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Abstract

A significant part of petroleum, gas, and geothermal reservoirs contain natural fractures that

impact their performance. When these discontinuities fall on the sub-seismic scale, it is a chal-

lenge to incorporate them into numerical models, because the computational costs of their explicit

representation are usually too high. Popular solutions that deal with the effect of these small-scale

fractures are the dual-porosity approaches and classical flow-based upscaling. However, while the

dual-porosity models disregard the geometrical complexity of real fracture networks, traditional

upscaling can not capture the dynamic influence of the fractures, whose permeabilities change

continuously during the reservoir’s productive life. This thesis is dedicated to the multiscale hydro-

mechanical modeling of reservoirs containing complex fracture networks. The adopted multiscale

method is an adaptation of the multi-level Finite Element Method (FEM), which solves both the

macroscale and the microscale numerically and couples them according to the principles of homog-

enization. The modification proposed here is called the multi-level Box method because it replaces

the FEM with the Box method, also called the control-volume FEM. Contrary to upscaling tech-

niques, this method can capture the dynamic influence of the heterogeneities on the large-scale

behavior without the need of defining equivalent constitutive laws. At the level of the REV, the

fractures are generated stochastically and represented by interface elements. Major modifications

were made to an open-source code to make the hydro-mechanical simulation of elastoplastic frac-

tures possible. A new statistics-based methodology based on the Central Limit Theorem was pro-

posed to define the REV of random fractured media. Also, two methods used to impose periodic

boundary conditions on periodic and non-periodic meshes were adapted to domains containing in-

terface elements. The developed tools and methods were applied to a synthetic case of depletion

inspired by a real naturally fractured chalk reservoir. The multiscale method was able to represent

the loss of productivity caused by depletion and the anisotropic evolution of the pore pressure field.
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Resumo

Uma parte significativa dos reservatórios geotérmicos e de petróleo e gás possuem fraturas nat-

urais que impactam sua performance. Quando essas discontituidades se encontram na escala sub-

sísmica, sua incorporação aos modelos numéricos é desafiadora, pois os custos computacionais de

sua representação explícita são geralmente proibitivos. As soluções mais populares que consid-

eram o efeito dessas fraturas de pequena escala são os modelos de dupla porosidade e o cálculo de

propriedades equivalentes (upscaling). No entanto, enquanto os modelos de dupla porosidade con-

sideram geometrias muito idealizadas e pouco representativas de redes de fraturas reais, as técnicas

tradicionais de upscaling não são capazes de capturar a influência dinâmica das fraturas, cujas per-

meabilidades mudam continuamente durante a vida produtiva do reservatório. Esta tese desenvolve

métodos e ferramentas computacionais para a modelização multiescala do comportamento hidro-

mecânico de reservatórios contendo redes complexas de fraturas. O método multiescala adotado

é uma adaptação do Médoto dos Elementos Finitos (MEF) multi-nível, em que a microescala e a

macroescala são resolvidas simultaneamente com o FEM e acopladas de acordo com os princípios

da homogenização. A modificação aqui proposta é denominada método Box multi-nível, pois o

MEF foi substituído pelo método Box. Ao contrário das técnicas convencionais de upscaling, este

método captura os efeitos dinâmicos das heterogeneidades sem a necessidade de definir modelos

constitutivos para a macroescala. No nível do Volume Elementar Representativo (VER), as fraturas

são geradas de maneira estocástica e representadas por elementos de interface. Um programa de

código aberto foi estendido para comportar simulações hidromecânicas emmeios fraturados elasto-

plásticos. Uma nova metodologia estatística baseada no Teorema do Limite Central para definir o

tamanho do VER de meios fraturados estocásticos foi proposta. Além disso, dois métodos para a

imposição de condições de contorno periódicas foram adaptados para meios contendo elementos

de interface. Os métodos e ferramentas desenvolvidos foram aplicados em um caso sintético de

depleção de um reservatório inspirado em um carbonato fraturado real. O método multiescala foi

capaz de representar a perda de produtividade causada pelo fechamento das fraturas e a evolução

anisotrópica dos campos de poropressão.
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Resumo

Une partie importante des réservoirs de pétrole, de gaz et géothermiques contient des fractures

naturelles qui ont un impact sur leur performance. Lorsque ces discontinuités se situent à l’échelle

sub-sismique, leur incorporation aux modèles numériques pose un défi, car le coût de calcul de leur

représentation explicite est généralement trop élevé. Les solutions populaires qui traitent de l’effet

de ces fractures à petite échelle sont les approches à double porosité et l’obtention de propriétés

constitutives équivalentes par changement d’échelle (upscaling). Pourtant, alors que les modèles

à double porosité ne tiennent pas compte de la complexité géométrique des réseaux de fractures

réels, les techniques traditionnelles de changement d’échelle ne peuvent pas capturer l’influence

dynamique des fractures, dont la perméabilité change continuellement pendant l’exploitation du

réservoir. Cette thèse est dédiée à la modélisation hydromécanique multi-échelle de réservoirs

contenant des réseaux de fractures complexes. La méthode multi-échelle adoptée est une adapta-

tion de la méthode des éléments finis au carré, qui résout numériquement à la fois la macro-échelle

et la micro-échelle et les couple selon les principes d’homogénéisation. La modification proposée

ici s’appelle la méthode Box multi-niveaux car elle remplace la méthode des éléments finis par

la méthode Box. Contrairement au changement d’échelle conventionnel, cette méthode permet de

capturer l’influence dynamique des hétérogénéités sur le comportement à grande échelle sans qu’il

soit nécessaire de définir des lois constitutives pour la macro-échelle. Au niveau du Volume Élé-

mentaire Représentatif (VER), les fractures sont générées de manière stochastique et représentées

par des éléments d’interface. Des modifications majeures ont été apportées à un code open-source

pour permettre la simulation hydro-mécanique des milieux fracturés élastoplastiques. Une nouvelle

méthodologie statistique basée sur le théorème de la limite centrale a été proposée pour définir le

VER de milieux fracturés aléatoires. De plus, deux méthodes utilisées pour imposer des condi-

tions aux limites périodiques sur des maillages périodiques et non-périodiques ont été adaptées aux

domaines contenant des éléments d’interface.
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Chapter 1

Introduction

1.1 Fractured reservoirs

Naturally Fractured Reservoirs (NFR)make up a significant part of theworld’s reserves and produc-

tion of petroleum and gas (Firoozabadi, 2000; Bourbiaux, 2010). While practically all hydrocarbon

reservoirs contain natural fractures, the concept of NFR is more restrictive, since it connotes that

the fractures have or are expected to have a considerable effect on the performance during oil pro-

duction (Nelson, 2001). A sufficiently dense and connected network of fractures affects important

aspects of oil recovery planning such as the production rates, water breakthrough and the stability

of wells.

The term fracture used here refers to any planar discontinuity that occurs in rocks, except for

seismic faults, which have lengths above hundreds of meters and are not in the scope of this re-

search. In opposition to the geological classifications, which adopt different terminologies for these

discontinuities according to their originating events and stresses, they are regarded here from an

engineering perspective. Thus, they are differentiated by their geometrical features and hydrome-

chanical properties, which make them either barriers or preferential paths for fluid flow and planes

of weakness for geomechanical analyses.

Reservoir fractures can be identified and characterized by a variety of methods, such as seis-

mic techniques, well logging, core samples, borehole testing, analysis of outcrops and aerial pho-

tographs. The seismic techniques have a limited resolution and are only able to capture large dis-

continuities, while from core samples it may be possible to identify small cracks. The so-called
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sub-seismic fractures, whose lengths range from meters to tenths of meters, are more problematic

since they are not identifiable by seismic methods and well data provide, at most, limited infor-

mation on them. They are known, however, to have the potential of being highly influential on

reservoirs fluid flow (Matthäi et al., 2007; Lohr et al., 2008). Additional information on this kind

of fracture may be obtained with geological investigations of outcrop analogues, which are in-

creasingly popular. It is impossible, however, to remove uncertainties from the characterization of

subsurface fracture networks, because of the lack of data outside themeasurement locations, the dif-

ficulty in obtaining measures in three dimensions and doubts on how well the analogues represent

the reservoir conditions, for example. Thus, geological modeling relies largely on extrapolation

and subjective decisions (Berkowitz, 2002). Nonetheless, with the aid of geostatistical methods, it

is possible to build detailed geological models, which can be calibrated during the reservoirs life.

After a good geological model is available, the predictability of the performance during recov-

ery depends on the proper modeling and simulation of the reservoir. The impact of fractures on

the global performance of the reservoir is related to a variety of physical phenomena, such as cap-

illarity (Firoozabadi, 2000), anisotropy, localized flow, compaction and shear failure. Thus, the

early identification of fractures and their consideration in the recovery planning can significantly

improve the production of fluids. Failing in recognizing the possible influence of these discon-

tinuities has led to unexpected early water breakthroughs and causes a reported variability of oil

recovery in NFRs (Bourbiaux, 2010).

The scientific, technological and economical importance of reservoir simulations led to great

advancements in the field of flow modeling, including the development of techniques to scale up

the effects of heterogeneities. Despite of the limitations of the geological models, there is a general

recognition that they have a much finer resolution than the conventional simulators; in fact, their

sizes commonly differ by orders of magnitudes (Christie, 1996; Aarnes, 2004).

Usually, it is only feasible to explicitly represent the existing fractures in numerical models of

reservoirs when the fractures are large faults or when the domain of simulation is restricted to near-

well regions. Otherwise, the computational cost of representing smaller fractures in large-scale

simulations tends to be prohibitive.

Upscaling techniques emerged as the most common way of dealing with the problem of con-

sidering small heterogenities in reservoir simulation. They are part of the broader area of homog-
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enization methods, which scale up properties from a fine scale to a coarser scale that is treated as

homogeneous. This thesis focuses on a different class of homogenization: the multiscale methods.

Although multiscale approaches have not been extensively explored for the simulation of reser-

voirs, they present characteristics that overcome some robustness issues of upscaling and are more

adequate to represent phenomena that are hard to describe with equivalent constitutive laws.

1.2 Upscaling and multiscale methods

Homogenization methods are used to model heterogeneous media as simpler equivalent homoge-

neous media under the assumption that the problem at the large-scale domain happens on a separate,

much bigger scale than the problem at the level of the microstructure. There are two scales of in-

terest: the macroscale, which is the coarser scale and the microscale, which is the scale at which

the small heterogeneities are described in detail. We present here two classes of homogenization

techniques: upscaling and multiscale methods. In both cases the homogenization is performed over

a domain that must be representative of the microscale, which is usually called the Representative

Elementary Volume (REV).

1.2.1 Upscaling

Upscaling applied to fractured reservoirs has received distinct early contributions that are still very

popular, such as the sugar cube model (Figure 1.1) by Warren and Root (1963) and the tensor

method to evaluate the permeability of discontinuous media by Oda (1985). Although the term

upscaling may refer to a variety of different techniques, it will be used here as a synonym of calcu-

lating homogenized or equivalent properties to be used in large-scale simulations. The equivalent

properties are computed with analytical methods or with numerical experiments on samples where

the heterogeneities are explicitly represented. Then, the large scale problem is solved by consider-

ing that the domain is homogeneous and its materials respect the previously computed equivalent

constitutive laws. In reservoir simulation, most of the efforts are directed to deriving an equiva-

lent permeability, but other fields of study have advanced a lot in upscaling complex mechanical

behavior of fractured domains.
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Figure 1.1: The sugar cube geometry assumed in the dual-porosity model by Warren and Root
(1963).

Some researches report the limitations of the traditional upscaling methods. For instance, Sal-

imi and Bruining (2010) compared the sugar cube model and the equivalent permeability approach

with a more rigorous solution that uses the theory of periodic homogenization. They showed that

the accuracy of both methods depends on the time required to imbibe the porous matrix with wa-

ter and the travel time of water in the fracture system. Matthäi et al. (2007) computed two-phase

flow in different fractured media to observe flow patterns and to upscale relative permeability; the

upscaled relative permeabilities were radically different from those predicted by van Genuchten

(Van Genuchten, 1980) or Brooks-Corey (Brooks and A.T., 1966) functions, which means that a

new calibrated equation, dependent on the fractures geometry, would have to be used in the large-

scale simulations. Chen et al. (2003) observed that traditional upscaling is not very accurate for

highly heterogeneous porous media where the fluids follow tortuous paths and flow is channelized.

Although they studied heterogeneities in porosity, fractures produce the same effects of channel-

ized flow, since they form preferential paths for the fluids. Zareidarmyian et al. (2021) compared

the fine-scale and the upscaled solution of water injection in an elastoplastic fractured domain; they

concluded that upscaling may not be capable of accurately representing the preferential direction

of yielding and the pressure fields.

The problems of upscaling can be resumed to lack of robustness. Once an equivalent property is

obtained, the medium is treated as homogeneous. Thus, the information of any physical interaction

that would occur at the scale of the heterogeneities during flow is lost. Multiscale methods can

overcome this limitation, at the cost of additional computational efforts.
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1.2.2 Multiscale

In multiscale methods, both the macroscale and the microscale are solved numerically for every

step of the simulation and are coupled by information that they send to one another. Figure 1.2

illustrates a multiscale method called multi-level Finite Element Method (FEM) or finite element

squared (FE2). In the FE2, each integration point at the macroscale corresponds to a microscale

domain (i.e. a REV), and both are solved with the FEM.

In the multi-level FEM, the strains and hydraulic gradients at the macroscale are imposed to the

REV in the form of essential boundary conditions that are calculated using a localization rule. As

for the stresses and fluxes at the integration points of the macroscale, they are obtained from the

averaging of the microscale after the resolution of a boundary-value problem at the REV scale.

Figure 1.2: Schematic representation of the FE2 method. The Boundary Value Problems (BVP) at
the macro and microscale are coupled by homogenization and localization rules.

In one-scale simulations, stresses and velocities are defined based on a constitutive law. Since

in multiscale methods these quantities are computed from the simulation of the microscale, they do

not require the definition of any constitutive law for the large-scale. The constitutive behavior arises

naturally from the simulation at the microscale. Also, since the boundary conditions of the REV
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problem arise from the macroscale, it is guaranteed that they are representative of the large-scale

problem. And as the microscale is solved at every step of the problem, the physical phenomena at

the level of the heterogeneities are updated and continuously modify the large scale behavior. For

these reasons, multiscale methods are more robust than upscaling techniques.

The so-called global upscaling techniques (e.g. Chen et al., 2003) also solve both scales numer-

ically and use the macroscale solution to define the boundary conditions at the microscale; for this

trait, they can be referred to as multiscale (e.g. Aarnes, 2004). Applications of global upscaling to

reservoir simulation showed that the coupled numerical solution of micro and macroscale yields

more accurate results for highly heterogeneous porous media (Chen et al., 2003) and fractured me-

dia (Li et al., 2015). Thus, it is expected that multiscale simulations also return good results, with

the advantage of not requiring assumptions on the constitutive behavior of the macroscale.

1.3 Hydromechanical coupling in fractured reservoirs

Many notable experimental works have showed that permeability, stiffness and strength of joints

are strongly coupled to the stress-strain conditions of the rock mass (e.g Witherspoon et al., 1980;

Barton et al., 1985; Teufel et al., 1993). Because of this coupling, the fracture properties change

with the stress state, and so they are expected to have a dynamic impact on the overall behavior of

geological structures submitted to time-dependent field variations. The terms “dynamic behavior”

or “dynamic impact” will be used hereinafter to refer to this temporal change of the constitutive

properties of the fractures and should not be confused with inertial effects.

There are several implications of this dynamic behavior to the performance of sufficiently frac-

tured reservoirs. For example, the shear mobilization induced by primary or secondary recovery

may compromise well stability and influence the fracture propagation behavior (Rahman and Rah-

man, 2013).

Another effect of major importance is the evolution of the fractures permeability during the

reservoir’s productive life. There are at least three important mechanisms related to this phe-

nomenon. The first one is the loss of permeability induced by depletion, by which the fractures

close progressively and become less permeable as pore pressure decreases. In reservoirs where the

fractures are much more conductive then the intact rock, they are the main source of permeability
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in the early stages of production, so this closure can have a significant impact on productivity. A

second and opposite impact is the elastic opening of fractures when submitted to pore pressure

increases that arise, for example, from stimulation methods such as the injection of water.

Thirdly, some reservoirs can have their permeability enhanced by shear dilation, which is the

fracture opening induced by shear yielding; in this case, the dilated apertures are irreversible

because the asperities of the fractures surfaces resist to their sliding back. The geothermal and

petroleum industries currently use this mechanism as a stimulation method for reservoirs; by in-

jecting at the proper pressure, it is possible to provoke the shear dilation of the fractures without the

need of proppants to keep them open, as is the case in conventional hydraulic fracturing (Rahman

et al., 2002). There are also reservoirs where depletion itself is sufficient to induce differential

stresses that will make the fractures slip and dilate (e.g Teufel and Rhett, 1991).

Considering these impacts, the inclusion of coupled hydromechanics at the level of the fractures

is sometimes beneficial to the predictability of reservoir simulations and to the efficiency of the

recovery plans. This was firstly achieved by adding geomechanics to classical dual-porosity (sugar-

cube) models (e.g. Chen and Teufel, 1997; Bagheri and Settari, 2008), and then to more complex

fracture networks (e.g. de Sousa Junior et al., 2016).

Some researches focus on the comparison of the production forecasts when a dynamic, i.e.

coupled, and a static fracture permeability is considered. Bagheri and Settari (2008) compared the

dual-porosity model with static and dynamic permeabilities for depletion and injection scenarios.

They reported that during depletion the static permeability approach significantly overestimates the

production, while there is a considerable underestimation of the flux rates during injection. Also,

they showed that static permeabilities can not capture the anisotropic pressure fields that surgewhen

adopting different mechanical parameters for the distinct fracture sets in the sugar-cube model. de

Sousa Junior et al. (2016) made a similar comparison for three case studies of a limestone reservoir

that contains large fractures representedwith an EmbeddedDiscrete FractureModel (EDFM). Their

simulations showed that considering a geomechanics-sensitive permeability and a shear strength

model for the fractures can significantly alter the forecasts of water breakthrough and oil production.

The role of stress state on the dynamic behavior of the fractures in reservoirs has also been

investigated. It is well acknowledged that the reservoir’s permeabilitymay be damaged or enhanced

depending on the initial stress conditions and the stress path followed during production. This was
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demonstrated, for example, in the experiments conducted by Teufel et al. (1993), for which the

evolution of fracture permeability depended strongly on the imposed ratio between horizontal and

vertical stresses. Tao et al. (2011) captured these effects in their numerical model, which is made of

a combination of the Finite Differences Method (FDM) and the displacement discontinuity method

(DDM). Their methodology was applied to a synthetic case, composed of two regular persistent

and perpendicular sets of fractures. They verified the sensitivity of the decline in production to the

fractures stiffness, as well as the effect of an anisotropic in-situ stress, which induced shear failure,

and thus an increase in permeability at some of the fractures.

Coupled hydromechanical simulations have also been used to evaluate production strategies in

fractured reservoirs. For instance, Gan and Elsworth (2016) studied different plans of stimulation of

a heavily fractured geothermal reservoir; they concluded that the best strategy is to place the injector

and producer wells aligned with the major principal stresses, but the orientation of the fractures also

impacts significantly the efficiency of the stimulation. Bertrand et al. (2020) used the finite element

squared method to simulate a fractured coal reservoir. At the level of the microscale, they model

the adsorption-induced shrinkage and swelling of coal and the consequent changes of apertures in

the fractures; as a result, fracture permeability varies during depletion, and so does the reservoir’s

productivity. Their REV is made of regular and perpendicular sets of elastic fractures.

Most of these studies that apply coupled hydromechanics to fractured reservoirs either use sim-

ple idealized geometries, usually consisting of perpendicular and regular sets of fractures like in a

sugar cube pattern, or represent the fractures explicitly, but are dedicated to large faults of tenths

to hundreds of meters. The integration of smaller fractures that have tenths of centimeters to me-

ters, with consideration of their real geometry, has not been much explored. These fractures are

usually treated with an equivalent medium (upscaling) approach, which disregards the evolution

of their properties. This simplification is questionable, because although these fractures are small,

they tend to be much more frequent than the larger ones; so they do not necessarily have a less

considerable influence on the reservoir’s overall behavior.

Some upscaling techniques try to capture the dynamic nature of the properties by defining the

equivalent stiffness and permeability of fractured media as a function of meaningful state variables

such as the mean effective stresses (e.g Daley et al., 2006). However, experimental and numerical

studies show that the evolution of the fracture properties is a result of the interplay between fracture
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orientation, mean effective stress and deviatoric stresses. So, even these more elaborate equivalent

properties functions are unlikely to well capture the complexity of this behavior.

1.4 Description of the problem

Contrary to classical upscaling techniques, multiscale methods can represent the dynamic hydro-

mechanical behavior of the fracture networks while maintaining a high fidelity to the complexity

of their geometries.

For this reason, the main problem that this work explores is: how to apply a multiscale method

like the finite element squared in the simulation of reservoirs containing complex networks of

subseismic fractures. We should approach this problem by making the procedures of the multiscale

modeling as general as possible and taking in consideration well-established practices in reservoir

simulation.

This thesis works on three specific problems that need to be addressed to establish general

protocols and methods for the multiscale modeling of reservoirs that have small-scale fractures.

They are:

• Numerical homogenization with the finite element squared usually employs periodic bound-

ary conditions to homogenize the REV.When the mesh of the domain does not have symmet-

rical nodes at the boundaries, as is often the case when fractures are present, the imposition

of this type of periodic boundary condition is not trivial and requires sophisticated methods.

This problem is explored in Chapter 4.

• The size of the REVof stochastic randommedia has been extensively studied and conclusions

were drawn for individual fracture networks, but there is a lack of mathematically rigorous

rules that are general, i.e., could be applied to any fracture network. This problem is explored

in Chapter 5.

• The original finite element squared uses a classical Galerkin formulation. As such, it is not

locally conservative, i.e. it does not conserve mass at the level of the finite elements. This

is a problem in reservoir simulation, because the lack of mass conservation leads to errors

when dealing with saturation fronts and other phenomena that are typical of the production in
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reservoirs. For this reason, reservoir simulators usually adopt Finite Volume (FV) methods

or adaptations of the FEM that makes it locally conservative. This problem is explored in

Chapter 6.

Apart from these issues of theoretical and scientific nature, there is another issue concerning the

computational tool. We used in this work the version 3.2 of DuMuX (Koch et al., 2020), an open-

source software for solving flow and elastic mechanical problems with FV methods. The original

code already supports flow in fractured media and elastic problems in non-fractured domains, but

it requires extensions and modifications to be used in the hydro-mechanical multiscale modeling

of elastoplastic fractured domains. This problem is explored in Chapter 3.

1.5 Objectives

The general objective of this thesis is to develop methods and tools for the multiscale modeling of

reservoirs that contain sub-seismic fracture networks.

Considering the specific problems described above, the specific objectives of this thesis are:

• Adapt the open-source software DuMuX 3.2 to support hydro-mechanical coupled problems

on elastic and elastoplatic fractured domains where the fractures are represented with lower-

dimensional interface elements.

• Define general protocols for the definition of the size of the fractured REV and for the hy-

dromechanical coupling in the simulation of the REV.

• Define a methodology to impose periodic boundary conditions on periodic and non-periodic

meshes with interface elements.

• Develop a locally conservative multiscale method to be applied in reservoir simulation by

adapting the finite element squared.

• Apply a multiscale method to simulate the production of a reservoir containing a complex

network of subseismic fractures and observe the influence of the evolution of the fractures

permeability on productivity.
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1.6 Outline

This thesis is structured in 8 chapters.

Chapter 2 is dedicated to the boundary value problem of the REV. It presents a theoretical

review on homogenization applied to hydromechanical problems, some of the current research on

the homogenization of fractured rocks and the numerical methods employed to model the REV.

Chapter 3 presents the open-source code used to perform the simulations in this thesis, the

extensions made to the code and their validation.

Chapter 4 presents the methods used to impose periodic boundary conditions on finite element

meshes containing interface elements.

Chapter 5 proposes a statistics-based methodology to define the geometrical, hydraulic and

mechanical REV of random fractured media.

Chapter 6 presents a method that was entitled multi-level Box, which is an adaption of the finite

element squared, and validates its implementation.

Chapter 7 presents a synthetic case study where the tools andmethods developed in the previous

chapters were applied to model the production of a fractured reservoir.

Finally, Chapter 8 contains the conclusions and perspectives of this work.
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Chapter 2

REV of fractured rocks: modeling and

homogenization

In Section 1.2 the upscaling and multiscale methods were presented as techniques to transfer infor-

mation between two scales: the microscale and the macroscale. The homogenization of quantities

at the microscale was vaguely said to be obtained from the simulation of a Representative Ele-

mentary Volume (REV), a domain that must follow a few requirements for the macroscale to be

considered homogeneous.

This chapter is dedicated to the boundary value problem of the REV and the theoretical aspects

that it implicates. Firstly, Sections 2.1 and 2.2 present the definition of REV and some fundamen-

tals of homogenization applied to hydro-mechanical problems. Then, Section 2.3 reviews the cur-

rent research on the topic of modeling and numerical homogenization of fractured REVs. Finally,

Section 2.4 presents the equations of the problem and the numerical and computational methods

adopted to model the microscale.

2.1 What is a REV ?

The numerical testing of heterogeneous materials is used to study the impact of the microstructure

on their overall behaviour and to homogenize properties for large-scale simulations. The selected

equivalent properties must have been obtained from an adequate sample of the material, that is, a

REV.
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The REV is usually defined as a domain that is large enough to be statistically representative

of the material; thus, it must contain a sampling of all of the existing types of heterogeneity (Kanit

et al., 2003). Additionally, when the REV is used to obtain an equivalent constitutive behavior, this

volume should also be large enough for the equivalent properties or the averaged response not to

suffer size effects.

The term averaged response refers to the volume average ⟨.⟩ over a volume V :

⟨·⟩ = 1

V

∫
V

·dV (2.1)

In the case of the so called periodic media, the concept of REV is replaced by the concept of

unit cell. Periodic media contain a pattern of heterogeneities that repeats itself within a distance

interval called the period. In periodic media, the most appropriate sample is the unit cell, which

is the smallest domain to contain the repeating pattern of heterogeneities that characterizes the

microstrucure. The sugar cube model in Figure 1.1, for example, is a periodic structure. Figure 2.1

shows the definition of a proper unit cell for a sugar-cube like bi-dimensional structure.

Figure 2.1: The domain delimited by the dashed red line shows a proper unit cell for a periodic
strucute like the sugar cube model, where the porous matrix is intercepted by reguarly spaced and
perpendicular sets of fractures.

In the case of non-periodic media, it is a standard approach to test increasing sample sizes and

to define the minimum dimensions of the REV as those for which the equivalent properties seem

to stabilize. The REV size for the geometrical and constitutive properties are not necessarily the

same, as will be discussed in the following sections and in Chapter 5. The REV size depends on
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the physical phenomena at play, so it tends to be different for different constitutive properties.

A REV is considered adequate for homogenization if separation of scales exists, that is, if the

dimensions of the REV are substantially smaller than the characteristic length of the macroscale

problem. This guarantees that the principles of continuum mechanics are respected and the ho-

mogenized properties can be used to model the macroscale. The separation of scales solves what

Hudson and Harrison (2000) call a paradox in using REVs to measure stress or any other quantity

that is a property of a point, i.e. a sample with zero volume: if this separation exists, the REV can

be treated as a point in the large scale domain.

The mathematical form of the principle of separation of scales is expressed through the defini-

tion of the scale factor ε:

ε =
lc
Lc

≪ 1 (2.2)

The length lc is the characteristic length of the REV and Lc is the macroscopic length, which

considers two characteristics: one purely geometrical, related to the spatial dimensions of the

macroscopic domain, and one related to the characteristic length of the studied phenomenon. Usu-

ally, this latter is defined in terms of the macroscopic gradient ∂⟨Ψ⟩
∂xi

of the homogenized variable

⟨Ψ⟩ that describes the phenomenon:

Lc =
⟨Ψ⟩
∂⟨Ψ⟩
∂xi

(2.3)

where xi is a directional component of the coordinate system x at the microscale. Equation 2.2

then becomes:

ε =
lc
Lc

=
lc

∂⟨Ψ⟩
∂Y

⟨Ψ⟩
≪ 1 (2.4)

The basic principle of the homogenization method described in Figure 1.2 is that quantities such

as strains and pressure gradients at a point of the macroscale can be imposed to the REV to obtain

an averaged response in terms of stresses and fluxes. The term lc
∂⟨Ψ⟩
∂Y

in (2.4) gives an estimation

of the variation of ⟨Ψ⟩ inside the REV. If the imposed macroscopic quantities vary considerably at

the microscale, it is hard to set a proper value to be imposed to the REV and to obtain a reliable
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averaged response.

For randommaterials, it follows from (2.4) that the volume average of a propertyΨmust satisfy

the stationarity condition (Auriault et al., 2009):

∫
V1

ΨdV =

∫
V2

ΨdV (2.5)

where V1 and V2 are two volumes of characteristic dimension lc, taken from the same large-scale

domain and for which the distance between them is of the order of lc. In other words, the stationarity

condition imposes the translational invariance of ⟨Ψ⟩. Note that the fulfillment of this condition

depends both on the size lc, which must be large enough for the averaged response of both REVs

to be approximately the same, and on the gradient ∂⟨Ψ⟩
∂Y

, which can not be so large that ⟨Ψ⟩ changes

significantly with a translation of the order of lc.

The larger the separation of scales is, the better are the results obtained from homogenization;

although there is no exact way of estimating a limit value for the scale factor ε, it is generally

considered that homogenization is effective for ε < 0.1 (Auriault et al., 2009).

2.2 Homogenization of hydro-mechanical properties

This section presents the principles behind the homogenization applied to hydro-mechanical prob-

lems. In what follows, the subscripts M and m will refer to the macroscale and the microscale,

respectively. The position y locates a point on the macroscale’s coordinate system, and the position

x locates a point on the microscale’s coordinate system.

For the problem at the REV to be consistent with the problem at the macroscale, energetic

constraints need to be enforced. For the mechanical problem, the classic form of this constraint is

the Hill-Mandel principle, which states:

σM(y, t) : ε̇M (y, t) = ⟨σm(x, t) : ε̇m(x, t)⟩ (2.6)

where σ and ε are the stress and strain tensors, respectively. Equation (2.6) imposes the energy

rate at the macroscale to be equal to the volume average of the microscale’s energy rate.

