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ABSTRACT 

Micro-pollutants of emerging concern have imposed a major technological challenge: pesticides, 

drugs and other anthropogenic substances are increasingly found in aquatic and atmospheric 

environments and even in water supplies, being related to adverse effects on biota and human 

health. Overcoming this challenge requires understanding the behavior of these species in the 

environment and the development of technologies that allows for minimizing their dissemination. 

Viable alternatives applied in this thesis include the use of radical-based oxidation processes 

using both experimental – via the competition kinetics method – and theoretical protocols – 

blend of kinetic, quantum chemistry and machine learning calculations. In a first study, the 

mechanisms, kinetics, and an evaluation of the toxicity of picloram degradation – a pesticide 

widely used in the world - initiated by OH radicals indicate that: i) two favorable pathways occur 

by addition to the pyridine ring, ii) picloram and the majority of degradation products are 

estimated as harmful; however, ii) these compounds can suffer photolysis by sunlight. However, 

the competition kinetic method and the quantum chemistry description make the degradation 

analyses a formidable enterprise, considering the costs of ad hoc instrumental equipment’s and 

dedicated computational efforts. To overcome the demanding conventional procedures, we 

developed a free and user-friendly web application (www.pysirc.com.br) based on holistic 

machine learning combined with molecular fingerprints models that permits compilation of 

kinetic parameters and mechanistic interpretation of radical-based oxidation attacks according 

to the OECD principles. Machine learning algorithms were implemented, and all models 

provided high goodness-of-fit for radical-based degradation in aquatic and atmospheric 

environment. The models were interpreted using the SHAP (SHapley Additive exPlanations) 

method: the results showed that the model developed made the prediction based on a 

reasonable understanding of how electron-withdrawing/donating groups interfere in the 

reactivity of the radicals. We argue that our models and web interface can stimulate and expand 

the application and interpretation of kinetic research on contaminants in water and air treatment 

units based on advanced oxidative technologies. 
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RESUMO 

Micro poluentes de preocupação emergente têm imposto um grande desafio tecnológico: 

pesticidas, drogas e outras substâncias antropogênicas são cada vez mais encontrados em 

ambientes aquáticos e atmosféricos e até mesmo no abastecimento de água, estando 

relacionados a efeitos adversos sobre a biota e a saúde humana. Superar esse desafio requer 

a compreensão do comportamento dessas espécies no meio ambiente e o desenvolvimento de 

tecnologias que permitam minimizar sua disseminação. Alternativas viáveis aplicadas nesta 

tese incluem o uso de processos de oxidação baseado em radicais utilizando tanto o método 

experimental – através do método cinético de competição – quanto os protocolos teóricos – um 

conjunto de cálculos cinéticos, quânticos e aprendizado de máquina. Em um primeiro estudo, 

os mecanismos, cinéticas e uma avaliação da toxicidade da degradação do picloram – pesticida 

amplamente utilizado no mundo – iniciados por radicais OH indicam que: i) duas vias favoráveis 

ocorrem por adição ao anel de piridina, ii) picloram e a maioria dos produtos de degradação 

são estimados como prejudiciais; no entanto, ii) esses compostos podem sofrer fotólise pela luz 

solar. No entanto, o método cinético da competição e a descrição da química quântica fazem 

da degradação uma empreendimento formidável, considerando os custos de equipamentos 

instrumentais ad hoc e esforços computacionais dedicados. Para superar os exigentes 

procedimentos convencionais, desenvolvemos uma aplicação web gratuita e de fácil acesso 

(www.pysirc.com.br) baseada no aprendizado de máquina holístico combinado com modelos 

de impressões digitais moleculares que permitem a compilação de parâmetros cinéticos e 

interpretação mecanicista de ataques de oxidação baseado em radicais de acordo com os 

princípios da OCDE. Algoritmos de aprendizagem de máquina foram implementados, e todos 

os modelos forneceram alto desempenho de ajuste para a degradação baseado em radical no 

ambiente aquático e atmosférico. Os modelos foram interpretados utilizando o método SHAP 

(Explicações Aditivas de SHapley): os resultados mostraram que o modelo desenvolvido fez a 

previsão com base em uma compreensão razoável de como grupos de retirada/doação de 

elétrons interferem na reatividade dos radicais. Argumentamos que nossos modelos e interface 

web podem estimular e expandir a aplicação e interpretação de pesquisas cinéticas sobre 

contaminantes em unidades de tratamento de água e ar com base em tecnologias oxidativas 

avançadas. 
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1. INTRODUCTION 

The development of chemical kinetics as a fundamental science culminates with the 

famous Arrhenius equation, that correlates the rate constant with the reciprocal of temperature1–

3. In the following years, with the advent of quantum mechanics and statistical thermodynamics, 

Eyring proposed from ab initio concept interpretations to the phenomenological model proposed 

by Arrhenius: the celebrated Transition State Theory (TST)4–6. Although these equations are still 

widely used – due to the simplicity and accuracy of the results for a set of chemical reactions – 

the improvement of experimental techniques allowed the assessment of the rate constant in a 

wide temperature range and the observation of marked deviations in the previous 

formulations1,7. Because of this, several proposals have been developed to include corrections 

in TST, such as variational, quantum and solvent effects8–11. However, even with more recent 

proposals to account for different effects that affect the kinetics of a reaction, there are other 

bottlenecks for obtaining the rate constant, namely, accurate calculations of electronic 

structure12,13. From a computational point of view, it is very costly to calculate stationary points 

with the increase in the number of atoms, thus limiting high-precision results to reactions 

involving few atoms14,15. In addition to the experimental and theoretical approaches to estimate 

the rate constant of chemical reactions, in recent decades in-silico methodologies have gained 

attention to make the prediction of the rate constant from molecular descriptors16–19. 

Recently, data-driven analysis combined with Machine Learning (ML) algorithms 

leveraged research related to chemical properties20–22, including the rate constant23,24. Within 

this area, several protocols have been developed to predict kinetic parameters with precision 

comparable to experimental and theoretical approaches25,26. In this scenario, the quality and 

quantity of data related to the property to be predicted are essential and are considered one of 

the greatest challenges for the construction of reliable modlinks27,28. To overcome this problem, 

some studies used a gas phase reaction data set to predict adequate temperatures26 and 

chemical reaction activation energies25.29; although these data are generally non-homogeneous 

and do not include the rate constant 30. Bowman et al23 used an ML approach – a Gaussian 

process regression – to predict rate constants over a wide temperature range and provided an 

80% accurate response. Komp and Valleau30 used a deep neural network to predict the product 

of the logarithm of the rate constant with the partition function and its model presented a relative 

error of 1.1%, however, for reactions below 300K an error of 31% was observed for the exact 

results. In recent years, Zhang's group24,31,32 developed predictive models of the 

photodegradation and degradation of organic pollutants in an aqueous environment and 

obtained good accuracy when compared to the literature.  

Understanding the rate constant is considered one of the central points in chemistry, 

since to understand and control reactional processes, information about this parameter and 

related variables is needed1,4,33. In the environmental area, experimental, theoretical and in silico 

studies have been established to predict the rate constant of oxidation-based reactions in an 

aqueous environment of organic contaminants34,35. Organic contaminants (OCs) are natural or 
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anthropogenic substances from different human activities36,37. The presence of these 

compounds or metabolites in water bodies or in the atmosphere can have an environmental 

impact and/or cause climate change and even affect human health when they remain for a long 

period in the environment38,39. The mineralization or degradation processes of these compounds 

consist of physical, chemical and biological steps36,40. However, most of these conventional 

processes are not considered efficient for the complete removal of these pollutants.41,42. On the 

other hand, it is known that only the removal of the starting products is not enough, since, in 

general, the degradation products are more stable and more polar than the original compound, 

providing a greater risk to the environment.43–45. Therefore, detailed knowledge of the 

mechanism, kinetics and toxicity of COs are considered key steps for a sustainable application 

of a mitigation of these compounds.43,46,47. The proposals of this work set out in this direction, 

they are: (i) revealing the mechanism, kinetics and toxicity of the pesticide picloram with the 

hydroxyl radical, and (ii) developing ML protocols to predict the rate constant of organic 

pollutants based on oxidative processes, combined with the development of a free and easily 

accessible web platform to help the scientific community and technical managers. 
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2. THEORETICAL FOUNDATIONS 

2.1 Chemical Kinetics 

The genesis of chemical kinetics appears late in the mid-eighteenth century with the 

questioning of the variable time in chemical processes4,48,49. The understanding of the reaction 

mechanisms and the rate of chemical reactions has become, therefore, one of the principles in 

chemistry. However, the complexity of interpreting such phenomena has made it difficult to 

advance studies in this area, as Formosinho reports48 in his book: "It was the difficulty in finding 

simplicity in macroscopic observation and in the corresponding microscopic interpretation that 

delayed the development of Chemical Kinetics." 50,51, in 1850, entitled "The Law of Action of Acid 

in Sugarcane". In this work, he studied the progress of the sugarcane reaction in the presence 

of acids and showed that:  

� = −�[�][�], (1) 

 

where � is the reaction rate, k is the rate constant, and [�] and [�] are the sugar and acid 

concentrations, respectively. 

However, this remarkable work on the rate of chemical reactions went unnoticed for a 

few years. Other studies, such as that of Berthelot and St. Gilles52, in the esterification reactions, 

concluded that the amount of ester as a function of time was proportional to the product of the 

"active masses", and Guldberg and Waage53,54, in the formulation of the "law of the actions of 

the masses" that was achieved due to the introduction of the concept of chemical equilibrium, 

they gave robust arguments for the future of chemical kinetics.  

After Guldberg and Waage’s work, there were other notorious works to lay the 

fundamental foundations of chemical kinetics, such as the meticulous works of Harcourt and 

Esson55, in order to correlate the concept of chemical equilibrium and temperature dependence 

with the rate of a chemical reaction. But it was with the proposals drawn up by renowned chemist 

Jacobus H. van’t Hoff56, winner of the 1901 Nobel Prize in chemistry "in recognition of the 

extraordinary services he has rendered by the discovery of the laws of chemical dynamics and 

osmotic pressure in solutions."57 that chemical kinetics was consolidated. One of van’t Hoff’s 

great contributions was the correlation constructed between the enthalpy of the (∆�) and the 

displacement of the chemical equilibrium constant (���) depending on the dependence on 

temperature, as shown in Equation (2):   

������

��
�

�
�

=
�∆�

�
, (2) 

where ∆� = �� − ��, � is the absolute temperature, � is the universal gas constant and � is an 

arbitrary constant. 
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It is well known that the equilibrium constant is the ratio of the rate constant in the 

forward (��) and reverse (���) direction, so van’t Hoff showed that the rate constant should obey 

a similar set of equations:  

�����

��
=

��

���
+ �, (3) 

and  

������

��
=

��

���
+ �. (4) 

In the following years, Arrhenius48,49, in search of solid arguments for his theory of 

electrolytic dissociation, spent years in Europe’s leading chemistry laboratories, with people 

such as Ostwald, van't Hoff and Boltzmann, and, based on previous work, deduced one of the 

most important equations of physical chemistry. However, "her participation in rate 

measurements was derived from her desire to gain recognition for her theory of electrolyte 

dissociation and followed Wilhelm Ostwald production of kinetic evidence supporting her." The 

integration of equation (3), that is, the reaction of the forward direction, produces, therefore, the 

famous Arrhenius equation,  

� = ��
���
��  , (5) 

where the parameter � is defined as the frequency constant or pre-exponential factor, and �� 

as the activation energy. 

It is important to highlight those other expressions were also proposed, by previously 

cited authors and by others, to correlate temperature dependence with rate constant. However, 

it was Arrhenius' expression that had greater agreement with the physical meanings4,48. Usually, 

the Arrhenius equation is written as the natural logarithm of the rate constant being proportional 

to the reciprocal of temperature:  

��� = ��� −
��

�

�

�
, (6) 

which in its graphical representation is known as the Arrhenius plot, represented in Figure 1.  
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Figure 1: Graphical representation of the Arrhenius plot, where the intercept on the ordinate 
axis indicates the logarithm of the pre-exponential factor and the tangent of the line provides 

the ratio of the activation energy by the universal gas constant. 

Since Equation (6) is analogous to a linear equation, it is simple to calculate the pre-

exponential factor and activation energy of a chemical reaction given experimental data on the 

rate constant and temperature. Therefore, it is possible to obtain quantitative results from the 

Arrhenius parameters, � and ��, values which, with their corresponding microscopic properties, 

did not have a concise explanation until then. The next advances in chemical kinetics were in 

interpreting the parameters in the Arrhenius law, which was successful but empirical. In order to 

explain the parameters of Arrhenius, Max Trautz58 in 1916, and William Lewis59 in 1918, 

independently, elaborated the "kinetic theory of gases" based on a recently developed 

formulation, statistical mechanics, to explain the pre-exponential factor. The hypothesis of this 

theory considers that there is a collision between the molecules of reagents and that only a 

fraction of the molecules, with a certain energy, become products60. To explain the concept of 

activation energy, which is crucial in chemical kinetics, some works have been proposed to 

interpret its meaning3,4,61. The work carried out by Marcelin62, in 1914, proposed to treat the 

chemical reaction in terms of movement, but unfortunately did not get continued, due to the early 

death of this remarkable researcher. Another memorable work was done by Richard C. 

Tolman63, in 1920, which defines the activation energy as the difference between two statistical 

quantities: the difference between the average energy of all molecular entities with enough 

energy to react, and the average energy of all molecular entities that reacted or not: 
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����

��
=

������������������

���
=

��

���. (7) 

By rearranging the terms, we obtain Equation (8), which is the definition currently 

recommended by IUPAC 64:  

�� = −�
����

��
�

�
�
. (8) 

Despite the success of Tolman’s work to interpret the meaning of activation energy, this 

concept has been confused with other definitions of "energies", such as barrier height, barrier 

height with zero-point energy correction, internal activation energy, activation enthalpy, among 

others. Due to the difficulty of correlating and differentiating these concepts, several papers have 

been published to establish a greater distinction between them and which are highly 

recommended by the author.3,61,65 The ideas of Trautz, Lewis and Tolman were essential to the 

future of chemical kinetics, which resulted in the development of the TST. TST is born 

concomitantly with the advent of quantum mechanics, which describes the chemical reaction 

based on the concept of a potential energy surface (PES)4,8. The definition of PES results from 

the Approximation of Born-Oppenheimer which relates to the nuclear movement of the electronic 

movement due to the disparity of the mass values between the two. To facilitate the 

interpretation of the concept of PES, see Figure 2a, in which each sphere represents an atomic 

configuration with its respective coordinate in the phase space and has a value associated with 

its potential energy. PES can also be interpreted on a topological surface when it comes to more 

than three variables, like in Figure 2b. 

 
Figure 2: Visualization of the potential energy surface for a chemical reaction with a two-
dimensional and (b) three-dimensional representation with the main topographic features. 

Figure 2b has been adapted from reference 1. 

2.2 Conventional Transition State Theory  

Eyring66, Evans, Polanyi67, Wigner and Pelzer68,69 independently developed the 

cornerstone of chemical kinetics, the famous Transition State Theory 70. TST is a mechanical-
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statistical theory, and is the most commonly used theory for calculating velocity constants and 

interpretations of kinetic data of chemical reactions9,48. This statement is simply verified with a 

simple search with the words "Transition State Theory" in Google Scholar, a most commonly 

used scientific literature search tool that generates approximately 3.85 million results. These 

quantitative data confirm the importance of this theory and its relevance.  

For the development of TST, Eyring1 assumed that there was a quasi-equilibrium 

between the species of the reagents and the species of the transition state and that this balance 

was maintained along the coordinate of the reaction4,66. This new introduced species, the 

transition state, is defined as a particular configuration that has the highest energy value in one 

direction and a lower value in a direction perpendicular to the first, known as the saddle point, 

associated with a potential energy surface. With the hypothesis of quasi-equilibrium a problem 

with kinetic characteristics, that precisely defines the state of transition, becomes a balancing 

problem, that were already well-known at the time48.  

For the derivation of TST, it is important to highlight the three principles on which it was 

based:  

1) The reactants and transition state follow a Boltzmann energy distribution law;  

2) Once species pass through the transition state, they necessarily become 

products;  

3) The advance of species on the potential energy surface is considered to be 

vibrationally and electronically adiabatic and can be handled by classical 

mechanics; quantum effects are ignored.  

For its deduction, the expression of a generic reaction is presented below, which 

involves the transfer of an atom performed in two steps:  

� + � 
��

⇔  ���  
��

��  ��������  

where �� is the equilibrium constant and defined as  

�� =
��

���
=

[��]

[�][�]
, (9) 

�� is the frequency of the species that evolve from the state of transition towards the products 

due to the movement of a degree of vibrational freedom of the transition state being converted 

to a degree of translational freedom, and is given by  

�� =
���

ℎ
. (10) 

The rate law of this reaction can be written as  

 

1 Usually in the course of the text, the development of the TST will be credited only to Eyring to facilitate writing, which 

is also generally used in scientific articles and books. However, it is worth mentioning that the development of this 

formulation had the collaboration of several researchers who have already been cited during the text. 
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� =
�[��������]

��
= ��[���]; (11) 

rearranging the terms, you get: 

� = ����[���]. (12) 

From statistical mechanics, we know that the equilibrium constant can be written according to 

partition functions, as follows:  

�� =
��

����
��� (−�� ��⁄ ), (13) 

where the energy factor counts the zero-point energy difference of the transition state and the 

reagents at absolute zero, i.e., �� = ���� − �� − ��.  

Partition functions provide an indication of the states available at a given temperature 

in addition to connecting the macroscopic and microscopic properties of a system, and is defined 

as: 

� = � ����� �−
��

���
� , (14) 

where the summation is over all � states of the system, and the energy can be described with 

quantum mechaniscs The energies and partition functions associated with translational, 

rotational, vibrational and electronic contributions are shown in Table 1. 

Table1: Contribution types associated with the energy and the partition function. 

