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Abstract: This work aims to study the factors that increase the risk of death of hospitalized patients
diagnosed with COVID-19 through the odd log-logistic regression model for censored data with
two systematic components, as well as provide new mathematical properties of this distribution.
To achieve this, a dataset of individuals residing in the city of Campinas (Brazil) was used and
simulations were performed to investigate the accuracy of the maximum likelihood estimators in the
proposed regression model. The provided properties, such as stochastic representation, identifiability,
and moments, among others, can help future research since they provide important information
about the distribution structure. The simulation results revealed the consistency of the estimates for
different censoring percentages and show that the empirical distribution of the modified deviance
residuals converge to the standard normal distribution. The proposed model proved to be efficient
in identifying the determinant variables for the survival of the individuals in this study, which can
help to find more opportune treatments and medical interventions. Therefore, the new model can be
considered an interesting alternative for future works that evaluate censored lifetimes.

Keywords: censored data; COVID-19; odd log-logistic Weibull; regression model

MSC: 62J02; 62N01; 62N03

1. Introduction

In theory of survival models, the distributions are often attributed to time intervals
and different structures of regression models have been constructed. Recently, many
distributions and regression models have been developed based on extended Weibull
distributions, for example, the log-odd log-logistic location-scale regression model [1],
the bivariate odd-log-logistic-Weibull regression model [2], the Weibull zero-inflated right-
censored regression model [3], the inverted Weibull regression model [4], and the Weibull
quantile regression model [5], among many others. The importance of such extensions is
remarkable and some important results can be found in the field of medicine. For example,
in a study of patients with colorectal cancer, Moamer et al. (2017) [6] assessed the survival
and prognostic factors based on the Weibull competing-risks model and showed that
the body mass index and some stages of disease influenced survival, and Yoosefi et al.
(2018) [7], using exponentiated Weibull distribution, found that the age of patients at
diagnosis was the most important influencing factor for increasing survival and reducing
the mortality rate. The results of the risks associated with breast cancer using a mixture
cure fraction model based on the generalized modified Weibull model can be seen in
Naseri et al. (2018) [8] where covariates, such as the number of metastatic lymph nodes
and histologic grade, were statistically significant and the estimated cure fraction was 58%.
Pavisic et al. (2020) [9] determined the factors that influenced the survival of patients with
autosomal dominant familial Alzheimer disease (ADAD) using multilevel mixed-effects
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Weibull survival models, which proved to be longer for successive generations and in
individuals with atypical presentations. In this context, we propose the odd log-logistic
Weibull (OLLW) regression model for censored data, which is different from the log-linear
regression model addressed by da Cruz et al. (2016) [1].

The new regression model has an extra shape parameter that enables greater flexibility
for modeling the risk rate function in the four most common shapes. It is a possible alter-
native to mixture models since the hazard rate can be bimodal. We define two systematic
components for the shape and scale parameters of the Weibull using the logarithmic link
function to measure the effects of the covariables. We provide some simulations to evaluate
the precision of the maximum likelihood estimators (MLEs) and the empirical distribution
of the deviance residuals.

We also present an application for hospitalized patients diagnosed with COVID-
19 (SARS-CoV-2 B.1.1.529) in the city of Campinas (Brazil). Although its mortality rate
(0, 4%) was lower than other variants in earlier periods of the pandemic (about 4%), its
transmissibility was considered to be extremely high in Brazil, causing a high number of
hospitalizations and deaths (Xavier et al., 2022 [10]). In this context, studies are necessary
to investigate the variables that increase the risk of death, which can vary according
to the pandemic scenario and demographic and epidemiological factors of each region.
Knowledge of the progression of the disease can support more timely and effective medical
interventions (see Lu et al. (2021) [11], Giacomelli et al. (2020) [12], and Zheng et al.
(2020) [13]. In previous survival analyses, some risk factors were frequently mentioned,
such as high age [12,14,15], diabetes [12,16,17], and obesity [12,16,17]. In addition to these,
some interesting factors were verified, such as neurological diseases [18] and sex [16,19].
Lu et al. (2021) [11] revealed that lower lymphocyte counts in a hemogram, lowplatelet
count and serum albumin, high C-reactive protein level, and renal dysfunction may be
risk factors. Nijman et al. (2021) [15] found that immunocompromised patients who
used anticoagulants or antiplatelet medication had increased risk of death. Zheng et al.
(2020) [13] also found cardiovascular disease, hypertension, and smoking as factors that
could greatly affect the prognosis of COVID-19.