The stress tensor at the macroscale σ is the volume average of the stresses at the microscale:
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σM(y, t) = ⟨σm(x, t)⟩ (2.7)

The same applies to the deformation tensor FM , defined here in terms of the displacements at

the microscale, um:

FM(y, t) = I +
1

V

∫
V

∇m ⊗ um(x, t)dV (2.8)

where I is the identity tensor and ∇m is the gradient operator vector for the microscale. The

macroscale strain tensor εM is defined as:

εM(y, t) =
1

2
(FM

T + FM)− I (2.9)

The following relationship forms the system that yields the upscaled stress-strain constitutive

matrix, CM :

σM(y, t) = CM(y, t) : εM(y, t) (2.10)

For fluid flow problems, the energetic bridge between microscale and macroscale is usually es-

tablished by the consistency of the dissipation energy i.e., the specific energy dissipated by viscous

friction, proposed by Indelman and Dagan (1993). This latter considers the flux at the REV to be

stationary. Khoei and Hajiabadi (2018) proposed the following extension to consider the possibility

of non-stationary flow at the microscale:

−(GMα(y, t))
T .vMα(y, t) + pMαΘ̇Mα = ⟨−(∇mpmα(x, t))

T . vmα(x, t) + pmαΘ̇mα⟩ (2.11)

where the subscript α refers to a fluid phase, p is fluid pressure, G is the macroscale pressure

gradient vector, v is the fluid’s velocity or specific flux and Θ is the fluid’s volumetric content.

The specific flux vMα of the phase α at the macroscale is:

vαM(y, t) = ⟨vαm(x, t)− xΘ̇mα⟩ (2.12)
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and the pressure gradientGα is defined as a function of the pressure pα at the microscale:

GMα(y, t) = ⟨∇mpmα(x, t)⟩ (2.13)

In transient flow problems, the mass flux per unit volume is given by the storage term Υ; at

the macroscale, it is computed from the fields of fluid density ρα and volumetric content Θα at the

microscale:

ΥMα(y, t) = ⟨Υmα(x, t)⟩ = ⟨ρmα(x, t)Θmα(x, t)⟩ (2.14)

Assuming Darcian flow and ignoring gravitational effects, the following relationship can be

established between the homogenized properties and the upscaled permeability tensorKM :

vαM(y, t) = KMα(y, t) ·GMα(y, t) (2.15)

The homogenized variables presented above are outcomes of the solution of the equilibrium of

forces andmass conservation equations (presented in Item 2.4.3) at the REV. The resulting pressures

pm and displacements um at the REV can be decomposed in two parts: the linear components ul

and pl related to their gradient at the corresponding point y of the macroscale, and the fluctuation

components p̃ and ũ, which capture their spatial variations due to the existence of small-scale

heterogeneities. Hence, the pressures and displacements at the microscale can be defined as:

um(x, t) = (FM(y, t)− I) .X + ũ(x, t) = ul(x, t) + ũ(x, t) (2.16)

pmα(x, t) = GMα(y, t) .X + p̃α(x, t) = pl(x, t) + p̃α(x, t) (2.17)

where X denotes the position of point x in reference to an arbitrary reference point of the REV.

Considering (2.8) and (2.13), it can be inferred from (2.16) and (2.17) that the integral of the fluc-

tuation components over the contour of the REV is null:

∫
∂V

ũ(x, t) ⊗ n d∂V = 0 (2.18)
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∫
∂V

p̃α(x, t) . n d∂V = 0 (2.19)

where n is the outward unit outer vector of boundary ∂V . Along with the energy consistency

requirements in (2.6) and (2.11), equations (2.18) and (2.19) constrain the microscale problem to

be used in homogenization-based methods.

2.2.1 Numerical homogenization: boundary conditions

Dormieux et al. (2006) presents analytical solutions for the homogenization of porous materials

with simple geometries. For complex microstructure geometries or highly non-linear behaviour,

Equations 2.10 and 2.15 can be solved numerically by defining a boundary value problem at the

REV scale. The adopted boundary conditions usually fall on one of the three main categories

described below:

(a) Linear Dirichlet boundary conditions

The homogenization of properties with Dirichlet boundary conditions consists in imposing dis-

placements and pressures at the boundaries for mechanical and flow problems, respectively. To

upscale the equivalent constitutive tensors, a set of linearly independent deformations or pressure

gradients must be imposed. The numerical solution of the REV for each boundary value problem

yields the averaged stress σM or the averaged specific flux, vM .

The most common type of Dirichlet boundary conditions used in the upscaling of permeability

is the linear pressure configuration proposed by Long et al. (1982), which is illustrated in Figure

2.2 for 2D problems. It consists in applying, for each pair of opposite boundaries at a time, an injec-

tion pressure at one side and zero pressure at the other; on the other pairs of opposite boundaries,

pressure is an equal linear function of the position, so there is no pressure gradient in the direc-

tions normal to them. The pressures p at the boundaries of the REV are a function of the imposed

constant pressure gradient vectorG:

p = G · x (2.20)
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If the injection pressure Pinj is applied to a side that is normal to the direction i and the sides

parallel to i have length Li: Gj = Pinj/Li if j = i and Gj = 0 if j ̸= i. From Equation 2.20,

it follows that the macroscopic pressure gradient GMα (Equation 2.13) is equal to the imposed

gradientG:

GMα = G (2.21)

Figure 2.2: Linear pressure boundary conditions for upscaling in flow problems: imposition of
pressure gradient with respect to directions x (left) and y (right) independently.

A similar configuration of linear displacements can be used to impose a constant displacement

gradient tensor F , as illustrated in Figure 2.3, so the displacements u at the boundaries are defined

by:

u = E · x (2.22)

where Eij = ∂ui/∂xj. It is thus straightforward to conclude that:

εM =
1

2
(E +E

T
) (2.23)

The displacements in Figure 2.3 are applied in such a way that, at each step of the upscaling

procedure, only one of the components εxx, εyy and γxy of the strain vector assumes a non-zero

value. This allows all the components of the equivalent stiffness tensor to be easily retrieved.

(b) Neumann boundary conditions
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Figure 2.3: Linear displacement boundary conditions for upscaling in mechanical problems: im-
position of pure compressive strains εxx (a) and εyy (b) and of pure shear strain γxy.

The homogenization of hydro-mechanical properties is also feasible using Neumann boundary con-

ditions, which means the imposition of stresses and flux at the boundaries.

A common set of flux boundary conditions used for the homogenization of hydraulic properties

are the so-called no-flow boundary conditions (Figure 2.4), on which a specific fluxQinj is applied

to one boundary, while a null flux is imposed to the others, except for its opposite side. As a

consequence, the homogenized macroscale velocity vM is:

vM = Qinj (2.24)

Figure 2.5 illustrates commonly adopted sets of linearly independent stresses Σ, for which the

homogenized stress tensor σM is:

σM = Σ (2.25)

The configuration in Figure 2.5 allows the assessment of the influence of each stress component

on the homogenized deformation, and thus the equivalent compliance tensor can be easily obtained.
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Figure 2.4: No flow boundary conditions for upscaling in flow problems.

Figure 2.5: Stress boundary conditions for upscaling in mechanical problems.

(c) Periodic boundary conditions

Consider any two symmetrical points on opposite sides of the REV, like the ones illustrated in

Figure 2.6. Periodic boundary conditions are imposed by enforcing the fluctuation of the primary

variables to be equal at these points:

p̃(x+) = p̃(x−) (2.26)

ũ(x+) = ũ(x−) (2.27)

Considering an imposed macroscopic pressure gradient G and an imposed macroscopic dis-

placement gradient tensor E, it can be concluded from (2.26) and (2.27) that:
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Figure 2.6: Examples of pairs of symmetric points x− and x+ that are located at opposite bound-
aries of the REV; such pairs are mapped to define the periodic boundary conditions.

p(x+) = p(x−) +G . (x+ − x−) (2.28)

u(x+) = u(x−) +E . (x+ − x−) (2.29)

As a consequence of the imposition of periodic pressures and displacements, the resulting flow

rates Q and tractions T are anti-periodic, that is:

Q(x+) = −Q(x−) (2.30)

T (x+) = −T (x−) (2.31)

Equations (2.28), (2.29), (2.30) and (2.31) provide additional relationships that make the solu-

tion of the microscale problem unique. Chapter 4 presents in detail the solution of the REV using

periodic boundary conditions and their imposition when non-symmetric mesh geometries and in-

terface elements are used. As the directly imposed variables are pressure gradients and strains,

Equations (2.21) and (2.23) apply to periodic boundary conditions.

AppendixA presents a review on how to retrieve the equivalent elastic tensors using the boundary

conditions mentioned above for plane-strain conditions.

These three categories of boundary conditions are widely used and are known to respect the

constraints in Equations (2.6) and (2.11) and (2.18)-(2.19), as was demonstrated, for example, by
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Liu and Reina (2016) for mechanics and by Pouya and Fouché (2009) for fluid percolation.

It was shown that depending on the chosen boundary conditions, either the homogenized gradi-

ents of the essential primary variables (Equations 2.21 and 2.23) or the homogenized stresses/flux

(Equations 2.24 and 2.25) are directly obtained. Their associated homogenized variables depend on

the solution of the boundary-value problem. If the divergence theorem is applied to Equations 2.7

– 2.13, the volumetric averages of the properties are more easily taken by accessing the solutions

at the boundaries only. For Equations 2.8 and 2.13, the divergence theorem yields:

∫
V

∇am(x)dv =

∫
∂V

am(x) · n(x) d∂V (2.32)

where the variable a is a general representation of fluid pressure or of a directional component of

the displacement vector. For Equations 2.7 and 2.12:

∫
V

bm(x)dv =

∫
∂V

(bm(x) · n(x))x d∂V (2.33)

where b is a general representation of boundary forces and specific flux. Equation 2.33 was pro-

posed by Pouya and Fouché (2009) as a rigorous form of calculating the homogenized unit flux,

in opposition to the initial formulation by Long et al. (1982), who calculated the flux only at one

boundary based on erroneous premises. It can be regarded as a general form of the multi-boundary

upscaling later proposed by Chen et al. (2015), since the former is valid for any domain shape and

the latter assumes a rectangular REV.

It is well acknowledged that the upscaled properties depend on the chosen boundary condi-

tions. As was demonstrated by Chalon et al. (2004), Pouya and Fouché (2009) and others, linear

Dirichlet boundary conditions provide an upper bound for the permeability and stiffness tensors,

while Neumann boundary conditions give a lower bound for these properties and periodic boundary

conditions provide intermediate values. These differences are explored in Chapter 4.

As the REV size increases, the differences between the various categories of boundary value

problems tend to zero. The REV size may be defined as the size for which this difference becomes

insignificant; but it is more common to select one type of boundary conditions that returns conser-

vative estimations. The vast majority of the works on the upscaling of the mechanical constitutive

tensor of fractured rocks uses stress boundary conditions. As for flow problems, the adequate
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choice between a lower bound and an upper bound of permeability depends on whether high flux

rates are alarming or desirable.

2.3 State-of-the-art review

This section reviews some relevant results, concepts, discussions and techniques in the literature

on the homogenization of fractured rocks and on the modeling and definition of their REV.

The first step to define a proper REV is to guarantee that the volume is statistically homogeneous

with respect to the geometrical patterns of the discontinuities. This is a challenge that starts on the

field, since the geological methods to characterize fracture sets always carry some uncertainty. The

selected geometrical REV can then be used as a reference volume to study scale effects on the

mechanical and hydraulic properties. The homogenization of such properties has been approached

with empirical (e.g Hoek and Brown, 1997) and analytical (e.g Duncan and Goodman, 1968; Oda,

1985) methods. Although these methods remain relevant, upscaling with numerical experiments

have been used more frequently for relying on physically consistent models where the geometry

and the properties of the fractures are controllable. For that reason, they are the focus of this review.

2.3.1 Geometrical REV

The definition of a geometrical REV for fractured rocks requires a decision on which parameters

will be used to quantify geometry. This is not a straightforward task, since fracture networks can

be a complex combination of sets that differ in their geological history and in the statistical charac-

terization of their various features, such as orientation, spacing and size. Another important choice

is the scale of study. Since rock masses contain discontinuities whose size might range from mi-

crometers to hundreds of meters or even kilometers, the geometrical REV is surely different if the

considered heterogeneities are micro-cracks or sub-seismic faults, for example. Hence, due to the

impossibility of considering all discontinuities, the REV should be representative of those that are

relevant to the selected scale. A consequence of that for numerical modeling is that fractures that

are bigger than the scale of the REV are not accounted for in the homogenization and should be

modeled explicitly in the macroscale.

A variety of geometrical measurements has been used to determine the REV size of rockmasses,
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such as: average length (e.g. Oda, 1988), average spacing (e.g. Xia et al., 2016), orientation (e.g.

Zhang et al., 2011) and fracture intensity (e.g. Liu et al., 2018). Although these quantities are

frequently analyzed separately, they can be accounted for altogether in the crack tensor proposed

by Oda (1982).

The crack tensor provides an overall measure that considers the density, the size and the ori-

entation of all the fractures in the REV. Zhang and Einstein (2000) removed the arbitrary non-

dimensionalization of Oda’s formulation and proposed the following equation for the crack tensor:

Fij =
1

V

nf∑
k=1

S(k)ni
(k)nj

(k) (2.34)

where V is the volume of the rock mass, S(k) is the area of the kth discontinuity, and n(k)
i and

n
(k)
j are the components of the normal vector of the kth discontinuity with respect to the directions

i, j = x, y, z. In this formulation, the first invariant I1 of Fij has a clear physical meaning because

it corresponds to the fracture intensity:

I1 = Fxx + Fyy + Fzz =
1

V

nf∑
k=1

L(k) (2.35)

whereL(k) is the length of the kth fracture. As for the second invariant, it is related to the orientation

of the fractures and can be used to evaluate the degree of anisotropy of the system (Kulatilake et al.,

1993).

An alternative formulation that takes aperture into account was derived by Oda (1985) to calcu-

late the permeability of fractured media based on the cubic law (Equation 2.68). The components

of this new tensor P are the components of F multiplied by the cube of the aperture w:

Pij =
1

V

nf∑
k=1

(w(k))3S(k)ni
(k)nj

(k) (2.36)

The selection of a proper size for the geometrical REV guarantees that the relevant heterogene-

ity types are well represented, but does not ensure that this volume is sufficient to represent the

average constitutive behavior. Although the pattern of the fractures influences the behaviour of the

rock masses, the geometrical REV may be different from the REVs for the equivalent hydraulic

and mechanical properties.
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2.3.2 Mechanical REV and upscaling of mechanical properties

The presence of fractures in rock masses is linked to many relevant mechanical responses, such

as high compressibility, anisotropy and brittle failure. Their impact on the equivalent constitu-

tive behaviour can be assessed with numerical experiments modeled with continuous or discrete

methods.

Numerical homogenization has been used to assess the elastic parameters, strength and failure

modes of fractured media. Pouya and Ghoreychi (2001) developed a method to obtain an oriented

strength criterion for highly fractured rocks using FEM experiments. Min and Jing (2003) and

Yang et al. (2014) estimated the equivalent elastic compliance tensor and its associated REV size

using the Distinct Element Method (DEM) and FEM, respectively. Wang et al. (2013) used a DEM

model to reproduce the mechanical behavior observed on their compression tests on granite, in-

cluding fracturing events measured via acoustic emissions. Rasmussen et al. (2018) extended the

Rigid Body Spring Network (RBSN) method to reproduce brittle failure and obtained accurate es-

timations for the elastic and strength properties of the Lac du Bonnet granite. JianPing et al. (2015)

also represented the progressive failure of fractured rocks by implementing a damage evolution

model in a FEM code; they studied the anisotropy and REV size for the equivalent strength. These

studies adopt methods that can be applied to the investigation of any rock mass, but their results

are specific to the tested rocks.

More general rules can be inferred from works that investigate the role of the geometry of

the fractures on the mechanical properties. Kulatilake and co-authors conducted numerical and

laboratory experiments on fractured samples and showed that the elastic parameters (Kulatilake

et al., 1993) and the compression strength (Kulatilake et al., 2001; Wu and Kulatilake, 2012) are

strongly related to the directional components Fii of the fracture tensor. Other authors also showed

that strength has a clear relationship with fracture intensity (e.g Harthong et al., 2012).

The observed responses can only be considered to reproduce the average behaviour of amaterial

if the experiment is conducted on a representative sample. Thus, the size of the mechanical REV

is naturally a topic of interest and an important outcome of the homogenization process. Some

researchers used one generation of the fractures network to define the REV as the volume for which

the equivalent mechanical properties stabilize (e.g. JianPing et al., 2015; Yang et al., 2014). In an
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attempt to account for the stochastic nature of the fractures, other authors tested multiple samples

to define the mechanical REV size based on the coefficient of variation (COV) of the properties

(e.g. Min and Jing, 2003; Esmaieli et al., 2010; Farahmand et al., 2018). Using a large number of

simulations, Loyola et al. (2021) proposed a general methodology to define the REV size based on

the statistical theory of samples. This methodology is detailed in Chapter 5.

In order to create general rules that avoid numerical simulations, there were also attempts to

define themechanical REV size as a function of geometrical features such as spacing (e.g. Chalhoub

and Pouya, 2008) and fracture length (Ni et al., 2017). The existing comparisons between the

mechanical and the geometrical REVs could indicate whether the latter can be consistently used as

a close, or at least conservative, estimation of the former. This question remains unclear since some

authors concluded that the geometrical REV is larger (Loyola et al., 2021), while others concluded

the opposite (e.g. Esmaieli et al., 2010; Ni et al., 2017).

2.3.3 Hydraulic REV and upscaling of permeability

Fractures can alter the seepage in porous media by acting either as conductive preferential paths or

by blocking the passage of fluids, if they contain an impermeable material. Since a basic concern

of any percolation problem is to make good estimations of the flow rates, there is a rich literature

on the calculation of equivalent permeabilities for heterogeneous rocks. Shahbazi et al. (2020)

present a comprehensive review of the existing empirical, analytical and numerical methods to

assess the permeability of fractured media. The numerical techniques consist in solving flow on

discrete fracture models and are generally called flow-based upscaling. An important distinction is

made with respect to the imposed boundary conditions; these can be local, when arbitrary boundary

conditions are assumed, or global, when the boundary conditions of the REV are taken from the

solution of the large-scale problem.

The upscaled intrinsic permeability of heterogeneousmedia has been assessed using linear pres-

sure (e.g. Min et al., 2004a), constant flux (e.g. Matthäi et al., 2007) and periodic boundary con-

ditions (e.g. Durlofsky, 1991). Since the calculated permeability depends on the chosen boundary

conditions, global upscaling techniques (e.g Chen et al., 2003) were developed to guarantee that the

boundary value problem at the REV scale represents the conditions in the large-scale simulation.
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For multiphase flow, it is often possible to build proper large-scale models with only the up-

scaled intrinsic permeability (Durlofsky, 2005). Sometimes, however, it is necessary to upscale

multiphase parameters like relative permeability and capillary pressure. Multiphase upscaling can

be realized using steady-state or dynamic techniques. In the former, time derivatives are ignored

and boundary value problems are solved for different constant values of capillary pressure or frac-

tional flow to obtain the equivalent relative permeability as a function of the averaged saturation

(Christie, 2001). In contrast, dynamic techniques do not work with the assumption of capillary or

gravity equilibrium (Barker and Dupouy, 1999); they require transient solutions to compute relative

permeability based on the saturation changes over time.

Flow-based upscaling has been used not only to transfer information for large scale simulations,

but also to investigate how the geometry of the fractures affects permeability. The idea of defining

permeability as a function of the crack tensor was introduced by Oda (1985) with an analytical ap-

proach. Based on that, Panda and Kulatilake (1999) used numerical experiments to show that there

is a strong relationship between directional permeability and the crack tensor for connected joints;

this relation was shown to be a linear function for blocks containing mainly persistent disconti-

nuities and a power function for blocks containing minor discontinuities. Kulatilake and Panda

(2000) performed more tests on blocks containing non-persistent discontinuities to confirm this

relationship and showed that, when rotating the test, the directional variations of the permeability

and the fracture tensor components are related.

As the permeability of a fracture depends strongly on its aperture, recent studies assessed the

effects of aperture and its spacial variability on the upscaled permeability of fractured rock masses.

De Dreuzy et al. (2012) observed a reduction of this permeability when the heterogeneity of the

aperture is considered, but concluded that at sufficiently large scales the fractured medium can be

reasonably described by a proper constant aperture. Lei et al. (2014) considered stress-dependent

apertures and observed significant discrepancies with models where the variability of aperture is

ignored; and Bisdom et al. (2016) considered the variability of aperture within a single fracture and

concluded that a unique averaged aperture can provide a similar upscaled permeability when most

fractures contribute to flow.

Geometry does not whatsoever control flow in fractured media alone. In fact, geometrical

aspects should ideally be analyzed within the geomechanical context, since the acting stresses may
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dictate the fluid paths and the evolution of permeability, specially for sets of non-persistent fractures

(Lei et al., 2017). For example, Bisdom et al. (2016) showed that, if the fractures are ideally

oriented with respect to the major principal stresses, upscaled permeability can be higher than

that of blocks containing higher fracture density and connectivity, but less favorable orientations.

Massart and Selvadurai (2012) assessed the permeability evolution in quasi-brittle materials under

shear; cohesive interfaces were employed at the level of the REV to simulate the evolution of

damage, which increases the local permeability. They observed that the damage is more important

on fractures that are parallel to the direction of the deviatoric loading and assessed the influence

of the confinement pressure on the evolution of permeability. Several other studies can be found

in the state-of-the-art review by Lei et al. (2017), which is focused on the geomechanical effects

on the flow in fractured media. The existing researches point the orientation of principal stresses,

dilation, crack propagation and the opening and closure of the fractures as factors that alter the fluid

pathways and promote localized flow channels. The equivalent permeability is thus dependent on

mechanical conditions; for instance, it decreases until a residual value when normal stress increases,

and it increases when deviatoric stresses are high enough to provoke shear dilation (Min et al.,

2004b).

Lastly, many works on upscaled permeability inevitably pass through the definition of the

REV’s size. This leads to a deeper question on whether the REV exists, which was addressed

in early publications and remains as a topic of discussion. Clauser (1992) compiled data for the

permeability of fractured rocks on three different scales: laboratory (1 to 10 centimeters), bore-

hole (1 to 100 meters) and regional (1 to 100 kilometers); they show that permeability increases

by orders of magnitude from laboratory to borehole scale, but this increase does not seem to hold

from borehole scale to regional scale. Based on this, Neuman (1994) proposed a scaling law for

permeability; he defends that statistical homogeneity for log permeability occurs intermittently

over intervals of the scale spectrum; this corroborates what was stated in section 1.2.1 about the

importance of defining a scale of study.

These investigations on the existence of a REV for the permeability of fracturedmedia advanced

with the development of numerical tools. Kulatilake and Panda (2000) affirm that an equivalent

continuum is difficult to obtain for blocks containing persistent discontinuities, but this task is pos-

sible for rocks consisting mainly of minor discontinuities; they obtained the REV for some blocks
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in this second category and concluded that its size varies from 10 to 30 times the first invariant of

the fracture tensor. Several other works could define a REV for permeability using deterministic

or statistical approaches (e.g. Min et al., 2004a; Wang et al., 2018). Most of the conclusions were

drawn under the assumption of constant aperture, but Baghbanan and Jing (2007) evaluated the

REV size and the existence of a permeability tensor when heterogeneous aperture is considered.

Their results show that, as the variance of aperture increases, the REV gets significantly larger and

it becomes harder to obtain a proper equivalent permeability tensor.

2.4 Equations of the problem and simulation methods

As previously seen, numerical upscaling requires the resolution of the physical problem at the

microscale, where it is assumed to be better known. The microscale problem of interest here is the

coupled hydro-mechanical simulation of elastic and elastoplastic fractured media. The process of

modeling the fractured REV involved decisions regarding the discretization schemes and coupling

techniques.

Zero-thickness interface elements were selected to introduce the strong discontinuities in the

problem and the Box method was selected for the discretization of the domain. These techniques

will be presented in the following items; also, this Section presents the equations that describe

the mass conservation of fluids and the equilibrium of momentum, as well as the resulting weak

formulations for the selected discretization scheme. A final item dedicated to hydro-mechanical

coupling presents the terms that couple the flux and mechanical models, reviews the existing cou-

pling schemes and presents the coupling algorithm adopted in this work.

2.4.1 Fracture representation: DFNs and Interface Elements

Discrete Fracture Networks (DFNs) are computational models that explicitly represent the geomet-

rical features of each fracture; they can be created from geological mapping, stochastic generation,

geomechanical simulation or a combination of these approaches (Lei et al., 2017). Fractures are

represented as straight lines or curves in 2D domains and as planar discs or polygons in 3D domains.

In the stochastic approach, the geometrical attributes of each fracture are treated as variables and are

randomly generated according to a best-fit probability distribution for data measured in the field.
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The location of the fractures is usually randomly attributed by using a Poisson process to generate

their barycenters. Lei et al. (2017) point out that these assumptions may lead to unrealistic models

that disregard patterns observed in the field such as clustering, curved and irregular fractures.

Discrete and continuous methods can incorporate DFNs to solve hydromechanical problems.

For continuous methods such as the Finite Element Method (FEM), the most common available

techniques to solve models with DFNs are the embedded discontinuity approaches, nodal enrich-

ment (which is the basis of the extended FEM) and zero-thickness interface elements, also called

lower-dimensional elements. The latter poses a challenge concerning remeshing when crack prop-

agation is considered, so it is preferred for fixed discontinuities (Dias-Da-Costa et al., 2010).

Interface elements were introduced by Goodman et al. (1968) to capture strong discontinuities

on mechanical elastic problems. Since then, new types of interface elements, as well as formu-

lations that apply them to hydromechanical analyses (e.g. Segura and Carol, 2008; Pouya, 2015)

were developed. Figure 2.7 illustrates triple-nodded interfaces, which are popular when fluid flow

is considered. In hydromechanical simulations, displacements are evaluated at the top and bottom

nodes, while fluid pressure is also evaluated at the middle nodes. This allows the consideration

of a pressure drop across the matrix-fracture interface as well as the longitudinal flow through the

fracture.

The interface elements are created by duplicating the nodes at edges that contain fractures. The

original and clone nodes have the same coordinates, so aperture is not explicitly represented, but is

a property of the element that can be updated as deformations occur.

Figure 2.7: Triple-nodded interface elements for 2D (left) and 3D (right) problems: displacements
(u) are computed at the extremities and pressure (pf ) is also evaluated at the middle nodes.
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2.4.2 Box Method

Helmig (1997) proposed the Box method, also called the Control Volume Finite Element Method,

to combine the advantages of the FEM and of the finite volume method (FVM) to model fluid

flow. From the FEM, it inherits the finite-element shape functions and the geometrical flexibility,

since it can be applied on unstructured grids; from the FVM, it inherits the property of local mass

conservation, which means that the mass of the fluids is conserved at the level of the elements.

The Box method is a type of vertex centered FVM, that is, the control volumes are built around

the nodes of the primary FEMmesh. There are different methodologies to define the dual mesh; the

control volume around a node can be defined by joining the cirscumcentres of the elements (Voronoi

diagrams), by connecting the barycenters of adjacent elements with straight lines (centroid-dual

grid) or by connecting the barycenters of the elements to the mid-points of their edges (median-

dual grid). Figure 2.8 illustrates the median-dual method, which is the most flexible approach, since

it supports different element shapes in two or three dimensions (Szymkiewicz, 2013). The control

volumes (CVs) are constituted of subcontrolvolumes (SCVs) and are delimited by faces. At the

faces, the pressure gradients are calculated using the finite element shape functions to compute the

flux that enters or leaves the SCV. The configuration of the grid is such that velocity is continuous

across the faces, while this is not true at the boundaries of the finite elements (Geiger et al., 2004);

for that reason, the box method is locally conservative, and as other formulations of this type it

is more accurate and more stable for the solution of flow at saturation fronts than the classical

Galerkin FEM (Helmig, 1997).

2.4.3 Equations of the problem and discretization

Considering a control volume Bi assigned to a node i, the primary variables a at a point P with

coordinates x are approximated from the nodal values â using the shape functions Nj as:

ã(x) =
∑
j∈ζi

Nj(x)âj (2.37)

where ã(x) is the approximation of a, ζi is the set of nodes that belong to the finite element ξ for

which P ∈ ξ. Similarly, the gradients of a at P are approximated by:
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Figure 2.8: Creation of a control volume (in grey) around a node i in the primarymesh. The hatched
area indicates a sub-control volume.

∇ã(x) =
∑
j∈ζi

âj∇Nj(x) (2.38)

The main procedures for discretization with the box method will be shown for the mass con-

servation equation of one fluid phase α:

∂Υα

∂t
+∇ · (ραvα)− qα = 0 (2.39)

where Υα denotes the mass of the fluid per unit volume of the porous medium, and ρα and vα are

the density and the velocity vector of the fluid and qα is a source term. In (2.39), the first term is

called the storage term, the second term is the flux term and the third term is the source term. The

storage term can be further defined by:

∂Υα

∂t
=
∂(ραSαϕ)

∂t
(2.40)

where Sα is the degree of saturation of phase α and ϕ is the porosity of the medium.

The weak formulation of (2.39) is obtained with a weighted residual method, which means that

the integral of (2.39) multiplied by a weighting functionW (x) must be equal to zero:

33



∫
Ω

(
∂Υα

∂t
+∇(ραvα)− qα

)
W (x)dΩ = 0 (2.41)

where Ω is the solution domain discretized in CVs. For the Box method, the weighting function

Wi(x) for a control volume Bi is:

Wi(x) =

1, if x ∈ Bi

0, if x /∈ Bi

(2.42)

After applying the Gauss theorem to the divergence operator in (2.41), we arrive at:

∫
Ω

∂Υα

∂t
W (x)dΩ−

∫
Ω

ραvα∇W (x)dΩ +

∫
Γ

ραn · vαW (x)dΓ−
∫
Ω

qαW (x)dΩ = 0 (2.43)

where Γ is the boundary of domain Ω and n is the unit vector normal to Γ. From (2.42) it can be

concluded that∇Wi(x) = 0; thus, (2.43) can be reduced to the final weak formulation:

∫
Ω

∂Υα

∂t
W (x)dΩ−

∫
Γ

ραn · vαW (x)dΓ−
∫
Ω

qαW (x)dΩ = 0 (2.44)

It can be observed in (2.44) that the flux is calculated at the boundaries of the control volume,

i.e., the faces. Thus, during a certain time interval, the net volume of fluid that enters the CV

through the faces must be balanced by the variation of fluid stored within the CV and an eventual

source of flux. The integration of the flux term over a control volume Bi associated to node i is

given by:

∫
ΓBi

ραn · vαW (x)dΓB1 =
∑
𝟋∈Bi

|𝟋|ρα(fc)n𝟋 · ṽα
(fc) (2.45)

where 𝟋 denotes a face, n𝟋 is the unit outer normal to this face, and fc denotes the face’s mid-

point, where velocity and unit weight are evaluated. And the integral of the storage term over Bi

is approximated by:

∫
Ω

∂Υα

∂t
W (x)dΩ =

∑
V ∈Bi

|V |∂Υα
(V )

∂t
=
∑
V ∈Bi

|V | ∂
∂t

(ϕ(V )Sα
(i)ρα

(i)) (2.46)
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where V is a sub-control volume, ϕ(V ) is the porosity of V and Sα
(i) and ρα(i) are the fluid’s satu-

ration and unit weight evaluated at node i.

