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Resumo  

Há mais de 20 anos se iniciou um intenso debate sobre os efeitos relativos da perda de 

habitat e da fragmentação sobre a biodiversidade, frente ao avanço da destruição dos habitats e 

conversão da vegetação nativa em agricultura e pastagem. Uma conclusão geral é que a 

quantidade de habitat disponível é determinante para a persistência das espécies em uma 

paisagem modificada, e que as interações entre fragmento e matriz influenciam as 

consequências ecológicas dessas mudanças para as espécies. Porém, em paisagens com 

diferentes níveis de cobertura vegetal remanescente, o tamanho dos fragmentos e o isolamento 

entre eles podem ter efeitos variáveis sobre a biodiversidade, sendo potencialmente mais fortes 

em paisagens intermediárias.  

Além disso, a degradação do habitat nos remanescentes resultante da conversão da 

paisagem pode contribuir para a perda de biodiversidade e para as mudanças na composição de 

espécies. Desta forma, processos ecológicos em diferentes escalas podem ocorrer 

simultaneamente, contribuindo para o desfecho do cenário de capacidade de sobrevivência das 

espécies nas paisagens fragmentadas. O conhecimento sobre essas questões pode contribuir 

significativamente para a eficácia das estratégias de manejo da paisagem aplicadas à 

conservação dos remanescentes nativos, das suas espécies habitantes e dos serviços 

ecossistêmicos prestados por elas. No cenário brasileiro, isso é de especial importância, pois a 

maior parte das áreas protegidas está localizada nas reservas legais e áreas de proteção 

permanente em áreas privadas.    

A resposta das espécies a esses processos espaciais e locais depende de suas 

características relacionadas ao uso do habitat, tolerância à matriz, habilidade de dispersão, dieta 

e nível trófico. Assim, identificar o conjunto de características funcionais das espécies que 

estejam relacionadas à capacidade de persistência em paisagens modificadas é uma estratégia 

valiosa para se compreender as consequências ecológicas e funcionais das perturbações 

antrópicas nos ecossistemas. Afinal, os atributos funcionais representam componentes do 

fenótipo de um organismo que influenciam processos ecossistêmicos. Desta forma, para se 

compreender melhor a dinâmica e função das espécies e comunidades sobrevivendo em 

paisagens modificadas pelo homem, e suas relações com o funcionamento dos ecossistemas, é 
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importante caracterizar a biodiversidade em dimensões que vão além da clássica abordagem 

taxonômica, como é o caso das perspectivas funcional e trófica.  

Neste contexto, esta tese visou investigar os efeitos relativos da perda de habitat, da 

fragmentação, e da qualidade dos remanescentes sobre diferentes aspectos da diversidade de 

pequenos mamíferos em áreas de floresta semidecídua no Cerrado, sob diferentes e 

complementares perspectivas (taxonômica, funcional e trófica). O trabalho está estruturado em 

três capítulos, e todos foram baseados em dados empíricos de captura dos animais realizados 

em 36 fragmentos florestais em áreas privadas no Estado de Goiás. Os remanescentes estiveram 

distribuídos em um gradiente de perda de habitat, estimado pela variação na proporção de 

cobertura vegetal nativa em uma escala de 15000 ha (10, 25 e 40%).  

O primeiro capítulo teve por objetivo verificar como os padrões de abundância, riqueza 

e diversidade taxonômica e funcional das comunidades de mamíferos, assim como a 

composição de espécies, são influenciados pelo tamanho de fragmento, dependendo da 

proporção de habitat disponível na paisagem; ainda, foi também avaliado se a qualidade dos 

remanescentes (estimado como estrutura da vegetação) afeta esses parâmetros das 

comunidades. As capturas e a coleta de dados sobre a vegetação ocorreram durante quatro 

campanhas entre os anos de 2018 e 2019, nas estações seca e chuvosa. Os efeitos do tamanho 

dos fragmentos nas comunidades não dependeram da quantidade de habitat na paisagem. 

Porém, foi detectado um aumento da abundância geral das espécies em fragmentos menores, e 

um efeito negativo da quantidade de habitat na abundância apenas de espécies generalistas. Por 

outro lado, houve maior riqueza de generalistas em paisagens mais conservadas, enquanto a 

riqueza de especialistas foi influenciada pela qualidade do habitat nos fragmentos, mais 

especificamente, por florestas com dossel mais fechado. Com relação à composição de espécies, 

a estrutura da paisagem foi mais importante do que a qualidade dos fragmentos para explicar a 

variação na abundância das espécies entre as áreas. Como conclusão, parece haver um aumento 

geral da abundância das espécies com o aumento do nível de fragmentação e perda de habitat. 

Porém, a riqueza de espécies generalistas depende da maior disponibilidade de vegetação nativa 

na paisagem, enquanto o número de espécies especialistas responde a uma escala mais fina, e 

depende de florestas mais estruturadas, ou seja, da maior qualidade dos remanescentes.   

Os dois capítulos seguintes abordaram diferentes aspectos das mudanças na ecologia 

trófica da espécie dominante na área de estudo, o marsupial didelfídeo Gracilinanus agilis, ao 
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longo do gradiente de fragmentação e perda de habitat. Estas investigações se basearam no uso 

de isótopos estáveis de carbono (δ¹³C) e nitrogênio (δ15N), possibilitando inferir sobre a 

incorporação de recursos presentes na matriz de pastagem relativamente às florestas, e sobre 

mudanças no nível trófico. Os dados usados para esses capítulos se basearam nas amostras 

coletadas apenas no ano de 2018. O capítulo dois focou em compreender de forma geral como 

a fragmentação por si, dependendo do contexto da quantidade de habitat na paisagem, altera o 

tamanho do espaço de nicho trófico (uma métrica de diversidade trófica), e os valores isotópicos 

de carbono e nitrogênio da espécie modelo. Dentro de cada paisagem, os fragmentos foram 

elencados em três classes de tamanho (pequenos, médios e grandes), em que foram reunidas as 

amostras isotópicas para se gerar as elipses do nicho trófico. Não houve incorporação de 

recursos da matriz pelo marsupial em nenhuma situação. Por outro lado, houve mudança de 

nicho trófico na paisagem intermediária e na mais conservada: os animais transitaram entre 

maior grau de insetivoria para frugivoria de fragmentos pequenos para grandes, e este efeito foi 

mais forte quando houve mais floresta na paisagem. No contexto de maior perda de habitat, 

houve expansão do espaço de nicho trófico em fragmentos menores. Contrariamente, e 

progressivamente da paisagem intermediária para a mais conservada, o nicho se expandiu com 

o aumento do tamanho dos fragmentos. Os resultados demonstraram que G. agilis depende dos 

recursos alimentares da floresta presentes até nos menores fragmentos, e uma marcada mudança 

na sua ecologia trófica ao longo do gradiente de fragmentação, dependendo do contexto de 

perda de habitat. Isso indica que as alterações antrópicas na paisagem modificam a amplitude 

de nicho, a estrutura trófica e o papel ecológico da espécie.    

Por fim, o terceiro capítulo consistiu em compreender a resposta trófica de G. agilis ao 

processo de fragmentação e perda de habitat, sob um enfoque mais local e adotando uma 

perspectiva em múltiplas escalas. Desta forma, investigou-se como a qualidade do habitat 

(avaliada como estrutura da floresta e disponibilidade de recursos), características do fragmento 

e da paisagem circundante (estimadas em um buffer de 1km ao redor dos remanescentes) 

determinam as métricas de espaço de nicho trófico da espécie. Neste capítulo, foram usadas 

amostras de cada fragmento para gerar as métricas de nicho isotópico. A amplitude do δ¹³C não 

foi influenciada por nenhuma das escalas avaliadas, enquanto a amplitude de δ¹5N respondeu à 

escala do fragmento, sendo positivamente influenciada pela quantidade de área core no 

fragmento, indicando que os indivíduos assimilaram maior diversidade de níveis tróficos em 

remanescentes maiores e mais conservados, em relação aos menores. A diversidade trófica 
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também não respondeu aos preditores avaliados em nenhuma escala. No entanto, a 

uniformidade de nicho respondeu a diferentes escalas: considerando a escala do habitat, houve 

maior convergência de nicho entre os indivíduos da mesma população em áreas com maior 

número de lianas e com maior abundância de térmitas; na escala do fragmento, o nicho dos 

indivíduos de uma população foi mais dissimilar com o aumento da área core do remanescente, 

ou seja, em fragmentos maiores e mais preservados. Os resultados mostram que diferentes 

aspectos da ecologia trófica da espécie respondem de formas distintas às diferentes escalas 

avaliadas, e que a resposta a nível do habitat e do fragmento prevaleceram sobre a escala da 

paisagem. Isso indica que a resposta às mudanças antrópicas para espécies de pequeno tamanho 

corporal pode se dar em escalas ambientais mais finas. 

Palavras-chave: padrões de diversidade, ecologia trófica, degradação florestal, roedores e 

marsupiais, Gracilinanus agilis.  
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Abstract 

It has been more than 20 years of debates on the relative effects of habitat amount and 

fragmentation on biodiversity, in face of the advance of habitat destruction and native cover 

conversion into agriculture and pastures. A general conclusion is that the proportion of 

remaining habitat is determinant for species persistence in modified landscapes, and that 

interactions between patches and matrix influence the ecological consequences of these changes 

for the species. However, in landscapes with different levels of remaining native cover, patch 

size and isolation may have variable effects on biodiversity, being potentially stronger in 

conditions of intermediate levels of habitat amount.  

 Moreover, the resulting habitat degradation from landscape conversion can contribute 

to biodiversity loss and for the changes in species composition. Therefore, ecological processes 

in different scales might occur simultaneously, contributing to the outcome of species capability 

to survive in fragmented landscapes. Knowledge on these issues may contribute significantly 

to the effectiveness of landscape management strategies applied to the conservation of 

remnants, of their inhabiting species and ecosystem services performed by them.  In the 

Brazilian scenario, this is highly relevant, because most of the protected areas are in legal 

reserves and permanent protection areas inside private landholdings. 

 Species responses to these spatial and local processes depend on their characteristics 

related to habitat use, matrix tolerance, dispersal ability, diet, and trophic level. Thus, 

identifying the set of functional traits related to species capability to persist in modified 

landscapes is a valuable strategy to comprehend the ecological and functional consequences of 

human-driven disturbances in ecosystems. After all, functional traits represent phenotype 

components of an organism that influence ecosystem processes. In this sense, to better 

comprehend the dynamics and functions of species and communities surviving in human-

modified landscapes, and their relationships with ecosystem function, it is important to 

characterize biodiversity in dimensions that go beyond the classical taxonomic approach, as it 

is the case of functional and  trophic dimensions.  

 In this context, this work aimed at investigating the relative effects of habitat loss, 

fragmentation, and remnant quality on different aspects of the diversity of small mammals in 

semideciduous forests in the Cerrado, under different and complementary perspectives 
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(taxonomic, functional and trophic). The thesis is divided in three chapters, all of them were 

based on empiric data from animal captures carried in 36 forest patches in private landholdings 

in the state of Goiás. Remnants were distributed across a habitat loss gradient, estimated by the 

variation in the proportion of native cover in a scale of 15000 ha (10, 25 and 40%).   

 The first chapter verified how patterns of species abundance, richness and taxonomic/ 

functional diversity of mammal assemblages, as well as species composition, were influenced 

by patch size depending on landscape context of habitat amount; also, it was evaluated if patch 

quality (estimated as vegetation structure) affected these community parameters. Captures and 

data collection on vegetation occurred during four field phases between the years 2018 and 

2019, in the dry and rainy season. The effects of patch size on assemblages did not depend 

habitat amount in the landscape. However, it was detected an increase of overall species 

abundance in smaller patches, and a negative effect of habitat amount in the abundance of 

generalist species. On the other hand, there was higher generalist richness in more conserved 

landscapes, while specialist´s richness was influenced by habitat quality inside patches, more 

specifically, by forests with higher canopy cover. Regarding species composition, landscape 

structure was more important than habitat quality to explain variations in species abundance 

between areas. As a conclusion, it seems to be a general increase of species abundance with the 

advance of fragmentation and habitat loss. However, the richness of generalists depends more 

on habitat availability in the landscape, while the number of specialists species responds to a 

finer scale, depending on more structured forests, e.g., of higher quality of remnants.  

 The two following chapters addressed different aspects of changes in the trophic ecology 

of the dominant species in the study, the didelphid marsupial Gracilinanus agilis, along the 

gradients of fragmentation and habitat loss. The research was based on the use of stable isotopes 

of carbon (δ¹³C) and nitrogen (δ15N), allowing inferences on the assimilation of matrix 

resources relatively to forests, and on trophic level shifts. These chapters were based on samples 

collected only in the year 2018. Chapter two focused on comprehending, as a whole, how 

fragmentation per se, depending on landscape context of habitat amount, alters the isotopic 

niche space (a metric of trophic diversity) and the isotopic values of carbon and nitrogen of the 

studied species. In each landscape, patches were classified according to size classes (small, 

medium, large), within which isotopic samples were reunited to generate the trophic niche 

ellipses. There was no incorporation of matrix resources by the marsupial in any situation. In 

contrast, there was a progressive niche shift from intermediate to more conserved landscapes, 
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where animals transited from insectivory to frugivory from small to large patches, and this 

effect was stronger with higher habitat amount. In the most eroded landscape, smaller patches 

showed a niche expansion. Results reveal that G. agilis depends on forest food resources even 

in the smaller patches and presents a marked change in trophic ecology along the gradient of 

fragmentation, depending on the context of habitat loss. It indicates that human-driven 

alterations in the landscape modify niche width, trophic structure, and the ecological role of the 

species.   

 Finally, the third chapter addressed the trophic response of G. agilis to fragmentation 

and habitat loss under a more local focus, adopting a multiscale approach. Therefore, it was 

asked how habitat quality (evaluated as forest structure and food availability), patch 

characteristics and surrounding landscape features (estimated in a 1km buffer around remnants) 

determined isotopic niche space metrics of the species. In this work, we used samples from each 

patch to estimate metrics. The δ¹³C range was not influenced by any of the evaluated scales, 

while δ¹5N range responded to patch scale, being positively influenced by patch core area, 

indicating that individuals assimilated more trophic levels in larger and more conserved 

remnants, relatively to smaller ones. Trophic diversity did not respond to the predictors at any 

scales. However, niche uniformity responded to different scales: considering the habitat, niche 

among individuals was more similar in populations from areas with higher numbers of lianas, 

and also in areas with more termites; at the patch scale, niche was more dissimilar with the 

increase of patch core area, i.e., in larger and more conserved patches. The results show that 

different aspects of the trophic ecology respond in distinct ways to the evaluated scales, and 

that the response at the habitat and patch level prevailed over the landscape scale.  It indicates 

that the response of small-bodied species to human-driven changes might arise at finer 

environmental scales.     

Keywords: diversity patterns, trophic ecology, forest degradation, rodents and marsupials, 

Gracilinanus agilis. 
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Capítulo 1 

 

 Effects of habitat loss, fragmentation, and habitat quality on small mammal 

assemblages in fragmented landscapes of a neotropical savanna 

 

 

Abstract 

Landscape conversion of natural environments into agriculture and pasture are driving to 

marked biodiversity declines in the tropics. Fragmentation effects might depend on habitat 

amount in the landscape, while habitat quality of remnants can also affect species but has been 

poorly studied relatively to spatial scales. Furthermore, the impacts of these human-driven 

alterations may go beyond species loss, possibly representing the loss of ecosystem functions 

and services. In this study, we investigated how changes in landscape configuration (patch size), 

habitat loss (considering a gradient of 10, 25 and 40% of remnant habitat amount), and habitat 

quality (forest structure) affect small mammal abundance, richness, taxonomic/ functional 

diversity  and species composition in fragmented landscapes of semideciduous forests in the 

Brazilian Cerrado. We livetraped small mammals and measured habitat quality descriptors in 

36 forest patches over the years 2018 and 2019 four times, encompassing the rainy and dry 

seasons, with a total capture effort of 45,120 trap-nights. Regression analyses indicated that the 

effect of landscape configuration was not depend on the proportion of habitat amount in the 

landscape to determine small mammal assemblages. However, both patch size and habitat loss 

impacted different aspects of assemblages and in distinct ways. Smaller patches were mainly 

linked to overall increase in small mammal abundance, while the abundance of generalists also 

was negatively affected by habitat amount. Generalist species richness was determined by the 

habitat amount in the landscape. Specialists´ richness was only influenced by forest quality 

inside patches, suggesting that species with higher habitat requirements might respond to finer-

grain scales in respect of the consequences of fragmentation and habitat loss. Neither taxonomic 

or functional diversity were influenced by landscape structure or habitat quality. However, 

patch size and habitat amount in the landscape were the major drivers of changes in small 

mammal species composition relatively to habitat quality features in semideciduous forests in 

the Brazilian savanna. 
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Introduction 

Habitat loss and fragmentation are the main drivers to biodiversity declines on Earth (Pardini 

et al. 2010; Haddad et al. 2015; Hanski 2015; Laurance et al. 2018). In the tropics, these 

landscape alterations result mostly from the conversion of natural environments into agriculture 

and pasture (Fearnside 2001; Gibbs et al. 2010; Peres et al. 2010; Françoso et al. 2015; 

Strassburg et al. 2017). These human-driven changes may affect species abundance, richness 

and diversity (Andren 1994; Fahrig 2003; Laurance et al. 2011; Hanski 2015; Melo 2015; 

Bovendorp et al. 2019). Additionally, ecological traits might be filtered out and be replaced by 

homogeneous characteristics (Olden et al. 2004; Melo 2015; Almeida-Gomes et al. 2019), 

leading to deep changes in ecosystem functions and forest dynamics (see Laurence et al. 2000; 

Haddad et al. 2015; Laurance et al. 2018). Therefore, understanding not only the impacts of 

habitat conversion on taxonomic diversity, but also on functional diversity (i.e., the degree of 

functional differences among species in a community) (Petchey and Gaston 2006) allows a 

broader comprehension of the consequences of species loss in ecosystem processes, functioning 

and stability (Petchey and Gaston 2006). Thus, conservation strategies should be more effective 

in the goal of maintaining ecosystem services if they also consider the functional dimension of 

biodiversity (Cadotte et al. 2011; Freitas and Mantovani 2018).   

 Habitat amount in the landscape is an important determinant of species persistence in 

altered landscapes (Andren 1994; Fahrig 2003, 2013; Melo et al. 2017). However, 

fragmentation effects may vary depending on landscape context of habitat amount (Andren 

1994; Pardini et al. 2010; Villard and Metzger 2014). In landscapes with high native cover, 

immigration among patches are elevated enough to maintain high overall species abundance 

and richness, because of proximity between fragments, irrespective to patch size (Pardini et al. 

2010). As habitat loss advances, the relative importance of patch size and isolation to explain 

species loss and population declines increases (Andren 1994; Villard and Metzger 2014). Thus, 

the effects of landscape configuration to species richness and abundance should be evident 

when there are intermediate amounts of habitat in the landscape (Pardini et al. 2010; Martensen 

et al. 2012; Villard and Metzger 2014).  

In severely eroded landscapes, though, connectivity is so jeopardized that 

metapopulations can no longer persist, due to high extinction and low colonization rates (Lande 

1987; Andren 1994). Under this condition, even large patches could go through local 
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extinctions because of stochastic events, being too isolated and vulnerable to additional loss of 

native cover at the landscape scale (With and King 1999; Fahrig 2003). Therefore, no 

relationship between species richness and patch size would be expected (Pardini et al. 2010).  

