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Abstract

In this work we address the asymptotic behavior of regenerative sequences. For stabilized

partial sum we establish convergence in Mallows distance to a Gaussian random variable.

For the associated empirical process and the empirical quantile process we show the weak

convergence to functionals of a mean-zero Gaussian process with continuous sample paths

B̃, being B̃ a modified Brownian motion. As a by product asymptotic null distributions

are derived for the classical statistics of Kolmogorov-Smirnov and Crámer-von Mises. And,

applications include similarity tests of location-scale families for Harris Markov chain with

atom.

Keywords: Mallows Distance; Empirical Process; Regenerative Process; Invariance Princi-

ple; Goodness-of-Fit.
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Resumo

Neste trabalho abordamos o comportamento assintótico de sequências regenerativas. Para

somas parciais estabilizadas mostramos a convergência em distância Mallows para uma

variável aleatória Gaussiana. Para o processo emṕırico e o processo quantil empirico as-

sociados provamos a convergência fraca para um processo Gaussiano de média zero e com

trajetórias continuas B̃, sendo B̃ uma variante da ponte Browniana. Como subproduto

obtemos a distribuição assintótica nula para as estat́ısticas clássicas de Kolmogorov-Smirnov

e Crámer-von Mises. Além disso, propomos testes de similaridade relativo a familias de

escala-locação para cadeias de Markov Harris com átomo.

Palavras-chave: Distância Mallows; Processo Emṕırico; Processo Regenerativo; Prinćıpio

de Invariância; Qualidade de Ajuste.
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Introduction

Regenerative processes have acquired a major importance in applied probability studies.

From its original formulation by Doeblin (1938), it has grown to play a central role in ap-

plied fields as varied as queueing theory, telecommunications, finance, production, inventory,

biology, computer science and physics, all of which use models that sometimes rely on re-

generative structures for their analysis. For regenerative sequences and their applications we

refer the reader to Asmussen (2003), Haas (2002), Sigman and Wolff (1993), Smith (1955,

1958) and references therein.

The essence of regeneration is that the evolution of the process between any two successive

regeneration times is an independent probabilistic replica of the process in any other “cycle”.

Thus, under mild regularity conditions, the time-average limits, the existence of a limiting

distribution and others basic results about the asymptotic behavior are well-defined for a

regenerative process. More specifically, we say that a stochastic process {Xn}n≥0 is regener-

ative if there exists a sequence of random times T0 < T1 < T2 < ... at which the process can

be split into i.i.d. “cycles”

η0 = {Xn, 0 ≤ n < T1} , η1 = {Xn, T1 ≤ n < T2} , η2 = {Xn, T2 ≤ n < T3} ....

Irreducible, aperiodic and positive recurrent Markov chains with countable state space con-

stitute a basic example of a regenerative process with {Tn}n≥0 being the times of successive

returns to a given state. Chains with general state space also exhibit regenerative struc-

tures when Harris recurrent chains with atom are considered. In the Markov chain setting,

regenerative analysis has simplified many complicated analytical arguments associated with
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the limit theory of such processes. Significant results that detail the connection between

regeneration and Markov chains can be found in the works by Athreya and Ney (1978) and

Nummelin (1978). For a systematic study of the splitting technique and regeneration phe-

nomena in the theory of Harris Markov processes, the reader is refered to two excellent books

written by Nummelin (1984) and Meyn and Tweedie (1993).

Aiming at Goodness-of-Fit type statistics for Markov chains with general state space and

that possess limiting distribution with a continuous and strictly positive density function

we first develop some asymptotic results for regenerative processes. A key element to be

considered is the concept of the associated canonical(or occupational) probability measure

π̃. As pointed out in Athreya and Lahiri (2006) the expected time that the regenerative

sequence {Xn}n≥0 spends in A over the expected inter-regeneration time provides,

π̃(A) =
1

µT
E

{
T2−1∑
j=T1

IA(Xj)

}
, µT = E {T2 − T1} . (1)

In fact, if ϕ is a measurable function then, under mild conditions, the strong law of large

numbers (SLLN) holds and the “time average”
∑n

j=0 ϕ(Xj)/n converges almost surely (a.s.)

to the “space average”
∫
ϕdπ̃. Indeed, the canonical measure determines the limiting dis-

tribution of the process. And, from the Markov chains point of view, the Kac’s Theorem

will allow us to identify the canonical measure π̃ with the limiting measure of Harris recur-

rent chain that possesses an atom (see Bertail and Clémençon (2006) or Meyn and Tweedie

(1993)). Mixing conditions and geometrically ergodic chains will also play a role in this

matter (Dehling et al. (2009) and Shao and Yu (1996)).

Thus, to study the asymptotic properties of the process one needs to analyse the partial sum

Sn =
n∑
j=0

ϕ(Xn). Our approach will rely on the dissection formula used by Chung (1967)

to achieve Central Limit Theorem (CLT) for aperiodic, irreducible and positive recurrent

Markov chains,

Sn = An +
Nn−1∑
k=1

Yk +Bn, (2)

2



where Nn is conveniently chosen,

An =

T1−1∑
j=0

ϕ(Xj), Yk =

Tk+1−1∑
j=Tk

ϕ(Xj) and Bn =
n∑

TNn

ϕ(Xj).

Based on the dissection formula we prove a version of CLT for aperiodic and positive recurrent

regenerative sequence (Theorem 2.3.2). As compared to similar results such as CLT from

Glynn and Whitt (1993) our hypotheses are somehow weaker. Also, in Chapter 2 induced

by the successfull use of Mallows distance to derive CLT type results for stable laws (see,

e.g., Johnson and Samworth (2005) or Dorea and Oliveira (2014)) as well as to characterize

domains of attraction for extreme values (Mousavinasr et al. (2020)) we will introduce

Mallows distance in our work.

Mallows distance dr(F,G) measures the discrepancy between two distribution functions F

and G. For r > 0 define

dr(F,G) = inf
(X,Y )

{E(|X − Y |)r}1/r , X d
= F, Y

d
= G.

where the infimum is taken over all random vectors (X, Y ) with marginal distributions F

and G (
d
=: equality in distribution). Convergence in Mallows distance is closely related to

convergence in distribution (
d−→). From Bickel and Freedman (1981) : for distributions with

finite r-th moments and for r ≥ 1,

dr(Fn, G)→ 0⇐⇒ Fn
d−→ G and

∫
|x|rdFn(x)→

∫
|x|rdG(x).

Via Mallows distance, we will present several variants of the CLT for regenerative sequences.

Some related results concerning strong approximation and their rates of convergence are also

included in the last section of Chapter 2.

Next, consider the canonical distribution function

F̃ (x) =
1

µT
E

(
T2−1∑
j=T1

I(−∞,x](Xj)

)
(3)
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and the associated empirical process and the empirical quantile process

βn(x) =
√
n(Fn(x)− F̃ (x)), x ∈ R, (4)

qn(t) =
√
n(F−1n (t)− F̃−1(t)), t ∈ (0, 1). (5)

Where Fn is the empirical distribution function

Fn(x) =
1

n

n∑
j=1

I(−∞,x](Xj) , x ∈ R, n ≥ 1,

F−1n and F̃−1 are the generalized inverse of Fn and F̃ , respectively.

Note that from the above results we have for r ≥ 1,

dr

(√
n(Fn(x)−

√
nµ)

σ
, Z

)
→ 0

where the constants µ and σ are conveniently chosen. Interpret above as the Mallows distance

between the corresponding distributions with Z having N(0, 1) distribution. For the i.i.d.

case Donsker’s Theorem (cf. Billingsley (1968)) states that the empirical process βn converges

weakly (⇒) to a Brownian bridge process B. The dependent case is far more complex, see,

for example, the works of Berkes and Philipp (1977, 1978), Doukhan et al. (1995), Borovkova

et al. (2001), Dedecker and Prieurd (2007), Shao and Yu (1996) and Dehling et al. (2009).

In our case, under regularity conditions, we will show that the empirical process βn converges

weakly to a zero-mean and continuous sample paths Gaussian process B̃F̃ with covariance

function given by

E(B̃F̃ (x), B̃F̃ (y)) = F̃ (x ∧ y)− F̃ (x)F̃ (y)

+
∞∑
j=1

E
{
I(−∞,x](X0)− F̃ (x), I(−∞,y](Xj)− F̃ (y)

}
+

∞∑
j=1

E
{
I(−∞,y](X0)− F̃ (y), I(−∞,x](Xj)− F̃ (x)

}
. (6)

Unlikely as in the i.i.d. case, the well-known Delta Method cannot be used directly to show

the weak convergence of the empirical quantile process qn. Different set of arguments such

as the Skorokhod Theorem and properties of locally uniformly aproximation of monotone
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functions were needed to establish the desired convergence

qn(·)⇒ − B̃(·)
f̃(F̃−1(·))

.

As by product of these weak convergences, for the statistics

Dn =
√
n
∥∥∥Fn − F̃∥∥∥

∞
(Kolmogorov-Smirnov)

W 2
n = n

∫ ∞
−∞

(Fn(x)− F̃ (x))2dF̃ (x) (Cramér-von Mises)

we obtain the asymptotic null distributions

Dn
d−→
∥∥∥B̃F̃

∥∥∥
∞

and W 2
n

d−→
∫ 1

0

B̃F̃ (t)2dt.

On the other hand, del Barrio et al. (1990,2000) proposed a set of similarity tests of location-

scale families based on the empirical distribution and the 2nd-order Mallows distance. We

extend its use for our regenerative settings by considering the statistics

√
nd2(Fn, F̃ ) =

(
n

∫ 1

0

(F−1n (t)− F̃−1(t))2dt
)1/2

and

Rn = 1−

(∫ 1

0

F−1n (t)G−1(t)dt

)2

σ̂2
n

.

The latter tests whether F̃ ∈ GG and G is a standard member of the location-scale family

GG.

We will provide conditions that guarantee the convergences

√
nd2(Fn, F̃ )

d−→

(∫ 1

0

B̃2
F̃

(t)

f̃ 2(F̃−1(t))
dt

)1/2

(7)

and the convergence in distribution of the statistics nRn to∫ 1

0

B̃2
F̃

(t)

f̃ 2(F̃−1(t))
dt−

(∫ 1

0

B̃F̃ (t)

f̃(F̃−1(t))
dt

)2

−

(∫ 1

0

B̃F̃ (t)F̃−1(t)

f̃(F̃−1(t))
dt

)2

. (8)

After this brief description of our objectives, motivations and tools used, we now detail how

this work is organized. A better characterization of each chapter will be provided in the

introduction of each one.
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In Chapter 1, we present preliminary concepts and results that are fundamental for the

understanding of the subsequent chapters. It includes some details on Markov chains, renewal

theory, Mallows distance, moment inequalities, uniform integrability, empirical processes and

weak convergence.

In Chapter 2 we will focus on the convergence of the partial sum Sn =
∑n

j=1 ϕ(Xj) to a

Gaussian random variable. First, we present some basic concepts concerning regenerative

processes and explore the role of the canonical measure π̃. Illustrative examples and results

such as the existence of a limiting distribution, conditions for SLLN to hold as well as

Glivenko-Cantelli type theorem are gathered in Section 2.2. Our Theorem 2.3.2 provides a

variant of the CLT for regenerative sequences and in 2.3.1 our hypotheses are compared to

known conditions for CLT to hold. Theorem 2.4.6, under r-th moment conditions on blocks

nj’s, we obtain convergence in Mallows distance and moments convergence for
Sn − an
bn

to a

standard normal random variable. In Section 2.5 we discuss the approximation of the partial

sum Sn by a Brownian motion with rate of convergence O(log n).

In Chapter 3 we establish the weak convergence in the Skorokhod space D for the empirical

and empirical quantile processes. Basic assumptions include aperiodicity and positive recur-

rency of the regenerative sequence. Theorem 2.3.2 and qn(t)
d−→ − B̃(t)

f̃(F̃−1(t))
lead to the

convergence of finite dimensional distributions of the process βn(·) and qn(·). Our Theorem

3.3.5 shows that the empirical process βn(x) converges weakly to the zero-mean Gaussian

process B̃F̃ . For its proof Shao and Yu’s tightness criterion (1996) and α-mixing properties

of the sequence {Xn}n≥0 are used. Our Theorems 3.4.4 and 3.4.5 establish the weak conver-

gence of the uniform quantile process and of the process qn(·), respectively. For its proof our

approach makes use of the Skorokhod’s Representation Theorem and properties of locally

uniformly aproximation of monotone functions.

Finally, in Chapter 4, we study the asymptotic null distribution for statistics associated to a
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regenerative sample. In Section 4.3, our Lemma 4.3.2 provides sufficient conditions to obtain

the asymptotic null distribution for the classic statistics of Kolmogorov-Smirnov Dn and

Cramér-von Mises W 2
n . In Section 4.4 we use the 2nd-order Mallows distance between the

empirical distribution and the canonical measure F̃ to study the statistics
√
nd2(Fn, F̃ ) and

Rn defined by (4.2) and (4.4), respectively. The Lemma 4.4.2 provides sufficient conditions

to obtain the convergence (4.3) and Lemma 4.4.3 establishes the limiting distribution of the

statistics nRn under the null hypothesis that the canonical measure F̃ belongs to the tested

location-scale family. The results derived in this chapter are directly related to the weak

convergence of the empirical and quantile process associated to Xn. Since any Harris chains

{Xn}n≥1 on a general state space that possess an atom A is a regenerative process with

limiting distribution Flim, by Kac’s Theorem we have Flim = F̃ where F̃ is the canonical

distribution given by

F̃ (x) =
1

EA(TA)
EA

{
TA−1∑
j=0

I(−∞,x](Xj)

}
, x ∈ R,

where TA = inf {n ≥ 1, Xn ∈ A} the hitting time on A. So, our invariance principle is

valid for Harris Markov chains and then we can use the statistics described above to test

H0 : F̃ = F0 or F̃ ∈ GG. On the other hand, in Subsection 3.2.1, we established that the

empirical process associated with a L-geometrically ergodic Markov chain {Xn}n≥0 under

some assumptions on the Markov transition function satisfies the invariance principle of

Theorem 3.2.2. Thus, as stated in 4.3.1 the proposed statistics are applicable to a class of

Markov chains that includes L-geometrically ergodic chains and positive Harris recurrent

chains with an atom.
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter we gather the necessary concepts and known results to be used in the sub-

sequent chapters. As basic references we refer the reader to Chung (1967) and Meyn and

Tweedie (1993) for Markov chains, Serfozo (2009) and Athreya and Lahiri (2006) for Re-

newal Theory, Mallows (1972), Bickel and Friedman (1981) and Dorea and Ferreira (2012) for

Mallows distance, Shorack and Wellner (1986) and Csörgő and Révész (1981) for empirical

processes and Billinsgley (1968) for weak convergence.

1.2 Some Notation and Terminology

i.i.d. : Independent and identically distributed

CLT : Central limit theorem

SLLN : Strong law of large numbers

d−→ : Convergence in distribution

d
= : Equality in distribution

p−→ : Convergence in probability

a.s. : Almost surely, with probability 1

8



a.s.−→ : Almost sure convergence

⇒ : Weak Convergence

dr(F,G) : Mallows distance of r-th order

a ∧ b : Minimum of a and b

bac : the integer part of a, i.e.,bac = k if k ≤ a < k + 1

an = o(bn) : lim
n→∞

an
bn

= 0

bn = O(bn) : lim sup
n→∞

∣∣∣∣anbn
∣∣∣∣ <∞

N(µ, σ2) : Normal distribution with mean µ and variance σ2

C[0, 1] : Space of continuous real-valued functions on [0, 1]

D[0, 1] : Space of functions on [0, 1] that are right-continuous and have left-hand limits.

σ(X) : Sigma algebra generated by X.

E(Y |F) : Conditional expectation of Y given F

P (A|F) : Probability of A given F

IA(·) or I(A) : The indicator function of a set A

1.3 Markov Chains

Classical Markov chains possess a denumerable state space S and a transition probability

matrix P = ((Pij))i∈S,j∈S. For any set A ⊂ S, the first hitting (passage or visit or return)

time to the set A of a chain {Xn}n≥0 is defined by

T1(A) = inf {n : Xn ∈ A, n ≥ 1} .

For a fixed state i ∈ S the r-th visit to state i is given by

Tr(i) = inf {n : n > Tr−1(i), Xn = i} , r ≥ 1

and

0 = T0(i) < T1(i) < T2(i) < · · ·Tr(i) < · · · .

The state i is said to be recurrent if

P (T1(i) <∞|X0 = i) = 1 or P (Xn = i for some 1 ≤ n <∞|X0 = i) = 1.

9



and is positive recurrent if E {T2(i)− T1(i)} < ∞. The chain {Xn}n≥0. is said to be

irreducible if

P (T1(j) <∞|X0 = i) > 0 or P (Xn = j for some 1 ≤ n <∞|X0 = i) > 0 ∀i ∀j.

The following result states that we can break the time evolution of a Markov chain into i.i.d.

cycles.

Theorem 1.3.1. Let ηr = {Xj, Tr(i) ≤ j < Tr+1(i);Tr+1(i)− Tr(i)} for r = 0, 1, 2, .... Let

i be a positive recurrent state. Given X0 = i, the sequence {ηr}r≥0 are i.i.d. as random

vectors with a random number of components. More precisely, for any k ∈ N,

Pi
(
ηr = (xr0 , xr1 , ..., xrjr ), Tr+1(i)− Tr(i) = jr, r = 0, 1, ..., k

)
=

k∏
r=0

Pi
(
η1 = (xr0 , xr1 , ..., xrjr ), T1(i) = jr

)
for any xr0 , xr1 , ..., xrjr , r = 0, 1, ..., k.

In the regenerative context, the visit times T0(i) < T1(i) < T2(i) < · · ·Tr(i) are the regener-

ation times and the ηr’s are the cycles or excursions.

We will be interested in Markov chains with general state space. Let (S,G) be a measurable

space and let {Xn}n≥0 be a stochastic process taking values on S and equipped with a

transition probability kernel

P = {P (x,A) : x ∈ S,A ∈} .

Where P (x, ·) is a probability measure on (S,G) for all x ∈ S, P (·, A) is an G-measurable

function for all A ∈ G and P satisfies

P ((Xn+1 ∈ A)|X0, X1, ..., Xn) = P ((Xn+1 ∈ A)|Xn) a.s. for all n ≥ 0

and for any initial distribution of X0. It follows that for A0, A1, ..., An ∈ G and any initial

µ0(A) = P (X0 ∈ A0) we can write

P (X0 ∈ A0, X1 ∈ A1, ..., Xn ∈ An) =

∫
A0

µ0(dx0)

∫
A1

P (x0, dx1) · · ·
∫
An

P (xn−1, dxn).
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The concepts of irreducibility, recurrence or aperiodicity can all be carried out to general

state space by making use of an auxiliary measure φ. In the case of discrete space S, the

measure φ is just the counting measure on S. The following notation will be used : Px(·) for

the probability of chain started at x; and Pµ(·) for the chain with initial distribution µ.

Definition 1.3.1. Let φ be a non-zero σ-finite measure on (S,G).

(i) The Markov chain {Xn}n≥0 (or equivalently, its transition function P (·, ·)) is said to

be φ-irreducible (or irreducible in the sense of Harris with respect to measure φ) if for

any A ∈ G and all x ∈ S we have

φ(A) > 0⇒ Px(T1(A) <∞) > 0.

(ii) The Markov chain {Xn}n≥0 that is Harris irreducible with respect to φ is said to be

Harris recurrent if for all x ∈ S we have

A ∈ G, φ(A) > 0⇒ Px(T1(A) <∞) = 1.

(iii) The set A ∈ G is an atom if there exists a probability measure ν such that P (x,B) =

ν(B), x ∈ A and A ∈ G. The set A is an accessible atom for a φ−irreducible Markov

chain if φ(A) > 0 and for all x ∈ S and y ∈ S we have P (x, ·) = P (y, ·).

Remark 1.3.1. If a chain has an accessible atom then the times at which the chain enters

the atom are regeneration times.

For A ∈ G define the successive return times to A by

Tk(A) = inf {n : n ≥ Tk−1(A), Xn ∈ A} , k ≥ 2.

When the chain is Harris recurrent then, for any initial distribution, the probability of

returning infinitely often to the atom A is equal to one. By the strong Markov property it

follows that, for any initial distribution µ, the sample paths of the chain can be divided into
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i.i.d. blocks of random length corresponding to consecutive visits to A. The cycles can be

defined by

η1 = (XT1(A), XT1(A)+1, ..., XT2(A)−1), ..., ηk = (XTk(A), XTk(A)+1, ..., XTk+1(A)−1).

The previous remark is a consequence of the following result.

Theorem 1.3.2 (Athreya and Lahiri (2006); Theorem 14.2.9). Let {Xn}n≥0 be a Harris

Markov chain with transition function P (·, ·) and state space (S,G), where G is countably

generated and. Then there exists a set A0 ∈ G, a constant 0 < α < 1 and a probability

measure ν(·) on (S,G) such that for all x ∈ A0,

P (x,A) ≥ αν(A), ∀A ∈ G, (1.1)

and for all x ∈ S,

Px(T1(A0) <∞) = 1.

Besides, for any initial distribution µ, there exists a sequence of random times {Ti}i≥1 such

that under Pµ, the sequence of excursions ηj ≡
{
XTj+r

, 0 ≤ r < Tj+1 − Tj, Tj+1 − Tj
}
j≥1 are

i.i.d. with XTj
d
= ν(·).

1.4 Renewal Processes

The results that we will present in this section are important tools for characterizing the

limiting behavior of probabilities and expectations of regenerative processes. Basic references

are Athreya and Lahiri (2006) and Serfozo (2009).

Suppose 0 = T0 < T1 < T2 < .... are finite random times at which a certain event occurs.

The number of the times Tn in the interval (0, t] is given by

N(t) =
∞∑
n=1

I{Tn≤t} t ≥ 0, N(0) ≡ 0.

Definition 1.4.1. A point process N(t) is a renewal process if the inter-occurrence times

τn = Tn − Tn−1, for n ≥ 1, are independent with a common distribution F and τ0 = 0. The

Tn’s are called renewal times, referring to the independent or renewed stochastic information
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at these times. The τn are the inter-renewal times, and N(t) is the number of renewals in

(0, t].

Note that

Tn = τ1 + τ2 + · · ·+ τn, n ≥ 1.

Also note that for each t ≥ 0 and n = 0, 1, 2, ....

{N(t) = n} = {Tn ≤ t, Tn+1 > t} = {Tn ≤ t < Tn+1.} (1.2)

These equations state, loosely speaking, that t → N(t) is the inverse function of n → Tn,

and suggest that classical results on {Tn}n≥0 could be converted to results on {N(t)}t≥0.

