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RESUMO 

 

A obesidade é uma doença de alta prevalência na população mundial (13% da população 

adulta em 2016), definida pelo acúmulo excessivo de gordura corporal. Várias comorbidades 

estão associadas, incluindo algumas que afetam o sistema nervoso central (SNC), como 

algumas doenças neurodegenerativas, o déficit cognitivo e distúrbios psicocomportamentais. O 

peixe-zebra surgiu como um modelo versátil e barato amplamente usado para estudar doenças 

humanas, incluindo obesidade e doenças neurológicas. Portanto, nosso objetivo foi verificar o 

impacto de uma dieta hiperlipídica no sistema nervoso central (SNC) do peixe-zebra, por meio 

de testes comportamentais bem estabelecidos. Os animais foram alimentados de acordo com 

três grupos dietéticos. O grupo de dieta padrão (SD) recebeu apenas 7,5 mg/ peixe de ração 

comercial para peixe, enquanto os grupos de dieta rica em gordura receberam 5 mg/peixe de 

ração + 7,5 (HFD-7,5) ou 15 mg/ peixe (HFD-15) de gema de ovo de galinha. O teor de gordura 

dietética (p/p) foi de aproximadamente 6,5%, 16,9% e 21,1%, respectivamente. Após duas 

semanas de dieta, os comportamentos foram avaliados. Ambos os grupos HFD apresentaram 

efeitos obesogênicos, indicados pelo aumento no IMC, comprimento abdominal e peso corporal 

em comparação com o grupo SD. demonstramos um comportamento agressivo e tipo ansioso 

induzido por ingestão de HFD em peixes-zebra, conforme medido pelo teste de agressão 

induzida por espelho e teste de tanque novo, respectivamente. Além disso, a maior concentração 

de HFD (HFD-15) causou déficit cognitivo no teste de esquiva inibitória enquanto a 

sociabilidade não foi afetada, conforme determinado pelo teste de preferência social. Nossos 

resultados estão de acordo com evidências em modelos humanos e roedores obesos, sugerindo 

efeitos semelhantes da ingestão de gordura. Portanto, destacamos o potencial inexplorado do 

peixe-zebra para elucidar este campo de estudo. 

 

Palavras-chave: Obesidade, Distúrbios Psico-comportamentais, Peixe-zebra, Disfunção 

Cognitiva, Comportamento Tipo Ansioso. 

 

  



ABSTRACT 

 

Obesity is a disease with high prevalence in the world population (13% of adult 

population in 2016), defined by an excessive body fat accumulation. Several comorbidities are 

associated, including some affecting central nervous system (CNS), i.e. some 

neurodegenerative diseases, the cognitive deficit and psychobehavioral disturbs. Zebrafish has 

raised as a versatile and cheap model widely used to study human diseases, including obesity 

and neurological diseases. Therefore, our objective was to verify the impact of a high-fat diet 

on zebrafish central nervous system (CNS) using well- stablished behavioral tests. Animals 

were feed according with three dietary groups. The standard diet group (SD) received only 7.5 

mg/ fish of commercial fish food, while the high-fat diet groups received 5 mg/fish of 

commercial fish food + 7.5 (HFD-7.5) or 15 mg/fish (HFD-15) of chicken egg yolk. Dietary fat 

content (w/w) was approximately 6.5%, 16.9% and 21.1%, respectively. After two weeks of 

diets ingestion, behaviors were assessed. Both HFD groups had obesogenic effects, indicated 

by increase on BMI, abdominal length and body weight compared with SD group. We show a 

HFD ingestion induced aggressive and anxiety-like behavior on zebrafish, as measured by 

mirror-induced aggression and novel tank diving test, respectively.  Also, the higher 

concentration of HFD (HFD-15) elicited cognitive deficit on inhibitory avoidance test while 

sociability was unaffected, as determined by the social preference test. Our results are in 

accordance with evidences in obese human and rodent models, suggesting similar effects of fat 

intake. Therefore, we highlight the unexplored potential of zebrafish to elucidate this study 

field. 

 

Keywords: Obesity, Psychobehavioral disturb, Zebrafish, Cognitive dysfunction, Anxiety-like 

behavior. 
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1. INTRODUCTION 

According to the World Health Organization (WHO), obesity is defined by an excessive 

body fat accumulation and is diagnosed by a body mass index (BMI) higher than 30 kg/m2. 

Since 1975, obesity prevalence has tripled, reaching 13% of adult population worldwide in 

2016, while 39% were overweight (WORLD HEALTH ORGANIZATION, 2016). Obesity 

increases risk of several comorbidities, such as, type 2 diabetes mellitus, cardiovascular 

diseases, musculoskeletal diseases, neurodegenerative and psychiatric diseases, cancer and 

reduces life expectancy by 5-20 years (BERRINGTON DE GONZALEZ et al., 2010; 

FONTAINE et al., 2003; MACMAHON et al., 2009). Accordingly, 4 million deaths were 

associated with high BMI between 1990 and 2015 (AFSHIN et al., 2017).  

Obesity is resulted by a complex interaction of environmental and genetic factors, leading 

to a persistent imbalance of consumption and expenditure of calories and further pathological 

and excessive body fat accumulation (HILL; WYATT; PETERS, 2012). Therefore, changes on 

nutritional  habits, including the consumption of disbalanced diets rich in calories is recognized 

as the main factor behind obesity pandemic and aforementioned comorbidities 

(VANDEVIJVERE et al., 2015). Among these diets, the high-fat (HFD) diet is widely applied 

on the research field leading to obesity and comorbidities, including those affecting the CNS, 

i.e., memory loss, neurodegenerative diseases and psychobehavioral disorders (CAI, H. et al., 

2012; FREEMAN et al., 2014; PROCACCINI et al., 2016). 

Zebrafish is a viable model for several human diseases, since they share several similarity 

with mammals, including organs anatomy and physiology (OKA et al., 2010; ZANG; 

MADDISON; CHEN, 2018) and conservation of several genes involved in human diseases 

(HOWE et al., 2013) (Fig. 1). Further, their use on obesity research is supported by similarities 

on lipid transportation/metabolism and control of energetic metabolism. Importantly, obesity 

pathogenesis in zebrafish is similar to humans on the anatomical, molecular, genetical and 

endocrine levels (GUT et al., 2017; OKA et al., 2010). The short lifespan and generation time 

allow to evaluate the long-term and intergenerational effects of obesity (SCHLEGEL; 

STAINIER, 2007; SHEN; YUE; PARK, 2018; SMITH, W. W. et al., 2014). The relatively 

lower degree of complexity implies less ethical concern and can be useful to evaluate basic 

neural mechanisms. Plus, the reduced corporal size allow to work with animals numbers with 

less expenditure of budget and time (KLEINERT et al., 2018; SCHLEGEL; STAINIER, 2007).  
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Fig. 1. Infographic showing the high degree of similarity of zebrafish and human. Extracted from 

https://animal.research.utah.edu/faqs.php, © 2021 THE UNIVERSITY OF UTAH 

 Several models of obesity are already described for zebrafish, including diet-induced 

obesity (DIO) and genetic models (ZANG; MADDISON; CHEN, 2018). DIO can be achieved 

in adult zebrafish using diets rich in fat, sugar and/or cholesterol leading to increased body 

weight, body mass index, visceral and subcutaneous fat content, steatosis and metabolic 

alteration, such as, increased fasting blood glucose, cholesterol, and triglyceride levels 

