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Resumo Expandido

Melhorando a Acurácia por meio de um Ensemble Eficiente de Redes Neurais em Grafos com

Codificadores Posicionais Ajustados Geograficamente

A presente pesquisa investiga uma nova abordagem para melhorar a precisão preditiva e

a capacidade de generalização de redes neurais em grafos (Graph Neural Networks - GNNs)

aplicadas a dados espaciais. Dados espaciais oferecem insights valiosos sobre fenômenos ge-

ográficos e relações espaciais, apresentando desafios únicos que requerem metodologias analíti-

cas dedicadas. Características como autocorrelação espacial, heterogeneidade espacial e não-

estacionaridade espacial dificultam a aplicação de técnicas convencionais de aprendizado de

máquina, que geralmente assumem a independência dos pontos de dados ou relações lineares.

Baseados no algoritmo estado da arte para regressão em dados espaciais proposto por (Klem-

mer, Safir, and Neill, 2023), as inovações propostas nesta pesquisa são as seguintes: primeira-

mente, introduzimos uma Função de Perda Ponderada, que implementa um mecanismo de

ponderação na função de perda, permitindo que o modelo priorize o aprendizado de pontos

de dados com base em sua proximidade espacial. Em segundo lugar, é proposto a Escolha

Eficiente de Modelos Localizados, onde, baseados em mecanismos de clusterização, modelos

locais são criados reduzindo o número de modelos necessários e aumentando a eficiência com-

putacional. Em terceiro, é utilizado um Ensemble de Modelos Locais, combinando previsões
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dos múltiplos modelos localizados para suavizar erros e reduzir o impacto de imprecisões de

qualquer modelo individual. Quarto, a Utilização de Pesos Pré-Treinados inicializa mode-

los locais com pesos de um modelo global previamente treinado, melhorando a eficiência do

treinamento e fornecendo uma base robusta. Por fim, introduzimos uma Matriz de Distância

com Redução Dimensional, que usa distâncias entre clusters em vez de entre todos os pontos,

simplificando a carga computacional.

Para avaliar a eficácia da abordagem proposta, utilizamos dois conjuntos de dados reais

que contêm informações geográficas. O primeiro é o California Housing, que inclui preços

de mais de 20.000 casas na Califórnia, coletados a partir do censo dos EUA de 1990 e com

objetivo de previsão dos preços das casas com base em características como idade da casa e

número de quartos, além de suas localizações geográficas. O segundo conjunto de dados é o Air

Temperature, que contém coordenadas de 3.000 estações meteorológicas ao redor do mundo.

Neste caso, a tarefa de regressão é prever as temperaturas médias a partir da precipitação média

e da localização das estações.

A função de perda ponderada, que prioriza o aprendizado a partir de pontos de dados com

base em sua proximidade espacial, mostrou-se eficaz em melhorar a sensibilidade às variações

locais, aumentando significativamente o desempenho do modelo para o conjunto de dados Air

temperature. Além disso, a análise de sensibilidade revelou que aumentar o número de clusters

ou a largura de banda geralmente melhora a precisão do modelo, mas até certo ponto, após

o qual as melhorias se estabilizam ou diminuem. Esses achados indicam que a simples ele-

vação desses parâmetros sem considerar suas interações pode resultar em resultados subótimos,

destacando a necessidade de métodos mais sofisticados para a seleção desses valores.

Palavras-chave: Dados geográficos, Redes Neurais em Grafos, Função de Perda Ponderada
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Abstract

Spatial data analysis presents unique challenges due to the inherent properties of spatial au-

tocorrelation, heterogeneity, and non-stationarity. Traditional approaches often struggle with

these complexities, leading to models that either underfit or misinterpret spatial dynamics. This

work introduces an innovative approach to enhance the predictive power and generalizability of

spatial data models by integrating localized modeling techniques with the advanced capabilities

of Graph Neural Networks (GNNs).

Our method incorporates the clustering of geographical coordinates to train localized mod-

els effectively. This approach leverages the strength of GNNs to capture and utilize complex

spatial relationships. By segmenting the data into clusters, we create localized models that learn

from specific spatial contexts, aiming to improve model accuracy and performance.

We introduce a novel weighted loss function that prioritizes geographical proximity between

clusters. Additionally, we employ pre-trained weights from a global model to initialize these

localized models, which speeds up the training process and gives the models a comprehensive

understanding of spatial relationships before adjusting them to fit specific local data.

This work contributes to the field of spatial data analysis by providing a scalable, efficient,

and effective framework for modeling complex spatial relationships.
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Chapter 1

Introduction

1.0.1 Contextualization

Spatial data offers invaluable insights into geographic phenomena and spatial relationships.

Unlike traditional datasets, spatial data contains information about where things are and what

shape they have. It is a way of describing things in the real world in terms of their position,

like their latitude and longitude, and their form, which could be points (specific locations), lines

(like roads or rivers), or areas (like the boundary of a city or a lake). It is critical in many fields,

from urban planning and environmental science to public health and logistics. However, the

inherently distinct nature of spatial data introduces specific complexities that require dedicated

analytical methodologies.

When working with spatial data, we must deal with a number of unique characteristics

that distinguish it from other types of data. One of the most significant of these is spatial

autocorrelation. This principle, also known as Tobler’s First Law of Geography (Tobler, 1970),

asserts that points closer in space are more likely to exhibit similar values than points that are

further apart. This can create complications for conventional statistical learning techniques and

machine learning algorithms which typically operate under the assumption that data points are

independent of one another. In cases where spatial autocorrelation is present, this assumption
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is invalidated, which can lead to biased estimates.