Theorem 1.4.1 (Renewal Theorem). Let µT = E {T2 − T1} be the mean of the inter-renewal

distribution. Then

lim
t→∞

N(t)

t
a.s.
=

1

µT
. (1.3)

lim
t→∞

E {N(t)}
t

=
1

µT
. (1.4)

We are interest in discrete renewal process. So, let {τj}j≥0 be independent positive integer

valued random variables such that {τj}j≥1 are i.i.d. with distribution {pj}j≥1. Let T0 = 0,

Tn =
∑n

j=0 τj, n ≥ 0 and

un = P (there is a renewal at time n) = P (Tk = n for some k ≥ 0).

Theorem 1.4.2. [Lindvall (1992); Theorem 1.4.2] Let g.c.d. {k : pk > 0} = 1 and µ =∑∞
j=1 jpj ∈ (0,∞). Then

i) un −→
1

µ
as n→∞.

ii) If 0 <
∑∞

j=1 j
kpj <∞ some k > 1 then |un − µ−1| = o(n−(k−1)).

Consider the discrete renewal equation

an = bn +
n∑
j=1

an−jpj, n = 0, 1, 2, ... (1.5)

In the general case, it can be shown that the unique solution to (1.5) is given by

an =
n∑
j=0

bn−juj.
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Theorem 1.4.3 (Discrete Renewal Equation). Let {bj}j≥0 be a such that
∑∞

j=1 |bj| < ∞.

Let {an}n≥0 with a0 = b0 and

an = bn +
∞∑
j=1

an−jpj, n ≥ 1.

If 0 < µ =
∑∞

j=1 jpj <∞ and assume the g.c.d. {k : pk > 0} = 1. Then

an =
∞∑
j=0

bjun−j, n ≥ 0 and lim
n→∞

an =
1

µ

∞∑
j=0

bj.

For a renewal process Nn, the following processes provide more information about renewal

times.

Definition 1.4.2. i) An = t−TNn, the backward recurrence time at n (or the age), which

is the time since the last renewal prior to n.

ii) Bn = TNn+1−n, the forward recurrence time at n (or the residual renewal time), which

is the time to the next renewal after n.

Then

lim
n→∞

P {An ≤ k} = lim
n→∞

P {Bn ≤ k} =
1

µT

k∑
j=0

P (τ1 > j) (1.6)

(cf. Example 48 - Chapter 2 from Serfozo (2009)).

1.5 Mallows distance

The Mallows distance (1972) between two distributions functions F and G generalizes the

“Wasserstein distance” appeared for the first time in 1970 (case r = 1). Thus, in the litera-

ture, the name distance of Wasserstein has also been used instead of Mallows.

Definition 1.5.1. For r > 0, the Mallows r-distance between distributions F and G is given

by

dr(F,G) = inf
(X,Y )

{E(|X − Y |)r}1/r , X d
= F, Y

d
= G. (1.7)

where the infimum is taken over all random vectors (X, Y ) with marginal distributions F

and G, respectively.
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For r ≥ 1 the Mallows distance represents a metric on the space of distribution functions

Lr =

{
F :

∫
R
|x|rdF (x) <∞

}
.

The following metric relationships are valid

dr(F,G) ≤ dr(F, F0) + dr(F0, G), (1.8)

where F0 is a distribution function.

There is a close connection between convergence in Mallows distance convergence and the

convergence in distribution.

Theorem 1.5.1 (Bickel and Freedman (1981)). For r ≥ 1 and for distributions G ∈ Lr and

{Fn}n≥1 ⊂ Lr we have, as n→∞

dr(Fn, G)→ 0⇐⇒ Fn
d−→ G and

∫
|x|rdFn(x)→

∫
|x|rdG(x). (1.9)

Theorem 1.5.2 ( Dorea and Ferreira (2012)). Let r ≥ 1, X∗
d
= F , Y ∗

d
= G and (X∗, Y ∗)

d
=

H, where H(x, y) = F (x) ∧ G(y) = min {F (x), G(y)}. Then the following representation

holds

drr(F,G) = E {|F−1(U)−G−1(U)|r} =

∫ 1

0

|F−1(u)−G−1(u)|rdu

= E {|X∗ − Y ∗|r} =

∫
R2

|x− y|rdH(x, y)

where U is uniformly distributed on the interval (0, 1) and 0 < u < 1.

Theorem 1.5.3 (Johnson and Samworth (2005)). Let X,X1, X2, ..., i.i.d. random variables.

Assume var(X) > 0 and for some r ≥ 2 we have dr(X,Z) < ∞ where Z has normal

distribution with mean 0. Then as n −→∞

dr

(
X1 +X2 + · · ·+Xn√

nvar(X)
, Z0

)
−→ 0, (1.10)

where Z0
d
= N(0, 1).
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1.6 Moment Inequalities, Mixing and Uniform Inte-

grability

We gather below some known moment inequalities. They can be found in the books of

Billinsley (1968), Gut (2005), Hall and Heyde (1960). For easier referencing purpose we

have stated the inequalities as Lemmas and Theorems.

Lemma 1.6.1. a) Let Y1, Y2, ....Yn random variables. Then

E

{∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p}

≤
n∑
i=1

E {|Yi|p} if 0 < p ≤ 1. (1.11)

E

{∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p}

≤ np−1
n∑
i=1

E {|Yi|p} if p ≥ 1. (1.12)

b) Let {
∑n

i=1 Yi,Fn}n≥1 be a martingale. Then there exists a constant cp such that

E

{∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p}
≤ cpE


(

n∑
i=1

Y 2
i

)p/2
 if p > 1. (1.13)

If p > 1 and
1

p
+

1

q
= 1 we have

(
E

{∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p})1/p

≤

(
E

{
max

1≤m≤n

∣∣∣∣∣
m∑
i=1

Yi

∣∣∣∣∣
p})1/p

≤ q

(
E

{∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p})1/p

. (1.14)

Rosenthal (1970) proved the following inequality which is a extension of the classical con-

vexity inequity:

E

{∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p}
≤ σpnp/2 if 1 ≤ p ≤ 2.

Lemma 1.6.2 (Rosenthal(1970) ). Let Y1, Y2, ....Yn i.i.d. random variables with E(Yi) =

0, σ2 = E(Y 2
i ), then exists a constant cp such that

E

{∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p}
≤ cp

{
σpnp/2 + E|Y1|pn

}
if p > 2. (1.15)

Let (Ω,F , P ) be a probability space and F1 and F2 be two σ-algebras contained in F .

Define the following measures of dependence between F1 and F2:

α(F1,F2) = sup
A∈F1,B∈F2

|P (A ∩B)− P (A)P (B)|.
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Let {Xn}n≥1 be a sequence of real-valued random variables on (Ω,F , P ) and let Fmn =

σ(Xi, n ≤ i ≤ m) be σ-algebras generated by the indicated random variables and put

α(n) = sup
k≥1

α(Fk1 ,F∞n+k).

Definition 1.6.1. The sequence {Xn}n≥1 is said to be α−mixing (or strong mixing), if

α(n)→∞ as n→∞.

The following result is a Rosenthal-type inequality for α−mixing.

Theorem 1.6.3. [Shao and Yu (1996), Theorem 4.1] Let 2 < p < r ≤ ∞, 2 < v ≤ r

and {Xn} be and α-mixing sequence of random variables with E {Xn} = 0 and ‖Xn‖r :=

(E|Xn|r)1/r <∞. Assume that

α(n) = O(n−θ), for some θ > 0.

If θ > v/(v−2) and θ ≥ (p−1)r/(r−p) then for any ε > 0 there exists K = K(ε, r, p, v, θ, α)

such that

E {|Sn|p} ≤ K

(
np/2 max

i≤n
‖Xi‖pv + n1+ε max

i≤n
‖Xi‖pr

)
. (1.16)

Now, let Sn =
n∑
j=1

Yj where {Yj}j≥1 is an i.i.d. sequence of random variables and let N be a

stopping time, we will need estimates of the moments of SN in terms of moments of N and

Yj. For this we recall the definition of stopping time.

Definition 1.6.2. A positive integer valued random variable N is called a stopping time

with respect to {Yj}j≥1 if for every j ≥ 1, the event {N = j} ∈ σ(Y1, ..., Yj).

Theorem 1.6.4. Suppose that E|Yk|p for some r ≥ 0 and that EYk = 0 when p ≥ 1. Then

for a stopping time N we have

i) E|SN |p ≤ E|Y1|p · EN for 0 < p ≤ 1.

ii) E|SN |p ≤ cpE|Y1|p · EN for 1 ≤ p ≤ 2.

iii) E|SN |p ≤ cp({E(Y 2
1 )}p/2 ·E

{
Np/2

}
+E|Y1|r ·EN) ≤ 2cp ·E|Y1|p ·E

{
Np/2

}
for p ≥ 2,
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where cp is a numerical constant depending on p only.

In Chapter 2 we will need to establish moment convergence. Convergence in distribution by

itself simply cannot ensure convergence of any moments. An extra condition that ensures

convergence of appropriate moments is the uniform integrability.

Definition 1.6.3. A sequence of random variables {Yn}n≥1 is said to be uniformly integrable

if

lim
α→∞

sup
n

∫
(|Yn|≥α)

|Yn|dP = 0.

Theorem 1.6.5. Suppose Yn
d−→ Y . If

{
|Yn|k, n ≥ 1

}
is uniformly integrable, then

E {|Yn|r} −→ E {|Y |r} for every 0 < r ≤ k.

Theorem 1.6.6. Let Y1, Y2, ..., X1, X2, ... be random variables.

i) If |Yn| ≤ X a.s. for all n, where X is a positive integrable random variable. Then

{Yn}n≥1 is uniformly integrable.

ii) Let |Yn| ≤ Xn a.s. for all n, where X1, X2, ... are positive integrable random variable. If

{Xn}n≥1 is uniformly integrable, then so is {Yn}n≥1 .

iii) If {Xn}n≥1 and {Yn}n≥1 are uniformly integrable, then so is {Yn +Xn}n≥1 .

1.7 Empirical Processes

Now we will present some definitions and basic results on empirical processes. For references

on this section see for example, Csörgő and Révész (1981) or Shorack and Wellner (1986).

Definition 1.7.1. Let X1, X2, ...., Xn be random variables. The empirical distribution func-

tion associated with X1, X2, ...., Xn is defined as

Fn(x, ω) =

∑n
j=1 I{Xj≤x}

n
, x ∈ R, (1.17)

where IA is the indicator of event A.
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Definition 1.7.2. The empirical process associated with X1, X2, ...., Xn with distribution

function F is defined as

βn(x) =
√
n(Fn(x)− F (x)), x ∈ R, (1.18)

and the uniform empirical processes is given by

un(t) =
√
n(Un(x)− t), 0 ≤ t ≤ 1,

where Un(t) is the uniform empirical distribution.

Note that if F is a continuous function then

βn(x) = un(F (x)).

For every fixed x ∈ R, E(Fn(x)) = F (x) and V arFn(x) = n−1F (x)(1 − F (x)), because

nFn(x) is binomial (n, p = F (x)) random variable. Hence, by the classical law of large

numbers, we get

Fn(x)
a.s.−→ F (x) as n→∞.

On the other hand, viewing {Fn(x) : x ∈ R, n = 1, 2, 3, ...} as a stochastic process in x and

n, its sample functions in x are distributions functions and we have

Theorem 1.7.1. [Glivenko- Cantelli Theorem]

sup
x∈R
|Fn(x)− F (x)| a.s.−→ 0 as n→∞.

and also, we have the CLT for empirical processes:

Theorem 1.7.2. Let x ∈ R such that 0 < F (x) < 1, then

βn(x)
d−→ Z(x)

d
= N(0, F (x)(1− F (x))). (1.19)

Observe that a Brownian bridge B(t) has a normal distribution N(0, t(1− t)).

Definition 1.7.3. A zero-mean Gaussian process {B(t) : 0 ≤ t ≤ 1} is called a Brownian

bridge if the covariance is given by Cov(B(t), B(s)) = min(s, t)− st. Or, equivalently,{
B(t)

d
= W (t)− tW (1) : 0 ≤ t ≤ 1

}
,

where {W (t) : t ≥ 0} is the standard Brownian motion.
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Now we will present the concept of quantile empirical process which can be considered as

the inverse of the empirical process βn(t).

Definition 1.7.4. Let X1, X2, ...., Xn be random variables with distribution function F .

Then

a) The inverse distribution function (or quantile function) of F is given by

F−1(t) = inf {x : F (x) ≥ t} , F−1(0) = F−1(0+).

b) The inverse empirical distribution function (or empirical quantile function) is given by

F−1n (t) = inf {x : Fn(x) ≥ t} , 0 ≤ t ≤ 1.

As for Fn, we associate the empirical quantile function F−1n a stochastic process.

Definition 1.7.5. The empirical quantile process associated with X1, X2, ...., Xn with distri-

bution function F is defined as

qn(t) =
√
n(F−1n (t)− F−1(t)), 0 ≤ t ≤ 1. (1.20)

and the uniform quantile processes is given by

un(t) =
√
n(U−1n (t)− t), 0 ≤ t ≤ 1,

where U−1n (t) is the uniform empirical quantile function.

Observe that for random variable X with a continuous distribution F we have that F (X)
d
=

U, where U is a uniform [0, 1] random variable and consequently, if F ′(x) exists

qn(t) =
√
n(F−1(U−1n (t))− F−1(t))

and using the mean value theorem, we can write

qn(t) =
√
n(U−1n (t)− t)

(
F−1(ξn)

)′
, for t ∧ U−1n (t) ≤ ξn ≤ t ∨ U−1n (t).

Moreover, if (F−1(t))
′
=

1

f(F−1(t))
<∞ for t ∈ (0, 1) and f = F ′, then we have

qn(t) =
un(t)

f(F−1(ξn))
.

Now, not so immediately as for empirical process βn(t) we have the following quantile CLT.
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Theorem 1.7.3. [Shorack and Wellner(1986), Proposition 1, Chapter 18 ] Let X1, X2, ...., Xn

be random variables with distribution function F with derivate in F−1(t), t ∈ (0, 1). Assume

that F ′(F−1(t)) =
1

f(F−1(t))
> 0. Then as n→∞

qn(t)
d−→ B(t)

f(F−1(t))
d
= N

(
0,

t(1− t)
f 2(F−1(t))

)
. (1.21)

To obtain a quantile CLT in the α−mixing case, we have the following Bahadur representa-

tion of sample quantiles.

Theorem 1.7.4. [Xing, Yang, Liu et al. (2012), Theorem 2.3] Let {Xn}n≥1 be an strictly

stationary and α−mixing sequence of random variables with a common distribution function

F , where F is absolutely continuous and has a continuous density function f such that

0 < f(F−1(t)) < ∞, t ∈ (0, 1). If f ′ is bounded in some neighborhood of F−1(t) and

α(n) = O(n−β) for some β > 1. Then, as n→∞,

F−1n (t) = F−1(t) +
t− F (F−1(t))

f(F−1(t))
+Rn a.s., (1.22)

where Rn = O(n−3/4 log n) is such that
√
nRn → 0.

1.8 Weak Convergence

Let S be a metric space. We will present some basic results concerning the weak convergence

of sequences of probability measures on the σ-algebra S of Borel sets in S. For references

on this section see Billinsgley (1968).

Definition 1.8.1. Let Pn and P be probability measures on (S,S) such that∫
S

fdPn −→
∫
S

fdP

for every bounded, continuous real function f on S, we say that Pn converges weakly to P

and write Pn ⇒ P .

Let {Xn} be a sequence of random elements on (S,S), we say that {Xn} converges in dis-

tribution to the random element X, and we write

Xn
d−→ X (or Xn ⇒ X),
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if the distributions Pn of the Xn converge weakly to the distribution P of X.

Suppose that h maps S into another metric space S ′, with Bore1 σ-field S ′. If h is measurable

then each probability P on (S,S) induces on (S ′,S ′) a probability Ph−1 defined as usual

by Ph−1(A) = P (h−1A). If h is continuous then Pn ⇒ P implies Pnh
−1 ⇒ Ph−1, but the

continuity of the mapping h can be a replaced by a weaker condition. Assume only that h

is measurable and let Dh be the set of its discontinuities.

Theorem 1.8.1 (Continuous Mapping Theorem). Let h : S −→ S ′ be measurable . If

Pn ⇒ P and P (Dh) = 0, then Pnh
−1 ⇒ Ph−1.

The following notion of tightness proves important both in the theory of weak convergence

and in its applications.

Definition 1.8.2. A family of probability measure P on (S,S) is tight if for each positive ε

there exists a compact set K such that P (K) > 1− ε, for all P ∈ P.

Now, let D[0, 1] be the space of functions x(t) on [0, 1] that are right-continuous and have

left-hand limits.

The following theorem establishes sufficient conditions for weak convergence in D[0, 1].

Theorem 1.8.2. Let Pn, P be probability measures on D[0, 1]. If the finite-dimensional

distributions of Pn converge weakly to finite-dimensional distributions of P , and if {Pn} is

tight, then Pn ⇒ P .

The following theorem establishes sufficient conditions for the tightness of a sequence Xn.

It is a version of Theorem 15.5, Billinsgley (1968).

Theorem 1.8.3. Let X1, X2, .... be a random variables in D[0, 1]. The sequence {Xn}n≥1 is

tight if and only if these two conditions hold:

1. For each positive η, there exists an a ∈ R such that for each n ≥ 1

P {|Xn(t)| > a} ≤ η, for every t ∈ [0, 1].
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2. For each positive ε and η, there exist a δ, with 0 < δ < 1, and an integer n0 such that

P

{
sup

t<s<t+δ
|Xn(s)−Xn(t)| ≥ ε

}
≤ δη, n ≥ n0.

The following result is one of the main tools to prove the convergence of finite-dimensional

distributions of a stochastic process.

Theorem 1.8.4 (Cramer-Wold). Let Xn = (Xn1, Xn2, ..., Xnk) and X = (X1, X2, ..., Xk) be

random vectors of dimension k. Then

Xn
d−→ X

if and only if:
k∑
j=1

tjXnj
d−→

k∑
j=1

tjXj

for each (t1, ..., tk) ∈ Rk,that is, if every fixed linear combination of the coordinates of Xn

converges in distribution to the correspondent linear combination of coordinates of X.

In order to obtain the weak convergence of the empirical quantile process, object of study

of the second section of chapter 3, we will present some important results and definitions.

Definition 1.8.3. Suppose E is a set and {fn}n≥1 is a sequence of real-valued functions on

it. We say the sequence {fn}n≥1 is uniformly convergent on E for f if

sup
x∈E
|fn(x)− f(x)| −→ 0 as n→∞. (1.23)

For functions defined on R, the sequence {fn}n≥1 is said to be locally uniformly convergent

if (1.23) holds for any compact interval.

Remark 1.8.1. If xn(t)
n→∞−→ x(t) in the Skorohod topology and x(t) is a continuous func-

tion(defined on a compact set), then xn(t)
n→∞−→ x(t)(locally) uniformly.

In mathematics and statistics, Skorokhod’s representation theorem is a result that shows

that a weakly convergent sequence of probability measures whose limit measure is sufficiently

well-behaved can be represented as the distribution of a pointwise convergent sequence of

random variables defined on a common probability space.
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Theorem 1.8.5 (Skorokhod’s representation theorem). Let S be a separable space. Suppose

that {Xn}n≥1 is a sequence of random elements on (S,S) such that Xn
d−→ X. Then there is

a probability space (Ω,F , P ) on which are defined S-valued random variables X ′n, n = 1, 2, ...

and X ′ with same distributions of Xn and X respectively, such that X ′n
a.s.−→ X ′.

In addition, we will present a lemma which together with Skorokhod’s representation theorem

and with the relation explained in Remark 1.8.1, allows us to obtain the weak convergence

of the empirical quantile process. This lemma is an adaptation of Vervaat’s Lemma (1972).

For more details and their demonstration, see (Resnick, 2007) and (Vervaat, 1971).

Lemma 1.8.6. Suppose for any n, xn(t) ∈ D[0, 1] is a non-decreasing function and x0(t) ∈

C[0, 1]. If cn →∞ and

cn(xn(t)− t) n→∞−→ x0(t) (1.24)

locally uniformly, then

cn(x−1n (t)− t) n→∞−→ −x0(t) (1.25)

locally uniformly.
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Chapter 2

Asymptotics for Regenerative

Sequences.

2.1 Introduction

In this chapter we study the asymptotic behavior of a regenerative sequence {Xn}n≥0 on

(S,G) and with regeneration times {Tn}n≥0 . More precisely, we consider a partial sum

Sn =
n∑
j=1

ϕ(Xj) with ϕ : S → R be a measurable function and then we obtain convergence

in distribution, convergence in moments and convergence in Mallows distance. We also

present the approximation of the partial sum Sn by a Brownian motion {W (t) : t ≥ 0} and

show that this can be carried out at rate of convergence O(log n).

As mentioned before, the Mallows distance measures the discrepancy between two distribu-

tion functions and has been successfully used to derive Central Limit Theorem type results

(see, e.g., Johnson and Samworth (2005) or Dorea and Oliveira (2014)). In this sense, we

establish conditions to obtain convergence in Mallows distance of order r and convergence of

the moments of order r ≥ 2 for regenerative process. It is worth pointing out we will apply

in the next chapter of our work the results obtained in Chapter 2 to analyze the asymptotic

behavior of the empirical process associated with a regenerative sequence.
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In Section 2.2 we present some basic results for regenerative process. First, we define the

concept of regenerative sequences and provide some illustrative examples. Next, in Theorem

2.2.3 we state sufficient conditions for the SLLN to hold, for the existence of a limiting

distribution and for the Glivenko-Cantelli type results. In Section 2.3 we provide a variant of

the CLT for regenerative sequences, Theorem 2.3.2, and in 2.3.1 we show that our hypotheses

are weaker than those used by Glynn and Whitt (1993). We will use the dissection formula

proposed in Chung (1967)

Sn = An +
Nn−1∑
k=1

Yk +Bn, (2.1)

where Nn is conveniently chosen,

An =

T1−1∑
j=0

ϕ(Xj), Yk =

Tk+1−1∑
j=Tk

ϕ(Xj) and Bn =
n∑

TNn

ϕ(Xj).

and using renewal theory we show that An and Bn in (2.1) are negligible. The use of a CLT

for randomized sums of i.i.d. variables allow us to obtain the asymptotic normality of the

central term in (2.1). With the control of the tail parts our Theorem 2.3.2 shows that there

are constants an and bn > 0 such that
Sn − an
bn

converges in distribution to Gaussian variable

under second moment conditions on blocks nj’s. Special cases of this result are CLT’s for

renewal and Markovian processes.