This concludes the spatial discretization of 2.39 with the Box method, but the problem also

requires discretization in time. Using a finite difference scheme, the solution of Equation 2.39 for

a given control volume in a time step of size∆t that starts at time t assumes the following general

form:

Υα
t+∆t −Υα

t

∆t
= F (at+θ∆t) = F (θat+∆t + (1− θ)at) with 0 ≤ θ ≤ 1 (2.47)

where the source and flux terms are generalized as a function F of the variables a, which are

evaluated at point t + θ∆t of the time step by interpolating between at and at+∆t. When θ = 0,

the temporal solution scheme is called explicit and the flux is evaluated using the solution of the

previous time step. When θ = 1, the scheme is fully implicit and the variables are evaluated at the

end of the time step. Explicit schemes have the advantage of not requiring an iterative solution,

but they are stable only until a certain time step size; on the other side, fully implicit schemes

are unconditionally stable, but require an iterative linearization method (Zienkiewicz and Taylor,

2000). Alternatively, one can use partially implicit schemes, for which 0 < θ < 1. While this type

of scheme has been shown to provide more accurate solutions than fully implicit solutions (Blunt

and Rubin, 1992; Zienkiewicz and Taylor, 2000), they also allow for bigger time steps than the

explicit scheme.

2.4.3.1 Formulation for fractures and coupling with the matrix domain

The Box method has been adapted to media containing fractures represented by lower-dimensional

elements. Reichenberger et al. (2006) presented a Box formulation for two-phase flow in fractured

media. Their method captures the possible discontinuity of the saturation of the non-wetting phase

at the matrix-fracture interface, and thus accounts for the transfer of fluids caused by capillary

non-equilibrium. For the pressure of the wetting phase, they make the common assumption of

continuity, which makes their method invalid for blocking fractures, as was demonstrated in the

benchmark applications proposed by Flemisch et al. (2018). This is a good assumption for a wide
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range of problems that deal with fractures that are more conductive than the porous medium; but, if

the consideration of blocking fractures is needed, a simple solution is to use two-nodded or three-

nodded interface elements, which can capture transverse pressure drops.

The mass conservation equation for the fractures is the following:

∂(Υfαw)

∂t
+
∂(ραvlαw)

∂l
− qfα = 0 (2.48)

where l is a local coordinate that is longitudinal to the fracture,Υfα is the fluid mass per unit volume

in the fracture, vlα is the longitudinal component of the velocity of the phase α, qfα is the source

term and w is the fracture’s effective aperture. The storage term can be defined as:

∂(Υfαw)

∂t
=
∂(ραSαw)

∂t
(2.49)

The spatial discretization of the flux term in 2.48 results in 2.45, with |𝟋| = wZ, being Z

the out-of-plane width of the face, usually considered equal to unity in bi-dimensional problems.

Note in Figure 2.9 that the normal to a face 𝟋f of the lower-dimensional element is colinear to the

fracture; thus, the dot product n · vα in 2.45 returns vl.

The spatial discretization of the storage term results in:

∫
Ωf

∂(Υfαw)

∂t
W (x)dΩf =

∑
Vf∈Ci

|Vf |
∂Υfα

(Vf )

∂t
=
∑
Vf∈Ci

|Vf |
∂

∂t
(w(Vf )Sα

(i)ρα
(i)) (2.50)

where Ωf is the domain of lower-dimensional elements, Ci is a lower-dimensional control volume,

Vf is a sub-control volume with surface area |Vf | = ZL, where L is the length of the lower-

dimensional element and Z the out-of-plane width.

The introduction of a triple nodded element in the Box method is illustrated in Figure 2.9. The

edges of the bulk elements that coincide with a fracture have their nodes duplicated and become

faces where an exchange flux qc is evaluated; as for the fracture, it is represented by a lower-

dimensional element that contains the middle nodes illustrated in Figure 2.7. The flux qc accounts

for the fluid exchanges between the porous matrix and the fractures. Assuming Darcian flow, the

flux from a face 𝟋 of a bulk control volume Bi to a sub-control volume Vf of the middle lower-
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dimensional element is given by:

qc = |𝟋|ρα(fc)nnn𝟋 · ṽ(fc)
α = |𝟋|ρα

kt
µα

nnn𝟋(∇p̃(fc) − ρα
(fc)ggg) (2.51)

where ggg is the gravity vector, kt is the fractures transversal permeability, µα is the fluid’s viscosity

and the pressure gradient∇p is given by:

∇p̃(fc) =
p̃
(vc)
f − p̃

(fc)
m

0.5w(fc)
nnn𝟋 (2.52)

where fc and vc denote the mid-points of 𝟋 and Vf , w is the facet’s aperture, p is the pressure

and the subscripts m and f refer to the matrix and the facet domains, respectively. For the matrix

domain, qc corresponds to a flux term, since it is evaluated at the CVs faces. For the facet domain,

it is a source term, since it is integrated over a SCV.

Figure 2.9: Finite volume discretization for adjacent elements with no fractures (left) and with a
fracture between them (right). The fracture is represented by a lower-dimensional middle element
(facet) and bulk nodes are duplicated to achieve the form of a three-noded interface element.

2.4.3.2 Formulation of the mechanical problem

Box method can also be applied to discretize the equilibrium equation, given by:

∇ · σ + b = 0 (2.53)
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where σ is the total stress tensor and b is the body force vector. The procedure detailed in this

section leads to the following weak formulation for the Box method:

∫
Γ

n · σW (x)dΓ +

∫
Ω

bW (x)dΩ = 0 (2.54)

Thus, similarly to the velocity in (2.44), the stresses are evaluated at the faces and then inte-

grated to compute the corresponding forces. For a control volume Bi, (2.54) leads to:

∑
F∈Bi

|𝟋|n𝟋 · σ +
∑
V ∈Bi

|V |b = 0 (2.55)

When interface elements are introduced to solve problems in fractured media, a configuration

similar to the one illustrated in Figure 2.9 is set, with the exception that the lower-dimensional

middle element is not used. At the faces that coincide with a fracture, there is an acting traction tc

given by:

tc = n · σ′
c
(fc) (2.56)

If the fractures are elastic, the effective stresses σ′
c
(fc) are evaluated at the face’s mid-point fc

and depend on the displacement discontinuities in the following manner:

σc
(fc) =

σn
σt

 =

Kn Knt

Knt Kt

[[un]]

[[ut]]

 (2.57)

where σn is the normal stress, σt is the shear stress, [[un]] and [[ut]] are the normal and shear displace-

ment jumps across the interface,Kn andKt are the normal and shear stiffnesses of the fracture and

Knt accounts for the fracture’s dilation. Considering a face 𝟋1 sharing the evaluated fracture with

a face 𝟋2 that belongs to a different bulk element, the displacement jump vector is given by:

[[u]] = u(fc1) − u(fc2) (2.58)

where fc1 and fc1 denote the locations of the mid-points of 𝟋1 and 𝟋2, respectively. The dis-

placements are interpolated at these locations using their nodal values and the finite element shape

functions (Equation 2.38). Note that the Equation 2.57 provides a general form of coupling two bulk
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elements when there is a strong discontinuity between them. The specificity of the Box Method is

the location of the evaluation of the displacement jumps and stresses.

2.4.4 Hydromechanical coupling

The resulting pressure fields from fluid percolation affect the acting stresses and strains on the

domain and vice-versa. To account for this inter-dependency, hydromechanical coupling can be

introduced to the fluid flow and equilibrium problems by adding coupling terms to Equations

(2.39),(2.48) and (2.53).

In the equilibrium equation (2.53), the pressure fields are introduced by means of the effective

stress principle, which, considering tension to be positive and compression to be negative, is given

by:

σ = σ′ − bpδ = C : ε− bpδ (2.59)

for the matrix domain, where σ is the total stress tensor, σ′ is the effective stress tensor, p is the

pore pressure,C is the stiffness constitutive tensor, ε is the matrix strain tensor and b is the matrix

Biot’s coefficient, defined by:

b = 1− Kdr

Ks

(2.60)

whereKdr is the material’s bulk drained modulus andKs is the bulk modulus of the solid grains.

For the fracture domain, the effective stress principle can be written as:

σ = σ′ − bfpm = Cf .[[u]]− bfpm (2.61)

where m = (1 0), Cf is the fracture constitutive tensor defined in (2.57) and bf is the fractures

Biot’s coefficient. The second terms in (2.59) and (2.61) are the coupling terms of the equilbrium

equation.

The mechanical effects in the fluid mass conservation manifest in the storage terms (2.40) and

(2.49). For the matrix, the variation in porosity dϕ is a function of the volumetric strain variation

dεv:
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dϕ = bdεv +
1

M
dp (2.62)

The Biot’s modulus M defines the ratio of the fluid volume variations to pore pressure; it

considers the compressibility of the fluid and of the solid grains:

1

M
=

ϕ

Kf

+
b− ϕ0

Ks

(2.63)

where ϕ is the porosity and Kf is the fluid’s bulk modulus.

The first term in (2.62) is related to the deformation of the porous matrix and thus it depends

directly on the displacements of the domain, since:

εv = tr(ε) = tr(
1

2
(∇⊗ u+ (∇⊗ u)T )) (2.64)

For the fractures domain, the aperture variation dw to be considered in (2.49) can similarly be

defined as:

dw = bfd[[un]] +
w

Mf

dpf (2.65)

where bf andMf are the Biot’s coefficient and module for the fractures, dpf is the fracture pressure

variation and d[[un]] is the variation in the normal displacement jump [[un]] across the discontinuity,

which is a component of the vector [[u]]. The Biot’s coefficient and Biot’s modulus of a disconti-

nuity depend on the roughness of the surface, the stress state and the filling material, but for clean

discontinuities bf can be assumed to be equal to unity and Mf equal to the inverse of the fluid

compressibility multiplied by the aperture (Segura and Carol, 2008).

The volumetric strains and normal displacement jumps can also be defined in terms of volu-

metric stress σv and pore pressure p with the following relationships:

Kdrεv = σv + bp (2.66)

Kn[[un]] = σv + bfpf (2.67)
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where the subscript f indicates the fractures domain,Kdr is the drained bulk modulus andKn is the

fractures normal stiffness. A second type of dependency of the fluid flow on the mechanics is usu-

ally introduced in (2.48) by defining the matrix intrinsic permeability as a function of the porosity

(for example, the well known Kozeny-Karman equation) and the fractures intrinsic permeability

kf as a function of aperture. This latter function is usually the cubic law:

kf =
w2

12
(2.68)

2.4.4.1 Coupling strategies

The coupling between the hydraulical and mechanical problems on fractured media is fully estab-

lished by relationships (2.59), (2.61), (2.62), (2.64) and (2.65). These terms introduce displace-

ments to (2.39) and (2.48) and pore pressures to (2.53). The resulting system of equations can be

solved numerically with different coupling strategies, which can be categorized as fully coupled or

partially coupled. Figure 2.10 presents the main existing coupling schemes using the nomenclature

that is the most common in reservoir simulation.

Figure 2.10: Coupling strategies used in reservoir simulation.

In a fully coupled approach, the flow and mechanical equations are solved as a monolithic

system, while partially coupled approaches consist in solving them separately and sequentially.

Among the partial coupling schemes, a first differentiation can be made regarding which equation

is solved first within a time step. The two main schemes for which geomechanics is solved first

are the drained split and undrained split. The strategies where flux is solved first can be generally

41



defined as fixed-strain split and fixed-stress split. The fixed-strain split and drained split are types of

one-coupling, which means that only one of the equations is influenced by the results of the other.

As for the undrained split and the fixed-stress split, they are types of two-way coupling, where

both the mechanical and the flow equations receive information from one another. The focus of

this review are the strategies where flux is solved first for twomain reasons. Firstly, because among

the one-way coupling schemes, the fixed-strain split is the one to be usually employed in reservoir

simulation. And secondly, because the fixed-stress split is more stable and converges faster that the

other coupling schemes(Kim et al., 2011). From now on, the terms one-way coupling and two-way

coupling will be used as synonyms for the fixed-strain and the fixed-stress splits, respectively.

In a one-way coupling scheme, the pore pressures obtained from the flux model are introduced

into the stress equations, but mechanical effects due to the volumetric strains are not considered

in the flux model. The flow chart for one-way coupling is described in Figure 2.11: for a given

time step, the flow equation is solved first (assuming a fixed solid skeleton); next, the resulting

pore pressures are used to compute stress variations; then, the equilibrium problem is solved and

the solution proceeds to the next time step.

In a two-way coupling or fixed-stress split scheme, both the flow and the geomechanical models

transmit information to each other, as showed in the flow chart of Figure 2.11. The time step starts

by solving the flow equation with consideration of the strains obtained from the previous solution of

the mechanical problem. These strains are used to compute the storage terms and permeabilities.

Then, the resulting pore pressures are used to solve the equilibrium equation. If this process is

done repeatedly within a time-step until a convergence criterion for the displacements and forces

is reached, the process is called an implicit two-way coupling. If each equation is solved only once

for each time step, the two-way coupling is called explicit.

Several studies compare the existing coupling schemes for features such as stability, conver-

gence properties, accuracy and computation time (e.g. Kim et al., 2011; Dean et al., 2013; Preisig

and Prevost, 2011; Beck et al., 2020). The full-coupling is unconditionally stable and highly accu-

rate (Kim et al., 2011); however, its implementation is more complex, since the need for an unified

simulator for flow and mechanics compromises the modularity of the code and the derivation of

the coupling terms for complex models can be cumbersome. Also, full coupling may be associated

to spurious oscillations when an equal-order approximation is used for the pressures and displace-
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Figure 2.11: Algorithms of the one-way, explicit two-way and implicit two-way coupling schemes.

ments, which requires solutions like the use of different discretization schemes for the coupled

problems (Beck et al., 2020).

Kim et al. (2011) made a comprehensive comparative study of the partial coupling approaches.

Using examples of fluid injection and production in elastic media, they showed that the two-way

coupling is unconditionally stable, converges with fewer iterations than other schemes and is ac-

curate. On the other side, one-way coupling is only conditionally stable and the literature on the

subject shows that it may fail in providing accurate results for all steps of the simulation. For exam-

ple, Preisig and Prevost (2011) showed that the one-way coupling was not capable of reproducing

the analytic solution of the Mandel problem (Mandel, 1953); and, in the study case of CO2 injection

in a reservoir, the one-way coupling underestimated the lateral extent of the uplift dome by up to

30 %, when compared to a full coupling. Also using the full coupling as a reference solution, Beck

et al. (2020) simulated the injection of CO2 in a heterogeneous faulted reservoir using implicit and

explicit two-way coupling. The explicit coupling underestimated the pressures close to the injec-

tion point and predicted the arrival of the gas to the fault 50 days later than the full-coupling. On

the other hand, the implicit scheme was shown to converge to the fully coupled solution after a few

iterations.

When it comes to computation time, it is not obvious which coupling strategy is more efficient.

It is common to think of the full coupling as more demanding, since it requires the solution of
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a larger system and the time required by conventional solvers is known to be proportional to the

square of the system’s size (Beck et al., 2020). However, as the full coupling is unconditionally

stable, it can be used with bigger time steps than one-way coupling and explicit schemes to provide

a similar or better accuracy. As for the implicit two-way coupling, it may be slower than fully

coupled solutions when convergence is only reached after a high number of iterations, which can

happen if the coupling between the problems is very strong (Segura and Carol, 2008).

Since the analysis of efficiency also takes accuracy into consideration, one-way coupling should

be avoided or used with caution. As for the full coupling and two-way coupling, on the other hand,

they have similar properties of accuracy and stability, and there is no general rule to define which

one is faster, since this depends on the problem. So, the coupling strategies used in this work were

selected according to what is more convenient in terms of code implementation and simplicity

of the solution algorithms. For the coupled problem at the REV scale, the two-way coupling or

fixed-stress split was selected; the algorithm is presented below. Regarding the macroscale, a full-

coupling is adopted; the solution of this monolithic system is described in Chapter 7.

2.4.4.2 Fixed-stress split

Using Equations 2.46, 2.47, 2.50, and considering one-phase flow and a fully implicit time dis-

cretization, that is, θ = 1, the general discrete forms of the mass conservation equations for a time

step of size ∆t that starts at time t and finishes at time t+ 1 are:

ϕt+1ρt+1 − ϕtρt

∆t
= F (pt+1) (2.69)

for the matrix domain, and:

wt+1ρt+1 − wtρt

∆t
= F (pf

t+1) (2.70)

for the fracture domain.

The functions F are a general representation of the flux and source terms combined. The

hydro-mechanical coupling may appear in these terms if the permeabilities and/or fluid densities

are solution-dependent. The subscript f denotes the fracture domain, and although these equations

are presented separately, they are solved altogether and coupled by the exchange flux in (2.51).
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The coupling terms (2.62) and (2.65) are used to update the porosity and aperture variations at

a new iteration k:

dϕk,t =
dpk

M
+ bdεk =

pk,t − pk−1,t

M
+ b(εk,t − εk−1,t) (2.71)

dwk,t =
dpf

k

Mf

+ bfdun
k =

pf
k,t − pf

k−1,t

Mf

+ bf (u
k,t
n − uk−1,t

n ) (2.72)

In a fixed-stress split, the coupled problems are solved sequentially and, since the flux is solved

first, εk,t and uk,tn can not be obtained from the solution of the mechanical problem. Thus, dεk and

dun
k are replaced by the predictor estimators d̂ε

k
and ˆdun

k
. Using Equations 2.66 and 2.67, these

estimators are related to changes in volumetric stress (dσv) and pore-pressures (dp) by:

Kdrd̂ε
k
= σk

v − σk−1
v + b(pk − pk−1) (2.73)

Kn
ˆdun

k
= σk

v − σk−1
v + bf (pf

k − pf
k−1) (2.74)

The fixed-stress split, as the name suggests, consists in enforcing volumetric total stress con-

servation to solve the flux problem, that is, σk
v − σk−1

v = 0. Thus, estimators d̂ε
k
and ˆdun

k
read:

d̂ε
k
=
b(pk − pk−1)

Kdr

(2.75)

ˆdun
k
=
bf (pf

k − pf
k−1)

Kn

(2.76)

and Equations 2.71 and 2.72 become:

ˆdϕk,t = (
1

M
+

b2

Kdr

)(pk,t − pk−1,t) (2.77)

ˆdwk,t = (
1

Mf

+
bf

2

Kn

)(pf
k,t − pf

k−1,t) (2.78)

The adequate bulk modulus Kdr depends on the problem and will determine how efficient is
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the convergence of the solution (Kim et al., 2011). For one-dimensional poroelastic problems, the

optimal choice is the uniaxial drained bulk modulusKdr
(1D):

Kdr
(1D) =

E(1− ν)

(1 + ν)(1− 2ν)
(2.79)

where E is the Young’s modulus and ν is the Poisson’s ratio. For two-dimensional plane strain

problems, the most adequate choice is the bulk drained modulusKdr
(2D):

Kdr
(2D) =

Kdr
(1D)

2(1− ν)
(2.80)

In elasto-plasticity, if the material is yielded, the tangent modulusKdr
(ep) is evaluated from the

elastoplastic constitutive matrixDep (Kim et al., 2011):

1

Kdr
(ep)

=
1

4
1TDep1 (2.81)

where, for plane-strain conditions,Dep has dimensions 3 x 3 and 1 = {1 1 0}. The iterative nature

of the fixed-stress split comes from the difference in the calculated volumetric strains and apertures

between the coupled problems: in the lack of the updated displacements vector, the flowmodel uses

the predictor estimators, which are then corrected by the solution of the geomechanical model. The

fixed-stress split coupling algorithm for a time step t is the following:

1. Time step initialization: For the first iteration k = 1, set the previous pressures pk−1,t and

displacements uk−1,t as those from the last time step:

pk−1,t = pt−1, k = 1 (2.82)

uk−1,t = ut−1, k = 1 (2.83)

2. Solve the flow equations by using estimators in (2.77) and (2.78) to update the porosities

ϕflow
k,t and apertures wflow

k,t as:

ϕflow
k,t = ϕflow

k−1,t + ˆdϕk,t (2.84)
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wflow
k,t = wflow

k−1,t + ˆdwk,t (2.85)

3. Using the resultant pressures pk,t in the computation of stresses with (2.59) and (2.61), solve

the mechanical problem for the displacements uk,t.

4. Update the volumetric strains εk,t and displacement jumps [[u]]k,t.

5. Update the porosities ϕmech
k,t and apertures wmech

k,t for the geomechanics model:

ϕmech
k,t = ϕt−1 +

1

M
(pk,t − pt−1) + b(εk,t − εt−1) (2.86)

wmech
k,t =

1

Mf

(pf
k,t − pf

k−1,t) + bf (un
k,t − un

k−1,t) (2.87)

6. Set ϕflow
k,t = ϕmech

k,t. Given a threshold εtol, proceed to the next time step if:

∥pk,t − pk−1,t∥
∥pk,t∥

≤ εtol (2.88)

and

∥uk,t − uk−1,t∥
∥uk,t∥

≤ εtol (2.89)

Otherwise, begin a new iteration k + 1, starting from step 2 .

As the convergence of the displacements and pressures vectors is approached, the differences

between the calculated porosities and apertures for the flow and mechanics models vanish to zero

and should approach the results of a fully coupled solution.

2.5 Conclusions of the chapter

The REV is a sample that must be large enough to well represent the heterogeneities and the average

constitutive behavior of a material; at the same time, it must be small enough to respect the principle
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of separation of scales. The homogenization of the REV is based on the volume average of the

problem’s variables and on the respect of energy consistency conditions.

The theoretical review of this chapter focused on the geometrical and hydro-mechanical REVs

of fractured media. A useful quantity to verify if the geometry of the fracture network is properly

represented is the crack tensor, which is known to be related to the constitutive behavior of fractured

rock masses; as for the hydro-mechanical properties, they can be assessed by means of numerical

experiments, which can be performed using different kinds of boundary conditions.

In this work, the numerical modeling of the REV aims the solution of two equations: the equi-

librium of momentum and the mass conservation of the fluid. The Box method was selected to

solve these problems, combined with lower-dimensional interface elements to discretize the frac-

tures. The fixed-stress split was selected to promote the coupling between both problems; this is a

sequential coupling technique known to be accurate and stable, while it alsomaintains the flexibility

and easy maintenance of codes.

The computational tool used to perform the simulations is an open-source code to which major

additions were made. The code and its validations are presented in the next chapter.
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Chapter 3

Computational tool: DuMuX 3

DuMuX (Koch et al., 2020) is a free and open-source simulator for flow and transport in porous

media. It is based on the Distributed Unified Numerics Environment (DUNE), a toolbox for solving

partial differential equations with grid-based methods. Both codes are written in C++. DuMuX

possesses a modular design that takes advantage of well-known principles for objected-oriented

design, modern C++ features and generic programming techniques.

Thanks to that, the code is very flexible and easily extensible. The problems are built by com-

bining the existing modules and the objects are instantiated at compile-time based on tags defined

by the user. For example, a mandatory definition is the spatial discretization method, which can

be a variety of cell-centered schemes and the Box, if the tag BoxModel is used. As a consequence

of this choice, the classes used for the creation of the finite volume (FV) mesh, the calculation

of residuals and other procedures that depend on the discretization scheme are specialized for the

chosen method.

This chapter presents the main features of DuMuX , with focus on solutions with the Box

method. The Box was chosen for its mesh flexibility and for being the only technique available in

DuMuX that can be used to solve mechanical problems. If the Box is used, the original code allows

for the solution of stress-strain problems on domains constituted of elastic materials. To attain the

objectives of this thesis, five major additions were made to the code: the inclusion (i) of methods

to handle elastoplastic analyses, (ii) of strong discontinuities to geomechanical problems, (iii) of

new coupling manager classes that handle the hydro-mechanical coupling in domains with inter-

faces, (iv) of new classes to impose periodic boundary conditions, and (v) an entire new module
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for multiscale simulations.

3.1 Modules

The originalmodules inDuMuX handle all the steps for the solution ofmulti-phase, multi-component

and multi-domain flow and geomechanics, among others. The main dependencies on DUNE are

related to the primary mesh generation, the elements shape functions and the linear algebra opera-

tions. The most relevant modules are described below:

• Module IO: contains the classes that manage the instantiating of grid entities (nodes, ele-

ments and boundaries) and handles the creation of output files.

• Module Common: contains geometry-related methods and the definition of properties that are

common to all kind of problems.

• Module Discretization: contains the classes where the FV mesh is created according to

the selected discretization method. Also, this module manages the grid variables.

• Module Material: contains the classes that handle the spatial distribution and definition of

material properties.

• Module Flux: contains classes used to calculate flux or stress according to a number of

constitutive laws and the chosen discretization method. The sub-module Box includes a class

that computes flux with Darcy’s law (BoxDarcysLaw), a class that computess stress with the

Hooke’s law (HookesLaw) and a class that computes effective stresses (EffectiveStressLaw).

• Module Material Porous Medium Flow: contains classes that handle the computation of

volume residuals for a given CV. Also, it contains the base class for flow problems.

• Module Geomechanics: contains the classes that handle the computation of force residuals

for a given CV. Also, it contains the base class for geomechanical problems.

• Module Linear: handles the solution of linear systems.

• Module Non Linear: handles the solution of non-linear systems with Newton’s method.
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• Module MultiDomain: handles the coupling of multiple domains. The sub-module Facet is

of interest to this thesis. Facet is the designation employed for lower-dimensional elements

that occur at the edges of bulk elements. This sub-module contains classes that are in charge

of the mapping and coupling of the facets and their adjacent bulk elements. Also, this module

handles the assembly of the system for multi-domain problems. For fracturedmedia, the term

multi-domain problem refers to the solution of two overlapping and coupled domains: the

porous matrix domain, with elements of dimension d and the fractures domain, formed by

elements of dimension d− 1 called facets.

3.1.1 Design of a Multi-Domain Flux Problem

The steps to build a multi-domain flow simulation in DuMuX are illustrated in Figure 3.1. This

workflow is also applicable to the definition of problems containing only one domain if the steps

6 and 9 are removed; those are specific to multi-domain problems.

The definition of the model starts by setting a combination of tags for each sub-domain. Be-

sides the tags for the definition of the spatial discretization method, DuMuX contains tags to define

the type of flow, for example one-phase or two-phase. Several properties are automatically defined

from these tags. The steps 2 and 3 require the user to create classes to handle the spatial parameters,

where constitutive models are defined, and to create classes to configure the problem, where ini-

tial values and boundary conditions are set. DuMuX allows for boundary conditions and material

properties to be solution-dependent.

The primary mesh (step 4) is created by DUNE dependencies and the FV grid is created by

defining control volumes as illustrated in Figure 2.8, if the Box Method is chosen. A particularity

of the multi-domain problems is the initiation of the coupling mapper (step 6), which is responsible

for tracking the correspondences between bulk elements and their adjacent facets and for storing

these information. Also, this class is responsible for duplicating the nodes at the edges of bulk

elements that coincide with facets. With this procedure, the configuration of interfaces that contain

facets is similar to the one in Figure 2.7, where the facets contain themiddle nodes of a triple-nodded

interface element.

The process used by DuMuX to duplicate nodes is illustrated in Figure 3.2. If the fracture does
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Figure 3.1: General workflow for the definiton of a flow simulation in DuMuX . The steps in yellow
are specific to multi-domain problems.

not terminate at a boundary of the domain, no new node is created at the tip (a and b), but only at

the intermediary nodes; otherwise the node at the tip is duplicated (c). The changes in the elements

connectivities are illustrated for a node that: (a) is intercepted by one fracture, (b) is intercepted by

several fractures and (c) is at the boundary of the domain. This separation between two adjacent

elements prevents pressure from being continuous across the edge they used to share. Since the

configuration of the CVs is different when two bulk elements have a facet between them (Figure

2.9), they are decoupled from each other and instead are coupled to the facet between them.

The so-called grid variables include the solution of the problem, the gradient of the shape func-

tions and other variables that are associated to the grid entities. After their initiation (step 8), multi-

domain problems require the Coupling Manager to be set (step 9). The Coupling Manager couples

the grid variables of the facets and the corresponding bulk elements. At an edge that contains a

fracture, the mid-point of a bulk face corresponds to the mid-point of a sub-control volume of the

adjacent facet (Figure 2.9). The variables at these points are associated by the coupling manager to

calculate, using Equation 2.51, the flux qc (red vector in Figure 2.9) that couples both domains.

The assembly of the system (step 10) includes the assembly of the residual vector and of the

Jacobian matrix using implicit or explicit schemes. The residuals are calculated element by element
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Figure 3.2: Duplication of nodes and change of connectivity for surrounding bulk elements in three
possible scenarios: a) one fracture b) several intercepting fractures c) fracture at the boundary of
the domain (Loyola et al., 2021).

and the Jacobian for each subdomain is computed with a classical perturbation method by using

forward, backward or central finite differences. The final system for flowmodels in fracturedmedia

has size nf + nm, where nf is the number of degrees of freedom in the facet domain and nm is the

number of degrees of freedom in the matrix domain.

The system is solved using the Newton-Raphson method (step 11) and the results can be written

in an output file in VTK format (step 12).

3.1.2 Extensions to the original code

The extensionsmade to the original code of version 3.2 of DuMuX incorporate two new possibilities

for geomechanical models: elastoplastic analyses and interface elements.

Elastoplastic analyses:

To include elastoplastic behaviour in the analyses, the following additions are required: a return

function to correct the elastic stress trials; the storage of the previous stress state for each integration

point; functions to calculate stress invariants; a class for plastic parameters and plastic constitutive
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models.

For that, the new classes described in Figure 3.3 were created. Some of them inherit from

existing DuMuX classes. The new base classes FVSpatialParamsPlastic and FVSpatialPa

ramsPoroPlastic inherit from the spatial parameters classes for elastic and poroelastic models.

Additionally to the functions that return elastic parameters and models, there are new functions that

return the yield function, the flow function and the normal vectors to the yield and flow function sur-

faces. Also, a perfectly plastic isotropic Mohr-Coulomb model was added as class MohrCoulomb.

Both associated and non-associated plastic flow are supported. For simplicity, this model will be

called only Mohr-Coulomb from now on; it is the only plastic model added to DuMuX so far.

The plasticity-related functions depend on the current stress state. DuMuX does not store

stresses from a previous step to calculate the next one. This functionality was added by creat-

ing the class StressHistoryCache, which inherits from StressVariablesCache, a class that

manages grid variables in elastic problems. The class StressHistoryCache has a function that

allows the stress vector to be stored for each integration point. This update must be made by the

user at the end of each time step. Also, three new classes were added to calculate stress invariants.

Finally, the template class PlasticCorrection was added to calculate the elastic stress trials

using the existing classes for elastic problems and return them to the yield function, if necessary, us-

ing the new class ReturnAlgorithm. This latter is a template class containing two specializations;

one for the Mohr-Coulomb model, where the two-vector return algorithm proposed by Crisfield

(1987) is implemented, and the other for plastic models that do not contain singularities, which is

empty. So, the current code does not support other models than Mohr-Coulomb, but can be easily

extended to do so. Two new tags that are associated with the new classes were added for elasto-

plastic problems: Plastic, which can be used for purely mechanical problems, and Poroplastic,

which incorporates pore pressures in the calculations of stresses using the effective stress principle.

