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Abstract 

Background: An effective yellow fever (YF) vaccine has been available since 1937. 
Nevertheless, questions regarding its use remain poorly understood, such as the ideal 
dose to confer immunity against the disease, the need for a booster dose, the optimal 
immunisation schedule for immunocompetent, immunosuppressed, and pediatric 
populations, among other issues. This work aims to demonstrate that computational 
tools can be used to simulate different scenarios regarding YF vaccination and the 
immune response of individuals to this vaccine, thus assisting the response of some of 
these open questions.

Results: This work presents the computational results obtained by a mathematical 
model of the human immune response to vaccination against YF. Five scenarios were 
simulated: primovaccination in adults and children, booster dose in adult individu‑
als, vaccination of individuals with autoimmune diseases under immunomodulatory 
therapy, and the immune response to different vaccine doses. Where data were avail‑
able, the model was able to quantitatively replicate the levels of antibodies obtained 
experimentally. In addition, for those scenarios where data were not available, it was 
possible to qualitatively reproduce the immune response behaviours described in the 
literature.

Conclusions: Our simulations show that the minimum dose to confer immunity 
against YF is half of the reference dose. The results also suggest that immunological 
immaturity in children limits the induction and persistence of long‑lived plasma cells 
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are related to the antibody decay observed experimentally. Finally, the decay observed 
in the antibody level after ten years suggests that a booster dose is necessary to keep 
immunity against YF.

Keywords: Vaccine, Yellow fever, Mathematical modeling, Computational modeling, 
Immune system, Ordinary differential equations

Background
At the time this paper was written, a significant global outbreak of COVID-19 was in 
course. This pandemic clearly illustrates the need for new tools to assist the fast develop-
ment of vaccines against emerging or unknown diseases. Even vaccines developed dec-
ades ago, such as the yellow fever vaccine (YFV), could benefit from new tools.

Although YFV is considered safe, there are rare but serious adverse effects that need 
to be reassessed, such as viscerotropic and neurotropic events [1]. There are also ques-
tions regarding the safety of vaccinating specific populations such as the elderly, people 
living with Human Immunodeficiency Virus (HIV)/AIDS, and other immunocompro-
mised populations. Studies suggest that the immunological immaturity of infants and 
young children limits the induction/persistence of long-lived plasma cells [2] and, 
for this reason, a booster dose is needed. The same occurs with the elderly due to 
immunosenescence.1

In the vaccinology field, computer tools have been used to assist the vaccine devel-
opment process [4–13]. Several computational modelling techniques can be used to 
achieve this objective [14]. Most of them focus on non-clinical trials. In previous work, 
we proposed a novel application of computer tools to vaccinology in the clinical devel-
opment stage [15]. With mathematical and computational models, it is possible to evalu-
ate in silico different scenarios related to vaccination and answer important questions 
which remain open, such as the minimal dose that confers immunity and immunity 
duration. The idea of using computer tools during the clinical development stage was 
then applied to model the immune response to the YFV [1, 16]. Results showed that 
mathematical models could capture the immune response to the YFV, and in subsequent 
work the model was validated quantitatively [17]

This work presents new numerical experiments showing that our model can reproduce 
experimental data from scenarios such as booster dose, immune response in individuals 
under immunomodulatory therapy, and primovaccination in children. We also discuss, 
in more detail, simulations for primovaccination in adults and dose-response, extending 
the initial results obtained in a previous work [17].

Another work in the literature also uses an ODE-based approach to model the human 
immune response to vaccination against both YF and smallpox [18] using distinct data 
and equations sets, one for each disease. The authors aimed to primarily evaluate the 
dynamics of CD8+ T cells, while our work evaluates the immune response as a whole. 
The model proposed here differs from that presented by Le et al. [18], since it considers 
important populations at each stage of the immune response to YF vaccination, from 

1 State of unregulated immune function in the elderly, which contributes to increased susceptibility to infections, cancer 
and autoimmunity, and reduced vaccine response. Other controversial issues are: (a) the need for a booster dose also for 
immunocompetent adults, and (b) the lower vaccine dose that is as immunogenic and safe as the current formulation 
[3].
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virus inoculation to antigen presentation and consequent activation of lymphocytes, 
generation of antibodies, and memory cells. Furthermore, our validated model is a great 
tool to assist specialists in answering some open questions regarding YFV, which were 
not taken into account by Le et al. [18].

Results
This section presents the predictions of the mathematical model presented in “Methods” 
section, comparing them with experimental data from several studies conducted by the 
Immunobiological Technology Institute (Bio-Manguinhos)/Oswaldo Cruz Foundation 
(Bio-Manguinhos/FIOCRUZ), René Rachou Research Center/Oswaldo Cruz Founda-
tion (FIOCRUZ/Minas) and University of Brasilia (UnB) on human YFV [3, 19–25], such 
as viremia and antibody titers,2 for distinct scenarios. For all experimental data, we pre-
sent antibody interquartile range, lower limit, and upper limit. In order to facilitate com-
parison with numerical results, we also present the geometric mean of the experimental 
antibody titers (GMT—Geometric Mean Titers).

The first scenario simulates an adult individual being vaccinated for the first time with 
the full dose of the vaccine against YF. The second scenario represents the revaccination 
of adult individuals. There are situations in which some individuals’ immune response 
differs from the response usually obtained by vaccination in immunocompetent adults. 
This is the case of children and individuals with autoimmune diseases, respectively, the 
third and fourth scenarios. Finally, the fifth scenario evaluates the use of different doses 
of the vaccine against YF, all below the full dose.

