
1. Introduction
Due to the increased variability in the climate caused by global warming, the number of natural disas-
ters has risen over the past four decades (Brown et al., 2008). Extreme events beyond the historical record 
and the bounds of natural variability have led to human casualties, property damages, and socioeconom-
ic problems, creating international disagreements (AghaKouchak et al.,  2014; Meehl et al.,  2000; Oki & 
Kanae, 2006). It has become increasingly important to consider the changes in extreme events to design for 
safety from natural disasters as the climate gets warmer.

Climate models (e.g., global climate models [GCMs] and regional climate models [RCMs]) represent the 
main tools used to assess the future climate and the associated changes in the hydrological circulation 
over a long-term planning horizon (Borgomeo et al., 2014; Haro-Monteagudo et al., 2020; Steinschneider 
et al., 2015). These climate models attempt to simulate accurately the current climate as well as the response 
of the climate system to projected greenhouse gas concentrations into the future (Kattsov et al., 2007; Kri-
palani et al., 2007). However, model simulations are known to exhibit systematic bias, which has limited the 
direct use of especially precipitation from climate models (S. Kim, Eghdamirad, et al., 2020; Woldemeskel 
et al., 2016). GCMs often have a low spatial resolution (100–300 km), with which regional climate may not 
be well reproduced (Diaconescu et al., 2018). In this context, RCMs with higher resolutions of 50 km or less 
can provide a better representation of localized extreme rainfall events at finer spatial scales (Hadjinicolaou 
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et al., 2011; Hanel & Buishand, 2011; Hewitson & Crane, 1996; Kyselý & Beranová, 2009; Kyselý et al., 2011; 
Wilks & Wilby, 1999).

The dynamic downscaling models (e.g., GCMs and RCMs) could capture key features of the large climate 
system, and their outputs are mainly used for statistical downscaling approaches as inputs. Nonetheless, a 
reliable assessment of the implications for regional climates is still difficult to evaluate due to large uncer-
tainties associated with initial and boundary conditions, model inadequacy, and resolution. A bias-correc-
tion approach, therefore, is often required to remove systematic bias for climate change impact assessment 
(Ayar et al., 2016; Tan et al., 2020; Wilby et al., 1998). More importantly, the quantile mapping (QM) based 
bias-correction approach with a downscaling model is commonly employed to correct hydro-meteorolog-
ical variables (e.g., temperature and precipitation) at the station levels (Khalil et al., 2010; Y.-T. Kim, Park, 
& Kwon, 2020; Kwon et al., 2011; Lima et al., 2016; Lima et al., 2018; So et al., 2017) and finer resolutions 
(Guo & Wang, 2016; Mamalakis et al., 2017). Operationally, the statistical downscaling with the bias-correc-
tion is preferred due to its ability and simplicity in downscaling the GCM outputs, especially precipitation. 
Statistical downscaling methods include the delta approach (Kuok et al., 2016; Simonovic et al., 2016), the 
disaggregation approach (Koutsoyiannis et al., 1998; Pui et al., 2012), the nonstationary frequency anal-
ysis for downscaling precipitation extremes (Cheng & AghaKouchak, 2014; Lehmann et al., 2016; Lima 
et al., 2016), and approaches that model long-term dependence in both space and time (Mehrotra & Shar-
ma, 2006; Mehrotra et al., 2013). Recently, the spatial downscaling of daily rainfall with the bias-correction 
has been widely applied for downscaling the simulated precipitation at desired grids and points (Immerzeel 
et al., 2009; K. B. Kim et al., 2015; D.-I. Kim et al., 2019; Kwon et al., 2012; Nahar et al., 2017, 2018).

The bias-correction procedure often relies on observed variables at the weather station and grid points, 
which limits the full use of precipitation information obtained from the GCMs (or RCMs). Therefore, to 
fully utilize spatially varying climate model simulations, it is desirable to have the grid-based observation 
data at finer spatial resolution (or at least the same resolution) than those from climate models to con-
struct transfer function for adjusting bias at any desired location in space and time. It is worth noting that 
high-resolution daily gridded rainfall observation data is not readily available in many countries, including 
South Korea. Under these circumstances, there are two ways of modeling bias-correction at the desired grid 
resolution. First, the observed data at the weather station can be interpolated onto a fine grid to allow proper 
comparison to proceed. Alternatively, a set of parameters associated with the bias-correction can be gridded 
to form a spatial bias-correction model. To the best of our knowledge, there is no reason to prefer one or 
the other approach, as there is no systematic comparison in the literature between them in the context of 
bias-correction and spatial downscaling. This work expects to shed some light on this problem by exploring 
the following issues within the bias-correction and spatial downscaling:

1.  Can all parameters associated with the spatial downscaling and bias-correction be simultaneously esti-
mated and interpolated at the desired points?

