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RESUMO EXPANDIDO

Título: Uma plataforma e ontologias para compartilhamento de dados ambientais e uso de mod-
elos de aprendizado de máquina para predição de incêndios florestais.
Autor: Jesús Noel Suárez Rubi
Orientador: Prof. Dr. Paulo Roberto de Lira Gondim, FT/UnB
Programa de Pós-Graduação em Engenharia Elétrica - PPGEE

Ecossistemas, assentamentos e vidas humanas são colocados em risco por incêndios florestais
todos os anos, impactando a economia e o desenvolvimento socioeconômico. O Distrito Federal
brasileiro, inserido no bioma Cerrado, vem apresentando um aumento desses fenômenos. No
entanto, poucos estudos foram realizados na região.

Vários modelos têm sido propostos mundialmente para a predição da ocorrência e comporta-
mento do fogo, permitindo a identificação dos fatores que os favorecem, os riscos e pós-efeitos.
A aplicação direta de tais modelos na região do Distrito Federal é desafiadora devido às difer-
enças nas fontes de dados, características geográficas das regiões e indisponibilidade de dados
em alguns casos.

Por outro lado, o uso de tecnologias de informação e comunicação e a ampla disseminação de
equipamentos eletrônicos (por exemplo, redes de sensores e terminais celulares) são essenciais
para o tratamento adequado de grandes volumes de dados com valor substancial para o desen-
volvimento de cidades inteligentes. Particularmente, os dados ambientais de cidades inteligentes
podem enriquecer os estudos sobre incêndios florestais. No entanto, propostas recentes têm en-
frentado a mesma desvantagem, pois os dados são incompletos, seguem diferentes formatos de
representação e até possuem diferentes conotações semânticas.

A heterogeneidade de objetos inteligentes conectados à Internet (ou seja, interfaces de rede,
protocolos de comunicação, estrutura de dados, precisão de aquisição e semântica de dados)
tem causado problemas de interoperabilidade, dificultando a eficácia dos sistemas de apoio à
decisão intimamente relacionados à qualidade dos dados. A aplicação de algoritmos de big data
e aprendizado de máquina para melhorar os processos relacionados a cidades inteligentes são
alguns dos exemplos impactados negativamente pela falta de padrões.

As soluções para cidades inteligentes devem garantir a interoperabilidade desde a captura
de dados até a extração e visualização do conhecimento por meio de tecnologias como Web
Semântica e ontologias. Além disso, os componentes envolvidos devem incluir dispositivos IoT,
gateways, computação em nuvem e em névoa para uma melhor aplicação das técnicas de análise
de dados

Nesse sentido, esta tese propõe uma plataforma de cidade inteligente para monitoramento da
qualidade ambiental baseada em tecnologias semânticas e ontologias, possibilitando um sistema



de coleta e compartilhamento de dados multidefinição e multiprotocolo. Ela também implementa
uma metodologia para a extração de insights sobre os dados coletados e um mecanismo para
cálculos baseados em nuvem e névoa. Além disso, são propostas ontologias para a representação
semântica e definição do esquema de armazenamento considerando cidade inteligente, internet
das coisas florestais (IoFT) e terminologia relacionada ao fogo.

Oito modelos de aprendizado de máquina foram comparados na predição do risco de incên-
dios florestais na região mencionada. Eles consideraram correlações entre condições climáticas,
localização espacial, características topográficas, características antropogênicas e ocorrência de
incêndios e um conjunto de dados enriquecido com dados abertos do governo brasileiro com-
posto por observações sobre 16 características climáticas de cinco estações de monitoramento, e
dados de satélite sobre incêndios ocorridos nas últimas dois décadas. Características topográfi-
cas, hidrográficas e antrópicas, como Índice de Vegetação por Diferença Normalizada (NDVI),
índice de urbanização e distância a rios/estradas também foram consideradas. De acordo com os
resultados, o risco de incêndio pode ser previsto com 99% de precisão e os modelos se mostraram
mais sensíveis ao NDVI, pressão atmosférica e umidade relativa, conforme demonstrado por um
estudo sobre o impacto das feições.

Outro conjunto de dados foi compilado a partir de dados abertos do governo brasileiro para a
predição do comportamento dos incêndios florestais e usado para o treinamento de vários modelos
de aprendizado de máquina que consideram o ponto de ignição do fogo para prever as áreas que
serão impactadas. Inclui observações sobre características climáticas de cinco estações de mon-
itoramento e dados de satélite sobre incêndios ocorridos nas últimas duas décadas, enriquecido
com características topográficas, hidrográficas e antropogênicas. De acordo com os resultados, o
modelo AdaBoost previu a área afetada pelo incêndio florestal com 91% de precisão, mostrando
melhor desempenho do que Random Forest (RF) 88%, Artificial Neural Network (ANN) 86% e
Support Vector Machine (SVM) 81%. Um método "wrapper" permitiu o cálculo da importância
das variáveis e a definição de um ranking para identificar o quanto uma variável influencia o risco
e o avanço do incêndio.

Como resultado, a plataforma de monitoramento ambiental foi desenvolvida e testada quanto
à predição de propagação e comportamento de incêndios florestais em um momento específico
e/ou em regiões específicas para auxiliar os órgãos de gestão de incêndios a minimizar os danos
causados. Tal estudo de caso mostrou a aplicação do aprendizado de máquina como o principal
fator para melhorar os estudos de risco e comportamento de incêndio, impactando diretamente
na sustentabilidade dos ecossistemas e promovendo diversas melhorias no estudo de incêndios na
região do Distrito Federal.

Palavras-chave: Internet das Coisas, Ambiente, Incêndios Florestais, Ontologias, Predição,
Aprendizado de Máquina.



ABSTRACT

Ecosystems, settlements, and human lives are put at risk by forest fires every year, impact-
ing economy and social-economic development. The Brazilian Federal District, inserted on the
Cerrado biome, has shown an increase in such phenomena. However, few studies have been
conducted in the region.

Several models have been proposed worldwide for the prediction of fire occurrence and behav-
ior, and identification of their conditioning factors, risks, and post-effects. The direct application
of such models in the Federal District region is challenging due to differences in data sources,
geographic characteristics of the regions, and unavailability of data in some cases.

On the other hand, the use of information and communication technologies and the broad
dissemination of electronic equipment (e.g., sensor networks and cellular terminals) are essential
for the adequate treatment of large volumes of data with substantial value for the development
of smart cities. Particularly, environmental smart city data can enrich wildfire studies. How-
ever, recent proposals have faced the same downside, since data are incomplete, follow different
representation formats, and even have different semantic connotations.

The heterogeneity of intelligent objects connected to the Internet (i.e., network interfaces,
communication protocols, data structure, acquisition precision, and data semantics) has caused
interoperability problems, hindering the effectiveness of decision-support systems closely related
to the quality of data. The application of big data and machine learning algorithms for improv-
ing smart city-related processes are some of the examples negatively impacted by the lack of
standards.

Solutions for smart cities should grant semantic interoperability from data capture to knowl-
edge extraction and visualization through technologies such as Semantic Web and ontologies.
Moreover, the components involved should include Internet of Things (IoT) devices, gateways,
cloud, and fog computing for a better application of data analysis techniques.

In this sense, this thesis proposes a smart city platform for environment quality monitoring
based on semantic technologies and ontologies, enabling a multi-definition and multi-protocol
data collection and sharing system. It also presents a methodology for the extraction of insights
into the collected data and a mechanism for cloud- and fog-based computations. Moreover, on-
tologies are proposed for the semantic representation and storage scheme definition considering
Smart Cities (SC), Internet of Forestry Things (IoFT), and fire-related terminology.

This study compares eight machine learning models that predict wildfire risk worldwide so
that they can be adopted in the aforementioned region. They considered correlations among
climate conditions, spatial location, topographic features, anthropogenic characteristics, and fire
occurrence. A dataset enriched with Brazilian governmental open data was comprised of observa-
tions on 16 climate features of five monitoring stations and satellite data on fires occurred over the



past two decades and topographic, hydrographic and anthropogenic features, such as Normalized
Difference Vegetation Index (NDVI), urbanization index, and distance to rivers/roads. According
to the results, fire risk can be predicted with 99% accuracy and the models showed more sensitive
to NDVI, atmospheric pressure, and relative humidity, as demonstrated by a study on the impact
of features.

Another dataset was compiled from Brazilian governmental open data for the prediction of
the wildfire behavior and used for the training of five Machine Learning models that consider
the fire point of ignition to predict the areas that will be impacted. It includes observations on
climate features from five monitoring stations and satellite data on fires that occurred over the past
two decades and was enriched with other topographic, hydrographic, and anthropogenic features,
such as urbanization index, distance to rivers/roads, and Normalized Difference Vegetation Index
(NDVI). According to the results, AdaBoost model predicted the area affected by the wildfire
with 91% accuracy, showing better performance than Random Forest (RF) 88%, Artificial Neural
Network (ANN) 86%, and Support Vector Machine (SVM) 81%. A wrapper method enabled
feature importance calculation and definition of a rank that determines the influence of a variable
on the fire risk and its advance.

As a result, the environment monitoring platform has been developed and tested regarding the
prediction of both spread and behavior of wildfires at a specific time and/or in specific regions for
helping fire management agencies minimize the damages caused. Such a case study showed the
application of machine learning as the main factor for improving fire risk and behavior studies,
directly impacting the sustainability of ecosystems and promoting several improvements in the
study of fires in the Federal District region.
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1 INTRODUCTION

The rapid growth of urban populations has demanded studies that identify, prevent and act in
situations of threatened Quality of Life (QoL) [6]. In Smart Cities (SC) [7], QoL is commonly
dealt with by indicators that measure the effectiveness of services and sustainability of a city in
domains/verticals, such as Environment, Healthcare, Security, Transport, Economy, Education,
and Government.

SC technologies can act together towards improving such indicators through a more efficient
use of resources. Its strong correlation with the sustainability principles can enhance QoL indi-
cators, and data collected in the physical, digital, and biological processes can be used to pro-
mote the emergence of new business models for a more efficient management and more assertive
decision-making.

Moreover, as a consequence of the progressive digitization and the high dissemination of
access and sensor-based networks, the enormous amount of data collected from multiple sources
indicates the need for adequate treatment of data. Big Data, for example, can enable analyses
of large volumes of information gathered and, consequently, the development of solutions and
advances with greater impact and benefit for the context of the city, thus improving the QoL
indicators.

In this sense, SCs must provide interoperable tools that collect, store, and disseminate industry-
and city-related data, and several sensors, frameworks, and SC platforms have emerged for such
purposes. However, the lack of standards (e.g., their sharing and a common data format) has im-
posed several challenges, thus hampering the application/reuse of SC technologies. Geolocation
concepts (e.g. address, buildings, local region or city) can be handled in different ways. The same
is applicable for sensor measurements, according to which two different sensors can monitor the
same parameter using different units of measure. Moreover, data may be out of date and/or de-
fined as aggregated statistical data, which might hinder the application of real-time studies and
development of time-restricted decision-support.

Another challenge refers to heterogeneity in networking and sensor technologies. The devel-
opment of various connected physical world objects that form the Internet of Things (IoT) [8]
has led to a heterogeneous environment of IoT devices/platforms that must be integrated into an
interoperable one. Regarding SCs environmental data, a growth is expected in the number of IoT
platforms that deploy sensors related to indicator data, and their integration must be considered
in the backbone of environment-related city services.

The lack of a standardized definition of environmental indicators directly impacts interoper-
ability among systems from different providers. ISO 37120 [9] has defined indicators that include
fine particular matters (PM2.5 and PM10), emissions of greenhouse gases (such as nitrogen diox-
ide (NO2), sulfur dioxide (SO2), and ozone (O3)), acoustic contamination (AC), change in the
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percentage of native species, quality of water, and waste management services. However, the
standard does not consider, for example, clear metrics for water quality (i.e. temperature, pH,
turbidity, conductivity, and dissolved oxygen indicators) measured in IoT platforms, such as the
ones proposed by Vijayakumar and Ramya [10] and Encinas et al. [11].

Current SC platforms have involved forest ecosystems, which has raised concerns from the
scientific community. Uçar et al. [12] discussed the importance of urban forestry and urban
greening and their relation to the QoL in SC. Urban forests improve air and water quality and
act as a temperature stabilizer. However, the lack of tools for their monitoring has impacted the
development of government policies and strategies.

Sharma et al. [13] highlighted the importance of agricultural land, open spaces, and extensive
forest surveillance, since cities are scattered or surrounded by them. Any imbalance in such
ecosystems can deteriorate the QoL, threatening the inhabitants of the cities, as in the Brazilian
Federal District (FD) region studied in this research, which is inserted into the Cerrado savanna
and is immersed between some conservation units (Figures 1.1 and 1.2).

Figure 1.1: FD Conservation Units [1]

On the other hand, the Brazilian forest industry plays a key role in the economy of the coun-
try, representing 4% of total gross domestic product and generating approximately six million
jobs [14]. In the coming years, forestry will face several issues moved by the increasing global
competition in world markets [15].

The increase in the number of forest fires due to the unsustainable exploitation of forests
and agricultural activities has caused the degradation of both Brazilian forests and the worldwide
environment. Therefore, the assurance of environmental sustainability of production processes
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Figure 1.2: FD Conservation Units vs Urban Area [2]

and preservation of ecosystems and natural resources will be challenging. Forest fires, which
have increased in Brazil due to climate changes and human impact, are one of the examples that
require improvements in models for a better understanding of procedures for their prevention and
combat [16].

An extension of forestry sensor networks, satellite images, and emerging technologies such
as IoFT to the SC context will stimulate the development of studies of forest indicators towards
a better understanding of their dynamics [17]. We believe Forestry 4.0, IoFT devices, and sen-
sor networks, adopted for measurements of variables such as humidity, temperature, and carbon
dioxide sensors [18] will be able to monitor environmental changes and prevent and combat forest
fires.

IoFT solutions related to the environment domain also lack semantic interoperability. The
available semantic tools (e.g., ontologies and resource-description frameworks, such as SSN and
Resource Description Framework (RDF)) can contribute to the standardization of the seman-
tic representation of sensors/platforms, unit of measures, locations, time, and other concepts
frequently used in a sensing environment. However, no clear definition or consensus has been
achieved by normative organizations on the use of semantic tools for providing semantic interop-
erability in a broad sense.

Environmental studies can comprehend many phenomena through the observation/analysis of
different features (i.e., an earthquake can be predicted by vibrations (seismograph) or satellite
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image processing). Therefore, a platform for environmental studies must model and explore
the semantic relation among heterogeneous data sets including those collected by Forestry 4.0
systems. Semantic tools (i.e. ontologies, linked data, reasoners, among others) enable the explicit
modeling of such a relationship. Moreover, some issues on compatibilization of data formats
must be solved.

1.1 MOTIVATION

The QoL of the inhabitants of the Federal District (FD) region has been negatively affected
by the fire activities, which has led the government to spend resources on their fighting. The past
decades have witnessed an increment in the number of fire spots, according to satellite data, thus
highlighting the importance of fire-related studies on the region (see Figure 1.3).

The FD region is inserted in the Brazilian savanna (the Cerrado biome), comprised of 11,627
species of plants and which has been affected by a large number of fires. The dry climate together
with the savanna vegetation create a favorable scenario for fire dissemination. Therefore, research
into forest fires in the FD will both leverage the local firefighting decision-making and policies
and probably decrease the number of fires in the Cerrado region.

No consensus on modelling methodologies of forest fire behaviour has been achieved. Al-
though approaches involving complex mathematical models have been published ([19], [20], and
[21]), their static characteristics hamper the representation of highly dynamic processes such as
fire-line progress. Most of those empirical and semi-empirical models have been applied in labo-
ratories and controlled field-scale experiments, which commonly consider two types of numerical
approaches. The first is based on the complex modelling of physical and chemical processes ([21],
[22]), whereas the other involves the rate of spread-correlating features, such as slope, wind, and
vegetation type [23]. However, both have showed poor accuracy in real fire events and required
high computational costs and simulation times, which are impractical for real-time decision sup-
port.

Figure 1.3: Number of fire spots per year (2000-2020)

The reproduction of prediction results is usually difficult due to the unavailability of data
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for training and their relationship with the quality of the results. Datasets available for each
region show variations in number of input features (fire behaviour drivers), temporal and spatial
resolutions, and sensors involved in acquisition. Other drivers such as anthropogenic impact can
influence the behavior of fires in a populated region, but exert almost no effect on others.

Various approaches have compared the performance of ML models towards adjusting their
hyper-parameters and finding one of best results. In this sense, a feature selection technique
must be considered for the identification of features that effectively contribute to the accuracy of
wildfire behaviour/spread prediction.

The literature lacks studies on the prediction of wildfire behaviour on lower temporal scales
that aim at the avoidance of in-place inferences that consider short-term dynamics. Moreover,
few studies have addressed the impact of climatic, anthropogenic, topographic, and vegetation
conditioning factors on such a behaviour. [24], [25] and [26] treated them as isolated variables,
and no joint study has identified whether, in fact, each variable by itself exerts a substantial impact
on fire behavior.

The literature also lacks datasets for studies on short-term fire behaviors, specially for the FD
region.

Despite the existence of several sources of government data related to the occurrence of forest
fires, no platform for their extraction and collection in a simple way is available. Such an issue
has motivated our proposal of a platform framed in the concepts of smart cities for the collection,
monitoring, and processing of the parameters related to the city and the surrounding areas inserted
in the Federal District, as a part of the Cerrado biome. In this sense, and since Brasilia is immersed
between conservation units, the platform has been extended for the treatment of forestry-related
parameters.

The aforementioned issues have motivated this research, whose aim is to show fire behavior
can be predicted from both the coordinates (latitude and longitude) of an ignition point and the
historical evolution of spatial and temporal data in the region in a short term, thus facilitating the
determination of its most influential features. The way a standardized SC platform can help in the
early processing of wildfire-related data is also addressed.

1.2 THESIS SCOPE

This thesis proposes a platform (Figure 1.4) for SC that allows the registration of sensors,
the aggregation and transparent exchange of data, and the application of machine learning algo-
rithms for decision support. The research considers the feasibility of semantic web-based data
representation models and ontologies as a data schema. The aims are the identification of the best
platform architecture, the construction and evaluation of a SC platform and the use of physical
and application layer communication protocols for performance comparison and choice of best
alternative.
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On the other hand, the feasibility of predicting events and behavior of fires in the Brazilian FD
region is studied through analyses of the ecology of fires in the region and the main originating
factors. Based on these factors, heterogeneous data sources are identified and integrated into the
SC platform through the proposal and use of ontologies for semantic representation, allowing
the adoption and evaluation of machine learning models and identification of the model of best
performance in wildfire risk and behavior predictions.

Figure 1.4: Scope of the thesis

1.3 OBJECTIVES

1.3.1 General Objectives

The general objectives of this research involve proposal of ontologies that facilitate the col-
lection and exchange of data in the context of smart cities, with emphasis on the environmental
vertical for the design and validation of a semantic platform for environmental monitoring and,
as a case study, prediction of both risk and behavior of forest fires in the Federal District Region
supported by the semantic integration of data and machine learning.

1.3.2 Specific Objectives

• Design of a general purpose ontology that represents the SC terminology and the technolo-
gies involved;
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• Proposal of ontological extensions with the terminology of the environment vertical and
related to forest fires;

• Proposal and evaluation an IoT-based semantic platform for data collection and exchange in
smart cities;

• Integration of heterogeneous communication protocols and data representation formats in-
volved in the data sharing process;

• Collection and analyses of data relevant to forest fires in the Federal District region and
proposal of a bench-marking dataset;

• Application of machine learning models for wildfire risk and behaviour prediction in the
Federal District ;and

• Ranking of the importance of each input feature for the identification of those that effec-
tively increase the accuracy of wildfire behaviour/spread prediction.

1.4 RESEARCH METHODOLOGY

We followed the methodology described below for the meet the objectives presented in the
previous section.

Regarding the proposal of an SC platform: the seamless integration of the heterogeneous
IoT/IoFT devices and external datasources demanded the study, implementation and comparison
of communication protocols at physical and application layers. Moreover, studies on SC platform
architectures and sensor observation data representation format were also required for the defini-
tion of a data interchange format and sensor bindings. A review on ontologies related to SCs was
made and some ontologies were proposed, leading to the definition of a dynamic data scheme and
the implementation of an aggregation datastore.

Regarding the implementation of a wildfire risk and behaviour prediction application: fire
ecology was studied to identify the main wildfire related variables. Particularly, for the FD region
a set of explanatory features was considered based on a literature review of fire drivers. The most
employed machine learning models were also identified and we compare them to validate their
performance. To measure how the considered originating factors could describe the fire effects
we made a variable importance study. Finally, algorithms for the prediction of point of ignition
and for the progressive reproduction of fire scars were proposed.

1.5 CONTRIBUTIONS

The contributions of this research involve:
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1. An ontology that represents indicators and environment SC terminology for extending and
improving other ontologies previously published [3]. A wildfire ontology has been extended
towards the implementation of wildfire behavior use-case in the Federal District Region.

2. Definition, implementation, and testing of a semantic IoT-based platform that can cover
several SC verticals and enables semantically coherent data interchange and processing [3].
The platform exposes management Application Programming Interface (API) and promotes
the integration of data through several communication protocols [3]. A performance study
about physical and application layer protocols is also reported.

3. Extension of the platform towards covering Forestry and IoFT concepts in a use case of
wildfire behaviour prediction [4].

4. A review of recent research on wildfire prediction for the identification of the main features
and proposal of an open dataset for the FD region [4]. A set of short- term spatial/temporal
data sequences is also provided and represents the behavior/spread of fire in the region orig-
inated from the history of fire scars and ignition points enriched with topographic, climatic,
anthropogenic, vegetation, and environmental measurements.

5. A review of the main ML models employed for wildfire risk probability prediction and
validation of their feasibility and performances compared according to different validation
metrics [27].