(LANDGRAF et al., 2017; MEGURO; HASUMURA; HASE, 2015; OKA et al., 2010). DIO 

zebrafish larvae also increased lipogenesis, steatosis and higher levels of triglycerides and 

cholesterol (MA et al., 2019; ZHOU et al., 2015) 

Neuroscience is also benefited by zebrafish use, specially to the assessment of basic neural 

process, neuroactive drug screening and evaluation the effect of compounds on the CNS 

(KALUEFF; STEWART; GERLAI, 2014). This success is supported by a conservation of 

zebrafish brain morphology and physiology (KALUEFF; STEWART; GERLAI, 2014; 

WULLIMANN; RUPP; REICHERT, 1996), including all main neurotransmitter, receptors, 

brain structures and neuroendocrine hormones (ALSOP; VIJAYAN, 2009; PANULA et al., 

2006). Further, several models of neurological disorders is described in adult and larval 

zebrafish using genetic and pharmacological approaches, including anxiety disorder 

(MAXIMINO et al., 2010), aggressive behavior (NORTON; BALLY-CUIF, 2010),  memory 
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impairment (MICHAEL STEWART; V. KALUEFF, 2012; YU et al., 2006) and impaired 

social behavior (MILLER, N.; GERLAI, 2012; MILLER, N. Y.; GERLAI, 2011).  

Similarities are also highlighted by a conservation of neurological substrate underlying 

several behavioral domains. Those behaviors can be easily assayed using well-characterized 

test which are applied on neurological diseases models and for drug screening (KALUEFF; 

STEWART; GERLAI, 2014). For example, is possible to evaluate anxiety-like behavior 

(FONTANA et al., 2019), sociability (SAVERINO; GERLAI, 2008), aggressiveness (GERLAI 

et al., 2000), and memory (BERTONCELLO et al., 2019; BLANK et al., 2009; 

FRANSCESCON et al., 2020) through the novel tank test (NTT), social preference test (SPT), 

mirror-induced aggressive test and inhibitory avoidance test (IAT), respectively. Importantly, 

these tests have undergone pharmacological validation and yeld cross-species results 

(BENCAN; SLEDGE; LEVIN, 2009; BLANK et al., 2009; GERLAI et al., 2000). 

The association of obesity and unbalanced diets with neurological disorders and 

neurobehavioral alterations in human is well known and it is widely explored in other animals 

models (O’BRIEN et al., 2017; PROCACCINI et al., 2016). However, the same is not observed 

with zebrafish and only one article focused on this subject so far. Meguro et. al. (2019) 

described a memory impairment after feeding adult zebrafish with a lard-based HFD for 8 

weeks. This alteration was associated with modulation of genes known as regulator of neuronal 

function, oxidative response, and blood-brain barrier integrity, supporting a conserved basis of 

HFD-induced neuropathogenesis (MEGURO; HOSOI; HASUMURA, 2019).  

Therefore, our objective was to characterize the effect of a short-term HFD on a wide range 

of behaviors. For this, we fed zebrafish with two different amount of chicken egg yolk (7.5 or 

15 mg/fish/day) or a standard diet for two weeks. After the dietary protocol, we evaluated 

obesity- (i.e., body weight and body mass index) and metabolic- (i.e., abdominal length) related 

endpoints as well as behavioral alteration (i.e., memory, sociability, aggressiveness, and 

anxiety-like behavior). This proof-of-concept study will support the use of this novel zebrafish 

model and emphasize the transactional potential of zebrafish on obesity and neuroscience field.  
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1.1 ANIMAL MODELS ON OBESITY RESEARCH 

Animal models gave great contributions on obesity and metabolic research fields along the 

years. Also, the use of animals represent a high-valuable solution for the limitations of human 

and epidemiological studies (HARIRI; THIBAULT, 2010). On the beginning of XX century, 

pioneer studies achieved important finding using dog as animal model, such as the discovery 

of insulin in 1922 awarded by the 1923 Nobel prize (BANTING et al., 1922). Non-human 

primates were also used on research taking advantage of the highest phylogenetic proximity 

with human which reflects on a more conserved genetic, physiology and anatomy (KLEINERT 

et al., 2018). These model lead to important findings, such  as, the role of parasympathetic 

nervous system on insulin (D’ALESSIO et al., 2001) and glucagon secretion (HAVEL; 

VALVERDE, 1996). However, the big size, limitation on the number animals available and 

difficulty/expense of the maintenance makes these model less suitable for most laboratories.  

Nowadays, small rodents have become the most used animal model and is one of the most 

applied on metabolic disorders and obesity research (REES; ALCOLADO, 2005). The effect 

of leptin and ghrelin on central nervous system for the energy balance control was discovered 

in rats and mice (KOJIMA et al., 1999; ZHANG et al., 1994). Also, several genetic tools and 

strains are available. For example, the classical ob/ob mice possess a mutation of leptin gene 

and exhibit early-onset obesity (INGALLS; DICKIE; SNELL, 1950). And it is often used on 

preclinical trials of anti-obesity drugs (ZANG; MADDISON; CHEN, 2018). Plus, different 

protocols of HFD and HSD are described for diet-induced obesity (DIO). DIO is widely used 

and yielded good results, even though it may be more time-consuming and expensive and 

several rising factors difficult the results interpretation and comparation between studies 

(HARIRI; THIBAULT, 2010; KLEINERT et al., 2018).  

Non-mammalian model organism, such as Zebrafish, the nematode Caenorhabditis elegans 

and the fruit fly Drosophila melanogaster, had become a valuable tool on obesity research. 

Their use is supported by similarities to mammals, including lipid transportation/metabolism 

and control of energetic metabolism, and the short lifespan and generation time allowing to 

evaluate the long-term and intergenerational effects of obesity (SCHLEGEL; STAINIER, 2007; 

SHEN; YUE; PARK, 2018; SMITH, W. W. et al., 2014). The relatively lower degree of 

complexity imposes less ethical barrier and can be useful to evaluate more detailed mechanism. 

The reduced corporal size make possible to work with a higher number of animals with less 

expenditure of budget and time (KLEINERT et al., 2018; SCHLEGEL; STAINIER, 2007).  
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1.2 ZEBRAFISH MODELS OF HUMAN DISEASE 

Zebrafish (Danio rerio) was firstly used in research field in 1960s, but only gained 

popularity in 1980s when George Streisinge demonstrated the ease and high-throughput of 

genetic manipulations in zebrafish (Streisinger et al., 1981). Since then, zebrafish received great 

attention on laboratories of genetic and embryonic development, due to its naked eye-visible 

extrauterine development, transparency on the first months of life, easy and low-cost 

maintenance and quickly maturation and reproduction (Bradford et al., 2017). Plus, a pair of 

zebrafish can lay ~200 egg facilitating the investigation of rare genetic events and experiments 

that requires a high experimental number (GUT et al., 2017). Due to reduced size is possible to 

realize transcriptomics and other ‘omics analysis of whole-organ, whole-tissue and whole-

organism, yelling a more representative result (CAO et al., 2016; NOLTE et al., 2015). 

