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RESUMO

Título: Uma Nova Abordagem para o Uso de Métodos Diretos na Reconstrução de
Imagens Médicas com Compressive Sensing
Autor: Gabriel Luis de Araújo e Freitas
Orientador: Vinícius Pereira Gonçalves, PhD.
Coorientador: Cristiano Jacques Miosso, PhD.
Programa de Pós-Graduação em Engenharia Elétrica
Brasília, 15 de julho de 2022

A partir das tecnologias de imageamento médico, profissionais de saúde conseguem
informações relevantes sobre o estado de um paciente para o planejamento e acompa-
nhamento de seu tratamento. A Tomografia Computadorizada por raios-x (CT) e a
Ressonância Magnética (MR) são duas das tecnologias mais bem consolidadas no meio.
Estas técnicas permitem a obtenção de imagens anatômicas de planos específicos ou
volumes. Apesar de a CT e a MR explorarem princípios físicos diferentes, ambas cole-
tam medidas que podem ser modeladas como coeficientes da Transformada de Fourier
da imagem a ser reconstruída.

O processo de reconstrução refere-se a etapa de calcular a imagem desejada a partir
das medidas adquiridas pelos equipamentos médicos. A aquisição geralmente requer
que o paciente permaneça em uma mesma posição por longos períodos e, no caso da
CT, há a emissão de radiação ionizante. Assim, é de interesse que tais procedimentos
ocorram da forma mais segura e rápida possível. Uma maneira de abordar este pro-
blema é o desenvolvimento de algoritmos de reconstrução que consigam gerar imagens
úteis para a atividade clínica usando uma quantidade reduzida de medidas.

Conceitos de Compressive Sensing (CS) vem sendo adotados na elaboração de novos
algoritmos para reconstrução de imagens médicas em vista de uma aquisição mais
eficiente. Esta área de conhecimento estuda a reconstrução de sinais a partir de medidas
incompletas por meio da resolução de sistemas lineares subdeterminados. O sinal de
interesse é a solução cuja maior parte dos coeficientes é nula. Ou seja, considera-se que
o sinal reconstruído possui uma representação esparsa em algum domínio conhecido.
A minimização de `p (0 < p ≤ 1) é uma estratégia frequentemente explorada por
algoritmos de CS. Adotar métricas `p com menores valores de p, apesar de recair em
problemas não-convexos, pode possibilitar uma redução ainda maior de medidas.

Imagens são sinais de grande dimensão. Por esta razão, técnicas de reconstrução
que se baseiam em CS recorrem a métodos indiretos para a realização de operações
matriciais, já que o armazenamento das matrizes que modelam o problema é inviável
durante a execução dos algoritmos. A estabilidade e a convergência dos métodos indi-
retos são afetadas pela redução do valor de p de modo que esta estratégia não pode ser
bem explorada ao executar as operações matriciais indiretamente.
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Neste contexto, a presente pesquisa desenvolve a Estrutura de Reconstrução Direta
(DRS) para formação de imagens médicas por meio da composição de sinais de menor
dimensão, que são obtidos através de minimização de `p. Inicialmente, apresentamos o
formalismo matemático para implementações genéricas dessa estrutura, em que não se
assume nenhuma operação específica para a composição. Em um segundo momento,
derivamos o modelo matemático e o problema de minimização para uma formulação
que compõe a imagem a partir de sinais unidimensionais, que contém a informação de
uma linha de medidas no plano de frequências.

Implementamos esta formulação específica do DRS usando o IRLS (Iteratively
Reweighted Least Squares) como algoritmo de minimização e a pré-filtragem para a
representação esparsa. Realizamos quatro experimentos numéricos com o objetivo de
investigar o comportamento dos algoritmos de CS ao reduzirmos o valor de p e avaliar
a performance do DRS em comparação às técnicas que usam método indireto. Em
nossos testes usamos tanto sinais artificiais como dados de imagens reais. Os resulta-
dos apontam que o DRS reconstrói satisfatoriamente as imagens médicas em condições
favoráveis de esparsidade. A pré-filtragem não obteve a mesma eficiência em esparsi-
ficar os sinais reconstruídos pelo DRS em comparação ao que é verificado no caso dos
algoritmos que usam método indireto.

Palavras-chave: Imageamento Médico, Compressive Sensing, Método Direto, Mini-
mização Não-Convexa.
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With the support of medical imaging technologies, healthcare workers are provided
with relevant information about a patient’s condition when planning and following up
on treatment. X-ray Computed Tomography (CT) and Magnetic Resonance (MR)
are two of the most consolidated technologies in the field. These techniques yield
anatomical images of specific planes or volumes. Although CT and MR exploit different
physical principles, both collect measurements that can be modeled as the Fourier
Transform coefficients of the image to be reconstructed.

The reconstruction procedure refers to the stage of computing the desired image
from the measurements acquired by the medical equipment. The acquisition usually
requires the patient to stay in the same position for long periods, and, in the case of
CT, there is the emission of ionizing radiation. Thus, such procedures should take
place as safely and quickly as possible. A possible approach to address this issue is
the development of reconstruction algorithms that can generate meaningful images for
clinical practice from a reduced amount of measurements.

Concepts of Compressive Sensing (CS) have been adopted in the devising of new
algorithms for medical imaging to achieve a more efficient acquisition. This area of
knowledge studies the reconstruction of signals from incomplete measurements by solv-
ing underdetermined linear systems. The signal of interest is the solution whose most
of the coefficients are null. That is, the reconstructed signal is assumed to have a
sparse representation in a known domain. Minimizing `p (0 < p ≤ 1) is a strategy
often exploited by CS algorithms. Adopting `p metrics with smaller values of p, even
leading to non-convex problems, opens up the possibility of further reductions in the
number of measurements.

Images are large signals. For this reason, CS-based reconstruction techniques rely
on indirect methods to perform matrix operations because the storage of the matrices
that model the problem is impractical during the execution of the algorithms. The
stability and convergence of indirect methods are affected by reducing the value of
p so that this strategy cannot be well exploited when performing matrix operations
indirectly.
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In this background, the present research devises the Direct Reconstruction Structure
(DRS) for medical image formation through the composition of lower-dimensional sig-
nals, which are obtained through `p minimization. First, we present the mathematical
formalism for generic implementations of this structure, which makes no assumptions
about the operation for composition. Following, we derive the mathematical model
and the minimization problem for a formulation that composes the image from one-
dimensional signals, which contain the information of a row of measurements in the
frequency plane.

We implemented that specific DRS formulation using the Iteratively Reweighted
Least Squares (IRLS) as the minimization algorithm and prefiltering for sparse rep-
resentation. We conducted four numerical experiments to investigate the behavior of
the CS algorithms when reducing the value of p and evaluate the performance of DRS
compared to techniques using an indirect method. In our tests, we used both artifi-
cial signals and actual image data. The results suggest that DRS can satisfactorily
reconstruct medical images in good sparsity conditions. Prefiltering did not achieve
the same effect in sparsifying the signals reconstructed by DRS compared to the case
of algorithms using the indirect method.

Keywords: Medical Imaging, Compressive Sensing, Direct Method, Non-Convex Min-
imization.
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Chapter 1

Introduction

This research investigates the adoption of direct methods for matrix computations
in Compressive Sensing (CS) algorithms for medical image reconstruction. Our first
intent in proposing this study is to provide a reconstruction approach that relies on
fewer measurements to obtain clinically useful images. We will present the theoretical
model of a medical image reconstruction algorithm and experimentally evaluate its
performance compared to an algorithm that uses an indirect method. In addition, we
will numerically evaluate the impact of using a direct method on CS reconstruction in
a generic scenario. In this first chapter, we will present the general context of medical
imaging, introduce the scientific problem that the research addresses, as well as our
objectives. In the end, we outline the structure of the remaining chapters.

1.1 The context of medical imaging

Medical images are important information sources to guide healthcare workers’ deci-
sions. Several stages of medical treatment make use of these technologies, from screen-
ing to follow-up. The progress of knowledge about the physical phenomena involved
in image acquisition and the development of novel digital signal processing techniques
have allowed the evolution of medical imaging procedures. Over the years, scientific
research has developed more reliable methods that provide accurate information at
lower operational costs [1].

The variety of physical principles and possible technologies for medical imaging
allow obtaining different information about the internal structures of an organism.
Clinicians can use it in managing a large number of pathologies. As such, medical
imaging is a key resource in the practice of today’s medicine [1, 2]. Evidence of that
is the attention the World Health Organization (WHO) gives to the topic. A brief
search on its website finds publications covering a wide range of aspects, from ethical
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parameters regarding patient exposure to ionizing radiation during image acquisition [3]
to issues about the use of these technologies in resource-scarce scenarios [4, 5] and their
clinical usage in the treatment of various medical conditions [6].

The access to imaging in low and lower-middle-income countries is discussed in [2].
This study reviews why these countries have not adequately implemented medical imag-
ing services and also suggests actions to overcome these barriers. Although the main
proposed measures are of a political and economic nature, the technical improvement
of technologies is cited as part of the solution. In this sense, several issues in medical
imaging can be the subject of study in scientific research. For example, the survey in [7]
points out future directions in the field with a focusing on Artificial Intelligence (AI)
approaches. It organizes the current challenges into six key topics: (i) Image formation
and acquisition, (ii) Data management and sharing in the context of big data, (iii) Data
processing paradigms in radiology, (iv) Digital pathology, (v) 3D reconstruction and
visualization, (vi) Integrative analytics and radiogenomics paradigm. Although our
research does not involve AI, it contributes to the issues of image formation and ac-
quisition. In this regard, studies such as [8, 9, 10] are examples of works in the same
context

Image quality, as means of the relevance of the information obtained for clinical
decision-making, is a pertinent factor when evaluating the performance of an imaging
scheme [11]. In the case of Magnetic Resonance (MR) and x-ray Computed Tomog-
raphy (CT), for instance, the image formation depends on a reconstruction step to
convert the signals acquired by the equipment into images that have visual mean-
ing for the human perception. Therefore, the image quality relies on the capacity of
the reconstruction algorithm to extract information from the measurements to yield a
meaningful representation of the structures of interest.

The larger the number of measurements, the more information is available for re-
constructing the image. Thus, the same algorithm is expected to achieve higher quality
levels in situations where more measurements are acquired. However, obtaining a larger
amount of measurements implies longer acquisition times and higher patient exposure
to ionizing radiation in cases such as CT. Thus, developing algorithms that compute
images of a good standard from a reduced number of measurements leads to faster and
safer acquisition stages.

1.2 Stating the scientific problem and the research proposal

Compressive Sensing is a field of study in digital signal processing that uses under-
determined linear systems to model reconstruction problems to design more efficient
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acquisition schemes [12]. Reducing the number of measurements is achieved by assum-
ing that the signal to be reconstructed has a sparse representation (whose most of the
coefficients are zero) in some known domain. A possible way to evaluate the sparsity
is through `p metrics1 (0 < p ≤ 1). Thus, the reconstruction of the signal can be given
by solving an `p optimization problem subjected to the linear system [12, 13]. So, the
adoption of CS in the context of medical imaging is a possible strategy for devising
novel reconstruction algorithms [11].

One of the first ideas to get a sparse representation of tomographic signals ex-
ploits the fact that these images usually consist of relatively uniform regions with
sharp edges [11]. Following this premise, some works have proposed medical image re-
construction schemes based on minimizing the Total Variation (TV) measure, among
which we cite [14, 15]. Strategies based on `p metrics have also been explored for de-
veloping image reconstruction methods with CS techniques [16, 8]. We remark that
there are a variety of alternatives to model the matrices that describe the acquisition of
measurements, mainly due to the discretization process. Likewise, several formulations
can be considered for the CS minimization problem by varying the cost function and
the constraint. These design choices can lead to reconstruction algorithms that are
quite distinct from each other. The survey in [11] systematically describes different
approaches that take TV as the sparsity criterion.

The matrices that model the acquisition in medical imaging can be very large. It is
often impractical to operate directly with them due to storage limitations during the
algorithm execution. Therefore, a common feature among the CS-based algorithms
we found in the literature is that they all rely on indirect methods at some stage
of the image reconstruction process. Here, what we mean by an indirect method is
any numerical technique that computes exact or approximately the solution to linear
systems without using the coefficients of the matrix that describes the problem, such
as Conjugate Gradient (CG) and Quasi-Newton methods. In contrast, direct methods
are solvers with the matrix available to compute the operations.

Further reducing the number of measurements by using smaller values of p is a
possibility that arises when developing models based on `p minimization [17]. However,
this can not be well exploited by the algorithms we have mentioned. The models usually
rely on poorly conditioned matrices [11], so reducing the value of p may affect the
convergence and the stability of the indirect methods in a way that compromises the
adoption of a smaller p in practical situations (either due to prohibitive computational
time or unsatisfactory solutions).

1`p is not rigorously a norm in the mathematical sense for p < 1. However, it is common in CS
literature to refer to them with “norm,” “pseudonorm,” or “quasinorm.” Here, we have chosen to use
the term “metric.”
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We propose the Direct Reconstruction Structure (DRS) for CT and MR in our
study. In both of these imaging technologies, data used in reconstruction can be
modeled as samples of the Fourier coefficients of the desired image. However, while
MR measurements are already acquired in the frequency plane, CT measurements are
projections related to the desired spectral information. We use the approach presented
in [9] to condition the CT data as Fourier coefficients in a discrete Cartesian grid.

The strategy of DRS is based on composing the image from smaller signals, which
can be reconstructed by CS algorithms using direct methods. Thus, we expect this new
scheme to reduce the value of p in the definition of the minimization problem. One of
our numerical experiments will compare the performance of the proposed reconstruction
structure with another technique that uses an indirect method in different scenarios.
Although there are no longer any noteworthy similarities, the very first ideas in the
DRS development came from an attempt to adapt the streaming signal reconstruction
algorithm presented in [18] to the medical imaging context.

1.3 Objectives

The study we present in this thesis was conducted with the following research question:
“What are some benefits to the quality of medical images, in terms of objective param-
eters, achieved by reconstructing them using direct methods in Compressive Sensing
algorithms?”. Thus, the general objective of the research is to design a CS-based recon-
struction scheme for CT and MR images that uses direct methods and investigate the
potential contributions of this technique in helping to make the acquisition of measure-
ments safer and faster. We can detail this primary objective in the following specific
objectives:

1. Develop a formal discussion about the behavior of the reconstruction quality
when reducing the value of p in the `p minimization problem.

2. Derive and present the mathematical model for general implementations of the
DRS.

3. Derive a mathematical model for DRS regarding a specific composition strategy
and implement this formulation computationally.

4. Test the performance, as means of objective parameters, of that specific DRS for-
mulation for reconstructing images using measurements computed from synthetic
and actual images.

5. Analyze the effect of the algorithm for arranging the CT measurements as Fourier
coefficients proposed by [9] on reconstruction quality.
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1.4 Outline of this thesis

The literature review consists of two Chapters. Chapter 2 introduces physical princi-
ples, mathematical models, and classical CT and MR image reconstruction algorithms.
In Chapter 3, we present the basic concepts of CS, which include the formulation of
the sparse reconstruction as an `p minimization problem, a discussion of reconstruction
conditions, algorithms for general cases, and a possible approach for medical image re-
construction with a CS algorithm using an indirect method. In particular, Section 3.4
presents our interpretation of CS using concepts from Linear Algebra.

We propose the Direct Reconstruction Structure for medial imaging in Chapter 4.
At first, the DRS is introduced from its mathematical motivation. The general idea
is to make the use of the direct method in the reconstruction algorithms feasible by
composing the image from signals of reduced dimension. These signals are the solutions
to CS minimization problems. Next, we derive a specific formulation based on the
reconstruction of one-dimensional signals that contains the information relative to the
measurements in a row of the Cartesian plane. Finally, we provide a reconstruction
scheme for CT and MR images that uses DRS. We point out that the formulation we
present in this work is not unique since DRS can lead to other reconstruction schemes,
which model the image composition differently and use different strategies for sparsity
representation.

We conducted computational experiments intending to verify the performance of
DRS in comparison with a reconstruction algorithm that uses an indirect method.
Chapter 5 presents both the methodological design and results discussions of the ex-
periments. We chose to organize the content this way to ensure the cohesion of the text
because the two last experiments are motivated by the results observed in a previous
experiment. Chapter 6 presents the final considerations, summarizing the contributions
and pointing out future work.
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Chapter 2

Theoretical Foundations of
Medical Imaging

Medical imaging technologies comprise a set of methods that enable the visualization
of internal structures and functional aspects of the human body, often using non-
invasive techniques. The evolution of such technologies has provided valuable tools for
medicine in assisting the diagnosis and monitoring of medical conditions. The earliest
approach consists of emitting x-rays over the region of the body that is to be imaged.
Each biological tissue has a different radiation absorption capacity. Thus, each beam
of radiation will have a different intensity after passing through the body, depending
on the tissues it passes through. With this, it is possible to form the image on a
photosensitive film positioned behind the body. These results were obtained from the
studies of Wilhelm Röntgen [19]

Today there is a wide variety of technologies, based on many different physical
principles, for the formation of medical images. Thus, the choice of which technology
is most appropriate for each situation depends on what information is relevant for
medical evaluation, as well as the general conditions of the patient.

The digital signal processing field contributes to the development of more advanced
methods for medical imaging. In this sense, there are contributions both in image
formation processes and post-processing and classification techniques to aid diagnosis.
For instance, recent studies in medical image formation address issues such as (i) faster
measurements acquisition schemes, (ii) better image quality, (iii) safer processes, and
(iv) more computationally efficient algorithms [8, 9, 10, 16].

This work deals with Compressive Sensing based reconstruction methods for two-
dimensional Computed Tomography and Magnetic Resonance images. This chapter
covers an overview of these two technologies’ physical concepts and mathematical mod-
els. The major references we adopted are [20, 21] for CT; and [22] for MR.
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2.1 Computed Tomography

Computed Tomography images are also formed from the emission of radiation onto the
object of interest. However, the image is not captured directly on a film behind the
object but calculated from a collection of x-ray projections [20]. In contrast to con-
ventional x-ray techniques, the CT approach allows the computation of cross-sectional
images, which can visualize more specific details in narrowly delimited regions. The
invention of the first CT scanner is attributed to Hounsfield.

2.1.1 Physical principle

The Beer-Lambert-Bouguer law models the attenuation of electromagnetic beams from
the properties of the attenuating medium. In the case where a source emits radiation
with initial intensity I0 on a uniform object of thickness d, the intensity of the beam
observed after passing through this object is given by the equation

I = I0e
−αd, (2.1)

where α is the linear attenuation coefficient related to the capacity of the medium to
absorbs radiation. The projections used to calculate the image are measurements of
the attenuation of the beams emitted into the object from different directions [20, 21].

The measurements acquired by a CT apparatus refer to the attenuation that an
x-ray beam undergoes when passing through the object of interest in a specific linear
path. Since each biological tissue absorbs a different amount of radiation, it is possible
to compute an image from the information of the x-ray attenuation in some different
directions as each beam will pass through a different combination of tissues [20, 21].

source

detector

object

(a) Parallel beams.

object

source

detector

object

(b) Fan beams.

Figure 2.1 – Example of geometries for acquiring measurements used in commercial
CT scanners.

There are a variety of possible geometries to arrange the radiation sources and
sensors for the acquisition of measurements. The first commercial scanners used mea-
surements acquired by parallel beams. Later, fan beams, which are emitted from the
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same point, also became used. In this research, we consider measurements acquired by
parallel projections. However, the algorithms we will describe can be used in the fan
beams acquisition scheme if an intermediate interpolation step is performed to estimate
the measurements that would be acquired in parallel beams. Figure 2.1 illustrates these
acquisition geometries. The evolution of the acquisition strategies over the generations
of commercial CT scanners, as well as more details about the physical phenomena that
occur in the interaction of x-rays with matter, can be found in [21].