Numerical results are presented and compared to experimental data [3, 19–25]. More 
specifically, experimental results from primary vaccination in adults, booster dose in 
adults, primovaccination in children and individuals using immunomodulatory ther-
apy, and dose-response studies are used to qualitatively and quantitatively validate the 
numerical results obtained by the mathematical model. A quantitative comparison was 
performed when experimental and numerical results were in the same unit. However, 
in some scenarios, the results generated by the model and the experimental data are in 
different units, mIU/mL, and reciprocal dilution, respectively. This is due to the experi-
mental method used. Neutralising antibody levels in serum was measured by the Plaque 
Reduction Neutralisation Test (PRNT), either in reciprocal dilution or in International 
Units. If the standard serum for quantification in International Units is available, this 
unit’s values are also obtained. What often occurs is the lack of this serum and, conse-
quently, the lack of values in the mIU/mL unit, which precludes a quantitative compari-
son. For these cases, graphics are constructed with two Y-axes, each representing a unit. 
The experimental data in reciprocal dilution will be represented by the Y-axis on the left, 
while the results obtained by the model simulation, in mIU/mL, will be represented by 
the Y-axis on the right. This allows for a qualitative assessment of the model’s results, by 
comparing the trends it predicts with those observed experimentally.

2 Antibody titer indicates the level of antibodies in a blood sample, defined as the largest dilution of the blood sample 
with a dilution agent in which an assay, such as ELISA, still produces a positive result [26].
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First scenario: primovaccination in adults

The first scenario was used to calibrate the model. In other words, its parameters and 
initial conditions were chosen to reproduce the experimental results of an individual 
vaccinated for the first time against YF using the full dose of the vaccine developed 
by Bio-Manguinhos/Fiocruz (17DD-YFV). After the model was calibrated, most of 
the parameters and initial conditions values found were kept for the experiments pre-
sented in the next sections.

After vaccination, the antibody levels of the subjects who participated in the experi-
ment were measured at different times. These samples were grouped in the following 
way:

• NV (day 0): Naïve (NV), immediately before vaccination;
• PV (30–45 days): primo-vaccinated (PV), 30–45 days after vaccination;
• PV (1–5 years): 1–5 years after vaccination;
• PV (> 5–9 years): 5–9 years after vaccination;
• PV (10 years): 10 years or more after vaccination.

These groups, in general, will also be used for other studies that will be described in 
the following sections.

Figure  1 shows the comparison between the levels of antibodies obtained experi-
mentally and numerically, after calibration. These are cross-sectional data so that 
different individuals will be represented in the categories of post-vaccination time 
described above and the same categories are used to present numerical results. A pat-
tern of marked increase in antibody levels 30–45 days after vaccination and a reduc-
tion, which was more pronounced after 1–5 years but was sustained for 10 years after 
vaccination.
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Fig. 1 First scenario: primovaccination in adults. interquartile range (rectangles), median (black line), 
lower limit and upper limit (black stems), and geometric means (observed and estimated by model) of 
antibody titers for YF according to post‑vaccination time. “GMT Data” ( ) refers to the geometric mean of the 
experimental data and “GMT Model” ( ) refers to the geometric mean of the numerical results
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The model errors were computed for each post-vaccination intervals and the results 
obtained are shown in Table 1. The model errors were small, an evidence that the model 
is likely suitable, and has been successfully calibrated.

Figure 2 presents experimental data and numerical results for the entire time simu-
lated, which was 5000 days. Although experimental data for this scenario were used to 
adjust the model, as one can observe, experimental data are restricted to some days. 
Due to the total simulation time, it is not possible, in main graph, to observe the model 
results and experimental data for the two initial groups, NV and PV (30–45 days). To 
facilitate the visualisation of the curve in the first days of simulation, a secondary graphic 
is presented in the same figure, which presents experimental data only for the first 100 
days after vaccination, as well as the numerical results.

It is possible to notice in Fig. 2 that, between days 1 and 41, no experimental data were 
obtained. Thus, it was not possible to make the adjustment or even evaluate the quality 
of the curve generated by the model in this interval.

A booster dose is required if the antibody level is below the the seropositivity thresh-
old. Figure 3 presents the simulation for 10,000 days after the first vaccination. As one 
can observe, the curve generated by the model for a single dose suggests that the amount 

Table 1 Model error for each post-vaccination time interval

Post-vaccination time Model 
error 
(%)

30–45 days 1.2

1–5 years 2.8

> 5–9 years 0.3

10 years 1.6
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Fig. 2 First scenario: primovaccination in adults. comparison between antibody curve ( ) generated by the 
model for 5000 days of simulation and experimental data ( ) obtained from primo‑vaccinated individuals 
in the same period. The zoom in the figure shows in more details experimental and numerical results for the 
first 100 days after vaccination
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of antibodies is below the protective level about 10,000 days after vaccination, thus indi-
cating the need of administration of a booster dose.

Second scenario: booster dose in adults

In addition to assessing the immune response to the first dose of the YFV, the Fiocruz 
research group also collected experimental data from revaccinated (RV) individuals. In 
this study, the antibody levels of the subjects who participated in the experiment were 
measured at different times, and these samples were grouped in the following way:

• PV (> 5–9 years): 5–9 years after first vaccination;
• PV (10 years): 10 years or more after first vaccination;
• RV (30–45 days): 30–45 days after booster dose;
• RV (1–5 years): 1–5 years after booster dose;
• RV (> 5–9 years): 5–9 years after booster dose;
• RV (10 years): 10 years or more after booster dose.