 Within these diverse spatial dynamics, the interactions between patch and matrix can 

influence the ecological consequences of landscape alterations for different species (Prevedello 

and Vieira 2010; Newmark et al. 2014; Wilson et al. 2016). Also, deterioration of patch habitat 

quality resulting from landscape conversion may contribute to species loss and changes in 

species composition (Tabarelli and Gascon 2005; Carrete et al. 2009; Delciellos et al. 2016; 

Zimbres et al. 2017; Hannibal et al. 2020). Despite the important role of habitat quality in 

regulating spatial dynamic in fragmented landscapes and influencing species distribution 

patterns, studies on this subject have been poorly investigated relatively to classical spatial 

approaches (Mortelliti et al. 2010). Moreover, the knowledge on this matter can improve 

considerably the effectiveness of management strategies applied to the conservation of 

remnants, their living species and the ecosystem services provided by them (Tabarelli and 

Gascon 2005). This is especially critical to Brazil´s environmental policies, because most of the 

protected areas in the country are in legally required forest set-asides in private landholdings 

(Galleti et al. 2010).  

Non-flying small mammals (Rodentia and Didelphimorphia) are abundant, diverse, and 

perform key roles in ecosystems as seed/seedling predators, seed dispersers, prey for many 

predators and secondary consumers (Brown et al. 2001; Bisceglia et al. 2011; Ribeiro et al. 

2019). Additionally, they respond to microhabitat structure (Kajin and Grelle 2012), resource 

diversity/availability (Previtali et al. 2009; Camargo et al. 2019), and are sensitive to 

environmental and landscape changes (Pardini et al. 2010; Melo et al. 2017; Hannibal et al. 

2018). These characteristics make them potential indicators of environmental quality 

(Bonvicino et al. 2002) and an ideal group to access human-driven landscape impacts on 

biodiversity.    

 Here, we investigated how changes in landscape configuration (i.e., patch size), habitat 

loss (considering a gradient of 10, 25 and 40% of remnant habitat amount), and habitat quality 

(i.e., forest structure) affect small mammal abundance, richness, taxonomic/ functional 

diversity and species composition in fragmented landscapes of semideciduous forests in the 

Brazilian Cerrado. We expected the effect of patch size on community metrics to be dependent 
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on landscape context of habitat amount.  In landscapes with intermediate levels of habitat 

amount, patch size effects should be stronger especially for forest dependent species (Pardini 

et al. 2010; Villard and Metzger 2014; Melo 2015). Yet, in more degraded landscapes (10% of 

habitat amount) and in more conserved ones (40%), we expected to find no patch size effects 

on abundance, richness, and diversity, but only a positive effect of habitat amount. On the other 

hand, we predicted that generalist species should not respond to patch size, neither to habitat 

amount in the landscape, or would only present a patch size effect in the most degraded 

landscape (10%) (Pardini et al. 2010). Regarding habitat quality (here represented by forest 

structure features), we foresaw that more conserved patches (i.e., with more structured forests 

– higher complexity and heterogeneity) should harbor more species, in higher abundance, 

mainly for forest specialists. Therefore, assemblages in more complex forests should be more 

diverse in taxonomic and functional dimensions (Zimbres et al. 2017).  

 Also, we expected species composition to vary across the landscape structure gradient, 

also according to changes in habitat quality (i.e., forest structure). Rare species, forest 

specialists, with higher sensitiveness to environmental alterations would be more related to 

larger patches and/or landscapes with higher levels of habitat amount, as well as to more 

structured forests (Melo 2015; Hannibal et al. 2020). On the other hand, tolerant and generalist 

species would be more related to smaller patches, lower habitat amount in the landscape and 

low habitat quality (Melo 2015).   

Materials and Methods 

Study area 

The study was conducted in remnants of semideciduous seasonal forests in three landscapes of 

~15,000 ha with different levels of habitat amount (~ 10, 25, and 40 %) in a highly deforested 

portion in the Brazilian Cerrado. In each landscape we sampled 12 forest patches (totaling 36 

sampling sites), ranging from 2 to 760 ha, where small mammals were surveyed. Sampling site 

choices were based on 1) the highest variation in patch size possible between those patches 

available in each landscape; 2) access easiness; 3) landowners’ permissions. Sampling patches 

were located in the municipalities of Abadiânia (16º2´51´´ S 48º51´44´´ W), Jesúpolis 

(15°57´05´´ S 49°22´26´´ W), Jaraguá (15º44´31´´ S 49º20´6´´ W), Ouro Verde de Goiás 

(16°13´13´´ S 49°11´36´´ W), Pirenópolis (15°53´06.40´´ S 49°10´46.29´´ W), and São 

Francisco de Goiás (15º55´51´´ S 49º15´2´´ W), in the central portion of the state of Goiás, 
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Brazil. In these regions, the matrix is comprised mainly of pasture, but there are also agricultural 

areas (such as crop fields and/or banana plantations) and few natural patches of savanna 

vegetation. Sampling sites were located in the Legal Reserves of private farms, which are the 

natural vegetation area all landowners are legally obliged to preserve. Also, there were 3 sites 

located in the surroundings of conservation units (Reserva Particular de Patrimonio Natural 

Vaga Fogo Farm, Pirenópolis – GO, and Parque Estadual da Serra de Jaraguá, Jaraguá – GO). 

The climate is classified as Aw according to Köppen, with two well defined climatic seasons 

(hot/wet summers from October to March, and dry/cold winters from April to September). To 

minimize differences in species composition between sampling sites, maximum distance 

between landscapes did not exceed 100 km and are located in the same river basin (Basin of 

Tocantins-Araguaia river).  

 

Figure 1. Landscapes of 15.000 ha with 10, 25 e 40% of habitat amount (including both 

forest and savanna), and the sampled patches (red dots) in central Goiás state, Brazil 

(highlighted in grey in the inset map). Patches located in the western portion of the map 

represent the landscape with 10% of remnant habitat amount, southern patches correspond to 

the landscape with 25%, and the eastern patches are in the landscape with 40% of habitat 

amount. 

Small mammal survey 

In each of the 36 sampled patches, we established a trapping line of 200 m, located 30 m from 

patch edges to minimize edge effects. Each line had 20 trap stations, placed every 10 m, with 

four livetraps each, where half were deployed on the ground, and half in the understory (at least 
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1.5 m height), totaling 80 traps per patch. Every station had a Tomahawk®(300 x 160 x 160  

mm) and a small Sherman® (250 x 80 x 90 mm) on the ground, and a big Sherman (300 x 80 x 

90 mm) and a small one in the understory, except for the first and last trap stations, where we 

replaced a Tomahawk trap by a big Sherman. The study was conducted over the years 2018 and 

2019, in the following periods: rainy-dry season (April-June 2018), dry-rainy season (August-

October 2018), rainy (February-April, and December 2019) and dry season (June-August 

2019). Captures occurred for four consecutive nights per field campaign, resulting in an effort 

of 1,280 trap-nights per patch and 45,120 trap-nights in total.  

Traps were baited with a mixture of peanut butter, corn powder, sardine, and banana. 

Captured animals were identified, marked with numbered ear-tags, measured and weighted. We 

also recorded age (following Macedo et al. 2006 for marsupials), gender, and reproductive 

status. Animals were released in the same trap location where they were captured. Voucher 

specimens were collected and will be held in the Mammal Collection of the Department of 

Zoology, University of Brasília (UnB, Brasília, Brazil). All procedures followed the guidelines 

of the American Society of Mammalogists for the use of wild animals in research (Sikes et al. 

2016).  

Landscape structure 

We chose landscapes based on the 2016 land use and land cover map from the MapBiomas 

project, collection 4.0, which classifies Landsat 8 satellite imagery at a 30-m resolution. The 

temporal mismatch between the land cover map from MapBiomas and the field campaigns 

should be important since the study sites are within a relatively consolidated landscape in terms 

of human occupation.  Landscape choice was based on the proportion of five land use classes: 

forest, savanna, agriculture, pasture, and mosaic of agriculture and pasture [see MapBiomas 

class description in (http://mapbiomas.org)].  

Landscape structure was evaluated as patch size (ha) and proportion of habitat amount 

available in each landscape context [10, 25 and 40% of natural cover (forest plus savanna) as 

shown in Fig. 1]. These metrics were calculated using the Patch Analyst extension in ArcGis 

10.2.  

Habitat quality 

Here we considered patch quality as properties of the habitat that might have an impact on 

population parameters such as survival and fecundity (Mortelliti et al. 2010). To evaluate 

http://mapbiomas.org/
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habitat quality, we chose environmental variables revealed as important to small mammals´ 

occurrence and habitat use that can potentially affect population parameters and individual 

condition, therefore influencing species coexistence (Pardini et al. 2005; Ribeiro 2015a; 

Delciellos et al. 2016, 2018; Camargo et al. 2018; Hannibal et al. 2018, 2020). These variables 

describe habitat heterogeneity and forest complexity. 

We sampled descriptors of habitat quality in ten 4 x 4-m plots located every even trap 

station along the transect line in all patches. To evaluate forest structure, we measured the 

following variables inside each plot: 1) canopy cover, as the proportion of closed pixels from a 

photograph (one per plot, and used mean values per patch) taken with a digital camera in the 

center of each plot, using the software image J. We took one picture per season and used mean 

values; 2) mean number of vines; 3) mean tree height (m) of the closest four trees from the plot 

center, with circumference ≥ 16 cm at 30 cm height - estimated with a 3 m pole; 4) basal area 

(m²), estimated from the diameter at breast height (DBH)  from the same four previously 

measured trees; 5) understory clutter (to 3 m height) (%), estimated with a graduated 3 m pole 

(with a graduation of 10 cm) following Martins et al. (2017); 6) litter volume (cm³), estimated 

from litter material sampled in a 50 x 50-cm quadrat inside each plot (located in its superior left 

corner), following Santos Filho et al. (2008a). We placed the collected litter inside a translucid 

graduated cylindric box (with 28.2 cm diameter) and pressed down the material with a 1 kg 

cover, which indicated the correspondent litter height in a coupled scale of 120 mm (Figure 2). 

Litter height (h) was then used to estimate cylinder volume according to V = π. (14.1) ².h. 

Cattle ranching is the main human activity in study regions, so we also estimated 7) 

cattle intrusion to measure human-use habitat modification in forests. We classified intrusion 

level as an ordinated variable (0-4) based on incidence of footprints, cattle trampling and feces 

in a 15-m radius around each plot´s center. For this variable we used median plot values for 

each patch as the sample unit, while we used mean values for the other variables. 

 

Figure 2. Graduated cylindric box used to estimate litter volume. 
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Functional traits 

To access species functional responses to habitat loss and fragmentation, as well as to 

habitat quality, we used morphological and behavior traits related to habitat use and trophic 

habits, which might influence species tolerances to landscape alterations (Table AI). We 

measured the following quantitative morphological traits in the field: 1) Tail length (mean tail 

length/ mean body length), which is related to vertical use of space: longer tails are associated 

to more arboreal habits (Eisenberg and Wilson 1981); 2) Hind feet width (mean width/mean 

length of hind feet), which is related to locomotion habits, thus, to use of space: short and wider 

hind feet are associated to more arboreal habits, while longer and straight hind feet indicate 

more cursorial habits (Camargo et al. 2008; Vieira and Camargo 2012); 3) Body weight (g), a 

feature related to food resource use (influencing prey size consumed), metabolic costs 

(MacMillen 1983), travel speed (Hirt et al. 2017), dispersal distance (Whitmee and Orme 2013), 

trophic niche partitioning (Andreas et al. 2013), foraging behavior and predation risk (Kotler 

and Brown 1988); 4) Arboreality index (number of captures in understory/total number of 

captures) which measures the use of vertical space by species (Camargo et al. 2019b).   As 

categorial variables, we classified species based on information available in the literature 

according to: 5) habitat specificity (forest specialists – species restricted to forested 

environments, or generalists – species that inhabits forests as well as open areas, grasslands, 

savannas, crop fields) (Tab. AI); and finally the multichoice binary variable 6) Diet – 

representing a combination of  the following trophic guilds: insectivore, frugivore, granivore 

(that feeds on seeds or grains) and omnivore (Paglia et al. 2012; Shiels et al. 2014; Riofrío-Lazo 

and Páez-Rosas 2015).  

Data analyses 

Community metrics 

We evaluated species richness [with Chao1 estimator (Colwell et al. 2012)], and abundance (as 

the total number of individuals captured in each patch) separately for forest specialists and 

generalists. Considering species altogether, we estimated taxonomic species diversity with true 

diversity Shannon Index (exp(H´)) (Jost 2006), and functional diversity (FD) was evaluated as 

the as Rao´s quadratic entropy (Q). It measures functional distance between pairs of individuals 

and incorporates species abundances (Botta-Dukát 2005), besides being weakly influenced by 

species richness (Laliberté and Legendre 2010; Pavoine and Bonsall 2011; Dias et al. 2013). 
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We used Gower distance to estimate FD, since we had continuous, categorical, and binary traits 

(Podani and Schmera 2006; de Bello et al. 2010). Taxonomic metrics were calculated in vegan 

R package (Oksanen et al. 2019), while functional diversity was estimated with package FD 

(Laliberté et al. 2015).     

Community metrics and the effects of fragmentation and habitat loss 

To evaluate the relative effects of patch size according to landscape context of habitat amount, 

we performed regression analyses with generalized linear models (GLM) with lme4 package 

(Bates et al. 2015). GLM were used to accommodate residual deviations from normality. Also, 

according to the response variables evaluated and models´ residual dispersion, we used different 

distribution families (Gaussian, Gamma, Poisson, Negative Binomial, Table AII) (Zuur et al. 

2009). To determine which variables were most important to influence response variables, 

nested models were compared by likelihood ratio tests (LRT). The significance of explanatory 

variables was given by Deviance and p-values (based on ꭓ² test). For all global models, we 

investigated spatial autocorrelation in model residuals with Moran´s I associated with bubble 

plots from sp package in R (Pebesma and Bivand 2005). Also, we checked for multicollinearity 

between predictors with variance inflation factor (VIF) in all global models (Zuur et al. 2007). 

During model fitting, we transformed patch size to log (x) to improve homoscedasticity of 

residuals (Zuur et al. 2007). Moreover, predictors were standardized (scaled to the z-score) to 

ensure variables had the same scale. We tested for overdispersion with Pearson residuals in all 

global models and used Negative Binomial GLM to correct it whenever needed. We performed 

model validation following Zuur et al. (2009).  

Community metrics and habitat quality 

We evaluated the effects of habitat quality features in community metrics following the same 

protocol described above for GLM. However, first we performed a principal component 

analysis (PCA) to reduce data dimensionality of forest structure variables (Borcard et al. 2011). 

Thus, we used scores from PC1 and PC2 (summarizing >50% of variables variation between 

sampling sites) as predictors in GLM models. Before running the PCA, we checked for 

multicollinearity between habitat variables and excluded those with Pearson correlations > 0.5, 

and scaled variables to the z-score.   

Species composition, landscape structure and habitat quality 
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To evaluate if changes in species composition were explained by the fragmentation and habitat 

loss gradients, as well as by habitat quality features, we applied a redundancy analysis (RDA) 

with vegan package (Oksanen et al. 2019). We used species abundance matrix with Hellinger 

transformation (Borcard et al. 2011) as the response variable, while patch size, proportion of 

habitat amount in the landscape and PC1 and PC2 were inserted as scaled predictors. Moreover, 

global significance of RDA model, significance of RDA axis and significance of model terms 

(predictors) were tested with permutation tests with 1000 randomizations (Borcard et al. 2011). 

Before running the model, we tested for spatial autocorrelation between species composition 

and geographic coordinates with Mantel correlograms with 999 randomizations.  

 All analyses were conducted in R version 3.6.2 (R Core Team 2019). 

Results 

With a capture success of 4.56%, we captured 1323 individuals, recaptured 735 times, 

belonging to 15 species, five marsupial and 11 rodent species (Table 1). Most abundant species 

in the study were the marsupials Gracilinanus agilis (n = 840 individuals, 63% of total captures) 

and Didelphis albiventris (n=134, 10%), followed by the rodents Oecomys cleberi (n=121, 

9.1%) and Rhipidomys macrurus (n=70, 5.2%) (Tab. 2). Rarest species were the exotic 

european rodent Rattus rattus (n=1) and Oligoryzomys nigripes (n=1). Landscape with 

intermediate habitat amount (25%) showed higher abundance and observed richness (Tab. 1).  

Regression models were not overdispersed, and most of them presented no spatial 

autocorrelation according to Moran´s I test (Table AII). However, whenever we detected spatial 

autocorrelation in model residuals, the visual inspection of residuals dispersion (Zuur et al. 

2009), associated with the visualization of bubble plots of the model´s Pearson residuals and 

site coordinates (i.e., no clear spatial pattern detected, overall small correlation values and only 

a few sites presenting higher values), led us to conclude that correlations were not linked 

directly to the spatial variation  of measured variables themselves, thus being considered second 

order correlations (stochastic or purely random). In this sense, we did not consider them strong 

enough to invalidate the global model, so we proceeded the analyses (Figures AI, AII, AIII, 

AVI, AVII, AVIII).  

Community metrics and the effects of fragmentation and habitat loss 
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Regarding generalists species abundance, we found a strong negative effect of patch area (βlog 

(patch area) = -0.44 ± 0.09; df = 33; p = 1.022 x 10-5, Table AII, Figure 3a) and a slighter significant 

negative effect of habitat amount in the landscape (βlandscape = -0.24 ± 0.09; df = 33; p = 0.019, 

Tab. AII, Fig. 3b). In other words, generalist species were more abundant in smaller patches 

and in landscapes with lower proportion of habitat amount.  For specialists´ abundance, GLM 

revealed only a negative effect of patch area irrespective to landscape habitat amount (βlog (patch 

area) = -0.47 ± 0.19; df = 34; p = 0.007, Fig.3c).   

 In relation to estimated species richness, we found a positive effect of landscape habitat 

amount for generalists, indicating more conserved landscapes presented more species 

regardless of patch size (βlandscape = -0.047 ± 0.02; df = 34; p = 0.043, Tab. AII, Fig. 3d). For 

specialists, we failed to detect any effect of landscape structure in estimated species richness 

(Tab. AII).  

 Moreover, regression models indicated that variations in species diversity neither in 

functional diversity were explained by landscape structure (Tab. AII).  

Community metrics and habitat quality 

Considering forest structure, here used as habitat quality features, the only variable excluded 

from the data set used in PCA analyses because of multicollinearity was level of cattle intrusion, 

since it was highly correlated with understory clutter (r = -0.75, Figure AIV).  The first 

component of PCA explained 29.55% of data variation, while the second explained 23.45%. 

PC1 was more related to basal area and tree height (loading values ≥ 0.5), whilst PC2 was more 

loaded by canopy cover (Table AIII). So, PC1 axis represented, from negative to positive 

values, a gradient of sites with shorter trees and lower basal area towards patches with taller 

and larger diameter trees. On the other hand, from negative to positive values, PC2 denoted a 

gradient of more open to more closed-canopy forests.  

 Among all community metrics evaluated (abundance of generalist and specialist species, 

estimated richness for generalist and specialist species, species diversity and FD), we only 

detected an effect of habitat quality for the estimated richness of forest specialists. Specialists 

numbers were positively associated with PC2 axis, indicating that patches with higher canopy 

cover harbored more specialist species (βPC2= 0.25± 0.10; df = 34; p = 0.018, Tab. AIV, Fig. 

4).
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Table 2. Small mammal abundance matrix and number of species registered in semideciduous forest patches (sampling sites) distributed in the landscapes 

representing a gradient of fragmentation and habitat loss in central Goiás between 2018 and 2019. 