2.  Can the interpolation of the bias-correction parameters be more effective than the interpolation of the 
daily precipitation in the context of spatial downscaling and bias-correction?

3.  Can a Bayesian Kriging based bias-correction approach effectively reproduce spatial dependency over a 
network of weather stations in the interpolated parameters associated with bias-correction?

We intend to contribute to the existing literature with a novel approach that incorporates the spatial down-
scaling and the QDM (quantile delta mapping) with a Bayesian Kriging method, which, as compared with 
the large variety of statistical downscaling and bias correction methods, finds motivation by the need to 
better address spatial dependencies of distribution parameters over gauging stations, including parame-
ter uncertainty representation, and consequently provide unbiased, interpolated rainfall simulations with 
sound GCM/RCM subgrid variability. The Bayesian parameter estimation has been widely employed in 
the field of hydrology (Haddad et al., 2012; Kwon et al., 2008, 2011; Liang et al., 2011; Lima & Lall, 2010; 
Lima et al., 2018; Viglione et al., 2013). Our focus here is to spatially downscale daily rainfall sequences 
simulated by RCMs at any desired higher resolution, fully coupled with the QDM-based bias-correction. 
Our approach assumes that persistence or low-frequency variability attributes in the precipitation simula-
tions are unbiased, and the main bias resides in the probability distribution of the rainfall amounts, largely 
a result of the use of point observed data instead of compatible gridded fields. The proposed modeling 
framework is demonstrated through a Leave-One-Out CV (LOOCV) evaluation in South Korea and climate 
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change scenarios simulated by three different RCMs informed by the HadGEM2-AO GCM (Y.-T. Kim, So, 
et al., 2020; Magnusson et al., 2020; Park et al., 2016; Sivula et al., 2020).

The precipitation data, including climate change scenarios used in this study, are summarized in the fol-
lowing section. The proposed Bayesian Kriging Spatial Disaggregation Quantile Delta Mapping (SD-QDM) 
approach for bias-correction and spatial downscaling is described in Section 3. The modeling results and 
their efficacy are demonstrated and discussed in Section 4. Finally, concluding remarks and a summary of 
this work are provided.

2. Observation Data and Climate Change Scenario
The daily precipitation data was compiled from over 92 Automatic Synoptic Observation Systems (ASOS) 
across South Korea, operated by the Korea Meteorological Administration (KMA). Here, daily precipitation 
data at 60 weather stations with more than 45 years, ranging from 1973 to 2018, were finally selected for the 
subsequent analysis. The data used in this study can be obtained from the KMA data library, and the loca-
tions of weather stations used in this work are reported in Table S1 in Supporting Information S1. It should 
be important to highlight that approximately 60% of the annual rainfall is attributed to the summer season, 
from mid-June to early September, and extreme rainfalls often occur in this season. In the present work, we 
explore a seasonal-varying model under the circumstances of high rainfall variability, without focusing on 
an annual basis model, in a more general context.