Type of contribution Energy Partition function 

Translational �� =
��ℎ�

8���
 �� = �

2�����

ℎ� �

� �⁄

� 

Rotational �� =
�(� + 1)

2�
�

ℎ

2�
� 

��(������) =
�������

���   

��(�ã�������) =
��������������

� �⁄
(���)� �⁄

���   

Vibrational �� = �
1

2
+ �� ℎ� �� = �

1

1 − �
����
����

 

Electronic �� = �� �� = �� 

where � is the quantum number, � is the mass of the molecule, � is the barrier width, � is 

the rotational quantum number, � is the moment of inertia, � is the vibrational frequency, � 

is the symmetry number and �� is the degeneracy of the energy level. 

Equation (9) differs from Equation (13) because in the transition state there is the 

peculiarity that one of its degrees of freedom is connected with the coordinate of the reaction, 

which allows separation from the other degrees of freedom of the transition state,  

�� = ����. (15) 
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Replacing (15) with Equation (12), and knowing that the global velocity law 

is� = �[�][�], provides the famous TST Equation,  

�����(�) =
���

ℎ

��

����
���(−�� ��⁄ ), (16) 

 

2.2.1 Transition State Theory in Thermodynamic Formalism 

As mentioned earlier, the formulation of conventional transition state theory (CTST) is 

based on the hypothesis of a quasi-equilibrium between reagents and the transition state, which 

is a thermodynamic problem. Thus, it is possible to correlate the rate constant through 

thermodynamic formalism. The deduction of this formalism is usually described using the van't 

Hoff relationship that correlates Gibbs's free energy with the equilibrium constant as:  

�� = ��� �
−∆��

�

��
�, 

(17) 
 

 

where ∆��
� is the Gibbs free energy variation for the transition state.  

Therefore, we can rewrite the rate constant as follows:  

�(�) =
���

ℎ
��� �−

∆��
�

��
�. (18) 

Moreover, it is also useful to write the rate constant as a function of the variation of 

entropy (∆��
�) and enthalpy (∆��

�), the Gibbs free energy can be written according to these 

thermodynamic properties, ∆��
� = ∆��

� − �∆��
�. The rate constant, therefore, is written as:  

�(�) =
���

ℎ
��� �

∆��
�

�
� ��� �

−∆��
�

��
�. 

       (19) 

The formulation of the rate constant correlating thermodynamic properties is a powerful 

tool to express important information of the transition state from experimental data. For example, 

the amount of molecules that are located in the transition state can be associated with entropy. 

And the dependence of enthalpy with the dielectric constant of the solvent, for reactions in a 

solution, can evidence whether a transition state is neutral, protonated or deprotonated.  

Furthermore, the TST written as a function of the Gibbs free energy makes it possible 

to calculate the generalized transition state, namely, when the transition state is not necessarily 

located at the saddle point. In this sense, the rate constant is calculated considering that the 

transition state varies along the reaction coordinate, and when the variational value corresponds 

to a maximum of ∆��
�, the rate constant is minimized. 

2.3 Corrections to the Transition State Theory 

Some corrections were added to the previous equation in order to improve the accuracy 

of its results with experimental data. One of these corrections is the inclusion of a statistical 

factor (symmetry factor), σ, which allows concomitance in the PES of several paths in the 
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reaction. For example, in the H + CH4 reaction the statistical factor is equal to 4, since the 

hydrogen radical can abstract any of the four hydrogens from methane. The addition of the 

symmetry factor in the rate constant considers that this factor is not included in the functions of 

rotational partitions.  

�����(�) = �
���

ℎ

��

����
���(− �� ��⁄ ) (20) 

Some limitations in TST are easily rationalized by analyzing equation (20) and its 

principles3,9,48. It is known that a complete calculation of TST requires some knowledge of PES, 

since we need to know the value of the barrier height, geometry and vibrational frequencies of 

both reagents and the transition state. The geometries do not have such a significant effect 

when compared to the barrier height, since the last term enters the exponential and produces a 

more significant effect on the rate constant. Vibrational partition functions generally do not lead 

to discrepancies in calculations, since at common temperatures their value is very close to the 

unit.  

Using the default partition functions as listed in Table1 can also generate significant 

errors in rate constant calculations. For example, translational and rotational partition functions 

are obtained considering that the space between energy levels is very small, compared to the 

value of ���, which allows the sum to be replaced by the integral, but in some cases this is not 

valid. Another important factor that can also lead to errors is to consider a harmonic potential in 

the vibrational partition function, and it is known that at high temperatures there are cases that 

do not obey a harmonic potential.  

The term �� � ℎ⁄  expressed in Equation (20) classically accounts for the rate at which 

reactive systems cross the transition state. However, in real cases, there is a probability that a 

system will be reflected and the possibility of systems crossing the potential barrier with energy 

less than that required. These two considerations lead to appreciable errors in the calculation of 

the rate constant using the CTST formulation and therefore need to be corrected. These 

corrections are mainly due to their principles, which are corrected when they start to consider 

variational and quantum effects on the potential energy surface.  

2.3.1 Variational Transition State Theory 

The second hypothesis of conventional TST disregards the possibility of recrossing, that 

is, once the reagents cross the dividing surface (transition state) they will form the products. 

However, in a real case, there is a certain probability that the species will return to their initial 

state. See for example Figure 3, which represent trajectories crossing the transition state. In the 

case of conventional TST, it is considered that there are six reactive trajectories, though in fact 

only two trajectories are reactive, starting from the reagents (left side) to the products (right 

side), leading to an overestimated value of TST. The possibility of relocating the transition state, 

in this case the right, decreases the error in the value of the rate constant. This procedure is 

called the variational transition state theory (VTST).  
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The earliest ideals of variational theory were proposed by Keck and Anderson and were 

extended considerably by Truhlar and his collaborators9,70–72. In VTST it is convenient to define 

a reaction coordinate q that measures the distance along the minimum energy path. The 

reagents with q = -∞ and the products with q = +∞ and the transition state with a fixed value, q 

= 0, are conventional. The variational hypothesis considers that the rate constant is calculated 

for different transition states (q ≠ 0), in the case of q = 0 the VTST is reduced to conventional 

TST73,74. Trajectory calculations indicate that recrossing is more significant for collisions 

involving much more energy than required, usually at high temperatures, or for cases where 

energy barriers are too low or non-existent 9.  

 

Figure 3: Representative scheme of trajectories that cross the saddle point. The solid line 
indicates the case of the transition state located in a fixed position, while the dashed line 

indicates a variational transition state. 

VTST can be deduced in two ways9,70,72, considering a i) micro-canonical ensemble, 

which corresponds to calculating a micro-canonical rate constant �(�) by scanning the transition 

state in the minimum energy path (MEP), the lowest value is then integrated over all energies, 

thus providing a value of rate constant; ii) canonical ensemble, the procedure now is to scan not 

the micro-canonical rate constant but the conventional rate constant, with the lowest value found 

being accepted as the best estimated value for the rate constant. Garrett and Truhlar9,70,71 

showed that locating the transition state at the point where the Gibbs free energy maximizes 

activation is the same as minimizing the rate constant, which as a consequence minimizes 

recrossing, so the equation of rate constant with variational correction can be written as follows: 

�����(�) = ���
�

�����(�). (21) 
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2.3.2 Tunneling corrections 

From the point of view of quantum mechanics, there is a certain probability that a system 

can cross a potential barrier without having the necessary energy, which is not classically 

permitted and is overlooked in the formulation of CTST9,10,48. This effect is called quantum 

tunneling and can be understood by analyzing the dual behavior of matter (wave-particle) and 

was interpreted and equated by de Broglie, a physicist, as 

� =
ℎ

�2���

, (22) 

where λ is the wavelength associated with the particle and �� is its kinetic energy. To help with 

the reader's understanding, Table 2 provides an estimate of the wavelength values for different 

particles associated with their respective masses, which involves the transfer of this particle in 

a chemical reaction. In this estimate, we assumed a kinetic energy value of 15 kcal mol-1 (62.76 

kJ mol-1), which is in accordance with the values available in the literature.  

Table 2: Values of wavelengths of different particles with their respective masses, considering 
a kinetic energy of 15 kcal mol-1 (62.76 kJ mol-1). 

Particle electron hydrogen deuterium carbon fuleren 

mass (kg)a 0.0009109 1.6735575 3.3435856 19.944235 1196.6549 

���̇� 15.20 0.355 0.251 0.103 0.013 

a All values are multiplied by 1027.  

In Table 2, it is unequivocally shown that the electron behaves like a wave, which is also 

considered significant for the hydrogen atom, making the possibility of tunneling higher. 

However, when the value associated with the particle mass increases, this undulating behavior 

and tunneling become negligible. To work around the problem of the tunneling effect that the 

classic CTST model did not consider, Eyring proposed introducing a multiplicative factor9,70,75, 

called the transmission coefficient �(�), 

�����
� (�) = �(�) ∙ �����. (23) 

To account for the probability of a particle “tunneling” a potential barrier even at lower 

energies, the superscript � indicates a tunneling correction factor. In this way, it is necessary to 

substitute the classical probability, ��(�),  of a particle crossing the barrier 

�����(�) =
���

�

��

����
∫ ��(�)

�

�
���(−� ��⁄ �)��, (24) 

by a quantum probability, ��(�), such that  

�����(�) =
���

�

��

����
∫ ��(�)

�

�
���(− � ��⁄ �)��. (25) 
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Because of this, the transmission coefficient is commonly defined as the ratio of the 

equations (24) and (25),  

�(�) =
∫ ��(�)

�

�
�����

��
���

���
�

���
�

∫ ��(�)
�

�
�����

��
���

���
�

���
�

= ∫ ��(�)
�

�
��� �−

��

���
� � �

�

���
�. (26) 

The insertion of different models of ��(�) in the previous Equation, in other words, 

different types of barrier potentials, produces several tunneling corrections, which will be 

described below. 

2.3.2.1 Wigner Correction 

Eugene Wigner68, one of developers of CTST, was also one of the pioneers of tunneling 

correction. In his approach, he considers a parabolic potential for the movement of nuclei in the 

region near the top of the barrier, which for lower temperatures, where tunneling is more 

significant, leads to the following transmission coefficient:  

�(�) = 1 +
�

��
�

���

���
�

�

, (27) 

where �� is the imaginary frequency of the transition state, which shows how important it is to 

have exact imaginary frequency calculations for cases that consider tunneling effects.  

2.3.2.2 Eckart Correction  

Carl Eckart published an article76 entitled “THE PENETRATION OF A POTENTIAL 

BARRIER BY ELECTRONS” in the renowned journal The Physical Review where he presents 

a new model for calculating the transmission coefficient. He considers a potential barrier, 

represented in Figure 4, which closely resembles a minimum energy path where there is an 

exchange of atoms of the type � + �� → �� + �, given by the following expression:  

�(�) =
��

���
−

��

(���)�, (28) 

� = ��� �
���

�
�, (29) 

wherein: 

� = ���� − (���� − ∆��), (30) 

� = ����� − ����� − ∆���
�

, (31) 

� = 2��
−2

�� �
1

����� − ∆��
+

1

�����

�

��

, (32) 

where ���� is the maximum potential of a minimum energy path and ∆�� =��
� − ��

�, which is the 

difference of the barrier height in the direct and reverse direction, respectively. 
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Figure 4: Eckart potential barrier. 

Solving the Schrӧdinger Equation allows the calculation of the probability of a particle 

with a mass � moving towards an Eckart barrier potential with a given energy � of -∞ tunneling 

through this barrier and later appearing at +∞ with an energy �: 

��(�) = 1 −
����[��(���)]�����(���)

����[��(���)]�����(���)
, (33) 

where 

� =
�

�
�

�

�
, (34) 

� =
�

�
�

���

�
, (35) 

� =
�

�
�

���

�
, (36) 

� =
��

���
. (37) 

In a real situation, it is necessary to count not only a single particle moving toward a 

potential, but a large amount, with an order of magnitude of 1023 particles, with a Boltzmann 

distribution of energies at a certain temperature, which produces the following expression:  

�(�) = ��� �−
����

���
� ∫ ��(�)

�

�
��� �−

�

���
� � �

�

���
�. (38) 

 

2.3.2.3 Bell Correction  

One of the pioneers in studying the possibility of tunneling in chemical reactions, mainly 

in hydrogen transfers and its isotopes, was the chemist R. P. Bell10,77,78. In 1935, he presented 

a paper proposing an approximate equation, much simpler than the exact solution of the 

Schrödinger Equation, to quantitatively analyze the effect of variations on i) the barrier height, 

ii) the barrier width and iii) particle mass, which, due to the difficulty associated with it, had not 

yet been addressed.  



 
 

26 

 

Two approximations are considered to account for the effects described above. The first 

is the use of an approximation for the probability of penetration (permeability of the barrier) 

instead of the exact solution of the Schrodinger Equation, it is used with � = 1 for � > ��, and 

in the case of � < ��, the following expression is used: 

� = ��� �
���√��

�
� ∫ [�(�) − �]� �⁄��

��
��, (39) 

where �is the energy of the particle, � is the mass of the particle, �(�) is the potential barrier 

as a function of distance, and �� and �� are the points of the reaction coordinates for which 

�(�) = 0. The second approach is the use of a parabolic potential barrier with a discontinuity 

at its base,  

�(�) = �� −
����

�� . (40) 

Replacing Equation (39) in (40), and knowing that 2� is the barrier width, we arrive at: 

��
� = ��� �

−2���√2�

ℎ���

(�� − �)�, (41) 

� = ��� �
���

���
� +

�

���
∫ ��� �

�����√��(����)

����
+

�

���
� ��

��

�
, (42) 

� =
�

���
[����(−�) − ���� (−�)], (43) 

where � =
��

���
and  � =

����√���

�
.  

The barrier permeability used above is only valid when � is significantly less than ��, 

that is, for a high degree of tunneling, but it is imprecise for W values approximately equal to ��. 

With the aim of providing "a more accurate treatment for a parabolic energy-barrier", Bell, in 

195878, proposes a new approach to ��
�  which resembles an exact solution of the Schrodinger 

Equation using the following conditions: 

i) ��
�  reduces to ��

�  when � ≪ �� and should tend to drive when � → ∞,  

ii) �(�) = 1 2⁄  in case � = ��, which is a good approximation for realistic cases 

of interest in chemical kinetics.   

The expression that provides the above conditions is represented below: 

��
� = [1 + ���(��)]��, (44) 

Bwith � = 1 − � ��⁄ . Replacing the new value of ��
�  in equation (42), we have: 

� = �
���� (��)��

1 + ��� (��)

�

��

. (45) 

In the case of � < �, which is the most likely case in situations of chemical interest, and 

replacing � = ���(��), Equation (45) can be rewritten as follows: 

� = ∫
��

���
�
�

��

�
= ∫

��

���
�
�

�

�
− ∫

��

���
�
�

�

�� . (46) 
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Its integration provides: 

� =
�

��
�

�

��� �
��
�

�
−

���� (� − �)��

� − �
�1 −

� − �

2� − �
���(−�)

+
� − �

3� − �
���(−2�) − ⋯ � 

 

(47) 

In most cases, � − � < 1, therefore, the second term of the previous equation can be 

overlooked, producing: 

� =
�

��

�
�

����
��

�
�
. (48) 

 

2.3.2.4 Deformed Transition State Theory 

It is quite consolidated in the literature that a concave curvature in the Arrhenius 

diagram, as shown in Figure 5, is evidence of tunneling in elementary chemical reactions 2,9–11.  

In addition, it is known that the tunneling effect on chemical reactions can be classified into four 

regimes, depending on the value of the crossover temperature79, �� = ℎ�‡ ���⁄ . These are: 

negligible (� > 2��), small (2�� > � > ��), moderate (�� > � > �� 2⁄ ), and deep (� > �� 2⁄ ).78–80 

 

Figure 5: Arrhenius diagram illustrating tunneling regimes: negligible, moderate and deep. 
The point where the red and purple dotted line intersect is the crossover temperature, ��. 

Figure taken from reference 40. 
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In order to study chemical processes that had concave curvature in the Arrhenius plot, 

Aquilanti and Mundim81,82, in 2010, proposed an equation to adjust experimental or theoretical 

data that fit with the available data:  

�(�) = � �1 − �
��

���
�

� �⁄

, (49) 

which tends towards the Arrhenius formula when the value � tends to zero according to the limit 

proposed by Euler: exp = ���
�→�

�1 +
�

�
�

�

. However, this proposition is a formula used to 

provide estimates of values when there is data to be adjusted from macroscopic quantities, such 

as the rate constant and temperature. In order to obtain a formulation that would allow 

predictions of the rate constant through phenomenological parameters, Carvalho-Silva and  

collaborators 2,83, applied Aquilanti-Mundim formulations to the Transition State Theory, 

producing the deformed Transition State Theory (�-TST). The rate constant of elementary 

chemical reactions with sub-Arrhenius behavior is traditionally calculated by introducing a 

tunneling correction (�) in the rate constant of the Transition State Theory (TST) as a 

multiplicative factor, �(�) = � × ����. 

������(�) =
���

�

��

����
�1 −

���

���
�

� �⁄

. (50) 

Unlike the other formulations, which consider the tunneling parameter as a multiplicative 

factor (according to Equation (23)), the formulation of the �-TST replaces the factor � × ����� 

formulation of TST by the deformed exponential function. Equation (50) recovers the TST rate 

constant as d approaches zero, due to the Euler limit, ���
�→�

(1 − ����)� �⁄ = �����, with � =

1 ��⁄ � . 

The formulation of �-TST has clear limitations to describe the deep tunneling regime 

(Wigner limit) in chemical reactions2,84, confirming applicability in negligible to moderate 

tunneling regimes. For negative and positive values of � an upward (concave) and downward 

(convex) curvature, respectively, is observed in the Arrhenius diagram, which are generally 

called sub- and super Arrhenius behavior. To provide an expression for the deformed parameter 

(�), an analysis of the Bell tunneling correction and the exponential function of the Euler limit 

were expanded into a power series, which made a connection with the characteristics of the 

energy barrier possible, yielding  

� =  −
1

3
�

ℎ��

2��
�

�

. 
(51) 

2.4 Machine Learning Fundamentals 

Turing’s question, “Can machines think?” in a seminal paper from the 1950 

characterizes the field of Artificial Intelligence (AI)85. The construction of techniques to answer 

what is now called the “Turing Test” provided a great advance in this area. Protocols for building 

AI models were initially based on two approaches: i) knowledge-based and ii) statistical learning. 
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Knowledge-based models required cataloged data from experts and code with various 

conditions was created, however the model was incapable of learning which caused this 

approach to fall out of use. On the other hand, statistical learning or machine learning uses 

statistical methods to build models that can learn for themselves, being the main approach used 

today. In general, machine learning is defined as the area of science aimed at learning from 

data through computer programming86.  