Spatial heterogeneity and spatial nonstationarity (Bivand et al., 2008) are other important

concepts in geographical data analysis, though they address different aspects of spatial vari-

ation. Spatial heterogeneity refers to the variability in relationships between variables across

different geographical locations. For instance, the impact of population density on air pollution

may vary between urban and rural areas. This variability challenges traditional statistical mod-

els which often assume that relationships observed in one geographical area apply universally.

On the other hand, spatial nonstationarity deals with changes in the statistical properties of a

process, such as mean and variance, over space. This concept is crucial when statistical charac-

teristics are expected to remain constant across different locations, which is often not the case.

For example, assuming a constant average temperature across a country could lead to inaccura-

cies in models that do not account for regional differences. Meaning, nonstationarity requires

models that can adapt their parameters to accommodate specific geographical variations. This

complexity necessitates advanced modeling techniques that can adapt to such diversity in data

characteristics.

Spatial data can be efficiently viewed, stored, and analyzed as a graph (Nikparvar and Thill,

2021). Their intrinsic structure, composed of nodes and edges, allows for a direct and intuitive

representation of real-world phenomena (Veličković, 2023). Nodes in a graph can depict various

spatial elements: cities, landmarks, individual buildings, etc. While edges can express the

relationships or connections between these entities, whether they are physical pathways like

roads or railways, or abstract connections like trade routes or social links.

As we see, the graph structure provides a natural way to capture spatial autocorrelation, as

the proximity of the nodes in the graph can represent their geographical closeness. This makes

them particularly suitable for spatial data analysis, where neighboring data points often exhibit

similar properties due to spatial auto-correlation.

In recent years, the field of machine learning has witnessed a significant rise in interest in the

application of Graph Neural Networks (GNNs) to solve complex problems in various domains,
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including spatial data-related tasks (Mai et al., 2020; Yin et al., 2019).

GNNs leverage the relationships between spatial entities, represented as graph structures, to

model spatial dependencies and uncover hidden patterns. They excel at handling the challenges

posed by spatial autocorrelation and heterogeneity, modeling complex, variable relationships

across different geographical locations. This characteristic of GNNs to incorporate neighbor-

hood information and capture local spatial dependencies makes them particularly valuable in

addressing spatial non-stationarity. They deliver locally adaptive models that can account for

the changing relationships between variables across geographic space.

A novel advancement called PE-GNN (Klemmer, Safir, and Neill, 2023) has emerged, of-

fering an innovative way to overcome some inherent challenges in traditional GNNs, unlike

conventional GNNs, which often rely on Euclidean distances to construct the input graphs.

PE-GNN introduces a new framework that incorporates spatial context and correlation into the

modeling process in two big tasks: (1) learns a context-aware vector encoding of the geographic

coordinates, and (2) predicts spatial autocorrelation in the data while also handling the main

task. This method improves our understanding of space by identifying and responding to the

complex spatial structures found in real-world situations, providing a more flexible and detailed

way to represent spatial data.

1.0.2 Objectives

In this dissertation, a new method, Localized Ensemble Positional Encoder Graph Neural Net-

work (LEPE-GNN), aims to build a more flexible model using geographically localized models

based on clustering. By dividing the spatial data into clusters, each cluster can be treated as a

separate entity with its own model that captures local spatial relationships and variations. This

approach is based on PE-GNN and incorporates several innovations into its original structure

with the goal of performance improvement:

• Weighted Loss Function: A weighting mechanism within the loss function allows the
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model to prioritize learning from data points based on their spatial proximity, enhancing

the model’s sensitivity to local spatial correlations.

• Efficient Choice of Localized Model Locations: Instead of fitting a new model for

each point (resulting in N models), we can select a set of K locations based on prior

clustering. This method reduces the number of models we need to manage and enhances

computational efficiency.

• Ensemble of Local Models: Combining predictions from multiple localized models

trained on different clusters helps to smooth out errors and reduce the impact of inac-

curacies from any single model, leveraging diversity for improved prediction stability.

• Utilization of Pre-Trained Weights: Initializing local models with weights pre-trained

from a global model enhances training efficiency and provides a robust starting point that

encapsulates previously learned spatial relationships.

• Dimensionally Reduced Distance Matrix: Instead of considering the distance between

every pair of points (resulting in an n×n matrix), we use distances between clusters. This

reduces the distance matrix to a size of k×k, where k is much smaller than n, simplifying

the computational load.

1.0.3 Text Organization

The remainder of this dissertation is organized as follows: Chapter 2 reviews existing ap-

proaches to spatial data analysis and highlights the limitations of traditional GNNs. It also

discusses the innovations introduced by PE-GNNs and their potential pitfalls. Chapter 3 de-

scribes the LEPE-GNN method. Chapter 4 details the experimental setup, outlining the cluster-

ing methods, weighting mechanisms, and other parameters used in the experiments, the results

and discussion, analyzing the outcomes of the experiments, and discussing their implications

18
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for spatial data analysis. Chapter 5 concludes with a summary of the key findings and sug-

gestions for future research, providing a broader perspective on how localized models can be

further developed and applied.
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Chapter 2

Background

2.1 Graph Theory

Graphs are a fundamental structure in mathematics and computer science, represented using

two key components: nodes (or vertices) and edges. Mathematically, a graph G can be defined

as an ordered pair G = (V,E) where V is a set of vertices V = {v1, v2, ..., vn} and E is a set of

edges E = {e1, e2, ...em}, with each edge ek connecting a pair of vertices. The edges may be di-

rected, indicating a one-way relationship with an ordered pair of vertices (vi, vj), or undirected,

indicating a bidirectional relationship represented by an unordered pair {vi, vj}. Additionally,

graphs can be classified as weighted if each edge ek is assigned a weight wk, reflecting the

strength or cost of the connection. This mathematical framework allows for the representation

of a wide array of systems, from social networks and communication infrastructures to bio-

logical networks and transportation systems, making graphs a versatile tool for modeling and

analyzing complex relationships and structures (Barabási, 2016).