Zebrafish possess orthologous of 70% of human genes and 82% of those related with human 

diseases (HOWE et al., 2013) (Fig. 1). All these advantages have made zebrafish an important 

model to understand the role of genes in human diseases and to develop genetic therapies 

(LIESCHKE; CURRIE, 2007; PHILLIPS; WESTERFIELD, 2014). The ease and high-

throughput of laboratorial experiments using zebrafish in addition to a great facility to perform 

pharmacological exposure on the tank water compel this fish to become an excellent model to 

drug discovery and screening, been applied in preclinical trials and to evaluate the impact of 

compounds to human health and to the environment (YOGANANTHARJAH; GIBERT, 2017). 

Specifically on obesity research, zebrafish has received special attention among non-

mammal models due to several advantages. The neuroendocrine system responsible for lipid 

storage control and energetic balance is more well-stablished compared with C. elegans and D. 

Melanogaster. For example, the Agouti-Related Protein (AGRP), ghrelin and leptin was shown 

to play roles similar to mammals counterparts (CRUZ et al., 2010; GORISSEN et al., 2009; 

SONG et al., 2003). Zebrafish is a vertebrate and therefore display a relatively higher similarity 

degree to humans on genetic, anatomy and physiology manners (GUT et al., 2017; ZANG; 

MADDISON; CHEN, 2018). Unlike other vertebrate model, zebrafish has a fast embryonic 

development displaying a complete body plan and main organs already formed within 48 hours 

of life (KIMMEL et al., 1995). Neuronal and endocrinal processes responsible for homeostasis 

regulation is also developed early in life (GUT et al., 2017). 

Further, zebrafish have all the organs essential for understanding obesity and lipid 

metabolism, including those of digestive tract, white adipose tissue (WAT), liver, and skeletal 

muscles, and the small size facilitate a whole-body analysis allowing a holistic comprehension 
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of process underlying obesity and comorbidities (LIESCHKE; CURRIE, 2007; SCHLEGEL; 

STAINIER, 2007). Zebrafish display conserved biochemicals pathways, including those 

involved in energy homeostasis (DEN BROEDER, M. J. et al., 2015), appetite control (GUT 

et al., 2017; NISHIO et al., 2012), glucose (ELO et al., 2007), triglycerides and cholesterol 

metabolism (OKA et al., 2010), as well as adipocyte function and regulation (FLYNN et al., 

2009). Besides, zebrafish display similarities with mammals counterpart on obesity 

pathogenesis, lipid metabolism, energy homeostasis and response to anti-diabetic/ anti-obesity 

drugs (OKA et al., 2010; ZANG; MADDISON; CHEN, 2018). 

These characteristics made zebrafish a viable model for obesity-related comorbidities 

involving metabolic alterations, such as, diabetes, metabolic syndrome, hyperglycemia, 

hypertriglyceridemia, hypercholesterolemia, hepatic steatosis, stroke and hearth diseases (GUT 

et al., 2017) (Fig. 2).      

 
Figure 2. Zebrafish as a model of obesity-related comorbidities.  Zebrafish is an useful models of obesity and 
its comorbidities, including those affecting the brain, vascular and digestive systems, hormonal function and 
steatosis. Modified from GUT et. a., 2017, Copyright © 2017 the American Physiological Society. (License 
number: 501652138). 
 

On the other hand, zebrafish have some disadvantages. The small size can be considered a 

limitation for some experiment considering the difficulty to collect enough amount of biological 

material. Morphology of some organs is significant different from those of human and brown 

adipose tissue is inexistent. Some techniques and methods applied on classical models are still 

troublesome with zebrafish, for example there are not some zebrafish-specific antibodies for 

histochemistry (GUT et al., 2017). Also, the dietary treatment and the results may be hard to 

translate to human due to essential differences in micro- and macronutrients requirement 

between zebrafish and mammals (SICCARDI et al., 2009; SMITH, D. L. et al., 2013). Another 

problematic point is that environmental parameter, such as the amount of food, quantity of 
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animals in the same tank and temperature has a great impact on growth and adipogenesis 

(LEIBOLD; HAMMERSCHMIDT, 2015; VERGAUWEN et al., 2013). 

 

1.3 METHODS TO EVALUATE THE METABOLIC AND OBESITY-RELATED 

PARAMETERS 

The obesity-related parameters can be easily assayed in adult zebrafish by morphometric 

analysis. Body weight can be measured using a precision balance and a beaker filled with water. 

The standard length (SL), the distance between the tip of the mouth to the base of the tail, can 

be measured in euthanized or anesthetized animals using millimeter paper or computational 

software, such as the ImageJ (LEIBOLD; HAMMERSCHMIDT, 2015). Following the same 

procedure, it is possible to calculate the abdominal length, which is an important diagnostic 

criteria for metabolic syndrome, indicating higher visceral adiposity such as observed in 

humans (BIGAARD et al., 2005). The BMI can be determined dividing the bodyweight (g) by 

the square of the SL (cm2) (OKA et al., 2010).  

Other methods allow to specially evaluate adipogenesis in a more reliable and expressive 

manner in detriment of been more time and/or cost consuming. A 3D micro-computed 

tomography analysis permits to calculate the body fat volume of DIO zebrafish (HASUMURA 

et al., 2012; MEGURO; HASUMURA; HASE, 2015). Importantly, this method allow to 

calculate visceral (vWAT) and subcutaneous(sWAT) fat volume separately which is important 

to better evaluate the obesity pathogenesis since vWAT is more associated with metabolic 

disorder and mortality risk (IBRAHIM, 2010). Similarly, MRI and EchoMRI can be performed 

to determine total fat volume, expressing a high correlation between both methods 

(LANDGRAF et al., 2017). Total lipid content of larvae and adult zebrafish can be extracted 

by Folch method (FOLCH; LEES; SLOANE STANLEY, 1957) and afterward quantified by 

weighting (FLYNN et al., 2009) or by high performance thin layer chromatography when in 

small amounts (MARTÍNEZ et al., 2020). 

Lipophilic dyes, such as Oil Red O (ORO), Nile Red (NR) and BODIPY is specially 

efficient for fat quantification in larvae and juvenile zebrafish up to 39 days of life (FLYNN et 

al., 2009) since the corporal transparency allow to easily quantify the whole-body adiposity and 

circulating lipids without need to section the tissue (TINGAUD-SEQUEIRA; OUADAH; 

BABIN, 2011; ZHOU et al., 2015). NR can be simply added to husbandry water before 

anesthetizing the larvae and further perform whole-body in vivo analysis on microscope. The 
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procedure can be repeated with the same individual after some days, allowing to evaluate the 

adiposity before and after a treatment or perform a longitudinal analysis avoiding the 

interference of inter-individual variation of adiposity (TINGAUD-SEQUEIRA; OUADAH; 

BABIN, 2011). ORO application requires euthanizing and fixation of fish, but it is still a high-

throughput method allowing to stain lipid on adipose cell or vases, such as circulating 

triglycerides (ZHOU et al., 2015). It is possible to combine different dyes to perform a more 

specific analysis of lipids deposits (KOOPMAN; SCHAART; HESSELINK, 2001; MINCHIN; 

RAWLS, 2011). ORO staining of liver cryosection allow to evaluate hepatic steatosis in adult 

zebrafish while vWAT and sWAT can be quantified by HE staining of cross-sectioned zebrafish 

(LANDGRAF et al., 2017).  