In Section 2.4 we prove convergence in Mallows distance of order r ≥ 2 for the partial

sum Sn. Under regularity conditions we prove that An and Bn are negligible and then we

study the convergence of the central term in (2.1). In this sense, our Theorem 2.4.2 shows

that

∑n
k=1 Yk
bn

converges in Mallows distance and moments of order r to a standard normal

variable Z0 under the condition dr(Yk, Z) < ∞ for some k and a normal variable Z. Next,

our Theorem 2.4.3 generalizes Theorem 2.4.2 taking the random variable Nn instead of n.

This result is important because it establishes conditions under which randomly indexed

partial sums preserve convergence in Mallows distance. Finally, as a consequence of these

result our Theorem 2.4.6 provides sufficient conditions for convergence in Mallows distance

and moments of order r of
Sn − an
bn

to standard normal variable Z0.
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In the last section, we study the approximating of the partial sum Sn by a Brownian motion

with rate O(log n). In Theorem 2.5.1 we obtain a version for regenerative sequences of KMT

( Komlós, Major and Tusnády) strong approximation obtained in the paper “Strong approx-

imation for additive functionals of geometrically ergodic Markov chains” by Merlevede and

Rio (2015). This adaptation was possible because the authors used regenerative methods.

2.2 Regenerative Sequences

For references on this subsection see Athreya and Lahiri (2006), Asmuseen (2003) or Serfozo

(2009).

A sequence of random variables is regenerative if it probabilistically restarts itself at ran-

dom times and thus can be broken up into i.i.d. pieces. Below is the formal definition of

regenerative sequences.

Definition 2.2.1. Let (Ω,F , P ) be a probability space and (S,G) be a measurable space. A

sequence of random variables {Xn}n≥0 defined on (Ω,F , P ) with values in (S,G) is called

regenerative if there exists a sequence of random times 0 = T0 < T1 < T2 < T3 < · · · such

that the “cycles ” or “excursions”

η0 = (X0, X1, X2, ...., XT1−1, T1 − T0)

η1 = (XT1 , XT1+1, ...., XT2−1, T2 − T1)

� �

� �

ηk = (XTk , XTk+1, ...., XTk+1−1, Tk+1 − Tk)

� �

� �

are i.i.d. as random vectors with a random number of components. More precisely,

P
(
Tj+1 − Tj = kj, XTj+l ∈ Al,j, 0 ≤ l < kj, j = 1, 2, ..., r

)
=

r∏
j=1

P (T1 = kj, XT1+l ∈ Al,j, 0 ≤ l < kj). (2.2)
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∀ k1, k2, ..., kr ∈ N e Aj ∈ S, 1 ≤ l ≤ kj, j = 1, ..., r, and r ≥ 1. A regenerative sequence

{Xn}n≥0 is called delayed when the first cycle, η0 := {Xj : 0 ≤ j < T1} has different distri-

bution than all the other cycles.

The random times {Tn}n≥0 are called regeneration times and clearly, {Tn}n≥0 is a renewal

process i.e.,

τ1 = T1 − T0, τ2 = T2 − T1, τ3 = T3 − T2, · · · ,

are i.i.d. random variables and Tn = τ1 + τ2 + · · · τn. So we can define the counting process

Nn by the relation

Nn = k if Tk ≤ n < Tk+1 for k = 0, 1, 2, ....,

i.e., Nn counts the number of regenerations up to time n.

Example 2.2.1. Any independently and identically distributed sequence {Xn}n≥0 of random

variables is regenerative with Tk = k as the embedded renewal process.

Example 2.2.2. By Theorem 1.3.1, any Markov chain {Xn}n≥0 with a countable state space

S that is irreducible and recurrent is regenerative with {Tn}n≥1 being the times of successive

returns to a given state.

Example 2.2.3. Any Harris recurrent chain satisfying (1.1) is regenerative by Theorem

1.3.2.

Example 2.2.4 (The GI/GI/1 Queue). This is a model where the n-th customer arrives at

time tn, waits in a common queue (in a first in first out manner) that has one server, and

when served, has service time Sn. Arrival times form a renewal process with independently

and identically distributed interarrival times Tn = tn+1 − tn. The delay sequence {Dn}n≥1
defined by the recursion Dn+1 = max(0, Dn+Sn−Tn), which denotes how long each customer

waits in the queue before entering service form a positive recurrent regenerative process.

Example 2.2.5. Let {Yn}n≥0 be a Harris recurrent Markov chain as in Example 2.2.3.

Given {Yn = yn}n≥0, let {An}n≥0 be independent positive integer valued random variables.
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Set

Xn =



y0 0 ≤ n < A0

y1 A0 ≤ n < A0 + A1

y2 A0 + A1 ≤ n < A0 + A1 + A2

·

·

·

Then {Xn}n≥1 is called a semi Markov chain with embedded Markov chain {Yn = yn}n≥1 and

sojourn times {An}n≥0. Since {Yn}n≥0 is regenerative, it follows that {Xn}n≥1 is regenera-

tive. See Example 14.2.14 in Athreya and Lahiri (2006) for more details.

Example 2.2.5 presents a regenerative sequence that is not a Markov chain. So, we have that

a regenerative sequence {Xn}n≥0, in general, need not be a Markov chain. Now we present

some elementary properties of regenerative sequences.

Proposition 2.2.1. [Asmuseen (2003), Proposition 1.1] Let {Xn}n≥0 be a regenerative se-

quence with regeneration times {Tn}n≥0. If ϕ : S → T is any measurable mapping, then

{ϕ(Xn)}n≥0 is regenerative sequence with the same regeneration times.

The above proposition means that the regenerative property is preserved under arbitrary

mappings. For instance, take {Xn}n≥0 to be a regenerative sequence with regeneration

times {Tn}n≥0 and consider the function X̄n = IA(Xn) for some set A ∈ G . Since {Xn}n≥0
is regenerative, then so is

{
X̄n

}
n≥0 with the same regeneration times. In this sense, the

following result is an immediate consequence of the definition of regenerative sequence.

Proposition 2.2.2. [Glynn (1982), Proposition 2.7] Let {Xn}n≥0 be a regenerative se-

quence with regeneration times {Tn}n≥0. Assume that ϕk : Sk = S × S × · · · × S −→ R

is a sequence of real-valued functions such that ϕk is measurable for every k. Let Yn =

ϕτn(XTn , XTn+1, · · · , XTn+1−1) for n ≥ 1, where τn = Tn−Tn−1. Then the sequence {(Yn, τn)}n≥1
is i.i.d.

From the previous proposition we have that if {Xn}n≥0 is a regenerative sequence with

regeneration times {Tn}n≥0 and ϕ : S → R is a measurable function then the sequence
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Yn =

Tn+1−1∑
j=Tn

ϕ(Xj) is i.i.d. We use this fact in most proofs of our results.

2.2.1 Some results for regenerative sequences

A regenerative sequence {Xn}n≥0 on (S,G) with regeneration times {Tn}n≥0 have indepen-

dent and identically distributed cycles and cycle lengths, so ergodic theorems are elementary

consequences of the Renewal Theory, the Strong Law of Large Numbers and the Central

Limit Theorem in the i.i.d. case. To study the asymptotic behavior of the partial sum

Sn =
n∑
j=0

ϕ(Xj) the main tool is the decomposition

Sn =

T1−1∑
k=0

ϕ(Xk) +
Nn−1∑
k=1

Yk +
n∑

j=TNn

ϕ(Xj) (2.3)

where

Yk =

Tk+1−1∑
j=Tk

ϕ(Xj) are i.i.d. and Nn = sup {k : Tk ≤ n < Tk+1}

and then to analyse the asymptotic behavior of the central term in (2.3), since the other two

terms are negligible.

In analogy with Markov chains, we need some notation and terminology. {Xn}n≥0 is said

to be positive recurrent if µT = E {T2 − T1} < ∞ and null recurrent otherwise. Also, we

say that {Xn}n≥0 is aperiodic if gcd {j : pj > 0} = 1 where pj = P (T2 − T1 = j). In the

remainder of this work, we will assume that {Xn}n≥0 is an aperiodic and a positive recurrent

regenerative sequence with µT > 0.

For a regenerative sequence {Xn}n≥0 on (S,G) with regeneration times {Tn}n≥0 we can define

the occupation probability measure

π̃(A) =
1

µT
E

{
T2−1∑
j=T1

IA(Xj)

}
, A ∈ G, (2.4)

and for a measurable function ϕ : S −→ R we can define the distribution function by

F̃ϕ(x) = π̃(s : ϕ(s) ≤ x).
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Observe that π̃(A) defined by (2.4) is equal to the expected time that the sequence spent in

A, A ∈ G, over the expected inter-regeneration time. And for any function ϕ ∈ L1(S,G, π̃)

the integral de ϕ with respect to π̃ (denoted Eπ̃ {ϕ}) represents the expectation of the

function ϕ summed along the path of the process {Xn}n≥0 from T1 to T2 − 1, over the

expected inter-regeneration time:

1

µT
E

{
T2−1∑
j=T1

ϕ(Xj)

}
=

∫
ϕdπ̃. (2.5)

It can be easily seen by taking a simple function ϕ(s) =
n∑
i=1

aiIAi
(s) with Ai ∈ G and ai ≥ 0.

By definition of π̃ we have

n∑
i=1

aiπ̃(Ai) =
n∑
i=1

ai
µT
E

{
T2−1∑
j=T1

IAi
(Xj)

}
=

1

µT
E

{
T2−1∑
j=T1

n∑
i=1

aiIAi
(Xj)

}
=

1

µT
E

{
T2−1∑
j=T1

ϕ(Xj)

}
.

And can be easily extended to any function ϕ ∈ L1(S,G, π̃).

Now, we present the strong law of large numbers and a limiting distribution for regenerative

sequences under conditions that are mild and usually easy to verify. In the following result

we will see that the value of a time-average limit is determined by the expected behavior of

the process in a single regenerative cycle, this fact has important applications.

Theorem 2.2.3. [Athreya and Lahiri (2006), Theorem 14.2.10] Let {Xn}n≥0 be a regener-

ative sequence with regeneration times {Tn}n≥0. Let π̃ given by (2.4) . Then, as n→∞,

(i) ( SLLN for regenerative sequences)

1

n

n∑
j=0

ϕ(Xj)
a.s.−→ µ̃ϕ =

∫
ϕdπ̃ ∀ϕ ∈ L1(S,G, π̃). (2.6)

(ii) If the distribution of T2 − T1 is aperiodic, then Xn
d−→ X where X

d
= π̃. In the real-

valued case, this amounts to showing that P (Xn ≤ x) −→ F̃ (x) = π̃(−∞, x] for all

continuity points of the cumulative distribution function F̃ .

Remark 2.2.1. Let i be a positive recurrent state for a Markov chain {Xn}n≥0 on a countable

space S with transition probability matrix P. Let the occupation probability measure

π̃j =
1

Ei(T1(i))
Ei


T1(i)−1∑
k=0

I(Xk = j)

 , (2.7)
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where T1(i) = inf {n : Xn = i, n ≥ 1} Then π̃ = {π̃j}j∈S is a stationary distribution for

P. Besides, if {Xn}n≥0 is a positive recurrent irreducible Markov chain there is a unique

invariant measure π given by

π =
{
π̃j ≡ (Ej {T1(j)})−1 , j ∈ S

}
.

On the other hand, let {Xn}n≥0 be an aperiodic Harris Markov chain on a countably generated

state space (S,G), with transition probability P (·, ·), and initial probability distribution ν.

Assume that A is an accessible atom. Then {Xn}n≥0 is positive recurrent if and only if P

has a unique invariant probability measure π, (See Kac’s theorem in [46]) in which case π

coincides with π̃ given by (2.4), i.e.,

π(B) =
1

EA(T1(A))
EA


T1(A)−1∑
j=0

IB(Xj)

 , B ∈ G (2.8)

where T1(A) = inf {n ≥ 1, Xn ∈ A} the hitting time on A. Therefore, Theorem 2.2.3 holds

for Markov chains with enumerable state space and for Harris Markov chains with occupancy

measure given by (2.7) and (4.5), respectively. ( See, Athreya and Lahiri (2006), Theorem

14.1.20 and Theorem 14.2.11). Thus a Harris ergodic chain converges in distribution to a

unique invariant probability measure.

A Glivenko-Cantelli theorem is a fundamental result in statistics. It says that an empirical

distribution function uniformly approximates the true distribution function for a sufficiently

large sample size. Athreya and Roy (2016) proved a general Glivenko-Cantelli theorems for

three types of sequences of random variables: regenerative, stationary and exchangeable. In

particular, these results hold for irreducible Harris recurrent Markov chains that admit a

stationary probability distribution.

Theorem 2.2.4. [Athreya and Roy (2016), Theorem 3 ] Let {Xn}n≥0 be a regenerative

sequence with regeneration times {Tn}n≥0 such that 0 < µT <∞. Suppose that ϕ : S −→ R

is a mensurable function and let

Fn(x) =
1

n

n∑
j=1

I(−∞,x](ϕ(Xj)) and F̃ϕ(x) = π̃(s : ϕ(s) ≤ x), x ∈ R, n ≥ 1. (2.9)
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Then

sup
x∈R
|Fn(x, ·)− F̃ϕ(x)| a.s.−→ 0 as n→∞. (2.10)

Remark 2.2.2. Note that

F̃ϕ(x) =
1

µT
E

(
T2−1∑
j=T1

I(−∞,x](ϕ(Xj))

)
(2.11)

Roughly, (2.10) means that the empirical distribution of {ϕ(Xn)}n≥1 when n is large is

approximated uniformly by the expected value of the empirical empirical distribution of the

i.i.d. blocks in which the sequence is divided.

On the other hand, let {Xn}n≥0 be a positive recurrent irreducible Markov chain on countable

space S with transition probability matrix P and limiting distribution π̃ = (πj)j∈S. We can

assume that X0 has distribution π̃. Then F̃ϕ(x) = P (ϕ(X0) ≤ x) where ϕ is a real-valued

function on S.

The following is a regenerative analogue of the classical CLT for sums of independent random

variables.

Theorem 2.2.5. [Glynn and Whitt (1993), Theorem 3] Let {Xn}n≥1 be an aperiodic and

positive recurrent regenerative sequence with regeneration times {Tn}n≥1. Suppose that µT =

E {T2 − T1} > 0, E {(T2 − T1)2} <∞ and E

{(∑T2−1
k=T1

ϕ(Xk)
)2}

<∞. Then

Sn − nµ̃ϕ
σ̃ϕ
√
n

d−→ Z0
d
= N(0, 1) as n→∞,

where µ̃ϕ = Eπ̃ {ϕ} and σ̃2
ϕ :=

E

{(∑T2−1
k=T1

(ϕ(Xk)− µ̃ϕ)
)2}

µT
.

In the next subsection we present an alternative demonstration of CLT for regenerative

sequences. The proof makes use of some ideas from the proof of CLT for Markov chains with

enumerable state space from Chung (1967).
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2.3 CLT for Regenerative Sequences

Let {Xn}n≥0 be a regenerative sequence on (S,G) with regeneration times {Tn}n≥0. For

ϕ : S −→ R let µ̃ϕ =

∫
ϕdπ̃ = Eπ̃ {ϕ} and Sn =

n∑
j=0

ϕ(Xj). We can write

Sn − nµ̃ϕ =

T1−1∑
k=0

(ϕ(Xk)− µ̃ϕ) +
Nn−1∑
k=1

Yk +
n∑

j=TNn

(ϕ(Xj)− µ̃ϕ), (2.12)

where

Yk =

Tk+1−1∑
j=Tk

(ϕ(Xj)− µ̃ϕ) and Nn = sup {k : Tk ≤ n < Tk+1} .

Since {Xn}n≥0 is a regenerative sequence, {Yk}k≥i are i.i.d. random variables with E(Yk) = 0.

In fact, µT = E(T2 − T1) and by (2.5) we have

E(Yk) = E

(
Tk+1−1∑
j=Tk

ϕ(Xj)

)
− µ̃ϕE(T2 − T1) = µT

∫
ϕdπ̃ − µ̃ϕµT = 0.

Thus, to analyse the asymptotic normality of Sn when 0 < var(Yk) <∞, we must guarantee

the asymptotic normality of the central term in (2.12), since we can show that the other two

terms are negligible. For the central term, in the same way as in Serfozo (2009) ( Chapter

2, Theorem 65) we use a CLT for randomized sums and for other two terms in (2.12) we

adapt to the case of regenerative sequences the arguments used in the proof of the CLT for

Markov chains in Chung (1967) (see Theorem 8, Chapter 14).

Theorem 2.3.1. [Gut (2013), Theorem 3.1. (A version of Anscombe’s Theorem)] Let

Y1, Y2, ... i.i.d. random variables with mean µ and variance σ2 > 0. Let N(t) be an integer-

valued process defined on the same probability space as the Yn, where N(t) may depend on

the Yn. If
N(t)

t

p−→ c, where c is a positive constant, then

SN(t)

σ
√
N(t)

d−→ Z0
d
= N(0, 1) and

SN(t)√
cσ
√
t

d−→ Z0
d
= N(0, 1) as n→∞,

where SN(t) =

N(t)∑
k=1

(Yk − µ).
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Now we present an alternative proof of the central limit theorem for regenerative processes

that provides conditions under which this limiting distribution is a normal distribution. We

will see in Remark 2.3.1 that as compared to similar results such as CLT from Glynn and

Whitt (1993) our hypotheses are somehow weaker. Special cases of this result are CLT’s for

renewal and Markovian processes.

Theorem 2.3.2. [CLT for regenerative sequences] Let {Xn}n≥1 be an aperiodic and positive

recurrent regenerative sequence with regeneration times {Tn}n≥1 . Assume that

µT = E {T2 − T1} > 0 and 0 < V ar(Yk) = E


(
T2−1∑
j=T1

(ϕ(Xj)− µ̃ϕ)

)2
 <∞.

Then

Sn − nµ̃ϕ
σ̃ϕ
√
n

d−→ Z0
d
= N(0, 1) as n→∞, (2.13)

where σ̃2
ϕ :=

V ar(Yk)

µT
.

Proof. By decomposition (2.12), we have that

1

σ̃ϕ
√
n

n∑
k=0

(ϕ(Xk)− µ̃ϕ) = An +
1

σ̃ϕ
√
n

Nn−1∑
k=1

Yk +Bn, (2.14)

where

An =
1

σ̃ϕ
√
n

T1−1∑
k=0

(ϕ(Xk)− µ̃ϕ) and Bn =
1

σ̃ϕ
√
n

n∑
k=TNn

(ϕ(Xk)− µ̃ϕ).

To obtain the convergence in (2.13) we will show that

1

σ̃ϕ
√
n

Nn−1∑
k=1

Yk
d−→ Z

d
= N(0, 1), An

a.s.−→ 0 and Bn
p−→ 0.

In fact, we know that the Yk´s are i.i.d. with mean 0 and finite variance and from Theorem

1.4.1 we have
Nn

n

a.s.−→ 1

µT
as n→∞. Thus, by Theorem 2.3.1 as n→∞

1

σ̃ϕ
√
n

Nn−1∑
k=1

Yk
d−→ Z

d
= N(0, 1) where σ̃2

ϕ =
V ar(Yk)

µT
. (2.15)

Since

T1−1∑
k=0

(ϕ(Xk)− µ̃ϕ) does not depend on n, we have

An
a.s.−→ 0, n→∞. (2.16)
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On the other hand, to prove the convergence Bn
p−→ 0 we makes use some ideas from the

proof of Theorem 8 (chapter 14), from Chung (1967). First, we will show that
∑n

j=TNn
(ϕ(Xj)−

µ̃ϕ) is bounded in probability. In fact, for u > 0 and fixed k , we have

P


∣∣∣∣∣∣

n∑
j=TNn

(ϕ(Xj)− µ̃ϕ)

∣∣∣∣∣∣ > u

 ≤ P

max
0≤i≤n

∣∣∣∣∣∣
TNn+i∑
j=TNn

(ϕ(Xj)− µ̃ϕ)

∣∣∣∣∣∣ > u


≤ P

max
0≤i≤n

∣∣∣∣∣∣
TNn+i∑
j=TNn

(ϕ(Xj)− µ̃ϕ)

∣∣∣∣∣∣ > u, n− TNn ≤ k


+

max
0≤i≤n

∣∣∣∣∣∣
TNn+i∑
j=TNn

(ϕ(Xj)− µ̃ϕ)

∣∣∣∣∣∣ > u, n− TNn > k


≤ P

max
0≤i≤k

∣∣∣∣∣∣
TNn+i∑
j=TNn

(ϕ(Xj)− µ̃ϕ)

∣∣∣∣∣∣ > u

+ P {n− TNn ≥ k} .

(2.17)

The second term in the last inequality tends to 0 as k → ∞ uniformly with respect to n.

Indeed, by hypothesis µT =
∞∑
j=1

P (T2 − T1 ≥ j) <∞ and by (1.6) we have

lim
n→∞

P (n− TNn ≥ k) =
1

µT

∞∑
j=k+1

P (T2 − T1 ≥ j).

Thus given any ε > 0 there exists n0 and k0 such that n > n0 and k > k0 imply

P {n− TNn ≥ k} < ε.

Then n− TNn is bounded in probability. On the other hand, since {Xn}n≥1 is regenerative

the first term in (2.17) does not depend on n and tends to 0 as u → ∞, for each fixed k.

This implies that
n∑

j=TNn

(ϕ(Xj)− µϕ) is bounded in probability.

Therefore,

Bn
p−→ 0. (2.18)

Finally, from (2.15), (2.16) and (2.18) we obtain the convergence in (2.13).
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Corollary 2.3.3. Let {Xn}n≥0 be a positive recurrent irreducible Markov chain on countable

space S with transition probability matrix P and limiting distribution π̃ = (πj)j∈S. Let i be

a fixed arbitrary state and denote by Tr(i) the r-th time of visit to state i. Assume that

µ̃ϕ =
∑

j∈S ϕ(j)πj < ∞ and 0 < σϕ(i) = E


Tr+1(i)−1∑

j=Tr(i)

(ϕ(Xj)− µ̃ϕ)

2 < ∞. Then Sn

is asymptotically normally distributed with mean nµ̃ϕ and variance nσ2
ϕ with σ2

ϕ := πiσ
2
ϕ(i),

i.e.,

Sn − nµ̃ϕ
σϕ
√
n

d−→ Z0
d
= N(0, 1) as n→∞. (2.19)

On the other hand, Theorem 2.3.2 also leads to CLT for Harris Chains, since the Harris

chains are regenerative.