This study aims to develop a spatial downscaling model that is fully coupled with the QDM-based bias-cor-
rection. The proposed model is applied to climate change scenarios simulated by three different RCMs 
employed in the Coordinated Regional Climate Downscaling Experiment-East Asia (CORDEX-EA), cov-
ering the entire East Asian areas, including South Korea, as shown in Figure S1 in Supporting Informa-
tion S1. CORDEX is an internationally coordinated framework with the use of multiple RCMs for providing 
high-resolution climate change projections (So et al., 2017). The three different RCMs in the CORDEX-EA 
Phase 2 considered in the study are Seoul National University Regional Climate Model (SNURCM, with a 
spatial resolution of 12.5 E  12.5 km2) (D.-K. Lee et al., 2004), Weather Research and Forecasting (WRF, with 
a spatial resolution of 25 E  25 km2) model (Skamarock & Klemp, 2008), version 3.7, and the Consortium for 
Small-scale Modeling (COSMO)-CLM (or CCLM, with a spatial resolution of 25 E  25 km2) 5.0 (B. Huang 
et al., 2015; J. Huang et al., 2017; Wang et al., 2013) for downscaling from the Hadley Centre Global En-
vironment Model version 2 (HadGEM2-AO) atmosphere-ocean coupled general circulation model (Baek 
et al., 2013; Ngai et al., 2017). For more details, please refer to the link for details of the models (http://cor-
dex-ea.climate.go.kr). In this study, the future precipitation simulation for 2006–2100 under the represent-
ative concentration pathways (RCP) 4.5 and 8.5 was used with the historical precipitation simulation for 
1979–2005. The Bayesian Kriging based SD-QDM approach was applied to provide downscaled precipita-
tion at finer scales of about 6.25, 12.5, and 12.5 km resolution for SNURCM, WRF, and CCLM, respectively, 
which is typically more relevant as input for hydrological model applications.

3. Quantile Delta Mapping With Bayesian Kriging Approach
3.1. Bayesian Kriging Based SD-QDM (Quantile Delta Mapping)

This study assumes that the daily precipitation amounts follow a Gamma distribution, and the CDF for 
Gamma distribution with the shape ( ohE k  ) and scale ( )ohE  parameters can be defined as follow:

F x k

k
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For the Gamma distribution parameters (shape ( ohE k  ) and scale ( )ohE  ), this study adopts a weakly informative 
Gamma distribution with the shape (0.01) and scale (0.01) parameters, conjugate prior distribution (Gel-
man, 2006; Lima et al., 2018; Lunn et al., 2012).

More generally, let us say that E S is our variable of interest, to which we want to perform the spatial interpo-
lation. E S can be, for instance, the shape and scale parameters (i.e., the ohE k  and ohE  ) of the Gamma distribution 
representing daily rainfall. E S has a dimension E n , the number of rainfall gauges. For simplicity, we assume 
that E S follows a multivariate normal distribution (MVN)

   2,S MVN (4)

where E  is the mean vector,  2E  is the overall variance, and ΣE  is a squared positive-definite matrix of size E n 
representing the spatial dependence present.

We want to model the spatial variability of E S through a parametric formulation for ΣE  :

   ij ijf d | (5)

where ijE d  is the distance between sites i and E j and E  represents the correlation parameters.

We adopt here the powered exponential family for the function E f  :

f d exp dij ij|  


,     





 (6)

in which   0E  governs the decay of the spatial correlation with distance and  0 2E  is the smoothing 
degree for E S .

The estimation of the set of parameters    2, , , ,oh ohE k  and E  will be performed here using Bayesian infer-
ence, which provides a better groundwork to deal with parameter uncertainties, particularly for a small data 
set, as compared with traditional methods in ordinary Kriging. In addition to the distance, the formulation 
of the spatial model could be expanded by including auxiliary variables, such as elevation. The first two 
Gamma distribution parameters (i.e., ,oh ohE k  ) are spatially varying, but the remainings ( 2,E  and E  ) are not.

We start by setting the prior distributions for the parameters. As for E  , since no relevant information is 
known about it, we define independent and weakly informative priors:

  1i (7)

where  1,…,E i n denotes the rainfall gauge. In our case, we have   0;iE  therefore, our prior should be re-
stricted to the positive domain. For the purpose of coding the MCMC simulation, we adopted the gamma 
distribution with the values 100 and 0.01 for scale and shape parameters, respectively.