Data obtained for this scenario were used to validate the model, without changing or 
adjusting the parameters and initial values found during calibration. For this purpose, 
the following method was adopted. Initially, a simulation of a primo-vaccinated individ-
ual was performed. After simulating the equivalent of 5500 days since the application 
of the vaccine, the simulation was paused, the current values for all populations of the 
model were saved and only the value associated to the virus population was modified, 
from its current value, zero, to the adjusted full vaccine dose. The simulation was then 
resumed, 4500 additional days were simulated to reach 10,000 days.

These specific numbers of days after vaccination, 5500 and 10,000, were chosen based 
on experimental data available. The PV group (10 years), that is, adult individuals 10 
years after the first vaccine dose, had samples collected up to 5475 days (15 years) after 

Fig. 3 First scenario: primovaccination in adults. Antibody curve ( ) generated by the model for 10,000 days 
of simulation and experimental data ( ) obtained from primo‑vaccinated individuals in the same period. The 
red dashed line ( ) presents the protective level
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vaccination. For this reason, the booster dose was simulated in the model 5500 days after 
the first dose. Likewise, in the RV group (10 years), individuals 10 years after the booster 
dose, had samples collected up to 3650 days after the second dose, and consequently up 
to 9125 days after the first dose. For this reason, the simulation was for 10,000 days after 
application of the first dose.

Figure 4 presents experimental data and numerical results for the booster dose sce-
nario. Units for model predictions ( ) and the experimental data differ, as the latter was 
only available in terms of reciprocal dilution.

Third scenario: primovaccination in children

As mentioned in “Background” section, immune response in child is less pronounced 
than in adults. Some hypotheses explain these differences: immunological immaturity 
limits the induction and persistence of long-lived plasma cells [27]. Long-lived plasma 
cells are largely responsible for long-term secretion of antibodies [28].

In this scenario, these two possibilities (limitation of induction and persistence) were 
evaluated numerically. For this purpose, changes were made only to the values of param-
eters related to these hypotheses, without any further modification, except for the weight 
of the individual being simulated and the initial condition for the antibody population. 
Table 10 shows the weight, and percentage of fluids in the body that was used as a basis 
for calculating the initial condition of the virus that would be used in simulations of 
adults and children, as well as the initial amount of antibodies used for each population.
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Fig. 4 Second scenario: booster dose in adults. Interquartile range (rectangles), median (black line), lower 
limit and upper limit (black stems) and geometric means (observed and estimated by model) of antibody 
titers for YF according to post‑vaccination time, first dose and booster dose. “GMT Data” ( ) refers to the 
geometric mean of the experimental data and “GMT Model” ( ) refers to the geometric mean of the 
numerical results. Experimental data expressed in reciprocal dilution, and numerical ones in PRNT mIU/mL. 
The blue dashed line ( ) presents the protective level expressed in mIU/mL
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The hypothesis that immunological immaturity limits the persistence of long-lived 
plasma cells was evaluated increasing the natural death rate for this type of cells (rep-
resented by parameter δpl ). However the simulations showed that changes in this 
value had no significant effect on the antibodies curve and, for this reason, this result 
was omitted. The hypothesis that the immunological immaturity limits the induction 
of long-lived plasma cells was tested reducing the rate of differentiation of B cells into 
long-lived plasma cells ( βpl ). There was a noticeable reduction in the lifelong memory 
by changing only this parameter. The simultaneous alteration of βpl and δpl was also 
evaluated. Although the change in δpl alone did not produce a significant reduction in 
antibodies, when combined with changes in βpl value, the results produced the best fit 
to reproduce experimental data, which are described in this section.

A range of values were tested for βpl and δpl . The simulation using a reduction of 
approximately 70% of the value associated to the parameter βpl and an increase of 
100% of the value associated to the parameter δpl used for adults produced the best fit 
to reproduce qualitatively the immune response of children. The values of βpl in the 
model were 1.68× 10−6 and 5.61× 10−6 to simulate children and adults, respectively. 
The values of δpl in the model were 2.4 × 10−4 and 4.8× 10−4 to simulate children and 
adults, respectively. Figure 5 shows that numerical results were able to reproduce the 
same behaviour observed in experimental data: an initial rapid increase in the amount 
of antibodies is followed by a decrease over the course of time. It should also be noted 
that these are cross-sectional data, so that antibody levels in post-vaccination times 
are from different children.
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Fig. 5 Third scenario: primovaccination in children. Interquartile range (rectangles), median (black line), 
lower limit and upper limit (black stems) and geometric means (observed and estimated by the model) of 
antibody titers for YF after vaccination in children. “GMT Experimental Data” ( ) refers to the geometric mean 
of children’s vaccination data and “GMT Model Children” ( ) to the geometric mean of numerical results after 
parameters has been adjusted to represent the immune response of children. Experimental data expressed in 
reciprocal dilution, and numerical ones in PRNT mIU/mL
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To facilitate the comparison between the immune response of adults and children 
when vaccinated against YF, experimental data and numerical results for these two 
groups are shown in Fig. 6. For adults and children, the experimental data in recipro-
cal dilution (Y-axis on the left) allow direct comparison. Conversely, results from the 
numerical experiment in mIU/mL (Y-axis on the right), allow comparisons of patterns 
only.

Fourth scenario: immune response in individuals using immunomodulatory therapy

A study found in the literature [25] reports differences in the immune response to the 
YFV in groups of individuals using different types of immunomodulatory therapies. The 
therapies covered in the study are divided into two main groups, those that use only syn-
thetic DMARDs (disease-modifying antirheumatic drugs) and those that use a combina-
tion of biological and synthetic drugs. According to the study [25], DMARDs have the 
ability to modify or affect the pre-existing protective immunity induced by the vaccine, 
including the function of memory T and B cells and, as a consequence, the neutralis-
ing antibody levels specific to YF. The biggest difference was found when comparing the 
control group, that is, individuals without any autoimmune disease, with the group using 
combination therapy.