Corollary 2.3.4. Let {Xn}n≥0 be an aperiodic and positive recurrent Harris Markov chain

with an accessible atom A. Let µ̃ϕ = {EA(T1(A))}−1EA
{∑T1(A)−1

j=0 ϕ(Xj)
}
< ∞. Assume

that 0 < EA

{(∑T1(A)−1
j=0 (ϕ(Xj)− µ̃ϕ)

)2}
<∞. Then

Sn − nµ̃ϕ
σ̃ϕ
√
n

d−→ Z0
d
= N(0, 1) as n→∞, (2.20)

where σ̃2
ϕ :=

EA

{(∑T1(A)−1
j=0 (ϕ(Xj)− µ̃ϕ)

)2}
EA(T1(A))

and T1(A) = inf {n ≥ 1, Xn ∈ A} the hitting

time on A.

It is worth pointing out the CLT for ergodic Markov chains has been under study for years

and an extensive literature exists (e.g. see, Athreya and Ney (1978), Chen (1999), Chung

(1967), Meyn and Tweedie (1993)).

Remark 2.3.1. Note that if E {(T2 − T1)2} < ∞ and E


(
T2−1∑
j=T1

|ϕ(Xj)|

)2
 < ∞ then

V ar(Yk) is finite. In fact, from Cauchy−Schwarz inequality follows that
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V ar(Yk) = E


(
T2−1∑
j=T1

(ϕ(Xj)− µϕ)

)2


= E


(
T2−1∑
j=T1

ϕ(Xj)− (T2 − T1)µϕ

)2


≤ E


(
T2−1∑
j=T1

ϕ(Xj)

)2
+ 2|µϕ|E

{
(T2 − T1)

∣∣∣∣∣
T2−1∑
j=T1

ϕ(Xj)

∣∣∣∣∣
}

+ µ2
ϕE {(T2 − T1)2}

≤ E


(
T2−1∑
j=T1

|ϕ(Xj)|

)2


+2µ−1T E

{
T2−1∑
j=T1

|ϕ(Xj)|

}
(E {(T2 − T1)2})1/2

E

(
T2−1∑
j=T1

|ϕ(Xj)|

)2

1/2

+µ−2T E {(T1 − T2)2}E


(
T2−1∑
j=T1

|ϕ(Xj)|

)2
 <∞.

In the last inequality we have used that µϕ = µ−1T E

{
T2−1∑
j=T1

ϕ(Xj)

}
. For instance, if f is

bounded or the state space is finite S and E {(T2 − T1)2} < ∞ then V ar(Yk) < ∞. Thus,

the CLT is valid for the regenerative sequence
{
I(−∞,x](Xn)

}
n≥0 for fixed x ∈ R whenever

E {(T2 − T1)2} <∞. In Chapter 3, we use this result to study the empirical process associ-

ated with a regenerative sequence.

2.4 Asymptotic Behavior via Mallows Distance

Let a regenerative sequence {Xn}n≥0 with regeneration times {Tn}n≥0. As described in

Section 2.2 the cycles,

η0 = {Xn, 0 ≤ n ≤ T1 − 1} , η1 = {Xn, T1 ≤ n ≤ T2 − 1} , η2 = {Xn, T2 ≤ n ≤ T3 − 1} , ...

are independent and, in addition, η1, η2, ... have the same distribution. Similarly as in the

previous section we can write

Sn − nµϕ =

T1−1∑
k=0

(ϕ(Xk)− µ̃ϕ) +
Nn−1∑
k=1

Yk +
n∑

j=TNn

(ϕ(Xj)− µ̃ϕ), (2.21)
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where

Yk =

Tk+1−1∑
j=Tk

(ϕ(Xj)− µ̃ϕ) are i.i.d. and Nn = sup {k : Tk ≤ n < Tk+1} .

Note that if dr(Yk, Z) < ∞ where Z has normal distribution we have E|Yk|r < ∞. In fact,

by Theorem 1.5.2

drr(Yk, Z) = E {|Yk − Z∗|}r ,

where Z∗
d
= Z and (Yk, Z

∗)
d
= H with H(x, y) = P (Yk ≤ x, Z∗ ≤ y). Since Z has normal

distribution then E|Z|r <∞ and by Minkowski inequality

(E|Yk|r)1/r ≤ dr(Yk, Z
∗) + (E|Z∗|r)1/r <∞. (2.22)

The previous observation suggests the following condition.

Condition 2.4.1. Let {Xn}n≥1 be an aperiodic and positive recurrent regenerative sequence

with regeneration times {Tn}n≥1 satisfying σ2
ϕ = V ar(Yk) > 0. And assume that for some

r ≥ 2, dr(Yk, Z) <∞ where Z has normal distribution.

Theorem 2.4.2. Assume that Condition 2.4.1 is satisfied and let Z0
d
= N(0, 1). Then as

n→∞,

dr

(∑n
k=1 Yk
σϕ
√
n
, Z0

)
−→ 0. (2.23)

Moreover, ∑n
k=1 Yk
σϕ
√
n

d−→ Z0 and E

{∣∣∣∣∑n
k=1 Yk
σϕ
√
n

∣∣∣∣r} −→ E {|Z0|r} . (2.24)

Proof. By hypothesis we have that E|Yk|r < ∞ for some r ≥ 2 and then by Liapounov

inequality σ2
ϕ = E {(Yk)2} < ∞. On the other hand the Yk’s are i.i.d. with E(Yk) = 0. So

(2.23) follows from Theorem 1.5.3. Now, to obtain the convergence (2.24) we will verify the

conditions of Theorem 1.5.1. Since Z0
d
= N(0, 1) then E {|Z|r} < ∞. So we just need to

show that

E

{∣∣∣∣∑n
k=1 Yk
σϕ
√
n

∣∣∣∣r} <∞.
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Since {
∑n

k=1 Yk, σ(Y1, Y2, ..., Yn)} is a martingale by Lemma 1.6.1 there exists an constant

cr > 0 such that

1

nr/2σrϕ
E

{∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣
r}

≤ cr
nr/2σrϕ

E


∣∣∣∣∣
n∑
k=1

Y 2
k

∣∣∣∣∣
r/2


≤ crn
r/2−1n

nr/2σrϕ
E {|Yk|r}

= crσ
−r
ϕ E {|Yk|r} <∞.

Therefore (2.24) follows from Theorem 1.5.1.

We can generalize the previous theorem taking Nn instead of n, where Nn is the random

variable of the number of regenerations by time n, i.e, Nn = sup {k : Tk ≤ n < Tk+1} , k, n =

1, 2, .... In this case it will be necessary to replace σ2
ϕ = V ar(Yk) by σ̃2

ϕ =
σ2
ϕ

µT
.

Theorem 2.4.3. Assume that Condition 2.4.1 is satisfied and let Z0
d
= N(0, 1). Then as

n→∞,

dr

(
VNn−1

σ̃ϕ
√
n
, Z0

)
−→ 0, Vn =

n∑
k=1

Yk and σ̃2
ϕ =

σ2
ϕ

µT
. (2.25)

Moreover,

VNn−1

σ̃ϕ
√
n

d−→ Z0 and E

{∣∣∣∣VNn−1

σ̃ϕ
√
n

∣∣∣∣r} −→ E {|Z0|r} . (2.26)

Proof. We will obtain the convergence in (2.26) and then the convergence in (2.25) will follow

from Theorem 1.5.1. In this sense, first we will obtain the convergence of the left side in

(2.26). We have that the Yk’s are i.i.d. with E(Yk) = 0 and from Theorem 1.4.1 follows

Nn − 1

n

a.s.−→ 1

µT
as n→∞. So by Theorem 2.3.1 we have that

VNn−1

σ̃ϕ
√
n

d−→ Z0 with σ̃2
ϕ =

σ2
ϕ

µT
. (2.27)

Now we will obtain the convergence of the right side in (2.26). By convergence (2.27) and

by Theorem 1.6.5 is sufficient to prove that{∣∣∣∣VNn−1

σ̃ϕ
√
n

∣∣∣∣r , n ≥ 1

}
is uniformly integrable. (2.28)

In fact, since E|Yk|r <∞ given ε > 0 we can choose M > 0 large such that

E (|Yk|rI {|Yk| > M}) < ε. (2.29)
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Let

V ′n =
n∑
k=1

Y ′k and V ′′n =
n∑
k=1

Y ′′k ,

where

Y ′k = YkI {|Yk| ≤M} and Y ′′k = YkI {|Yk| > M} , k ≥ 1. (2.30)

Note that

E

(∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣r I {∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣r > α

})
≤ α−rE

{∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣2r
}
. (2.31)

To see this, let V be a positive random variable. Then

E(V rI {V > α}) =

∫ ∞
α

vrdFV (v) ≤ α−r
∫ ∞
α

v2rdFV (v) ≤ α−rEV 2r.

On the other hand, the event

{N(t) = n} = {Tn ≤ t, Tn+1 > t} = {Tn ≤ t < Tn+1}

is σ(T1, ...., Tn+1)-mensurable. So the event Nn + 1 = n is σ(T1, ...., Tn)-mensurable, i.e.,

Nn+1 is stooping time with respect to σ(T1, ...., Tn). Thus by Theorem 1.6.4 (iii) there exist

cr > 0 such that

α−rE

{∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣2r
}
≤ 2(ασ̃ϕ)−rcr · E

{
(Y ′k)

2r
}
· E
{(

Nn + 1

n

)r}
≤ 2r+1(ασ̃ϕ)−rcrM

2r. (2.32)

In the last inequality in (2.32) we use the definition of Y ′k given in (2.30) and the inequality

Nn + 1

n
≤ 2. So by (2.31) and (2.32) we obtain that

E

(∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣r I {∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣r > α

})
≤ 2r+1(ασ̃ϕ)−rcrM

2r. (2.33)

On the other hand, by Theorem 1.6.4 (iii) and by (2.29) for ε > 0

E

{∣∣∣∣V ′′Nn+1

σ̃ϕ
√
n

∣∣∣∣r} ≤ 2σ̃−rϕ cr · E {(Y ′′k )r} · E

{(
Nn + 1

n

)r/2}
≤ 2r/2+1σ̃−rϕ crε. (2.34)

From previous results we can show that

{∣∣∣∣VNn+1

σ̃ϕ
√
n

∣∣∣∣r , n ≥ 1

}
is uniformly integrable, i.e,

for δ > 0 given we have

E

(∣∣∣∣VNn+1

σ̃ϕ
√
n

∣∣∣∣r I {∣∣∣∣VNn+1

σ̃ϕ
√
n

∣∣∣∣ > 2α

})
< δ. (2.35)
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To see this, let U and V be positive random variables, such that EU r < ∞ and EV r < ∞

for some r > 0. Then for α > 0

E(U + V )rI {U + V > α} ≤ E(max {2U, 2V })rI {max {2U, 2V } > α}

≤ 2rEU rI {U > α/2}+ 2rEV rI {V > α/2} (2.36)

Thus by (2.34), (2.36),(2.33) and by the triangle inequality we obtain

E

(∣∣∣∣VNn+1

σ̃ϕ
√
n

∣∣∣∣r I {∣∣∣∣VNn+1

σ̃ϕ
√
n

∣∣∣∣ > 2α

})
≤ E

(∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

+
V ′′Nn+1

σ̃ϕ
√
n

∣∣∣∣r I {∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣+

∣∣∣∣V ′′Nn+1

σ̃ϕ
√
n

∣∣∣∣ > 2α

})
≤ 2rE

(∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣r I {∣∣∣∣V ′Nn+1

σ̃ϕ
√
n

∣∣∣∣ > α

})
+ 2rE

(∣∣∣∣V ′′Nn+1

σ̃ϕ
√
n

∣∣∣∣r I {∣∣∣∣V ′′Nn+1

σ̃ϕ
√
n

∣∣∣∣ > α

})
≤ 22r+1M2rcr

(ασ̃ϕ)r
+

23r/2+1crε

σ̃rϕ
< δ, (2.37)

provided we first choose M so large that ε is so small that
23r/2+1crε

σ̃rϕ
< δ/2 and α so large

that
22r+1M2rcr

(ασ̃ϕ)r
< δ/2.

Now note that ∣∣∣∣VNn−1

σ̃ϕ
√
n

∣∣∣∣r ≤ 3r−1
(∣∣∣∣VNn+1

σ̃ϕ
√
n

∣∣∣∣r +

∣∣∣∣ YNn

σ̃ϕ
√
n

∣∣∣∣r +

∣∣∣∣YNn+1

σ̃ϕ
√
n

∣∣∣∣r) . (2.38)

Since the sequence {Yn}n≥1 is i.i.d. with E {Y r
n } < ∞ we have that the family of random

variables

{∣∣∣∣ Yn
σ̃ϕ
√
n

∣∣∣∣r , n ≥ 1

}
is uniformly integrable. On the other hand, we proved above

that the family

{∣∣∣∣VNn+1

σ̃ϕ
√
n

∣∣∣∣r , n ≥ 1

}
is also uniformly integrable . So, by Theorem 1.6.6 and

by inequality (2.38) we obtain (2.28).

Finally, by (2.27) and (2.28) we obtain the two convergences in (2.26) and the convergence

in (2.25) follows as a direct application of Theorem 1.5.1 . This complete the proof.

Let Vn =
n∑
k=1

Yk as before. The CLT for regenerative sequences ( Theorem 2.3.2 ) states that

if 0 < V ar(Yk) <∞ then as n→∞

Sn − nµ̃ϕ
σ̃ϕ
√
n

d−→ Z0
d
= N(0, 1) where σ̃2

ϕ =
σ2
ϕ

µT
. (2.39)
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Moreover, we can write

Sn − nµ̃ϕ
σ̃ϕ
√
n

= An +
VNn−1

σ̃ϕ
√
n

+Bn (2.40)

where

An =

∑T1−1
k=0 (ϕ(Xk)− µ̃ϕ)

σ̃ϕ
√
n

and Bn =

∑n
k=TNn

(ϕ(Xk)− µ̃ϕ)

σ̃ϕ
√
n

.

Note that if Condition 2.4.1 is valid for some r ≥ 2, we can apply Theorem 2.4.3 to obtain

the convergence

dr

(
VNn−1

σ̃ϕ
√
n
, Z0

)
−→ 0. (2.41)

So, we would like to obtain convergence dr in (2.39). For this, we will need a condition a

little stronger than Condition 2.4.1.

Condition 2.4.4. Let {Xn}n≥1 be an aperiodic and positive recurrent regenerative sequence

with regeneration times {Tn}n≥1 satisfying σ2
ϕ = V ar(Yk) > 0. And assume that for some

r ≥ 2, E

(
T2−1∑
k=T1

|ϕ(Xk)− µ̃ϕ|

)r

<∞.

First we considerer the case r = 2. Thus, by considerations made above, we obtain the

desired convergence in d2.

Corollary 2.4.5. Assume that Condition 2.4.4 is satisfied for r = 2 and let Z0
d
= N(0, 1).

Then as n→∞,

d2

(
Sn − nµ̃ϕ
σ̃ϕ
√
n

, Z0

)
→ 0. (2.42)

Moreover,

Sn − nµ̃ϕ
σ̃ϕ
√
n

d−→ Z0 and E

{(
Sn − nµ̃ϕ
σ̃ϕ
√
n

)2
}
−→ E

{
Z2

0

}
= 1. (2.43)

Proof. Since Condition 2.4.4 implies Condition 2.4.1 we can apply Theorem 2.4.3 to obtain

the convergence

d2

(
VNn−1

σ̃ϕ
√
n
, Z0

)
−→ 0. (2.44)

By decomposition (2.40) we have

An =

∑T1−1
k=0 (ϕ(Xk)− µ̃ϕ)

σ̃ϕ
√
n

and Bn =

∑n
k=TNn

(ϕ(Xk)− µ̃ϕ)

σ̃ϕ
√
n

.
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Thus

E {A2
n} =

1

σ̃2
ϕn
E


(
T1−1∑
k=0

(ϕ(Xk)− µ̃ϕ)

)2
 .

Since E
(∑T1−1

k=0 |ϕ(Xk)− µ̃ϕ|
)2

does not depend on n and is finite, we obtain

d2(An, 0) ≤ E(A2
n) −→ 0. (2.45)

Now, let Uk =

Tk+1−1∑
j=Tk

|ϕ(Xk)− µ̃ϕ| for k ≥ 1. Since {Xn}n≥1 is regenerative we have that the

sequence {Uk}k≥1 is i.i.d. and by Condition 2.4.4 for r = 2 we have E {|Uk|2} <∞, k ≥ 1.

On the other hand, TNn ≤ n < TNn+1 and 1 ≤ Nn ≤ n. So

E {B2
n} = E


(∑n

k=TNn
(ϕ(Xk)− µ̃ϕ)

)2
nσ̃2

ϕ


≤ E


(∑n

k=TNn
|ϕ(Xk)− µ̃ϕ|

)2
nσ̃2

ϕ


≤ 1

σ̃2
ϕn
E
{
U2
Nn

}
≤ 1

σ̃2
ϕn
E

{
max

1≤m≤n
U2
m

}
−→ 0 as n→∞.

.

In the last convergence we use the following result by Chung (1967). Let U1, U2, ..., Un i.i.d.

random variables with finite mean, then

lim
n→∞

1

n
E

{
max

1≤m≤n
|Um|

}
. (2.46)

To see this, let F to be the common distribution of the |Um|. We have

P

{
max

1≤m≤n
|Um| > k

}
= 1− [F (k)]n ≤ n [1− F (k)]

It follows that

1

n
E

{
max

1≤m≤n
|Um|

}
=

1

n

∞∑
k=0

P

{
max

1≤m≤n
|Um| > k

}
=
∞∑
k=0

∫ 1

F (k)

yn−1dy ≤ 1

n

∞∑
k=0

[1−F (k)] <∞.

Thus the series in the middle converges uniformly in n. Upon letting n → ∞ each integral

tends to zero and (2.46) is proved. So

d2(Bn, 0) ≤ E(B2
n) −→ 0. (2.47)
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On the other hand, by Minkowski Inequality and by decomposition (2.40) we obtain the

convergence in (2.42). Instead,

d2

(
Sn − nµ̃ϕ
σ
√
n

, Z0

)
≤ d2(An, 0) + d2

(
VNn−1

σ̃ϕ
√
n
, Z0

)
+ d2(Bn, 0) −→ 0 as n→∞.

Since E

{(
Sn − nµ̃ϕ
σ̃ϕ
√
n

)2
}
<∞ by Theorem (1.5.1) we have the two convergences in (2.43).

This concludes the proof.

The following theorem generalizes the previous result for r > 2.

Theorem 2.4.6. Assume that Condition 2.4.4 is satisfied and let Z0
d
= N(0, 1). Then as

n→∞,

dr

(
Sn − nµ̃ϕ
σ̃ϕ
√
n

, Z0

)
→ 0. (2.48)

Moreover,

Sn − nµ̃ϕ
σ̃ϕ
√
n

d−→ Z0 and E

{∣∣∣∣Sn − nµ̃ϕσ̃ϕ
√
n

∣∣∣∣r} −→ E {|Z0|r} . (2.49)

Proof. To obtain the two convergences in (2.49) we will verify the conditions of Theorem

(1.5.1), i.e., we will show that (2.48) is valid and

E

{∣∣∣∣Sn − nµ̃ϕσ̃ϕ
√
n

∣∣∣∣r} <∞. (2.50)

In fact, by decomposition (2.40) and Minkowsky inequality we have∥∥∥∥Sn − nµ̃ϕσ̃ϕ
√
n

∥∥∥∥
r

≤ ‖An‖r +

∥∥∥∥VNn−1

σ̃ϕ
√
n

∥∥∥∥
r

+ ‖Bn‖r . (2.51)

In (2.28) we proved that

{∣∣∣∣VNn−1

σ̃ϕ
√
n

∣∣∣∣r , n ≥ 1

}
is uniformly integrable. Then

∥∥∥∥VNn−1

σ̃ϕ
√
n

∥∥∥∥
r

<∞. (2.52)

On the other hand

E {|An|r} =
1

σ̃rϕn
r/2
E

{∣∣∣∣∣
T1−1∑
k=0

(ϕ(Xk)− µ̃ϕ)

∣∣∣∣∣
r}

Since E

∣∣∣∣∣
T1−1∑
k=0

(ϕ(Xk)− µ̃ϕ)

∣∣∣∣∣
r

does not depend on n and is finite follows that
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drr(An, 0) ≤ E(|An|r) −→ 0. (2.53)

As in the previous proof, consider the i.i.i random variables Uk =

Tk+1−1∑
j=Tk

|ϕ(Xk) − µ̃ϕ| for

k ≥ 1. By Condition 2.4.4 we have E {|Uk|r} < ∞ for k ≥ 1. Since TNn ≤ n < TNn+1 and

1 ≤ Nn ≤ n and by (2.46) we have

E {|Bn|r} = E


∣∣∣∑n

k=TNn
(ϕ(Xk)− µ̃ϕ)

∣∣∣r
σ̃rϕn

r/2


≤ E


(∑n

k=TNn
|ϕ(Xk)− µ̃ϕ|

)r
σ̃rϕn

r/2


≤ 1

σ̃rϕn
r/2
E
{
U r
Nn

}
≤ 1

σ̃rϕn
r/2−1

1

n
E

{
max

1≤m≤n
U r
m

}
−→ 0.

.

Since r ≥ 2 and E {|Uk|r} <∞ the last convergence follows by (2.46). Thus

drr(Bn, 0) ≤ E(|Bn|r) −→ 0. (2.54)

Thus, the finitude of the r-th moment in (2.50) follows from (2.52),(2.53) and (2.54). To

obtain convergence in (2.48) we can use the same argument used for case r = 2 and so

convergence in (2.49) follows from Theorem (1.5.1).

If ϕ is bounded and E {(T2 − T1)r} <∞ for some r ≥ 2 then the condition 2.4.4 holds. So,

from last Theorem we obtain the following result.

Corollary 2.4.7. If ϕ is bounded and E {(T2 − T1)r} <∞, r ≥ 2 then as n→∞,

dr

(
Sn − nµ̃ϕ
σ̃ϕ
√
n

, Z0

)
→ 0.