6. Analysis of whether the neighboring conditions of fires can be the basis for the dynamic
prediction of their spread direction by four machine learning models, namely Deep Arti-
ficial Neural Network, Support Vector Machine, Random Forest, and Adaptive Boosting
(AdaBoost) [4]. Each model was subjected to a feature selection process that identified
the most relevant features based on their importance (calculated by a permutation method).
The models are ranked according to their performance considering Area Under the Curve
Receiver Operating Characteristics (AUC-ROC), F1 score, accuracy, and recall metrics.

7. Construction of various fire scars according to data predicted and analysis of the precision
of the predicted burned areas.

All contributions either have already been published, or are in a review phase in high-reputation
journals, as shown in Table 1.1, where each indicated appendix contains the 1st page of the re-
spective paper.

1.6 THESIS STATEMENT

Smart Cities and Forestry 4.0 trends have reached several areas, and their joint adoption has
led to enhancements in citizens’ quality of life. Data collected by them are crucial for improving
solutions to several QoL-related problems and contribute to the implementation of strategies of
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Table 1.1: Publications

Contribution Title/Journal Status Appendix

1, 2 IoT-based Platform for Environment Data Sharing in Smart Cities. Published A
International Journal of Communication Systems.

3, 4, 6 Forestry 4.0 and Industry 4.0: Use Case on Wildfire Behaviour Published B
Predictions. Computers and Electrical Engineering Journal.

5 A Performance Comparison of ML Models for Wildfire Submitted D
Risk Prediction in the Brazilian Federal District Region.

Environment Systems and Decisions Journal.

6 (Extension), 7 Application of machine learning models in the behavioral Published C
study of forest fires in the Brazilian Federal District

region. Engineering Applications of Artificial Intelligence Journal.

decision-making systems. However, dealing with the heterogeneity introduced by such types of
systems is challenging, and ontologies can be considered towards solving such an issue.

The development of a platform for the collection, storage, and processing of data from the
heterogeneous technologies involved and that follow a consistent and standardized semantic data
model improves and simplifies the application of big data and machine learning techniques.

One scenario that can take advantage of such type of platform is related to forest fire studies
and fire fighting strategies in the Federal District region, which have been affected by the lack on
data related to those events. Therefore, new methods for the collection, analysis, and exchange of
fire-related data must be developed.

This thesis proposes a platform for the collection and ontology-based sharing of Forestry
and Smart City data in the environmental vertical and analyzes wildfires in the Federal District
region are analyzed for the prediction of fire risk and behavior based on ML theory, studying and
identifying their main originating factors.

1.7 ORGANIZATION

The remainder of this study is organized as follows:

Chapter 2 presents the state-of-the-art of ontologies related to SC, environment indicators,
wildfires, and forestry terminologies. Moreover, semantic web studies are discussed and a general
purpose SC ontology is introduced towards seamless integration and representation of SC data.

Chapter 3 discusses studies on SC platforms with a focus on platform architecture, com-
munication standards, and data representation and exchange formats and is also devoted to the
proposal, development, and validation of a semantic platform based on IoT for data collection
and exchange of Smart Cities and Forests. The platform was validated by performance metrics
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obtained in different experimental scenarios.

Chapter 4 addresses the contributions in the study on wildfires risk and behavior prediction in
the Federal District Region. Initially, a review of the wildfire-related literature identified a com-
mon methodology for the assessment of wildfires predictions. The ecology of the Cerrado Biome
is then characterized and the main fire originating factors are discussed. Several governmental
datasources related to wildfire explanatory features were integrated to the platform and ML mod-
els were trained and validated regarding prediction of fire occurrence (fire-risk maps) and fire
behaviour (fire scars).

Chapter 5 provides some conclusions about the proposed solutions and some of the still
opened issues are listed and outline suggestions for the next steps of research.

The final part contains the bibliographic references that founded this research and four ap-
pendices that present the resulting studies in the form of articles, published or under review in
JCR-ranked journals.
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2 ONTOLOGIES AND SEMANTIC WEB

This chapter addresses a literature review of ontologies and semantic web use for the semantic
integration of SC data and proposes a GPSCO extended with the Environmental Indicators SC
Ontology (EISCO) and wildfire-related terminology. Moreover, the representation of specific
entities related to Forestry is introduced.

2.1 BASIC CONCEPTS

Ontologies are some of the most suitable tools for the representation of concepts and knowl-
edge and have been widely applied for the reuse of data.

The literature reports several definitions for the term ontology. According to Gruber [28], an
ontology is a specification of a conceptualization, e.g., a description of concepts and relationships
between those concepts, and Euzenat et al. [29] defined it as a vocabulary specific for a domain
of interest and a specification of the meaning of terms in that vocabulary. However, both [28]
and [29] stated ontologies are constructed for the sharing and reuse of data and knowledge. In
computation, the concepts present in ontologies must have a formal specification and Guarino
[30] suggested a way for the creation of formal definitions for concepts.

Let <D, W> be such that D represents the domain in question and W represents all existing
concepts in D. This structure is called Domain Space. A conceptualization C is a structure <D,
W, R> where R is the set of relations that represents the domain. A conceptualization defines
an intended structure of the world, represented by C. From the computational point of view, a
conceptualization must be specified in a particular language L and predicates must be logically
consistent with an interpretation function.

Therefore, ontologies become partial specification mechanisms representative only in rela-
tion to a given domain, and not to the completeness of knowledge. Particularly, the SC context
comprehends several specific subdomains (e.g., healthcare, transport, energy, education, among
others) and many proposals are focused only on the definition of integration mechanisms and
ontologies for that subdomain (Section 2.1 covers some related work that validate the previous
statement). Subdomains segmentation affects interoperability in a global proposal for SC and
different definitions of same concepts in each subdomain require a process of alignment among
all ontologies.

Euzenat et al. [29] formalized the ontology matching process as the construction of a set
of correspondence rules between concepts provided by two or more ontologies towards solving
the semantic heterogeneity present in multiple definitions for the same concept in different do-
mains. Operations that use the set of correspondence rules must be merged for the obtaining of
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a new ontology that contains the concepts defined by the input ontologies aligned in a domain
that includes the input subdomains and the region where the logic assertions between the sub-
domains are fulfilled. If both ontologies C1 and C2 are described in a same computer language,
the resulting ontology can be a C3 structure, where D3 = {D1 ∪ D2}, W3 = {W1 ∪W2}, and
R3 = {R1 ∪ R2 ∪ Ra}, where Ra corresponds to the rules for the matching process between D1

and D2 compatible with the logic-consistent associations inside C1 and C2.

2.2 RELATED WORK

Regarding environment, INFORMEA [31], in the Law and Environment Ontology provides
environmental terms and links to related laws, as well as definitions for air pollution, water quality,
and gas emission, which help the standardization of a model for environmental data. However, it
considers the law aspect of environmental data collection, rather than a technical specification of
environmental parameters. On the other hand, the Air Pollution Ontology [32] primarily focused
on pollutants such as SO2, NO2, CO2, and PM2.5, but ignored other key definitions (e.g., sensors
and indicators).

The Semantic Web for Earth and Environmental Technology (SWEET) [33] is a mature ontol-
ogy that contains over 6000 concepts that cover all major definitions for SC environmental indi-
cators. However, it lacks specifications about observation process, unit of measures, geolocation,
and descriptions of the classes and their properties. The ENVO [34] covers all the classes defined
in SWEET that are useful for an SC environment platform and has a more detailed conceptual-
ization. Nevertheless, similarly to SWEET, ENVO does not cover topics related to observation of
the process, unit of measure, and other important concepts for the definitions of indicators (e.g.,
provenance, validity, and time).

On the other hand, ISO 37120 [9] has defined indicators that enable evaluations of city ser-
vices and quality of life and provides a reliable foundation of globally standardized data. Fox
[35] proposed the GCIO, which covers the ISO 37120 specifications and adds definitions for the
representation of supporting data that generate an indicator value. However, Fox [35] and Dahleh
[36] demonstrated the standard does not cover all aspects relevant to an SC and, specifically for
environmental indicators, considers only eight definitions. Although Fox [35] enhanced the indi-
cator definitions including conceptualizations for place names, measurements, provenance, time,
trust, and validity, those definitions do not consider other concepts, such as type of sensor used
for the sampling, or manufacturer and observation parameters (e.g. sampling frequency).

SSN [37] is an ontology that describe sensors and their observations, procedures involved,
features studied, samples of interest, and properties observed. It includes a self-contained core
ontology called SOSA (Sensor, Observation, Sample, and Actuator) for its elementary classes and
properties. SSN provides a technical conceptualization to represent sensors, platforms, and IoT
devices and SOSA enables the representation of an indicator observation through classes, such
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as observation, observable property, measure, and result. However, SSN neither offers an indi-
cator definition, nor considers geolocation, unit of measure, time, and other important concepts
associated with an indicator.

Ganzha et al. [38] reviewed ontologies for IoT, e-Health and Transportation/Logistics and,
regarding IoT, observed any fusion between IoT and semantic technologies would take advantage
of SSN [37]. However, the research covered four independent ontologies and ten that extended
SSN . Table 2.1 shows a summary of such ontologies.

Table 2.1: SC-related Ontologies

Ontology Goal Main Concepts Covered Extends
SSN

CSIRO Sen-
sor Ontology
[39]

Generic Sensor Ontology Describes functional, physical, and measurement aspects
of sensors through sensors, features, operations, results,
processes, inputs and outputs, accuracy, resolution, ab-
stract and physical properties, and metadata links classes

Maybe
a
Prede-
cessor

MMI Device
Ontology [40]

Ontology for marine devices System, process, platform, device, sensor, and sampler No

Extensible
Observation
ontology
(OBOE) [41]

Ontology for the capture of
the semantics of scientific
observations and measure-
ments

Observation, Measurement, Entity, Characteristics, Stan-
dard, Protocol

No

Sensor Cloud
Ontology
(SCO) [42]

Ontology that extends the
sensor terminology with the
Cloud Concepts

Extends SSN including The Observation and Measure-
ment Ontology (OM) [43] and GEO Ontology (WGS84)
[44] to provide terminologies and conceptualizations re-
lated to measures, unit of measures, and sensor geoloca-
tion

Yes

AEMET On-
tology [45]

Ontology for Meteorologi-
cal data representation

Extends ssn:sensor to cover specific sensors such as ther-
mometers, barometers, among others. The authors use
the OWL Time ontology [46] for time events and GEO
Ontology (WGS84) [44] for sensor location, as in the pre-
vious ontology.

Yes

Sensor Web
Resources
Ontology for
Atmospheric
Observation
(SWRO-AO)
[47]

Ontology for Atmospheric
Observation

Extends SSN concepts regarding sensors and adds spe-
cific domain concepts such as swroaao:weather_station

Yes

IoT Lite [48] Lightweight ontology for
the representation of Inter-
net of Things (IoT) re-
sources, entities, and ser-
vices

Uses QU Ontology [49] to extend SSN providing quan-
tity and unit of measure description and GEO Ontology
(WGS84) [44] to associate geolocation data. It defines
concepts such as iot-lite:coverage to determine the geo-
graphic area covered by the sensor.

Yes

Smart Ap-
pliances
Reference
Ontology
(SAREF) [50]

Standard appliances used in
a Home and Building envi-
ronment

Handles concepts related to different domains (i.e. Con-
struction Industry, Air Conditioning and Refrigeration,
electrical systems, security, among others.) and extends
SSN to represent the devices that belong to such domains

Yes

Several studies provide information on devices geolocation and, since SSN does not predefine
the way to handle such concepts, a vocabulary must be aligned for dealing with IoT devices mo-
bility and platforms deployment locations. Moreover, the way measures are represented is impor-
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tant, since, differently from geoinformation (many studies use align GEO Ontology (WGS84)),
they can be represented in several forms (i.e., Observation and Measurement Ontology (OM) and
QU Ontology).

Such studies help the identification of concepts to be presented in an SC scenario and cov-
ered in an SC ontology and clarify the definition of an SC ontology logically consistent with
an application e.g., environmentally-related SC applications. AEMET extends SSN showing the
scalability and interoperability provided by semantic technologies for the development of an SC.

However, those ontologies do not consider city-related concepts in a more comprehensive
scope, which is expected, since they were defined specifically for a sensor context. Concepts such
as origin of the data (provenance, i.e. Institution, Company, etc.) and way of taking advantage of
the data in an SC scope (i.e. City Indicators) are not considered.

Other ontologies focused on SC do not consider common city definitions. Gupta et al. [51]
proposed a platform for smart city data management based on semantic web and linked data. All
available data on government (mainly Extensible Markup Language (XML) or Excel tabular data)
were transformed into an RDF graph by Google Refine tool and an OWL ontology was defined
over it and deployed in a Lena Apache Server that enables population of individuals and Protocol
and RDF Query Language (SPARQL) queries through applications.According to the authors, a
merging process of subontologies generated by Google Refine Tools must be conducted almost
automatically, however, human help would align some mistakes of concepts. Since the authors
did not follow a common base ontology, the merging (guided by humans) might return a new
ontology that would not fit those previously generated by the same system.

Gaur et al. [52] followed a similar approach defining an SC architecture where the data gath-
ered from the sensors is converted to an RDF graph enabling the definition of concepts using
OWL ontologies too. Equally to the Gupta´s proposal [51], it is not clear about the ontologies
used and what are the indicators used to describe the quality of life in the SC. Also, there is no a
definition about how the data can be collected from sensors.

Abid et al. [53] defined a base ontology for SC focused on the reporting of faults in public
services. They used Geonames Ontology for geographic data representation and included domain-
specific concepts such as “ReportOfFault”, “Status” and the most important “person” concept
defined by the Friend of a Friend Ontology [54].

Petrolo et al. [55] reviewed the VITAL platform based on linked data standards (e.g., RDF
and JavaScript object notation (JSON)) to model and access data officially specified by OWL
ontologies. The authors highlighted the importance of using ontologies, especially SSN , for
representing the IoT environment inside SC. Although VITAL covers many topics defined in ISO
37120 (e.g., environmental indicators), to the best of our knowledge, it does not follow all the
ISO 37120 definitions, which might affect the joint use of devices data between cities in a same
country.

The proposal analyzed by DÁquin et al. [56] deals with the integration of different data
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providers in an SC. The HyperCat project [56, 57] describes a standard for exposing OWL-based
Internet of Things data catalogs through conventional Web resources. The idea is to use dis-
tributed data repositories jointly through applications and query their catalogs in a uniform for-
mat. HyperCatś specification achieved those objectives by employing the same principles on
which linked data and the Semantic Web are built, i.e., data accessible through standard formats
and Web protocols (HTTPS, JSON, and others), identification of resources through URIs, and
establishment of common, shared semantics for datasets descriptors.

From an SC perspective, although Hypercat can be useful for the dissemination of data providers,
it does not cover city-related concepts, since it is a general purpose specification, and data providers
must be aware to define the citie’s data.

Lea et al. [58] studied the IoT interoperability problem in the SC context. The authors imple-
mented a datahub for IoT integration and, rather than the previous approaches, they used Hypercat
to disseminate each data provider. The sensors data (treated as real time data) are gathered us-
ing the WoTKIT platform [59] and the external static data (i.e. static files or web content) are
integrated using the CKAN Dataset API [60].

Abreu et al. [61] proposed an ontology for the description of IoT infrastructure in the context
of SC. It covers concepts such as network links, interfaces, and devices that compose it and
considers metrics of its performance.

Particularly, those metrics and the whole ontology demonstrate the importance of defining
indicators at city level. An extension of an SC ontology with such a vocabulary can lead to a
standardization of, e..g.., the Telecommunications theme of an SC. However, the alignment of the
ontology requires a base ontology that defines indicators over the metrics and another that aligns
the devices inside the city in a more comprehensive way, as SSN .

Since no generic ontology for SC is available, we propose an ontology that considers both
indicators and the data used in their estimation and acts as a general purpose ontology for SC
covering the concepts analyzed to date.

The exclusive use of ENVO, GCIO or SSN ontologies is not enough to cover all the require-
ments of an ontology for SC Environment Indicators. Section 2.3 introduces our approach, which
combines them into one ontology and will be the semantic base of our SC Environment Platform.

2.3 PROPOSAL OF A GENERAL PURPOSE SMART CITY ONTOLOGY

This section describes our General Purpose Smart City Ontology (GPSCO), which is based
on SSN and GCIO. A matching technique that ensures logic consistency and enables the mapping
and correlation in the new SC domain must be applied for the merging of both ontologies. The
methodology considers i) a formal definition of both ontologies, ii) the application of a matching
process for the obtaining of an alignment (mapping-rules), and iii) the merging of the ontologies
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Figure 2.1: SSN Ontolgy (Observation Concepts) [3]

according to the alignment.

2.3.1 Formal Definition of SSN

As addressed elsewhere, SSN is a general purpose ontology that represents Sensor Networks
and their data. It is defined according to a vertical architecture over a self-contained core ontology
called SOSA (Sensor, Observation, Sample, and Actuator) (Table 2.2) for its elementary classes
and properties.

Since this research is focused on the data interoperability problem for SC and cities must not
intervene in the behaviour of citizens’ devices, the SOSA concepts regarding Actuators/Actuation
have been ignored. An SC will only collect the data and applications nourished by them can
directly act on the devices.

Our proposal considers only the observation and sampling scenario defined by SSN . To-
wards simplifying the understanding of the concepts considered and the way of aligning SSN
with GCIO, the SOSA definition was split according to the Observation and Sampling scopes
(Figures 2.1 and 2.2, respectively).

Regarding observations (Figure 2.1), SSN has sosa:observation with associated ob-
ject properties to represent the result of an observation (sosa:result), the thing observed
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Table 2.2: SOSA+SSN definitions

Concepts (WSSN ) Description Relations (RSSN )

sosa:ObservablePropertyAn observable quality (property,
characteristic) (i.e. height of a tree)

subclassof ssn:Property
sosa:isObservedBy ONLY sosa:Sensor

sosa:Observation An act of performing a (Observa-
tion) Procedure for the estimation
or calculation of a property value.

sosa:madeBySensor EXACTLY 1 ONLY
sosa:Sensor sosa:usedProcedure ONLY
sosa:Procedure sosa:hasFeatureOfInterest
EXACTLY 1 sosa:FeatureOfInterest
sosa:observedProperty EX-
ACTLY 1 sosa:ObservableProperty
ssn:wasOriginatedBy EXACTLY 1
ssn:Stimulus sosa:phenomenonTime EX-
ACTLY 1 sosa:hasResult MIN 1 sosa:Result

sosa:Sensor Device, agent (including humans),
or software (simulation) involved in
Procedures that can respond to a
Stimulus or prior Observations and
generate a Result.

subclassof ssn:System sosa:observes ONLY
sosa:ObservableProperty

sosa:Sample Feature to be representative of a
FeatureOfInterest on which Obser-
vations can be made

subclassof sosa:FeatureOfInterest subclassof
sosa:Result sosa:isResultOf ONLY MIN 1
sosa:Sampling sosa:isSampleOf ONLY MIN 1
sosa:FeatureOfInterest

sosa:Sampling An act of Sampling for the creation
or transformation of one or more
Samples

sosa:madeBySampler EXACTLY 1 ONLY
sosa:Sampler sosa:usedProcedure ONLY
sosa:Procedure sosa:hasFeatureOfInterest
EXACTLY 1 ONLY sosa:FeatureOfInterest
sosa:hasResult MIN 1 ONLY sosa:Sample
sosa:resultTime EXACTLY 1

sosa:Sampler A device used or that implements
a (Sampling) Procedure to create or
transform one or more samples.

subclassof ssn:System ssn:implements MIN 1
sosa:madeSampling ONLY sosa:Sampling

sosa:FeatureOfInterest An object whose property is esti-
mated or calculated in the course of
an Observation towards a Result, or
whose property is manipulated by
an Actuator sampled or transformed
into an act of Sampling

ssn:hasProperty MIN 1 ONLY ssn:Property
sosa:hasSample ONLY sosa:Sample

sosa:Result The Result of an Observation, Ac-
tuation, or act of Sampling. has-
SimpleResult property to be used
for the storage of an observation´s
simple result.

sosa:isResultOf MIN 1

sosa:Procedure A workflow, protocol, plan, al-
gorithm, or computational method
that specifies the way of making an
Observation and creating a Sample

ssn:hasInput ONLY ssn:Input ssn:hasOutput
ONLY ssn:Output ssn:implementedBy ONLY
ssn:System

sosa:Platform An entity that hosts other enti-
ties, particularly Sensors, Actua-
tors, Samplers, and other Platforms.

sosa:hosts ONLY ssn:System
ssn:inDeployment ONLY ssn:Deployment

ssn:System A unit of abstraction for pieces of
infrastructure that implement Pro-
cedures.It can have components,
i.e., subsystems, which are other
Systems.

sosa:isHostedBy ONLY sosa:Platform
ssn:implements ONLY sosa:Procedure
ssn:hasSubSystem ONLY ssn:System inverse
Of ssn:hasSubSystem ONLY ssn:System
ssn:hasDeployment ONLY ssn:Deployment
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Figure 2.2: SSN Ontology (Sampling Concepts) [3]

(sosa:feature_of_interest), the system or sensor that gathered the data (sosa:sensor),
(sosa:system), the observable parameter (sosa:observable_property), and the pro-
cedure followed (sosa:procedure).

Regarding sampling (Figure 2.2), SSN has sosa:sampling with associated object prop-
erties to represent the whole sampling process: (sosa:sample) represents the samples that
belong to a sample sequence result of a sampling action, and (sosa:sampler) represents the
device that gathered the samples. The remaining concepts and properties behave equally for the
observation scenario.

The main difference between the contexts is one is devoted to a measure represented by only
one value at a point in time, whereas the other represents a sequence of measures. Such a dif-
ference helps the representation of the moment at which an indicator value was provided as a
single value precomputed by someone (observation) and data are available for supporting the
computation of the indicator (Sampling).

