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Resumo

Os capitulos 1 e 2 deste trabalho tratam respectivamente do estudo de existéncia de solucao
dos seguintes sistemas:

1

—Au+a(z)u = 2—*Ku(u,v) in RY,
1

—Av+b(z)v = 2—*Kv(u,v) in RY,

w,v>0 in RY,
u,v € DY2(RY), N >3,

—Ky(u,v) in R_i]\_[,

—Av+b(z)v = 2—*Kv(u,v) in RY,

u>0,0>0in RY,
ou  Ov N
L % = 5 =0 on 6R+,

com as hipéteses sobre as funcoes K € C? (Rﬁ_, R) e a, b a serem apresentadas.

No capitulo 3 é estudada a multiplicidade de solugao usando resultados de categoria de
Ljusternick-Schnirelmann no seguinte sistema

—Au = ffj‘fge Ju|*2ulv|®  in Q,
—Av = 7&3%56 lu|®|v]P2v  in Q,
u=v=0 on 012,

onde 2 é dominio regular limitado em RV, N >3, ac, B > 1, ac =a—€¢/2, fe = —¢/2 e
a4+ g =2*.



Abstract

In the chapters 1 and 2 we study respectively the existence of solutions of the following
systems:

1

—Au+a(z)u = 2—*Ku(u,v) in RY,
1

—Av+b(z)v = 2—*Kv(u,v) in RY,

w,v>0 in RY,
u,v € DY2(RY), N >3,

and

1
— Ky (u,v) in R_i]\_[,

—Au+a(z)u = 5

—Av+b(z)v = 2—*Kv(u,v) in RY,
u>0,0>0in RY,

ou Ov N
5—5—0 on 6R+,

where the hypotheses about the functions K € C?(R%,R) and a, b will be defined in the
related chapter.

In Chapter 3 we study multiplicity of solutions using Ljusternick-Schnirelmann category
results in the following system

—Au = %hﬂo‘e_zu\vlﬂe in €,
—Av = ae—féﬁe lu|%v]P2v  in Q,
u=v=>0 on 0f),

where Q is a bounded domain in RN, N >3, o, > 1, ac = a —€¢/2, B = 8 — ¢/2 and
a+ [ =2"



Notations

Rf = {.T = (xl,.%'Q, 7xN) S RN N xN Z 0}7

catx(A) it is the Ljusternik-Schnirelmann category of A with respect to X;
catx,y(A) it is the category of A in X relative to Y;

H(A) = Wy *(4) = O (a) 2,

DLQ(A) = {U c LQ*(A) : |vu| c LZ(A)},

S = inf{/ \Vul?dz; ue DY(RY), / |ul? dx = 1};
RN RN

Sk = inf {/ |Vul? + |Vo|?dz;  (u,v) € DY2(RY) x DV2(RY), K(u,v)dx = 1};
RN RN

Yy = inf {/ \Vul? + |Vo2dz; (u,v) € DY3(RY) x DY2(RY), K(u,v)dz = 1} :
RY RY

QF = {2z c RN : d(z,09Q) < r};
Q7 ={z e RN :d(z,00) > r}.
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Introduction

Consider the elliptic problems given by
(BCh) { —Au+a(z)u=|u* 2u in RN

and

—Au+a(r)u = |u|> 2u in RY,
(BC>)

8u N
= 0 on ORY,
where N > 3 and 2* = 2N/(2N — 2). In the last years the main interest in this general
class of problems has been due to the fact that they arise from applications in physics and
related sciences, such as biophysics, plasma physics and chemical reaction, as it can be seen
for example in [19], [23], [24] and [26].

An interesting fact about this kind of problem is that Pohozaev’s identity [25] shows
that problems (BCp) and (BC2) have no solution if a(x) is a positive constant. But in
the celebrated paper [6], Benci and Cerami studied the semilinear elliptic problem (BCh)
and proved existence of positive solutions with the following hypotheses about the function

a(z):

(a)1 a(x) >0 and a(z) > ap > 0 for all  in a neighborhood of a point .

NN if N =3.

(a)2 a € LI(RYN) for all ¢ € [p1, p2] with 1 < p; < % < po and py < 1

Vul?d
(a)s lalpn/z@yy < S(22/N —1), where S = inf Juy [Vl ;32*.
weD 2@ ([ ful? da)?

This conditions on a(z) were sufficient to guarantee existence and multiplicity of positive
solutions for problem (BCY). It was used properties of the solution of the Limit problem,
where a = 0, the version to RY of Struwe’s Global Compactness result [29], Lions’s Concen-
tration and Compactness result [22] and arguments of Brouwer degree theory. This paper
motivated other works as follows.

The version of [6] for p—Laplacian operator was studied in [1], where in this case there
is some technical difficulties with the lack of linearity and homogeneity. The version of
bi-Laplacian operator was studied by Alves and do O in [3]. A multiplicity result involving
category theory was studied in [11] by Chabrowski and Yang. More recently, in [32] Xie,
Ma and Xu proved a version for [6] considering the Kirchhoff operator. Nascimento and
Figueiredo showed the same result of [6] in [10] considering the fractional Laplacian. In [8]
it was studied existence and positive solutions for a Schrédinger-Poisson system. Recently,
a version for Choquard equation using variational methods combined with degree theory
was proved in [4].
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A natural extension of problem (BC}) consists in studying elliptic systems such as

—Au+a(z)u = —Ky(u,v) in RY,

(S1) —Av+b(z)v = —K,(u,v) in RY,
,0>0 in RV,

uUEDlz( Ny, N >3.

The main difficult of this class of systems is a double lack of compactness due to the
unboundedness of the domain and the presence of the critical Sobolev exponent, since K is
2*-homogeneous. Then in Chapter 1 we shall focus our attention on questions of existence
and positivity of solutions for the system (S7).

We state our main hypotheses on the function K € C?(R%;R) as follows:
(Kp) K is 2*-homogeneous, that is,

K(As,\t) = N K(s,t) for each A >0, (s,t) € R.
(K1) there exists ¢; > 0 such that

|Ks(s,t)| + | Ki(s,t)] <1 (82*_1 + t2*_1> for each (s,t) € R2.

(K2) K(s,t) >0 for each s,t > 0;

(K3) VK(0,1) = VK(1,0) = (0,0);

(K1) Ks(s,t),Ki(s,t) >0 for each (s,t) € R%.
(Ks)

Ks) the 1-homogeneous function G : R — R given by G(s*,t?") := K(s,t) is concave.

Let us denote

Py(s,t)= > Cils|"|t].

pit+qi=q

where p; > 1, ¢; > 1 and ¢ € J, with J C N finite set. With appropriate choices of
coefficients C; and exponents p; and ¢;, we have the following examples of functions that
satisfy hypotheses (KCo) - (KCs):

Ki(s,t) = Py«(s,t),
Ko (s, t) = {/ Py(s,t) with ¢/r = 2%,

P(h (S7t)

, with g1 — g2 = 2*.
Pf12(57t)

K3(S> t) =

Hypothesis (K3) allow us to give a C'! extension of K to the whole plan as
H(s,t) = H(s",tT),

with s,¢ € R and u™ := max{u, 0}.

11



Hypothesis (K5) provides a Holder type inequality for all u,v € L2 ()
/ K(u,v)dz > K(Jul|ax, |v]2+),
Q

which is used in [13] to prove some lemmas that we used in Chapter 1 and 2. It is important
to remark that in those lemmas we used, the domain 2 is not necessarily bounded.

The hypotheses on the functions a;b : RY —— R* are given by:

(a,b); The functions a, b are positive in a same set of positive measure.

(a,b)2 a,b € LI(RY) for all ¢ € [p1,po] with 1 < p; < % < ps and po < if N =3.

N
4—-N
(a, b)g Sév‘a|LN/2(RN) + tév|b‘LN/2(RN) < SK(22/N — 1), where

S~ [Vul? + |Vo|2dz
wveDLARN) ([ K(u,v)dw)2/2*

Sk =

and sg and tg will be defined in Chapter 1 and 2.

Using the above notation about the functions K, a and b we are able to state our main
result of Chapter 1:

Theorem 0.0.1. Assume that (a,b); — (a,b)s and (Ko) — (K5) hold. Then, (S1) has a
positive solution (ug,vg) € DV2(RY) x DVEHRN) with
2
GN/2

1 N
NSK/2<I(UO’UO)<N K

where the associated functional I will be defined in Chapter 1.

In order to prove this main result, Chapter 1 is organized as follows. In Section 1 we
study the limit system associated to (S7). In Section 2 we are interested in a compactness
result and we obtain some properties about Palais-Smale sequences. In Section 3 we start
showing some technical lemmas and we finalize this section proving our main result.

The work studied in Chapter 1 was published in [14].

In Chapter 2 we are interested in the same kind of problem defined in the half-space. In
the paper [9], Cerami and Passaseo gave sufficient conditions on function a(z) to guarantee
existence and multiplicity of positive solutions for problem (BC3). Also, in [2] the authors
studied the p— laplacian problem defined in half-space involving a critical exponent. Then,
motivated by these papers, in Chapter 2 we study a natural extension of the problem (BC5)
consisting in the following elliptic systems defined in the half-space:

1
—Au+ a(x)u = 2—*Ku(u,v) in RY,

1
(S5) —Av+b(z)v = 2—*Kv(u,v) in RY,
u,v >0 in RY,

ou Ov

— == RY, N >3.
= 9 0 on ORY, >3

Using the above notation about functions a, b and K we are able to state our main
result of Chapter 2:

12



Theorem 0.0.2. Assume that (a,b); — (a,b)s and (Ko) — (K5) hold. Then, (S2) has a
positive solution (uo,vo) € DM?(RY) x DM2(RY).

As in Chapter 1, we have observed that there is not a version of the paper [9] for systems.
Motivated by this fact, we have decided to study this class of systems. However, we would
like point out that some estimates made in [9] or [2] are not immediate for systems. For
example, in Lemma 2.1.3, Lemma 2.1.4 and Proposition 2.1.5 was necessary to use a Global
Compactness Lemma for system that was proved in Chapter 1 and can be found published
in [14]. In other words, some results that were proved in Chapter 1, were also important to
obtain the second main theorem.

This chapter is organized as follows. In Section 1 we show a nonexistence result of
solution for a minimization problem and some properties. In Section 2 we prove some
technical lemmas. Then, finally in Section 3 we prove the main result.

Chapter 3 was inspired by the following problem studied by Benci, Cerami and Passaseo
in [7]
—Au=u>"1 inQ,
{ u=20 on 0},

where 2 is a bounded domain.

The interesting fact about this problem is that, by Pohozaev’s identity [25], we have
nonexistence of positive solutions for e = 0 for certain class of domain €2, but when we take
€ > 0 small, we can prove that we have multiplicity of solutions influenced by the topology
of the domain.

There are other papers motivated by this class of problems. In [18] it was studied
a problem involving the fractional Laplacian, obtaining a lower bound on the number of
positive solutions when the exponent of the non-linearity is near to the critical Sobolev
exponent 2% = 2N/(N — 2s). This lower bound is also given by the topology of the domain.
In [28] it was studied the same kind of problem for a Schrédinger-Poisson-Slater system.

Also motivated by [7], in [17] it was studied the following problem:

—Au—u (Au?) = [ufP~?u  inQ,
u=20 on 0f),

where p is taken near to the exponent 22* = 4N/(N — 2). In [17] the number of positive
solutions is estimated from below by values related to topological properties of the domain
€2, in this case the Ljusternick-Schnirelmann category and the Poincaré polynomial. In [5]
it was studied a case with a discontinuous non-linearity, where using an auxiliary problem,
the authours proved the multiplicity of positive solutions using Ljusternick-Schnirelmann
category.

In Chapter 3, we are interested in the search of positive solutions for the following
problem

—Au = ﬁ;ﬁf@e lu|*2ufv]Pe in Q
(S5) —Av = He-fulfo|* 2 in Q
u=v=20 on 0f),

where € is a smooth bounded domain in RV, N >3, a¢, 3 > 1, ac = a —¢/2, e = S —¢/2
and a + # = 2*. Then we have the following multiplicity result.

Theorem 0.0.3. There exists €g > 0 such that for any € € (0,¢p), problem (S3) has at
least cat Q positive weak solutions. Moreover if Q) is not contractible in itself then (S3) has
at least cat Q2 + 1 positive weak solutions.

13



As in the problem studied in [7], for € = 0, we prove that the system only has the trivial
solution, but for € > 0 small enough we have a multiplicity result associated to the topology
of the domain.

Our approach to study the system case and prove Theorem 0.0.3 is variational, finding
its solutions as critical points of a C'! functional on the Nehari manifold. We show that the
functional on the Nehari manifold is bounded from below, achieves the ground state level
me, for € € (0,¢p),and by means of the Ljusternik-Schnirelmann we prove the multiplicity
result.

In the first section of this chapter, we prove some Nehari manifold and compactness
results. Then in section 2, we prove some barycentre map results. In the final section we
prove the main theorem using Ljusternik-Schnirelmann category.

The results obtained in Chapter 2 and 3 are submitted in [15] and [16], respectively.

The hypotheses about the functions and the definitions presented in this Introduction
will be recovered in the related chapters.

14



Chapter 1

Existence of positive solutions of a
critical system in RN

In this chapter we will show existence of positive solution to the following system

1
—Au+ a(x)u = 2—*Ku(u,v) in RY,
1
(S1) —Av +b(z)v = 27Kv(uﬂf) in RY,

u,v >0 in RY,
u,v € DY2(RN), N > 3.

Let R2 := [0,00) x [0,00) and set 2* := 2N/(N — 2). We state our main hypothesis on
the function K € C?(R2,R) as follows.

(Kp) K is 2*-homogeneous, that is,

K(As,\t) = \* K(s,t) for each A > 0, (s,t) € R%.
(K1) there exists ¢; > 0 such that

Ks(5,8)] + | Ki(s,8)] < 1 (82*—1 n tT‘—l) for each (s, t) € R2.

(K2) K(s,t) >0 for each s,t > 0;

(K3) VK(0,1) = VK(1,0) = (0,0);

(K1) Ks(s,t),Ki(s,t) >0 for each (s,t) € RZ.
(1)

Ks5) the 1-homogeneous function G : R?2 — R given by G(s*,t?") := K(s,t) is concave.

To state our main result we need some previous definitions and notations. Let us denote
by Sk the following constant

/ (Vul? + [Vo|?)dz
K= inf RY

u,we€DL2Z(RN) u,v#£0 (

2/2% "
K (u, v)da:)
RN

15



From now on, we consider the function @5, € D?(R") given by

5 (N-2)/2 N
q)&y(l') = C<(M—ZJ|2> , T,y € R and 0 > 0, (101)
where c is a positive constant. In [30] we can see that every positive solution of

—Au = |[u|* 2u in RV,
(Ps) u>0 in RV,
u € DY2(RYN), N >3.

is as (1.0.1). Moreover, it satisfies for a suitable constant ¢

[@5,)> =S and |®s,

2*:17

/ |Vu|>dz
S = inf RY .
ueDL2(RN) u#0 N 2/2r
</ |ul? da;)
RN

By [13, Lemma 3], there exist s,,%, > 0 such that Sk is attained by (s,®s,,to®Ps,). More-
over,

(1.0.2)

where

MgSk =S,

(1.0.3)
where My = max K (s,1)*%" = K(s0,10)*/*".
s24t2=1

The hypotheses on the functions a,b: RY — R* are given by

((a,b)1) The functions a, b are positive in a same set of positive measure

((a,b)2) a,b€ LIRN) for all ¢ € [p1,pa] with 1 < p; < & < py and py <

. ifN:3.

((a,b)s3) SéV‘CL|LN/2(RN) +tév‘b‘LN/2(RN) < SK<22/N —1).

We say that (u,v) : RY x RN — R x R is a positive weak solution of (S7) if u,v > 0 in
DY2(RN) and for all ,1 € DY2(RV) we get

VuVedr + Vvvwdx—i-/ a(x)ugodx—i—/ b(x)vpdx
RN RN RN RN
1 1
= ? K (u,v)dz + ? K (u,v)Ydx.

In order to state the main result, we consider the C! functional I : DV2(RY) x
DY2(RVM) i R associated to system (S;) given by

1 1 1 1 1
I(u,v) = =|Jul®* + = ||v)|* + / a(x)uds + / b(z)vide — — K (u,v)dz,
2 2 2 RN 2 RN *

2 RN
where ||ul|? :/ \Vul|?dz, |v]|? :/ |Vv|?dz. Note that
RN RN

I'(u,v)(p,9) = VuVpdz + Vvvwda:+/ a(m)uwdw%—/ b(z)vipdx
RN RN RN RN
1 1
2—* K (u,v)pdr — 2—* K (u,v)dzx,

for all (p,v) € DV2(RN) x DLQ(RN).

Using the above notation we are able to state our main result

16



Theorem 1.0.1. Assume that ((a,b)1) — ((a,b)3) and (Koy) —

positive solution (ug,vo) € DY?(RN) x DV2(RYN) with

SN/2 < I(UO,U()) < ngﬂ

1.1 Limit problem

(K5) hold. Then, (S1) has a

We notice that we can use the homogeneity condition (KCp) to conclude that

1
K(s,t) = 2—*5K5(s,t) + gth(s,t), (1.1.1)
since by (Kop), we have
ey = & ()\Q*K(S t)) 2" = 2 AY LK (s, 1) (1.1.2)
dX dX ’ T o
and
d
ﬁK()\s M) = sKs(As, \t) + tK(As, At)
= AT TR (s, M) 4+ A LK (As, At) (1.1.3)

Then, by equations (1.1.2) and (1.1.3) we got
2K (s,t) = sKs(s,t) + tK(s,t).

In this section we study the limit problem given by

—Au—— w(u,v) in RY,

(Soo) —AU_— ( U, ) in RN7
u,v >0 in RV,

uveDlQ( Ny, N >3,

which the functional associated I, : DV2(RY) x DV2(RY) = R given by

1 1 1
Too(,0) = 5l + 5101 = 5 [ K(w oo

Lemma 1.1.1. Let (un,vy,) be a sequence (PS). for In,. Then

(i) The sequence (up,vy,) is bounded in DV2(RN) x DL2(RY).

(ii) If up — u in DY2(RY) and v, — v in DY2(RY), then I’ (u,v) = 0.

(iii) If ¢ € (—o0, —SN/Q) then I satisfies the (PS). condition, i.e, up to a subsequence,

(U, vn) = (u,v) in DVAHRN) x DL2(RY).

Proof. Since Ino(tp,vy,) — ¢ and I. (un,vy) — 0 and from (1.1.1), we conclude that there

exists C' > 0 such that

C + |lun|l + [[vnll > T (unvn) — I/ (Un, Un) (Un, vn) =

2%

17



and the proof of part (i) is over. Now we prove (44). Since u, — u in D»2(RV) and v,, — v
in D2(RY), up to a subsequence, we get

Up —> U I L?OC(RN), Up =V in L?OC(RN),

and
Un(z) = u(x) ae in RN, wv,(z) = v(z) ae in RY.

Using a density argument we obtain
Ky (un,vn)pdr + / Ky(up, vp)pde — / Ky (u,v)edr + Ky(u,v)de.
RN RN RN RN

for all o, € DY2(RY), which implies (i7).
In order to prove (iii), consider w, = u, —u and z, = v, — v. Note that applying [20,
Lemma 4.6], we get

1
on(l) = Iéo(umvn)@m”n) = HunH2 + HUHHQ T oox /RN Ko (tn, vn)undz (1.1.4)

1
- — Ky (up, vy)vpdx
2* JrN

1
= lwall® + flull® + flzal® + [0l = o /RN Ku(wn +u, 2 4 0)(wy + u)dz

1
- = Ky (wp, + u, 2n, +v)(2n, + v)dz. (1.1.5)
2 RN

From [13, Lemma 8], we have

1
on(1) = Jwall® + llul® + zl® + [lv]* - > /N Ku(wn, zn)wndz
R

1 1 1
- — Ky(wpzn)zndr — — Ky(u,v)ude — — Ky(u,v)vde.
2* JpN 2* JrnN 2* JpN

Using the item (i¢) and (1.1.1) we obtain
on(1) = P+l = [ Kl z0)de
RN
Up to a subsequence, we conclude that there exists p > 0 such that
0<p= lim [HwnH2 + Hzn||2] = lim K(wy, zp)dz.
n— 00 n—oo [pN

Suppose, by contradiction, that p > 0. From the inequality

2/2*
k([ Ktwnzdn) < ol +
R

we get
p>Skp¥* = p> SN2 (1.1.6)
Since
1 1 2 2 1 2 2
_(f_ 1 - >
o) = (5 = ¢ ) ulP + P =l + ol 2 0

18



and

1
¢ = o lllwnl® + lznll*) + Loo (1, v) + 0n (1), (1.1.7)
we conclude
1 1 1 1
¢ = llwnll® + llznll?] + Loo(u,v) + 0n(1) 2 Sllwnll? + llznll*] + 0n(1) = 29 2 Nsﬁ/{

which is a contradiction. Hence p = 0 and

lwall* = llun = ul* = 0 and |za]* = llon — v|* = 0.

