-3.88 -4.36 -1.12 -0.42 6.18 4.90 -0.91

(0.12) (0.69) (0.44) (0.27) (1.47) (1.57) (0.06)

log
(

x5

1−x5

)
-5.40 -6.97 -2.02 -0.43 9.66 4.76 -0.78

(0.52) (0.96) (1.75) (0.33) (1.51) (0.78) (0.10)

log(− log(1− x)) -2.59 0.14 -0.62 -1.57 0.79 1.08 -0.58

( 0.70) (1.27) (0.90) (3.60) (0.07) (0.65) (0.06)
2
π
ln(tan π

2
x)) -1.52 0.64 -1.93 -3.45 0.57 0.95 -0.75

(0.20) (0.14) (2.58) (2.07) (0.10) (0.14) (0.14)

1− log(− log(x)) 0.34 1.01 -0.75 0.58 0.42 0.91 -0.78

(0.12) (0.49) (1.57) (1.61) (0.07) (0.23) (0.02)

log(log( 1
−x+1

) + 1) 0.06 0.93 -0.23 0.30 -0.17 0.87 0.88

(0.15) (0.79) (1.72) (5.11) (0.52) (3.58) (0.80)

log( x
1−x

) -2.36 0.02 -0.14 -0.12 0.89 1.21 -0.71

(1.05) (1.02) (3.02) (1.89) (0.09) (0.12) (0.02)
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Figure 4.7: Extended unit-G-skew-
Student-t with Gi(x) = tan

(
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Figure 4.8: Extended unit-G-skew-
normal withGi(x) = tan

(
(x− 1

2
)π
)
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Figure 4.9: Extended unit-G-skew-
Student-t with Gi(x) = log

(
x3

1−x3

)
.
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Figure 4.10: Extended unit-G-skew-
normal with Gi(x) = log

(
x3

1−x3

)
.
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Figure 4.11: Extended unit-G-
skew-Student-t with Gi(x) =

log
(

x5
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Figure 4.12: Extended unit-
G-skew-normal with Gi(x) =

log
(

x5

1−x5

)
.
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Figure 4.13: Extended unit-G-
skew-Student-t with Gi(x) =
log(log( 1

−x+1
) + 1).
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Figure 4.14: Extended unit-
G-skew-normal with Gi(x) =
log(log( 1

−x+1
) + 1).
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Figure 4.15: Extended unit-G-
skew-Student-t with Gi(x) =
2
π
ln(tan π

2
x)).
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Figure 4.16: Extended unit-
G-skew-normal with Gi(x) =
2
π
ln(tan π

2
x)).
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Figure 4.17: Extended unit-G-
skew-Student-t with Gi(x) = 1 −
log(− log(x)).
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Figure 4.18: Extended unit - G -
skew - normal with Gi(x) = 1 −
log(− log(x)).
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Figure 4.19: Extended unit-G-
skew-Student-t with Gi(x) =
log(− log(1− x)).
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Figure 4.20: Extended unit-
G-skew-normal with Gi(x) =
log(− log(1− x)).
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Figure 4.21: Extended unit-G-
skew-Student-t with Gi(x) =
log( x

1−x
).
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Figure 4.22: Extended unit-
G-skew-normal with Gi(x) =
log( x

1−x
).
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Considering that the function Gi(x) = log( x
1−x

) based on the normal model presented the
best results in terms of fit, one now can compute the estimated CDF given the observed data:
see Table 4.6. From this table, it is observed an inverse relationship between the percentage of
men with education beyond primary level and involvement in agriculture. Regions with a high
percentage of men involved in agriculture tend to have a low percentage of education and vice
versa. This is evident in the high values of Agriculture, which generally correspond to low
values of Education (Line 7: 7% education, 70.2% agriculture; Line 45: 53% education, 1.2%
agriculture). There are some cases in the data that have a high percentage of education, such as
row 45, which has 53% education and one of the lowest values of men in agriculture (1.2%).
These cases may be related to more urbanized regions or with broader access to education.
Several observations have the percentage of agriculture above 60%, suggesting that a significant
portion of the population still depends on the agricultural sector, despite there being variations
in education rates.

Table 4.6: Estimated probabilities.