Due to reduced size, routine assay in mammals for assessment of metabolic parameters are 

still cumbersome in zebrafish, for example the difficulty to obtain enough blood sample. 

Whole-blood blood collection can be performed by decapitation, resulting in 5-10 uL of sample 

while a smaller amount is obtained from the dorsal artery without necessity of euthanizing the 

animal. Afterwards, glucose levels can be measured by a glycosometer for human use (EAMES 

et al., 2010) while circulating triglycerides and cholesterol levels can be assessed using the 

appropriated kit (LANDGRAF et al., 2017). Larvae metabolic parameters can be determined 

using dyes specific to cholesterol and triglycerides (MINCHIN; RAWLS, 2011). 

  

1.4 ZEBRAFISH MODELS OF OBESITY 

1.4.1 DIET-INDUCED OBESITY 

Diet-induced obesity (DIO) can be achieved in adult and larvae of zebrafish, using diets 

rich in fat/sugar, western diet and overfeeding with standard diet (ZANG; MADDISON; 

CHEN, 2018) (table 1). Landgraf et. al. fed 3-6 months post fertilization (mpf) male fish with 

an egg yolk based HFD for 8 weeks. Dietary fat content was 53.7% compared with 22% of 

standard diet. HFD animals developed obesity-related characteristics, including higher body 

weight, BMI and subcutaneous/visceral fat content. Also, metabolic parameters were affected 

i.e., levels of fasting glucose, triglycerides, and cholesterol and belly enlargement 

(LANDGRAF et al., 2017). In another study, 4-6 mpf male zebrafish were fed with a similar 

HFD with 16.9% of fat, compared with 6.5% of control. Increasing of body weight was 

observed after 1 week of diet while higher BMI and belly enlargement occur within 2 weeks 

(PICOLO et al., 2021). Meguro et. al. used corn oil and lard to produce two HFD, both with 



20 
 

24% of fat against 4% of control diet. After 6 weeks of any HFD, 5-7 mpf female zebrafish 

display increased visceral and subcutaneous adiposity (MEGURO; HASUMURA; HASE, 

2015). Interestingly, 3 mpf zebrafish were fed with a lard based HFD for 11 weeks had body 

weight unaffected even though the diet altered neurobehavioral parameters (MEGURO; 

HOSOI; HASUMURA, 2019). Overfeeding with Artemia, a live food rich in fat is suitable and 

easy obesogenic protocol widely applied. 3-6 mpf male zebrafish were overfeed with 60 mg of 

Artemia, instead of 5 mg offered to control group. The dietary treatment lead to high body 

weight, BMI and adiposity after 8 weeks of diet (LANDGRAF et al., 2017).  Interestingly, only 

14 days of overfeeding lead to body weight gain on 3.5-4.5 mpf male and female zebrafish 

(HASUMURA et al., 2012). In other studies, BMI increased after 1 week of overfeeding in 3.5 

mpf zebrafish while steatosis and increased triglycerides level was observed within 8 weeks 

(OKA et al., 2010; TAINAKA et al., 2011). Montalbano et. al. analyzed brain and gut tissue 

and showed that overfeeding with Artemia is associated with modulation of genes involved on 

homeostasis regulation and obesity phenotype, such as, leptin, ghrelin, orexin, NPY and POMC 

(MONTALBANO et al., 2018). 

Zebrafish larvae are also a valuable tool for obesity research and screening of anti-obesity 

drugs since it has a quick response to obesogenic diet and the body transparency allow to easily 

quantify the whole-body adiposity and circulating lipids using lipophilic dyes, as mentioned 

before. For example, Tingaud-Sequeira et. al. fed ~15 days post fertilization (dpf) larvae with 

chicken egg yolk for just one day and applied NR to in vivo quantify the effect of several anti-

obesogenic drugs on WAT area (TINGAUD-SEQUEIRA; OUADAH; BABIN, 2011).  

Similarly, Zhou et.al. evaluated the effect of several hypolipidemic drug on the circulating lipids 

of zebrafish larvae fed with chicken egg yolk for 2 days using the Oil red O (ZHOU et al., 

2015). This HFD diet applied form 9 to15 dpf also lead to increased triglycerides levels and 

higher adipogenesis (KOPP et al., 2016). Interestingly, Broeder et. al. fed zebrafish larvae with 

an egg-yolk based HFD and high-glucose diet from 6 to 15 dpf. Only HFD-fed animals display 

increased adipogenesis which was accompanied by modulation of several genes involved in the 

control of lipid metabolism (DEN BROEDER, M. et al., 2017). 8 dpf larvae fed with a high-

cholesterol diet developed steatosis, increased adiposity, and had high levels of total cholesterol 

and triglycerides. Also, lipid accumulation was diminished by treatment with bezafibrate and 

pioglitazone, two lipid-lowering drug for human use (MA et al., 2019).  

 

1.4.2 GENETIC MODELS OF OBESITY 
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DIO experiments have a variety of influencing factor, such as, type and duration of diet, 

nutritional variation of ingredients and difficulty to determine the amount of food eat by each 

animal. Therefore, genetic models of obesity (GMO) are an option to reach more reproductible 

and comparable results and allow to evaluate the role of specific genes on obesity pathogenesis. 

Further, GMO dispense the need of an obesogenic treatment, being less time and cost 

consuming (GUT et al., 2017; ZANG; MADDISON; CHEN, 2018). 

Several biochemical pathways and physiological system are associated with lipid 

metabolism and obesity pathogenesis, being a potential target for obesity research. The AgRP 

and melanocortin system is conserved in zebrafish and plays a important role on regulation of 

fat accumulation (RINGHOLM et al., 2002; SONG et al., 2003). Tg(b-actin:AgRP) zebrafish 

lineage overexpresses AgRP and display increased body weight, visceral adipocyte hypertrophy 

and hypertriglyceridemia within 1 year of life (SONG; CONE, 2007). The overexpression of 

Akt 1, a key gene enrolled on adipogenesis, lead to obesogenic phenotype observed in the 

tg(krt4:Hsa.myrAkt1)cy18 zebrafish lineage. Fish display increased adiposity from 21 dpf 

onward and increased body weight, BMI, triglycerides levels and ectopic fat accumulation 

within 3-5 mpf (CHU et al., 2012). The mice lineages (ob/ob) and (db/db) is a classical GMO 

due to deficient is leptin (INGALLS; DICKIE; SNELL, 1950) and leptin receptor (CHEN et 

al., 1996), respectively. Interestingly, both leptin and leptin receptors are conserved between 

fish and mammals (PROKOP et al., 2012) and leptin knockout lead to obesogenic phenotype 

with increased body weight and length (AUDIRA et al., 2018). The dwarf vizzini zebrafish has 

a mutation on growth hormone 1 gene (GH1) leading to an increase of visceral and 

subcutaneous adiposity and resembling phenotype of humans GH deficiency (MCMENAMIN 

et al., 2013). Targeting microRNAs (miRs) is a suitable method for the developing obesity 

models since many of them plays an important role on regulation of homeostasis and lipid 

metabolism (VICKERS et al., 2013). The miR-27b shows a key role in inhibiting adipogenesis 

in mammals and the down-regulation lead to a higher fat accumulation (JI et al., 2009). 