The modifications described here essentially change the way of calculating force residuals, which

are based on corrected stresses when plasticity-related tags are used. Thus, they mainly affect the

step 10 of the workflow in Figure 3.1.

Interface elements for mechanical analyses:

The Multidomain Module does not support mechanical problems. Also, the original coupling
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Figure 3.3: Extensions made to the original code DuMuX to account for elastoplastic analyses.

manager can not be used in mechanical problems as it is because the intermediary facet elements

are not used to compute displacements (Figure 2.7). Thus, the coupling manager should couple

two bulk elements that share a facet with each other. Also, the system for a mechanical problem

containing interfaces is only the size of the bulk problem, since there are no variables at the facets.

The new implementations that address this issues are illustrated in Figure 3.4.

The first major change is the creation of a new couplingmanager class called InterfaceBulkCo

uplingManager, which couples the variables of two bulk elements that share a facet. These cou-

pling information is used in the new class BoxFacetCouplingElasticLaw to compute the stresses

σc using Equations 2.56–2.58 for faces that coincide with facets.

Also, a new class called GeomechanicsMultiDomainTraits was created to define the size of

the system for geomechanical multi-domain models as equal to the number of degrees of freedom

in the bulk domain only. As a result, system assembly is also different for mechanical multi-domain

problems. So, the classes called GeomechanicsMultiDomainAssembler and InterfaceBulkBox

LocalAssembler were created to assemble the bulk domain system using the coupling manager.

Finally, the tags GeomechanicsBoxFacetCouplingModel and PoromechanicsBoxFacetCoupli

ngModel were created for geomechanical problems with interfaces.

The class HydroMechCouplingManager (Figure 3.4) promotes the coupling between indepen-

dent flux and mechanical problems in multi-domains containing interface elements. It is respon-

sible for transmitting pore pressures at the faces to the mechanical problem and passing updated
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Figure 3.4: Extensions made to the original code of DuMuX to add interface elements to geome-
chanical problems

porosities and fracture apertures to the flux problem. This class employs the fixed-stress split

method described in Section 2.4.4.2.

A final requirement of the microscale problems to be incorporated in a multiscale framework

is the imposition of periodic boundary conditions; DuMuX does not contain this option for multi-

domains. So, the class PeriodicManagerBase and its child classes were created to handle the

imposition of periodic boundary conditions on media containing interface elements; their math-

ematical foundations will be discussed in detail in Chapter 4. Likewise, a new module called

Multiscale will be presented further on, in Chapter 7.

3.1.3 Validations

This section presents the validations of the new implementations in DuMuX . Apart from the algo-

rithm for the multiscale solution, which is validated in Chapter 7, there are three major extensions

that need to be verified: geomechanical problems with interface elements; addition of elastoplastic-

ity, with the implementation of the return algorithm for the Mohr-Coulomb model; and the fixed-

stress split coupling scheme applied to the solution of hydro-mechanical problems in fractured
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porous media.

3.1.3.1 Mechanics with fractures: elasticity

The implementation of the elastic model for the fractures and of the system assemblage for me-

chanical problems with interface elements was verified against the analytic solution for the stiffness

tensor of fractured media presented in Duncan and Goodman (1968). The tested domain is a rock

mass containing two perpendicular sets of persistent fractures (Figure 3.5). By means of tensor

rotation, the equivalent elastic tensor can be calculated for different orientations β of the fractures.

Figure 3.5 presents the comparison between the analytical solution and the numerical results for

different angles β and ratios Kt/Kn, where Kn and Kt are the fractures normal and tangent stiff-

nesses, respectively. A maximum error of 0.5 % was observed for the ratio of the equivalent Young

modulus (E) to the Young modulus of the intact rock (Er).

Figure 3.5: Validation of the new code for geomechanics with elastic fractures: comparison be-
tween the analytical (lines) and numerical (dots) solutions of E/Er, where E is the equivalent
Young modulus of the fractured rock mass and Er is the Young modulus of the intact rock.
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3.1.3.2 Plasticity

A verification of the new implementations required by the so-called Mohr-Coulomb model is made

with the classical problem of a rigid strip footing resting on an elastoplastic soil; this is a common

benchmark because it has an analytical solution and allows the verification of the return algorithm

when the singularities of the yielding surface are crossed. Figure 3.6 illustrates the simulated prob-

lem: at the location of the strip footing of half-width B, a downward vertical displacement of

0.005B is applied in 100 steps. Horizontal and vertical displacements are restricted at the lateral

and bottom boundaries, respectively. The mesh contains 225 linear quadrangular elements. Table

3.1 lists the parameters and problem definitions, which are the ones employed by Sloan (1987).

The exact solution for the collapse pressure is 14.83c, where c is the soil’s cohesion. Figure 3.6

shows the load-deformation curve obtained in DuMux; the load is the averaged pressure under the

footing strip, and it is normalized by the cohesion. An ultimate load of 14.4c was obtained, which

differs from the exact solution by 3.0 %.

Figure 3.6: Validation of the new module for plasticity: simulation of the problem of a rigid strip
footing on a material that follows theMohr-Coulombmodel (left) and comparison of the theoretical
and calculated collapse pressures (right).
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Table 3.1: Simulation parameters and definitions used in the strip footing problem in Figure 3.6.
Quantity Unity Value

Young’s modulus (E) kPa 5200
Poisson’s ratio (ν) - 0.30
Cohesion (c) kPa 5.0

Friction Angle (ϕ) ° 20
Dilation Angle (ψ) ° 20

Half width of the footing (B) m 3

3.1.3.3 Hydro-mechanical coupling

Matrix

The implementation of the fixed-stress scheme for the hydro-mechanical coupling is first veri-

fied for thematrix domain against two analytic solutions: Terzaghi’s one-dimensional consolidation

and Mandel’s problem (Mandel, 1953). For both cases a convergence criterion εtol = 0.001 was

adopted for the fixed-stress scheme (Equations 2.88 and 2.89).

Figure 3.7 presents the geometry and the boundary conditions of Terzaghi’s problem. On the

upper boundary of the column, a load q is applied; vertical displacements are restrained at the

bottom and horizontal displacements are restrained on the sides, so the problem is essentially one-

dimensional. Drainage is allowed to occur only at the top by the imposition of a zero pressure

boundary condition. At any point of the domain, the initial pore pressure is P0 = q. The mesh

has 20 linear quadrangular finite elements, the total time of the simulation is 600 s and the time

step size is 1 s. The modulus Kdr in (2.75) is equal to Kdr
(1D) (Equation 2.79), which allows a

faster convergence for Terzaghi’s problem (Castelletto et al., 2015). The adopted parameters are

described in Table 3.2.

Figure 3.7 compares the analytical and numerical solutions for the pressure distribution along

the y-axis for different non-dimensional time factors Tv, defined by:

Tv =
Cvt

L2
(3.1)

whereCv is the one-dimensional coefficient of consolidation and t is time. Convergence is reached

within two iterations per time step and the maximum error observed for the pore pressure is 0.1%.
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Figure 3.7: Scheme of Terzaghi’s one-dimensional consolidation problem (left) and comparison of
the analytical solution (lines) and the results from the numerical simulation (dots) using the fixed-
stress split (right).

Table 3.2: Simulation parameters and definitions used for the validation of Terzaghi’s problem.
Hydro-mechanical parameters Problem definitions

Quantity Unity Value Quantity Unity Value

Young’s modulus (E) kPa 1000 q kPa 10.0
Poisson’s ratio (ν) - 0.25 L m 1.0
Permeability (ks) m/s 1.16× 10−5

Biot’s coefficient (b) - 1.0
Biot’s modulus (M ) kPa ∞

Mandel’s problem consists in a rectangular domain compressed both at the top and bottom

boundaries by a load q; drainage is allowed to occur at the sides (Figure 3.8). The initial pore

pressure is P0 = −q/3(1 + νu), where νu is the undrained Poisson’s ratio. The variables of the

problem are described in Table 3.3 and are the same as those used by Preisig and Prevost (2011).

Due to the symmetry of the problem, only a quarter of the domain needs to be simulated. The mesh

has 400 linear quadrangular elements and the total time of the simulation is 1 s, which is divided
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in 200 steps. The modulus Kdr in (2.75) is equal to Kdr
2D (Equation 2.80), which allows for

convergence to be attained within two iterations per time step. Figure 3.8 compares the analytical

solution for the distribution of the pressure along the line y = 0.5a and the pressure at the symmetry

axis (x = 0), which is the same for any position y, for different non-dimensional time factors Tv.

A maximum error of 1.3% was observed in the early stages of the simulation.

Figure 3.8: Scheme of Mandel’s consolidation problem (top) and comparisons of the analytical
solution (lines) and the results from the numerical simulation (dots) using the fixed-stress split
(bottom). The graph on the left compares the spatial distribution of the normalized pore pressure
at the position 0.5a and the graph on the right compares the normalized pore pressure history at the
symmetry axis (x/b = 0).

Fractured domain

61



Table 3.3: Simulation parameters and definitions used for the validation of Mandel’s problem.
Hydro-mechanical parameters Problem definitions

Quantity Unity Value Quantity Unity Value

Young’s modulus (E) kPa 1.0 q kPa 1.0
Poisson’s ratio (ν) - 0 a m 1.0

Undrained Poisson’s ratio (νu) - 0.5 b m 1.0
Permeability (ks) m/s 1.0

Biot’s coefficient (b) - 1.0
Biot’s modulus (M ) kPa ∞

The algorithm for the fixed-stress split was also validated for fractured domains; in the absence

of a closed-form solution, the test proposed by Segura and Carol (2008) and illustrated in Figure

3.9 was used here for verification. It consists in a two-dimensional domain with boundary and

initial conditions similar to the Terzaghi’s consolidation problem, but with a vertical fracture in the

middle. The mesh contains 400 triangular bulk elements and 10 lower-dimensional linear elements

to represent the fracture. A time step of 0.5 s was adopted.

Segura and Carol (2008) compared a sequential and a fully coupled scheme to verify one against

the other. The parameters they adopted are described in Table 3.4. Two scenarios were simulated:

one where the fracture’s permeability is constant and one where the longitudinal permeability is

a function of the aperture by the cubic law (Equation 2.68), with kl in Table 3.4 being its initial

value. It has to be pointed out that they employ for the flow problem the double-nodded interface

element earlier proposed by Segura and Carol (2004). This element accounts for transverse fluid,

but suppresses the middle element of the triple-nodded interface with the assumption that the pres-

sure at the fracture’s mid-plane is the average of the pressures at the corresponding opposite matrix

nodes. This has proven to be a good assumption when the transversal conductivity is high, but

the comparison with a triple-nodded element showed significant discrepancies as the transversal

conductivity becomes low and the fracture act as a flow barrier.

Figure 3.9a compares the results for the constant permeability case; the pressures along the frac-

ture are displayed at the four different times selected by Segura and Carol (2008): 0.0007, 0.0021,

0.0035 and 0.007 days. In their work, these pressures are the average of the pressures obtained at

the matrix faces, while here they are taken directly from the lower-dimensional elements. The re-

sults match very well; since the fracture permeability is very high, no appreciable differences arise

62



from the use of different interface elements. As the vertical fracture is very conductive, it would

rapidly drain its initial excess pore-pressure; but since it is much more permeable than the rest of

the domain, it constantly receives an exchange flux from the matrix and act as a preferential path

for flow.

The opposite happens when the permeability is assumed to be a function of the aperture. Al-

ready at the early stages of the simulation, the top portion of the fracture closes stops contributing

to the drainage. Figure 3.9b compares the normalized pressures on the fracture for this scenario.

While there is a good overall agreement, the differences are more significant than in the first sce-

nario, specially during early stages at the top of the fracture, where the permeability rapidly becomes

very low. This is due to the different interface elements; while the interface element used by Segura

and Carol (2008) constrains the pressures on the fracture to be equal to the average of the pressures

at the matrix faces, the results in DuMux with the triple-nodded interface element show that actu-

ally the pressure at the fracture becomes slightly higher than the pressures at the matrix. Thus, the

fracture not only looses its drainage capacity, but is starts to transfer fluid to the matrix. Although

these small discrepancies exist, they have a clear explanation and the new classes in DuMux were

shown to be capable of handling coupled problems on fractured domains.

Table 3.4: Simulation parameters and definitions used by Segura and Carol (2008) on their test for
the consolidation of a fractured domain.

Hydro-mechanical parameters Problem definitions

Quantity Unity Value Quantity Unity Value

Matrix Young’s modulus (E) kPa 1000 q kPa 10.0
Matrix Poisson’s ratio (ν) - 0.25 L m 1.0
Matrix Permeability (ks) m/s 1.16× 10−5

Matrix Biot’s coefficient (b) - 1.0
Matrix Biot’s modulus (M ) kPa ∞

Fracture Normal Stiffness (Kn) kPa/m 20000
Fracture Tangent Stiffness (Kt) kPa/m 1000

Fracture Transversal Permeability (kt) m²/s 1.15× 10−6

Fracture Longitudinal Permeability* (kl) m²/s 1.15× 10−6

Fracture Biot’s coefficient (bf ) - 1.0
Fracture Biot’s modulus (Mf ) kPa ∞
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Figure 3.9: Scheme of the consolidation problem on a domain with a vertical fracture by Segura
and Carol (2008) (left) and a) comparison of their results (lines) with the results obtained in DuMux
(dots) for the constant permeability case b) comparison of their results (lines) with the results ob-
tained in DuMux (dots) when the permeability is a function of aperture.

Elastoplastic material

Finally, the accuracy of the results obtained with the fixed-stress split was verified for a hydro-

mechanical problem where the material is elastoplatic and follows the Mohr-Coulomb criterion.

This validationwasmade by comparing the results fromDuMuxwith those obtained using Sigma/W

by GeoStudio, a well-known commercial software that solves hydro-mechanical problems with a

fully coupled scheme. The problem is illustrated in Figure 3.10: it consists in a square of size 0.1 m

and initial confinement stress of 200 kPa, which is loaded by a vertical displacement that linearly

increases from 0 to -0.01 m in 9000 seconds. Table 3.5 presents the problem definitions and input

data. In both softwares, the mesh contains 25 quadrangular elements and the adopted time step is

9 s. For the fixed-stress split scheme, the estimator in (2.75) is calculated using Kdr
2D (Equation

2.80) for elastic behavior, and then using Kdr
ep (Equation 2.81) if the current stresses reach the

yield surface.

Two values of permeability were tested: 1 × 10−8 m/s and 1 × 10−9 m/s. Figures 3.11 and

3.12 compare the results for the pore pressure and vertical displacement distributions along the
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Figure 3.10: Test used to validate the hydro-mechanical coupling when the material is elastoplastic
and modeled with the Mohr-Coulomb criterion.

axis x = 0 and the time evolution of the pore pressure at the lower left corner. There is a very

good match between these results. Also, they show the stress paths of the sample in terms of mean

effective stresses and deviatoric stresses; these were calculated using the volume averages of the

major and minor principal stresses, σ1 and σ3. It can be observed that the return algorithm is

effective and returns the stresses to the Mohr-Coulomb surface once yielding occurs.

Table 3.5: Simulation parameters and definitions used in the validation problem of Figure 3.10.
Hydro-mechanical parameters Problem definitions

Quantity Unity Value Quantity Unity Value

Young’s modulus (E) kPa 1000 L m 0.1
Poisson’s ratio (ν) - 0.25 uy m -0.01
Permeability (ks) m/s 1× 10−8 ; 1× 10−9 Time s 9000 s

Biot’s coefficient (b) - 1.0
Biot’s modulus (M ) kPa ∞

Cohesion (c) kPa 5.0
Friction Angle (ϕ) ° 30
Dilation Angle (ψ) ° 0

3.2 Conclusions of the chapter

The computational tool used to perform the simulations is DuMux, an open-source code to which

major additions were made. These extensions address the following requirements for a hydro-

mechanical multiscale simulation on fractured media that were not present in the original code:

(a) Elastic and elastoplastic geomechanical problems in media containing interface elements;
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Figure 3.11: Comparison of the results obtained in Sigma/W (lines) and Dumux (dots) for the
poroplastic problem in Figure 3.10 using ks = 1 × 10−8 m/s. The lower right graph presents the
averaged stress path of the sample and the Mohr-Coulomb surface.

(b) Hydro-mechanical coupling in media containing interface elements;

(c) Imposition of periodic boundary conditions on media containing interface elements;

(d) Multiscale simulations.

The additions in (a) and (b) were validated against well-known closed-form solutions or other
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Figure 3.12: Comparison of the results obtained in Sigma/W (lines) and Dumux (dots) for the
poroplastic problem in Figure 3.10 using ks = 1 × 10−9 m/s. The lower right graph presents the
averaged stress path of the sample and the Mohr-Coulomb yield surface.

verified numerical results. The additions (c) and (d) are verified in Chapters 4 and 7 after the

theoretical review on which their algorithms are founded.
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Chapter 4

Imposing periodic boundary conditions on

fractured domains

Works on the application of multiscale methods traditionally use periodic boundary conditions to

solve the microscale’s numerical problem (e.g. Özdemir et al., 2008; Feyel and Chaboche, 2000)

even when the material is not periodic, since they are known to provide a faster convergence for

the effective properties as the sample size increases (Terada et al., 2000; Miehe, 2003).

This chapter presents the methods that were implemented in DuMux to impose periodic bound-

ary conditions on fractured domains. As it can be seen in Figure 3.4, there are two child classes

dedicated to the periodic boundary conditions; they handle two possible scenarios: periodic and

non-periodic meshes. For both cases, the existence of interface elements required some adaptions

to the original methods.

4.1 Periodicity and stationarity

A material has a periodic geometry when it contains a pattern of heterogeneities that repeats itself

within a distance called the period. In this case, the REV reduces to the unit cell, and its character-

istic length lc (Equation 2.2) is equal to the period.

The theory of periodic homogenization shows that the periodicity of the geometry leads to the

periodicity of the physical quantities. Hence, it is unsurprising that in this case the imposition of

periodic boundary conditions in numerical upscaling problems leads to optimum results. For truly
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periodic materials, the application of periodic boundary conditions on one unit cell only yields

the final effective properties, while linear Dirichlet and Neumann boundary conditions require a

sample with a certain number of unit cells to converge to this same result (Svenning et al., 2016).

It may not be as intuitive that the periodic boundary conditions are also useful and efficient

when dealing with random media. As was mentioned in Section 2.1, a proper REV for random

media needs to follow the stationarity condition (Equation 2.5). Auriault et al. (2009) show that

from a macroscopic point of view periodicity and stationarity are equivalent because they both

lead to the translational invariance of the averaged quantities. It thus follows that the assumption

of periodicity on random media is possible. Although the structure is not really periodic, if the

REV is representative of the average constitutive behavior, it can be treated as so.

Actually, the imposition of periodic boundary conditions on random media is not only theoreti-

cally logical, but is also known to provide a faster convergence of the mean value of the equivalent

properties. For example, Kanit et al. (2003) showed that themeans of the thermal and elastic proper-

ties of random composites do not change significantly with size when periodic boundary conditions

are employed, while linear Dirichlet and Neumann boundary conditions need larger REVs for those

values to stabilize. On the other side, they observed a higher dispersion for the data obtained with

periodic boundary conditions; thus, they would require a larger REV if a criterion based on the

standard deviation of the properties was to be used. In the context of fractured media, a similar

comparison was made by Svenning et al. (2016), who also demonstrated that the average of ef-

fective elastic properties converge faster for periodic boundary conditions, but did not make any

remarks on their standard deviations.

4.2 Imposition of periodic boundary conditions

As was mentioned in Section 2.2.1, periodic boundary conditions are applied by imposing rela-

tionships between opposite sides of the REV. We divide here the REV boundary Γ into a positive

part Γ+ and a negative part, Γ− (Figure 4.1), so that Γ = Γ+ ∪ Γ−. Either Γ− or Γ+ can be taken

as the dependent boundary for which the variables will be described as a function of the oppo-

site, independent, sides via Equations (2.26)-(2.31). For convenience, these equations are recalled

below:
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p̃(x+) = p̃(x−) (2.26)

ũ(x+) = ũ(x−) (2.27)

p(x+) = p(x−) +G . (x+ − x−) (2.28)

u(x+) = u(x−) +E . (x+ − x−) (2.29)

Q(x+) = −Q(x−) (2.30)

T (x+) = −T (x−) (2.31)

where p andu are pressure and displacement vectors at a point, the superscript indicatestheirfluctuationcomponents, thetensorsGandEhavetheirimposedmacroscopicgradients, andQandT arefluxandtractionforces, respectively.

In the context of numerical homogenization using a finite element discretization, these rela-

tionships are established between nodes on opposite boundaries of the mesh. Their enforcement on

the system can be done with the Lagrange multiplier method or directly by constraint eliminations

(Nguyen et al., 2012). This latter will be employed here. The implications of periodicity on the

solution of the problem will be shown for the systems of general forms:

Keu = f (4.1)

Kfp = q (4.2)

where Ke and Kf are the tangent matrices for the mechanical equilibrium and flux problems

respectively, u is the nodal displacements vector, p is the nodal pressures vector, f is the nodal

forces vector and q is the nodal fluxes vector. The displacements and pressure vectors can be

decomposed as:

70



uT = {ui u+ u− up} (4.3)

pT = {pi p+ p− pp} (4.4)

where the superscript i denotes internal nodes, + and − denote nodes on Γ+ and Γ−, respectively

and p indicates nodes where the variables are prescribed. As a consequence, the systems in (4.1)

and (4.2) can be reorganized as:
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These systems have a solution if, at each node, either the pressures/displacements or the fluxes/forces

are prescribed. However, in the case of periodic boundary conditions, these quantities are not di-

rectly prescribed at the boundaries, but the system becomes solvable by adding additional relation-

ships between opposite points. These relationships force the fluctuation parts of the pressure and

displacements at opposite nodes to be equal (Equations (2.26) and (2.27)), and the forces and fluxes

to be equal but opposite in sign (Equations (2.30) and (2.31)).

Two scenarios will be explored in the following sections. The first one is the imposition of

strong periodic boundary conditions on periodic meshes, that is, meshes where every node on the

boundary has a symmetric corresponding node on the opposite side (Figure 4.1). Then, the method

used here to impose periodic boundary conditions on non-symmetric mesh geometries will be pre-

sented. For both cases, adaptions were made to the original algorithms to account for the existence

of interface elements. They will also be presented in this Chapter, along with the additions made
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to DuMuX to allow for the imposition of periodic boundary conditions on fractured domains in

hydro-mechanical analyses.

4.2.1 Strong periodicity

The term strong periodicitymeans that relationships 2.28, 2.29, 2.30 and 2.31 hold point-wise on the

boundary Γ. The imposition of such constraints require the mesh to be periodic. As a consequence,

in the absence of discontinuities, the mapping between opposite boundaries is straightforward since

each node has one exact correspondent at the opposite side (Figure 4.1).

Figure 4.1: Example of a periodic mesh and definition of boundaries Γ+ and Γ−. Each pair of
symmetrical nodes such as 1 and 2 is constrained to have an equal fluctuation part ã of a given
physical quantity of interest a.

Here, the subscriptsm and swill refer to themaster (independent) and slave (dependent) bound-

aries Γm and Γs, which can be either Γ− or Γ+. The vector a will refer generally to the primary

variable vectors p and u.

Equations 2.28 and 2.29 define that the difference in the value of a primary variable a between

two opposite points of the REV comes from the imposed macroscopic gradients only, since their

fluctuation part is equal (Equations 2.26 and 2.27). These relationships are defined for each pair of

opposite nodes, providing a mapping that can be organized in matrix form as:

TaΓ = [[a]]s (4.7)

The matrix T has dimensions nΓs × nΓ, where nΓs is the number of nodes on Γs and nΓ is the
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number of nodes on Γ. The vector aΓ is a vector containing the nodal values of a on Γ; it has size

nΓ and can be decomposed as follows:

aΓ
T = {as am} (4.8)

where as and am contain the nodal values of a on Γs and Γm, respectively. The vector [[a]]s has

size nΓs and contains the jumps in a across opposite boundaries of the REV, which depend on the

imposed macroscopic gradients only. For a slave node on Γs the component [[a]]s is defined as:

[[a]]s(xs) = as(xs)− am(xm) = {∇Ma · (xs − xm)} (4.9)

where ∇Ma is the imposed macroscopic gradient of a, xs denotes the coordinates of the slave

node on Γs and xm gives the coordinates of its mirror (master) node at the opposite side of the REV.

If i denotes a node on Γs whose mirror node on Γm is k, the component Tij is given by:

Tij =


1, if j = i

−1, if j = k

0, otherwise

(4.10)

Systems 4.5 and 4.6 are undetermined as they are because both the primary variables and the

right hand side vectors for the nodes on Γ are unknown. The introduction of the periodic constraints

makes the solution unique; this is achieved by: a) adding the lines corresponding to the dependent

or slave nodes to the lines of their master nodes and b) introducing the constraint (4.8) into the

system; although it is possible to remove the slave nodes completely and condensate the system

(e.g Nguyen et al., 2012; Reis and Andrade Pires, 2014), we opt here to replace the lines of the

slave nodes by their corresponding lines in (4.7); this avoids changes in the way the original code

of DuMux sets the system’s size. Also, it is necessary to prescribe the unknowns of at least one

node in the boundary. So, the primary variables at the lower left corner node are prescribed and, as

a consequence of the mesh periodicity, the primary variables at all the other corner nodes are also

prescribed and can be calculated from their values at the master corner node.

After these manipulations, the systems 4.5 and 4.6 become:
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(4.12)

where Ip is the identity tensor of size equal to the number of corners and u and p are the vectors

of prescribed displacements and pressures, respectively. In the right hand vectors, the null vectors

on the third line come from the sums f s + fm and qs + qm; since boundary tractions and fluxes

are anti-periodic (Equations 2.30 and 2.31), these sums vanish.

Strong periodicity on domains with interface elements

Since opposite boundaries of zero-thickness interface elements have equal coordinates, it is

possible, for non-periodic geometries, that a node on the boundary has more than one symmetric

node on the opposite side of the REV. Thus, the imposition of strong periodicity on fractured do-

mains needs to consider the three different scenarios illustrated in Figure 4.2, where the master

boundary is considered to be Γ−:

(a) Both the opposite sides have an intercepting interface element at the same position; in this

case, the masters of matrix nodes M1 and M2 are nodes M3 and M4, respectively, and the

master of fracture node F1 is F2;

(b) A node M7 on the dependent side is symmetric to the interface nodes M5, M6 and F3 that

intercept themaster boundary; in this case,M5 is the onlymaster node. The primary variables
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Figure 4.2: Three possible scenarios for periodic meshes containing interface elements: a) periodic
fracture b) fracture on the independent side corresponding to a matrix node on the dependent side
and c) matrix node on the dependent side at the same position than a fracture on the independent
side.

inM6,M7 and F3 are constrained to be a function ofM5 according to (4.8). The fluxes and

forces at the slave nodes are distributed to the master node, so their anti-periodicity leads to:

qM5 + qM6 + qM7 + qF3 = 0 and fM5 + fM6 + fM7 = 0. Note that the fracture node F3 is not

used in the mechanical problem.

(c) The nodes M9, M10 and F4 at the dependent boundary are symmetric to a matrix node M8

only; in this case, the variables at M9, M10 and F4 are equal and are mapped from M8 via

(4.9) and (4.10). The anti-periodicity of fluxes and forces lead to qM8 +qM9 +qM10 +qF4 = 0

and fM8 + fM9 + fM10 = 0.

The practical changes of these considerations on systems 4.11 and 4.12 is that there are interface

nodes on the master side that will be treated as slave nodes when building the system.

Note from cases b) and c) that pressure and displacement discontinuities at the boundaries are

prevented when the geometry of the fractures is not periodic. The prevention of displacement

discontinuities was reported by Svenning et al. (2016) to significantly overestimate the equivalent

stiffness for smaller sizes of the REV. The method that will be presented in the following section

does not prevent discontinuities, so it may be more efficient for non-periodic fracture geometries,

and is specially useful for non-conforming meshes.
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4.2.2 Weak periodicity: the mortar method

Although it is possible to generate periodic meshes on non-periodic materials, this task becomes

harder when the geometry of the heterogeneities becomes complex, as is often the case with DFNs.

To gain flexibility in the homogenization of complex microstructures, several different techniques

were developed to impose periodic boundary conditions on non-periodic meshes. They include the

polynominal interpolation method by Nguyen (2014) and the technique proposed by Larsson et al.

(2011a), which is based on an independent discretization of the boundary tractions to enforce weak

periodicity; this latter was adapted by Svenning et al. (2016) to upscale the mechanical properties

of fractured domains.

Another class of technique is the mortar method, which was already well established for contact

problems before it was applied by Reis and Andrade Pires (2014) to the imposition of periodic

boundary conditions; a later work presents a more detailed description of the implementation of

these mortar periodic conditions (Rodrigues Lopes et al., 2021). We will first present this method

without considering the existence of fractures; then, the modifications proposed here to incorporate

triple-nodded interface elements in the problem will be detailed.

The mortar method is used to enforce a weak continuity across the interface of non-conforming

meshes, instead of the point-wise continuity that arises naturally from conforming meshes. This

also applies to the imposition of periodicity, which is weak in the sense that it does not hold point-

wise, while the boundary integral of the pressures and displacements will still result on the imposed

macroscopic gradients.

The first step to apply the mortar method is the definition of the non-mortar (dependent) side

and the mortar (independent) side, which can be chosen to be either Γ+ or Γ−. The subscripts m

and n that will be used below refer to the mortar and the non-mortar sides, respectively.

We consider here a vector a that is a general representation of the pressure and displacement

vectors in (4.5) and (4.6) (u and p). The vector a can be decomposed in a vector ai for the internal

nodes and a vector aΓ for the boundary nodes. This latter can be further decomposed as:

aΓ = {am an} (4.13)

The component a represents either a fluid pressure or a directional displacement. Recall from
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(2.16) and (2.17) that a is composed of a linear part al, calculated from the imposed macroscopic

gradients, and a fluctuation part ã, that is:

a = ã+ al (4.14)

Wewill first workwith the imposition of the weak periodicity of ã (Equations (2.26) and (2.27)),

and then will derive constraints in terms of a.

The enforcement of periodic boundary conditions requires the integration domains of opposite

mortar and non-mortar sides to be compatible. Here this is achieved by the construction of virtual

integration lines (Reis and Andrade Pires, 2014). As illustrated in Figure 4.3 for bi-dimensional

problems, a virtual integration line is built for each pair of opposite sides of the REV: it contains

the projection of all of their nodes.

Figure 4.3: Construction of the virtual integration lines, in green, for two-dimensional problems
andmapping of an integration pointωp of the virtual line into themortar and non-mortar boundaries.