The hypotheses found in the literature to explain how DMARDs affects the pre-exist-
ing protective immunity induced by the vaccine [25] were evaluated using the model. 
Again, changes were made only in the parameters related to the hypotheses, keeping 
the other values found during calibration. Simulations of individuals in two conditions, 
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Fig. 6 Third scenario: primovaccination in children. Antibody levels generated by the model (for adults and 
children) and experimental data for adults and children. “GMT Data” ( ) refers to the geometric mean of data 
(for adults and children) and “GMT Model” ( ) to the geometric mean of numerical results (for adults and 
children). Experimental data expressed in reciprocal dilution, and numerical ones in PRNT mIU/mL
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control and under the use of combination therapy, were carried out. For simulating 
individuals under use of combination therapy, changes were tested in the values of all 
parameters of the equation that describes the dynamics of B cells, as well as in their ini-
tial conditions. The following alterations were able to reproduce the antibody levels of 
individuals using combination immunomodulatory therapy:

• 50% reduction in αb parameter (B cell homeostasis rate);
• 25% reduction in parameter βpl (B cell differentiation rate in long-lived plasma cells);
• 25% reduction in B cell initial condition.

These three alterations, reduction in αb , reduction in βpl , and reduction in B cell initial 
condition, produced very similar results: all of them reproduced the immune response of 
an individual with autoimmune disease using combination immunomodulatory therapy. 
For this reason, only one of the results is presented in this section, the one which reduces 
the initial condition of B cells by 25%. The reduction percentages were chosen after car-
rying out several tests with distinct values for the parameters and initial condition of B 
cells. The values that produced the best adjustments in the levels of antibodies generated 
by the model to the experimental data obtained for the individuals in use of combination 
immunomodulatory therapy were chosen and are shown in Table 2.

Figure 7 presents experimental and numerical data for control individuals and those 
using immunomodulatory therapy. In this figure, the numerical results modify only the 
value associated to the initial condition of B cells (B0).

Fifth scenario: dose-response

The literature [3] reported that doses from 27,476 IU to 587 IU of the YFV induced sero-
conversion rates and similar GMT in the participants of the experiment. Based on that 
study, we simulated the immune response after the administration of different doses of 
the YFV. This was done changing the values used as the initial virus condition in the 
model to be the same described in the literature [3]. These values adopted as initial con-
dition were computed considering the dilution of the vaccine in the body, as well as the 
conversion of the units, as presented in “Experimental data” section. The values of all 
other parameters were kept the same.

Mean antibody titers 30–45 days after vaccination generated by model simulation 
approximated the actual data in the dose-response study, which also used International 
Units (Fig. 8). The data showed that antibody levels increased with vaccine doses up to 
587 mIU, above which no further increase in antibody levels was achieved.

Table 2 Values of parameters αb, βpl and B0 used in the model to simulate control subjects 
and those using combination immunomodulatory therapy

Each line represents a distinct and independent adjust, i.e., the modification of a single parameter at a time is able to 
approach experimental data

Parameter cs + bDMARD value Control value

αb 3.0 6.0

βpl 4.208× 10−6 5.61× 10−6

B0 1.875× 105 2.5× 105
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Antibody levels generated by the model (Fig. 9) showed a pattern of marked increase with 
a peak within 20 days of vaccination, somewhat earlier and much lower for vaccine doses 31 
mIU and 158 mIU. According to the model, vaccine doses 587 mIU and above induced and 
sustained similar antibody levels for 1000 days. The main graphic presents the antibody lev-
els curves until 1000 days of vaccination. To better observe the curve behaviour in the first 
days after vaccination, a secondary graphic on the upper right presents the same result for 
the first 100 days after vaccination.

Figure 10 presents the numerical results for viremia curves, considering distinct vaccine 
doses. The main graphic does not allow a detailed observation of the curves for the smaller 
doses and, for this reason, a secondary graphic on the upper right presents a zoom in this 
figure, allowing one to observe that viremia for some of smaller doses is not equal to zero.

Discussion
The immune response to vaccination was successfully modelled in several of its relevant 
components presented in different scenarios. In general, the immune response described 
by the model provided a reasonable approximation of empirical data showing that it was 
built on sound mathematical relations of the key parameters.
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Fig. 7 Fourth scenario: immune response in individuals using immunomodulatory therapy. Interquartile 
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The first scenario, primovacciation in adults, was used to adjust model parameters and 
initial conditions. As one could expect, the observed error presented in Table 1 was very 
low, below 3%. For the fifth scenario, the dose-response experiment, except for the low-
est dose whose error was about 13%, for all other doses the errors were bellow 2.5%, as 
Table  3 reveals. This result showed that the model, that was adjusted using only data 
from individuals vaccinated with the full dose, was able to satisfactorily reproduce the 
immune response obtained with vaccination using doses lower than the full one. For 
all other simulated scenarios, it was not possible to make a similar quantitative analy-
sis either because data were not available, or because units were different. Experimental 
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data available for antibody levels use reciprocal dilution as unit, while the model uses 
mIU/mL, and one unit cannot be converted into the other one with available data. Thus, 
it is not possible to say, for example, that an increase of 50% in the level of antibodies 
expressed in reciprocal dilution means an increase of the same 50% expressed in mIU/
mL.