For the overall variance parameter  2E  , we adopt a weakly informative, conjugate prior distribution as done 
in other studies (Gelman, 2006; Lima et al., 2018; Lunn et al., 2012):

   2 0.01, 0.01Inv G (8)

The prior for E  should ideally consider the minimum and maximum correlations at the minimum and max-
imum distances ijE d  , respectively. It results, therefore, in the following uniform prior:

   0,1.0U (9)

The joint posterior distribution of    2, , , ,oh ohE k  and E  is obtained following the Bayesian rule, which 
combines the Likelihood function L S k

oh oh
| , , , , ,    2  with the prior distributions described above. The 

Markov Chain Monte Carlo (MCMC) approach is adopted to sample from the joint posterior distribution, 
as an analytical integration is not feasible. The module GeoBUGS from the free software OpenBUGS was 
used for the MCMC algorithm. We checked the convergence using the R coefficient as proposed in Gelman 
et al. (2013) and visually based on the mixture of five chains with 2,000 simulations each. The powered 
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exponential function in Equation 6 is already implemented in GeoBUGS and this was the main motivation 
for its choice. Moreover, it has proved to facilitate the convergence of the MCMC chains. Other spatial mod-
els (e.g., spherical) could be tested as well, but their implementation under the Bayesian framework used 
here may not be straightforward and the convergence of the MCMC chains may be hard to achieve. The 
flowchart of the proposed modeling framework is illustrated in Figure S2 in Supporting Information S1.

3.2. Quantile Delta Mapping Approach

The QDM has been widely adopted for bias-correction of the climate change scenarios due to its ability to 
preserve relative changes in quantiles over historical and future simulations. The QDM approach is based 
on the cumulative distribution functions (CDFs) obtained from precipitation sequences over two time peri-
ods that represent modeled and observed precipitation during the historical period (1979–2005) and project-
ed precipitation during the future period (2006–2100). A graphical representation of the QDM is provided 
in Figure S3 in Supporting Information S1.

The cumulative probability of the projected precipitation E sfx  can be obtained from the CDFs ( sfE F  ) as follows:

         , 0,1t
sf sf sfsfQ t F x t Q t   (10)

Here, E sfQ  represents non-exceedance probability at time t  . The modeled quantiles during the historical and 
future periods corresponding to the sfE Q  can be obtained from 1

shE F  and 1
sfE F  (inverse cumulative distribution 

functions, ICDFs), respectively. The simulated precipitation sfE x  is denoted by the subscript s during the 
future period, denoted by the subscript E f  , and similarily for the CDF sfE F  . The relative quantile changes in 
precipitation over two time periods at time t  is given as follows:

w t
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The bias-corrected quantile ˆshE x  for the modeled sfE Q  at time t  can be obtained by adopting the inverse CDF 
( 1

ohE F  ) estimated from the observed precipitation during the historical period as written in Equation 3. The 
CDF shE F  of the simulated precipitation during the historical period is denoted by the subscripts E s , and E h and 
similarly for the CDF of the observed precipitation during the historical period ohE F , marked by the subscripts 

E o , and E h .

    1 )ˆ (sh oh sfx t F Q t (12)

Finally, the bias-corrected future scenario values ˆsfE x  can be computed by multiplying the relative quantile 
changes Δ sE w  and the bias-corrected quantile  ˆshE x t  during the historical period. Hence the relative changes 
can be preserved in the course of bias-correction.

      ˆ Δˆsf sh sx t x t w t (13)