Similarly, the miR-27b-SP zebrafish lineage expressing a “sponge” that disrupt miR-27b 

activity display obesity-related features. 10 dpf zebrafish larvae fed with HFD developed 

steatosis and increased circulating lipid while adult zebrafish display hepatic steatosis, 

increased body weight, fat mass and higher cholesterol and triglycerides levels (HSU et al., 

2018).  
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Table 1. Models of diet-induced obesity in adult and larvae zebrafish 
Type and time of 

treatment  

Age and sex Parameters affected Reference 

Adult 

HFD 

Egg yolk, 53,7% fat, 8 

weeks  

3-6 mpf; Male BW, BMI, vWAT, sWAT, BF, 

AL, GC, TG, CH, lipid 

metabolism genes    

Landgraf et al., 

2017 

Corn oil or lard 24% 

fat, 6 weeks 

5-7 mpf; Male 

and  female 

BW, vWAT, sWAT, BF, lipid 

metabolism proteins 

Meguro et al., 2015 

Overfeeding 

Artemia 60 mg, 8 

weeks 

3-6 mpf; Male BW, BMI, BF, vWAT, sWAT, 

lipid metabolism genes 

Landgraf et al., 

2017 

Artemia 60 mg, 5-6 

weeks 

3.5-5.5 mpf; 

Male and female 

BW, BF, vWAT, sWAT,  Hasumura et al., 

2012 

Artemia 60 mg, 8 

weeks 

3.5 mpf; Male 

and female 

BMI, TG, hepatic steatosis, lipid 

metabolism genes 

Oka et al., 2010 

Artemia 60 mg, 4 

weeks 

3.5 mpf BW, TG, lipid metabolism genes Tainaka et al., 2011 

Artemia 60 mg, 5 

weeks 

3-9 mpf; Male  BW, BMI, vWAT, sWAT, 

hormones 

Montalbano et al., 

2018 

Type and time of 

treatment 
Age Effect Reference 

Larvae 

HFD 

Egg yolk, 1 day 15 dpf BF Tingaud-Sequeira 

et al., 2011 

Egg yolk, 2 days 5 dpf BF Zhou et al., 2015 

Egg yolk, 6 days 9 dpf BF, TG Kopp et al., 2016 

Egg yolk, 9 days 6 dpf BF, lipid metabolism genes den Broeder et al., 

2017 

HCD 

Egg yolk, 21 days 8 dpf BF, AL, TG, CH, hepatic 

steatosis, oxidrive stress, lipid 

metabolism genes, survival 

Ma et al., 2019 

AL: abdominal length; BF: body fat; BMI: body mass index; CH: cholesterol; GC: glucose; sWAT: subcutaneous 
white adipose tissue; vWAT: visceral white adipose tissue; BW: body weight; TG: triglycerides. 
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1.5 ASSOCIATION OF OBESITY/UNBALANCED DIET IN NEUROLOGICAL 

DISEASES 

The worldwide increasing of obesity prevalence is accompanied by the increasing number 

neuropathology incidence. In fact, a growing body of evident demonstrate the impact of obesity 

and disbalanced diet on the central nervous system (O’BRIEN et al., 2017; PROCACCINI et 

al., 2016). However, this relationship is not totally clear since several mechanism are involved, 

including neuroinflammation induced by microglia activation (CAI, D., 2013; VALDEARCOS 

et al., 2014), mitochondrial dysregulation, oxidative stress (TAN; NORHAIZAN, 2019) and 

blood-brain barrier (BBB) dysfunction (FREEMAN; GRANHOLM, 2012). Recent studies 

point to a pivotal role of metabolic alteration on brain health, increasing susceptible to 

comorbidities (BLÜHER, 2020), including those affecting the CNS (CADENAS-SANCHEZ 

et al., 2020). 

Obesity and HFD are considered independent factors for neurodegenerative diseases 

including dementia Huntington, Alzheimer, and Parkinson diseases (MAZON et al., 2017). 

Interestingly, a meta-analysis of 15 prospective studies, involving more than 25000 participants 

showed that BMI is strongly correlated with dementia and that obese individuals has twice the 

change of developing Alzheimer disease (ANSTEY et al., 2011). BMI also shows correlation 

with reduction  of brain volume (WARD et al., 2005) and gray matter density 

(PANNACCIULLI et al., 2006), showing a severe and global impact to the CNS. Interestingly,  

incidence and progression of neurodegenerative disorders is clearly associated with metabolic 

disfunction (PROCACCINI et al., 2016), while the control of metabolic parameters shown a 

beneficial effect to the symptoms (WATSON et al., 2005). Importantly, short-term obesogenic 

diets can affect the brain independently of obesity onset (ATTUQUAYEFIO et al., 2017). For 

example, exposition to HFD for just 5 days lead hippocampal-dependent learning and memory 

deficits in rats (BEILHARZ; MANIAM; MORRIS, 2014; KANOSKI; DAVIDSON, 2010) and 

human (ATTUQUAYEFIO et al., 2017), while hippocampal-independent memory is not 

affected until ~30 days of diet, demonstrating hippocampus higher vulnerability to unbalance 

diets (BEILHARZ; MANIAM; MORRIS, 2014). 

Another impact of obesity and unbalanced diet is on psychiatric disorders. Chronic 

consumption of high energy diets rich in fat and/or sugar can alter neurocircuitry involved on 

mood regulation and reward system, including prefrontal cortex and amygdala (BOITARD et 

al., 2015; JOHNSON; KENNY, 2010). Obese individuals are more susceptible to develop 

mood disorders, such as depression/ anxiety and aggressiveness (CERNIGLIA et al., 2018; 
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LINDBERG et al., 2020), also affecting obese child (PUDER; MUNSCH, 2010). Also, poor 

dietary habits  show a correlation with major depression and anxiety disorders (JACKA et al., 

2010). Social/economical and psychological factors difficult human data interpretation and 

determination of casuistic relationship between neurobehavioral disorders and obesity/ bad 

diets. Therefore, animals models are a valuable tool resembling similar and  helping to clarify 

this issue (BUCHENAUER et al., 2009; DE NORONHA et al., 2017). Rats fed with a HFD 

display aggressive and anxiety-like behavior in association with increased levels of 

glucocorticoids and estrogen levels (BUCHENAUER et al., 2009; HILAKIVI-CLARKE; 

CHO; ONOJAFE, 1996). Accordingly, these hormones were shown to modulate neurocircuit 

related  to mood regulation (BOITARD et al., 2015). Another proposed mechanism is 

associated with increased levels of triglycerides which in turn can cross the BBB leading to 

central leptin resistance, culminating in reduced levels of neuropeptide Y and neurobehavioral 

alterations. Noteworthy, only 5 days of diet can induce central leptin resistance in rats  (KARL; 

DUFFY; HERZOG, 2008; WIDDOWSON et al., 1999). 