However, artificial intelligence and/or machine learning took a few decades to become 

widely established in use. One of the main bottlenecks in previous decades was the amount of 

data generated to be used in the models. This challenge has been overcome in recent years 

with digital transformations driven by industry 4.0, whose main pillars are the internet of things 

and services, cyberphysical systems and Big-Data.87,88. In this sense, with the integration of the 

internet in the main modern services/tasks, the amount of data has grown exponentially. 

Therefore, the data can be used as a form of raw material, which when processed, can 

contribute to a set of rules to be taken by the machine algorithms. At this point in the text, it 

should be noted that even with a significant amount of data, data can commonly be made 

available with missing information, which makes it essential for the developer to process and 

pre-process this data to ensure the integrity of the data that will be used.  With the data 

processed, it is essential to carry out an exploratory analysis, in which the main statistical 

characteristics of the dataset will be summarized. Among these analyses, the following stand 

out: population and sample, relative and absolute data, frequency distribution, measures of 

dispersion and position, statistical distributions, among others. 

To make it easier for the reader to understand, Figure 6 shows a step-by-step best 

practice for employing machine learning in various tasks. For example, applied to the case study 

of this thesis, the first step is to make a detailed study about the problem associated with 

obtaining the rate constant. 
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Figure 6: An overview for developing a machine learning model. 

By thoroughly knowing the problem you are studying, patterns will be recognized, as in 

any operational task. With the recognized patterns and the cataloged dataset – one of the crucial 

steps for the development of the machine learning model – the model can be trained. The next 

step is to evaluate whether the model learned correctly, if so, the model can be implemented, 

otherwise, it is necessary to evaluate the errors and start the studies on the problem again and 

repeat the procedure described above. 

The reader of this thesis could ask at this moment what other tasks, besides 

the spam case mentioned above, that an artificial intelligence model could perform. To answer 

this question, it is necessary to divide the types of machine learning into categories, such as: 

i) Supervised Learning: In this category, it is necessary that the training 

data be provided accompanied with the labels.  

ii) Unsupervised Learning: In this category, training data is not labeled.  

iii) Semi-supervised learning: In this category, the dataset can contain 

labeled, partially labeled, and unlabeled data.  

iv) Reinforcement learning: In this category, quite different from the other, 

it is based on teaching tasks to be performed by a learning system 

through rewards or penalties.  

Within supervised learning, the category that will be highlighted in this work, there are 

two typical tasks: classification and regression. ML models with classification problems are 

aimed at finding classes, whereas regression problems are aimed at predicting numerical 

values. Figure 7 shows a didactic example for the afore mentioned cases, a classification 

problem (on the left) and a regression task (on the right). In the left panel of Figure 7 there would 
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be a task to predict whether a given letter of the alphabet corresponds to the letter “A” or the 

letter “B” and in the right panel the task would be destined to perform the prediction, for example, 

of the value of a house. 

Figure 7: Supervised machine learning types. 

Purposely, in the case of the classification task, the letter “A” was placed on the side 

destined for the letter “B”, providing an error to the model. In the case of regression, it is also 

noticed that some data are far from the dashed line, which represents the model developed. 

This indicates that the models created need to be evaluated in relation to the mistakes and 

successes they make. Therefore, statistical metrics to estimate the robustness of models are 

necessary. In the case of classification problems, the main metrics are precision, accuracy. In 

the case of regression tasks, the most used metrics are root mean error squared, correlation 

coefficient. 

The knowledge of all these statistical parameters applied to a dataset is defined as good 

practices for the development of ML models. After representing the data and all necessary 

treatment, the next step is to apply the ML models. The most important algorithms for supervised 

learning are: k-nearest neighbors (KNN), linear regression, logistic regression, support vector 

machines (SVM), decision trees, random forests (RF), XGBoost (XGB) and neural networks 

(NN)27, the last three being the algorithms selected in this thesis. In this sense, a more detailed 

description of these three algorithms along with the mathematics behind the models is presented 

below.  

Both the “Random Forest” model and the “XGBoost” model are based on algorithms 

called decision trees. These models are made up of different decision trees, each with its 

respective nodes, these nodes containing different data that lead to different leaves. The final 

decision of the model is obtained by an average of all decision trees. Figure 8 illustrates the step 

by step described above in detail.  
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Figure 8: Architecture of a decision tree-based algorithm. 

In the case of regression models, the algorithm uses the mean square error to define 

how the data will be divided at each node (see Equation 52). On the other hand, in classification 

cases, the Gini index or entropy can be used – both parameters use probability to determine the 

result of how the nodes are branched – as shown in Equations 53 and 54. 

��� =
∑ ������������

��
���

�
, (52) 

���� = 1 − ∑ (��)��
��� , (53) 

������� = ∑ −�� ∙ ����(��)
�
��� . (54) 

in that ����, ����� , are the experimental and predicted values and �� represents the relative 

frequency.  

Another widely used algorithm for classification and regression problems is neural 

networks. This algorithm is based on a series of units organized and connected in sequential 

layers. The neural network architecture involves an input layer, hidden layers and an output 

layer. The units are the neurons, with neurons within the same layer acting in parallel and 

transforming the input values received from the previous layer into a scalar value. Figure 9 

shows a good illustration for understanding a neural network. The right of Figure 9 represents 

an overview of the neural network architecture, while the left part shows the example of a neuron 

being computed separately.  

Equation 55 shows the mathematical procedure for calculating each neuron separately.  

� = � + � ����

�

���

 (55) 

where � represents the bias, �� the input parameter, ��  means the weights. Finally, the result of 

Equation 55 is passed through a nonlinear activation function g(z).  
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Figure 9: Processing a neural network. 

. 
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3. PAPERS 

 The advanced oxidative process is one of the most recommended 

techniques for the degradation of organic pollutants. Commonly, hydroxyl radical, sulfate radical 

anion, ozone, singlet oxygen, organic matter, among others, are used in order to degrade these 

compounds. One of the procedures to verify the degradation efficiency is through the 

degradation kinetics, since the higher the value of the rate constant, the greater the degradation 

of the compound. Thus, it is important to obtain this parameter to evaluate the efficiency of the 

pollutant degradation process, whether in an aqueous environment or in the atmospheric 

environment. In this thesis, experimental, theoretical and in silico approaches were applied to 

investigate the kinetics, mechanism and toxicity of these compounds through oxidative 

processes. 

 The first work was dedicated to evaluating the mechanism, kinetics and 

toxicity of the herbicide picloram through the oxidative process with the hydroxyl radical. A hybrid 

approach, that is, theoretical and experimental, was carried out in order to obtain the rate 

constant and other thermodynamic and kinetic parameters of the degradation reactions. 

Through this study, it was possible to reveal the main by-products of degradation and evaluate 

the toxicity of these compounds. 

 The second and third work were dedicated to the development of 

machine learning models to predict the rate constant as well as other kinetic parameters to 

evaluate the degradation of organic pollutants through oxidative processes. In the first of these 

articles, three machine learning models were developed with the aim of predicting the constant 

a kinetics of aqueous organic pollutants through the oxidation of hydroxyl radicals and the sulfate 

radical anion. Similarly, in the second work, the study was extended to the creation of three 

machine learning models to perform the prediction of atmospheric organic pollutants through 

the oxidation process initiated by hydroxyl radicals. Additionally, in order to make the developed 

models available, the two studies were added to a web platform to help professionals and 

researchers who require information on the degradation efficiency in different environments, 

especially in water treatment plants. 
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PAPER 1:  

SANCHES-NETO, F. O., RAMOS, B., LASTRE-ACOSTA, A. M., TEIXEIRA, A. 

C. S., & CARVALHO-SILVA, V. H. (2021). Aqueous picloram degradation by 

hydroxyl radicals: Unveiling mechanism, kinetics, and ecotoxicity through 

experimental and theoretical approaches. Chemosphere, 278, 130401. 

 

 In recent years, several studies have been dedicated to investigating 

the kinetics of degradation of various compounds in an aqueous environment to assess the 

consequences of these species in water bodies. Among these compounds, both the use of drugs 

and pesticides has been of significant concern due to the widespread use of these compounds, 

either in agriculture or by the general population as a medicine. In the central-west region and 

in the state of Goiás, the use of herbicides is widely used to control weeds, wheat, barley, oats, 

and plant species. To combat these pests, one of the most commercially used pesticides is 

picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid). 

 Due to its physicochemical properties, mainly due to its solubility in 

water, it is essential to evaluate the consequences to the environment caused by the presence 

of this pesticide in an aquatic environment, since the presence of pesticides has been related to 

a health problem. public due to its carcinogenic effects on non-target organisms. In this sense, 

a study revealing the kinetics of degradation through hydroxyl radicals employing a hybrid 

theoretical-experimental approach was carried out. In addition, details of the main mechanism 

and toxicity of picloram as well as the main by-products revealed from a theoretical point of view 

were evaluated using an in-silico methodology.  

 My contribution in this study was the realization of all the theoretical 

apparatus for the accomplishment of the electronic structure calculations as well as the kinetic 

calculations. In addition, all writing is written from the theoretical point of view and the 

contribution of the results obtained experimentally. The authors Bruno Ramos, Arlen Costa and 

Antonio Carlos helped to carry out the experimental part. It is also noteworthy that I participated 

in a technical visit at the University of São Paulo to understand and perform the part 

experimentally carried out by the authors mentioned above. Professor Valter Carvalho helped 

to correct and supervise the work carried out. 
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� Rate constants were estimated by
experimental and theoretical
approaches.

� Topological analyses and Fukui func-
tions were calculated.

� Toxicity assessment was performed
using the ECOSAR computational
package.

� The photolysis study was performed
by TD-DFT.

a r t i c l e i n f o

Article history:
Received 22 January 2021
Received in revised form
9 March 2021
Accepted 22 March 2021
Available online 30 March 2021

Handling Editor: Klaus Kümmerer

Keywords:
Organic contaminant degradation
Pesticides
d-TST
AOPs
DFT

a b s t r a c t

Pesticides are chemical compounds widely used to combat pests in crops, and they thus play a key role in
agricultural production. However, due to their persistence in aquatic environments, even at low con-
centrations, their use has been considered an environmental problem and caused concern regarding the
adverse effects on human health. This paper reports, for the first time, the mechanisms, kinetics, and an
evaluation of the toxicity of picloram degradation initiated by �OH radicals in the aqueous environment
using quantum chemistry and computational toxicology calculations. The rate constants are calculated
using a combination of formulations derived from the Transition State Theory in a realistic temperature
range (250e310 K). The results indicate that the two favorable pathways (R1 and R5) of �OH -based
reactions occur by addition to the pyridine ring. The calculated rate constant at 298 K is compared with
the overall second-order reaction rate constant, quantified herein experimentally via the competition
kinetics method and data available in the literature showing an excellent agreement. The toxicity
assessment and a photolysis study provide important information: i) picloram and the majority of
degradation products are estimated as harmful; however, ii) these compounds can suffer photolysis in
sunlight. The results of the present study can help understand the mechanism of picloram, also providing
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important clues regarding risk assessment in aquatic environments as well as novel experimental
information.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the use of pesticides plays a key role in
agricultural production (Lin et al., 2018; Tomlin and others, 2009)
and in global public health (Organization and others, 1990; Planas
et al., 1997), and contributes as an important factor for global
economic stability (Seufert et al., 2012; Vasileiadis, 2017). However,
in recent years, the widespread use of pesticides has caused sig-
nificant consequences for the environment and raised concerns due
to their carcinogenic and toxic effects on non-target organisms
(Canna-Michaelidou and Nicolaou, 1996; Tremolada et al., 2004).
Pesticides are complex chemical compounds used to combat pests,
such as insects and fungi (Ikehata and El-Din, 2006; Organization
and others, 2006). Detailed knowledge of the physical-chemical
properties of these species is essential for understanding the
impact they might have in the environment (Socorro et al., 2016).
The volatility of these compounds, for instance, can contribute to
air contamination by evaporation during application (Aktar et al.,
2009; Waite et al., 1999); their solubility in water determines the
degree to which they can contaminate groundwater (Ghauch,
2001; Luo et al., 2014), and contribute to soil desertification by
leaching (Graça et al., 2019) and erosion (Bereswill et al., 2012;
Khan, 2016). Many efforts have been devoted to removing pesti-
cides from surface waters, groundwater and industrial effluents
because of the adverse effects these species might have on living
organisms (An et al., 2014; Cardoso and Valim, 2006). Various
technologies, such as dry and wet deposition (Ghauch, 2001; Sauret
et al., 2009), adsorption filters (Cardoso and Valim, 2006; Suo et al.,
2019), biological treatments (Lafi and Al-Qodah, 2006; Zapata and
Oller, 2010), and Advanced Oxidation Processes (AOPs) (An et al.,
2014; Oturan and Aaron, 2014) have been developed in a collec-
tive effort to remove and/or destroy dangerous contaminants
before their disposal in the environment.

Pyridine and derivative compounds have attracted extensive
attention due to their occurrence in the environment and the
hazardous effects they have on ecosystems and on human health
(Abramovi�c et al., 2011; Stapleton et al., 2010). One of the most
common pyridine-derived pesticides is picloram (4-amino-3,5,6-
trichloro-2-pyridinocarboxylic), a herbicide used for controlling
weeds inwheat, barley, oats, and woody plant species (Cardoso and
Valim, 2006; Ghauch, 2001; Haag and David Yao, 1992; Hedlund
and Youngson, 1972). The toxicity of picloram is considered mod-
erate to high (Abramovi�c et al., 2011; Wauchope et al., 1992), with
half-lives in the range 20e300 days (Rahman and Muneer, 2005;
Socorro et al., 2016). Furthermore, its photodegradation on the soil
surface with the use of aerobic microorganisms is mediated by its
efficient solubility in water (Abramovi�c et al., 2011; Ghauch, 2001).
All these properties combined with its persistence in the soil
confirm the risk of groundwater contamination. In fact, picloram
has already been detected in ten American states by the United
States Environmental Protection Agency (Ghauch, 2001; Howard,
2017). These features have been supported by several studies of
picloram degradation in aqueous solution. Ghauch (2001) studied
the degradation of picloram using zero-valent iron powder in an
aerobic conical apparatus, in which the pollutant was converted
into 4-amino-2-pyridylcarbinol, a substance considered environ-
mentally dangerous. Cardoso and Valim (2006) investigated the

ability of layered double hydroxides to adsorb picloram from
aqueous solutions, achieving 96% adsorption after 6 h; however,
this physical treatment alone does not promote contaminant
degradation. €Ozcan et al. (2008) used the electro-Fenton process to
remove picloram from aqueous solution using current density and
catalyst concentration of 300 mA and 0.2 mM Fe3þ, respectively.
The authors reported a reaction rate constant of 4.53 � 10�12 cm3

molecule�1 s�1 at 298.15 K. The reaction rate constant of the
degradation of picloramwith �OH radicals has only been reported at
ambient temperatures. Other authors have carried out kinetic and
mechanistic studies of picloram photodegradation with titanium
dioxide, identifying several intermediates and reaction pathways
(Abramovi�c et al., 2011). Recently, Coledam et al. (2018) used four
methods based on the production of �OH radicals to evaluate the
oxidation and mineralization of picloram: these results support the
photo-Fenton HOCl/UVC process as an efficient option to treat
aqueous organic contaminants.

The reaction of �OH radicals with organic pollutants is often
complex and involves three possible mechanisms (An et al., 2014;
Manonmani et al, 2019, 2020; Mei et al., 2019): i) addition of �OH to
an aromatic ring or other unsaturated bonds, ii) hydrogen-atom
abstraction, and/or iii) single electron transfer. From an experi-
mental perspective, the identification and elucidation of the
mechanisms shown above are analytically challenging, complex,
expensive and equipment-dependent (An et al., 2014; Mei et al.,
2019; Milenkovi�c et al., 2020). The laborious experimental pro-
cedures involved in distinguishing and quantifying the reaction
mechanisms of �OH radicals with organic molecules make quantum
theoretical calculations appear as an advantageous protocol to
obtain a more detailed picture of the mechanisms and kinetics of
such reaction systems. Nevertheless, to the best of our knowledge,
there are no theoretical studies regarding the attack of �OH radicals
on picloram molecules. Thus, the focus of this work is to provide a
detailed understanding of the mechanism and kinetics of picloram
degradation mediated by �OH radicals using a blend of quantum
chemistry calculations, reaction rate theory, and experimental ki-
netics procedures. In addition, we provide an evaluation of the
photolysis and toxicity of picloram and its degradation products
using a TD-DFT procedure and an Ecological Structure-Activity
Relationships predictive model.

2. Materials and methods

2.1. Quantum chemical calculations

The electronic structure properties of the reactants, products,
and the transition states were calculated at the M06HF/6-31Gþ(d)
level (for appropriate nomenclature see Fig. 1) with the solvation
model density (SMD). The SMD model has been widely used to
simulate the aqueous environment in the elucidation of the
mechanisms of pesticide degradation, and is computationally less
demanding than other continuum models (Luo et al., 2018). Details
about other levels of calculations can be found in the Electronic
Supplementary Information (ESI) file. The stationary points were
characterized by analytic harmonic frequency calculations. The
absence or presence of one imaginary frequency characterizes the
optimized structures as local minima or transition states,
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respectively. The zero-point vibrational energy contributions have
been considered in the calculation of the energy barrier. The
photolysis of the optimized geometries was performed by TD-DFT
(Gross et al., 1996) calculations using the CAM-B3LYP density
functional (Yanai et al., 2004) and 6e311þþG(d,p) basis set.
Quantum chemical calculations were carried out using the
Gaussian 16 package (Frisch et al., 2016).