Moreover,

Sn − nµ̃ϕ
σ̃ϕ
√
n

d−→ Z0 and E

{∣∣∣∣Sn − nµ̃ϕσ̃ϕ
√
n

∣∣∣∣r} −→ E {|Z0|r} .
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2.5 Strong Approximation

Let {Xn}n≥1 be a sequence of i.i.d. centred real-valued random variables with a finite moment

generating function in a neighbourhood of 0 and let σ2 = V arX1 and Sn = X1 +X2 + · · ·+

Xn. Komlós−Major−Tusnády Theorem (1975 and 1976) proved that one can construct a

standard Wiener process {W (t)}t≥0 in such a way that

P

(
sup
k≤n
|Sk − σW (k)| > c log n+ x

)
≤ a exp(−bx), (2.55)

where a, b and c are positive constants depending only on the distribution of X1. From this

result, the almost sure approximation of the partial sum process by a Wiener process holds

with the rate O(log n).

The Komlós−Major−Tusnády Theorem is one of the most important in probability approx-

imations because many well known probability theorems can be considered as consequences

of results about strong approximation of sequences of sums by corresponding Gaussian se-

quences. Due to the powerful consequences of KMT approximation (see, e.g., Csorgo and

Hall (1984) or the books of Csorgo and Révész (1981) and Shorack and Wellner (1986) for

its applications), extending these results for dependent random variables would have a great

importance but the dyadic construction of Komlós, Major and Tusnády is highly technical

and utilizes conditional large deviation techniques, which makes it very difficult to extend

to dependent processes.

In this section, we present a version for regenerative sequences of KMT approximation ob-

tained in the paper “Strong approximation for additive functionals of geometrically ergodic

Markov chains” by Merlevede and Rio (2015). This adaptation was possible because the

authors used the fact that an irreducible and aperiodic Harris recurrent Markov chain is

regenerative. Thus, the chain can be divided into i.i.d blocks. and then it is possible to

apply known approximations.

As in the previous sections, consider {Xn}n≥0 be a regenerative sequence on (S,G) with
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regeneration times {Tn}n≥0 and ϕ : S −→ R a measurable function. Let µ̃ϕ = Eπ̃ {ϕ},

Sn =
n∑
j=1

(ϕ(Xj)− µ̃ϕ), Yk =

Tk+1−1∑
j=Tk

(ϕ(Xj)− µ̃ϕ) and Nn = sup {k : Tk ≤ n < Tk+1} .

Theorem 2.5.1 (KMT approximation for Regenerative Sequences). Let {Xn}n≥0 be an

aperiodic and positive recurrent regenerative sequence with regeneration times {Tn}n≥0 such

that E {(T2 − T1)}2 < ∞. Assume that V ar(Yk) = E

{(∑T2−1
j=T1

(ϕ(Xj)− µ̃ϕ)
)2}

> 0 and

ϕ : S −→ R is bounded. Suppose there is δ > 0 such that E(et(T2−T1)) < ∞ for any |t| < δ.

Then, there exists a standard Wiener process (W (t))t≥0 and positive constants a, b and c

depending of ϕ such that, for any x > 0 and any integer n ≥ 2,

P

(
sup

1≤k≤n
|Sk − σ̃ϕW (k)| ≥ c log n+ x

)
≤ a exp(−bx). (2.56)

where σ̃2
ϕ =

V ar(Yk)

µT
.

The following corollary is an immediate consequence of this theorem.

Corollary 2.5.2. For Sn and W (t) given in Theorem 2.5.1

Sn − σ̃ϕW (n) = O(log n) a.s. (2.57)

Proof. If x =
2 log n

b
in (2.56) we have for C = c+

2

b

∞∑
n=1

P

(
|Sn − σ̃ϕW (n)|

log n
> C

)
≤

∞∑
n=1

P

(
sup

1≤k≤n
|Sn − σ̃ϕW (n)| > c log n+

2 log n

b

)
≤ a

∞∑
n=1

1

n2
<∞

Thus by Borel-Cantelli lemma we obtain

P

(
lim sup
n→∞

|Sn − σ̃ϕW (n)|
log n

≤ C

)
= 1.

Proof Theorem 2.5.1 . First, note that is sufficient to show (2.56) for any real positive x

such that x ≤ 4n ‖ϕ‖∞ . Indeed, consider x > 4n ‖ϕ‖∞. Since ϕ is bounded we have that
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|Sk| ≤
∑k

j=1 |(ϕ(Xj)| + |µ̃ϕ|) ≤ 2k ‖ϕ‖∞ for any integer k ≥ 0. On the other hand, for any

standard Wiener process (W (t))t≥0 we have P {W (1) > x} ≤ 1√
2π

1

x
e−x

2/2 and by Lévi’s

inequality

P

(
max
1≤k≤n

|W (k)| ≥ x

)
≤ 2P (|W (n)| ≥ x) .

This implies that

P

(
sup

1≤k≤n
|Sk − σ̃ϕW (k)| ≥ c log n+ x

)
≤ P

(
sup

1≤k≤n
{|Sk|+ |σ̃ϕW (k)|} ≥ c log n+ x

)
≤ P

(
sup

1≤k≤n
|σ̃ϕW (k)| ≥ c log n+ x− 2n ‖ϕ‖∞

)
≤ P

(
sup

1≤k≤n
|σ̃ϕW (k)| ≥ c log n+ x− x

2

)
≤ P

(
sup

1≤k≤n
|σ̃ϕW (k)| ≥ x

2

)
≤ 2P

(
|σ̃ϕW (n)| ≥ x

2

)
= 2P

(
|W (1)| ≥ x

2σ̃ϕ
√
n

)
≤ 2
√

2√
π
× σ̃ϕ

√
n

x
exp

{
− x2

8σ2n

}
≤

√
2σ̃ϕ

‖ϕ‖∞
√
πn

exp

{
−x ‖ϕ‖∞

2σ̃2
ϕ

}
≤ 2

√
2σ̃ϕ

‖ϕ‖∞
√
π

exp

{
−x ‖ϕ‖∞

2σ̃2

}
.

Therefore, we will consider x ≤ 4n ‖ϕ‖∞. Recall that

Yk =

Tk−1∑
j=Tk−1

(ϕ(Xj)− µ̃ϕ) and τk = Tk − Tk−1,

are i.i.d. sequences and from this notation we have that
∑k

j=1 Yj = STk−1 + (ϕ(X0) − µ̃ϕ).

On the other hand, V ar(τ1) > 0 because we are assuming that {Xn}n≥0 is a aperiodic re-

generative sequence. Thus, {(τk, Yk − α(τk − E(τk))}k≥1 with α =
Cov(τ1, Y1)

V ar(τ1)
is a sequence

of i.i.d. random vectors in R2 with E(Yk) = 0 and Cov(τk, Yk − α(τk − E(τk))) = 0.

By hypotheses E(etτ1) <∞ for |t| ≤ δ, so

E
(
et(Y1−α(τ1−E(τ1)))

)
≤ etαE(τ1)E

(
et(2‖ϕ‖∞+|α|)τ1

)
<∞ for |t| ≤ δ(2 ‖ϕ‖∞ + |α|)−1.

Taking into account all the considerations above mentioned, we can apply Theorem 1.3 in

Zaitsev (1998) (which is the multidimensional extension of the results of Komlós, Major and
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Tusnády (1976)) to the multivariate sequence of independent and identically distributed

random variables {τk, Yk − α(τk − E(τk))}k≥1. Therefore, there exists a sequence (Ỹi, Zi)i≥1

in R2 of independent random variables such that (Ỹi)i≥1 is independent of (Zi)i≥1 and

Ỹi
D
= N(0, v2), Zi

D
= N(0, V ar(τ1)) where v2 = V ar(Y1 − α(τ1 − E(τ1))),

and satisfying, for some positive constants C1, A1 e B1 depending on ϕ, the following in-

equalities: for any integer n ≥ 2.

P

(
sup

1≤k≤n

∣∣∣∣∣
k∑
i=1

[Yi − α(τi − E(τi))]−
k∑
i=1

Ỹi

∣∣∣∣∣ ≥ C1 log n+ x

)

= P

(
sup

1≤k≤n

∣∣∣∣∣STk−1 + (ϕ(X0)− µ̃ϕ)− α(Tk − kE(τ1))−
k∑
i=1

Ỹi

∣∣∣∣∣ ≥ C1 log n+ x

)
≤ A1 exp(−B1x) (2.58)

and

P

(
sup

1≤k≤n

∣∣∣∣∣
k∑
i=1

[τi − E(τi)]−
k∑
i=1

Zi

∣∣∣∣∣ ≥ C1 log n+ x

)

= P

(
sup

1≤k≤n

∣∣∣∣∣Tk − kE(τ1))−
k∑
i=1

Zi

∣∣∣∣∣ ≥ C1 log n+ x

)
≤ A1 exp(−B1x). (2.59)

Using the Skorohod embedding theorem, we can then construct two independent standard

Wiener processes {B(t)}≥0 and
{
B̃(t)

}
t≥0

such that for any positive integer k,

vB(k) =
k∑
i=1

Ỹi and
√
V ar(τ1)B̃(k) =

k∑
i=1

Zi.

Thus, by (2.58) and (2.59) and using the same argument in the proof of Corollary 2.5.2 we

obtain

STn−1 + ϕ(X0)− µ̃ϕ − α(Tn − nE(τ1))− vB(n) = O(log n) a.s.

and

Tn − nE(τ1 −
√
V ar(τ1)B̃(n) = O(log n) a.s.

Next, since a Poisson process is a partial sum process associated to i.i.d. random variables

with exponential law, using the Komlós, Major and Tusnády strong approximation Theorem,
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we can construct a Poisson process N(t) with parameter λ =
(E(τ1))

2

V ar(τ1)
from B̃(t) in such a

way that

nE(τ1) +
√
V ar(τ1)B̃(n)− γN(n) = O(log n) a.s. (2.60)

and the processes B(t) e N(t) are independent. From previous strong approximations we

can show that there are two independent standard Wiener processes W ∗(t) and W̃ (t) such

that

Sn = W ∗(n) + W̃ (n) +O(log n) a.s. (2.61)

Let W (t) = W ∗(n) + W̃ (n). Since W (t) is a Wiener process, (2.61) implies the strong

approximation in (2.56). The proofs of approximations (2.60) and (2.61) are too technical

and too extensive. These proofs are made in detail in the proof of Theorem 1.1. in Merlevede

and Rio (2015).

Remark 2.5.1. If there exists δ > 0 such that E(etT0) <∞ for any |t| < δ, then the Theorem

2.5.1 is also valid for delayed regenerative sequences. See Theorem 1.1. in Merlevede and

Rio (2015).
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Chapter 3

Weak Convergence

3.1 Introduction

Let {Xn}n≥0 be an aperiodic and a positive recurrent regenerative sequence with values in

R and regeneration times {Tn}n≥0 such that µT = E(T2 − T1) > 0. Consider the canonical

measure

F̃ (x) =
1

µT
E

(
T2−1∑
j=T1

I(−∞,x](Xj)

)
. (3.1)

Define the empirical distribution function Fn(x), x ∈ R and the empirical process βn(x), x ∈

R by

Fn(x) =
1

n

n∑
j=1

I(−∞,x](Xj) , x ∈ R, n ≥ 1, (3.2)

βn(x) =
√
n(Fn(x)− F̃ (x)), x ∈ R. (3.3)

The empirical process plays a prominent role in non-parametric statistical inference. In all

statical applications, information about the distribution of the empirical processes is needed.

One says that a process βn(x) satisfies an invariance principle if it converges weakly to a

mean-zero Gaussian process.

For the case of i.i.d. observations, Donsker proved in 1952 that empirical process converges

in distribution to a Brownian bridge process but this is not always the case for dependent

variables. Donsker’s result has been extended to sequences of weakly dependent random

52



variables by many authors. Among others, it shall be remarked that Billingsley (1968) gave a

result for functionals of φ−mixing process, Berkes and Philipp (1977/78) under strong mixing

assumptions, Doukhan, Massart and Rio (1995) for absolutely regular sequences, Borovkova,

Burton and Dehling (2001) for functionals of absolutely regular processes, Dedecker and

Prieurd (2007) for new dependence coefficients, Shao and Yu (1996) for mixing and associated

processes, Dehling, Durieu and Volny (2009) for Markov chains and dynamical systems.

In this chapter, we study weak convergence in the Skorokhod space D of the empirical and

empirical quantile processes associated to an aperiodic and a positive recurrent regenerative

sequence {Xn}n≥0 with regeneration times {Tn}n≥0. More explicitly, we obtain an invariance

principle for regenerative processes using alternative techniques such as the Mallows distance

for the empirical case, and Skorokhod’s Representation Theorem and properties of locally

uniformly aproximation of monotone functions ( Lemma 1.8.6), for the empirical quantile

case.

In section 3.3, under certain regularity conditions, our Theorem 3.3.5 shows that the empiri-

cal process βn(x) converges weakly to a zero-mean Gaussian process B̃F̃ (x) =
{
B̃(F̃ (x)) : x ∈ R

}
with covariance function given by

E(B̃F̃ (x), B̃F̃ (y)) = F̃ (x ∧ y)− F̃ (x)F̃ (y)

+
∞∑
j=1

E
{
I(−∞,x](X0)− F̃ (x), I(−∞,y](Xj)− F̃ (y)

}
+

∞∑
j=1

E
{
I(−∞,y](X0)− F̃ (y), I(−∞,x](Xj)− F̃ (x)

}
. (3.4)

Proofs of invariance principles usually consist of two parts, establishing finite dimensional

convergence and tightness of the empirical process. Since we can write

βn(x) =
1√
n

n∑
j=1

{
I(−∞,x](Xj)− F̃ (x)

}
.

then we apply the results obtained in Chapter 2 to study the process βn(x). In our Theo-

rem 3.3.3 we use convergence in Mallows distance to obtain the finite dimensional conver-
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gence, i.e. convergence in distribution of the sequence of vectors (βn(x1), ...., βn(xk))n≥1 to(
B̃F̃ (x1), B̃F̃ (x2), · · · , B̃F̃ (xk)

)
,

Tightness is far more difficult to establish. One ingredient is usually a probability bound

on the increments of the empirical process βn(t). In this sense, by Theorem 3.2.9 we have

that a regenerative sequence is α−mixing (or strong mixing) then we can use Rosenthal-

type inequality for α−mixing (Theorem 1.6.3) to obtain an estimate for the moments of

the increments of the empirical process. So, tightness follows from Shao and Yu’s tightness

criterion (Theorem 3.2.7) in the same way as in the proof of Theorem 2.2. in Shao and Yu

(1996).

At the end of section 3.3, our Theorem 3.3.8 present an alternative invariance principle for re-

generative sequences substituting mixing conditions for the condition that inter-regeneration

times (or length of the cycles) of the regenerative sequence be bounded. This result is in-

teresting because we show tightness of βn(·) without to use estimates of the mixing theory,

we obtain moment bounds for partial sums of regenerative sequences using definitions and

properties we studied in Chapter 2.

Once the weak convergence of the empirical process is obtained, the next logical step is

to prove the weak convergence for the empirical quantile process associated to regenerative

process. Theory and important results related to the empirical quantile process in the i.i.d.

case can be studied in Shorack and Wellner (1986) and Csörgő and Révész (1981), among

other references. In this sense, we extend some known results for i.i.d. data.

In section 3.4, we study weak convergence of the empirical quantile process qn(t) =
√
n(F−1n (t)−

F̃−1(t)), t ∈ (0, 1), associated to an aperiodic and positive recurrent regenerative sequence

{Xn}n≥0 . First, for fixed t ∈ (0, 1) in our Theorem 3.4.1 we obtain the convergence in dis-

tribution of the uniform quantile process and then in our Theorem 3.4.3 we prove that for t

fixed the quantile process qn(t) converges in distribution to the random variable − B̃F̃ (t)

f̃(F̃−1(t))
,
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where f̃(t) =
dF̃ (t)

dt
. Next, in our Theorems 3.4.4 and 3.4.5 we establish the weak conver-

gence of the uniform quantile process and of the process qn(t) in the Skorokhod space D.

In the i.i.d. case these results can be shown using the Delta method which is inconsistent with

our theory. Thus, our arguments are based on properties of locally uniformly aproximation of

monotone functions ( Lemma 1.8.6) together with the Skorokhod Theorem (Theorem 1.8.5)

with the same approach adopted in Vervaat (1971), Haan and Ferreira (2006) and Resnick

(2007). We also use the Bahadur representation for quantiles of α−mixing samples obtained

by Xing, Yang, Liu et al. (2012).

Finally, by Example 2.2.3 we have that any Harris chains {Xn}n≥1 on a general state space

that possess an atom is regenerative and by Remark 2.2.1 if {Xn}n≥1 is aperiodic and re-

current positive with limiting distribution Flim then Flim = F̃ . So, it is worth pointing out

that all the results obtained in this chapter can be applied for this type of Markov chains.

3.2 Auxiliary Results

We mentioned in the introduction of this chapter that some authors have studied principles

of invariance for samples with some type of dependence. In this subsection we present an

invariance principle for stationary processes obtained by Dehling, Durieu and Volny in 2009,

which can be apply to a large class of Markov chains under some assumptions on the Markov

transition function , namely geometrically ergodic Markov chains. We also present a result

about weak convergence for empirical processes of strong mixing sequences by Shao and Yu

(1996). Finally, we study mixing conditions of regenerative processes which will allow us to

establish conditions for an invariance principle for this type of process.

3.2.1 Invariance principle for stationary processes

Dehling, Durieu and Volny (2009) proposed a new technique to obtain an invariance principle

for stationary processes. They developed an approach that is strictly based on properties
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of Lipschitz functions ϕ(Xi) the original data {Xi}i≥0. More precisely, they made two

assumptions, namely that the partial sums of Lipschitz functions satisfy the CLT and that a

suitable fourth-moment bound is satisfied. Thus, to prove a principle of invariance over these

conditions they replaced the usual finite dimensional convergence plus tightness approach

by a method of approximation by a sequence of finite dimensional processes. This method

is different from the traditional methods and requires the following assumptions.

Let {Xn}n≥0 be a stationary ergodic process of R-valued random variables with marginal

distribution function F (x) = P (X0 ≤ x) satisfying the following condition

Condition 3.2.1. i) For any Lipschitz function ϕ, the CLT holds, i.e.

1√
n

n∑
j=1

{ϕ(Xj)− Eϕ(Xj)}
d−→ Z

d
= N(0, σ2) as n→∞, (3.5)

where

σ2 = E(ϕ(X0)− Eϕ(X0))
2 + 2

∞∑
j=1

Cov(ϕ(X0), ϕ(Xj)).

ii) A bound on the fourth central moments of partial sums of {ϕ(Xn)}n≥0, ϕ bounded Lip-

schitz with E(ϕ(X0)) = 0, of the type

E


(

n∑
j=1

ϕ(Xj)

)4
 ≤ Cm3

ϕ

(
n ‖ϕ(X0)‖1 logα(1 + ‖ϕ‖)

+ n2 ‖ϕ(X0)‖21 logβ(1 + ‖ϕ‖)
)
, (3.6)

where C is some universal constant,α and β are some nonnegative integers,

‖ϕ‖ = sup
x
|ϕ(x)|+ sup

x 6=y

|ϕ(x)− ϕ(y)|
|x− y|

(3.7)

and

mϕ = max

{
1, sup

x
|ϕ(x)|

}
.

As before, define the empirical distribution function Fn(x) and the empirical process βn(x)

by

Fn(x) =
1

n

n∑
j=1

I(−∞,x](Xj), x ∈ R,
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βn(x) =
√
n(Fn(x)− F (x)), x ∈ R.

Consider the modulus of continuity of a function ϕ : R −→ R

ωϕ(δ) = sup {|ϕ(x)− ϕ(y)| : x, s ∈ R, |x− y| < δ} . (3.8)

Theorem 3.2.2. [Dehling, Durieu and Volny (2009)] Let {Xn}n≥0 be an R-valued stationary

ergodic random process such that the condition 3.2.1 holds. Assume that X0 has a distribution

function F satisfying the following condition:

ωF (δ) ≤ D| log(δ)|−γ for some D > 0 and γ > max
{α

2
, β
}
. (3.9)

Then

βn(x)⇒ B∗(x) in D(−∞,∞), (3.10)

where B∗(x) is a mean-zero Gaussian process with covariances

E(B∗(x), B∗(y)) = F (x ∧ y)− F (x)F (y)

+
∞∑
j=1

E
{
I(−∞,x](X0)− F (x), I(−∞,y](Xj)− F (y)

}
+

∞∑
j=1

E
{
I(−∞,y](X0)− F (y), I(−∞,x](Xj)− F (x)

}
. (3.11)

The assumptions of last theorem can be verified for a large class of Markov chains under

some assumptions on the Markov transition operator. Let (S, d) be a separable metric space

and {Xn}n≥0 be a homogeneous and S-valued Markov chain with stationary measure ν and

transition function P . Denote by L the space of all bounded Lipschitz continuous functions

from S to R equipped with the norm defined in (3.7).

Definition 3.2.1. The Markov chain {Xn}n≥0 is L -geometrically ergodic or strongly ergodic

if there exist C > 0 and 0 < θ < 1 such that for all ϕ ∈ L,

‖P nϕ− Πϕ‖ ≤ Cθn ‖ϕ‖

where Πϕ = Eνϕ(X0).

The invariance principle for L-geometrically ergodic Markov chains is a consequence of the

following statements in Durieu (2008) and of Theorem 3.2.2.
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Proposition 3.2.3. [Durieu (2008), Corollary 2] If {Xn}n≥0 is L-geometrically ergodic

Markov chain then (3.6) holds for all ϕ ∈ L such that Eϕ(X0) = 0, with α = 3 and β = 2.

Proposition 3.2.4. [Durieu (2008), Proposition 3] If {Xn}n≥0 is ergodic and L-geometrically

ergodic Markov chain, then the CLT given by (3.5) holds for all ϕ ∈ L.

Corollary 3.2.5. [Corollary of Theorem 3.2.2] Let {Xn}n≥0 be an L-geometrically ergodic

Markov chain with values in R. Assume that the distribution function F of X0 satisfies

ωF (δ) ≤ D| log(δ)|−γ for some D > 0 and γ > 2. (3.12)

Then the empirical process associated with the Markov chain {Xn}n≥0 satisfies the invariance

principle of Theorem 3.2.2.

For more details and concrete examples of the results above see Section 4 in Dehling, Durieu

and Volny (2009).

On the other hand, Shao and Yu (1996) established weak convergence theorems for empirical

processes of strong mixing, ρ- mixing and associated sequences. Below we present this results

for stationary strong mixing sequences because regenerative processes satisfy this conditions.

First we recall definition of strong mixing or α−mixing sequence.

Let (Ω,F , P ) be a probability space and F1 and F2 be two σ-algebras contained in F .

Define the following measures of dependence between F1 and F2:

α(F1,F2) = sup
A∈F1,B∈F2

|P (A ∩B)− P (A)P (B)|.