Consider the functions πn and πm that project variables on the non-mortar and mortar sides,

respectively, on the integration line Γi. The objective of the mortar method is to enforce weakly a

null jump of the variable between the mortar and non-mortar boundaries by means of the following

condition:

∫
Γi

(πn(ã
n)− πm(ã

m))ψndΓi = 0 (4.15)

where ψn is a test function contained in the space of non-mortar elements.
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The integral (4.15) is computed using the Gaussian quadrature rule. The local coordinates

on the virtual line, on the mortar and on the non-mortar sides will be denominated ω, ζ and ξ,

respectively. Consider a Gauss point ωp on the integration line that can be mapped into the local

coordinates ξ(ωp) and ζ(ωp) located on the segments δn and δm of the non-mortar and mortar sides,

respectively (Figure 4.3). The mapping functions in (4.15) assume the following forms at ωp:

πm(ã
m(ωp)) =

∑
j∈dδm

Nm,j(ζ(ωp))ãj (4.16)

πn(ã
n(ωp)) =

∑
j∈dδm

Nn,j(ξ(ωp))ãj (4.17)

where Nm and Nn are the finite element shape functions on the mortar and non-mortar spaces,

respectively and ãj is the value of ã at node j.

Considering its finite element approximation, the mortar condition (4.15) can be written in

matrix form as:

Anãn −Amãm = 0 (4.18)

where:

An
ij =

∑
ωp∈Γi

Mi(ξ(ωp))Nj(ξ(ωp))|Jp|wp (4.19)

Am
ij =

∑
ωp∈Γi

Mi(ξ(ωp))Nj(ζ(ωp))|Jp|wp (4.20)

and M are Lagrange multipliers selected to be the test functions ψn in (4.15), Jp is the Jacobian

matrix evaluated at ωp and wp is the integration weight at ωp.

The non-mortar variables ãn can then be written in terms of the mortar variables ãm as:

ãn = (An)−1(Amãm) = Aãm (4.21)

whereA = (An)−1(Am). There are some possible formulations for the Lagrange multipliers, but

Reis and Andrade Pires (2014) employ the dual shape functions that were originally incorporated to
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the mortar method byWohlmuth (2000); they are presented in Table 4.1 for linear two-dimensional

elements. These functions are convenient because they are such that:

∫
Γn

Mi(ξ)Nj(ξ)dΓn = δij

∫
Γn

Nj(ξ)dΓn (4.22)

which makes An a diagonal matrix, and thus easily inversible. The corner nodes that are located

at non-mortar segments are prescribed to ã = 0. As a consequence, the Lagrange multipliers need

to be adapted for segments that contain these prescribed corner nodes; the modifications proposed

by Rodrigues Lopes et al. (2021) are also presented in Table 4.1.

Table 4.1: Dual functions for the Lagrange multipliersM when linear two-dimensional elements
are employed and ξ ∈ [−1, 1].

Regular equations M1 =
1
2
(1− 3ξ) M2 =

1
2
(1 + 3ξ)

Prescribed corner at ξ = −1 M1 = 0 M2 = 1
Prescribed corner at ξ = 1 M1 = 1 M2 = 0

The coordinates xc of the corner node that joins the two existing non-mortar boundaries in a

bi-dimensional REV can be taken as the reference point to calculate the linear part al of the variable

a as:

al(x) = ∇Ma(x− xc) (4.23)

If the non-mortar boundary is Γ+, this reference point is the upper right corner; if it is Γ−, this

reference point is the lower left corner.

Since the objective here is to solve the vector a = p,u, (4.14) can be inserted into (4.21) to

obtain the following relationship:

an −A(am − am
l )− an

l = 0 (4.24)

or

an −Aam = [[al]]Γ (4.25)

where [[al]]Γ = an
l −Aam

l .

Now consider the force and flux vectors f and q, which will be generally represented by b.
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In order to impose the anti-periodicity of these variables (Equations 2.30 and 2.31), the mortar

condition becomes:

∫
Γi

(πΓn,δi
(bn) + πΓm,δi

(bm))ψndΓi = 0 (4.26)

which results in the following relationship between the mortar and non-mortar flux and force vec-

tors:

bm +ATbn = 0 (4.27)

The componentAij is a coefficient that will be used to distribute part of the fluxes or forces at

the slave node i to the master node j. Equations 4.25 and 4.27 can be added to systems (4.6) and

(4.5) as constraints that make their solutions unique. Similarly to what was done in the previous

section, the dependent (non-mortar) nodes have their corresponding lines in the system replaced by

(4.25). As for their corresponding master nodes, they haveATbn added to their lines, so (4.27) is

enforced:
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(4.28)
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(4.29)

Domains with interface elements
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When interface elements exist at the mesh boundaries, some considerations have to be made

about the imposition of periodic boundary conditions using the mortar method.

In the case of the mechanical problem, the method can be applied using the original formula-

tion described above. The mapping of the integration points on the virtual line naturally allows

for displacement discontinuities when interface elements are present on any side of the REV. Con-

trarily to what happens in the strongly periodic case, no enforcement needs to be made regarding

the displacement jumps across the boundary interfaces. The mapping of master and salve nodes

through the virtual integration line naturally causes the duplicated nodes at a fracture to have dif-

ferent masters, so their primary variables will have different values.

The case of the flux problem here is different because it uses the middle interface elements to

evaluate the pressures at the fractures. We propose some adaptions to make it solvable.

The pressure in any fracture node at the boundary is mapped from the mortar matrix nodes

through:

pΓ
f −αpm − [[pf ]]Γ = 0 (4.30)

The subscript f indicates fracture and the superscript Γ indicates that the node is located on the

boundary; α is a matrix of dimensions nf × nm, which are the number of fracture nodes on the

boundary and the number of nodes on the mortar boundary, respectively.

Equation 4.30 will always be used to enforce the pressure at the fracture nodes to be equal to

the average of the pressure at their coupled matrix nodes. This enforcement will have different

implications on α depending on the fracture being on the mortar or on the non-mortar side, as

will be discussed below. Prescribing the fracture to have the average of the pressure at the matrix

nodes was suggested by Segura and Carol (2004) as a resource to consider transversal pressure

jumps across double-nodded interface elements. They showed that this is a good assumption when

the fractures permeability is not so low that they will act as flow barriers. While they make this

enforcement for the entire fractured domain, here it is used only at the boundary fracture nodes, so

its impact on the global solution is expected to be less significant.

The weak enforcement of the anti-periodicity of fluxes also requires the fluxes at the bound-

ary fracture nodes to be distributed to the mortar nodes. We define qm
t as the vector containing
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the fluxes received by the mortar nodes from the fractures and qf
Γ as the vector of fluxes at the

boundary fracture nodes. They are related by:

qm
t = αTqΓ

f (4.31)

So, for fractured domains containing lower-dimensional interface elements, the anti-periodicity

condition in (4.27) becomes:

qm +ATqn + qm
t = 0 (4.32)

In (4.32) the coefficients in α are used to equally distribute the fluxes in the fracture among its

coupledmatrix nodes; if these nodes are on the non-mortar side, this flux ends up being redistributed

to their master nodes.

We continue with the definition of the coefficients inα. In the following, the spaceΩf contains

the fracture nodes and the space Ωm,i contains the pair of matrix nodes coupled to a fracture node

i. Two possibilities are considered:

(a) If the fracture node is on the mortar side:

∀i ∈ Ωf ∩ Γm αij =


1
2
, if j ∈ Ωm,i

0, otherwise
(4.33)

(b) If the fracture node is on the non-mortar side, the quantities that would be distributed to

their coupled matrix nodes will actually be distributed to the pertinent mortar nodes using

the coefficients of matrixA in (4.21); so:

∀i ∈ Ωf ∩ Γn αik =
1

2

∑
j∈Ωm,i

Ajk (4.34)

To incorporate these additional considerations in System 4.29, we use the following decompo-

sition of the pressures at the boundary (pΓ):

pΓ = {pm
b pn

b pΓ
f} (4.35)
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where the subscripts b and f denote bulk and fracture, respectively, and the superscripts are used

to identify the location of the nodes. After the imposition of constraints (4.21), (4.27), (4.30) and

(4.32), the system for the flux problem containing lower-dimensional elements becomes:
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(4.36)

where

J =
[
Jmi Jmn Jmm Jmf Jmp

]
= Km +ATKn +αTKfb (4.37)

and If is the identity matrix of size the number of boundary fracture nodes and Kfb is the tan-

gent matrix originally assembled to the boundary fracture nodes, that is, before the periodicity

constraints are added.

4.2.3 Implementation in DuMux

The classes added to DuMux to manage the implementation of the periodic boundary conditions

have three main functions that need to be called:

1. The function called setPeriodicMap maps corresponding nodes, in the strongly periodic

case, and builds the virtual integration lines and the mapping matrices in (4.21) and (4.30),

in the case of the mortar periodic boundary conditions. This function is called after the FV

mesh is initiated;

2. The function extendJacobianPattern adds new pairs of rows and columns to the tangent

matrices Ke and Kf . The pattern of these matrices is configured to store only non-zero

entries by identifying which nodes depend on each other because of the mesh connectivity;

as the periodic boundary conditions add new dependency relationships between nodes, this

original pattern needs to be extended before changing the system.

3. The function enforceSystemPeriodicConstraints needs to be called at each iteration
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after the assembly of the system, so it can be modified by adding the periodicity and anti-

periodicity constraints that form systems (4.12), (4.11), (4.28), (4.29) and (4.36).

4.3 Verification of the properties of the boundary conditions

A few tests were made in fractured samples to verify the properties of the three types of boundary

conditions mentioned in Section 2.2.1: Neumann, linear Dirichlet and periodic. The permeability

and stiffness tensors were obtained for the unit cell of a periodic fractured media and for several

REVs of random fracturedmedia. TheNeumann boundary conditions are the no-flow restrictions in

Figure 2.4 for the flux problem and the constant tractions in Figure 2.5 for the mechanical problem;

the Dirichlet boundary conditions are the linear pressures in Figure 2.2 for the flux problem and

the linear displacements in Figure 2.3 for the mechanical problems.

4.3.1 Unit cell of periodic media

The fractured domain in Figure 4.4 is assumed to be a unit cell of a periodic media. The perme-

ability and stiffness tensors were obtained for a grid of 1 x 1 to 40 x 40 unit cells with Neumann,

linear Dirichlet and mortar periodic boundary conditions. In this latter, Γ+ was taken as the mortar

boundary, and the upper right corner node was prescribed to zero pressure and displacements. The

mesh employed for one unit cell is presented in Figure 4.4, as well as one periodic media composed

of 5 x 5 cells.

The permeability tensor was obtained for conductive and blocking fractures. In both cases the

permeability of the fractures is equal to 3.5×10−10m2; but for the first tests the matrix permeability

is 1.0 × 10−15 m2 while it is as high as 1.0 × 10−9 m2 in the second ones, so the fracture will act

as a barrier.

Figure 4.5 shows the pressure fields for the unit cells subjected to an injection in the x-direction

with different boundary conditions; this is achieved by imposing a pressure-gradient in the x-

direction for the Dirichlet and periodic boundary conditions and by prescribing a unit flux in the

x-direction for the no-flow boundary conditions.

For the periodic boundary conditions, there is a higher localized gradient in the upper portion

of the mortar side that is symmetric to the fracture; this results from the anti-periodicity of flux,
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Figure 4.4: Geometry adopted for the experiments on fractured periodic media. On the left side,
the unit cell, with fractures in blue, and its mesh are presented; on the right side, there is an example
of periodic grid containing 5 × 5 unit cells.

Figure 4.5: Pressure fields of the fractured unit cell for: a pressure gradient in the x direction of
1 kPa/m imposed with linear pressure (left) and periodic (center) boundary conditions and a unit
flux of 1e-6 m/s in the x direction imposed with no-flow boundary conditions (right). The intrinsic
permeability is 1.0× 10−15 m2 for the matrix and 3.5× 10−10 m2 for the fractures.

which imposes the flux at the fracture to be equal to the flux at its opposite matrix node. Indeed,

if this cell is repeated periodically, that would be the effect on the pressure gradient in the vicinity

of the tip of a conductive fracture. Because of the existence of this non-periodic fracture node, the

pressure field for the same gradient imposed with linear Dirichlet boundary conditions is different

and overestimates the velocity of the injection in this fracture. The pressure fields for the no-flow

boundary conditions can not be directly compared because this cell is subjected to a different pres-

sure gradient, but the symmetric pattern in Figure 4.5 indicates that both fractures at the upstream

boundary have the same effect; this is not the case when looking at the bigger picture, since the up-

per fracture node should not have the same drainage capacity for not being periodically connected
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to other fracture.

Figure 4.6 shows the pressure fields on the unit cells subjected to a flux in the y-direction for the

blocking fracture case. Again, the linear pressure and no-flow boundary conditions can not predict

the whole picture using one unit cell only, since they divide themedia in three independent blocks as

if no connectivity was present between them. The periodic boundary conditions are more realistic;

they provide smoother pressure gradients, since the matrix blocks are actually interconnected when

the periodic pattern is considered.

Figure 4.6: Pressure fields of the fractured unit cell for: a pressure gradient in the y direction of
1 kPa/m imposed with linear pressure (left) and periodic (center) boundary conditions and a unit
flux of 1 × 10−14 m/s in the y direction imposed with no-flow boundary conditions (right). The
intrinsic permeability is 1× 10−5 m2 for the matrix and 3.5× 10−10 m2 for the fractures.

Following Svenning et al. (2016), we present here the comparison of the constitutive tensors

in terms of their eigenvalues. Figures 4.7 and 4.8 present the largest and smallest eigenvalues of

the permeability tensor when imposing the three types of boundary conditions to grids containing

increasing numbers of unit cells. The results agree with what is theoretically expected, since the

periodic boundary conditions result in the final effective properties for one unit cell, while Dirichlet

and Neumann boundary conditions give upper and lower bounds, respectively; also, these latter

eventually converge to the values obtained with periodic boundary conditions.

Figure 4.9 presents the smallest and largest eigenvalues for the upscaled stiffness tensor when

using the elastic properties in Table 4.3. As expected, the periodic boundary conditions result in

the final effective properties for only one unit cell, while linear displacement boundary conditions

converge from above and constant traction boundary conditions converge from below. The linear

displacement boundary conditions force the fractures to have zero displacement discontinuities at

the boundaries; this reduces the fractures potential to slip under shear, which results in an overs-

86



Figure 4.7: Smallest and largest eigenvalues of the upscaled permeability tensorK for the unit cell
in subjected to linear pressure, periodic and no flow boundary conditions. The intrinsic permeability
is 1e-15m2 for the matrix and 3.5e-10m2 for the fractures.

Figure 4.8: Smallest and largest eigenvalues of the upscaled permeability tensorK for the unit cell
in Figure 4.4 subjected to linear pressure, periodic and no flow boundary conditions. The intrinsic
permeability is 1e-5m2 for the matrix and 3.5e-10m2 for the fractures.

tiffness for small numbers of unit cells. In the case of the constant traction boundary conditions,

the absence of displacements restrictions makes the mobilization of isolated blocks to be overesti-

mated.

4.3.2 Random media

The permeability and stiffness tensors were also obtained for 100 generations of the fracture net-

work described in Table 4.2, which is the same one tested by Yang et al. (2014) to upscale elastic

properties. The parameters of the intact rock and the fractures are described in Table 4.3. Five sizes

87



Figure 4.9: Smallest and largest eigenvalues of the upscaled stiffness tensorC for the unit cell in in
Figure 4.4 subjected to linear displacements, periodic and constant traction boundary conditions.

that range from 4 to 20 m were tested.

Table 4.2: Statistical parameters used to generate the random fractured samples to be tested with
three different boundary conditions: linear Dirichlet, Neumann and periodic. From Yang et al.
(2014).

Dip orientation Length Density

Type Mean Std. Deviation Type Mean(m) Std. Deviation (m) (1/m2)

Set 1 Normal 150 10.0 Normal 4 1 0.16
Set 2 Normal 50 7.0 Normal 3 0.7 0.25

Table 4.3: Elastic properties and permeability for the intact rock and the fractures used to compare
linear Dirichlet, Neumann and periodic boundary conditions.

Intact rock Fracture

E (GPa) ν km(m
2) Kn (GPa/m) Kt (GPa/m) kf (m

2)

50.0 0.25 1.0× 10−14 50.0 10.0 3.5× 10−10

Figure 4.10 shows that the mesh and the geometries are far from being periodic.

A small maximum element area was selected to avoid mesh size effects. As the the mortar

method enforces periodicity weakly, the resultant nodal values at the boundaries are sensitive to

the size of the elements. Also, if the mesh densities at opposite sides are significantly different,

the choice of the mortar and non-mortar boundaries impacts the results. To avoid these effects, we

performed mesh tests on ten random samples. The maximum element area was selected based on
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the convergence of the upscaled properties with mesh size. Also, for the selected mesh size, the

upscaled properties were not influenced by the choice of Γ+ or Γ− to be the mortar size.

In the tests performed on all the one hundred DFNs, the boundary Γ+ was taken as the mortar

side, so the upper right corner node is prescribed to zero pressure and displacements.

Figure 4.10: Example of one of the DFNs generated to compare the elastic and permeability tensors
obtained with three types of periodic boundary conditions: linear Dirichlet, Neumann and mortar
periodic. On the right side, the mesh generated for a maximum element area calibrated after con-
vergence tests.

Figures 4.11, 4.12, 4.13 and 4.14 show the average value and the COV of the smallest and

largest eigenvalues for the permeability and the stiffness tensors for different REV sizes. For both

the mechanical and hydraulic tests, the same trend repeats: the Neumann, periodic and Dirichlet

boundary conditions provide lower, intermediate and upper bounds for the average of the properties,

respectively. The COVs are also different for smaller sizes, but they converge to approximately the

same value faster than the average properties.

4.4 Conclusions of the chapter

In this chapter, we presented the methods used to impose periodic boundary conditions in flow

and equilibrium problems on fractured domains. They require the addition of constraints of peri-

odicity of the primary variables and anti-periodicity of fluxes and forces to the original systems of

equations.

Two methods were implemented to manage the imposition of periodic boundary conditions.

The first one requires a periodic mesh to impose a strong periodicity on the domain. Adaptions
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Figure 4.11: Average eigenvalues of the equivalent permeability tensor K for 100 realizations
of the fracture network describe in Table 4.2 when using linear pressure, periodic and no-flow
boundary conditions.

Figure 4.12: Coefficients of variation of the equivalent permeability tensorK for 100 realizations
of Network 1 when using linear pressure, periodic and no-flow boundary conditions.

were proposed to deal with non-periodic geometries containing interface elements; they restrain the

discontinuities in these cases. The second method is the mortar element method, which has been

recently applied to impose weak periodicity on heterogeneous domains. To our best knowledge this

method has not been applied to media containing triple-nodded interface elements, so we proposed

modifications to use them in the flux problem.

These new implementations were applied in the upscaling of elastic properties and permeabil-

ity of periodic and random media. Linear Dirichlet, periodic and Neumann boundary conditions

were compared. The results agree with what is reported in the literature, which is that the periodic

boundary conditions result in an intermediate value for the equivalent properties, while Dirich-
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Figure 4.13: Average eigenvalues of the equivalent stiffness tensor C for 100 realizations of Net-
work 1 when using linear displacements, periodic and constant traction boundary conditions.

Figure 4.14: Coefficients of variation of the equivalent permeability tensor C for 100 realizations
of Network 1 when using linear displacements, periodic and constant traction boundary conditions.

let and Neumann boundary conditions provide upper and lower bounds, respectively. Also, the

properties obtained by the different boundary conditions become closer as the REV size increases.

The periodic boundary conditions are not necessarily more efficient in the sense of requiring

smaller REVs. The COVs obtained for the equivalent constitutive tensors converge to similar

values for all the boundary conditions types; so, if a variability-based criterion such as the COV is

to be used, the REV size for the tested DFN would be similar for all types of boundary conditions.

However, the average values obtained with periodic boundary conditions converge faster to the

final effective average properties. Also, for periodic domains the periodic boundary conditions do

providemore realistic fields of the studied quantities. So, they aremore efficient for the applications

91



that will follow, for which a REV for fractured random media will be considered to periodically

repeat itself in the macroscopic domain.
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Chapter 5

Statistics-based methodology to select the

REV size

Although the fractures measured in the field can be grouped in sets according to their common

features and geological history, their geometries always present a variability. As a consequence of

the stochastic nature of natural fractures, the hydro-mechanical properties taken from selected sam-

ples are also variable, and this should be considered when defining the REV of naturally fractured

reservoirs.

A rigorous definition of the REV of random media should be based on the criterion of spatial

stationarity (Equation 2.5), which means that the local mean of a property must be invariant for

different samples of same size. Of course, the mean value of a property taken from random media

is never really invariant, but it can be considered to be approximately constant when its variance

is low. Thus, both the mean value and standard deviation of the hydro-mechanical properties are

considered to define the REV of fractured media when a statistical approach is used; the coefficient

of variation (COV) is one of the most popular criteria to define a minimum size.

Most of the existing works that define the REV of fractured media based on the COV of the

equivalent property do not use a large number of samples due to computational limitations and to

the difficulty of automatically generating meshes when complex DFNs exist. Also, many of the

existing results lack generality and draw conclusions for a specific fracture network measured in the

field. Another issue is that the COV does not account for the uncertainty associated to the number

of generated REVs, although the calculated mean and standard deviations are less reliable as this
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number gets smaller.

These issues were addressed in the paper entitled General statistics-based methodology for the

determination of the geometrical and mechanical Representative Elementary Volumes of fractured

media, published in the Rock Mechanics and Rock Engineering journal (Loyola et al., 2021). This

work introduced a statistics-based methodology to calculate the geometrical and mechanical REV

sizes of fractured media. The methodology uses the Central Limit Theorem (CLT) to simplify and

generalize the procedure of defining the REV based on a variability-related criterion.

This chapter is dedicated to the presentation of this methodology and of the results obtained

in Loyola et al. (2021) for the geometrical and mechanical properties of fractured media. Then,

Section 5.5.4 explores the applicability of this methodology to define the REV for permeability

considering two scenarios: constant and variable aperture.

5.1 Sampling of the mean and the Central Limit Theorem

Consider a variable x that follows a certain probability distribution f(x). In most practical ap-

plications, the true mean µx and the true standard deviation σx of x are unknown and need to be

estimated. For that, a sample Sx must be taken from the population of x, which can be generally

represented as:

Sx = {x1, x2...xn} (5.1)

Note that Sx is a sample of samples: it contains the samples x1...xn, but, at the same time, it is a

sample of the many possible sets of n values that could be taken from the population. The number

n is called its sample size. From now on, the word sample will refer to a set Sx such as the one in

(5.1); the term sample size will refer to the number n of values of x in Sx and the term component

or individual sample will refer to a value such as xi.

The average x and the standard deviation s of the components of Sx provide an estimator for

the true mean value and the standard deviation of x . If various samples Sx of size n are repeatedly

taken, and for each of them the average x is calculated, it is possible to obtain the distribution f(x).

The Central Limit Theorem (CLT), which is the second fundamental theorem of statistics, states

that as n −→ ∞ the distribution f(x) approaches a normal distribution with mean µx and standard
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deviation σx , where:

µx = µx (5.2)

σx =
σx√
n

(5.3)

The CLTworkswhenmost of the random variables are independent andwhen important outliers

are not present. It is a powerful theorem because it works for variables that follow any distribution;

thus, even if x follows a distribution that is far from normal and that may not be described by any

known mathematical function, µx will tend to a normal distribution that is ruled by Equations 5.2

and 5.3. Normality can be observed from a certain sample size. A general rule of thumb states

that when n = 30, a normal distribution can be observed. However, this size actually depends on

the variable’s distribution f(x): it can be much bigger if f(x) is far from a normal distribution, or

significantly smaller if f(x) is nearly normal.

The CLT does not apply only to the average value, but to any sum Ax of the type:

Ax =
1

T

n∑
i=1

xi (5.4)

where T is an arbitrary scaling parameter. In this case, the distribution f(Ax) tends to be normal

with mean µAx and standard deviation σAx , where:

µAx =
n

T
µx (5.5)

σAx =

√
n

T
σx (5.6)

If Ax is the average value, T = n and Equations 5.5 and 5.6 become Equations 5.2 and 5.3,

respectively. Note that Equation 5.3 states that the standard deviation of the sample’s mean de-

creases when the sample size increases. This is intuitive, since bigger samples are expected to

generate estimations that are closer to the true mean.

Based on the normality of the distribution of the sample’s mean, the following confidence in-
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terval can be built for the average value x, estimated from N samples Sx:

x± t∗α,nd

s√
N

(5.7)

where t∗α,nd
is the t-value associated to the confidence levelα and the number of degrees of freedom

nd, where nd = Nx−1 andNx is the number of samples used to estimate the average. For a degree

of confidence α = 0.05, for example, a 95% confidence interval is built for the calculated average

x, which means that there is a 95% chance that the true mean is inside this interval.

5.2 Sampling theory applied to REVs

A parallel can be drawn between REVs and the concepts presented in the previous section. The

REV of a fractured rock mass can be regarded as a sample of fractures. In this perspective, the

sample size is then the number of fractures nf in the REV, which in turn is directly related to the

volume V of the REV as:

nf = V
ns∑
s=1

P0
(s) = V P0 (5.8)

where ns is the number of fracture sets, P0
(s) and P0 are the expected fractured density of the sth set

and of the network. The fracture density is the number of fractures per unit volume/area, depending

on the problem being 2D or 3D.

The statistical theory of the sampling of means provides meaningful insights for studies on

REVs because the REV, by definition, must be representative of the mean constitutive behavior.

Thus, a rigorous choice of the REV must be based on the accuracy of the average of the homoge-

nized properties. This was acknowledged by several works on fractured rocks that select the REV

based on the COV, which measures variability with respect to the average.

The existing works on fractured media, however, do not propose any general rule for the rela-

tionship between REV size and variability. Also, although the COV is a logical criterion, it does

not account for the uncertainty related to the number of simulated samples. This would be an im-

portant consideration since the number of simulations may face computational limitations. For

instance, several works on the REV for mechanical properties of fractured media that use Monte
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Carlo Simulations (MCS) do not use a large number of realizations: e.g. Min and Jing (2003) and

Esmaieli et al. (2010) used no more than ten simulations per size to define the REV based on DEM

simulations.

In order to account for the number of tested REVs, the COV can be replaced by a precision

error εrel related to the confidence interval in Equation 5.7 which is obtained by:

εrel =
εabs
x

= t∗nd,α
s(V )

x
√
N

(5.9)

The confidence interval of the averagewas already suggested byKanit et al. (2003) as a criterion

to select the REV for composites. Note that the standard deviation s is a function of the volume

V . In order to define this function, the authors perform a large number of simulations for different

REV sizes. Then, if a desired error and a number of realizations N is set, a volume V can be

calculated. The REV can be defined as the volume for which one simulation (N = 1) is required to

obtain a desired precision error. If a 95% degree of confidence is set, this would mean that a REV

with the calculated size would have a 95% chance of returning a value for a property that does

not differ from the true mean of this property by more than the set error. Alternatively, one can

impose a volume and calculate the number of realizations N required to attend the error criterion.

This methodology can be readily applied to fractured media studies, as was done by Caspari et al.

(2016). The methodology suggested in Loyola et al. (2021) simplifies this procedure by taking

advantage of the CLT, as will be explained below.

Consider a property Z of a fractured rock mass. For two different volumes V1 and V2, Equation

5.2 states that for both volumes the average Z has the same mean value and Equation 5.3 can be

used to establish the following relationship:

σZ(V2) = σZ(V1)

√
nf (V1)

nf (V2)
(5.10)

The standard deviation σZ(Vi) is estimated by s(Vi), which is the standard deviation of the

average Z taken from N REVs of volume Vi. The number of fractures nf corresponds to the

sample size n.

By replacing the number of fractures in volumes V1 and V2 for (5.8) and considering that their

P0 is approximately the same, (5.10) can be reformulated as:
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σZ(V2) = σZ(V1)

√
V1
V2

(5.11)

Equations 5.10 and 5.11 show that it is possible to estimate the standard deviation of Z associ-

ated to any REV size by obtaining sZ for one reference volume (V1) only, given that this reference

volume contains a sample size large enough for Z to follow an approximately normal distribution.

A first important property for which Equations 5.10 and 5.11 apply is the crack tensor F in

(2.34) and (2.36). All of the components in the fracture tensor, including its first invariant, are a

sum Sf of the form:

Sf =

nf∑
k=1

Y (k)

V
(5.12)

where Y (k) is a variable obtained from the product of geometrical features of the fracture k such

as the normal vector components and area, and V is the volume of the rock mass, which can be

replaced by (5.8) to obtain:

Sf = Fij =

nf∑
k=1

Y (k)P0
(V )

nf

=

nf∑
k=1

X(k)

nf

(5.13)

Thus, each component of the fracture tensor is the average of a variable X that contains infor-

mation on the geometry of a fracture and on the density over the domain. As such, regardless of

what the distribution of Y is, the fracture tensor components tend to a normal distribution, as stated

by the CLT, and their mean value and standard deviation can be estimated by Equations 5.2 and

5.3. Also, Equations 5.10 and 5.11 can be used to predict the standard deviations of the fracture

tensor components for any volume if the standard deviations for one volume only are known.

There are two main arguments that sustain the idea that the CLT also applies to the hydrome-

chanical properties. Firstly, these properties are calculated from volumetric averages of the stresses

and strains (Equation 2.10) and of the pressure gradients and fluxes (Equation 2.15), which, for be-

ing averages, theoretically follow the CLT.

A second argument is that there is a reported strong relationship between the hydromechanical

properties and the fracture tensor. Functions that relate mechanical and hydraulic properties to the

components of the fracture tensor were derived by Oda et al. (1984) and Oda (1985), for example.
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As long as these functions are continuous, they should respect the Delta Method, which is a well

known theorem in statistics that states that any differential function g(Y ) of a variable Y that has

a limiting normal distribution also tends to a normal distribution. The Delta method uses a Taylor

expansion truncated at the second term to calculate the standard deviation of g(Y ), whose limiting

normal distribution is the following:

g(Y ) ≈ N

(
g(µY ), (g

′(µY ))
2σ

2
Y

nY

)
(5.14)

where µY , σY and nY are the mean value, standard deviation and sample size of Y . As the function

g becomes closer to linear and the sample size becomes bigger, the truncated Taylor expansion is a

better estimation for g and its distribution converges faster to (5.14).

According to the Delta method, if the hydro-mechanical properties are a function of the fracture

tensor, they also theoretically tend to a normal distribution. Of course, these properties depend also

on other factors, such as the boundary conditions applied to the simulated volume, the current state

of the sample and other geometrical aspects that are not captured by the crack tensor. Nonetheless,

the following sections will show that the hypothesis of normality and Equations 5.10–5.11 work

well for different DFNs and can be used to simplify the definition of a REV for fractured media

while accounting for its stochastic nature.

5.3 Methods

This section presents the methodology employed by Loyola et al. (2021) to obtain the geometrical

and mechanical REV of two fracture networks. A similar approach was later used in the present

work to estimate the REV for permeability estimation, with the main differences being the number

of tested REVs, a change in the fracture intensity of one of the networks and the computational

tool used to solve the numerical problems. While Loyola et al. (2021) solved the mechanical prob-

lems with a FEM code whose functions were later transferred in part to DuMuX , the equivalent

permeability was calculated in this chapter using the Box method in DuMuX .