 

1.6 ZEBRAFISH MODELS OF NEUROBEHAVIORAL DISORDERS  

The use of zebrafish on neuroscience research rapidly increased on recent decades, 

reinforcing the translational potential of zebrafish. Given the relatively reduced complexity of 

zebrafish CNS, this model is especially useful for assessment of basic neural functions, 

evaluation of compounds effect on the CNS and screening of neuroactive drug (KALUEFF; 

STEWART; GERLAI, 2014). Further, several models of neurological disorders are described 

in adult and larval zebrafish using genetic and pharmacological approaches, including 

depression (KYZAR et al., 2013; ZIV et al., 2013), anxiety disorder (MAXIMINO et al., 2010), 

aggressive behavior (NORTON; BALLY-CUIF, 2010), epilepsy (STEWART et al., 2012), 

neurodegenerative diseases (PANULA et al., 2006), memory impairment (MICHAEL 

STEWART; V. KALUEFF, 2012; YU et al., 2006), autism spectrum disorder (STEWART et 

al., 2014), and impaired social behavior (MILLER, N.; GERLAI, 2012; MILLER, N. Y.; 

GERLAI, 2011).  

This success is supported by a conservation of zebrafish brain morphology and physiology 

(KALUEFF; STEWART; GERLAI, 2014; WULLIMANN; RUPP; REICHERT, 1996), 

including all main neurotransmitter, receptors, brain structures and neuroendocrine hormones 

(ALSOP; VIJAYAN, 2009; PANULA et al., 2006). Dorsal, medial, and lateral pallium area are 
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considered homologous of mammalian isocortex (MUELLER et al., 2011), amygdala 

(BRAFORD, 1995) and hippocampus (NORTHCUTT, 2006; PORTAVELLA et al., 2002) , 

respectively, and display conserved physiology and functionality. Similarity is also observed in 

the cellular level since microglia (PERI; NÜSSLEIN-VOLHARD, 2008), astrocytes (KAWAI; 

ARATA; NAKAYASU, 2001), oligodendrocytes (YOSHIDA; MACKLIN, 2005) and all 

major cell types are present and display conserved characteristics.   

Major neurotransmitter systems share physiological and anatomical similarity with 

mammals holding association with neuropathologies and behavioral alteration (PANULA et 

al., 2006). Zebrafish serotoninergic system is well described and HT-5 positive neurons is 

detected in hypothalamus, thalamus, posterior turbeculum, anterior raphe nucleus, pineal gland, 

cerebellum, among other areas (LILLESAAR, 2011). Thus, this system is associated with 

locomotion (BRUSTEIN et al., 2003; GABRIEL et al., 2009), fear /anxiety (BENCAN; 

SLEDGE; LEVIN, 2009; SACKERMAN et al., 2010)  and aggressive behavior (JONES; 

NORTON, 2015; TELES et al., 2013). Dopaminergic system is also conserved in zebrafish 

(FLINN et al., 2008) and lower levels of this neurotransmitter are associated with reduced 

locomotion (ANICHTCHIK et al., 2004). The presence of cholinergic neurons is described on 

central, dorsal, lateral and subcommissural nucleus of the ventral telencephalic, hypothalamus, 

dorsal thalamus and optic tectum (CLEMENTE et al., 2004; KASLIN et al., 2004; MUELLER; 

VERNIER; WULLIMANN, 2004). Similarly to humans, nicotine modulate cholinergic system 

through activation of nicotinic receptor leading to modulation of memory formation and 

exerting anxiolytic effect (LEVIN; BENCAN; CERUTTI, 2007; LEVIN; CHEN, 2004). All 

three histamine receptor found on mammalian brain (H1, H2 and H3) are already described in 

zebrafish (PEITSARO et al., 2007). Further, histaminergic neurons were detected on optic 

tectum, hypothalamus, amygdala and hippocampus and are associated with alertness, memory 

and anxiety-like behavior (ERIKSSON et al., 1998; PEITSARO et al., 2003; PEITSARO; 

ANICHTCHIK; PANULA, 2000). Glutamate is the main excitatory neurotransmitter in 

vertebrates and is found on cerebellum, optic tectum and telencephalon, which comprises the 

regions homologous to mammalian hippocampus and amygdala (RICO et al., 2010). Memory 

formation in zebrafish is similar to mammals and highly dependent of glutamatergic system. 

Treatment with mk-801, a NMDA-receptor antagonist, lead to impaired memory formation 

(BLANK et al., 2009). The inhibitory neurotransmitter GABA and glycine are described in 

zebrafish brain, displaying important functions on movement. GABAergic neurons are found 

on cerebellum, hypothalamus and telencephalon (DELGADO; SCHMACHTENBERG, 2008; 
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KIM et al., 2004) and is targeted in models of seizure in zebrafish and rodents (BARABAN et 

al., 2005) 

Also, zebrafish response to a wide range of neurotropic drugs, such as, antidepressants, 

anxiolytic, antipsychotics, ethanol, antiepileptics and anesthetics/analgesics is similar to 

mammals, suggesting a conserved  neural substrate (KALUEFF; STEWART; GERLAI, 2014).  

 

1.7 BEHAVIORAL TESTS IN ZEBRAFISH 

Zebrafish present a robust repertoire of behaviors and, likewise classical murine models, 

behavioral analysis demonstrate cross-species response to neurotropic drugs and can confirm 

phenotype of human diseases with a high degree of similarity. Thus, neurological substrate 

responsible to zebrafish behavior is well-characterized and resemble those in mammals 

(KALUEFF; STEWART; GERLAI, 2014). The aforementioned particularities of zebrafish 

makes behavioral test less-time and cost consuming  and an excellent tool for neuroactive drug 

screening and discovery (NORTON; BALLY-CUIF, 2010).  

Anxiety-like behavior in zebrafish is defined by erratic movement, reduced locomotion,  

higher exploration of bottom areas and corners, among other characteristics (KALUEFF et al., 

2013) and can be assessed by the novel tank test (NTT). This test is similar to the murine open 

field and is based on the natural tendency to display anxiety-like behavior in a new environment. 

The fish freely explore the new tank which is virtually divided into horizontal areas. Afterwards, 

exploratory behavior is evaluated in each area and anxiety-like behavior is associated with a 

lower tendency to explore the bottom areas (FONTANA et al., 2019). This test is widely used 

and underwent pharmacological validation using anxiolytic (such as buspirone, diazepam and 

fluoxetine) and anxiogenic drugs (BENCAN; SLEDGE; LEVIN, 2009; EGAN et al., 2009).  

Zebrafish live in groups and display a natural preference to interact with conspecifics 

(SAVERINO; GERLAI, 2008). The social preference test (SPT) is widely applied for 

measuring social behavior in zebrafish and is based on the tendency of a solitary fish to spend 

more time closer to an adjacent tank containing conspecific. Notably, this behavioral task is 

also highly sensitive to various pharmacological treatments, which modulates the social 

preference as occurs in humans and rodent models (FONTANA et al., 2018; GERLAI et al., 

2000; MÜLLER et al., 2020). 
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In humans, aggressive behavior is associated with several neuropsychiatric disorders and 

impact life quality and social interaction (ZABEGALOV et al., 2019). Therefore, this is another 

important parameter to be analyzed in zebrafish. The mirror-induced aggression test (MIAT) is 

widely applied to assess aggressive behavior of zebrafish. This behavioral task has been already 

characterized in zebrafish and is based on the tendency of fish to attack their reflection on the 

mirror when individually placed in a tank (GERLAI et al., 2000). Importantly, the MIAT is 

sensitive to drugs that positively influences aggression in rodents and humans (GERLAI et al., 

2000; GUTIÉRREZ et al., 2020; NORTON; BALLY-CUIF, 2010). 