2.1.1 The Adjacency Matrix

In a graph, two vertices are said to be adjacent if there’s an edge directly connecting them.

Degree refers to the number of edges incident to a node.
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An adjacency matrix is a square matrix used to represent a graph. The matrix has dimensions

n × n, where n is the number of vertices in the graph. The elements of the matrix indicate

whether pairs of vertices are adjacent or not in the graph.

We define the adjacency matrix for a graph G with n vertices is denoted as A = [aij], where

1 ≤ i, j ≤ n. The matrix element aij is defined as follows:

aij =


1, if there is an edge from vertex i to vertex j

0, otherwise
. (2.1)

For an undirected graph, the adjacency matrix is symmetric, meaning aij = aji for all i, j

because if node i is adjacent to node j, then node j is also adjacent to node i. This symmetry

reflects the bidirectional nature of the connections in undirected graphs.

In the case of directed graphs, the adjacency matrix does not necessarily have to be sym-

metric, as the presence of an edge from i to j does not imply the presence of an edge from j to

i.

For a weighted graph, instead of using 1 to represent an edge, aij represents the weight of

the edge between vertices i and j. If this edge does not exists the value typically set to 0 or, in

some contexts, to a special value or infinity to denote the absence of an edge.

2.2 Graph Neural Networks

Traditional graph methods focus on extracting information directly from the graph’s structure,

leveraging mathematical and algorithmic approaches to identify key characteristics and rela-

tionships within the data. Some of the core methods used in traditional graph analysis are:

• Shortest Path Calculation: This involves finding the shortest paths between nodes in a

graph, which is fundamental in applications like routing and navigation.

• Centrality Measures: These metrics identify the most important vertices within a graph.
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• Clustering Coefficient: This measures the likelihood that two adjacent vertices of a vertex

are connected. It provides a sense of the clustering in the whole network and indicates

the degree to which nodes tend to cluster together.

However, these approaches have their limits due to the need for carefully hand-engineered

statistics (Cai, Zheng, and Chang, 2018).

Graph Neural Networks (GNNs) offer a more dynamic and scalable solution to represen-

tation learning in graphs. The core principle behind GNNs is to learn node representations

through iterative updating, where the representation of a node at each layer is refined by aggre-

gating and combining the features of its neighboring nodes along with its own current features

(Scarselli et al., 2008). This process allows GNNs to propagate and integrate information across

the network, capturing both local and global structural information. Unlike traditional methods

that operate with static features, GNNs adaptively learn the most relevant features for the task,

making them highly effective for a wide range of applications, from social network analysis to

bioinformatics and beyond (Hamilton, Ying, and Leskovec, 2017).

The functionality of GNNs can be explained through two main operations described by Wu

et al. (2022):

• Aggregate: This operation refers to the process of collecting information from the neigh-

bors of each node in the graph. This is crucial because the properties of a node in a

graph are often highly influenced by its neighbors. The aggregate function collects the

neighborhood information, creating a single output that encapsulates the overall context

of each node’s surroundings. It can involve simple operations like averaging or summing

the features of neighboring nodes, or more complex functions such as using convolution

operations or applying attention mechanisms.

• Combine: After the aggregate operation, the Combine operation is performed to update

the representation of each node based on the aggregated information. It integrates the

node’s previous representation and the aggregated neighborhood information to create a
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new, updated representation. The goal of the combine operation is to generate a com-

prehensive feature that contains information about the node itself as well as its relevant

context within the graph. This operation can be as simple as concatenation followed by

a linear transformation, or more complex mechanisms like gating or the application of

non-linear functions can be employed.

Formally, the general framework of graph neural networks can be defined:

akv = AGGREAGTEk{hk−1
u : u ∈ N(v)} (2.2)

hk
v = COMBINEk{hk−1

v , akv} (2.3)

where h
(k)
v is the feature vector of node v at the k-th layer. And h

(0)
v = X, and N(v) is the set

of neighbors for the v-th node.

After k iterations of aggregation, a node’s representation captures the structural information

within its k-hop network neighborhood (Xu et al., 2019). The node representation hk in the last

layer can be treated as the final node representation.

The choice of AGGREGATE(k)(.) and COMBINE(k)(.) determine different types of

GNN arctectures.

Graph Convolutional Networks (GCN) (Berg, Kipf, and Welling, 2017) generalize the con-

cept of convolution from grid data, such as images, to graph-structured data. The core idea

behind GCNs is to apply a convolutional operation on the graph, enabling each node to aggre-

gate features from its local neighborhood in a way that respects the structure of the graph. A

typical layer of a GCN can be represented as:

H(k+1) = σ(D̄− 1
2 ĀD̄− 1

2H(k)W(k)) (2.4)

Here, Hk is the matrix of node features at layer l, Ā = A + I is the adjacency matrix of the

graph A with added self-connections I, D̄ is the degree matrix of Ā, σ is a non-linear activation
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such as the ReLu, and W(k) are potentially learnable parameters. The GCN moel model can be

interpreted in terms of the Equations (2.2) and (2.3) as:

h(k)
v = σ

(
W(k) ·

∑
u∈N (v) h

(k−1)
u

|N (v)|
+B(k) · h(k−1)

v

)
, (2.5)

where we have the mean aggregation of v’s neighbour’s embeddings at step k − 1 linearly

concatenate with node v’s embedding at step k− 1 and W(k) and B(k) are potentially learnable

parameters.