1.2 A compactness result

Now, we establish the following lemma which will be useful to prove a compactness result.

Lemma 1.2.1. Let (uy,vy) be a (PS). sequence for the functional I, with u, — 0, v, — 0
and u, —+ 0, v, » 0. Then, there are sequences (R,) C R, (z,) C RY and (Yo, Y1) €
DY2(RN) x DV2(RN) nontrivial solution of (Ps) and a sequence (T, () which is a (PS)z
for I such that, up to a subsequence of (up,vy),

Tn(2) = upn(x) — RN"D2Y0(Ry (@ — 2)) + 0 (1)

and
Cn(x) = vp(z) — RSLN*Q)/QTl(Rn(x —xp)) + on(1).

Proof. Let (un,v,) C DY2(RN) x DV2(RY) be a (PS). sequence for the functional I, i.e,
Ino(tn,vy) — ¢ and I (un,vy) — 0. (1.2.1)

From Lemma 1.1.1, (i), we get that (u,,v,) is bounded in DV2(RY) x DY2(RM). Since
up — 0, v, = 0 by hypotheses and u,, - 0, v, - 0 it follows from Lemma 1.1.1 (i7i) that

1 N2
Note that from (1.1.1) we obtain
[ 1 2 2
¢+ 0n(1) = Lo (tn, vn) — 5210 (Un, Un) (Un, vn) = — [|Vun|* + |V, |*]dz,
2 N RN
which implies
/RNUVun\? + Vo P = SN2, (1.2.2)

Let L be a integer such that By(0) is covered by L balls of radius 1, (R,) C R, (x,) c RV
such that

GN/2
sup / [\VunP + |an|2]dx = / []Vun]2 + ]anmda: = LL
yerN JB, 1 (y) B, 1 (on) 2
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and define the vectors
(wn (), zn(z)) = <R7(12_N)/2un <}§ + iL‘n> , Rff_N)/zvn <BJ’; + xn)> }

Using a change of variables, we can prove that

GN/2
[[Vwn|? + Vz,|!ldze = “E— = sup ([Vw,|* + |V 2, ! dz.
2L
B1(0) yeRN J Bi(y)

Now, for each (®1,®2) € DV2(RY) x DV2(RY), we define
(él,m i’lﬂ)(x) = (R%N_2)/2¢1(Rn(x — n)), R%N_2)/2<I>2(Rn($ — Tn)))

which satisfies

N

/ [Vun, V1, + Vo, Vs ,dx]dr = / [Vw, V&1 + V2, V&y)dx (1.2.3)
RN R

and

/ [Ku(umvn)@l,n + Ky (un, vn)Pop]de = / (K (W, 2n)P1 + K, (wh, 2,)Paldz,(1.2.4)
RN RN

where we conclude that

Ino(Wn, 2n) — ¢ and I (wp, z,) — 0. (1.2.5)

From Lemma 1.1.1, there exists (Yo, Y1) € DM2(RY) x DL2(RY) such that, up to a
subsequence, (wy, z,) — (Yo, Y1) in DV2(RY) x DV2(RY) and I’ (Yo, Y1) = 0.
As a consequence of [13, Lemma 6], we get

K(wn, zn)¢dx — /RN K(TQ, Tl)gf)dﬂf + Z ¢($j)l/j, Vo € CSO(RN) (1.2.6)

N
R jed

and

[Vwn|? + |Van|? = p+ 0 > (VY2 + VT2 + > gz + Y dlaj)oy, Vo€ CP(RY),
jeJ jeJ

for some {z;};c; C RY and for some {v;};cs, {1 }jes, {o;}jes CRT.
Since S KV?/ z < pj + 0j, we can conclude that J is finite. From now on, we denote by
J={1,2,...,m} and I' C R the set given by
I'={z; € {zj}jecs;|zj| > 1}, (z; given by (1.2.6)).

We are going to show that (Yo, Y1) # (0,0). Suppose, by contradiction, that (Yo, Y1) =
(0,0). Then, by (1.2.6) we have

K (W, zn)pde — 0, Yo € O (RN \ {z1, 29, ..., T }). (1.2.7)
RN

Since (G1.n, p2.n) = (pwn, ¢z,), with ¢ € CP(RN \ {x1, 29, ..., 7m}), is bounded, we
obtain

Ic/xv(wm Zn)(¢1,n7 ¢2,n) = On(l),
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that is,
1
/ [vwnv¢l,n + vznv¢2,nd$] ~ o / [Kw(wny Zn)¢1,n + Kz(wna Zn)¢2,nd$ = On(l)-
RN 2* JpN
Using the definition of (¢1 4, ¢2,,) and (1.1.1) , we have

/ [[Vw,|? + |V iz} odz + / [, Vw,Vé + 2,Vz,Vo|dr — K (wy, zp)pdr = o, (1).
RN RN RN

Then,
/ [Vawnl? + [Veuléde < / [nl [Ve0n V] + 20|V 20l [V b1z + / K (w0, 20)éd2.
RN RN RN
Using Holder inequality we get
1/2
[ IVl + 92 Pl < anb( / wn|2v¢|2dx)
RN RN

1/2
+ ]Vznb(/ \anQ\VMde) +/ K (wp,, 2n)pdx.
]RN ]RN

Since there exists R > 0 such that supp¢ C Br(0), we have

1/2
\wn|2dx>

1/2
+ C|Vzn|2</ |zn]2dx> +/ K (wy, 2n)pdx = 0, (1).
BR(O) RN

/N[an\z + | V2, |} pdz < C\anyz)(/
R

Br(0

Since (wp, 2,) is bounded in DY2(RN) x DV2(RY), from compact embedding in L2(RY)
and (1.2.7), we obtain
/[me+W%me+QVWJ?@NW@JWWMD. (1.2.8)
RN

Let p € R be a number that satisfies 0 < p < min{dist(T, B1(0)),1)}. We will show
that

/ (Va2 + [Vza2léda — 0. (1.2.9)
Buip(O\B

1+§ (0)

~ We consider ¢ € Cg°(RY) such that 0 < ¢(z) < 1 and ¢(z) = 1 if 2 € Biy,(0). If
¢ = GlrN\{ay,....0,m}> TOllows by (1.2.8) that

/[WWP+W%W@%%O
RN

Since

[\an|2 + |Vzn|2]dx < / [\an|2 + |Vzn|2]dx

/Bl+ﬂ(0)\Bl+§(0) Bl+p(0)

= [ IVuaP o+ Valids < [ [Funf? Ve,
Bi14,(0) RN
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we have that (1.2.9) is true.
Let ¥ € C§°(RY) be such that 0 < ¥(x) <1 for all x € RY and

17 T e Bl+§(0))

‘I} =
(@) =90, ze B4, (0)

3

and consider the sequence (¥, ¥a,,) given by (U1, Yo ,) () = (¥(z)w,(x), ¥(z)2,()).
Note that

/ (V01,2 + |V, [ de
Bl+P(0)\Bl+§ (0)

<
[B1+5(0\B

1+4 0

]\IJ]2|an]2dx+4/ (O[22, 2
e [Brep(O\B, , p O]

+ 4/ |wn\2|v\1:y2dx+4/ |20 |2V 2 da
[Bi1p(0\By (02 [Bi1o(0)\By ¢ (0)]2
From (1.2.9) we obtain
/ (V01,2 + VT, [Ydz — 0. (1.2.10)
Bl+p(0)\31+§(0)

Since (V1 ,,, U3 ,,) is bounded in DV2(RY) x DL2(RY), we derive that

/ anV‘Ill’ndx—i—/ Vw,VV¥1q,dx

Bl+p(0)\B1+§(0) BHg(O)

+ / VznVW27nd$+/ Vzp,V¥s ndx
Bl+p(0)\B1+§(0) Bl+§(0)

1 1
T U Koy (W, 2p)da — > Uy Ky (W, 2p)dx
Bl+ﬁ(0)\B1+§(0) B1+§(0)
1 1
- > Uy o K (wp, 2n)dx — Uy K (W, 2n)dz = 0, (1).
Bl+p(0)\B1+§(0)

From definition of ¥ we have

on(1) = anV\I!Lnd:c—k/ VU, 2 (1.2.11)

/Bl+p(0)\31+§(0) Bl+§(0)

V2, Vs nda + / Vs, |2
0)

/Bl+p(0)\31+§(0) 1+5(
1 1
T ox qjl,an(wna Zn)dl‘ - ? ‘lllﬂKw(\I’la”’ \Ilgm)da:
Bi4p(0\B, 1 £(0) By,¢(0)

1

1
? \IIQ,nKz (wn; Zn)dx - 5. \IIQ,nKz(\Ijl n ‘112,n)dx'
Bi1p(0\B, 1 £(0)

Note that from Holder inequality and (1.2.10) we get

Vw, V¥ ,dx + / V2, V¥ pdx — 0, (1.2.12)

Biip(0\B, ¢ (0)

/Bl+p(0)\Bl+§ (0)
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when n — oo.
Moreover, from direct calculations we have
1
i* U1 o Ko (Wi, 20 )d2 + — Wo K, (W, 2 )dr = 0 (1). (1.2.13)
2" By 00\B, 4 0) 2" By (0B, (0)
From (1.2.11), (1.2.12) and (1.2.13) we obtain

1
/ ‘V\I/17n|2dl‘ + / |V\I/2,n|2da: -5 / \Ill,an(\Ill,ny ‘1/27n)d3;‘
Bl+§(0) B1+§(O) 2 B1+§(0)

- %/ © \IIZ,nKz(\Ijl,na \IIQ,n)dx = On(]-) (1214)
142 0

Note that

/ (VU %+ [V, 2] da / VO, 2+ |V, |*)da
RN Bi14,(0)

- / IV + [V )
B14,(0) \BHP(O

T / (V102 + [V 0 de
1+£(0)
= on(1)+/ A 2RI NA 2
B 0)

and using (1.1.1), we get

K(\Ifl’n,\:[fgyn)dx = / K(\I/Ln,\llg’n)dx
RN B11,(0)

K (U, 0, W) + / KWy, Uy, do

/Bl+p(0)\B1+§(O) B1+§(O)

Then we conclude that

/ (VU2 + |V, [2de — / KU1, P2.,)dx = o,(1).
RN RN

From definition of Sk, we have

1 .
sl 10202 1= () 0P 272
SK
1 .
= [l 4 1al?) — g W0l 19202
SK
= /Hv\ljl,n|2+|v\1/27n|2]d1‘— KUy, Usp)dz = 0,(1). (1.2.15)
RN RN
Note that
Nl + el = [ [V 4 [V Pldo+ [ (VO + [V d
Bl+p(0)\Bl+P (0) B1+§ (0)

on(1) + / IV 2+ [V, lde
By, £ (0)

Since @1, = wy, P2n = 2, in By s () and that Byye () C B, (0), we obtain

?]de,

10l + [Tl < 0n(1) + / VT, 2
B3 (0)
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which implies

191l + [P0 < on(1)+/ [[Vwn|? + [V 2, [*]dz
UE_, Ba(wn)
L
< on(1)+2/ (IVw2 + |V, |*]da
k=1 B1(yk)
gN/2
< o+ Lsup [ ([Twaf o+ [Tl < 0,(1) + K-
veRN JB1 (y) 2
Then,
1/2 SN/4
(110l 4 12,l?) < 00) + 3
implies
(2*—2)/2 GN/4y 272
(|W1m124—|w2m¢2) S(LA1)+-(iﬁ%z) : (1.2.16)

Using (1.2.15) and (1.2.16), we have that

2 2 1L (SN
[”\I’LVLH + H\IjQ,nH ] 1+0n(1)

S?(*/2 91/2
1 GN/AN 272
= Wl #1221+ s [0 - (355) ]}
K
1 *_
< Dl + 1l |1 = 10l + 192l ] = 0u(0),
K

Using the equality

N gy T _N( 4 N,
4 2 4\N-2 N—-2 7

2% —2)/2
) o[, (1 ( )/ -
R e R e < on(1),

and we conclude that (91 ,,, Vs ,,) — (0,0) in DM2(RY) x DV2(RY).

implies

Since wy, = ¥y, 2, = Vs, in B1(0), we obtain

[+ 12017,

0< [ [1Vua o+ [Vl < 2,
B1(0)

which implies

/ [[Vw,|? 4 |V2,|?]de — 0 when n — oo.
B;(0)

But this last convergence is a contradiction with
gN/2

/ [[Vwn|? + |Vz,|*lde = £~ VneN.

Then, (Yo, Y1) # (0,0). Now we are going to show that there is (7,,, (,) in DV2(RY) x DL2(RY)
such that (7,,,(,) is a (PS):z sequence for I, satisfying

() = un(z) — RSLN_Q)/QTO(Rn(x —Zn)) + 0n(1),
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Cn(x) = vp () — R;N_Q)/QTI(Rn(x —xy)) + on(1),

for some subsequence of (u,,v,) that still will be denoted by (uy,,v,). For this, we consider ¢ €
C5°(RY) such that 0 < (z) <1 for all x € RY and

1, if z € By(0),
vie) = {o, if ze BS(0)

and consider (7,,(,) a sequence defined by

70 (2) = up(x) — RN D20 (R, (2 — 20) ) (R (2 — 2)), (1.2.17)
Cn(2) = vp(2) = RNV=D2Y (R, (2 — )0 (Rp (2 — 21,)), (1.2.18)
where (R,,) satisfies R,, = % — 00. From (1.2.17) and (1.2.18), we obtain

RngiN)an(z) = R%27N)/2un(m) - TO(Rn(x - xn))¢(Rn(x - xn))

and
Rg_N)/QCn(x) = R%Q_N)/Qvn($) - Tl(Rn(x - xn))w(Rn(x - xn))

Making a change of variables, we conclude

@-Ny/2. (2 — pe-N)/2,, [ Z o 2

)

and

RZ=M/2¢, (5 + :cn) = R2-N/2y, (; + xn> - Tﬂ/)(
n

n

B

Now we define
% = RE-N/2; (Z n mn)

R,
and
T e
Since
wn(x) — R7(12_N)/2un (g +-Tn>
and
Zn(x) = Rg“?_N)/z/Un (}: + xn)a
it holds
Tu(2) = wn(2) — To(2)y (Z) (1.2.19)
and
) = 6ole) ~ Tata £ ): (1.2.20)
If
Yn(2) w(é) (1.2.21)

we have that



From (1.2.19), (1.2.20) and (1.2.21), we derive that

Tn(2) = wn(z) — To(2)¥n(2)
and _
Cn(2) = 2n(2) — T1(2)¥n(2).
Since R,, — 00, we get that Y;¢, — Y; in DM2(RN), i = 0,1. Then
Tn(2) = wp(2) — To(z) + 0n(1) (1.2.22)
and

To finish the proof, it is enough to show that (7,,(,) is a (PS)z sequence for I,. Note that
making a change of variables we get

Ioo(Tn; Cn) = Ioo(%:n; Zn)

Using (1.2.22) and (1.2.23) and applying [20, Lemma 4.6], [13, Lemma 8] and (1.2.5), we have

Ioo(TnaCn) = Ioo(wnvzn)_IOO(TO7T1)+ON(1) :E+On(1)’

where ¢ = ¢ — Io(To, T1).
Now, since _
0 < o (7 Go)lpr < 1156 (T G) v

it is sufficient to prove that ||I/_ (7, (o)l pr — 0 which is equivalent to show that

1 (s Gn) — T (i, 20) + Io (Yo, Y1) ||y — 0. (1.2.24)
But the last convergence is a direct consequence of [13, Lemma 8]. O

The next result is a version for a gradient system in RV of the result due to Struwe that
can be found in [29].

Theorem 1.2.2. (A global compactness result) Let (uy,v,) be a (PS). sequence for I with
up — ug in DV2(RY) and v, — vy in DY2(RY). Then, up to a subsequence, (un,vy)
satisfies either,

(a) (Un,vn) — (uo,vo) in DV2(RN) x DV2(RN) or,

(b) there exist k € N and nontrivial solutions (23,(3), (22,¢2), ..., (25, %) of the system
(Sxo), such that

k
lnl|? + Jon I = lluoll® + ool + D T2 1% + 16317
j=1

and
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Proof. From the weak convergence and a density argument, we have that (ug,vp) is a
critical point of I. Suppose that wu, - ug, v, - vo in DV?(RY) and let (w),zl) C
DY2(RN) x DY2(RY) be the sequence given by w} = u, —ug and 2. = v, — vg. Then,
wl =0, 2z = 0in DY?(RN) and wl -+ 0, zL - 0 in DH2(RV).

Applying [20, Lemma 4.6] and [13, Lemma 8], we obtain

Io(wl, 21) = I'(uy,v,) — I(ug, vo) + 0n(1) (1.2.25)
and
I' (wh, z}) = I'(un, v,) — I'(ug, vo) + on(1). (1.2.26)

Then, we conclude from (1.2.25) and (1.2.26) that (w), z}) is a (PS)., sequence for I.
Hence, by Lemma 1.2.1, there are sequences (R, 1) C R, (7,1) C RN, (24, ¢}) € DV2HRY) x
DB2(RN) nontrivial solution of the system (Ps,) and a (PS).., sequence (w2, z2) ¢ DV2(RY)x

DY2(RN) for I, such that

2(x) = wh(z) — RN TP (R (& — 201)) + 0n(1)

w
and a1
22(@) = 2h(@) = ROy V2 (Boa (@ — 2a1)) + 0n(1),
If we define
@, (z) = RSIN)/Qwi( ° ¢ xn,1>, (1.2.27)
’ Rn,l
Wy (z) = RLQIN)/QzEL( 4 :cn,1> (1.2.28)
’ Rn,l
and
) = R0 (),
’ Rn,l
) = RE2 (b )
we get
wh(x) = By (x) — z5(x) + 0a(1), (1.2.29)
Zo(x) = U} (x) — (g (x) + on(1) (1.2.30)
and
1@l = llwpll, 1]l = [zl and / K(®,,Vy)de = [ K(wy,zy)de.  (1.2.31)
RN RN
Hence,
Lo (®p, W) = Lo (wp, 2,) (1.2.32)
and
I' (@2, ¥y >0 in (DVYAHRY) x DV2RN))Y. (1.2.33)
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From (1.2.32), (1.2.33) and from item (a) by Lemma 1.1.1, we have that (&% Wl) is a
bounded sequence in DV2(RY) x DV2(R™) and, up to a subsequence,

oL~ wl ol in DM(RY). (1.2.34)

Applying [20, Lemma 4.6] and [13, Lemma 8] again, we obtain

Ioo(@%ﬁﬁ) = IOO(CI’}N\I’l) (2074.(%)‘1‘071(1)
= I(unavn)_I(u0>U0) m(zéa )+0n(1)- (1'2'35)
and
IL (w5, 72) = Ih (9, 9)) — Ih (25, ¢g) + on(1). (1.2.36)

If w2,z2 — 0 in DY2(RY), the proof is over for k = 1, because in this case, we have
[wnll® + lvnl® = [luol® + llvoll* + [l2511* + GolI*.
Moreover, by continuity of I,,, we get
I(tn, vn) — I(ug,v0) + Ino (28, G).