Long-term and short-term memory can be assessed by the inhibitory avoidance test (IAT). 

IAT is based on the avoidance of zebrafish to preferred places when a potentially dangerous 

stimulus (e.g., mild electric shock) is previously administered. The test is widely used  and is 

pharmacologically validated, being sensible to mk-801 and alcohol administration 

(BERTONCELLO et al., 2019; BLANK et al., 2009; FRANSCESCON et al., 2020). 

1.8 EFFECT OF HFD ON ZEBRAFISH CNS 

Despite few studies showing the effect of obesity or unbalanced diet on zebrafish CNS, 

some evidence suggests an effect similar to those that occur in classical models, such as rodents. 

It is well known that high fat intake can impair memory within 5 days in human and murine 

models (KARIMI et al., 2013; O’BRIEN et al., 2017). Similarly, adult zebrafish fed with a lard 

based HFD for 8 weeks also display cognitive decline. Interestingly, this was accompanied by 

modulation of genes known as regulator of neuronal function, oxidative response, and blood-

brain barrier integrity, supporting a conserved basis of HFD-induced neuropathogenesis 

(MEGURO; HOSOI; HASUMURA, 2019).  

Also, obesity is commonly accompanied with metabolic changes, making  individuals more 

susceptible to neurological diseases (CADENAS-SANCHEZ et al., 2020; HAMER; BATTY; 

KIVIMAKI, 2012; PROCACCINI et al., 2016). High levels of glucose and triglycerides, and 

dysregulation of hormones such as leptin, insulin and ghrelin can impact brain metabolism and 

induce neuronal death  (MAZON et al., 2017). Similarly, zebrafish overfeed with artemia for 5 

weeks display altered expression of leptin, ghrelin and orexin on the brain (MONTALBANO 

et al., 2018). Hyperglycemia was associated with anxiety-like behavior and memory 

impairment in a model of diabetes mellitus. Normalization of glucose levels using diphenyl 

diselenide reversed  the anxiety-like behavior (DOS SANTOS et al., 2018) while memory 

impairment was associated with increasing levels of acetylcholinesterase (CAPIOTTI et al., 
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2014). Knock-out of leptin lead to several behavioral changes in zebrafish, including anxiety-

like behavior, reduced aggressiveness and fear besides obesity. This results were accompanied 

by decrease of several neurotransmitter, altered levels of leptin, insulin and ghrelin and 

oxidative stress on the brain  (AUDIRA et al., 2018).  
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2. JUSTIFICATION 

Zebrafish is an interesting experimental animal model that is receiving lot of attention for 

supporting classical models and enabling new findings. However, its translational potential can 

be poorly explored in some areas and studies are necessary to validate the use of zebrafish for 

new applications.  

Few studies focused on evaluate the effect of unbalanced diet on zebrafish CNS. There are 

few data exploring the effect of a short-term diet on memory impairment and anxiety in this 

model. Therefore, this study aims to perform a face validation of behavioral changes induced 

by HFD in zebrafish focusing on a wide range of behavior domains in order to determine the 

overall effect of the diet, and reinforce the cross-species conserved response to such diets. This 

effort will support zebrafish usage as a new model, potentially leading to a better understanding 

of how CNS is affected by a HFD and help developing new therapeutic approaches.  
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3. OBJECTIVE 

3.1 GENERAL OBJECTIVE 

Evaluate the effect of a HFD on obesity-related and neurobehavioral parameters in adult 

zebrafish. 

 

3.2 SPECIFIC OBJECTIVES 

Evaluate the effect of a short-term HFD in adult zebrafish on: 

a) obesity and metabolic -related parameters (i.e. body weight, body mass index and abdominal 

length);  

b) behavioral parameters (i.e. aggressiveness, anxiety-like behavior, memory formation and 

sociability) using well-stablished tests; and 

d) validate the applicability of behavioral test with DIO zebrafish. 
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4. PUBLICATION 

 

The work developed during the master's program generated an original article published in the 

journal: Progress in Neuro-psychopharmacology and Biological Psychiatry  

Article title: Short-term high-fat diet induces cognitive decline, aggression, and anxiety-

like behavior in adult zebrafish. 

A copy of the article is insert below: 
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5. DISCUSSION 

Although zebrafish is a relevant animal model of obesity and metabolic disarrangement 

(GUT et al., 2017; ZANG; MADDISON; CHEN, 2018), little is known about the behavior 

changes and CNS effects caused by these conditions. In this study, we assessed whether the 

high-fat diet (HFD) affect multiple behaviors of zebrafish after a short-term period, especially 

focusing on specific domains, such as anxiety, aggression, sociability, and memory to perform 

a face validation of zebrafish model.  Our results showed that short-term HFD (2 weeks) 

induced an obesogenic effect and modulated a wide range of behaviors, supporting the use of 

zebrafish as a novel alternative model organism to assess the neurobehavioral effects of HFD, 

complementing the existing murine models. Since behaviors were measured using well-

characterized tasks and resemble those observed in rodents and humans, these set of data 

support a high degree of face validity of the zebrafish model described.  

Both HFD regimens used here increased BMI, the main indicator of obesity (WANG, Y.; 

BEYDOUN, 2007), as well as induced higher body weight and abdominal length, showing that 

obesity-related and metabolic parameters in zebrafish were affected in a short-term period of 

HFD. We verified that HFD did not affect the locomotor capacity, as demonstrated by similar 

effects on total distance traveled, absolute turn angle, and maximum velocity in the NTT 

compared to control group. Importantly, the vertical exploration was also unaffected, as 

demonstrated by the number of entries in the top measured in the NTT. These set of data 

corroborate the applicability of various behavioral tests with obese zebrafish. 

Mounting evidence shows the effects of fat-rich diet in obesity-related parameters and 

metabolic status (LANDGRAF et al., 2017; MEGURO; HASUMURA; HASE, 2015; OKA et 

al., 2010). In line with this, a HFD study using chicken egg yolk, increased blood glucose, 

cholesterol, and triglycerides levels, as well as visceral and subcutaneous fat content (associated 

with increased abdominal length) and BMI in zebrafish, while body weight increased only after 

4, but not 2 weeks of such diet (LANDGRAF et al., 2017). Feeding zebrafish with corn oil or 

lard also affected metabolic health and obesity-related parameters (MEGURO; HASUMURA; 

HASE, 2015). Similarly, overfeeding zebrafish with Artemia, a live food rich in fat, leads to 

increased BMI, and triglyceride levels, leading to hepatic steatosis and higher lipid storage 

(OKA et al., 2010). Although the precise mechanisms underlying the effects of HFD on 

zebrafish behaviors still merit future scrutiny, our findings reinforce the susceptibility of 
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zebrafish models to HFD, which can further serve as a valuable tool to explore both biochemical 

and morphological parameters associated with obesity. 