The present work aims to study the factors that increase the risk of death of hospi-
talized patients diagnosed with COVID-19 using the odd log-logistic Weibull regression
model and to provide new mathematical properties. Motivated by the pandemic scenarios
and given the notable contributions of the Weibull distribution and its extensions, the re-
sults obtained with the application are considered the main contributions of this work,
whereas information and prior knowledge of the impact of such factors on survival can
also be decisive in treatment [20]. In addition, the new mathematical properties provided
bring more information and can help future research. In addition, the use of this dataset
can motivate the future use of this model in lifetime data, thus showing that it can be an
interesting and efficient alternative.

The rest of the paper presents the following topics. Section 2 provides a brief summary
of the OLLW distribution and some new mathematical properties. Section 3 defines the
OLLW regression model for censored data and presents diagnostic measures and residuals.
Some simulations for the new regression model are described in Section 4. The usefulness
of our results is illustrated through their application to COVID-19 data in Section 5. Finally,
some conclusions are cited in Section 6.

2. New OLLW Properties

The Weibull distribution is mostly used in reliability and lifetime modeling, and
it encompasses both increasing and decreasing failure rate functions. Its cumulative
distribution function (cdf) is

G(t; η) = 1− exp
[
−
( t

λ

)α]
, t > 0, (1)

where α > 0 is the shape, λ > 0 is the scale, and η = (α, λ)>.
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The quantile function (qf) of the Weibull by inverting (1) is QW(u; η) = λ [− log(1−
u)]1/α for u ∈ (0, 1).

Based on the idea of Gleaton and Lynch (2006) [21], the OLLW cdf F(t) = F(t; η, τ)
(for t > 0) comes from (1)

F(t) =

{
1− exp

[
−
(

t
λ

)α]}τ

{
1− exp

[
−
(

t
λ

)α]}τ

+

{
exp

[
−
(

t
λ

)α]}τ , (2)

where τ > 0 is an extra shape parameter.
By differentiating (2), the OLLW probability density function (pdf) becomes

f (t) =
τ α tα−1

{
exp

[
−
( t

λ

)α
]}τ{

1− exp
[
−
( t

λ

)α
]}τ−1

λα
[{

1− exp
[
−
( t

λ

)α
]}τ

+
{

exp
[
−
( t

λ

)α
]}τ]2 . (3)

Let the random variable T ∼ OLLW(λ, α, τ) have pdf (3). Plots of the pdf of T are
reported in Figure 1, thus showing flexibility for modeling skewness, kurtosis, and bimodality.
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Figure 1. Plots of the OLLW density. (a) Changing τ, λ = 1.5 and α = 5. (b) Changing λ, α = 5 and
τ = 0.3.

By inverting (2), the qf of the OLLW distrubution is given in terms of the Weibull
counterpart

QOLLW(u) = QW(v(u; τ); η), (4)

where v(u; τ) = u1/τ/[u1/τ + (1− u)1/τ ].
We provide below new structural properties of the OLLW distribution.

2.1. Modes

Every mode t0 = t0(λ, α, τ) of the OLLW satisfies the equation A(t) = B(t), where

A(t) =
(τ + 1){exp[( t

λ )
α]− 1}τ − τ + 1

{1− exp[−( t
λ )

α]}
{

1 + {exp[( t
λ )

α]− 1}τ
} , B(t) =

[( t
λ )

α + 1]α− 1
α( t

λ )
α

.
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By taking yt = exp[(t/λ)α]− 1, A(t) and B(t) can be written as

A(t) =
[
(τ + 1)− 2τ

yτ
t +1

]
(yt+1)

yt
,

B(t) = 1 + (α−1)
α log(yt+1) .

Hence, every mode t0 of the OLLW density satisfies[
(τ + 1)− 2τ

yτ
t + 1

]
(yt + 1)

yt
= 1 +

(α− 1)
α log(yt + 1)

.

It is an arduous task to obtain analytically the roots of this equation. Graphically, it has
at most three roots from which the bimodality of the OLLW density is guaranteed (Figure 1).

2.2. Stochastic Representation

Proposition 1. The stochastic representation of T ∼ OLLW(λ, α, τ) holds:

T = λ[log(1 + S)]1/α,

where S has the Burr Type XII distribution, say S ∼ BURR(τ, 1).