Graph Attention Networks (GATs) (Veličković et al., 2017) are a type of Graph Neural

Network that leverage attention mechanisms to specify different weights to different nodes in

a neighborhood, allowing for more nuanced feature aggregation. The fundamental concept of

GAT is to assign varying levels of importance to the nodes in the local neighborhood of a central

node when aggregating their features, rather than treating all neighbors as equally important as

in others GNN models. Graph Attention Network (GAT), which uses attention weights to define

a weighted sum of the neighbors:

h(k)
v = σ

 ∑
u∈N (v)

αvuWhu

 (2.6)

where αvu denotes the attention on neighbor u ∈ N (v) when we are aggregating information at

node v. In the original GAT paper, the attention weights are defined as:

αvu =
exp

(
aT [Whv ⊕Whu]

)∑
u′∈N (v) exp (a

T [Whv ⊕Whu′ ])
, (2.7)

where a is a trainable attention vector, W is a trainable matrix, and ⊕ denotes the concatenation

operation.

The attention coefficients indicate the relevance of the neighboring nodes’ features to the

central node, and these coefficients are used to weight the features accordingly during aggrega-

tion.
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It is also possible to rewrite the GAT model in terms of Equations (2.2) and (2.3):

h(k)
v = σ(k)

W(k) ·

 ∑
u∈N (v)

α(k−1)
vu h(k−1)

u + α(k−1)
vv h(k−1)

v

 (2.8)

In this equation h
(k)
v is the feature vector of node v at iteration k, σ is a non-linear function,

such as an activation function, αvu is the attention coefficient between node v and node u. The

brackets are used to denote concatenation of the aggregated neighbors features (hu) and the

node’s own features (hv).

2.3 Positional Encoder

The Transformer architecture, first introduced by Vaswani et al. (2017), represents a signif-

icant shift in the design of natural language processing (NLP) models. This groundbreaking

approach moves away from traditional sequence-to-sequence models, focusing instead on self-

attention mechanisms to capture relationships within sequential data. By using multi-layered

stacks of attention modules, the Transformer architecture revolutionizes the way dependencies

are managed, especially over long sequences. The "attention" concept allows the model to

assign varying levels of importance to different elements in a sequence, providing a robust so-

lution to the long-range dependency issues commonly faced by recurrent models. Additionally,

the inclusion of positional encodings ensures the model can effectively process sequential or-

der, establishing the Transformer as a cornerstone in modern NLP and achieving state-of-the-art

results in various benchmarks.

Inspired by the Transformer architecture’s success, particularly in its application to geo-

graphical data (Mai et al., 2020), PE-GNN (Klemmer, Safir, and Neill, 2023) incorporates a

unique positional encoding (PE) comprising two key components: a sinusoidal transformation

and a fully-connected neural network (NN). The sinusoidal transformation is a deterministic

process that concatenates a series of sinusoidal functions, varying in frequency and scale, to
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create a comprehensive spatial representation. Given a matrix CB = [c1, ..., cnB
]T , containing

the spatial coordinates of a batch of data points, typically of dimension nB×2, where each coor-

dinate ci represents a latitude-longitude pair, the sinusoidal transformation is defined as shown

in Equation (2.9). It uses parameters σmin and σmax, which define the minimum and maximum

grid scales, and S , which indicates the number of grid scales considered.

ST (CB, σmin, σmax) =


ST0(CB, σmin, σmax)

. . .

STS−1(CB, σmin, σmax)

 , (2.9)

where

STs(CB, σmin, σmax) =

STs,1(CB, σmin, σmax)

STs,2(CB, σmin, σmax)

 , (2.10)

and

STs,v(CB, σmin, σmax) =

cos
(

C
[v]
B

σmin·gs/(S−1)

)
sin

(
C

[v]
B

σmin·gs/(S−1)

)
 , (2.11)

for all

s ∈ {0, . . . , S − 1}, v ∈ {1, 2}. (2.12)

The first component of this transformation separates spatial dimensions (latitude and longi-

tude) and handles them individually, while the second component, the fully connected NN,

processes the output of the sinusoidal transformation to produce a vector-space representa-
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tion. This transformation culminates in the coordinate embedding matrix, denoted as Cemb =

PE(CB, σmin, σmax,ΘPE), where ΘPE epresents the parameters of the fully-connected NN.

This embedding provides a critical spatial context for the PE-GNN model, allowing it to accu-

rately understand and predict based on geographical relationships.

2.4 Positional Encoder Graph Neural Network

The Positional Encoder Graph Neural Network (PE-GNN) model (Klemmer, Safir, and Neill,

2023) incorporates a positional encoder (PE) (Vaswani et al., 2017; Mai et al., 2020), designed

to learn a contextual embedding for point coordinates throughout the training process. This

approach is flexible and modular, designed for predictive modeling with geographical data. It

supports any GNN backbone and incorporates multiple innovations that enhance traditional

GNN methods when dealing with spatial data.

In traditional GNN approaches with geographical data, coordinates are mainly used to com-

pute distances for constructing a graph with a set number of nearest neighbors. Once this graph

is built, the traditional approach no longer utilizes spatial location. PE-GNN, on the other hand,

goes a step further. In addition to using coordinates to construct the graph, it learns a spatial

embedding through a PE. The PE processes Each pair of coordinates, producing a vector repre-

senting the spatial context. This vector is then concatenated with node features before applying

the GNN operator. For a given batch B of randomly sampled data points, the input to the first

GNN layer is:

H(0) = concat(X,Cemb), (2.13)

where X represents the node features and Cemb is the spatial embedding obtained from the PE.