Let {Xn}n≥1 be a sequence of real-valued random variables on (Ω,F , P ) and let Fmn =

σ(Xi, n ≤ i ≤ m) be σ-algebras generated by the indicated random variables and put

α(n) = sup
k≥1

α(Fk1 ,F∞n+k).

The sequence {Xn}n≥1 is said to be α−mixing (or strong mixing), according as α(n)→∞.

Theorem 3.2.6. [Shao and Yu (1996), Theorem 2.2.] Let {Un}n≥1 be a stationary α−mixing

sequence of uniform [0, 1] random variables. If

α(n) = O(n−θ−ε) for some θ ≥ 1 +
√

2 and ε > 0,
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then we have

un(t)⇒ B∗(t) in D[0, 1].

where un(t) is the uniform empirical process of U1, ..., Un and B∗(t) is a zero-mean Gaussian

process specified by B∗(0) = B∗(1) = 1 and

Cov(B∗(s), B∗(t)) = s ∧ t− st

+
∞∑
j=2

Cov
{
I[0,s](U1), I[0,t](Uj)

}
+

∞∑
j=2

Cov
{
I[0,t](U1), I[0,s](Uj)

}
. (3.13)

The key point to establishing the last weak convergence was the Rosenthal-type inequality

for α−mixing sequences (1.16) because it allows to obtain an estimate of type (3.14) and

then to use the following Shao and Yu’s tightness criterion for the empirical process in the

space D[0, 1].

Theorem 3.2.7. [Shao and Yu (1996)] Let {Un}n≥1 be a stationary sequence of uniform

[0, 1] random variables and let un(t) is the uniform empirical process of U1, ..., Un. If there

exist constants C > 0, p > 2, p1 > 1, 0 ≤ p3 ≤ 1, p2 > 1 − p3 such that for any s, t ∈ [0, 1]

and n ≥ 1 the following inequality holds

|un(t)− un(s)|p ≤ C
(
|t− s|p1 + n−p2/2|t− s|p3

)
(3.14)

then the process un(t) is tight in D[0, 1].

3.2.2 Mixing conditions for regenerative processes

Let {Xn}n≥0 be an aperiodic positive recurrent regenerative sequence on (S,G) with regen-

eration times {Tn}n≥0 such that µT = E(T2 − T1) > 0 and let ϕ : S × S × S · · · −→ R be a

bounded function. By definition of regenerative process we have that {Tn}n≥0 is a renewal

process i.e.,

τ1 = T1 − T0, τ2 = T2 − T1, τ3 = T3 − T2, · · · ,

are i.i.d. random variables and Tn = τ1+τ1+ · · · τn. As before, let Nn be the random variable

of the number of regenerations by time n, i.e., Nn = k if Tk ≤ n < Tk+1, k = 0, 1, 2, ....
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In this subsection, for a better understanding we will rewrite some results shown in technical

report ”Some New Results in Regenerative Process Theory” by Glynn (1982). This results

are based on the renewal theory applied to the sequence {Tn}n≥0 and guarantee under some

conditions that {Xn}n≥0 is strong mixing.

Lemma 3.2.8. Let {Xn}n≥0 be an aperiodic positive recurrent regenerative with regeneration

times {Tn}n≥0. Then

i) There exist constants γn −→ 0 as n→∞ such that

sup
{ϕ:‖ϕ‖∞≤1}

|E {ϕ(XT1+n, XT1+n+1, ...)} − Eπ∗ {ϕ}| = γn. (3.15)

Moreover, if E(T2 − T1)k <∞ for some k > 1 then γn = o(n1−k).

ii) Let Fk = σ(X0, X1, ...., Xk). For γ(n) = sup
j≥n

γj, n ≥ 0 we have

| {ϕ(Xk+n, Xk+n+1, ...)|Fk} − Eπ∗ {ϕ} | (3.16)

≤ ‖ϕ‖∞ (1 + γ(0))P (TNk+1 − k > n/2|Fk) + ‖ϕ‖∞ γ(n/2)

where E∗ denotes expectation with respect to the probability measure π∗ given by

π∗(A) =
1

µT
E

{
T2−1∑
j=T1

IA(Xj, Xj+1, ...)

}
, A ∈ G × G × G · · · .

Proof. i) Let

an = E {ϕ(XT1+n, XT1+n+1, ...)}

bn = E {ϕ(XT1+n, XT1+n+1, ...)I(T2 − T1 > n)} . (3.17)

By the regenerative property, the sequence {an}n≥1 satisfies the renewal equation

an = bn +
n∑
j=0

an−jP (T2 − T1 = j).

In fact,

an = bn + E {ϕ(XT1+n, XT1+n+1, ...)I(T2 − T1 ≤ n)}

= bn +
n∑
j=0

E {ϕ(XT1+n, XT1+n+1, ...)I(T2 − T1 = j)}

= bn +
n∑
j=0

E {ϕ(XT1+n−j, XT1+n−j+1, ...)}P (T2 − T1 = j).
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Hence, since Tk = τ1 + τ1 + · · · τn where τj = Tj − Tj−1 from Theorem 1.4.3 follows

an =
n∑
j=0

bjuj where uj = P (Tk = j).

On the other hand, |bn| ≤ ‖ϕ‖∞ P (T2 − T1 > n) ≤ ‖ϕ‖∞, so, by Fubini’s theorem and by

(2.5),

∞∑
j=0

bj = E

{
∞∑
j=0

ϕ(XT1+n, XT1+n+1, ...)I(T2 − T1 > j)

}

= E

{
T2−1∑
j=T1

ϕ(XT1+n, XT1+n+1, ...)

}
= µTEπ∗ {ϕ} .

Thus,

|E {ϕ(XT1+n, XT1+n+1, ...)} − Eπ∗ {ϕ}| =

∣∣∣∣∣an − 1

µT

∞∑
j=0

bj

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=0

bjun−j −
1

µT

∞∑
j=0

bj

∣∣∣∣∣
≤

n∑
j=0

|bj|
(
un−j −

1

µT

)
+

1

µT

∞∑
j=n+1

|bj|

≤ ‖ϕ‖∞
n∑
j=0

P (T2 − T1 > j)

(
un−j −

1

µT

)

+ ‖ϕ‖∞
∞∑

j=n+1

P (T2 − T1 > j). (3.18)

Let γn =
n∑
j=0

P (T2 − T1 > j)

(
un−j −

1

µT

)
+

∞∑
j=n+1

P (T2 − T1 > j) then γn → 0 as n→∞.

Indeed, by Theorem 1.4.2 i) un −→
1

µT
as n→∞. Since µT = E(T2−T1) <∞, given ε > 0

there exists n such that
∞∑

j=n+1

P (T2 − T1 > j) <
ε

2
. Thus, by (3.18)

sup
{ϕ:‖ϕ‖∞≤1}

|E {ϕ(XT1+n, XT1+n+1, ...)} − Eπ∗ {ϕ}| = γn.

Now, if E
{

(T2 − T1)k
}
<∞ for some k > 1 from Theorem 1.4.2 ii) we have that

un =
1

µT
+ o(n1−k).
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This implies that

sup
j≥n

∣∣∣∣uj − 1

µT

∣∣∣∣ = o(n1−k). (3.19)

Substituting this relation in (3.18) we obtain

|E {ϕ(XT1+n, XT1+n+1, ...)} − Eπ∗ {ϕ}| ≤ ‖ϕ‖∞
n∑
j=0

P (T2 − T1 > j) sup
k≥n/2

(
uk −

1

µT

)

+ ‖ϕ‖∞
∞∑

j=n+1

P (T2 − T1 > j).

≤ ‖ϕ‖∞ sup
k≥n/2

(
uk −

1

µT

)
+ ‖ϕ‖∞

∞∑
j=n/2

P (T2 − T1 > j)

≤ ‖ϕ‖∞ sup
k≥n/2

(
uk −

1

µT

)
+ ‖ϕ‖∞ n

1−k
∞∑

j=n/2

jk−1P (T2 − T1 > j)

= ‖ϕ‖∞ (n1−ko(1) + o(n1−k)) = ‖ϕ‖∞ o(n
1−k), (3.20)

the second-last equality is valid because E
{

(T2 − T1)k
}
< ∞. This completes the proof of

i).

ii) Let ϕ̂ = ϕ− Eπ∗ {ϕ}. Then

|E {ϕ̂(Xk+n, Xk+n+1, ...)|Fk}| ≤ |E {ϕ̂(Xk+n, Xk+n+1, ...)I(TNk+1 ≤ k + n)|Fk} |

+ |E {ϕ̂(Xk+n, Xk+n+1, ...)I(TNk+1 > k + n)|Fk} |

≤ |E {ϕ̂(Xk+n, Xk+n+1, ...)I(TNk+1 ≤ k + n)|Fk} |

+ ‖ϕ‖∞ P (TNk+1 − k > n|Fk)

≤ |E {ϕ̂(Xk+n, Xk+n+1, ...)I(TNk+1 ≤ k + n)|Fk} |

+ ‖ϕ‖∞ P (TNk+1 − k > n/2|Fk). (3.21)

For the first term in the last inequality, we use i) and the regenerative property to obtain
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|E {ϕ̂(Xk+n, Xk+n+1, ...)I(TNk+1 ≤ k + n)|Fk} |

= |E
{
ϕ̂(Xk+n−TNk+1

, Xk+n−TNk+1+1, ...)
}
E {I(TNk+1 − k ≤ n)|Fk} |

≤ ‖ϕ‖∞ γ(n+ k − TNk+1)P (TNk+1 − k ≤ n/2|Fk)

+ ‖ϕ‖∞ γ(0)P (TNk+1 − k > n/2|Fk)

≤ ‖ϕ‖∞ {γ(n/2) + γ(0)P (TNk+1 − k > n/2|Fk)} . (3.22)

So from (3.21) and (3.22), ii) follows.

Theorem 3.2.9. Let {Xn}n≥0 be an aperiodic positive recurrent regenerative with regener-

ation times {Tn}n≥0. Then

i) {Xn}n≥0 is α−mixing.

ii) If, In addition to the above hypotheses, {Xn}n≥0 is stationary and E
{

(T2 − T1)k
}
<∞

for some k > 1 then {Xn}n≥0 is α−mixing with constants α(n) = o(n1−k).

Proof. i) Let W be a bounded Fk-measurable random variable and let g : S×S×S · · · −→ R

be a bounded and measurable function. We will show that

|E {Wϕ(Xk+n, Xk+n+1, ...)} − E {W}E {ϕ(Xk+n, Xk+n+1, ...)} | ≤ α(n) −→ 0 as n→∞,

(3.23)

uniformly in k. Clearly, (3.23) is equivalent with the definition of α−mixing.

First, note that from Lemma 3.2.8 ii) follows there are constants an → 0 such that

sup
{ϕ:‖ϕ‖∞≤1}

|E {ϕ(Xn, Xn+1, ...)} − Eπ∗ {ϕ}| = an. (3.24)

On the other hand, using properties of expectation conditional, Lemma 3.2.8 ii) and (3.24)

we obtain

|E {Wϕ(Xk+n, Xk+n+1, ...)} − E {W}E {ϕ(Xk+n, Xk+n+1, ...)} |

≤ |E {Wϕ(Xk+n, Xk+n+1, ...)} − Eπ∗ {ϕ} |+ |E {W}E {ϕ(Xk+n, Xk+n+1, ...)} − Eπ∗ {ϕ} |

≤ |E {WE {ϕ(Xk+n, Xk+n+1, ...)|Fk} − Eπ∗ {ϕ}} |+ ‖W‖∞ |E {ϕ(Xk+n, Xk+n+1, ...)} − Eπ∗ {ϕ} |

≤ ‖W‖∞ ‖ϕ‖∞ {(1 + γ(0))P (TNk+1 − k > n/2) + γ(n/2) + an} → 0 as n→∞,
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uniformly in k. The last convergence is valid because µT =
∑∞

j=1 P (T2 − T1 ≥ j) < ∞ by

hypothesis and by (1.6) we have

lim
k→∞

P (TNk+1 − k > n) =
1

µT

∞∑
j=n+1

P (T2 − T1 ≥ j).

Thus P (TNk+1−k > n) tends to 0 as n→∞ uniformly with respect to k. Since γ(n/2)→ 0

and an → 0 as n→∞, uniformly in k, the proof of i) is complete.

ii) Since we are assuming that {Xn}n≥1 is stationary then

E {ϕ(Xk, Xk+1, ...)} = {ϕ(X0, X1, ...)} = Eπ∗ {ϕ} .

Thus, using properties of expectation conditional and Lemma 3.2.8 ii) we obtain

|E {Wϕ(Xk+n, Xk+n+1, ...)} − E {W}E {ϕ(Xk+n, Xk+n+1, ...)} |

= |E {E {Wϕ(Xk+n, Xk+n+1, ...)|Fk}} − E {W}Eπ∗ {ϕ} |

= |E {WE {ϕ(Xk+n, Xk+n+1, ...)|Fk} −WEπ∗ {ϕ}} |

= |E {W (E {ϕ(Xk+n, Xk+n+1, ...)|Fk} − Eπ∗ {ϕ}}) |

≤ ‖W‖∞ ‖ϕ‖∞ (1 + γ(0))P (TNk+1 − k > n/2) + γ(n/2) (3.25)

Since E
{

(T2 − T1)k
}
< ∞ from Lemma 3.2.8 i) follows γ(n/2) = o(n1−k). On the other

hand, by (1.6) we have

P (TNk+1 − k > n) ≤ 1

µT

∞∑
j=n+1

P (T2 − T1 ≥ j) ≤ n1−k

µT

∞∑
j=n+1

jk−1P (T2 − T1 > j) =
n1−k

µT
o(1),

the last equality is valid because E
{

(T2 − T1)k
}
<∞. Thus, P (TNk+1−k > n/2) = o(n1−k).

Finally, from last considerations and by (3.25) we obtain

|E {Wϕ(Xk+n, Xk+n+1, ...)} − E {W}E {ϕ(Xk+n, Xk+n+1, ...)} | = o(n1−k).

This completes the proof of ii).

3.3 Weak Convergence of the Empirical Process

In this section, we show that βn(x)⇒ B̃F̃ (x) in the Skorokhod space D with βn(x) defined by

(3.3) and B̃F̃ (x) given by (3.4). We prove this weak convergence under α−mixing conditions
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on {Xn}n≥0. As in the classical approach, our invariance principle consist of two parts, estab-

lishing finite dimensional convergence and tightness of the empirical process βn(x). We first

obtain the finite-dimensional convergence using Mallows distance, i.e., we will prove for fixed

x1, ..., xk ∈ R and ∀k ∈ N, (βn(x1), βn(x2), · · · , βn(xk))
d−→
(
B̃F̃ (x1), B̃F̃ (x2), · · · , B̃F̃ (xk)

)
.

For this, note that we can write the empirical process βn(x) as the sum

βn(x) =
1√
n

n∑
j=1

{
I(−∞,x](Xj)− F̃ (x)

}
.

Since {Xn}n≥1 is regenerative, by Proposition 2.2.1 we have the sequence
{
I(−∞,x](Xn)

}
n≥0

is also regenerative. So, we can apply the results obtained in section 2.4 to the empirical

process βn(x). In this sense, from Corollary (2.4.5) we obtain the following results.

Lemma 3.3.1. Let {Xn}n≥0 be a regenerative sequence with regeneration times {Tn}n≥0
such that E {(T2 − T1)2} <∞. Then, for x fixed

d2(βn(x), B̃F̃ (x))→ 0 as n→∞, (3.26)

where B̃F̃ (x) is a zero-mean Gaussian process defined by (3.4).

Proof. Let φ(Xj) = I(−∞,x](Xj), µ̃φ =

∫
φdπ̃ = F̃ (x) and

σ̃2
φ =

1

µT
E


(
T2−1∑
j=T1

I(−∞,x](Xj)− F̃ (x)

)2
 <∞.

Since |φ| ≤ 1 and E {(T2 − T1)2} <∞ from Corollary (2.4.5) follows

d2

(
βn(x)

σ̃φ
, Z0

)
→ 0 as n→∞,

where Z0
d
= N(0, 1). The last expression is equivalent with (3.26).

In the same way, we obtain the following result:

Lemma 3.3.2. Let {Xn}n≥0 be a regenerative sequence with regeneration times {Tn}n≥0
such that E {(T2 − T1)2} <∞. Then, for x fixed

βn(x)
d−→ B̃F̃ (x) as n→∞, (3.27)

where B̃F̃ (x) is a zero-mean Gaussian process defined by (3.4).
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Next we show the finite dimensional convergence of the empirical process βn(x) to the zero-

mean Gaussian process B̃F̃ (x).

Theorem 3.3.3. The empirical process βn(x) converges to a zero-mean Gaussian process

B̃F̃ (x) in the sense of finite-dimensional distributions, i.e., for fixed x1, ..., xk ∈ R and ∀k ∈ N

(βn(x1), βn(x2), · · · , βn(xk))
d−→
(
B̃F̃ (x1), B̃F̃ (x2), · · · , B̃F̃ (xk)

)
(3.28)

Proof. Case k = 1 follows from Lemma 3.3.2. For k = 2, let a, b ∈ R and Fn,2 and G2 be the

distribution functions of the random variables

aβn(x1) + bβn(x2) and aB̃F̃ (x1) + bB̃F̃ (x2),

respectively.

By definition of Mallows distance and the classic inequality

|x+ y|p ≤ 2p−1(|x|p + |y|p) x, y ∈ R and p ≥ 1,

we obtain

d22(Fn,2, G2) ≤ E|aβn(x1) + bβn(x2)− (aB̃F̃ (x1) + bB̃F̃ (x2))|2

= E|a(βn(x1)− B̃F̃ (x1)) + b(βn(x2)− B̃F̃ (x2))|2

≤ 2
{
|a|2E|βn(x1)− B̃F̃ (x1)|2 + |b|2E|βn(x2)− B̃F̃ (x2)|2

}
= 2

{
|a|2d22(βn(x1), B̃F̃ (x1)) + |b|2d22(βn(x2), B̃F̃ (x2))

}
In the last equality we have used Theorem 1.5.2 with (βn(xi), B̃F̃ (xi))

d
= Fβn(xi)∧FB̃F̃ (xi)

, i =

1, 2. From Lemma 3.3.1 follows

d22(βn(xi), B̃F̃ (xi))
n→∞−→ 0, i = 1, 2,

Thus,

d2(Fn,2, G2)
n→∞−→ 0.

i.e., for any a, b ∈ R,

d22

(
aβn(x1) + bβn(x2), aB̃F̃ (x1) + bB̃F̃ (x2)

)
n→∞−→ 0.
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Then by Theorem 1.5.1

aβn(x1) + bβn(x2)
d−→ aB̃F̃ (x1) + bB̃F̃ (x2),

and by Crámer- Wold Theorem follow that

(βn(x1), βn(x2))
d−→ (B̃F̃ (x1), B̃F̃ (x2)).

For the general case we use mathematical induction. If p ≥ 1, we have the inequality∣∣∣∣∣
k∑
j=1

aj

∣∣∣∣∣
p

≤ 2(k−1)(p−1)|a1|p +
k∑
j=2

2(k−j+1)(p−1)|aj|p, aj ∈ R, j = 1, ...., k. (3.29)

Let a1, a2, ...., ak ∈ R and let Fn,k and Gk be the distribution functions of the random

variables
k∑
j=1

ajβn(xj) and

k∑
j=1

ajB̃F̃ (xj),

respectively.

By definition of Mallows distance and Inequality (3.29) we have

d22(Fnk
, Gk) ≤ E

∣∣∣∣∣
k∑
j=1

ajβn(xj)−
k∑
j=1

ajB̃F̃ (xj)

∣∣∣∣∣
2

= E

∣∣∣∣∣
k∑
j=1

aj(βn(xj)− B̃F̃ (xj))

∣∣∣∣∣
2

≤ 2(k−1)|a1|2E|βn(x1)− B̃F̃ (x1)|2 +
k∑
j=2

2(k−j+1)|aj|2E|βn(xj)− B̃F̃ (xj)|2

= 2(k−1)|a1|2d22(βn(x1), B̃F̃ (x1)) +
k∑
j=2

2(k−j+1)|aj|2d22(βn(xj), B̃F̃ (xj)).

In the last equality we have used Theorem 1.5.2 with (βn(xi), B̃F̃ (xi))
d
= Fβn(xi) ∧FB(xj), i =

1, 2, ..., k. Again, from Lemma 3.3.1 follows

d22(βn(xi), B̃F̃ (xj))
n→∞−→ 0, i = 1, 2, ..., k.

Thus

d2(Fn,k, Gk)
n→∞−→ 0.

Then, we have for any a1, a2, ...., ak ∈ R

d2

(
k∑
j=1

ajβn(xj),
k∑
j=1

aB̃F̃ (xj)

)
n→∞−→ 0.
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By Theorem 1.5.1, the last convergence implies that

k∑
j=1

ajβn(xj)
d−→

k∑
j=1

ajB̃F̃ (xj) as n→∞,

and from Crámer- Wold Theorem follows that

(βn(x1), βn(x2), · · · , βn(xk))
d−→
(
B̃F̃ (x1), B̃F̃ (x2), · · · , B̃F̃ (xk)

)
.

This completes the proof.

Observe that from Theorem 2.3.2 we have that CLT is valid to regenerative sequences

{ϕ(Xn)}n≥0 where ϕ can be a Lipschitz functions. In the case that we have not an suit-

able moment bound of the type (3.6) that would allow us to use Theorem 3.2.2 obtained

by Dehling, Durieu and Volny (2009), we establish an alternative invariance principle under

strong mixing conditions. We already obtained the finite dimensional convergence, then it

remains to show that βn(x) is tight. For this, from Theorem 3.2.9 we have that a regen-

erative sequence is α−mixing. So, tightness follows from Shao and Yu’s tightness criterion

(Theorem 3.2.7) in the same way as in the proof of Theorem 2.2. in Shao and Yu (1996).

In this sense, the previous observations suggest the following condition:

Condition 3.3.4. Let {Xn}n≥1 be an aperiodic, positive recurrent and stationary regenera-

tive sequence with regeneration times {Tn}n≥1 satisfying E(T2−T1)2 <∞. Suppose that the

canonical distribution F̃ is continuous. And, assume the following conditions

i) α(n) = O(n−θ−ε) for some θ ≥ 1 +
√

2 and ε > 0 or

ii) F̃ satisfies (3.9) and the partial sums of {ϕ(Xn)}n≥0 with ϕ bounded Lipschitz has a

bound on the fourth moments of the type (3.6).