A similar pattern in experimental data and model outputs was observed in Fig. 4, in 
“Second scenario: booster dose in adults” section. Reduced antibody levels in individuals 
vaccinated 5–9 and 10 years before, were followed by a pronounced rise after a booster 
dose and a marked reduction after 1–5 years. Antibody levels 10 years after revaccina-
tion were almost as low as those before the booster dose.

Despite the difference in the units adopted, it was possible to notice in Fig. 5, in “Third 
scenario: primovaccination in children” section, that the numerical results were able to 
reproduce the same behaviour observed in experimental data: an initial rapid increase in 
the amount of antibodies is followed by a decrease over time.

As presented in Fig. 6, also in “Third scenario: primovaccination in children” section, 
experimental data showed that there is an evident difference in the levels of antibodies 
produced by adults and children. It should be noted that the model was adjusted using 
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Fig. 10 Fifth scenario: dose‑response. Simulation in viremia curves considering distinct vaccine doses (31 IU, 
158 IU, 587 IU, 3,013 IU, 10,447 IU and 27,476 IU)

Table 3 Model error for each dose between 30 and 45 days post-vaccination

Dose (IU) Model error (%)

31 12.9

158 0.5

587 0.7

3013 2.4

10,447 0.1

27,476 0.7
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data from adults expressed in mIU/mL, and therefore it is not the same unit used in 
experimental data, which are expressed in reciprocal dilution. Still, in a qualitative way, 
the numerical results were able to capture this behaviour: a lower level of antibodies in 
children than in adults.

Three reductions in constant/initial condition values ( αb , βpl , and B cell initial condi-
tion) numerically evaluated in this work could explain the immune response in individu-
als using immunomodulatory therapy. These results could change if other aspects of the 
way DMARDs work in the body, and its mechanisms of interaction with each type of 
cell, were also considered. Some mechanisms involve the production and/or inhibition 
of cytokines that were not yet considered in the model.

The model was able to reproduce distinct scenarios related to the immune response to 
vaccination against YF. For this reason, we decided to use it to obtain some clues about 
the questions that remain unanswered or poorly understood about the vaccine. The first 
clue is that, among all evaluated doses, the lowest dose capable of conferring immunity 
is half of the minimum recommended by the WHO, as the numerical experiments in 
“Fifth scenario: dose-response” section show. The results presented in Fig. 9 show that 
the antibody curve is almost the same for all doses above 587 IU; these results are similar 
to those presented in the literature [3].

The second clue is related to the hypothesis that immunological immaturity in chil-
dren limits the induction and persistence of long-lived plasma cells. Numerical results 
confirmed that both are responsible for the differences observed in experimental results 
of adults and children, and that persistence of long-lived plasma had no significant effect 
on the antibody curves alone.

The third clue is related to the need of booster dose. A single dose apparently (as sug-
gested by the results in Fig. 3) did not provide long lasting protection. The decay rate in 
the antibody level suggests that the booster dose is needed to maintain protection. In 
fact, about 10,000 days after vaccination, the level of antibodies in an adult is below the 
protective level if a single dose is given. If a booster dose is given, the protection level is 
improved, as depicted in Fig. 4. Moreover, the single dose is usually given to infants or 
children, which induces a lower amount of long-lived plasma cells than adults, which 
reinforces the need of booster doses throughout life.

Some considerations and limitations of the model used in this study should be high-
lighted. The model was adjusted to reflect the geometric mean of the experiments. In 
this sense, conclusions reflect the typical immune response from the average individual 
described in Tables 10 and  11. Some individuals with distinct characteristics, such as 
the immunological immaturity of children or a compromised immune system due to 
some disease should, for example, receive a booster dose of the YFV in a shorter period 
of time. Furthermore, the extrapolation done to predict the antibody level after 10,000 
days may suffer from the classical overfitting problem, where the model can replicate 
the data it is adjusted to but fails on any attempt of extrapolation or forecasting. Finally, 
other aspects that may influence the minimal dose to confer immunity against YF were 
not taken into account, such as problems with virus die-off during transport.
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Conclusions
This work presented the quantitative and qualitative validation of a mathematical-com-
putational model to represent the immune response to the YFV using five distinct sce-
narios. The first one simulates the immune response to the administration of the full 
dose of the 17DD-YFV for the first time. The second one simulates the immune response 
to distinct doses of vaccine. The third scenario simulates the administration of a booster 
dose ten years after the first dose. The fourth simulates the vaccination in individuals 
under immunomodulatory therapy. Finally, the last one simulates the primary vaccina-
tion in children. The numerical results were collected and compared to experimental 
data. Some results could be compared directly, and errors below 10% were observed. For 
other results that could not be compared directly, because distinct units were used, it 
was observed that the numerical results obtained by the computational model satisfac-
torily reproduced the behaviour observed in experimental data.

The numerical experiments show that among all vaccine doses evaluated, the lowest 
one capable of conferring immunity against YF is about half of the reference dose, 587 
UI. The results also suggest that the hypothesis that the immunological immaturity in 
children limits long-lived plasma cells’ persistence is not related to the antibody decay 
observed experimentally. The numerical experiments show that this phenomenon is 
due to the lower induction of long-lived plasma cells. Finally, the antibody level’s decay 
within the ten years following vaccination suggests that a booster dose is necessary to 
keep immunity against YF.

Although the model presented in this work focuses on the YFV, it could be used 
to gain new insights in the immune response to vaccine canditates, such as those for 
COVID-19.

We also plan, as future work, to refine the model to guide future empirical studies: (1) 
to determine the optimal number of doses to ensure protection against YF; (2) to deter-
mine the duration of immunity with two vaccine doses in infants; (3) to determine the 
interval between these two doses given to infants to maximise the duration of immunity, 
and (4) conduct a dose-response study in infants.