We followed the formal definition of SSN described by Guarino et al. [30]:
CSSN =< DSSN ,WSSN , RSSN >
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where:

• DSSN is the domain of sensors and their observations, the observations procedures, the
features of interest studied, the samples used, and the properties and actuators observed;

• WSSN are all the concepts defined in SSN, such as “sensor”, “platform”, etc. (Table 2.2);
and

• RSSN denotes the relations between the concepts (rules) in WSSN that represent an inheri-
tance or a relation property (Table 2.2).

Table 2.3: Ontologies used in the definition of GCIO

Ontology Goal Main Concepts Covered
Geonames Identify the geographic area

over which the indicator has
been calculated

City, Country, State, GeoCoordinates, GeoShapes,
Neighborhood, Building, among others.

OM Represent the measurement
theory

Quantity, Unit of Measure, Ratio, Measure

PROV Define the provenance of an
indicator

Entity that aims to specify its provenance, Activity (Pro-
cedure that creates or transforms the entity), Agent (The
one who changes the entity)

OWL-Time Define the time at which
measurements are taken,
computed or derived

DateTimeDescription, DateTimeInterval, Day-
OfWeek|Month|Year, Duration, Instant, Interval,
MonthOfYear, etc.

Knowledge
Provenance

Represent the validity (cer-
tainty) of a proposition

Validity (value between 0-10) associated with a period of
time

The Trust Represent the degree of trust
in the provider of an indica-
tor value

TrustValue ("low", "medium")

Below is the formal definition of GCIO for the application of a matching strategy.

2.3.2 Formal Definition of GCIO

As addressed elsewhere, GCIO extends the ISO 37120 definitions through the merging of the
OWL ontologies summarized in Table 2.3 and defined as a conceptualization:

CCOMP =< DCOMP ,WCOMP , RCOMP >

where:

• DCOMP is the multidomain that considers the concepts related to georeference, measure-
ment theory, provenance, time definitions, validity, and trust;

• WCOMP are all the concepts defined by those ontologies; and

• RCOMP denotes the relations between the concepts (rules) in WCOMP that represent an
inheritance or a relation property.
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Figure 2.3: GCIO Base [3]

CCOMP is logically consistent.(Any pair of subdomains merged in CCOMP is disjoint regarding
their semantic definition.)

Fox [35] defined the classes and attributes to represent the ISO 37120 indicators concepts in
GCIO (Table 2.3). Therefore, GCIO can be defined as

CGCIO =< DGCIO,WGCIO, RGCIO >

where:

• DGCIO is the domain composed of a DCOMP union of the domain of City Indicators Defined
in ISO 37120;

• WGCIO represents the set of concepts defined by the WCOMP union of the ISO 37120 ones;
and

• RGCIO denotes the set of relations between the concepts (rules) in the WCOMP union of the
rules and associations defined by Fox [35].

Figure 2.3 shows GCIO defines groups of Indicators to represent the concept of theme handled
in ISO 37120. Each indicator is defined as an inherited object of the theme that defined it (all
indicators inherit one of the 17 themes defined in ISO). They also inherit other definitions and
contain properties for the representation of their values. Figure 2.4 shows a summary of the way
an indicator is defined in relation to the other ontologies that extend GCIO.

2.3.3 GPSCO definition

The integration of SSN and GCIO requires an alignment A < Ra > between (CSSN , CGCIO),
where the set of correspondence rules Ra is logically consistent and represents the relations be-
tween the concepts in both domains DSSN and DGCIO. A semantic analysis was manually per-
formed and the definitions followed the SSN split introduced in the previous section (observa-
tion/sampling contexts).
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Figure 2.4: GCIO Indicators [3]

Figure 2.5 displays some of the rules added to the SSN observation context and the GCIO
merging. The alignment enables the representation of supporting data on the entities involved in
the synthesizing of an indicator value. For example, an indicator value (om:measure) could
be a sosa:result obtained by an observation generated by a sensor or a system inside a
platform. The observation is made over a sosa:feature_of_interest (it extends the
om:quantity that defines the indicator) and the system/sensor that generates the value con-
tains information on its provenance. This alignment enables the representation of scenarios whose
indicators value provider is a person, a computer system, a governmental organization, an appli-
cation or an agent, since sosa:sensor could be anything after the extension for a particular
scenario.

Moreover, SC-related data that have established a low/no relationship with city indicators can
be represented in this approach.

The use of a sosa:result for the description of an indicator value does not enable the
representation of the historical data that generate it. Figure 2.6 shows how a sosa:sampler
that has a sosa:feature_of_interest is associated with an indicator and correlates it
with the samples that enable the estimation of the indicator.

Both sosa:feature_of_interest and om:quantity are definitions of something
measured and sosa:feature_of_interest class was extended by om:quantity. This
association implicitly establishes sosa:observation can be a gcio:indicator.

According to this approach, the ontology covers cases of pre-computed indicators values or in-
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Figure 2.5: GPSCO For Precomputed Indicators Data [3]

Figure 2.6: GPSCO For Supporting Indicators Data [3]
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dicators resulting from a sampling procedure represented by ssn:procedure, which describes
the generation of the result (i.e., an average over the sample).

Similarly to GCIO, GPSCO considers the origin of the data and their provider through PROVE-
NANCE ontology, in which all classes that require provenance-related information are concep-
tualized as a subclass of prov:entity. The prov:activity class describes the set or se-
quences of actions that transform the entity. The agent class represents the person, organization,
or system that performs the activity.

Our proposal aims at representing the indicators provenances and supporting data prove-
nance following the alignment provided by Compton et al. [62], in which ssn:system de-
rives from the prov:activity class and ssn:sensor and ssn:sampler derive from
prov:agent.

Regarding Time representations, both scenarios require the date of origin of the indicator
value. Similarly to GCIO OWL-Time ontology [46] will help the definition of intervals, tem-
poral positions, temporal units, etc. Property ssn:phenomenomTime, as a property of an
ssn:observation or an ssn:sampling, represents the time at which an indicator value
was measured.

Any ssn:result or ssn:sample related to the supporting data time has an ssn:resultTime
property that represents the time at which the indicator result was computed and the supporting
data samples were collected.

In an SC environment, all indicators are associated with at least one geographic area (city
area), which must be considered for the description of the region of collection of supporting data.
The more granulated the geographic information, the better the development of the predictor or
actuator. For example, low water pollution-related indicators of an entire city do not help the
finding of the origin of the pollutant. On the other hand, supporting data labeled with more
locally geographic information, as a geometry in a river, would provide such information.

In GPSCO, the geographic data are represented by GeoSPARQL Ontology [63]. In GeoSPARQL,
a geo:feature denotes a geographic area or point of buildings, rivers, cities, countries, streets,
and their geometries. It is set as an attribute over an ssn:observation and the ssn:sampling
that represents the city area and denotes the specific location of a sensor or sampler (i.e., river,
building, latitude, longitude) for the supporting data (ssn:sample). GeoSPARQL also enables
queries over the supporting data (i.e. all ssn:samples from a specific geo:feature belong-
ing to a period of time in which geo:feature can be an entire city, or a more specific location
or geometry).

Validity in GCIO refers to the usability of an indicator over time. At the point of publication,
the indicator is assumed valid; however, after a period, it (or its supporting data) may not be valid
any longer and must be discarded in queries. In GPSCO, validity is represented as in GCIO, since
it is a concept related to an indicator, and not to sensors.

On the other hand, trust measures the reliability of data and their creator. Less trusted data
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Figure 2.7: GPSCO Full Ontology [3]

producers will negatively affect the validity of an indicator or a dataset. In GPSCO, the behaviour
of the trust concept is the same as that of GCIO.

Finally, GPSCO can be defined as:
CGPSCO =< DGPSCO,WGPSCO, RGPSCO >

where:

• DGPSCO is the domain composed of DSSN union DGCIO ;

• WGPSCO represents the set of concepts defined by GSSN union GGCIO; and

• RGPSCO denotes the set of relations between the concepts (rules) in WSSN union WGCIO

plus the rules defined above.

Figure 2.7 shows all the concepts considered their alignment. Since GPSCO is a generic
SC ontology, concepts such as person can be represented extending the provenance ontology
with those as Friend of a Friend (48) for citizens representation. Proposals, as the one analyzed
in Section 3, which extends SSN , are also compatible. Therefore, proposals of more specific
domains can take advantage of GPSCO to define indicators values based on ISO 37120 Indicators.
Indeed, only 100 indicators were defined in ISO 37120 and some of the specific domains were
not covered. In such cases, a new concept is added for representing non-ISO indicators, as shown
in Figure 2.7.
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Figure 2.8: SSN , GCIO and ENVO Alignment [3]

2.4 DEFINITION OF ENVIRONMENT INDICATORS FOR SMART CITY ONTOL-
OGY

Below is the definition of an ontology for environment in SC called EISCO. The ontology
is based on ENVO, GCIO, and SSN ontologies and covers the main definitions required for se-
mantic data representation in the smart city environment domain. Since ENVO does not consider
concepts related to indicators, we propose following the GCIO approach designed by Fox [35].

GCIO defines groups of indicators to represent the concept of themes handled in ISO 37120.
Each indicator is defined as an inherited object of the theme that defined it (all indicators inherit
one of the 17 themes defined in ISO). However, ISO 37120 and GCIO cover other themes rather
than the environment and, specifically for the environment, they only cover eight indicators. In
EISCO, the theme definitions are ignored and an indicator is represented by reusing the GCIO
definition (Figure 2.8). An indicator inherits other definitions and contains properties for the
representation values related to time, provenance, geolocation, and measurements.

However, ISO 37120 is poor in terms of definitions (only eight indicators) and ENVO ontology
will help solve this issue with a broad set of environmental definitions. The “ENVO Indicator”
class (Figure 2.8) inherits from “GCIO Indicator” and groups all concepts that can be quantified is
here defined. The quantity that represents an ENVO indicator is associated with a unit of measure
inherited from GCIO Indicator and can represent a scale (i.e. water pH), a concentration (i.e.
PM2.5), or a well-defined unit (i.e. solid waste weight measured in tons).

Therefore, ENVO does not include the unit of measure related to the environment concept
definition. In this sense, a review of all ENVO concepts that can be quantified was made and a
mapping of the ENVO concept to unit of measure was proposed. The resulting mapping enabled
a proper definition of indicators based on ENVO definitions.
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2.5 ONTOLOGY TO SUPPORT THE SEMANTIC REPRESENTATION OF IOFT DATA

Figure 2.9 shows our ontology definition for IoFT. The ontology was proposed from an exten-
sion of GPSCO ontology for the representation of concepts related to Internet of Forestry Things
observations.

An ioft_observation is here conceptualized as an extension of a sosa:observation, which also
extends an om:quantity for the representation of a unit of measure. An ioft_observation has a
time (ot:time) to represent the moment at which a sensor gathered data, and a region (geo:region)
to denote the location of the observation.

An ioft_observation has a sosa:result that represents the numerical value of the observation
and correlates it with the sampler strategy that made the observation (sosa:sampler). The sampler
enables the identification of the IoFT sensor that captured raw data and associated them with
the property observed, i.e., observable property, which is here considered any measurable IoFT
-related parameter (e.g., temperature, humidity, CO2, among others).

The proposed ontology promotes the retrieval of IoFT aggregated data represented in RDF
format. For example, all ioft observations of an observable property (i.e temperature) made in a
region (i.e. Federal District) can be queried between two times (ot:time). Other virtual devices
can be implemented in the cloud as micro-services and directly communicate with others in cloud
platform components.

Figure 2.9: IoFT Ontology [4].

2.6 CONCLUSIONS

In this chapter, after a literature review of ontologies available for the treatment of sensors,
IoT and environment and Smart City (SC) data, we proposed GPSCO ontology for the semantic
integration of SC data, which was extended for the proposal of the EISCO, resulting in a broad set
of environmental indicators making possible the definition of data semantics for a Linked Data
Storage and enabling the application of ontology reasoners to extract knowledge from stored data.
Besides indicators data, the ontology covered other observation-related concepts, such as sensors,
platforms, data provenance, and trust. Moreover, the definition of IoFT was included to enable
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the representation of forestry data by a semantic approach.
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3 SMART CITY PLATFORM

This chapter presents and discusses, initially, some relevant studies on Smart City (SC) plat-
forms, with focus in the areas of Network and Application Layer Standards and Data Interchange
Formats, as well as in layer-based architectures. In the sequence, functional and non-functional
requirements for a smart city platform are elicited, and a SC platform is proposed. Such platform
is then extended to forestry and wildfire predictions, and experiments are accomplished in order
to evaluate the platform.

3.1 RELATED WORK

Regarding networking standards, IoT and SC are heterogeneous environments of devices and
sensors with different network interfaces. Li et al. [64] reviewed those networking standards
and concluded IEEE 802.11 (WLAN), IEEE 802.15.1(Bluetooth, Low-energy Bluetooth), IEEE
802.15.6 (wireless body area networks), and 3G/4G were the most used.

On the other hand, 5th generation mobile network (5G) is expected to improve latency, data
rates, bandwidth, and energy consumption [65]. The improvements of the quality metrics over
those parameters are very important since IoT devices are, in many cases, constrained devices.
Moreover, a better utilization of the devices capacities are always welcome.

Particularly, 5G addresses three scenarios closely related to the SC context [66]. Enhanced
Mobile Broadband (eMBB) covers the exchange of data between various user equipment includ-
ing text, and multimedia, characterized by large bandwidth requirements [67]. Massive Machine
Type Communications (mMTC) covers a large number of connected devices (e.g., sensors and
wearable devices) through a dense deployment in a city [68]. These devices are used to pro-
vide different services (i.e., automatic monitoring of environment parameters). Ultra-Reliable
and Low-Latency Communications (URLLC) covers those communications that are time-critical
and-or require high delivery probability [69].

In terms of application layer standards, Rashed et al. [70] proposed the communication of
IoT devices with the gateway through the Message Queue Telemetry Transport (MQTT) protocol
[71] and Datta et al. [72] defined a cloud-based gateway using Representational State Transfer
(REST) web services similar to the middleware proposed by Paganelli et al. [73]. Jan et al.[74]
considered the Constrained Application Protocol (CoAP) [75] to communicate IoT devices with
fog servers and Petrolo et al. [55] used CoAP for communication between IoT devices and cloud
resources. Desai et al. [76] introduced a gateway that communicates with IoT devices through
the MQTT protocol, besides the Extensible Message Presence Protocol [77] (XMPP) and the
Advanced Message Queuing Protocol (AMQP) [78].
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Dizdarevic et al. [79] compared the aforementioned protocols and concluded MQTT and
REST-ful HTTP are the most suitable for IoT, since they are the most mature and stable ones. On
the other hand, CoAP should also be taken into consideration; it also rapidly evolves as an IoT
messaging standard and is likely to reach a level of stability and maturity similar to that of MQTT
and HTTP in a near future.

The format of data interchanged through the communication protocols must be standardized.
Since IoT devices are resource-constrained, the extension of data formats (e.g. RDF ) to this
domain might be impossible for several applications. SenML [80] represents an important alter-
native for solving this issue, since it defines media types to represent simple sensor measurements
and device parameters. The representations are provided in Java Script Object Notation (JSON)
and XML, which shares the common SenML data model. Datta et al. [72] implemented it for
data representation, where the gateway receives the sensed data in a sensor custom format and
transcodes them following the SenML specification. The SenML-encoded data are sent to the
upper layers; however, other aspects that affect interoperability are disregarded. Different units
of measurement, sampling rates or numerical systems, in scenarios that involve more than one
platform, can lead to a wrong interpretation of data.

Other related studies addressed complementary relevant issues. Zhao et al. [81] developed
an incomplete multi-view clustering methodology that projects multi-view data with missing fea-
tures for a complete and unified representation in a common semantic subspace. The authors used
an affinity graph and a deep neural network to construct a multi-layer non-linear correlated set
of complete views and proposed an objective function that updates the model from one dataset
to another. Zhao et al. [82] proposed a transfer learning method for multimedia co-occurrence
data based on deep semantic mapping. It integrates deep neural networks with canonical correla-
tion analysis towards modeling a semantic subspace for associating data across source and target
domains. Liu et al. [83] reviewed the application of deep learning for urban big data fusion and
highlighted the accuracy and importance of such methods. However, the present study demon-
strates the adoption of those methods in a general-purpose platform, as the one proposed, is almost
impossible. Many of the proposals that consider a semantic integration that differs from the use of
ontologies (at data level) are restricted to specific use cases to which semantic integration models
and algorithms are adjusted.

As shown in Figure 3.1, IoT devices sense the city environment, collect data, and forward them
to a fog or a cloud system through gateways. The fog system provides a local environment near
IoT devices for data storage and deployment of applications on a lower scale for the processing
of data on buildings or neighborhoods scale. The gateway functionalities enable the forwarding
of the data to the cloud environment, which provides service on a city scale for their storage and
sharing for applications.

In terms of interoperability-based treatment of data, the entire data life-cycle initially consid-
ers a new environment ontology for promoting semantic compatibility. Moreover, standardized
communication protocols and data formats are considered jointly with a standardized query mech-
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Figure 3.1: Platform overview

anism. According to a common environmental terminology, data are linked to their semantic def-
inition at any stage, thus enabling the applications to extract the relation between measurements
of related concepts and the automatic generation of indicators values.

The proposal of an interoperable platform demands the study of architectural and platform fea-
tures. Irfan and Ahmad [84] considered a three-layered structure ideal for a logical fragmentation
and abstraction of complexities of IoT architectures composed of Things and Intermediate and
Integrated Application layers. The Things layer is comprised of heterogeneous IoT objects that
communicate through various communication protocols and networks. The Intermediate layer
is represented by a middleware or gateway that handles the IoT devices, processes the data at a
local stage and is implemented by Multi-agent, Service Oriented, RESTful or Publish-Subscribe
technologies. The Integrated Application layer stores huge amounts of data and processes them
through several applications.

The proposals of [72, 85, 86, 87, 88, 89] involved architectures that follow the aforementioned
three-layered approach. At the lowest layer, all studies considered IoT devices that deploy sen-
sors and/or devices that control a sensor network. Such devices connect to the platform through
different access networks (i.e. WiFi, Bluetooth, Long Term Evolution (LTE)), sense the data
and forward them to the platform that finally makes them available for applications with diverse
objectives, including treatment of big data.

Santos et al. [90] followed the same three layered architecture but considered 5G as the
access network. The authors also proposed a device to device communication between sensors
and gateways. On the other hand [91] considered 5G-enabled sensors that connects directly to
cloud servers and 5G-enabled fog servers that act as gateways with local processing capabilities.

Rahmani et al. [92] proposed an IoT-based health monitoring system composed by the layers:
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Figure 3.2: Structure of a three-layer IoT architecture [3]

Smart Devices, which include the Sensor Networks and IoT Devices; Edge/Fog, that contains the
Gateways, which its primary function is to forward the health data to the Cloud and to provide
services for the discovery and control of the IoT devices; and Cloud, where the data is processed,
stored and consumed by applications. In this study, the gateway plays the key role enabling Fog
Services for local data preprocessing and storage improving mobility and accessibility issues.
However, the communications protocols, the data format used and the integration with external
applications is not clear.

Figure 3.2 shows the three-layer architecture, which considers both fog-based and gateway-
based approaches. As in Howell et al. [93], our proposal takes advantage of a fog server for local
processing, while governmental services are processed globally in the cloud. Moreover, home
gateways collect data in an aggregated and local way.

Regarding networking technologies, the platform considered the IEEE 802.11 (WLAN), IEEE
802.15.1 (Bluetooth, Low-energy Bluetooth), IEEE 802.15.6 (wireless body area networks), and
3G/4G/5G standards to grant communication among the three layers, and has developed two
different implementations of the IoT Gateway. The first is based on an Android smartphone that
considers Bluetooth and WiFi network connectivity, whereas the second is a micro-controller-
based gateway (Arduino, Raspberry Pi) with Bluetooth, WiFi, and ZigBee. Both connect to the
cloud through the Internet accessed by mobile data networks. The Fog Server is based on a
common PC/Server with Bluetooth and WiFi interfaces.

Similarly to the gateway-based approach proposed by Desai et al. [76], each component (IoT
Gateway, Fog Server, Cloud Server) in Figure 3.3 provides a set of adapters that implements
CoAP, MQTT , and REST over HTTP. An abstract adapter enables instances defined by other
application protocols, thus extending the gateway functionalities. The Settings Manager entity
stores the settings and handles all adapter instances and the addressing among gateway, fog, and
cloud adapters. Each adapter instance can act as a bridge with its counterpart in another entity.
For example, a gateway CoAP adapter can make a bridge with a fog CoAP adapter, which enables
data transfers between IoT devices and applications regardless of the entity that handles them.

All data among IoT devices, gateway, and fog server are represented in SenML format as
defined below:

{ “n”: “IRI of the sensor on the Environment SC Ontology” + “/Uid”,

“t”: “time at which observation was received”,
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“u”: “IRI of the unit_of_measure on the Environment SC Ontology”,

“v”: “Numeric value obtained in the observation”,

“vs”: “String encoded value, if it exists”}

Each IoT sensor is identified by a unique International Resource Identifier (IRI) that aggre-
gates semantic information and is associated with ontology classes that define the type of sensor,
the type of data observed, among other semantic characteristics represented in an ontology (next
section). The SenML messages are transmitted through the adapters as the payload of the selected
application protocol. Finally, the applications in the Integrated Application layer retrieve the data
represented in both SenML and RDF formats.