Equations 5.10 and 5.11 were tested for the DFNs used by Yang et al. (2014) and Min and

Jing (2003), which will be hereinafter referred to as Networks 1 and 2, respectively. Tables 5.1

and 5.2 present the statistical characterization of these networks. For Network 1, the length of the
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two existing sets follow normal distributions with different means and standard deviations. As was

shown by Loyola et al. (2021), the combination of these two sets results in an equivalent distribution

for the length that is more skewed than a normal one. As for the lengths in Network 2, they are

described by power-laws, which are even further from normal.

Table 5.1: Statistical parameters for Network 1, from Yang et al. (2014).
Dip orientation Length Density

Type Mean(°) Std. Deviation (°) Type Mean(m) Std. Deviation (m) (1/m2)

Set 1 Normal 150 10.0 Normal 4 1 0.16
Set 2 Normal 50 7.0 Normal 3 0.7 0.25

Table 5.2: Statistical parameters for Network 2, fromMin and Jing (2003). D and k are coefficients
of the power-law and Fisher distributions.

Dip/ Dip direction Length Density

Type Mean(°/ °) k Type Mean(m) D (1/m2)

Set 1 Fisher 8/145 5.9 Fractal 0.92 2.2 4.6
Set 2 Fisher 88/148 9.0 Fractal 0.92 2.2 4.6
Set 3 Fisher 76/21 10.0 Fractal 0.92 2.2 4.6
Set 4 Fisher 69/87 10.0 Fractal 0.92 2.2 4.6

Both works calculated the equivalent elastic tensor for the studied rock masses and obtained the

REV size for the elastic properties by progressively reducing the sample’s volume. A deterministic

approach was used for Network 1, while for Network 2 the authors used MCS to generate 10 statis-

tically equivalent samples. A similar approach is used here, with the difference that 1000 samples

were generated for each tested size. Figure 5.1 shows the process of generating samples. The stress

boundary conditions illustrated in Figure 2.5 were applied to the rock samples and Equations 2.10,

2.25 and 2.32 were used to obtain the elastic compliance tensor.

Network 1 was tested for 11 different square REVs with sizes that range from 2 m x 2 m to 22

m x 22 m. Network 2 was tested for 9 sizes that range from 0.5 m x 0.5 m to 8 m x 8 m. The DFNs

were stochastically generated with a Poisson process in an initial large domain and increasingly

smaller domains were cut out from the original one while maintaining the same geometrical center.

At each size reduction, the fractures whose centers lied outside of the new domain were removed;

those whose centers lied inside the new domain but intersected its boundaries had their lengths
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adjusted. The purpose of the removal of these external fractures is to not consider fractures that

would not be generated by an independent Poisson process at each REV (Loyola et al., 2021) and

thus to make the fracture density P0 approximately equal for all sizes. This eliminates the so-called

boundary effects demonstrated by Min et al. (2004a) and allow for the use of (5.11). Alternatively,

if the common approach of not removing external fractures were used, (5.10) would apply.

Meshes constrained by the DFNswere generated with calls to the software Triangle (Shewchuk,

1996) at the beginning of each simulation. Figure 5.2 shows an example of a generated DFN and

its correspondent mesh for each study case.

Then, interface elements were created with the procedure illustrated in Figure 3.2 by calling

the open-source code ciGen (Nguyen, 2014), which was modified to duplicate the nodes only at

edges where fractures are present. Not all simulations were successful because of the precision of

the output files of Triangle, which created overlapping nodes for fractures that were too close from

each other. The minimum number of successful simulations was 950 for the 22 m x 22 m REV of

Network 1 and 751 for the 8 m x 8 m REV of Network 2.

Figure 5.1: Generation of smaller REVs from bigger ones: geometrical center is maintained, ex-
ternal fractures are removed and boundary intersections are adjusted.

Figure 5.2: Examples of DFNs and conforming meshes for (a) Network 1 and (b) Network 2.
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In the numerical experiments, both the intact rock and the fractures are considered to be linear

elastic materials. Their properties, which were taken from the reference publications, are described

in Table 5.3.

Table 5.3: Elastic properties for the intact rock and the fractures of both study cases according to
Yang et al. (2014) and Min and Jing (2003).

Intact rock Fracture

E (GPa) ν Kn (GPa/m) Kt (GPa/m)

Network 1 50.00 0.25 50.00 10.00
Network 2 84.60 0.24 434.00 86.80

5.4 Results for the Geometrical REV

Figures 5.3 and 5.4 show Q-Q plots for the elements of the crack tensor of Networks 1 and 2. It is

clear that as the size of the REV increases, the crack tensor approaches a normal distribution. The 2

m x 2 m REV of Network 1 is severely skewed because its size is smaller than the average fracture

spacing, and thus some of the tested domains did not contain any fractures. Figure 5.5 shows the

average of the crack tensor components and its first invariant for the tested sizes.

The smallest sizes for which the averages seems to stabilize are 6 m for Network 1 and 3 m

for Network 2. Also, these are the first sizes to present maximum absolute values of 0.5 and 1.0

for the skewness and kurtosis, respectively, which are commonly used rules of thumb to attest

the normality of a distribution. These criteria are conservative when compared to the confidence

intervals built by Jones (1969) for these parameters. From the densities in Tables 5.1 and 5.2, these

sizes have an expected number of fractures of 15 and 166, respectively. As Network 2 presents

a length distribution that is much further from normality than Network 1, it is unsurprising that

it requires a larger sample size to lead to approximately normal distributions of the crack tensor

components.

By adopting the sizes of 6 m and 3 m as reference volumes for Network 1 and Network 2,

respectively, their standard deviations can be used to predict the standard deviations for any other

volume using Equation 5.11. Figures 5.6 and 5.7 compare the predicted and calculated standard

deviations. Except for the smaller values, for which the distribution of the crack tensor can not
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Figure 5.3: Q-Q plots for the fracture tensor of Network 1.

be considered to follow a normal distribution yet, the predictions are accurate. Thus, it is proved

that if DFNs are generated for a proper reference volume, this volume can be used to calculate the

geometrical REV using the error criterion in (5.9), with no need to generate fractured samples of

different sizes.

Figures 5.6 and 5.7 show the best fit power laws for the standard deviations as a function of the

REV size. By replacing s in (5.9) by the power function aLb and setting N = 1, the size L of the

geometrical REV can be calculated as:

L =

(
x εrel
1.96 a

)1/b

(5.15)
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Figure 5.4: Q-Q plots for the fracture tensor of Network 2.

where 1.96 is the t-value corresponding to the number of samples of the reference volume and to a

95% degree of confidence. If a 10% error is set, the resulting sizes L for the diagonal components

Fii of the crack tensor and of its first invariant I1 are the ones presented in Table 5.4.

Table 5.4: Calculated geometrical REVs for a 10% error.
Network 1 Network 2

Fxx Fyy I1 Fxx Fyy I1
Size (m) 35.7 37.0 33.7 6.8 6.5 5.6

The diagonal components Fii and the first invariant I1 were chosen for being strongly related

to the mechanical properties, as was discussed in Section 2.3. Based on these quantities and on a
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Figure 5.5: Average values of the fracture tensor components for (a) Network 1 and (b) Network
2.

Figure 5.6: Predicted and calculated curves of the standard deviation of the fracture tensor compo-
nents of Network 1 vs REV size. The red dot signalizes the reference volume.

10% error, the geometrical REV size is 37 m for Network 1 and 6.8 meters for Network 2, which

both are the largest values for each network. This means that one generation of DFNs in volumes
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Figure 5.7: Predicted and calculated curves of the standard deviation of the fracture tensor compo-
nents of Network 2 vs REV size. The red dot signalizes the reference volume.

with these dimensions are 95% likely to return geometrical measures that do not dist from their true

mean by more than 10%.

5.5 Results for the Mechanical REV

5.5.1 Results for the elastic properties

Loyola et al. (2021) obtained the equivalent elastic tensor for all of the generated REVs, which

resulted in 11,000 simulations for Network 1 and 9,000 simulations for Network 2. The focus of

the work was the elastic moduli Ex, Ey and Gxy. Their results will be presented here.

The explanation for why the CLT applies to the elastic moduli was based on their relationship

with the first invariant of the fracture tensor, I1, which is shown in Figures 5.8 and 5.9. A linear fit
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is a good estimation for this relationship. It is not perfect for two reasons: firstly, I1 is not the only

factor that affects the elastic moduli, which also depend on other geometrical features, such as the

particular intersections between the fractures in each DFN and on their resulting meshes. For that

reason, there is a dispersion of the elastic moduli for similar values of I1. Also, as was early proved

by Kulatilake et al. (1993), a power function would be an even better fit for these curves. Figures

5.8 and 5.9 show that the ranges of variation of I1 are short enough for this power function to be

treated as approximately linear; this becomes a better assumption as the REV becomes larger and

this range of variation becomes shorter. As stated before, from the Delta method it is possible to

infer that, if I1 follows a normal distribution, so does the elastic moduli. The quasi-linearity of their

relationship indicates that the convergence of the elastic moduli to a normal distribution should be

fast and almost simultaneous to the convergence of the geometrical properties.

Figure 5.8: Equivalent elastic moduli normalized by the elastic moduli of the intact rock, Ei and
Gi, vs first invariant - Network 1.

Figure 5.9: Equivalent elastic moduli normalized by the elastic moduli of the intact rock, Ei and
Gi, vs first invariant - Network 2.
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Figures 5.10 and 5.11 show the QQ-plots for the elastic moduli of the geometrical reference

volumes and Figures 5.12 and 5.13 show their extreme and average values. These data indicate

that for the reference sizes of 6 m for Network 1 and 3 m for Network 2 the distribution of the

elastic moduli are close to normal and their average values become stable. Thus, they seem to

follow the same tendency to normality than the fracture tensor. Table 5.5 compares the skewness

of the elastic moduli and of I1 and shows that, for the same size, the latter tends to be less skewed

and thus closer to normal. This can be explained by the non-perfect linear relationship between

these properties, but yet, the distributions of the elastic moduli can be considered approximately

normal. This is further confirmed by the accurate predictions made for the standard deviations of

the elastic moduli using (5.11), as shown in Figures 5.14 and 5.15.

Figure 5.10: Q-Q plots for the elastic moduli of the 6 m x 6 m REVs of Network 1.

Figure 5.11: Q-Q plots for the elastic moduli of the 3 m x 3 m REVs of Network 2.

By setting a 10% error and using the power law fits in Figures 5.14 and 5.15, Equation 5.15

can be used to calculate the mechanical REV sizes for the elastic moduli, resulting in 19.8 m for

Network 1 and 5.2 m for Network 2. For both networks, the mechanical REVs are smaller than the
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Figure 5.12: Average, minimum and maximum elastic moduli for Network 1.

Figure 5.13: Average, minimum and maximum elastic moduli for Network 2.

Table 5.5: Skewness of the elastic moduli and the first invariant of the crack tensor of Networks 1
and 2.

Skewness Network 1 Skewness Network 2

Size I1 Ex Ey Gxy Size I1 Ex Ey Gxy

2 m x 2 m 0.89 0.36 0.43 -0.11 0.5 m x 0.5 m 0.52 0.87 0.94 0.96
4 m x 4 m 0.60 0.49 0.56 0.01 1 m x 1 m 0.25 0.80 0.64 0.77
6 m x 6 m 0.35 0.42 0.50 0.15 2 m x 2 m 0.25 0.43 0.38 0.50
8 m x 8 m 0.14 0.36 0.49 0.30 3 m x 3 m 0.18 0.24 0.31 0.28
10 m x 10 m 0.19 0.20 0.29 0.14 4 m x 4 m 0.16 0.22 0.21 0.13
12 m x 12 m 0.21 0.11 0.19 0.16 5 m x 5 m 0.09 0.17 0.21 0.21
14 m x 14 m 0.18 0.14 0.17 0.10 6 m x 6 m 0.09 0.19 0.14 0.14
16 m x 16 m 0.09 0.19 0.21 0.11 7 m x 7 m 0.04 0.26 0.11 0.19
20 m x 20 m 0.07 0.14 0.19 0.13 8 m x 8 m 0.01 0.27 0.11 0.15
20 m x 20 m 0.00 0.15 0.24 0.22
22 m x 22 m -0.07 0.21 0.29 0.21

geometrical ones. This suggests that the geometrical REV can be used as a conservative estimation

for the REV of the elastic properties. However, this topic is controversial because other studies

concluded the opposite (e.g. Esmaieli et al., 2010; Ni et al., 2017), so more DFNs would need to
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Figure 5.14: Predicted and calculated curves of the standard deviation of the elastic moduli of
Network 1 vs REV size. The red dot signalizes the reference volume.

Figure 5.15: Predicted and calculated curves of the standard deviation of the elastic moduli of
Network 2 vs REV size. The red dot signalizes the reference volume.

be tested with a large number of experiments before setting any general rule for the relationship

between geometrical and mechanical REVs.

Table 5.6: Calculated mechanical REVs for the elastic moduli for a 10% error.
Network 1 Network 2

Ex Ey Gxy Ex Ey Gxy

Size (m) 18.5 19.8 14.4 5.0 4.9 5.2
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5.5.2 Applicability to non-elastic problems: a preliminary verification

The fracture network in a rock mass does not affect only its deformability, but also reduces its

strength and changes its mechanisms of failure. Since predictions concerning shear failure are of

extreme importance to several geomechanical problems, the upscaling of mechanical properties for

large scale simulations usually include the determination of models for the equivalent strength.

For that reason, Equations 5.10 – 5.11 were tested for their capability of predicting the standard

deviation of the Uniaxial Compression Strength (UCS) of fractured rocks using the data of two

publications: Esmaieli et al. (2010) and Farahmand et al. (2018). It is likely that the concepts pre-

sented above apply, at least partially, to the upscaling of strength because this property is allegedly

related to the fracture tensor by a power function (Wu and Kulatilake, 2012).

Esmaieli et al. (2010) obtained the equivalent UCS for five 3D samples of each tested size;

Farahmand et al. (2018) used 2D samples and considered from three to ten REVs of each tested

size. They also considered fracture propagation by the inclusion of a cohesive crack model. A

summary of their data is presented in Tables 5.7 and 5.8.

Table 5.7: Data for the Uniaxial Compressive Strength in Esmaieli et al. (2010).
Sample size (m) Number of samples Avg. number of fractures Std. Dev. UCS (MPa)

1.5 m x 1.5 m x 3.0 m 5 30.8 42.7
3.5 m x 3.5 m x 7.0 m 5 197.1 17.8
7.0 m x 7.0 m x 14.0 m 5 1214.4 8.9
10.0 m x 10.0 m x 20.0 m 5 152.1 3.6

Table 5.8: Data for the Uniaxial Compressive Strength in Farahmand et al. (2018). The data was
retrieved from Fig.14 of the paper.

Sample size (m) Number of samples Std. Dev. UCS (MPa)

5.0 m x 2.0 m 8 25.6
7.0 m x 2.8 m 7 9.2
8.0 m x 3.2 m 5 6.9
9.0 m x 3.6 m 4 4.6
10.0 m x 4.0 m 3 3.7

Figure 5.16 presents the estimations of the standard deviation of the UCS against the values

obtained by Esmaieli et al. (2010). Also, it presents the confidence intervals for the standard de-
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viations based on the number of samples in Table 5.7. The estimated standard deviations are all

inside the confidence intervals and are close to those obtained by the DEM simulations. Since the

authors provided the average number of fractures for each tested size, Equation 5.10 was used for

the predictions. The 3.5 m x 3.5 m x 7.0 m was selected as the reference volume because it is the

first size to contain an average number of fractures that is safely above the general rule of thumb

of minimum sample size of 30 to observe normality.

Figure 5.17 presents the estimated and calculated standard deviations of the UCS of the rock

mass tested by Farahmand et al. (2018). As there is no information on the number of fractures,

Equation 5.11 was used. Figure 5.17 shows that reasonable predictions of the standard deviation

of the first invariant of the fracture tensor I1 can be made from the REV of dimensions 5 m x 2 m.

Since the non-perfect linear relationship between I1 and the mechanical properties leads the latter

further from a normal distribution, the immediately larger REV of 7 m x 2.8 m was selected as

the reference volume for the UCS. Fair predictions were obtained for the volumes larger than the

reference REV. For the 5 m x 2 m domain, the estimation is inside the interval of confidence, but

distant from the value calculated from the simulations. Besides the small number of samples, this

could be explained by the inadequacy of Equation 5.11, because it assumes different REV sizes

to have the same fracture density. Equal densities are only attainable with the approach used here

to remove external fractures in the generation of the DFNs, which is not a standard procedure in

fractured REV studies, Also, as Farahmand et al. (2018) consider fracture propagation, it is even

more likely that distinct volumes have differences in their fracture density at failure. Anyhow, the

results obtained for the sizes larger than 7 m x 2.8 m are encouraging and tend to show that the

methodology here presented can be extended to non-elastic parameters.

5.5.3 Methodology to define the REV size

Based on the results presented above, the following steps were defined by Loyola et al. (2021) to

obtain the geometrical and mechanical REV size for fractured rocks:

[1] Choose a reference volume Select a reference volume that returns approximate normal dis-

tributions for the properties. An initial guess for the reference volume can be made by using the

rule of thumb that defines a minimum sample size of 30; thus, a volume for which there are at
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Figure 5.16: Standard deviations of the UCS obtained by Esmaieli et al. (2010) for samples with
sizes L x L x 2L and those predicted with (5.10) from the reference volume with L = 3.5 m. The
red dot signalizes the reference size of L.

Figure 5.17: Standard deviations of I1 and of the UCS obtained by Farahmand et al. (2018) for
samples with sizes L x 0.4 L and those predicted with (5.11). The red dot signalizes the reference
size of L.

least 30 fractures can be used to generate a large sample of DFNs. If the obtained distribution for

the fracture tensor is approximately normal, the choice of the geometric reference volume is valid.

Since the data for the elastic moduli tends to be more skewed than the first invariant of the fracture

tensor, we recommend the reference volume of the numerical experiments to be larger than the ge-

ometrical reference volume, specially if the number of REVs to be tested is small. The definition
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of normality can be made based on a maximum skewness of 0.5 and maximum kurtosis of 1.0 or

by the visual inspection of the QQ-plots.

[2] Obtain homogenized properties Perform numerical tests on the REVs to obtain the upscaled

properties and their statistical distributions for the reference size.

[3] Predict standard deviations for other sizes Use Equation (5.10) or Equation (5.11) (if the

fracture density does not vary significantly between REV sizes) to calculate the standard deviations

of the upscaled property for any other REV size. Use Equation (5.9) to obtain the predicted errors.

[4] Select REV size Set a maximum precision error and select the size of the REV and the number

of simulations N that will be used to estimate the average properties.

A large number of REVs was used so: (i) the distribution of the properties could be observed

and (ii) their standard deviation could be predicted with accuracy. Using the fact that the standard

deviation of a normal variable follows a chi-squared distribution, it is possible to build a confidence

interval for the calculated standard deviations and affirm that they are 95% likely to not present an

error higher than 6%. However, works on fractured media usually employ a much smaller number

of samples. It was shown in Loyola et al. (2021) that a small set of REVs can be selected for the

numerical experiments from a larger original population of generated DFNs. Sets of 10 and 50

REVs were selected under the criterion of not returning averages and standard deviations for the

fracture tensor elements that differed by 5% or less from those of the original population. These

smaller sets yielded accurate estimations, and the higher uncertainty attributed to them is already

considered in their higher t-values.

5.5.4 Hydraulic REV

Min et al. (2004a) studied the equivalent permeability for Network 2, described in Table 5.2. They

used 10 realizations for some tested sizes and 50 for others, for which they observed the distribution

of intrinsic permeability.

The strong relationship between permeability and the fracture tensor, which was discussed in

Section 2.3.3, indicates that the methodology presented above could work for the hydraulic REV as
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well. When observing the distributions obtained by Min et al. (2004a), the possibility of applying

the CLT for this particular network is evenmore evident, since theywere shown to be approximately

normal. To confirm that, 500 generations of Network 2 were used to upscale permeability using

DuMuX . Following Min et al. (2004a), linear pressure boundary conditions were applied (Fig-

ure 2.2). Permeability was calculated using Equations 2.15, 2.21 and 2.33. Although the authors

observed a variability in aperture in their field measurements, a constant aperture of 65 µm was

adopted for the fractures. From the cubic law, this gives an intrinsic permeability of 3.5×10−10 m2

for these discontinuities.

There are three main differences between the simulations performed here and those from the

reference study. While Min et al. (2004a) used the DEM, removed isolated fractures and dead-

ends and considered the rock matrix to be impermeable, the experiments here were simulated with

the Box method, without any alteration to the generated DFN and considering a 1 × 10−15 m2

permeability for the rock matrix. This latter avoids a singular matrix when solving the multi-

domain system in DuMuX . For the computation of permeability the external fractures were not

removed, so the applicability of Equation 5.10 is demonstrated. Also, the fracture densities used

for the generation of the DFNs are half the values presented in Table 5.2 to assess their effect on the

size of the geometrical REV. Because of that, this fracture network will be referred to as modified

Network 2.

Figure 5.18 presents the average values of the components of the fracture and permeability

tensors. The average values of the fracture tensor seem stable for sizes larger than 2 m. The Q-Q

plots in Figure 5.19 confirm that the size of 2 m presents a fairly normal distribution. For that

reason, this was selected as the reference size to predict the standard deviations of the fracture

tensor components. Figure 5.20 shows there is a good agreement between the predictions and the

results obtained from the sample of 500 generations.

Since the proposed methodology requires the selection of a reference volume for the upscaled

properties without the simulation of various sizes, a first try for the reference volume for permeabil-

ity could be the size of 3 m. This follows the recommendation in step 1 of Section 5.5.3 to select

a volume bigger than the reference volume for the geometrical properties. Figure 5.18 shows that

the greatest variations in the average permeabilities occur for sizes smaller than 3 m. Thus, 3 m

seems to be a size for which the permeability distributions are nearly stable.
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Figure 5.18: Average values of the fracture tensor and permeability tensor components as a function
of size - modified Network 2.

Figure 5.19: Q-Q plots for the fracture tensor of the 2 m x 2 m REVs of modified Network 2.

Figure 5.20: Predicted and calculated curves of the fracture tensor components of the modified
Network 2 vs REV size. The red dot signalizes the reference volume.

The Q-Q plots in Figure 5.21 show that the permeability components have approximately nor-

mal distributions for the size of 3 m, although there is a more perceptible skewness than in the data
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for the fracture tensor components (Figure 5.19).

Kulatilake and Panda (2000) showed that permeability for a direction i is related to the diagonal

component of the fracture tensor that is normal to i. Figure 5.22 shows that for the studied DFN

these relationships are approximately linear, as it occurs for the elastic moduli. This explains the

approximate normality of the permeabilities distributions.

Figure 5.21: Q-Q plots for the permeability tensor of the 2 m x 2 m REVs of modified Network 2.

Figure 5.22: Equivalent permeability vs fracture tensor components - modified Network 2.

Figure 5.23 presents the comparison between the predicted and calculated standard deviations

of the permeability. The predictions match the results from the simulations satisfactorily. The

average difference between the calculated and predicted standard deviations is 7.6 % for kxx, 4.9

% for kxy and 5.6 % for kyy.

Using the power-law fits and adopting a 10% precision error, the geometrical and hydraulic

REV sizes in Table 5.9 were obtained. As expected, the decrease in the fracture density makes the

REV size bigger. The geometrical REV sizes for the components Fxx and Fyy are 47% and 60%

larger then for a DFN with fracture intensity twice as big (Table 5.4). The REVs for permeability

are significantly larger than those for the geometrical properties; so, in this case, a choice based

only on the geometrical properties would not be conservative. Since these sizes may be too large
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Figure 5.23: Predicted and calculated curves of the permeability tensor components of the modified
Network 2 vs REV size. The red dot signalizes the reference volume.

to perform efficient simulations or to respect the principle of separation of scales, an alternative

would be to upscale a quantity N of smaller samples (see Equation 5.9).

Table 5.9: Calculated geometrical and hydraulic REVs for a 10% error.
Modified Network 2

Fxx Fxy Fyy kxx kyy kxy
Size (m) 10.9 23.9 9.6 22.0 52.2 24.5

5.5.4.1 Varying aperture

Several field measurements show that aperture presents a variability within a fracture set and that

it correlates with fracture length. The adoption of a constant aperture is a model simplification

that might provide for proper estimations of the averaged permeability (De Dreuzy et al., 2012).

However, since the permeability of a fracture depends highly on its aperture (Equation 2.68 ), this

simplificationmight give erroneous predictions for the fluid distribution, because it can not consider

the possible formation of preferential flow paths that pass through the wider fractures. From this

fact alone it is already possible to infer that if a variable aperture is considered, the variability of

the upscaled permeability is expected to increase.

Baghbanan and Jing (2007) investigated the size and existence of the REV for the permeability

of Network 2 (Table 5.2) when the aperture is variable and follows a log-normal distribution. Three

different scenarios were explored: constant aperture, variable aperture with a distribution indepen-
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dent from the length’s distribution and variable aperture correlated with length. Using 10 DFN

generations for each REV size, they could estimate the COV and average values of the permeabil-

ity tensor. The upscaled permeabilities when the aperture is variable were significantly higher than

those for constant aperture. Also, while for the constant aperture case there was a consistent de-

crease of the COVwith size, the data for variable aperture were more scarred, because of the higher

variability of the permeability and also possibly because of the low number of DFN generations.

The case of variable aperture correlated to length will be tested here for a bigger number of DFN

generations to observe the distribution of the permeability and to test the statistical methodology

proposed above. Fracture aperture w and length l are correlated by truncating their respective

log-normal and power law distributions, as detailed by Baghbanan and Jing (2007). The resulting

correlation relationship is the following:

l =

(
l−D
min +

g(w)− g(wmin)

g(wmax)− g(wmin)
(l−D

max − l−D
min)

)−1/d

(5.16)

where lmin and lmax are the minimum and maximum fracture lengths, respectively;D is the expo-

nent of the power law distribution in Table 5.2; wmin and wmax are the minimum and maximum

apertures, respectively and the function g(w) is equal to:

g(w) = erf

(
lnh− wlog√

2σwlog

)
(5.17)

where erf is the error function and wlog and σwlog
are the mean and standard deviation of the log-

normal distribution for the fracture aperture. Table 5.10 presents the parameters used to define the

relationships (5.16) and (5.17).

Table 5.10: Parameters used by Baghbanan and Jing (2007) to define the log-normal distribution
of the aperture and their correlation with length.

lmin(m) lmax(m) wmin(µm) wmax(µm) wlog(µm) σwlog
(µm)

0.5 250.0 1.0 200.0 65.0 1.0

The fractures lengths vary in a wide range, as it often does in fractured rock masses. Due to

its power law distribution, the long fractures are rare, which also agrees with usual field condi-

tions. In fact, for this distribution, 95 % of the fractures have lengths smaller than 2 m, and the
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average fracture length is 0.92 m (Baghbanan and Jing, 2007). The rare fractures that might have

a trace-length of tenths or even hundreds of meters are reduced by the REV size and often become

discontinuities that cross the entire REV from one end to an other. In the case of constant aperture,

this big fractures did not produce important outliers that affected the hypothesis of normality (Fig-

ure 5.21) necessary to use Equations 5.10 and 5.11. However, the case of the aperture correlated

with length is a good test of the limits of this methodology. In this scenario, the longer fractures,

although not frequent, will not only have larger trace lengths, but also a much larger aperture, and

thus higher permeability than the others. As a consequence, they have the potential of being out-

liers in the sense that they alone might contribute to a significant part of the upscaled permeability.

To work with a problem that is even harder to homogenize, and also to compare the distribution of

the permeability with the constant aperture case, we will use here the modified Network 2, that is,

Network 2 with half the fracture intensity. The tested REV sizes lie between 3 m and 25 m and 500

DFN generations were used.

Figures 5.24, 5.25 and 5.26 show the distribution of the permeability components kxx, kxy and

kyy and the reference line for a normal distribution for the sizes of 5 m, 11 m and 21 m. In the

case of kxx and kyy, the observed distributions are much more skewed than a normal one, and

actually would better fit a log-normal distribution. It can be observed, however, that there is a slow

convergence towards a normal distribution. The distribution of kxy also starts off far from normal,

but converges faster to normality as the size increases.

For comparison purposes, the upscaled permeability was also calculated for 500 generations of

the original Network 2, with fracture intensity of 4.6/m2. Figure 5.27 compares their distributions

of kyy; as expected, the convergence to normality is faster as the fracture density increases. Since

what defines the convergence to normality is basically the sample size, this confirms that for larger

sizes the modified Network 2 should approach a normal one. Also, this shows how the CLT is

theoretically more applicable to larger fracture densities.

Having in mind these considerations and the non-normality of most of the tested REV sizes for

modified Network 2, the methodology described in Section 5.5.3 is used anyway to evaluate the

predictability of Equation 5.10.

The first step is to select a reference volume based on the distribution of the crack tensor. The

formulation used here is the one in (2.36), which accounts for the cube of the aperture. Figure
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Figure 5.24: QQ-plots fot the permeability kxx of the modified Network 2 with variable aperture
for sizes 5 m x 5 m, 11 m x 11 m and 21 m x 21 m.

Figure 5.25: QQ-plots for the permeability kxy of the modified Network 2 with variable aperture
for sizes 5 m x 5 m, 11 m x 11 m and 21 m x 21 m.

Figure 5.26: QQ-plots for the permeability kyy of the modified Network 2 with variable aperture
for sizes 5 m x 5 m, 11 m x 11 m and 21 m x 21 m.

5.28 shows that the distributions of this crack tensor approach normality as the size increases. The

first size to return a maximum skewness of 0.5 and maximum kurtosis of 1.0 for all the tensor

components is 7.0 m. So, this is adopted as the reference REV.

Figure 5.29 shows that the curve of standard deviation versus size can be fairly well predicted
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Figure 5.27: Comparison of the QQ-plots for the permeability kyy of modified Network 2 (red),
with fracture intensity of 2.3/m², and the original Network 2 (green), with fracture intensity of
4.6/m². The REV sizes are 3 m x 3 m, 9 m x 9 m and 13 m x 13 m.

for sizes above 7.0 m, despite of the significant skewness of the permeability distribution. The

predictions are not as close to the simulated results as for the constant aperture case (Figure 5.23),

specially for the smaller sizes. Also, as it occurs in the data obtained by Baghbanan and Jing

(2007), there is not a consistent decrease with size of the standard deviations calculated from the

simulations. This might be due to the presence of outliers. Still, the average difference between

the calculated and predicted standard deviations is 8.2 % for kxx, 6.1 % for kxy and 7.2 % for kyy.

These differences are larger than for the constant permeability case, but can still be considered

acceptable.

Table 5.11 presents the calculated hydraulic REVs for modified Network 2 considering a pre-

cision error of 10%. The sizes are significantly larger than those for the constant aperture case.

Hence, a variable aperture makes it harder to obtain a proper REV for homogenization, i.e. a vol-

122



Figure 5.28: QQ-plots for the crack tensor P in Equation 2.36 of the modified Network 2 with
variable aperture for sizes 3 m x 3 m, and 7 m x 7 m.

Figure 5.29: Predicted and calculated curves of the permeability of the modified Network 2 with
variable aperture vs REV size. The red dot signalizes the reference volume.

ume that respects the separation of scales.