4. Result and Discussion
4.1. Parameter Estimation and Cross-Validation

The gamma distribution is often used to model daily rainfall (Aksoy, 2000; D.-I. Kim et al., 2019; M. H. Lee 
et al., 2019; Yoo et al., 2005) in hydrological applications, particularly for the bias-correction of modeled 
rainfall sequences obtained from climate models (Bárdossy & Pegram, 2011; Heo et al., 2019; Johnson & 
Sharma, 2012; K. B. Kim et al., 2016; M. H. Lee et al., 2019; Piani et al., 2010; Volosciuk et al., 2017). The 
two-parameter gamma distribution was selected based on Bayesian Information Criterion (BIC) value as 
the best distribution for the observed and modeled daily rainfall during the historical period (1979–2005) 
and projected daily rainfall during the future period (2006–2100).
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First, we explored whether all parameters can be simultaneously estimated and interpolated at the desired 
points within a Bayesian Kriging modeling framework. In this perspective, the gamma distribution was 
fitted to daily rainfall series from 60 weather stations, and the distribution parameters were retained. More 
importantly, the distribution parameters were simultaneously interpolated by the Bayesian Kriging ap-
proach over the gauge locations in the parameter estimation process. The model performance was explored 
by testing the predictions of the parameters over the entire station set within a LOOCV framework. Here, 
the LOOCV scheme drops one gauge, and the remaining gauges are used to estimate all the parameters 
associated with both the gamma distribution and the Kriging model. The spatial location of the gauge that 
is not considered in the calibration process is then used as input to obtain its predictive gamma distribution 
parameters. The cross-validated results and the associated credible intervals for August are illustrated in 
Figure 1a for a graphical representation of the efficacy of the proposed model. The results showed that the 
predicted parameters (i.e., shape and scale parameters) fall within the 95% credible interval derived from 
the predictive posterior distribution. As illustrated in Figure 1a, the predicted parameters are strongly cor-
related with those estimated directly from the observations (Pearson correlation equals to 0.95 for the shape 
and 0.98 for the scale parameter). The results for the remaining months are also similar to that of August 
and are displayed in Figure S4 in Supporting Information S1. As inferred from the Pearson correlation co-
efficient (not shown here), the proposed model yields slightly better predictions for the scale parameter as 
compared to those for the shape parameter. Moreover, a seasonal-varying model under the LOOCV scheme 
is investigated, and the model performance with four different performance metrics (Table S2 in Supporting 
Information S1) (correlation coefficient [CC], Nash-Sutcliffe Efficiency [NSE], Index-of-Agreement [IoA], 
and Root Mean Square Error [RMSE]) is summarized in Table S3 in Supporting Information S1. For the 
shape parameter, the model showed slightly lower performance in the spring season from February to April 
in terms of the NSE. Still, the model predictability can be regarded as “Very good: NSE ≥ 0.7” according to 
the given criteria suggested by Kalin et al. (2010), and other performance measures are largely comparable 
to that of different seasons. For the scale parameter, the predicted parameters appear to be almost identical 
to that of the observed, confirming the efficacy of the model.

Following the previous step, we investigated whether the grid generated by direct interpolating the gamma 
parameters can be more reliable than the grid obtained by first interpolating the observed daily precipitation 
onto the grid and thereafter estimating the gamma parameters over these points. The directly interpolated 
gamma distribution parameters through the proposed Bayesian Kriging approach were then compared to 
the parameters obtained from the interpolated daily precipitation that will serve as a baseline model. Note 
that daily precipitation was also interpolated by the Bayesian Kriging approach and all the results presented 
here were achieved under the LOOCV scheme. Figure 1b shows the gamma parameters interpolated onto 
the locations of the rainfall gauge set using both approaches (displayed along the y-axis) and the local es-
timates of the gamma parameters (displayed along the x-axis), obtained from the rainfall gauge data. It is 
clear that the proposed model outperformed the baseline model, which is based on the interpolated daily 
rainfall series. This finding is likely a direct result of the difficulty to effectively interpolate daily precipita-
tion sequences due to the nature of rainfall intermittency in both space and time, which is closely related to 
the binary process representing rainfall occurrence (i.e., rain and no rain) (Hasenauer et al., 2003; Kleiber 
et al., 2012; Militino et al., 2015). Furthermore, due to the large spatial and temporal variability in precipi-
tation, it is believed that there are limitations in accurately reproducing the underlying distribution of pre-
cipitation in the interpolation stage (Y.-T. Kim, Park, & Kwon, 2020; Ly et al., 2013; Mandapaka et al., 2009; 
Obled et al., 1994). The bias in estimating the parameters in the interpolation process eventually leads to 
incorrect estimation of the probability density function, as illustrated in Figure 1. Here, for the graphical 
representation, gamma distributions over two approaches are compared with the representative stations 
(i.e., ST. Nos. 100 and 105). Based on these results and under these contexts, we suggest avoiding the esti-
mate of the parameters onto the fine grid from the interpolated daily precipitation for the bias-correction 
and their use to the spatial downscaling. The results for the remaining months are all comparable to that of 
August and are displayed in the Figure S5 in Supporting Information S1.

4.2. Interpolation of Parameters Using Bayesian Kriging Approach

Furthermore, the gridded estimates using the Bayesian Kriging approach (right panel) are illustrated in 
Figure 2 for August, with the point estimates (left panel) for the weather stations considered in this study. 
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The relatively large shape parameters are identified in the southeastern regions, while relatively large scale 
parameter values are concentrated in the southern coastal area. On the other hand, the smaller shape pa-
rameters are mainly distributed in the mid-western region, while the lower scale parameter values are large-
ly seen in the southern part of South Korea. Overall, the proposed Bayesian Kriging approach is capable of 
reproducing the main spatial patterns seen in the direct point estimates of both shape and scale parameters.