2.1.2 Mathematical modeling

As illustrated in Figure 2.2, let us identify the path L(θ, t) of each beam by the pa-
rameters θ, indicating the angle from which the beam was emitted; and t, referring to
the position of the source in the array. In the case of CT imaging, the rays no longer
propagate in a uniform medium. Despite this, the attenuation of each beam can also
be modeled using Equation 2.1. For this new scenario, consider that each beam passes
through k different sections that are uniform with attenuation coefficients α1, . . . , αk.
Thus, the resulting intensity is given by

Ik = I0e
−

k∑
i=1

αid

, (2.2)

and the total attenuation caused by these k sections can be calculated as

− ln
(
Ik
I0

)
=

k∑
i=1

αid. (2.3)

At last, taking k →∞ allow us to compute the total attenuation along the trajectory
L(θ, t). Therefore, the projections are given by

P (θ, t) =
∫
L(θ,t)

f(x, y)dL, (2.4)

where f(x, y) can be understood as a density function related to the linear attenuation
coefficient α of each point (x, y) in the imaged plane. Substituting the differential dL
to its Cartesian coordinate expression leads to the following form

P (θ, t) =
∞∫
−∞

∞∫
−∞

f(x, y)δ(x cos θ + y sin θ − t)dxdy, (2.5)

where δ is the Dirac delta function. This formulation allows an understanding that the
CT image is an estimation of the attenuation distribution computed from projections
modeled as line integrals [21].
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Figure 2.2 – Representation of the trajectory of parallel beams.

Forming a CT image consists of calculating a signal f [m,n] ∈ RM×N from the set
of projections P (θ, t) taken by the scanner. The image f [m,n] is a discrete signal that
samples a function f(x, y) ∈ R2, which describes the coefficient α for each point
(x, y) of a particular slice of the imaged object. Equation 2.5 is also known as the
Radon Transform. Figure 2.3 shows an actual CT image from [23] and the set of
projections used to reconstruct it. This type of graphical representation of P (θ, t) is
called a sinogram because of the sinusoidal patterns in it.
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Figure 2.3 – Example of CT image and its Radon Transform.
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2.1.3 Filtered Back Projection

The reconstruction algorithms for CT images seek a solution to the problem of inverting
the Radon Transform. In this regard, the Fourier Slice Theorem (FST) is an important
mathematical tool, as it establishes a relationship between the acquired projections and
the spectral content of the image. The Fourier Transform of a projection acquired at a
given angle equals the Fourier Transform of the image evaluated on the radial line at
the same angle [20, 21]. This is stated as Theorem 2.1.

Theorem 2.1 Fourier Slice Theorem

Given a function f(x, y) with two-dimensional Fourier Transform F (u, v) and
Radon Transform P (θ, t). The content of F taken in a radial line at angle
θ = θi concerning the horizontal axis of frequencies can be computed as the one-
dimensional Fourier transform of the column P (θi, t) of the Radon Transform.
That is,

F (t cos(θi), t sin(θi)) = F1D{P (θi, t)}, (2.6)

where F1D{·} is the one-dimensional Fourier Transform operator.

The Filtered Back-Projection (FBP) is a milestone in the history of CT scanners
and, for several decades, was the standard algorithm used in commercial equipment [24].
The Back-projection approach to reconstructing an image is to add the values of the
projections along all pixels in their corresponding directions. Images obtained using
this strategy are commonly characterized by blurred patterns.

The FST provides an intuitive explanation for that behavior. The blurry appear-
ance in images is caused by the energy concentration in the image spectrum’s low-
frequency components. Note that due to the acquisition geometry of parallel pro-
jections, there is a higher density of samples at the low-frequency positions. Thus,
Back-Projection is an algorithm that emphasizes the low-frequency information that
results in the blurred artifacts. Equation 2.6 shows that blurred aspect of the recon-
structed image can be reduced by one-dimensional filtering of the projections. So the
FBP algorithm applies a ramp low-pass filter to the projections before back-projecting
them [20, 21]. For example, Figure 2.4 shows reconstructions of the image in Figure
2.3 using Back-Projection and Filtered Back-Projection.
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Figure 2.4 – Example of CT image reconstruction using Back-Projection and Filtered
Back-Projection algorithms with projections acquired in 200 angles.

2.2 Magnetic Resonance

Magnetic Resonance is another technique to obtain cross-sectional images. In this
method, the image is calculated from measurements of the nuclear magnetic moments
of the hydrogen atoms that compose the biological tissues. The MR acquisition scheme
starts by placing the object to be imaged in a strong magnetic field, and sequences of
magnetic pulses are applied. Then, coils measure the magnetic flux caused by the
protons when returning to a lower energy state. At last, these measurements are used
to calculate the desired image. In contrast to CT, MR imaging uses non-ionizing
radiation and therefore presents less risk to the patient. The basis for the development
of magnetic resonance technology comes from the work of Paul Lauterbur [19].

2.2.1 Physical principle

In their natural state, the spins of the protons of the hydrogen atoms in an organism
are disordered. That is, each one is pointing in a random direction. Thus, the observed
magnetization of the organism as a totality is zero. When the patient is inside the MRI
scanner, he is exposed to a uniform magnetic field Bz = B0. Conventionally, this field
is along the anatomical longitudinal axis labeled by z. Part of the spins align to the
field direction, while the other part assumes the anti-parallel direction. The Boltzmann
factor describes this behavior of the spins interacting with B0 as

Np

Nap

= e
ε

kT , (2.7)
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where ε is the energy difference between the parallel and anti-parallel states, Np is the
number of parallel spins, Nap is the number of anti-parallel spins, k is the Boltzmann
constant, and T is the temperature [22]. Therefore, a non-zero resultant magnetization
M0 is now observed due to the alignment of the spins caused by the B0 field. M0

will be proportional to the intensity of B0. Typical values for magnetic flux density
in commercial equipment are between 1.5 and 3 tesla, although studies such as [25]
investigate the use of Low-Field-Strength in MR imaging.

Another phenomenon that occurs as a result of the interaction of the spins with the
external magnetic field is the precession motion. It means that the spins are not only
aligned with B0 but also make a circular motion around the z-axis due to the torque
produced by the magnetic field [22]. The angular frequency of precession motion, also
known as the Larmor frequency, is given by

ω = γBz, (2.8)

where γ is the gyromagnetic ratio.

After the spins align to B0, radiofrequency pulses are emitted and disturb the
magnetic field in the x and y directions. It causes new alterations in the alignment of
the spins. When the perturbation ceases, the spins return to their previous state of
equilibrium. The signal for the image reconstruction results from the magnetization
Mxy = Mx + jMy in the xy plane during this process [26]. Precession generates an
effective electric current, producing its magnetic field. Thus, the signal in the receiver
coils is the sum of the contribution of each spin distributed along with the imaged
object. In mathematical terms, this signal at time t is given by

su(t) =
∞∫
−∞

∞∫
−∞

∞∫
−∞

Mxy(x, y, z, t)dxdydz. (2.9)

Recall that su is generated by the realignment of the spins to the uniform field B0 after
emitting the RF pulse.

The signal su is a global measurement of the magnetization of the imaged object over
time during the realignment of the spins. However, it is not yet possible to compute the
image from that measurements since this signal does not allow the evaluation of Mxy

individually for each position (x, y, z) in space. This issue, known as spatial encoding,
is addressed by applying linear gradients to the field B0 in a manner that weights the
contribution of each Mxy(x, y, z, t) in the signal obtained in the receiver coils. In MR
scanners, in addition to the uniform magnetic field, some coils apply gradients to it to
enable spatial encoding. Therefore, the resulting magnetic field strength is given by
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Bz(x, y, z, t) = B0 +GT (t)


x

y

z

 (2.10)

Bz(x, y, z, t) = B0 +Gx(t)x+Gy(t)y +Gz(t)z, (2.11)

where GT (t) = [Gx(t) Gy(t) Gz(t)] is the gradient strength in each direction. In this
new scenario, in which the magnetic field Bz is no longer uniform, the Larmor frequency
of the spins also varies with their position (see Equation 2.8). The signal s(t) that is
measured in the coils during the process of realignment to the non-uniform field Bz

after the emission of the RF pulses is called the Free Induced Decay (FID) [22].

The spin realignment is described by the Bloch phenomenological equations [26].
The magnetization behavior observed in this process is a consequence of the interac-
tion of the spins with their surroundings (lattice) and with each other. In the Bloch
equations, each of these interactions is characterized by a time constant. While T1

relates the spin-lattice interaction to the relaxation in the longitudinal axis, T2 relates
the spin-spin interaction to the realignment in the transverse plane [22].

The MR scanner will emit different sequences of RF pulses during the measurement
acquisition process. By adjusting the pattern of these pulse sequences, it is possible to
ponder the contributions of the constants T1 and T2 to the measurements. This way, it
is possible to improve the contrast between different organs represented in the image
since the T1 and T2 values can be used to distinguish the various biological tissues [22].

2.2.2 Mathematical modeling

As discussed in the previous section, the weight given to the contribution of each point
in forming the signal s(t) is defined by the gradient applied to the field Bz. In essence,
the FID signal s(t) corresponds to the sum of sinusoidal signals generated by the spins.
Due to the gradient G(t), the magnitudes and phases of these sinusoids depend on the
spatial position of each spin [22]. Therefore, the reconstructed image tells the density
of spins at each point of the imaged object, and the signal s(t) available for image
reconstruction is given by

s(t) =
∞∫
−∞

∞∫
−∞

∞∫
−∞

Mxy(x, y, z, t)e−j2π[kx(t)x+ky(t)y+kz(t)z]dxdydz, (2.12)
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where kT (t) = [kx(t) ky(t) kz(t)] is the vector of positions defined from the gradient
G(t) by

k(t) = γ

2π

t∫
0

G(λ)dλ. (2.13)

Therefore, the time samples of s(t) correspond to samples of the Fourier Transform of
the imaged object in a trajectory described by k(t) [22].

The signals in the coils that generate the gradient G(t) define the trajectory on
which the samples of s(t) will be acquired. The manipulation of these signals enables
the selection of the region of interest to be imaged. Each trajectory has different
acquisition times and reconstruction features; more details can be found in [22]. Figure
2.5 shows an MR image from [27] and the spiral trajectory in the two-dimensional case.
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Figure 2.5 – Example of MR image and the position of its measurements acquired in
a spiral trajectory in the frequency plane.

2.2.3 Non-Uniform Fast Fourier Transform

The Filtered Back-Projection we presented as a reconstruction algorithm for CT can
also reconstruct MR images if the samples are in radial lines1. In Magnetic Resonance,
the available data for computing the image are samples of its content in the frequency
domain. Due to the nature of the acquired measurements, algorithms based on the
Fast Fourier Transform (FFT) are standard in the literature. If the samples are in
a Cartesian trajectory, the image can be obtained directly using the FFT [28]. On
the other hand, the samples usually do not coincide with the Cartesian positions for

1The Fourier Slice Theorem allows the computation of the projections from spectrum samples along
a radial line.
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different trajectories. Thus, some MR reconstruction algorithms perform two tasks:
estimate the spectral data at the non-sampled positions and invert the image to the
pixel domain.

The standard FFT algorithm presumes that the input coefficients are equispaced
signal samples in the time domain to compute its Discrete Fourier Transform (DFT).
Algorithms that allow the analysis of spectral components in non-equispaced positions
should be adopted for reconstructing MR images when measurements are along non-
Cartesian trajectories. Efficient algorithms that compute the Fourier Transform under
these conditions are called Non-Uniform Fast Fourier Transform (NUFFT). Different
strategies are possible in devising these algorithms. Among them are low-rank approx-
imations and polynomial interpolations [29, 30].

The NUFFT algorithms are efficient procedures for computing the Fourier Trans-
form in non-uniformly distributed points. As such, it is a commonly used tool in devel-
oping fast and accurate methods for reconstructing MR images. In general, NUFFT-
based reconstruction algorithms perform the inversion of measurements from regridded
data. These strategies differ mainly in terms of the type of interpolator. Examples of
reconstruction methods implemented with NUFFT are presented in [31, 32].

2.3 Artificial phantoms

Artificial images are commonly used for preliminary assessment of the quality of results
when developing reconstruction techniques. The algorithm proposed in [33] is tested
with reconstructions of Figure 2.6. This testing image became known as the Shepp-
Logan phantom and is often used in studies that design and evaluate algorithms for
medical image reconstruction.
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Figure 2.6 – The 256× 256 Shepp-Logan phantom.
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Although models such as the Shepp-Logan phantom allow initial evaluation of the
performance of new methodologies in medical imaging, they consist of relatively simple
structures. In light of this, there are efforts to develop more sophisticated artificial
phantoms that exhibit anatomical structures in a more realistic representation [34].
Methodologies to create more complex phantoms represent relevant contributions to
the validation process of medical imaging technologies. However, as indicated in [34],
it is still necessary to improve these techniques to cover a broader population diversity
and develop more specific and detailed models for more parts of the human body.

The tests developed in the present study conducted reconstructions of three groups
of testing images: (i) the Shepp-Logan phantom, (ii) synthetic images with charac-
teristics desired by the proposed algorithm (see Section 5.5), and (iii) actual images
available in open databases, as means of looking for evaluating the reconstruction qual-
ity for images with more complex structures.

16



Chapter 3

Theoretical Foundations of
Compressive Sensing

Many of modern life’s daily activities are carried out using digital computation. Tech-
nologies based on digital signal processing theory are diverse, such as mobile commu-
nication, weather forecasting, industrial process automation, classification algorithms,
medical diagnosis aids, etc. A common feature of many of these applications is that
they rely on information available in the environment. Representing the information
from physical quantities as discrete signals is a key task for engineering. In this sense,
the Nyquist-Shannon sampling theorem is a milestone in the digital signal processing
theory since it lays the foundations for the sampling techniques [35, 36].

Sampling is the process of obtaining a discrete representation of a signal that is
initially on a continuous domain. The Nyquist-Shannon sampling theorem states a
sufficient, but not necessary, condition to guarantee that a uniform sampling scheme
preserves the information of a bandlimited continuous signal on the resulting discrete
sequence. For that, the adopted sample rate should be at least two times the highest
frequency of the continuous signal. The acquisition of signals using a sample rate below
the Nyquist-Shannon criterion is possible, but other conditions must be established.

The Compressive Sensing theory uses sparsity to design acquisition systems that
are more efficient in the sense of the number of entries required to represent the infor-
mation. While the idea behind the sampling theorem is to get enough time samples to
recover the original continuous signal, CS looks for linear measurements and exploits
redundancy to acquire compressively the information into the continuous signal [12, 13].
In this context, sparsity is a property related to a signal’s number of null components
(more null values mean greater sparsity). This Chapter will present the basics of CS
theory, as well as examples of algorithms and how they can be used to reconstruct
medical images.
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3.1 The basics of Linear Algebra for Compressive Sensing

A matrix M ∈ Km×n represents a linear relationship between two vector spaces of
dimensions m and n. Throughout the text, we will use the symbol K to denote that
the number set can be either real (R) or complex (C), depending on the application
context. The product of this matrixM by a vector x ∈ Kn gives another vector b ∈ Km

that is a linear combination of the n columns of M . Therefore, the matrix M provides
a mapping between the sets Km and Kn, and the product Mx = b can be understood
as the system of linear equations that establishes how this linear map is calculated.
Solving a linear system is to calculate a vector x that satisfies the set of equations
Mx = b once the matrix M and the result b are known. The set of possible solutions
for the system can be described by studying the linear dependency of the rows and
columns of M .

Suppose an acquisition system modeled by the matrix M that relates the signal
x properly acquired according to the sampling theorem with a set of measurements
b = Mx. There is special interest in situations whereM establishes a bijection between
the vector spaces, that is, Mx1 = Mx2 implies b1 = b2 and every vector in Km is
mapped to Kn by M . This property guarantees that the information contained in a
vector of Km is preserved in Kn and that we can exactly recover x from b. This occurs,
for instance, with invertible linear transforms such as the Discrete Fourier Transform.

In particular, CS aims to reduce the number of measurements required to represent
information. With this, the acquisition process is modeled as underdetermined linear
systems that map the original signals to lower-dimensional spaces. This assumption
considers that there are redundancies in the signal and that they can be exploited
in a compressive acquisition scheme. The problem that arises when solving underde-
termined systems is that such systems are not a bijection and thus potentially have
infinite solutions. The CS approach is to constrain the domain of the linear mapping
by searching for the solution that is the sparsest in a transformed domain.

3.1.1 Sparsity and `p metrics

Looking over the Compressive Sensing theory from the point of view of Linear Algebra,
“reconstructing a signal” is to calculate the sparsest vector from a vector of a smaller
dimension once the linear map between them is known. CS is concerned with solving
underdetermined linear systems by finding the sparsest solution. . The sparsity of a
vector is a key concept for CS. A vector x ∈ Kn is called k-sparse if at least k of its
entries are non-zero values. The set Ωx = {i | x[i] 6= 0} is called the support of x.

In the present text, we will assume that a metric for a vector space V , denoted
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by ‖ · ‖, is a function that associates a non-negative real value to a vector x ∈ V . In
the context of CS, once the `p metrics (Definition 3.1) can be a parameter to evaluate
the sparsity of a signal, we have a particular interest in them. Metrics that satisfy the
following special conditions are called norms:

• ‖x‖ = 0 ⇔ x is the null vector of V

• Homogeneity: for α ∈ R, ‖αx‖ = |α|‖x‖

• Triangle inequality: ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖

Definition 3.1 (`p metric) Let x = x[k] a vector in RN and p ∈ R\{0}, the length
of x calculated by an `p metric is given by

‖x‖p =
(
N−1∑
k=0
|x[k]|p

) 1
p

. (3.1)

For p = 0, the `0 metric is given by

‖x‖0 = lim
p→0

N−1∑
k=0
|x[k]|p . (3.2)

If p ≥ 1 the `p metric is also a norm.

The `0 metric behaves by counting the number of non-zero entries in the vector x
once the limit of |x[k]|p as p → 0 is equal to zero for x[k] = 0 and it is equal to one
otherwise. Thus, the sparser a signal, the lower its `0 norm [37].

Figure 3.1 – Geometrical representation of some two-dimensional unit `p balls.

We can see in Figure 3.1 a geometric representation of the unit `p balls in R2 for
some values of p. These curves are the set of vectors x ∈ R2 such that ‖x‖p = 1.
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Observing these two-dimensional `p balls can be a simplified way of illustrating what
CS algorithms pursue when calculating the solution. In a given linear system Mx = b,
the matrix M defines a locus that contains all possible solutions. The reconstruction
algorithm will search among all solutions for the one with the lowest `p metric. In the
two-dimensional case, the set of solutions defines a straight line in the plane, and the
CS solution is the common point between this line and the `p ball of the smallest radius
that intercepts it.

Note that as p goes to zero, the ball gets closer to the axes, so the `p norms
(0 < `p ≤ 1) will also find the sparsest solution for a wide variety of solution sets
defined by the undetermined linear system. From now on, we will concern with formally
defining the minimization problem behind CS and the conditions in which the `p norms
are an adequate criterion for evaluating the sparsity of the signal to be reconstructed.

3.2 The sparse reconstruction problem

The Compressive Sensing theory deals with the acquisition systems in which there
is a linear relationship between the acquired signal x ∈ KN and its corresponding
measurements b ∈ Km that is available for recovery. Furthermore, it is assumed that
the dimension of the signal is greater than the dimension of the measurements (m < N),
i.e., the acquisition system can be modeled as an underdetermined linear system given
by

Mx = b, (3.3)

where M ∈ Km×N is called the measurement matrix. Thus, b does not form a bijection
with the signal x. It occurs since distinct signals can provide the same measurements
once the matrix representing the acquisition process has linearly dependent columns.
Consequently, this kind of system has no solution or infinitely many solutions. Hence,
a restriction is necessary to ensure the reconstruction algorithm can calculate a unique
appropriate solution from the measurements b [13].