If w2 —+ 0,22 - 0 in DY2(RY), using (1.2.29), (1.2.30) and (1.2.34) that w2,z2 — 0
Db 2(]RN), by (1.2.35) and (1.2.36), we conclude that (w2,z2) is a (PS)., sequence for I,

By Lemma 1.2.1, there are sequences (R,2) C R, (z,2) C RN, (23,¢%) € DV2(RY) x
DY2(R™) nontrivial solutions of (Ss) and a (PS)., sequence (w%,zf{) C DM(RM) x
DY2(RN) for I, such that

w(x) = @2 (x) — RSy P2 (Roa(e — 202)) + 0n(1),
Ba) = Z(x) — RYVPR(Rua(e — 202)) + 0n(1).
If
W) = RV  na),
2—N)/2 xr
Vi) = R s )
and
) = R (1 4 s,
20) = RV (5 na ).
we have that
wo (2) = B2 (2) — 22 () + on(1), (1.2.37)
Z(x) = V2(x) — G (x) + on(1). (1.2.38)

Arguing as before, we conclude
al? = llunl® + oall® = lluoll = llvoll® = llzol* = 1611

I12511* = IG5 11% + on (1), (1.2.39)

lwal® + 112
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Too (W3, 23) = I(tn, vn) — I(ug, v0) — Too (28, (}) — Tno (22, C2) + 0n(1), (1.2.40)

and

I(@3,33) = I' (@2, 02) — I' (22, ¢3) + o (1). (1.241)

7’L7’I'L

If @3, 23 — 0in DV2(RY), the proof is over with k = 2, because ||@3||> — 0, [|Z3||> — 0

n»Tn

and from (1.2.39), we have

2
lanll? + lonll® = lluoll® + lleoll® + D _T=11% + NG
j=1
Z3) — 0. Now using (1.2.40) w

~3
Wy 2

Moreover, by continuity of I, we have that I (w

get
2

I(uny Un) — I(“Oy UO) + Z Ioo(z[])’ C(%)
j=1
If w3,z - 0 in DY2(RY), we can repeat the same previous arguments to find (23, ¢}),

(23,C3),es (2871, ¢571) nontrivial solutions for the system (S..) satisfying

k—1
@RI + 1Z8117 = llunl® + loal® = lluoll® = lleoll* = >[Iz 11* = IGIP] + 0n(1), (1.2.42)
j=1
and
k-1 o
Lo(ZE,Z8) = I(upn,vn) — I(ug,v0) — Y Too(2), Q) + 0n(1). (1.2.43)
j=1
From definition of Sk, we conclude that
o 2/2 , A
(/ K(zg,gg)dg;) Sk < lal*+ 1617 7=1,2,..k—1. (1.2.44)
RN

Since (zg, C(J)) is nontrivial solution of (S ), for all 7 =1,2,....k — 1, we get
I+ IR = [ k(o
RN
Hence,
j N/2 .
— N2~ G < =SR2, j=1,2,. kL. (1.2.45)

From (1.2.42) and (1.2.45), we have

1@y 12 + 12511 = llunl® + llonl* = lluoll* — [lvol?

k—1
= X =IP A+ IGI% + on(1)
j=1
N
< Jlunll? + floal® = ol = llvoll® = (6 = 1)SE* + on(1). (1.2.46)

Since (uy,vy) is bounded in DYM2(RM) x DV2(RN), for k sufficient large, we conclude
that @wf, Zz% — 0in DY2(RY) and the proof is over. O
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Corollary 1.2.3. Let (uy,vy) be a (PS). sequence for I with ¢ € (0, %Sﬁﬁ). Then, up to
a subsequence, (un,vy) strongly converges in DV2(RY) x DV2(RYN),

Proof. We have that (uy,v,) is bounded in D2(RY) x DV2(RN),
Uy — up, v, —vo in DVEHRY)
and by a density argument I'(ug,v9) = 0. Suppose, by contradiction, that

Up = UQ, Up - Vg In D1’2(RN).

From Theorem 1.2.2, there are k € N and nontrivial solutions (23, (}), (22, ¢2), ..., (2§, %)
of the system (S ) such that,

k
lnll? + lon ]l = lluoll® + lleoll® + Y 112511 + G311

j=1
and
k . .
Tt vn) — (o, 00) + 3" Lo (GO,
=1
Note that by (1.1.1) we have
1 2 1 2 1 2 1 2
I{ug,v0) = Slluoll” + Sllvoll”+ 5 [ a(@)ugde + 5 [ b(x)vgde
2 2 2 Jan 2 Jan
1
- = K (up,vp)dx
2* RN
1 2 1 2 1 2 2
= 5 luoll®+ Sllvoll” + 35 K (uo, vo)dx — [[uo||” — [luol|
2 2 2\ Jen
1
- = K (up,vp)dx
2* [N
L[ K(ug,ve)dz > 0
= — ug, vo)dx > 0.
N RN 0, Y0 =
Then,
i~ ) N/2 N/2
¢ = I(uo, vo) + j;foo(zg,cg) > ;Ioo(za,c(%) > Sk = Sk
. . .. . 1 oN/2
which is a contradiction with ¢ € (0, 5Sx’7). O

Corollary 1.2.4. The functional I : DV2(RN) x DY2(RYN) — R satisfies the Palais-Smale
condition in (%Sgﬂ, %Sgﬂ).

Proof. Let (un,vy) be a sequence in DV2(RY) x DL2(RYN) that satisfies

1 2
L gnjz 2 N2

I(un,vn)—>c€(N K WK

) and I'(up,v,) — 0.

Since (un,vy,) is bounded in DV2(RY) x DYH2(RY), up to a subsequence, we have

Uy — up, Uy —vp in DVEHRYN).
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Moreover, I(ug,vo) > 0. Suppose, by contradiction, that

Up = Uy, Up = Vg IN DLQ(RN).

From Theorem 1.2.2, there are k € N and nontrivial solutions (23, (3), (22, ¢2), ..., (2§, %)
of the system (S, ) such that

k
lunll® + llonll* = luoll® + llvoll® + > =11 + 161
j=1

and
k

I, v) — I(ug,v0) + Y Ino(2), ) = c.
j=1

Since I (ug,vo) > 0, then &k =1 and zé, C& cannot change of the sign. Hence,
1 N2
¢ = I(uo,v0) + Loo(28,G8) = I(up,v0) + 757

From definition of Sk, I'(ug, vo)(up,vg) = 0 and

1
I(ug,v9) = — K (ug,vo)dz,
N JrnN
we have,
NSN/Q < I(ug,vo) + NSN/2 ,
which contradicts the fact that ¢ € (& SN/ 22 SN/ 2) O

Corollary 1.2.5. Let (up,v,) C DY2(RY) x DY2(RY) be a (PS). sequence for I with
ce ( S’N/2, (kH) SN/2), where k € N. Then, the weak limit (ug,vo) of (un,vy) is not the
tmmal one.

Proof. Suppose, by contradiction, that ug, vy = 0. Since ¢ > 0, then u,, v, - 0in DH2(RN).
From Theorem 1.2.2, up to subsequence, we get

k k
lanl® + lloall® = Nuoll® + ool + D[z + IG1% = D U= 17 + IG5 11%]
i=1 J=1
and
k . k . (k + 1) N/2
I(Umvn)_>I(u07UO)+ZIoo(Z(J)7Cé):Zjoo(z{)»((j)) =c2> N SK )
j=1 j=1
. . . k oN/2 (k+1) oN/2
which a contradiction with ¢ € (§S'", %S %) O

From now on we consider the functional f: DV2(RY) x D2(RV) — R given by

flu,v) = / |Vul|?dz + / |Vo|?dz —|—/ a(x)u’dx —l—/ b(z)vida
RN RN RN RN
and the manifold M c DV2(RY) x DY2(RY) given by

M= {(u,v) € DY2RY) x DV2RYN): | K(u,v)dz = 1}.

RN

The next results are direct consequence of the above corollaries.
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Lemma 1.2.6. Let (up,v,) C M be a sequence that satisfies
flup,vn) = ¢ and  f'|pm(un, vn) — 0.

Then, the sequence (wn, z,) C DY2(RN), where (wy, z,) = (N =2/ 4y, cN=2/%y,) | satis-
fies the following limits

N/2

1
Hwy, zp) — N and I'(wy, 2,) — 0.

Lemma 1.2.7. Suppose that there are a sequence (un,v,) C M and ¢ € (Sk,2%/NSk)
such that

f(unavn) —c and f,|/\/l(umvn) — 0.

Then, up to a subsequence, u, — u, v, — v in DY2(RN), for some u,v € DV2(RN).

Corollary 1.2.8. Suppose that there are a sequence (un,v,) C M and ¢ € (S, 2%V Sk)
such that
fun,vn) = ¢ and  f'(up,vy) — 0.

1
Then I has a critical point (ug,vo) € DV2(RYN) x DV2(RYN) with I(ug,vo) = NCN/Q.

1.3 Existence of positive solution to (5;)
Now we recall some properties on the function ®5, given by in (1.0.1). Note that

(54, Psy) €5 = {(u,v) e DY2(RYN) x DY2(RN); u, v > o}. (1.3.1)
Moreover, making a change of variable we can prove that

N
®;5, € LIRY) for g€ <N_2 2*}, V6 >0 and VyeRY. (1.3.2)

The proof of next result can be seen in [1, Lemma 4].
Lemma 1.3.1. For each y € RN, we have

() |®syll 100wy — 0 when § — +oo,
. N .
(i1) |®Psylqg — 0 when 6 =0, Vg€ <NQ’2 >’

N
(iii) |®s5y|q — +00 when § — 400, Vg € (]\72’2*)

The proof of next result can be seen in [1, Lemma 5].

Lemma 1.3.2. For each € > 0, we have

/ |V®s0|*°dz — 0 when §— 0.
RN\ B.(0)
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1.3.1 Technical Lemmas

N
Lemma 1.3.3. Suppose that a,b € LY(RY), Vq € [p1,pa], where 1 < p; < 5 < po with
p2 < 3 if N = 3. Then, for each ¢ > 0, there are § = §(¢) > 0 and 6 = d(¢) > 0 such that

sup f(Soq)é,ya toq)é,y) < SK + ¢, (S (O7é] U [& OO)

yERN
. N N I . .
Proof. Consider y € RY, ¢ € 5 P2 and t € (1,400) with — + ;= 1. Making a direct
q
calculations we have
<2t < 2. (1.3.3)

N -2

N
Since ®5;, € LYRY),Vd € N22> we get | D552 € LY(RY). Then, using Holder

inequality and change of variable, we have

[ a@)@ssPde < fall@sols vy € BY
R

and

| bl ®side < Bl @sols vy € RY
R

From item (7ii) of Lemma 1.3.1, given € > 0, there exists = d(¢) > 0 such that

sup f(50Psy,toPsy) < Sk + = < Sk +e, V§e(0,9].
yGRN 2

N 1 1
Suppose that ¢ € {pl, 2> with t € (1, +00) and - + ;= 1. Note that 2t —2* > 0 and
q
for 0 > 1,

|®5,| € L®(RY) (1.3.4)

and |®;,]% € LYRY). Then, |®;,> € LY(RY). Using Holder inequality with ¢ and ¢, we
get

1/t
2 [ awles,Par < szra\q( / |<I>5,or2tdz)
RN RN

1/t
= aly( [ 1Bsalsof 2 :)

1t
< slalg| sl Vt(/RN |50/ dz> < splalg| @50l

< 2lal 22N/ gy e R,

Then, given € > 0, there is § = d(¢) > 1 such that

(2-N)/2)/2)((2t-27)/1) € .
5 < 2sZjal Tt Vo € [0,00).
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Arguing in the same way, we have
2 / b(2)|®sy[Pde < t2[b|oc® )/ G(E=N/DE=20/0 gy € RN,
RN ’ N
Then
Fso®ayrtoBs,) = S+ 52 / o(2)| @5,y [2de + £ / ()| B, |2d
RN RN

< S+s? sup/ a(z)|®s,2dw + t2 sup/ b(z)|®s, | dx
yeRN JRN yeRN JRN

< SK+§<SK+5, vy e RY and V4 € [5,00).

Lemma 1.3.4. Suppose that (a,b)s is true. Then,

sup  f(50Ps,y, toPsy) < 22/INg,..
yeRN
0€(0,+00)

Proof. Using Holder inequality with N/2 and N/(N — 2), we get
f(80®57y, tO(I)(;’y) < Sk + S(])V’a‘LN/Z(RN) + tév‘b‘LN/2(RN)-
From (a,b)s we conclude

sup  f(50®Psy, toPsy) < S + Sk (22N — 1) = 22N g
N
5€(0,00)

Consider the function
o, if |z <1
£(@) _{ 1, if |z[>1

and define o : DV2(RY) x DV2(RY) — RN+ by

s2+ 13 x 2 2
o(u,v) = L e@) ) IVl + [VolPldz = (B(u, v), ~(u,0),
Sk RN |=7C’
where ) )
Blu,v) = S 10 / T (Vuf? + [Vol?)de
SK RN |IL“
and ) )
Yy v) = S 10 / £(@)|Vul? + [Vol?)da.
Sk RN

1
Lemma 1.3.5. If |y| > 3 then

B(Psy, Psy) = % +0s5(1) when §— 0.
Yy
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Proof. Given € > 0, from Lemma 1.3.2, there is 6 > 0 such that

/ Vs, [ 2dr = / [V®s0[2dz < e, V6 € (0,0).
RN\ Be (y) RN\ B, (0)

Then,
82412 T 82412
'ﬂ(@g,y,@57y) . 0/ —|V<I>5,y 2dx < 0/ |V<I>57y|2dm
Sk JB.(y) |7 Sk JRM\B.(y)
< & Vie(0,9). (1.3.5)
Note that
2 4 42 .
Yy 24 / LV, 2dx| < 4e + e = Ce, V6 € (0,5). (1.3.6)
|y| Sk JB.@) |7
From (1.3.5) and (1.3.6), we have
s+ t2 z
’B((I)&y’q)&y) - y’ = |B(Psy: Poy) — 0/ *N(I)&y‘de
|yl Sk JB. |7l
2 4 42
4 So+ 0/ w[V@g,y‘de—y'
s2 4 t2 z
< ‘/8((1)5,313 <I>(5,y) - 0 / 7’vq)5,y|2d$
Sk JB. |7l
2 42
+ So+t0 / $|V(I>57y’2dl'—y‘
Sk JB.(y) |7 |yl
< e+Ce
= Ke, Yé6e(0,0).

O

N
Lemma 1.3.6. Suppose that a,b € LY(RY), Vq € [p1,pa], where 1 < p; < 5 < po with
p2 < 3 if N =3. Then, for every 6 > 0, we have

lim f(soq)é,yy toq)é,y) = Sk.

ly|—o0

Proof. Since

f(soq)57y,toq)57y)) =Sk + Sg/

a(2)| s, 2 + 12 / b(z)| @, [2da,
]RN N

R

we need to prove that

lim a(z)|®s,*dr =0, V5 >0 (1.3.7)

ly|—00 JRN

and

lim b(z)|®s,2dr =0, V&> 0. (1.3.8)

ly| =00 JRN

Note that given € > 0, there is kg > 0 such that

2/N
(/ a(ﬂz)N/2d3:) <e, Vp>ko.
RN\B,(0)
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and

1/2* o\
</ |(I)57y|2 dw) = </ |(I)570|2 dz) <e, Vp> ko (1.3.9)
RN\ B, (y) RN\ B, (0)

For p fixed, consider
ko < 2p < |y (1.3.10)
and note that

B,(0) N B,(y) = 0. (1.3.11)

Using Holder inequality with N/2 and N/(N — 2), we get

2/N (N—2)/N
/ a(z)| sy 2de < < / N/de> < / @5, |2 dx>
RN RN\ (B, (0)UB,(y)) RN\(B,(0)UB,(y))
2/N (N=2)/N
+ ( N/Qdm> (/ |®s., |2 dw)
B,(0) B, (0)
2/N (N—-2)/N
+ ( N/2dx) ( / @5, dm)
By (y) By (y)
2/N (N-2)/N
< < N/de> ( |®57y\2 dx)
RN\B,(0) RN\ B, (y)
2/N (N—2)/N
+ ( N/QdaU) ( |<I>57y|2 dx)
RN\ B, (
2/N (N—2)/N
- ( N/de> ( |c1>5,y|2 dx)
RN\ B, (0) RN
(o)
RN\B, (o

< e’ + a|nje® + e
Arguing of the same way for the term (1.3.8), the proof is over. O

Now we define the set

= {(u,v) € M:a(u,v) = <0;>}

and note that from Lemma 1.3.2 and Lemma 1.3.1, item (¢), there is 4; > 0 such that
(@5170,(135170) €.

Lemma 1.3.7. The number ¢y = ( in)f f(u,v) satisfies the inequality co > Sk .
[RDISN

Proof. Since & C M, we have
Sk < cp.

Suppose, by contradiction, that Sx = ¢y. By Ekeland variational principle [31], there
exists (un,v,) C DV2(RY) x DY2(RN) such that

1
K(up,vp)de =1, o(up,vy) — <O, > (1.3.12)

RN 2
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and

f(un,vn) = Sks f'Im(un,vn) = 0. (1.3.13)

Then, (u,,v,) is bounded in DV2(RY) x D2(RY) and, up to a subsequence, u, — ug,
vp — vp in DYH2(RN).

If wy, = SW=2/4y, 2z, = SN2/ and wyg = SW=2/4y, 2o = SN=2/4y,, we have
that w, — wo, 2, — 2o in DY2(RY). Moreover, from (1.3.13) and Lemma 1.2.6, we get

I(wy, zn) — %Sgﬁ and I’ (wy, 2p) — 0.
We are going to show that (wo, z0) = (0,0). Note that
Up = Uy, Up = Ug 1D Dl’Q(RN)7 (1.3.14)
since otherwise, (ug,vg) € M implies ug # 0, vg # 0. Then,

/\VUOde—i-/ \Vvo|?da
RN RN

IR —/ \Vu()]de—i-/ \Vo|?dx
RN RN
(/ K(uo,vo)dx>
RN

< / \Vu()]?dx—l—/ |Vvo|2d:::+/ a(a:)]uo|2d:::+/ b(x)|vo|?dz = Sk,
RN RN RN RN

which is an absurd. Hence, w,, - wo, 2, - 2o in DY2(RY) and, since (wy, 2,) is a (PS).
sequence for I, by Theorem 1.2.2 we obtain that

k
o 1 no
I(wn, 2n) — I(wo, 20) + leoo(zg, ) = NSK/ .
]:
Since I(’X)(zé, C(j)) = 0, we have that
I(’u}o,zo) = 0, (1.3.15)
k=1, (1.3.16)
1 1
2.t >0, (1.3.17)
1
I(wo, 20) = N K (wo, z0)dz
RN

and from (1.3.15), we conclude that wy = 0 and 29 = 0. Then, (wy, 2,) is a (P.S). sequence
for I such that w, — 0, z, — 0 and w, - 0, z, - 0.

Note that / a(x)|wy|*dz = 0,(1) and / b(x)|zn|*dz = 0,(1). Then,
RN RN

N RN RN
= Ioo(vn) + 0n(1) (1.3.18)

and

||Ic,>o(wmzn)HD’ < ||I,(wmzn)||D’ + On(l)- (1-3'19)
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From (1.3.18) and (1.3.19) we conclude that (ws, z,) is a (PS). sequence for I, and
by Lemma 1.2.1, there are sequences (R,) C R, (z,) C RY, (2},¢}) nontrivial solution of
(S) and (@, ¥,,) a (PS). sequence for I, such that

wy(z) = Pp(w) R7(1N 2)/223(Rn(x — ) + on(1)

" _
() = Up(w)+ RVD2 (R, (x — z,)) + 0,(1). (1.3.20)

Note that if we define

(Aﬁn(x) = RgzNiQ)/QZ(I) (Bn(z — zp)), Ejn@) = RgN72)/2<&(Rn(x — Zp)),

making a change of variable, we have

L (B0, 0,) (0, 9) = I (28, 6 (@ny ) = 0, V(p,9) € DY2(RYN) x DY?(RY), VneN,

i.e, (B, U,) a solution of (Ss) , for all n € N.
Moreover, from the definition of (®,,¥,) and by (1.3.17), we get

N _ 5 (N-2)/2
n =V, — ___n .
Pn(e) = Tn(e) c(éz+ \x—ynP)

By (1.3.20), we obtain
un () = EI\)n(x) + @5, (@) + 0n(1), va(z) = \Tln(x) + D5,y (%) + 0n(1)

where
1 1

() = W‘Pn(fﬂ), Uy (r) = W‘I’n(@-
K K

_ Using (1.3.16), we derive that ®,, — 0, ¥;, — 0 in DY2(RY), which implies that o, — 0,
¥, — 0in DY2(RY). From (1.3.12) we have

(O, ;) tou(l) = alun,vn) = APu(@) + By, (2), Un(2) + sy, () + 0(1)
= a(@gmyn,‘bén,yn)

which implies
(2) B(¢6n79n7 (I)(Snayn) —0

and
1

(1) (@5, P5,) = -
Passing to a subsequence, one of these possibilities can occur.
(a) 0, — 400 when n — +4o0;

(b) 6, — 6 # 0 when n — +00;
(¢) 4, — 0 and y, — § when n — +o0 with |g| < 3

1
(d) 6, — 0 when n — +o0 and |y,| > 5 for n sufficient large.
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Suppose that (a) is true. Then,

s2+ 2
A ®s0) = 1= 280 [ vy, P,
K B1(0)

which implies by Lemma 1.3.1,

2 t2 2 t2
‘ ((I)(Sn:yn) 1’ = Sosr—i_o/ ’V(I)(Sn:ynPdI. S SO‘S—’_O/ ‘v®5n,yn|2dfv = OTL(]‘>7
K B1(0) K RN

which contradicts (i7).
Suppose that (b) is true. In this case we can suppose that |y,| — +o0o, because if
Yn — Y, we can prove that

s

n,Yn

— ®; ., in DV(RY),

Since @y, U,, — 0 in DY2(RY) and u, = O, + 5, ., T 0n(1), v, = U, + D5,y T 0n(1),
we have that (un,v,) converges in DV2(RY) x DV2(RY) but this is a contradiction with

(1.3.14).