This study further tested the efficacy of the model in effectively reproducing spatial dependency over a 
network of weather stations in the interpolated gamma parameters. The semivariogram of gamma param-
eters estimated from the posterior distributions obtained from the Bayesian Kriging approach was then 

Figure 1. (a) The cross-validated results and their 95% credible intervals (shaded region) of the Gamma parameters within a LOOCV assessment in August. 
The black-filled circles are the parameters estimated from observed precipitation, while the red-dotted lines represent the median values estimated from the 
predictive posterior distribution. The number on the X-axis represents the gauge code, summarized in the supplementary information. (b) Comparison of 
gamma parameters directly interpolated from the proposed model (blue-filled circles) and obtained from the interpolated precipitation field (red-filled circles). 
Both estimates are shown along the y-axis, while the x-axis refers to the local estimates, obtained from the gauged data. (c) Comparison of gamma distributions 
directly interpolated from the proposed model (blue line) and obtained from the interpolated precipitation field (red line), along with the observed gamma 
distributions obtained from the representative stations (i.e., ST. Nos. 100 and 105).
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compared to that obtained from local estimates based on gauged rainfall data. Figure 3a shows, for August, 
the efficacy of the proposed model to reproduce the bias-correction parameters while preserving the spatial 
variability observed in the historical data-based estimates, where both semivariograms are almost identical. 
The semivariogram directly obtained from the interpolated precipitation is significantly biased from the 
observed one. Similarly, the spatial pattern of the parameters for the remaining months is well captured by 
the Bayesian Kriging based SD-QDM approach, as displayed in the supplementary information, Figure S6 
in Supporting Information S1. Moreover, the Bayesian Kriging based SD-QDM model was compared with 
the ordinary Kriging approach, which is widely adopted in spatial interpolation. The results confirmed that 
the proposed approach showed better performance to estimate the Gamma distribution parameters in the 
context of cross-validation, as illustrated in Figure S7 in Supporting Information S1.

Figure 2. Gamma parameters estimated from observed precipitation at weather stations (left panel) and gridded parameters (12.5 E  12.5 km2) obtained from the 
Bayesian Kriging approach (median estimates from the predictive posterior distribution). The estimates refer to the period 1979–2005.
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4.3. Spatial Downscaling of Climate Change Scenarios

Finally, the interpolated parameters shown in Figure 2 can then be used to construct the transfer func-
tions at the fine grid for the bias-correction and spatial downscaling of simulated daily precipitation. More 
specifically, to illustrate the use of the proposed Bayesian Kriging based SD-QDM approach, this work 
downscaled the historical and the future daily precipitation simulated by RCMs in the CORDEX-EA Phase 
2 for 1979–2005 and 2006–2100, respectively, under the RCP 4.5 and RCP 8.5 scenarios shown in Figures 3b 

Figure 3. (a) Comparison of semivariogram estimated from the directly interpolated gamma parameters via the Bayesian Kriging approach (red filled circle) 
and the baseline model based on interpolated daily rainfall (blue filled circle). The semivariogram obtained from the local estimates of the gamma parameters 
is shown as black-filled circles. The reference month is August. (b) Mean annual precipitation compiled from WRF (25 E  25 km2) without bias-correction. 
(c) Spatially downscaled mean annual precipitation (12.5 E  12.5 km2) from WRF (25 E  25 km2) through the proposed Bayesian SD-QDM approach. Here, the 
historical and the future daily precipitation are simulated by WRF in the CORDEX-EA Phase 2 for 1979–2005 (Historical) and 2006–2100 (Future) under the 
RCP 4.5 and 8.5.
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and 3c for WRF RCM as a representative example. Further, Figure S8 in Supporting Information S1 dis-
plays the mean annual precipitation compiled from three RCMs (i.e., SNURCM, WRF and CCLM) without 
bias-correction (Figure S8a in Supporting Information S1) and with bias-correction based on the SD-QDM 
approach (Figure S8b in Supporting Information S1). Here, spatial downscaling was done at the fine grid 
by interpolating the pointwise estimation of QDM parameters onto the same grid points (or same spatial 
resolutions) of three RCMs, with resolutions of 12.5, 25, and 25 km for SNURCM, WRF, and CCLM, respec-
tively. Further, the proposed Bayesian Kriging based SD-QDM approach provides downscaled precipitation 
at finer scales of about 6.25, 12.5, and 12.5 km resolution for SNURCM, WRF, and CCLM, respectively, 
which could be more relevant for hydrological models as input (Figure S8c in Supporting Information S1). 
As illustrated in Figure S8 in Supporting Information S1, the spatial patterns of mean annual precipitation 
with Bayesian Kriging SD-QDM are largely similar and comparable to that of the three RCMs without bi-
as-correction, confirming that the proposed model can preserve the spatial variability after bias-correction. 
But more importantly, there is a substantial increase in the amount of precipitation with bias-correction due 
to the significant underestimation of precipitation simulated from RCMs without bias-correction.