Obesity and/or fat intake is associated with neurobehavioral changes, including cognitive 

decline, in humans (FREEMAN et al., 2014) and rodents (KARIMI et al., 2013). Using the 

IAT, we verified that the HFD impaired memory acquisition in HFD-15, but not in HFD-7.5 

group. HFD-induced cognitive impairment was recently described in zebrafish fed with lard for 

8 weeks subjected to the active avoidance learning test (MEGURO; HOSOI; HASUMURA, 

2019). Here, we showed a similar behavioral response in the passive avoidance learning, 

corroborating the deleterious influence of HFD on memory. Active or passive avoidance tests 

access different neurophysiological process of memory formation (HAUSER; ELDAR; 

DOLAN, 2016; KRYPOTOS et al., 2015) and are differentially affected by modulation of the 

cholinergic system (DIMITROVA; GETOVA-SPASSOVA, 2006). In mice, active avoidance 

learning is serotonin-dependent, while the passive avoidance learning is more dependent of 

dopaminergic activity (ALLEN; ALLEN; RAKE, 1974). Although the mechanisms involved 

in such effects still require future studies in zebrafish models, HDF may impair memory 

formation in zebrafish by modulating different neurotransmitter systems. Notably, HFD-

induced cognitive decline in mammals is usually associated with hippocampal vulnerability to 

insults arising from fat consumption (BEILHARZ; MANIAM; MORRIS, 2015). The effects of 

HFD on the CNS are associated with morphological changes (VALLADOLID-ACEBES et al., 

2013), impaired synaptic plasticity (STRANAHAN et al., 2008), insulin resistance (MCNAY 

et al., 2010), reduced expression of memory-related genes (e.g., sirt1 and pp1)  (HEYWARD 

et al., 2012), and reduced neurogenesis (GRAYSON et al., 2014). Similarly, zebrafish overfeed 

with artemia for 5 weeks display altered expression of leptin, ghrelin and orexin on the brain 

(MONTALBANO et al., 2018). Here, we demonstrated that HFD-induced memory acquisition 

impairment occurs within 2 weeks of supplementation. Despite the anatomical differences 

between teleost and mammals, zebrafish have evolutionarily conserved genome and physiology 

of neurotransmitter systems (HORZMANN; FREEMAN, 2016; HOWE et al., 2013), and the 

lateral pallium area is homologous to the mammalian hippocampus (CHENG; JESUTHASAN; 

PENNEY, 2014; SALAS et al., 2006). Interestingly, the memory impairment reported in 

zebrafish fed with a lard-based HFD was associated with the modulation of genes known as 

regulator of neuronal function, oxidative response, and blood-brain barrier integrity, supporting 

a conserved basis of HFD-induced pathogenesis (MEGURO; HOSOI; HASUMURA, 2019). 

Importantly, future studies aiming to elucidate how each brain area is affected by both short- 
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and long-term HFD in zebrafish models of obesity are warranted in order to improve 

pharmacological and construct validity.  

Obesity and overweight are also correlated with aggressive behavior and anxiety/depression 

in humans (CERNIGLIA et al., 2018; LINDBERG et al., 2020). Although it is difficult to 

establish a causal relationship (i.e., socioeconomic and self-esteem factors are involved), animal 

models allow a proper evaluation of the link between obesity/overweight and behavioral 

changes (BAKER; REICHELT, 2016; BUCHENAUER et al., 2009). Here, the short-term HFD 

markedly changed the aggressive profile and anxiety-like responses in zebrafish, as represented 

by a higher duration of aggressive episodes in the MIAT and increased bottom dwelling in the 

NTT. Similar results were shown with rats and mice fed with HFD (BAKER; REICHELT, 

2016; BUCHENAUER et al., 2009; DE NORONHA et al., 2017) demonstrating a conserved 

biological response in zebrafish, reinforcing the translatability of zebrafish models for obesity 

research (GUT et al., 2017).  

Obese individuals are more vulnerable to neurological (CADENAS-SANCHEZ et al., 

2020) and psychiatric disorders (HAMER; BATTY; KIVIMAKI, 2012) when metabolic 

alterations are present. Similarly, zebrafish models of metabolic disarrangements also display 

neurobehavioral alteration (AUDIRA et al., 2018; DOS SANTOS et al., 2018). Here we 

observed an increase in abdominal length after the HFD intake, which is one of the diagnostic 

criteria of the metabolic syndrome, representing higher visceral adiposity (BIGAARD et al., 

2005). Accordingly, zebrafish fed with chicken egg yolk showed higher propensity to develop 

metabolic changes compared with animals overfed with an isocaloric standard diet 

(LANDGRAF et al., 2017), displaying increased levels of glucose, cholesterol, triglycerides, 

and visceral adiposity (ALBERTI et al., 2009). Triglycerides can cross the BBB promoting 

central leptin resistance (BANKS et al., 2018), which in turn could promote anxiety-like 

behavior, through modulation of the neuropeptide Y levels on the brain of obese individuals 

(KARL; DUFFY; HERZOG, 2008; WIDDOWSON et al., 1999). Leptin is highly conserved 

between fish and humans (PROKOP et al., 2012), promoting anxiolytic-like effects in rodents 

(WANG, W. et al., 2015), while  prominent anxiety-like behavior is observed in zebrafish 

knockouts (AUDIRA et al., 2018). Hypertriglyceridemia also plays a role on hippocampal 

impairment and cognitive decline, since lower triglycerides levels facilitate the recovery of 

memory functioning (BANKS et al., 2018; FARR et al., 2008). Similarly, hyperglycemic 

zebrafish and rats showed anxiety-like behavior and the glycemic control was associated with 

an anxiolytic effect (DOS SANTOS et al., 2018; GAMBETA et al., 2016). Although further 
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experiments are necessary to understand the role of metabolic dysfunction on CNS disorders in 

zebrafish, we verified that animals displayed cognitive decline, anxiety-like and aggressive 

behavior following a short-term HFD. These set of data corroborate the use of zebrafish models 

to investigate the molecular basis underling obesity and neuropsychiatry conditions in a 

medium-to-high throughput manner. 
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6. CONCLUSION 

 

Our results demonstrated the following effects of HFD on obesity-related and metabolic 

parameters in adult zebrafish: 

 Increase of BW, 

 Increase of BMI and 

 Increase of abdominal length.  

 

Plus, behavioral analysis showed effect of HFD on the following parameters: 

 Heightened aggressiveness as evaluated by the MIAT, 

 Heightened anxiety-like behavior as evaluated by the NNT, 

 Impairment of memory formation induced by the highest concentration of chicken egg yolk 

as evaluated by the IAT, 

 The locomotion and vertical exploratory capacity were not affected in obese zebrafish, 

supporting the results of behavioral tasks used here.  

Taken together, our findings show that HFD modulates metabolic parameters and a wide 

range of behavioral domains in zebrafish, since heightened aggression, anxiety-like behaviors, 

and impaired memory formation were verified. We hypothesize that metabolic alterations may 

play an important role on the behavioral changes observed here, corroborating data from other 

animal models and humans. Further investigation is necessary to elucidate this hypothesis and 

the underlying mechanisms involved in the behavioral phenotypes observed following a short-

term HFD. Collectively, our study fosters a cross-species analyses in a translational perspective 

and highlights the use of zebrafish as a versatile and promising tool for assessing the 

neurobehavioral effects of HFD-induced obesity with high degree of face validity. 
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