From the perspective of a minimization problem, defining a constraint to calculate
the solution of an underdetermined linear system means choosing a cost function. Thus,
solving this problem is to select among all the infinite solutions the one that returns the
lowest value when applied to the cost function [37]. The minimization criterion adopted
in the Compressive Sensing theory is sparsity. The CS solution for an underdetermined
system is the signal x that satisfies the linear relationship (Equation 3.3), whose most
entries are null. In this sense, the sparser the signal is, the fewer coefficients are required
to represent the information.
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There are situations where the class of the signals of interest does not meet the
sparsity criterion. However, the Compressive Sensing algorithms can still be used as
long as there is a transformed basis in which the signals of interest are sparse. In other
words, the signal x is expected to have a sparse representation x̂ = Tx under the linear
transform T ∈ KN×N . By defining the acquisition matrix as A = MT−1, Equation 3.3
can be rewritten in terms of the sparse signal x̂ as

Ax̂ = b. (3.4)

In order to formally define the CS minimization problem, the question that arises is:
What are the possible cost functions that are a good metric for sparsity? As discussed
in Section 3.1.1, the `0 metric counts the number of non-zero entries of the given vector,
and therefore, at first glance, it seems to be an intuitive way to measure the sparsity
of a vector [37]. Given this, the CS problem can be expressed in terms of the `0 metric
as

min
x̂
‖x̂‖0 subject to Ax̂ = b. (3.5)

Suppose the support of the signal Ω is known. In that case, the solution can be
trivially calculated by Least-Squares, because the problem can be reduced to either a
determined or overdetermined system [37, 38]. In the case where there is no information
about the support, this problem can lead to NP-hard complexity [13]. For instance, the
`0 minimization problem can be tackled by an algorithm that tries to solve the linear
system for all the possible combinations of support until the desired solution is found.
Thus, this strategy may require prohibitive times for reconstructing larger signals in
practical applications.

A first possible approach, instead of searching exhaustively for the support, is the
greedy algorithms. The idea is to approximate the sparsest solution by improving the
estimation of the support iteratively. Relaxing the `0 metric is a second alternative to
make the minimization problem computationally tractable. In this sense, an `p metric
with 0 < p ≤ 1 can be used as the cost function for the minimization problem [37].
This relaxed version of the problem is stated as

min
x̂
‖x̂‖pp subject to Ax̂ = b. (3.6)

At first, the researchers had a special interest in `1 minimization because of the
convexity of the problem. This optimization principle is commonly referred to as Basis
Pursuit. This framework lays the foundation for developing convex algorithms for
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solving the `1 minimization problem using a linear programming solution [39]. However,
adopting p ∈ (0, 1) has theoretical advantages, such as the possibility of reducing the
number of measurements and the computation time [40, 17].

It is noteworthy that the performance of algorithms can be enhanced as more in-
formation is available to estimate the support of the solutions. Similarly, the quality of
the results is related to the reliability of the model designed to represent the acquisition
system and the sparse domain.

3.3 Conditions for sparse reconstruction

Although we have a formal definition for the problem of finding the sparsest solution of
an underdetermined linear system Ax̂ = b, we still need to look for the conditions that
ensure the sparsest solution exists and is unique. In this sense, criteria that assess the
matrix A to provide parameters on the relationship between sparsity and the number
of measurements required for the reconstruction are necessary to describe the scenarios
in which the CS algorithms apply.

The Mutual-Coherence (Definition 3.2) is an index that analyzes the linear de-
pendence of the columns of a given matrix. This property is used to calculate the
sparsity that guarantees the signals to be uniquely recovered by `0 minimization. So,
the Mutual-Coherence relates the maximum number of non-null entries in the solution
to the structure of the matrix that models the linear system to be solved.

Definition 3.2 (Mutual-Coherence) Take A ∈ Kn×m and define Ã as the matrix
whose columns ã1, . . . , ãm are the `2-normalized versions of the columns of the
matrix A. The Mutual-Coherence µ(A) is the maximum absolute value of the dot
product between two distinct columns ãi and ãj.

µ(A) = max
1≤i,j≤m; i 6=j

|ãHi ãj| (3.7)

Equivalently, the Mutual-Coherence µ(A) is the highest absolute off-diagonal value
in the Gram matrix G = ÃHÃ.

Recall that the dot product measures the relative direction of two vectors. In this
term, the Mutual-Coherence index is associated with the maximum angular distance
between two distinct column-vectors of a given matrix A. Suppose that the columns
of A form an orthogonal set, then µ(A) = 0. Furthermore, the maximum value for
the Mutual-Coherence µ(A) = 1 occurs if at least two columns of the A are vectors in
the same direction. Thus, higher values of Mutual-Coherence are achieved by matrices
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whose columns are more similar to each other. On the other hand, the smallest Mutual-
Coherence possible for non-orthogonal matrices occurs if the angle between each pair
of columns in the matrix is the same.

In [37], Elad introduces the idea of Mutual-Coherence as a criterion to evaluate
the uniqueness of the sparsest solution from an analysis of the null-space of A. This
reasoning starts by defining the spark of a matrix as the smallest number of columns
of this matrix that can be selected to form a linearly dependent set. Then suppose
there is a non-null vector y ∈ Kn in the null space of A. Denoting the columns of A
by a1, a2, · · · , an and the support of y by Ωy, the following equation is valid

Ay =
n∑
i=1

y[i]ai =
∑
i∈Ωy

y[i]ai = 0. (3.8)

Thus, the subset {ai|i ∈ Ωy} of columns of A is linearly dependent. By the definition
of spark, if |Ωy| < spark(A), there is no non-zero vector y that satisfies the Equation
3.8 and therefore

‖y‖0 ≥ spark(A). (3.9)

We can use this inequality to relate the spark of A to the sparsity of possible
solutions to the underdetermined system. To do so, let’s take x̂1 and x̂2, two distinct
solutions for the underdetermined system Ax̂ = b. Notably, the difference x̂1 − x̂2 is
a non-null vector in the null-space of A. Recall that the triangle inequality holds for
the `0 metric, although it is not a norm. So, taking into account the Equation 3.9, we
have that

‖x̂1‖0 + ‖x̂2‖0 ≥ ‖x̂1 + x̂2‖0 ≥ spark(A). (3.10)

This inequality provides the first parameter to evaluate the uniqueness of the CS solu-
tion. Note that if ‖x̂1‖0 <

1
2 spark(A), there is no other solution with fewer non-zero

entries; therefore, the sparsest solution will be unique [37]. Some authors call this crite-
rion Null Space Property (NSP). The next step is to extend this spark-based criterion
to include the Mutual-Coherence index. It is usually proved by using the Gershgorin
Disks Theorem stated below.

Theorem 3.1 Gershgorin Disks Theorem

Take the matrix A = [aij] ∈ Kn×n. There is a Gershgorin disk Di(ci, ri) in
the complex plane associated to each row of A. The i-th disk is centered at
ci = aii with the radius equal to ri = ∑

j 6=i
|aij|, which is the sum of the absolute

off-diagonal values of this i-th row.
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All eigenvalues of A lie within the union of all Gershgorin disks of this matrix.

The Gershgorin Disks Theorem establishes a lower bound to the spark of a matrix A
by doing a worst-case scenario analysis of the linear dependency of all possible subsets
of p columns of A through the eigenvalues of a corresponding Gram matrix. To obtain
this lower bound, we start by creating a matrix Ã whose columns are the `2-normalized
versions of the columns of matrix A [37]. This operation preserves the direction of the
column vectors. So, it does not affect the columns’ linear dependence or the matrix’s
spark. In other words, spark(A) = spark(Ã), rank(A) = rank(Ã), and µ(A) = µ(Ã).

Let Ψk be a set of k column vectors of Ã and ÃΨp be a submatrix of Ã obtained
by selecting only the columns in Ψk. Then we create a Gram matrix GΨk

= ÃHΨk
ÃΨk

.
Once the columns of Ã are `2-normalized, all the elements in the main diagonal of GΨk

are equal to 1. Consequently, all of its Gershgorin disks are centered in 1. Moreover,
µ(A) is the highest off-diagonal absolute value in GΨk

, so the maximum possible value
for the radius of the disks is given by

ri(max) = (k − 1)µ(A). (3.11)

As a consequence of its definition, the Gram matrix GΨk
will be at least positive

semidefinite, and it will be strictly positive definite if zero is not one of its eigenval-
ues. Thus, GΨk

being positive definite means that the set Ψk is linearly independent.
According to the Gershgorin theorem, for a given Gram matrix to be positive definite,
it is sufficient that for each disk Di, the radius ri to be less than the magnitude of its
center ci. This condition guarantees that zero is outside all disks and cannot be one of
the eigenvalues of this Gram matrix [37]. Writing this condition for GΨk

we have that
for every row i

ri < 1. (3.12)

The Equations 3.11 and 3.12 produce a sufficient condition to guarantee that every
combination of k columns of A will be a linearly independent set. In this sense, we
have that

ri(max) < 1 (3.13)
(k − 1)µ(A) < 1 (3.14)

k < 1 + 1
µ(A) . (3.15)
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This last inequality implies that the smallest value of k for which there might be some
set Ψk that is linearly dependent is k = 1 + 1

µ(A) . Thus,

spark(A) ≥ 1 + 1
µ(A) . (3.16)

Now we have a lower bound to spark(A) as a function of µ(A). At last, to establish
a condition for uniqueness, we need to relate the Mutual-Coherence to the `0-metric
of distinct possible solutions. To achieve this, combine the inequalities the inequalities
3.10 and 3.16 as

‖x̂1‖0 + ‖x̂2‖0 ≥ 1 + 1
µ(A) . (3.17)

This leads to the criterion stated as Theorem 3.2.

Theorem 3.2 Uniqueness by Mutual-Coherence

Let Ax̂ = b be an underdetermined linear system with a known solution x̂s. If

‖x̂s‖0 <
1
2

(
1 + 1

µ(A)

)
, (3.18)

then this is the sparsest solution possible.

In summary, the Mutual-Coherence gives an upper bound for the spark of a matrix,
which in turn concerns the total of the non-zero elements in two different solutions of the
underdetermined linear system. With this, we can define a threshold that guarantees
that the solution that has the `0 metric smaller is the sparsest and is unique. An
alternative way to illustrate how the Mutual-Coherence evaluates uniqueness is by
understanding the off-diagonal entries of ÃHÃ as disturbances in the estimation of the
support of the solution [38]. An analysis of the maximum values of these perturbations
so that the support positions can still be detected also leads to Equation 3.18. However,
it does not prove rigorously Theorem 3.2 [38].

Indeed, the Mutual-Coherence µ(A) measures how close the behavior of the linear
map described by A is to an orthonormal matrix [37]. In this sense, another sufficient
criterion concerning the matrix A that can guarantee that it is possible to reconstruct
signals from a reduced number of measurements by solving a `0 or `1 optimization
problem is the Restricted Isometry Property (RIP). Candès introduced this notion
in [41] and [42]. The Restricted Isometry Constant (Definition 3.3) is a necessary
concept concept to state the RIP criterion.
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Definition 3.3 (Restricted Isometry Constant - RIC) Let be the matrix A ∈
Km×N , its Restricted Isometry Constant of order k is the smallest positive num-
ber δk such that, for all k-sparse vector x̂,

(1− δk)‖x̂‖2
2 ≤ ‖Ax̂‖2

2 ≤ (1 + δk)‖x̂‖2
2. (3.19)

Like the Mutual-Coherence index, the Restricted Isometry Constant also reflects
the linear dependence of the column vectors of the acquisition matrix. Moreover, both
properties characterize the null-space of A by analyzing its singular values to ensure the
uniqueness of the sparsest solution. However, in contrast to the Mutual-Coherence that
considers pairs of columns (recall the Definition 3.2), the calculation of δk covers all
possible combinations of k columns [13]. While this indicates that RIP may be a more
robust condition, it also means that its calculation is more complex. The complexity
of computing the RIP is comparable to that of the `0 minimization [37, 43].

If δk < 1, the inequality that defines the RIC establishes a narrow range in which
the energy (`2 norm) of the vector will vary after the linear transformation [37]. A
property observed in orthogonal matrices is that the energy of a vector is preserved
through linear mapping. The matrices used to model the acquisition schemes in the
CS approach cannot be orthogonal; however, this property is convenient since it is
related to the bijectivity of the matrix [13]. The idea of using the RIC as a criterion
for uniqueness is based on providing a maximum value for the δ2k for which the “near-
orthonormal” behavior of the acquisition matrix guarantees that there is a unique k-
sparse vector recoverable through the CS approaches [13, 37]. It puts us in a position
to state the RIP criterion for uniqueness using the bound established by Candès.

Theorem 3.3 Uniqueness by Restricted Isometry Property

Let δ2k be the restricted isometry constant of the matrix A = MT−1. The `1

minimization problem (Equation 3.6 taking p = 1) has a unique k-sparse solution
if

δ2k <
√

2− 1. (3.20)

Furthermore, the solution for the `1 and `0 minimizations are equivalent.

Theorem 3.3 states the RIC bounds for the `1 minimization general case. Specific
studies can lead to different bounds for settings in which more information is available
about the acquisition matrix or the reconstruction algorithm. It emphasizes that RIP
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is also a worst-case criterion and, therefore, not a necessary condition for uniqueness.
A compilation of some RIP analyses for the most common classes of CS algorithms is
available at [13]. Note that Theorem 3.3 gives the RIC bounds to ensure the uniqueness
of the solution of the `1 minimization. Further studies such as [40, 44, 45] expanded
the RIP conditions for the `p with p ∈ (0, 1] scenarios since these minimization cost
functions potentially enlarge the group of matrices suitable for modeling CS acquisition
schemes [43].

In particular, [45] describes the bounds for RIC as a function of two variables:
p ∈ (0, 1], referring to the metric adopted in the minimizer; and t ∈ (1, 2], referring to
the order of the constant δtk. So, the problem in Equation 3.6 has a unique solution if
there is a combination of p and t such that

δtk <
η

2−p
t−1 − η

, (3.21)

where η is the unique positive solution of

p

2η
2
p + η − 2− p

2(t− 1) = 0. (3.22)

The RIP also allows the extension of the uniqueness discussion to stability when
some random noise ξ ∈ Kn corrupts the measurements [37]. In this scenario, it is
assumed that the noise energy ‖ξ‖2 = ε > 0 is finite, and so the `p minimization
problem (Equation 3.6) is rewritten as

min
x̂
‖x̂‖pp subject to ‖b− Ax̂‖2 ≤ ε. (3.23)

This new formulation addresses real-world applications better. But now, instead of
a unique solution, a region of solutions close to the acquired signal x̂ satisfies the
problem. With this, a small enough RIC ensures that the set of feasible solutions will
not include signals that are sparser than x̂ [37]. The bounds for RIC stated in Theorem
3.3 guarantee the stability of the noisy `1 minimization problem [42]. Theorems that
address the RIP conditions for `p minimization in [45] comprise noiseless and noisy
cases.

In conclusion, the RIP and Mutual-Coherence provide us with parameters to infer
from the structure of the acquisition matrix whether the degree of undersampling still
allows the reconstruction given a maximum expected sparsity for the signals of interest.
These conditions guarantee the exact recovery in noiseless scenarios; and stable recovery
in noisy settings. However, although these properties are essential theoretical tools,
they are sufficient conditions but not necessary. In other words, some matrices do not
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meet the RIP and Mutual-Coherence criteria that can still model acquisition systems
whose signals can be successfully recovered with CS algorithms. Theorems 3.2 and
3.3 (and alternative formulations) are widespread theoretical criteria for uniqueness.
Despite this, more recent studies have sought new paradigms to evaluate sparsity and
find other conditions that can lead to a broader class of acquisition matrices that ensure
the reconstruction with CS techniques [46].

3.4 An interpretation of CS from Linear Algebra

The reconstruction of a signal acquired by a scheme based on CS is done through
the solution of a given underdetermined linear system. We have presented the theory
by modeling the problem from the optimization perspective. The recovery algorithms
search for the most appropriate solution by minimizing a cost function that measures
sparsity. The Mutual-Coherence and the Restricted Isometry Property are theoretical
tools related to the linear dependency of the columns of the matrix A that can be used
to evaluate the existence and uniqueness of the sparsest solution [37, 38].

The Compressive Sensing problem arises because the acquisition process is modeled
by underdetermined linear systems that do not establish a bijection between the mea-
surements and the desired vector. Thus, the reconstruction can’t be done by simply
calculating the inverse of the acquisition matrix, which would be possible if the opera-
tor was a bijection. When an appropriate cost function is defined to solve the system
through minimization, the set of solutions is restricted to a unique solution, and an
“artificial bijection” establishes. Therefore, the acquisition matrix A will behave under
the CS reconstruction algorithm as a bijection between the measurements b and the
k-sparse signals x̂ with a constrained domain for k < 1

2(1+1/µ(A)) in the general case.
Note that each algorithm may have specific conditions for uniqueness and convergence.
Section 3.3 covered general criteria for `p minimization approaches without specifying
an algorithm.

Assuming that the signals of interest are redundant, the criteria we presented guar-
antee it is possible to define a vector subspace embedded in the domain of A for
which the solution to Ax̂ = b is unique. However, these criteria alone do not guarantee
whether the subspace of the sparsest solutions will contain the signals of interest. Hence
the importance of ensuring that the signals of interest have an optimal representation
on the sparse domain according to the criterion evaluated by the cost function. Figure
3.2 summarizes this Linear Algebra interpretation of Compressive Sensing.

Recall that A = MT−1 concerns the measurement scheme (M) and the sparsifying
transform (T ). While modeling the reconstruction problem, these two matrices must be
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Figure 3.2 – Venn diagram summarizing the Compressive Sensing acquisition and re-
construction processes.

appropriately designed to ensure that the signals of interest are those with the intended
sparsity in the transformed domain. Moreover, each cost function generates a different
one-to-one correspondence between the measurements and the recovered signal. Thus,
the chosen algorithm must establish the desired inverse relationship between these two
sets. From this point of view, the “artificial bijection” depends on both the acquisition
process and the reconstruction method. The Moore-Penrose generalized inverse that
gives the standard Least Squares solution,

A† = (AHA)−1AH , (3.24)

is a well-known example of constraining the linear system solutions to get a specific
“artificial bijection.” The `2 minimum solution is easily computed as x`2 = A†b. How-
ever, the CS problem deals with `p minimizations for some p ∈ (0, 1], with no known
closed solution.

3.5 Compressive Sensing algorithms

There are several algorithms available for signal reconstruction using CS. The choice of
which one to use for each possible application can take into account different criteria:
computational complexity, quality of reconstruction in terms of error, robustness to
noise, memory usage during execution, and other factors. Comparisons of the perfor-
mance of some algorithms can be found in [47]. In this section, as an example, we will
present two CS reconstruction techniques: the Orthogonal Matching Pursuit (OMP),
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which follows a greedy strategy, and the Iteratively Reweighted Least Squares (IRLS),
a non-convex minimization algorithm.

3.5.1 Orthogonal Matching Pursuit

The greedy strategy is to approximate the sparsest solution iteratively. The algorithm
begins with an estimate for the solution and for the support (Ω = ∅ if there is no
prior information). At each iteration, a new element is added to the support, and
the solution is updated, minimizing the `2 error. The algorithm continues until some
stopping condition is met [37].

Thus, broadly speaking, each iteration k comprises two main steps: selecting a new
position to be added to the support Ω and the computation of a new estimate x̂k.
The support update step determines which position will be added to the support set
by using the residual value of the last iteration rk−1. This residue is the part of the
measurements that are not well represented by the last estimate x̂k−1.

The goal is to find which of the columns ai of A is the vector that has the direction
closest to the direction of the last residue. Let us consider the case where ai is parallel
to rk−1. It means that there is a scalar zi ∈ K such that

aizi = rk−1 (3.25)
aHi aizi = aHi rk−1 (3.26)
‖ai‖2

2zi = aHi rk−1 (3.27)

zi = aHi rk−1

‖ai‖2
2
. (3.28)

So, the position to be added to the support in the iteration k is the one with the
smallest error

εk(i) = ‖aizi − rk−1‖2, (3.29)

where zi is given by Equation 3.28. The support Ωk is updated with

Ωk = Ωk−1 ∪ {i| arg min εk(i)}. (3.30)

The new estimate x̂k is given by the Least Squares solution

x̂k = (AHΩk
AΩk

)−1AHΩk
b, (3.31)
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where AΩk
is the submatrix of A obtained by selecting the columns corresponding to

the positions in Ωk. In the end, the residue rk of the measurements b is calculated for
the next iteration

rk = b− Ax̂k. (3.32)

This procedure repeats until the `2 energy of the residual is below some predetermined
tolerance tol. Algorithm 3.1 corresponds to the OMP.