Table 5.11: Calculated hydraulic REVs for modified Network 2 with variable aperture considering
a 10% error.

kxx kyy kxy
Size (m) 71.4 143.0 63.9
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5.6 Conclusions of the chapter

A proper REV should return a good estimation of the mean constitutive behavior of the sampled

material. For this reason, some works define a REV for random media based on the precision error

of the estimated average values of the equivalent properties. We consider this criterion to be more

adequate than the COV because it accounts for the number of tested samples.

The process of defining the size of the REV based on a variability-related criterion would nor-

mally require a considerable number of simulations, since a distribution of the studied properties

would have to be generated for each tested size. It was shown here that the application of the CLT

simplifies this process and makes it general for different DFNs by means of general equations that

predict the standard deviation of a property.

The applicability of these equations was tested for two very different fracture networks that

were previously studied for the size of their REVs. The geometrical REV was defined based on

Oda’s crack tensor, which theoretically has a limiting normal distribution. Because of their strong

correlation with the crack tensor, the distributions of the equivalent mechanical properties and the

intrinsic permeability tend to normal. As a consequence, the proposed equations could be suc-

cessfully applied to predict the standard deviation of the studied properties based on the data for a

reference volume only. It was shown that the decay of these standard deviations depends on the

sample size only, which can be represented by the dimensions of the REV or by its average number

of fractures.

The last tested scenario was the REV for permeability when the aperture of the fractures is

variable and correlated to their lengths. Because of the existence of occasional very large and wide

fractures that give an important individual contribution to the calculated permeability, outliers are

present. As such, the limits of the applicability of the CLT were tested. Indeed, the calculated

standard deviations were more scarred in this case and the approximation to a normal distribution

was very slow. In fact, except for the larger tested sizes, a log-normal distribution would be a better

fit. Even so, the predicted standard deviations were reasonable.

Log-normal and normal distributions for permeability are commonly reported in the literature.

For example, Azizmohammadi and Matthäi (2017) studied the permeability of several DFNs and

obtained log-normal distributions for some cases and normal distributions for others. In the case
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of the log-normal fits, it is unclear whether the authors didn’t test sizes that were large enough for

normality to be reached or if their limiting distributions were indeed log-normal. Anyway, a log-

normal distribution would not be an impediment for the use of the methodology presented here.

Indeed, it would only require the log-permeability to be the analyzed property.

About the presence of outliers, they could be removed by selecting a proper scale of study. If

the homogenization of the REV is to be used in a large scale simulation, it would be desirable to

limit the microscale to a certain size of fractures and to explicitly represent the larger fractures at

the macroscale. Here we opted for not setting a maximum length for the fractures to test the limits

of the methodology; for that reason, there were many persistent wide fractures in the samples.

For one of the networks, we calculated the REV size for the geometrical properties, the elastic

moduli and the permeability. The REV for permeability was the largest and the REV for the me-

chanical properties was the smallest. These results showed that it is not always possible to define

a REV size based on the geometrical properties only. Furthermore, and as expected, the REV for

permeability when a variable aperture is considered is significantly larger than for the same network

with constant aperture.

The REV sizes obtained for the permeability of Network 2 would be hardly viable in a multi-

scale simulation because of computational costs. But since the aim of defining a REV is to obtain

a precise average constitutive response, a possible alternative would be to pick smaller REVs that

return equivalent properties that are close to the mean value and mimic well the behavior of a larger

volume, while meeting a chosen error criterion.
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Chapter 6

Multiscale simulation: methods and

implementation

6.1 Multiscale methods

Engineering models often rely on analytical homogenization and on numerical upscaling to account

for small heterogeneities. However, both approaches are limited. Analytical methods can not deal

with complex non-linear phenomena and may require a level of abstraction that makes the idealized

materials very different from the actual ones.

Numerical upscaling does not have the same drawbacks, but it disregards two important aspects

of thematerials behaviour. The first one is a possiblemulti-physics nature, thanks to which different

physical laws may be necessary to describe different scales. This is an issue because upscaled

solutions require a prior assumption on the form of the large-scale constitutive laws; and sometimes

the upscaled response is too complex to fit in any known model.

The second aspect that upscaling may fail to capture is the state-dependent nature of the ma-

terials behavior. Since there must be a choice on the boundary conditions used in the numerical

experiments, the constitutive properties are obtained only for a limited amount of scenarios. Even

if the boundary value problem at the REV is carefully chosen to well represent the macroscale,

upscaling will hardly be able to capture all the dynamic aspects of the actual large-scale problem,

namely the spatial and time variations in state and the consequent changes in the constitutive be-

havior.
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Several different multi-scale methods have been developed to surpass these limitations and

make numerical models more robust. We use the term multiscale method to refer to numerical

techniques where multiple scales are solved numerically and coupled to each other by some sort of

transfer of information. They have the following advantages:

• They can capture the small-scale effects at the large-scale without the need of resolving all

of the small-scale features.

• When using thesemethods, it is not necessary to formulate a constitutive law for themacroscale;

its behavior arises from the simulation of the microscale.

• The boundary conditions of the microscale problem are dynamic and arise from the current

state at the large-scale.

The most popular multiscale methods used in the field of engineering were originally formu-

lated with a classical finite-element discretization (e.g. Hou andWu, 1997; Smit et al., 1998). Since

then, other numerical methods have been used with similar methodologies. Some works maintain

the FEM at the macroscale but use different methods to solve the microscale (e.g. Wang and Sun,

2019). Others exchange the FEM completely by a more convenient method. For example, Aarnes

(2004) introduced the mixed FEM to the original formulation by Hou and Wu (1997) with the ob-

jective of adding local mass conservation, which is usually a desired feature in reservoir simulation.

Here, we also add local mass conservation to a multiscale method originally formulated with the

classical FEM. However, the locally conservative method to be used is the Box, and the multi-scale

method to be adapted is the multi-level FEM by Smit et al. (1998).

6.2 Multi-level finite element method

The multi-level finite element method, also called the finite element method squared (FE2), was

first proposed by Smit et al. (1998) and applied to model the mechanical behavior of non-linear

heterogeneous materials. As the name suggests, the method uses the FEM to solve both the macro

and the microscale problems.
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In the multi-level finite element method each integration point of the macroscale consists of

a REV or a unit cell for periodic media. Treating the REV as a point implies that its dimensions

should be small enough for separation of scales to exist.

The general algorithm for the solution of a hydro-mechanical problem at the microscale is the

following:

1. Localization: receive the macroscale displacement and pressure gradients and convert them

into consistent boundary conditions.

2. Solve the microscale boundary value problem.

3. Homogenization: return averaged stresses and fluid velocities to the macroscale.

This procedure is nested in the macroscale problem, which is solved with a common iterative

method. The difference from a solution with only one-scale is that each computation of stresses

and fluxes at the integration points correspond to a simulation of the REV following the procedure

described above.

Since Smit’s pioneer work, the method has been extended and used in a variety of applications,

including themodeling of elastoplastic (e.gMiehe et al., 1999) and viscoelastoplastic (e.g Feyel and

Chaboche, 2000; Kouznetsova et al., 2001a) heterogeneous materials, as well as fracturing media

(e.gWu and Kulatilake, 2012); localization problems were addressed by Kouznetsova et al. (2004),

who proposed a second order multi-level finite element that uses a higher order approximation of

the macroscopic strains.

The method was first used to model coupled phenomena by Özdemir et al. (2008) in the field

of thermo-mechanics. Similar strategies were later applied to hydro-mechanical problems. For

instance, Frey et al. (2013) proposed the use of the method to assess the evolution of transmissivity

properties of cohesive rocks; their microscale model consists of hyperelastic grains and cohesive

interfaces through which a compressible fluid percolates. Their technique was later applied by

Marinelli et al. (2016) to model the consolidation of granular solids. More recently, Bertrand et al.

(2020) used the method to capture the effects of shrinkage and swelling of fractured coal in the

production of gas; in their microscale model, the cleats are explicitly represented and have a stress-

dependent permeability. Hydro-mechanical coupling has also been incorporated to second-order
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computational homogenization by van den Eijnden et al. (2016, 2017), who applied the finite el-

ement method squared to model the strain localization during the excavation of a gallery. All of

these works assume steady-state flow at the microscale; this is supposed to be a good hypothesis

when separation of scales is strong enough for the pressure changes to be considered instantaneous

at the REV.

Larsson et al. (2009) tested the hypothesis of quasi-stationarity at the microscale for different

REV sizes in a heat conduction problem; their results show that the quasi-stationarity assump-

tion leads to very accurate solutions only when the REV size is between at least 100 and 1000

times smaller than the macroscale characteristic length. They proposed a multi-level finite ele-

ment method where the problem at the REV is transient, which was later extended to consolidation

problems (Larsson et al., 2011b). Since then, other approaches were adopted to consider the micro-

scopic transient terms in hydro-mechanical analyses with one-phase (Khoei and Hajiabadi, 2018)

and multiphase flow (Khoei and Saeedmonir, 2021).

6.3 Equations of the macroscale problem

The hydro-mechanical problem at the macroscale is described by the mechanical equilibrium:

∇ · σM + bM = 0 (6.1)

and the mass conservation equation for one fluid phase:

Υ̇M +∇ · (ραvM)− qM = 0 (6.2)

The subscriptM denotes the macroscale, σ is the total stress tensor, b is the body force vector,

M is stored mass of fluid per unit volume, v is the fluid velocity vector and q is a flux source term.

The terms σM , Υ̇M and vM are outcomes of the homogenization of the REV. They are cal-

culated from the volume averages in Equations 2.7, 2.12 and 2.14, which are revisited below for

convenience:

σM(y, t) = ⟨σm(x, t)⟩ (2.7)
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vαM(y, t) = ⟨vαm(x, t)− xΘ̇mα⟩ (2.12)

ΥMα(y, t) = ⟨Υmα(x, t)⟩ =
1

V

∫
V

ρmα(x, t)Θmα(x, t)⟩ (2.14)

The macroscale total stresses in (2.7) can be rewritten in terms of the microscale effective

stresses (σ′
m) and pore-pressures (pm):

σM = ⟨σm⟩ = ⟨σ′
m + bmpmδ⟩ (6.3)

where bm is the Biot’s coefficient at the microscale.

Here, the fluid density will be considered to be constant, so the macroscale storage term in

(2.14) becomes:

Υ̇M = ρf Θ̇M (6.4)

For one-phase flow, the volumetric content is equal to the porosity; so, considering (2.62),

(2.14) can be rewritten as:

Θ̇M = ⟨Θ̇m⟩ = ⟨bmε̇vm +
˙pm

Mm

⟩ (6.5)

where εvm and Mm are the microscale’s volumetric strains and Biot’s modulus. Note that the

volumetric strain of a fracture is obtained from the aperture variation in (2.65).

Equations (6.1) and (6.2) will be solved as a monolithic system, that is, with a full-coupling

scheme. Similarly to the microscale problem, the discretization is made with the Box method. The

only difference is that there are no interface elements at the macroscale, because the fractures are

explicitly represented only at the level of the REV.

Since the system formed by (6.1) and (6.2) is non-linear, it will be solved with the Newton-

Raphson scheme. During this iterative process, the macroscale solution vector, composed of the

displacements uM and the pressures pM , is updated as:
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uj+1,t
M

pj+1,t
M

 =

uj,t
M

pj,t
M

 +

duj+1,t
M

dpj+1,t
M

 (6.6)

where:

(J)j,t

duj+1,t
M

dpj+1,t
M

 =

(Ψs
M)j+1,t − (Ψs

M)j,t

(Ψf
M)

j+1,t − (Ψf
M)

j,t

 (6.7)

The vectors (Ψs
M) and (Ψf

M) store force and flux residuals, respectively, and J is the Jacobian

matrix, given by:

J =

∂Ψs
M

∂uM

∂Ψs
M

∂pM

∂Ψf
M

∂uM

∂Ψf
M

∂pM

 (6.8)

The particularity of the system assemblage in multiscale methods is that ΨM and J are com-

puted from the solution of the boundary value problem at REV of each integration point. There

are different possible techniques that can be used to compute J ; the strategy adopted here will be

discussed in the following section.

The general algorithm of themulti-level FEMwill be adopted in this work. However, the spatial

discretization at both scales is made with the Box. So, it is more adequate to refer to the multiscale

method we use here as multi-level Box from now on.

6.4 Multi-level Box

The main difference between the multi-level Box and the multi-level FEM is the position of the

integration points, and, consequentially, of the REVs. Figure 6.1 indicates these locations for tri-

angular and quadrangular elements; each mid-point of a face that is not located at the boundary

and each center of a sub-control volume (SCV) of the domain corresponds to a REV. The REVs

are used to compute homogenized stresses and velocities; the REVs at the center of sub-control

volumes are used to compute the homogenized storage term.

6.4.1 Localization

The quantities to be passed from the large-scale to the REV are the pressure gradient vector:

131



Figure 6.1: Location of the REVs in the multi-level Box method: each center of a face and of a
SCV contains a REV. The REV receives the interpolated pressures and gradients at these locations,
and sends homogenized fluxes and stresses to the faces and the homogenized storage term to the
SCV.

∇MpM =


∂pM
∂x

∂pM
∂y

 (6.9)

the displacements gradient matrix:

∇M ⊗ uM =

∂uMx

∂x
∂uMx

∂y

∂uMy

∂x

∂uMy

∂y

 (6.10)

and the macroscale pressure pM , which is to ensure that the pressure field at the microscale is

compatible with the macroscale. We employ here the following constraint used by (Frey et al.,

2013):

pM = ⟨pm⟩ (6.11)

These variables are all evaluated at the faces and sub-control volumes centers using the finite
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element shape functionsN . For a REV located at the local coordinates (ξ, η) inside an element ζ:

pM ≈
∑
k∈ζ

Nk(ξ, η)p̂M,k (6.12)

∂pM
∂xi

(ξ, η) ≈
∑
k∈ζ

∂Nk

∂xi
(ξ, η)p̂M,k (6.13)

∂uM

∂xi
(ξ, η) ≈

∑
k∈ζ

∂Nk

∂xi
(ξ, η)ûM,k (6.14)

where p̂M,k and ûMj,k are macroscopic nodal values of pressure and displacement at node k.

Periodic boundary conditions are used to impose (6.9) and (6.10) on the REV. We already pre-

sented in Chapter 4 the procedure to add the periodicity constraints on periodic and non-periodic

meshes containing interface elements.

Only one additional clarification needs to be made about the prescription of displacements and

pressures on the corner nodes. For the mechanical problem the corner nodes have displacement

fluctuations prescribed to zero to prevent rigid body motion, as is usually done when the mechan-

ical problem is not dynamic. The prescribed pressures, however, need to guarantee that (6.11) is

fullfilled. So, we adopt here the same procedure used by Frey et al. (2013) and Marinelli et al.

(2016). It is the following iterative process:

1. Prescribe the master corner node as equal to pM .

2. Solve the flux problem and compute ⟨pm⟩

3. If |pM −⟨pm⟩| is below a tolerance εtol, the flux problem converged; proceed to the next step.

4. If convergence is not reached, prescribe a correction to the master corner equal to pM −⟨pm⟩

and return to step 2.

6.4.2 Homogenization and computation of residuals

The solution of the REV boundary value problem has been detailed in Chapter 2. We recall that

the fluid percolation and mechanical equations are solved sequentially with a two-way coupling.

Darcian flow is assumed for both the fractures and the porous matrix.

133



After the solution of the REV problem, the homogenized stresses and velocities are calculated

with (6.3) and (2.12); then, they are used to compute the acting forces f𝟋 and flow rates qF at the

corresponding face 𝟋 of the macroscale mesh as:

f𝟋 = n𝟋 · σM |𝟋| (6.15)

q𝟋 = ραn𝟋 · vM |𝟋| (6.16)

where n𝟋 is the unit vector normal to 𝟋. And at the center of a sub-control volume, the homoge-

nization of the REV returns the average volumetric content (Equation 6.5).

The residuals in a node k are then computed as:

Ψs,k
M =

∑
𝟋∈Bk

f𝟋 + fk (6.17)

Ψf,k
M =

∑
𝟋∈Bk

q𝟋 + qk +
∑
V ∈Bk

ραΘ̇M,V (6.18)

whereBk is the control volume around node k, V is a sub-control volume, fk and qk are prescribed

forces and fluxes at node k.

In the exceptional case of an infinite Biot’s modulus and a Biot’s coefficient constant and equal

to 1.0 in the REV, the REV computations at the sub-control volumes centers are not necessary. This

is because the changes of porosity depend only on the macroscale displacements in this case, and

so the volumetric strains can be directly computed using the shape functions.

6.4.3 Computation of the macroscopic Jacobian matrix

Since multiscale methods do not involve any assumption on the form of the macroscale constitutive

laws, the macroscale tangent operator needs to be determined numerically. Works that use the

multi-level FEM usually retrieve the Jacobian matrix with a perturbation method (e.g. Feyel and

Chaboche, 2000; Marinelli et al., 2016) or through the static condensation of the microscale global

tangent matrix (e.g. Kouznetsova et al., 2001b; Feyel and Chaboche, 2001; Khoei and Hajiabadi,
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2018). The former is used in this work because of its easier implementation.

DuMux already employs the perturbation method to assemble the tangent matrix using a finite

difference scheme. However, in the original code this is done by perturbing each primary variable

at each node at a time. A solution to reduce the number of perturbations, and, consequently, of REV

simulations, is to perturb directly the values at the integration point. Feyel and Chaboche (2000),

for example, perturbed the components of the strain vector instead of the nodal displacements.

Here, we brought this idea to hydro-mechanical simulations with the multi-level Box. This means

that the quantities evaluated at the faces and sub-control volumes centers are perturbed, which are:

pM (Equation 6.12), ∇MpM (Equation 6.13) and ∇MuM (Equation 6.14).

By provoking a perturbation εp in a variable a, the following derivatives are calculated using a

forward-difference approximation:

∂f𝟋

∂aM
≈ f𝟋(aM + εp)− f𝟋(aM)

εp
(6.19)

∂q𝟋
∂aM

≈ q𝟋(aM + εp)− q𝟋(aM)

εp
(6.20)

∂Θ̇V

∂aM
≈ Θ̇V (aM + εp)− Θ̇V (aM)

εp
(6.21)

where f𝟋 and q𝟋 are the force vector and mass flux at a face 𝟋, computed from (6.15) and (6.16),

and Θ̇V is the variation in time of the fluid volumetric content, computed from (6.5); the perturbed

variable a is either pM , ∂pM
∂x

, ∂pM
∂y

, ∂uMx
∂x

, ∂uMy

∂y
or ∂uMx

∂y
. Due to symmetry conditions, derivatives

of forces/fluxes with respect to ∂uMy

∂x
are equal to their derivatives with respect to ∂uMx

∂y
. In brief,

for each assemblage of the macroscale tangent matrix there are six perturbations per REV.

The computation of the perturbed homogenized quantities requires the solution of a perturbed

boundary value problem in the REV. To make this procedure more efficient, the microscale Jaco-

bian matrix is not updated at each perturbation; so, the tangent matrix computed at the end of the

calculation of the residuals is used. This categorizes the iterative solution of the perturbed prob-

lem as a modified Newton-Raphson. To facilitate convergence, it is important to ensure that the

perturbation is small enough for the tangent matrix to remain approximately unchanged.

The derivatives of the residuals in (6.18) and (6.17) with respect to the nodal values are retrieved
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from (6.19) and (6.21) with the finite element shape functions as:

∂Ψs,k
M,i

∂uM,j

=
∑
𝟋∈Bk

∂f𝟋,i

∂(∇uM,j)
B(x𝟋) (6.22)

∂Ψs,k
M,i

∂pM

=
∑
𝟋∈Bj

∂f𝟋,i

∂p𝟋
N (x𝟋) +

∂f𝟋,i

∂(∇p𝟋)
B(x𝟋) (6.23)

∂Ψf,k
M,k

∂uM,j

=
∑
𝟋∈Bk

∂q𝟋
∂(∇uM,j)

B(x𝟋) +
∑
V ∈Bk

∂Θ̇V

∂(∇uM,j)
B(xV ) (6.24)

∂Ψf
M,k

∂pM

=
∑
𝟋∈Bk

(
∂q𝟋
∂p𝟋

N (x𝟋) +
∂q𝟋

∂(∇p𝟋)
B(x𝟋)

)
+
∑
V ∈Bk

(
∂Θ̇V

∂pV

N (xV ) +
∂Θ̇V

∂(∇pV )
B(xV )

)
(6.25)

where the superscript k indicates the corresponding node, i, j = x, y, xF and xV denote the coor-

dinates of the center of a face 𝟋 and a sub-control volume V , respectively, and:

B =

∂Nk

∂x

∂Nk

∂y

 (6.26)

6.4.4 Algorithm

Figure 6.2 presents the general algorithm for the multi-level Box. The assembly of the system is

made element by element, and for each element the components of the residual and Jacobian matrix

are computed one face at a time, and then one sub-control volume at a time.

Each calculation of fluxes, stresses and storage terms requires a call to the microscale prob-

lem. At the level of the REV, the flux and mechanical equations are solved sequentially. The flux

problem involves the localization of the interpolated pressure gradients and macroscale pressures

with the algorithm described in Section 6.4.1. The mechanical problem involves the localization of

the interpolated displacement gradients. It receives the pressures calculated in the flux problem to

solve the equilibrium expressed in terms of effective stresses and fluid pressure. Then, the resulting

displacements are used to update permeabilities and other strain-dependent parameters. The flux

problem is considered to be at steady-state, so scale separation must exist.
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Figure 6.2: General algorithm of the implemented multi-level Box method. Each computation
of stress, flux and storage term corresponds to a REV simulation, where the flux and mechanical
problems are solved sequentially.

6.4.5 Implementation in DuMux

A new module called Multiscale was added to DuMux to include multiscale simulations with the

multi-level Box method. Its main components are illustrated in Figure 6.3.

Figure 6.3: The new module called Multiscale in DuMux.

The main differences between multiscale simulations and one-scale simulations lie in the as-
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semblage of the system. To deal with these particularities, the new classes MultiscaleCoup

ledLocalAssembler and MultiscaleCoupledAssembler were created. The original assem-

bly classes in DuMux could not be used because they provoke perturbations in the nodal vari-

ables; the new class for multi-scale analyses updates the Jacobian matrix by perturbing the vari-

ables interpolated at the faces and sub-control volumes center. Also, the original classes used to

compute residuals require a constitutive law to be provided. To overcome this, a the new class

CoupledHomogenizationLaw was created to calculate residuals. This is where the REV problem

is called and where the homogenized quantities are received to compute forces, fluxes and storage

terms. Finally, the new base class MultiscaleProblem was created. It is similar to all the other

problem classes in DuMux, with the difference that, instead of receiving an object that contains

the definition of constitutive properties, it must receive an object that belongs to the Microscale

class.

The Microscale class must be completely defined by the user and contains two mandatory

functions: one for initialization, which creates the REV mesh and establishes the mappings be-

tween nodes necessary to couple different domains and to impose periodic boundary conditions;

and a function that solves the localization boundary value problems and returns homogenized quan-

tities. The microscale problem contains all the ingredients for a multi-domain problem described

in Section 3.1.1.

6.5 Validation

To verify the accuracy and good implementation of the coupledmulti-level Boxmethod, a Terzaghi-

like consolidation problem was simulated. The geometry and boundary conditions are the same of

the validation case described in Figure 3.7 and Table 3.2. However, the domain now is a fractured

medium composed of two persistent and perpendicular sets of fractures. The fractures have a con-

stant spacing of 5 mm between them. As this is a regular periodic domain, its REV reduces to the 1

cm unit cell illustrated in Figure 6.4. Periodic boundary conditions were imposed with the coupling

manager for strong periodicity.

The domain was discretized in 10 squares of dimensions 10 cm x 10 cm. So, the macroscopic

element is 10 times larger than the microscale’s unit cell. The mesh of the unit cell is shown
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in Figure 6.4. A reference solution was obtained by solving the same problem with an explicit

representation of all fractures; in this case, the mesh is composed of 1000 unit cells with the mesh

of Figure 6.4. For this reference solution, the fixed-stress split was adopted to handle the hydro-

mechanical coupling.

Figure 6.4: Consolidation problem used to validate the multi-level Box. On the left, the macroscale
domain, its mesh and boundary conditions. On the right, the fractured unit cell and its mesh are
presented, with fractures in blue.

The minimum time step that can be used depends on the size of the mesh. So, naturally, the

minimum time step for the macroscale problem is larger than that of the reference solution. For the

multiscale simulation, the minimum time step to not provoke spurious oscillations was 100 s; for

the reference solution, this time step is 10 s. The total time of the simulation is 3000 s.

Table 6.1 describes the material parameters used in this analysis.

Figure 6.5 compares the reference solution with the multiscale solution. Amaximum difference

of 8 % was observed in this test. The multiscale solution underestimates the pressures along the

vertical axis. Nonetheless, it is satisfactory, specially when considering the major differences from
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Table 6.1: Fracture and porous matrix parameters adopted in the validation case of the multi-level
Box, described in Figure 6.4.

Quantity Unity Value

Matrix Young’s modulus (E) kPa 1000
Matrix Poisson’s ratio (ν) - 0.25
Matrix Permeability (ks) m² 1.16× 10−9

Matrix Biot’s coefficient (b) - 1.0
Matrix Biot’s modulus (M ) kPa ∞

Fracture Normal Stiffness (Kn) kPa/m 50000
Fracture Tangent Stiffness (Kt) kPa/m 10000
Fracture Permeability (kt) m² 1.0× 10−7

Fracture Biot’s coefficient (bf ) - 1.0
Fracture Biot’s modulus (Mf ) kPa ∞

the reference solution, which are the mesh and time step sizes and the assumption of stationarity at

the level of the REV.

This loss of accuracy seems reasonable when considering the computation time that was saved

with the multiscale simulation. The multiscale simulation took on average 4.8 s and three iterations

to solve each time step, which results in an average of 1.6 s per time step. As for the reference

solution, it took on average 24.3 s and 4 iterations to solve each time step, that is, 6.1 s per time

step.

6.6 Conclusions of the chapter

Multicale methods are more robust than the equivalent property (upscaling) approach because they

do not require the assumption of a constitutive law for the macroscale and the conditions of the

microscale problem do not need to be chosen, but arise from the large-scale simulation.

We adapted the framework of a multiscale method called the finite element method squared to

create an adaption called the multi-level Box method. The main impact of this modification is the

addition of local mass conservation to the original method. Each center of a face and of a sub-

control volume corresponds to a REV computation where homogenized quantities are obtained.

The macroscopic Jacobian matrix is computed with a perturbation method.

The multi-level Box method was implemented in DuMux in a new module called Multiscale.
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Figure 6.5: Comparison of the solutions of the consolidation problem in a fractured domain with
the multi-level box and the reference solution with explicit representation of all the fractures.

The implemented algorithm was verified for a consolidation problem in a regular fractured domain,

and despite the assumption of stationary flow at the REV, of the coarser mesh and of the larger time

step, the results agree well with the direct solution of a coupled transient problem in the fractured

domain.
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Chapter 7

Multiscale simulation of a fractured

reservoir: a case study

7.1 Introduction

The tools andmethods developed in this thesis will be applied to a case study inspired by the Ekofisk

reservoir, a chalk reservoir located in the North Sea. Despite of having a high average porosity of

32%, the carbonate in the Ekofisk reservoir has a permeability of only 1 mD. However, well tests

indicated that permeability could get as high as 150 mD because of the existence of conductive

fractures. Teufel and Farrell (1990) classified the fractures of the Ekofisk field in four classes:

healed, isolated, stylolite-associated and tectonic. Only the tectonic fractures form awell connected

conductive path for the fluids. These are planar shear discontinuities that appear sometimes in

conjugate pairs. They dip from 65 to 80 and their orientations are usually aligned with those of

large faults that occur in the reservoir (Toublanc et al., 2005). The average spacing of the tectonic

fractures ranges between 15 and 100 cm. In zones of higher intensity, the typical spacing can reach

5 cm. Since they can not be captured by seismic methods, but are larger than the extracted cores,

their lengths are very uncertain. However, from their average spacing and from investigations of

analogues it is possible to infer that their sizes range from tenths of centimeters to meters (Teufel

and Farrell, 1990).

The tectonic fractures in the Ekofisk field are good candidates for a multiscale analysis. Firstly,

because their dimensions are much smaller than those of the reservoir and also than the typical size
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of a cell in a reservoir simulator, which has at least tenths of meters (Bourbiaux, 2010; Christie,

1996). Secondly, because they are connected and frequent enough to influence the performance of

some regions of the reservoir. And lastly, because this influence is dynamic and hard to capture

with equivalent properties.

In the multi-scale model to be presented, the microscale’s fractures replicate one of the typi-

cal patterns of the tectonic fractures in the Ekofisk reservoir. Also, the initial pore pressures and

stresses were taken from the average values reported by Teufel and Farrell (1990). The adoption

of this reference case had the sole purpose of building a realistic synthetic case, with no intention

of representing the actual reservoir, which has many other complexities that are not considered in

our simplified model.

7.2 Modeling of the REV

7.2.1 Generation of the DFNs

The orientation, dip and intensities of the tectonic fractures in Ekofisk are relatively well known

thanks to a number of geological studies that were made in the area (Teufel and Farrell, 1990;

Toublanc et al., 2005). However, there is no public information on the ranges of the lengths of

these fractures, or on the statistical distributions of their geometrical features. So, to generate the

DFNs that replicate their typical configuration, we used as a reference the work by Gutierrez et al.

(1994) . They performed mechanical numerical experiments on representative fractured samples

of the Ekofisk chalk; these samples are squared with size of 2 m. We used their third sample, called

“model of a 40% porosity chalk with natural fractures”, to define a mean fracture intensity and a

mean fracture length.

The reference sample is made of conjugate pairs of shear fractures. The lengths of the dominant

shear fractures range between 0.7 m and 1.4 m and their average intensity is of 4 fractures/m². As

for their conjugates, they have lengths that vary from 0.13 m to 0.82 m and mean intensity of 2.6

fractures/m². The actual rock probably has tectonic fractures that are larger than those, as Teufel

and Farrell (1990) mentioned that these fractures could have up to 10 m. However, as fracture

lengths usually follow a power-law like distribution, these largest fractures are probably rare; and
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since there is no other data on their sizes, we will stick only to what can be observed in the samples

by Gutierrez et al. (1994).

With a notion of the average lengths, intensities and dips (which range from 65° to 80°), it is

possible to generate stochastic DFNs if an assumption is made on the statistical distribution of these

features. In the lack of these data, we assume a normal distribution for the lengths and dips. Since

the lengths in the reference models do not vary in large ranges, they should be well represented by a

normal distribution. The standard deviations of the properties were estimated using the three-sigma

rule: based on the fact that 99.7 % of the values in a normal distribution lie within three standard

deviations from the mean, the standard deviation can be estimated as the size of the range between

the maximum and minimum observed values divided by six. Table 7.1 presents a summary of the

geometrical features used to generate the DFNs. We developed a code to randomly generate the

fractures; their centers were generated with a Poisson process. Then, the meshes were generated

with the open source software Triangle (Shewchuk, 1996), which divides the domain in triangular

finite elements.