Theorem 3.3.5. Assume that Condition 3.3.4 is satisfied. Then

βn(x)⇒ B̃F̃ (x) in D(−∞,∞), (3.30)

where B̃F̃ (x) is a zero-mean Gaussian process defined by (3.4).
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Proof. If Condition 3.3.4, ii) is valid then the weak convergence (3.30) follows from Theorem

3.2.2. So, we assume Condition 3.3.4, i). Note that we may confine our attention to the case

in which {Xn}n≥1 is uniformly distributed over [0, 1]. Indeed,
{
F̃ (Xn)

}
n≥1

is α−mixing

and regenerative with regeneration times {Tn}n≥1, and, since F̃ is continuous, F̃ (Xn) is

uniformly distributed. If Un(t) is the empirical distribution function for Ũ1 = F̃ (X1), Ũ2 =

F̃ (X2), ..., Ũn = F̃ (Xn), and if

un(t) =
√
n(Un(t)− t) (3.31)

then, with probability 1,

un(F̃ (x)) = βn(x)

for all x. If the theorem is true in the uniform case, then un(·) ⇒ B̃(·) in D[0, 1], where B̃

is a zero-mean Gaussian process and

Cov(B̃(s), B̃(t)) = s ∧ t− st

+
∞∑
j=1

Cov
{
I[0,s](F̃ (X0)), I[0,t](F̃ (Xj))

}
+

∞∑
j=1

Cov
{
I[0,t](F̃ (X0)), I[0,s](F̃ (Xj))

}
. (3.32)

Define the mapping z −→ z ◦ F̃ from the Skorokhod space D in D . Since z is continuous

follows by mapping Theorem 1.8.1 that un(·)⇒ B̃(·) implies βn(·)⇒ B̃F̃ (·). Thus we need

only treat the uniform case. By Theorem 3.3.3, the finite dimensional distributions of un(t)

converge to the corresponding finite dimensional distributions of B̃(t). The tightness of un(t)

follows from Shao and Yu’s tightness criterion (Theorem 3.2.7) in the same way as in the

proof of Theorem 2.2. in Shao and Yu (1996).

Corollary 3.3.6. Let {Xn}n≥1 be an aperiodic, positive recurrent and stationary regenerative

sequence with regeneration times {Tn}n≥1 satisfying E
{

(T2 − T2)θ+ε
}
< ∞ for some θ ≥

2 +
√

2 and ε > 0. Then,

βn(x)⇒ B̃F̃ (x) in D(−∞,∞),

where B̃F̃ (x) is a zero-mean Gaussian process defined by (3.4).
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Proof. By Theorem 3.2.9 we have that {Xn}n≥0 is α(n)−mixing with constants α(n) =

o(n1−(θ+ε)). Then Condition 3.3.4, i) is satisfied. So, the result follows from the previous

theorem.

Remark 3.3.1. Our condition 3.3.4 requires stationarity of the regenerative sequence {Xn}n≥1.

In many cases {Xn}n≥1 is not stationary, but is possible to make the regenerative sequence a

stationary and regenerative sequence with marginal distribution π̃ and with the same asymp-

totic behavior. There are different works about the construction of the stationary version of

{Xn}n≥0 which is quite technical and for which we will omit the details, see, for example, [61]

for a construction. When {Xn}n≥1 is not stationary,, the covariance function of the limit

process B̃F̃ is given by

E(B̃F̃ (x), B̃F̃ (y)) = F̃ (x ∧ y)− F̃ (x)F̃ (y)

+
∞∑
j=2

E
{
I(−∞,x](X

∗
1 )− F̃ (x), I(−∞,y](X

∗
j )− F̃ (y)

}
+

∞∑
j=2

E
{
I(−∞,y](X

∗
1 )− F̃ (y), I(−∞,x](X

∗
j )− F̃ (x)

}
.

where {X∗n}n≥0 is a stationary version of {Xn}n≥0. For the technical details of this relation,

see, for instance, Glynn (1990).

Now, we will present an alternative proof of the weak convergence of the empirical process

βn(·) substituting mixing assumptions by the condition that the inter-regeneration times (or

length of the cycles) of the regenerative sequence be bounded. This resul is interesting be-

cause we show tightness of βn(·) without to use estimates valid for mixing process, we obtain

moment bounds for partial sums of regenerative sequences using definitions and properties

we studied in Chapter 2.

The proof of the following estimative makes use of some ideas from Proposition 8 in Clémençon

(2001).

Lemma 3.3.7. Let {Xn}n≥1 be an aperiodic, positive recurrent regenerative sequence with

regeneration times {Tn}n≥1 such that |Tn−Tn−1| ≤M for every n ≥ 1, where M is a positive
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constant. Then for p ≥ 2

E

∣∣∣∣∣
n∑
i=1

ϕ(Xi)

∣∣∣∣∣
p

≤ C(p,M)
{(
Eπ̃
{
ϕ2
}) p

2 n
p
2 + Eπ̃ {|ϕ|p}n

}
∀ϕ ∈ L1(S,G, π̃), (3.33)

where C(p,M) is a constant depending only on p and M .

Proof. To make the notation easier, we will assume that all cycles of {Xn}n≥0 have the same

distribution. Let Nn = sup {k : Tk ≤ n < Tk+1}. Then we have

n∑
i=1

ϕ(Xi) =
Nn−1∑
k=0

Yk +
n∑

i=TNn

ϕ(Xi) where Yk =

Tk+1−1∑
i=Tk

ϕ(Xi).

Hence, we deduce

E

∣∣∣∣∣
n∑
i=1

ϕ(Xi)

∣∣∣∣∣
p

≤ 2p−1

E
∣∣∣∣∣
Nn−1∑
k=0

Yk

∣∣∣∣∣
p

+ E

∣∣∣∣∣∣
n∑

i=TNn

ϕ(Xi)

∣∣∣∣∣∣
p . (3.34)

Recall that {Yk}k≤0 is a i.i.d. sequence with mean zero and thus by Lp- Doob inequality

applied to the positive submartingale
(∣∣∣∑l

k=0 Yk

∣∣∣)
l≥1

, write

E

∣∣∣∣∣
Nn−1∑
k=0

Yk

∣∣∣∣∣
p

≤ E

(
max
1≤l≤n

∣∣∣∣∣
l∑

j=0

Yk

∣∣∣∣∣
p)
≤
(

p

p− 1

)p
E

∣∣∣∣∣
n∑
j=1

Yk

∣∣∣∣∣ . (3.35)

Then, apply Rosenthal inequality

E

∣∣∣∣∣
n∑
j=1

Yk

∣∣∣∣∣ ≤ C1(p)
{

(E
{
Y 2
i

}
)
p
2n

p
2 + E {|Yi|p}n

}

= C1(p)


E{T2−1∑

i=T1

ϕ(Xj)

}2


p
2

n
p
2 + E

∣∣∣∣∣
T2−1∑
i=T1

ϕ(Xj)

∣∣∣∣∣
p

n


≤ C1(p)


(
E

{
(T2 − T1)

T2−1∑
i=T1

ϕ(Xj)
2

}) p
2

n
p
2 + E

{
(T2 − T1)p−1

T2−1∑
i=T1

|ϕ(Xj)|p
}
n


≤ C1(p)

Mp/2E

{
T2−1∑
i=T1

ϕ(Xj)
2

} p
2

n
p
2 +Mp−1E

{
T2−1∑
i=T1

|ϕ(Xj)|p
}
n


= C1(p)M

p
{(
Eπ̃
{
ϕ2
}) p

2 n
p
2 + Eπ̃ {|ϕ|p}n

}
. (3.36)
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In the last equality we have used (2.5). For the second term in (3.34) , we obtain the bound

E

∣∣∣∣∣∣
n∑

i=TNn

ϕ(Xi)

∣∣∣∣∣∣
p

≤ E

∣∣∣∣∣∣
TNn+1−1∑
i=TNn

|ϕ(Xi)|

∣∣∣∣∣∣
p

≤ E

(TNn+1 − TNn)p−1
TNn+1−1∑
i=TNn

|ϕ(Xi)|p


≤ Mp−1E


TNn+1−1∑
i=TNn

|ϕ(Xi)|p


= MpEπ̃ {|ϕ|p} . (3.37)

Again, in the last equality we have used (2.5). Thus, by (3.34), (3.36) and (3.37) we have

E

∣∣∣∣∣
n∑
i=1

ϕ(Xi)

∣∣∣∣∣
p

≤
(

p

p− 1

)p
C1(p)M

p
{(
Eπ̃
{
ϕ2
}) p

2 n
p
2 + Eπ̃ {|ϕ|p}n

}
+ MpEπ̃ {|ϕ|p}n

≤ C2(p)M
p
{(
Eπ̃
{
ϕ2
}) p

2 n
p
2 + Eπ̃ {|ϕ|p}n

}
(3.38)

and (3.33) follows.

From the previous estimate, we can obtain an inequality of type (3.14) and thus we can

establish the tightness of βn(·) as follows.

Theorem 3.3.8. Let {Xn}n≥1 be an aperiodic, positive recurrent regenerative sequence with

regeneration times {Tn}n≥1 such that the sequence {Tn − Tn−1}n≥1 is bounded. Then we have

βn(x)⇒ B̃F̃ (x) in D(−∞,∞), (3.39)

where B̃F̃ (x) is a zero-mean Gaussian process defined by (3.4).

Proof. As in proof of Theorem (3.3.5) we treat the uniform case. Let un(·) the uniform

empirical process defined in (3.31). By Theorem 3.3.3, the finite dimensional distributions

of un(·) converge to the corresponding finite dimensional distributions of B̃(t) defined by

(3.32) . To prove that un(t) is tight, fix ε > 0 and η > 0 and let s, t ∈ [0, 1]. Take
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ϕ(x) = I[0,t](x)− I[0,s](x)− (t− s) and p = 4 in Lemma 3.3.7. Then

E

∣∣∣∣∣
n∑
i=1

I[0,t](Ui)− I[0,s](Ui)− (t− s)

∣∣∣∣∣
4

≤ C[
(
Eπ̃
{

(I[0,t](x)− I[0,s](x)− (t− s))2
})2

n2

+ Eπ̃

{∣∣I[0,t](x)− I[0,s](x)− (t− s)
∣∣4}n]

≤ C[|t− s|2n2 + |t− s|n], (3.40)

where C depends on p and M alone. If
ε

n
≤ |t− s| we have,

E|un(t)− un(s)|4 ≤ 2C

ε
(t− s)2. (3.41)

Note that estimative (3.41) is of type (3.14). So, tightness follows form Shao and Yu’s

tightness criterion (Theorem 3.2.7).

3.4 Convergence of the Empirical Quantile Process

Let {Xn}n≥0 be an aperiodic and a positive recurrent regenerative sequence with values in

R and regeneration times {Tn}n≥0 such that with µT = E(T2 − T1) > 0. As before, the

canonical measure F̃ (x) and the empirical distribution function Fn(x) are given by

F̃ (x) =
1

µT
E

(
T2−1∑
j=T1

I(−∞,x](Xj)

)

Fn(x) =
1

n

n∑
j=1

I(−∞,x](Xj) , x ∈ R, n ≥ 1,

Define the quantile function F̃−1 of F̃ and the empirical quantile function F−1n of Fn by

F̃−1(t) = inf
{
x ∈ R : F̃ (x) > t

}
, 0 < t ≤ 1, F̃−1(0) = F̃−1(0+)

F̃−1n (t) = inf
{
x ∈ R : F̃n(x) > t

}
, 0 < t ≤ 1, F̃−1n (0) = F̃−1n (0+)

Just imitating (3.3) consider

qn(t) =
√
n(F−1n (t)− F̃−1(t)), 0 < t < 1, n ≥ 1 (3.42)
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be the empirical quantile process associated to regenerative sequence {Xn}n≥0 with regen-

eration times {Tn}n≥0 and consider

vn(t) =
√
n(U−1n (t)− t), 0 < t < 1, n ≥ 1. (3.43)

be the uniform quantile process associated to uniform regenerative sequence.

Remark 3.4.1. If F̃ is continuous, F̃ (Xn) is uniformly distributed and if Un(t) is the empir-

ical distribution function for F̃ (X1), F̃ (X2), ..., F̃ (Xn), and if the uniform empirical process

is given by

un(t) =
√
n(Un(t)− t)

then, with probability 1,

un(F̃ (x)) = βn(x) for all x (3.44)

where βn(x) =
√
n(Fn(x)− F̃ (x)). In this case we also have

B̃F̃ (x) = B̃(F̃ (x)) for all x. (3.45)

3.4.1 Pointwise Convergence of the Empirical Quantile Process

In this subsection, we prove that for t fixed, the process qn(t) converges in distribution to

the random variable − B̃(·)
f̃(F̃−1(·))

where f̃(x) =
dF̃ (x)

dx
and B̃(·) is given by (3.47) . For this,

we need to obtain the convergence in distribution of un(t) and vn(t).

Theorem 3.4.1. Assume that Condition 3.3.4 is satisfied. Then

un(·) d−→ B̃(·) (3.46)

where B̃ is a zero-mean Gaussian process and

Cov(B̃(s), B̃(t)) = s ∧ t− st

+
∞∑
j=2

Cov
{
I[0,s](F̃ (X1)), I[0,t](F̃ (Xj))

}
+

∞∑
j=2

Cov
{
I[0,t](F̃ (X1)), I[0,s](F̃ (Xj))

}
. (3.47)
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Proof. Since F̃ is a continuous function and by the relationships (3.4.1) and (3.45) we have

un(F̃ (x)) = βn(x) and B̃F̃ (x) = B̃(F̃ (x)) for all x . Thus, the result follows by letting

t = F̃ (x) in (3.27).

Now, we prove that vn(t) converges in distribution to random variable −B̃(t), for t fixed. The

proof of this result is based on the Lemma 1.8.6 and Skorokhod’s representation Theorem

(Theorem 1.8.5).

Theorem 3.4.2. Assume that Condition 3.3.4 is satisfied. Then

vn(t)
d−→ −B̃(t). (3.48)

Proof. From Theorem 3.4.1, for t fixed we have
√
n(Un(t) − t) = un(t)

d−→ B̃(t). By Sko-

rokhod representation (Theorem 1.8.5) exists random variables u∗n(t)
d
= un(t) and B∗(t)

d
=

B̃(t) such that
√
n(U∗n(t)− t) = u∗n(t)

a.s.−→ B∗(t) in Skorokhod topology and by Remark 1.8.1

since B∗(t) is continuous this convergence is locally uniform, i.e.,

lim
n→∞

sup
0≤t≤1

|
√
n(U∗n(t)− t)−B∗(t)| a.s.= 0.

By Lemma 1.8.6

lim
n→∞

sup
0≤t≤1

|
√
n((U∗n)−1(t)− t) +B∗(t)| a.s.= 0.

For t fixed this implies
√
n((U∗n)−1− t) a.s.−→ −B∗(t). Since (U∗n)−1(t)

d
= U−1n (t) and −B∗(t) d

=

−B̃(t) we have

vn(t) =
√
n(U−1n (t)− t) d−→ −B̃(t).

Next for t ∈ (0, 1) fixed, we prove the convergence in distribution of the empirical quantile

process qn(t) defined by (3.42).

Theorem 3.4.3. Assume that Condition 3.3.4 is satisfied. If F̃ is absolutely continuous

distribution function with a strictly positive density function f̃ = F̃ ′ then

qn(t)
d−→ − B̃(t)

f̃(F̃−1(t))
. (3.49)
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Proof. By definition of vn(t) and qn(t) we have

∣∣∣∣∣∣∣
qn(t)(
F̃−1(t)

)′ − vn(t)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
√
n(F−1n (t)− F̃−1(t))(

F̃−1(t)
)′ −

√
n(U−1n (t)− t)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
√
n(U−1n (t)− t)

 F−1n (t)− F̃−1(t)

(U−1n (t)− t)
(
F̃−1(t)

)′ − 1


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
√
n(U−1n (t)− t)

 F̃−1(U−1n (t))− F̃−1(t)

(U−1n (t)− t)
(
F̃−1(t)

)′ − 1


∣∣∣∣∣∣∣ −→ 0.

(3.50)

To see this, note that
F̃−1(U−1n (t))− F̃−1(t)

(U−1n (t)− t)
n→∞−→

(
F̃−1(t)

)′
because U−1n (t) → t uniformly

and by Theorem 3.4.2,
√
n(U−1n (t)− t) d−→ −B̃(t).

On the other hand,
(
F̃−1(t)

)′
=

1

f̃(F̃−1(t))
because F̃ is absolutely continuous. Therefore,

qn(t)
d−→ −

(
F̃−1(t)

)′
B̃(t) = − B̃(t)

f̃(F̃−1(t))
.

3.4.2 Weak Convergence of the Empirical Quantile Process

Finally, as a consequence of the Bahadur representation of sample quantiles under α-mixing

coefficients obtained by Xing, Yang, Liu et al. (2012), we derive weak convergence of the

empirical quantile process qn(t) in the Skorokhod space D. First, we obtain weak con-

vergence of the uniform quantile process vn(t) given by (3.43) using properties of locally

uniformly aproximation of monotone functions ( Lemma 1.8.6) together with Skorokhod’s

representation Theorem (Theorem 1.8.5).

Theorem 3.4.4. Assume that Condition 3.3.4 is satisfied. Then

vn(t)⇒ −B̃(t)
d
= B̃(t) in D[0, 1]. (3.51)

Proof. Using relationships (3.4.1) and (3.45) and by letting t = F̃ (x) in (3.30) we have

un(t) =
√
n(Un(t)− t) d⇒ B̃(t) in D[0, 1].
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Thus, the Skorokhod’s representation (Theorem 1.8.5) gives random elements u∗n and B∗

defined on a new sample space such that u∗n
d
= un, B∗

d
= B̃ and u∗n(t)

a.s.−→ B∗(t) in D[0, 1].

Because B∗(t) has a.s continuous sample paths, this implies that

sup
0≤t≤1

|u∗n(t)−B∗(t)| a.s.−→ 0. (3.52)

Defining U∗n(t) :=
u∗n(t)√
n

+ t, we have U∗n(t)
d
= Un(t) and (3.52) is equivalent to

sup
0≤t≤1

|
√
n(U∗n(t)− t)−B∗(t)| a.s.−→ 0

By Vervaat’s lemma ( Lemma 1.8.6) we have
√
n((U∗n)−1(t)−t) a.s.−→ −B∗(t) locally uniformly,

or equivalently,
√
n((U∗n)−1(t)− t) a.s.−→ −B∗(t) in D[0, 1].

Since (U∗n)−1(t)
d
= U−1n (t) we obtain the desired weak convergence

vn(t) =
√
n((U−1n (t)− t)⇒ −B̃(t)

d
= B̃(t).

Using the previous result we prove weakly convergence of the empirical quantile process

qn(t). Observe that qn(t) =
√
n(F̃−1(U−1n (t)) − F̃−1(t)) and if F̃ ′ exists, using the mean

value theorem, we can write

qn(t) =
√
n(U−1n (t)− t)

(
F̃−1(ξn)

)′
for t ∧ U−1n (t) ≤ ξn ≤ t ∨ U−1n (t).

On the other hand, let φ(s) =
(
F̃−1(ξn)

)′
s then qn(t) =

(
F̃−1(ξn)

)′
vn(t). By (3.51) and

since φ(s) is a continuous function by the continuous mapping Theorem 1.8.1, we have

qn(t) =
(
F̃−1(ξn)

)′
vn(t) = φ(vn(t))⇒ φ(−B(t)) = −

(
F̃−1(ξn)

)′
B̃(t).

Therefore, if F is absolutely continuous with positive density

qn(t)⇒ − B̃(t)

f̃(F̃−1(ξn))
in D[0, 1], for t ∧ U−1n (t) ≤ ξn ≤ t ∨ U−1n (t).

In this sense, using a Bahadur representation for quantiles of α−mixing samples we can

obtain the weak convergence of qn(t) in a more general way.
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Theorem 3.4.5. Assume that Condition 3.3.4, i) is satisfied. Let F̃ (x) be an absolutely

continuous distribution function with a strictly positive density function f̃ = F̃ ′ such that f̃ ′

is bounded in some neighborhood of F̃−1(t). Then we have the weak convergence

qn(t)⇒ − B̃(t)

f̃(F̃−1(t))
in D[0, 1]. (3.53)

Proof. By Bahadur representation (1.22) we have

√
n(F−1n (t)− F̃−1(t)) =

1

f̃(F̃−1(t))

√
n
(
t− Fn(F̃−1(t))

)
+
√
nRn

=
1

f̃(F̃−1(t))

√
n(t− Un(t)) +

√
nRn,

where Rn = O(n−3/4 log n). From our Theorem 3.3.5 and from Slutsky’s theorem follow that

the first term on the right side converges weakly in D[0, 1] to − B̃(t)

f̃(F̃−1(t))
. The second term

vanishes as n→∞. Again by Slutsky’s theorem we have

qn(t) =
√
n(F−1n (t)− F̃−1(t))⇒ − B̃(t)

f̃(F̃−1(t))
in D[0, 1].

This complete the proof.

Remark 3.4.2. From Corollary 3.2.5 we have that the process empirical associated to an

L-geometrically ergodic Markov chain {Xn}n≥0 with values in R satisfies the invariance

principle of Theorem 3.2.2. Moreover, {Xn}n≥0 is α−mixing (see, Bradley(2005)). So,

from Bahadur representation (1.22) we can obtain the weak convergence (3.53) of the quantile

process qn(t) associated to the chain.
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Chapter 4

Similarity Tests

4.1 Introduction

Let a random sample of random variables X1, X2, ...., Xn with common distribution function

F . We consider two types of goodness-of-fit problems: i) test the null hypothesis F = F0 for

a fixed distribution function F0 and ii) F ∈ GG where GG is a suitable location-scale family.

One way to study the problem i) consists of employing a functional distance to measure the

discrepancy between the hypothesized distribution function F0 and the empirical distribution

function Fn. In this sense two statistics have received special attention in the literature:

Dn =
√
n ‖Fn − F‖∞ (Kolmogorov-Smirnov)

W 2
n = n

∫ ∞
−∞

(Fn(x)− F (x))2dF (x) (Cramér-von Mises)

where ‖Fn − F‖∞ = sup
x
|Fn(x)− F (x)|.