The topological analysis (Bader, 1985; Matta and Boyd, 2007)
was performed in terms of electron density (r), Laplacian of elec-
tron density (V2r), Lagrangian kinetic energy density [G(r)], Po-
tential energy density [V(r)] and Energy density [E(r)] at the Critical
Points (CP) to efficiently describe H-bonding and its concept
without border. To analyze the main reactive sites of the
�OH þ picloram reaction, appropriate local reactivity descriptors as
Fukui function (f ) (L�opez and M�endez, 2004; Melin et al., 2007)

were calculated according to equations, f�NBOzrLUMO
NBO ¼ P

i

�����cij2LUMO,

and f 0NBOzfþNBO þ f�NBO=2. The Multiwfn package program (Lu and
Chen, 2012) was used to study the topological and Fukui functions.

2.2. Reaction rate theory

The reaction rate constant of picloram degradation by �OH
radicals was calculated using formulations based on the Transition
State Theory. To account for the tunneling effect, the deformed
Transition State Theory (d� TST) (Carvalho-Silva et al., 2017) was

adopted (Eq. (1)):

kd�TST ¼ kBT
h

QTSy

QReac

�
1� d

E0
RT

�1=d
(1)

where h is the Planck’s constant, kB is the Boltzmann constant, R is
the universal gas constant, d is the deformation parameter, while
QReac and QTSy are the partition functions of the reactants and
transition state, respectively. To include the contribution of mo-
lecular diffusion in solution, the calculated rate constant kd�TST is
combined with the steady-state Smoluchowski rate constant, kD,
following the Collins-Kimball theory (Collins and Kimball, 1949),
yielding the apparent rate constant (kOBS), according to Eq. (2):

1
kOBS

¼ 1
kd�TST

þ 1
kD

(2)

Additional details about the parameter d and the calculation of
kD can be found elsewhere (Sanches-Neto et al., 2020a,b) and the
references therein. To consider the effect of recrossing on the re-
action rate constant, we also calculate the Variational Transition
State Theory (VTST) (Eq. (3)):

kVTST ðTÞ ¼ min
q

kTSTðTÞ (3)

However, VTST neglects tunneling effects, since it un-
derestimates the kinetic constant for reactions where quantum

Fig. 1. Scheme of hydrogen atom abstraction and addition reactions with picloram and �OH radicals.
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tunneling effects are important, especially at low temperatures.
Here, in order to account for the quantum tunneling effect, we
refine the deformed formalism described in Carvalho-Silva et al.
(2017), defining the deformed Variational Transition State Theory
(d-VTST) (Eq. (4)):

kd�VTST ðTÞ ¼ min
q

kd�TSTðTÞ (4)

The Aquilanti-Mundim law (Aquilanti et al., 2010) (Eq. (5)) was
used to fit the rate constant data to represent our results in order to
compare with other works:

kðTÞ ¼ A

 
1� d

E
RT

!1
�
d

(5)

where A and d are the pre-exponential factor and the deformed
parameter, respectively [Note a change in the notation here, needed
in order to avoid ambiguities: in terms of the fitted equation, we

defined d, which is different from the d parameter; and E, which is
different from E0]. All kinetic and associated parameters have been
calculated with the Transitivity Code-version 1.0.4 (Machado et al.,
2019). Details of the computational program can be found on the
www.vhcsgroup.com/transitivity web page.

2.3. Experimental approach

The overall second-order reaction rate constant between
picloram (PCL) and �OH radicals (kPCL,�OH) was evaluated using the
competition kinetics method with correction for photolysis, as re-
ported elsewhere (Lastre-Acosta et al., 2019; Shemer et al., 2006;
Silva et al., 2015; Son et al., 2020;Wenk et al., 2011; Yan et al., 2021).
In this method, the rate constant is evaluated as a function of its
observed pseudo-first-order rate in the presence of a competing
�OH radical scavenger with known kinetics (p-chlorobenzoic acid,
pCBA), according to Eqs. (7) and (8):

kPCL;�OH ¼
 

kPCLðobsÞ � kPCLðdpÞ
kpCBAðobsÞ � kpCBAðdpÞ

!
� kpCBA;�OH (6)

where kPCL(obs) is the measured pseudo-first-order reaction rate of
picloram in the �OH radical system (described below); kPCL(dp) and
kpCBA(dp) are the measured photolysis rate constants of picloram
and p-chlorobenzoic acid. kpCBA(obs) and kpCBA,�OH are, respectively,
the measured pseudo-first-order reaction rate constant of the
reference compound in the �OH radical system and the second-
order rate constant of the reaction between this compound and
hydroxyl radicals (kpCBA,�OH¼ 5� 109 L$mol�1$s�1) (Elovitz and Von
Gunten, 1999).

The reactional system used in this experiment adopts hydrogen
peroxide as a precursor of �OH radicals. A reaction mixture is pre-
pared containing 2.1 � 10�5 mol$L�1 of picloram (ca. 5 ppm), an
equimolecular amount of pCBA (ca. 3.2 ppm) and excess
(0.05 mol$L�1) hydrogen peroxide in natural pH (~4.5). H2O2 was
added in excess to ensure that the competing reactions will be
limited by the concentration of the target and the reference com-
pounds. According to the literature, the concentration of hydrogen
peroxide was shown not to affect significantly the value of the
second-order rate constant of the target compound with �OH rad-
icals (Shemer et al., 2006). The test solution was prepared using
deionized, ultrapurewater (Milli-Q®, 18.2MU), and distributed into
2.0-mL Pyrex vials with no headspace. The vials were irradiated
under simulated sunlight with standard AM1.5G spectra (PEC-L01,
Peccell Inc.), as illustrated in Fig. 2, for selected exposure times.

Samples were irradiated for 5, 10, 15, 30, 45, 60 and 120 min. All
chemicals, HPLC grade, were acquired from Sigma-Aldrich and used
as received without further purification.

The (direct) photolysis rate constants, kPCL(dp) and kpCBA(dp), are
evaluated in the same experimental setup, in order to account for
the effects of the irradiated photons on the degradation of both
species due to excited-state reactions. However, in these analyses,
the sample vials are filled with solutions of each compound (5 ppm
for picloram and 10 ppm for pCBA) separately and without the
addition of H2O2. The concentrations of pCBA and picloram were
measured using a high-precision liquid chromatography system
(LC-10, Shimadzu Co.) equipped with a photodiode array detector
(SPD-20MA, Shimadzu Co.). The separationwas carried out in a C18
reverse-phase column (Luna C18, 5 mm, 250 � 4.6 mm, Phenom-
enex Inc.) with isocratic elution of methanol and water (50:50) at
1.5 mL$min�1. Picloram and pCBA were detected simultaneously
after 4.7 and 13.7 min of elution, respectively, and quantified by UV
absorption at 254 nm.

2.4. Toxicity assessment

The ecotoxicity of picloram and its main degradation products
were determined using the Ecological Structure-Activity Relation-
ship Model (ECOSAR V2.0). ECOSAR is an effective predictive pro-
gram and has been successfully applied to the ecotoxicity
assessment of organic contaminants (Reuschenbach et al., 2008;
Sanderson et al., 2003). Three aquatic organisms e green algae,
daphnia, and fish e were chosen as targets. Acute toxicity (feature
characterized by LC50 and EC50 values) and chronic toxicity (defined
by ChV) of the compounds studied were obtained from ECOSAR
platform. LC50 means the concentration of a chemical compound
(in mg$L�1) that causes the death of half of the fish and daphnia
population after exposures of 96 and 48 h, respectively. In addition,
EC50 represents the concentration that permits 50% of green algae
to grow normally after 96 h of exposure (in mg$L�1).

3. Results and discussion

3.1. Experimental

The first-order degradation profiles of picloram and pCBA in the
hydroxyl radical reaction system are shown in Fig. 3. Both profiles
adjusted well to a first-order kinetics, according to Eqs. (7) and (8):

ln
�
C0ðPCLÞ
CðPCLÞ

�
¼ kPCLðobsÞtirrad (7)

ln
�
C0ðpCBAÞ
CðpCBAÞ

�
¼ kpCBAðobsÞtirrad (8)

The reaction rate constants evaluated at this stage are used to
calculate kPCL,�OH, together with the reaction rates evaluated in the
absence of H2O2, in order to exclude the effects of direct photolysis,
as indicated in Eq. (6). Table 1 summarizes the kinetic constants
measured experimentally.

The second-order reaction rate constant is within the range
commonly found for the reaction of aromatic compounds and
pyridines with hydroxyl radicals (Buxton et al., 1988), typically
between 8.0 � 10�13 and 2.5 � 10�11 cm3$molecules�1$s�1. €Ozcan
and colleagues (€Ozcan et al., 2008) have carried out a similar
competitive kinetics experiment for picloram and reported a
second-order rate constant in the same order of magnitude, albeit
slightly slower than ours (5.64 � 10�12 cm3$molecules�1$s�1). This
difference is expected, since our reactive media are substantially
different, particularly in terms of pH. As shown in Buxton’s
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comprehensive database of kinetic constant rates of organic species
with oxygen radicals (Buxton et al., 1988), the measured reaction
rates can vary within the same order of magnitude for similar
organic compounds according to the reaction pH. Considering the
reported pKa of picloram (3.4) (Spadotto and Hornsby, 2003), it is
expected that at natural pH most picloram molecules will be in the
ionic state; whereas at a pH 3.0, the condition used by €Ozcan, most
of their equivalents would be in the neutral molecular form.

3.2. Mechanism and energetic parameters

To discuss the mechanisms of the reaction of �OH radicals with
picloram, we used the M06HF density functional, which is widely
used to study chemical reactions and provides a reliable mecha-
nism and kinetic results (Sanches-Neto et al., 2017, 2020a,b),
combined with the 6-31þG(d) base function. Additional calcula-
tions with larger basis sets and other DFT functionals were
considered, whose results are shown in Table S1. The possible
mechanisms for the reaction of �OH radicals with picloram are (see
nomenclature in Fig. 1): i) hydrogen transfer from the amino group
(R7-R8) or carboxylic group (R9) of picloram by the �OH radical and/
or ii) �OH addition to the picloram pyridinic ring (R1-R6). In this
study, the single-electron transfer mechanism (SET) is not consid-
ered because the barrier height of SET is higher than the reactions
involving abstraction and addition (Han et al., 2014; Li et al., 2020;
Yang et al., 2017). To confirm the main active sites of the picloram
molecule through radical attack, the Fukui functions were calcu-
lated, an important approach to explain the reactivity in chemical
systems (L�opez and M�endez, 2004; Melin et al., 2007; Milenkovi�c
et al., 2020; Silva et al., 2010). Fig. 4 illustrates significant values
(see nomenclature in Fig. 1) for the selected atoms. According to
Fukui formulation (L�opez and M�endez, 2004), the highest values
are related to a probable radical attack on carbon C1, C4, and C5
(Fig. 5).

Fig. 3 shows the relative energy profile of the reaction of
picloram with �OH radicals calculated at the M06HF/6-31þG(d)
level of theory and corroborates the results of the Fukui function
e the attack of the �OH radicals on carbons C1, C4, and C5 is
kinetically favorable: R1, R4, and R5 channels presented the lowest
barrier heights. The Cartesian coordinates of the transition states
and picloram calculated in this work are listed in Table S2. Geo-
metric parameters and imaginary frequencies of the transition
states involved in the reaction of �OH radicals with picloram are
listed in Table S3. From the data in Table S3, it is possible to observe
that the transition state geometries for R1 and R5 channels are

Fig. 2. Illustration of the setup used in the competition kinetics and photolysis experiments.

Fig. 3. Pseudo-first-order plots of picloram and pCBA in the hydroxyl radical reaction
system.

Table 1
Kinetic parameters obtained experimentally.

Rate constant Picloram

Direct photolysis kPCL(dp) (2.71 ± 1.95) � 10�6 s�1

�OH (pseudo first-order) kPCL(obs) (1.30 ± 0.04) � 10�4 s�1

Second-order kPCL,�OH (6.74 ± 0.13) � 10�12 cm3$molecules�1$s�1
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similar: at the M06HF/6-31þG(d) level, we found the C1eO17eH18
and C5eO17eH18 angles of 102.88� and 95.66� and the frequency
values for TS1 and TS5 of 650.13i and 681.27i, respectively; this
information is very important in modeling the global potential

energy surface for future calculations (Truong et al., 1989). The
thermodynamic profile of all the pathways presented in Fig. 1 (R1-
R9) was studied and revealed that only the R3 channel is endo-
thermic. The formation of R1, R2, and R5 products occurs by addi-
tion of the �OH radical to the picloram ring, forming an
intermediate, followed by reductive elimination of the chlorine
atom (Abramovi�c et al., 2011; €Ozcan et al., 2008). The R5 product (4-
amino-2,3-dichloro-5-hydroxy-picolinic) has also been reported by
previous studies (Abramovi�c et al., 2011; Coledam et al., 2018;
€Ozcan et al., 2008; Rahman and Muneer, 2005).

Additionally, we make use of the Quantum Theory of Atoms in
Molecules (QTAIM) to explain the strong thermodynamic stability
of R1 and R5 products from their intermolecular interaction. These
products are the major degradation compounds found experi-
mentally (see more details in Sec. 3.3). According to Rozas’ (Rozas
et al., 2000) criteria, intermolecular interactions can be classified
as: strong, when V2r(r) < 0, E(r) < 0, and |V(r)| > E(r); ii) weak,
when V2r(r) > 0, and E(r) > 0; and iii) moderate, when V2r(r) > 0,
and E(r) < 0. According to Table 2, there is a strong hydrogen bond
between H18 of the hydroxyl group and O15 of the carboxylic group
permitting an efficient stabilization of the R5 product. Cl10 in the R1
product provokes a concomitant stabilization mediated by H15 and
O17 atoms. Molecular representations of critical points (CP) shown
in Table 2 are in Fig. S1 of ESI.

Fig. 4. Fukui function values for the �OH radical attack on selected carbon atoms of
picloram in water (see nomenclature in Fig. 1).

Fig. 5. Relative energy profile corresponding to the initial abstraction of the hydrogen atom and picloram addition reaction by the �OH radical.
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3.3. Theoretical reaction rate constant

Several authors have suggested that the reductive elimination
steps after the addition of the �OH radical are not determinant for
the calculation of the rate constant (Abramovi�c et al., 2011).
Accordingly, reaction rate constants calculated in the present study
considered only �OH radical additions in the picloram ring and
hydrogen abstraction from the amino and carboxylic groups. To the
best of our knowledge, these are the first theoretical calculations of
the reaction rate constant of picloram degradationmediated by �OH
radicals.

First, the reaction rate constants of picloram were calculated
using the deformed Transition State Theory (d-TST) in a realistic
temperature range (250.0e310.0 K) at the M06HF/6-31þG(d) level.
The results are presented in Table 2. The value of the total reaction
rate constant at 298.15 K is 4.29 � 10�12 cm3 molecules�1 s�1,
which is in excellent agreement with the value found experimen-
tally in this work and by €Ozcan et al. (2008),
4.53 � 10�12 cm3$molecules�1$s�1. It is observed that the tem-
perature dependence of the reaction rate constants of picloram
degradation by �OH attack exhibits anti-Arrhenius behavior e a
decrease in the reaction rate constant as the temperature increases.
Previous studies have shown that reactions with hydroxyl radicals
often exhibit deviations from the Arrhenius law. For cases with
anti-Arrhenius behavior, the reactional process is characterized by
a stereodirectional factor (Coutinho et al, 2015, 2016, 2018). These
findings clarify the favoring of the attack of the �OH radical to C5 of
picloram. The substitution of an electron-withdrawing group (Cl)
by an electron-donating group (�OH) results in a strong stabilization
due to the OHeH18 hydrogen bond with the R5 product. These
observations support the role of the orientational factor in this
reaction.

Recently, we developed a web application structured in a

machine learning and molecular fingerprint algorithm for the
estimation of the reaction rate constants of the degradation of
organic pollutants in aqueous environments - the pySiRC platform
(www.pysirc.com.br) (Sanches-Neto et al., submitted). Table 3
shows the reaction rate constant estimated by the Bagging ma-
chine learning (ML) model in pySiRC. There is an excellent agree-
ment between our quantum chemistry protocol and the ML
algorithm.

The branching ratios (Gj) were calculated, defined as the ratio of
the rate constant of a specific channel and the global rate constant
for each channel (Gj ¼ kj=kTotal). The values of the major contri-
butions are given in Table 4, and the results indicate the preference
for channels R1 and R5 with branching ratios of 42.9% and 57.1%, at
298.15 K, respectively. The knowledge of the effective importance
of each channel is significant and allows the role played by each of
these products in the environment to be evaluated.

The reaction rate constant (kOBS) were corrected using the
Collins-Kimball formulation to account for diffusion effects. The
values of the total diffusion constant (kD) of the reaction are one or
two orders of magnitude higher than the reaction rate constants of
R1 and R5 channels (see Table S4), which is within the activation-
controlled limit; hence, the reaction rate constant is determined
by the elementary rate constant. For reactions with energy barrier
values close to zero, it is recommended to use the Variational
Transition State Theory (VTST) (Bao and Truhlar, 2017; Zhang et al.,
2020). Here, we calculated the reaction of the �OH radical with
picloram for the majority R1 and R5 channels using VTST. For the
first time, we also applied the variational correction in the d-TST
formulation to correct errors due to crossover. The values of the rate
constant using the variational correction of TST and d-TST, in the
range 250.0e310 K are presented in Table S4.

To evaluate the total reaction rate constant of picloramwith �OH
radicals, we adjusted the temperature dependence using the
Aquilanti-Mundim law, which has been used successfully to
describe the kinetics of chemical processes (Coutinho et al, 2015,
2016) (see Table S5). The profile of equations fitted toTable S5 in the
Arrhenius plot showed negative activation energy (anti-Arrhenius
kinetics).

From the data of the total reaction rate constant of picloram
with the �OH radical obtained by d-TST, it is possible to calculate the
half-life time using t1=2 ¼ ln2=ðktotal � ½�OH�Þ, where ½�OH�is the
concentration of �OH radicals in the aqueous media. The half-life of
the reaction was studied in the temperature range 273.15e310 K,
and ½�OH� in the range 10e15e10e18 mol$L-1, which usually repre-
sents the values found in surface waters (Brezonik and Fulkerson-
Brekken, 1998; Burns et al., 2012; J. Yang et al., 2020). The calcu-
lated half-lives are shown in Fig. 4. From our results, the half-life
varies from 31 to 310 days considering a concentration of �OH
radicals in the range 10e16e10e17 mol$L-1, respectively. Our theo-
retical values are in agreement with the results obtained experi-
mentally, which report a lifetime in the range of 20e300 days
(€Ozcan et al., 2008; Wauchope et al., 1992).