Algorithm 3.1 Orthogonal Matching Pursuit.
Input: Acquisition matrixA; Measurements b; Residue tolerance tol; Initial estimation

for the support set Ω0
Output: Recovered signal (Approximated solution after k iterations)
1: Set the initial solution as a null vector x̂0 = 0
2: Set the initial value for the residual r0 = b
3: Set the initial value for the iterations counter k ← 0
4: while the residual energy is greater than the tolerance ‖rk‖2 > tol do
5: for each column ai (i /∈ Ωk) of A do
6: Calculate a scalar value zi using Equation 3.28
7: Calculate an error value εi using Equation 3.29
8: end for
9: Update the support set using Equation 3.30

10: Update the solution x̂k using Equation 3.31
11: Update the residual rk using Equation 3.32
12: Update the iterations counter k ← k + 1
13: end while

3.5.2 Iteratively Reweighted Least Squares

The Iteratively Reweighted Least Squares, in contrast to the greedy strategies, models
the sparse recovery from the perspective of an `p minimization problem. This method
obtains the desired signal from successive Least Squares computations, taking the pre-
vious iteration’s solution as weights to approximate the `p behavior [37, 48]. Thus, in
the CS problem modeling, instead of solving the Equation 3.6, the solution is given by
iteratively computing the weighed `2 norm,

min
N∑
i=1

wk[i]x̂[i] subject to Ax̂ = b, (3.33)

where wk ∈ KN is the weights vector at the k-th iteration [48]. Each entry wk[i]of the
wk is updated with the solution x̂k−1 of the last iteration,

wk = |x̂k−1|p−2 + µ, (3.34)
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where µ > 0 is a regularization term to improve the inversion of ill-conditioned matrices
that might be necessary when computing x̂k. As discussed in [48], the performance of
IRLS is improved if we adopt a relatively large value for µ in the first iterations and
gradually decrease its value throughout the iterations.

If we define Qk ∈ KN×N as a diagonal matrix with non-null entries w−1
k , the esti-

mate x̂k at the current iteration is given by the standard Least Squares solution for
Equation 3.33,

x̂k = QkA
H(AQkA

H)−1b. (3.35)

The regularization term µ is updated if the following convergence criterion is met,

‖xk − xk−1‖2

1 + ‖xk−1‖2
<

√
µ

100 , (3.36)

and the iterations are repeated until µ < µmin. This stopping condition was proposed
by [48]. The IRLS method is summarized in Algorithm 3.2

Algorithm 3.2 Iteratively Reweighted Least Squares.
Input: Acquisition matrix A; Measurements b; p; µmin; maximum of inner iterations

imax before reducing µ
Output: Recovered signal
1: Set the initial solution as a null vector x̂0 ← 0
2: Set the initial value for the weights w0 as a vector of ones
3: Set the counter for iterations k ← 0
4: while µ > µmin do
5: while Equation 3.36 is not satisfied or imax is not reached do
6: Update the weights wk using Equation 3.34
7: Calculate the diagonal matrix Qk

8: Update the solution x̂k using Equation 3.35
9: Update the iterations counter k ← k + 1

10: end while
11: Update the regularization parameter µ← µ/10
12: end while

3.6 Compressive Sensing for medical imaging reconstruction

The structure presented in this work for reconstructing medical images with CS al-
gorithms using direct matrix calculations is based on the method proposed for MR
images in [49]. This paper introduces an alternative for handling the sparsity repre-
sentation of two-dimensional signals called prefiltering. Later, [9] presented a Fourier
Slice Theorem-based approach that expanded the results to CT and PET images. The
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first results for CT using these techniques and direct methods were published in [50].

In outline, part of the strategy consists in treating the image as a vector for the
minimization process. To this end, the measurements available for reconstruction are
expected to be samples of the spectral coefficients of the desired image arranged as
a column vector. So, the minimization problem is formulated as in Equation 3.6. It
allows the use of the CS algorithms described in the previous section. The result will
be a column vector corresponding to stacked pixels. To obtain the image, it is a matter
of rearranging the vector in the form of a matrix.

3.6.1 Prefiltering

Prefiltering is a technique to represent medical images sparsely instead of defining
a sparsifying transform. This approach expects the measurements to be samples of
the image Fourier spectrum. Then it is possible to filter such measurements before
running the reconstruction CS algorithm to recover a partial image that is sparse in
the pixel domain. However, this filtered version of the image does not have the complete
information we would like to recover. The final image is composed by appropriately
selecting the coefficients of partial images recovered from different filtered versions
of the measurements [49, 9]. Figure 3.3 illustrates a generic reconstruction scheme
with prefiltering. On the left, the white pixels represent the positions where acquired
measurements are in the Fourier spectrum. The output is the recovered image.

First Filter

i-th Filter

Second

Filter

CS

CS

CS

Prefiltering 

Image

Composition

Reconstructed ImageSamples of the Fourier Spectrum

... ...

Figure 3.3 – General prefiltering scheme.

Each set of filters generates a different sparse representation. Thus, the choice of
which filters are used and how many of them affects the quality of the reconstructions.
The filtered versions of the image and the measurements are used in the composition
step to form the final image. This procedure, proposed in [49], is detailed below:

1. The algorithm starts by creating a null matrix in the frequency domain;

2. The entries in this matrix at positions with acquired samples are filled with the
values of the respective measurements;
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3. We select for each remaining entry the partial reconstruction related to the filter
that has the higher gain in the frequency of the specific position. Then the entry
is filled in with the spectral content of the selected sparsified image divided by
the correspondent filter coefficient;

4. This last matrix has the spectral information from the initial measurements and
the filtered images. Finally, the recovered image is obtained by computing the
Inverse Fourier Transform of this resulting matrix.

3.6.2 From sinogram projections to measurements in the frequency plane

The strategy to reconstruct medical images we have described relies upon measure-
ments as samples in the frequency domain. For CT images, whose measurements are
acquired as a sinogram, an intermediate step must be executed before the reconstruc-
tion to arrange the measurements as expected. That is, to reconstruct the image,
samples of its Fourier Transform should be estimated from the sinogram. The ap-
proach we used in our computational experiments is an adaption from work in [9] and
is summarized in Algorithm 3.3.

The Fourier Slice Theorem (2.1) sets the basis for this procedure: the 1D Fourier
Transform of each column of the sinogram gives the coefficients of the 2D Fourier
Transform of the image over radial lines at the corresponding angles. First, it is
necessary to choose the grid that will be used to represent the discrete positions in
the frequency plane. Then, we define which of these positions will be considered as
belonging to the sampled radial lines.

Algorithm 3.3 Calculation of measurements in frequency plane from sinogram.
Input: Sinogram; Positions in which there is a measurement
Output: Measurements in the frequency domain (Cartesian grid)
1: Compute the missing projections by 2D interpolation
2: for each position on the Cartesian grid that corresponds to a measurement do
3: Calculate the angular coordinate of the position (it indicates which projection

should be used to calculate the measurement)
4: Calculate the radial coordinate of the position (it indicates which frequency of

the Fourier Transform of the projection should be calculated)
5: Calculate the desired measurement as a single sample of Discrete-Time Fourier

Transform of the estimated projection
6: end for

The positions on the grid will not necessarily coincide with the angles of the acquired
projections.Therefore, it is necessary to interpolate the sinogram columns to estimate
the projections at the angles required by the chosen grid. Finally, the frequency domain
measurements are obtained from the Fourier Slice Theorem by computing the Fourier
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Transform of the projection at the specific frequency of each position [9]. The frequency
measurements were calculated on a Cartesian grid with equally spaced samples for the
simulations we carried out.

3.6.2.1 Defining the radial lines on the Cartesian grid

To define which positions of the Cartesian grid belong to the radial lines, we proceed
as follows. For each angle θp that has an acquired projection, we observe every grid
entry. Those positions with an angular coordinate θc close to θp are considered part of
the radial line.

A tolerance value is needed to determine more accurately what it is “to be close”.
In this way, positions that have an angular coordinate θc are considered as belonging
to the Cartesian radial lines if there is some θp such that the following inequality holds

|θp − θc| <
tol

rc + ε
, (3.37)

where tol is the tolerance, rc is the radial coordinate of the position in the Cartesian
grid, and ε is a small value added to rc to avoid division by 0. We have adopted
ε = 10−3 in all of our experiments. Figure 3.4 shows 16 equiangular radial lines on the
512× 512 Cartesian grid obtained for different values of tolerance.

(a) tol = 0.087 (5º) (b) tol = 0.349 (20º) (c) tol = 0.698 (40º)

Figure 3.4 – Radial lines approximation with 20 angles on Cartesian grid taking differ-
ent tolerances. The white pixels represents the position in the radial lines.

A larger tolerance means more measurements will be available for the minimization
algorithm. However, we cannot arbitrarily increase the value of the tolerance because
we will consider angular positions farther from the acquired projections. So, the in-
terpolation step adds more error to the measurements. The experiment in Section 5.6
seeks to elucidate that trade-off.
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3.6.2.2 The interpolation step

Once the Cartesian positions of the radial lines have been determined, the next step
is to interpolate the columns of the sinogram to obtain an estimate of the projections
for the angles corresponding to the angular coordinates of the Cartesian radial lines.
We have adopted the two-dimensional cubic spline as the method to compute the
interpolations. As an example, Figure 3.5 shows the sinogram of the 512× 512 Shepp-
Logan phantom acquired at 16 angles together with the interpolated projections for the
angles required by the Cartesian radial lines taking tol = 0.698. Green lines represent
the projections of the sinogram that were acquired at angles that exactly coincide with
the radial coordinates of the Cartesian radial lines (θp = θc). The other projections of
the initial sinogram are indicated in red.
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Figure 3.5 – Example of interpolated sinogram of the 512× 512 Shepp-Logan phantom
for a Cartesian grid taking measurements in 16 angles.

3.6.2.3 The Goertzel algorithm

The last step for computing the measurements in the frequency plane consists of calcu-
lating a sample of the DTFT of the projection (line 5 in Algorithm 3.3). The simplest
way to do this is by the definition of the DTFT. Thus, the desired measurement is
given by

Xf =
N−1∑
n=0

x[n]e−j2πnf , (3.38)

where x ∈ KN is the vector with the projection and Xf designates its spectral content
at the linear frequency f .

The Goertzel algorithm is a more efficient alternative to computing a single sample
of the DFT. This method is built on the idea of rewriting the DFT analysis equation
as a convolution. This way, a specific DFT coefficient can be calculated from a sample
of the result of an IIR filtering process [51, 52].

Recall that the coefficients of the DFT are equally-spaced samples of the DTFT so
that the linear frequencies that the DFT can access depend on the sampling frequency
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and the length of the discrete signal. The numerical experiments of this work imple-
mented the Generalized Goertzel algorithm proposed in [52]. Their approach expands
the standard Goertzel algorithm to calculate DTFT samples for non-integer multiples
of the fundamental frequency, i.e., to fractional positions between the samples of the
DFT.

3.6.3 Conjugate Gradient method

Images are usually large signals. This fact can be an obstacle to using CS algorithms
due to the memory requirements to store the matrices that model the problem. Em-
ploying indirect methods for matrix computations is a way to address this issue. For
this, it is necessary to have a method to calculate the linear map without directly
operating the matrix product. In the case of medical images, where the measurements
are modeled as samples in the frequency domain, we can use the FFT algorithm.

The Conjugate Gradient (CG) is a numerical method for solving linear systems
that can be used to enable the reconstruction of medical images by CS algorithms.
The method starts from an initial guess and iteratively approaches the solution by
observing the direction of the gradient of the function. The CG is a key technique
for engineering first proposed in [53]. Currently, several other formulations exist for
specific applications; in the context of CS, we can cite [54, 55].

In Chapter 4, we will propose a structure for medical image reconstruction that
exploits the properties of the measurements to decompose the problem into some
lower-dimensional reconstructions to allow the use of the direct method in the ma-
trix computations required by the CS algorithms.
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Chapter 4

The Proposed Direct
Reconstruction Structure for
Medical Imaging

Adopting p < 1 to reconstruct a signal by `p minimization leads to non-convex algo-
rithms. However, decreasing p has the potential to reduce the number of measurements
required for reconstruction. This assertion is tested in [17] through two numerical
examples. In a more simplistic scenario, the first one consists of reconstructing one-
dimensional signals. The second example reconstructs the 256 × 256 Shepp-Logan
phantom using measurements on radial lines in the frequency plane in a setting similar
to the reconstruction of medical images.

Reconstructions of better standards are expected to be obtained from the same set
of measurements by reducing p when solving the minimization problem. Generally, we
cannot simply choose a value of p arbitrarily close to zero. It is observed because of
stability issues of the reconstruction algorithms. In addition, below a specific value,
there is a slight improvement by reducing p further. In the conditions evaluated in [17],
their examples verified no significant improvements for p < 0.5. For image reconstruc-
tion using IRLS, there is not much margin to reduce p since this potentially implies an
ill-conditioned problem from the point of view of the indirect method. That leads to
long execution times and convergence problems.

Computed Tomography and Magnetic Resonance images are reconstructed from
measurements modeled as samples of their spectral content. For MR, the measure-
ments are directly acquired in the frequency domain; and for CT, the Fourier Slice the-
orem rules the conversion of the acquired projections into spectral data. The Fourier
Transform is the mathematical tool that establishes the relationship between the spa-
tial and frequency domains. The linearity is a convenient feature of this transform that
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we will explore in regard to devising a CS technique that uses the direct method in
reconstructing CT and MR images. On this basis, we expect to be in a position to
verify the effects of adopting lower values of p in the reconstruction of medical images.

4.1 General implementations of the DRS

In the last chapter, we presented an approach for reconstructing medical images using
CS algorithms. The idea is to recover the image f [m,n] ∈ RM×N by solving the `p
minimization problem

min
x̂
‖x̂‖pp subject to Ax̂ = b, (4.1)

where b ∈ Cm is the vector of measurements, x̂ ∈ RMN is the stacked pixels of the image
in a sparse representation, and A ∈ Cm×MN is the acquisition matrix that concerns the
measurement scheme and the sparsifying transform.

The alternative we propose to implement a CS algorithm using the direct method
for computing matrix products is based on finding a decomposition for Ax̂ = b. Instead
of reconstructing the image through a single minimization, we can solve several lower-
dimensional minimizations. The solution to each of these problems is the contribution
of one parcel to the composition of the image. That is, we are looking for a sparse
representation of the image pixels in the form

x̂ = CK−1
i=0 {x̂i}, (4.2)

where CK−1
i=0 {·} is an appropriate operator for composing the image from the partial

signals x̂0, x̂1, · · · , x̂K−1. Thus, each contribution x̂i can be related to a different parcel
bi of the measurements through the linear system

Aix̂i = bi (4.3)

where each bi ∈ Kmi contains part of the information of the measurements b, each
x̂i ∈ Kri is part of the sparse signal we want to recover, and Ai ∈ Km×rk establishes
the relationship between these partial signals and the related partial measurements.
Naturally, we have interest in the cases that ri ≤MN andmi < m ∀i ∈ {0, · · · , K−1}.

In summary, what we call Direct Reconstruction Structure (DRS) is this strategy of
composing the medical image from the solution of some minimization problems given
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by

min
x̂i

‖x̂i‖pp subject to Aix̂i = bi. (4.4)

Modeling the image formation in this manner reduces the size of the reconstructed
signals and can make possible the use of the direct method in Compressive Sensing al-
gorithms. Different models for the matrices Ai and the composition operator CK−1

i=0 {·}
are viable, leading to different formulations for the reconstruction scheme. Therefore
DRS is not a unique reconstruction method but a way of conceiving the use of CS algo-
rithms with the direct method for medical image reconstruction. Figure 4.1 illustrates
the general operation of DRS for an arbitrary model of matrices Ai.
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Figure 4.1 – Generic representation of the Direct Reconstruction Structure for an ar-
bitrary decomposition of the relationship between the measurements and the sparse
signal to be reconstructed.

4.2 Mathematical model for a DRS formulation based on the
reconstruction of rows

Because the measurements available for reconstructing CT and MR images are samples
in the frequency domain, we formulate a first implementation of DRS from a decom-
position that considers the contribution of each row of the Cartesian frequency plane
to form the image in the pixel domain. Let us start by recalling the 2D-IDFT

f [m,n] =
M−1∑
k=0

N−1∑
l=0

F [k, l]ej2π(
Km
M

+ ln
N ), (4.5)
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that computes an image f [m,n] ∈ RM×N from its spectral content F [k, l] ∈ CM×N .
We aim to find a family of M signals hi[m,n] ∈ CM×N in the pixel domain, such that
each represents the contributions of a single row of the spectrum F [k, l]. That is, the
DFT Hi[k, l] of hi[m,n] is defined as

Hi[k, l] =

Yi[l], if k = i.

0, otherwise.
, (4.6)

where Yi[l] ∈ CN is a one-dimensional signal that equals the i-th row of F [k, l],

Yi[l] = F [i, l]. (4.7)

Given that the signals hi[m,n] and H[k, l] are a Fourier Transform pair, we can
write hi[m,n] as a function of Yi[l] from the definition of the 2D-IDFT

hi[m,n] =
M−1∑
k=0

N−1∑
l=0

Hi[k, l]ej2π(
km
M

+ ln
N ). (4.8)

Only the i-th row of Hi[k, l] has non-null elements. We can expand this last Equation
to isolate the contribution of these nonzero elements. Thus, we have that

hi[m,n] =
i−1∑
k=0

N−1∑
l=0

Hi[k, l]ej2π(
km
M

+ ln
N ) +

N−1∑
l=0

Hi[i, l]ej2π(
ki
M

+ ln
N ) + (4.9)

M−1∑
k=i+1

N−1∑
l=0

Hi[k, l]ej2π(
im
M

+ ln
N )

hi[m,n] =
N−1∑
l=0

Hi[i, l]ej2π(
ki
M

+ ln
N ). (4.10)

By definition, the term Hi[i, l] in Equation 4.10 equals Yi[l]. So,

hi[m,n] =
N−1∑
l=0

Yi[l]ej2π(
ki
M

+ ln
N ) (4.11)

hi[m,n] =
N−1∑
l=0

Yi[l]ej2π(
im
M )ej2π(

ln
N ) (4.12)

hi[m,n] = ej2π(
im
M )

N−1∑
l=0

Yi[l]ej2π(
ln
N ). (4.13)

41



Note that the sum in Equation 4.13 is the 1D-IDFT of Yi[l]. Taking this into account,
we can write the signal hi[m,n] as

hi[m,n] = ej2π(
im
M )F−1

1D {Yi[l]} (4.14)
hi[m,n] = ej2π(

im
M )yi[n], (4.15)

where F−1
1D {·} denotes the 1D-IDFT operator and yi[n] ∈ CN is the Inverse Transform

of Yi[l]. Equation 4.15 computes the contribution of the components along a single
row of the spectrum in the synthesis of the image pixels. Thus, we have reached
a representation that enables a decomposition of the measurements as expected for
implementing DRS.

The signal hi[m,n] has a property that can be used to reduce even more the di-
mension of the minimization problems in the DRS. Notice in Equation 4.15 that each
row of hi[m,n] is calculated as the product of yi[n] by a complex exponential. All the
signal information is contained in just one of its rows since all of them are equal to the
yi[n] except for a phase compensation term. It is illustrated in Figure 4.2.
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Figure 4.2 – A signal that contains the pixel domain information related to a single row
in the frequency plane. This example was calculated from the 50th row of the spectrum
content of the 256× 256 Shepp-Logan phantom.

So far, we have seen how the spectral information Yi[l] of row i is represented in
the pixel domain as the signal hi[m,n]. However, to define a formulation of DRS, we
lack how to compose the image f [m,n] from the signals hi[m,n]. We can derive it by
observing that Equation 4.6 gives F [k, l] as the sum of all signals Hi[k, l]. Then, due to
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the linearity of 2D-DFT, we obtain the image f [m,n] by summing all signals hi[m,n],

f [m,n] =
M−1∑
i=0

hi[m,n]. (4.16)

We can now define one `p minimization problem for each row of F [k, l]. The mea-
surements bi are samples of Yi[l] according to the positions sampled in the medical
image acquisition scheme. Eventually, the signals yi[n] will not meet the sparsity con-
ditions. Therefore, in the general case, an appropriate sparsifying transform Ti ∈ KN×N

is used to obtain the sparse representation ŷi[n] = Tiyi[n]. In outline, the minimization
problems for this specific DRS implementation can be written as

min
ŷi

‖ŷi‖pp subject to WiT
−1
i ŷi[n] = bi, (4.17)

whereWi ∈ Cmi×N is formed by selecting the rows of the 1D-DFT matrix related to the
positions of the measurements bi in Yi[l]. These minimizations will find estimations for
the signals yi[m,n], from which we can calculate the signals hi[m,n] and later compose
the image f [m,n] using the Equations 4.15 and 4.16.