The method also added an auxiliary task alongside the main task during training. While

traditional GNN approaches output the predicted target variable for each node, PE-GNN intro-

duces a parallel prediction task for Moran’s I, a measure of spatial autocorrelation (Klemmer
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and Neill, 2021). The Local Moran’s I is computed for the target variable yi, incorporating the

spatial context. This additional task provides further information to the model, improving its

learning process. The Local Moran’s I is given by

Ii = (n− 1) · (yi − ȳ)∑n
j=1(yj − ȳ)2

·
n∑

j=1,j ̸=i

ai,j · (yj − ȳ), (2.14)

where ȳ is the sample mean of y and ai,j ∈ A denotes adjacency of observations i and j.

The third innovation in PE-GNN lies in the batch-based training procedure. At each training

step, a random batch B of nodes is sampled, and the entire process of constructing the training

graph, generating spatial embeddings, concatenating with node features, and applying the GNN

operator is carried out using only this batch. This method helps minimize issues like Moran’s

I scale sensitivity by varying the neighborhood of each data point at every training step. Addi-

tionally, this strategy allows PE-GNN to learn a more generalizable spatial embedding because

a data point can have a different neighborhood in each training step. This approach contrasts

with the unsupervised method proposed by (Mai et al., 2020), with the PE being jointly learned

with the other parameters of PE-GNN.

The loss function used in PE-GNN is based on Mean Squared Error (MSE) and incorporates

the auxiliary task with a weight parameter λ. The loss is calculated using:

LB = MSE(ŷB, yB) + λ ·MSE(I(ŷB), I(yB)), (2.15)

where MSE(ŷB, yB) is the mean squared error between the predicted and actual target values,

and MSE(I(ŷB), I(yB)) accounts for the auxiliary task, with λ as its weight.

The positional encoding in PE-GNN involves creating spatial embeddings based on global

spatial relationships. This could introduce scale sensitivity, where the model’s performance

might vary depending on the spatial distribution of data or geographical scope.
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Chapter 3

Localized Ensemble Positional Encoder

Graph Neural Network

In this chapter, is described the Localized Ensemble Positional Encoder Graph Neural Network

(LEPE-GNN) method. All innovations are listed below and Algorithm 1 presents the step-by-

step procedure to train an ensemble of geographically localized models.

Considering a set of data points belonging to a training dataset Strain: pi = {yi, xi, ci} for

i = 1, ..., n where yi is the target value, xi are the features, ci are the geographical coordinates

associated with observation i.

3.1 Efficient Choice of Localized Model Locations

The first innovation is to cluster the geographical coordinates C using a Gaussian Mixture

Model (GMM) into a predefined number K of exhaustive and mutually exclusive zones. This

probabilistic model treats each cluster as a Gaussian distribution, and points are probabilistically

assigned to a cluster based on their geographical proximity. Then each point is associated with

a cluster label ki = 1, ..., K.
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3.2 Dimensionally Reduced Distance Matrix

The next step is to calculate the distances between the centroids of the clusters ki rather than

between every individual point. This approach significantly reduces the computational load by

constructing a manageable K × K distance matrix D where dj,m represents the great-circle

distance between centroid j and centroid m.

The great-circle distance is calculated as follows:

dj,m = r × θ, (3.1)

where r is the radius of the Earth and θ is the angular distance in radians, computed as:

θ = 2× arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1)× cos(ϕ2)× sin2

(
λ2 − λ1

2

))
, (3.2)

here, ϕ1 and ϕ2 are the latitudes of centroids j and m in radians, and λ1 and λ2 are the longitudes

of centroids j and m in radians. This method accurately accounts for the curvature of the Earth

and provides a precise measurement of the distance between points based on their geographical

coordinates.

Those distances are then used during the training stage in a custom loss function, our third

innovation.

3.3 Weighted Loss Function

Unlike traditional loss functions that consider all points equally, this function uses a weighting

mechanism to prioritize data points that are geographically closer to the cluster being trained.

This process involves the following:

Each point in a training dataset has an associated distance from its cluster centroid to the

centroid of the cluster being trained. These distances are normalized using a bandwidth parame-
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ter, which controls the influence range. The Epanechnikov kernel, a function that assigns higher

weights to points with smaller normalized distances, is then used to generate the weights. The

weight w for an observation i when training the model j is calculated as:

wi,j =


3
4
× (1− u2

i,j), if |ui,j| ≤ 1

0, otherwise
, (3.3)

where ui,j =
dmk,j

h
with dmk,j being the distance between the data point’s centroid and the

centroid of the cluster being trained, and h representing the bandwidth parameter. The band-

width affects how weights are distributed across the data points. A smaller bandwidth leads to

weights that decrease rapidly with distance, emphasizing closer points more strongly. A larger

bandwidth gives more uniform weights, reducing the impact of distance.

The loss function used to calculate the weighted mean squared error (WMSE) for a model

j is then defined as:

Lj =
1

N

N∑
i=1

wi,j × (yi − ŷi,j)
2, (3.4)

where wi,j is the weight derived from the Epanechnikov kernel based on the normalized dis-

tance, yi is the actual target value, and ŷi,j is the predicted value from the model j.