On the other hand, IoT applied to forestry industry enables the collection of large quantities
of data for supporting several decision-making processes. For example, the platform proposed
by [17] shows the importance of IoFT data such as temperature, humidity, and carbon dioxide
in the early detection of fires. However, it ignores other complementary data, thus hampering
the development of other types of studies (e.g., behaviour prediction). Although the authors
addressed the way ML can be considered, they clarified neither how to take advantage of it, nor
how to handle the heterogeneity of IoFT platforms and definitions such as observation measures,
process, and communication protocols involved.

Tsiropoulou et al.[94] discussed an energy and physical aware-based framework for coalition
formation and resource distribution among wireless IoT applications. Numerical results validated
the energy-efficient characteristic of the proposal; however, the framework considers a static data
representation scheme difficult to extend. The research was devoted to the capture system rather
than to an aggregation and interchange platform for IoFT data.

Figure 3.3: Communication Protocols [3]

32



3.2 REQUIREMENTS ELICITATION

Regardless of the use cases, systems for SC and IoFT share common functional and non-
functional requirements. The former enable the definition of services or functions provided by the
platform, whereas the latter are more focused on the quality of services, performance problems,
and issues related to the implementation of the platform.

3.2.1 Functional and Non-Functional Requirements

In general terms, the platform must enable the collection and exchange of SC/IoT/IoFT de-
vices data in a simple way and reduce integration efforts between data producers (sensors) and
data consumers (applications). The following functional requirements were defined for the meet-
ing of such objectives:

1. Sensors integration: The platform must promote the identification and integration of several
sensors and registration functionalities such as sampling process, unit of measurement of
the observations, and type of feature observed must be provided for the identification of
sensor- collected data and definition of sensor metadata.

2. Devices Heterogeneity: The platform must deal with the heterogeneity promoted by sensing
devices. Tools should be proposed towards simplifying the collection of data from SC/IoFT
solutions and sensors and other complementary data producers should be considered for the
sake of integration by the platform.

3. Collection of heterogeneous data: : Data are the core of the proposed platform and re-
fer mainly to sensed observations. The platform must provide data management services
from sensor to applications, including data acquisition, data processing, and storage in a
standardized format.

4. Context information: Context is very important in SC/IoFT and its applications. A large
number of sensors generates large amounts of data, which have no value unless they are
jointly analyzed, interpreted, and understood. Since temporal and spatial context plays a
vital role, the platform must provide mechanisms for a context information representation.

5. Resource Limitation: Sensors are commonly limited in terms of processing, memory, and
communication capacity. Therefore, the platform should consider standards and tools aligned
to such constraints.

6. Data-related services: The platform should provide tools for the definition of pre-processing
strategies, which may include data filtering and aggregation strategies, and services for
query and streaming data in a standardized manner must be made available for consumers´
applications. It must also enable and manage the semantic relationship between data, and
the data schema must allow the extension and edition of semantic definitions.
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7. Event Management: A large number of observation events is generated by broad SC and
IoFT systems and must be managed as an integral part of the platform, which transforms
observed events into meaningful ones and enables real-time analyses so that downstream
applications are driven by accurate and real-time information and intelligence.

8. Inference Services for Decision Support: The platform must provide machine learning ser-
vices that facilitate data analysis and extraction of insights by the final applications.

Non-Functional Requirements:

The following key non-functional requirements were considered for the IoFT platform:

1. Interconnectivity: The platform should support as many modes of connection and commu-
nication protocols as possible for the forwarding/production of observed data.

2. Extensibility: The platform must be extensible towards the integration of new devices and
applications with no alterations and enable the semantic models to be updated so that the
data schema can evolve dynamically in function of new application needs.

3. Real Time Treatment: Consuming applications (i.e. fire prediction) are highly sensitive to
latency and should not experience data delays; therefore, the time between performing an
observation and receiving data in the application should be minimized.

4. Scalability: The expansion of both devices and data collected leads to great concerns. The
platform must guarantee a sufficient quality of service for supporting the expansion capacity
of the network when more objects are added or when the volume of observed data increases.

5. Interoperability: IoFT must be usable by the applications and devices with slight changes
performed by developers. Interoperability is improved when the platform provides APIs
for developers and supports many protocols, such as MQTT (Message Queue Telemetry
Transport), HTTP (Hyper Text Transfer Protocol), AMQP (Advanced Message Queuing
Protocol), and CoAP (Constrained Application Protocol), widely used in sensor networks.

3.3 PLATFORM DESCRIPTION

Figure 3.4 shows the main platform components, namely applications, Cloud Server, IoT
Gateway/Fog Server, and IoT devices. In the upper part are the applications that process the gath-
ered environment data, apply data mining and other big data techniques, train complex machine
learning models, or monitor the data towards supporting decisions on city strategies. The Cloud
Server provides the platform with features required for data storage and processing for supporting
the data used by applications. The data stored on the cloud are provided by the IoT Gateway and
Fog Server, which primarily function as a data relay between IoT Devices and Cloud Server. Fi-
nally, IoT devices measure the environmental parameters and forward the measurements to either
the gateway, or the fog server.
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Figure 3.4: Proposed Smart Environment Platform [3]

All components are treated in a Management Plane that covers the main management areas,
such as Configuration, Security, Performance, Faults, and Accounting. Regarding implementa-
tion, the platform uses several technologies and programming languages and follows the consid-
erations detailed below.

3.3.1 Applications

Applications are considered clients that use the platform and can implement data mining tech-
niques or near real time monitoring by either querying the data from the cloud and fog servers, or
receiving them in a publish/subscribe approach. Machine learning algorithms (e.g., deep learn-
ing, clustering, neural networks, among others) can assess an indicator of interest. For example,
an application can use dynamically collected indicator data to train a recurrent machine learning
model (i.e. a recurrent neural network) and apply data mining techniques in pre-stored indicator
data sets.

In the first case, the application subscribes to one or more topics in the MQTT broker of
interest (in a fog server for localized processing, or in a cloud server for city scope) and whenever
data of indicators are published in those topics, the machine learning model is trained. A user (or
another system) can then make inferences using the trained regression model. In the second case,
users can design big data algorithms (i.e. data mining techniques) that query data from cloud/fog
servers using SPARQL sentences over RESTful web services, extract meaningful insights about
the indicator value, and trigger actions over actuators (i.e. high temperature detected triggers
anti-fire systems).

Supply of standardized services for the aggregation and distribution of data and management
and automatic generation of indicators are the main objectives of the platform. The implemen-
tation or proposal of big data, data mining, or machine learning algorithms is not an objective
of this study, although many applications can benefit from the platform. Since the data are stan-
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dardized and public, applications with different objectives can be developed (e.g., continuous
monitoring of indicators (e.g. PM2.5 and PM10) in a region (neighborhood or city) which is
useful for citizens with, for example, respiratory diseases)). Different service providers such as
health, transportation, and environmental care can benefit from our platform for establishing rela-
tionships among various environmental parameters. Regression models can be trained to estimate
environmental conditions in a region and clustering algorithms can identify sources of contam-
inant generation. Another use case considers the early detection of fires, in which a continuous
distribution of temperature data enables the implementation of alert systems. Therefore, since the
platform promotes the distribution of environmental data following a Publish/Subscribe approach
and acts as a Linked Data Source, numerous applications can be developed.

3.3.2 Cloud Server

The cloud server integrates different sub-components that can be instantiated according to
a Platform and Infrastructure as a Service model and deployed on the Microsoft Azure cloud
services provider. Its main functionalities are related to the maintenance of the semantic model
and the storage and forwarding of data among gateways, fog servers, and applications. The
following subsections describe the components that comprise the Cloud Server and their features.

The Ontology Management component provides a visual interface and functionalities for cre-
ation, update, deletion, and deployment of definitions on EISCO ontology. Its main functionalities
include definition of sensors, platforms, geolocation areas, among other instances of the classes
defined on EISCO. It was deployed as a Web application over an Azure App Service and use
of Azure Blob Storage for the deployment of EISCO and generation of valid IRIs. Moreover,
it enables the edition and publication of new ontology definitions provided by the Storage and
Data processing component, which also supplies all functionalities for the storage and handling
of indicator-related sensed data. When instantiated, the component starts a Virtuoso Storage for
storing the RDF data using the linked data functionalities and according to EISCO provided by
the Ontology Management component. It provides functionalities for the storage of the SenML
data supplied by an adapter manager as RDF triples. The proposal of Su et al. Su et al. [95]
supported the mapping of SenML in RDF . Once the messages have been translated, the compo-
nent provides functionalities to store the data in Virtuoso storage and to forward messages to the
Publish/Subscribe and Application Services.

Jena Apache server is started by the aforementioned component for the definition of a pre-
processing pipeline and the development of reasoners for the inference of new RDF rules. The
storage and data processing component provides functionalities to forward the new inferred data.
Some filters applied prevent the repetition of data and check their both integrity and trust. Plat-
form users define their own processing techniques deploying a data processor sequence, since
the processors can accomplish complex tasks for data preparation, such as estimation of missed
features of an observation, or for the calculation of an indicator value in a custom time period.
A processor is provided by default for the management of indicators values originally defined in
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EISCO.

The Publish/Subscribe and Application Service exposes a set of RESTful endpoints for the
query of data using SPARQL query language and returns data in SenML and RDF format. It also
enables the applications to subscribe to an MQTT broker where the data received by the Storage
and Data processing component (forwarded by the adapters or inferred by Jena Apache reasoners)
are published.

The Protocols/Adapters component handles the adapters that implement the application layer
protocols discussed in Section 3.2. Configurations such as port numbers, topics for brokers,
among other parameters necessary for the start of the adapters are provided by the management
plane. The Protocols/Adapters component is composed of three main entities, namely Multi-
adapter manager, MQTT adapter, and Non-MQTT adapters. The multi-adapter manager controls
the data flow among the adapters and provides functionalities to start/stop them and configure data
tunnels between them. If configured, it also enables a direct publication of data to the Publish/Sub-
scribe Application Services. The MQTT adapters are instantiated to receive the data forwarded
by different IoT gateways and Fog servers deployed in the architecture. Following a Publish/Sub-
scribe approach, their main functionalities include the creation of topics on the MQTT broker for
the forwarding of data from both gateways and fog servers. When a topic is created, the adapter
notifies the adapter manager to subscribe to it. On the other hand, Non-MQTT adapters enable
the communication of gateways and fog servers using the other application protocols dis- cussed
in Section 3.2.

3.3.3 IoT Gateway

Gateway functionalities are provided in two frameworks. The first, in Java language and
developed specifically for Android devices, offers a visual interface for the gateway parameter
management, and the second is comprised of a set of C language libraries for a Raspberry PI
platform and includes no visual interface.

The gateway Protocols/Adapters component follows the same definition as its counterpart on
the cloud server. It contains a multi-adapter manager for data forwarding among IoT devices;
however, it disregards the direct publication of data for applications, given the non-existence
of a publish subscribe and application services component. Instead, it acts as a data relay for
the storage and data processing component. The gateway storage is slightly different from its
counterpart on the cloud server. Since gateways have the lower computing power and hardware
resources, the storage is implemented in the form of a local cache that enables the verification of
data integrity and processing of data for avoiding the forwarding of meaningless messages (i.e.
duplicated observations). The fog/cloud interfaces are provided as Java Modules integrated in
a Visual Interface Application and work as a SenML message relay to forward the IoT devices
observations processed by the storage and data processing component to the cloud and fog servers.
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3.3.4 Fog Server

The visual interface was developed in .NET as a web application that can be deployed on
a Windows PC. The Storage and Data Processing, the Publish/Subscribe Applications Services,
and the Protocols/Adapters components have the same functionalities and implementation of the
Cloud Server, except that the data handled in the fog server are related to a localized region rather
than to the entire city. The Fog to Cloud interface provides forwarding services to the cloud for
gateways that cannot reach the cloud server adapters and IoT devices directly connected to the
fog server.

3.4 PLATFORM EXTENSION TO FORESTRY AND WILDFIRES PREDICTIONS

Figure 3.5 displays an overview of the use-case of the previous platform, but adapted to a
forestry- based wildfire prediction. IoFT devices collect observations of different environmen-
tal parameters and publish them in the IoFT data aggregation platform deployed in the cloud.
Complementary data such as those collected by governmental sources are sent or mined to the
platform. All space-temporal data aggregated in the platform are preprocessed and normalized in
terms of data representation. Then, ML (ML) models are trained considering the fire-related data
and published for prediction tasks. The training process involves the collection and preparation
of fire scars and vegetation and climatic historical data.

Figure 3.5: Overview of the proposed solution [4].

Governmental institutions such as fire departments can use the fire behaviour prediction ap-
plication for predicting a fire evolution and the final scar. The application inference engine uses
the models previously trained, the current environmental observations, and a fire ignition point
for the prediction of fire behavior and fire scar.
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Following the previously described three layer-based architecture and considering the elicited
functional and non-functional requirements to be met, this sub-section presents aspects related to
the platform adaptation.

An IoFT Virtual Sensors API (IoFTVSENS) implemented in .Net is proposed for the imple-
mentation of Virtual IoFT devices. It exposes APIs that provide functionalities for virtualization
and promotes the integration of non compatible data-sources to the platform, offering high-level
services for communication and service management (sensor registration, authorization, etc.). As
an example, producers based on web crawlers, database streaming, or extract/transform/load pro-
cesses can be integrated to the platform with few efforts. Section 4 provides examples of virtual
IoFT implementations.

Gateway functionalities were supplied in a framework (IoFTGate) written in C for Arduino
Platform, which acts as a data relay for the storage and data processing component. It considered
several network interfaces such as Bluetooth, ZigBee, WiFi, and Ethernet, CoAP, AMQP, and
MQTT as communication protocols with the IoFT devices. A storage and processing module
works as a local cache for the verification of data integrity and the processing of data towards
avoiding the forwarding of meaningless messages. Cloud interfaces were provided as another
module and work as a SenML message relay to forward the IoFT devices observations processed
by the storage and data processing component to the cloud. They were implemented as a set
of MQTT publishers, one for each type of observation. The Settings Manager together with the
adapter configurations handle the routing to the cloud.

The cloud server offered several Platform and Infrastructure Services and was deployed on
the Microsoft Azure cloud services provider and Amazon web services. Its main functionalities
are maintenance of the semantic model, storage of semantic observations, application of data
processing, and knowledge extraction for ML models.

The Ontology Management component provides a visual interface and functionalities for cre-
ation, update, deletion, and deployment of definitions in the ontology. It was deployed as a Web
application over an Azure App Service and use of Azure Blob Storage for storing ontology def-
initions and generating valid IRIs. It also enables the edition and publication of new ontology
definitions provided by the Storage and Data processing component.

The MQTT Adapter component handles configurations such as port numbers, topics for bro-
kers, among other parameters necessary for a direct publication of IoFT data from the gateway
to the Publish/Subscribe Application Services. The Publish/Subscribe and Application Services
exposes a set of RESTful endpoints for the query of data using SPARQL query language and
returning data in SenML and RDF format. Moreover, it enables the applications to subscribe to
an MQTT broker where the data received by the Storage and Data processing component pub-
lished. The Storage and Data processing component provides all functionalities for the storage
and handling of SenML observed data mapped to RDF format, according to the definitions in the
Ontology Management component. Moreover, data transformation processes such as re-sampling
and interpolation can be defined.
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Applications are considered clients that use the platform services for several purposes. They
can implement real-time monitoring by querying data from the cloud and receiving them in a
publish/subscribe approach. Moreover, they can take advantage of deployed ML models for de-
cision support based on the last environment state stored. As an example, an application that uses
current data to predict a wildfire behaviour is defined in what follows.

In a first case, the application subscribes to one or more topics in the MQTT broker of interest
(e.g., a fog server for localized processing) or in a cloud server for city scope. Whenever data
of indicators are published in those topics, the machine learning model is trained and a user
(or another system) can make inferences using the trained regression model. In a second case,
users can design big data algorithms (i.e. data mining techniques) that query data from cloud/fog
servers using SPARQL sentences over RESTful web services, extract meaningful insights about
the indicator value, and trigger actions over actuators (i.e. high temperature detected triggers
anti-fire systems).

Figure 3.6 shows a summary of the wildfire behaviour prediction use case detailed in what
follows.

3.4.1 Data Producer Layer

Several Virtual IoFT devices were developed for the collection of meteorological data on 11
climatic features related to Atmospheric Pressure (AP), Air Temperature, Relative Humidity, and
Wind obtained from five automatic stations (Figure 3.7) spread across the district [96]. Obser-
vations were taken at one-hour intervals since 2000 and sent to the platform with their proper
sampling date and time. One virtual sensor was considered for each feature and for each location,
totalling 55 environment-related IoFT devices. The data observed were forwarded to the gateway
in SenML format. Figure 3.8 shows an example of a SenML encoded temperature observation.

Point of ignition and scars IoFT devices obtained data on historic fire spots, and each obser-
vation was defined by its location (latitude, longitude) and date and time of the events. Fire spots
data were based mainly on a Moderate Resolution Imaging Spectroradiometer (MODIS) from
AQUA, TERRA, NOAAs-15, 16, 17, 18, and 19, METEOSAT-02, and GOES-12 satellites. The
second dataset contains data on fire scars identified in the same period with 30-meter space reso-
lution and 16-day temporal resolution. Scars were generated by the processing of Landsat-8/OLI,
CBERS-4/MUX and Resourcesat/LISS images.

NDVI data were obtained from MODIS /Terra Vegetation Indices available in [97]. They were
sampled by the IoFT device in a 250-meter spatial resolution, measured at 16-day frequency, and
identified as a contour observation in the ontology. Historical point of ignition, NDVI, and fire
scars data were collected by several web crawlers which acted as IoFT virtual devices. Each
crawler considered 1-hour verification interval and was implemented as .Net applications running
on a local server.
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Figure 3.6: Platform Applied to Wildfire Use Case [4].

Figure 3.7: Federal District Automatic Stations and NDVI [5]
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Figure 3.8: SenML example of a temperature observation [5].

3.4.2 Intermediate Layer

Environment monitoring devices connected to gateways via WiFi LAN (Local Area Network)
used CoAP protocol. On the other hand, Virtual IoFT devices were connected to the gateway
via Ethernet and REST. All gateways connected to the cloud through WiFi and Data Over Cable
System Interface Specification (DOCSIS) modem following an event-oriented approach consid-
ering MQTT a communication protocol, and were configured towards acting as SenML message
relays.

3.4.3 Integrated Application Layer

SenML data received by the adapters/protocols are published in a topic of the MQTT Broker
according to the sensor IRI. A data adapter converts them to RDF tuples and store them in the
Apache Jena RDF Store. At this point, all historically collected data are stored and available for
queries with SPARQL .

Amazon Sagemaker managed services promoted ML processing, since it enables the defini-
tion of a complete lifecycle of a machine learning solution taking advantage of cloud computing
resources. Initially, data are retrieved a to be used for the training of the models. In our applica-
tion, data are queried from Apache Jena RDF store and mapped to tabular records. In a second
step, the data are processed and prepared for model training. Since they were available in different
spatial and temporal resolutions, a re-sampling process was required.

Supervised learning was applied to solve the wildfire prediction problem. Given a fire situation
at time t1, the models estimate the sectors that will be affected by the fire in the future t2. Since
the data on fire scars are in a 16-day temporal resolution, we do not have all the frames (only the
final one) to find out the way the fire progressed. Towards simulating the frames, we assumed
all fires (starting at an ignition point) would progress no more than one sector distance from
another burned sector in each step. Moreover, our dataset is composed of samples of 3x3 sectors
generated from two consecutive frames (t1, t2). For each sector not affected by the fire and with
at least one burnt neighbor, the ”burn” class represents it if burnt in t2. Otherwise, the unburnt
class is assigned to it.

Finally, at the top of the IoFT wildfire use case is the fire behavior prediction application,
which estimates the scar resulting from the spreading/advancing of the fire given a point of igni-
tion.
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Figure 3.9: Experimental network topology [3]

3.5 EXPERIMENTS AND PERFORMANCE EVALUATION

Metrics such as latency and resources (CPU and Memory) consumption were analyzed for the
performance evaluation of the platform. The tests considered a real use case of environment qual-
ity monitoring where PM2.5, CO2, O3, relative humidity, latitude, longitude, temperature, and
noise data are monitored. A set of IoT devices, called Environment Quality Monitoring Station
(EQMS), was developed by the combination of Arduino MEGA development platforms, ESP8266
Wi-Fi, and HC-06 Bluetooth modules for providing network access, GY-NEO6MV2 modules
for geo-positioning, microphones for noise measurements, and DSM501, MG811, MQ131, and
DHT11 sensors for the other indicators.

Figure 3.9 displays the network topology where EQMSs connect through a Wi-Fi Access
Point hosted in a router connected to the fog server via Ethernet. The router also enables commu-
nication with the cloud services. On the other hand, EQMSs connect to the IoT Gateway through
a Bluetooth connection using the HC-06 module. The connection between IoT gateway and fog
server is provided through a Wi-Fi local area network, and a 4G LTE network adopted connected
the IoT gateway and cloud services. An application for environmental quality monitoring is sub-
scribed to the cloud publisher on each observation topic and uses the received observations for
the detection and alerts on adverse environmental situations.

Several values of observations were transmitted from EQMSs to the fog server, thus enabling
a comparison of latency for MQTT , CoAP, and REST adapters (see Figure 3.10). Table 3.1 shows
the maximum and average latencies for each adapter. CoAP showed the lowest latency, i.e., 242
ms, whereas that of REST and MQTT was slightly higher, i.e., near 500 ms. The performance of
the three adapters was stable during the experiment in which the REST-based one showed 801ms
maximum latency. Table 3.2 shows a similar behaviour of the RAM memory consumption.
Since CoAP is the most lightweight protocol, it consumed 2751kb, whereas REST and MQTT
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Figure 3.10: Transmission latencies of different adapters over Wi-Fi (for the path EQMSs to Fog Server).

Table 3.1: Maximum and average latencies for each Adapter/protocol.