Proof. Note that the cdf F(t) in (2) can be rewritten as

F(t) =
∫ G(t;η)

1−G(t;η

0

τuτ−1

(1 + uτ)2 du = P
(

S 6
G(t; η)

1− G(t; η)

)
, S ∼ BURR(τ, 1), (5)

where G(t; η) is given by (1). Since dG(t; η)/dt > 0 (for t > 0), we obtain dG−1(t; η)/dt =
1/
[
dG
(
G−1(t; η); η

)
/dt
]
> 0 (for t > 0), i.e., the function t 7−→ G−1(t; η) is increasing,

hence,

P
(

G−1
(

S
1 + S

; η

)
6 t

)
, t > 0.

In other words, T and G−1(S/(1 + S); η) are equal in distribution. The proof follows based
on the Weibull qf.

2.3. Closure under Changes of Scale and of Power

Proposition 2.

1. If T ∼ OLLW(λ, α, τ), then cT ∼ OLLW(cλ, α, τ), c > 0.
2. If T ∼ OLLW(λ, α, τ), then Tk ∼ OLLW(λk, α/k, τ), k > 0.

Proof. Let U(t; λ, α) = G(t; η)/[1− G(t; τ)] = exp[(t/λ)α] − 1. By (5), F(t) = P(S 6
U(t; λ, α)), with S ∼ BURR(τ, 1). Since U(t/c; λ, α) = U(t; cλ, α) and U(t1/k; λ, α) =
U(t; λk, α/k), the proof is complete.

2.4. Identifiability

The concept of identifiability of a distribution means that distinct values of the param-
eters should correspond to distinct probability distributions: if (λ1, α1, τ1) 6= (λ2, α2, τ2),
then also F1(t) 6= F2(t), ∀t > 0, where Fi(t) = F(t; λi, αi, τi), i = 1, 2, is defined by (2).

Proposition 3. The OLLW distribution is identifiable.
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Proof. Let us suposse that F(t; λ1, α1, τ1) = F(t; λ2, α2, τ2), ∀t > 0. By (5), it is equivalent to

P
(

S1 6
G(t; η1)

1− G(t; η1)

)
= P

(
S2 6

G(t; η2)

1− G(t; η2)

)
, Si ∼ BURR(ηi, 1),

where ηi = (αi, λi)
> and G(t; ηi)/[1− G(t; ηi)] = exp[(t/λi)

αi ] − 1, i = 1, 2. For S ∼
BURR(η, 1), it is well-known that P(S 6 s) = 1− (1 + sτ)−1. So, this equation reduces to[

G(t; η1)

1− G(t; η1)

]τ1

=

[
G(t; η2)

1− G(t; η2)

]τ2

. (6)

Setting t = λ1 log1/α1(2), we obtain{
exp

[(λ1

λ2

)α2
logα2/α1(2)

]
− 1
}τ2

= 1.

Equivalently, we have (λ1

λ2

)α2
log

α2−α1
α1 (2) = 1. (7)

Since the only real solutions of x logy(2) = 1 are x = 1 and y = 0, it follows from
Equation (7) that λ1 = λ2 and α1 = α2. Using these identities in (6), τ1 = τ2, and the proof
is complete.

2.5. Existence of Real Moments

Proposition 4. If T ∼ OLLW(λ, α, τ) and ατ > max{p,−p}, then

E(Tp) 6 λpB
(

ατ − p
ατ

,
ατ + p

ατ

)
.

Proof. Since 0 < log(1 + s) 6 s we have [log(1 + s)]p/α 6 sp/α. By using this inequality
and the stochastic representation of T (see Proposition 1), we obtain

Tp = λp[log(1 + S)]p/α 6 λpSp/α.

Taking the expectations on both sides of the above inequality and then using the
well-known identity

E(Sr) = B
(

τ − r
τ

,
τ + r

τ

)
, S ∼ BURR(τ, 1), τ > max{r,−r},

the proof follows.

2.6. Tail Behavior

The continuous univariate distribution F (on R) has an upper light tail if (for s > 0)

lim
x→∞

exp(−sx)
1− F(x)

= ∞,

whereas it has an upper heavy tail if (for s > 0)

lim
x→∞

exp(−sx)
1− F(x)

= 0.

Proposition 5. The OLLW distribution has a transition from heavy-tailed to light-tailed. In other words,

(a) For 0 < α < 1, the OLLW distribution has an upper heavy tail.
(b) For α > 1, the OLLW distribution has an upper light tail.
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(c) For α = 1, the OLLW distribution does not have a defined tail behavior.