The strategy of composing the image from successive reconstructions concerning a
single row of measurements in the Cartesian frequency plane, can also be understood
from the separability property of 2D-DFT. In essence, solving the minimization problem
of Equation 4.17 is to estimate the spectral components of a row at the positions
where there are no measurements and then compute its 1D-IDFT. After conducting
this procedure for all rows, the image composition is a matter of calculating the 1D-
IDFT of the columns of the matrix whose rows are the solutions to the minimization
problems1. Figure 4.3 shows the implementation of this DRS formulation based on the
reconstructions from the contribution of each row of measurements.

In contrast to DRS, the approach that uses an indirect method estimates the missing
spectral components across the entire frequency plane at once2, and the inversion of the
2D-DFT does not occur at intermediate steps (first the rows and then the columns).
In other words, DRS reconstructs one-dimensional signals whose entries refer to the
spectral components of the 1D-DFT of the columns of the image to be reconstructed.
Meanwhile, the conventional approach reconstructs signals in a domain concerning the
pixel information of the image. Figure 4.4 illustrates this difference.

1Recall that the solution to the minimization problem is in a sparse domain. Thus, before the
composition step, the signal must be calculated on the proper basis (yi[n] = T −1

i ŷi[n]).
2If prefiltering is the strategy for sparsity representation, a minimization problem will be solved

for each filter.

43



Reconstructed medical imageMeasurements along some trajectory
in the Cartesian frequency plane

CS

CS

CS

CS

CS

1D-IDFT 
of the 

 columns...
...

...
...

DRS

Measurements separated by rows
minimization 

step Composition of the image

 

 

 

 

 

Figure 4.3 – Representation of the DRS formulation based on reconstructions of the
contribution of each row of measurements.
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Figure 4.4 – Comparison between the DRS and the conventional CS-based reconstruc-
tion approach (with an indirect method) in the design of the `p minimization problems.

44



4.3 Limitations of the decomposition by rows for modeling the
DRS

The DRS formulation we have just derived is of simple computational implementa-
tion since the measurements bi are straightforward to gather, and the matrices Ai are
easily obtained from the DFT matrix W . However, our development does not ensure
that a strategy for sparsely representing the image will also be efficient in sparsifying
the one-dimensional signals reconstructed in this particular DRS formulation. Thus,
sparse representation strategies for models that require an indirect method will not
necessarily be appropriate for a specific DRS model. Additionally, despite the math-
ematical convenience, this formulation does not guarantee that the solutions to the
lower-dimensional problems (Equation 4.17) will compose the minimum solution to
the image reconstruction problem (Equation 4.1).

Each signal reconstructed by DRS contains information regarding a single row of
coefficients in the frequency domain. Note that by solving a minimization problem for
each row, we are ignoring some information that lies in the correlation between the
rows in favor of exploiting the direct method in the reconstruction algorithm. It occurs
because the decomposition chosen in Equation 4.16 does not guarantee the decoupling
of the system variables. In this regard, an alternative is to look for composition strate-
gies that model the acquisition of measurements as block diagonal matrices. By doing
so, we can divide the acquisition matrix A into submatrices Ai independent of each
other in the sense that they have a complete parcel of information.

In summary, the row composition strategy we derived is non-optimal in guarantee-
ing that the sparsest solutions of the lower-dimensional problems will compose a signal
corresponding to the sparsest solution to the complete image reconstruction problem.
An alternative strategy that we expect to cope with this issue is to model the DRS
with matrices as

A = P


A0 0 · · · 0
0 A1 · · · 0
... ... . . . ...
0 0 · · · AK−1

Q, (4.18)

where P and Q are change of basis matrices and each matrix Ai defines a lower-
dimensional minimization problem.

Designing a DRS formulation of the form of Equation 4.18, as well as the task of
defining a sparse representation, is also a problem of finding a convenient basis. In
this matter, a formulation based on the Jordan canonical form is a reasonable first
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approach to be investigated, given the vast literature available on the topic. To obtain
a computational implementation, besides defining the submatrices Ai, it is necessary
to understand how to arrange the measurements bi. In this work, we intend to validate
DRS’s ability to use a direct method in CS algorithms for medical imaging. For this
reason, we chose to perform our numerical experiments using the formulation presented
in Section 4.2, owing to its simplicity and ease of implementation. We may pursue more
mature and mathematically sophisticated implementations in future work.

4.4 An implementation of DRS with prefiltering

In our first tests to evaluate the performance of the proposed DRS formulation in recon-
structing MR images, we employ prefiltering as the sparsity representation strategy,
as in the conventional approach using the indirect method. For the prefiltering, we
have to choose a set of filters to apply to the measurements in the frequency domain.
Then, an image is reconstructed from each set of filtered measurements. Each of these
intermediate images has part of the information of the image we want to recover. Since
the filters are chosen to ensure that the reconstructed images are sparse in the pixel
domain, it is not necessary to define a sparsifying transform. In Equation 4.17, we can
set T as the identity matrix.

Algorithm 4.1 Direct Reconstruction Structure based on the reconstruction of rows
with prefiltering.
Input: Measurements b in the Cartesian frequency plane; 2D filters gk for prefiltering.
Output: Recovered image f [m,n].
1: for each filter gk do
2: Create a zero matrix Mk of the same shape as the Cartesian frequency plane.
3: Set bk as the measurements b filtered with gk.
4: for each row i in the Cartesian frequency plane do
5: Set bk,i as the entries of bk that are in the i-th row of the frequency plane.
6: Compute ŷk,i by solving the minimization problem in Equation 4.17 (bk,i as

measurements and the identity matrix as the sparsifying transform).
7: Replace the i-th row of Mk with ŷk,i.
8: end for
9: Obtain the sparse image fk[m,n] by calculating the 1D-IDFT of each column

of the matrix Mk.
10: end for
11: Compose the image f [m,n] using the measurements b and all the partial images

fk[m,n] as described in Section 3.6.1

Algorithm 4.1 schematize the general idea of how this DRS implementation oper-
ates. Note that there are two stages of composition in this implementation of DRS with
prefiltering. The first is to compose the sparse images from the solutions to the min-
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imization problems. Moreover, the second, concerning prefiltering, seeks to compose
the desired image from the intermediate images computed in the previous stage.

4.4.1 Adapting the MR implementation of DRS to CT

The algorithm we have now derived can be used for CT and MRI image reconstruction.
As discussed in Chapter 2, the measurements taken by the CT scanner are modeled
as projections and therefore need to be rearranged as samples of the image spectrum
along radial lines. The reconstruction scheme for CT images (Figure 4.5) has a step
before DRS for conditioning the measurements. We have described this procedure in
Algorithm 3.3. In the case of MR, the samples are taken directly in the frequency plane
along different possible trajectories.

Sinogram to
measurements

on the frequency
plane

First Filter

i-th Filter

Second

Filter

Prefiltering 

Image

Composition

Reconstruction process with DRS and prefiltering Reconstructed medical image
Sinogram

Measurements on radial lines

... ...

DRS

DRS

DRS

Figure 4.5 – Reconstruction scheme using the DRS with prefiltering for CT images.
In the case of MR, the scheme remains the same, but the process starts with the
measurements already in the frequency plane, and they can be in other trajectories
than radial lines.

Next, we will evaluate this implementation of DRS in the reconstruction of CT and
MR images through computational experiments. In this way, we will be in a position
to compare the use of direct and indirect methods for reconstructing images with CS
algorithms. The examples we will conduct will also help to understand the sources of
error in DRS and point out improvements to these techniques.
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Chapter 5

Computational Experiments

In the current Chapter, we present numerical examples to assess the performance of the
DRS formulation we derived in Section 4.4. First, we evaluate the expected behavior
of the quality of reconstructions based on minimizing `p as we reduce the value of
p in reconstructions of one-dimensional artificial signals. Subsequently, we conduct
reconstructions of some test images under specific conditions and then compare the
results produced by other reconstruction algorithms. We also evaluate the impact that
converting the sinogram to frequency plane measurements has on the results in the
case of CT. These topics are covered in a total of four numerical experiments:

• Experiment 1: reconstructions of artificial 1D signals varying the value of p.

• Experiment 2: reconstructions of the Shepp-Logan phantom and actual medical
images from open databases.

• Experiment 3: reconstructions of artificial images with good sparsity features.

• Experiment 4: reconstructions of the Shepp-Logan phantom with measurements
on different Cartesian radial lines.

We compiled the results of the reconstructions into CSV files and made them avail-
able at this link. All simulations were conducted with Python scripts on an AMD
Ryzen 5 3500U CPU running the Zorin OS 16.1 operating system. The main libraries
we used are:

1. phantominator: generation of the Shepp-Logan phantom.

2. Numpy: FFT computation and other vector and matrix manipulations.

3. SciPy: generation of the sinograms, reconstructions with FBP, interpolations in
Algorithm 3.3, IIR filter in Goertzel algorithm, and statistical analyses.
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4. Pandas: organization of the files containing the simulation results.

5. Matplotlib: visualization of the results and generation of the charts presented
throughout this monograph.

We emphasize that we have not implemented the codes optimally in terms of the
consumption of computational resources. Our main concern was testing the theoretical
reconstruction model we had previously derived. Thus, in-depth discussions about
computational complexity are out of the scope of this thesis. Only short comments on
the execution time of some of the reconstructions will be given as means of providing
a brief notion about these issues.

5.1 Parameters for results evaluation

We have assessed the quality of the results by calculating two parameters: the Signal-
to-Noise Ratio (SNR) and the Structural Similarity Index Measure (SSIM). Both in-
dices are measures of how close the information obtained in the reconstruction is to
the original signal that was used to compute the measurements used in the recon-
struction process. Throughout the discussion of the results, we will also show some
reconstructed images to discuss how these quantitative metrics affect some “perceptual
characteristics” of the images.

SNR is a measure of the error distributed over all signal entries. In other words,
it is calculated as the ratio of the original signal power to the reconstruction error
power and is often expressed on the logarithmic decibel scale. Considering that x is
the reference signal and xs is the reconstructed signal1, the SNR is given by

SNRdB = 10 log10

(
‖x‖2

2
‖xs − x‖2

2

)
. (5.1)

We remark that SNR is a broader concept that applies to many other areas. Com-
monly, this measure is also called Signal-to-Error Ratio (SER) in contexts where the
reconstruction error is evaluated.

On the other hand, SSIM relies on observing contrast and luminance. These con-
cepts are used to compare the similarity between the structures that constitute the
original and the reconstructed image. It is derived in [56] and is calculated as

SSIM = (2µxµxs + C1)(2σxxs + C2)
(µ2

xµ
2
xs

+ C1)(σ2
x + σ2

xs
+ C2) , (5.2)

1In Experiment 1, x and xs refer to a one-dimensional synthetic signal and its reconstruction, while
in the other experiments, they represent a vector of stacked pixels of the image.
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where µx, µxs , σ2
x and σ2

xs
are the mean intensity, and the variance of the pixels in the

signals x and xs, respectively; σxxs is the covariance of x and xs, C1 and C2 are small
constants to stabilize the division. The SSIM is a value between 0 and 1; reconstructions
that achieve higher SSIM are those that preserve better the structures of the original
testing image.

SNR is a measure that can be computed for both one- and two-dimensional signals,
while SSIM is specific to images. For this reason, SNR is evaluated in all experiments,
while we only used SSIM in the experiments involving images. We remark that we also
computed the Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE),
but adding these indices into the discussions does not bring any new conclusions. Thus,
we have chosen to present in the text just the analyses with SNR and SSIM. The PSNR
and MSE values can be found in the CSV files containing the reconstructions’ results.

In addition, in experiment 1, we will conduct some statistical evaluations through
Kolmogorov-Smirnov [57], Anderson-Darling [58], and Wilcoxon [59] hypothesis tests.
Commonly, the result of a hypothesis test is the probability that the observed realiza-
tions conform to a null hypothesis H0. This statistic is called the p-value. To avoid
confusion with the p referring to the `p metrics, we will always refer to the result of a
statistical test by p-value.

5.2 Experiment 1 – investigating the effects of adopting smaller
values of p on the reconstruction quality with a 1D toy
example

An aspect that we look forward to with DRS to exploit in medical imaging is the
potential to use `p metrics with smaller values of p. It would allow satisfactory re-
constructions from less information. Likewise, it is expected to obtain better quality
results from the same set of measurements by reducing p. The numerical example
presented in this experiment aims to give us a sense of the behavior of the reconstruc-
tion quality when reducing the value of p and how the chosen algorithm can affect the
ability to obtain such results.

5.2.1 Simulation methodology

We generated 200 synthetic signals of size 256 for this experiment. Half of them have
16 non-null elements in a known domain. The second half of vectors has 128 non-null
entries in another domain. To make the signals sparse, we forced to zero the signal
coefficients in the transformed domain at drawn positions. Five acquisition schemes
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Table 5.1 – Parameters for IRLS the reconstruction of synthetic 1D signals.

Reconstruction
scenario

Method for matrix
computations imax

1 Direct 10
2 Direct 30
3 Indirect (CG) 10
4 Indirect (CG) 30

with 60, 70, 80, 90, or 100 acquired measurements were assumed in the case of the
sparser signals. While for the less sparse signals, we considered acquisition schemes
with 160, 170, 180, 190, or 200 measurements. We create all matrices and signals with
a pseudo-random Gaussian generator (zero mean and unit standard deviation). Alto-
gether, there are two-hundred signals, two sparsifying transforms, and ten measurement
matrices.

We used IRLS to compute the reconstructions. There are four different reconstruc-
tion scenarios, varying the maximum number of iterations in IRLS before reducing the
regularization factor2 and whether the matrix operations are performed with the direct
or an indirect method. Table 5.1 shows the settings in each of the scenarios. The other
IRLS parameters are the same for all reconstructions (µ0 = 1, µmin = 10−8)

Although it is not a criterion that evaluates the guarantee of sparse reconstruction,
the ratio of the number of measurements to the number of non-null coefficients in the
sparse vector is a parameter we can use to compare different reconstruction schemes.
The higher this ratio, the more information is available for estimating the coefficients
of the solution. In Figure 5.1, we can see that the schemes for signals with 16 entries
are more favorable than those defined for signals with 128 non-null entries. In this way,
the experiment covers situations in various sparsity conditions.

5.2.2 Results and discussion

The following discussions consist of statistical evaluations of the SNR behavior for the
reconstructions of the 200 synthetic signals under different reconstruction conditions,
varying the number of measurements, the `p metric (p ∈ {0.1, 0.2, · · · , 0.9, 1.0}),
and some of the IRLS parameters. In each of the scenarios, we performed 10,000
reconstructions. It covers all possible combinations of acquisition matrices and the
chosen values of p.

2imax in Algorithm 3.2.
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Figure 5.1 – Ratio of measurements per non-null entry to be estimated by IRLS for
each acquisition scheme in reconstructing the synthetic one-dimensional signals.

5.2.2.1 The effect of the number of iterations on the reconstruction quality

The histograms in Figure 5.2 show the distribution of SNR obtained by the reconstruc-
tions in each scenario. At first, it is an intuitive expectation that the reconstructions
that run more iterations will get closer to the ideal reconstruction and consequently
achieve higher SNR levels. Given this perspective, we expect, on average, better recon-
structions in scenarios 2 and 4 than in scenarios 1 and 3. Accordingly, when observing
the histograms, we notice a higher concentration of reconstructions at the highest SNR
levels in the scenarios that allowed more iterations. However, these seem not to be
such substantial discrepancies.

0 50 100 150 200 250

SNR [dB]

0

250

500

750

1000

1250

1500

1750

2000

N
u

m
b

er
of

re
co

n
st

ru
ct

io
n

s

Scenario 1

Scenario 2

(a) Scenarios 1 and 2 (direct method).

0 50 100 150 200 250

SNR [dB]

0

500

1000

1500

2000

2500

N
u

m
b

er
of

re
co

n
st

ru
ct

io
n

s

Scenario 3

Scenario 4

(b) Scenarios 3 and 4 (indirect method).

Figure 5.2 – Histograms of the SNR that reconstructions achieved for each scenario.
Each plot contains two histograms. Note that the distributions are similar, so there is
a significant overlap between them.

To evaluate if larger values of imax indeed yield better reconstructions, we can
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perform a two-sample Kolmogorov-Smirnov test. Here we will consider two random
variables, X10 concerning the SNR of the reconstructions when imax = 10 and X30 for
the SNR of the reconstructions obtained with imax = 30. Their cumulative distributions
are F10(x) and F30(x), respectively. Thus, the reconstructions of scenarios 1 and 3 are
realizations of X10, while scenarios 2 and 4 correspond to X30. We assume the following
hypotheses:

• Null hypothesis (H0): F10(x) ≤ F30(x) ∀x. Increasing the value of imax in IRLS
from 10 to 30 has no significant positive effects on the quality of reconstructions
in terms of SNR.

• Alternate hypothesis (H1): F10(x) > F30(x) for at least one x. Increasing the
value of imax in IRLS from 10 to 30 tends to improve the quality of the recon-
structions in terms of SNR.

The hypotheses are relative to the cumulative densities. That is, F10 ≤ F30 implies
that the realizations of X10 tend to be smaller than those of X30. The p-value for the
reconstructions we performed is 7.6 · 10−17, so H0 is rejected. Therefore, allowing more
iterations to be performed before reducing the regularization factor µ tends to improve
the quality of the reconstructions, although it is not as apparent when observing the
histogram.

Calculating the difference between the SNR of two reconstructions that are distin-
guished only by the number of iterations is another way to evaluate the contribution of
more iterations3. Figure 5.3 shows the distribution of these 20,000 differences that can
be calculated. Notably, most of the values are concentrated near zero. A negative dif-
ference was observed in 35% of them, meaning that by performing more iterations, the
quality of the reconstruction worsened. Another 26% registered a null difference, indi-
cating that the stopping criterion for mu reduction was satisfied before ten iterations.
Finally, increasing the maximum number of iterations improved the reconstruction in
39% of the cases. These percentages are in accordance with the conclusion of the
hypothesis test.

Besides the effects of the number of iterations on the SNR, a second aspect is worth
noting in the histograms of Figure 5.2. The reconstructions of scenarios 1 and 2, which
used the direct method, are more distributed between 180 and 275 dB. On the other
hand, scenarios 3 and 4, which used the indirect method, are mainly concentrated
between 145 and 165 dB. It is also reflected in the observed averages. While the mean
SNR of the reconstructions with the direct method is 145.4 dB, the indirect method
achieved a mean of 101.8 dB.

3i.e., both are reconstructions of the same signal that have adopted the same `p metric and the
same method for matrix calculations
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Figure 5.3 – Histogram of the difference between the SNR obtained by reconstructions
of the same signal with imax = 30 and imax = 10. Negative values indicate that recon-
struction quality was impaired when running more iterations in IRLS. Cases where the
convergence criterion was reached in up to 10 iterations have the same SNR regardless
of the value of imax, and the difference is zero.

Among all the evaluated reconstruction cases, in 70 of them, the IRLS did not
converge, always in situations using the indirect method. Of these reconstructions that
did not converge, 68 occurred for signals with 128 non-null inputs. The two cases in
the more sparse signal set occurred with p = 0.1. Figure 5.4 shows the distribution of
p values for which the reconstructions were not achieved in the case of the less sparse
signals. Most of these failed reconstructions occurred for p ≤ 0.2. It is evidence of the
CG stability issues that we expect for lower values of p and more significantly affect
the reconstruction of larger signals such as the medical images.
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Figure 5.4 – Distribution of the values of p at which the reconstructions of the signals
with 128 non-zero entries did not converge.
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5.2.2.2 The effect of using `p with smaller p in reconstruction quality

Up to this point, we have evaluated the effect of the parameter imax on the quality of
the reconstructions and verified that reconstructions using the direct method obtained
better SNR on average. However, the main goal of this experiment is to study the
behavior of the quality of the reconstructions as we adopt `p metrics with decreasing p.
Figure 5.5 presents again the distribution of the SNR achieved by the reconstructions
but splitting them into separate histograms according to the value of p used in each
reconstruction.
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Figure 5.5 – Histograms of the SNR achieved for each set of signals (16 and 128 non-
null entries) separated according to the value of p adopted in the reconstruction and
the method for matrix computations in IRLS.