Adapter MQTT CoAP REST

Max. latency 699 ms 399 ms 801 ms
Avg. latency 509.83 ms 241.472 ms 523.55 ms

consumed 2965kb and 3259kb, respectively.

Figure 3.11 displays the overall latency between the EQMSs and the cloud subscriber appli-
cations passing through an LTE IoT Gateway. In general, the overall latency increased in relation
to the fog server setup. The overall behaviour was similar, and CoAP was the most performa-
tive adapter. However, both REST and MQTT showed acceptable latencies, with average values
below 630ms.

Figure 3.12 displays the overall latency between the EQMSs and the cloud subscriber appli-
cations but now through an enabled Gateway. The average latency was decreased nearby 34ms
in relation to the LTE access network, in a preliminar evaluation.

Both experiments, LTE and 5G where performed within the same Internet Service Provider,
however, these results are not conclusive since no data about networks loads were known at the
time of the experiments.

Table 3.3 shows a summary of the latency results obtained. The CoAP protocol showed the
best performance and, regarding celular network over the gateway, 5G presented better latencies
than LTE, but additional experiments are required for a better evaluation.

A performance comparison with similar platforms would be interesting for a better evaluation
of our proposal in terms of state-of-the-art. However, a fair comparison seems difficult, or even
impracticable, given the difference in platform objectives, network architectures, topologies, and
other features. Moreover, since no open-source environmental platform was identified, efforts for
the construction of other platforms would be necessary for an effective comparison.

Table 3.2: EQMSs Maximum RAM memory used by each Adapter/protocol.

Adapter MQTT CoAP REST

Memory used 3259kb 2751kb 2965kb
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Figure 3.11: Transmission latencies considering different adapters over LTE (for the path EQMSs - IoT Gateway -
Cloud - Subscribed Application).

Figure 3.12: Transmission latencies considering different adapters over 5G (for the path EQMSs - IoT Gateway -
Cloud - Subscribed Application).

Table 3.3: Performance Summary.

Adapter MQTT CoAP REST

Max. latency LTE 899 ms 495 ms 1192 ms
Avg. latency LTE 627.52 ms 306.67 ms 661.21 ms
Max. latency 5G 1640 ms 692 ms 1302 ms
Avg. latency 5G 604.45 ms 272.46 ms 657.96 ms
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Figure 3.13: Query delay in respect to dataset size

Among the applications developed for the testing of the platform, one considered spatio-
temporal data related to Weather Madrid (WM) [98] and Air Quality Madrid (AQM) [99] datasets
and retrieved by SPARQL queries. AQM data were sub-sampled and a model similar to that pro-
posed by Zhao et al. [82] ) was trained considering categorical feature "Events" (Rain, Fog,
Hail and Thunderstorm), available in WM dataset, for the classification in target dataset AQM.
The results showed its high accuracy and the importance of data fusion methods. However, the
modelling of complexities of such approaches and their adequacy to the problem characteris-
tics showed data fusion models must be developed specifically for a particular use case for the
obtaining of better quality results.

Measurements of the execution of SPARQL queries for RDF database (Apache Jena) were
also collected. Figure 3.13 shows queries are performed as the data collected increase. The
test dataset was defined in such a way the query always returned half of the data of the set. A
monotonically crescent behavior can be observed in the increase of the execution time; queries
with returns of more than 500 thousand samples required approximately five seconds.

3.6 REQUIREMENTS FULFILLMENT

All the requirements elicited in section 3.1 were met, as shown in the next two sections.

3.6.1 Treatment of Functional requirements.

Sensors integration: IoFTSENS API provides functionalities for sensor registration and identi-
fication enabling communication with the settings manager hosted at gateway and cloud services.
Sensor meta-data, such as sampling process, unit of measurement of observations, and type of
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feature observed are represented in the data schema by SOSA ontology.

Devices Heterogeneity: The platform does not bind the type of sensor to be used. The dynamic
and semantic approach implemented enables any data formatted in SenML . In case of non-
standardized data, the platform accepts the implementation of virtual IoFT devices.

Heterogeneous IoFT data: The platform deals with heterogeneous data following a semantic
representation rather than a fixed scheme. Data are formatted in SenML format in devices, thus
enabling interoperability. If a device is not SenML compatible, the IoFTSENS API provides
functionalities to simplify the data transformation. The schema proposed is flexible enough for
handling all data types, unit of measures, and metadata previously defined in the ontology, and
the application can consume the data following a widely used semantic standard such as RDF .

Context information: Observed data consider both time and location that relate to a geo:region
ontological definition. Other types of observational context (i.e. type of sensor and sampling
process) are managed by the platform through the ontology and other context information can be
inserted through an ontological extension.

Resource Limitation: The platform considers standards such as ZigBee, CoAP, and SenML
designed for devices with limited resources.

Data-Related Services: The platform enables the definition of customized pre-processing
strategies that can be deployed in the gateway, using the IoFTGate framework, and in the cloud,
considering the processors service functionalities. Moreover, it provides data services for query
and event-based streaming through Apache Jena RDF SPARQL and Publish/Subscribe applica-
tion services.

Event Management: Large volumes of observed data are handled by the platforms according
to an event-driven solution. The MQTT server deployed on the cloud handles the topics defined by
the ontology when observations arrive in an adapter, and the data converted to RDF are published
in those topics. Consumer applications receive such data in almost real-time. The MQTT Server
is managed by a cloud service provider with auto-scale capabilities.

Inference Services for Decision Support: With machine learning as a service, the platform
enables both training and inference by several models provided by AWS SageMaker.

3.6.2 Treatment of Non-functional requirements.

Interconnectivity: IoFT gateway and cloud services implement several application protocols
(e.g., CoAP, HTTP, MQTT , and AMQP). Several network protocols regulated by normative
organizations such as Blue- tooth, Wifi, ZigBee, 6LoWPAN, and Ethernet were considered.

Extensibility: The flexibility introduced by the semantic scheme enables the definitions of
any type of sensors, sampling procedure, and units of measure for the extension of the platform
to almost any scenario and device.
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Real Time Treatment: Since the platform considered an event-based approach, all data can be
transmitted from devices to consumer applications in almost real time.

Scalability: The platform enables the accommodation of a large number of sensors, given
the layered architecture followed. As the number of devices increases, the number of deployed
gateways can be increased and the cloud service can be reached through the use of the MQTT
adapter, thus avoiding bottlenecks. The supply of platform services in the cloud also grants several
ways for scalability.

Interoperability: The platform supports communication protocols widely used in the IoT con-
text.

3.7 CONCLUSIONS

This chapter, after a literature review of SC-related platforms, communication protocols and
data interchange and representation strategies, presented an IoT-based platform for the environ-
ment SC domain, following a three-layered IoT architecture. The platform enables the collection,
storage and processing of data from the city environment, in a local region (i.e., neighborhood or
building) using Fog resources (for the local processing), and at the city levels through services
and resources dynamically deployed in the cloud.

Some key points related to the platform must be highlighted:

i) Use of the adapter concept for a seamless integration of heterogeneous sensors;

ii) Fog and Cloud Interfaces functionalities, which improved the flexibility, since the architec-
ture of the platform can be adapted to almost all use cases;

iii) Adoption of SenML towards compatibility in terms of data representation; however, the
mapping of the IRI of the sensor (in both the gateway and the fog server) is mandatory for reduc-
tions in message overload and the consumption of resources in constrained devices;

iv) Possibility of application of big data techniques and machine learning on the cloud over
city environmental data through a coherent semantic and standardized data model that defines the
interrelation of the data in a robust way and extraction of implicit information through ontological
reasoning; and

v) Presentation of queries made by client applications to the platform are presented in a stan-
dardized way through the use of SPARQL and RESTFul for query endpoints and SenML and
RDF as the format of the response object.

The platform was extended to the IoFT context and a set of functional and non- functional
requirements was proposed and validated.
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4 WILDFIRE RISK AND BEHAVIOUR PREDICTION

Discussions on global climate changes and forest ecosystems risk have become more promi-
nent. In 2019, wildfires in Australia, South Africa, and Brazil gained worldwide attention and
were one of the main drivers responsible for losses in forested areas and devastating biodiversity
and human and economic damages. Therefore, interest in wildfire-related studies has increased
over the past decade [100].

The Brazilian Federal District (FD) region has shown increasing fire activity since the year
2000 [1], thus motivating our interest in the study of its effects. Such fires have impacted the
native species of the region, even in protected zones [101], decreased the quality of life of its
inhabitants, and forced local governments to spend resources on their fighting. However, not
much research on the prediction of wildfires in the FD region, inserted in the Brazilian savanna
(the Cerrado biome), has been developed [25].

This chapter focuses on the study of wildfires in the Federal District region and presents a
review of the related work, the characteristics of the region, and two approaches for fire risk and
behaviour predictions based on ML.

4.1 RELATED WORK

4.1.1 Wildfires risk predictions

ML-based fire prediction tools generally follow the flow shown in Figure 4.1 [102][103],
which takes an observation of the current parameters of a sector (sub-region) as input and returns
an estimate of the fire risk. The repetition of this process for all sectors enables the generation of
risk maps on information for governmental decisions. The flow shows several originating features
and machine learning models can be considered for fire prediction and the identification of the
most suitable model for the estimation of Wildfire-related events is a challenge.

Rodrigues and de la Riva [100] considered forested areas in peninsular Spain, and a binary
classification problem (classes "High", related to at least two fire ignitions and "Low", in other
cases) for the dependent feature "fire occurrence". In a 1-km resolution grid, they considered hu-
man presence, Wildland Urban Interface (WUI), changes in demographic potential (1991-2006),
Wildland-Agricultural Interface (WAI), electric power lines, engines, and machines working in or
close to forest areas, the density of agricultural machinery, presence of roads, railways, and tracks
and their accessibility explanatory features.

Three ML algorithms, namely, Random Forest (RF), Boosting Regression Trees (BRT) , and
Support Vector Machine (SVM) were implemented and compared with traditional methods (e.g.,
Logistic Regression (LR)). RF showed the best Area Under the ROC Curve (AUC) with 0.74
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Figure 4.1: Fire prediction use-case example [83][84]

accuracy and BRT and SVM showed 0.730 and 0.709, respectively. Regarding the importance of
features, the authors followed two different approaches - one that considers the node purity of RF
and BRT measured by the Gini criterion [104], and another based on an AUC procedure known
as jackknife estimator of variable importance [105].

Ghorbanzadeh et al. [106] studied wildfire risk in the Mazandaran Province of Iran, consid-
ering 17 explanatory features (see Table 4.1) - four for anthropogenic factors and the others for
meteorological, topographic, and hydrographic conditions. As in the previous approach, the study
considered a 1-km sector to classify wildfire risk (the following five classes were considered: Very
High, High, Medium, Low, Very Low). Three ML models (Artificial Neural Networks (Artificial
Neural Network (ANN), SVM, and RF) were trained and validated through Cross-validation (4-
fold), and RF showed the highest accuracy (0.88). Regarding feature importance, the slope aspect
described the data for RF and SVM models better, whereas distance to road showed an impact for
ANN model. The study also proposed a model that calculates the normalized feature importance
based on Hong et al. [107].

Ghorbanzadeh et al. [102] focused on Northern Iran to predict wildfire susceptibility. As in
the previous study, the authors considered 16 explanatory features and a k-fold cross-validation to
validate the performance (0.801 AUC-ROC) of an ANN. They proposed a social/infrastructural
vulnerability index using a geographic information system multi-criteria decision-making (GIS-
MCDM). The Infrastructural Vulnerability Indicators (IVIs) are primarily based on land use types
such as building, agriculture, and recreational areas, and those in conjunction with the risk of fire
enable the generation of risk maps with information on fire occurrence, but also the damage
(i.e. economic losses) caused. On the other hand, social vulnerability indicators consider factors
such as population, age, gender, housing, education, health services, occupation, and facilities,
which describe social inequities among people that presumably increase a society’s vulnerability
to natural hazards.

Miller and Ager [108] reviewed several studies and identified three main components of risk,
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namely likelihood, intensity, and effects. The former is related to ignition or burning; intensity is
associated with fire behaviour, and effects refer to ecological, social, and economic vulnerabilities
(as in the previous study). Since our research focuses on the estimations of the fire occurrence
risk, only the likelihood component were considered - intensity and effects will be treated in
future research.

Jaafari et al. [109] focused on the Hyrcanian Iranian region and designed a solution according
to 11 explanatory features (see Table 4.1),of which 10 are similar to those used by Ghorban-
zadeh et al. [106].The authors considered a 30-m sector resolution and combined the Adaptive
Neuro-fuzzy Inference System (ANFIS) ML model with Metaheuristic Optimization Algorithms
(MOAs). They also applied four different MOAs, namely Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA), and Shuffled Frog Leap-
ing Algorithm (SFLA), and several metrics, such as RMSE, accuracy, sensitivity, specificity, false
alarm ratio, Kappa, success rate, and prediction rate for validation. ICA-based ANFIS showed
the best performance in the validation dataset for those metrics, with 0.99 accuracy and 99.09%
prediction rate. Similarly, Jaafari et al. [103] studied other two hybrid models that rely on ANFIS
and firefly MOA. The same region and conditioning factors were considered, and firefly MOA
showed a 0.89 AUC prediction rate.

In a 1-km spatial resolution, Kim et al. [110] analyzed the influence of human activity using
environmentally dependent features, such as precipitation, elevation, topographic wetness index,
Fire Weather Index (FWI), and forest type, and anthropogenic ones (e.g., population density and
distance from urban area). Maximum Entropy (Maxent) and Random Forest models predicted
the spatial distribution of forest fire, and AUC metric validated their performance. The analysis
revealed a strong correlation of fire probability with variables related to human activity and ac-
cessibility. The AUC values were higher in Random Forest in comparison to Maxent. The study
considered the South Korean region.

Nami et al. [111] applied the quantitative data-driven Evidential Belief Function (EBF) model
theoretically supported by the Dempster–Shafer uncertainty theory, and the results produced a
distribution map of wildfire probability constructed for the Hyrcanian region (Iran). The de-
pendent feature was considered for a classification problem with moderate, high, and very high
probability classes. The authors used some of the explanatory features introduced in this section
(see Table 1), and a 30 m spatial resolution. The AUC validation showed an 84% prediction rate.

Rihan et al. [112] studied fires in the Mongolian plateau to predict probabilities and identify
their main factors. They considered a 50-meter per sector spatial resolution and used only the
RF model, with a 0.951 AUC-ROC. Differently from other studies, they did not include anthro-
pogenic features (see Table 4.1) to explain the fire occurrence. The most important feature was
Fraction of Vegetation Coverage (FVC), defined as the percentage of the vertical area of vegeta-
tion projected on the ground as a percentage of the total area, which also reflects the vegetation
growth.

Sayad et al. [113] studied an area formed by several zones in the center of Canada and built
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a set of environmental data related to NDVI, Land Surface Temperature (LST), and fire indicator
(thermal anomalies) - the fourth column represents the corresponding class (fire or no fire). Two
ML models (ANNs and SVM) were trained and the experimental results showed an above 95%
prediction accuracy, validated through metrics, such as cross-validation and regularization.

Tonini et al. [114] analyzed the Italian region of Liguria and elaborated a wildfire suscepti-
bility map by applying Random Forest. Susceptibility was assessed according to the probability
of an area burning in the future in regions of past wildfires occurrence and which were the geo-
environmental factors that favored their spread. The explanatory features considered were DEM,
Slope, Aspect, Distance to Urban Area, Road, Pathways and Crops, Protected Area, Vegetation
Type, and Neighboring Vegetation. The Root Mean Square Error was computed for validating the
model at an approximately 91% success rate.

Gholamnia et al. [115] compared 11 ML models in the Mazandaran Province of Iran. The
wildfire inventory data were collected at 1-km resolution and considered topographic, hydro-
graphic, meteorological, and vegetation features. The ML methods applied were ANN, dmine
regression (DR), DM neural, least angle regression (LARS), multi-layer perceptron (Multi Layer
Perceptron (MLP)), RF, Radial Basis Function (RBF) , self-organizing maps (SOM), SVM, de-
cision tree (DT), and logistic regression (LR). The authors considered 3-fold cross-validation for
accuracy assessment and AUC-ROC assessed the accuracy of the ML approaches. RF showed the
highest accuracy (88%).

Kaur and Sood [116] proposed a framework for real-time detection and prediction of forest
fires. Initially, the system employed a Bayesian Belief Network (BBN) for real time fire detection
and a fuzzy system to compute the wildfire susceptibility index. For the training of the BBN,
the authors considered a dataset composed of records labeled as fire event or non fire event, and
climatic features, such as temperature, precipitation, relative humidity, wind speed, atmospheric
oxygen, carbon dioxide and monoxide levels. BBN showed an AUC-ROC value of 0.93. On the
other hand, the fuzzy model was trained for the 5-classification considering temperature, relative
humidity, precipitation and wind speed, for a 91% prediction accuracy.

The aforementioned studies considered several worldwide regions and were analyzed towards
the identification of the main originating factors (features) and ML models applied. On the other
hand, the studies below focused on the Brazilian Cerrado biome.

Galizia and Rodrigues [117] predicted wildfire occurrence through Random Forest and cluster
analysis focusing on the influence of eucalypt plantation on wildfire occurrence. The dependent
variable was modeled as presence or absence of fires, and the explanatory features were distance
to several land cover regions, elevation, aspect, temperature, wind speed, relative humidity, popu-
lation density, distance to roads, and electric and train lines. RF performed with a 0.75 AUC-ROC.

De Bem et al. [25] considered the Federal District region and used ANN and LR to predict
the dependent feature fire occurrence; explanatory features slope, aspect, elevation, water supply,
distance to road and urban areas, land use, population density, and NDVI were considered for the
model training. Both models’ performances were similar; however, ANN showed better AUC-
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ROC (0.77) and accuracy. The authors compared the significance of each variable to the models
and concluded the main driving aspects of the burned area distribution were land-use type and
elevation.

This research ignored climatic variables and considered the study area with small spatial vari-
ations due to its size and local characteristics. However, studies in other regions [106, 103, 109,
112] showed climatic data are highly significant for wildfire prediction. Our study was motivated
by those of De Bem et al. [25], who claimed "Fire risk prediction studies in the Brazilian savan-
nas are still scarce", confirmed by Gomes, Miranda and Bustamante [118], citing Pereira et al.
[119], who consider "fire modeling studies on the Cerrado are scarce and must be improved for
the development of a more systemic approach".

Other wildfire-related studies about the Cerrado biome (Santana et al. [120], Guedes et al.
[121], Greison [122], da Silva et al. [123], dos Santos et al. [124], Pereira et al. [125]) addressed
other wildfire-related problems from a non-predictive perspective and focused on issues, such as
detection of burned areas and statistical analyses.

Table 4.1 shows the conditioning factors identified in recent studies for fire risk prediction,
and many of them can be used for the construction of decision systems. Related studies that
included analyses of feature importance showed all of them can contribute to the refinement of
the risk-prediction model with a stronger or weaker impact. Moreover, anthropogenic factors,
i.e., activities of local people, tourism, or any human intervention can be considered wildfire
conditioning factors. In this sense, apart from natural conditions, the human influence in the area
of study must be analyzed and taken into account in the ML model training.

Historical data on fire events can be available in multiple forms/resolutions. Regarding fire
prediction, the identification of the ignition point is crucial for the achievement of higher accuracy.
Data must be cleaned for the identification of the fire ignition location and date time as exactly
as possible. However, a specific ignition point does not represent the reality, since conditions
for the start of fire are related to an area of same characteristics rather than specific coordinates.
The previous studies have shown a consensus over a 1-km spatial resolution being sufficient for
wildfire risk prediction.
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Table 4.1: Main originating factors (features) considered for wildfire risk prediction

Proposal/Features Topographic Hydrological Meteorological Anthropogenic Others

[100] Fire Occurrence
(High, Low)

- - - Presence (human, electric line,
power line, roads, railways and
tracks), WUI, Demographic
Changes, WAI and Density of
agricultural machinery.

-

[106] Susceptibility to
Wildfires (Very High,
High, Medium, Low,
Very Low)

Slope aspect, Slope(%), Altitude,
Topographic Wetness Index (TWI)
, Landform and Plan Curvature.

Distance to
stream and
Annual rainfall

Potential solar radiation,
Annual temperature and
Wind effect (speed and
direction)

Land use (Forest, Non-Forest,
Farm, Settlements), Distance to
Village, Distance to Road and
Recreation Area.

NDVI

[109] Fire Occurrence
(Fire, No-Fire)

Slope aspect, Slope(%) and Alti-
tude

Proximity to
rivers and An-
nual rainfall.

Temperature and Wind
effect (speed and direc-
tion)

Land use (Forest, Non-Forest,
Farm, Settlements), Distance to
Settlements and Roads

NDVI

[103] Fire Occurrence
(Very High, High,
Moderate, Low, Very
Low)

Slope aspect, Slope(%), Altitude
and Soil Type

Annual rainfall. Temperature and Wind
effect (speed and direc-
tion).

Land use (Forest, Non-Forest,
Farm, Settlements), Distance to
Settlements and Distance to Road

-

[110] Fire Probability (Re-
gression)

Altitude, Forest Type and TWI . Precipitation - Population Density, Number of Na-
tional Park Visitors and Distance to
Urban Area.

FWI

[111] Wildfire Risk
(Very High, High,
Medium, Low, Very
Low)

Slope aspect, Slope(%), Altitude,
Plan Curvature, TWI , TRI and Soil
Type

Rainfall, Evap-
otranspiration
and Distance to
rivers

- Distance to Settlements and Dis-
tance to Road.

-

[112] Fire Probability (Re-
gression)

Slope and Aspect, Land Cover:
Land Use Degree, Diurnal Temper-
ature Range, Frost Day Frequency
and Potential Evapotranspiration

Precipitation Mean Temperature,
Average, Minimum and
Maximum Temperature,
Vapor Pressure and Wet
Day Frequency.