Then,

s, +t2 32 + 2
’Y((b(snayn’(pénvyn) / 5 |V(D5n7yn| d OS 0/ |v(p5n7yn|2d$
K RN\B1(0)
2
= 1- 5+ 0/ IV®s, ol*da. (1.3.21)
Sk JBi(~ya)

From Lebesgue Theorem we can prove that

/ \V®s, o2dz — 0
Bi(—yn)

and from (1.3.21), we obtain
Y(Ps, yns Poryn) = 1 when n — +oo,

which is a contradiction with (i7).
Suppose that (c) is true. We have that

52 +t2 32+t2
7(¢6n»yn7®5nayn) = / 5 |v®6n7yn| d OS O/ |v@6n7yn|2d$
K RN\ B;(0)
2 2 2 2
t t
_ %t [ ges  2de — ot VD5 o|2dz
S n,Yn S ny
K RN K Bi(—yn)
2 t2
= 1—80+0/ Vs, o|2dz. (1.3.22)
Sk JBi(~yn)

Note that using Lebesgue Theorem again, we can prove that

2 2
to
lim S+/ |V®s, o2dz = 1.
n—+oo Sk Bi(—yn ’

Then, by (1.3.22) we have that

W(q)ényyn’ @5n7yn) — 07
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which is a contradiction with (i7).

1
Suppose that (d) is true. Since |b,| > B for n large, then b, - 0 in RY. From Lemma
1.3.5, we get
Y
5((b6nvyn’q)5n7yn) = . + On(l)
[yl

Hence,
ﬁ((b(snvyn’ (P(Snvyn) - 07

which is a contradiction with (7). The, we conclude that Sk < ¢ and the proof is over. [

Lemma 1.3.8. There is 61 € (0,1/2) such that

Sk +co

vy € RV
2 b ye )

(a) f(soq>(51,ya th)(ﬁ,y) <

1 1
(b) v( sy, Ps,y) < 3 Yy € RY such that |y| < 5
Y 1 N 1
(c) |B(®sy,y, Ps, ) — m < T Yy € RY such that |y| > 3

-5
Proof. From Lemma 1.3.3, we can choose ¢ = « 5 0 and d2 < min{d,1/2} and

conclude that for all y € RV

co— Sk Sk +co

f(SOq)é,yath)é,y) < sup f(Soq)gjy,toq)é’y) < Sk + 5 5 (1323)
yERN
Now by definition of £, we have
82413
Y Psy, ®sy) =1 - =5 0/ [V®50[*d2.
K JBi(-y)
From Lebesgue Theorem
2 4 42
80S+ 0 / ’v(I)(;’O‘QdZ =1
K JBi(-y)
and the proof of this item is over.
Note that from Lemma 1.3.5, we conclude that
y N 1
B(®s,y, Psy) = 7 +o0s5(1) when 0 —0, VYyeR"™; |yl > 3
and the proof is finished. O

Lemma 1.3.9. There is 6o > 1 such that

Sk + ¢

vy € RN
2 ) ye )

(a) f(50Ps,,y, toPs,y) <

1
(b) 7(©52,y7¢52,y) > 5, Vy c RN
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co — Sk

Proof. From Lemma 1.3.3, we can choose ¢ = > 0 and 3 > max{d, 1} we have

co — Sk Sk + co
f(50Psy,t0Psy) < su;l)V f(50Ps5y,t0Ps,y) < Sk + 5 = 5 Yy € RN(1.3.24)
yeR

Moreover, from definition of £ and Lemma 1.3.1, we can conclude that
Y(Psy, Psy) =1 when 6§ — 400

and the proof is over. O

Lemma 1.3.10. There is R > 0 such that

Sk +co
2

(0) (B(®sy, Psy)|y))ry >0 Yy; |yl > R and 6 € [01,02].

(a) f(s0Psy,toPs,y) < , Yy; |yl > R and 6 € [61,02],

Proof. The first item follows by Lemma 1.3.3 and the choose of € = =5 > (0. The second

item follows of the definition of 3 and ®;, and adaptations the same arguments explored
in [6] O

Consider the set
V ={(y,6) € R x (0,00);]y| <R and & € (51,62)},

where 01, d2 and R are given by Lemmas 1.3.8, 1.3.9 and 1.3.10, respectively.
Let Q : RY x (0, +00) — D"2(RY) be the continuous function given by

Q(y75) = (p5,y'

Consider now the sets

0= {(Q(y7 5)7@(:%6))’ (y75) € V}’

W= {h € C(ZNM);h(u,v) = (u,v),Y(u,v) € SN M; f(sot,tov) < SK;CO}

and

r={AcCcEXEnNM;A=h(0©),hecH}
Note that © C SN M, © = Q(V) x Q(V) is compact and H # (), because the identity

function is in H.

Lemma 1.3.11. Let F:V — RNT! be a function given by

82 2 x
F:6) = (00 (@QQ)w:0) = 2% [ (L e(a)) 190, P

m7

Then,
d(F,V,(0,1/2)) = 1.
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Proof. Let
Z:[0,1] x YV - RNV*!

be the homotopy given by
Z(tv (ya 6)) = tf(yv 6) + (1 - t)IV(Zﬁ 5)7

where [5; is the identity operator. Using lemma 1.3.8 and Lemma 1.3.9, we can show that

(0,1/2) ¢ Z([0,1] x (9V)), i.e,
18(®5,, Bs,) + (1 — )y £0, Ve [0,1] and ¥(y,8) € AV (1.3.25)
or
14(®s5.y B5,) + (1 — 1)5 # % ¥t e [0,1] and Y(y,6) € OV, (1.3.26)

Hence (0,1/2) ¢ Z([0,1]x9V) where we conclude that d(F,V, (0,1/2)), d(iy;, V, (0,1/2))
and d(Z(t,-),V,(0,1/2)) are well defined and

d(F,V,(0,1/2)) = d(iy;, V, (0,1/2)) = 1.

Lemma 1.3.12. If A€ T, then ANS # 0.
Proof. Tt is sufficient to prove that for all h € H, there exists (yo,d0) € V such that

1

(00 H 0 (@2 Q)) (w0, 60) = (o, 2).

Given h € H, let
fh : V — RN+1

be the continuous function given by

fh(yv 5) - (Oé oho (Qa Q))(y? 5)
We are going to show that Fj, = F in dV. Note that

oy =11, Ullp, Ulls, (1.3.27)

where
Iy = {(y,61); ly| < R},
I = {(y,02); [y| < R}

and
I3 = {(y,9); |yl = R and ¢ € [01,02]}.

If (y,0) € Iy, then (y,0) = (y,01) and by item (a) from Lemma 1.3.8, we have

f(SOQ(ya 5)7 tOQ(ya 5)) = f(SOQ(yv 51), tOQ(yv 51)) = f(soq)él,y? th)lSl,y)

SK; D y,8) e 10 (1.3.28)

If (y,0) € Ilg, then (y,d) = (y,d2) and by item(a) from Lemma 1.3.9, we get
f($0Q(y,0),toQ(y,0)) = [f(50Q(y,2),t0Q(y,02)) = [(50Ps,,y, toPss,y)

SK; D Yy, s) € IL. (1.3.29)
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If (y,d) € I3, then |y| = R and § € [d1,d2] and by item (a) from Lemma 1.3.10, we

obtain

f(80Q(Y,0),tQ(y,6)) = [f(50Psy,t0Psy)

LD iy, 5) € Ty

From (1.3.27), (1.3.28), (1.3.29) and (1.3.30) we conclude that

Sk + ¢

F(50Q(y,0),toQ(y, 0)) < —— V(y,9) € V.
Hence,
Fu(y,6) = (aoho(Q,Q))(y,d) = (aoh)(Qy,d),Q(y,9))
= a(h((Q(y,9),RQ(y,0)))) = a((Q(y, ), Q(y,9)))
= (OéO(Q,Q))( Y, ) (y75)a V(y,é) ov

Since (0,1/2) ¢ F(0V), we have

d(F,V,(0,1/2)) = d(Fp,V, (0,1/2)).

From Lemma 1.3.11, we get
d(Fn,V,(0,1/2)) = d(F,V,(0,1/2)) =

and there exists (yo,do) € V such that

Filan:80) = (a0 1 (@) a0 b0) = (0.5

and the proof is over.

1.3.2 Proof of the main theorem

Consider the number

= inf
°T A s )

and for each ¢ € R,
fq = {(U,U) € EﬂM;f(U,U) < q}'

We are going to show that

Sk <c<22Ng.

Note that
= inf ma < ma < s Ds ., oD <
e R R A
5€(0,+00)

On the other hand, from Lemma 1.3.12, we have that
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co = inf f(u,v) <c= inf max f(s,u,t,v)

ueS Ael’ uc A

< sup f(80®sy, te®s,) < 22N Sk (1.3.32)
yeRN
6€(0,400)

From Lemma 1.3.7, we have that Sk < ¢¢ and the proof of (1.3.31) is over.
Using the definition of ¢, there exists (uy,v,) C XN M such that

[ (up,vy) = c. (1.3.33)
Suppose, by contradiction, that

1 (un, vn) = 0.
Then, there exists (unj, vnj) C (tn,vpn) such that

| /| m(tng, vng)|l« > C >0, Vje€N.

Using a Deformation Lemma [31], there exists a continuous application 7 : [0,1] x (XN
M) = (XN M), g9 > 0 such that

(1) 1(0,u,v) = (u,v);
(2) n(t,u,v) = (u,v), Y(u,v) € froU{(ZNM)\ f0}, vt € [0,1];
(38) n(1, fH) ot

From the definition of ¢, there exists A € I such that

¢c< max f(u,v) <c+ 8—0,
(u,w)eA 2

where
Ac . (1.3.34)
Since A € T', we have A C (£ N M) and there exists h € # such that
h(O) = A. (1.3.35)
From the definition of 1, we have
n(1,A) C (ZNM). (1.3.36)

Let h: (2N M) — (N0 M) be the function given by h(u,v) = n(1, h(u,v)) and note
that h € C(X N M). We are going to show that

fc+50 \fcfao C fZQS/NS \ f(SJFCO)/Q. (1337)

Considering (u,v) € fet0\ f¢¢0 we have

c—eo < flu,v) <c+ep
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and by (1.3.31), for g¢ sufficiently small, we get

c—eo < f(u,v) < c+eo < 22NV Sk (1.3.38)

Now from Lemma 1.3.7 and (1.3.32), we obtain

S -
K;CO <CQ—€0<C—€0<22/NSK
and
S
K;—CO <cp—eo<c—ep< flu,v), (1.3.39)

which implies
(u,v) € f7750 fSictr?,

Consider (u,v) € (¥ N M) such that

Flu,v) < SK; @, (1.3.40)
Then, -
h(u,v) = (u,v)

and from (1.3.40), we have that (u,v) ¢ f22/NSK \ f8Kx+0)/2 and by (1.3.37), we get

(u,0) ¢ foH0 0 oo,

Then,
(u,0) € fOU{(ENAM)\ foreo}

and from Deformation Lemma, we obtain
n(Lu,v) = (u,v).

Hence, R B
h(u,v) =n(1, h(u,v)) =n(l,u,v) = (u,v)

where we conclude that i € #, which implies

and from (1.3.35), we conclude that

h(©) = (1, h(0)) = n(1, A). (1.3.41)

From (1.3.36), we have 7(1, A) € I, which implies

c = inf max f(u,v) < max U, V). 1.3.42
om0 < max f(0,0) (1342

From Deformation Lemma again and by (1.3.34), we get
n(1,A) C (1, fr %) € fo

Then,
£ ~

flu,v) <ec-— EO’ Y(u,v) € n(1, A),
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which implies

max_ f(u,v) <c— €
uen(1,4) 2
and using (1.3.42), we conclude that
€0

c< max f(uw)<c— 2,
uen(1,A4) 2

which is an absurd.
Then,

f(unavn) —c and f,‘./\/l(una 'Un) —0
and from Lemma 1.2.7, up to a subsequence, u, — g, v, — Ug in DL2(RN), which implies
that wg,vg > 0,

f(io,v0) = ¢ and f'| pm(Wo, %o) =0
and from(1.3.31)

Sk < f(ﬂo,ﬁo) < 22/NSK.

The positivity of ug and vy is a consequence of the classical maximum principle.
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Chapter 2

Existence of positive solution for a
critical system in Rf

In this chapter we will deal with the following system

1
—Au+ a(x)u = 2—*Ku(u,v) in Rf,

—Av + b(z)v = 2—*Kv(u,v) in RY,

u>0,v>0in RY,
ou  Ov
—=_—=0 ORY .
ov Ov on +

(S2)

Let R2 :=[0,00) x [0,00) and set 2* := 2N/(N — 2). We state our main hypothesis on
the function K € C?(R%,R) as follows.

(Kp) K is 2*-homogeneous, that is,
K(As,\t) = \* K(s,t) for each A >0, (s,t) € R%.

(K1) there exists ¢; > 0 such that
Ks(5,8)] + | Ki(s,8)] < 1 (52"—1 n tT‘—l) for each (s, t) € R2.

K2) K(s,t) >0 for each s,t > 0;

)

Ks) VK(0,1) = VK(1,0) = (0,0);

Ki) Ks(s,t),Ki(s,t) >0 for each (s,t) € RZ.
)

(
(
(
(Ks5) the 1-homogeneous function G : R2 — R given by G(s* ,t¥") := K(s,t) is concave.

In the sequel, we denote by Sk and X, respectively,

Sk = inf {/ |Vaul? + |Vol?dz; (u,v) € DY2(RY) x DVAH(RY), K(u,v)dx = 1}
RN RN
(2.0.1)
and
Y = inf {/ \Vul? + |Vo2dz; (u,v) € DY*(RY) x DY(RY), K(u,v)dx = 1}
RY RY
(2.0.2)

The hypotheses on the functions a,b: RY — R are given by:
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(a,b)1 The functions a(z) > 0 and b(z) > 0, for all x € RY.
(a,b)2 a,be LN/Z(Rﬁ) and |a’LN/2(R$) # 0 and |b|LN/2(]R§) # 0.
Using the above notation we are able to state our main result.
Theorem 2.0.1. Assume (a,b); and (a,b)2, (Ko) — (Ks) and
|CL‘LN/2(R$) + ’b|LN/2(R$) < Sk —Yk. (2.0.3)
Then, system (S2) has a positive solution (u,v) € DM?(RY) x DM2(RY).

We denote by J : DV2(RY) x DL2(RY) — R the functional given by

J(u,0) = /RN Vul? + [Vol? + a(@)lul? + b(a) o d

+

and by M the manifold

M = {(u,v) € DY(RY) x D2 (RY);

N
R+

K(u,v)dx = 1}.

The solutions of (S3) correspond to the positive functions that are critical points of the
energy functional J constrained on the manifold M.

Let us denote by S the following number

/ |Vu|*dx
S = inf RY

ueDL2(RN) u0 . 2/27"
</ ]u\2 dm)
RN

It is well known (see for example [12,27]) that all the minimizers for S are of the type

J

(N-2)/2
(M-W) , X,y S RN and ¢ > 0, (204)

Py y(z) = C<
Moreover, it satisfies for a suitable choice of ¢

@54 =S and |®s,

g = 1.

By [13, Lemma 3], there exist s,,t, > 0 such that Sk is attained by (s5,Psy,toPs,y)-
Moreover,
MgSKk =8, (2.0.5)
where Mg = max K(s,8)%? = K(so,t,)%%".
s2442=1
If we consider the definition and properties of Sk, we can check that Y = 272N Sy
and the constant X is achieved by the function (soti)w, toél,g) where

Dy o(x) = 2Y% @y o(2), Ve RY

and all the minimizers for X are of the type (soégvy, to(i)(g’y) where

@5,y(x) = a*NQZCf)LO <xgy> , 6>0, and y € 8Rf.
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2.1 Preliminaries
We notice that we can use the homogeneity condition (Kp) to conclude that
1 1
K(s,t) = 2—*8K5(s,t) + §th(s,t),

since by (Kp), we have

d d [ o .
—K = — (\K 2* = 2*\T K 2.1.1
SEQs M) = o (WK (s,1)) 20 = 28 T K (s, 1), (2.1.1)
and
%K(AS,)\t) = sKs(As, \t) + tKy(\s, At)
= AT UK (s, M) 4+ tA% LK (As, At) (2.1.2)

Then, by equations (2.1.1) and (2.1.2) we got
2K (s,t) = sKs(s,t) + tK(s,t).
We started showing a result of non-existence.
Proposition 2.1.1. Assume that (a,b); - (a,b)s holds and consider
Y =inf {J(u,v); (u,v) e M}. (2.1.3)
Then, ¥} = X and the minimization problem (2.1.3) has no solution.

Proof. Since a(z) > 0 and b(z) > 0 in RY, we have ©* > . To show that the equality
holds, let us consider the sequence

(Ve(), @e(2)) = &(|x]) (s0Pe0(2), toPeo())

where £ € C*°(0,+00) is a non increasing cut-off such that

€t = {1, if tel0,1/2],

0, if ¢>1.
We have
/ Vi |?de = / |EV 500 + 50D 0 VE|dx < / V0@ o|2dx
RY RY RY
1 1
2 2
+ 2 / |50Pc 0&|?|VEPda / |Vso®col|?dr | da
Rf\B%(O) Rf\B%(O)

+ / \V§y2|soq>e,0\2da;§/ |Viso®eo|*dx
RY RY

1

+ C / @ o|%dx / VO, o]2dz | da
Rﬁ\B% (0) RI\B% (0)

+ c/ 1, [2da.
Y
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By properties of ®o we have |®gla — 0 and

/ |Vs0®c o2dz — 0,
RY\B (0)

as ¢ — 0. Then

/ |V¢€|2d:n§/ |V50<I>670|2+0€(1).
RY RN

+
Similarly
/ ywﬂmg/ |Vto®e ol + 0c(1).
RY RY
Then,
1
[ 00 41V6Lar < [ (950l + Vool +01) = 3+ o)
RY RY 2
< Tk +o(1). (2.1.4)

On the other hand,
[a@ui@ar = [ a@i@des [ e
RY RYNB,(0) R\ B, (0)
2/N
Ve 2 o / a(z)|N2dz
| ’Lz RY) RfﬂBP(O)‘ ( )‘

2/2*
+ lalpnrzgy) (/RN\B o |¢€2($)|2*dfv) :
+\bp

IN

Now note that

lim [e(x) ¥ dx =0
20 JRY\B,(0)

and
U [4)e| e gy = 1.

Then, for all p > 0, we have

2/N
/ a(ww?(x)dxs(/ |a<x>|N/2dx> Tod1).
RY RYNB,(0)

Since a € LN/2(RY), we get
2/N
lim / la(@)|M2dz) =0
p=0 \ JRYNB,(0)

lim a(z)?(x)dz = 0. (2.1.5)

e—0 Rf

and then
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Similarly,

lim b(x)¢%(x)dz = 0. (2.1.6)

e—0 Rf
Therefore, from (2.1.4), (2.1.5) and (2.1.6), we obtain
2*K < h_rf(l) J<we(x)a ¢e(x)> < 2K7

and we conclude ¥} = Y.

Now, suppose that the minimization problem (2.1.3) has a solution (u,v) and without
loss of generality that u,v > 0. Let us denote by u*, v*, a* and b* the extension by reflection
to all of RN of u, v, a and b, respectively. Then

/ (VW2 + [Vo* 2 + a2 + b*[u* [2)de
RN

2
< K(u*,v*)d:n) ’
RN

Since a*,b* > 0 and by definition of Sx we have

= Sk.

/ HVU*P—FIV’U*‘Q]dl' / [\Vu*]Q—i—]Vv*\Q—i—a*\u*]Q—i—b*]u*\z]dx
S < T o < ST 2 = Sk,

5% 5%
< K(u*, v*)dm) ( K(u*, v*)dx)
RN RN

which implies that / a*lu*Pdr = / b*|v*|Pdz = 0 and (u*,v*) = (50Psy, toPs,y), for
RN RN

some § > 0 and y € RY. Thus, using the assumptions on a and b and the fact that ®5,, >0
for all € RN, we deduce

0= / a*[u*|? + b*|v*|Pde = / a*|so®sy|* + b*[to®s, [2dx > 0,
RN RN

which is an absurd. O

Lemma 2.1.2. Let a and b be functions verifying (a,b)1 - (a,b)2. If (u,v) is a critical
point of J on M such that J(u,v) < Sk, then u and v do not change sign.
Proof. Assume that u = v +u~, v = v" + v~ with ut,u™ # 0 or v",v~ # 0. By
Proposition 2.1.1,

2

2%

Yk K (u*, vF)de < / (|Vu[? + | Vo] + au™|* + bjo™|?]da
RY RY

and since (u,v) is a critical point of J on M,

/ (VU2 + (Vo] + alut 2 + b Pde < J(u,0) | K(u®,v)dz. (2.1.7)
RY RY
Then N/
by
K(ui,vi)dx > < K ) ,
Rf J(’LL, U)
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which, considering that fRN K(u,v)dx =1, gives
+

J(u,v) > 22/NEK = Sk,
which contradicts our assumption. O

The next proposition guarantees us the existence of an interval where the functional J
verifies the Palais-Smale conditions on M.