3.4 Utilization of Pre-Trained Weights

We can start the training with random weights or introduce a pre-trained global PE-GNN that

has already learned comprehensive spatial relationships across the entire dataset, out third inno-

vation. This pre-trained model serves as a foundational framework, providing a robust starting

point that encapsulates a broad understanding of spatial dynamics. By leveraging these pre-

trained weights, each localized model is equipped with an advanced baseline from which fur-

ther, more focused learning can occur. This approach accelerates the initial training phase, as
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Algorithm 1 Ensemble Model Training and Prediction
Require:

1: • Dataset S with target (y(n×1)), features (X(n×p)) and coordinates (C(n×2)) matrices

• Number of clusters K

• Bandwidth parameter h

• Number of training epochs (nE), the batch size (nB), and learning rate (α)
2: Split dataset S into training Strain and validation Svalidation sets.
3: Perform clustering on the training geographical coordinates using matrix Ctrain to create

K clusters.
4: Assign each data point of Strain and Svalidation to a cluster.
5: Compute the great-circle distances between all cluster centroids to create a K ×K matrix

Dcentroids.
6: Initialize a set of models MK individual PE-GNN models.
7: if A global model is provided then
8: Load the pre-trained weights for each model MK .
9: end if

10: for epoch from 1 to nE do
11: Sample minibatch B of nB datapoints: XB(nB×p), CB(nB×p), yB(nB×1).
12: for each model do
13: Compute weights wi,k for each data point in nB based on distances to the cluster

centroid of the model Mi and bandwidth parameter h.
14: Calculate the loss for the model using weighted mean squared error (MSE): Lk =

1
N

∑N
i=1 wi,k × (yi − ŷi,k)

2.
15: Perform gradient descent to update learner model parameters with learning rate α.
16: end for
17: Calculate ensemble predictions for the validation set Svalidation: ŷi,k =∑M

k=1wi,kŷi,k/
∑M

k=1wi,k.
18: Compute Svalidation mean squared error.
19: if early stopping condition is met then
20: Break the training loop to avoid overfitting.
21: end if
22: end for
23: Output: The ensemble model parameters Θ = θ1, . . . , θK ,Dcentroids
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the models begin with an informed perspective, reducing the time and computational resources

required to reach convergence.

3.5 Ensemble of Local Models

After each training round, the models are combined using an ensemble method (E) that gen-

erates predictions from each model and then calculates a weighted average to create a single

prediction for the ensemble. This weighted averaging process helps to smooth out errors and

reduce the impact of any single model’s inaccuracies by assigning more weight to closer models

in terms of their distance in the cluster.

Mathematically, if ŷi,j is the prediction from the jth model for the ith data point and wi,j

is the weight assigned to the jth model’s prediction, then the ensemble’s final prediction ŷi,j is

given by:

ŷi,j =

∑M
j=1 wi,j ŷi,j∑M
j=1wi,j

. (3.5)

The Mean Squared Error (MSE) metric is used to evaluate the performance of the ensemble.

Finally, a custom early-stopping strategy ensures that the models are trained just enough

to achieve optimal performance on the validation dataset without overfitting. This strategy

involves monitoring the Mean Squared Error (MSE) of the ensemble E on the validation dataset

after each training epoch. It records the best MSE observed and employs a patience parameter,

which determines the number of consecutive epochs without significant MSE improvement

(beyond a minimal δ threshold) before halting the training.

The method presented in this chapter combines clustering with advanced graph neural net-

work techniques to boost spatial data analysis. This approach leverages the similarities in ge-

ographical and feature characteristics shared between neighboring clusters, allowing models to

learn more robust and broadly applicable patterns.
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Chapter 4

Experimental Setup and Results

4.1 Experimental Setup

In this section, the experimental setup is designed to evaluate the performance of the proposed

method configurations. This evaluation targets the predictive power of the LEPE-GNN method

compared to the standard PE-GNN method (Klemmer, Safir, and Neill, 2023), and an XGB-

Model (Chen et al., 2015). The spatial correlation of the residuals for each method is also

calculated.

To allow for a fair comparison between the different approaches, the two methods based on

neural networks (PE-GNN, LEPE-GNN), consist of two GCN layers with ReLU activation and

dropout, followed by linear layer regression heads. We test both approaches with two auxiliary

task weights λ = 0, 0.5, where λ = 0 implies no auxiliary task as implemented by Klemmer,

Safir, and Neill (2023). Training for the GNN models is conducted using PyTorch library in

Python software (Paszke et al., 2019) and PyTorch Geometric (Fey and Lenssen, 2019). The

Adam algorithm (Kingma and Ba, 2014) is used to optimize the models and the mean squared

error (MSE) loss. All training is conducted on a single CPU.

The XGBoost model was trained with and without the geographical information (latitude/-

longitude) and optimized using the Optuna package (Akiba et al., 2019) for each case.
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To assess the degree of spatial correlation of the models the Global Moran’s I (Moran, 1950)

index was calculated for the datasets and the residuals of the models.

A sensitivity analysis is also performed to analyze how different parameter settings affect

the performance of the LEPE-GNN method. We systematically vary key parameters such as

the number of clusters, the bandwidth values, and the use of pre-trained weights, as discussed

below.

4.1.1 Using Pre-Trained Weights of a global PE-GNN

To improve training efficiency and model stability, we use pre-trained weights from a previously

PE-GNN model trained with 30 epochs without clustering. These weights serve as a starting

point for the training process, reducing the overall training time and providing a more stable

foundation. This approach allows us to evaluate whether reusing pre-trained weights improves

the model’s convergence and generalization.

4.1.2 Different Number of Clusters

To assess the influence of the number of clusters on the model’s performance, we conduct

experiments with different cluster counts (10, 30, 50, and 100 clusters). This variation helps

determine the optimal level of spatial granularity required for the best results.

4.1.3 Bandwidth

The bandwidth parameter plays a crucial role in the weighting mechanism of the loss function.