- FVC

[113] Fire Occurrence
(Fire, No-Fire)

- - Land Surface Tempera-
ture (LST)

- NDVI

[114] Fire Probability (Re-
gression)

Slope and Aspect. Land Type. - Distance to Urban Area, Road,
Pathways and Crops

Vegetation
type

[115] Susceptibility to
Wildfires (Very High,
High, Medium, Low,
Very Low)

Slope aspect, Slope(%), Altitude,
TWI, Landform and Plan Curva-
ture.

Distance to
stream and
Annual rainfall

Potential solar radiation,
Annual temperature and
Wind effect (speed and
direction)

Land use (Forest, Non-Forest,
Farm, Settlements), Distance to
Village, Distance to Road and
Recreation Area.

NDVI

[117] Fire Event (Fire-
Presence, Fire-
Absence)

Distance to several land cover re-
gions, Elevation, Slope Aspect,

- Temperature, Wind
Speed and Relative
Humidity.

Population Density, Distance to
Road and Distance to Electric and
Train Lines

-

[25] Fire Occurrence
(Fire-Event,
NonFire-Event)

Slope(%), Slope Aspect, Elevation
and Land type

Water supply - Distance to road and urban areas
and population density

NDVI
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Table 4.2: Main ML models considered for wildfire risk prediction

Proposal Models Metrics Winner ML Model-
Accuracy

[100]
Random Forest
Boosting Regression Trees
Support Vector Machines

Area Under the ROC Curve
(AUC)

Random Forest - 0.746

[106]
Artificial Neural Networks
Random Forest
Support Vector Machines

Cross Validation
(4-fold)
and AUC (false-positive)

Random Forest - 0.88

[109]

ANFIS
ANFIS-GA
ANFIS-PSO
ANFIS-SFLA
ANFIS-ICA

RMSE
Accuracy
Sensitivity
Specificity
False Alarm Ratio
Kappa
Success Rate
Prediction Rate

ANFIS-ICA - 0.99

[103] ANFIS-FA AUC prediction rate ANFIS-FA - of 0.89

[110]
Maxent
Random Forest AUC Random Forest - Omitted

[111] Evidential Belief Function(EBF) AUC EBF - 0.8

[112] Random Forest AUC RF - 0.95

[113] ANN and SVM Several Metrics ANN - 0.98 (Prediction Ac-
curacy)

[114] Random Forest RMS RF - 0.91

[115]

NN, dmine regression (DR),DM neural,
LARS,
MLP, RF, RBF ,
SOM, SVM, decision tree and LR.

AUC-ROC RF - 88%

[117] Random Forest AUC-ROC RF - 0.75

[25] ANN and LogR AUC-ROC ANN - 0.77%

Regarding the ML models identified, Table 4.2 shows many have been considered for wildfire-
related predictions. Most studies focused on the implementation of different models and their
comparison for the selection of the one that performs best for the available dataset. RF was one
of the widely used models and that showed higher accuracy for wildfire risk prediction, followed
by ANN and SVM.

4.1.2 Wildfire Behaviour Prediction

[126] used Reinforcement learning (RL) to model an agent for fire spread direction (north,
south, east, or west) considering temperature, wind speed and direction, land cover type, humidity,
and intensity of rainfall. Satellite image data validated the approach, which proved accurate.
Among five RL algorithms adjusted and compared, Asynchronous Advantage Actor-Critic (A3C)
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showed the best, with 87.3% average accuracy and 0.92 Area under ROC curve (AUC).

[127] [104] considered environmental data related to vegetation, digital elevation, atmospheric
pressure, temperature dew point, wind direction, wind speed, precipitation, and relative humidity.
Convolutional ANN models were trained on FARSITE platform for fire spread predictions based
on current neighboring conditions and the experiments showed 87% accuracy. Other validation
metrics considered were Recall and F-Score. On the other hand, [128] used FARSITE to improve
the modelling of fuel factors and fire perimeters. Monte Carlo-based RBF neural network was
used for fuel adjustment estimations. The model was validated by the Otsuka-Ochiai metric,
which indicates a 0.8 similarity between observed and predicted perimeters.

[129] employed deep learning methods for rating spread modelling on Corsica island. Given
a fire situation, the model predicts where the fire will most probably occur in a 20km surround-
ing area. The inputs were wind speed, fuel moisture content, combustion heat, particle density,
fuel height, and surface-volume ratio. The authors considered the Structural Mean Square Er-
ror (SMSE) as a validation metric and better SMSE (6%) results were obtained after 94 training
epochs.

Similarly, [130] simulated the spread of forest fires by modelling the problem as a Markov
Decision Process and considering wildfire an agent advancing over the region in response to
wildfire-related parameters. The agent (fire) can choose to move in either the four cardinal, or
four ordinal directions, or not to spread at all (same approach of [131]). The authors used LRCNN
(Long-Term Recurrent Convolutional Neural Networks) to build a generative model for input to
the Markov Reinforcement Learning Model based on analyses of the sequence of satellite-based
data. The models showed a 70% burn boundary similarity (70% sectors of the boundary of the
predicted area intersect with the sectors of the original fire scar boundary) and a near one Burn
Area Ratio (ratio of predicted scar area and original scar area).

Perumal and Zyl [131] attempted to reproduce a fire behaviour with limited duration time of
series data. Two recurrent neural networks (RNNs), namely Gated Recurrent Unit (GRU) and
Long Short-Term Memory (LSTM) were used for the modelling of the behaviour. The authors
aimed to determine whether a wildfire would continue to burn and the cardinal directions of the
wildfire spread. GRU performance was worse than LSTM, however the models were not able to
predict the continuation of the fire. The result was probably affected by the lack of auxiliary data,
since only Fire Radioactive Power satellite data (FRP) and Elevation were considered.

[132] studied fire spread in the Tasmania region and defined a mathematical model of fire
propagation over time considering environmental conditions (relative humidity, temperature, and
wind speed) at ignition points. The unknown values in the mathematical model were determined
by fitting the simulation data according to the results from a sensitivity analysis. The authors
obtained a 0.897 Pearson’s correlation coefficient for the model validation. The coefficient ranges
between zero and one and higher values denotes a better correlation.

[133] focused on a wildfire spread dataset for the benchmarking of machine learning-based
solutions. Several models (convolutional autoencoder, RF and logistic regression) were trained
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considering the topographic, population density, weather, vegetation, drought index data. Better
results were obtained by the convolutional autoencoder model.

The aforementioned studies reported several models yield accurate values in the prediction of
fire behaviour, thus stimulating both identification and selection of the most appropriate ones for
a non-studied area (in our case, the Federal District).

An extended review conducted by [134] showed the three most cited models in 37 studies on
fire spread domain were ANN, SVM and RF, with ten, seven, and six citations, respectively (see
Table 3 [134]). We decided to apply them based on their academic relevance and also adopted
AdaBoost model, whose better performance in comparison with ANN was demonstrated by [135]
in a similar task in the Mount Parnitha (Central Greece) region.

In relation to model evaluations, [136] validated a Monte Carlo-based model for fire propaga-
tion prediction. The authors considered historic data on 10 wildfires in the Wyoming region and
analyzed several statistics in the observed and predicted fire perimeters.

However, [137] highlighted the evaluation of models´ performances should not be limited
to perimeter observations, but include the predicted area. The authors analyzed metrics for the
performance evaluation of models based on observed and predicted burned areas such as Sørensen
similarity, Jaccard coefficient, Shape Deviation Index (SDI), and Area Difference Index (ADI).

Regarding feature definitions, several studies (such as those listed below) have reported differ-
ent conditioning factors associated with fires and their behaviour; however, the lack of a consensus
on such factors hampers the proposal of a fire behaviour model to be applied in any region. By
considering different feature sets for training, a model (regression or classification) that shows
good performance for a dataset / region may yield inefficient results in another. In this sense, the
selection of characteristics (conditioning factors) and an appropriate ML model for a target region
is challenging. Some of the features identified in the literature are presented below.

[106] and [109] considered topographic slope (percent change in that elevation over a certain
distance) and aspect (indication of the directions the physical slopes face) for fire predictions.
Precipitation data on different temporal scales (annually, monthly, weekly) have been widely
considered ([106], [109], [110], [111], [112]) and distance to river/lake/steam has also been taken
into consideration in fire-related studies ([106], [109], [111], [115]).

Regarding climatic data, temperature has been taken as a factor that increases the quality of
the predicted data ([109], [103], [113], [115]) and relative humidity [117] and wind direction and
speed [109] and [115] have significantly impacted fire behaviour.

Anthropogenic variations such as distance to urbanized areas (road, cities, or settlements) have
been reported as other fire
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Table 4.3: Comparison of the Related Works

Proposal Objective Geographic region Features (quantity : specification) Models Best results

[126] Fire spread direc-
tion

Northern Alberta,
Canada

06: temperature, wind speed and direction, land cover type, hu-
midity, and intensity of rainfall

RL Ad-
vantage
Actor-Critic
(A3C)

AUC-ROC:0.93, Accuracy:
87.3%

[111] Fire probability
maps

Hyrcanian ecoregion,
Northern Iran

02: rainfall and distance to road Evidential be-
lief function

AUC-ROC: 0.84

[106] Susceptibility
maps

Amol County, North-
ern Iran

10: altitude, aspect, slope, plan curvature, landform, topographic
wetness index, radiation, wind speed and direction and NDVI

ANN, SVM,
RF

AUC-ROC:0.88

[109] Fire probability
maps

Hyrcanian (Iran) 07: slope, aspect, temperature, precipitation, distance to river
and wind direction and speed

Neuro-fuzzy
inference sys-
tem + genetic
algorithm

Accuracy: 0.97, Sensitivity:
0.98

[110] Fire probability
maps

South Korea 05: land type, elevation, precipitation, population density, dis-
tance for urban area

Maxent, RF AUC-ROC: 0.90

[115] Susceptibility
maps

Amol County, North-
ern Iran

10: altitude, slope, aspect, plan curvature, topographic wetness
index, landform, radiation, wind speed and direction and NDVI

ANN, RF,
SVM

AUC-ROC: 0.88

[117] Fire probability Brazil, Cerrado
Biome

10: land cover, distance to road, electric lines and train lines,
temperature, wind speed, relative humidity, elevation, aspect,
and population density

RF AUC-ROC: 0.72

[132] Fire spread Tasmania 03: relative humidity, temperature and wind speed Surrogate
model

Pearson’s correlation coeffi-
cient: 0.90

[133] Burned area pre-
diction

United States 07: slope, aspect, vegetation, temperature, precipitations, hu-
midity and population density

Convolutional
autoencoders
and RF

-

[127] Fire direction Rocky Mountains,
United States

8: vegetation, digital elevation, atmospheric pressure, wind
speed, wind direction, temperature dew point, relative humid-
ity, and precipitation

2D CNN Accuracy: 0.87, recall: 0.91

[128] Fire perimeters
and fuel adjust-
ment factors

California, United
States

2: fuel adjustment factors and fire perimeters positions Radial basis
ANN

Otsuka-Ochiai similarity:
greater than 0.8

Our
pro-
posal

Fire spread direc-
tion prediction

Brazilian Cerrado
Biome

16: slope, aspect, mean atmospheric pressure, maximum dry
bulb air temperature, minimum dry bulb air temperature, max-
imum temperature dew point, minimum temperature dew point,
maximum relative humidity, mean relative humidity, wind direc-
tion, maximum wind gust speed, mean wind gust speed, distance
to road, distance to urban area, NDVI, vapor pressure deficit

ANN, SVM,
RF, AdaBoost

AUC-ROC: 0.92, F1 Score:
0.87, accuracy: 0.88, pre-
cision: 0.88, recall:0.89,
Sørensens Similarity: 0.83
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behaviour conditioning factors ([106], [110], [111]). According to the authors, in many cases,
fires are closely related to human behaviour and commercial practices. For example, humans
exert a direct impact on vegetation’s characteristic, hence, on the type of fuel. An index that
helps the representation of those vegetation variations is the NDVI, considered by many authors,
including [113], [106], and [25].

Table 4.3 shows a summary of the aforementioned studies and that several ML models have
been used for fire prediction purposes and different features sets can be considered. However, their
reproduction becomes a complex task due to the lack of a same kind of data for the FD region.
The following sections address the way we deal with such challenges through the collection and
pre-processing of a richest dataset (involving a higher number of features - 16), and through model
selection, training, and tuning for the prediction of burned areas.

4.2 MATERIALS

The Federal District Region, with an area of 5,802 km2, is located in the Center-West of Brazil,
and its capital (Brasilia), is the fourth most populous city of the country. The Federal District is
inserted in the Cerrado, the richest worldwide savanna and a large South American biome, which
has gained special attention for having been affected by a large number of fires.

Several actors determine the behavior of forest fires in the region [118], and a review was
conducted towards the understanding the ecology of fires. The variables were identified for the
processing and assembly of a dataset for training ML models in fire behavior predictions. Only
the features available in public online data sources were considered.

Topography and terrain characteristics (specifically slope and aspect) have shown relevant in
the progress of fires by influencing vegetation [138], hence the combustible material. Slope (per-
cent change in the elevation over a certain distance) and aspect (orientation of the earth’s surface
with respect to the sun) was considered by [25] and significantly impacted the fires occurrences
in the FD region. Therefore, slope and aspect data provided by TOPODATA project from [139],
which is based on the Shuttle Radar Topography Mission (SRTM), were taken into account in our
study. SRTM followed the interferometric synthetic aperture radar method [140].

Regarding hydrography, the Cerrado has well-defined rainy (October-March) and dry (April-
September) seasons. During the wet season, fires occur naturally through lightning and are less
severe than those in the dry season, since their spread is inhibited by the moisture content of
the soil [118]. During the dry season, they occur mainly due to human activity and are more
severe. Soil moisture is highly correlated with rains and water sources. Distance to rivers was
also considered as one of some soil moisture conditioning factors and calculated as the minimum
geodesic distance from the center of each sector to any of the rivers of the hydrographic map
(Figure 4.2) available in [2]. Sectors whose region is 100% covered by water (i.e. Paranoa Lake)
were disregarded. Total precipitation (amount of rain for a sector in a 16-day resolution) was
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considered as a fire explanatory variable.

Figure 4.2: Federal District Roads, Rivers, areas with High Concentrations of Buildings, and Automatic Stations [5]

Climatic conditions also establish a close relationship with fire behavior in the Cerrado [141],
and temperature, relative humidity, and wind direction and speed have showed some of the main
factors of fire propagation. Data on 11 climatic features were obtained from five automatic sta-
tions (Figure 4.2) spread across the region [96]. Atmospheric Pressure, Dry Bulb Air Tempera-
ture, Temperature Dew Point, Relative Humidity, Wind Direction degrees, and Wind Gust Speed
data were available at one-hour intervals.

Vapor Pressure Saturation (VPS) and Vapor Pressure Deficit (VPD) are other measure highly
correlated to fire phenomena. [142] showed the relation of vapor pressure deficit with the occur-
rence of fires and highlighted a high VPD causes a fire to spread to a larger area. We followed the
formal definition provided by [118] and showed below:

V PS = 610.7 ∗ 107.5T/(237.3+T ) (4.1)

V PD = [1− (RH/100)] ∗ V PS (4.2)

where T and RH denote, respectively, temperature and relative humidity.

The predominant savanna vegetation type of the Cerrado favors the spread of fire, since grasses
increase flammability and produce large amounts of fine fuel during dry periods [118]. Therefore,
we considered MODIS /Terra Vegetation Indices provided by [97] and particularly the NDVI, a
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Figure 4.3: Methodology

reliable descriptor of fine fuel load calculated from spectral reflectance values as the ratio of the
difference of near infrared and red reflectance to their sum.

Human presence also has a close relationship with fire occurrence in the Cerrado [143]. Fire
occurrences and its behavior are affected by anthropogenic factors a considerable number of
times. Distance to the nearest urban area, computed as the minimum distance to building concen-
tration areas identified by the OpenStreet Maps API (Figure 4.2) represented the human presence.
Moreover, distance to the nearest road was computed as the geodesic distance to the nearest road.
Road geodata (Figure 4.2) were provided by [2].

4.2.1 Methods

Figure 4.3 shows the stages of the proposed methodology. Initially data are resampled for
temporal and spatial normalization. Ignition points data are used to prepare a dataset for fire
risk prediction and fire advance frames are then simulated according to historical data on igni-
tion points and the burned area, once the fire has been mitigated for behaviour prediction. The
datasets generated enabled the continuation of analyses of importance and selection of variables
for mitigating multicorrelation problems and achieving better quality training of the models. The
hyperparameters of the models are tuned according to the variables selected in each case. The
next stages involve the training and validation of the models in the prediction of fire risk and
behaviour. Finally, fire risk probability maps and fire scars are predicted and their similarity with
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Table 4.4: Data considered

Type Feature Spatial Resolution Temporal Resolution
original/re-sampled original/re-sampled

Topographic Slope and Aspect 30m/100m constant

Hydrographic Distance to River (DtRiver) - constant
Total Precipitation (TP) and coordinate/100m Hourly/16 days

Climatic Mean Atmospheric Pressure (MAP), coordinate/100m Hourly/16 days
Maximum Dry Bulb Air Temperature (MaxDBAT),
Minimum Dry Bulb Air Temperature (MinDBAT),

Maximum Temperature Dew Point (MaxTDP),
Minimum Temperature Dew Point (MinTDP),

Maximum Relative Humidity (MaxRH),
Mean Relative Humidity (MeanRH),

Wind Direction (WD),
Maximum Wind Gust Speed (MaxWGS) and

Mean Wind Gust Speed (MeanWGS)

Anthropogenic Distance to Road (DtRoad) and - constant
Distance to Urban Area (DtUA)

Vegetation NDVI 250m/100m 16 days/16 days

Other VPD 100m/ 100m Hourly/16 days

Fire Spots (Points of ignition) and coordinate/100m Hourly/16 days
Scars 30m/100m 16 days/16 days

the historical evidence is validated. The stages are detailed in what follows.

4.2.1.1 Spatial-temporal re-sampling

Table 4.4 shows the features considered and their respective sampling temporal and spatial
resolution. Since data are in different spatial and temporal resolutions, a re-sampling process is
required for their normalization and generation of the training dataset.

Topography data from a 30 m resolution were clipped to the Federal District Region (Figure
4.4) and re-sampled to our 100 m resolution grid. Given a 100-m sector x and an S30 set com-
posed of slope and aspect sectors in a 30-m resolution that intersects x, the following equations
computed Slope(x) and Aspect(x):

Slope100(x) =

∑
y∈S30

Slope30(y)

|S30|
(4.3)

Aspect100(x) = Mode(Aspect30(S30)) (4.4)

where Mode(S) denotes the statistic mode of a set S (element with largest number of occur-
rences).
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Figure 4.4: Federal District Slope and Aspect

Regarding hydrographic data, distance to rivers was computed as the geodesic distance from
the center of each sector to a lake or river. On the other hand, total precipitation data collected
by the five automatic stations were interpolated as in the the climatic variables explained in what
follows.

Climatic related data and VPD were spatially interpolated by Kriging Interpolation method
[144],leading to a group of climatic features maps defined in a hourly basis (i.e. Figure 4.5,
relative humidity for February 1, 2019 at 10:00 am). Kriging method assumes the distance and
direction between the sample points reflect a spatial correlation that can explain the variation in
each variable on the surface. It fits a mathematical function to a specific number of points (center
of the sectors) and determines the output value for each location.

Figure 4.5: Example of relative humidity interpolated by Kriging method (February 1, 2019 at 10:00 am).

The calculation of distances to road and urban areas was similar to that of distance to rivers,
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which considered the geodesic distance from the center of each sector.

NDVI, sampled in 250-meter spatial resolution, was re-sampled according to the average value
of intersected areas between sectors and samples (Figure ??).

Temporal series were adopted for the modeling of explanatory features. Slope, aspect, or dis-
tance to road/rivers/urban areas, which can be considered invariant over time, were represented
as constant time series, whereas temporal series of distinct sampling rates denoted the climatic
ones. The lower format (16 days) was chosen for temporal resolution standardization, and three
methods (minimum, maximum, and mean) were applied for the implementation. We followed a
widely adopted approach [145], [146] and [147], according to which the inputs of the algorithm
are a time series S, a windows size ws, and an initial date sd. Such data are then divided into
windows of ws size (first windows start at sd) and the maximum, minimum, and mean aggrega-
tions are calculated for each window. Mean down-sampling (i.e. Temperature Figure 4.6) yielded
better results than the other two metrics.

Figure 4.6: Down-sampling of temperature at an Automatic Station sector (2018).

4.2.1.2 Frames simulation and samples generation.

Two datasets from [1] provided fire historical data. The first set is devoted to historic fire spots;
samples are defined by their latitude, longitude, and events (date and time), acquired mainly by
a MODIS sensor from NOAAs-15, 16, 17, 18, and 19, AQUA, METEOSAT-02, TERRA and
GOES-12 satellites.

The second dataset, is comprised of data on fire scars generated with 30-meter and 16-day
spatial and temporal resolutions, respectively. Scars were generated by the processing of CBERS-
4/MUX, Landsat-8/OLI, and Resourcesat/LISS images, and those up-sampled to a 100 m spatial
resolution were considered. Therefore, given a 30m-sector fire scar set S30 and a 100m-sector
Federal District set FD , the following rule calculates re-sampled scar S100:

x ∈ S100 ↔ x ∈ FD and ∃ y ∈ S30 : x ∩ y ̸= 0 (4.5)

where operator ∩ represents the common part between sectors x and y.

A 100m sector intersecting a 30m sector of the original scar belongs to the re-sampled scar,
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Figure 4.7: Fire progress simulation (Frames) [5]

Figure 4.8: Sample Generation Process

and the ignition point was provided by the crossing between the two datasets.