Proposition 2.1.3. Assume that a and b satisfies (a,b)1 - (a,b)2 and let (up,v,) C M be
a sequence verifying
J(Un,vn) = ¢ and  J' | pm(tn,vn) — 0,

with ¢ € (Sk,Sk). Then (un,v,) has a strongly convergent subsequence in DV(RY) x
DU2(RY).

Proof. If (u},v}), a* and b* denote the functions obtained by (uy,,v,), a and b extended to
RY by reflection, we have that u*,v* € DY2(RY), Vn € N,

n»-n
Moreover, using the definition of the reflection, we obtain

1 1
/RN K (Ww;;,v;;)) do=1, o /R VU (V0P + a7 2 + b e — 22
and

/ [V Vu+ Vi Vo+a*u v+b v vlde+ (22N +0,(1)) Ky (ul, v )u+ K, (u), v} )vde = o,(1),
RN RN

for all u,v € DL2(RY).
Since ¢ € (X, Sk) we have

22N e e 22Ny, 22N Sp) = (Sk, 22N Sk)

and from [14, Lemma 3.3], (u/2'/2",v% /2'/2") has a strongly convergent subsequence in D*2(RY) x
D'2(RM), and thus (un,v,) has a strongly convergent subsequence in D*?(RY) x DL2(RY). O

Let 1T : Rf — BRf denote the projection
H(.%'l, LYy eeny .TN) = (3}1,1}2, ...,.T,'N_l,()).

We consider the functions g : DY2(RY) x DV2(RY) — ORY and v : DM2(RY) x D12(RY) —

R defined by
/ MK(U,U)CZ&:
ooy 1+ ()]

Blu,v) =

/N
R-O—

K(u,v)dx
RY
and
()

e 7Y

K(u,v)

Y(u,v) =
K(u,v)dz
Yy
For all p > 0 and y € RV, let us denote by A,(y) the following set:

Ap(y) = {z € RY; [I(z) — I(y)| < p} .
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Lemma 2.1.4. Let (un,vy,) be a sequence in DV2(RY) x DV2(RY) verifying

n—-+oo

1
(Un,vp) C M, lim |Vun|2 + ]an|2d:13 =Yk, Bup,vy)=0 and y(un,vy) = 3
RY

Then, up to subsequences, there are sequences (0,) C Ry, (yn) C 8Rf and wy,C, C
D2 (RY) such that

(i) wn = ®s, 4, + Wn, vy = s, 4 + Cn
(ii) (6n) and (yn) are bounded, and
(iii) wn, Gy — 0 in DV2(RY).
Proof. From [14, Lemma 3.1], we deduce

un () = 50®s, 4, () +wn(z), VoeRY,

’Un(l‘) = tO(i)dn,yn (:L') + Cn(:E)v Vo € Rf7

where §, € R\ {0}, y, € GRE and wy,( are sequences that goes strongly to zero in
DLQ(Rf ). Consequently, by Brezis Lieb, for all p > 0 holds

/ K (1, o)z = / K(s0®s, 4.+ toBs, . )da + on(1). (2.1.8)
A44(0) A44(0)

Therefore, in order to complete the proof of the lemma, it is enough to show that, up
to subsequences,
(@) lim 6,=06>0;
norteo B N (2.1.9)
(b)  lim y, =7y € IR,

To prove (2.1.9) (a), let us first show that (d,) is bounded. In fact, if for some subse-
quence, still denoted by (dy,), hIJP dn = 400 occurs, then using (2.1.8), for all p > 0, we
n—-+0o0

have
lim K(up,vp)dzr = lim K (s0®s, 4, (1), to®s, 4, ())dx
n—-+o0o AP(O) n m n—+oo Ap(o) Y Y
= lim K <80‘i1’0 <.7} - yn) ,t(](i)l’(] <$ — yn)) dr =

Since fS(up,vy) = 0 and K (up,vy)dz =1, for all p > 0, we deduce

Y
W““:Apﬂﬁﬂmwmwéwmﬂ%%mwww
ﬁ R\ 4,0 K (up, vy,)dz.
Since lim K (up,vy)dx =0, we have lim K (up,vy)dz = 1. Then,
nTEee A0 e JRY\A,(0)
Lim inf y(un, vn) 2 ﬁ, Vp >0,
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and then

im i > 1. 1.
Eglig'y(un,vn) >1 (2.1.10)
Since y(un,vn) = 1/3, we have a contradiction. Thus, (d,) is bounded and we can
assume that B B
lim 6, =0 with 6 > 0.
n——+00
We claim that § is positive. In fact, if § = 0, using again (2.1.8), for all p > 0, we have
that

lim K (up,vp)dr = lim K (505, 4, (), to®s, 4, (z))dx
n=-+oo JRN\ A, (yn) n=+00 JRN\ A, (yn) ! !
—  lim K <50<i>1,0 <a: - y") o1 <x - l"”)) dx = 0. (2.1.11)
ot JRNA p (42) on On

Since (un,vyn) =0, K (up,vy)dx =1 and from (2.1.11), there is K > 0 verifying

=y
|yn| / < Yn 1T >
= — K (uyn,vy,)dx
Tyl oy \T [l T ) L)
Yn 1
< / ( - >K(u , Up )dx
RN\ A, (o) \1F [gn| 1+ [H] e
Yn 1
+ / < — )K(u,v) < Kp+o,(1).
Ap(yn) \1+[yn| 14 [ o "
Hence,
lim sup 9| < Kp, Vp>0,
n—-+oo + |yn\
from where it follows
oo el =0
On the other hand,
: : II(x)
nEI—Poo,Y(un’vn) = nEI—&I-loo Rf m_ﬁ(unvvn) K(Un,’()n)dl‘
. H($) Yn
= 1 — K dr =0
A2 fon [T @]~ T [ | X )b =0

which is a contradiction.
Now, we are able to prove that (y,) is bounded. For this, suppose by contradiction,
that there is a subsequence, still denoted by (y,), such that

Then, for all € > 0, there is R > 0 and ng € N such that

H(l‘) . Yn
1+ H(z)] 1+ |yl

II(z) —yn| < R= <€, Vn>mng (2.1.12)
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and

K(so®5, ,to®s )dx:/ K(so®s5 , to®5 o )dz < €. (2.1.13)
/RN\AR@n) Dm0 EY\AR(0) 0700

From (2.1.12) and (2.1.13),

Yn Un
tno ¥ K(up,vy,)dx
'B(n n) L+ lyal] — / 1—|—]H 1+‘yn’ (Un,vn)
(l’) Yn
- - K(so®=. ,to®= )dx
/ﬁ \Ar(yn) | T+ (@) 14 |yn| (50%5,y,-t0®5,,)
() Yn . N
* - K(s0®;, ,to®5, )dz + 0n(1
Ar(yn) 1+ ’H(JJ)’ 1+ |yn‘ ( 0,Yn 3,Yn n( )
S 6+2€+0n(1) :36+0n(1)7
where we conclude
ngrfoo |B(un>vn)| = 1’
which is an absurd. Therefore, (y,) is bounded. u

We will present below some important properties involving the functions 3, v and the
constant Y. Hereafter, we assume that a, b verifies (a, b); - (a,b)2. Moreover let us denote
by Cyp the following real number:

Cyp = inf {/
RN

+

1
[Vl + [Vol* + alul + blv)dz; (u,v) € M, B(u,v) = 0,7(u,v) = 3} :

Proposition 2.1.5. Let a,b € LN/z(Rf) be a mon-negative functions with |(Z|LN/2(Rf) #
07‘b|LN/2(R$) ?é 0. Then, ZK < Cab.

Proof. By definition of ¥ we have X < Cyp. Then, suppose by contradiction that equality
holds in the above relation. Thus, there is a sequence (u,,v,) C DM?(RY) x DL2(RY)
verifying

1
(a) N K(up,vn)dx =1, B(un,vn) =0, y(up,vp) = §5
Rt (2.1.14)
(b) lim / [Vtnl? + [Vonl? + afun|? + blun|2)dz = Sk
n—-+o0o Rﬁ
Since a(z),b(x) > 0 for all x € RY, from (2.1.14)
Sk = lim [[Vun? 4+ [Von|* + alun|? + bluy |*]de (2.1.15)
n—-+00 R.;IY
> lim [[Vun|? + | Vo, |Hde > Sk, (2.1.16)
n—-+o0o Rf

we obtain
lim [[Vun|? + | Vo, 2de = Sk
+

n—-+00 RN
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From Lemma 2.1.4, we have
un(z) = 80P, 4, () +wy(z), VoreRY,
vp(x) = toéén,yn (z) + Cu(x), VreRY,
where §,, € RT\ {0}, y, € ORY and wy,(, are sequences that go strongly to zero in
DL2(RY).
Also from Lemma 2.1.4, we can assume that

lim §,=6>0, lim y,=7y¢€IRY
n—-+o0o

n——+o00

and so by Lebesgue’s Theorem we have

&5, 4, =& &5 in DYA(RY) and L (RY). (2.1.17)
Thus, from (2.1.14)
Yk = lim ([Vun|? + Vg > + alun|* + bluy|?]dz
n—-+oo Rﬁ
i 0 2 T 2 5 2 5 2
= ol fop [V 0%onal” H [VioRanun " + also®s, [+ oD o[l
= lim [ Vso®s 51° + [VtoDs | + also®; 17 + blto®s 5 |*1de

n—-+00 RN
+

2 = 2
_ ZK—i—/Rf[a|so<I>67y| + bltods |]de,
from where it follows that

T (2 T2 _
| Jalsos  + bltoy Pl = o

+

which is an absurd, because égy is positive. Thus, the proposition is proved. O

2.2 Technical results

From (a,b); and (a,b)2 and Proposition 2.1.5 we derive that
Cuw > Yk.
Using the numbers Cy; and X, we consider a new number C given by

Cab + EK
2
and remark that the following inequality holds:

Y < C < Cy. (2.2.1)

C =

We denote by ¢, ¢ functions that belong to VVO1 ’2(31 (0)) and has the following properties:

0,0 € C3°(B1(0)), ¢(x),¢(z) >0 Vz e Bi(0),
@, ¢ are symmetric and |zi| < |z2| = p(z1) > p(z2) and ¢(z1) > P(x2),

K(p,¢)dr =1, | 2y <1, 10| g2 oy <1
/ sy 68 = el oy < 16l oo

EK < / |V<,0|2 + |V¢‘2dx = ﬂ < min {67 SK - |a‘LN/2(RN) - ‘b’LN/Z(RN)} .
RYNB1(0) + +
(2.2.2)
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For every o > 0 and b € RY, we set

5T (x g y> , = € Bs(y),

sy () = (2.2.3)
0, z & Bs(y).
N2 [xz—y
52 ¢< ) , T € Bs(y),
Doy () = 5 ) (2.2.4)
07 x ¢ B5(y)
We remark that by the definition of ¢, 5 and ¢,; we have
/ K(‘P&ya ¢6,y)d$ = / K(Soﬁ,ya ¢5,y)d$ = K(p,¢)dx
RYY Bs(y) B1(0)
and
IV@sylr2@yy = [VesylLassw) = Vel s.0)
IVosylrewyy = [Vésylias ) = [VEl2s,0):
Lemma 2.2.1. Let a,b € LN/?2(RY) be non-negative functions. Then,
(a) }i_r)r(l) sup {/Rf [agogjy + b¢§7y}dx; y € 8Rf} = 0;
. 2 2 . N\ _ .
(b) 52?00 sup /Rﬁ lays,, + b5, ldr; y € ORY } =0; (2.2.5)

T—+00
\ +

(¢) lim sup /]RN [atp?iy + bgbg,y]dx; lyl=r, §d>0, ye€ 8Rf} =0.
Proof. Let y € 8Rf be chosen arbitrarily. Then, by the Holder inequality, we get

2 2 2
ap de = / ay dx S ’CL‘ N/2(pN |g057 | *
/Rf Sy RY B3 (y) Sy LN2(RENBs (y) 17091 L2 (RYNB5 (y))
= ‘a|LN/2(R$ﬂBé(y))’Q0|%12*(R1031(y)) = ‘a|LN/2(R¥ﬂB5(y))7 Vo > 0,

Similarly

/RN b¢§7yd$ < ‘b‘LN/Q(RfﬁBg(y)ﬁ Vo > 0,

+

Then

sup {/}RN [agpiy + bqbg,y]dm; Yy € 8Rf} < sup {|a|LN/2(R$mBa(y)) + |b‘LN/2(]R$mBJ(y)); Yy € 8]1%_]1\:} )
+
(2.2.6)
We note that

) . _ N
lim Jalp 2wy nps(y) = 10 [l Lv2 @y B, ) = 0. VY € IRL,

so (a) follows from (2.2.6).
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To prove (b), we fix arbitrarily y € EﬂRf and note that by the Holder inequality, we obtain

/ awﬁ,ydx / aapg)ydx + / ago(%’ydac
RY RYNB,(0) RY\B,(0)

|a|LN/2(R$mB,J(0)) |06,y17 2+ B,0) t ‘a|LN/2(Rf\B,,(o)) |6,y

IN

2
L2 (RY\ B, (0)

N

< llvegins,) sub, [@oylia (5,00 + lalerz@y\s, 0, ¥p,0 >0,
YSoRy
Similarly,
/RN b¢§,yd“7 < ‘b|LN/2(R$ﬂBp(0)) ESHIQN |¢6,y\i2*(sp(o)) + |b|LN/2(M\Bp(o))a Vp,d > 0.
YEoRL

+

Moreover,

lim @5y

— i _ N
d—+o0 L2 (B, (0) — 5111—‘,1-100 |¢57y‘L2*(Bﬂ(O)) =0, Vy € RY,

hence
: 2 2 g N
GEIEOO sup {/Ri’ [aps, +bg5,d; y € 3R+} <lalpnre @i\, o) + [blLyr2 @3\ B, (0)-
Passing the limit of p — 400 in the last inequality, we obtain (b).
To prove (c), we will assume by contradiction that there are sequences (y,,) C ORY and (8,) C

R, such that

n—-+oo R

lim lap3 . +bd5 , Jde=L>0 and |y,| — +oo. (2.2.7)
N Ly ST nsdn
N

From (a) and (b), we can suppose that

lim 4, =46 > 0.

n—-+oo

Using the hypotheses that |y,,| — +0o and a,b € L¥/2(RY) together with Lebesgue’s Theorem,
we have

Jim fal vz @yngs, @) = 00 blove@yas;, @) =0
Then
: 2 2 : _
dm o (@95, .4 + 695, y,de < lim [lal v/ @yngs, () + 1Blve@ynss, 4.0)] = 0,
which contradicts (2.2.7). Therefore (¢) occurs. O

Lemma 2.2.2. The following relations hold:

() limsup {v(¢sy, d5y); v € ORY} = 0;

(b) Glim inf {V(@sys b54); yEORY, |y <r} =1, Vr>0; (2.2.8)
—+00

(¢) (B(@sy bsy)ly)ry > 0; Vy € ORY \ {0}, V6> 0.

Proof. Let y € QRf be chosen arbitrarily. For any 6 > 0, we have

II
0 < ’Y(‘Pé,yaf%,y) :/IRN 1_'_|(1—T()x)|_/8(§05,y7¢6,y) K(g057y,(z)57y)dm
+
@)
< ismi [T T~ 200800000 K s )
‘1f\y| ~ B¢y P50)) - (2.2.9)
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We remark that by (2.2.3) and (2.2.2) we can write

( y I
L+yl 1+ [I(2)]

R
/]Rﬁ NB;s(y)

Combining (2.2.9) with (2.2.10) and taking into account that € RY N B,(b), we have

y
L+ [y

- 6(‘:0672;7 ¢5,y)

) K((p&y, ¢67y)dx

Y H
1+ |yl 1+|H33|

IN

‘K ©s.y, G5,y)dx.  (2.2.10)

II
0 < 7(905,?;, ¢5,y) < ‘/]RNQB&(U) 1—|—|(lff()$)| - ﬁ(@&,ya ¢5,y) K(Soé,yv ¢5,y)d1’
y 1(x)

’K (@5, Do,y )dz < 20.

-
RYNB;s(y)

0 < sup {V(@s,y, bs4); y € ORY} <24,

which letting ¢ — 0, we obtain (a).
To prove (b), let us first show that for all y € ORY,

lim_ |B(¢s,y, ¢sy)| = 0. (2.2.11)
§d—+o0

L+lyl 1+ ()]

Hence

Since B(ps,0, ¢s,0) = 0 because of symmetry, we have

1B(s.y, be.y)| = 1B(¢s,y, Psy) — Blesy, $50)
_ H(z)
/]RN 1+ |H(x)\ (K(‘P&yv d)&,y) - K((pé,()v (255,0)) dx
|

II(z
/M 1|—|—|(H()x) |K(@s,y, Ps.y) — K (5,0, @s,0)| d

IN

~/]RN ‘K(Qﬁg,y, ¢5,y) - K(Spé,oa (156,0)‘ dx

+

- /]RN ‘K(ﬁpl,%7¢1,g) - K(<P1,07¢1,0)’ dr — 0, o — +o0,
+

showing that (2.2.11) occurs. Now, fix r > 0 arbitrarily and let y € IRY such that |y| < r. For any
4 > 0, we have

_ ()

)
1—|—|H( )l 5(%,@/7%,@;)

K(‘P(S,yv ¢6,y)d$

Y(@s.y: P5.y) = /RN

II(z
< /1@1 1_|_|(1_I():|C)|K((P5,y7¢6’y)d$+ |5(¢5,y7¢6,y)|

1 + ‘ﬁ(@&gﬁ ¢6,y)|7

which together with (2.2.11) leads us to

IN

limsup [inf {v(¢s,y, dsy); v €ORY, [yl <r}] <1 (2.2.12)

d——+o0

If
lim sup [inf {’y(go(;’y,(b(;’y); y € 8Rf, ly| < T}] <1,

d—+oco

there are sequences (d,) C (0, +00) and (y,) C ORY such that §,, — +o0, |y,| <7 and

Hm (s, s Ponyn) < 1. (2.2.13)

n—-+oo
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On the other hand, considering (2.2.11), for all p > 0 we deduce that

NED)
7(@5n,yn7 ¢5n,yn) /]RN ’1 + |H( )| ﬂ(@t?n,ynv(bémyn) (¢5n79n7¢5n7yn) xz
[1I()]
> Sl ‘e dr —
- /]RN ]_ + |H(l’)‘ (@6717y717¢5n7yn) € |B(S0(Sn7yn7¢)6n7yn)|
¥
[1I(z)|
= K06,y Po,yn )dx — 0n(1)
/Rf\Ap(o) 1+ ()| Y Y
> L K(©5,,y> Po,,yn )dx — 0n(1)
L+ p Jry\a,0
> L K (5,0, 95, )42 = 0a(1),

1+p RY\A o (0)

hence

M V(@5 0ms G50n) > ey ¥p >0,

n—-+oo 1 —+ p

From this, since p > 0 is arbitrarily, we have that

lim y(¢o,0,) > 1,

n—-+oo

which contradicts (2.2.13). Thus, the equality in (2.2.12) holds and the proof of (b) is finished.
Now, we will prove (¢). We note that if 0 ¢ Bs(y), we have (II(x)|y) > 0 and thus

(B(ps.y, Ps.)ly) = /RN mK(‘P&yv(b&y)dm > 0.

If 0 € Bs(y), for each z € Bs(y) NRY such that (II(z)|y) < 0, the point Z, symmetrical to —x
with respect to RY, belongs to Bs(y) NRY and (II(Z)|y) > 0 which leads to

s sl = [ 3 iy K o das)dr 0

as desired. 0

@

1
Corollary 2.2.3. There is 61,09 whit 0 < 1 < 3 < 09 such that
1 N
(a) 7(9061,y=¢51,y) < 3 to any y € ORY;

1
(b) 7(%062,y,¢52,y) > 3 to any y € 8RJ+V.
Proof. By Lemma 2.2.2 (a), we have that
(s, Bsy) — 0 as § —0 Vy e IRY.

So there is & > 0 such that

1
V(pay @oy) <5 V9 €(0,6) and vy e ORY.

Choosing §; < min{é,1/3} we deduce that

1
V(P51 Po1,y) < = Yy € ORY,

3
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proving item (a).
Now, we will prove (b). We note that by Lemma 2.2.2 (b), there is @ > 0 such that

1
Y(@sys Poy) > 3 V6 € (7,+00) and Vy € ORY.

Choosing d2 > max{7, 1/3} we deduce that

V(Ps5, Poay) > % Vy € 8Rﬁ
proving item (b). O
Now, consider the set

YT ={(y,6) € RY xRy;|y| < 7,6 €[61,6]}, (2.2.14)
with &1, 02 as chosen before, so we have the following result:
Corollary 2.2.4. Let a,b satisfy (a,b)1 - (a,b)2, (2.0.3) and € > 0 verify

Yk +e<min{C, Sk — ’a/’LN/2(Rf) - ]b]LN/Q(Rf)}.