It determines the range of influence that each cluster has on the model’s training. In this setup,

different bandwidth values are tested to explore their impact on the model’s ability to learn from

spatial relationships. A smaller bandwidth emphasizes closer points, while a larger bandwidth

encompasses a broader context.
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4.1.4 Data

The method is going to be evaluated in two real data datasets that contain geographical data:

• California Housing: This dataset contains the prices of over 20,000 California houses

from the 1990 U.S. census (Pace and Barry, 2003). The regression task at hand is to

predict house prices using the following features:

– MedInc: average household income in the census block.

– HouseAge: average age of the houses in the block.

– AveRooms: average number of rooms per household.

– AveBedrms: average number of bedrooms per household.

– Population: total number of people residing in the block.

– AveOccup: average number of occupants per household.

– Latitude: latitude of the block.

– Longitude: longitude of the block.

• Air temperature: The air temperature dataset (Hooker, Duveiller, and Cescatti, 2018)

contains the coordinates of 3,000 weather stations around the globe. This regression task

is to predict mean temperatures from a single feature, mean precipitation, and location

(latitude/longitude).

Both datasets are divided into 60% train, 20% validation, and 20% test and all experiments

were conducted on a single CPU (Mac M2 with 8GB of RAM).

4.2 Results

4.2.1 Predictive Performance

This section presents the findings from the experimental evaluation of localized models (LEPE-

GNN) versus non-localized models (XGBoost and PE-GNN) and the influence of incorporating
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an auxiliary task through varying values of the lambda λ parameter using the California Hous-

ing Dataset and the Air Temperature Dataset. The primary metrics for evaluation were Mean

Squared Error (MSE) and Mean Absolute Error (MAE) which provide insights into the models’

accuracy and predictive performance.

The results indicate that localizing the model training to specific geographic clusters does

not significantly enhance the model’s performance in lowering the MSE or MAE for the Cal-

ifornia Housing dataset (Table 4.1). However, the LEPE-GCN models demonstrate a notable

performance improvement for the Air Temperature dataset. The localized models, especially

with λ = 0.5 achieve the lowest MSE (0.0033) and MAE (0.0394) among the configurations

tested. This indicates that localizing the training process to geographic clusters for datasets with

pronounced spatial patterns can significantly improve model accuracy.

Table 4.2 shows the parameter used by the LEPE-GNN in each dataset. Both of them were

trained per 500 epochs and bandwidth of max
2

, where max is the maximum distance between

clusters.

Table 4.3 shows the values of Global Moran’s I for each dataset, both of them have a large

spatial correlation on the response variable. Table 4.4 shows the values of the Moran’s I for the

residuals of the three best models models with the PE-GNN model with the lower values in the

California Housing Dataset and the LEPE-GNN model showing the lower values for the Air

temperature dataset.

Figure 4.1 shows the performance of three models: PE-GNN, LEPE-GNN, and LEPE-GNN

with pre-trained weights, over 250 epochs, measured by the root mean squared error (RMSE).

We see that the LEPE-GNN models stabilize faster compared to the standard PE-GNN ap-

proach. The flatter trajectory of the RMSE curves for the LEPE-GNN models beyond the initial

epochs evidences this. These models also exhibit less variation in error as training progresses,

indicating a more consistent and reliable performance.

When analyzing the residuals of the two GNN models in Figure 4.2 the models perform

similarly for the California House Dataset. However, we see smaller residuals for the LEPE-
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Table 4.1: Comparison of Model Evaluation Metrics for the California Housing Dataset and
Air Temperature Dataset

Model Cali. Housing Air Temp

MSE MAE MSE MAE

XGBoost without lat/log 0.0158 0.0920 0.0256 0.1248
XGBoost with lat/log 0.013 0.0759 0.0059 0.0530

PE-GCN λ = 0 0.0158 0.0892 0.0049 0.0542
PE-GCN λ = 0.5 0.0160 0.0887 0.0045 0.0492
LEPE-GCN λ = 0 0.0161 0.0894 0.0034 0.0399

LEPE-GCN λ = 0.5 0.0163 0.0894 0.0033 0.0394

Figure 4.1: Validation error curves of PE-GCN, LEPE-GCN, and LEPE-GCN with pre-trained
weights, measured by the RMSE metric for the California Housing Dataset (Left) and Air Tem-
perature Dataset (Right).
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Table 4.2: LEPE-GNN Parameters

Dataset Number of Clusters Batch Size

California Housing 30 512
Air Temperature 20 256

Table 4.3: Comparison of Global Moran’s I for the Datasets

Dataset Global Moran’s I

Cali. Housing 0.7096
Air Temp 0.8339

Table 4.4: Comparison of Global Moran’s I for the Residuals of Different Models

Cali. Housing Air Temp

XGBoost 0.09353 0.51649
PE-GNN 0.06501 0.39198
LEPE-GNN 0.11792 0.17278

GNN in the Air Temperature Dataset.

The Kruskal-Wallis test (Hollander, Wolfe, and Chicken, 2013) was performed for both

datasets and for the Air Temperature Dataset the distribution between the two models is statis-

tically different at 5% significance level.

In Figure 4.3 we compare two model predictions against real data values and against each

other, highlighting geographic areas where model performances diverge significantly.

In the bottom right panel, we see the difference between the residues of the two models

calculated as:

∆r = |residualsPE-GNN| − |residualsLEPE-GNN| , (4.1)

here red areas denote regions where the LEPE-GNN model exhibits smaller residuals than

the PE-GNN, indicating superior predictive accuracy by the localized model in these areas.