 

Species F2 F3 F4 F5 F6 F7 F8 F9 F10 F14 VF M F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 R1 R2 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 PSJ1 PSJ2 Total

Calomys expulsus 0 0 0 2 0 0 2 6 0 1 0 0 1 1 1 0 2 0 1 4 1 0 4 0 1 5 8 7 6 0 1 6 3 0 0 1 64

Calomys tener 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 2 1 2 0 4 0 0 0 2 0 0 0 14

Cryptonanus agricolai 0 0 0 3 0 0 0 0 1 0 0 0 0 8 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 2 0 2 24

Didelphis albiventris 0 14 3 1 1 4 5 5 5 3 1 1 13 1 0 2 1 12 13 15 3 5 1 5 0 1 0 0 0 6 1 2 3 3 3 1 134

Gracilinanus agilis 2 14 61 19 3 12 21 35 6 8 1 7 33 43 12 34 45 1 63 52 20 10 21 18 14 17 25 41 24 49 12 29 26 38 18 6 840

Hylaeamys megacephalus 0 3 1 0 0 2 0 0 0 0 0 0 0 0 1 4 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

Marmosa demerarae 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 8

Marmosa murina 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8

Oecomys catherinae 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 1 0 0 0 8

Oecomys cleberi 3 2 2 0 0 0 0 3 0 0 1 0 0 5 1 1 12 1 7 6 0 12 0 0 0 1 1 0 12 2 17 4 0 21 6 1 121

Oligoryzomys mattogrossae 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

Oligoryzomys cf. moojeni 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

Oligoryzomys nigripes 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Rhipidomys macrurus 0 0 20 0 0 0 3 0 0 0 0 0 6 24 0 0 1 0 2 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70

Rattus rattus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Total abundance

5 41 87 28 8 18 31 49 12 12 5 8 54 84 15 43 66 16 86 92 29 32 27 23 18 27 36 48 49 59 31 42 36 64 27 15 1323

Observed richness

2 6 5 5 4 3 4 4 3 3 4 2 5 8 4 6 8 4 5 6 6 5 4 2 4 7 4 2 5 5 4 5 6 4 3 7 15

304 567 452

11 12 10

40% 25% 10%



30 

 

 

  

  

Figure 3. Final regression models revealing the effects of landscape structure in small 

mammal community metrics in semideciduous forest patches in central Goiás in the 

Brazilian Cerrado, including: patch area (a) and proportion of habitat amount in the 

landscape (b) for the abundance of habitat generalists; the effect of patch area (c) for forest 

specialists and an effect of proportion of habitat amount in the landscape (d) for 

generalist´s estimated species richness (Chao 1).  

 

 

Pseudo R² = 0.37  Pseudo R² = 0.37 

Pseudo R² = 0.14 Pseudo R² = 0.16 
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Figure 4. Final regression model revealing the effect of habitat quality in small 

mammal estimated species richness for forest specialists (by Chao 1 estimator) in 

semideciduous forest patches in central Goiás in the Brazilian Cerrado. PC 2 

corresponds to the second axis of a principal component analysis of six forest structure 

variables used to describe habitat quality. 

 

Species composition, landscape structure and habitat quality 

We found no spatial autocorrelation between species composition and geographic 

coordinates of sites (Figure AIV). The RDA representing the relationship between species 

composition, landscape structure and habitat quality explained 10% of the variation of 

species abundance across sites (adjusted R² = 0.10; p = 0.009). In total, the first two axis 

explained 85% of data variation (RDA1 explained 50% and RDA2, 35%). However, only 

RDA1 axis was significant (p = 0.009), and among the explanatory variables, only patch 

area (p = 0.006) and landscape (p = 0.007) were significant.  

 Evaluating the RDA triplot (Figure 5) together with significances of axis and 

predictors, we observed that both evaluated landscape structure variables (looking at 

RDA1, longer blue arrows with greater projections in this axis) were much more 

important to explain the variation in species composition in sampling sites than the habitat 

quality features. From negative to positive values in RDA1, a clear gradient of patch size 

and habitat amount emerged: larger patches, inserted in landscapes with higher amount 

Pseudo R² = 0.13 
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of habitat (left side of the triplot), towards smaller patches located in more degraded 

landscapes (right side of the triplot). Additionally, we could also observe that there were 

species clearly correlated with these explanatory variables (indicated by longer red arrows 

with greater right angled projections in the RDA1 axis): Didelphis was considerably 

associated with higher amounts of forest cover in the landscape, regardless of patch size, 

while the marsupial M. demerarae was very associated with larger patches, despite of 

forest cover in the landscape. On the other hand, G. agilis showed great association with 

smaller patches, independently of habitat amount.  The generalist rodents C. expulsus and 

C. tener were very associated with more deforested landscapes but were not related to 

patch size. Oecomys cleberi was moderately related to patch size and to a greater extent, 

to less habitat amount in the landscape. The other species bunched together away from 

the extremes apparently are not influenced by the evaluated predictors.  

 

Figure 5. RDA triplot (Scaling 2 method – correlation plot) showing the relationship 

between small mammal species composition, landscape structure [patch area 

(patch_area) and proportion of habitat amount in the landscape (landscape)] and habitat 
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quality (PC1 and PC2 correspond to the first and second axis of a principal component 

analysis of six forest structure variables used to describe habitat quality) in 

semideciduous forest patches in the Brazilian Cerrado in central Goiás.  Species are 

shown in red: Calomys expulsus (C.exp), C. tener (C.ten), Cryptonanus agricolai 

(C.agr), Didelphis albiventris (D.alb), Gracilinanus agilis (G.ag), Hylaeamys 

megacephalus (H.mega), Marmosa demerarae (M.dem), M. murina (M.mur), Oecomys 

catherinae (O.cat), O. cleberi (O.cleb), Oligoryzomys mattogrossae (O.mat), O. 

moojeni (O.mooj), O. nigripes (O.nig), Rattus rattus (R.rat), Rhipidomys macrurus 

(R.mac). Sampling sites are represented by black dots. 

 

Discussion 

In face of the actual high rates of deforestation and conversion of natural landscapes of 

the Brazilian Cerrado into croplands and pastures, associated with low protection 

legislation (Fearnside 2001; Strassburg et al. 2017), it is essential to better comprehend 

the impacts of fragmentation and habitat loss for species in order to properly address 

effective policies for conservation priorities and restauration plans for remnants of the 

world´s richest savanna (Faleiro et al. 2013).   

Contrary to our expectations, we did not find any patch size effects depending on 

landscape context of habitat amount on abundance, richness, taxonomic and functional 

diversity, independently of species level of habitat specificity. However, generalists and 

specialists responded differently to the isolated effects of landscape structure features, 

while only specialist richness was affected by habitat quality. Furthermore, small 

mammal diversity metrics did not respond to either landscape structure or habitat quality.   

 Contradicting our hypothesis, the abundance of generalist and specialist species 

responded negatively to patch size, indicating that smaller patches held higher overall 

small mammal abundance. However, only generalists responded to the proportion of 

habitat amount in the landscape, being more abundant in more deforested landscapes, 

according to the findings of Pardini et al. (2010) for generalists in the Atlantic Forest. In 

addition, the same pattern for generalists was also found by Melo (2015) in woodland 

savannas in Mato Grosso state. However, for specialists´ abundance, she only found a 

negative effect of patch size in intermediate landscapes (30% of habitat amount), while 

specialists were more abundant according to higher forest cover in the landscape. In the 
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Amazon Forest, an increase of small mammal abundance with the reduction of forest area 

was also registered (Palmeirim et al. 2020).   

The overall increase in species abundances (for generalists and forest specialists) 

that we found in smaller patches might be linked to several ecological processes. First, at 

some extent, we believe that there might be an ecological release from predators like 

medium-sized mammals, raptors, owls and snakes, since these are important predators to 

small mammals and can suffer negatively with fragmentation and habitat loss (Carrete et 

al. 2009; Fenker et al. 2014; Rocha et al. 2018). Additionally, there might be an ongoing 

competition release effect because of defaunation of large seed-predator mammals (Dirzo 

et al. 2014; Galetti et al. 2015a). It has been observed that defaunated forests lead to the 

increase in the abundance of small seed-predators, specially rodents (Galetti et al. 2015b). 

Moreover, but to a lesser extent, forest invasion by matrix tolerant species (for example, 

Calomys species) can contribute to the increase of the abundance of generalists in smaller 

fragments and in more eroded landscapes, which is probably linked to higher edge effects 

(Pardini 2004; Santos-Filho et al. 2008). Also, in our study, major increase in 

generalists´abundance, mainly in smaller patches, should be an effect of higher 

abundance of the dominant species Gracilinanus agilis, that represented almost 64% of 

all captures.  

Finding no patch size effects either for specialist or generalist species richness, 

but identifying a habitat amount effect (even though only for generalist species) suggests 

that landscape vegetation cover is a better predictor of species richness than patch size, 

as proposed by Fahrig (2013) in the “Habitat Amount Hypothesis” and later confirmed by 

Melo et al. (2017) for overall small mammal species richness in woodland savannas in 

the Brazilian Cerrado, as well as for other animal groups (Garmendia et al. 2013; Ikin et 

al. 2014; Arroyo-Rodríguez et al. 2016). Landscape scale responses might variate among 

ecosystems, with species level of habitat specificity (Pardini et al. 2010; Melo 2015) and 

also with matrix habitat quality, an important feature of landscape-mediated processes 

that can severely impact animal movements across the landscape and influence 

colonization/extinction rates among patches (Palmeirim et al. 2020).  

In fragmented landscapes, higher amounts of habitat should reduce overall patch 

isolation (Pardini et al. 2010), thus increasing inter-patch connectivity and favoring 

movements of certain species between patches (Vieira et al. 2009). Within this dynamic, 

matrix type and finer-scale matrix elements such as scattered trees should play an 
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important role on which species can be well succeeded in inter-patch movements 

(Prevedello and Vieira 2010; Garmendia et al. 2013; Muanis 2017). Structurally 

simplified matrix areas, such as the dominant pasture matrix in our study, might be more 

impermeable for forest specialist species than for habitat generalists, since matrix type 

effects depend on species-specific habitat requirements, and matrix quality for organisms 

is linked to patch structure similarity (Prevedello and Vieira 2010; Arroyo-Rodríguez et 

al. 2016). In this sense, our findings on the relationship between generalist species 

richness and habitat amount should be expected. Moreover, the lack of a habitat amount 

effect for specialists, opposing the results of other studies (Pardini et al. 2010; Melo 

2015), also indicates that in our study system there might be more important factors 

influencing species richness than spatial scales.  

In altered landscapes, habitat conditions inside patches (i.e., patch quality) might 

be equally or more important than spatial scales to determine assemblages (Ikin et al. 

2014; Delciellos et al. 2016; Zimbres et al. 2017; Palmeirim et al. 2020), since habitat 

features may be more related to the proximate effects of fragmentation consequences in 

ecosystems for species (Ikin et al. 2014). Thus, habitat degradation resulting from 

fragmentation processes can impair species persistence in fragments, reducing species 

richness, specially forest specialists (Zimbres et al. 2017).   

Indeed, in our study, habitat quality features predicted specialist´s richness, 

indicating that forests with higher canopy cover harbored more species. A more closed 

canopy cover suggests higher levels of forest integrity, or more structured forests. 

Fragmentation leads to tree mortality of large trees (as a consequence of vulnerability to 

increased desiccation from edge effects exposure, associated to secondary causes such as 

fires and logging activities), which can reduce the canopy cover and the presence of 

emergent species, diminishing forest volume and structural complexity (Laurence et al. 

2000). Environmental complexity offers more opportunities for species coexistence, 

leading to vertical niche stratification of small mammals, thus increasing species turnover 

between forest strata, and consequently enhancing richness (Camargo et al. 2018). Our 

findings reinforce the relative importance of the role of patch forest quality compared to 

spatial scales for maintaining specialist species, that require more complex forests to 

persist in a fragmented landscape.  

Contrary to our expectations, we failed to detect any effects of landscape structure 

or habitat quality characteristics in patterns of taxonomic or functional diversity. 
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Responses of animal diversity patterns to landscape structure are rather idiosyncratic: 

several studies identified positive patch size effects not only for small mammal taxonomic 

(Melo 2015; Bovendorp et al. 2019) and functional diversity (Melo 2015; Zimbres et al. 

2017; Bovendorp et al. 2019), while others also failed to find these effects on the 

evaluated diversity dimensions (Palmeirim et al. 2020; Sancha et al. 2020; Smith et al. 

2020); in the same way, forest cover (i.e., habitat amount in the landscape) did not affect 

functional diversity of Atlantic forest small mammals (Sancha et al. 2020), while it was 

an important predictor for forest-dependent frog species in the same biome (Almeida-

Gomes et al. 2019). Bovendorp et al. (2019) suggested that besides species-area effects, 

ecological interactions of predation or competition represented by the occurrence of 

medium and large sized mammals should contribute to the retention of species and 

functional diversity of small mammal communities in the Atlantic Forest. On the other 

hand, small mammal functional diversity might be better predicted by temperature 

variables, rather than landscape structure (Sancha et al. 2020).  

 Finally, several studies show that small mammal species composition has been 

strongly influenced by fragmentation and habitat loss, leading to markedly species 

turnover with the reduction of specialist species and increased dominance of generalist 

species (Vieira et al. 2009; Pardini et al. 2010; Banks-leite et al. 2012; Garmendia et al. 

2013; Melo 2015; Palmeirim et al. 2020).  Also, habitat quality inside patches related to 

landscape alterations have been also indicated as important determinants of changes in 

species composition (Melo 2015; Delciellos et al. 2016; Hannibal et al. 2018, 2020). 

However, our results show that landscape structure variables (patch size and proportion 

of habitat amount in the landscape) were the major drivers of changes in small mammal 

species composition relatively to habitat quality features in semideciduous forests in the 

Brazilian savanna.  

Surprisingly, D. albiventris was the only species markedly associated with higher 

amounts of forest cover in the landscape. Even though the genus Didelphis is considered 

a habitat generalist with the ability to occupy even urban areas (Cáceres 2000; Wright et 

al. 2012), apparently it also depends on higher forest cover at the patch (Santos-Filho et 

al. 2008) or landscape scale. In addition, D. marsupialis showed declining occupancy 

probability in more degraded forests in the Amazon Forest (Zimbres 2016). These results 

suggest that even common and generalist species might have minimum habitat 

requirements to persist in human-modified landscapes.  
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Marmosa demerarae, one of the rarest species of our study, on the other hand, 

was related to large patches, irrespective to the surrounding proportion of habitat amount. 

In the Atlantic Forest it was associated with forest edges and to second growth forest 

matrix (Pardini 2004), and reproductive males were able to travel among patches across 

a matrix composed by tall grasses, shrubs and scattered trees (Pires et al. 2002). However, 

Santos-Filho et al. (2008) registered high abundance of this species in the interior of forest 

patches, nevertheless it was never captured in the pasture matrix. Despite these variations 

in abundance and responses to edge effects and matrix permeability found in other 

studies, our results indicated that M. demerarae is a sensitive species to fragmentation in 

the Brazilian Cerrado, and this sensitiveness might be affected by the quality of the 

surrounding matrix.  

Conversely, G.agilis, the dominant species of our study, was strongly associated 

with smaller patches, independently of landscape vegetation cover. This abundant and 

generalist species has been indicated to be less susceptible to habitat fragmentation, not 

suffering from edge effects (Santos-Filho et al. 2008) and responding negatively to patch 

size (Cáceres et al. 2010). Also, it has been positively associated with the number of 

lianas, a proxy for forest disturbance (Campbell et al. 2015; Hannibal et al. 2018). 

The rodents C. expulsus and C. tener were more associated with deforested 

landscapes but were not influenced by patch size. In the Cerrado, the genus Calomys are 

common inhabitants of open areas such as grasslands and savannas (Marinho-Filho et al. 

2002). However, they can also be equally present in edges and inside forest patches in 

fragmented landscapes, as well as in the pasture matrix (Santos-Filho et al. 2008). They 

have been positively associated with environmental disturbances such as fire (Vieira 

1999), also with lower forest NDVI, indicating a relationship with lower levels of forest 

integrity (Hannibal et al. 2018).   

Lastly, Oecomys cleberi was moderately related to the increase in patch size and 

to forest cover in the landscape. Thus, this species might be sensitive to small patches but 

may tolerate some level of forest disturbance at larger scales. In fact, Oecomys genus 

apparently are less affected by edge effects (Santos-Filho et al. 2008), however are not 

able to use pasture matrix, which might represent a barrier to dispersal and a condition of 

dependency on resources available inside resident patches. Additionally, the congener O. 

bicolor was positively related to canopy cover and to NDVI (Hannibal et al. 2018) in 
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semideciduous forests in the Cerrado, indicating demands for better conditions of forest 

structure, which is usually not the case of smaller patches (Laurence et al. 2000).    

   Contradicting our expectations, the results of this work indicated that the effect of 

landscape configuration did not depend on the proportion of habitat amount in the 

landscape to determine small mammal assemblages, as found in other studies in the 

Brazilian Cerrado (Melo 2015) and in the Atlantic Forest (Pardini et al. 2010). However, 

both landscape structure characteristics impact different aspects of assemblages and in 

distinct ways. Patch size was mainly linked to overall increase in small mammal 

abundance, while generalist species richness was determined by the habitat amount in the 

landscape. This result reinforces that habitat amount should be a better predictor of 

species richness than patch size, as proposed by (Fahrig 2013) and Melo et al. (2017).  On 

the other hand, specialists´ richness was only influenced by forest quality inside patches, 

suggesting that species with higher habitat requirements might respond to finer-grain 

scales in respect of the consequences of fragmentation and habitat loss. In this sense, our 

study demonstrates the importance to include habitat quality changes as issues to be 

addressed in landscape research (Delciellos et al. 2016), in order to better understand the 

consequences of fragmentation and habitat loss in ecosystems, which depend on species 

characteristics and their habitat requirements. Lastly, we failed to detect any effects of 

either landscape structure or habitat quality in diversity dimensions.  

 We propose that future studies on the consequences of fragmentation and habitat 

loss to small mammals investigate the impacts of species interactions (predators and 

competitors) in community dynamics, since defaunation apparently is a strong driver of 

changes in abundance and diversity dimensions of small mammals in altered landscapes 

(Galetti et al. 2015b; Bovendorp et al. 2019) and has profound consequences to 

ecosystems (Dirzo et al. 2014; Soares et al. 2015; Marjakangas et al. 2020). Furthermore, 

we also suggest researchers to evaluate the effects of matrix structure and quality in the 

studies to better understand the broader responses of species surviving in fragmented 

landscapes. These knowledges are essential to support more effective conservation plans 

and actions in landscape management policies.  
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Appendix I 

 
 

Figure AI. Model assumptions of normality (A), homogeneity (B), and spatial 

independency (C) of global model residuals for the GLMs evaluating the effects of 

fragmentation and habitat loss on generalist species abundance. 

 

 

 

 

         

 

Figure AII. Model assumptions of normality (A), homogeneity (B), and spatial 

independency (C) of global model residuals for the GLM evaluating the effects of 

fragmentation and habitat loss on specialist species abundance. 
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Figure AIII. Model assumptions of normality (A), homogeneity (B), and spatial 

independency (C) of global model residuals for the GLM evaluating the effects of 

fragmentation and habitat loss on estimated species richness of specialists. 