Then, there are r,81,d2 > 0 with

- €
sup {/RNHVSO&:UP + Vs, |* + alpsy|? + blos,2dx;  (y,0) € 8T} <Yk + 5

+

Proof. The existence of §; and 5 is given by the Corollary 2.2.3. Now, note that by the
Lemma 2.2.1 (a) and (2.2.2) it follows that

—— €
/N[yv%,yy?+ng,yy%aw&yy?+by¢57y12]dx <Tx+g, VyedRY and =4 (22.15)

RY

Furthermore, by the Lemma 2.2.1, we can chose r > 0 such that if |y| = r and b € 9RY
S0

[ I9080 41905, + algsyl? + o,

Ry

Ade < T + % 6 > 0. (2.2.16)

Lastly, fixing r > 0 as chosen before, by the Lemma 2.2.1 (b) together with Corollary
2.2.3, we can find d2 such that

/N[|Vg057y|2—|—|v¢5,y 2t algsy|* +bldsy Y dr < E+§, Vy € ORY, |y| <r and V§ = dy.
R+

(2.2.17)

Combining (2.2.15), (2.2.16) and (2.2.17) the result follows. O

Corollary 2.2.5. Assume that a and b satisfy (a,b); - (a,b)2, (2.0.3) and let €, 41,02 and
r be the numbers given in Corollary 2.2.3, Corollary 2.2.4 and Y defined in (2.2.14). Then,

sup {/RNHVSO(S,ylz + [Vsyl* + alpsy|® + blosy[*ldz;  (y,6) € 3T} < Sk.

+
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Proof. For all y € ORY and ¢ > 0, by Holder inequality we get
J’_

2 2 2 2
/Rﬁ[aWé,y’ + b ¢sy|"]dz < |a|LN/2(R$)|905,y|L2*(Rf) + |b|LN/2(R$)’¢5,y’L2*(R§)

IN

|a’LN/2(R§) + |b|LN/2(R§)‘

From the last inequality, we obtain

90502 + V85, + algsy P + bigs, Pldo

RY

IN

/RNHVSO&,y‘Q + ‘V%,y‘z]dﬂf + ’a|LN/2(R§) + |b‘LN/2(R§)
+

= [ e+ IVl + lalviagey) + Bloviageys
RYNB1(0)

which combined with (2.2.2) and (2.0.3) give us

(IV@sy 2 + Vs, + alpsy
RN

+

2+ blgsyl?)de < Tk + lal g2y + blpavz@yy < Sk,

for all (y,0) € OY. Therefore,

sup {/RNHVSD(S,Z/P + |v¢(57y|2 —+ a|¢57y|2 + b|¢67y|2]d$’; (y75) c 8T} < SK

+

as we wanted. O

Lemma 2.2.6. Let T be the set defined in (2.2.14) with 5}, 0o and r be the numbers given
in Corollary 2.2.3 and Corollary 2.2.4. Then, there is (y,0) € T satisfying

B(eg5:055) =0 and (g, 50,5 =

e Wl

Proof. To prove the lemma, define the map g : 9T — RV~ x R by

g(ya 5) = (ﬁ(@d,ya ¢5,y)’ 7(@5,11’ ¢5,y));
it is sufficient to show that its restriction to 9T is homotopically equivalent to the identity

map in RV~ x R\ {(0,1/3)}.
Therefore, let us consider the homotopy G : [0,1] x 9T — R¥~! x R given by

G(t,y,0) = (1 —t)(y,6) + L(B(wsy, Psy)s V(Psy, Psy))-

We remark G is continuous and that

G(Ov Y, 5) = (y7 5)

and
G(]-a Y, 6) = (6(905,1;7 ¢§,y)’ 7(905,:1;7 ¢6,y)) = g(yu 6)

So it remains to show that

(o, ;) ¢ G(t,0T) Ve [0,1] (2.2.18)
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or equivalently

G(t,y,0) # <0, ;) V(y,0) and Vt € [0,1].

In fact, set 9T = T1 U To U Y3 with

T1={(y,9); |yl <r, 6=741},
To={(y,0); |yl <r, &=0a},
T3 ={(y,0); |yl=r, &€lb1,02]}.

If (y,0) € Y1, then § = §; and by the Corollary 2.2.3 (a)

1
— 1.
3 3 3,WemJ

Analogously, if (y,d) € T, then § = d2 and again by the Corollary 2.2.3 (b)

1 1
(1 - t)51 + t7(9061,ya ¢61,y) < (1 - t)f +i; =

1 1 1
(1 - t)62 + t7<9052,y7 ¢62,y) > (1 - t)g =+ tg = gv vt € [07 1]

If (y,0) € T3, then |y| =7 and 0 < d; < & < d2, so using Lemma 2.2.2 (¢), we obtain
(1 =) + tB( s, dsy)ly) = (1= B)lyl* + t(B(@sy, doy)ly) > 0.
O

Finally, with the help of the previous lemmas we are ready to prove our main result.

2.3  Existence of positive solution of (.5)

Firstly we consider
d = sup{J(psy, dsy); (y,0) € T},
J = {(u,v) e M; J(u,v) <1}

and fix € > 0 verifying
E‘f’ € < min {6, SK - |a’LN/2(Rf) - ’b|LN/2(R$)} .

Combining the definition of Cy, with (2.2.1), Corollary 2.2.5 and Lemma 2.2.6, we have
Yg < 6 < Cab < J(SOSQ,QbS’Q) <d< SK

We will prove that functional J constrained to M has a critical level in the interval
(C, Sk). For this, we fix ¢ > 0 such that

C<Cp—0o<d+o<S8 (2.3.1)
and we define
H={(u,v) e M; Cpp—0 < J(u,v) <d+o; J|p(u,v)=0}.
To prove the theorem, it remains to show that H # (). In order to achieved this goal,

we will suppose by contradiction, that H = (). From (2.3.1) and Proposition 2.1.3, the pair
(J, M) satisfies the Palais-Smale condition in interval (C,, —0,d+ o). Thus, using a variant
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of the Deformation Lemma (see [29]) we can find a continuous map 7 : [0,1] x M — M
and a positive number ey < ¢ such that

n(0,u,v) = (u,v), Y(u,v) € M,
n(t,u,v) = (u,v), Y(u,v) e J=0y M\ J4o) vtelo,1],
(Jon)(t,u,v) < J(u,v), Vte]|0,1],

and
n(1, Jiteo) c jCa—co,

By the definition of d and Deformation Lemma, we have in particular that
V(y, 5) €ET = J<905,y7 ¢5,y) <d= J(U(L Pé,y> (bé,y)) < Cap — €0 (2'3'2)
Now, we define for all ¢ € [0,1] and for all (y,d) € T the map

I'(t,y,0) =

I G(2t_1ay56)7 te [O’ 1/2]7
(ﬁ S 77(2t - 17 Po,y» (z)&,y)a Yo 77(2t - 17 Ps,y» ¢5,y))7 te [1/27 1]7

where G is the map defined in Lemma 2.2.6. Clearly T is continuous and as a consequence
of (2.2.18), we have

(o, ;) #T(t,y,8), Y(y,0) €Y and Vte[0,1/2].

Moreover, since

(y,0) € 0T = J(psy b5y) <Xk +e<C <Caqp—0 <Cqp—€o
= 77(2t - 17 D6,y ¢6,y) = (@5,1/7 gb(s,y)a vVt € [1/27 1]7

we have

F(tv Y, 5) = (/8 © 77(275 - 17 (pcr,b)7 Yo 77(2t - 17 Ps,y> ¢6,y)) = (/8(905,7;7 ¢6,y)7 7(906,?;7 ¢6,y)>

~ (1
=T <2,y, 5) =G(1,y,5), Vte[l/2,1], Y(y,0) € OT.
Therefore, using again (2.2.18), we have

(0, ;) £T(ty,5), Y(y,6) € OT and Vt e [1/2,1]

Hence, there is (y*,0%) € T such that

1
5 077(17906*,y*7¢5*,y*) = 07 VOU(LSO&*,y*a(%*,y*) = g;

and so

J((1, @g+ gy, o y+)) > inf{J(u,v); (u,v) e M, B(u,v) =0, 'y(u,v):;}

= Cab > Cab — €0,

which contradicts (2.3.2) and so H # (). Therefore, the functional J constrained on M has
at least one critical point (u,v) € M such that X < C < J(u) < S. Moreover, by Lemma
2.1.2, we deduce u,v > 0, concluding the proof.
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Chapter 3

Multiplicity of positive solutions
for an elliptic system

We are now interested in the search of positive solutions for the problem

~Au= Ryl in @
—Av = Zefulr et i@, (30.1)
u=v=0 on 0,

where  is a smooth and bounded domain in RN, N > 3, a3 > 1, ac = a — ¢/2,
Be=p —€/2 and a + = 2*.

The main goal of this chapter is to show that for ¢ small, the topology of the domain
influences the number of positive solutions in the sense of Theorem 3.0.1 below.

Before stating our main results we recall that if Y is a closed set of a topological space
X, we denote the Ljusternik-Schnirelmann category of Y in X by catx(Y), which is the
least number of closed and contractible sets in X that cover Y. Moreover, cat X denotes
catx (X). Then we have the first multiplicity result.

Theorem 3.0.1. There exists g > 0 such that for any € € (0,€), problem (3.0.1) has at
least cat ) positive weak solutions. Moreover if Q is not contractible in itself then (3.0.1)
has at least cat ) + 1 positive weak solutions.

The functional I, associated to problem (3.0.1) is defined as

1 2
I (u,v) = 2/Q\Vu|2—|—|Vv|2dx— o i D /Q\u|o‘fv|ﬁedm (3.0.2)

which is well defined on the space H(Q2) x H}(2) endowed with the usual norm

I, 0)]? = /Q Vul? + [Vol?de.

A straightforward computation shows that the functional (3.0.2) is of class C'* with

I, )b, 0] = /Q VuVe + VoVids — Ojj‘f B
25

- — ul|® o] P 2opda
el MU

/ | 2ufv|Bgdz
Q

for u,v, ¢, € HE(Q). Thus, the critical points of I. correspond exactly to the weak
solutions of the problem (3.0.1).
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3.1 The Nehari manifolds and compactness results

In this section we study the Nehari manifolds which appear in relation to problem that
involves problem (3.0.1). We have the set, usually called the Nehari manifold associated to
(3.0.1),

Ne = {(u,v) € Hy(Q) x Hy() \ {(0,0)} : L{(u,v)(u,v) = 0}.

In particular all the critical points of I lie in N. In the next Lemma we show the basic
properties of A,.

Lemma 3.1.1. For all 0 < e < 1, we have:
(i) Ne is a C' manifold;

(i1) there exists cc > 0 such that ||(u,v)|| > c. for every (u,v) € Ne;

(iii) it holds inf I (u,v)>0;

(u,v)EN
(iv) for every v # 0, u # 0 there exists a unique t. = tc[u,v] > 0 such that t.(u,v) € N;
(v) N is homeomorphic to the unit sphere S = {(u,v) € HY(Q)x H}(Q) : [|(u,v)|12 = 1};
(vi) the following equalities are true

inf I.(u,v)= inf I.(tu,tv) = inf I.(g(t), h(t)),
O A

where

L= { (g.h) € C(0,1]: HY(Q) x HY(Q) : g(0) = h(0) = 0, I(g(1), h(1)) < 0,
9(1) # 0,h(1) # 0}.

Proof. Let Ge(u,v) := I(u,v)(u,v) Since
GL(u,v)[u,v] = 2/Q |Vul|? + |Vv|?dr — 2(ce + Be) /Q |u|%|v] P da
and Gc(u,v) = 0 if (u,v) € N, we obtain
Ge(v)[] = —(ae + Be = 2)[|(u, 0)|I* < 0,

which proves (i).

Let (u,v) € N.. Since G¢(u,v) = 0, we have

Qe Be
aet+Be ae+Be
[(u,v)||*> = 2/ lu|®|v|Pedx < 2 </ \u|0‘6+5€d;1;> </ |U|ae+186dl,)
Q Q 0
Since B
* 2% € €
et < (o) o = e o
Q Q

Similarly / [o| ¥ HPedy < \v|§f+ﬁem|2% and hence we infer
Q

N
= «@
I, )| )

IN

Xe
etDe % ae+Be et+De
2 (Julss 1203 ) "7 (jolge |0

o, v

= 2]Q|7 |ulS:|v]5:

IA

2/ # (Julz- + |v]2-)* P < 2|02
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Then,

1

1 ae+Be—2

o)l 2 | o= = Ce
2|Q| 27 Coethe

which shows (ii).

On N, since G¢(u,v) = 0 we have

1 1 1 1
L) = (5 o ol 2 (- ) >0

and concludes the proof of (iii).

Let u,v # 0 and, for t > 0 define the map

t2 oporetBe oy B
t) .= I.(tv,tu) = —||(u,v)|| — u|¥ |v|Peda.
olt) = Tu(to, ) = 5 w0}l = = [ Jul™Jo

Since o + B > 2, we have g(0) = 0, g(t) > 0 for small ¢t and g(t) =< 0 for suitably
large t. Then there is a t. = t.(u,v) > 0 such that ¢'(t.) = 0 and g(tc) = maxs~q g(t), i.e.
te(u,v) € N, proving (iv). It is easy to verify that t. is unique.

The proof of (v) and (vi) follows by standard arguments. O

Remark 1. Actually in (ii) of Lemma 3.1.1 the constant c. can be made independent on
1

€. Indeed it is easily seen that lgr(l) Ce = <202*

2% -2
) =:c9 > 0. Then, it is possible to take
a small ¢g > 0 such that .
Ce > &= 500 > 0,

for all e € (0,¢€p).
In other words, all the Nehari manifolds N, are bounded away from zero, independently
on €, i.e. there exists £ > 0 such that, for all € € (0, )

(u,v) € Ne = || (u,v)[| = €.

The Nehari manifold well-behaves with respect to the (P.S) sequences. Again, since at
this stage no compactness condition is involved, we can even state the result for € > 0.

Lemma 3.1.2. Let € > 0 be fized and {(un,vy,)} C Ne be a (PS) sequence for I.|n.. Then
{un,vn} is a (PS) sequence for the free functional I. on H} () x H(Q).

Now for € > 0 it is known that the free functional I, satisfies the (PS) condition
on H}(Q) x H}(Q) and also when restricted to M. In addition to the properties listed
in Corollary 3.1.1, the manifold N, is a natural constraint for I. in the sense that any
(u,v) € N critical point of I.|x; is also a critical point for the free functional I.. Hence the
(constraint) critical points we find are solutions of our problem since no Lagrange multipliers
appear.

In particular, as a consequence of the (PS) condition we have

Ve>0: m,:= min Ie(u,v) = Ie(gea he) > 07
(u,v)ENe

i.e. m. is achieved on functions, hereafter denoted with (g, h¢). Since (ge, h.) minimizes the
energy I, it will be called a ground state. Observe that g.,he > 0 and are indeed positive
by the maximum principle.

67



Remark 2. We note that, for all € € (0,€q) , if (we, z.) € N, then

€
27

0<¢é< H(w6726)H2 = 2/ |we‘a€|36|ﬂe <2[Q we,%*s‘ze‘g: < 2/ (|w€\§f + ‘Zﬁlgi) .
Q

We deduce that the sequences {||(we,ze)||}, {|(we, ze)|2+} and {/ ]g€a€|h5]’36daz} are
Q

bounded away from zero.
In particular, this is true for the family of ground states {(ge,be)}. This last fact will
be used in the next sections and in particular in Proposition 3.1.7.

We address now two limit cases related to our equation involving the Laplacian operator.
They involve the critical problems both in the domain  and in the whole space RY.
3.1.1 Behavior of the family of ground state levels {m.}

We introduce the critical problem in the domain 2. This is done in order to evaluate the
limit of the ground state levels {m.} when ¢ — 0. The main theorem in this subsection is
Theorem 3.1.9, which requires first some preliminary work.

Let us introduce the C! functional associated to € = 0,
1 2
Ip(u,v) := 2/ |Vul? 4 |Vul?dx — 2*/ lu|*|v|?d, (u,v) € HY(Q) x H}(Q)
Q Q

whose critical points are the solutions of

—Au = %—‘f|u|“_2u|v|f8 in Q
—Av = Zu|*wf~20  inQ (3.1.1)
u=v=>0 on 0f,

It is known that the lack of compactness of the embedding of HZ(Q) in L% (Q) implies
that Iy does not satisfies the (PS) condition at every level. This is due to the invariance
with respect to the conformal scaling

u(-) — vg(-) == RV 0(R())  (R>1)

which leaves invariant the L?—norm of the gradient as well as the L?"—norm, i.e. |Vug|? =
|Vo|3 and |vg|3. = |v|3 .
Related to the critical problem we have the following:

Lemma 3.1.3. If Q is a star-shaped domain then there exists only the trivial solution to
(3.1.1).

Proof. Let (u,v) € HE(Q) x H} () be a solution to (3.1.1). According to elliptic regularity
theory, we have u,v € C'(Q). Thus, by using the Pohozaev identity (see e.g. [21]) we obtain

1 2 N -2
/ (IVul? + |Vv|*)o.vdo = N*/ lu|*|v|Pdx — / \Vul? 4 |Vo|?dx
2 Joq 2" Ja 2 Ja

where v denotes the unit outward normal to 0€2. Since (u,v) is a solution, one also has
/ Vul? + [Vol2dz = / (ul°o]Pda
Q Q

Now, combining the last two equalities we reach that / (|Vul® +|Vv|*)o.vdo < 0 and
o0

we must have v = v = 0 since o.v > 0 on 0f). O

68



Let
No = {(u,v) € W32 (@) x W (@) \ {(0,0)} = T (u, v)(u,0) = 0}

be the Nehari manifold associated to the critical problem (3.1.1). By Lemma 3.1.1 it results

mo := inf Iy(u,v) > 0. 3.1.2
0 (u,v)END D( ) ( )

In contrast to the case € > 0, now mg is not achieved.
The value my turns out to be an upper bound for the sequence of ground states levels
{m.}, as we will prove below. First we need a lemma.

Lemma 3.1.4. Let (wy,ws) € H(Q) x HE(Q) \ {(0,0)} be fized. For every 0 < e <1, let
te = te[w1,wa] > 0 given in (iv) of Lemma 3.1.1, i.e. such that t.(w1,w2) € Ne. Then

limte =ty >0 and to(wy,ws) € Np.
e—0
Moreover if (w1, w3) € Ny, then lin% te = 1.
€E—

Proof. By definition
t?/ wa112+\Vw2\2dx_2tge+5e/ w1 | |wa | d. (3.1.3)
Q Q

Then

1
aetBe—2

/ |Vwi|? + |Vws|?dz
Q

to=
2/ w1 |7 | dx
Q

Then the result follows by

=)
/ |V |2 4 |[Vws|?dz
lim ¢, = & = to.
2/ \w1|a|w2]5d$
Q
If (wy,wsy) € Np, then tg = 1. ]

Proposition 3.1.5. We have

limsup m, < mg.
e—0

Proof. Fix § > 0. By definition of mg there exists (u,v) € Ny such that
[**_} **2_3 7|78 5
(@, v) = Sll(@vl|" = o [ [al*[v]” <mg+ 6.
2 2 Jo

For every 0 < € < 1, there exists a unique t. = t.(u,v) > 0 such that t.(u,v) € N, and
by Lemma 3.1.4 we know that lin% te = 1, since (u,v) € Np.
€E—

Then
B B tz e 2t?6+/86 e 1B
me < I (teu, tev) = —|(@0)||° — ——— [ [u|*[v]™dzx
2 ae+ Be Ja
and so limsupm, < [y(u,v) < my + J concluding the proof.
e—0
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In particular we deduce the following;:
Corollary 3.1.6. The family of minimizers {(gc, be) }eso is bounded in H}(2) x H(Q).

Proof. By a direct calculation we get

1 1
me:Ie 676_7‘[/ ele)¥eVel =\ 5 = — 5 elle 2'
(90 = 5 10 0laebd = (5 - ) Haahol
Since liH[l) e + B = 2" and by from Proposition 3.1.5, the result follows. 0
e—

It will be useful the next result:

Remark 3. Corollary 3.1.6 can be generalized to arbitrary functions in the Nehari mani-
folds N, not necessary the ground states, as long as the functionals converge.

In other words, let €, — 0 as n — +00. If {(wn,2,)} C HF () x HY(Q) is such that
(Wn, 2n) € N, for every n, and I, (wp,2,) = 1 € (0,400) as n — oo, then {wy, z,} is
bounded in H(Q) x H(Q).

Indeed, similarly to the proof of Corollary 3.1.6, this easily follows from

1 1 1
l= Ien (wnazn)_mlén(wmZn)[wnazn]"i'on(l) = <2 - 064—5) ”(wnvzn)”Q"i'On(l)'

We need now a technical lemma about the “projections” of the minimizers (g, he) on
the Nehari manifold of the critical problem Nj. Let us first observe the following remark
which generalizes Lemma 3.1.4.