Proof. A simple algebraic manipulation leads to (for s > 0 and α > 0)

limt→∞
exp(−st)
1−F(t) = limt→∞

{
exp(−st) +

[
exp

(
− st

τ + tα

λα

)
− exp

(
− st

τ

)]τ }

=



0, 0 < α < 1,
0, α = 1 and s > τ/λ,
1, α = 1 and s = τ/λ,
∞, α = 1 and s < τ/λ,
∞, α > 1.

This completes the proof.

3. The OLLW Regression Model

The OLLW regression model is defined by two systematic components for αi and λi
(for i = 1, . . . , n), as follows

Equation added

g1(λi) = ηi1 = x>i1 β1 and g2(αi) = ηi2 = x>i2 β2, (8)

where βj = (β j0, . . . , β jp)
> (j = 1, 2) are vectors of length (pj + 1) of unknown coefficients

functionally independent, pj is the number of explanatory variables related to the jth
parameter, ηij are the linear predictors, and xij = (vij1, . . . , vijpj)

> are observations on p1

and p2 known regressors. The functions g1 and g2 defined from R→ R+ should be strictly
monotone and at least twice differentiable. The functions satisfy λi = g−1

1 (x>i1 β1) and
αi = g−1

2 (x>i2 β2), where g−1
j (·) is the inverse function of gj(·). So, in the following sections,

we consider the logarithmic link function for gj(·):
Equation updated

λi = exp(x>i1 β1) and αi = exp(x>i2 β2).

The case αi = 1 leads to the exponential regression model.
Let Ti and Ci be the lifetime and censoring time for the ith individual. The survival

function of Ti given xi comes from (1) as

S(t|xi) =

{
exp

[
−
(

t
λi

)αi
]}τ

{
1− exp

[
−
(

t
λi

)αi
]}τ

+
{

exp
[
−
(

t
λi

)αi
]}τ . (9)

Consider the independent observations (t1, x1), · · · , (tn, xn), where ti = min{Ti, Ci}
under the independence of Ti and Ci. The log-likelihood function for θ = (τ, β>1 , β>2 )

>

from Equation (9) is

l(θ) = r log(τ) + ∑i∈F log
(

αi
λ

αi
i

)
+ ∑i∈F(αi − 1) log(ti) + τ ∑i∈F log[καi ,λi (ti)]+

(τ − 1)∑i∈F log[1− καi ,λi (ti)]− 2 ∑i∈F log
{
[1− καi ,λi (ti)]

τ + κτ
αi ,λi

(ti)
}
+

∑i∈C log
{

κτ
αi ,λi

(ti)

[1−καi ,λi
(ti)]τ+κτ

αi ,λi
(ti)

}
,

(10)

where r is the number of failures, F and C refer to the sets of lifetimes and censoring times,
respectively, and καi ,λi (ti) = exp[−(ti/λi)

αi ].
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The maximum likelihood estimate (MLE) θ̂ of θ is found to maximize (10). The gamlss
and AdequacyModel packages of the R software and the SAS procedure NLMixed can be
used to find θ̂. These packages have been widely adopted in many applied statistics papers.

3.1. Checking Model

The diagnosis of anomalies of the fitted regression is important after the parameter
estimation. An analysis that can be carried out is based on the influence measures from the
exclusion of observations.

The influence of the ith observation on the MLE θ̂(i) of θ when it is deleted is measured
by the (maximized) likelihood distance (Cook, 1986 [22])

LDi(θ) = 2
[
l(θ̂)− l(θ̂(i))

]
.

The generalized distance (Cook et al., 1988 [23]) is another influence measure

GDi(θ) = (θ̂(i) − θ̂)>
[
L̈(θ̂)

]
(θ̂(i) − θ̂),

where −L̈(θ) is the observed information matrix.
The deviance residuals used in survival analysis when there are censored observations

(Escobar and Meeker, 1992 [24]) are given by

rDi =



sign(r̂Mi )×{
−2
[

1 + log
[

κ̂τ
αi ,λi

(ti)

[1−κ̂αi ,λi
(ti)]τ+κ̂τ

αi ,λi
(ti)

]
+ log

{
− log

[
κ̂τ

αi ,λi
(ti)

[1−κ̂αi ,λi
(ti)]τ+κ̂τ

αi ,λi
(ti)

]}]}1/2
, if δi = 1,

sign(r̂Mi )

{
−2 log

[
κ̂τ

αi ,λi
(ti)

[1−κ̂αi ,λi
(ti)]τ+κ̂τ

αi ,λi
(ti)

]}1/2
, if δi = 0,

(11)

where δi is the censoring indicator and

r̂Mi = δi + log[Ŝ(ti|xi)], κ̂αi ,λi (ti) = exp

[
−
(

ti

λ̂i

)α̂i
]

, λ̂i = exp(x>i β̂1), α̂i = exp(x>i β̂2).