Asymptotic null distributions of Dn and W 2
n are commonly handled by using empirical

process techniques and weak convergence theory on the metric spaces. For the i.i.d. case,

knowing the weak convergence of the empirical process
√
n(Fn−F ) to the Brownian bridge

B and under the null hypothesis we have as n→∞,

Dn
d−→ ‖B‖∞ and W 2

n
d−→
∫ 1

0

B(t)2dt. (4.1)
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On the other hand, del Barrio et al. (1990; 2000) proposed a new approach for goodness-

of-fit tests based on the 2nd-order Mallows distance between the empirical distribution and

the distribution F . The statistic used was

√
nd2(Fn, F ) =

(
n

∫ 1

0

(F−1n (t)− F−1(t))2dt
)1/2

. (4.2)

For i.i.d. observations, Samworth and Johnson (2008) showed that under “regularity condi-

tions” the 2nd-order Mallows distance d2(Fn, F ) satisfies

√
nd2(Fn, F )

d−→
(∫ 1

0

B2(t)

f 2(F−1(t))
dt

)1/2

. (4.3)

Recent literature on statistics based on the 2nd-order Mallows distance has focused on

goodness-of-fit tests for location-scale families

GG =

{
H : H(x) = G

(
x− µ
σ

)
, µ ∈ R, σ > 0

}
.

To test F ∈ GG del Barrio et al. (1999) proposed the used of the statistics

Rn = 1−

(∫ 1

0

F−1n (t)G−1(t)dt

)2

σ̂2
n

(4.4)

where Fn is the usual empirical distribution and σ̂2
n the sample variance.

In this chapter, we study the asymptotic null distribution of the statistics Dn, W 2
n and

Rn for a regenerative sample. In our results, we replace the common distribution F and

the Brownian Bridge B of the i.i.d. case by the canonical measure F̃ given by (3.1) and

by the zero-mean Gaussian process B̃F̃ given by (3.4). In this sense, in section 4.2, our

Lemma 4.3.2 provides sufficient conditions to obtain the asymptotic null distribution of the

Kolmogorov-Smirnov and Cramér-von Mises statistics for a regenerative sequence {Xn}n≥1.

Finally, in section 4.3 we use the 2nd-order Mallows distance between the empirical distri-

bution and the canonical measure F̃ to study the statistics
√
nd2(Fn, F̃ ) and Rn defined by

(4.2) and (4.4), respectively. So, our Lemma 4.4.2 provides sufficient conditions to obtain
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the convergence (4.3) for a regenerative sample. In our Lemma 4.4.3 we establish the limit-

ing distribution of the statistics nRn under the null hypothesis, thai is, when the canonical

measure F̃ is a member of the location-scale family being tested.

The results obtained in this chapter follow from the weak convergence of the empirical and

quantile process associated toXn. In this sense, we know that any Harris chains {Xn}n≥1 on a

general state space that possess an atom A is a regenerative process with limiting distribution

Flim. By Kac’s Theorem we have Flim = F̃ where F̃ is the canonical distribution given by

F̃ (x) =
1

EA(TA)
EA

{
TA−1∑
j=0

I(−∞,x](Xj)

}
, x ∈ R,

where TA = inf {n ≥ 1, Xn ∈ A} the hitting time on A. Thus, our invariance principle

holds valid for Harris Markov chains and we may use the statistics described above to test

H0 : F̃ = F0 or F̃ ∈ GG. In Subsection 3.2.1, we discuss the empirical process associated with

a L-geometrically ergodic Markov chain {Xn}n≥0. Under some assumptions on the Markov

transition function it was shown that the invariance principle of Theorem 3.2.2 holds. Thus,

all the similarity tests proposed in this chapter can be applied for this type of Markov chains.

In order to prove our results we need to introduce some notation. Let C[0, 1] denote the

space of continuous functions on the interval [0, 1], endowed with the supremum norm and

the space D[0, 1] (respectively (−∞,∞)) denote the space of all real functions on [0, 1] (resp.

on (−∞,∞)) which are right-continuous and have left limits, endowed with the Skorohod

distance (see Billingsley 1986).

4.2 Harris Markov chains

In Chapter 2 we showed that any Harris recurrent chain is regenerative and perhaps this

example is the most important examples of regenerative processes. If {Xn}n≥0 is a Harris

irreducible Markov chain on a general state space that possess an atom A. we may define

hitting time on A by

TA = inf {n ≥ 1, Xn ∈ A}
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and the successive return times to A by

Tk(A) = inf {n : n ≥ Tk−1(A), Xn ∈ A} , k ≥ 2, (T1(A) := TA).

And let EA(·) be the expectation conditioned on X0 ∈ A. Also assume that {Xn}n≥0
is Harris recurrent, so, for any initial distribution, the probability of returning infinitely

often to the atom A is equal to one. By the strong Markov property it follows that, for

any initial distribution µ, the sample paths of the chain can be divided into i.i.d. blocks of

random length corresponding to consecutive visits to A, i.e., this type of chain is regenerative

according to the Definition 2.2.1 (see, Meyn and Tweedie (1996) for a detailed review and

references). The cycles can be defined by

η1 = (XT1(A), XT1(A)+1, ..., XT2(A)−1), ..., ηk = (XTk(A), XTk(A)+1, ..., XTk+1(A)−1).

For Harris recurrent chains the stochastic stability properties of the chain amount to proper-

ties concerning the speed of return time to the atom only. For instance, the following result

show that exist an unique stationary measure and this measure is given by the occupation

probability measure (2.4).

Theorem 4.2.1. [Meyn and Tweedie (1996), Kac’s Theorem] The Harris Markov chain

{Xn}n≥0 is positive recurrent if and only if EA(TA) <∞. The unique stationary measure π̃

is the occupation probability measure given by

π̃(B) =
1

EA(TA)
EA

{
TA−1∑
j=0

IA(Xj)

}
, B ∈ S. (4.5)

Remark 4.2.1. If the chain is positive Harris recurrent, it follows from Theorem 2.2.3, i)

that

1

n

n∑
j=0

ϕ(Xj)
a.s.−→ Eπ̃ {ϕ} , (4.6)

for any integrable function ϕ. Moreover, if the chain is aperiodic and positive Harris recur-

rent, it follows from Theorem 2.2.3, ii) that Xn
d−→ X as n → ∞, where X is distributed

according to π̃. Thus {Xn}n≥0 converges in distribution to a unique invariant probability

measure. In the real valued case, we will denote the limiting distribution by

F̃ (x) =
1

EA(TA)
EA

{
TA−1∑
j=0

I(−∞,x](Xj)

}
, x ∈ R. (4.7)
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On the other hand, as a consequence of our Corollary 3.3.6 and our Theorem 3.4.5 we obtain

weak convergence in the Skorokhod space D of the empirical process βn(x) =
√
n(Fn(x) −

F̃ (x)), x ∈ R and the quantile process qn(t) = n1/2(F−1n (t) − F̃−1(t)), t ∈ (0, 1) associated

to the Harris Markov chain {Xn}n≥0, where F̃ is the limiting distribution given by (4.7). We

call F̃ as the canonical distribution.

Corollary 4.2.2. Let {Xn}n≥0 be an aperiodic and positive Harris recurrent Markov chain

on R with an accessible atom A. Assume that the canonical distribution F̃ is continuous. If

E(T θ+εA ) <∞ for some θ ≥ 2 +
√

2 and ε > 0. then we have

βn(·)⇒ B̃(F̃ (·)) in D(−∞,∞) (4.8)

where B̃(·) is a zero-mean Gaussian processes and

Cov(B̃(s), B̃(t)) = s ∧ t− st

+
∞∑
j=1

Cov
{
I[0,s](F̃ (X0)), I[0,t](F̃ (Xj))

}
+

∞∑
j=1

Cov
{
I[0,t](F̃ (X0)), I[0,s](F̃ (Xj))

}
(4.9)

Corollary 4.2.3. Let {Xn}n≥0 be an aperiodic and positive Harris recurrent Markov chain

on R with an accessible atom A. Assume that F̃ satisfies the conditions of Theorem 3.4.5

with F̃ ′ = f̃ . If E(T θ+εA ) <∞ for some θ ≥ 2 +
√

2 and ε > 0 then we have

qn(t)⇒ B̃(t)

f̃(F̃−1(t))
in D[0, 1] (4.10)

where B̃(·) is the Gaussian process given by (4.9).

The similarity tests proposed below are based on the weak convergence of the empirical

and quantile process. So, as a consequence of Corollary 4.2.2 and Corollary 4.2.3 we will

obtain the asymptotic null distributions for the classical statistics of Kolmogorov-Smirnov

and Crámer-von Mises under the null hypothesis F̃ = F0. We will also obtain the asymptotic

null distributions of tests based on the 2nd-order Mallows distance include similarity tests

of location-scale families for Harris Markov chain with atom.
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4.3 Kolmogorov-Smirnov and Cramér-von Mises Tests

The well-known global measures of discrepancy are given by

√
n ‖Fn − F‖∞ (Kolmogorov-Smirnov)

n

∫ ∞
−∞

(Fn(x)− F (x))2dF (x) (Cramér-von Mises)

where ‖Fn − F‖∞ = sup
x
|Fn(x)− F (x)|.

For a regenerative sequence {Xn}n≥1 the common distribution F of the i.i.d. sequence is

replaced by the canonical measure F̃ .

Our Theorem 3.3.5 showed that under regularity conditions the empirical process

βn(x) =
√
n(Fn(x)− F̃ (x))

converges weakly to a zero-mean Gaussian process B̃F̃ =
{
B̃(F̃ (x)) : x ∈ R

}
with covariance

function

Cov(B̃(s), B̃(t)) = s ∧ t− st

+
∞∑
j=1

Cov
{
I[0,s](F̃ (X0)), I[0,t](F̃ (Xj))

}
+

∞∑
j=1

Cov
{
I[0,t](F̃ (X0)), I[0,s](F̃ (Xj))

}
. (4.11)

Now, we obtain the asymptotic null distribution of the Kolmogorov-Smirnov and Cramér-

von Mises statistics for a Harris Markov chain with atom and for a L-geometrically ergodic

Markov chain {Xn}n≥0. As in the i.i.d. case this results are based on the convergence of the

empirical processes associated to {Xn}n≥1. In this sense, our Corollary 3.3.6 and Corollary

3.2.5 suggest the following conditions.

Condition 4.3.1. i) Let {Xn}n≥0 be an aperiodic and positive Harris recurrent Markov

chain on R with an accessible atom A satisfying E(T θ+εA ) < ∞ for some θ ≥ 2 +
√

2 and ε > 0. And assume that the canonical distribution F̃ is continuous, or
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ii) Let {Xn}n≥0 be an L-geometrically ergodic Markov chain with values in R. Assume that

the distribution function F̃ of X0 is continuous and satisfies

ωF̃ (δ) ≤ D| log(δ)|−γ for some D > 0 and γ > 2. (4.12)

with ωF̃ given by (3.8).

Lemma 4.3.2. Assume that conditions 4.3.1 is satisfied. Then

√
n
∥∥∥Fn − F̃∥∥∥

∞

d−→
∥∥∥B̃F̃

∥∥∥
∞

(4.13)

and

n

∫ ∞
−∞

(Fn(x)− F̃ (x))2dF̃ (x)
d−→
∫ ∞
−∞

B̃2
F̃

(x)dF̃ (x) (4.14)

Proof. Under Condition 4.3.1 we have the hypotheses of our Corollary 3.3.6 satisfied. Thus

βn ⇒ B̃F̃ on (D,D, ‖·‖∞). On the other hand, we have that the mappings z −→
∫
z2(x)dF̃ (x)

and z −→ ‖z‖∞ from D in R are continuous and P (B̃F̃ ∈ C) = 1. And the results follows

from the continuous mapping Theorem 1.8.1.

To finish this section, it is worth pointing out again that if {Xn}n≥1 is a Markov chain with

general state space, positive Harris recurrent and aperiodic that posses an atom and limiting

distribution Flim then Flim = F̃ where

F̃ (x) =
1

EA(TA)
EA

{
TA−1∑
j=0

I(−∞,x](Xj)

}
, x ∈ R,

is the canonical distribution. Also, it is worth mentioning that Merlevede and Rio (2015)

obtained the KMT ( Komlós, Major and Tusnády) strong aproximation of empirical processes

associated to an Harris recurrent geometrically ergodic Markov chain {Xn}n≥1,

P

(
sup

1≤k≤n
|Sk − σ̃Wk| ≥ c log n+ x

)
≤ a exp(−bx). (4.15)

where Sk =
k∑
j=0

Xj, Wk is a sequence of Brownian motions, σ̃2 =
E

{(∑TA−1
j=0 Xj

)2}
EA(TA)

and a, b

and c are positives constants conveniently chosen. And this could well be used to eventually

derive rates of convergence similar to i.i.d. case.
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4.4 Similarity tests based on Mallows distance

For the i.i.d. sequence with empirical distribution Fn and a common distribution function

F , Samworth and Johnson (2008) showed that under “regularity conditions” the 2nd-order

Mallows distance d2(Fn, F ) satisfies

√
nd2(Fn, F )

d−→
(∫ 1

0

B2(t)

f 2(F−1(t))
dt

)1/2

(4.16)

where B is the Brownian bridge and f the density function of F .

Using the same type of arguments as in Samworth and Johnson (2008) we will extend the

use of statistics (4.16) to regenerative sequences.

Condition 4.4.1. Assume that condition 4.3.1 is satisfied. And suppose that the canonical

distribution F̃ possesses a density f̃ such that f̃(F̃−1(t)) is positive and continuous for 0 ≤

t ≤ 1 and that lim
t↓0

F̃−1(t) and lim
t↑1

F̃−1(t) are finite.

Essentially Condition 4.4.1 requires that de density f̃ is positive and has a bounded support.

In this case we do not need to worry about existence of 2nd moment ou higher moments.

Lemma 4.4.2. Assume that Condition 4.4.1 holds. Then

√
nd2(Fn, F̃ )

d−→

(∫ 1

0

B̃2(t)

f̃ 2(F̃−1(t))
dt

)1/2

(4.17)

where B̃ is given by (4.11).

Proof. The representation result, Theorem 1.5.2, allows us to write

nd22(Fn, F̃ ) =

∫ 1

0

n|F−1n (t)− F̃−1(t)|2dt =

∫ 1

0

qn(t)2dt (4.18)

where qn(t) is the empirical quantile process

qn(t) =
√
n(F−1n (t)− F̃−1(t)), 0 < t < 1. (4.19)

Our Theorem 3.4.5 show that qn(t)⇒ B̃q where B̃q =
B̃(t)

f̃(F̃−1(t))
.
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Note that Condition 4.4.1 guarantees the maximum of f̃ is positive and the right-hand side

of (4.17) is well defined. Since P (B̃ ∈ C) = 1 we can apply the continuous mapping Theorem

to the function

∫
z2(t)dt and (4.17) follows.

As pointed out in del Barrio et al.(1999) the right side of (4.17) is not easy to handle. For i.i.d.

case where instead of B̃ we have the classical Brownian bridge B with E(B2(t)) = t(1− t),

the integral ∫ 1

0

E(B(t)2)

f 2(F−1(t))
dt =

∫ 1

0

t(1− t)
f 2(F−1(t))

dt (4.20)

is not finite even if F is Gaussian. . If (4.20) is finite and F has second moment finite was

shown in Cuesta et al, (2000) that

nd22(Fn, F )
d−→
∫ 1

0

B2(t)

f 2(F−1(t))
dt.

Clearly, the condition that F has a second finite moment restricts the use of this result to

distributions of light tail. To weaken this hypothesis and extend these techniques for heavy

tail distributions one alternative is to use weighted Mallows distance as in Csörgő (2003),

del Barrio et al. (2005) or Dorea and Lopes (2016).

Let w : [0, 1] −→ [0, 1], w(t) ≥ 0 and

∫ 1

0

w(t)dt = 1. Considerer the weighted Mallows

distance

d22,w(Fn, F̃ ) =

∫ 1

0

(F−1n (t)− F̃−1(t))2w(t)dt

and

nd22,w(Fn, F̃ ) =

∫ 1

0

q2n(t)w(t)dt. (4.21)

By properly choose the weight function w, one should expect

√
nd2,w(Fn, F̃ )

d−→

(∫ 1

0

B̃2(t)

f̃ 2(F̃−1(t))
w(t)dt

)1/2

. (4.22)

Remark 4.4.1. Let B be a Brownian bridge, in the i.i.d. case under certain standard

conditions we have:

i) If

∫ 1

0

t(1− t)
f 2(F−1(t))

w(t)dt <∞ then nd22,w(Fn, F )
d−→
∫ 1

0

B2(t)

f 2(F−1(t))
w(t)dt.
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ii) If

∫ 1

0

∫ 1

0

(s ∧ t− st)2

f 2(F−1(s))f 2(F−1(t))
w(t)w(s)dt < ∞ but

∫ 1

0

t(1− t)
f 2(F−1(t))

w(t)dt = ∞ then

there exists {an}n≥1 such that

nd22,w(Fn, F )− an
d−→
∫ 1

0

B2(t)− E(B2(t))

f 2(F−1(t))
w(t)dt.

In Gaussian case the used weight function was w(t) ≡ 1 in ii), for distributions as

Weibull, Gamma, Lognormal and Gumbel among others,

w(t) =
1

I

L′(F−1(t))

F−1(t)
, 0 < t < 1

where

I =

∫ ∞
−∞

L2(x)f(x)dx with L(x) = −1− xf ′(x)

f(x)
, f(x) = F ′(x).

And in the α−stable case

w(t) =

 k∗t
−β, 0 < t < t∗

k∗(1− t)−β, t∗ ≤ t < 1.

where 0 < α < 2, β < −2/α and k∗ =
1− β

t1−β∗ + (1− t∗)1−β
.

iii) An essential result to obtain convergences in i) and ii) is the following approximation

(Theorem 6.2.1 in Csörgő and Horváth (1993))

n1/2−v sup
1

n+1
≤t≤1− 1

n+1

|f(F−1(t))qn(t)−Bn(t)|
(t(1− t))v

=

OP (log n) if v = 0

OP (1) if 0 < v ≤ 1/2
(4.23)

where {Bn(t)}n≥1 is an sequence of Brownian bridges

For regenerative samples, w(t) must be such

qn(·)
√
w(·)⇒ B̃(·)

f̃(F̃−1)(·)

√
w(·)

and then (4.22) follows by continuous mapping Theorem. For work on this direction, we

refer to Csörgő and Yu (1996). On the other hand, in future works we hope to use the KMT

strong approximation (4.15) to obtain an similar approximation as (4.23) for regenerative

sequences and then we could use the techniques of the i.i.d. case to obtain the convergence

(4.22). In this situation w(t) must be such∫ 1

0

E(B̃2(t))

f̃ 2(F̃−1(t))
w(t)dt <∞.
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4.4.1 Similarity Tests for Location-Scale Families

Consider the location-scale family generated by a distribution G with zero-mean and unit-

variance

GG =

{
H : H(x) = G

(
x− µ
σ

)
, µ ∈ R, σ > 0

}
. (4.24)

For a given distribution F we want to test F ∈ GG.

Based on the 2nd-order Mallows distance and for a sequence of i.i.d. random variables with

a common distribution F , del Barrio et al. (1999) proposed the used of the statistics

Rn = 1−

(∫ 1

0

F−1n (t)G−1(t)dt

)2

σ̂2
n

(4.25)

where Fn is the usual empirical distribution and σ̂2
n the sample variance. As shown in del

Barrio et al. (1999) the use of statistics (4.25) is fully justified by nothing that if

d2(F,GG) := inf {d2(F,H) : H ∈ GG} (4.26)

then the infimum is attained by takingH with mean µH = µF and σ2
H =

(∫ 1

0

G−1(t)F−1(t)dt

)2

.

Indeed, let H(x) = G

(
x− µH
σH

)
and µF and σ2

F the mean and variance of F . Then we have

H−1(t) = σHG
−1(t) + µH ,

∫ 1

0

(F−1(t))2dt = σ2
F + µ2

F ,

∫ 1

0

(H−1(t))2dt = σ2
H + µ2

H

and

d22(F,H) =

∫ 1

0

(
F−1(t)−H−1(t)

)2
dt

= σ2
F + µ2

F + σ2
H + µ2

H −
∫ 1

0

F−1(t)
(
σHG

−1(t) + µH
)
dt

= σ2
F + µ2

F + σ2
H + µ2

H − 2µFµH − 2σH

∫ 1

0

F−1(t)G−1(t)dt

= (µF − µH)2 + σ2
F +

(
σH −

∫ 1

0

F−1(t)G−1(t)dt

)2

−
(∫ 1

0

F−1(t)G−1(t)dt

)2

.
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By taking µH = µF and σ2
H =

(∫ 1

0

F−1(t)G−1(t)dt

)2

we attain the infimum and

d22(F,G)

σ2
F

= 1−

(∫ 1

0

F−1(t)G−1(t)dt

)2

σ2
F

= 1−

(∫ 1

0

(
F−1(t)− µF

)
G−1(t)dt

)2

σ2
F

.

The last equality shows that
d22(F,GG)

σ2
F

is invariant with respect to location or scale changes.

Hence, under null hypotheses F ∈ GG we may take F with zero-mean and unit-variance.

Now replacing F by the empirical distribution Fn and σ2
F by the sample variance σ̂2

n we get

Rn.

Moreover, we can write under null hypothesis

nσ̂2
nRn = An −Bn − Cn (4.27)

where

An =

∫ 1

0

q2n(t)dt, Bn =

(∫ 1

0

qn(t)dt

)2

and Cn =

(∫ 1

0

qn(t)F̃−1(t)dt

)2

being qn(·) the empirical quantile process associated to F̃ and defined in (4.19).

To establish the limiting distribution of the statistics nRn enough to derive the limiting

distribution of An, Bn and Cn (see, del Barrio et al. (2005) for details). Next we extend the

use of statistics nRn to regenerative sequences.

Lemma 4.4.3. Assume that Condition 4.4.1 holds. Then the statistics

nRn = 1−

(∫ 1

0

F−1n (t)F̃−1(t)dt

)2

σ̂2
n

(4.28)

converges to a non degenerated distribution given by∫ 1

0

B̃2(t)

f̃ 2(F̃ 1(t))
dt−

(∫ 1

0

B̃(t)

f̃(F̃ 1(t))
dt

)2

−

(∫ 1

0

B̃(t)F̃−1(t)

f̃(F̃ 1(t))
dt

)2

(4.29)
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Proof. We make use of Theorem 3.4.5:

qn(t)⇒ B(t)

f̃(F̃−1(t))

and the continuous mapping Theorem 1.8.1. Also, under null hypothesis it is assumed that

F̃ possesses unit-variance. Thus σ̂2
n

a.s.−→ 1 by the SLLN for regenerative sequences (Theorem

2.2.3, (i)). Since we are assuming that f̃ has bounded support, questions concerning existence

of moments do not arise. Also being f̃ positive we have the result directly by applying

continuous mapping Theorem.

Remark 4.4.2. As in the previous section one should explore the use of convenient weight

function in order to weaker the assumptions.
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