Remark 4. If {(wc, 2¢)} C H}(Q) x H(Q) is such that
(a) for every 0 < e <1: (we,z) € N,
(b) there exist C1,Cy > 0 such that for every 0 < e <1:0< Cy < / lwe| | ze|dx and
Q
[(we; ze) | < Co,
then setting to. > 0 such that to (we, z¢) € Ny (see (iv) of Lemma 3.1.1), it holds

0 < limtp < +o00. (3.1.4)
e—0
By (a), the sequence (we, z) is bounded in HE (Q)x HE (Q) and since I} (to.cwe, to.eze)[(to.cWe, to,eze)] =

0 we have )
PO [ |

0,€ - .
/ w2 de
Q

proving (3.1.4).

Proposition 3.1.7. Assume that {(we, 2¢)} C H}(Q) x H} () is such that

(a) for every 0 < e <1:(weze) €N,

(b) there exist C1,Co > 0 such that

0<e<1:0<Cy< / e[|z Pz and |[(we, 2)|| < Ca,
Q

70



(c) we >0 and z. > 0 for every 0 < e < 1.

Let to[we, ze] > 0 the unique value such that to[we, ze) (we, ze) € No. Then
lim tofwe, 2] = 1.
gt =

In particular
lim to[ge, be) = 1.
e—0

Proof. We assume that ¢, — 0 as n — 400, (Wn,2n) = (We,,2e,) € Ne, and to, =
to[we, , ze,]- By Remark 4 we can assume that

lim ton = E() > 0.

n—-4o0o
Observe now that, since (wp, 2,) € Ne,, up to subsequences, we have
H(wn,zn)H2 = 2/ \wn|°‘€"|zn|ﬁ"dx — L >0. (3.1.5)
Q

Since Nehari manifold is uniformly bounded away from zero (see Remark 1), we have
L>0.

By the definition of tg 5,

12| 20) |2 = 262", /Q |2 P

Then,

7% 2= lim t3;2 = lim
n—-+oo 7 n—r—+oo

2/ \wn|o‘\zn|ﬁdx
Q
and the conclusion follows

Finally, since { / 19| |he| daz} is bounded away from zero by Remark 2, and {(ge, he)}
Q

is bounded in H{(Q) x H}(2) by Corollary 3.1.6, we have that {(g, b)} satisfy (b), and
also (a) and (c). O

Thanks to the previous result we get the next:

Proposition 3.1.8. We have
mg < liminf m,.
e—0

Proof. For €, — 0 and (gn, bn) := (8e,s be,) € Ne,, by Corollary 3.1.6 we have (gn, b,) —
(u,v) in Wol’z(Q) X WOI’Q(Q). With to.n(gn, bn) € No, we get

2/Q |91 || dz = || (g, ba) Qt(fn/Q 9|0 dae = 5 | (g, ) 1*

By Proposition 3.1.7 we have ¢, — 1 and since (g, bp) is bounded

/Q Gl Bl — £, /Q 10l 150 1 = 1/2(1 — £2,) (@ B |2 = 0n(1)
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Also by definition

me

1
o= 3101 = i [ gl b da.

e, + ﬂen

Then we get

2
tO,n

29,2
mo < Toltongn tonn) = 2 (g, ba)l? — 2t / PRI

o2 3*
= . om, +—" / Yen |fy,, [Pen dgp — 20 /
0,n'ten €n 4 /86” ‘gn ‘ | h | | TL

= tanmen + on(1).

2h,)? da

and passing to the limit we deduce mgy < liminfm,,,. O
n—-+00

By Proposition 3.1.5 and Proposition 3.1.8 we deduce the following desired result.
Theorem 3.1.9. For any bounded domain 2, it holds

lim m, = my.
e—0

3.1.2 A local Palais-Smale condition for I,

To show the local Palais-Smale condition for Iy it will be useful the next auxiliary result.
The constant S, is defined as follow

2
et I, o)1

u,v VV12 0
“or@ \{}( /\uy \v\ﬁdm)

Lemma 3.1.10. Let {(un,v,)} be a (PS) sequence for the functional Iy at level d € R.
Then, up to subsequences

1. (un,vn) = (u,v) in HY(Q) x H} (),

2
5%

2. Ij(u,v) =0, i.e. (u,v) is a solution of (3.1.1),
3. setting, wy, := up —u and z, == v, — v , then
To(tn,vn) = Io(u,v) + Io(Wn, 2n) + 0, (1) and I} (wp, 2,) — 0.
In particular {(wp, zn)} is a (PS) sequence for Iy at level d — Ip(u,v).
Proof. If d € R, Ip(up,vyn) — d and I)(uy,v,) — 0 then

B (s 0 [t 0] < C(L+ [ (s ).

To(tn, vn) — o

On the other hand, by the above computation

1 1

T v on) = (5 = 50 ) )

To(un, vn) — o

and the boundedness of {(uy,v,)} follows.

Then we can assume that (up,v,) — (u,v) in H(Q) x HE(Q) and {u,}, {v,} have
strong convergence in L*(Q), s € [1,2%) and u,(z) — u(x), v,(x) — v(z) a.e. in Q.
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For all ¢,¢ € C§°(f2), we have that I)(un,v,)[¢,1] — 0. Then we conclude that
I (u,v)[¢,¢] = 0, for all ¢ € C§°(RQ). By density, we get that Ij(u,v)(¢,v) = 0 for all
b, € Wy* ().

The last item is a consequence of Brezis-Lieb splitting Lemma. O

Then we have the local (PS) condition for the functional Ij.

Proposition 3.1.11. The functional Iy satisfies the (PS) condition at level d € R, for

L ny2
d< NSW :

Proof. Let {(un,vn)} be a (PS)4 sequence for Iy. We know that (up,v,) — (u,v) in
H(Q) x HYQ) , I} (u,v) = 0 and Ip(u,v) > 0. By defining wy, := u, —u and z, := v, — v,
we have (wp, z,) (PS) sequence for I, then

/|an\2+\vZn2d:c—>Azo, /|wnya|zn\ﬁdx—>Azo. (3.1.6)
Q Q

All that we need to show is that A = 0. By contradiction, suppose A > 0. Note that

Vwn|? + |V, |2d A
5y < 0Vl T Ve A

= Z
(fg‘wn|a‘zn’ﬁdx) > Az

implies that Sgﬁ/z < A. By using the Brezis-Lieb splitting we have

1 1
d+on(1) = lo(un,vn) = - Io(n, o) n, vn] = FII( I?

1 1
= 3l z)l* + Sl o) > LA > 8

al
N N

and this contradiction implies that A = 0, concluding the proof. O

3.1.3 A global compactness result

In order to prove our multiplicity results we need to deal with another “limit” functional,
now related to the critical problem in the whole RYV.

Let us introduce the space DV2(RY) = {u € L' (RY) : [Vu| € L*(R")} which can also
be characterized as the closure of C§°(R"Y) with respect to the (squared) norm

2 2
= dx.
[ullprzgay) /]RN |Vu|*dx

A function in H{ () can be thought as an element of DV2(RY).
Let us define the functional

~ 1 2
I(u,v) = 5 /RN |Vul|* + |Vv|?dx — 7 Jox u|*|v|® da

whose critical points are the weak solutions of

—Au = 22| 2uv)? in RY
—Av = Llul*|v]f~2v in RNV (3.1.7)
(u,v) € DM2(RN) x DL2(RN).
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Setting as usual

~

N = {(w,0) € D"2(RY) x D'2RY)\ {(0,0)} : T'(u v)(, 0) = 0},

all the solutions of (3.1.7) are in N ; it is a differentiable manifold, bounded away from zero,
and

@:= inf I(u,v)>0.
(u,w)eN
The proof of these facts is exactly as in (i)-(iii) of Lemma 3.1.1.

As a matter of notation, in the rest of the paper given a function z € DV2(RY), ¢ € RV
and R > 0, we define the conformal rescaling zr ¢ as

zre(x) == RN/ 2(R(z — €)). (3.1.8)

Of course [|2]| pro@ny = |2l pr2@ny-
We need the following important Lemma.

Lemma 3.1.12. Let {(wn,2n)} be a (PS). sequence for Iy such that (wy, z,) — (0,0) in
H} () x HY (). Then there exist sequences {xn} C Q,{R,} C (0,+00) with R, — +0o0,
and a nontrivial solution (u,v) of (3.1.7) such that, up to subsequences,

(a) Wy = wp —UR, 2, +0n(l) and Z,, := 2z, — VR, 2, + 0n(1) is a (PS) sequence for Iy in
Hi () x Hy (%),
(b) (@, Zn) = (0,0) in Hy(Q) x Hy(Q),

~

(¢) Io(Wn,2n) = Lo(wn, 2,) — 1(W,0) + 0, (1),
(d) Rnd(xy,0) — +oo,

(e) if ¢ < c* = %So%z then {(wn, zn)} is relatively compact; in particular (wy, z,) —
(0,0) in H(Q) x HY(Q) and Iy(wn, z,) — B =0.

Proof. 1If ¢ € (0, %SAZ?), by Proposition 3.1.11(éi7), we have (wy, 2z,,) strongly convergent.

e
Then suppose that ¢ > %5%2. Let the Lévy concentration function be

Qn(A) := sup / \wn|°‘\zn]5dx
yERN J By (y)

Note that there exists (2, \n) € RV x (0,00) such that

1
Qn(A\n) == / [wnl|2n|Pdz = - S37%.
B/\n Tn 2 “

Setting
N-2
Wy () = A2 wn(An(x + 24)),
N_2
Zn(x) = A ? zn(An(z + 24)),
we have

o o= 1  Ny2
sup/ \wn|a|zn|ﬁda::/ |wn|a\zn|6dx:§Sab{ .
yeRN J Bi(y) Bi
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Moreover,

il e = [ ol
Qn Q

/ |V, |* + |VZ,|?)dx :/[!an|2 + |V 2n|?)da
Qn Q

where Q,, = ( — xy). In what follows, Q is the limit set of Q,,. For each {(®,,¥,)} C
H} () x HO(Q ) with bounded norm in D%2(RY) x DV2(RY), we get

on(1) = / VT,V + V2, VU, | d
]RN

2 o= —lale 1B—2=
~ [T |~ %W |Z0| P @ + || |20 |22, U, . (3.1.9)
RN
_ 2-N _
since, setting @, (x) = A\, 2 @n(ﬁ(a: —x,)) and ¥, (z) = Ap? W, (5- (2 —xy,)), we have
that (3.1.9) is equivalent to

I(/)(wna Zn)(ana@n) = On(l)
Let (,7) be the weak limit of {w,,z,} € D"?(RY) x D"2(RY) . Now, we wil show
that u,v # 0.

Suppose by contradiction u = v = 0. Applying Lemma 6 from [13] there exists (z;) C
RN (1)), (0;) and (vj) C (0,00), where J is at most a countable set, such that

k
@ 1? + [IZnl* — Z Hj +0;5)d

in the sense of measures and

k
[l Poda v =3 vo(e,)
j=1

2

for all ¢ € C§°(RY). Moreover, Wi+ o > ijC%. We can conclude that z; € Qs and
J is finite or empty. If we suppose v; > 0 for some j, by well known arguments we get

vj > 5’53/2. By properties of (w,,z,) we get

—swp [ @l [ @i [ )
yeRN J By (y) Bi(zj) Bi(z;)

where ¢. € C°(RY), ¢e = 1 in Be(z;) and ¢ = 0 in BS (x;). Then passing to the limit
n — oo and € — 0 we get

N/2
2 Saﬁ

N2
5 Saﬂ = Vj

which is a contradiction. Then J is empty and for all ¢ € C§°(RY) we get
/ [Wn|* 20| pdaz — v =0
RN
which is an absurd since

N/2 o -
25045 _/ ’wn‘a|zn|5d1‘ </ ‘wn|a\Zn|ﬁdx.
B RN
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Consequently, @,v # 0. Using the fact the @,7 # 0 we have that A, — 0, because if
there exists 0 > 0 such that A, > J, we have the following inequality

1
/ ([@a? + 201z
]RN

1

= L w4 Pl < 2 / wnl? + |2a[2)d
)‘n RN RN

Since (wn, 2,) — (0,0) in L2(2) x L%(Q) it follows that

52

[ i + oz =0,
R

which is a contradiction. Then A\, — 0. Since 2 is bounded, we may assume that there
exists xg € € such that x,, — z¢. By weak continuity of (w,,z,) and (3.1.9) the function
(u, ) is a solution of the problem

2ce

—Au = —*|u|°‘_2u|v\ﬁ in Qu,

2
—Av = 2—?@\“\1}]5_21} in Q,

u,v > 0,u,v#0 in Qu,
u=v=0Iin 0.

Then we have to consider two cases:
(A) idz’st(:vn, 00) — o0 as n — 0o,
(B) %dist(mn, 0R) < a for all n € N for some a > 0.

Assume by contradiction that (B) holds and without loss of generality that x,, — 0 €
oq.

Moreover there exists § > 0, an open neighborhood N of 0 and a diffeomorphism
¥ : Bs(0) — N which has a jacobian determinant at 0 equal to 1, with ¥(By) = N'NQ
where Bi = B;(0) N {z" > 0}.

Now let us define the functions (&,,¢,) € DY?(RY) x DL2(RY) given by

N-2
&) = An? W (Y (A + P) )X (Y ( Az + P)), € Bé/An(_Pn/)‘n)
0, x€RN\ By, (—Pu/A)

() = { M (PO + Pa)X(TOnz + Po), 2 € By, (—Pa/An)
0, x€RN\ By, (—Pu/An)

where P, = ¥(x,), x € CPRM),0< x <1, x=1in ¥(B;s) and x =0 in ¥(Bss)°. It is
2 4
possible to show that for some subsequence

)\—"—M)co for some ag > 0 as n — oo
n

and there exists ¢,¢ € D?({z > —ag}) such that &, — ¢ and ¢, — ¢ in DY2(RY) wich
satisfies

“AE= 21e %l i {2V > —ap),

—AC = [€*ICPTC in {2 > —ao,
C > 075 >0 in {$N > _050}7
£=¢=0 on {zV = —g}.
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From Proposition 3.1.3, we have £ = ( = 0. On the other hand,
/ [@,* + 2 )dx < C/ [ + Crldx
B A

where A C {2V > ag} is a bounded domain. Since {¢,} is a bounded sequence in
Wh2(A) by Sobolev embedding

/ (€2 + )z — 0.
A
Then,
/ [Wn? + Zn2)dz — 0.
By
and so U = v = 0 in By which is a contradiction. Thus Case (A) holds, so that Qs = RY
and (u, ) is a solution of 3.1.7.

To conclude, we consider ® € C§°(RY) verifying 0 < ® <1, ® =11in B; and ® =0 in
BS. Let

2-N 1 1
Wn(2) = wn(z) = A U(3—(2 - wn))‘b(xf(x — Tp)),
) n 1 i
Zn(z) = 2n(T) — An v(/\*(x—ivn))@(f(iv—wn))
where we choose A, verifying )\n =22 — (. Considering

N_2 ~
W () = An? Wp(Apx + ) = Wp(z) — u(x)P (M),
N2 ~
Zn(x) = M2 Zn(Anx + ) = Zp(x) — 0(2) (A x)
and by repeating the same arguments explored in [14], we conclude the proof. ]

Now we can prove the following “splitting lemma”, which is useful to study the behaviour
of the (PS) sequences for the limit functional Iy related to the critical problem in the domain
Q.

In particular it says that, if the (PS) sequences does not converges strongly to their
weak limit, then this is due to the solutions of the problem in the whole RY.

Lemma 3.1.13 (Splitting). Let {up,v,} C HE(Q) x HY(Q) be a (PS) sequence for the
functional Iy. Then either {un,v,} is convergent in H}(Q) x H(Q), or there exist

i. a solution (ug,vo) € H(Q) x HL(Q) € DVARN) x DL2(RYN) of problem (3.1.1),

7. a number k € N,k sequences of points {1:,]1} C Q and k sequences {Rﬁl} with RS, —
400, where j =1,... k,

iii. montrivial solutions {(w/,v'};—1 ) C DM2(RY) x DL2(RYN) of problem (3.1.7)

such that, up to subsequences,

0 — Uy = Zu% o ton(l) in DY (RY) (3.1.10)
k
Uy — Vg = %J +o0,(1) in  DM(RY) (3.1.11)
]:1 717 TL
k —~ .
Io(wp, vy) = Io(ug, vo) ZI (u?,v7) 4 0, (1). (3.1.12)
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Proof. We already know (see Lemma 3.1.10) that {(uy,,vy)} is bounded and then we can
assume that (un,v,) — (ug,vo) in HE(Q) x H}(2),and (ug,vo is a weak solution of (3.1.1)
and [Io(v,)| < C. Assume that {u,} and {v,} does not converges strongly to ug and vy.

Let (w},2l) := (un,vn) — (ug,v9) — 0. Then by Lemma 3.1.10, {(w}, 1)} is a (PS)
sequence for Iy and

Io(tn, vp) = Io(ug, vo) + Io(wlk, z1) + 0, (1). (3.1.13)

n»~n
Q,{R.} C (0, +00) with R} — 400 and (u!,v!) € DV2(RY) x DY2(RY) solution of (3.1.1),
such that

By Lemma 3.1.12 applied to {(w},z})}, we get the existence of sequences {z.} C

(1a) defining (w2, 22) = (w},2}) — (u}%%7x£’v}%%,x%) + 0, (1) with 0, (1) — 0 in DM2(RY) x
DYM2(RY), and {(w2,22)} is a (PS) sequence for I,

n»n

(1b) (wy,27) = (0,0) in Hg() x Hg(9),

() To(wd, 22) = Io(wp, 1) — I(u!,0!) + on(1),

(1d) Rpd(ay,09) — +oo,

(le) if In(w}, z}) — B < B*, then {(w}, z1)} is relatively compact; in particular (w}, z}) —
(0,0) in H}(Q) x H}(Q) and Ip(w}, 2L) — 0.
Then by (1c) equation (3.1.13) becomes
Io(tn, vy) = Io(uo, vo) + To(w?, 22) + I(u',v") + on(1). (3.1.14)

Note that, by definitions, w3 = u, —ug—up 1 +0n(1) and 22 = v, —v9—Vp1 1 +0n(1)

Hence, if {(w2,22)} is strongly convergent to zero, the Theorem is proved with k = 1.
2

Otherwise, in virtue of (1a) and (1b), we can apply Lemma 3.1.12 to the sequence { (w2, 22)}:

then we get the existence of sequences {z2} C Q,{R2} C (0,+o00) with R2 — +oco and

(u?,v?) € DM2(RN) x DV2(RY) solution of (3.1.1), such that

(2a) (w2, 23) = (w2, z%)—(u?%%@%, v?%%7x%)+on(1) with 0,(1) = 0in D2(RV) x DV2(RV),
and {(w3, z3)} is a (PS) sequence for I,

n»Tn

(2b) (w3, 23) — (0,0) in HE(Q) x HL(),

n)»Tn

(2¢) To(w3, 23) = Io(w?, 22) — T(u?,v?) + on(1),

(2d) Rd(a7,09) — oo,

(2e) if Io(w2,22) — B < %, then {(w?2, 22)} is relatively compact; in particular (w2, z2) —
(0,0) in Wol’2(Q) X W01’2(Q) and Ip(w?,22) — 0.

Then by (3.1.14) and (2c):

~

Io(tn, vn) = To(ug, vo) + To(w?, 22) + T(u', v") + T(u?, v?) + on(1).
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Let w3 = wu, —ug — u}%x}l + u?%x% +0p,(1) and 23 = v, — vy — v}%}l@}z + 1)12,%%@% +on(1).
If {(w3,23)} is strongly convergent to (0,0), the theorem is proved with k = 2, otherwise
we can repeat the arguments.

By arguing in this way, at the j—th stage (j > 1) we have: (wﬁ'f‘l,szl) — (0,0) in
H(Q) x H} () and we get the existence of sequences {z, '} € Q, {R} "} C (0, 4+00) with
RI7Y = 400 and (w1, 0971 € DY2(RYN) x DY2(RYN) solution of (3.1.1), such that

(a) wh == wl ' — v/ L+ 0,(1) with 0,(1) — 0 in DYP(RY), and {w}} is a (PS)

Rglil sTn
sequence for I,

(ib) (wh,zh) = (0,0) in HJ(Q) x Hj (%),
(o) To(wh, ) = To(wh ', 2,7") — T(wI =1, w3 ~1) + 0,(1),
(Gd) Ry td(ad ", 00) — +oo,

(je) if I'o(w%_'l,zj_l) — B < %, then {(w%_l,z%_l)} is relatively compact; in particular
(wh 27 = (0,0) in HE(Q) x HE(Q) and Io(w), ', 257") — 0.