4. Simulation Study

Monte Carlo simulations examined the precision of the MLEs in the new regression
model and evaluated the empirical distribution of the deviance residuals using the function
optim in R software for some values of n and censoring the percentages. One thousand
replicates were carried out for each configuration. The lifetimes t∗1 , · · · , t∗n were generated
from the OLLW(λi, αi, τ) distribution and the censoring times c1, · · · , cn from a uniform
distribution (0, ν), where ν controls the censoring percentages. Just two covariates x1 ∼
Uniform(0, 1) and x2 ∼ Binomial(1, 0.5) were included in the systematic componentes:

λi = exp(β10 + β11x1i + β12x2i), αi = exp(β20 + β21x1i + β22x2i), τi = exp(β30), (12)

where the true parameter values are taken as β10 = 3, β11 = 2.5, β12 = 0.9, β20 = 2,
β21 = 1.5, β22 = 0.8 and β30 = 0.3.

The simulation process follows the six steps:

(i) Generate xi1 ∼ uniform(0, 1) and xi2 ∼ binomial(1, 0.5);
(ii) Calculate λi, αi and τi from Equation (12);
(iii) Generate ui ∼ U(0, 1);
(iv) Repeat previous steps to obtain t∗i = QOLLW(ui) from Equation (4).
(v) Generate ci ∼ uniform(0, ν) and determine survival times ti = min(t∗i , ci). If t∗i < ci,

then δi = 1; otherwise, δi = 0 (for i = 1, . . . , n);
(vi) Calculate the deviance residuals.
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Table 1 reveals that the (Averages) estimates tended to the true parameters and their
biases and mean square errors (MSEs) decayed to zero when n became large. So, the consis-
tency of the estimators holds. We also checked the model through the empirical coverage
probabilities (CPs) of the 95% confidence intervals of the estimates. Table 2 shows that the
CPs were close to the nominal level.

Figure 2 proves that the empirical distribution of the deviance residuals approximated
the standard normal. So, the normal probability plot can be used with simulated envelopes.

Table 1. Findings for the averages, biases, and MSEs from the simulated OLLW regression model.

n = 100 n = 250 n = 500

% θ Averages Biases MSEs Averages Biases MSEs Averages Biases MSEs

0%

β10 3.0022 0.0022 0.0002 3.0012 0.0012 0.0001 3.0005 0.0005 0.0000
β11 2.4989 −0.0011 0.0001 2.4999 −0.0001 0.0001 2.5001 0.0001 0.0000
β12 0.8997 −0.0003 0.0001 0.8999 −0.0001 0.0000 0.9002 0.0002 0.0000
β20 2.0359 0.0359 0.1392 2.0065 0.0065 0.0485 2.0038 0.0038 0.0205
β21 1.5078 0.0078 0.0900 1.4925 −0.0075 0.0325 1.5030 0.0030 0.0145
β22 0.7987 −0.0013 0.0270 0.7948 −0.0052 0.0114 0.7996 −0.0004 0.0049
β30 0.2832 −0.0168 0.1230 0.3085 0.0085 0.0436 0.2999 −0.0001 0.0182

15%

β10 3.0013 0.0013 0.0002 3.0016 0.0016 0.0001 3.0009 0.0009 0.0000
β11 2.4992 −0.0008 0.0002 2.4993 −0.0007 0.0001 2.4998 −0.0002 0.0000
β12 0.9003 0.0003 0.0001 0.8999 −0.0001 0.0000 0.9001 0.0001 0.0000
β20 2.0807 0.0807 0.1605 2.0052 0.0052 0.0545 2.0020 0.0020 0.0260
β21 1.5020 0.0020 0.1030 1.4899 −0.0101 0.0363 1.5012 0.0012 0.0179
β22 0.7880 −0.0120 0.0344 0.7899 −0.0101 0.0123 0.7964 −0.0036 0.0066
β30 0.2459 −0.0541 0.1369 0.3129 0.0129 0.0487 0.3051 0.0051 0.0240