Methods
Mathematical model

The model used in this work consists of a system of ordinary differential equations 
(ODEs), which were originally proposed in a previous work [1, 17], and reproduced here. 
These equations represent the main populations involved in the immune response to the 
vaccination, as well as the virus itself. They are yellow fever vaccine virus, APCs (Anti-
gen-presenting cells), CD4+ T cells, CD8+ T cells, short and long-lived plasma cells, 
B cells, memory B cells, and antibodies. The initial conditions and acronyms of these 
populations, as well as the parameters and their meanings, are presented in Tables 11 
and 12, respectively, which are presented in “Appendix”.

Equation (1) represents the vaccine virus (V):

(1)
d

dt
V = πvV −

cv1V

cv2 + V
− kv1VA− kv2VTke.
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The virus can not proliferate by itself. It needs to infect a cell and use it as a factory 
for new viruses. This mechanism is implicitly considered in the term πvV  , which rep-
resents the multiplication of the virus in the body, with a production rate πv . The term 
cv1V
cv2+V  denotes a non-specific viral clearance made by the innate immune system. This 
function models growth combined with a saturation effect [29]. The term kv1VA denotes 
specific viral clearance due to antibody signalling, where kv1 is the clearance rate. The 
term kv2VTke denotes specific viral clearance due to the induction of apoptosis of cells 
infected by the YF virus, where kv2 is the clearance rate.

APCs are all cells that display antigens complexes on their surfaces, such as den-
dritic cells and macrophages. Two stages of APCs were considered: immature and 
mature. The first stage, immature APCs ( Ap ), is described by Eq. (2):

The term αap(Ap0 − Ap) describes the homeostasis of APCs, where αap is the homeosta-
sis rate. The term βapAp

cap1V

cap2+V  denotes the conversion of immature APCs into mature 

ones. So the same term appears in Eq. (3) with positive sign.
The Eq. (3) represents the mature APCs ( Apm):

The first term, as just explained, denotes the dynamics of APCs maturation. The second 
term, δapmApm , means the natural decay of the mature APCs, where δapm is the decay 
rate.

Equation (4) represents the population of naïve CD4+ T cells ( Thn):

The term αth(Thn0 − Thn) represents the homeostasis of CD4+ T cells, where αth is the 
homeostasis rate. The term βthApmThn denotes the activation of naïve CD4+ T cells, 
where βth is the activation rate.

Equation (5) represents the effector CD4+ T cell population ( The):

The term πthApmThe represents the proliferation of effector CD4+ T cells. The term 
δthThe represents the natural death of these cells, with δth representing its decay rate.

The mechanisms used to represent CD4+ T cells were also used to model the 
dynamics of CD8+ T cells. Equations  (6) and (7) represent the population of naïve 
( Tkn ) and effector ( Tke ) CD8+ T cells:

(2)
d

dt
Ap = αap(Ap0 − Ap)− βapAp

cap1V

cap2 + V
.

(3)
d

dt
Apm = βapAp

cap1V

cap2 + V
− δapmApm.

(4)
d

dt
Thn = αth(Thn0 − Thn)− βthApmThn.

(5)
d

dt
The = βthApmThn + πthApmThe − δthThe.

(6)
d

dt
Tkn = αtk(Tkn0 − Tkn)− βtkApmTkn, and



Page 17 of 25Bonin et al. BMC Bioinformatics 2020, 21(Suppl 17):551

The term αtk(Tkn0 − Tkn) represents the homeostasis of CD8+ T cells, where αtk is the 
homeostasis rate. The term βtkApmTkn denotes the activation of naïve CD8+ T cells, 
where βtk is the activation rate. The term πtkApmTke represents the proliferation of effec-
tor CD8+ T cells, where πtk is the activation rate. The term δtkTke represents the natural 
death of these cells, with δtk representing its decay rate.

Equation (8) represents B cells (B), both naïve and effector ones. These populations 
were not considered separately in order to simplify the model.

The term αb(B0 − B) represents the B cells homeostasis, where αb is the homeostasis 
rate. The terms πb1VB and πb2TheB represent the proliferation of B cells activated by the 
T-cell independent and T-cell dependent mechanisms, respectively. The terms βpsApmB , 
βplTheB and βbmTheB denote the differentiation of active B cells into short-lived plasma 
cells, long-lived plasma cells and memory B cells, respectively. The activation rates are 
respectively given by βps , βpl and βbm.

Equation (9) represents the short-lived plasma cells ( Ps):

The term δpsPs denotes the natural decay of short-lived plasma cells, where δps is the 
decay rate.

Equation (10) represents the long-lived plasma cells ( Pl):

The term δplPl denotes the natural decay of long-lived plasma cells, with δpl representing 
the decay rate. The term γbmBm represents the resupply of these cells by memory B cells, 
where γbm is the production rate.

Eq. (11) corresponds to memory B cells ( Bm):

The term πbm1Bm

(

1− Bm
πbm2

)

 represents the logistic growth of memory B cells, i.e., there 

is a limit to this growth. πbm1 represents the growth rate, and πbm2 limits the growth.
Finally, Eq. (12) represents the antibodies:

The terms πpsPs and πplPl are the production of the antibodies by the short-lived and 
long-lived plasma cells, respectively. The production rates are given by πps and πpl , 

(7)
d

dt
Tke = βtkApmTkn + πtkApmTke − δtkTke.

(8)
d

dt
B = αb(B0 − B)+ πb1VB+ πb2TheB− βpsApmB

− βplTheB− βbmTheB.

(9)
d

dt
Ps = βpsApmB− δpsPs.