As before it is

j—1
wh =y — g — >ty i, (3.1.15)
i=1
j—1
z) :vn—vo—Zv%i i (3.1.16)
i=1
and by (jc) we have
j—1
To(tn, vn) = To(uo, vo) + To(wi, ) + > T(u',v') + 0n(1). (3.1.17)
i=1

Recalling that I(ug,vg) > 0 the previous identity gives

C > In(un,vn) > Io(wl, 22) + (5 — D) + 0, (1). (3.1.18)

n» n

On the other hand, since {(w},, z})} is a bounded (PS) sequence for I,

wh ) = To(wh ) — o To(why =)t 4] + o)
> (35 ) Ikl +0,(0) 2 )

Then, o
C>Iy(wl,z))+ (G —1m+o0,(1) > (j — 1)m + o,(1)

so that, since m > 0, we deduce that the process has to finish after a finite number of steps,
let us say at some index k. This means, by (3.1.15), that

k
k+1 _ i
wnth = o= )y g =0,
i=1
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k

k+1 _ %

o' = v w0 = D vy g, =0,
i=1

giving (3.1.10). Moreover as in (3.1.17) it is
k ~ .
Io(tun, vp) = To(uo, vo) + Io(wy ™, 23) ZI u',v') + op(1)

and we deduce (3.1.12), concluding the proof. O
Now, there exists (U, V') solution of

—Au = 22u[*2ufv|® in RV
—Av = 2B|u\ lv|®~2v  in RN
u,v € D1 2(RN)

such that IC(UR@, VR¢) = m, (recall the definitions in (3.1.2) adapted to the case = RY
and (3.1.8)) and moreover for any other solution (W, Z) which is not of this type, one has
I(W,Z) > 2m,.

By this observation, we deduce that if {(u,, v,)} is a (P.S) sequence for Iy at level mg and
(tn,vn) = (ug,vp). By Lemma 3.1.13 we have (u,,v,) — (u,v) in DV2(RY) x DV2(RY),
and in this case we have compactness, or equivalently, the Lemma holds with £ = 1. In
this case R

mo = Io(uo, vo) + I(u',v") + 0,(1)

and since I})(ug, vp) = 0, it has to be necessarily (ug,vo) = (0,0), and denoting u! = U and
v! =V, we have
Up = URnnyn + On(]‘)

Un = VRann + On(l)

in DY2(RY). This final observation will be used below.

3.2 The barycenter map

We begin by introducing the barycenter map that will allow us to compare the topology
of Q with the topology of suitable sublevels of I, ; precisely sublevels with energy near the
minimum level m,.

For u € WH2(RY) with compact support, let us denote with the same symbol u its
trivial extension out of supp u. In particular a function in H}(2) can be thought also as an
element of DL2(RM).

The barycenter of (u,v) (see [6]) is defined as

/ 2(|Vuf? + [Vof?)de
]RN

c RY.
/ (IVul? + [Vo|?)dz
RN

T (u,v) =

From now on, we fix r > 0 a radius sufficiently small such that B, C {2 and the sets
Qf ={z eRY : d(z,Q) < r}

Q ={xreQ:d(z,00) >r}
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are homotopically equivalent to €. B, stands for the ball of radius r > 0 centred in 0. We
denote by
h:Qf — Q. (3.2.1)

the homotopic equivalence map such that h| a- is the identity.

Now we have the following:

Proposition 3.2.1. There exists €9 > 0 such that if € € (0,¢€), it follows
(u,v) € Ne and I.(u,v) <m.+e = Y(u,v) € Q.

Proof. We argue by contradiction. Assume that there exist sequences &, — 0 and (wy, z,,) €
N, such that
me, < I, (wn,2n) <me, +&, and  Y(wy,2,) ¢ Q. (3.2.2)

Then by Theorem 3.1.9 we deduce
I, (wp, zn) = mp (3.2.3)

and then by Remark 3, {(wy,2,)} is bounded in H}(2) x H(Q). We can suppose that
(Wn, 2n) — (w,2) in HY(Q) x HE(Q). Since all the Nehari manifolds N, are bounded away
from zero (see Lemma 3.1.1 and Remark 1) we know that w, /4 0 and z, /4 0 in H}(Q)

and then, by Remark 2, we deduce / lwn|¥|2n|Pdz 4 0. We can assume, without loss of
Q

generality, that w,, z, > 0.
Let ton = to(wn, z,) > 0 such that to(wn, zn)(wn, 2,) € No. By Proposition 3.1.7 we
have lim tg, =1.
n—-+00
The proof now consists in
e STEP 1: prove that {to,(wn,2,)} C Np is a minimizing sequence for Iy on Np;

e STEP 2: use the Ekeland Variational Principle and write

toan(wn’ Zn) = (URnaz'rﬂ VRnyxn) + (¢7’L7 1/’71)

where U, »,, and Vg, 5, are introduced at the end of Section 3.1 and (¢y, 1) — (0,0)

in DY2(RY) x DL2(RN);

e STEP 3: compute the barycentre of tg ,,(wy, 2,) by using the representation obtained
in STEP 2 and contradict (3.2.2), finishing the proof of the proposition.

STEP 1: lim Io(ton(wn,2n)) = mo.
n—-+00

Observe that by the Holder inequality and since lim, o to, = 1 , we have:

tG,—1 . 205, ol 18
Io(ton(Wn, 2n) — Ie, (Wny 2n) = Tll(wmzn)ll Y [wn|*|2n|"dz
Q
* e / [wa " 20| da
a€n+/8€n Q
t2,—1
< 2w, z) [P+ 0a(1)

By using that {(wp, z,)} is bounded, we infer

Io(ton(Wn, 20)) — Lo, (W, 2n) < 0n(1).

81



Then
0<mp < IO(tO,n(wru Zn)) < Ien(wru Zn) + On(l)
and by (3.2.3) we conclude Io(ton(wn, 2n)) — mo for n — 4o0.

STEP 2: Representation of the minimizing sequence {to ., (wn, z,)}.

Since {ton(wn, z,)} is a minimizing sequence for Iy, the Ekeland’s Variational Principle
implies that there exist {(un, v,)} C Ny and {p,} C R, a sequence of Lagrange multipliers,
such that

||t07n(wnv Zn) - (um Un)” =0
Io(tp, vn) — Mo
I(/)(una Un) - NnGE)(um Un) —0

and Lemma 3.1.2 ensures that {(u,,v,)} is a (PS) sequence for the free functional Iy on
the whole space Wol’2(Q) X Wol’z(Q) at level my. By the arguments at the end of Section
3.1 we have

up —Urpz, 40 and v, — Vg, 2, =0

in DV2(RN) where {z,,} C Q, R,, — +00. Then we can write
Up = URn7$n + (z)n

Up = VRn,xn + wn
with a remainder (¢n,1,) such that |[(én, ¥n)|[pr2@yy — 0. It is clear that

tO,n(wnv Zn) = (Un, vn) + tO,n(wna 2n) = (Un, Un) = (Un, vn) + 0n(1);

so, renaming the remainder again ¢,, and 1, we have
tO,n(wna Zn) = (URn,xn7 VRn,xn) + (¢n7 1/}71)

STEP 3: Computing the barycenter and finishing the proof.

By using the representation obtained in STEP 2, the ¢—th coordinate of the barycenter
of to,n(wn, 2,) satisfies

T(to,n(Wna Zn))thO,n(U)na Zn)||2D1,2(RN) = /RN -Ti(‘VURThan + |VVRn,In ‘2)d$
+ / 2 (|Vonl? + |Vib,|?)da
]RN
+ 2 / 2 (VUR, 2,V on + VVR, 2, Viby)dx
RN

where 2% is the i—th coordinate of x € RY. In order to localize the barycenters we need
to pass to the limit in each term in the above expression; By computation of each using
changes of variables in the integrals, we get

lto.n(wns 2)[regny = IO V) Bragny + on(1),
/ T \VUR,, 2 |2de = x;/ \VU|?dz + o0, (1),
RN RN
/xi]VVRmandx = x;/ |VV |2dz + on(1),
RN RN
/ ' Vo |de = / 'VUR, 2, Vondr = 0,(1)
RN RN

/$i|V¢n|2d:z = / 'VVR, o, Vibndr = o,(1).
RN RN
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Then we have the i — th coordinate of the barycenter,

x;/ |VU* 4 |[VV|2dz + 0, (1)
RN
U V)2 gy + on(1)

Since {z,} C Q the above equation implies that Y(wy, 2,) = YT (ton(wn,2n)) = zo € Q,
when n — 400 and this is in contrast with (3.2.2) and proves the proposition. O

T(tO,n(wn’ Zn))l = = .T; + On(l), .

3.3 Proof of Theorem 3.0.1

Here we complete the proof of our theorem but first we need a slight modification to the
previous notations. Let r > 0 be the one fixed at the beginning of Section 3.2, that is in
such a way that O = {z € RN : d(2,Q) < r} and Q, = {z € Q : d(2,09) > r} are
homotopically equivalent to 2. We add a subscript r, to denote the same quantities defined
in the previous sections when the domain 2 is replaced by B,; namely integrals are taken
on B, and norms are taken for functional spaces defined on B,. Hence for example, for all
e > 0 we set:

Ny = {<u,v> € HY(B,) x HYB,) N0y =2 [ |u|a6\vrﬁedx},

1 2
e (,0) = 51 5, ) M/B | o] da,
méﬂ“ = vrenin IE,T (u7 ’U) = IE,T(ge,'m be,'r’)'

Observe that, by means of the Palais Symmetric Criticality Principle, the ground state
(Ge,rs be,r) is radial. Moreover let

187 = {(u,v) € Nt L (u,0) < me}

which is non vacuous since m, < me .
Define also, for € > 0 the map (U, ,, ®c,) : Q- — N, such that

(Wer(4) (), Bep(y) () = { (Gerllr = y(‘())j 8;“““ S gr\(zgr(y)

and note that we have

T(\IIE?T(y), (I)e,r(y>) =y and (\IIE,T(y>7 <I’e,r(y)) € I;ne’r .

Moreover, since m + k. = m¢, where k¢ > 0 and tends to zero if € — 0 (see Theorem
3.1.9), in correspondence of € > 0 provided by Proposition 3.2.1, there exists a ¢y > 0 such
that e € (0, ¢g) such that it results k. < &; so if (u,v) € I;'°" we have

Ie(u,v) <me, <me + e,
at least for € near 0. Hence we can define the following maps:

— \Pe,'rycbe,'r €.r ho _
q (WerBer) pmer hed -
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with h given by (3.2.1). Since the composite map h o o ¥, is homotopic to the identity
of Q07 by a property of the category we have

cat me.r (I8r) > cato-(€2,)

and due to our choice of r, it follows cat— (€2;7) = catg(€2).

Then, we have found a sublevel of I, on N, with category greater than catg(f) and
since the (PS) condition is verified on A, the Lusternik-Schnirelmann theory guarantees

the existence of at least catg(€2) critical points for I on the manifold N, which give rise to
solutions of (3.0.1).

The existence of another solution is obtained with the same arguments of Benci, Cerami
and Passaseo [7]. We recall here the arguments for the reader convenience. Since by
assumption €2 is not contractible in itself, by the choice of r it results catq+ (92,7) > 1,
namely . is not contractible in Q;F.

Claim: the set (¥, ,(Q;), ®.,(9;)) is not contractible in I¢ .

Indeed, assume by contradiction that cat me., (Wer(€2,), Per(€2,7)) = 1: this means that

T

there exists a map H € C([0,1] x (U, (Q7), @, (27)); I ") such that
H(0,u,v) = (u,v) Y(u,v) € (¥, (Q), Per(2.)) and

F(w,2) € I : H(L,u,v) = (w,2) Y(u,v) € (Ter(Q), Per(2)).
Then F = (U }H(Wer(9,)), P} (Per(2;))) is closed, contains 2, and is contractible in

r ’ Fer
Q;f since one can define the map

G(t.z) — 4 T(Wer(2)), Ler()) if0<t<1/2
(t,o) = T(H2t — 1,V (), Per(x)))) if1/2<t <1

Then also 2, is contractible in ;" and this gives a contradiction.
On the other hand we can choose a function (wo, z9) € Ne \ (Ter(2,), P (2;)) so that
the cone
C = {6(wo, z0) + (1 = 0)(u,v) : (u,v) € (Ter (), P (2)),0 € [0,1]}
is compact and contractible in H}(Q) x H}(2) and (0,0) ¢ C. For every u,v # 0 let t .,

be the unique positive number provided by (iv) in Lemma 3.1.1; it follows that if we set

C = {teuo(u,v) : (u,0) €C}, M, := maxI,
C

then C is contractible in IMe and M, > mc,. As a consequence also (¥, (), P (€2)) is
contractible in IMe.

In conclusion the set (W, ,(Q;), ®. (7)) is contractible in IM< and not in I¢" and
this is possible, since the (PS) condition holds, only if there is another critical point with
critical level between m., and M.

It remains to prove that these solutions are positive. Note that we can apply all the
previous machinery replacing the functional I, with

1 1
I-l- , — - 2 / + e +B€d
Howw) = Gl = o [ et

where w' := max{w, 0}. Then we obtain again at least catg(£2) (or catg(€2)+ 1) nontrivial
solutions that now are positive by the maximum principle.
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Appendix A

The Ljusternik-Schnirelmann category is a tool used to obtain multiplicity results of crit-
ical points of functionals, then obtaining solutions for variational equations. Let M be a
topological space.

Definition 1: A C M is contractible if the inclusion A < M is homotopic to a
constant map defined on A with value in M. In other words, there is H € C([0,1] x A, M)
such that for all u € A and for some p € M fixed we have

H(0,u) =u
H(l,u)=0p
Definition 2: The Ljusternik-Schnirelmann category of A with respect to M is defined
by
0, if A=10,
catp(A) = ¢ inf{m € N: A C Uj",, A;, A; contractible in M}

oo, if there isn’t & € N such that A C U?_l, A; contractible in M.

We denote cat M = cat M.

Definition 3: Let A, B,Y be closed spaces of E. Then A <y Bif Y € AN B and
there exists h € C([0,1] x A, E)

1) for all w € A, h(0,u) =u and h(1,u) € B,
2) forall t € [0,1], h(t,Y) C Y.

In the reference that this appendix is based, [31], it is used the relative category as
follows

Definition 4: Let Y C A be closed subsets in a topological space E. The category of
A in F relative to Y is the least integer n such that exists n+ 1 closed subsets Ag, A1, ..., Ay
of E satisfying

1) A=UlA;,
2) Aj,..., A, are contractible in E,

3) Ay <y Y in E.

We denote the category of A in E relative to Y by catx y (A).
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Observation: Note that

catx (A) = catx g(A).
Examples:
1. Let B = Bg(y) := {z € RN : |x — y| < R}, then catp(B) = catgn (B);
2. Let S := Sg(y) := {x € RN : |z — y| = R}, then catg(S) = catgn (S) = 2

3. Let T C R? the torus, then catyz(T?) = catgn (T?) = 4.

Then we have some important properties.

Lemma 3.3.1. Let A, B,C,Y be closed subsets of X such thatY C ANBNC. If A<y B
and B <y C, then A <y C.

Proof. Since A <y B there exists h € C([0, 1] x A, X) such that for all u € A:
h(0,u) =uw and h(l,u) € B
h(t,Y)CY.
Since B <y C there exists g € C([0,1] x B, X) such that for all v € B:
g9(0,u) =u and g¢(1,u) € C
g(t,Y)CY.
Define the following continuous function f :[0,1] x A — X:

[ h(2t,u) if te0,1/2],
f(t’“)_{ g(2t — 1,h(1,w)), if te (1/2,1].

We get for all u € A
f(0,u) =h(0,u) =u and f(1,u) = g(1,h(1,u)) € C, since h(1,u) € B.

By definition of g and h, f(t,Y) C Y, for all t. Then A <y C.
]

Theorem 3.3.2. Let A, B,Y be closed subsets of X such thatY C A. The relative category
satisfies the following properties

1) Normalisation: catxy(Y) =0
2) Subadditivity: catxy (AU B) < catx y(A) + catx(B)
3) Monotonicity: If A <y B, then catxy(A) < catx y(B)

Proof. 1. Note that we can take Ag =Y, since Y C AgNY and h: [0,1] x A9 = X
defined as h(t,u) = u is continuous and satisfies

h(0,u) =u for all u € Ay,

h(l,u) =u €Y for all u € Ay,
hit,y)=y€ Ag=Y forallyeY.

Then Ag <y Y and we conclude catx y (Y) = 0, by definition.
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2. Let catxy(A) = n, then we have A; C X closed subsets with Ay, ..., A;,, contractible
in X and Ag <y Y such that

Also we have cat x (B) = m, the there exists Bj, ..., By, closed subsets and contractible
in X such that

Then AUB C AgU[A1U...UA, UB1U...UBy,] and Ay <y Y. By definition, we get

CatX,Y(A) <n4+m= CatX7y(A) + Catx(B).

3. Let catxy(B) =n and By, ..., By, the subsets of the definition. Define

Ay = {u ceA: h(l,u) S Bj}.

Then we get A = U;’ZIA]-. We need to prove that Ay <y Y and Aq,..., A, are
contractible.

Since By <y Y, we get Y C By. Also, if u € Y, then h(1,u) € Y C By. By definition,
u € Ap. Finally, we use ho := h |4,. Then Ay <y By. Since By <y Y, by Lemma we
get Ag <y Y.

In order to show that A; is contractible, let g; the deformation associated to B; which
is contractible and define f; : [0,1] x A; = X as

hi(2t,u) if t€0,1/2],
fj(t’“):{ gjj-(2t—1,hj(1,u)), if te(1/2,1).

Then we got A; contractible, j = 1,...,n, then
catyy(A) <n = catyxy(DB).

O]

Now we assume that E is a Banach space, V C E is a manifold given by V = ~1(1)
with ¢ € C%(E,R) and ' (u) # 0 for all v € V.

Also we define
Yl={veV:y@) <d

and
K.:={veV @) =cand ||[¢'(u)]-
For j > 1,

Aj={Acy?: Ais closed, catya(A) > j}

c; = Inf su U
’ AGAJ uegw( )

Definition 5: The function 1) |y satisfies the (PS). condition if any sequence (u,) C V'
such that ¥ (u,) — ¢ and [|¢'(uy,)|l« — 0 has a convergent subsequence.

87



Theorem 3.3.3. If a := supy®) < ¢ := ¢ = Cpt1 = ... = Cham < d and if ¢ |y satisfies
the (PS). condition, then catya(K.) >m+ 1.

Proof: See [31].

Theorem 3.3.4. Ifsup ¢(u) < c1 and if ¢ |y satisfies the (PS). condition for all ¢ € [c1,d],
ucY

then ¢~Y([e1,d]) contains at least catyay (Y?) critical points of |y .

Proof. 1f catwd,y(wd) = n and by consequence of the definition of ¢;, we obtain

sup(u) <cp <ca<...<¢, <d.

uceyY
We can separate
Y(u) <e1= .. =cmy < Cmggl = oo = Cimy < oo < Cy_1 41 = --Ci
where mg = 0 and m; = n.
Then, applying the last theorem for sup ¥)(u) < ¢, ;+1 = ... = ¢m; < d, we obtain

ueY
catd,d(Kcmi) =m; — Mm;_1.
Since K, are disjoint sets ,
J
cat¢d(Ug:1Kcmi) = Zmz —mi_1=m; =n
i=1

Finally, ngchmi has at least n points and since ngchmi C ¥~ Y([e1,d)], we obtain
that 1 ~!([c1, d)] contains at least n critical points of ¥ |y . O

Theorem 3.3.5. If ¢ |y is bounded from below and satisfies the (PS). condition for all
ce [in‘f/w(u), d), then 1 |y has a minimum and ¥% has at least catya(p?) critical points of
ue

Y lv

Proof. First, let show that ¢; = in‘f/ Y (u). Note that for all A € A; we have
ue

inf Y(u) < inf P(u) < 31613w<u)

By taking the infimum for all A € Ay, we get in‘f;q/}(u) < ey.
ue

Since in‘f/ Y(u) < ¢ < d, we get ¥? # ). By consequence of the definition, we obtain
ue

inf ¥(u) = inf ¥(u).

ueV ucpd
Note that for all u € ¥, {u} € A, then

¢ = inf supep(u) < sup P(v) = ¢(u)

AcA1 yeA ve{u}

Taking the infimum in v € %, we get

1 < inf w{u) = inf ¥(u)
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Consequently, ¢; = inf ¢ (u).
ueV

By hipothesis, ¢; = in{/w(u) > —o0 and ¥~ !([e1,d]) = ¢?%. Finally, apllying the last
ue

theorem with y = (), we get that )¢ has at least cat,a (¢?) critical points of 9 |17 And by
Theorem 3.3.3 we get catya(K. > 1, then there exists u € V such that psi(u) = ¢; and
|/ (u)|l« = 0. In other words ¢ |y has a minimum point.

O
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