3.4. Toxicity evaluation

Many studies that have applied AOPs to remove pesticides

Fig. 6. Half-life time, in days, of picloram degradation as a function of �OH concen-
tration, in mol$L�1, in the temperature range 273.15e310 K in natural waters.

Table 2
Topological parameters of critical point density, calculated at the theory level M06HF/6-31þG(d) for R1 and R5 products. The parameters r(r), G(r), V(r), E(r) and V2r(r) are in
atomic units.

Interaction Product r(r) G(r) V(r) E(r) V2r(r)

Cl10eO17 R1 0.01270 0.01037 �0.00155 �0.00882 0.001548
Cl10eH13 R1 0.01607 0.01442 �0.00304 �0.01137 0.003045
H18eO15 R5 0.04136 0.03584 0.00273 �0.03856 �0.00273
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showed products with toxicity higher than the parent compound
(Manonmani et al, 2019, 2020). Computer programs based on an
ecological structure-activity relationship model have been widely
used to evaluate the environmental and health risks that degra-
dation products might pose. In this work, the toxicity of picloram
and the main by-products generated through �OH attack were
evaluated using the ECOSAR program (Mei et al., 2019; Milenkovi�c
et al., 2020; J. Yang et al., 2020). Table 5 shows the toxicity classi-
fication according to the criteria established by the European Union
and China for acute toxicity (LC50 or EC50) and chronic toxicity
(ChV).

The estimated toxicities of the compounds to fish, daphnia, and
green algae are reported in Table 6. According to the toxicity pa-
rameters, the degradation of picloram via the R1 channel leads to a
less toxic product. On the other hand, the R5 product presents
higher acute and chronic toxicities than picloram. Recent work
evaluating the sulfate-radical oxidation of picloram presented
similar toxicity results for picloram and its degradation products
(Yang et al., 2020a,b). Interestingly, the R1 and R5 products were
not detected when the degradation was carried out with the SO��

4
radical. These results reinforce the need to continue the research on
the chain of reactions involved in these complex systems to

elucidate the main mechanisms of picloram degradation in radical-
based AOPs.

3.5. Photolysis

The toxicity analysis discussed in the previous section shows
that the main by-products can be considered harmful. In order to
evaluate an alternative degradation pathway, the photolysis of
picloram and its major products was performed using the TD-CAM-
B3LYP/6e311þþG(d,p) level of calculation, which is widely used to
study chemical reactions in the excited state (Kayanuma et al.,
2019). Table 7 shows the excitation energy, absorption wave-
length, and strength of the harmonic oscillator for picloram and R1
and R5 products.

Vertical excitation energies smaller than 4.13 eV (~300 nm)
indicate that the compounds may undergo photolysis under sun-
light (Bai et al., 2015) (Fig. 6). From Table 7, both picloram and the
R1 product will not photolyze at room temperature. However, the
R5 product e the most thermodynamically favorable reaction
product but with higher toxicity levels than picloram e may un-
dergo photolysis. Fig. 7 shows the simulated absorption spectra of
picloram, with an absorption peak (227 nm) in agreement with
experimental observations (223 nm), as well as other degradation
products (Dos Santos et al., 2010). A complementary analysis of the

Table 3
Reaction rate constants of picloram degradation by �OH attack calculated at the M06HF/6-31þG(d) level with the SMD continuous solvation model using d-TST formulation.
Units in cm3 molecules�1 s�1.

Rate constant Temperature (K)

250.0 273.15 298.15 300.0 310.0

kR1 2.14 � 10�12 1.98 � 10�12 1.84 � 10�12 1.83 � 10�12 1.79 � 10�12

kR2 6.84 � 10�19 2.28 � 10�18 6.84 � 10�18 7.37 � 10�18 1.09 � 10�17

kR3 6.18 � 10�25 6.02 � 10�24 4.77 � 10�23 5.49 � 10�23 1.14 � 10�22

kR4 8.95 � 10�16 1.53 � 10�15 2.52 � 10�15 2.61 � 10�15 3.12 � 10�15

kR5 2.77 � 10�12 2.59 � 10�12 2.45 � 10�12 2.44 � 10�12 2.39 � 10�12

kR6 1.04 � 10�17 2.53 � 10�17 5.72 � 10�17 6.05 � 10�17 8.07 � 10�17

kR7 3.85 � 10�18 1.01 � 10�17 2.50 � 10�17 2.66 � 10�17 3.69 � 10�17

kR8 1.89 � 10�18 4.75 � 10�18 1.130 � 10�17 1.20 � 10�17 1.65 � 10�17

kR9 6.52 � 10�22 3.11 � 10�21 1.35 � 10�20 1.49 � 10�20 2.52 � 10�20

This work (Theoretical, kTotal) 4.92 � 10�12 4.57 � 10�12 4.29 � 10�12 4.27 � 10�12 4.18 � 10�12

€Ozcan 4.53 � 10�12

pySiRC 4.13 � 10�12

This work (Experimental) 6.74 � 10�12

Table 4
Branching ratios, in %, of the elementary channels of picloram degradation using
d-TST calculated at the M06HF/6-31þG(d) level of theory.

Branching ratio Temperature (K)

250.0 273.15 298.15 300.0 310.0

GR1 43.60 43.30 42.90 42.80 42.80
GR4 0.018 0.034 0.059 0.061 0.075
GR5 56.40 56.70 57.10 57.10 57.10

Table 5
Classification of acute and chronic toxicity according to the criteria established by
the European Union and Chinese Regulations.

Classification Acute toxicitya Chronic toxicityb

Not harmful LC50 > 100 or EC50 > 100 ChV >10
Harmful 10 < LC50 < 100 or 10 < EC50 < 100 1 < ChV <10
Toxic 1 < LC50 < 10 or 1 < EC50 < 10 0.1 < ChV <1
Very toxic LC50 < 1 or EC50 < 1 ChV <0.1

a Criteria set by the European Union (described in Annex VI of Directive 67/548/
EEC).

b Criteria set by the Chinese hazard evaluation guidelines for new chemical
substances (HJ/T 154e2004).

Table 6
Toxicity of picloram and its main by-products generated through �OH radical attack.

Organisms Compounds

picloram R1 R5

LC50 (fish 96 h) 682.0 3410 568.0
LC50 (daphnia 48 h) 36.60 65.60 32.40
EC50 (green algae 96 h) 107.0 232.0 93.40
ChV (fish, chronic) 8.920 70.90 7.230
ChV (daphnia, chronic) 0.421 0.680 0.376
ChV (green algae, chronic) 37.90 132.0 32.30

Table 7
Vertical excitation energy (eV), absorption wavelength (nm) and oscillator strength
(a.u) of picloram and R1 and R5 by-products calculated at the TD-CAM-B3LYP/
6e311þþG(d,p) level of theory.

Compouds Excitation energy Wavelength Oscillator strength

Picloram 5.4581 227.16 0.8840
R1 5.2080 238.06 0.3774
R5 3.8734 320.09 0.2576
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bond distances of the R5 product in the ground and first excited
state was performed. The values of these optimized parameters are
listed in Table S6. Note that the hydrogen bond (H18…O15) de-
creases by 0.25 Å, suggesting a possible intramolecular transfer of
protons in the excited state. These results show the need for a
better understanding of subsequent reactions of hydroxyl radical-
based oxidation in aqueous solution.

4. Conclusions

This work presents for the first time a theoretical study of the
degradation of picloram by �OH radicals in aqueous media using a
blend of quantum chemistry calculations and reaction rate theories.
The calculated values were compared with experimental data ob-
tained by competition kinetics. The mechanisms of picloram
degradation and reaction kinetics are reported, and the results
show that �OH addition of picloram occurs favorably at the C1 and
C5 sites of picloram. The reaction rate constant was calculated with
formulations derived from the Transition State Theory. The pre-
dicted values for the total rate constant and half-life time at
298.15 K are in very good agreement with experimental results.
From the elementary reaction rate constants, the branching ratios
of each channel were calculated, accounting R1 and R5 channels as
the major by-products. An analysis of the toxicity of picloram and
R1 and R5 by-products was performed with the ECOSAR program,
showing that these compounds are harmful to living organisms. A
photolysis assessment of picloram and R5 by-product indicates that
these intermediates can easily be sensitized in sunlight, suggesting
additional degradation routes.
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SANCHES-NETO, F. O., DIAS-SILVA, J. R., KENG QUEIROZ JUNIOR, L. H., 

& CARVALHO-SILVA, V. H. (2021). “pySiRC”: Machine Learning Combined 

with Molecular Fingerprints to Predict the Reaction Rate Constant of the 

Radical-Based Oxidation Processes of Aqueous Organic Contaminants. 

Environmental Science & Technology, 55(18), 12437-12448. 

 

 The presence of organic pollutants in an aqueous environment has 

caused great concern to the international scientific community due to adverse effects related to 

global health. In this sense, the efficient degradation of these pollutants has been the basis of 

several studies in the literature. One of the widely employed approaches is the use of advanced 

oxidative processes to degrade these compounds. However, obtaining kinetic parameters, such 

as the rate constant and the half-life, requires an experimental and theoretical approach. 

However, as shown by previous work in this thesis, obtaining the rate constant from an 

experimental point of view is analytically challenging and from a theoretical point of view requires 

Herculean protocols of chemical kinetics and quantum chemistry.  

 Therefore, motivated by the difficulty in obtaining the values of the rate 

constant through theoretical and experimental approaches such as those carried out in this 

thesis described in the previous section, we developed a study to predict the rate constant using 

machine learning methods. In addition, we have developed a free and easily accessible web 

application for the broad access of the scientific community and technical managers to obtain 

the rate constant with a few clicks. 

 My contribution in this work was the development of machine learning 

models and the writing of the article. Author Jefferson Richard contributed richly to the creation 

of the models and discussions. Professor Luiz Keng contributed to the statistical analyses. 

Professor Valter Carvalho helped to correct and supervise the work carried out. 
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ABSTRACT: We developed a web application structured in a
machine learning and molecular fingerprint algorithm for the
automatic calculation of the reaction rate constant of the oxidative
processes of organic pollutants by •OH and SO4

•− radicals in the
aqueous phasethe pySiRC platform. The model development
followed the OECD principles: internal and external validation,
applicability domain, and mechanistic interpretation. Three machine
learning algorithms combined with molecular fingerprints were
evaluated, and all the models resulted in high goodness-of-fit for the
training set with R2 > 0.931 for the •OH radical and R2 > 0.916 for
the SO4

•− radical and good predictive capacity for the test set with
Rext
2 = Qext

2 values in the range of 0.639−0.823 and 0.767−0.824 for
the •OH and SO4

•− radicals. The model was interpreted using the
SHAP (SHapley Additive exPlanations) method: the results showed
that the model developed made the prediction based on a reasonable understanding of how electron-withdrawing and -donating
groups interfere with the reactivity of the •OH and SO4

•− radicals. We hope that our models and web interface can stimulate and
expand the application and interpretation of kinetic research on contaminants in water treatment units based on advanced oxidative
technologies.

KEYWORDS: artificial intelligence, emerging contaminant degradation, kinetic parameters, apps and web applications

1. INTRODUCTION

The presence of organic contaminants (OCs) in wastewater has
drawn the attention of the scientific community worldwide
because most of the water treatment plants were not designed to
deal with these emerging pollutants.1,2 Several studies have
shown the negative health impacts caused by the non-removal of
these compounds.3−5 In order to investigate this condition,
regulatory agencies such as the U.S. EPA, EU Directive, and
Brazilian NR6−8 have created control standards to oversee
public and private companies in water treatment processes. One
of the major problems associated with the removal of OCs in
water is related to conventional water treatmentmethods.9−11 In
recent years, advanced oxidation technologies (AOTs) have
been employed as a powerful tool to degrade OCs that are not
removed by conventional treatments.11−15 The main AOTs are
based on the production of hydroxyl (•OH) and sulfate anion
(SO4

•−) radicals, which are strong and highly reactive oxidants
capable of reducing or even mineralizing the OCs present in
wastewater.16,17 The main degradation mechanisms associated
with the •OH/SO4

•− radicals and OCs are as follows: (i) radical

adduct formation, (ii) hydrogen atom abstraction, and (iii)
single electron transfer.12,18,19

From an experimental point of view, the estimation of the
reaction rate constant is considered analytically challenging and
requires appreciable costs: experimental measurements of the
kinetics of OCs by oxidative processes are considered complex,
expensive, and equipment dependent.19,20 The reaction rate
constant reveals important and appropriate criteria to evaluate
the efficiency of the degradation of OCs in water through
oxidative processesa high value for this kinetic parameter
indicates faster oxidation.21 Due to the experimental difficulties
to describe the reactivity of the OC reaction processes through
oxidative processes, the application of theoretical and computa-
tional protocols have become imperative for a better under-
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standing of these phenomena. A series of papers used electronic
structure calculations combined with modern reaction rate
theories for treating the degradation kinetics of OCs with •OH/
SO4

•− radicals, providing measurable parameters, for example,
reaction rate constant and half-life time.14,22−24 However, the
theoretical description of the reaction rate constant requires
accurate quantum chemical information about the potential
energy surface, which makes it a herculean protocol, considering
the high computational effort demanded.25−28

The practical relevance of the reaction rate constant in
evaluating the efficiency of an oxidative process combined with
the difficulties associated with experimental measurements and
theoretical predictions inspired us to develop a simple but
accurate estimation model for a wide range of OCs in the
aqueous phase. The main protocol for the prediction of the
reaction rate constant is based on the quantitative structure−
property/activity relationships (QSPR/QSAR). Several studies
have been using QSAR/QSPR models to predict the reaction
rate constant of OCs with different types of oxidants such as
•OH,29−31 SO4

•−,32,33 O3,
21,34,35 and ClO2;

36,37 however, the
development of QSAR models requires calculations of specific
molecular descriptors. Despite the widespread use of QSAR/
QSPR models, the selection of suitable molecular descriptors is
highly dependent on complex computational quantum chem-
istry protocols.38

Modern methods and the presence of a larger data set have
allowedmachine learning (ML) algorithms to make increasingly
accurate predictions about molecular properties.38−40 ML has
proven to be a powerful tool for competing or even surpassing
conventional ab initio calculations.41−43 Although data sets have
grown exponentially due to data-driven analysis, ML models
require useful and related information from a molecule in a fixed
dimension representation.43 One of the successful protocols to
encode molecular structures is the molecular fingerprints (MF)
representation44−47which involves transforming a molecular
representation into a sequence of binary digits (bits) in order to
account for the presence or absence of molecular fragments.
Recently, Zhong et al.38 combined a deep neural network with
MF (DNN-MF) to predict the reaction rate constant of OCs
with the •OH radical in the aqueous phase, obtaining a precision
comparable to traditional QSAR models. Given the practical
importance of the reaction rate constant, they suggested the
following: “To make the established DNN-ML models broadly
available, it will be useful to develop APPs or web applications
for automatic calculation. Users can simply input the chemical
names, CAS numbers, or the chemical structures of new
compounds and click the prediction button”. Furthermore,
these authors emphasized the importance of developing the
model while taking into account the wide availability of
computational routines in the python language.
In recent years, the use of web applications has helped in the

use of MLmodels in a practical way.48−50 Here, our study aimed
to develop a free and user-friendly web application based on
holistic ML-MFmodels to calculate the reaction rate constant of
the attack of •OH and SO4

•− radicals against aqueous OCs,
referred to as “pySiRC”, following the OECD principles.51 To
integrate the regulatory process for the development of the
QSARmodel, this work contains the five principles according to
the OECD guidelines:30,51,52 a defined endpoint; an unambig-
uous algorithm; a defined domain of applicability; appropriate
measures of goodness-of-fit, robustness and predictive power;
and a mechanistic interpretation, if possible.

2. MATERIALS AND METHODS
2.1. Data Sets and MF. Two databases were built for the

reaction rate constants of an oxidative process mediated by •OH
and SO4

•− radicals: in the former, a group of 1374 OCs (k•
OH)

and in the latter, a group of 400 OCs ( •−kSO4
). They were

catalogued from the Supporting Information from ref. Zhong et
al.,53 Borhani et al.,20 Ortiz et al.,54 Xiao et al.,32 Wojnaŕovits and
Takaćs24 the IscoKin,55 and NIST56 database. The kinetic
parameters are catalogued under standard conditions, 25 °C and
1 mol·L−1 in the aqueous phase. The only change made to the
catalogued data was to convert the compound names or CAS
number to SMILES (simplified molecular-input line-entry
system) using CIRpy (https://github.com/mcs07/CIRpy).
These SMILES were converted into two types of MFMorgan
and MACCS fingerprintswith the RDKit program (https://
www.rdkit.org). For theMorgan Fingerprint, a scan of the length
of the MF was performed using the following values: 512, 1024,
2048, 3072, 4096, and 8192. The average value was used when
more than one reaction rate constant was reported for the same
OC. The reaction rate constants were scaled into natural
logarithm scales and later normalized from 0−1 to reduce the
range of values and symmetrize the response.20,57 The full
database is available in the file named “SupInfoDataSet.xlsx” in
the Supporting Information file.