Fire scars data were used in the simulation of fire progression. Scars were available in 16-day
temporal resolution, thus hampering the obtaining of all frames. Only the final one was acquired
through the simulation of fire progression. We follow an approach that considers fires to progress
only for sectors neighboring a burned sector. Starting from the ignition sector (first frame), we
iteratively generate frames where, in each iteration, neighbors burned in the scar are added to the
next frame, and so on (see Figure 4.7).

Figure 4.8 displays our dataset comprised of samples of 3x3 sectors obtained from two con-
secutive frames (f, f+1). If a sector is not affected by fire at frame f and has at least one burnt
neighbor and it is burnt in f+1, then the ”burn” class represents it; otherwise, the unburnt class is
assigned.

Finally, 2500 samples of burnt class and 2500 samples of unburnt one were generated for
training purposes.Figure 4.9 illustrates the format of a record in our dataset. Each neighboring
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Figure 4.9: Record Composition [5]

sector was provided with topographic, hydrographic, climatic, anthropogenic, vegetation, and
other features and the class that represents fire in the frame. Class for the target sector will be
estimated; therefore, it has been omitted.

4.2.1.3 Feature Importance and Selection

The feature importance and selection process is a crucial phase to improve the training of
machine learning models and to produce better predictors. Inconsistency, noise, missing data or
even a small amount of data are handled in this phase by the identification of the features that
better describe the variable (class) to be predicted [148].

Feature importance measure how each explanatory variable correlates with the fire behaviour.
A higher score means that the specific feature has higher effect on the modelling for prediction of
the dependent variable.

A set of z ML models and a set of n features from the dataset (in our case, z=4 and n=24) were
considered. According to Figure 4.10, a permutation method evaluated the feature importance,
taking into account the accuracy of the ML model. Feature importance calculation by permuta-
tion method [149] considers the training of the ML models in the entire dataset for computing
a reference score (i.e. a validation metric such as accuracy). A single feature is then permuted
multiple times and the model is trained again to producing a corrupted score. The difference
between the reference score and the average corrupted scores becomes the importance of that fea-
ture. The process is applied to each feature, and a higher score means the specific feature exerts a
stronger effect on the modelling for the prediction of the dependent variable. Scores are used for
the establishment of a ranking to be used by a feature selection technique, as explained below.
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Figure 4.10: Feature importance and selection flow.

Feature selection techniques takes a dataset with n features as input and returns a reduced one
with m features where m <= n. Among the several approaches proposed for feature selection
[150], filter and wrapper methods, described in what follows, were considered in this research.

Filter methods

The filtering methods [151] make the selection independently of any machine learning algo-
rithms and features are selected on the basis of an score provided by statistical tests for their
correlation with the outcome variable.

Chi-square test [152] showed the relation between each explanatory feature and the fire be-
haviour. It reveals whether a variable (i.e. temperature, relative humidity, NDVI, among others)
describes the predicted phenomenon (fire behaviour) by interpreting the p-scores. A higher chi-
square p-score denotes poor relation and the one near 0 means the explanatory feature can describe
the wildfire behaviour. Therefore, variables with a p-score higher than a threshold can be dropped
from the dataset. Since Chi-square can be applied only to categorical data, all continuous features
were normalized and converted into five categories, namely "very-low", "low", "normal", "high",
and "very-high".

Relief-F [153] was another filter method applied to the dataset. It produces a score for each
feature enabling the selection of those with highest rank in the feature selection process. The score
is based on the difference between the values of a feature in pairs of nearest neighbor samples. If
a feature difference is observed in a pair of neighboring samples of a same class, the feature score
decreases. Alternatively, if a feature difference is observed in a pair of neighboring samples of a
different class, the resource score increases.

Wrapper methods are based on performance of machine learning models (wrapping it). It fol-
lows a search approach to evaluate combinations of features based on a evaluation criterion and
with for each feature subset the model is trained and validated [150]. Once the search algorithm
ends, the best feature subset is considered for the training of the model. They are computationally
more expensive compared to filter methods due to the repeated learning steps and cross-validation.
However, we considered the wrapper methods class due to the need for optimization of the mod-
els’ performance and for solving some of the features dependency problems, as indicated by
([154], [150]) .

The search for a feature subset that maximizes the accuracy of each model is a non polynomial
optimization problem that involves the testing of all subsets of explanatory features, i.e., O(2n),
where n denotes number of features. In this case, there are 224 possible subsets and the testing of
all cases is impracticable. This research followed the semi-greedy strategy described in Algorithm
1.
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Algorithm 1 Feature selection for one model

1: procedure SELECT_FEATURES(model, features : {< feature, importance >})
2: features.sortByImportanceDesc()
3: i← 0
4: result← {}
5: bestAUCROC ← 0
6: while i < length(features) do
7: temp_features← {results}
8: tempFeatures.append(features.first())
9: features.deleteF irst()

10: tempAUCROC = model.train(tempFeatures).validate()
11: if tempAUCROC > bestAUCROC then
12: bestAUCROC ← tempAUCROC
13: result← tempFeatures
14: end if
15: i← i+ 1
16: end while
17: return result
18: end procedure

The algorithm takes a model and a set with all features and their importance for that model
(computed by the permutation method) as input. The features are sorted according to their im-
portance and a result set containing no features is created. The algorithm iterates over the sorted
features and the model is trained in each step according to the result set plus the feature of highest
importance in the feature set. If the AUC-ROC obtained is better than the best until that moment,
the feature is included in the result set and discarded in the other case.

However, features with high importance for one model are not necessarily relevant for another,
since there may be a high correlation between the variables.

Those are some of the most promising models in fire behavior prediction, according to the
literature on fire behaviour/spread domain [134].

4.2.1.4 Hyper-parameter optimization.

Hyper-parameters are model parameters that must be defined prior to model training. Several
different techniques aim to optimize them, resulting in better accuracy of their model. Random
search optimization technique [155], which defines a bounded search space and randomly samples
points with a specific value for each hyper-parameter, was considered in this study. The goal was
to find a vector that results in the best performance of the model after learning (e.g., maximum
accuracy or minimum error).
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4.2.1.5 Models training and validation

The wildfire dataset was randomly shuffled and splitted in 70% for training and 30% for
validation purposes. The performance of the machine learning models was evaluated by k-fold
cross-validation, for the estimation of the model’s adequacy regarding unknown data. Parameter
k (k = 4) denotes number of groups of the dataset.

Both Receiver Operating Characteristic Curve and AUC-ROC were obtained for each model
and fold. ROC displays the True Positive Rate (TPR) against the False Positive Rate (FPR) ) at
several threshold settings and has been used for comparisons of ML models in a same task. An
AUC equal to or near one indicates very good or good performance of a model.

The models were ranked according to their performance and AUC-ROC, F1 score, accuracy,
and recall validated them as defined in [156]. Data predicted by the ML models enabled the
construction of various fire scars, and the precision of the predicted burned areas is analyzed.

4.2.1.6 Fire scars reconstruction and validation

This phase starts from a given point of ignition and estimates the resulting scar according to
the spread/advance of the fire. Burnt area can be computed by Algorithm 2.

The algorithm takes a trained model and the ignition sector as input, and previous_cardinality
and current_cardinality variables represent the cardinality of the burned set in two consec-
utive iterations of the while loop (lines 7 to 24). Such variables are adopted for evaluating
whether the burned set size has changed from one iteration to another and are used as a stop-
ping condition. Initially, previous_cardinality = 0, since there is no previous burned set, and
current_cardinality = 1, since the actual burned set contains only the ignition sector; cutoff is
an internal variable for the determination of when the model classifies a sector as burned or not.

The algorithm starts from an empty neighbor set for each while iteration and, for each sector
predicted as burnt, it progressively verifies among its neighbors with respect to additional sec-
tors the possibility of its individual inclusion in the burned set, naturally excluding neighbors
previously included (lines 8-15). Such sectors are candidates that will probably burn due to the
spread of the fire from the burned sectors, according to the evaluation of the model - if the result
is "burn", the algorithm includes it in the burned set (lines 16-20).

Cardinalities are updated (lines 21-22) and the next iteration starts. The while loop stops
when previous and current cardinalities are equal, i.e., when no more neighboring sectors have
been included in the burned set, and returns the burned set that represents the predicted burned
area.

Figure 4.11 shows a running example where neighbors three and eight in iteration one are
inserted in the burned set and no more neighbors are classified as burned in iteration five. The
algorithm then stops.
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Algorithm 2 Wildfire burned area predictor

1: procedure PREDICT_AREA(model, ignitionSector)
2: burned← {}
3: previous_cardinality ← ∥burned∥ //0 since burned is an empty set
4: burned← {ignitionSector}
5: current_cardinality ← ∥burned∥ //1 since burned set only contains the ignition sector
6: cutoff ← 0.5
7: while previous_cardinality ̸= current_cardinality do
8: neighbors← {}
9: for b ∈ burned do

10: for n ∈ b.neighbors() do
11: if n /∈ neighbors && n /∈ burned then
12: neighbors← neighbors ∪ {n}
13: end if
14: end for
15: end for
16: for n ∈ neighbors do
17: if model.Evaluate(n) > cutoff then
18: burned ← burned ∪ {n} //According to the evaluation, the sector is added to burned

set
19: end if
20: end for
21: previous_cardinality ← current_cardinality //Updating previous cardinality for the next

iteration
22: current_cardinality ← ∥burned∥ //Updating current cardinality for the next iteration
23: end while
24: return burned //returns the predicted area
25: end procedure
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Figure 4.11: Process of construction of the predicted burned area.

Comparisons of observed and predicted burned areas must be made with the use of appropriate
metrics for the topic [137]. Equation 6 shows the SS metric, where I is the area of intersection
of predicted and known scars, P represents the predicted scar area, and K denotes the known
scar area. Results close to one mean better precision, and those close to 0 denote lower quality
predictions. Several investigations have considered SS ([157], [158] and [159]).

SS = 2 ∗ I/(P +K) (4.6)

4.3 EXPERIMENTS AND RESULTS ON WILDFIRE RISK PREDICTION

Initially, we generated the wildfire inventory dataset based on the features described in the
previous section. Our inventory is composed of 6089 "high-risk" samples and 6089 "low-risk"
ones. The dataset was randomly shuffled for avoiding bias in the classification process.

Figure 4.12 shows the format of our inventory records, in which the explanatory features
values were calculated for a 1-km sector in a 1-hour time span and the fire risk categorical value
was set to "high risk" for one or more fire occurrences and "low risk" for the other cases.

The best results for each model were obtained with the parameters described in Table 4.5,
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Figure 4.12: Dataset register for a sector in a 1-hour time span [5]

which were adjusted by parameters optimization techniques.

Figure 4.13 shows the curves plotted for each fold by the ROC method and the trade-off
between false positive and true positive rates on X and Y axes, respectively. AUC was used as a
validation metric, according to which values close to one indicate better performance. Relevant
results were achieved for the eight ML models; AdaBoost showed the best performance, with a
0.993 average AUC, and RF and ANN showed significant performance.

However, in terms of computational costs involved in the training phase, ANN, RF, and Ad-
aBoost proved more efficient solutions. RF takes approximately two seconds for training, and
AdaBoost and ANN require around 15 seconds and 13 minutes, respectively.

Figure 4.14 shows the values of AUC-ROC, accuracy, precision and recall metrics, according
to the above-mentioned 70-30 rule. As expected (1-fold), AdaBoost showed the best AUC-ROC;
the behaviour of the other models was quite similar. In terms of accuracy, AdaBoost and RF
provided the best values, i.e., 96% and 95%, respectively, and the same results for precision and
recall. Recall was very low for ANN; therefore, the classifier produced a high number of false
negatives.

Figure 4.15 displays the Feature Importance (FI) for each model. For tree-based models (such
as RF), it was obtained by Gini factor [160], which considered the relative importance of each
decision tree node. The FI calculation for the other models was based on the feature permutation
method [149], which extracts statistics on how much a mean absolute error will vary with respect
to random changes in the feature value.

NDVI, atmospheric pressure, and relative humidity quantified the highest relation to a specific
model. However, we cannot guarantee they are the main originating factor of wildfires in the
Federal District. For example, RF was the second best model in terms of performance, and the FI
values showed all features impacted the model.

The analysis of a single variable can be contradictory. For example, NDVI is of greater im-
portance for models such as ADABoost and ANN, while its impact on others (e.g. LR and SVM)
is relatively low or null. This fact corroborates the importance of considering several variables
and models.

However, as shown in Figure 4.15, in general, the dependent features considered in this re-
search positively contribute to the models, despite some exceptions such as the contribution of
distance to road to LR and LogR models.
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Table 4.5: Models Considered

Models Settings

Deep
Artificial
Neural
Network

Three hidden layers with 500, 100 and 50 neurons
respectively, and Rectified Linear Unit
(RELU) activation function.
SoftMax output activation function.
ADAM stochastic gradient descent
method was chosen as optimizer.
Categorical Cross Entropy for losses model.
0.001 Learning Rate
Epochs number set to 1000.
Batch Size set to 32

Support
Vector
Machine

RBF kernel.
Kernel width (γ) of 0.001.
Regularization parameter (C) of 1.0.

Random
Forest

Sampling process trees set to 15.
Number of variables for each split set to 4.
Maximum number of trees set to 100.
Voting threshold or cutoff set to 0.01.

Gaussian
Naives
Bayes

Prior probabilities of the classes adjusted from
data.

K-Nearest
Neighbors

K set to 20.
Euclidean distance.

Linear Re-
gression

—

Logistic
Regres-
sion

Inverse of regularization strength C = 1e5

Maximum number of iterations set to 500.

AdaBoost

Decision Trees as base estimators with max depth
of 5.
Number of estimators set to 1000.
Learning Rate set to 1.
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Figure 4.13: AUC ROC 4-fold for fire risk prediction
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Figure 4.14: Validation metrics for fire risk prediction

In comparison to other studies involving the same area (De Bem et al. [25] and Galizia and
Rodrigues et al. [117]), our dataset enabled the modelling and prediction of wildfires with signif-
icantly higher accuracy. AdaBoost (which was not considered in the previous studies) provided a
higher than 0.2 AUC-ROC value, and, in contrast to De Bem et al. [25], we claim homogeneous
and heterogeneous climatic features must be considered for a better wildfire risk prediction.

Finally, Figures 4.17 and 4.17 show the fire risk maps calculated for the 15th of January and
15th of August 2019. and generated according to ADA Boost model, which provided the best
results. In both cases, sectors marked with red color were identified as those of high fire source
risk, whereas those marked with green color denote low risk. High-risk sectors in urban areas are
normally found in regions of parks or natural reserves.

Regarding number of sectors with high risk of fires, August 2019 shows a higher number of
occurrences, as expected, if the frequency of fires displayed in Figure 2 is considered. Moreover,
the climatic conditions of the month favor the occurrence of fires due to the low relative humidity,
high temperatures, and existence of fuel such as dry leaves and grass.

Considering rainfall values, a relatively high number of high-risk sectors was reported in
January 2019, which may have led to performance problems of prediction. From the total number
of samples, approximately 28% occurred in the rainy season and 50% represented fire events, of
which only 1272 samples out of 12000 were, in fact, ignition points.

The same validation metrics were applied for validating the effect of the fewer number of
samples for the period, but considering only those from the validation set in the rainy period
(October-April) (30% of the 1272 samples). The metrics revealed a poor performance in relation
to the full dataset, as shown in Figure 4.18. Models were trained again, but only in the rainy
period. As displayed in Figure 4.19, AdaBoost showed the best performance – near one - with all
metrics and enabled the generation of other fire risk maps (see Figures 4.20 and 4.21).

Similarly to the training with data from the rainy period, we retrained the models for the
dry season, with data related to only May-September period, for checking whether the models
accuracy had increased. Figure 4.22 shows the AUC-ROC obtained. ADABoost performed better
than the other models; however, the values of AUC-ROC validation were lower than the ones
considering the entire dataset (figures 4.13 and 4.14).
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Figure 4.15: Feature importance for fire risk prediction

Figure 4.16: Fire risk prediction map January 15, 2019
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Figure 4.17: Fire risk prediction map August 15, 2019

Figure 4.18: Validation metrics for rainy period

Figure 4.19: Validation metrics after training considering only the rainy period data.
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Figure 4.20: Risk map after retraining, January 15, 2019, 15:00

Figure 4.21: Risk map after retraining, January 15, 2019, 23:00

Figure 4.22: AUC-ROC considering only the dry period data.
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Figure 4.23: Composition of models.

Therefore, the two models were combined for predictions according to the flow in Figure
4.23. Given the data of a sector for which the risk of fire will be predicted, if the current month
belongs to the rainy period, the model trained with data related to only that period is considered.
Otherwise, the prediction is made with the model trained with the complete dataset, producing
the results presented at figures 4.13 and 4.14.

4.4 EXPERIMENTS AND RESULTS ON WILDFIRE BEHAVIOUR PREDICTION

According to the defined methodology a dataset was defined and Deep Artificial Neural Net-
work (ANN), SVM, RF, and AdaBoost were candidates for the prediction of the fire behaviour
(treated as a binary classification problem). The models predict the time at which a sector will (or
not) most probably burn, thus enabling the building of the area that will certainly burn.

4.4.1 Feature importance and selection study.

As explained in section 2.2.3, Chi-square test verified the dependency between features and
fire behavior (Figure 4.24 shows the results - all p-values are below 0.2, thus reflecting the relation
of all explanatory features and the behaviour of wildfires). Such a result enables the establishment
of a ranking between the variables, according to which "Relative Humidity Mean" is the most
relevant one and "Atmospheric Pressure Mean" is the first candidate to be discarded. However,
since the p-scores were very homogeneous, no evidence was provided for the establishment of a
feature selection.

On the other hand, Figure 4.25 displays the results of Relief-F, according to which higher
values denote higher importance. The results have provided some insights into both occurrence
and behavior of fires in the DF region. As an example, vegetation (NDVI) is the feature of highest
influence, followed by variables related to wind and terrain topography.
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Figure 4.24: Chi-square test.

Figure 4.25: Relief-F.

The importance of the features was very similar (distributed in the [0.1, 0.2] interval) and all
features showed some degree of importance. However, no cutoff importance value can be es-
tablished for feature selection, since not enough information is provided. Furthermore, the joint
analysis of Chi-square and Relief-F results is not conclusive. As an example, VPD showed fully
correlated to the wildfire phenomenon in the Chi-square test, but values near 0.1 in Relief-F.
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Therefore, both correlation and multicollinearity between the explanatory features were calcu-
lated to explain that effect.

Correlation describes the association between two variables and expresses a subject in terms of
its relationship with the others [161]. Two correlated variables mean one of them can be predicted
from the other, thus impacting the feature importance calculation. A proper correlation analysis
can enable a better understanding of data. Pearson’s correlation coefficient [162] was considered
in this research – according to the coefficient, given a pair of sampled random variables (X,Y),
the following equation calculates the correlation:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.7)

where n is sample size, xi and yi are a sample point, and x̄ and ȳ are the sample mean of X and
Y, respectively.

Figure 4.26 shows the results of Pearson’s coefficient and a high correlation between the ex-
planatory features. Several pairs (i.e. <NDVI, Relative humidity> and <Temperature, Global
Radiation>) showed highly correlated, whereas variables such as distance to urban area pre-
sented a low correlation in respect the other variables. In addition to the pairwise correlations,
a multi-correlation can be observed. As an example, pairs <NDVI, Relative humidity> and
<Temperature, Relative Humidity> showed a high correlation; tupple <NDVI, Relative humid-
ity, Temperature> may be multicorrelated or multicollinear.
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Figure 4.26: Features correlation

Multicollinearity occurs when a predictor variable can be linearly predicted from two or more
variables with a high degree of accuracy, thus yielding misleading results. Variance Inflation
Factor (VIF) is a metric commonly used to compute multicollinearity [163]. VIF was computed
according to [161], who established values above 10 mean high multicollinearity between ex-
planatory features. Its definition is shown in the equation

V IF (B̂j) =
1

1−R2
Xj |X_j

(4.8)

where B̂j denotes the coefficient of j − th feature in a linear regression model and R2
Xj |X_j

is the
coefficient of determination of the regression equation of the first step, with Xj on the left side
and the remaining predictive variables on the right one.

According to the VIF results (Table 4.6), multicollinearity is present in the data. Two or more
correlated or multicollinear explanatory features describe the same phenomena and account for
twice (or more) the computation of the feature importance; consequently, it is difficult to perceive
which variable is really influencing the independent variable. Moreover, when features are corre-
lated and collinear, the discard of one of them exerts a small effect on the models performance,
since it can obtain the same information from a correlated feature. Although this is a common
problem of filtering methods of have high computational efficiency, the selection produces inco-
herent validation metrics results in several scenarios when a same selected set of features is used
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Table 4.6: Variance Inflation Factor

VPD 2.860730e+02

RelativeHumidityMin 7.937134e+01

RelativeHumidityMean 3.846107e+01

RelativeHumidityMax 3.063114e+01

AirTemperatureBulboSecoMax 2.890975e+01

AtmPressureMin 2.639599e+01

AirTemperatureBulboSecoMean 2.616578e+01

AtmPressureMean 2.414639e+01

AtmPressureMax 1.822316e+01

AirTemperatureBulboSecoMin 1.807455e+01

AirTemperaturePontoOrvalhoMax 1.494208e+01

AirTemperaturePontoOrvalhoMin 1.476668e+01

AirTemperaturePontoOrvalhoMean 1.252187e+01

GlobalRadiation 5.910211e+00
WindGustSpeedMax 5.447082e+00

WindGustSpeedMean 4.297431e+00

slope 1.828753e+00

distanceToRiver 1.738201e+00

distanceToRoad 1.720456e+00

distanceToUrbanArea 1.582141e+00

NDVI 1.282130e+00

TotalPrecipitation 1.129459e+00

WindDirection 1.084976e+00

aspect 1.023021e+00

to train different machine learning models [150].