(10)
d

dt
Pl = βplTheB− δplPl + γbmBm.

(11)
d

dt
Bm = βbmTheB+ πbm1Bm

(

1−
Bm

πbm2

)

− γbmBm.

(12)
d

dt
A = πpsPs + πplPl − δaA.
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respectively. The term δaA denotes the natural decay of these cells, where δa is the decay 
rate.

Computational model

The model was implemented in the Python programming language. Numerical solution 
of the system of ODEs performed by the odeint function, a member of the integrate 
package in the scipy library [30]. This function uses the characteristics of the ODE 
system to select the numerical method used, with adaptivity in both timestep and con-
vergence order.

The experiments were performed using Python version 3.7.5 using the Spyder inte-
grated development environment (IDE). The execution environment was composed of 
an Intel Core i5 1.6 GHz processor, with 8 GB of RAM. The system runs macOS Mojave 
version 10.14.6.

Experimental data

The first set of experimental data used was the one that presents markers of the immu-
nological response to the vaccine against YF in adults who were primed and revacci-
nated. The Tables  4 and   5 present a summary of data that were used for the primed 
individuals [31] and Table  6 for revaccinated individuals [24]. The antibody data pre-
sented in the tables represent the geometric mean of the antibody titers (GMT - Geo-
metric Mean Titers) of all individuals in each group.

Tables 7 and 8 present a summary of data that were used on vaccination against YF 
in children [19, 20] and individuals using immunomodulatory therapy [25], respectively. 
Table 9 summarises data on antibody levels from the study evaluating the dose versus 
response [3, 22, 23].

It is possible to observe in these tables a difference in the unit of the antibody 
titers (mIU/mL and reciprocal dilution). The test that is normally performed for the 

Table 4 Single dose adults—antibodies  (log10 mIU/mL)—by time interval

Categorical time Number of individuals Average time (days) GMT 
( log10 
mIU/mL)

NV (0) 46 0 1.96

PV (30–45 days) 46 44 (42–49) 3.88

PV (1–5 years) 36 1367 (537–1833) 3.40

PV (5–9 years) 12 2609 (1882–3406) 3.40

PV (> 10 years) 45 4081 (3721–4414) 3.19

Table 5 Single dose adults—antibodies (reciprocal dilution)—by time interval

Categorical time Number of individuals Average time (days) GMT 
(reciprocal 
dilution)

PV (5–9 years) 23 2797 (2008–3285) 152

PV (> 10 years) 45 5021 (3650–5475) 100
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Table 6 Revaccinated—antibodies (reciprocal dilution)—by time interval

Categorical time Number of individuals Average time (days) GMT 
(reciprocal 
dilution)

RV (30–45 days) 45 40 (30–69) 347

RV (1–5 years) 47 1017 (365–1825) 180

RV (5–9 years) 34 2287 (2190–2555) 177

RV (> 10 years) 9 3163 (2920–5840) 116

Table 7 Children—antibodies (reciprocal dilution)—by time interval

Categorical time Number of individuals Average time (days) GMT 
(reciprocal 
dilution)

NV (0) 50 0 5

PV (30–45 days) 46 39 (30–57) 74

PV (1 year) 113 409 (243–549) 37

PV (2 years) 93 758 (558–909) 26

PV (4 years) 97 1529 (966–2064) 14

PV (7 years) 93 2562 (2379–2982) 10

PV (10 years) 111 3670 (3027–4239) 12

Table 8 Use of  immunomodulatory therapy—antibodies (reciprocal dilution)—by time 
interval

Categorical time Number of individuals Average time (days) GMT 
(reciprocal 
dilution)

CONT (1–5 years) 4 1553 (1200–1800) 375.55

CONT (> 5–9 years) 26 2745 (1950–3240) 179.30

CONT (10 years) 11 3900 (3450–5520) 136.07

cs + bDMARD (1–5 years) 10 1233 (660–1830) 244.88

cs + bDMARD (> 5–9 years) 24 2686 (2070–3420) 126.81

cs + bDMARD (10 years) 13 5268 (3600–7500) 103.25

Table 9 Dose response—antibodies  (log10 mIU/mL)—by time interval

Dose-IU Number of individuals Average time (days) GMT day 0 GMT PV 
30–45 
days

31 92 27 (21–34) 2.12 2.99

158 88 27 (20–34) 2.14 3.68

587 92 28 (21–34) 2.16 4.02

3013 100 28 (21–34) 2.14 3.98

10,447 91 28 (21–34) 2.19 4.10

27,476 98 27 (21–34) 2.23 4.09
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quantification of antibodies, PRNT, generates results in reciprocal dilution. When, at the 
time of testing, the standard serum for quantification in International Units was avail-
able, the value in this unit was also obtained. What often occurs was the lack of this 
serum and consequently the lack of values in mIU/mL.

Thus, in some experiments, the levels of antibodies were expressed in mIU/mL while 
in others, in the reciprocal dilution. The unit adopted by the model for the concentration 
of antibodies is mIU/mL and data in that unit were used for a quantitative validation of 
the model. However, data expressed in reciprocal dilution were also used in the valida-
tion of the model, but in a qualitative way.