2.2. ML Models and Validation. Three ML algorithms
Neural Network (NN),58 Random Forest (RF),59 and
XGBoost60were built to predict the reaction rate constant
of the attack of hydroxyl (k•

OH) and sulfate radicals ( •−kSO4
). The

models were developed using the scikit-learn packages.61,62

Internal and external validations were necessary to assess the
reliability of ML models and to verify their robustness and
predictive capacity.21 k•

OH and •−kSO4
data sets were randomly

split into a training set (80%) and a test set (20%). Performance
indicescorrelation coefficient (R2), Pearson correlation
coefficient of prediction (r2), root-mean-square deviation
(RMSE), and external validation (Qext

2 )were calculated
using the formulas
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where yexp, ypred, y̅exp, and y̅pred are the experimental, predicted,
and average of the experimental and predicted values of the
dependent variable (over the validation set), respectively. y̅exp

tr is
the average value of the dependent variable for the training set
the sums cover all the compounds in the validation set. For the
training data set, a 10-fold cross-validation method was used,
which randomly divided the data into 10 subgroups. With
subsequent optimization cycles, one data set was retained for
validation and the others were used for training. External
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validation (test data set) for MLmodels was applied, assuming a
subgroup excluded from the training set. Furthermore, the p-
value and residual plots were also studied as a validation
measure.
2.3. Applicability Domain. To assess whether the models

developed in this workflow have a reliable prediction, the
applicability domain (AD)crucial for any QSAR/QSPR
model51,63was calculated. The AD aims to compare the
similarity of the query compound with the compounds in the
training data set. If there is a significant similarity, defined by a
predefined threshold, the query compound will be reliably
predicted by our models. The Tanimoto index64 Tc (A,B) was
used to evaluate the similarity between two compounds, A and
B, for both types of MF and radicals, according to the following
equation

=
+ −

T A B
c

a b c
( , )c (5)

where a and b are the numbers of structural features, or bits set to
1, in each molecule, and c is the number in common.
The maximum similarity, which refers to the maximum value

of the Tanimoto index between all similarity values obtained,
and the mean similarity, which refers to the mean of these
similarity values, were used as metrics to assess whether the

query compound is inside or outside the AD. For each
predefined threshold, compounds that were outside the AD
were removed from the test data set and RMSEext was
recalculated. The optimal limit was the one that obtained the
lowest RMSEext value with the lowest possible number of
compounds outside the AD.

2.4. Model Interpretation. One of the most important
validation principles in the development of QSAR/QSPR
models is the mechanistic interpretation of the model.51 It is
necessary to perform the prediction based on essential chemical
interpretations. In the case of molecular descriptors, there are
physico−chemical properties that are chosen to make the best
prediction. For the case of MF, the recently developed
interpretable explanatory method called SHapley Additive
exPlanations (SHAP)65 was used to rationalize the predictions
of the reaction rate constants of the •OH and SO4

•− radicals.

3. RESULTS AND DISCUSSION

3.1. Effects of the MF Length. In order to select the best
length of theMF for the Morgan type, a preliminary analysis was
carried out. In Figure 1, it is possible to observe the effect that
the variation in the length of MF causes on the predictive power
(Qext

2 ) of the different models employed. For the •OH radical
data set, the length of 3072 bits had the best performance for the

Figure 1. Effects of the length of the Morgan fingerprint on the Qext
2 values to RF, XGB, and NN models.

Table 1. Internal and External Validation Parameters of the ML Models Applied to k•
OH and •−kSO4

Data Sets with Morgan and
MACCS Key Fingerprints

Morgan fingerprint

models training set test set
•OH SO4

•− •OH SO4
•−

R2 RMSE R2 RMSE r2 Rext
2 = Qext

2 RMSEext r2 Rext
2 = Qext

2 RMSEext

NN 0.992 0.011 0.988 0.017 0.851 0.719 0.083 0.871 0.745 0.097
XGB 0.937 0.101 0.992 0.125 0.840 0.707 0.085 0.920 0.824 0.081
RF 0.931 0.099 0.921 0.121 0.801 0.639 0.094 0.897 0.767 0.093

MACCS fingerprint

models training set test set
•OH SO4

•− •OH SO4
•−

R2 RMSE R2 RMSE r2 Rext
2 = Qext

2 RMSEext r2 Rext
2 = Qext

2 RMSEext

NN 0.965 0.008 0.957 0.015 0.897 0.802 0.070 0.886 0.790 0.088
XGB 0.960 0.089 0.978 0.121 0.907 0.823 0.066 0.889 0.799 0.086
RF 0.933 0.090 0.916 0.112 0.905 0.814 0.068 0.899 0.807 0.084
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XGBoost and NNmodels, while for the RF model, the length of
8192 bits was the best. In this sense, the length of 3072 bits was
selected; lengths greater than 3072 bits led to a negligible
increase in Qext

2 but made the calculations more demanding. For
the radical SO4

•−, following the same protocol, the length of 2048
bits was selected.
3.2. Internal and External Validation.A generic workflow

was fitted with experimental data to train and test three ML
models combined with two types of MF of OCs. Two ML
ensembles based on decision trees (RF and XGBoost) and
Neural Networking were selected.62 Previous studies showed
that these models are appropriate to predict relevant chemical
properties.25,41,43

For internal validation, statistical criteriaR2 and RMSE
were analyzed to access the performance of the models using the
10-fold cross-validation method (10-fold CV, see Section 2.2).
An average of the R2 and RMSE values of each cross-validation
subgroup for the six models developed in this work was used to
assess the training performance, and they are shown in Table 1.
MLmodels yield R2 (RMSE) values in the range of 0.931−0.992
(0.011−0.099) and 0.933−0.965 (0.008−0.090) for k•

OH data
sets with Morgan and MACCS fingerprints, respectively. For

•−kSO4
data sets, the models yield R2 (RMSE) values in the range

of 0.921−0.992 (0.017−0.125) and 0.916−0.978 (0.015−
0.121) with Morgan and MACCS fingerprints, respectively. In
addition, Y-randomization was performed to validate the
robustness of the models.66,67 A new model was developed
keeping the original independent variable constant, while the
vector of the dependent variable was randomly shuffledthis
procedure was repeated three times. The new Qext

2 values were
lower than in our original model (see Table S2 in Supporting
Information file), suggesting that the results from our original
model were not accidental.
It is noteworthy that only the values of R2 and RMSE of the

training set did not provide enough statistical criteria to indicate
the reliability of the developed models.63,68,69 Further external
validation criteria were applied in this work for both data sets.
Before the development of the model, the test set (external
validation)a subgroup representing 20% of the original data
setwas randomly selected to perform additional validation
criteria of the models employed. Assessment of the performance
of external validation was permitted by r2 and Qext

2 statistical
parameters (see eqs 2 and 4), which were studied for both data
sets. r2 was calculated to verify the linear correlation between the
predicted and experimental values, resulting in r2 > 0.80 for all
models employed (see Table 1). The predictive power of the

Figure 2. Plot of predicted versus experimental values for data sets of the oxidative process mediated by •OH and SO4
•− radicals in aqueous OCs.

External validation of the ML models is performed comparing the reference line (dashed) with the linear representation of the data (solid).
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models (Qext
2 ) was calculated for all the models and resulted in

Qext
2 values in the range of 0.639−0.824, indicating a high

goodness-of-fit. In addition, all models showed a p-value < 0.05,
indicating that for the 95% confidence interval, r2 is statistically
significant. Figure S1 (see the Supporting Information file)
shows the residual plots of all the models studied and as
expected, the residues are randomly distributed around zero. All
these results provided a good predictive capacity and clearly
indicated that our models excluded overfitted behavior.
The difference between the RMSEext andQext

2 values of the test
set was used to assess the performance of ML models to predict
the reaction rate constants. Based on the RMSEext and Qext

2

values, the predictive powers of all the models can be ranked
from the best to the worst as follows: (i) NN > XGB > RF for
k•
OH with Morgan, (ii) XGB > RF > NN for k•

OH with MACCS,
(iii) XGB > RF >NN for •−kSO4

withMorgan, and (iv) RF > XGB

> NN for •−kSO4
with MACCS.

The prediction versus experimental plots of the models for
both data sets are shown in Figure 2. They described values in a
significant range from 9.51 × 106−3.4 × 1010 M−1 s−1 in the case
of k•

OH data set and 1.60 × 104−1.61 × 1010 M−1 s−1 in the case
of •−kSO4

data set. The dashed line in bold is the reference line (r2

= 1), which is parametrized to check the capacity of the
prediction observed by ML models: when the data deviate from
the reference line, the data are over or under what was predicted;
on the other hand, when the data tend to the reference line, they
are considered well predicted. All ML models applied to both
data sets attained a successful representation (solid line) of the
reference line, indicating the robustness of the models used to
evaluate external data.
In order to evaluate the prediction of the models in relation to

the experimental data (see the histogram in Figure 2), we
performed a two-tailed Dunnett’s multiple comparison test,70,71

considering the experimental as a control and the models as
different treatments. This test was chosen because it is a

powerful statistic, being able to discover significant differences,
even if still relatively small, among groups. At a threshold of p <
0.05, statistically significant mean differences were not found
between the experimental (control) and the models (treat-
ments), highlighting a very similar performance of the optimized
models.

3.3. Comparison with Previous Studies. To date and to
the best of our knowledge, this is the first study that has usedML
models combined with MF to predict the rate constant of OCs
with a sulfate radical. The sulfate radical has been reported as a
modern and efficient oxidizing species regarding the mitigation
of OCs. Furthermore, SO4

•− has showed substantial advantages
when compared with the OH• radical: (i) simplicity in the raw
material stock; (ii) weakly affected by organic matter and
alkalinity in the presence of water; and (iii) higher quantum
yield.72,73

In the case of the •OH radical, we are expanding the previous
study performed by Zhong and co-workers.38,53 Table 2 shows a
comparison with previous works which applied ML or QSAR
variants. The work of Zhong and co-workers38,53 is the most
recent work and the first to use DNN-MF to predict the reaction
rate constant of OC degradation by •OH radicals. In their first
work, they reported R2 (RMSE) values for the training and test
sets close to 0.972 (0.135) and 0.747 (0.329), respectively. On
the other hand, in a subsequent work, with the increase of the
data set, the Rext

2 value decreased to 0.60. The results of Zhong et
al.’s study indicated the good predictive power of the reaction
rate constants, which was ratified by the robustness of R2 and
RMSE parameters (see Table 2). Our results showed a similar
predictive power, and in some models even better than those
obtained by them. To avoid overfitting, the external validation
parameter Qext

2 = 0.823 was estimated, providing a consistency
similar to previous works presented in Table 2. However, the
works that estimated Qext

2 parameters in Table 2 are dependent
on the molecular descriptor, creating a link between the

Table 2. Comparison with Previous Works between Different Models for Internal (Training Set) and External (Test Set)
Validation in the Prediction of k•

OH and •−kSO4
Values

•OH data

model algorithm na pb training set test set

R2 RMSE Rext
2 RMSE Qext

2

Wang et al., 2009 MLR 55 4 0.905 0.139 0.962 0.0079 0.922
Kusǐc ́ et al., 2009 GA-MLRc 78 4 0.735 0.174 0.760 0.200
Sudhakaran and Amy, 2013 PCA-MLRd 83 2 0.918 0.856
Jin et al., 2015 MLR 118 7 0.823 0.204 0.772 0.329
Borhani et al., 2016 BPSO-MLRe 453 8 0.716 0.347 0.724 0.356 0.841
Luo et al., 2017 MLR 526 13 0.805 0.165 0.802 0.232 0.801
Zhong et al., 2020 DNN-MF 593 0 0.972 0.135 0.789 0.329
Zhong et al., 2021 DNN-MF 1089 0 0.910 0.210 0.600 0.330
this work XGB-MACCS 1374 0 0.960 0.089 0.823 0.066 0.823

SO4
•− data

model algorithm n p training set test set

R2 RMSE Rext
2 RMSE Qext

2

Xiao et al., 2015 PCA-MLR 85 3 0.87 0.89 0.89
Gupta and Basant, 2016 PCA-DTBf 115 3 0.981 0.150 0.975 0.180
Ye et al., 2017 GCM-MLRg 113 32 0.88 0.62
this work XGB-Morgan 400 0 0.922 0.125 0.824 0.081 0.824

an = the total number of chemical compounds in the data set. bp = the number of molecular descriptors. cGA: genetic algorithm; MLR: multiple
linear regression. dPCA: principal component analysis. eBPSO: binary particle swarm optimization. fDTB: decision tree boost. ggroup contribution
method.
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predictive models and the quality of molecular parameters
calculated.
3.4. SHAP. The prediction of kinetic parameters by artificial

intelligence algorithms cannot rely on spurious features of the
molecular system. The “understanding process” of ML
algorithmsmust reflect the specificity of themolecular structures
involved in the reaction process, providing a molecular
comprehension of the major factors that led to the predictions
made by the model. Consequently, we apply the SHAP65

methodology to the XGB model based on the Morgan
fingerprint to interpret the relevant structural molecular features

in the process of estimating the reactivity of the hydroxyl and
sulfate radicals with organic compounds.
Figure 3 shows the SHAP graph with the 10 main features

“learned” by the model as relevant to predict the reactivity of
organic pollutants with •OH and SO4

•− radicals. The blue color
represents the absence of a certain feature, that is, a molecular
fragment, while the red color indicates the presence of this
fragment. The positive or negative SHAP values (x-axis) of each
feature mean that the presence/absence of this fragment can
increase or decrease the reaction rate constant.

Figure 3. Importance of the representative MF (top 10) and the SHAP values for the ML models applied to k•
OH and •−kSO4

data sets with Morgan
fingerprint based.

Table 3. Top-10 Features in the SHAP Values Plot of Figure 3 and Represented Atom Groups and Effects on the Predictions of
the Reaction Rate Constant

aFor the hydroxy radical, the MF length of 3072 was selected and for the sulfate radical of 2048.
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Table 3 shows the 10most important fragments that can affect
the reactivity both •OH and SO4

•− radicals, the same is shown in
Figure 3. For most of the features, when the fragments are
absentrepresented by the blue dotsthe SHAP values are
very close to zero, suggesting that these fragments are irrelevant
to the predictions of the models.
Our protocol revealed the decisive role of electron-donating

groups in increasing the reactivity of k•
OH, while the presence of

electron-withdrawing groups decreases their reactivity, which is
consistent with the experimental observation that showed a
preference for H abstraction in aromatic groups.74,75 For
example, features 1380 and 2897 (aromatic carbon), 2742
(ethylene carbon), and 2164 (sulfur atom) were identified as
groups of atoms that increase reactivity and features 659 and
2776 (halogens) and 2668 (carbonyl oxygen) were identified as
the group that decreased reactivity.
In the case of the sulfate radical, recent studies have shown

that the degradation process can be initiated primarily with an
electron transfer of a carbon atom in the aromatic ring and the
presence of electron-donating groups increases its reactivity.32,76

This is consistent with the observation found by our model, in
which features 1873 (aromatic carbon), 1152 (secondary
amine), 1171 (tertiary amine), and 1602 (hydroxyl) indicated
that the presence of these fragments increases the reactivity of
the kinetic constant ( −kSO4

). Therefore, it is possible to conclude
that the ML model made predictions based on a reasonable
understanding of how the groups affect the reaction rate
constant of the •OH and SO4

•− radicals, showing that it is
possible to have a chemical interpretation behind an ML
protocol.
Furthermore, it is important to emphasize that the AD has

been substantially expanded by ourmodel for the study of sulfate
radical reactivity. It was added in our database compounds with
sulfur (S), phosphorus (P), and iodine atoms (I)which were
not accounted for in previous models32and we were not
restricted to predicting aromatic compounds.76 Another
significant advance of the SHAP protocol application is the
discrimination of the contribution of the oxygen atom as a
function of its chemical bonds, while the previous description
based on QSAR only presents the contribution of the ratio of
oxygen atoms to carbon atoms (#O:C), our model describes the
relevant role of the CO functional group in decreasing

reactivity and the −OH group in increasing reactivity.
Additionally, the relevance in the degradation process of
functional groups with the presence of the nitrogen atom in
the molecular structure of OCs is elucidated.

3.5. Analysis of the AD of the Regression Models. The
analysis of the AD was performed varying different thresholds,
from 0 to 0.35 for Morgan and from 0 to 0.5 for MACCS, both
with an increase of 0.05 for the maximum threshold. A similar
procedure was used with the mean threshold, ranging from 0 to
0.095 with an increase of 0.005. Table 4 shows the optimal
values found for the AD for the two types ofMF and for the •OH
and SO4

•− radicals. A threshold of 0.100 led to the lowest
RMSEext value for the NN and RFmodels and a limit of 0.150 for
the XGBmodel using Morgan. For the MACCS, a limit of 0.500
yield the lowest RMSEext values for the three models developed.
The maximum similarity metric (see Section 2.3) was chosen to
indicate whether the compound is within or outside the AD, that
is, if the query compound has a value less than the maximum
similarity threshold value, the compound will be outside the AD,
otherwise, the compound will be within the AD of the model
developed.