45%

β10 3.0012 0.0012 0.0003 3.0019 0.0019 0.0001 3.0014 0.0014 0.0001
β11 2.4990 −0.0010 0.0003 2.4989 −0.0011 0.0001 2.4994 −0.0006 0.0000
β12 0.9002 0.0002 0.0001 0.9001 0.0001 0.0000 0.9000 −0.0000 0.0000
β20 2.1452 0.1452 0.2034 2.0272 0.0272 0.0874 2.0232 0.0232 0.0402
β21 1.4288 −0.0712 0.1559 1.4671 −0.0329 0.0537 1.4798 −0.0202 0.0287
β22 0.7598 −0.0402 0.0535 0.7766 −0.0234 0.0178 0.7863 −0.0137 0.0092
β30 0.2299 −0.0701 0.1503 0.3110 0.0110 0.0775 0.2950 −0.0050 0.0391

Table 2. CPs for the 95% confidence intervals from the simulated OLLW regression model.

0% 10% 30%

n 100 250 500 100 250 500 100 250 500

β10 0.957 0.962 0.970 0.959 0.957 0.966 0.965 0.962 0.967
β11 0.952 0.960 0.966 0.957 0.960 0.971 0.937 0.961 0.966
β12 0.956 0.968 0.955 0.944 0.962 0.961 0.950 0.958 0.962
β20 0.923 0.949 0.964 0.903 0.962 0.958 0.925 0.947 0.943
β21 0.947 0.953 0.959 0.948 0.952 0.948 0.969 0.964 0.958
β22 0.946 0.933 0.957 0.945 0.952 0.932 0.946 0.962 0.949
β30 0.938 0.960 0.968 0.924 0.967 0.969 0.958 0.968 0.952
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Figure 2. Normal probability plots of rDi ’s for n = 100, 250, and 500, and censoring percentages 0%,
10%, and 30%.

5. Application to COVID-19 Data

We investigated the risk factors associated with death of diagnosed COVID-19 patients
in the city of Campinas, Brazil. The sample was composed of hospitalized patients living in
the city of Campinas or the northeastern area of the neighboring city of São Paulo in Brazil’s
southeast region (Figure 3). A total of 322 patients infected with the virus (confirmed
by RT-PCR screening) and classified as having Severe Acute Respiratory Syndrome 2
(SARS) were included in the study. The model was implemented in the gamlss script in
the R software. The dataset and application codes can be accessed at https://github.com/
gabrielamrodrigues/OLLW (accessed on 10 September 2022).

From an economic standpoint, Campinas has the eleventh largest municipal gross
domestic product (GDP) in the country and was the first Brazilian city other than state
capitals to be classified as a metropolis. It thus has significant national influence. In 2011, it
was responsible for at least 15% of the nation’s scientific production and is the third-leading
Brazilian city in terms of research and development. For these reasons and accuracy of the
data, Campinas was selected in this study.

The response time ti (in days) is the period from the first symptoms until death due
to COVID-19. In this sample, approximately 66.45% of the observations are censored,
corresponding to patients who died for other reasons and patients who survived until
the end of the study. The associated explanatory variables (for i = 1, . . . , 322) are: censi:
censoring indicator (0 = censored, 1 = time of life observed); xi1: sex (0 = female, 1 = male);
xi2: age (in years); xi3: chronic cardiovascular disease (1 = yes, 0 = no or not informed);

https://github.com/gabrielamrodrigues/OLLW
https://github.com/gabrielamrodrigues/OLLW
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xi4: asthma (1 = yes, 0 = no or not informed); xi5: diabetes mellitus (1 = yes, 0 = no or
not informed); xi6: chronic neurological disease (1 = yes, 0 = no or not informed); and xi7:
obesity (1 = yes, 0 = no or not informed).

Figure 3. Location of the city of Campinas, São Paulo, Brazil.