The histograms in Figure 5.5a refer to the direct method reconstructions of the
sparsest signals. The cases that adopted lower values of p are concentrated in the
regions with the highest SNR. For p = 1 and p = 0.9, the reconstructions are prevalently
up to around 150 dB. The reconstructions with p = 0.8 and p = 0.7 are mostly
distributed in the region between 150 and 200 dB. In the case of p = 0.6 and p = 0.5,
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the reconstructions concentrate in the range from 200 to 250 dB. Finally, for p ≤ 0.4,
most reconstructions reach more than 250 dB.

In the case of reconstructions with the indirect method (Figure 5.5b), the reduction
of p is not as evident when looking at the histograms. The reconstructions for p ≥ 0.9
are mainly concentrated below 150 dB. The reconstructions with the other values of
p are all concentrated in a narrower range between 150 and 175 dB. This first visual
evaluation of the results in these new histograms indicates that the improvement in
the quality of the reconstructions by reducing p is more relevant when using the direct
method in IRLS. In the case of the indirect method, reducing p beyond 0.8 does not
seem to bring further quality gains.

The gains of reducing p are minimized in the reconstruction of signals with 128
non-zero inputs for both the direct and indirect methods. These signals are less sparse,
so there are more reconstructions with SNR below 50 dB. In the case of the direct
method, there is a second group of reconstructions concentrated above 150 dB, where
we see some quality gain by reducing p down to 0.7. For p < 0.6, there are no noticeable
quality gains in the histograms of Figure 5.5c. In the indirect case, we also notice two
more evident groups of reconstructions. The first is distributed between 20 and 90 dB
and the second between 140 and 160 dB. No visual distinction is noticeable between
the histograms for the different values of p.

This intuition about how the chosen `p metric affects the reconstruction quality can
be systematically evaluated with hypothesis tests. To this end, we will organize the
data into 40 groups, each with 1, 000 reconstructions. Figure 5.6 shows in boxplots
the distribution of them. All reconstructions in the same group have in common the
`p adopted, the number of non-null inputs in the sparse domain (16 or 128), and the
method used for matrix calculations (direct or indirect). We assume to be zero the
SNR of the reconstructions that did not converge. Consider that each of these groups
is a set of realizations of a random variable. None of them corresponds to a normal
distribution. Table 5.2 shows the results of the Anderson-Darling normality test.

Since the groups of reconstructions do not come from normal distributions, we
will use the Wilcoxon test to compare the location of the populations. This non-
parametric test evaluates the difference between paired samples coming from X and Y
distributions. Thus, we will be able to compare the random variables we have defined
in pairs according to the metric adopted in the reconstruction (`p and `p+0.1). Let us
take the following hypotheses:

• Null hypothesis (H0): The median of X − Y is negative. It indicates that the
samples in Y tend to be larger than the corresponding samples in X, which
suggests that the reconstruction conditions in Y yield higher quality results.
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(a) 16 non-null entries, direct method.
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(b) 16 non-null entries, indirect method.
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(c) 128 non-null entries, direct method.
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(d) 128 non-null entries, indirect method.

Figure 5.6 – Distribution of the reconstructions into 40 groups defined for the Wilcoxon
tests to verify in which conditions the reduction of p reflects in quality gain.
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• Alternate hypothesis (H1): The median of X − Y is positive. It indicates that
the samples in X tend to be larger than the corresponding samples in Y , which
suggests that the reconstruction conditions of X yield higher quality results.

Table 5.2 – The Anderson-Darling test statistic for each group of 1, 000 reconstructions.
If the returned statistic is larger than 1.088, then for the significance level of 1%, the
null hypothesis that the data come from a normal distribution can be rejected.

metric Further reconstruction settings
sparser signals
direct method

sparser signals
indirect method

less sparse signals
direct method

less sparse signals
indirect method

`0.1 19.1 171.3 161.3 52.9
`0.2 45.7 175.4 163.5 69.6
`0.3 87.2 189.6 167.9 83.7
`0.4 91.9 196.8 171.6 104.5
`0.5 95.8 188.9 177.5 118.4
`0.6 131.9 229.1 193.5 139.9
`0.7 164.8 225.2 202.7 164.2
`0.8 133.9 203.7 211.7 187.6
`0.9 154.2 189.1 215.9 203.0
`1 123.5 123.4 36.2 37.1

We assume that X refers to reconstructions that adopted the metric with the small-
est p between the two being compared in each test. Thus, rejecting H0 is a statistical
indication that that particular reduction of p improves the quality of the reconstruc-
tions. Table 5.3 shows the p-values returned for each Wilcoxon test we conducted.

Hypothesis tests support that adopting `p metrics with lower values of p improves
the quality of reconstructions when using the direct method under more favorable
sparsity conditions. In the case of signals with 16 non-null entries, there is statistical
evidence that IRLS set with the parameters we describe achieves better results if we
reduce p to 0.3. There are no significant gains when we reduce beyond 0.3. For the
same signals, reconstructions with the indirect method exhibit consistent gains if we
reduce p up to 0.8. In the case of signals with 128 non-null entries, there are consistent
quality gains when reducing p to 0.6 using the direct method and to 0.7 in the indirect
case.

This finding is tellingly illustrated in the boxplots of Figure 5.6. In the case of
the more sparse signals, this new representation shows more pronounced falls in the
medians of the distributions at the same values of p indicated by the hypothesis tests.
For the less sparse signals, the quality improvement is seen as the increased distance
between the first and third quartiles, indicating that the SNR values are distributed
over larger intervals for certain `p metrics.

At last, we can take into account the number of measurements available for recon-
struction when evaluating the quality gain by reducing p. The plots in Figures 5.7 and
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Table 5.3 – The Wilcoxon test p-values for each comparison between the metrics
adopted in reconstructions. The fields filled in blue are the p-values for which H0
is rejected for the usual confidence levels. In red are the cases in which we cannot re-
ject the H0. Moreover, in yellow are the cases that can or cannot be rejected depending
on the desired confidence level.

metrics being
compared

Further reconstruction settings
sparser signals
direct method

sparser signals
indirect method

less sparse signals
direct method

less sparse signals
indirect method

X = `0.9

Y = `1

1.7 · 10−165 1.7 · 10−165 9.2 · 10−90 4.6 · 10−85

X = `0.8

Y = `0.9

1.7 · 10−165 4.4 · 10−157 3.9 · 10−75 1.6 · 10−41

X = `0.7

Y = `0.8

1.7 · 10−165 0.999 3.1 · 10−76 1.1 · 10−5

X = `0.6

Y = `0.7

1.7 · 10−165 0.999 1.5 · 10−63 0.934

X = `0.5

Y = `0.6

1.7 · 10−165 0.004 0.044 0.999

X = `0.4

Y = `0.5

1.7 · 10−165 0.088 0.035 0.999

X = `0.3

Y = `0.4

1.06 · 10−148 0.184 0.967 0.999

X = `0.2

Y = `0.3

0.999 0.182 0.964 1.0

X = `0.1

Y = `0.2

0.205 1.3 · 10−4 0.999 1.0

5.8 show the SNRs’ mean values and standard deviation obtained in each scenario4.
The curves are arranged according to the number of measurements. Again, the quality
gain is readily perceived in the case of the sparser signals reconstructed with the direct
method. The average SNRs for the reconstructions with the indirect method is close to
160 dB for p ≤ 0.8. Furthermore, reconstructions computed from fewer measurements
tend to have lower SNR, mainly when reconstructed with the direct method, since the
mean SNR is very similar for all amounts of measurements when p ≤ 0.8 in the indirect
case.

The number of measurements most affects the SNR of signals with 128 non-null
entries. In Figure 5.8, reconstructions with a maximum of 180 measurements achieved
the lowest quality, averaging less than 50 dB. The direct method reconstructions

4as defined in Table 5.1
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(b) Scenario 2 (Direct, max of 30 iterations).
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(c) Scenario 3 (Indirect, max of 10 iterations).
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(d) Scenario 4 (Indirect, max of 30 iterations).

Figure 5.7 – Mean SNR value achieved in reconstructing the sparser synthetic signals
(16 non-null entries) for each scenario. The area filled around the curves indicates the
range of one standard deviation centered on the mean.

show the behavior we have described so far when we vary the `p metric. That is, the
reconstruction quality tends to be better for a smaller p, but there is a value beyond
which the gains are no longer significant. However, this occurs in the curves for 190
and 200 measurements. Reconstructions with fewer measurements keep a similar SNR
regardless of the metric `p.

The reconstructions with 190 and 200 measures using the indirect method are the
ones that present more dissonant behavior than we have described so far. In these
situations, the reconstruction quality improves by reducing p to some extent and im-
pairs if we keep reducing. While p is closer to 1, the poor conditioning of the matrices
did not affect the quality gain provided by the reduction of p. Nevertheless, when
approaching the value of p to zero, the instabilities inherent to the indirect method are
more significant and affect the quality of the reconstructions. It indicates that in less
favorable conditions for sparse reconstruction (lower sparsity and fewer measurements
available), adopting `p metrics closer to `0 does not necessarily reflect quality gain if
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the reconstruction algorithm relies on indirect methods.
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(c) Scenario 3 (Indirect, max of 10 iterations).
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Figure 5.8 – Mean SNR value achieved in reconstructing the less sparse synthetic signals
(128 non-null entries) for each scenario. The area filled around the curves indicates the
range of one standard deviation centered on the mean.

5.2.2.3 A remark on sparsity reconstruction conditions

Section 3.3 discussed the Mutual-Coherence index as a theoretical criterion for evaluat-
ing whether sparse reconstruction is guaranteed for a particular measurement acquisi-
tion matrix. Recall that this is a sufficient but not necessary condition for uniqueness.
This experiment computed measurements using ten different acquisition schemes. Fig-
ure 5.9 shows the index 1

2(1 + 1/µ(A)) for each adopted acquisition matrix in this
experiment. According to Theorem 3.2, this value gives the maximum sparsity for
which the sparsest solution is guaranteed to be unique.

Reconstruction schemes that acquire more information tend to guarantee recon-
struction for less sparse signals. However, the Mutual-Coherence of a matrix depends
on the angular distance between its columns, so the amount of measurements is not
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Figure 5.9 – Mutual-Coherence criteria for each acquisition matrix available for exper-
iment 1.

the only factor affecting the value of this index. In this experiment, the tested schemes
that acquire fewer measurements guarantee the reconstruction of signals with 2 or 3
non-null entries. Schemes with more measurements, on the other hand, ensure the
reconstruction of signals with up to 7, 9, or 10 non-null entries. These values are
considerably below the sparsity of the tested signals (16 and 120 non-null entries).

We sampled each of the 200 tested signals using five acquisition matrices. Thus,
we have calculated the reconstructions from 1, 000 different sets of measurements. For
each of them, we computed 40 reconstructions under different IRLS settings varying
the metric `p, imax, and whether it used a direct or indirect method. Figure 5.10 shows
the distribution of the best reconstructions in terms of SNR obtained for each set of
measurements. They are ordered according to the acquisition scheme that generated
them. Observe that, for the sparsest signals, the reconstructions are all above 225 dB.
It means that there was always some IRLS setting that was able to reconstruct each
of the signals with 16 non-null entries satisfactorily.

In the case of the less sparse signals, the reconstructions with 190 and 200 measure-
ments are concentrated between 210 and 250 dB. However, there are many outliers in
the 20 to 50 dB interval. The best reconstructions of the reconstruction schemes with
150, 160, and 170 measurements are mostly distributed between 15 and 60 dB. There
are some outliers between 200 and 250 dB in the case of the scheme with 170 mea-
surements. Despite being at a lower quality level than those observed for the sparser
signals, these could be reasonable levels for applications where SNR is not a critical
bottleneck.

This discussion illustrates that despite being a valuable tool in modeling Compres-
sive Sensing problems, Mutual-Coherence may be a criterion that excludes specific

62



60 70 80 90 100
Number of measurements

230

240

250

260

270

280
S

N
R

[d
B

]

(a) Signals with 16 non-null entries.

210

220

230

240

250

S
N

R
[d

B
]

160 170 180 190 200
Number of measurements

20

30

40

50

60

S
N

R
[d

B
]

(b) Signals with 128 non-null entries.

Figure 5.10 – Distribution of the best reconstruction for each set of measurements.

conditions in which sparse reconstruction would achieve satisfactory results. Thus,
evaluation through numerical examples is an appealing option for validating CS algo-
rithms. The Restricted Isometry Property, another uniqueness criterion discussed in
Section 3.3, is often computationally prohibitive. For instance, computing the Mutual
Coherence of each acquisition matrices for the sparsest signals in this example involves
the computation of

(
256
2

)
= 32, 640 inner products. The RIP, as stated in Theorem 3.3,

would require the eigenvalue decomposition of
(

256
32

)
≈ 5.8 · 1040 submatrices.
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5.3 Default image reconstruction settings

The following experiments we will discuss consist of reconstructing some testing images
under different conditions (such as the number of angles, adopted `p metric, and algo-
rithm). Many parameters can affect the quality of the results. Therefore, to keep the
reproducibility of the work, we will describe here the default values adopted in these
parameters. These settings may be changed for some specific simulations, but this
will be explicitly mentioned. The reconstructions will be computed using four different
algorithms:

1. Filtered Back-Projection (FBP) in reconstructions of the Shepp-Logan phantom
or actual CT images.

2. Iteratively Reweighted Least Squares using the Conjugate Gradient to compute
the matrix products indirectly as described in Section 3.6. This reconstruction
algorithm will also be referred to as IRLS-CG.

3. Iteratively Reweighted Least Squares in the Direct Reconstruction Structure as
described in Section 4.4. This reconstruction algorithm will also be referred to
as IRLS-DRS.

4. Measurements Inversion (MI). It consists of calculating the image using the 2D-
IFFT while assuming the values at positions in the frequency plane zeros where
there are no acquired measurements. The idea of using it is to get a sense of how
the spectral values computed by the other algorithms contribute to the quality
of their results.

The simulations cover acquisition schemes with the following number of equispaced
angles: {120, 130, · · · , 210, 220}. In cases where measurements are along radial lines,
the tolerance adopted when defining which Cartesian positions belong to the radial
lines5 is tol = 40π

180 ≈ 0.698. Figure 5.11 shows the percentage of the positions considered
as measurements for each number of acquired angles in regard to this tolerance value.

For CS algorithms based on `p minimization, the simulations tested (for each of the
different sets of measurements) the `p metrics for p ∈ {0.1, 0.2, · · · , 0.9, 1.0}. The
parameters adopted when using IRLS as the minimization algorithm is described in
Table 5.4. At last, when the prefiltering scheme is the sparsity representation strategy,
we used the 2D Haar high-pass kernels,

g1 =
1 −1

1 −1

 , g2 =
 1 1
−1 −1

 , and g3 =
 1 −1
−1 1

 . (5.3)

5Details of this procedure was given in Section 3.6.2.1
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Figure 5.11 – Percentage of positions in the 256 × 256 grid that is measurements for
each number of angles when defining the Cartesian radial lines with tol = 0.698.

We have used as testing images the Shepp-Logan phantom and actual images chosen
randomly from open databases. In the case of CT, breast images were selected from the
“COVID-19 image data collection” [23]. The images in this database are of different
shapes, so we resized the selected images by cropping them to a square shape whose
side is a power of 2 and then downsampling to 256×256. In the case of MR, anatomical
head images provided by the Biomedical Informatics Research Network (BIRN) were
chosen [27]. The actual testing images are shown in Figures 5.12 and 5.13, while Table
5.5 presents the identifiers we will use to refer to each selected image. We also carry
out some reconstructions using synthetic images created with good sparsity conditions
for DRS. The process of the reconstruction simulations occurs in three steps:

1. Simulation of the measurements: in the case of MR, the measurements of the
testing image are calculated via 2D-FFT, and only the positions along radial
lines trajectory are considered. For the case of CT, where the measurements are
projections that form a sinogram, we consider two scenarios. In the first one, the
measurements are estimated as the sinogram of the image. In the second scenario,
we assume the measurements to be samples on radial lines of the 2D-DFT, as is
done for MR. We will refer to the first scenario as “non-ideal” measurements and
the second case as “ideal” measurements.

2. Reconstruction process: consists of executing one of the four algorithms men-
tioned above to obtain a reconstructed image from the simulated measurements.

3. Analysis of the results: comprises comparisons between the testing image and its
reconstruction. The parameters for analysis were defined in section 5.1.
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Table 5.4 – Parameters used in reconstructions with IRLS.

Parameter Description Default value

C
om

m
on

fo
r

IR
LS

-C
G

an
d
IR

LS
-D

R
S µ0

The initial value for the
regularization factor 1

µmin
The minimum value for the
regularization factor 10−8

imax

Maximum of iterations
before reducing the
regularization factor.
The regularization factor is
reduced after imax iterations if
the threshold criterion is not met

50

IR
LS

-C
G tol (CG) Tolerance for the convergence of

the CG method 10−3

imax (CG) Maximum of inner iterations in
the CG method

2 times the
number of
measurements

Table 5.5 – Identifiers of the actual images used in the numerical experiments.

Filename in the original database Identifier in this text
1-s20-S0929664620300449-gr3_lrg-c CT1
3ED3C0E1-4FE0-4238-8112-DDFF9E20B471 CT2
191F3B3A-2879-4EF3-BE56-EE0D2B5AAEE3 CT3
1-s20-S0929664620300449-gr3_lrg-d CT4
000308150214 (slices 5) MR1
000324094767 (slice 10) MR2
000308150214 (slices 10) MR3
000324094767 (slice 5) MR4
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(b) CT2.

0 50 100 150 200 250
Discrete horizontal index

0

50

100

150

200

250

D
is

cr
et

e
ve

rt
ic

al
in

d
ex

0.0

0.2

0.4

0.6

0.8

(c) CT3.
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Figure 5.12 – The actual CT images used in our experiments from COVID-19 image
data collection.
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(a) MR1.
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(b) MR2.
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(c) MR3.
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(d) MR4.

Figure 5.13 – The actual MR images used in our experiments from Biomedical Infor-
matics Research Network.

68



5.4 Experiment 2 – image reconstruction using prefiltering as
the sparsity representation strategy

In the previous experiment, we used a generic one-dimensional example to analyze the
behavior of the reconstruction quality when changing the metric `p in the minimization
problem specification. The results support that higher quality reconstructions can be
achieved for smaller values of p when using the direct method. These gains are not
as significant when using the indirect method. In the context of medical imaging, it
points out that the IRLS-DRS could require fewer measurements to obtain the same
quality as the IRLS-CG. We will now investigate whether this quality gain by reducing
p also occurs in the case of reconstructing medical images.

5.4.1 Simulation methodology

In this experiment, we will compute reconstructions of the Shepp-Logan phantom and
the actual images CT1, CT2, MR1, and MR2. All of size 256× 256. Here we will con-
sider the algorithms, `p metrics, and measurements as stated in Section 5.3. Prefiltering
will be used for sparse representation in the CS-based algorithms. Thus, for IRLS-CG,
the image is computed from 3 two-dimensional signals reconstructed by minimizing `p.
In the case of IRLS-CG, each of these two-dimensional signals is computed from 256
one-dimensional signals, totaling 768 CS reconstructions to form a medical image.

Table 5.6 shows the sparsity in the pixel domain of the filtered versions of each
of the testing images. Among them, CT images have the worst sparse representation
for the chosen filters. The Shepp-Logan phantom has the best sparse representation
through prefiltering. The following discussions will primarily consider the results of the
Shepp-Logan phantom reconstructions. We will also use some of the reconstructions
from the CT2 and MR2 images. Additional plots of the reconstructions of all the
testing images that are not covered here are in Appendix A.