Towards facing filtering method issues, we considered the wrapper method and feature impor-
tance was computed for ANN, SVM, RF, and AdaBoost by a permutation method [149]. ANN
was structured as a multilayer perceptron (MLP), and Back Propagation Algorithm (BPA) was
considered for the model training. The number of neurons at the input layer was the same of that
of explanatory features plus the eight values that represent the state of the neighboring sectors
(1=burning and 0 for the other case). Five hidden dense layers with 500, 400, 250, 100, and 50
neurons were taken and Rectified Linear Unit (ReLU) was adopted as an activation function. The
output layer was comprised of two neurons - one activated for ”burn” predictions and the other
activated for ”no-burn” ones. Stochastic gradient descent algorithm (Adam) with 0.005 learning
rate, β1 = 0.9, and β2 = 0.8 was the optimizer. The optimization function was the categori-
cal cross entropy; the learning rate was set to 0.1 and the number of epochs was 1000. SVM
yielded better results with RBF kernel with γ = 0.01 and regularization parameter C = 1.0. RF
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achieved its best result with 30 sampling process trees and four as the number of variables for
each split. 300 was the maximum number of trees and the voting threshold (cutoff) was 0.05. The
aforementioned parameters were empirically defined after several tests.

According to Figure 4.27, all features contributed to the fit of the models on higher or lower
scales. VPD, NDVI, and relative humidity highly impacted the models; human factors such as
distance to road can be also related to wildfires in the Federal District. However, all permutation
importance values were low (under 0.25), and features with a higher importance for one model
were not important in the same degree for others.

Figure 4.27: Importance of explanatory features

Table 4.7 shows the resultant features for each model, which will be used in the next sub-phase
(training).

4.4.2 Hyper-parameter optimization.

The random search technique designed by [155] was adopted for the hyper-parameter opti-
mization. Table 4.8 shows the distributions for each model and the best parameters found.

4.4.3 Validation of the models’ performances

ROC curve method, applied to each fold, validated the models. Figure 4.28 displays the
plotted curves and the trade-off between FPR and TPR , respectively on X and Y axes. According
to the area under the curve (AUC), employed as a validation metric, values close to one denote

84



Table 4.7: Features considered for each model

Model Features

ANN VPD, Maximum Relative Humidity, NDVI, Maximum
Air Temperature Dew Point, Mean Relative Humidity, Mean Air

Temperature Dew Point, Maximum Atmospheric Pressure

SVM Mean Air Temperature Dry Bulb, Mean Atmospheric Pressure,
Maximum Bulb Air Temperature, Minimum Bulb

Air Temperature, Maximum Wind Gust Speed

AdaBoost VPD, Mean Atmospheric Pressure,
Maximum Atmospheric Pressure, NDVI, Maximum Air
Temperature Dew Point, Maximum Relative Humidity,

Aspect, Total Precipitation and Slope

RF Maximum Relative Humidity, VPD, NDVI, Global
Radiation, Maximum Air Temperature Dew Point, Mean

Relative Humidity, Mean Air Temperature Dew Point
and Minimum Air Temperature Dew Point

Table 4.8: Distributions considered by random search optimization

Model Distributions Best value

ANN activation : [relu, linear, softmax] relu (hidden) and softmax(output)
epochs: [10:10:300] 160

batch size: [20:2:100] 38
loss: [categorical cross entropy] categorical cross entropy
optimizer: [Adam, sgd, adadelta] Adam

RF criterion : [gini, entropy] gini
max features: [0.3:0.1:0.9] 0.5

min samples leaf: [1,2,3,5,7,10,15] 2
min samples split: [2,5,10] 2
n estimators: [50:50:600] 450

SVM kernel: [linear, sigmoid, rbf] rbf
gamma: [0.0001:0.0001:0.003] 0.0013

AdaBoost estimators: [100: 100: 2000] 1100
algorithm: [SAMME, SAMME.R] SAMME

learning rate:[0.1:0.1:1] 1
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Figure 4.28: AUC ROC 4-fold for fire behavior prediction

Figure 4.29: Validation metrics for fire behaviour prediction

high accuracy. The models yielded relevant results, and AdaBoost, with a 0.92 AUC, showed the
best performance.

Figure 4.29 shows F1 score, Accuracy, Precision, and Recall metrics. AdaBoost reached
values above 0.86, indicating the best performance, whereas the values reached by RF and ANN
ranged between 0.81 and 0.85. SVM achieved the worst performance.

In relation to other proposals applied in different regions and with different datasets, the results
are encouraging. In terms of AUC-ROC, the average value obtained (0.92) was equal to the 0.92
from [13]. When compared to the values of accuracy obtained by [13] (0.87) and [11] (0.93),
the 0.89 accuracy can be considered satisfactory. The results are good regardless of the lack of
research on the region and the predicted burnt area, as discussed below.
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Figure 4.30: 500 samples Sørensen Similarity Mean

Table 4.9: SS agreement levels by ranges

SS range Agreement level

(0, 0.2] slight

(0.2, 0.4] fair

(0.4, 0.6] moderate

(0.6, 0.8] substantial

(0.8, 1] near-perfect

4.4.4 Prediction and validation of burned area

Once the models had been trained, Algorithm 1 generated the final burned areas, and SS
metric, defined by Equation 6, measured the quality of the predicted burned areas.

SS was calculated for each model from 500 random samples belonging to the sets devoted to
training and validation. Figure 4.30 shows all models exceeded 0.69 mean SS. AdaBoost provided
the best results (0.83) and was considered the winner model.

As addressed elsewhere, the fires in the Federal District have not been extensively studied and
no research on the final predictions of a burned area has been found. Consequently, the quality
of the predicted fire scars cannot be easily compared and validated from a regional perspective.
However, as defined by [164] (see Table 4.9), 0.83 SS value indicates near-perfect agreements,
thus highlighting the relevance of the results of this research.

4.5 CONCLUSIONS

In this chapter, after a literature review of wildfires risk and behaviour predictions models and
explanatory features, we introduced a fire-related dataset in the Brazilian Federal District, and
series of short-term spatial/temporal records of wildfires for the prediction of wildfires behaviour.
Four ML approaches, namely ANN, SVM, RF, and AdaBoost were trained according to previous
wildfire events and vegetation, climatic, hydrographic, and anthropogenic factors to predict if a
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sector will burn based on its neighboring conditions. Their performances were compared and
AdaBoost achieved the best results.

An algorithm for fire-scars reconstruction was provided and validated by Sørensen similarity
metric. The computation of each explanatory feature importance revealed all features considered
impacted the fire behaviour.

The workflow produced can be extended and adapted to other Brazilian regions (e.g., Brazil-
ian Amazonia) and most probably to other countries. ML theory enable prediction of wildfire
behaviours according to topographic, climate, hydrographic, and anthropogenic data, such as
those of our inventory, leading to a precise evaluation of a burnt area.
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5 CONCLUSIONS AND FUTURE WORK

Advances of Smart Cities and Forestry 4.0, supported by Internet of Things, Wireless Sensor
Networks, Wireless Communications, and ML have imposed challenges regarding the standard-
ization of data collection and sharing processes, towards the development of data mining appli-
cations in several city-related domains. New research and product development must focus on
reducing data collection and interchange complexity for simplifying data mining and machine
learning applications.

The lack of a common data format and sharing standard and the various networking and
sensor technologies have led to a heterogeneous environment of IoT devices/platforms that must
be integrated into an interoperable one. Regarding SCs environmental data, a growth is expected
in the number of IoT platforms that deploy sensors related to indicators data, and their integration
must be considered the backbone of environment-related city services.

This thesis presented a new platform for Smart Cities applications based on semantics tech-
nologies that enables a seamless collection and interchange of data, and the application of ma-
chine learning models over the collected data. The platform was validated through a use case on
wildfire predictions.

To enable a dynamic data scheme for the representation of data, sensors, SC and forestry sys-
tems, ontologies aligned with IoT conceptualization were proposed, allowing a formal definition
of SC indicators (based on ISO 37120) and forestry observational environment. The proposed
ontologies promoted the retrieval of aggregated data represented in RDF format.

The state of the art about SC platforms was discussed, leading to the conclusion the use of
semantic technologies for data representation and sharing between Smart City stakeholders can
solve some of the heterogeneity challenges and the ontology proposed acts as a single definition
of heterogeneous data sources and data collection technologies.

The IoT-based platform for the environment SC domain followed a three-layered IoT archi-
tecture and enabled the collection, storage, and processing of environmental data from city and
forestry considering Fog resources for a local processing of data and through services and re-
sources dynamically deployed in the cloud at city levels.

A set of adapters for several communication protocols was implemented for dealing with
networks and sensors heterogeneity. Such adapters can be instantiated on the Fog and Cloud
Interfaces. Moreover, SenML was considered for the sake of compatibility of data representation
and for reducing the overhead of controlling data. A mapping of the sensor International Resource
Identifier – IRI (in both gateway and fog server) promoted reductions in message overload and
consumption of resources in constrained devices.

The research considered the collection and proposal of a dataset of fire occurrence in the
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Brazilian Federal District which include climatic, vegetation, hydrographic, and anthropogenic
related data.

Machine learning functionalities were provided on the cloud and enabled the preparation of
training datasets in a standardized way, considering the use of SPARQL and RESTFul for query
end- points and SenML and RDF as the format of the response object. The platform capabilities
promoted the development of some wildfire studies in the Federal District Region Initially, the
prediction of fire risk and its main wildfire conditioning factors were identified.

Eight ML models (ANN, SVM, RF, Naive Bayes, KNN, Linear Reg., Log. Reg, and Ad-
aBoost) were developed and trained according to previous wildfire events and their performances
were evaluated through 4-fold cross validation. AdaBoost achieved the highest AUC-ROC (0.993).

The importance of each explanatory feature was computed towards the identification of the
main originating factors of wildfires in the region, and many models proved more sensitive to
NDVI, relative humidity, and atmospheric pressure.

A set of short-term spatio-temporal series was also proposed for representing the fire behavior.
ANN and RF were trained according to the fire sequences for predictions on how the fire-line
moves after a fire has been initiated. An algorithm developed for the construction of fire scars
showed the predicted scars can be classified as good with a 0.77 Sørensen similarity.

5.1 LIMITATIONS

The proposed platform meets several of the heterogeneity IoT-related challenges. However, it
shows some limitations, as discussed below.

The deployment of the sensor is not seamless. Since the platform provides no discovery and
pairing protocol, the sensor must be manually registered on fog or cloud servers to obtain an
identification (id) to be configured prior its implantation/deployment towards the identification of
the observations obtained. A sensor pairing strategy should be implemented by platform users for
the inclusion of that feature.

Although some data may be sensible and the high volume of data collected by the IoT platform
demands the maintenance of a certain degree of privacy, however, the platform offers no tools for
data anonimization and considers no definitions for access control.

5.2 FUTURE RESEARCH

Regarding security, since the platform does not authenticate/authorize sensors/users, security
protocols must be adopted or proposed. Almost all IoT/IoFT sensors are battery-sourced devices
and topics such as battery consumption must be considered in future work. Moreover, extended
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functions for sensor identity handling must be provided in scenarios of a sensor network with a
cluster relay.

As a continuation of this research, the platform will be extended towards enriching fire ter-
minology on EISCO ontology and proposing a new set of fire-related QoL indicators. Besides
environment, the conceptualization of other SC city verticals such as health, safety and security,
and transportation will be studied and the GPSO ontology will be extended towards a fully set of
SC IT-based tools.
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IoT-based Platform for Environment Data Sharing in Smart Cities

Jesús Noel Suárez Rub́ıa, Paulo Roberto de Lira Gondima,∗
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Abstract

The technological development and dissemination of IoT equipment have led to large volumes of environ-

mental data which, in some cases, are incomplete, follow different formats of representation and even have

different semantic approaches. All such aspects and the heterogeneity of different IoT components (e.g. net-

work interfaces, communication protocols, data structure and data semantics) have caused interoperability

issues which might hamper the effectiveness of support decision systems for smart cities, where the use of

big data and machine learning techniques has been considered, in addition to the exploration of smart city

data. This article proposes an environment IoT-based platform for smart cities that grants interoperability

from data capture to knowledge extraction and visualization through the use of Semantic Web Technologies,

and the definition of an ontology for environment indicators. The components of the platform include IoT

devices, gateways, cloud and fog computing, which are used for a better application of big data techniques. A

real environment quality monitoring use case was considered for the validation of the platform. Metrics, such

as latency and resources consumption, were analyzed for three communication protocols, namely MQTT,

CoAP and REST. CoAP adapter provided the best results regarding latency, RAM and CPU consumption.

Keywords: Smart City, Linked Data, Platform, Environment, Ontologies

1. Introduction

The rapid growth of urban populations has demanded studies that identify, prevent and act in situations

of threatened quality of life (QoL) [1]. In Smart Cities (SC) [2], QoL is commonly dealt with by indicators

that measure the effectiveness of services and sustainability of a city in domains/verticals, such as Environ-

ment, Healthcare, Security, Transport, Economy, Education and Government. Particularly, the Environment5

vertical has drawn special attention in recent years. Indicators of environmental pollutants (e.g., atmospheric

greenhouse gases, fine particular matter PM, noise, solid waste, among others) and water (acidity and mer-

cury) must be monitored for the detection of adverse situations associated with overpopulated regions. In

this sense, SCs [2] must provide interoperable tools that collect, store and disseminate indicator-related data,

and several sensors, frameworks and SC platforms have emerged for such purposes. However, some challenges10

still hamper better management and analyses of data of those indicators.

∗Corresponding author
Email address: pgondim@unb.br (Paulo Roberto de Lira Gondim )

Preprint submitted to Journal of LATEX Templates February 11, 2022

A - ARTICLE PUBLISHED IN INTERNATIONAL JOURNAL OF COMMUNICATION
SYSTEMS.



Forestry 4.0 and Industry 4.0: Use Case on Wildfire Behaviour Predictions
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Abstract

Forest industries deserve special attention due to relations between environmental impact and social and economic

development. The increase of forest fires caused by the untenable exploitation has motivated the application of con-

cepts such as Industry/Forestry 4.0 and Internet of Forest Things (IoFT) towards improving the performance of current

supply chains and assuming an environmental responsibility. This research focuses on the application of IoFT for the

prediction of wildfires behavior and proposes a semantic platform for heterogeneous IoFT data aggregation that grants

interoperability through semantic technologies. The dataset considered climatic- and vegetation-related data gathered

by Brazilian government sensors and satellite information on fires, and Machine Learning predicted the areas affected

after a fire event. Both platform and predictions were validated and Random Forest predicted the area with 89%

accuracy, showing better performance than Deep Neural Network, with 79%.

Keywords: , Industry 4.0, Forestry 4.0, Semantic, Platform, IoFT, Ontology, Wildfires, Machine Learning.

1. Introduction

The social-economic development of countries with significant forest resources depends on an adequate explo-

ration that preserves the environment and the life in its several expressions. Such an exploration/preservation balance

has been threatened by several issues related to population growth and the global competition in world markets [1]. In

this sense, the assurance of environmental sustainability of production processes and preservation of ecosystems and

natural resources will be challenging in the coming years.

Forest fires are one of such cases in which the unsustainable exploitation of resources causes the degradation of

biodiversity and environment. As an example, the wildfires growth in Brazil has been correlated to forest industry

and production chains such as firewood, coal, solid wood, paper and cellulose; therefore, tools that minimize the

environmental downside effects exerted by the aggressive nature of such industry should be studied.

The increasing number of fire spots in the Brazilian Federal District (FD), located inside the Cerrado biome,

highlights the importance of fire-related studies on the region. The Cerrado, with 60.5% of natural vegetation cover,

is one of the most important worldwide biomes, given its rich biodiversity. Its long dry periods and vegetation type

and the extensive exploration for the production of charcoal, firewood, and paper have led to conditions that stimulate

the spread of fires.
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Application of machine learning models in the behavioral study of forest fires in the
Brazilian Federal District region
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Abstract

Ecosystems, settlements, and human lives are put at risk by forest fires every year. Several models proposed for the prediction of
their occurrence and behavior have aimed at identifying their conditioning factors, risks, and post-effects. However, the application
of such models to other regions is impracticable or very difficult, due to the distinct geographic characteristics of the areas and the
unavailability of data. This research is devoted to the prediction of both spread and behavior of wildfires at a specific time and/or in
specific regions for helping fire management agencies minimize the damages caused. The Brazilian Federal District, inserted in the
Cerrado biome, is the focus of the analyses, due to its large number of fire occurrences and reduced quantity of studies conducted
on the region. A dataset was compiled from Brazilian governmental open data for the prediction of the wildfire behavior and used
for the training of several Machine Learning models that consider the fire point of ignition to predict the areas that will be impacted.
It includes observations on climate features from 5 monitoring stations and satellite data on fires that occurred over the past two
decades and was enriched with other topographic, hydrographic, and anthropogenic features, such as urbanization index, distance to
rivers/roads, and Normalized Difference Vegetation Index (NDVI). According to the results, the AdaBoost model predicted the area
affected by the wildfire with 91% accuracy, showing better performance than Random Forest (RF) 88%, Artificial Neural Network
(ANN) 86%, and Support Vector Machine (SVM) 81%.

Keywords: Wildfires Fires, Behaviour, Spread, Machine Learning, Classification, Prediction, Performance

1. Introduction

Forest fires have increased worldwide, and improvements
in their modeling are a key aspect for a better understanding
of procedures for their prevention and combat (Monedero et al.
(2019)). The life quality of the inhabitants of the Brazilian Fed-5

eral District (FD) region has been negatively affected by the fire
activity, which has led the government to spend resources on
their fighting. The past decades have witnessed an increment in
the number of fire spots, according to satellite data, thus high-
lighting the importance of fire-related studies on the region (see10

Figure 1).
The FD region is inserted in the Brazilian savanna (the Cer-

rado biome), comprised of 11,627 species of plants and which
has been affected by a large number of fires. The dry climate to-
gether with the savanna vegetation create a favorable scenario15

for fire dissemination. Therefore, research into forest fires in
the DF will both leverage the local firefighting decision making
and policies and probably decrease the number of fires in the
Cerrado region.

Few investigations aimed at understanding forest fires in the20

DF region have been conducted (de Bem et al. (2019)). Gomes
et al. (2018) identified three major challenges, expressed on
three different scales, namely predictive (multiple drivers must

∗Corresponding author
Email address: nsuarezrubi@gmail.com (Jesús N. S. Rubı́)

be considered for studies of fire), 2) spatial (changes that oc-
cur from site (local) to biome level), and 3) temporal (changes25

from short to long-term dynamics). The authors also reported
a lack of proposals on the three scales that consider the joint
simulations of fire risk, behaviour, and impacts.

This manuscript focuses on the predictions of the fire-line
behaviour given a point of ignition and climate, topographic,30

hydrographic, and anthropogenic data. The proposal determines
the direction and extension of the fire-line and evaluates the pre-
dicted fire scars.

No consensus on modelling methodologies of forest fire
behaviour has been achieved. Although approaches involving35

complex mathematical models have been published (Jiang et al.
(2021), Rossa and Fernandes (2018) and Chen et al. (2018)),
their static characteristics hamper the representation of highly
dynamic processes such as fire-line progress. Most of those em-
pirical and semi-empirical models have been applied in labora-40

tories and controlled field-scale experiments, which commonly
consider two types of numerical approaches. The first is based
on the complex modelling of physical and chemical processes
(Chen et al. (2018), Mueller et al. (2014)), whereas the other
involves the rate of spread-correlating features, such as slope,45

wind, and vegetation type (Zhai et al. (2020)). However, both
have showed poor accuracy in real fire events and required high
computational costs and simulation times, which are impracti-
cal for real-time decision support.

The reproduction of prediction results is usually difficult50
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Abstract 

Despite a steady increase in the frequency of wildfires and the total area burned in Brazil, such 

hazards have risen in the Federal District, since wildfires have reached several of its protected 

areas. This study compares 8 machine learning models that predict wildfire risk worldwide so 

that they can be adopted in the aforementioned region, considering correlations among climate 

conditions, spatial location, topographic features, anthropogenic characteristics, and fire 

occurrence. A dataset enriched with Brazilian governmental open data was comprised of 

observations on 16 climate features of 5 monitoring stations and satellite data on fires occurred 

over the past two decades and topographic, hydrographic and anthropogenic features, such as 

Normalized Difference Vegetation Index (NDVI), urbanization index, and distance to 

rivers/roads. According to the results, fire risk can be predicted with 99% accuracy and the 

models showed more sensitive to NDVI, atmospheric pressure, and relative humidity, as 

demonstrated by a study on the impact of features. 

Keywords: Wildfires, Fires, Risk, Machine Learning, Classification, Prediction, Performance, 

SVM, Neural Networks, Random Forest, Naive Bayes, KNN, Linear Regression, Logistic 

Regression, AdaBoost, NDVI, Climatic 
 

 

1. Introduction 

Global climate changes and the risk of forest ecosystems have been the focus of recent 

discussions. In recent years, countries such as Australia, South Africa, and Brazil have drawn 

worldwide attention, since they have caused losses in forested areas and human and economic 

damages and devastated biodiversity, thus leading to the development of more studies on wildfire 

[1]. 

This research was motivated by the increased fire activity in the Brazilian Federal District 

(FD) region observed since the year 2000 [2], which has affected its native species, even in 

protected zones [3], led to a poorer quality of life of its inhabitants, and caused local governments 

to spend resources on fighting fires. 

Few studies on the prediction of wildfires in that area, inserted in the Brazilian savanna (the 

Cerrado biome), have been developed [4], and a model for the prediction of fire occurrence would 

help institutions to reduce the costs of fire combat and its consequences. 

Machine Learning (ML) techniques that process large volumes of fire-related data can be de- 

signed from the current computational resources. The several studies that have proposed models 

for wildfire risk prediction can be supported by free remotely sensed data for precisely locating 
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