Experimental data versus numerical results

One of the main changes made in our previous work [1], after access to experimental 
data, was to adjust the units used in the model. The amount of vaccine virus used as the 
model’s initial condition was one of these changes. Previously [1], the value 27,476 IU 
was used, which is the average amount of virus present in the full dose, that is, in 0.5 mL. 
Variations in the amount of virus across vaccine lots were not considered. But now it is 
considered that, from the moment the vaccine is injected into an individual, it is diluted 
in the volume of fluids that the individual has in the body, something around 65% of the 
body weight (Table 10 shows the weight and percentage of fluids in the body used for 
adults and children). In addition, in this paper, a comparison between experimental data 
and the viremia curve generated by the model is done. The unit used in experimental 
viremia data is copies/mL, that is, number of viral particles per millilitre. To compare 
numerical and experimental data, both results must be expressed in the same unit. It is 
then necessary to convert from IU/dose (27,476 IU in 0.5 mL of the dose) to IU/mL of 
liquid in the body. After that, the value found has to be converted to PFU/mL3 using the 
relationship 1 IU = 1.91 PFU [3]. To convert from PFU/mL to copies/mL, a relationship 
found in the literature [32], and presented in Eq. (13), was used:

With respect to other populations, except for antibodies, the values used in our previous 
work [1] were number of cells found in 1 µ l, and for this reason, they were multiplied by 
103 to be converted to mL. These changes in initial conditions forced us to also readjust 
the model parameters.

(13)log10 PFU/mL = [0.974 log10 copies/mL] − 2.807.

Table 10 Values used for simulating adults and children

Weight (kg)  Liquid in the body % Antibodies 
(initial value—
mIU/mL)

Adults 85 65 150

Children (9 months) 9 65 0

3 Plaque-Forming Unit is a measure of the number of particles, such as viral particles, capable of forming plaques (vis-
ible structures formed within a cell culture) per unit of volume.
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Finally, it was observed in experimental data that, even before adults were vacci-
nated, some of them already had antibodies against YF. There are some hypotheses to 
justify the presence of antibodies prior to vaccination, one of them is the cross pro-
tection caused by contact with others flavivirus, such as the dengue virus, for exam-
ple [33]. But perhaps the most likely is a previous non recorded vaccination. Due to 
this observation, the initial condition of the model that represents the antibody con-
centration in adults was set to a value similar to that observed experimentally, a value 
around 150 mIU/mL. For children, this value was defined as zero.

It is necessary to clarify how comparisons between experimental and numerical data 
were done. For all scenarios (first vaccination in adults, booster dose in adults, pri-
movaccination in children and individuals using immunomodulatory therapy, and 
dose-response), regardless of the units, data from several individuals exist at different 
post-vaccination time intervals. For the same day there are one or more individuals and 
the values found may vary due to differences in immune responses that can be caused by 
numerous factors such as medication use, genetic inheritance, habits and many others.

Experimental data were already been grouped by post-vaccination time interval and 
this division was kept. For each group there are individuals spread over the entire 
time-interval range, which makes it difficult to identify trends in data sets. For this 
reason, it was decided to present data in a box diagram format (boxplot), thus facili-
tating a summary view of data for each of the intervals. To each boxplot it has been 
added the geometric mean of the antibody titers (GMT), defined as the nth root of 
the product of n terms and calculated using the formula presented in Eq. (14):

To compare experimental and numerical data, not only the geometric mean of the anti-
body titers were computed for experimental data, but it was also necessary to compute it 
for the numerical results. This was done as follows. For the same days where experimen-
tal antibody titers exist, the numerical results were estimated. Then we computed the 
GMT of the numerical values found for these days. For example, suppose that a given 
group (30–45 days) has five individuals with antibody titers obtained on days 32, 35, 41, 
43, and 45. The geometric mean was computed using the levels of antibodies estimated 
by the model in those same days.
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Appendix
Initial condition and parameters tables

See Tables 11 and 12.

Table 11 Model variables and their initial values

Variable Description Initial value Unit

V Vaccine virus 724 copies/mL

Ap Immature APCs 106 cells/mL

Apm Mature APCs 0 cells/mL

Thn Naïve CD4+ T cells 106 cells/mL

The Effector CD4+ T cells 0 cells/mL

Tkn Naïve CD8+ T cells 5x 105 cells/mL

Tke Effector CD8+ T cells 0 cells/mL

B B cells 2.5× 105 cells/mL

Ps Short‑lived plasma cells 0 cells/mL

Pl Long‑lived plasma cells 0 cells/mL

Bm Memory B cells 0 cells/mL

A Antibodies 150 mIU/mL
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Table 12 Model parameters

Parameter Unit Value

πv (day−1) 6.80× 10−1

cv1 (day−1) 2.63× 100

cv2 (copies/mL) 6× 10−1

kv1 [day−1 (mIU/mL)−1] 4.82× 10−5

kv2 [day−1 (cells/mL)−1] 7.48× 10−7

αap (day−1) 2.5× 10−3

βap [day−1 (copies/mL) −1] 5.5× 10−1

cap1 (copies/mL) 8× 10−1

cap2 (copies/mL) 4× 101

δapm (day−1) 5.38× 10−1

αth (day−1) 2.17× 10−4

βth (day−1) 1× 10−7

πth (day−1) 1× 10−8

δth (day−1) 2.2× 10−1

αtk (day−1) 2.17× 10−4

βtk (day−1) 1× 10−5

πtk (day−1) 1× 10−8

δtk (day−1) 3× 10−4

αb (day−1) 6.0× 100

πb1 (day−1) 4.83× 10−6

πb2 (day−1) 1.27× 10−8

βps (day−1) 6.72× 10−4

βpl (day−1) 5.61× 10−6

βbm (day−1) 1× 10−6

δps (day−1) 2.0× 100

δpl (day−1) 2.4× 10−4

γbm (day−1) 9.75× 10−4

πbm1 (day−1) 1× 10−5

πbm2 (cells/mL) 2.5× 103

πps (day−1) 2× 10−3

πpl (day−1) 6.8× 10−4

δa (day−1) 4× 10−2
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