 

 

 

Figure AIV. Correlation plots (based on Pearson’s correlation coefficients) 

investigating multicollinearity (r > 0.5) in the explanatory variable data set used as 

descriptors of habitat quality in PCA analyses: vines – number of vines; b_area – basal 
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area (m²); height – tree height (m); understory – understory clutter (%); canopy – 

canopy cover (%); litter – litter volume (m³); cattle – level of cattle intrusion inside the 

patch; 

 

 

Figure AV. Principal component analysis of habitat structure variables describing 

habitat quality of semideciduous forest patches in the Brazilian Cerrado in central 

Goiás. vines – number of vines; b_area – basal area (m²); height – tree height (m); 

understory – understory clutter (%); canopy – canopy cover (%); litter – litter volume 

(m³);  
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Figure AVI. Model assumptions of normality (A), homogeneity (B), and spatial 

independency (C) of global model residuals for the GLM evaluating the effects of 

habitat quality on abundance of generalist species.  

 

 

 

 

Figure AVII. Model assumptions of normality (A), homogeneity (B), and spatial 

independency (C) of global model residuals for the GLM evaluating the effects of 

habitat quality on abundance of specialist species.  
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Figure AVIII. Model assumptions of normality (A), homogeneity (B), and spatial 

independency (C) of global model residuals for the GLM evaluating the effects of 

habitat quality on estimated richness of specialist species.  

 

 

 

Figure AIV. Mantel correlogram generated for testing spatial autocorrelation between   

the species composition distance matrix with Hellinger transformation and the distance 

matrix of geographic coordinates of sampling sites. Significant correlations are 

indicated by black squared in the plot classes. 
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Table AI. Morphological and behavior traits used to estimate functional diversity. 

 

Following: ᴪ Bonvicino et al. (2002); Marinho-Filho et al. (2002); Pardini (2004); Bezerra et al. (2009); 

Cáceres et al. (2010); Oliveira and Bonvicino (2011); Rossi et al. (2011); Gomes et al. (2015); Ribeiro (2015); 

ᵠ Paglia et al. (2012); Shiels et al. (2014); Riofrío-Lazo and Páez-Rosas (2015). 

 

  

Species Habitat use
ᴪ

Dietᵠ Tail length Hind feet width Body weight (g) Arboreality

Cryptonanus agricolai Generalist In/Om 1.48 0.58 19 0.83

Calomys expulsus Generalist Fr/Gr 0.83 0.29 26 0.08

Calomys tener Generalist Fr/Gr 0.86 0.24 15 0.00

Didelphis albiventris Generalist Fr/Om 1.04 0.54 558 0.04

Gracilinanus agilis Generalist In/Om 1.42 0.61 26 0.85

Hylaeamys megacephalus Specialist Fr/Gr 1.01 0.24 44 0.07

Marmosa demerarae Specialist In/Om 1.47 0.60 78 0.88

Marmosa murina Specialist In/Om 1.42 0.58 36 0.75

Oecomys catherinae Specialist Fr/Se 1.09 0.31 54 0.75

Oecomys cleberi Specialist Fr/Se 1.15 0.34 30 0.86

Oligoryzomys mattogrossae Specialist Fr/Gr 1.45 0.23 19 0.20

Oligoryzomys moojeni Specialist Fr/Gr 1.48 0.25 16 0.00

Oligoryzomys nigripes Generalist Fr/Gr 0.94 0.17 30 0.00

Rhipidomys macrurus Specialist Fr/Se 1.28 0.37 54 0.86

Rattus rattus Generalist Fr/Om 1.24 0.27 58 0.00
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Table AII. Autocorrelation test values based on Moran´s I, overdispersion test values 

based on Pearson residuals for residuals of all fitted GLM models (landscape structure 

analyses and habitat quality analyses) and significance of global models. Test results 

are expressed as p-values. Significant values are in bold.    

Global regression model Moran´s I 

test 

Overdispersion 

test 

Model 

significance  

Landscape structure analyses: 

Y ~ log (patch area) * landscape 

   

Y Generalists abundance 0.04 0.41 3.01 x 10-4 

 Specialists abundance 1.6 x 10-3 0.65 0.07 

 Estimated generalist 

species richness 

0.81 0.99 0.22 

 Estimated specialist 

species richness 

1.4 x 10-4 0.31 0.81 

 Species diversity 

(Shannon) 

0.65 0.83 0.58 

 FD 0.78 1.00 0.68 

Habitat quality analyses 

Y ~ PC1 + PC2 

   

Y Generalists abundance 0.02 0.54 0.32 

 Specialists abundance 6 x 10-4 0.45 0.85 

 Estimated generalist 

species richness 

0.44 0.99 0.93 

 Estimated specialist 

species richness 

0.02 0.61 0.05 

 Species diversity 

(Shannon) 

0.49 0.86 0.43 

 FD 0.99 1.00 0.49 
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Table AII. Significance of model predictors in model selection procedure of the 

analyses of the effects of habitat fragmentation and habitat loss in small mammal 

community metrics in semideciduous forest patches in the Brazilian Cerrado in central 

Goiás. The significance of a predictor was determined by likelihood ratio tests (LRT) 

or changes in Scaled deviance (depending on model error family) and by p-values 

generated by comparing nested models that drop variables in a stepwise approach. 

Significant values are in bold. Global model in all analyses: Y ~ landscape*log(patch 

area). 

Response 

variable/ family 

distribution 

 

Predictors 

 

df 

 

Test 

 

p 

   LRT  

Generalist 

abundance/ 

Negative binomial  

landscape : log(patch 

area) 

1 1.207 

 

0.272 

 

 landscape 1 5.493 0.019 

 log(patch area) 1 19.470    1.022 x 

10-5 

Specialist 

abundance/ 

Negative binomial 

landscape : log(patch 

area) 

1 0.036 

 

0.849 

 

 landscape 1 0.509 0.476 

 log(patch area) 1 7.311 0.007 

   Scaled deviance  

Estimated 

richness for 

generalists/Gamma 

landscape : log(patch 

area) 

1 0.002 

 

0.965 

 

 landscape 1 4.079 

 

0.043* 

 

 log(patch area) 1 0.488 

 

0.498 

 

Estimated 

richness for 

specialists/ Poisson 

landscape : log(patch 

area) 

1 0.723 

 

0.395 

 

 landscape 1 0.025 

 

0.873 

 

 log(patch area) 1 0.208 

 

0.648 
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Shannon 

diversity/ Gaussian 

landscape : log(patch 

area) 

1 0.461 

 

0.497 

 

 landscape 1 0.005 

 

0.944 

 

 log(patch area) 1 1.651 

 

0.199 

 

Functional 

diversity/ Gamma 

landscape : log(patch 

area) 

1 0.302 

 

0.582 

 

 landscape 1 1.116 0.291 

 log(patch area) 1 0.122 0.726 

 

 

Table AIII. Results of the Principal Component Analysis (PCA) obtained from six 

habitat variables to compare forest structure in 36 semideciduous forest patches in the 

Brazilian Cerrado. Values are the coefficient of the corresponding eigenvectors. More 

heavily loaded variables are in bold (loading ≥ 0.5).  

Variables PC1 PC2 

Vines 0.38 0.42 

B_area 0.52 0.00 

Mean tree height 0.54 -0.21 

Understory clutter -0.15 0.48 

Canopy cover 0.27 0.65 

Litter volume -0.45 0.35 

Variance explained (%) 29.55 23.45 
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Table AIV. Significance of model predictors in model selection procedure of the 

analyses on the effects of habitat quality in small mammal community metrics in 

semideciduous forest patches in the Brazilian Cerrado in central Goiás. The 

significance of a predictor was determined by likelihood ratio tests (LRT) or changes 

in deviance (depending on model error family) and by p-values generated by comparing 

nested models that drop variables in a stepwise approach. Significant values are in bold. 

Global model in all analyses: Y ~ PC1 + PC2.  

Response variable/ 
family distribution 

Predictors df Test p 

   LRT  

Generalist abundance/ 
Negative binomial 

PC1 1 0.993 0.318 

 PC2 1 0.252 0.615 

Specialist abundance/ 
Negative binomial 

PC1 1 0.135 0.713 

 PC2 1 0.192 0.661 

   Scaled deviance  

Estimated richness for 

generalists/Gamma 

PC1 1 0.091 0.762 

 PC2 1 0.048 0.825 

Estimated richness for 

specialists/ Poisson 

PC1 1 0.300 0.583 

 PC2 1 5.536 0.018 

Shannon diversity/ 
Gaussian 

PC1 1 1.464 0.226 

 PC2 1 0.327 0.566 

Functional diversity/ 
Gamma 

PC1 1 0.888 0.345 

 PC2 1 0.517 0.472 
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Capítulo 2 

Changes in the isotopic niche space of a didelphid opossum in fragmented 

landscapes with distinct levels of habitat loss in a neotropical savanna 

Authors: Mattos, I; Ribeiro, J.F.; Nardoto, G.B.; Zimbres, B.; Marinho-Filho, J. 

 

Abstract 

Habitat loss and fragmentation can affect species trophic ecology. However, the impacts 

of fragmentation may depend on the remaining habitat amount in the landscape, and are 

expected to be stronger at intermediate levels of habitat availability, where configuration 

might have the greatest variability. We used stable carbon and nitrogen isotopes to 

investigate how fragmentation alters isotopic niche space of the marsupial Gracilinanus 

agilis depending on levels of habitat loss in semideciduous forests in the Brazilian 

savanna. We predicted that the opossum should present a higher input of matrix resources 

(increased δ13C values) in smaller patches, and this would be stronger in the more 

degraded landscape. Also, we expected a niche shift from small to large patches with an 

increase in δ15N values. Moreover, we expected either a niche collapse or a niche 

expansion with fragmentation, and these effects would be stronger in intermediate 

landscapes. Contrary to our expectations, δ13C did not vary with patch size nor habitat 

loss, with values revealing a high dependency on forest resources. The opossum presented 

a niche shift only in intermediate and more conserved landscapes, transiting from 

insectivory to frugivory from small to large patches, respectively. This effect was stronger 

in the former landscape, probably due to higher fruit availability in larger patches in more 

conserved landscapes. Finally, we found a niche expansion towards smaller patches in 

the most degraded landscape, likely because of the addition of less valuable dietary items 

under a context of low food availability and high forager density. Conversely, there was 

a niche expansion towards larger patches (in other words, a niche collapse following 

fragmentation) that was progressively marked from intermediate to more conserved 

landscapes, probably owed to higher resource availability/diversity associated with 

habitat quality and forest complexity. We recorded changes in the opossum´s trophic 

ecology within the fragmentation gradient depending on landscape context of habitat loss 

and showed that these human driven alterations modifies niche breadth, trophic structure 
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and its ecological role (e.g., shifts in trophic level), hampering the species potential as a 

seed disperser in small remnants. Despite these consequences, we argue that even small 

patches are important to maintain opossum´s population in hyper fragmented landscapes, 

since it is highly dependent on forest resources.  

Keywords: Cerrado, feeding habits, Gracilinanus agilis, habitat amount, stable isotopes 
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Introduction 

Landscape alterations are the main drivers of global biodiversity decline, also affecting 

trophic relations (Estes et al. 2011; Haddad et al. 2015). In the tropics, habitat changes 

result mostly from forest conversion to agriculture and pasture (Gibbs et al. 2010; 

Françoso et al. 2015; Strassburg et al. 2017). Although habitat loss has large negative 

impacts to ecosystems, fragmentation per se (i.e., controlling for habitat amount in the 

landscape) can both benefit generalist and tolerant species and jeopardize specialist ones 

(Fahrig 2019; Pardini et al. 2010; Hanski 2015; Melo et al. 2017). However, impacts of 

fragmentation (i.e., habitat configuration) may depend on the remaining habitat amount 

in the landscape, and are expected to be stronger at intermediate levels of habitat 

availability, influencing animal movement across the landscape and consequently species 

persistence (Martensen et al. 2012; Pardini et al. 2010; Villard & Metzger 2014). Also, 

the relative tolerance to changes in habitat configuration may restrict or expand the range 

of habitat amount over which a species can occur (Villard and Metzger 2014).  

These responses may depend on species ecological traits (Purvis et al. 2000; 

Davies et al. 2004; Haddad et al. 2015) related to matrix tolerance, dispersal ability, diet, 

and trophic level (Davies et al. 2000; Boyle & Smith 2010; Newbold et al. 2012; Keinath 

et al. 2017; Magioli et al. 2019). Therefore, the consequences of habitat loss and 

fragmentation might be reflected in changes in a species trophic niche (Layman et al. 

2007b; Resasco et al. 2018; Muñoz-Lazo et al. 2019). The ability to persist in human-

modified landscapes should depend on species trophic plasticity, i.e., whether it can 

survive on the resources available within patches, shifting to new food resources or/and 

including food items previously not exploited (Resasco et al. 2018; Muñoz-Lazo et al. 

2019), and potentially incorporating matrix resources (Magioli et al. 2019). In this sense, 

it is urgent to understand not only the ecology of most susceptible species to the effects 

of landscape conversion, but also of resilient species that are capable to persist in altered 

habitats (Layman et al. 2007b) as species loss advances, and deforestation rates still grow 

(Ceballos et al. 2015; Nowosad and Stepinski 2019). 

Research on diet, trophic niche, and habitat use have been increasingly studied 

under the perspective of stable isotope analyses of carbon (¹³C) and nitrogen (¹5N) (see 

Layman et al. 2012; Magioli et al. 2019; Ribeiro et al. 2019). Isotopic carbon ratios (δ13C) 
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provide tracks on habitat use of foraging areas, since this ratio varies substantially 

amongst primary producers with different photosynthetic pathways (e.g., C3 trees and 

shrubs in forests; and C4 grasses in savannas and grasslands), but hardly changes through 

trophic levels (Ben-David and Flaherty 2012). Isotopic nitrogen ratios (δ15N) reveal 

trophic position, because there is an enrichment of 15N to 14N at each trophic level in a 

food web or community (Post 2002; Ben-David and Flaherty 2012). Therefore, stable 

isotopes have great potential to contribute to the understanding of the impacts of habitat 

conversion, fragmentation, and habitat loss on species trophic ecology, also revealing 

how animals shift their resource use among continuous forests, isolated habitat patches, 

and the matrix (Layman et al. 2012; Resasco et al. 2018; Magioli et al. 2019; Muñoz-

Lazo et al. 2019).    

In this study, we investigated how fragmentation (i.e., habitat configuration) may 

alter isotopic trophic ecology of the omnivorous-insectivorous didelphid agile opossum 

Gracilinanus agilis (Burmeister, 1854) depending on landscape context of habitat loss in 

a fragmentation gradient in semideciduous forests in the Brazilian savanna. Non-flying 

small mammals (Rodentia and Didelphimorphia) are potential indicators of 

environmental quality (Bonvicino et al. 2002), and are an ideal group to assess human-

driven landscape modifications in trophic ecology. They are abundant, perform key roles 

in ecosystems and respond to resource availability, environmental, and landscape changes 

(Brown et al. 2001; Previtali et al. 2009; Pardini et al. 2010; Kajin and Grelle 2012). We 

asked the following questions: (i) do the increase of fragmentation (represented by patch 

size) and habitat loss (represented by total habitat amount in the landscape) lead the agile 

opossum to incorporate matrix resources (i.e., an increase in δ13C values)? (ii) does 

fragmentation (i.e., patch size) cause a shift in trophic position of the marsupial depending 

on landscape context of habitat loss (i.e. an increment in δ15N values)? (iii) does isotopic 

niche space (i.e., trophic diversity) change with patch size depending on the remaining 

habitat amount in the landscape? We expected an input in the assimilation of matrix 

resources in smaller patches (higher δ13C values), specially within the more degraded 

landscape (Magioli et al. 2019; Ribeiro et al. 2019), if the opossum is able to forage in 

the matrix or matrix arthropods can enter patch edges (Pompermaier et al. 2020). Also, 

we predicted an overall increase in the trophic position of G. agilis towards smaller 

patches, and we expected this relation to be stronger in the intermediate landscape 

followed by the more conserved landscape. Since fragmentation and habitat loss alters 
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forest dynamics and results in a reduction of fruit availability (Terborgh 1992), we 

hypothesized the agile opossum would consume more insects in smaller fragments and 

more fruits in larger ones. Finally, we predicted  two responses in isotopic niche space 

(i.e., niche diversity) with fragmentation, that should be more intense within intermediate 

levels of habitat amount.: (i) niche collapse, if the opossum tracks the lower 

abundance/diversity of food resources expected by the species-area relation (Lomolino 

2001; Layman et al. 2007b), and by low fruit availability in smaller patches (Terborgh 

1986, 1992); or (ii) a niche expansion, as an outcome of trophic plasticity, allowing the 

agile opossum to include in its diet least valuable food items - especially if it is able to 

forage on matrix resources (Magioli et al. 2019; Ribeiro et al. 2019).  

Furthermore, since habitat amount is related to landscape connectivity (Fahrig 

2003, 2013), a severely disrupted landscape presents fewer opportunities for foraging 

among different patches, thus reducing diversity of potentially ingested food items, which 

contributes to an overall tendency of reduction or expansion of niche space across patches 

of varying sizes. Thus, in this landscape we expected the effect of patch size to be weak. 

Accordingly, in the more conserved landscape, where connectivity is high, it is expected 

that the consumer forages across different patches, leading to a similarity in niche space 

in patches of different sizes. Consequently, we also predicted a soft effect of patch size 

(positive or negative) in niche space in this condition of habitat availability. Finally, we 

expected to find the strongest effect of patch size in niche space (either positive or 

negative) within the intermediate landscape, where connectivity is moderate, driving 

patch size to become more important to determine the foraging behavior of the agile 

opossum.  

Materials and methods 

Study area 

The study was conducted in remnants of semideciduous seasonal forests in three 

landscapes of ~15,000 ha with different levels of habitat amount (~ 10, 25, and 40 %) in 

a highly deforested portion in the Brazilian Cerrado. In each landscape we sampled 12 

forest patches (totaling 36 sampling sites), ranging from 2 to 760 ha, where small 

mammals were surveyed. Sampling patches were located in the municipalities of 

Abadiânia (16º2´51´´ S 48º51´44´´ W), Jesúpolis (15°57´05´´ S 49°22´26´´ W), Jaraguá 

(15º44´31´´ S 49º20´6´´ W), Ouro Verde de Goiás (16°13´13´´ S 49°11´36´´ W), 
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Pirenópolis (15°53´06.40´´ S 49°10´46.29´´ W), and São Francisco de Goiás (15º55´51´´ 

S 49º15´2´´ W), in the central portion of the state of Goiás, Brazil. In these regions, the 

matrix is comprised mainly of pasture, but there are also agricultural areas (such as crop 

fields and/or banana plantations) and few natural patches of savanna vegetation. Sampling 

sites were located in the Legal Reserves of private farms, which are the natural vegetation 

area all landowners are legally obliged to preserve. The climate is classified as Aw 

according to Köppen, with two well defined climatic seasons (hot/wet summers from 

October to March, and dry/cold winters from April to September).  
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Figure 1. Landscapes of 15.000 ha with 10, 25 e 40% of habitat amount (including 

both forest and savanna), and the sampled patches (red dots) in central Goiás state, 

Brazil (highlighted in grey in the inset map). Patches located in the western portion of 

the map represent the landscape with 10% of remnant habitat amount, those located in 

the middle correspond to landscape with 25%, and the eastern patches are in the 

landscape with 40% of habitat amount. 