Table 7.1: Average and standard deviations of the geometrical features of the DFN used in the case
study. A normal distribution is assumed for the lengths and the dips.

Dominant Set Conjugate Set

Average Std. Deviation Average Std. Deviation

Length (m) 1.05 0.12 0.48 0.12
Dip (°) 72.5 4.2 72.5 4.2

Intensity (1/m2) 4.0 - 2.6 -

Using the distributions in Table 7.1, 100 random generations were performed for 10 different

sample sizes that range from 1 m to 10 m. Figure 7.1 shows an example of a 8 m sample.

Figure 7.2 shows the averages of the crack tensor components (Equation 2.34) as a function of

sample size. Since the fractures are almost vertical, the average Fxx, which gives the projection of

the fractures lengths in the y-direction, is much higher than Fyy.

7.2.2 Constitutive models for the fractures and intact rock

The intact rock is considered to be linear elastic and the elastic behavior of the fractures follows

the Barton and Bandis law (Barton et al., 1985), according to which:
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Figure 7.1: Example of one of the generated DFNs that replicate the pattern of the tectonic fractures
in the Ekofisk reservoir. There is a main sub-vertical set of larger fractures, which are sometimes
associated to conjugate smaller fractures.

Figure 7.2: Average of the crack tensor components of the DFN used in the study case as a function
of sample size.

Kn =
Kni(

1− un

umax

)2 (7.1)

whereKn is the fractures normal stiffness,Kni is the initial normal stiffness, un is the normal dis-

placement jump (positive for compression or closure) and umax is the fractures maximum closure.

The fractures tangent stiffness is considered to be constant here, which is a simplification since this

stiffness tends to be damaged when shear failure occurs or when the fracture opens.

When their elastoplastic behavior is considered, the fractures and the intact rock are modelled

with a perfectly plastic Mohr-Coulomb criterion. Table 7.2 describes the intact rock and fracture

constitutive parameters. Themechanical parameters used in this study are the same as those adopted

by Gutierrez et al. (1994). These authors, however, adopt a strain-dependent Mohr-Coulomb yield
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surface with cap for the intact rock.

Gutierrez et al. (1994) obtained the properties of the rock matrix were obtained by fitting the

experimental results on cores taken from the Ekofisk. For the fractures, Table 7.2 presents directly

the initial normal stiffness, tangent stiffness and initial fracture opening. But these data are calcu-

lated from the Joint Roughness Coefficient (JRC) and Joint Compressive Strength (JCS) with the

relationships proposed by Bandis et al. (1983). Gutierrez et al. (1994) estimated the JRC from tilt

tests on fractured cores taken from the Ekofisk reservoir. JCS was estimated from the unconfined

compressive strength of the intact rock, and the residual friction angle is assumed to be equal to the

internal friction angle of the intact rock.

The permeability of the matrix is constant and equal to 1 × 10−15 or 1 mD. The permeability

of the fractures (kf ) is a function of their aperture following the cubic law:

kf =
w2

12
(7.2)

where w is the fracture’s aperture.

Table 7.2: Fracture and intact rock parameters adopted in the case study.
Intact rock Fractures

Young’s modulus, E(GPa) 1.4 Initial Normal Stiffness,Kni (GPa/m) 10
Poisson’s ratio, ν 0.2 Initial aperture, w0 (mm) 1.8
Cohesion, c (MPa) 4.1 Tangent Stiffness,Kt (GPa/m) 50
Friction angle, φ (°) 24 Cohesion, cf (MPa) 2
Dilation angle, ψ (°) 0 Friction angle, φf (°) 14
Biot’s coefficient b 1.0 Dilation angle, ψf (°) 14

Permeability, km (m²) 1× 10−15 Biot’s coefficient, bf 1.0
Permeability, kf Function

Minimum aperture, wmin (m) 5× 10−7

7.2.3 Generation of the initial state

Prior to the multiscale simulations, it is necessary to set the initial stress state of the REV. According

to Teufel and Farrell (1990), the average initial pore pressure in the Ekofisk was 48 MPa and the

total overburden stress 62 MPa. Thus, the initial effective vertical stresses are 14 MPa. As for the

horizontal stresses, they are much more uncertain and vary a lot. In-situ experiments indicate that
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the initialK0 (ratio of effective horizontal stress to effective vertical stress) ranged between 0.2 and

0.5. So the effective horizontal stresses range between 2.8 MPa and 7 MPa.

Here, the directions x, y and z will refer to the horizontal, vertical and out-of-plane directions,

respectively.Following Gutierrez et al. (1994), an initial K0 of 0.2 was selected, which means an

initial horizontal stress of 2.8 MPa. Plane-strain conditions are assumed.

In order to impose these initial stress conditions to the fractured samples, these latter were

submitted to the loads illustrated in Figure 7.3. This loading was divided in 100 steps and a fully

drained behavior was assumed.

Figure 7.3: Stress boundary conditions used to set the initial stress state of the REVs in the case
study.

Apart from generating the initial distribution of stresses, this procedure also generates the initial

apertures, which in turn define the initial fracture permeabilities and stiffness in the large-scale

simulation. The initial average aperture is 8.2×10−5 m and the minimum aperture is 5.6×10−5m.

7.2.4 Upscaling of the initial properties and REV size

Gutierrez et al. (1994) used 2 m samples to perform their numerical experiments, but they did

not perform REV studies to define the actual size of the REV or to verify how reliable are the

estimations obtained from the size they selected.

The methodology described in Chapter 5 was used to define the REV for our replica of the tec-

tonic fracture network in the Ekofisk field. The first step is to select a reference volume to perform

the upscaling in a sample of REVs. Figure 7.2 shows that the average geometrical properties stabi-

lize above a size of 4 m, so this was selected as the reference volume. All 4 m samples were firstly

subjected to the loading in Figure 7.3, so their initial apertures were generated. In any of these
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samples the initial stress conditions were sufficient to make neither the fractures nor the intact rock

reach the yielding surface. Then, the equivalent constitutive tensors were obtained. This upscaling

was performed by imposing mortar periodic boundary conditions with the procedure described in

Section 4.2.2. The permeability tensor of the intact rock (ki) is the following:

ki =

kxx kxy

kyx kyy

 =

1× 10−15 0

0 1× 10−15

m2 (7.3)

And the stiffness tensor Ci of the intact rock is the following:

Ci =

[ C11 C12 C13 C14
C21 C22 C23 C24
C31 C31 C33 C34
C41 C42 C43 C44

]
=

[
1555.6 388.9 388.9 0
388.9 1555.6 388.9 0
388.9 388.9 1555.6 0
0 0 0

]
MPa (7.4)

Figures 7.4 and 7.5 present the QQ-plots for the components of the equivalent permeability and

stiffness tensors, k and C for the fractured 4 m samples. In all experiments the upscaled tensors

were symmetrical, so only half of the off-diagonal terms is presented. The third row and columns of

C are not shown because the normal stresses in the direction z are calculated from the plane-strain

assumption, and not upscaled like the other components.

The anisotropic behavior caused by the fractures is clear. Because the main fractures dip al-

most vertically, the permeability kyy is one order of magnitude larger than kxx and two orders of

magnitude larger than the permeability of the intact rock. Also, the component kxy is on average

larger than kxx, which means that, in the initial conditions, a pressure gradient in the x-direction

provokes a higher specific flux in the y-direction than in the x-direction.

Figure 7.4: QQ-plots for the equivalent permeability tensor of the 4 m samples generated for the
case study.

Anisotropy also manifests in the equivalent stiffness tensor; the components C14 and C24 are
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non-zero, which means that shear strains are associated to normal stress increments and vice versa.

However, their values are insignificant when compared to the other components. As for the diago-

nal components, C11 is much more significantly reduced than C22, which remains very close to the

value for the intact rock. As the fractures are nearly vertical, their apertures suffer larger variations

when submitted to a normal stress in the x-direction.

Figure 7.5: QQ-plots for the equivalent stiffness tensor of the 4 m samples generated for the case
study.

Figures 7.4 and 7.5 show that the distribution of the constitutive tensors for the 4 m samples

are nearly normal. So, these data can be used to calculate the REV using Equation 5.10. Table 7.3

shows the minimum sizes calculated for a maximum precision error of 10 %, a confidence level of

95% and one REV generation (N = 1 in Equation 5.10).

The small sizes obtained for most of the elastic parameters can not be used as the actual size of

the REV, since they are smaller than the average fracture lengths. Also, some are smaller than the

average fracture spacing, which means that random generations of this size could return samples

with no fractures. So, the smallest possible sample that represents well the fracture network geom-

etry should be selected in this case. Although C14 and C24 returned a minimum size of 8.7 m, they
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are one to two orders of magnitudes smaller than the other components, so they are too insignificant

to dictate the REV size. The critical parameter is permeability, which returned a minimum size of

10 m.

Table 7.3: Calculated REVs for a 10% error and one generation - Case study.
Geometrical

Fxx Fxy Fyy
REV size (m) 5.5 8.8 5.5

Permeability

kxx kxy kyx kyy
REV size (m) 6.1 10.0 10.0 8.6

Elastic Stiffness Tensor

C11 C12 C14 C22 C24 C44

REV size (m) 0.8 0.9 8.7 0.15 8.7 0.35

In a multiscale simulation, the size of the REV has a big impact on the computation time. As

Equation 5.10 suggests, a reliable estimation of the average permeability can be obtainedwith either

1 REV of 10 m or from the average of 5 REVs of 2 m, for example. Since the order of computation

time of each system at the REV boundary value problem is the square of the number of degrees of

freedom, it would probably be more efficient to perform 5 multiscale simulations with a REV of

2 m. So, to minimise the computation time, we selected the size of 2 m for the REV that will be

carried out to the multiscale simulations.

Equation 5.10 presupposes that the N REV generations are random. The process can be made

less random by selecting smaller REVs that are known to return constitutive properties that are

close to the average ones. To be able to have a good notion of the average behavior of the reservoir

with one multiscale simulation only, one sample of 2 m was selected using the procedure that will

be presented hereinafter.

7.2.5 Selection of the REV

Firstly, we obtained the upscaled constitutive tensors of a random 10 m sample to be used as a

reference REV. According to the theory presented in Chapter 5, there is a 95% chance that this

sample will return values that do not dist more than 10% from their true mean. This is true for the
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permeability kxy, for which the minimum REV size was the largest; the size of 10 m is expected to

return values that are even closer to the true mean for the other properties.

Then, a few 2 m samples who had crack tensor components close to those of the reference REV

were tested for their properties. We selected the 2 m sample that returned properties that were the

closest to those of the 10 m sample. Table 7.4 presents the upscaled properties of both the selected

and reference REVs.

Table 7.4: Properties of the 2 m REV selected for the case study and the reference 10 m REV.
Crack tensor (1/m)

Fxx Fxy Fyy
10 m REV 5.88 -0.63 0.59
2 m REV 5.35 -0.58 0.57
Difference 9.0% 12.7% 3.4%

Permeability (×10−15 m²)

kxx kxy kyx kyy
10 m REV 3.49 5.03 5.03 24.1
2 m REV 3.34 4.53 4.53 23.6
Difference 4.1% 9.9% 9.9% 2.3%

Elastic Stiffness Tensor (MPa)

C11 C12 C14 C22 C24 C44

10 m REV 1348.5 330.4 13.0 1557.0 13.6 559.6
2 m REV 1399.9 344.2 12.31 1566.3 12.7 568.5
Difference 3.8% 4.3% 5.4% 0.6% 6.7% 1.6%

Figure 7.2 presents the selected 2 m REV and the mesh used in the multiscale simulations,

which is composed of 736 nodes. This mesh was selected after a test of convergence of the upscaled

properties when using mortar periodic boundary conditions.

7.3 Multiscale simulations

7.3.1 Macroscale model

Figure 7.7 describes the synthetic case to be simulated with the multi-level Box method. The

section of the reservoir is 200 m deep and an extension of 600 m is considered. The displacement

restrictions at the bottom suggest that the reservoir is set over a very stiff rock.
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Figure 7.6: REV of size 2 m that was selected to carry out the multiscale simulations (left) and its
mesh (right).

The mesh at the reservoir scale is composed of 200 elements of dimensions 30 m x 20 m. The

zone of production in Figure 7.7 indicates a well where the pressure is controlled. The initial pore

pressure in the reservoir is 48 MPa. Two pressures were tested at the production zone: 43 MPa and

38MPa. The fluid in the reservoir is incompressible water.

Figure 7.7: Mesh and boundary conditions of the synthetic case study.

7.3.2 Simulation of depletion

Neither the initial load nor the depletion were sufficient to make the rock matrix or the fractures

reach their yielding surface. So, in the simulation of the depletion of the reservoir their behavior

is elastic. For comparison purposes, three types of simulations were performed for the depletion

with a bore hole pressure of 43 MPa. The first scenario is a static case, where the permeability and

normal stiffness of the fractures are considered to be constant and equal to the initial values in Table
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7.4. In a second scenario, the fractures permeability is dynamic and updated during the simulation

with the cubic law (Equation 7.2). The third case considers both the fractures permeability and

stiffness are dynamic; this latter is updated with the Bartis-Bandis law (Equation 7.1).

Figure 7.8 presents the flux rates and cumulative production for the three scenarios during one

year of production. The use of only the initial properties significantly overestimates the flux rates.

As a result, the predicted cumulative production at the end of one year is also overestimated by

approximately 17%. The comparison between the scenario with dynamic permeability and stiffness

and the scenario with dynamic permeability only shows that the production is quite sensitive to the

fractures normal stiffness.

Figure 7.8: Comparison of the flux rates and cumulative production during one year of production
for three scenarios: constant fracture properties, dynamic fracture permeability and dynamic frac-
ture permeability and normal stiffness.

Figure 7.9 compares the pore pressure distribution of the static and dynamic scenarios after

100 days of production when the well pressure is 43 MPa. In the static scenario, the anisotropic

permeability of the domain is clear; the pressure distribution is oriented with the main fracture

set of the REV (see Figure 7.6) and favors the flux in the y-direction. However, the multiscale

simulation of the dynamic scenario shows that this tendency changes in the zones that are reached

by significant pore pressure reductions. This happens because, as the fractures start to close, the

anisotropy of the equivalent permeability tensor becomes progressively less accentuated. The effect
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of this dynamic behavior is clear near the well, where the pore pressure distribution is perturbed

in comparison with the static case. This effect is more visible when the well pressure is 38 MPa

(Figure 7.10).

Figure 7.9: Pore pressure distribution in the reservoir after 100 days of production for a) the static
case and b) the dynamic case. The well pressure is 43 MPa.

Figure 7.11 shows this effect at the level of themicroscale. The pressure increments and fracture

apertures at the REV of one of the faces of element 60 (indicated as E60 in Figure 7.7) are compared

for 40 and 160 days of production. As the depletion continues, the upstream fractures close and

reach the minimum aperture value of 5 × 10−7 m. As a result, the distribution of the pressure

increments become less influenced by the fractures sub-vertical orientation.

These changes can be quantitatively evaluated in Figure 7.12, which shows the evolution of the

permeability tensor normalized by its initial values as a function of the pore pressure variation dur-

ing depletion. While the off-diagonal terms of the permeability tensor vanish after a pore pressure
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Figure 7.10: Pore pressure distribution in the reservoir after 100 days of production for a) the static
case and b) the dynamic case. The well pressure is 38 MPa.

variation of -2 MPa, while kxx and kyy decrease to 51 % and 9 % of their original values, respec-

tively. These values stabilize because of the consideration of a minimum aperture in the model.

Since the reduction in the component kyy is more significant, the y-direction becomes less of a

preferential direction for flow during depletion. For that reason, the pore pressure fields change as

the fractures close.

Figure 7.13 compares the dynamic and static scenarios for the predicted cumulative volume of

water after 200 days of production when the pressure at the well is 43 MPa and 38 MPa. While

the use of constant permeability makes this 5 MPa reduction in the well seem more than twice as

effective, the dynamic case shows that the gain in productivity is less significant, of the order of

67%. This happens because, as the initial well pressure gets lower, the fractures also close more

rapidly and more considerably. Thus, the consideration of dynamic permeabilities when setting the
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Figure 7.11: Comparison of the distribution of the pressure increments and of the fracture apertures
(presented in the lower-dimensional elements) after a) 40 days and b) 160 days of production.

Figure 7.12: Equivalent permeabilities normalized by their initial values as a function of pore
pressure decrease during depletion.

well pressure may also be useful to maintain the reservoir’s permeability and productivity.
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Figure 7.13: Cumulative production predicted for 200 days of production for the static and dynamic
scenarios for two well pressures: 43 MPa and 38 MPa.

7.3.3 Evaluation of the separation of scales

The accuracy of the results obtained with the multiscale simulations is expected to improve as

the scale separation gets stronger, specially because of the assumption of stationary flow at the

REV. The pressure variations are the driver of the field changes in the reservoir during depletion.

As a consequence, we can evaluate the scale factor in Equation 2.4 by using the pressure as the

characteristic physical quantity Ψ, as was done by Bertrand et al. (2020).

To get conservative results, themost critical pressure gradient will be estimated as the difference

between the pressure in the well and the initial reservoir pressure (48MPa) divided by the minimum

dimension of the element at the well, which is 20 m. Thus, the critical pressure gradient is 0.25

MPa/m when the well pressure is 43 MPa and 0.5 MPa/m when the well pressure is 38 MPa. The

quantity Ψ in Equation 2.4 will also be estimated, in a conservative manner, as the well pressure,

which is the minimum possible pressure.

Hence, recalling that the characteristic length lc of the REV has been set to 2 m, when the well

pressure is 43 MPa:

ε =
0.25MPa/m
43MPa

× 2 m = 0.012 (7.5)
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and when the well pressure is 38 MPa:

ε =
0.5MPa/m
38MPa

× 2 m = 0.026 (7.6)

This means that at the REV the imposed pressures can vary up to 1.2% and 2.6% for the pres-

sures of 43 MPa and 38 MPa, respectively. If the REV was really a point at the macroscale, this

variation would be zero. But the maximum scale parameters obtained in our simulations are small

enough to affirm that a separation of scales exists.

7.4 Points for optimization

While multiscale methods were shown to be an option to incorporate the dynamic behavior of

small fractures, there are two main issues that need to be addressed for them to be considered as a

viable tool in larger scale and more realistic reservoir simulations. The first issue is related to the

computation time, and the second one to the separation of scales.

The resolution of each time step of the multiscale simulation of the reservoir’s depletion took

on average 120 minutes and 3 iterations, that is, on average 40 minutes per iteration. Clearly, it

is very computationally expensive to solve several boundary-values problems numerically at each

integration point of the domain, specially in such non-linear problems as the hydro-mechanical sim-

ulation of media where the constitutive properties are solution-dependent. There are computational

resources and numerical strategies that can be used to optimize this solution and make multiscale

simulations more competitive.

The first and most obvious one is the parallelization of the problem. In multiscale simulations,

most of the computation time is spent assembling the system; as in finite-element based methods

this assembly is made element by element, it is simple to divide the elements among the existing

processors so they can assemble different parts of the domain simultaneously. Parallelization strate-

gies for the finite element method squared have been proposed by Matsui et al. (2004) and Lopes

et al. (2018), for example, to speed up the computations. The simulations presented here could not

be run in parallel because the multi-domain module of DuMux does not support parallelization. So,

this is a first point for optimization in the implemented code. Another simple strategy that could

be tested is to use a modified Newton-Raphson to solve the large-scale problem, so the assembly
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of the system would have to be made only once at each time step.

These strategies would not whatsoever completely solve the problem of computation time in

real reservoir simulations, because thesemodels can have hundreds of thousands tomillions of cells.

So, the multiscale approach should also ideally be used only in regions of the reservoir where they

really can be useful, like the zones where the constitutive behavior is very dynamic. Hajiabadi

and Khoei (2018) have employed this approach to simulate the consolidation of a fractured domain

with a sugar cube microstructure. They used the finite element method squared in the zones of

higher pressure gradient, and the classical dual-porosity model elsewhere. These results matched

well with those obtained using the multiscale method over the entire domain.

Another possible solution is to associate machine learning to multiscale methods. This was

achieved, for example, by Wang and Sun (2019). They developed a hydro-mechanical multiscale

method where the macroscale is solved with the FEM, the mechanical response of the REV is

solved with the DEM and the hydraulic behavior is obtained from a neural network trained with

data from numerical experiments with the Lattice-Boltzmann method. So, if a large amount of

data is collected by upscaling the constitutive behavior of the fractured REVS in the reservoir

with different boundary conditions, machine learning methods could replace many of the REV

computations that are performed to assemble the system.

The respect of the separation of scales is the second issue that needs to be addressed to make

multiscale simulations more applicable to reservoir simulation. While the fractures tested in this

case study have lengths that range from tenths of centimeters to only a few meters, subseismic

fractures can reach even tenths of meters and still be too small to be explicitly represented in large-

scale simulations. At the same time, the REVs for these larger fractures may not attend a reasonable

level of separation of scales. For these cases, it would be interesting to find approaches that can

overcome this limitation. A first solutionwould be to drop the assumption of stationarity at the REV

and solve the microscale for transient flow. The comparisons made by Khoei and Hajiabadi (2018)

between the multiscale and the direct solution of a consolidation problem on heterogeneous media

showed that introducing dynamic effects at the REV can significantly improve the solution when

the separation of scales is not strong enough. Of course, this approach requires an extra amount

of computational efforts, so it should be considered along with optimization methods. Ways of

surpassing the restrictive assumption of separation of scales have also been addressed inmechanical
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problems. They led to the development of the second order multi-level FEM, to the use of enriched

kinematics at the level of the REV (e.g Feyel, 2003) and to the proposal of relocalization techniques

(e.g Feyel and Chaboche, 2001). These latter refer to the interpolation of quantities from the REV

at the macroscale when the size of the heterogeneities is significant.

Finally, here the random fractured domain was replaced by an equivalent periodic media for

which the unit cell returns good estimations of the average constitutive behavior. The actual ac-

curacy of the estimated average quantities should be tested, which is only possible by averaging

several multiscale simulations where the REVs at each integration point are randomly generated.

Thus, this is also a very costly task that will be possible if combined with efficient optimization

methods.

7.5 Conclusions of the chapter

The methods developed in the previous chapters were applied to the modeling of a synthetic case

study. The methodology presented in Chapter 5 was used to perform REV studies on fractured

networks similar to the tectonic fractures in the Ekofisk reservoir. The mortar periodic condi-

tions presented in Chapter 4 were used to upscale the hydro-mechanical properties and to solve the

boundary value problem of the REV in the multiscale simulations.

The multiscale method called multi-level Box method, described in Chapter 7, was used to sim-

ulate the depletion of the reservoir. The results of the multiscale simulation for the predicted flux

rates, cumulative production and pore pressure fields were compared with a scenario where the

hydro-mechanical properties are static. The results showed that static fracture properties signifi-

cantly overestimate the predicted flux rates and cumulative production, and disregard the evolution

of the level of anisotropy in the reservoir.

While the developed multiscale method is a robust tool to consider the dynamic behavior of the

reservoir, the computational costs associated to the application of this technique on more realistic

reservoir simulations may be too high. Thus, optimization techniques should be developed for

complex reservoir models to benefit from the better predictability of multiscale simulations.
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Chapter 8

Conclusions and perspectives

8.1 Concluding remarks

Because of the strong hydro-mechanical coupling of their properties, fractures have a dynamic im-

pact on the behavior of naturally fractured reservoirs during production. While sub-seismic frac-

tures may be frequent enough for this influence to be significant, they are also usually too small to

be all explicitly represented in numerical models. Traditional upscaling can not consider the ge-

ometrical complexity and the state-dependent behavior of these fracture networks. So, this thesis

presented multiscale methods as an alternative to model the hydro-mechanical behavior of reser-

voirs containing complex networks of small fractures. Contributions were made to the different

parts of this modeling process.

Much of the complexity of this modeling is at the level of the REV, where the fractures are gen-

erated stochastically and explicitly represented. A first problem that arises because of this complex

geometry is the imposition of periodic boundary conditions, which are usually preferred in nu-

merical homogenization studies. Chapter 4 approached this issue by proposing adaptions to the

mortar method, which is traditionally used in contact problems and was recently applied to the im-

position of periodic boundary conditions on non-fractured domains. The mortar periodic boundary

conditions were tested for the upscaling of random and periodic fractured media and were shown

to have the theoretically expected properties when compared to Dirichlet and Neumann boundary

conditions.

Another problematic related to the randomness and complexity of the fracture networks is the
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definition of the size of the REV. Chapter 5 presented a methodology that uses the Central Limit

Theorem to make this process general and efficient. The geometrical and hydro-mechanical prop-

erties of any fracture network were shown to converge to a normal distribution if no important

outliers are present. Because of that, it is possible to predict the standard deviation of a property

for any REV size from the simulation of one REV size only. After this prediction, the results can

be used to define the REV based on a maximum tolerated error for the average value. Thus, the

ultimate purpose of this methodology is to have a good estimation of the average constitutive be-

havior, or at least to quantitatively estimate how far off one can be from this true mean by selecting

a certain REV size.

After dealing with the REV problem, a contribution was made to the field of multiscale sim-

ulations. Chapter 6 presents an adaption of the multi-level FEM that was called the multi-level

Box method. In this novel approach, the Box method is used to solve both the macroscale and the

microscale. Differently from the multi-level FEM, the multi-level Box method is locally conser-

vative. As a consequence, it may be advantageous for reservoir simulations if the method is to be

adapted to multi-phase flow problems, for example.

All of these developments resulted in the extension of an existing open-source code, which can

now be used to perform hydro-mechanical multiscale (and, obviously, one-scale) simulations of

elastoplastic fractured media.

The application of the developed techniques to a case study showed that considering the dy-

namic behavior of small fractures may be important to correctly predict the performance of the

reservoir. The methods developed here can be readily applied in case studies like this to assess,

in a simplified manner, how production can be optimized considering the interplay between stress

state, the geometry and the coupled constitutive properties of small fractures. Nonetheless, the

introduction of multiscale approaches in complex reservoir simulations still requires more work.

Once these techniques are optimized, the quality of recovery plans and the predictability of numer-

ical models can benefit from their robustness.

8.2 Perspectives and improvements for future works

The code that was implemented in this thesis can be improved with the following additions:
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• Parallelization of the multiscale simulations. This requires low-level changes in DuMux,

whose multi-domain module currently does not support computations in parallel.

• Implementation of more sophisticated constitutive models for the intact rock and for the

fractures.

• Adaptation of the multi-level Box method to multi-phase flow.

Also, to reach a better understanding and applicability of the computational methods applied

here, we envision to work on the following topics:

• Gather a large amount of data from numerical experiments on fractured media to test the

applicability of the Central Limit Theorem to their constitutive properties.

• Explore in details the accuracy of the multi-level Box method by comparing it to the direct

solution of fractured domains. The influence of the size of the REV with respect to the size

of the domain should be evaluated, as well as the limits of the assumption of stationarity at

the REV need to be better understood.

• Perform multiscale simulations where the REVs at the integration points are randomly gen-

erated. Then, compare the average resulting fields with those of a multiscale simulation

performed with one REV only that well represents the average constitutive behavior.

• Develop reliable methods to optimize the multiscale methods. The more efficient way of

doing this seems to mix multiscale and one-scale approaches in the same domain, by using

the former only when necessary. For that, proper criteria to turn multiscale on and off need

to be studied and validated.
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Appendix A

Upscaling of the elastic constitutive tensors

We show here the upscaling of the elastic constitutive tensors for 2D plane-strain conditions (εz =

0).

A.1 Constant tractions

The imposition of the linearly independent constant tractions in Figure 2.5 allow the direct calcu-

lation of the equivalent elastic compliance tensor. The stress-strain relationship for linear elastic

anisotropic media can be expressed as:

ε = Sσ (A.1)

We consider here the equivalent compliance tensor of a fractured rock mass where the intact

rock has Young modulus Er and Poisson ratio νr. In the two-dimensional space, the constitutive

tensor Sijkl can be expressed in terms of the equivalent elastic moduli as:

Sijkl =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

 =


1
Ex

−νyx
Ey

−νzx
Ez

ηx,xy
Gxy

−νxy
Ex

1
Ey

−νzy
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ηy,xy
Gxy

−νxz
Ex

−νyz
Ey

1
Ez

ηz,xy
Gxy

ηxy,x
Ex

ηxy,y
Ey

ηxy,z
Ez

1
Gxy

 (A.2)
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where Ei are the elastic moduli, νij are Poisson ratios, ηi,jk are coefficients of mutual inflience of

the first kind and ηij,k are coefficients of mutual influence of the second kind. Considering that

the fractures have strikes in the direction z, they do not affect the deformations in this direction;

thus, Ez = Er, νxz = νyz = νr, and the components S31, S32 and S33 are then equal to those of the

compliance tensor of the intact rock. Also, since the shear stress σxy does not affect deformations in

z, S34 is equal to zero. Considering the symmetry conditions, S13 = S31, S23 = S32 and S34 = S43.

Hence, there are 7 components of the tensor which are known a priori because of the assumption

of bidimensionality.

For plane-strain conditions, the relationship in (A.1) reduces to:



εx

εy

0

γxy


=


S11 S12 S13

r S14

S21 S22 S23
r S24

S31
r S32

r S33
r 0

S41 S42 0 S44





σx

σy

σz

τxy


(A.3)

Three linearly independent boundary conditions are necessary to obtain the unknowns of the

elastic compliance tensor. That means that three boundary-value problems are solved to obtain S.

In this paper, we used the applied stresses illustrated in Figure 2.5, where at each step only one

of the stress components σx, σy and τ xy have non-zero values. So, at each step one row of S is

entirely computed.

The displacement gradients are calculated from the integral boundaries in (2.32). They are used

to calculate strain vector εi.

The stress σz can be calculated from the applied stresses and the properties of the intact rock

as:

σz = −S31
rσx + S32

rσy
S33

r (A.4)

And the tensor components are calculated using (A.4) and the system formed by lines 1, 2 and

4 in (A.3)

If the equivalent stiffness tensor C is desired, one can obtain it by inverting the equivalent

compliance tensor:
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C = S−1 (A.5)

The equivalent elastic moduli are obtained by inverting the diagonal terms of S.

A.2 Periodic and linear displacement

Both periodic and linear displacement boundary conditions (Figures 2.3 and 2.6) are used to impose

a macroscopic strain vector ε. They allow the direct computation of the stiffness tensorC, where:



σx

σy

σz

τxy


=


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33
r C34

C41 C42 C43 C44





εx

εy

0

γxy


(A.6)

Each component of the strain vector is kept non-zero at a time to compute the columns 1, 2 and

4 of C. The third column, which corresponds to the strain εz = 0, is computed by assuming the

component C33 to be equal to the one of the intact rock, that is:

C33 =
Er(1− νr)

(1 + νr)(1− 2νr)
(A.7)

and the off-diagonal terms are obtained from the assumption of symmetry, that is,Cj3 = C3j , where

j = 1, 2, 4.

If the equivalent compliance tensor C is desired, one can obtain it by inverting the equivalent

stiffness tensor:

S = C−1 (A.8)
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