5. Concluding Remarks
The bias-correction of precipitation simulated by GCMs (or RCMs) is often dependent on observed precipi-
tation at the weather station and grid points, limiting the full use of climate information obtained from cli-
mate models. In particular, daily gridded rainfall observation data at high resolution is not readily available 
in many countries. In this perspective, this study proposed a Kriging Bayesian SD-QDM approach to obtain 
distribution and bias-correction parameters over a fine grid, representing the appropriate spatial depend-
encies observed over gauging stations. We illustrated the efficiency and applicability of the proposed model 
through a cross-validatory experiment (LOOCV scheme) using observed rainfall data from several stations 
covering entire South Korea and historical and future rainfall scenarios generated by three RCMs. The key 
findings from this work are provided as follows:

1.  We investigated whether all parameters associated with the SD-QDM approach can be simultaneously 
estimated and gridded at the desired points within a Bayesian Kriging modeling framework. In particu-
lar, a gamma distribution was fitted to daily rainfall series over 60 weather stations, and the associat-
ed parameters were simultaneously interpolated by a Bayesian Kriging approach onto a fine grid. The 
cross-validated results under the LOOCV scheme showed that the predicted (interpolated) parameters at 
the locations of the gauge stations are almost identical to that of local estimates obtained directly from 
the fitting of the gamma distribution to the rainfall gauge data parameters, confirming the efficacy of 
the model.

2.  Under the LOOCV scheme, we also found that the directly interpolated gamma parameters through 
the proposed Bayesian Kriging approach outperformed the baseline model based on interpolated daily 
rainfall, which produced a substantial bias that leads to an incorrect representation of the probability 
density function. Under these circumstances, the direct estimation of the distribution parameters from 
the interpolated daily precipitation for bias-correction and spatial downscaling should be cautious. This 
study further investigated whether spatial dependency over the interpolated gamma parameters can be 
effectively preserved. In this regard, the semivariogram of gamma parameters obtained from the pro-
posed model was evaluated. The results confirmed that the proposed model could effectively reproduce 
the spatial variability of parameters estimated from gauging stations, given that the semivariogram of 
the interpolated parameters estimated from the Bayesian Kriging based SD-QDM approach was almost 
identical to that of the local parameters estimated from gauged rainfall data. In contrast, the semivario-
gram directly obtained from the interpolated precipitation highly deviated from the observed.

The proposed Bayesian Kriging based SD-QDM approach could apply to various applications with different 
temporal scales in hydrometeorology to establish a spatial reference field to compare model simulations 
against. More specifically, the bias-correction and spatial downscaling for other climate variables, including 
temperature, soil moisture, solar radiation, and wind field, rely on observed variables at the weather station 
(or grid points), limiting the full use of climate information obtained from the climate models. Although 
the proposed modeling framework provides an important basis for the spatial downscaling of climate model 
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outputs, the variability of precipitation areal reduction factors are not fully incorporated and explored in 
this study. These aspects will be further investigated in future work.

Data Availability Statement
The precipitation data can be available at (https://sites.google.com/view/ahrl2009/data-library). The cli-
mate change scenarios can be available at the CORDEX-EA data library (http://cordex-ea.climate.go.kr/
cordex/treePage.do).
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