Studied species  

The agile opossum Gracilinanus agilis (Burmeister, 1854) is a small bodied (20-30 g), 

solitary, nocturnal, didelphid marsupial with arboreal and scansorial habits (Emmons and 

Feer 1997). It feeds mostly on arthropods (mainly Hymenoptera, Isoptera, Hemiptera, and 

Coleoptera), small fruits, and occasionally birds (Camargo et al. 2014). Also, it presents 

a seasonal variation in its diet, with reproductive females feeding more heavily on insects 

during the mating season (Camargo et al. 2014). Additionally, a study on the isotopic diet 

of this species corroborated a high arthropod consumption, and revealed that forest-

resident individuals can switch between prey resources from forests (C3) in the rainy 

season to those from grasslands (C4) in the dry season (Ribeiro et al. 2019). Reproduction 

occurs seasonally, from the end of the cool-dry season to mid/end of the warm-wet season 

(Lopes and Leiner 2015). This marsupial has a wide geographic distribution in South 

America, ranging over the east of the Andes in Peru, Bolivia, Paraguay, Uruguay, and 

Argentina (Emmons and Feer 1997). In Brazil, it inhabits the Cerrado, Caatinga, and 
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Pantanal biomes (Paglia et al. 2012), where it is commonly found in forest formations, 

e.g. gallery forests, dry forests, and woodland savannas (Vieira and Palma 2005).   

Small mammal capturing 

In each of the 36 sampled patches, we established a trap line of 200 m, located 30 m from 

the patch edges to avoid edge effects. Each line had 20 trap stations, placed every 10 m, 

with four livetraps each, where half were set on the ground, and half in the understory (at 

least 1.5 m height). Every station had a Tomahawk®(300 x 160 x 160  mm) and a small 

Sherman® (250 x 80 x 90 mm) on the ground, and a big Sherman (300 x 80 x 90 mm) and 

a small one in the understory, except for the first and last trap stations, where we replaced 

a Tomahawk trap by a big Sherman. The study was conducted over the year 2018 between 

the rainy-dry season (April-June) and the dry-rainy one (August-October), thus 

considering seasonal variations in diet. Captures occurred for four consecutive nights per 

field campaign, resulting in an effort of 640 trap-nights per patch and 23,040 trap-nights 

in total.  

Traps were baited with a mixture of peanut butter, corn powder, sardine, and 

banana. Captured animals were identified, marked with numbered ear-tags, measured and 

weighted. We also recorded age (following Macedo et al. 2006), gender, and reproductive 

status. We collected a hair sample from the posterior dorsal region from all individuals 

with a clean scissor, and stored samples in plastic tubes. Animals were released in the 

same trap location where they were captured. Voucher specimens were collected and held 

in the Mammal Collection of the Department of Zoology, University of Brasília (UnB, 

Brasília, Brazil). All procedures followed the guidelines of the American Society of 

Mammalogists for the use of wild animals in research (Sikes et al. 2016). We conducted 

the study under the permission of the Committee of Ethics and Animal Use from the 

University of Brasília (28/2018), Instituto Chico Mendes de Biodiversidade (SISBIO 

61990) and Secretaria de Meio Ambiente do Estado de Goiás (SECIMA/CEMan 

006/2019). 

Landscape structure 

We chose landscapes based on the 2016 land use and land cover map from the 

MapBiomas project, collection 4.0, which classifies Landsat 8 satellite imagery at a 30-

m resolution. The temporal mismatch between the land cover map from MapBiomas and 

the field campaigns should be important, since the study sites are within a relatively 
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consolidated landscape in terms of human occupation.  Landscape choice was based on 

the proportion of five land use classes: forest, savanna, agriculture, pasture, and mosaic 

of agriculture and pasture [see MapBiomas class description in (http://mapbiomas.org)].  

Landscape structure was evaluated as patch size (ha) and proportion of habitat 

amount available in each landscape context [10, 25 and 40% of natural cover (forest plus 

savanna) as shown in Fig. 1]. These metrics were calculated using the Patch Analyst 

extension in ArcGis 10.2. We grouped patches into classes of size on a log scale (Norris 

et al. 2010) to represent a gradient of fragmentation, indicated in Table 1. From this point 

on, we will refer to patch size classes 1, 2, and 3 to indicate the gradient of size 

representing small (class 1), medium (class 2), and large (class 3) patches. 

Isotopic analysis 

We collected hair samples of at least three individuals of Gracilinanus agilis per patch, 

whenever possible (but we did not discard patches where we could only get one or two 

samples). In addition, to avoid bias in isotopic values we excluded samples from four 

patches that were surrounded by soy or banana plantations, since our focus was on the 

most prevalent pasture matrix. Thus, we analyzed 98 samples from individuals captured 

in 30 of the 36 sampled patch sites (there were two patches where we did not capture any 

G. agilis individuals). Also, we tried to equally distribute samples among sexes and 

excluded juveniles to avoid possible bias in isotopic values towards gender and age 

differences in trophic niche. Hair samples were washed with distilled water, subsequently 

immersed in a 2:1 solution of chloroform and methanol for 30 min, and washed again 

with distilled water. Afterwards, samples were oven dried for 12 hours at 65º, shredded 

and weighted (minimum aliquot of 1.5 mg) in tin capsules on an analytical scale (0.001 g 

precision) (Ribeiro et al. 2019).   

Isotopic analyses were performed at the Stable Isotope Facility of the University 

of California (SIF), Davis, USA. Samples were analyzed for 13C and 15N isotopes using 

a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope 

ratio mass spectrometer (Sercon Ltd., Cheshire, UK). During analysis, samples were 

interspersed with several replicates of at least four different laboratory reference 

materials. These reference materials have been previously calibrated against international 

reference materials, including: IAEA-600, USGS-40, USGS-41, USGS-42, USGS-43, 

USGS-61, USGS-64, and USGS-65 reference materials. A sample’s provisional isotope 

http://mapbiomas.org/
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ratio is measured relative to a reference gas peak analyzed with each sample. These 

provisional values are finalized by correcting the values for the entire batch based on the 

known values of the included laboratory reference materials. The long term standard 

deviation is 0.2 per mil for 13C and 0.3 per mil for 15N.  

The results were expressed in delta notation (), in parts per thousand (‰), based 

on internationally recognized standards. We used the following equation:  15N or  13C 

(‰) = (Rsample – Rstandard) / Rstandard × 1.000), where Rsample and Rstandard represent the 

heavy/light isotope molar ratio of the sample and standard, respectively. The standard 

used for carbon analysis was Vienna Pee Dee Belemite (Vienna PDB; 13C:12C ratio = 

0.01118), and the standard used for nitrogen analysis was atmospheric air (15N:14N ratio 

= 0.0036765).  

 

Table 1. Number of studied patches of semideciduous forests in the Brazilian Cerrado from 

each size class over the landscape gradient of habitat amount (10, 25, 40% of natural cover), 

and total number of Gracilinanus agilis hair samples per patch size class used in isotopic 

analysis. 

 Nº patches Nº of isotopic samples 

    Landscape gradient of habitat amount (%) 

     

Size 

class 

Interval 

(ha) 

Mean ± 

SD 

Range/min-

max (ha) 

10 25 40 10 25 40 

C1 0 - 10  5.52 ± 

2.29 

2 - 10 3 2 3 9 6 10 

C2 11 - 100 46.39 ± 

26.84 

13 - 91 5 3 4 22 9 10 

C3 101 -1000 236.56 ± 

207.44 

121 - 760  4 3 3 16 10 6 

Mean   4 3 3 16 8 9 

Total   12 8 10 47 25 26 

 

Data analysis 

Habitat use and trophic position 
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To evaluate whether fragmentation and habitat loss leads the agile opossum to incorporate 

matrix resources (which means an increase in δ13C), and to test if fragmentation causes a 

shift in trophic position (i.e., changes in δ¹5N values) depending on landscape context of 

habitat amount, we compared nested linear mixed models (LMM) with likelihood ratio 

test (LRT). We used LMM since residuals were normally distributed (Fig. 1A - Appendix 

I), and to account for differences in the number of isotopic samples between patch sites, 

including site as a random effect; the following variables – and the interaction between 

them – were included as fixed effects: 1) Patch size class, a categorical variable 

representing fragmentation (following Table 1), with three levels (small, class 1: C_1; 

medium, class 2: C_2; large, class 3: C_3) ; 2) Habitat amount in the landscape (%), a 

categorical variable representing the gradient of habitat loss in the landscape, with three 

levels (landscape 10%, landscape 25%, landscape 40%). The significance of explanatory 

variables was given by changes in Deviance and p-values resulting of LRTs between all 

combinations of nested models built by dropping variables in a stepwise approach. We fit 

models using the lme4 package (Bates et al. 2015), and performed model validation 

following Zuur et al. (2009) (Fig. 1A, Table 1A - Appendix I) in R, version 3.6.2 (R Core 

Team 2019). 

Isotopic niche space 

Isotopic niche metrics are based on mean values of δ¹³C – δ¹5N from G. agilis individuals 

dispersed in isotopic niche space, represented by a biplot. These metrics reveal important 

aspects of trophic structure and are related to trophic diversity (Layman et al. 2007a; 

Jackson et al. 2011). Therefore, to evaluate possible shifts in G. agilis trophic niche along 

the gradients of fragmentation and habitat loss, we calculated the standard ellipse areas 

corrected for small sample size (SEAc), a bivariate standard deviation that represents the 

core isotopic niche space of a population (Jackson et al. 2011). For this, we pooled 

isotopic samples according to patch size classes (Table 1) nested within each landscape 

(10, 25, and 40%). Thus, we were able to compare the effects of patch size per se 

depending on landscape context of habitat loss. Also, we ensured we had at least five 

samples per size class/landscape to estimate SEAc (Jackson et al. 2011). We compared 

size, position and niche overlap between ellipses from patch size classes within 

landscapes. These analyses were conducted in R software version 3.6.2 (R Core Team 

2019) using the SIBER package (Jackson et al. 2011). 
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Results  

Habitat use and trophic position 

We analyzed 98 hair samples of G. agilis captured in 30 patches ranging from 2 to 760 

(ha). Sample size per patch size classes within landscapes ranged from 6 to 22 samples, 

and are shown in Table 1. Mean values of δ13C were similar across patch size classes 

within landscapes, ranging from -25.91 to -22.84‰ (Table 2, Fig.2, Fig. 2A – Appendix 

I). This interval of δ13C values revealed that individuals assimilated mostly forest patch 

resources (C3) and practically no resources from the pasture matrix (C4), regardless of 

patch size and habitat loss context, contradicting our hypothesis (Table 2, Fig. 2, Fig.2A 

– Appendix I). Patch size class and habitat amount in the landscape had no effect on δ13C 

values (Table 3, Patch size class, p = 0.6584; Landscape, p = 0.3505; Table 1A – 

Appendix I).  

The agile opossum presented a great variation in δ¹5N values, ranging from 3.87 

to 9.69‰ (Fig.2, Fig. 3A – Appendix I). These values indicate it is an omnivore-

insectivore with great trophic plasticity, presenting a diet that comprises frugivory up to 

third level predation (Table 2). The model that best explained variation in δ¹5N values 

included a significant interaction of patch size class with habitat amount in the landscape 

(Deviance = 242.8, ꭓ² = 22.503, df = 4, p = 0.0001), which means the effects of 

fragmentation on δ¹5N values depended on landscape context (Table 1A, 2A – Appendix, 

Fig. 2). In the most degraded landscape (10%), δ¹5N values were similar irrespective of 

patch size, ranging from 6.09‰ in average in small patches towards an increase of 0.88‰ 

and 0.30‰ in medium and large patches, respectively (Table 2, Table 3, Table 2A – 

Appendix, Fig. 2). These values indicate the agile opossum occupies approximately the 

same trophic level and feeds on similar food items (likely invertebrates) regardless of 

fragmentation level. Moreover, in this extreme context of habitat loss, we found a 

similarly high range of δ¹5N values across all patch size classes (C1, 4.29 to 8.07‰; C2, 

4.84 to 8.07‰; C3, 4.27 to 8.89‰), indicating an even generalist feeding habit and a wide 

trophic niche width at the population level in this landscape. However, we found a 

negative relation of δ¹5N values with patch size in landscapes with intermediate (25%) 

and high (40%) levels of remnant habitat amount. According to our hypothesis, this effect 

was stronger in the intermediate landscape (25%), with an estimated reduction of 2.75‰ 

in δ¹5N values from small (C1, 8.34‰) to large patches (C3, 5.59‰), corresponding to 

shifts of almost two trophic levels (Table 2, Table 3, Table 2A – Appendix, Fig. 2). The 
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most conserved landscape (40%) showed a slightly declining pattern of δ¹5N values from 

small to large patches with an estimated reduction of 1.62‰. Also, δ¹5N values reached 

much lower levels in larger patches (C1, 6.47‰; C3, 4.85‰), indicating a more consistent 

contribution of basal resources (fruits and C3 leaves) when there is more habitat available 

at the landscape level (Table 2, Table 3, Table 2A – Appendix, Fig. 2).  
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Table 2. Isotopic mean values of δ¹³C, δ¹5N, and standard deviation (mean ± SD) of Gracilinanus agilis hair samples in patch size classes 

within the landscape gradient of habitat amount (10, 25, 40% of natural cover) in semideciduous forests in the Brazilian Cerrado. 

 Landscape 

 10 (%) 25 (%) 40 (%) 

Patch size 

class δ¹³C (‰) δ¹5N (‰) δ¹³C (‰) δ¹5N (‰) δ¹³C (‰) δ¹5N (‰) 

1 24.234 ± 0.768 6.093 ± 1.214 23.995 ± 0.443 8.348 ± 0.908 23.877 ± 0.749 6.487 ± 0.365 

2 23.969 ± 0.865 6.965 ± 0.856 23.833 ± 0.700 6.512 ± 0.782 23.800 ± 0.681 6.039 ± 0.828 

3 24.016 ± 0.705 6.386 ± 1.031 24.266 ± 0.802 5.523 ± 0.726 23.632 ± 0.719 4.843 ± 0.914 
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Figure 2. Distribution of δ13C (a) and δ¹5N (b) values of hair samples from Gracilinanus 

agilis across patch size classes within the landscape gradient of habitat amount (10, 25, 

and 40% of natural cover) in semideciduous forests in the Brazilian Cerrado. Landscapes 

with different remnant habitat amount are represented as follows: A10 – landscape with 

10%; B25 – landscape 25%; C40 – landscape 40%; Patch size classes: C1 – class 1 

(small); C2 – class 2 (medium); C3 – class 3 (large). 
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Table 3. Summary of the linear mixed model analyses of the effects of habitat 

fragmentation and habitat loss on agile opossum Gracilinanus agilis values of δ¹³C and 

δ¹5N hair contents. The significance of a variable was determined by changes in 

deviance and p-values generated by comparing nested models that drop variables in a 

stepwise approach. Significant values are indicated in bold.   

δ¹³C Variables df Deviance ꭓ² p-value 

 Patch size class: Landscape 4 212.890 4.879 0.770 

 Patch size class + 

Landscape 

2 214.840 1.947 0.746 

 Patch size class 2 215.670 0.836 0.658 

 Landscape 2 217.770 2.097 0.351 

δ¹5N Patch size class: Landscape 4 242.800 37.295           1.016 x 10-5 

 Patch size class + 

Landscape 

2 265.300 22.503           1.591 x 10-4 

 Patch size class 2 275.420 10.111 0.006 

 Landscape 2 272.690  7.385 0.025 

 

Isotopic niche space 

Isotopic niche ellipses varied among patch size classes along the landscape gradient of 

habitat amount (Fig. 3), and overall shifts were linked to variation in δ¹5N values. In the 

most eroded landscape (10%), isotopic niche ellipses were similar and overlapped more 

than 50% among patch size classes (Table 4). However, isotopic niche area (SEAc) from 

small patches (C1, 2.569‰²) were 1.4 times larger than in large patches (C3, 1.815‰²) 

(Fig. 3, Table 4). In intermediate and more conserved landscapes, we found a progressive 

niche shift downward in the biplot niche space from small to large patch size classes, 

indicating a higher contribution of basal resources with the increase of patch size and 

habitat amount in the landscape (Fig. 3). In these landscape contexts, ellipses between 

patch size classes were slightly overlapped (less than 50%, Table 4), and we found a 

progressive expansion of niche area from small to large patches in both landscapes, that 

was more prominent in the most conserved landscape (Landscape 25%: SEAc C3 was 1.29 

times larger than SEAc C1; Landscape 40%: SEAc C3 was 2.55 times larger than SEAc C1, 

Fig. 3, Table 4).  
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In other words, under the lower fragmentation threshold (landscape with 10% or 

less of habitat amount), despite the similarity of niche position irrespective of patch size, 

there was a slight expansion of niche area with the reduction of patch size. With the 

increase of habitat amount in the landscape (landscapes with 25 and 40% of habitat 

amount), there was a progressive expansion of ellipse area (indicating higher trophic 

diversity) towards larger patches concurrently with the shift of trophic position from an 

omnivore–insectivore to a more basal resource diet.   

 

Table 4. Standard ellipse area corrected for small samples (SEAc, ‰²) and isotopic 

niche overlap (%) between ellipses for the agile opossum (Gracilinanus agilis) from 

patch size classes within the landscape gradient of habitat amount in semideciduous 

forests in the Brazilian Cerrado. Patch size classes: C1 – class 1; C2 – class 2; C3 – 

class 3. 

 Habitat amount in the landscape  

 10% 25 % 40 % 

Ellipses   SEAc (‰²)  

C1 2.569 1.575 0.964 

C2 2.334 1.680 1.872 

C3 1.815 2.041 2.461 

Patch size class Isotopic niche overlap (%) 

C1 - C2 57.8 29.2 42.6 

C1 - C3 70.7 11.1 24.1 

C2 - C3 57.5 42.5 45.9 
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Figure 3.  Standard ellipse area density plots and isotopic niche ellipses of hair samples 

from the agile opossum (Gracilinanus agilis) across patch size classes along the 

landscape gradient of habitat amount in semideciduous forests in the Brazilian Cerrado. 

Landscapes with different remaining habitat amount:10% (A, B); 25% (C, D); 40% (E, 
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Discussion  

Fragmentation effects on isotopic niche space of the agile opossum were dependent on 

the context of habitat loss, and were mainly linked to shifts in hair δ¹5N. We did not detect 

changes in δ¹³C values associated with fragmentation and/or habitat loss. However, δ¹³C 

values indicated the species is highly dependent on forest resources (mostly C3 found in 

hair samples). The agile opossum showed a small expansion in niche area towards smaller 

patches in the most degraded landscape, but there was no significant change in trophic 

position. At intermediate levels of habitat amount, there was a strong niche shift 

associated with a slight expansion of niche area from small to large patches. Finally, under 

a more conserved condition of habitat amount, we found a similar pattern as the latter 

described; however, niche shift was about one trophic level from small to large patches, 

and changes were towards much lower trophic position combined with a pronounced 

niche expansion. We suggest that there might be different ecological mechanisms 

underlying such changes, and they could present variable relative importance depending 

on landscape context (habitat amount), leading to distinct responses in the isotopic niche 

space. 

Contrary to our predictions, we did not find effects of fragmentation and/or habitat 

loss in δ¹³C values, revealing that G. agilis feeds on similar basal resources (mainly C3) 

in all study patches, and it is highly dependent on forest remnants, which potentially 

indicates a low tolerance to pasture matrix under a trophic perspective (Magioli et al. 

2019). Omnivorous mammal species can be able to incorporate C4 resources from an 

agricultural matrix, leading to significant changes in δ¹³C values between conserved and 

highly modified landscapes, while insectivorous species show no changes in δ¹³C values, 

in accordance with G. agilis in our study (Magioli et al. 2019). Thus, the impacts of 

landscape conversion in a species’ feeding habits and habitat use, and its consequent 

ability to survive in fragmented environments might be linked to the species’s functional 

traits related to trophic guild (Layman et al. 2007b; Resasco et al. 2018; Magioli et al. 

2019; Muñoz-Lazo et al. 2019).  