3.6. “pySiRC” Platform. In recent years, the development of
ML models applied in different fields of science has grown
exponentially. However, the vast majority of these protocols can
only be used by specialistsdata scientists. The need to be an
expert in programming and ML techniques limits the access of
many researchers: this was evidenced by Zhong38 in his article
when he said that “This is probably part of the reason that
although numerous QSARs have been developed and available
for a few decades, they are mostly used by a small group of
researchers”. Therefore, we believe that the development of a
web application goes beyond an engineering application because
it connects the user without prior knowledge in such techniques
with the required information in a few clicks. Accessing
information in a friendly way for a non-specialist can broaden
the interpretation of fundamental processes in several areas,
reinforcing the evolution of knowledge scientifically. Below, it is
presented in details the protocols to manipulate the pySiRC
platform.
The reaction rate constant reveals the efficiency of oxidative

processes of contaminants in the aqueous environment, and its
measurement or prevision are considered challenging. There-

Table 4. Thresholds of Similarity, Number of Compounds Outside the AD for Each Threshold Value, and Corresponding
RMSEext

Morgan fingerprint

NN XGB RF

thresholda RMSEext NCOADb RMSEext NCOAD RMSEext NCOAD

k•
OH maximum 0.100 0.083 0 0.085 1 0.094 0

mean 0.005 0.080 1 0.081 1 0.090 1
•−kSO4 maximum 0.150 0.097 0 0.081 0 0.093 0

mean 0.010 0.097 0 0.081 0 0.093 0
MACCS fingerprint

NN XGB RF

threshold RMSEext NCOAD RMSEext NCOAD RMSEext NCOAD

k•
OH maximum 0.500 0.068 2 0.065 2 0.065 2

mean 0.035 0.068 2 0.066 2 0.066 2
•−kSO4 maximum 0.500 0.083 3 0.084 3 0.082 3

mean 0.080 0.083 4 0.081 4 0.081 4
aThreshold k•

OH XGB = 0.150. bNumber of compounds outside the AD.
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fore, it is desirable that simple predictive models can be
developed for a wider audience, without the need for specific
knowledge of chemistry or computational methods of the
electronic structure. In this context, to share our model with
chemists, pharmacists, and environmental engineers working in
water treatment plants, we developed pySiRC (python
Simulator of Rate Constant). Additionally, pySiRC was
developed to support professional non-experts in chemical
kinetics and theoretical and computational chemistry, providing
the reactivity profile of OCs. The hosted web graphical platform
allows the calculation of the reaction rate constant of the
oxidative process of OCs mediated by the •OH and SO4

•−

radicals in the aqueous phase using only a SMILES or CAS
Number. pySiRC provides a free and easy user-friendly graphical
interface allowing quick analysis of k•

OH and •−kSO4
; the data are in

M−1 s−1. It can be accessed fromwww.pysirc.com.br. To the best
of our knowledge, this is the first free-web application that
estimates the reaction rate constant using an automated ML
protocol. Figure 4 shows a screenshot of the pySiRC user view.
On the main page of the web application, the user can choose

between four options: (i) home; (ii) simulator rate constants;
(iii) simulator half-life; and (iv) about. If the “HOME” option is
chosen, a description of the application of pySiRC will be
displayed. If the “simulator rate constant” option is chosen, a
page will be displayed for the user to estimate the reaction rate
constant of the desired compound. Here, it is necessary to
provide the SMILES or CAS number of the compound, the
radical species (•OH or SO4

•−), and to select the ML model to
perform the prediction. With the SMILES or CAS number, it is

Figure 4. Web main screen of the pySiRC user view.
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possible to show the 2D molecular structure to check the
molecule selected.
From the data of the total reaction rate constant of OCs with

the •OH radical obtained by ML models, it is possible to
calculate the half-life time using t1/2 = ln 2/(k•

OH × [•OH]),
where •OH is the concentration of •OH radicals in the aqueous
media. Therefore, if the “simulator half-life” option is chosen, it
is possible to make the prediction of the half-life time
automatically, it is necessary to provide the SMILES or CAS
number of the compound or manually providing the value of the
reaction rate constantNN model will be used to calculate the
reaction rate constant. The half-life time of the reaction is
reported at a temperature of 298.15 K, and [•OH] 10−15−10−18
mol L−1, which usually represents the values found in surface
waters.22,77−79 A plot and a table of the half-life with OH radical
concentrationsusually found in the aqueous environment
(∼10−15−10−18 mol L−1)are also provided. Finally, if the
“about” option is chosen, a brief description of the tools used in
the logos of the institutions and funding agencies will be
displayed. To permit the use of the web platform and make it
widely available, we additionally provide a video simulating the
use of the applications that it is in the Supporting Information.
3.7. Kinetic Perspective. Water pollution by OCs has

become a topic that has demanded great research efforts.
Consequently, the evolution of computational protocols
assumed an indispensable tool for evaluating the degradation
processes involved in the reactional dynamics of these
contaminants and consequently reducing the costs and hazards
involved in these analyses. However, providing dynamic and
kinetic information on contaminant degradation processes is
limited by one of the major theoretical bottlenecks in the
physicochemical field: application of rate theories from high-
level electronic structure methods as anticipated in the seminal
article by Professor Henry F. Schaefer III.80

Recently, the advance of rate theories in chemical kinetics to
predict accurate kinetic parameters from first-principles models
gain a strong ally, artificial intelligence protocols. The former
created the fundamental bases for the compression of reactive
dynamics at the molecular level and the latter leverage
technological development. The application of first-principles
methods in chemical and physical processes has acquired
enormous maturity, enabling the description of intricate
problems, such as quantum effects (e.g., tunneling and
resonance) in atomic and molecular systems, stochastic motion
of particles in a condensed environment, and non-equilibrium
effects in classical and quantum formulations.81,82 However, the
advent of modern experimental and computational techniques
provides access to kinetic parameters of systems with huge
molecular complexity which would demand long periods of time
and high-cost resources. Accordingly, the ML predictions paved
the way for modeling physical and chemical processes, enriching
again the fruitful and long-lasting partnership between artificial
intelligence and first-principles models.27,83
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V., & CARVALHO-SILVA, V. H. (2022). Evaluating and elucidating the 

reactivity of OH radicals with atmospheric organic pollutants: Reaction 

kinetics and mechanisms by machine learning. Atmospheric Environment, 

275, 119019.  

 

 In a similar way to the aqueous organic pollutants presented in the 

previous work, the presence of atmospheric organic pollutants has also gained attention on the 

world stage, since the presence of these pollutants in the atmosphere has been related to global 

climate change. 

 In this sense, we expand the methodology of the previous study, that 

is, we use a machine learning approach combined with molecular fingerprints to predict the rate 

constant of atmospheric organic pollutants through hydroxyl radical attack. Additionally, let us 

stress the mechanistic details revealed by the black box of the developed machine learning 

models. 

 My contribution in this work was the development of machine learning 

models and the writing of the article. The authors Jefferson Richard and Vitor Mendes 

contributed richly in the creation of the models and in the discussions. Professors Vincenzo 

Aquilanti and Valter Carvaho helped to correct and supervise the work carried out. 
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Evaluating and elucidating the reactivity of OH radicals with atmospheric 
organic pollutants: Reaction kinetics and mechanisms by machine learning 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Six machine learning models were 
developed. 

• The half-life time and POCP of the re-
action is reported for OH radical. 

• Workflow was fitted with experimental 
data to train ML models using of AOPs. 

• The models development followed the 
OECD principles.  

A R T I C L E  I N F O   

Keywords: 
QSAR/QSPR 
OCDE guidelines 
Reaction rate constants 
SHAP 
Web application 

A B S T R A C T   

The rate constants of the reactions of OH radicals with atmospheric organic pollutants (AOPs) are crucial 
physicochemical parameters to guide in the elucidation of the kinetics and mechanisms of the reactive landscape. 
The experimental and theoretical difficulties in revealing the reactivity of these degradation processes motivated 
us to develop a protocol based on machine learning combining molecular fingerprints to estimate their rate 
constants. The present workflow is based on Organization for Economic Cooperation and Development (OECD) 
guidelines and state-of-the-art techniques involving (i) data collection including 903 AOPs cataloged in the 
literature, (ii) pre-processing and structuring of data, (iii) development of models based on three machine 
learning algorithms, (iv) the standard reference of validation, and (v) mechanistic interpretation. The results 
show that the built model has a high predictive capacity – R2

cv > 0.959 and RMSEcv < 0.090 for the training set 
and R2

ext and Q2
ext > 0.889 and RMSEext < 0.084 for the test set. Additionally, through the SHapley Additive 

exPlanations (SHAP) method, it was possible to establish insight into the contribution of chemical classes to 
reaction kinetics and mechanism and to discuss it consistently with current experimental and theoretical ob-
servations. The availability of the evaluated reaction rate constants permitted to elucidate the role of AOPs in the 
photochemical ozone balance. Finally, to disseminate use of our results, we have presented them in a user- 
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friendly web application that permits compilation of kinetic parameters, and that permits future implementations 
to account for the temperature dependence in the environmental relevant range, and the consideration of a wider 
class of chemicals and processes in the mechanistic networks of atmospheric reactivity.   

1. Introduction 

The presence of organic pollutants in the atmosphere has been 
studied by several research groups around the world (Gupta et al., 2016; 
Liu et al., 2020). Current and future risks associated with the persistence 
of these compounds in the atmosphere require specific attention (Niz-
zetto et al., 2010). Regarding the persistence of these compounds, 
relevant are compilations reporting data on the mechanism and kinetics 
of their degradations, that in the troposphere (Tomas, 2005) mainly 
involve oxidation reactions with OH radicals (Allison, 2016). Hydroxyl 
radical reactions were investigated by our group in several theoretical 
works for four-atoms systems, where we extended the understanding of 
the reactive dynamics accounting for the contribution of quantum 
tunneling, stereodynamics and roaming (Coutinho et al., 2015). To 
expand the understanding of the behavior and destination of compounds 
with more than four atoms, it is important to estimate the reaction rate 
constant kOH, which is the most important parameter to reveal the 
degradation efficiency of a compound (Sudhakaran and Amy, 2013a). 
However, current protocols providing kOH are confronted with formi-
dable challenges (Finlayson-Pitts and Pitts Jr, 1999). From an experi-
mental point of view, Atkinson and co-works (Atkinson, 1986; Atkinson 
and Aschmann, 1984) played an important role in experimental studies 
to determine the values of kOH of atmospheric organic pollutants. 
However, experimental equipment is expensive and system-dependent 
(Hodson, 1988). Theoretical procedures based on the Transition State 
Theory combined with calculations of electronic structure have been 
used to reveal the kinetics and mechanism of degradation of organic 
pollutants with hydroxyl radicals (Li et al., 2014). On the other hand, 
theoretical approaches rely on highly expensive computations of po-
tential energy surfaces (Pan et al., 2021; Sanches-Neto et al., 2021a). 

Based on experimental and theoretical kOH data, quantitative 
structure-activity/property relationships (QSAR/QSPR) models were 
performed to estimate the rate constant of a set of chemical reactions 
with the OH radical (Gupta et al., 2016; Öberg, 2005; Wang et al., 2009). 
To develop a QSAR/QSPR model, specific chemical and computational 
efforts are needed to select the appropriate molecular descriptors, which 
are calculated by electronic structures methods and require a high 
computational cost (Zhong et al., 2020). Additionally, it is necessary to 
follow the validation principles for regulatory purposes of these models 
(Gramatica et al., 2004; Öberg, 2005; Sanches-Neto et al., 2021b). 
Therefore, protocols that do not require experimental approaches and 
quantum chemistry, both for calculations of molecular descriptors and 
for estimating the kOH, are considered relevant. In this sense, the 
development of ML models combined with molecular fingerprints (MF) 
has become a successful protocol, since the fingerprint representation 
procedure is quite simple, i.e., it involves the transformation of a mo-
lecular representation into a sequence of binary digits (bits) in order to 
account for the presence or absence of molecular fragments. 

Here, a consolidated accurate machine learning (ML) protocol, ac-
cording to OECD guidelines (see Fig. 1), is combined with molecular 
fingerprints to predict kOH of OH radical with atmospheric organic 
pollutants (AOPs), quantifying role in the photochemical ozone balance 
and atmospheric implications based on SHAP (SHapley Additive ex-
Planations), a method to interpret ML models (Lundberg et al., 2020). 

Fig. 1. The routine follows guidelines of the Orga-
nization for Economic Cooperation and Development 
(OECD), see text. Data from the literature, structured 
and with molecular names converted by SMILES 
provide molecular fingerprints (MF) – these are the 
independent variables, while rate constants are the 
dependent variables of our model developed imple-
mented in three machine learning algorithms – 
XGboost (XBG), Random Forest (RF), and Neural 
Network (NN). Validation of the model’s performance 
involved: applicability domain (AD), mechanistic 
interpretation with the SHAP method, internal and 
external validation (IEV), and randomization of the 
dependent variable (Y RAND). Final step is a user- 
friendly web application.   
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2. Material and methods 

2.1. Data sets and molecular fingerprint (MF) 

The dataset of kOH with 903 atmospheric pollutants was cataloged 
from Ref. (Allison, 2016; Wang et al., 2009). Experimental values of the 
kOH were collected under standard conditions, 298 K, 101.3 kPa and 
reported in cm3 molecule− 1 s− 1. From the data collected from the 
literature, a set of steps were carried out to prepare the data for the 
development of the model. First, kOH was transformed into a log unit and 
then scaled from 0 to 1 (using the sklearn. preprocessing.MinMaxScaler 
class in the Python language) to make the dependent variable data with 
a normal distribution which the consistency was confirmed by 
Shakiro-Wilk test. Then the compound name or CAS number was con-
verted to SMILES (Simplified Molecular Input Line Entry System) using 
CIRpy (https://github.com/mcs07/CIRpy). Finally, these SMILES were 
converted into two types of molecular representation with the RDKit 
program (https://www.rdkit.org): (1) MACCS fingerprints and (2) 
Morgan fingerprints with different bit lengths (512, 1024, 2048, 3072, 
4096 and 8192). The full database is available in the file named 
“SupInfoDataSet.xlsx” in the Supplementary Information file. 

2.2. Machine learning models 

Three ML algorithms - Neural Network (NN) (Hansen and Salamon, 
1990), Random Forest (RF) (Ho, 1995) and XGBoost (Chen and Guest-
rin, 2016)- were built to predict the kOH of attack of hydroxyl (kOH). 
Random Forest (RF) is one of the most used algorithms in regression and 
classification models (Hu et al., 2018; Nitze et al., 2012; You et al., 
2017). RF is an ensemble method based on a set of decision trees, with 
each tree having a collection of random variables. The RF algorithm 
employs randomness when developing the tree architecture, which re-
sults in a great diversity producing a better model when compared to 
other decision tree models (Welbl, 2014; Xing et al., 2019; You et al., 
2017). 

Another algorithm used to predict the kOH of atmospheric organic 
pollutants was eXtreme Gradient Boosting (XGBoost), a method based 
on a gradient-boosting decision tree (Chen and Guestrin, 2016). This 
algorithm was developed under the same Gradient Boosting framework 
and to be highly efficient, flexible, and portable. XGBoost provides a 
parallel tree reinforcement that solves many data science problems 
quickly and accurately and has therefore been widely used in recent 
literature (Li and Zhang, 2018; Meng et al., 2021; Sun et al., 2018; 
Torlay et al., 2017). 

Finally, the last algorithm used in this work was the neural network. 
This algorithm is based on a series of units organized and connected in 
sequential layers (Wenzel et al., 2019; Yang et al., 2020). Neural 
network architecture involves an input layer, hidden layers and an 
output layer. The units are the neurons, with neurons within the same 
layer acting in parallel and transforming the input values received from 
the previous layer into a scalar value. The models were developed using 
the scikit-learn packages (Géron, 2019; Pedregosa et al., 2011). Details 
of the hyperparameters of each machine learning model used in this 
work are listed in Table S2. 

2.3. Validation 

Internal and external validations were necessary to assess the reli-
ability of ML models and to verify their robustness and predictive ca-
pacity (Gramatica and Sangion, 2016; Sudhakaran and Amy, 2013b). 
kOH data set was randomly split into a training set (80%) and a test set 
(20%). Performance indices – root-mean-square deviation (RMSE), 
correlation coefficient (R2), Pearson correlation coefficient of prediction 
(r2

ext), predictive power (Q2
cv), and external validation (Q2

ext) - were 
calculated using the formulas: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(
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where yexp, ypred, yexp, and ypred are the experimental, predicted, average 
of the experimental and predicted values of the dependent variable (over 
the validation set), respectively. ytr

exp is the average value of the depen-
dent variable for the training set – the sums cover all the compounds in 
the validation set. The subscript cv and ext represent the data obtained 
from the internal (cross-validation) and external validation datasets, 
respectively. For the training data set, a 10-fold cross-validation method 
was employed (using the sklearn. model_selection.StratifiedKFold() class 
in the Python language), which randomly divided the data into 10 
subsets. With subsequent optimization cycles, one subset was retained 
for validation and the others were used for training, this procedure was 
repeated 10 times. External validation (test data set) for ML models was 
applied, assuming a subgroup excluded from the training set. Further-
more, the p-value and residual plots were also studied as a validation 
measure. The p-value indicates the conditional probability that a rela-
tionship as strong as that observed in the data would be present, if the 
null hypothesis is true (Sudhakaran and Amy, 2013a). Consequently, a 
low p-value (<0.05) is required to build a statistically significant ML 
model. If the points on a residual plot are randomly scattered around 
zero on the horizontal axis, a linear regression model is appropriate for 
the data. 

2.4. Applicability domain 

To assess whether the models developed in this workflow have a 
reliable prediction, the applicability domain (AD), crucial for any 
QSAR/QSPR model (Gramatica, 2014; Netzeva et al., 2005; OECD, 
2007), was calculated. The AD aims to compare the similarity of the 
query compound with the compounds in the training data set. If there is 
a significant similarity, defined by a predefined threshold, the query 
compound will be reliably predicted by our models. The Tanimoto index 
(Tanimoto, 1958) Tc(A,B) was used to evaluate the similarity between 
two compounds, A and B, for both types of MFs and radicals, according 
to the following equation: 

Tc(A,B)=
c

a + b − c
(6)  

where a and b are the number of structural features for compound A and 
B, respectively, or bits set to 1, in each molecule, c is the number in 
common. 

The maximum similarity, which refers to the maximum value of the 
Tanimoto index between all similarity values obtained, and the mean 
similarity, which refers to the mean of these similarity values, were used 
as metrics to assess whether the query compound is inside or outside the 
applicability domain. For each predefined threshold, compounds that 
were outside the applicability domain were removed from the test 
dataset and RMSEext was recalculated. The optimal limit was the one 
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that obtained the lowest RMSEext value with the lowest possible number 
of compounds outside the applicability domain. 

2.5. Model interpretation 

Another fundamental requirement in developing a QSAR model is to 
understanding how the model is performed a prediction – one of the 
most important validation principles in the development of models, 
whenever possible to be carried out, is the mechanistic interpretation. 
(OECD, 2007). In this sense, a recent unified approach to interpreting 
model predictions, SHAP (Lundberg et al., 2020a), which sheds light on 
the black box of ML algorithms, was developed to elucidate the most 
important features learned by the model (Zhong et al., 2021). The SHAP 
approach was derived from cooperative game theory – primarily 
developed to estimate the importance of each player on a team (Lund-
berg et al., 2018). For this, a reward for each player is carried out 
depending on their importance and their contributions to the result of a 
game. For our case, the use of molecular fingerprints, the Shapley values 
provide a solution for assigning a fair or reasonable reward for each of 
the Morgan and MACCS fingerprint characteristics and represent a 
unique result. The following equation is used to calculate the Shapley 
value Φi: 

Φi =
1

|N|!

∑
S∁N
{i}
|S|!(|N| − |S| − 1)![f (S ∪ {i}) − f (S)]

where f(S) corresponds to the output of the ML model to be explained 
using a set S of features, and N is the complete set of all features. The 
final contribution or Shapley value of feature i (Φi) is determined as the 
average of its contributions across all possible permutations of a feature 
set. The predictions for all possible subsets S ⊆ N are calculated because 
the effect of withholding a feature depends on all other features in the 
model. 

3. Results and discussion 

3.1. Internal and external validation 

In this work, were applied as detailed in Fig. 1: data collection, data 
preprocessing, model development, model validation and interpretation 
– all protocols for the development of QSAR models according to the 
Organization for Economic Cooperation and Development (OECD, 
2007). 