Table 5.6 – Percentage of entries whose magnitude is under 10−6 for each filtered version
of the testing images reconstructed by the CS algorithms

Testing Image Sparsity obtained with filter
g1 g2 g3

Shepp-Logan 96.65% 97.28% 97.80%
CT1 1.43% 1.51% 2.17%
CT2 7.40% 7.59% 11.09%
MR1 26.80% 26.67% 27.05%
MR2 28.23% 28.18% 28.44%
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5.4.2 Results and discussion

As we outlined in Section 5.3, we have computed the reconstructions from two types
of measurements. The first one, called “non-ideal,” concerns measurements estimated
by computing the Radon Transform of the test image and then computing the spectral
coefficients in the frequency plane using Algorithm 3.3. We have used these measure-
ments for reconstructing the Shepp-Logan phantom and CT images. The second type
of measurement, called “ideal,” refers to measurements that were estimated as samples
of the DFT of the image at Cartesian radial lines. These measurements were used for
the reconstruction of all testing images. All reconstructions computed with FBP used
the projections given by the Radon Transform as measurements.

Initially, we intended to calculate the reconstructions for p between 0.1 and 1 for
all algorithms with all measurement sets. However, we found that IRLS-CG ran very
slowly for p < 0.7. For example, the reconstruction of the Shepp-Logan phantom with
120 non-ideal measurements and using p = 0.6 took almost 7 hours and did not con-
verge. Likewise, we quit running the algorithm after 26 hours when we tried p = 0.1.
The reconstructions of the Shepp-Logan phantom with ideal measurements are an ex-
ception. For all other testing images, it was not feasible to compute the reconstructions
with IRLS-CG adopting p < 0.7 with either ideal or non-ideal measurements. For this
reason, these values are missing in the plots.

(a) Non-ideal measurements. (b) Ideal measurements

Figure 5.14 – SNR achieved by the reconstructions of the Shepp-Logan phantom. Each
surface corresponds to a reconstructions algorithm.

The SNR observed for every reconstruction of the Shepp-Logan phantom computed
by the CS-based algorithms can be seen in the plots in Figure 5.14. The reconstruc-
tions with IRLS-CG achieved better SNR levels in all conditions evaluated. In the
reconstructions from non-ideal measurements, the difference between the results of the
two algorithms is smaller. We can also see that the reconstructions with ideal measure-
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ments have a higher quality level than those calculated with non-ideal measurements.
This difference reflects the error introduced in the measurements by the interpolations
when estimating them from the sinogram.

(a) Non-ideal measurements. (b) Ideal measurements

Figure 5.15 – SSIM achieved by the reconstructions of the Shepp-Logan phantom. Each
surface corresponds to a reconstructions algorithm

Similar conclusions are found when evaluating the quality of the reconstructions
using SSIM (Figure 5.15).The quality differences between IRLS-DRS and IRLS-CG
reconstructions in terms of SSIM seem to be smaller than those observed in terms of
SNR. Moreover, SSIM of IRLS-CG reconstructions using ideal measurements varies
little with the value of p and the amount of measurement available.

The behavior of the quality of the reconstructions when reducing the value of p
is not so evident in the 3D charts we have shown so far. In the plot of Figure 5.16,
we can see the SNR of the reconstructions that used measurements on 220 Cartesian
radial lines. Figure 5.17 shows the SSIM of these reconstructions. In the case of the
non-ideal measurements, both indices indicate a loss of quality for all reconstructions
when reducing p. The reconstructions with IRLS-DRS using ideal measurements did
not show significant variations in SNR, reaching values just below 30 dB. Regarding
SSIM, a small quality gain is noticed if we reduce p to 0.8. On the other hand, IRLS-
CG shows SNR variations in the 80 to 90 dB range without a tendency to decrease or
increase with p, while SSIM is always very close to 1 regardless of p.

The plots in Figures 5.18 and 5.19 show the quality indices for the reconstructions
as a function of the number of angles at which measurements were acquired. In this
way, we can compare the performance of the four algorithms used in this experiment.
Regarding SNR, IRLS-CG provides the best quality reconstructions, and all algorithms
outperform FBP in all tested conditions. IRLS-CG is always close to 17 dB for the
non-ideal measurements and 80 dB for the ideal measurements, and in both situations,
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Figure 5.16 – SNR achieved by the reconstructions computed using measurements
along 220 radial lines of the Shepp-Logan phantom. Each curve corresponds to a
reconstruction algorithm.
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Figure 5.17 – SSIM achieved by the reconstructions computed using measurements
along 220 radial lines of the Shepp-Logan phantom. Each curve corresponds to a
reconstruction algorithm.

it does not have significant gains as we increase the number of angles. The MI shows us
the reconstruction quality achieved when computing the image using only the measure-
ments acquired on Cartesian radial lines. IRLS-DRS outperforms MI for both types of
measurements. This difference indicates the contribution of the coefficients estimated
by the CS algorithm to the reconstruction quality.

The SSIM of IRLS-CG reconstructions using ideal measurements is close to 1 re-
gardless of the number of angles. For these measurements, IRLS-DRS outperforms
MI, and we notice an improvement in quality as the number of angles increases, with
the SSIM going from 0.640 to 0.950. In the case of non-ideal measurements, FBP
has a lower SSIM compared to the other algorithms until the reconstruction with 170
angles, when it outperforms IRLS-DRS and MI. After 200 angles, FBP also surpasses
IRLS-CG in terms of SSIM.

In some cases, the reconstruction of one algorithm has higher SNR and lower SSIM
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Figure 5.18 – SNR achieved by the reconstructions of the Shepp-Logan phantom. Each
curve corresponds to a reconstruction algorithm. The CS-based approaches used p = 1
in the minimization step.
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Figure 5.19 – SSIM achieved by the reconstructions of the Shepp-Logan phantom. Each
curve corresponds to a reconstruction algorithm. The CS-based approaches used p = 1
in the minimization step.

than a second algorithm’s reconstruction under the same conditions. Figure 5.20 shows
the reconstruction computed by each algorithm from non-ideal measurements along 200
angles (p = 1, in the CS minimizations). These images help us understand how each of
the indices translates into visual features. Among these reconstructions, the ones that
achieved the lowest SNR (FBP and MI) are those with the most blurred appearance.
All images present a textured aspect in areas of the phantom that are originally uni-
form. The reconstruction of IRLS-CG exhibits this pattern less noticeably. The FBP
reconstruction has the biggest artifacts in the region outside the ellipses. Compared to
FBP, the IRLS-DRS reconstruction has a more grayish appearance, which is in accor-
dance with their SSIM values. We emphasize that all images are very similar to each
other so that these differences are noticed when looking at them more comprehensively.

A second worthwhile visual comparison to discuss is the reconstructions from the
smallest amount of measurements we tested, with 120 angles. Under these conditions,
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the difference between the images is more noticeable, as can be seen in Figure 5.21.
The textured aspect most affects the reconstructions with FBP and MI. Two features
distinguish the reconstructions with IRLS-CG and IRLS-DRS more clearly: (i) a more
grayish appearance in the reconstruction that used the direct method, as well as (ii) the
more pronounced presence of vertical artifacts, which is likely to be a consequence of
the CS minimizations being calculated for each row of measurements.
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(a) FBP.
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(b) MI.
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(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure 5.20 – Reconstructions of the Shepp-Logan phantom from non-ideal measure-
ments taken in 200 angles.

Figure 5.22 shows the reconstructions of the actual MR1 image calculated with ideal
measurements taken at 170 angles. They all have an SSIM above 0.9. Thus, the main
structures of the image are well preserved in all reconstructions, so looking carelessly
at them will not reveal much difference between them. However, this slight difference
in SSIM is enough to realize that the reconstructions with FBP and MI are more
grayish and present less contrast than reconstructions with IRLS-DRS and IRLS-CG.
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(a) FBP.
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(b) MI.
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(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure 5.21 – Reconstructions of the Shepp-Logan phantom from non-ideal measure-
ments taken in 120 angles.

In addition, reconstruction artifacts in the form of radial lines are more pronounced in
the FBP reconstruction, which showed lower quality scores.

Staying with the examples in Figure 5.22, the SNR indicates higher quality differ-
ences between the reconstructions. It again is easier to see the image degradation in
the case of the FBP reconstruction. In general, reconstructions with lower SNR show
a more granulated texture in more uniform regions of the original image. Appendix B
provides images of further examples of reconstructions.

In the following, we will comment on further aspects that can be noticed when
analyzing the reconstructions of the actual images. More plots regarding these re-
constructions can be found in Appendix A. Prefiltering generates signals with 95%
null values for the Shepp-Logan phantom. In the case of CT2, the achieved sparsity
is considerably lower, with no more than 12% of null entries. Thus, the actual im-
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(a) Testing image.

(b) FBP.
SNR = 23.3 dB
SSIM = 0.946

(c) MI.
SNR = 31.6 dB
SSIM = 0.985

(d) IRLS-DRS (p = 1).
SNR = 33.4 dB
SSIM = 0.992

(e) IRLS-CG (p = 1).
SNR = 40.7 dB
SSIM = 0.998

Figure 5.22 – Reconstructions of the MR1 actual image from measurements taken in
170 angles. We chose to omit the axes in the representation of the images so that they
would all fit on a single page.

76



age reconstructions are expected to have lower-quality levels than the phantom when
computed by CS approaches.

Figure 5.23 presents the SNR of the CT2 image reconstructions (p = 1 in IRLS-
CG and IRLS-DRS). A fact that draws attention is that the reconstructions by MI
outperform those by IRLS-DRS, while IRLS-CG continues to obtain the best SNRs in
all scenarios. It suggests that the lower sparsity prefiltering generated for CT2 affected
IRLS-DRS more significantly than IRLS-CG. For the ideal measurements, the curves
of CT2 reconstructions are indeed in a region of lower SNR than those of the Shepp-
Logan phantom, especially IRLS-CG. Intriguingly, the SNRs observed for CT2 are
higher than those of the phantom for the non-ideal measurements, exceeding 27 dB in
the best cases. In addition, the increasing behavior of SNR with the number of angles
is observed in all algorithms for ideal and non-ideal measurements.
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Figure 5.23 – SNR achieved by the reconstructions of the CT2 actual image. Each
curve corresponds to a reconstruction algorithm. The CS-based approaches used p = 1
in the minimization step.

In Figure 5.24, SSIM increases when more information is available for the CT2
reconstructions, which is consistent with the discussions based on SNR. Unlike what
happened with the phantom, the SSIMs of the FBP reconstructions are always below
all the other algorithms. One hypothesis to explain this behavior is that the phan-
tom has larger uniform regions, so the reconstruction artifacts in these areas affect
the perception of the image elements more than in the case of CT2, which has more
information in high-frequency coefficients. The question remains as to why the FBP is
less affected than the CS-based algorithms by this issue.

The SNR and SSIM values for MR2 actual image are shown in Figure 5.25. These re-
constructions were computed from ideal measurements, and the CS algorithms adopted
p = 1. The testing MR images achieved with prefiltering a sparsity level higher than
that of the CT images but lower than that of the Shepp-Logan phantom (about 28%
null inputs). Accordingly, the IRLS-DRS outperformed the MI in all conditions we
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Figure 5.24 – SSIM achieved by the reconstructions of the CT2 actual image. Each
curve corresponds to a reconstruction algorithm. The CS-based approaches used p = 1
in the minimization step.

tested for the reconstructions of MR2. The SNR and SSIM levels are better than those
observed for the CT2 image, but we also see a quality improvement in the results for all
algorithms as the number of angles increases. It indicates that the margin for reducing
the number of measurements is as wide as the sparsity of the signals computed in the
minimization step.
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Figure 5.25 – Quality indices achieved by the reconstructions of the MR2 actual image.
Each curve corresponds to a reconstruction algorithm. The CS-based approaches used
p = 1 in the minimization step.

Lastly, Figures 5.26 and 5.27 show the times for running some of the reconstructions
of the Shepp-Logan phantom and CT2. The plots comprise reconstructions with 120
measurements computed by IRLS-DRS and IRLS-CG. In general, the execution time
tends to decrease by reducing p when using the direct method. For the indirect method,
the algorithm takes longer for smaller values of p. Thus, IRLS-CG is faster than
IRLS-DRS for higher p, but for lower values, this reverses. We reiterate that we have
presented these runtime values to get a rough idea of the computational effort required
by the algorithms we tested. More extensive evaluations with more testing signals and
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repetitions should be conducted to understand this topic satisfactorily.
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(a) For all reconstructions.
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Figure 5.26 – Runtime for each CS-based algorithm when reconstructing the Shepp-
Logan phantom using ideal and non-ideal measurements along 120 angles.

The results of this experiment show that IRLS-CG outperforms IRLS-DRS in terms
of SNR and SSIM in all tested conditions. We believe this is because prefiltering is a
more efficient sparsity representation for the signals computed by `p minimization in the
case of IRLS-CG. Thus, the IRLS-DRS reconstructions achieve lower quality because
the one-dimensional signals do not have a sparsity representation through prefiltering.
Experiment 3 will investigate this hypothesis.
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Figure 5.27 – Runtime for each CS-based algorithm when reconstructing the CT2 actual
image using ideal and non-ideal measurements along 120 angles.

The reconstructions with non-ideal measurements achieved lower quality than those
with ideal measurements. This difference illustrates the impact that the conversion
procedure from sinogram projections to measurements in the frequency plane has on
the quality of CT images. Experiment 4 will address this conversion error introduced
into the reconstructions.
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5.5 Experiment 3 – reconstructions of synthetic images sparse
on 1D domain

As discussed in the previous section, the results obtained using IRLS-CG are better
than those obtained by IRLS-DRS, considering that prefiltering is used in both situa-
tions. A starting hypothesis to explain these results is that prefiltering is a more effi-
cient strategy to represent the sparsity of signals that IRLS-CG reconstructs than the
one-dimensional signals reconstructed by IRLS-DRS. In this manner, the conditions
for sparse reconstruction would be more favorable in the indirect case, and another
strategy for representing sparsity more efficiently should be adopted in the DRS.

As an example, consider the formation of the Shepp-Logan phantom using pre-
filtering. One step consists of reconstructing a version of the image filtered with the
diagonal Haar high-pass kernel. When using the indirect method, the signal obtained
in the minimization stage is the filtered image itself. In contrast, the DRS computes
a CS minimization for each row in the frequency plane. Figure 5.28 shows examples
of signals reconstructed in each of the approaches. In this example with the Shepp-
Logan phantom, the signal reconstructed with the indirect method has 97.8% of its
values below 10−6 (in magnitude), whereas, for the signal reconstructed with the di-
rect method, only 31.25% of its inputs have a magnitude less than 10−6. It illustrates
that prefiltering is more efficient in sparsifying the signals reconstructed by the indirect
method approach.
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(a) Shepp-Logan phantom sparsified by the diago-
nal Haar kernel (inderect method).
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(b) The 1D signal related to the 50th row of the
same sparsified phantom (direct method).

Figure 5.28 – Examples of signals reconstructed by CS minimization using direct and
indirect methods to form the Shepp-Logan phantom using prefiltering as the sparsity
representation strategy.

To verify the performance of IRLS-DRS in a scenario with an efficient sparse rep-
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resentation for the one-dimensional signals, we have elaborated synthetic images with
such one-dimensional signals sparse in any known domain. Thus, we can evaluate the
hypothesis we raised to explain the better performance of IRLS with the direct method.
Furthermore, if the sparsity representation indeed impairs the performance of DRS, its
results can be improved by developing more efficient strategies than prefiltering for
one-dimensional signals.

5.5.1 Synthetic image generation

The synthetic images are created from actual medical images. The procedure to gen-
erate them consists in calculating the one-dimensional signals and setting part of their
components to zero in a transformed domain. The definition of the sparsifying trans-
form and the selection of which positions are part of the support are done using random
distribution generators. The image is recomposed again from the one-dimensional spar-
sified signals.

The resulting signal in the frequency plane loses the spectral symmetry expected
for real-valued images because of zeroing out some elements of the one-dimensional
signals in the transformed domain. So, the inversion of this spectrum into the pixel
domain results in a complex signal. As we verified experimentally, the real part of this
resulting signal preserves the intended sparsity features. Thus, the real part of this
complex signal can be adopted as the desired synthetic image. Finally, the image is
normalized, so all of its pixels will be between 0 and 1. Algorithm 5.1 shows how we
implemented this synthetic image generator.

5.5.2 Simulation methodology

We selected 4 CT images and 4 MR images for generating the synthetic images. All
of them are of shape 256 × 256. Four synthetic images were created for each of the
actual medical images, each with a different support size (60%, 70%, 80% and 90% of
null values), totaling 32 phantoms for performing the reconstruction tests. Observe
that images created by zeroing 90% of the entries in the transformed domain are the
sparsest, while those that zeroed 60% of the elements are the less sparse. We compute
reconstructions with IRLS-DRS from ideal measurements under the conditions reported
in Section 5.3. Figure 5.29 shows an example of an image used in this simulation and
the actual image used to generate it.
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Algorithm 5.1 Generation of a synthetic image that is sparse in a one-dimensional
transformed domain.
Input: Actual medical image I, percentage p of values to be zeroed
Output: The synthetic image S and the sparsifying transform matrix T
1: Set M as the matrix whose columns are the DFT of the corresponding column in

the actual medical image I
2: Create a zero matrix H of the same shape as I
3: Set the sparsifying transform by choosing a matrix T using a random generator

(Gaussian distribution with zero mean and unit variance)
4: for each row yi of the matrix M do
5: Calculates the row in the sparse domain (ŷi = Tyi)
6: Replace some elements of ŷi with zeros in random positions according to the

percentage p
7: Replace the i-th row of H with T−1ŷi
8: end for
9: Set G as the matrix whose columns are real part of the IDFT of the corresponding

column in the matrix H
10: The desired synthetic image S is the matrix G with its values linearly remapped

to the [0, 1] interval
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(a) Original CT image
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(b) Synthetic image

Figure 5.29 – Example of a synthetic image created by replacing with zeros 60% of the
entries of the one-dimensional signals of an actual 256× 256 CT image.

5.5.3 Results and discussion

The procedure that generates the synthetic images mischaracterizes them in the pixel
domain so that the resulting image has a vertical noise aspect and no visual meaning
(no shape is easily identified). So, the discussion of the results we will present here
concerns only the analysis of the SNR achieved by the reconstructions. The results
of every reconstruction of a synthetic image are displayed in Figures 5.30 and 5.31.
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Reconstructions of the same testing image form a single surface on the charts. In
general, these curves behave as expected: the quality of the reconstruction increases
as the amount of measurements increases or as the value of p reduces.

(a) CT1. (b) CT2.

(c) CT3. (d) CT4.

Figure 5.30 – SNR achieved by the reconstructions of the synthetic images generated
from actual CT images. Each surface corresponds to every reconstruction of the same
synthetic image (the colors identify the percentage of null elements in the sparse one-
dimensional signals). Each chart gathers data from artificial images generated from
the same actual image (indicated in the caption beneath).

Another behavior that becomes apparent in the graphics is the tendency for better
results for the images whose one-dimensional signals are more sparse in the transformed
domain. There are some exceptions; in Figure 5.31d, for example, it is noticeable that
the reconstructions of the image with 70% of null values in the sparse domain are worse
than the image with 60% of null values. Nevertheless, the quality of the reconstructions
of the synthetically sparse images surpasses what was observed in the reconstructions
of the actual medical images using prefiltering. This simulation’s worst results (highest
p and fewer angles) have an SNR close to 40 dB, while the best (lowest p and more
angles) exceed 120 dB.
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(a) MR1. (b) MR2.

(c) MR3. (d) MR4.

Figure 5.31 – SNR achieved by the reconstructions of the synthetic images generated
from actual MR images. Each surface corresponds to every reconstruction of the same
synthetic image (the colors identify the percentage of null elements in the sparse one-
dimensional signals). Each chart gathers data from artificial images generated from
the same actual image (indicated in the caption beneath).

Figure 5.32 shows in detail the SNR of reconstructions of the synthetic images
generated from the actual image CT1 for some specific number of angles. It means
these plots are a few planes from Figure 5.30a for fixed values of angles. In this way,
it is possible to notice more easily that as we increase the number of angles, the value
of p becomes more significant in the quality of the reconstructions, especially in those
images composed of sparser signals (80% and 90% of null values in the sparse domain).