F). In A, C, E, the red “X” represents standard ellipse area corrected for small samples 

(SEAc). Colors represent patch size classes: red – class 1 (C1); blue – class 2 (C2); 

black – class 3 (C3). Thick lines represent mean values and dotted lines, total values.  
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In our study system, we suppose that preyed forest invertebrates mainly survive 

on C3 forest resources in remnants surrounded by pasture matrix, probably because of 

their sensitivity to conditions in pastures. This idea is corroborated by Pompermaier et al. 

(2020), who demonstrated that woodland savanna arthropods feed more on C3-plant 

sources in fragments immersed in a pasture matrix, although there is a small consumption 

of exotic C4 resources within remnants, and there is a proportional increase in the 

assimilation of exotic C4 resources from boundary habitat (savanna-pasture) towards the 

matrix. However, another study showed the agile opossum can incorporate C4 

invertebrate resources from surrounding native grasslands in fire-degraded forests in the 

Brazilian Cerrado biome (Ribeiro et al. 2019). This difference in the ability to assimilate 

C4 resources from forests surrounding environments might be linked to matrix type and 

quality, which apparently influences matrix permeability for the studied species under a 

trophic perspective.  

Our results also reveal that G. agilis presents high trophic plasticity in these altered 

landscapes, and feeds on different trophic levels depending on patch size and landscape 

context. Contrary to our expectations, δ¹5N values were similar irrespective of patch size 

in the most degraded landscape, indicating no changes in trophic position. In eroded 

landscapes, patches are so isolated from each other that the species-area relation is lost, 

since populations are exposed to low colonization rates and high extinction rates [e.g. 

extinction threshold (Andren 1994; Pardini et al. 2010)]. In this sense, if resource 

organisms (plants and arthropods) experience the effects of the extinction threshold, it 

could potentially lead to homogeneous resource availability and diversity between 

patches of different sizes. In fact, landscape simplification can select against more 

specialized species, leading to functional biotic homogenization in arthropod 

communities (Gámez-Virués et al. 2015), as well as to taxonomic homogenization of 

plant communities in tropical forests. This would be a consequence of the proliferation 

of ecologically-plastic, pioneer, and generalist species across hyper-fragmented 

landscapes (Lôbo et al. 2011). Consequently, in an extremely simplified and eroded 

landscape, agile opossum individuals would remain spatially restricted within resident 

patches to forage on whichever resources there are available inside each patch, given its 

small home range and low dispersion ability (Ribeiro 2011; Shibuya et al. 2018). If 

resource biotas are homogenized across patches, it should cascade through the food web 
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(Wirth et al. 2007), and be reflected in the trophic position of generalist consumers 

(Layman et al. 2007b).                                                        

For both the landscape with intermediate levels of habitat amount and the more 

conserved one, we found a negative relation of patch size with δ¹5N values, in accordance 

with our hypothesis. There was a general pattern of gradual transition from a higher 

trophic level to a more basal consumer position from small to large patches. This effect 

was stronger in small patches in the intermediate landscape, where individuals occupied 

higher trophic positions nearly corresponding to a third-order consumer. However, in 

larger patches within the more conserved landscape, individuals showed the lowest 

trophic level, revealing a higher contribution of basal resources to their diet.  

Studies with several taxa across different ecosystems show that generalist 

consumers present shifts in trophic niche and occupy higher trophic positions under 

conditions of fragmentation or habitat alteration, including predator lizards (Resasco et 

al. 2018), omnivore bats (Muñoz-Lazo et al. 2019), herbivore geese (Lei et al. 2019), and 

different guilds of large mammals (Magioli et al. 2019). Drivers to these shifts result from 

diverse mechanisms: i) a reduction of fruit availability in patches compared to continuous 

forest leading to higher ingestion of arthropod resources (Muñoz-Lazo et al. 2019); ii) 

changes in trophic structure of arthropod prey resulting from loss of detritivore prey in 

patches compared to continuous forests (Resasco et al. 2018); iii) increased intake of high 

protein animal food sources to supply energy requirements in low quality habitats (Lei et 

al. 2019); iv) consumption of nitrogen-enriched food items from the agricultural matrix 

(Magioli et al. 2019).  

We can state that the higher trophic position of the agile opossum in smaller 

patches in the referred landscapes does not result from consumption of nitrogen-enriched 

items from the matrix, since individuals did not present C4 pasture signals in their hair, 

contrary to the findings of Magioli et al. (2019). Thus, we propose that shifts in trophic 

position potentially result from either a possible change in arthropod trophic structure 

with patch size and overall reduction of fruit availability with an increase of fragmentation 

and habitat loss. Fruit availability is lower in forest fragments compared to continuous 

forests (Terborgh 1986; 1992). If large patches (> 100 ha) are closer to pristine continuous 

forests in terms of habitat structure and plant diversity, then they should also present 

higher fruit availability compared to small-sized remnants, as observed in the study area 

(personal observations, unpublished data, 2018). Fruits are an important food item to G. 
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agilis’ diet (Camargo et al. 2014), so it is expected that individuals respond to higher 

availability of this basal resource, potentially leading to an overall lower trophic position 

in larger patches, especially within the more conserved landscape.  

With lower fruit availability, Gracilinanus may increase the consumption of 

arthropod resources to fulfil energetic, nutritional, and water requirements (Camargo et 

al. 2014). Thus, in intermediate landscapes, arthropod resources show higher importance 

to the opossum’s diet than more basal resources, especially in smaller patches. With and 

Pavuk (2011) showed that fragmentation effects on arthropod morphospecies richness 

were strong at intermediate levels of habitat amount of agricultural landscapes, and it 

could be linked to greater resource diversity and more favorable microclimates along 

habitat edges (Crist and Ahern 1999), corroborating the intermediate disturbance 

hypothesis (With and Pavuk 2011). However, studies evaluating the effects of 

fragmentation and habitat loss separately suggest that arthropod guilds respond 

differently to these landscape alterations (mainly by edge mediated effects). Herbivores 

(from the orders Coleoptera, Hemiptera) are hampered by habitat loss depending on 

functional group (Rossetti et al. 2014; Gamez-Virués et al. 2015; but see Benítez-Malvido 

et al. 2016), while omnivorous and specialized predators can benefit either from habitat 

loss and leaf-cutting ants, from fragmentation (Wirth et al. 2007; Benítez-Malvido et al. 

2016; Gámez-Virués et al. 2015). If shifts in the trophic structure of animal resource 

communities driven by fragmentation and habitat loss should be revealed by variations in 

the trophic position of a consumer across the gradient of habitat alteration (Layman et al. 

2007b; Resasco et al. 2018), then the observed changes in G. agilis trophic position across 

the fragmentation gradient in the intermediate landscape might result from changes in 

arthropod communities undergoing synergetic effects of fragmentation and habitat loss.   

In the most degraded landscape, as predicted by our alternative hypothesis, G. 

agilis showed a slight niche expansion towards smaller patches, but without shifts in 

ellipse position (ellipses were strongly overlapped). It means the agile opossum fed on 

the same trophic level irrespective of patch size but incorporated a slightly higher 

diversity of food items in small patches. Higher trophic diversity in small patches 

compared to larger ones in this landscape might be explained by the consequences of 

forager density on diet breadth, as suggested by the optimal foraging theory (OFT). OFT 

predicts that under low resource availability, because of competition, the range of food 

items consumed will increase (Emlen 1966; Macarthur and Pianka 1966; Schoener 1971). 
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This seems to be the case here, since the agile opossum showed higher population density 

in small patches within the degraded landscape (Fig. 4A – Appendix I), suggesting a high 

degree of intraspecific competition. Under this condition, individuals may include all 

potential food items in their diets (Emlen 1966), leading to a broader trophic niche (higher 

SEAc value, i.e. trophic diversity). This density-dependent effect on niche has been 

demonstrated for lizards (Roughgarden 1972), flies (Bolnick 2001), and bees (Fontaine 

et al. 2008).   

In the intermediate landscape and in the more conserved one, according to our 

hypothesis, we observed a progressive niche shift from a more insectivore-omnivore diet 

towards a more frugivore-omnivore one, associated with niche expansion, from small to 

large patches, and more pronounced in the more conserved landscape. In other words, we 

observed a niche collapse with the increase of fragmentation. In these landscapes, forest 

basal resources (probably fruits) and primary consumer arthropod prey showed a 

progressive contribution to the diversification of G. agilis niche, with the increase in patch 

size and habitat amount available in the landscape. This pattern of niche shift might be 

related to changes in forest structure and landscape connectivity following fragmentation 

and habitat loss [e.g., increased canopy openness and tree mortality, increased density of 

pioneer plants while old growth species decline in number, increased density of lianas; 

see Laurence et al. (2000)]. These changes should affect habitat use (Melo et al. 2013; 

Hannibal et al. 2018), resource exploitation (Klarner et al. 2017; Resasco et al. 2018), 

resource diversity, and availability (Laurence et al. 2000; Haddad et al. 2015). 

Habitat structure influences the occurrence of small mammals (Camargo et al. 

2018), and changes in forest complexity and heterogeneity resulting from fragmentation 

and habitat loss are important determinants of abundance, richness, and species 

composition of this animal group in fragmented landscapes (Delciellos et al. 2016; 

Hannibal et al. 2018). Also, microhabitat use leads to isotopic niche space differentiation 

in small mammals (Dammhahn et al. 2013; Ribeiro 2015b; Galetti et al. 2016). Thus it is 

expected that enhanced vertical stratification between conspecifics in more complex 

forests also favors trophic niche partitioning. Camargo et al. (2019) showed that forest 

structure and resource diversity and availability influences interaction networks of G. 

agilis in the Brazilian savanna. They suggested that more structured forests (thick and 

spaced trees) increase vertical segregation among individuals, allowing differential 

resource exploitation between those that use preferentially the ground, and those that use 
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both the ground and the understory strata, leading to higher levels of nestedness (i.e., 

individuals that use both strata add new food items in relation to those that are more 

terrestrial). Additionally, fruit abundance and arthropod diversity were related to 

modularity in the same study, indicating that increasing these resource features enhances 

diet segregation generating modules of individual-resource interactions (Camargo et al. 

2019).  

These results based on network interactions corroborate our findings of niche 

expansion of the agile opossum with increased patch size and habitat amount in the 

landscape because large patches tend to suffer less from edge effects and thus present 

more structured, complex forests, especially when there is more habitat amount in the 

surroundings (Laurance et al. 2018). Thus, there might be higher resource diversity to be 

explored in different vertical strata [mostly fruits (Laurence et al. 2000); and arthropod 

primary consumers, within the more conserved landscape (Benítez-Malvido et al. 2016)] 

compared to small remnants, possibly leading Gracilinanus individuals to segregate 

spatially and thus dietarily between forest strata. Moreover, higher resource diversity and 

availability could represent chances for individual specialization in certain food items 

(Bolnick et al. 2003). Consequently, higher spatial segregation and individual 

specialization should lead to overall niche expansion at the population level. 

To our knowledge, this is the first study to evaluate fragmentation effects on 

trophic niche depending on the context of habitat loss. Our results indicate that habitat 

amount in the landscape determines the strength of fragmentation effects on niche 

responses of a small mammal in the Brazilian savanna, supporting the predictions of 

Fahrig (2013) and other authors who found that the overall habitat amount left in the 

landscape is an important predictor of biodiversity in human-altered landscapes (Melo et 

al. 2017; Hannibal et al. 2018). Furthermore, our results  show that the consequences of 

human activities on ecosystems go far beyond species loss, impacting species´ trophic 

ecology, niche breadth, trophic structure, and habitat use, as also found by other studies 

(Layman et al. 2007b; Resasco et al. 2018; Magioli et al. 2019; Muñoz-Lazo et al. 2019). 

  Isotopic analysis of generalist consumers represents unique opportunities for 

better understanding how key biotic and abiotic processes are altered with landscape 

fragmentation (Resasco et al. 2018). Species that are tolerant to habitat modification (such 

as the agile opossum) prove to be good models to evaluate the impacts of fragmentation 

in gradients of habitat modification on different aspects of a species’ ecology (Layman, 
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Quattrochi, et al. 2007; Resasco et al. 2018; Muñoz-Lazo et al. 2019). As they may occur 

across the complete gradient, it enables researches to fully register and investigate niche 

shifts patterns, thus revealing ecological changes potentially driven by spatial effects 

and/or environmental alterations.  

In this sense, we were able to record changes in the opossum´s ecological role in 

the system (e.g., shifts in trophic level) over the fragmentation gradient depending on 

landscape context of habitat loss. We showed that these human driven alterations have 

pervasive effects on species trophic ecology. Muñoz-Lazo et al. (2019) showed a similar 

shift in the ecological role of an omnivore bat in a neotropical forest, reducing the 

consumption of fruits and enhancing the ingestion of insects in fragments compared to 

continuous forests. Our study is consistent with this finding, and reinforces that trophic 

responses to landscape changes can lead omnivore consumers to reduce its role as fruit 

dispersers, mainly in small fragments, hampering their potential to contribute with the 

regeneration of altered landscapes (Muñoz-Lazo et al. 2019).  

Moreover, we demonstrated that even highly plastic species such as the agile 

opossum can be strongly dependent on forest resources, even in patches inserted in a 

severely disrupted landscape (<10% habitat amount). Thus, the present study strengthens 

the statement that every fragment is important to conservation, even small ones (e.g. <10 

ha) (Laurance et al. 2018). Their protection should ensure refugia to surviving forest 

populations, sources of plant propagules, and may act as stepping-stones in human-

modified landscapes (see Laurance et al. 2018). However, we state that the ecological 

role of a species may be severely hampered in hyper-fragmented landscapes and could 

affect ecosystem functioning. Finally, the consequences of fragmentation on habitat 

quality and how it affects consumer trophic ecology remain poorly understood. Thus, we 

argue that future studies should investigate the direct impacts of changes in the 

environmental conditions within patches following fragmentation and habitat loss on 

trophic niche. Additionally, it has been demonstrated that seasonality affects food 

availability in these ecosystems, influencing changes in trophic niche in small flying and 

non-flying mammals (Muñoz-Lazo et al. 2019; Ribeiro et al. 2019). Therefore, it might 

be important in the future to consider the effects of seasonality on trophic niche shifts to 

better understand the responses of tropical species to landscape changes.  
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Figure 1A. Validation of the final linear mixed model describing the effects of habitat 

fragmentation and habitat loss on δ¹5N values of the agile opossum Gracilinanus agilis 

hair content (Deviance = 242.8; ꭓ²= 37.295; df =8; p-value < 0.0001). Visual inspection 

of residuals following Zuur et al. (2009). (a) Model residuals versus fitted values; (b) 

Histogram of model residuals; (c) Model residuals versus explanatory variables patch 

size class, and (d) habitat amount in the landscape and interaction terms (e). 
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Figure 2A. Histograms of δ¹³C values of hair samples from Gracilinanus agilis 

distributed by patch size classes (C1- class 1, C2 – class 2, C3 – class 3) within 

landscapes with different remnant habitat amount (10, 25, 40% of natural cover) in 

semideciduous forests in the Brazilian Cerrado.   
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Figure 3A. Histograms of δ¹5N values of hair samples from Gracilinanus agilis 

distributed by patch size classes (C1- class 1, C2 – class 2, C3 – class 3) within 

landscapes with different remnant habitat amount (10, 25, 40% of natural cover) in 

semideciduous forests in the Brazilian Cerrado.   
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Figure 4A. Number of captured individuals (Gracilinanus agilis) in patch size classes 

(C1- class 1, C2 – class 2, C3 – class 3) within landscapes with different remnant habitat 

amount (10, 25, 40% of natural cover) in semideciduous forests in the Brazilian 

Cerrado. 

 

 

Table 1A. Significance of global linear mixed models of the effects of habitat 

fragmentation and habitat loss on δ¹³C and δ¹5N hair content values of the agile 

opossum Gracilinanus agilis. The significance of the model was determined by 

changes in deviance and p-values generated by comparing global models against null 

models. 

Global model df Deviance ꭓ² p-value 

 Variables     

δ¹³C Patch size class x Landscape 8 212.89 4.879 0.770 

δ¹5N Patch size class x Landscape 8 242.80 37.295    1.016 x 

10-5 
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Table 2A. Linear mixed model estimated parameters and standard error (SE) for the 

relative effects of patch size and habitat loss (landscape habitat amount) on δ¹5N values 

of the agile opossum Gracilinanus agilis in semideciduous forests in the Brazilian 

Cerrado. 

Fixed effects Parameter Estimate SE 

Intercept β0 6.0933 0.3393 

Patch size class 2 β2 0.8858 0.4137 

Patch size class 3 β3 0.3047 0.4344 

Landscape 25 % β4 2.2550 0.5365 

Landscape 40 % β5 0.3864 0.4724 

Patch size class 2: Landscape 25 % β6 -2.6840 0.6778 

Patch size class 3: Landscape 25 % β7 -3.0530 0.6966 

Patch size class 2: Landscape 40 % β8 -1.2949 0.6207 

Patch size class 3: Landscape 40 % β9 -1.9274 0.6746 

Random Effect    

Intercept υ 0.1166 0.3415 

Residual  0.6864 0.8285 
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Capítulo 3 

The effects of habitat quality and spatial scales in the isotopic niche space of a 

didelphid opossum in fragmented landscapes in a neotropical savanna 

Authors: Mattos, I.; Nardoto, G.B.; Ribeiro, J.F.; Zimbres, B.; Marinho-Filho, J. 

 

Abstract 

Studies investigating fragmentation consequences on animal trophic ecology have 

focused on the effects of either patch size and/or habitat loss as the main drivers of species 

responses, while the effects of habitat quality have been underestimated or poorly studied 

compared to spatial scales. Here we investigated how habitat quality (evaluated as forest 

structure and food resources), patch characteristics, and landscape structure influence the 

isotopic niche space of the didelphid agile opossum Gracilinanus agilis in fragmented 

landscapes of semideciduous forests in the Brazilian savanna. We adopted a multiscale 

approach to better comprehend the species´ trophic responses to these complex 

environmental changes. We livetraped small mammals, measured habitat quality 

descriptors, as well as patch and landscape metrics (in a 1 km buffer) in 36 forest patches 

during the year 2018 between the rainy-dry season (April-June), and the dry-rainy season 

(August-October). We calculated isotopic niche space metrics based on ratios of δ13C and 

δ15N of hair samples. Regression analyses indicated that the variation in δ¹³C range (CR) 

was not explained by any of the evaluated habitat or spatial scales. On the other hand, 

δ¹5N range (NR) was affected at the patch scale, revealing a positive effect of patch core 

area, which indicates that opossum individuals assimilated more trophic levels in larger 

and more conserved patches than in smaller ones. Moreover, trophic diversity (SEAc) 

was not influenced by the evaluated predictors at any scale. Finally, niche uniformity 

(SDNND) was the only isotopic niche space metric that responded to different scales: as 

a function of habitat quality (in both dimensions of forest structure and food resources), 

this metric was negatively influenced by the number of vines (indicating that more altered 

forests led individuals to converge in trophic niche); also negatively affected by the 

abundance of Isoptera insects (termites), indicating that the more abundant termites were, 

the more equally individuals within a population tended to include this food item in their 

diets; lastly, at the patch scale, SDNND showed a positive effect of patch core area, 



100 

 

revealing that larger patches with more pristine vegetation promotes intraspecific niche 

partitioning within each population. Our results show that different aspects of trophic 

ecology respond diversely to distinct scales, but responses to patch or/and habitat quality 

features prevailed over the landscape scale, indicating that smaller scales might be more 

important to determine changes in trophic niche space of G. agilis, probably because this 

small bodied species responds to finer grain environmental changes. In this sense, we 

emphasize the need to evaluate the impacts of changes in habitat quality, a usually 

neglected aspect of fragmentation effects in ecological research.    