Conversely, blue areas highlight regions where the PE-GNN model outperforms the Localized

PE-GNN, with smaller residuals and higher accuracy. The presence of grey or neutral areas
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Figure 4.2: Comparison of residuals for the two GNN methods for the California Housing
Dataset (Left) and Air Temperature Dataset (Right).

Figure 4.3: Real Values (Top Left), Predictions from PE-GNN (Top Right), Predictions from
LEPE-GNN (Bottom Left), Difference in Residual Magnitudes (PE-GNN - LEPE-GNN) (Bot-
tom Right) for the Air Temperature Dataset.
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Figure 4.4: Sensitivity analysis: Number of clusters (left), Batch Size (Middle), Bandwidth
(Right) for the California Housing Dataset

suggests comparable performance between the two models in those locations. This differential

performance underscores the potential advantage of localized modeling in capturing complex,

localized patterns within the data.

4.2.2 Sensitivity Analysis

This subsection focuses on understanding how different parameter settings influence our model’s

performance, here we analyze the effects of changing the bandwidth parameter of the loss func-

tion, the number of clusters, and the batch size of the localized model. This study was conducted

with the California Housing Dataset, all models were trained using 100 epochs.

The left panel of Figure 4.4 shows the MSE as a function of the number of clusters used in

the model. All models were trained with a batch size of 512 and bandwidth of distancemax

2
. We

see that the MSE decreases sharply with an increase in the number of clusters from 10 to 30,

stabilizes between 30 and 50, and reaches its lowest at 100 clusters, indicating that more clusters

can improve model performance but the gains can be limited when used the same configuration

of bandwidth for different number of clusters.

Regarding the choice of the batch size the Figure 4.4 - middle panel, illustrates the impact

of increasing batch size on MSE, calculated using a fixed number of 30 clusters and bandwidth

of distancemax

2
. As batch size increases from 512 to 2048, the MSE steadily rises, suggesting that
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larger batch sizes may degrade model performance. Klemmer, Safir, and Neill (2023) uses 2048

for the California Housing dataset, but we see in the figure that the localized approach benefits

from a smaller size.

The right panel displays the MSE as a function of bandwidth, defined as fractions of the

maximum distance, meaning that values in the right have more influence on more distant points,

with the analysis conducted using 30 clusters and a batch size of 512. A significant decrease in

MSE is observed as the bandwidth increases from a quarter of the maximum distance to half,

followed by a plateau when using the maximum distance, indicating that larger bandwidths

yield better performance up to a certain threshold when keeping the number of clusters and

batch size constant.

4.2.3 Computational Time

This subsection presents how the computational time of the LEPE-GNN is affected by the dif-

ferent number of clusters and compares it with the PE-GNN model (1 cluster).

Tables 4.5 and 4.6 show that as we increase the number of clusters (localized models) we

increase the computational time necessary to train the model.

Table 4.5: Computational Time for the California Housing Dataset

Number of Clusters Computational Time

1 2min 30s
10 22min 5s
30 1h 6min 45s
50 1h 50min 26s

100 3h 40min 45s
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Table 4.6: Computational Time for the Air Temperature Dataset

Number of Clusters Computational Time

1 9.81 s
10 2min 49s
30 8min 14s
50 13min 40s

100 28min 22s

43



Chapter 5

Conclusion

In this dissertation, a novel approach was developed, that utilizes localized models to improve

the predictive accuracy and generalization of graph neural networks applied to spatial data. By

segmenting spatial data into clusters and training dedicated models for each segment, the limi-

tations commonly faced by global models due to the complex nature of spatial autocorrelation

and heterogeneity are addressed.

Both localized (LEPE-GNN) and non-localized configurations of the PE-GCN model ex-

hibit similar error metrics for the California Housing dataset, which suggests that the benefits

of localized training might be constrained by other factors such as the intrinsic characteristics

of the dataset, the clustering methodology, or possibly the scale of spatial variability present

within the data.

In terms of MSE values, the XGBoost model achieved the lower value for the California

Dataset but showed the highest Moran’s I value for the residuals, indicating that while non-

geographical models can perform well they can’t capture and deal with the spatial autocorrela-

tion like the geographical models can.

For the Air Temperature Dataset we obtained a significant increase in performance, the

LEPE-GNN model showed a bigger representation capacity and the smallest Moran’s I value.

The sensitivity analysis shows that increasing the number of clusters or the bandwidth gen-
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erally enhances model accuracy, but only up to a certain point. Beyond specific thresholds,

these improvements plateau or even decrease. This pattern implies that simply escalating these

parameters without considering their interaction can result in suboptimal results. Hence, a more

sophisticated method for selecting these values is necessary. Techniques like multi-parameter

optimization algorithms, grid search, or even more advanced methods such as Bayesian opti-

mization could be useful. These strategies enable simultaneous adjustments of multiple param-

eters and assess their effect on model performance.

The computational time needed to train the LEPE-GNN increases as more local models are

added, and it also depends on the size of the dataset. For both datasets, the number of local

models was selected that gave the smallest error metrics and in a feasible time.

The method’s main limitation is the number of hyperparameters that the user should choose,

such as the number of clusters and the bandwidth beyond the other parameters from the PE-

GNN: batch size for example.

For future works, the suggestions are:

• Exploring alternative clustering techniques and shifting from clustering geographical co-

ordinates to using the spatial embeddings generated by PE-GNNs. This change aims to

leverage the spatial information encoded in embeddings, potentially uncovering deeper

insights and relationships within the data.

• Using hyperparameters tunning techniques like Bayesian optimization to choose the best

setting for a given dataset.

• The LEPE-GNN results were generated with all innovations, an ablation study should be

conducted to measure the contribution of each individual innovation.
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