In the reconstructions computed from measurements taken in 120 angles, the `p met-
ric adopted does not make a significant difference for images with lower sparsity (60%,
70%, and 80%) since there is a minimal variation in SNR as the value of p changes.
In the case where the measurements are along 150 angles, the image with a sparsity
level at 80% has better reconstructions for p ≤ 0.8, although there is no significant
variation from that point. In the graphs for 180 and 210 angles, this increasing behav-
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ior of the SNR by reducing p becomes more pronounced for all images. It indicates
that in better-conditioned situations (greater sparsity and quantity of measurements),
adopting metrics with lower p leads to higher quality reconstructions.

The experiment of reconstructing the synthetic images with the sparsity character-
istics as expected by DRS showed that this is a possible strategy for medical imaging.
However, this requires developing a sparsity representation strategy appropriate for the
one-dimensional signals. Furthermore, the results we presented indicate that the more
efficient the sparse representation is, the more advantage can be obtained in reducing
the value of p. In this sense, we can mention a better reconstruction quality and re-
duced execution time (IRLS tends to converge in fewer iterations to lower values of p,
and the matrix products no longer rely on indirect methods).
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Figure 5.32 – SNR achieved by some reconstructions of the synthetic images generated
from the actual image CT1. Each curve corresponds to every reconstruction of the same
synthetic image (the colors identify the percentage of null elements in the sparse one-
dimensional signals). Each chart gathers data from reconstructions from measurements
taken in the same amount of angles (indicated in the caption beneath).
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5.6 Experiment 4 – the effect of the interpolations on the com-
putation of the measurements on the Cartesian grid from a
sinogram

As discussed in Section 3.6.2, in the case where non-ideal measurements are used for
CT image reconstruction, we estimate part of the spectral content of the images from
interpolations of the sinogram columns and the FST. The CS algorithms use these
interpolated measurements to compute the spectral components at the remaining posi-
tions in the frequency plane. Thus, the Cartesian positions whose angular coordinates
are closest to the angles at which the projections were acquired have their spectral
content estimated from the sinogram. Equation 3.37 shows the criterion we adopted,
which relies on a tolerance variable (tol). The higher tol is, the more positions are
calculated directly from the sinogram. In principle, the larger the tolerance, the more
information is available to the CS algorithm, and better results are obtained. However,
the interpolation step adds error to the measurements so that after particular tolerance
values, the reconstruction quality is impaired.

5.6.1 Simulation methodology

In this experiment, we conducted new reconstructions of the 256 × 256 Shepp-Logan
phantom. We took into account different values for the tolerance when choosing which
positions in the Cartesian frequency plane is a measurement estimated from interpola-
tion of the sinogram columns. Moreover, we have also observed the error behavior as
the tolerance varies when estimating the measurements from the sinogram. Only FBP
was not evaluated in this simulation since it does not require the measurements to be
in the frequency plane. All reconstructions used measurements taken at 120 angles
with tol ∈ {0.1, 0.2, · · · , 1.2, 1.3}. Figure 5.33 shows how many of the positions in the
Cartesian grid are measurements for each value of tol.

5.6.2 Results and discussion

Before moving on to the reconstructions, we examine how much error is added to the
measurements due to the interpolations. To that end, we compute the measurements
for each tolerance value according to Algorithm 3.3. Then, we calculate the difference
between these estimated measurements and the 2D-DFT coefficients at the positions of
the Cartesian radial lines. The normalized mean error in Figure 5.34 is the mean of the
magnitude of these differences divided by the mean of the magnitude of the phantom
spectrum at the Cartesian radial lines. As expected, larger tolerances lead to higher
interpolation error, which is seen in the impairment of the reconstructions quality.
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Figure 5.33 – Percentage of positions in the 256× 256 grid that are measurements for
each tolerance value when defining the Cartesian radial lines with 120 angles.
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Figure 5.34 – Error in the estimation of measurements of the 256 × 256 Shepp-Logan
phantom in the Cartesian radial lines from 120 projections for different values of tol-
erance.

The algorithm that interpolates projections to estimate spectral information at
locations on the Cartesian grid can also be understood as a method for reconstructing
CT images per se. We can simply calculate all the coefficients of the frequency plane
instead of computing only for some positions on radial lines, as is done to estimate
the measurements used in the CS algorithms. In the case where all the spectrum
is estimated from the sinogram by Algorithm 3.3, the reconstructed image achieves
SNR = 15.4 dB and SSIM = 0.762.

When combining the measurement interpolation algorithm with a CS algorithm,
we are assuming that the `p minimization is a more accurate method for estimating
the spectral information at the Cartesian positions more distant from the angles at
which the projections were taken. Indeed, this is what we see in the SNR and SSIM
plots in Figure 5.35 for the IRLS-CG reconstructions. For tol = 0.1, the IRLS-CG
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obtained better-quality images than the reconstruction with only the interpolations of
the projections (SNR = 16.4 dB and SSIM = 0.807). The quality of the reconstruction
increases until tol = 0.3; from then on, the quality decreases until stabilizing at the
indices achieved by reconstructing just interpolating the projections.
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Figure 5.35 – Quality of reconstructions of the Shepp-Logan phantom in terms of SNR
and SSIM when using Cartesian radial lines defined with different tolerance values.

In the case of MI and IRLS-DRS, the reconstructions start from inferior quality and
approximate the standard of the reconstruction only by interpolation. Therefore, both
algorithms are less effective in estimating the spectral components at positions outside
the Cartesian radial lines. That is consistent with the discussion in Section 5.4, given
that IRLS-DRS does not have an efficient sparse representation with prefiltering and
is, therefore, more affected by interpolation errors. In this regard, MI completes with
zeros the positions where there are no measurements. Finally, it is of particular interest
to note that IRLS-DRS has its best reconstruction in terms of SNR for tol = 1.1, then
the SNR gradually decays for larger values of tolerance until it reaches 15.4 dB.
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5.7 Compilation of the discussion of all experiments

Our investigations began from the assumption that reducing the value of p in the
definition of the `p minimization problem allows CS algorithms to recover signals from
less information. This premise, if proven true, would support the development of
faster and safer medical imaging techniques. The first experiment verifies this intuition
that smaller p values lead to higher quality reconstructions. The sparsity conditions
must be favorable for this to be well exploited. Moreover, we found more margin for
reduction of p when using the direct method. We also point out that the settings of
the reconstruction algorithm affect the ability to improve the quality of the results by
reducing p.

The second experiment compares the direct and indirect methods for reconstructing
medical images. Prefeiltering was the strategy for sparse representation adopted in this
experiment. The approach using the indirect method outperformed the direct method
due to sparsity conditions that were more favorable for the signals reconstructed by the
formulation using the indirect method. The third experiment shows that IRLS-DRS
obtains better reconstructions under more favorable sparsity conditions. So, the gains
seen in the first experiment can be achieved in medical imaging as long as there is an
efficient sparsity strategy for the one-dimensional signals reconstructed in the proposed
DRS model.

In the case of CT, the measurements correspond to samples of the Radon Transform
of the image. Since the IRLS-CG and IRLS-DRS expect the measurements to be in the
Fourier domain, we used Algorithm 3.3 to arrange the measurements in the Cartesian
frequency plane. In this process, we must define which discrete positions belong to the
radial lines, which we did through a tolerance criterion. The fourth experiment gave a
better sense of how the errors of this conversion impair reconstruction quality.

We remind that CS reconstructions have always used IRLS as the minimizer. As
verified in the experiments, this iterative algorithm depends on some parameters, and
the results are pretty sensitive to them. Changing such parameters may favor or impair
the reconstruction in some contexts. Therefore, adjusting the CS-solver is important
for satisfactory results in the applications of interest. Furthermore, the chosen images
allowed an initial analysis of the IRLS-DRS performance, but they contemplated a
limited number of structures found in medical images (breast and head). Future eval-
uations of the algorithm should cover a more significant number of testing images to
consider structures observed in different regions of the human body.
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Chapter 6

Conclusion

The design of medical imaging algorithms that rely on small quantities of measurements
is a pertinent contribution to the subject. As a result, measurement acquisition schemes
become faster and safer. In recent years Compressive Sensing has been used as a
strategy for the development of new image reconstruction techniques. However, indirect
methods are often used due to the size of the signals that represent images. In this
thesis, we are concerned with investigating the gains of reconstructing medical images
using direct methods in the CS algorithm.

The main result of the present research is the proposed Direct Reconstruction Struc-
ture for CT and MR images. It is a flexible approach for designing CS-based medical
imaging algorithms that use a direct method in the minimization step. We claim such
flexibility in the sense that distinct algorithms can be devised by changing the image
composition strategies or the CS-solver. We have modeled a specific formulation of
DRS, where the reconstructed signals concern the contributions of a single row of mea-
surements to the formation of the image in the pixel domain. We have implemented
this DRS derivation using IRLS as the CS-solver, which we denoted as IRLS-DRS.
The discussions we have presented are based on comparisons of objective parameters
for reconstructions from IRLS-DRS, IRLS-CG, FBP, and MI.

At the first moment, we have adopted prefiltering as a strategy for sparsity repre-
sentation. We found that this approach is more efficient for generating sparse signals
in the case of IRLS-CG. Hence, the results using the CG method were more satis-
factory than those of IRLS-DRS in reconstructing the Shepp-Logan phantom and the
actual images. We then produced synthetic images whose one-dimensional signals that
form them are sparse in a known domain. With this, we were able to evaluate the
performance of IRLS-DRS in the situation where there is a more appropriate sparse
representation. For these new images, the results indicate that better reconstruction
qualities can be achieved for the same set of measurements by reducing p. This behav-

90



ior is best observed especially in situations where the sparse reconstruction conditions
are the more favorable, i.e., higher sparsity level and more measurements available.

In the case of MR, there is more freedom regarding the arrangement of the mea-
surements since different trajectories are obtained by changing the sequence of pulses
emitted during the acquisition. For CT, the measurements are projections that, to be
used by IRLS-DRS and IRLS-CG, must be converted into samples in the frequency
domain arranged in radial lines. This process employs the Fourier Slice Theorem and
interpolations, which introduces error to the measurements. One of the computational
experiments showed the impact of this step on the quality of the reconstructed im-
ages as a function of the tolerance parameter used to define which Cartesian positions
would have their coefficients calculated directly from the projections. Since prefiltering
is more appropriate for signals reconstructed with IRLS-CG, we verified only in this
algorithm the expected behavior. The reconstruction quality increases up to a given
tolerance value, after which the effect of the error becomes more significant than the
information provided by more interpolated measurements.

6.1 Summary of contributions

In view of the research objectives outlined in Section 1.3, we now list the scientific
contributions achieved in the course of developing the DRS:

1. Investigation of the effect of reducing the value of p in a general case of `p min-
imization for CS signal reconstruction. We have shown with a numerical exper-
iment that better results are obtained as the value of p is reduced in situations
where there are good conditions for sparse reconstruction. Our analyzes also
found that the algorithm settings may interfere with the ability to achieve such
behavior.

2. The development of mathematical formalism for general DRS implementations
and for a specific formulation based on the reconstruction of one-dimensional
signals that contain the spectral information in a single row of measurements in
the frequency plane.

3. Through that particular implementation of DRS, we were able to evaluate the
use of a direct method for medical imaging using IRLS as the `p minimization
algorithm. We made comparisons with reconstructions using CG. In the examples
with the Shepp-Logan phantom and with actual images, IRLS-CG outperformed
IRLS-DRS because prefiltering proved to be a more efficient sparse representation
strategy for the signals reconstructed in the model using the indirect method.
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When reconstructing artificial images with good sparsity characteristics for DRS,
the reconstructions with the direct method achieved a higher quality level in terms
of SNR.

4. We have proposed modifications to the algorithm for calculating measurements in
the frequency plane from the sinogram, used in CT reconstruction by IRLS-CG
and IRLS-DRS. We made two changes in the original formulation (introduced
in [9]), which accelerated the runtime: (i) two-dimensional interpolation and
(ii) the use of the Goertzel algorithm to calculate specific samples of the DTFT.

5. Evaluation of the effect of the tolerance variable when defining which positions
of the Cartesian grid will be estimated from projection interpolations and which
are computed using the CS algorithm.

6.2 Published works

Part of the results presented in this thesis was previously published in a paper in the
proceedings of the 10th International Conference on Bioinformatics and Biomedical
Science (ICBBS 2021). On this occasion, we presented results of Shepp-Logan phantom
reconstructions with IRLS-DRS focusing on CT images. The manuscript is at:

• FREITAS, G. L. A.; MENDES, C. J. M. R.; GONCALVES, V. P. The Formation
of Computed Tomography Images from Compressed Sampled One-dimensional
Reconstructions. 10th International Conference on Bioinformatics and Biomed-
ical Science. Proceedings. In: ICBBS 2021: 2021 10TH INTERNATIONAL
CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL SCIENCE. Xi-
amen China: ACM, 29 out. 2021.

6.3 Future works

Equations 4.2 and 4.4 describe a set of CS-based medical imaging algorithms that use
the direct method. In this work, we have made an initial assessment regarding one
possible formulation, which still requires developing an adequate sparse representation
strategy. Thus, based on the results we have presented, the following issues can be
addressed in future research:

1. Other criteria for defining which discrete positions belong to the Cartesian radial
lines can be tested in the algorithm for calculating frequency measurements from
the sinogram. For example, instead of using the criterion based on the threshold
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of a tolerance value, choose the closest Cartesian positions to each sample in the
projections.

2. Definition of an efficient sparsifying transform for the one-dimensional signals re-
constructed by IRLS-DRS. Some techniques, such as AI and dictionary learning,
can be exploited in this context. Then, it is significant to conduct statistical
analysis and qualitative evaluations in order to have more robust evidence for
possible clinical application.

3. The analyses developed in this work did not consider how noisy measurements
can interfere with reconstructed images. Thus, it is worth analyzing the DRS
behavior in the presence of noise.

4. IRLS-DRS reconstructs each one-dimensional signal without taking into account
the reconstructions of the other rows. Using prior information from one row in
the reconstruction of another can speed up convergence and increase the quality
of the results.

5. Other formulations of the DRS can be studied and tested. In Section 4.3, we
pointed out that we expect to get more efficient DRS formulations if we can model
the acquisition of measurements as a block diagonal matrix. However, future
research can assess many other composition strategies. As further examples, we
mention: (i) the reconstruction from the sinogram, exploring DFT formulations
in polar coordinates, (ii) reconstruction of the image by blocks, and (iii) selection
of certain positions of the spectrum so that the signals for image composition are
in the real domain (note that in the IRLS-DRS case the reconstructed signals
are complex). In MR, it is still possible to elaborate trajectories that may favor
some specific DRS formulation.

6.4 Final Considerations

Medical imaging comprises very mature technologies. Thus, changes in the conception
of such techniques are, and should be, cautious. In the bigger picture, new CS-based
approaches may lead to safer and faster acquisition schemes, implying reduced manu-
facturing and operating costs for medical imaging equipment. Naturally, more efforts
must be expended to enable such technological advances. Here, we have taken a few
steps forward on a potential research direction: adopting direct methods in CS algo-
rithms with a view to reducing the measurement requirement.

In summary, we have developed a CS algorithm that uses a direct method for
medical image reconstruction. It gives more freedom to adopt smaller values of p
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in the definition of the minimization problem, enabling a reduction in the number
of measurements needed to obtain a good quality image. IRLS-DRS is indeed an
algorithm that can reconstruct medical images from a smaller amount of measurements.
However, developing an efficient sparsity representation strategy is still necessary to
describe the typical structures of actual tomographic images, enabling the use in a real
scenario.
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Appendix A

Additional plots

The following figures refer to the Experiment 2 in Section 5.4.

A.1 CT1 actual image

(a) Non-ideal measurements. (b) Ideal measurements

Figure A.1 – SNR achieved by the reconstructions of the CT1 actual image. Each
surface corresponds to a reconstructions algorithm.
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(a) Non-ideal measurements. (b) Ideal measurements

Figure A.2 – SSIM achieved by the reconstructions of the CT1 actual image. Each
surface corresponds to a reconstructions algorithm
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Figure A.3 – SNR achieved by the reconstructions computed using measurements along
220 radial lines of the CT1 actual image. Each curve corresponds to a reconstruction
algorithm.
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Figure A.4 – SSIM achieved by the reconstructions computed using measurements along
220 radial lines of the CT1 actual image. Each curve corresponds to a reconstruction
algorithm.
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Figure A.5 – SNR achieved by the reconstructions of the CT1 actual image. Each
curve corresponds to a reconstruction algorithm. The CS-based approaches used p = 1
in the minimization step.
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Figure A.6 – SSIM achieved by the reconstructions of the CT1 actual image. Each
curve corresponds to a reconstruction algorithm. The CS-based approaches used p = 1
in the minimization step.
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A.2 CT2 actual image

(a) Non-ideal measurements. (b) Ideal measurements

Figure A.7 – SNR achieved by the reconstructions of the CT2 actual image. Each
surface corresponds to a reconstructions algorithm.

(a) Non-ideal measurements. (b) Ideal measurements

Figure A.8 – SSIM achieved by the reconstructions of the CT2 actual image. Each
surface corresponds to a reconstructions algorithm
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Figure A.9 – SNR achieved by the reconstructions computed using measurements along
220 radial lines of the CT2 actual image. Each curve corresponds to a reconstruction
algorithm.
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Figure A.10 – SSIM achieved by the reconstructions computed using measurements
along 220 radial lines of the CT2 actual image. Each curve corresponds to a recon-
struction algorithm.

A.3 MR1 actual image
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(a) SNR. (b) SSIM.

Figure A.11 – Quality indices achieved by the reconstructions of the MR1 actual image.
Each surface corresponds to a reconstructions algorithm.
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Figure A.12 – Quality indices achieved by the reconstructions computed using mea-
surements along 220 radial lines of the MR1 actual image. Each surface corresponds
to a reconstructions algorithm. Each curve corresponds to a reconstruction algorithm.
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Figure A.13 – Quality indices achieved by the reconstructions of the MR1 actual image.
Each curve corresponds to a reconstruction algorithm. The CS-based approaches used
p = 1 in the minimization step.
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A.4 MR2 actual image

(a) SNR. (b) SSIM.

Figure A.14 – Quality indices achieved by the reconstructions of the MR2 actual image.
Each surface corresponds to a reconstructions algorithm.
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Figure A.15 – Quality indices achieved by the reconstructions computed using mea-
surements along 220 radial lines of the MR2 actual image. Each curve corresponds to
a reconstruction algorithm.
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Appendix B

Additional reconstructed images

The following figures refer to the Experiment 2 in Section 5.4.

B.1 CT1 actual image
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(a) FBP.
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(b) MI.
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(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure B.1 – Reconstructions of the CT1 actual image from non-ideal measurements
taken in 200 angles.
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(a) FBP.
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(b) MI.
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(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure B.2 – Reconstructions of the CT1 actual image from non-ideal measurements
taken in 120 angles.
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B.2 CT2 actual image
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(a) FBP.
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(b) MI.
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(c) IRLS-DRS (p = 1).

0 50 100 150 200 250
Discrete horizontal index

0

50

100

150

200

250

D
is

cr
et

e
ve

rt
ic

al
in

d
ex

0.2

0.4

0.6

0.8

1.0

(d) IRLS-CG (p = 1).

Figure B.3 – Reconstructions of the CT2 actual image from non-ideal measurements
taken in 200 angles.
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(a) FBP.

0 50 100 150 200 250
Discrete horizontal index

0

50

100

150

200

250

D
is

cr
et

e
ve

rt
ic

al
in

d
ex

0.0

0.2

0.4

0.6

0.8

1.0

(b) MI.

0 50 100 150 200 250
Discrete horizontal index

0

50

100

150

200

250

D
is

cr
et

e
ve

rt
ic

al
in

d
ex

0.2

0.4

0.6

0.8

1.0

(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure B.4 – Reconstructions of the CT2 actual image from non-ideal measurements
taken in 120 angles.

B.3 MR1 actual image
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(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure B.5 – Reconstructions of the MR1 actual image measurements taken in 200
angles.
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(c) IRLS-DRS (p = 1).
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Figure B.6 – Reconstructions of the MR1 actual image measurements taken in 120
angles.
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B.4 MR2 actual image
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(a) FBP.
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(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure B.7 – Reconstructions of the MR2 actual image measurements taken in 200
angles.
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(c) IRLS-DRS (p = 1).
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(d) IRLS-CG (p = 1).

Figure B.8 – Reconstructions of the MR2 actual image measurements taken in 120
angles.
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