Keywords: Cerrado, stable isotopes, forest structure, food resources, trophic niche 
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Introduction 

Fragmentation and habitat loss are responsible for biodiversity declines and alterations in 

ecological processes worldwide (Fahrig 2003; Estes et al. 2011; Haddad et al. 2015). 

Reduction in patch area, increased isolation, increased edge effects, and alterations in 

habitat quality (i.e., habitat suitability for a given species) lead to pervasive consequences 

in ecosystem dynamics, going through changes in species abundance, diversity, and 

composition, toward modifications in trophic dynamics (Melián and Bascompte 2002; 

Haddad et al. 2015; Honorato et al. 2015).  

Studies investigating the consequences of fragmentation on animal trophic 

ecology have focused on the effects of either patch size and/or habitat loss as the main 

drivers of species responses (Post et al. 2000; Layman et al. 2007b; Reuter et al. 2016; 

Korotkevich et al. 2018; Resasco et al. 2018; Magioli et al. 2019; Muñoz-Lazo et al. 

2019), while the effects of habitat quality have been underestimated (Mortelliti et al. 

2010) or poorly studied compared to spatial scales (Navarro-López and Fargallo 2015; 

Lei et al. 2019). However, these responses may result from a synergistic relationship 

between patch characteristics, landscape context, and habitat quality (Mortelliti et al. 

2010; Didham et al. 2012). Therefore, adopting a multiscale approach to explore the 

impacts of landscape conversion on trophic relations should allow a more complete 

overview of the ecological mechanisms driving a species capability to survive in such 

altered environments, which is fundamental to underpin accurate conservation policies in 

fragmented landscapes. Although interest in this topic has been increasing to evaluate 

changes in species occurrence and occupancy (Mendes et al. 2017; Bhakti et al. 2018; 

Hannibal et al. 2018), studies evaluating aspects of trophic ecology under a multiscale 

approach are still lacking.   

The relative effects of habitat quality, patch, and landscape characteristics on 

trophic ecology should depend on the scale at which species perceive and respond to 

environmental complexity and heterogeneity, which is linked to ecological traits such as 

resource requirements, body size, dispersal ability, habitat preferences, trophic level, and 

trophic plasticity (Chapter II, With 1994; Honorato et al. 2015; Keinath et al. 2017; 

Mendes et al. 2017; Magioli et al. 2019). Regarding small mammals, diverse habitat 

characteristics related to forest structure (e.g., lianas, fallen logs, understory density, litter 

volume, canopy cover, tree diameter), and food resources (e.g., fruit abundance, 

arthropod diversity), patch and landscapes features (e.g., patch area, normalized 
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difference vegetation index - NDVI, isolation, and habitat amount) are known to influence 

diversity, abundance, species composition, and trophic aspects of their ecology (Chapter 

II, Pardini et al. 2010; Delciellos et al. 2016; Galetti et al. 2016; Melo et al. 2017; Hannibal 

et al. 2018; Camargo et al. 2019; Ribeiro et al. 2019).  

Aspects of animal trophic ecology have been increasingly studied with stable 

isotopes, on the basis of isotopic niche, an n-dimensional hypervolume (where n is the 

number of isotopes) occupied by a population in delta space (Boecklen et al. 2011; 

Shipley and Matich 2020). Studies on food web ecology and land-use change typically 

use stable isotopes of carbon (¹³C) and nitrogen (¹5N) (Layman et al. 2012; Resasco et al. 

2018; Magioli et al. 2019). Isotopic carbon ratio (δ13C) relates to basal resources 

assimilated by consumers, varying significantly among primary producers with different 

photosynthetic pathways (e.g., C3 trees and shrubs, and C4 grasses), and thus providing 

traces on habitat use (Layman et al. 2007a; Ben-David and Flaherty 2012; Magioli et al. 

2019; Ribeiro et al. 2019). Ratios of nitrogen isotopes (δ15N) present stepwise enrichment 

with trophic transfers, serving as an indicator of trophic level within a food web (Post 

2002; Ben-David and Flaherty 2012).     

 Here we investigated how habitat quality (evaluated as forest structure and food 

resources), patch characteristics, and landscape structure influence the isotopic niche 

space of the didelphid agile opossum Gracilinanus agilis (Burmeister, 1854) in 

fragmented landscapes of semideciduous forests in the Brazilian savanna. We adopted a 

multiscale approach to better understand the species´ trophic responses to these complex 

environmental changes. At the habitat scale, we expected that this arboreal-scansorial 

marsupial might respond to variations in habitat quality since forest structure complexity 

influences the availability of spatial resources that can be explored by individuals in 

search for food, besides influencing availability and diversity of food items. So, we 

predicted a positive effect of canopy cover, tree height and basal area on isotopic niche 

area (i.e., niche diversity), δ¹5N range, and niche uniformity, since those habitat 

characteristics are related to higher complexity, providing opportunities of exploring 

diverse resources in different forest strata (Camargo et al. 2019a). On the other hand, we 

foresaw a negative effect of vines on those niche metrics, because these plants are usually 

linked to severely altered forests and edge effects, habitat conditions which might hold 

fewer resource diversity (Campbell et al. 2018). Regarding δ¹³C range, we also expected 

a negative effect of canopy cover, tree height and basal area, but a positive effect of vines, 
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because in more altered forests the agile opossum might assimilate C4 resources from the 

matrix, widening the δ¹³C dimension of niche (Magioli et al. 2019; Ribeiro et al. 2019; 

Pompermaier et al. 2020). In relation to food resources, we expected arthropod diversity 

and fruit availability to be the main drivers of changes in isotopic niche space metrics, 

since these resources influence small mammal guild occurrence (Hannibal et al. 2020), 

isotopic trophic niche (Chapter II, Ribeiro et al. 2019), and network interaction metrics 

of the agile opossum (Camargo et al. 2019a).  

At the patch scale, we expect both patch size and forest density (NDVI) to be 

important variables to influence isotopic niche space, positively affecting niche area (i.e., 

niche diversity) and δ¹5N range, and niche uniformity, while negatively relating to δ¹³C 

range. Patch size influences isotopic niche space for many taxa (Chapter II, Resasco et al. 

2018; Muñoz-Lazo et al. 2019), and NDVI – a proxy for forest integrity (Cabacinha and 

de Castro 2009) – has been identified as an important determinant of small mammal 

composition in semideciduous forests (Hannibal et al. 2018). Finally, at the landscape 

scale, we predicted a positive effect of habitat amount on isotopic niche area (i.e., 

diversity), δ¹5N range, and niche uniformity, but a negative effect on δ¹³C range. Habitat 

amount is an important driver of changes in isotopic niche space (Chapter II, Reuter et al. 

2016), species richness, diversity (for anurans, Almeida-Gomes et al. 2019;  birds, De 

Camargo et al. 2018; and small mammals, Melo et al. 2017), and mammal species 

composition (Pardini et al. 2010; Garmendia et al. 2013; Arroyo-Rodríguez et al. 2016; 

Hannibal et al. 2018). 

Materials and Methods 

Study area  

The study was conducted in 36 patches of semideciduous seasonal forests, ranging from 

2 to 760 ha, in a highly deforested portion of the Brazilian Cerrado. These sites were 

located in the municipalities of Abadiânia (16º2´51´´ S 48º51´44´´ W), Jesúpolis 

(15°57´05´´ S 49°22´26´´ W), Jaraguá (15º44´31´´ S 49º20´6´´ W), Ouro Verde de Goiás 

(16°13´13´´ S 49°11´36´´ W), Pirenópolis (15°53´06.40´´ S 49°10´46.29´´ W), and São 

Francisco de Goiás (15º55´51´´ S 49º15´2´´ W), in the central portion of the state of Goiás, 

Brazil. In these regions, the matrix is composed mainly of pasture, but there are also 

agricultural areas (such as crop fields and/or banana plantations), and few natural patches 

of savanna vegetation (Figure 1). Sampling sites were located in the Legal Reserves of 
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private farms, which are the natural vegetation area all landowners are legally obliged to 

preserve. The climate is classified as Aw according to Köppen, with two well defined 

climatic seasons (hot/wet summers from October to March, and dry/cold winters from 

April to September).  

 

A

 

B 

 

 

Figure 1. (A) Sampling patches (red dots) in central Goiás state, Brazil (highlighted in 

grey in the inset map). (B) Buffer of 1-km radius around patch borders used to estimate 

landscape metrics. 

Studied species  

The agile opossum Gracilinanus agilis (Burmeister, 1854) is a small bodied (20-30 g), 

solitary, nocturnal, didelphid marsupial with arboreal and scansorial habits (Emmons and 

Feer 1997). It feeds mostly on arthropods (mainly Hymenoptera, Isoptera, Hemiptera, and 

Coleoptera), small fruits, and occasionally birds (Camargo et al. 2014). Also, its diet 

varies seasonally: reproductive females feed more heavily on insects during the mating 

season (Camargo et al. 2014). Stable isotope evaluation of G. agilis confirmed a high 

arthropod consumption, revealing that forest-resident individuals can switch between 

prey resources from forests (C3) in the rainy season to grasslands (C4) in the dry season 

(Ribeiro et al. 2019). Reproduction occurs seasonally, from the end of the cool-dry season 

to mid/end of the warm-wet season (Lopes and Leiner 2015). This marsupial is widely 

distributed in South America, ranging over the east of the Andes in Peru, Bolivia, 

Paraguay, Uruguay, and Argentina (Emmons and Feer 1997). In Brazil, it inhabits the 

Cerrado, Caatinga, and Pantanal biomes (Paglia et al. 2012), occurring in forest 
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formations, e.g. gallery forests, dry forests, and woodland savannas (Vieira and Palma 

2005).   

Small mammal survey 

In each of the 36 sampled patches, we established a trapping line of 200 m, located 30 m 

from patch edges to minimize edge effects. Each line had 20 trap stations, placed every 

10 m, with four livetraps each, where half were set on the ground, and half in the 

understory (at least 1.5 m height). Every station had a Tomahawk®(300 x 160 x 160  mm) 

and a small Sherman® (250 x 80 x 90 mm) on the ground, and a big Sherman (300 x 80 

x 90 mm) and a small one in the understory, except for the first and last trap stations, 

where we replaced a Tomahawk trap by a big Sherman. The study was conducted over 

the year 2018 between the rainy-dry season (April-June) and the dry-rainy season 

(August-October), thus encompassing seasonal variations in diet. Captures occurred 

during four consecutive nights per field campaign, resulting in an effort of 640 trap-nights 

per patch and 23,040 trap-nights in total.  

Traps were baited with a mixture of peanut butter, corn powder, sardine, and banana. 

Captured animals were identified, marked with numbered ear-tags, measured and 

weighted. We also recorded age (following Macedo et al. 2006), gender, and reproductive 

status. We collected a hair sample from the posterior dorsal region from all individuals 

with a clean scissor, and stored samples in plastic tubes. Animals were released in the 

same trap location where they were captured. Voucher specimens were collected and held 

in the Mammal Collection of the Department of Zoology, University of Brasília (UnB, 

Brasília, Brazil). All procedures followed the guidelines of the American Society of 

Mammalogists for the use of wild animals in research (Sikes et al. 2016). We conducted 

the study with the permission of the Committee of Ethics and Animal Use from the 

University of Brasília (28/2018), Instituto Chico Mendes de Biodiversidade (SISBIO 

61990), and Secretaria de Meio Ambiente do Estado de Goiás (SECIMA/CEMan 

006/2019). 

Habitat quality 

Here we considered patch quality as properties of the habitat that might have an impact 

on population parameters such as survival and fecundity (Mortelliti et al. 2010). To 

evaluate habitat scale and habitat quality, we chose environmental variables revealed as 

important to small mammals´ occurrence, habitat use, and foraging, that can potentially 
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affect population parameters and individual condition (Pardini et al. 2005; Ribeiro 2015a; 

Delciellos et al. 2016, 2018; Camargo et al. 2018; Hannibal et al. 2018, 2020; Ribeiro et 

al. 2019). These variables describe habitat heterogeneity, forest complexity, and food 

resource availability.  

We sampled descriptors of habitat quality in ten 4 x 4-m plots located every even 

trap station along the transect line in all patches. To evaluate forest structure, we measured 

the following variables inside each plot: 1) canopy cover, as the proportion of closed 

pixels from a photograph (one per plot, and used mean values per patch) taken with a 

digital camera in the center of each plot, using the software image J. We took one picture 

per season and used mean values; 2) mean number of vines; 3) mean tree height (m) of 

the closest four trees from the plot center, with circumference ≥ 16 cm at 30 cm height - 

estimated with a 3 m pole; 4) basal area, estimated from the diameter at breast height 

(DBH)  from the same four previously measured trees; 5) understory clutter (to 3 m 

height) (%), estimated with a graduated 3 m pole (with a graduation of 10 cm) following 

Martins et al. (2017); 6) litter volume (cm³), estimated from litter material sampled in a 

50 x 50-cm quadrat inside each plot (located in its superior left corner), following Santos 

Filho et al. (2008a). We placed the collected litter inside a translucid graduated cylindric 

box (with 28.2 cm diameter) and pressed down the material with a 1 kg cover, which 

indicated the correspondent litter height in a coupled scale of 120 mm (Figure 2). Litter 

height (h) was then used to estimate cylinder volume according to V = π. (14.1) ².h. 

Since cattle ranching is the main human activity in the study regions, we also 

estimated 7) cattle intrusion to measure human-use habitat modification in forests. We 

classified intrusion level as an ordinated variable (0-4) based on incidence of footprints, 

cattle trampling and feces in a 15-m radius around each plot´s center. For this variable we 

used median plot values for each patch as the sample unit, while we used mean values for 

the other variables. 

To estimate food availability, we directly counted total number of zoochorous 

fruits in the understory (to 3 m height) [or estimated it according to Chapman et al. (1992)] 

inside each plot during small mammal sampling. To evaluate arthropod abundance, we 

used pitfall traps (one per plot, totaling 10 traps per sampling patch), composed of a 500-

mL plastic cup containing a solution of water, salt, and detergent. Traps remained opened 

during four days per sampling period. We estimated arthropod abundance by taxonomic 

order. However, further analyses included: abundance of the most commonly found 
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orders in G. agilis diet (Coleoptera, Hemiptera, Hymenoptera, and Isoptera, Camargo et 

al. 2014); and arthropod diversity, estimated with Shannon Index (Exp [H´]; Jost 2006), 

based on all orders registered.   

 

Figure 2. Graduated cylindric box used to estimate litter volume. 

 

Patch scale 

We estimated four metrics for each sampled patch: 1) patch area (m²); 2) patch core area 

(m²), corresponding to patch area minus edge length (50 m), representing a more intact 

portion of the patch, i.e., lower edge effect for small mammals (Santos-Filho et al. 2008b); 

3) patch perimeter (m); 4) NDVI, estimated with Landsat 8 imagery in Google Earth 

Engine from mean values between dry and rainy seasons of the year 2018. This metric 

indicates vegetation density, which has been associated with small mammal composition 

in the Brazilian Cerrado (Melo 2015; Hannibal et al. 2018), and might indicate forest 

quality.   

Landscape scale 

To estimate landscape metrics, we selected a buffer of 1-km radius around each patch 

border (Fig.1). This distance covers the home range size of G. agilis (Ribeiro 2011; 

Shibuya et al. 2018), and is the largest buffer size that avoided overlap with buffers from 

neighboring focal patches (Hannibal et al. 2018). We calculated the following metrics of 

landscape structure inside each buffer: 1) mean patch isolation (MNN), as mean distance 

to all patches (m) (Vieira et al. 2018); 2) mean perimeter-area ratio (MPAR),  estimated 

as the sum of each patch perimeter/area ratio divided by the number of patches, which is 

a measure of shape complexity; 3) total core area (TCA), estimated as the sum of all patch 

core areas inside the buffer, and we used it as a measure of habitat amount in the landscape 

(m²); 4) total core area index (TCAI), a measure of the amount of core area in the 

landscape, is a proportion of core area in the entire landscape, equaling zero when no 
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patches in the landscape contain core, and approaches one as the relative proportion of 

core area in the landscape increases. 

Patch and landscape metrics were based on the 2018 land use and land cover map 

from the MapBiomas project, collection 4.1, which classifies Landsat 8 satellite imagery 

at a 30-m resolution. Landscape choice was based on the proportion of five land use 

classes: forest, savanna, agriculture, pasture, and mosaic of agriculture and pasture [see 

MapBiomas class descriptions in (http://mapbiomas.org)]. Patch (except for NDVI) and 

landscape metrics were calculated using the Patch Analyst extension in ArcGIS 10.4. All 

these predictors can influence abundance, richness, as well as species composition for 

small mammals (Pardini et al. 2005; Delciellos et al. 2016; Vieira et al. 2018). 

Isotopic analysis    

We collected hair samples from at least three individuals of Gracilinanus agilis per patch. 

In addition, to avoid bias in isotopic values we excluded samples from four patches that 

were surrounded by soy or banana plantations, since our focus was on the most prevalent 

pasture matrix. In addition, we tried to equally distribute samples among sexes, and 

excluded juveniles to avoid possible bias in isotopic values due to gender and age 

differences in trophic niche. Hair samples were washed with distilled water, subsequently 

immersed in a 2:1 solution of chloroform and methanol for 30 min, and washed again 

with distilled water. Afterwards, samples were oven-dried for 12 hours at 65º, shredded 

and weighted (minimum aliquot of 1.5 mg) in tin capsules on an analytical scale (0.001 g 

precision) (Ribeiro et al. 2019).   

Isotopic analyses were performed at the Stable Isotope Facility of the University 

of California (SIF), Davis, USA. Samples were analyzed for 13C and 15N isotopes using 

a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope 

ratio mass spectrometer (Sercon Ltd., Cheshire, UK). During analysis, samples were 

interspersed with several replicates of at least four different laboratory reference 

materials. These reference materials have been previously calibrated against international 

reference materials, including IAEA-600, USGS-40, USGS-41, USGS-42, USGS-43, 

USGS-61, USGS-64, and USGS-65 reference materials. A sample’s provisional isotope 

ratio is measured relative to a reference gas peak analyzed with each sample. These 

provisional values are finalized by correcting the values for the entire batch based on the 

http://mapbiomas.org)/
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known values of the included laboratory reference materials. The long-term standard 

deviation is 0.2 per mil for 13C and 0.3 per mil for 15N.  

The results were expressed in delta notation (δ), in parts per thousand (‰), based 

on internationally recognized standards. We used the following equation:  δ 15N or δ 13C 

(‰) = (Rsample – Rstandard) / Rstandard × 1.000), where Rsample and Rstandard represent the 

heavy/light isotope molar ratio of the sample and standard, respectively. The standard 

used for carbon analysis was Vienna Pee Dee Belemite (Vienna PDB; 13C:12C ratio = 

0.01118), and the standard used for nitrogen analysis was atmospheric air (15N:14N ratio 

= 0.0036765).  

Data analyses 

Isotopic niche space 

Isotopic niche metrics were based on mean values of δ¹³C – δ¹5N from G. agilis 

individuals dispersed in isotopic niche space, represented by a biplot. These metrics 

reveal important aspects of trophic structure and are related to trophic diversity (Layman 

et al. 2007a; Jackson et al. 2011). To investigate changes in isotopic niche space of the 

agile opossum, we calculated the following metrics: 1) δ13C  range (CR), indicating the 

variety of basal resources assimilated by the species; 2) δ15N range (NR), which provides 

information on the diversity of trophic levels assimilated by the species; 3) standard 

ellipse area corrected for small sample size (SEAc), which is a bivariate standard 

deviation that represents the core isotopic niche space of a population (Jackson et al. 