Descriptive Analysis

As in all statistical studies, we began with exploratory analysis of the data by studying
the behavior of the response variable and its respective covariables. The Kaplan–Meier
survival curves are presented in Figure 4, where it is possible to observe the existence of
a higher risk of death among individuals suffering from diabetes or chronic neurological
disease. In addition, Figure 5 clearly shows that patients aged from 65 to 90 years had the
highest hospitalization frequency, as expected.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (days)

S
u
rv

iv
a
l p

ro
b
a
b
ili

ty

1
0

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (Days)

S
u
rv

iv
a
l p

ro
b
a
b
ili

ty

1
0

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (Days)

S
u
rv

iv
a
l p

ro
b
a
b
ili

ty

1
0

p value = 0.008

(a) (b) (c)

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (Days)

S
u
rv

iv
a
l p

ro
b
a
b
ili

ty

1
0

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (Days)

S
u
rv

iv
a
l p

ro
b
a
b
ili

ty

1
0

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (Days)

S
u
rv

iv
a
l p

ro
b
a
b
ili

ty

1
0

p value < 0.0001 

(d) (e) (f)

Figure 4. Kaplan–Meier survival curves: (a) Sex; (b) Chronic cardiovascular disease; (c) Diabetes
mellitus; (d) Obesity; (e) Asthma and (f) Chronic neurological disease.
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Figure 5. Histogram of the covariate “age”.

The MLEs and their standard errors (SEs) (in parentheses), as well as the Global
Deviance (GD), Akaike Information Criterion (AIC), and Bayesian Information Criterion
(BIC) from two fitted distributions to these data are given in Table 3.

Table 3. Estimation results.

Model λ α τ GD AIC BIC

OLLW 20.6750 5.6523 0.3113 916.9 922.9 934.2
(0.9375) (1.4702) (0.0880)

Weibull 22.5711 1.7510 1 924.8 928.8 936.3
(1.4116) (0.1326)

The likelihood ratio (LR) statistic for comparing the OLLW and Weibull distributions
(w = 7.9, p-value < 0.005) supports the first distribution. The estimated survival functions
in Figure 6 also reveal this fact.
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4
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x

S
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)

Kaplan−Meier
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Figure 6. The estimated and empirical survival functions for COVID-19 data.
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Further, the results from the fitted complete OLLW regression model

λi = exp

(
β10 +

7

∑
j=1

β1jxij

)
and αi = exp

(
β20 +

7

∑
j=1

β2jxij

)
, i = 1, . . . , 322,

are reported in Table 4.

Table 4. Findings from the complete OLLW regression.

MLEs SEs p-Values MLEs SEs p-Values

β10 4.3021 0.0754 <0.0001 β20 1.7013 0.0410 <0.0001
β11 −0.0974 0.0680 0.1531 β21 0.0842 0.0553 0.1288
β12 −0.0159 0.0012 <0.0001 β22 −0.0055 0.0010 <0.0001
β13 0.0772 0.0841 0.3596 β23 0.1307 0.0946 0.1679
β14 −0.4190 0.1335 0.0019 β24 0.3603 0.1134 0.0016
β15 −0.2443 0.0881 0.0059 β25 −0.2896 0.1160 0.0131
β16 −0.3546 0.1468 0.0163 β26 −0.3880 0.1677 0.0213
β17 −0.0277 0.1147 0.8094 β27 0.5095 0.1904 0.0078

log(τ) −0.6933 0.0263

AIC: 895.7497; BIC: 959.9171; GD: 861.7497

The variables age, asthma, diabetes mellitus, and chronic neurological disease are
significant (at the level of 5%) for λ. For the parameter α, the age, asthma, diabetes, chronic
neurological disease, and obesity variables are significant and hence the reduced OLLW
regression model is

λi = exp(β10 + β12xi2 + β15xi5 + β16xi6) and αi = exp(β20 + β22xi2 + β26xi6 + β27xi7),

whose estimation results are given in Table 5. Some interpretations on the numbers in this
table are addressed at the end of this section.

Table 5. Findings from the reduced OLLW regression model.

MLEs SEs p-Values

β10 4.0861 0.0644 <0.0001
β12 −0.0130 0.0012 <0.0001
β15 −0.2696 0.0818 0.0011
β16 −0.3211 0.1625 0.0490
β20 1.4304 0.0364 <0.0001
β22 −0.0063 0.0009 <0.0001
β26 −0.3622 0.1708 0.0347
β27 0.5011 0.2023 0.0138

log(τ) −0.3337 0.0269

AIC: 884.7161; BIC: 918.6871; GD: 866.7161

The influence measures in Section 3.1 are calculated in R and displayed in Figure 7. They
show that the 26th and 270th observations (referring to the patients below) are possibly influ-
ential:

• 26th: A 64-year-old woman with comorbidities (cardiovascular disease, diabetes, and
obesity) died in 6 days.

• 270th: An 11-month-old baby with a neurological disease died in 5 days, and is the
only patient younger than 1 year.
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Figure 7. Index plots for (a) GDi(θ) and (b) LDi(θ).