From a set of data cataloged of the literature (Allison, 2016; Wang 
et al., 2009), a generic workflow with three ML algorithms (Chen and 
Guestrin, 2016; Ho, 1995) combined with two types of molecular fin-
gerprints of the AOPs was adjusted to predict the reactivity of these 
compounds under atmospheric conditions. The data were randomly 
divided into a training set (80%) and a test set (20%) and the main 
statistical criteria were performed for internal and external validation of 
the developed models (Gramatica, 2014). Fig. S1 shows the effect of MF 
length for the Morgan fingerprint and a more detailed discussion is 
provided in SI. 

The validation of the six models developed was performed both for 
the training set, internal validation, as for the test set, external valida-
tion and the values of the statistical parameters are listed in Table 1. The 
statistical criteria R2

cv, Q2
cv and RMSEcv were calculated to evaluate the 

performance of the models using the 10-fold cross-validation method 
(see sec 2.3) in the internal validation. Similarly, for external validation, 
r2
ext , R2

ext , Q2
ext , and RMSEext were selected to measure the quality of the 

models. The results show that the built model has a high predictive 
capacity – R2

cv > 0.959 and RMSEcv < 0.090 for the training set and R2
ext 

and Q2
ext > 0.889 and RMSEext < 0.084 for the test set. All these results 

provided a good predictive capacity and clearly indicated that our 
models exclude overfitted behavior. The difference between the RMSEext 

and Q2
ext values of the test set were used to assess the performance of ML 

models to predict the kOH. Although all models have values similar to 
RMSEext and Q2

ext , the XGB algorithm combined with MACCS fingerprint 
was the best performing model and yield results highly suitable for both 
the training set and the test set. 

3.2. Predicted vs experimental data 

Fig. 2 shows the predictions and distributions of the data obtained by 
the six models in a comparison chart on the experimental data. The 
purple dashed line is the reference line (r2

ext = 1) and indicates predictive 
on capacity of the ML models – deviations from the reference line 
indicating that the data are under or overestimated closeness to the 
reference line indicating good-prediction i.e., on the other hand. Name 
of compounds and their coordinates, x (predicted) and y (experimental) 
axis, in Fig. 2 represented in red are listed in Table S1. Additionally, all 
models showed a p-value < 0.05, indicating that for the 95% confidence 
interval, r2

ext is statistically significant. Fig. S2 (see SI file) shows the 
residual plots all models studied and as expected, the residues are 
randomly distributed around zero. All these results provided a good 
predictive capacity and clearly indicated that our models excluded 
overfitted behavior. To further confirm the quality of the data, a 
robustness test was performed by applying the Y randomization tech-
nique (Fan et al., 2018; Rücker et al., 2007), to exclude the possibility of 
casual correlation. This procedure indicated that all new values calcu-
lated from Q2

ext were much lower than the original model, suggesting 
that the results of the original model were not accidental (see Table S3). 

3.3. Applicability domain 

To verify the chemical domain in which our model is useful to be 
applied, the applicability domain of all the models developed in this 
work were determined by means of the Tanimoto index (Tanimoto, 
1958). Table 2 shows the optimal values found for the AD for the two 
types of MF – Morgan and MACCS. The threshold of 0.290 led to the 
lowest RMSEext value for the NN and RF models and the limit of 0.3100 
for the XGB model using Morgan Fingerprint. For the MACCS Finger-
print, the limit of 0.500 yield the lowest RMSEext values for the NN and 
RF models and the limit of 0.530 for the XGB. The maximum similarity 
metric was chosen to indicate whether the compound is within or 
outside the applicability domain, i.e., if the query compound has a value 
less than the maximum similarity threshold value, the compound will be 
outside the AD, otherwise, the compound will be within the AD of the 
model developed. The structure of the outliers in this study is shown in 
Fig. S3. The MACCS MF yielded smaller deviations based on model 
predictions when compared to the Morgan MF. For example, Morgan 
fingerprints decrease their predictive capacity with the presence of 

Table 1 
Internal and external validation parameters of the ML models applied to kOH 

data set with Morgan (4096 length of molecular fingerprint) and MACCS keys 
fingerprints.  

Morgan Fingerprint 

Models Training set Test set 

R2
cv Q2

cv RMSEcv r2
ext R2

ext
⃒
⃒Q2

ext
a RMSEext 

NN 0.993 0.752 0.084 0.922 0.843 0.073 
XGB 0.972 0.713 0.090 0.905 0.817 0.079 
RF 0.960 0.723 0.088 0.889 0.789 0.084 

MACCS Fingerprint 
Models Training set Test set 

R2
cv Q2

cv RMSEcv r2
ext R2

ext
⃒
⃒Q2

ext 
RMSEext 

NN 0.973 0.802 0.074 0.950 0.888 0.062 
XGB 0.974 0.789 0.077 0.960 0.921 0.052 
RF 0.959 0.763 0.082 0.946 0.896 0.059 

a The values are equal to the third decimal number. 
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isotopes, such as Propene-d6. The presence of isotopes is quite impor-
tant, as the kinetic isotopic effect plays an important role in atmospheric 
chemistry (Anderson et al., 2004; Iannone et al., 2003). Therefore, a 
larger amount of kOH data involving isotopic variants is relevant for a 
larger applicability domain of our model. Furthermore, according to the 
model predictions, the higher relative error deviations are mostly typical 
of small-size molecules and groups such as amines (N) and halogen 
(especially, F and I). 

3.4. Comparison with previous studies 

Most studies for the prediction of kOH were used with linear, multiple 
linear regression (MLR) and partial least squares (PLS) (Gramatica et al., 
2004; Öberg, 2005; Roy et al., 2011; Wang et al., 2009), ensembles, 
decision tree forest (DTF) and decision tree boost (DTB) (Gupta et al., 
2016) and nonlinear (NN) (Allison, 2016) methods. Another important 
factor investigated in these studies was the effect of temperature on kOH, 
and only two studies appear to have been reported on temperature 
dependence. The work of Li and Gupta regarded the study of the 

prediction of kOH in the temperature range from 206 to 1364 K, while the 
other works were carried out at room temperature (298 K). 

To the best of our knowledge, this is the first study that employs ML 
combined with molecular fingerprint to estimate the kOH of AOPs with 
OH radical. Our work employs two ensemble methods as performed by 
Gupta and a nonlinear method, neural networks, as employed by Alli-
son; this last work is not compared to in this study as it does not employ 
the conventional metrics of the other studies. A comparison with the 
performance indices of the models is shown in Table 3. As can be seen, 
the present work presents the largest amount of data for a single tem-
perature (298 K), without the use of molecular descriptors derived from 
quantum chemistry calculations, and the statistical criteria are either 
similar or even superior to previous studies. 

3.5. Interpretation and insight 

Besides statistical performances of each model, it is particularly 
important to know its physicochemical and mechanistic predictive 
insight (Zhong et al., 2021), elucidating ML model features versus 

Fig. 2. Plot of predicted vs experimental values for data sets of the oxidative process mediated by OH radicals in atmospherics organic pollutants. External validation 
of the ML models is performed comparing the reference line (dashed) with the linear representation of the data (the distribution of the kOH values is shown. 
Experimental (right in purple) and predicted (top in blue). Points highlighted in red are considered outliers. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 2 
The thresholds of similarity, the number of compounds outside the AD for each threshold value, and the corresponding RMSEext.  

Morgan Fingerprint 

NN XGB RF 

Threshold RMSEext NCOADa Threshold RMSEext NCOAD Threshold RMSEext NCOAD 

0.290 0.0688 6 0.310 0.0686 9 0.290 0.0765 6 

MACCS Fingerprint 
NN XGB RF 
Threshold RMSEext NCOAD Threshold RMSEext NCOAD Threshold RMSEext NCOAD 

0.530 0.0602 2 0.500 0.0517 0 0.500 0.0594 0 

a Number of compounds outside the AD. 
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expert, experimental techniques and sophisticated theories (Lundberg 
et al., 2020b). A recent unified approach to interpret the predictions of 
the model, SHAP (SHapley Additive exPlanations) brings light into the 
“black box” of ML algorithms, was employed to confront the top 10 
learned characteristics learned by the XGBoost model with the two 
molecular fingerprints developed in this work (Fig. 3). The blue and red 
colors denote absence or presence of a given molecular fragment in a 
compound, and the SHAP value (x-axis) shows the impact that fragment 
has on the prediction. For example, features 2742 (Morgan) and 99 
(MACCS), involving the presence of a C––C bond, increase the reactivity 
of a given compound, consistently with experimental observations 
(Atkinson et al., 1982; Atkinson and Aschmann, 1984). Similarly, fea-
tures 1928, 1683 and 3105 in Morgan involve the presence of F, Cl and 
Br, respectively, while feature 134 represents a halogen in MACCS: the 
presence of this feature in organic pollutants correlates with a decreased 
reactivity, also consistently with literature (Atkinson, 1986; Li et al., 
2014). Tables S4 and S5 of SI identifies fragments regarding both fin-
gerprints and specific role on reactivity. 

In order to obtain a more in-depth interpretation of the model, the 
highest SHAP values of a series of compounds were analyzed to verify 
whether the model learned the reactive sites in organic pollutants 
through the reaction with the OH radical. For each chemical class, the 
SHAP plot, the chemical structure and the most important fragments of 

the molecules are presented in Fig. 4. The length of the bar indicates the 
SHAP value of each fragment, and the red or blue colors indicate 
whether it contributes to increase or to decrease the reactivity. 

Regarding alkanes, it is known that OH radicals react via abstraction 
of the hydrogen atom of the C–H bond (Atkinson, 1986), here consis-
tently shown by SHAP, feature 149 (CH3 group). Regarding alkenes, the 
mechanism proceeds via addition to the double bond, clearly indicating 
that the model has correctly learned preference of a double bond 
(feature 99) over a simple bond. When a halogen is added in an alkane or 
alkene, forming haloalkanes and haloalkenes, the mechanism occurs 
through H atom abstraction and addition to the double bond, respec-
tively. However, the presence of a halogen, an electron-withdrawing 
group, provides a decreased reactivity, again correctly identified by 
SHAP (feature 134). Esters and carboxylic acids are compounds that 
play an important role in the troposphere and their degradation mech-
anisms also occur through hydrogen abstraction (Ren et al., 2019). The 
SHAP revealed that methyl group (feature 149), where abstractions 
occur, are characteristics that increase reactivity and that the OCO 
group (feature 123) is associated with a negative effect on reactivity, 
corroborating the experimental information. The reactions of the OH 
radical with ketones and aldehyde are considered an atmospheric 
sinkhole due to the abundance of these compounds and their mechanism 
– which also occurs through the abstraction of the H atom (Ponnusamy 

Table 3 
Comparison with previous works between different models for internal (training set) and external (test set) validation in the prediction of kOH values.  

Model Algorithm na pb tc (Kelvin) Training Set Test Set 

R2
cv Q2

cv R2
ext Q2

ext 

Gramatica (2004a) MLRd 460 4 298 0.828 0.819 – 0.826 
Gramatica (2004a) MLR 460 4 298 0.828 0.816 – 0.813 
Gramatica (2004b) MLR 460 6 298 0.846 0.841 – 0.866 
Öberg (2005) PLSe 743 333 298 0.906 0.875 – 0.840 
Wang et al. (2009) PLS 722 22 298 0.878 0.865 – 0.872 
Roy et al. (2011) MLR 460 4 298 0.824 0.819 – – 
Li et al. (2014) MLR 872 12 298 0.883 0.879 0.858 0.851 
Li et al. (2014) MLR 1543 14 206–1364 0.873 0.871 0.838 0.835 
Gupta et al. (2016) DTF 1543 4 206–1364 0.900 – 0.910 – 
Gupta et al. (2016) DTB 1543 4 206–1364 0.920 – 0.920 – 
Liu et al. (2020) MLR 180 5 298 0.785 0.754 – 0.642 
This work XGB-MACCS 903 1 298 0.974 0.792 0.896 0.896  

a n = the total number of chemical compounds in the dataset. 
b p = the number of molecular descriptors. 
c Temperature range. 
d MLR: multiple linear regression. 
e PLS: partial least squares. 

Fig. 3. Importance of the top ten representative molecular fingerprints and the SHAP values for the ML models applied to kOH data set and based on Morgan and 
MACCS fingerprints. See text and SI. 
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et al., 2018). Although the presence of the carbonyl group has no effect 
on reactivity, the SHAP values show that the presence of the oxygen 
atom (feature 164) contributes positively to the reactivity like the CH3 
group (feature 149), according to evidence from kinetic data. 

All this heuristic protocol reveals that our model has learned the 
essential characteristics of the molecular system, not spurious, clearly 
indicating that it does not have a compensating effect between precision 
and interpretability: a theoretical algorithm that does not balance the 
quality of statistical parameterization and physical-chemical interpre-
tation must be avoided, as it can lead to distorted views of fundamental 
chemical processes running away from chemical reality and creating ad 
hoc interpretations. An additional advantage of our approach is that no 
need of molecular descriptor calculations is required to predict the kOH. 

3.6. Kinetic parameters and web application 

From the data of the kOH for removal of organic pollutants with the 
OH radical, as obtained by ML models, it is immediate to obtain pseudo- 
unimolecular half-life times using t1/2 = ln2 /(kOH × [OH]), where 
[OH] is the average concentration of OH radicals in the troposprehe. The 
half-life time of the reaction is reported at the temperature of 298.15 K, 
and [OH] 5.0 × 105–5.0 × 106 molecules cm-3, which usually repre-
sents the values found in troposphere (Öberg, 2005; Prinn et al., 1995). 
To calculate the ability of AOP’s to create ozone in the atmosphere 
through the reaction initiated by OH radical, the photochemical ozone 
creation potential (POCP) (Jenkin and Hayman, 1999) was calculated 
using the following expression: 

εPOCP = α1 ⋅ γs ⋅ γβ
R⋅(1 − α2 ⋅ nc) (7)  

where εPOCP is the estimated POCP – α1, α2, and β are constants, with the 
values of 111, 0.04 and 0.5, respectively. γs is the structure-based ozone 
formation index, γR is the reactivity-based ozone formation index, and nc 
is the carbon numbers of the compound. The structure and reactivity- 
based ozone formation indices are further defined as: 

γs =
nB

MW
⋅
28.05

6
(8)  

γR =
kOH

nB
⋅

6
kethene

OH
(9)  

where nB is the total number of C–C and C–H bonds in the molecule, MW 
is the molecular weight, kOH is the rate constant for reaction with OH 
radicals at 298 K and 101.3 kPa of air, and kethene

OH is the rate constant for 
reaction of ethene with OH radicals at 298 K and 101.3 kPa of air (8.64 
× 10− 12 cm3 molecule− 1 s− 1) (Derwent et al., 1998; Jenkin and Hayman, 
1999). 

Finally, to share our results, we have added our model in a user- 
friendly web application to make predictions of the kOH, half-life and 
POCP of the different organic pollutants with the OH radical, which is 
available in www.pysirc.com.br. To extract the predictions, the only 
information required from the user are the SMILES or CAS number of the 
molecule. 

4. Conclusion and remarks 

A protocol is presented based on machine learning combined with 
molecular fingerprints providing kOH and reaction half-life of OH radical 
with organic pollutants in atmospheric environments. Three algorithms 
of ML combined with two types of MF were developed. To evaluate the 
performance of the built models, the main statistical criteria were 
calculated and yielded excellent predictive capacity. Regarding the 
recently published works, our results show higher values for the statis-
tical criteria of the external validation set, suggesting that our models 
have greater predictive capacity to estimate kOH with no need of mo-
lecular descriptors. Finally, an interpretation of the models, performed 
using the SHAP, indicated that the predictions of the models were based 
on a reasonable understanding, specifically of how electron- 
withdrawing and -donating groups interfere of the reactivity of the 
OH radical. 

To disseminate use of our results, we have presented them in a user- 

Fig. 4. Pictorial representation of the force plot 
exhibiting the largest SHAP values for different 
chemical classes learned by the XGB-MACCS model. 
The length of each bar represents the SHAP value for 
a given feature – the longer the bar, the higher the 
SHAP value is. The SHAP values rank from the 
highest at the boundary between the two colors to the 
smallest on either side for both red and blue bars. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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friendly web application that permits compilation of kinetic parameters: 
future progress of this investigation will include (i) important explicit 
account of the temperature dependence in the environmental relevant 
range, having recently being demonstrated that often deviate can occur 
from the usual Arrhenius behavior (Aquilanti et al., 2017; Carvalho--
Silva et al., 2019), (ii) consideration along these lines of a richer class of 
chemical compounds and processes in models of reactive mechanistic 
networks (Eisenreich et al., 2021), and (iii) insertion within currently 
operating chemical kinetic codes (Machado et al., 2019), in particular 
implementing progress in understanding reactivity in extreme envi-
ronments, such as those relevant in planetary sciences and 
astrochemistry. 
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5. CONCLUSIONS AND PERSPECTIVES  
 In this thesis we used different protocols in order to obtain kinetic parameters, either by 

means of first principles or based on in silico models. Since the rate constant is a fundamental 

parameter to interpret the reactivity of chemical reactions, our study permeated different 

methodologies and provided important mechanisms to understand reactional processes. The 

main conclusions regarding this work are presented below.:  

i) We employed electronic structure calculations and formulations based on the 

Transition State Theory to reveal the mechanism, kinetics and toxicity of the 

picloram reaction with hydroxyl radical.  

ii) We build machine learning models combined with molecular fingerprints to predict 

the rate constant of organic pollutants in an aqueous environment mediated by OH 

and ���
.� radicals. Finally, we developed a web application to load the models and 

make predictions of the rate constant in a simple and user-friendly way – it is only 

necessary to inform the CAS Number or SMILES of the compound.  

iii) We extended the previous protocol for the prediction of the rate constant through 

the oxidation of atmospheric organic pollutants with OH radical and other kinetic 

parameters crucial to evaluate the efficiency of the degradation of these 

compounds.  

As a result of the knowledge obtained during the development of this thesis, one of the 

perspectives in progress are highlighted below:  

 extend the models created with other oxidative processes and,  

 to evaluate the role of temperature in the prediction of the rate constant. 
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