Education Agriculture CDF_values
0.12 0.17 0.01
0.09 0.45 0.11
0.05 0.40 0.02
0.07 0.36 0.03
0.15 0.43 0.23
0.07 0.35 0.03
0.07 0.70 0.22
0.08 0.68 0.25
0.07 0.53 0.10
0.13 0.45 0.21
0.06 0.64 0.13
0.12 0.62 0.35
0.07 0.68 0.20
0.12 0.61 0.34
0.05 0.69 0.11
0.02 0.73 0.01
0.08 0.34 0.04
0.28 0.19 0.09
0.20 0.15 0.03
0.09 0.73 0.34
0.10 0.60 0.26
0.03 0.55 0.01
0.12 0.51 0.24
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Education Agriculture CDF_values
0.06 0.54 0.08
0.01 0.71 0.00
0.08 0.58 0.17
0.03 0.64 0.02
0.10 0.61 0.27
0.19 0.27 0.11
0.08 0.49 0.11
0.02 0.86 0.02
0.06 0.85 0.27
0.02 0.90 0.03
0.06 0.78 0.22
0.03 0.65 0.02
0.09 0.76 0.37
0.03 0.85 0.07
0.13 0.63 0.40
0.12 0.38 0.13
0.11 0.08 0.00
0.13 0.17 0.02
0.32 0.18 0.08
0.07 0.38 0.04
0.07 0.19 0.00
0.53 0.01 0.00
0.29 0.47 0.42
0.29 0.28 0.18
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Concluding Remarks

Based on the studies developed in this work, it was possible to observe that the model,
despite having a considerable level of complexity, also presents a high degree of versatility.
Depending on the configuration of its parameters, the model can take other forms, which have
already been discussed in previous publications. The model introduces innovations by con-
sidering transformations or generic functions in the density function, in addition to adding a
generalization parameter, which can significantly influence the data fit.

Invertible and differentiable functions with domains in the open interval (0, 1) proved to be
fundamental for defining relevant properties, such as marginal quantiles and moments. Through
these functions, it was possible to observe, for example, that the moments established for the
density function are necessarily finite, which could be different when considering functions with
different domains. It is important to highlight that a way of defining the functions that can be
used was presented, which is based on the consideration of functions such as the accumulated
functions of continuous probability distributions, where the corresponding derivative is a known
density function and its inverse can be obtained through algebraic manipulations. Furthermore,
from the deduction of relevant mathematical properties, it was possible to observe that the model
contributes significantly to the theory of probability distributions, and can be fundamentally
used in the treatment of asymmetric data. Now considering the computational aspects, it was
possible to estimate parameters using the maximum likelihood function, jointly employing the
Monte Carlo algorithm, through which all model parameters were estimated. From the model
presented in this work, it was also possible, through computational implementation, to observe
that, as the sample size increased and the interactions in the Monte Carlo algorithm were carried
out, the relative bias and the mean squared error decreased. significantly, showing convergence
towards zero. This indicates a reliable fit of the estimated parameters with respect to the original
parameter values. Still through computation, it was possible to apply the model to real data, in
which the data set was used in two distribution functions. The application has favored the use
of the extended unit-G-skew-normal model over the unit-G-skew-Student-t model.
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Appendix A

Shape of distribuitions

Next, we will present the graphs of the density functions for the distributions of Extended
unit-G-skew-Cauchy and Extended unit-G-skew-Student-t. For both graphs, we used the same
parameters in data simulation, with a degree of freedom value ν = 10 in Extended unit-G-
skew-Student-t. The values of the reinforced partnerships were: µ = (2, 3)⊤; λ = (0.5, 0.6)⊤;

σ1 = 1; σ2 = 1; ρ = 0.5; τ = 10
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Figure A.1: Extended unit-G-skew-Cauchy density function with G−1
i (x) = (1/2) +

arctan(x)/π.
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Figure A.2: Extended unit-G-skew-Student-t density function with G−1
i (x) = (1/2) +

arctan(x)/π.
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Appendix B

Monte Carlo simulation

This appendix presents the results of parameter estimation considering τ = 0. When the
parameter τ takes this value, the configuration of the density function of the Extended unit-G-
skew distribution is simplified, resulting in a more direct expression. Depending on the choice
of the Gi function, this density function may coincide with an already known expression. A
specific example occurs when λ = 0, τ = 0, G1(x) = G2(x) = log(− log(1− x)), 0 < x < 1,

and n = 2, we obtain the bivariate unit model studied in reference (Vila et al., 2023b). For
this case, we only consider the fixed parameter τ , and perform iterations varying the number of
samples in a range of 100 to 1000.
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Figure B.1: Relative bias for and root mean squared error for G−1
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Figure B.2: Relative bias for and root mean squared error for G−1
i (x) =
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Figure B.3: Relative bias for and root mean squared error for G−1
i (x) =
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exp(x)

1+exp(x)
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Figure B.4: Relative bias for and root mean squared error for G−1
i (x) = x−2
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