Figure 8a displays the index plot of the residuals (rDi ) in Equation (11), thus revealing
that they have a random behavior. Figure 8b reports the normal probability plot with a
simulated envelope (Atkinson, 1987 [25]), thus revealing that the reduced OLLW regression
model is appropriate for these data.
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Figure 8. (a) Index plot of rDi . (b) Normal probability plot for rDi with envelope.

The plots of the empirical and estimated survival functions for the two categorical
variables in Figure 9 confirm the adequacy of the fitted regression.

Interpretation for λ

• The survival time declines when the age increases.
• Diabetes mellitus has a significant effect in reducing the survival time of COVID-

19 patients.
• The patients with chronic neurological disease have a significant reduction in sur-

vival time.

Interpretation for α

• The patient age is also significant in terms of survival time variability.
• The variability of survival time depends on whether the patient is obese or not.
• The variability of survival time depends on whether the patient has chronic neurologi-

cal disease or not.
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Figure 9. Estimated and empirical survival functions: (a) Diabetes mellitus; (b) chronic neurologi-
cal disease.

Finally, we obtain S(t|xi) from Equation (9). In Figure 10, the estimated survival and
hazard rates are plotted for the four hypothetical patients described earlier. Figure 10a
reveals that patients with diabetes mellitus and chronic neurological diseases have a shorter
survival time than those who do not have these diseases. Similarly, Figure 10b shows that
patients with diabetes and chronic neurological diseases are at higher risk compared to
patients who do not have these pathologies.
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Figure 10. (a) Estimated survival functions. (b) Estimated hazard functions.

We can obtain the survival probabilities and median times from Equations (9) and (4),
respectively. Then, we consider x7 fixed at 0 and x2 and x6, as shown in Table 6. Tables 7 and 8
show the probability of hospitalized patients surviving 20 days after the first symptom and
the median time for some ages, respectively.
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Table 6. Four selected patients.

Patient Age Diabetes Mellitus Chronic Neurological Disease

A 50 Yes Yes
B 50 Yes No
C 50 No Yes
D 50 No No

Table 7. Probability of hospitalized patients surviving 20 days after the first symptom.

Age 30 60 90

Patient A 0.47 0.25 0.11
Patient B 0.73 0.43 0.17
Patient C 0.62 0.40 0.22
Patient D 0.85 0.62 0.35

Table 8. Median time for some ages.

Age 30 60 90

Patient A 19.15 12.55 8.17
Patient B 27.65 18.30 12.05
Patient C 25.08 16.43 10.70
Patient D 36.21 23.96 15.78

6. Conclusions

This work studied the factors that increase the risk of death of hospitalized patients
diagnosed with COVID-19 using the odd log-logistic Weibull regression model with two
systematic components. Some new general structural properties of this model were pro-
vided such as its stochastic representation, identifiability, and moments, among others.
A simulation study was carried out to evaluate the proposed regression model, which
revealed the consistency of the maximum likelihood estimators and showed that the empiri-
cal coverage probabilities were close to the nominal level and that the empirical distribution
of the deviance modified residuals approached the standard normal.

The application to COVID-19 data revealed some important results. The older age
group was a predictor of a higher death rate from COVID-19, corroborating studies by
Giacomelli et al. (2020) [12] and Atlam et al. (2021) [14], and diabetes and obesity were also
evidenced in this work as determinants for the survival of infected patients, as discussed in
Giacomelli et al. (2020) [12], Albitar et al. (2020) [16], and Noor et al. (2020) [17]. Chronic
neurological diseases were also identified as risk factors, but we emphasize that few studies
have obtained these results (García-Azorín et al. (2020) [18] and Noor et al. (2020) [17]).
Therefore, it is recommended to consider the presence of this comorbidity in future studies
in the assessment of mortality risk, as well as verify its significance in other datasets. Several
studies have also indicated that men are at greater risk of death (see Albitar et al. (2020) [16]
and Liu et al. (2020) [19]). However, no significant differences were found between the
sexes. Chronic cardiovascular disease and asthma also did not prove to be determinants
for the survival of individuals in this study.

It is suggested that future works verify the current datasets and those from other cities,
as well as verify whether the same covariates would be significant in a lifetime analysis.

It is possible to conclude that the proposed regression proved to be efficient in identi-
fying the factors that influenced the survival of individuals in this dataset, which can help
more timely and efficient medical interventions. Finally, this model can be considered an
interesting alternative for future works that evaluate censored lifetimes.
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