2011); 4) standard deviation of the mean nearest neighbor distance (SDNND), which is a 

measure of trophic niche uniformity between individuals of a population in the biplot δ13C 

- δ15N. Smaller values indicate higher trophic similarity (Layman et al. 2007a; Jackson et 

al. 2011). These metrics were estimated in R software version 3.6.2 (R Core Team 2019) 

using the SIBER package (Jackson et al. 2011).  

Statistical analyses  

We used linear models (LM) or generalized linear models (GLM) to evaluate the effects 

of habitat quality (separately habitat structure and food resources) and spatial scale (patch 

and landscape) on isotopic niche space metrics. GLMs were used with Gamma 

distribution whenever needed to accommodate normality deviations of the global model’s 

residuals (Zuur et al. 2009). So, we fitted 16 models in total to investigate these 
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relationships in each dimension (Table 1). To determine which variables were most 

important to influence response variables at each scale, we compared nested models in a 

stepwise approach with likelihood ratio tests (LRT). The significance of explanatory 

variables was given by p-values (based on F tests) for LM, while for GLM it was given 

by changes in Deviance and p-values (based on ꭓ² test). First, we tested for spatial 

autocorrelation in response variables with Moran´s I. Also, we checked for 

multicollinearity between predictors with Pearson correlation coefficients (excluding 

those with r > 0.5). During model fitting, we transformed predictors [to log10(x) or 

log10(x+1)] in some cases to improve homoscedasticity of residuals (Tab. 1) (Zuur et al. 

2007). Additionally, predictors were standardized (scaled to the z-score) to ensure 

variables had the same scale (Table 2). We tested for overdispersion with Pearson 

residuals in GLM models. We conducted analyses in R version 3.6.2 (R Core Team 2019), 

and performed model validation following Zuur et al. (2009). 
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Table 1. Structure of regression models evaluating the influence of habitat quality (forest 

structure and food resources) and spatial scale (patch and landscape) on isotopic niche 

space (Layman et al. 2007a; Jackson et al. 2011) of Gracilinanus agilis in the Brazilian 

Savanna in a fragmented landscape. Response variables: CR – δ¹³C range; NR – δ¹5N 

range; SEAc – standard ellipse area corrected for small sample size; SDNND – standard 

deviation of the mean nearest neighbor distance. Explanatory variables are grouped into 

descriptors of habitat quality (forest structure: Height – tree height (m); Vines – mean 

number of vines; B_area – basal area (m²); Understory – understory clutter (%); Canopy 

– canopy cover (%); Litter – litter volume (m³); food resources: Fruits – total number of 

fruits; H´_arth – Shannon Index of arthropod diversity; Coleoptera – Coleoptera 

abundance; Hemiptera – Hemiptera abundance; Isoptera – Isoptera abundance), and 

spatial scales (patch: Core area (m²) – patch area excluding 50-m edges; NDVI – 

vegetation density index accounted for mean values between dry and rainy seasons; and, 

landscape: MPAR – mean perimeter-area ratio, indicating shape complexity; MNN – 

mean nearest neighbor distance, indicating mean patch isolation; TCA_m² – total core area 

(m²) in a 1-km buffer around focal patch). 

 Global models 

Regression type Habitat quality (forest structure) 

GLM CR ~ Vines + Height + Canopy + Litter + log10(B_area) + Understory 

GLM NR ~ Vines + Height + Canopy + Litter + B_area + Understory 

GLM SEAc ~ Vines + Height + Canopy + Litter + log10(B_area) + 

Understory 

GLM SDNND ~ Vines + Height + Canopy + Litter + log10(B_area) + 

Understory 

 Habitat quality (food resources) 

LM CR ~ H´arth+ Hemiptera + Isoptera + Coleoptera + Fruits 

GLM NR ~ H´arth+ log10(x+1) Hemiptera + log10(x+1) Isoptera + log10(x+1) 

Coleoptera + log10(x+1) Fruits 

GLM SEAc ~ H´arth+ log10(x+1) Hemiptera + log10(x+1) Isoptera + 

log10(x+1) Coleoptera + log10(x+1) Fruits 
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GLM SDNND ~ H´arth+ log10(x+1) Hemiptera + log10(x+1) Isoptera + 

log10(x+1) Coleoptera + log10(x+1) Fruits 

  Patch scale 

LM CR ~ Core area + NDVI 

LM NR ~ Core area + NDVI 

GLM SEAc ~ Core area + NDVI 

GLM SDNND ~ Core area + NDVI 

  Landscape scale 

LM CR ~ MNN + TCA + MPAR 

LM NR ~ MNN + TCA + MPAR 

GLM SEAc ~ MNN + TCA + MPAR 

GLM SDNND ~ MNN + TCA + MPAR 

 

Results 

We analyzed 85 samples from individuals captured in 22 of the 36 sampled patch sites. 

Mean sample size per patch was 3.86 (ranging from 3 to 7 hair samples). Mean δ¹³C value 

was -24.03 ‰, ranging from -25.07 to -23.46 ‰, which corresponds mostly to 

assimilation of forest basal resources (C3) and no matrix resources. Mean δ¹5N value was 

6.50 ‰, ranging from 4.52 to 9.00 ‰. These values suggest an omnivore-insectivore diet 

with wide trophic plasticity, indicating the agile opossum feeds on basal resources 

(probably fruits) up to three trophic levels.   

 We found no spatial autocorrelation in the response variables, according to 

Moran´s I test (δ¹³C range: p = 0.406; δ¹5N range: p = 0.900; SEAc: p = 0.406; SDNND: 

p = 0.607). To avoid multicollinearity, we excluded the following variables to fit models, 

based on Pearson correlations (r > 0.5): level of cattle intrusion (that was highly 

negatively correlated with understory clutter), Hymenoptera abundance (correlated with 

Coleoptera abundance), patch area (correlated with patch core area), patch perimeter 

(correlated with patch area and patch core area), total core area index (correlated with 

total core area) (Figure AI). Finally, we found no overdispersion in model residuals during 

GLM fitting.  

 Regression analyses indicated that variation in δ¹³C range (CR) was not explained 

by habitat quality (either forest structure or food resources), patch or landscape scales 
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(Table AI). Regarding δ¹5N range (NR), variation was explained only by patch scale, 

revealing a positive effect of patch core area (βcore area = 0.388 ± 0.175; df = 20; t = 2.222, 

p = 0.038; Figure 3a, (Tab. AI), which indicates that opossum individuals assimilated 

more trophic levels in larger and more conserved patches than in smaller ones. Moreover, 

standard ellipse area, or trophic diversity (SEAc), was not influenced by the evaluated 

predictors at any scale (Tab. AI). Finally, niche uniformity (SDNND) was the only 

isotopic niche space metric that responded to different scales: as a function of habitat 

quality (in both dimensions of forest structure and food resources), this metric was 

negatively influenced by the number of vines (βvines = -0.519 ± 0.162; df = 20; Deviance 

= 14.870; ꭓ² = -4.848; p = 0.002, Fig. 3b, Tab. AI), also negatively affected by the 

abundance of Isoptera insects (termites) (βIsoptera abundance = -0.542 ± 0.152; df = 20; 

Deviance = 13.536; ꭓ² = -6.182; p = 0.0004, Fig.3c, Tab. AI); at the patch scale, SDNND 

showed a positive effect of patch core area (βcore area = 0.337 ±0.181; df = 20; Deviance = 

19.718; ꭓ² = -2.693; p = 0.047, Fig. 3d, Tab. AI).    

 

Table 2. Mean and range of response variables (isotopic niche space metrics), and 

explanatory variables tested in the analyses to predict the influence of habitat quality, 

patch and landscape scales on isotopic niche space of Gracilinanus agilis in fragmented 

landscapes in the Brazilian Savanna.  

Response variable Mean [Range] 

δ¹³C range  1.32 [0.14 – 2.75] 

δ¹5N range  1.48 [0.28 - 3.23] 

SEAc 1.5 [0.04 - 5.39]   

SDNND 0.32 [0.01 – 0.93] 

Explanatory variable  

Habitat quality (Forest structure)  

Number of vines  4.30 [0.50 – 9.90] 

Tree height (m) 8.31 [6.11 – 10.59] 

Canopy cover (%) 77.37 [74.20 – 82.90] 

Litter volume (m³) 0.00237 [0.00120 – 0.00441] 

Tree basal area (m²) 0.08 [0.03 – 0.27] 

Understory clutter (%) 50.21 [17.17 – 74.17] 

Habitat quality (Food resources)  
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Arthropod diversity (H´) 1.95 [1.11 – 3.96] 

Hemiptera abundance 1.95 [0 – 8] 

Isoptera abundance 74.50 [0 – 950] 

Coleoptera abundance 41.64 [0 – 186] 

Fruit abundance 18.56 [0 – 78.80] 

Patch scale  

Core area (m²) 5999.41 [204.11 – 50944.50] 

NDVI 0.64 [0.50 – 0.71] 

Landscape scale  

Mean patch isolation (MNN) (m) 94.59 [44.14 – 158.38] 

Total core area (m²) 987627.3 [78300 – 5888700] 

Shape complexity (MPAR) 0.17 [0.06 – 0.43] 
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Figure 3. Final regression models revealing the influence of habitat quality (forest 

structure and food resources), and patch scale predictors on isotopic niche space (Layman 

et al. 2007a; Jackson et al. 2011) of Gracilinanus agilis in the Brazilian Savanna, 

including: (a) relationship between δ¹5N range (NR) and patch core area (m²), a patch scale 

effect; relationships between niche uniformity (SDNND) and (b) mean number of vines - 

Adjusted R² = 0.68 
p = 0.0003 

Adjusted R² = 0.15 
p = 0.038 

Adjusted R² = 0.75 
p = 0.003 

Adjusted R² = 0.86 
p = 0.047 
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a forest structure variable; (c) Isoptera abundance - a food resource variable; and, (d) patch 

core area (m²).    

Discussion 

Habitat structure and food resource availability, here treated as measures of habitat 

quality, as well as spatial scale (patch and landscape) may influence aspects of trophic 

ecology and network interactions of animal populations (Chapter II, Navarro-López and 

Fargallo 2015; Camargo et al. 2019; Lei et al. 2019; Muñoz-Lazo et al. 2019). Adopting 

a multiscale approach to study variations in trophic ecology of animals in altered 

landscapes should reveal a more complete overview of the ecological mechanisms 

underlying changes in species responses.  

 Contrary to our expectations, δ¹³C range (CR) was not influenced by any 

predictors within the analyzed scales. Assimilated carbon values were consistent with a 

major contribution of C3 resources, corresponding to forest basal resources (Ometto et al. 

2002, 2006; Coletta et al. 2009). Cerrado forest plants are predominantly C3 and do not 

vary widely in carbon signals (Parron et al. 2004; Coletta et al. 2009), which might result 

in a small variation in δ¹³C range of assimilated basal resources of the agile opossum. 

This result also indicated that the species does not feed on matrix basal resources (C4 

pasture grass), or on matrix invertebrates, revealing high dependency on forest remnants. 

Furthermore, apparently habitat quality and spatial features do not seem to be important 

to determine the variation of δ¹³C range for the studied species. 

Contradicting our hypotheses, neither forest structure, food resources, or 

landscape metrics affected δ¹5N range.  This isotopic niche metric was only influenced at 

the patch scale, revealing a positive relationship with patch core area, indicating that 

larger areas with more conserved forests (i.e., weaker edge effects) led populations to 

feed on a higher diversity of trophic levels. However, NDVI (here used as a patch 

descriptor of forest density) did not predict variations in δ¹5N range.  

Unfragmented systems and larger patches are expected to harbor higher 

biodiversity (Fahrig 2003), a context that enables individuals of a population to specialize 

in different potential food items (in our system, arthropods, fruits, fungi), promoting 

intraspecific trophic niche variation (Layman et al. 2007b). In fact, fragmentation leads 

to a reduction in species richness and diversity of arthropods (Kishbaugh and Yocom 

2000), also affecting the abundance of trophic guilds, with omnivorous species being 
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more common in forest fragments together with predatory spiders, while herbivores are 

more abundant in continuous areas and in the forest interior, except for leaf-miner ants, 

that present higher density in fragments and forest edges (Wirth et al. 2007; Rossetti et 

al. 2014; Benítez-Malvido et al. 2016). Additionally, forest basal resources (fruits) are 

also hampered by forest fragmentation (Terborgh 1986, 1992). Thus, since arthropods 

and fruits are the main food items in the agile opossum´s diet (Camargo et al. 2014), it is 

expected that they respond to changes in the diversity and availability of these resources, 

even though we failed to detect a direct effect of food resources on δ¹5N range. In this 

sense, our results showing the effects of patch size on δ¹5N range reveal the potential 

indirect impacts of fragmentation and other habitat changes cascading through the food 

web, from changes in resource availability to modification of consumer´s trophic ecology, 

a pattern that has been detected for terrestrial and aquatic consumers (Chapter II, Layman 

et al. 2007b; Klarner et al. 2017; Resasco et al. 2018; Muñoz-Lazo et al. 2019).  

Moreover, standard ellipse area (SEAc) presented no relationship with the 

evaluated predictors at any scale. Apparently, the tested variables are not important to 

determine variations in SEAc. Nevertheless, we were surprised not to find an effect of 

patch size on this niche metric, since either negative or positive responses to this patch 

scale predictor are reported elsewhere for different organisms (Chapter II, Layman et al. 

2007b; Resasco et al. 2018; Muñoz-Lazo et al. 2019). In Chapter II of this work, we 

detected an effect of patch size depending on habitat amount in the landscape, but the 

approach there was related to a broader spatial scale in the response (habitat amount 

considered was at a scale of 15,000 ha, while here it is of a 1-km radius). These findings 

highlight that the evaluated scale of response might be important to reveal the effects of 

habitat modifications on species responses.  

Finally, regarding niche uniformity (SDNND), our hypotheses were partially 

corroborated. This isotopic niche space metric responded to habitat quality (forest 

structure and food resources), and to patch scale. As expected, concerning forest structure, 

niche uniformity was negatively related to number of vines. So, in patches with a higher 

density of lianas, opossum populations presented lower SDNND values, i.e., a similar 

isotopic trophic niche between individuals. Since increased abundance of vines is a proxy 

for forest disturbance, mediated by edge effects (Campbell et al. 2018; Laurance et al. 

2018), we can infer that perturbed forests lead G. agilis individuals to have similar trophic 

niches. Lianas are an important microhabitat feature selected by Gracilinanus (Melo et 
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al. 2013; Camargo et al. 2018), and are also important for insectivorous and omnivorous 

small mammal species (Hannibal et al. 2020), since these plants promote higher 

understory connectivity for this small scansorial-arboreal marsupial. Probably a high 

density of lianas favors individuals to be concentrated in the understory stratum, 

exploring the available food and shelter resources there located, potentially leading to a 

higher similarity in trophic niche within the population than would be the case if 

individuals explored the ground stratum more frequently. This idea is corroborated by 

Camargo et al. (2019), who found that more structured forests promote higher network 

nestedness of G. agilis, which means that in forests with higher complexity, individuals 

increase vertical segregation to explore ground and upper strata resources, potentially 

adding new food items to their diets. So, in a condition of understory microhabitat use 

preference, enhanced by great availability of lianas, as we found, there would be a 

potential similarity in trophic niche between individuals. In fact, differences in 

microhabitat use of vertical strata was found to affect the trophic niche of other mammals 

species (Hadi et al. 2012; Dammhahn et al. 2013; Reuter et al. 2016). 

Moreover, disturbed forests dominated by lianas present changes in tree 

community composition and dynamics, reduced tree growth and fecundity, elevated tree 

mortality—specially of late-successional and climax species (Campbell et al. 2015; 

Laurance et al. 2018)—as well as fragmentation scenarios that can hamper overall 

resource diversity and availability (such as fruits and arthropod guilds) as a consequence 

of biodiversity loss (Terborgh 1986; Rossetti et al. 2014; Haddad et al. 2015; Benítez-

Malvido et al. 2016). These conditions could also contribute to a higher similarity of 

trophic niches within populations, even though we failed to detect a direct relationship 

between SDNND and diversity of food resources (i.e., arthropod diversity). 

With respect to food resources, we found a negative effect of Isoptera abundance 

on SDNND values, revealing that patches with more Isoptera presented higher similarity 

in trophic niche between opossum individuals within populations. Termites are one of the 

most abundant insect orders in the Cerrado (Negret and Redford 1982; Pinheiro et al. 

2002), representing an important diet item for lizards, anurans, and mammals (Costa et 

al. 2008; Lessa and Costa 2010; Camargo et al. 2014; Marques-Pinto et al. 2019). Isoptera 

represents a valuable prey item, because it is a concentrated resource (Abensperg-Traun 

and Steven 1997) that provides water supply and fat content (DeFoliart 1992; Cooper and 

Withers 2004). The agile opossum feeds heavily on termites according to their availability 
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in the environment in the wet season, and selects it positively in the dry season, when 

there are higher energy demands for reproductive activities (Camargo et al. 2014). Given 

their nutritional importance, and high abundance of these insects in the Cerrado, it is 

expected that Gracilinanus individuals respond uniformly to the availability of this 

resource, assimilating it in accordance to its abundance, which leads to lower SDNND 

values (i.e., higher trophic similarity).  

Lastly, at the patch scale, SDNND variation was explained by patch core area, 

revealing that larger patches with more pristine vegetation held opossum individuals with 

more distinct trophic niche within each population (higher SDNND values). Such patches 

are expected to have greater biodiversity (Lomolino 2001; Fahrig 2003), potentially 

offering higher resource diversity and availability (Laurance et al. 2000; Haddad et al. 

2015). Moreover, higher patch core area suggests larger amounts of less disturbed habitats 

within fragments (edge effects), which means that in this condition forest habitat tends to 

be more structured and complex (Laurance et al. 2000, 2018). Thus, with higher resource 

diversity/availability, and more opportunities to vertically explore those resources, 

scansorial-arboreal individuals have more chances to choose between preferred food 

items, and specialize in different resource types, i.e., resource partitioning (Bolnick et al. 

2003; Finke and Snyder 2008), increasing trophic niche differences within the population. 

In fact, our findings are supported by Camargo et al. (2019), who showed that resource 

diversity and abundance (e.g., fruits and arthropod diversity) positively affected 

modularity of G. agilis in a Brazilian woodland savanna, indicating that higher resource 

diversity leads to diet segregation between individuals. Besides, they also found that more 

structured forests were positively related to nestedness, suggesting that vertical 

segregation among individuals promote differential resource exploitation between them 

(Camargo et al. 2019a).  

The stable isotopes approach is being continuously adopted to help researchers 

understand species´ trophic responses to environmental shifts, specially under the present 

global scenario of landscape change (Chapter II, Layman et al. 2007b; Reuter et al. 2016; 

Resasco et al. 2018; Magioli et al. 2019; Ribeiro et al. 2019). We have shown that 

applying “community-wide metrics” of isotopic niche space (i.e., Layman metrics, 

Layman et al. 2007a) at the population level is a powerful tool to explore changes in the 

degree of trophic specificity/generality among individuals in a population in human-
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driven environmental contexts (Bearhop et al. 2004; Layman et al. 2007a, 2012), which 

helps reveal different aspects of the species trophic ecology.  

Furthermore, here we show that analyzing both habitat and broad spatial scales 

(i.e., patch and landscape) allows us to unveil different ecological mechanisms driving 

species responses to fragmentation and habitat loss. Under this multiscale approach, this 

is the first study to evaluate changes in trophic niche space of an organism. In our system, 

distinct metrics of trophic niche space were related to different patch or/and habitat 

quality features, but none with landscape scale. These results indicate that smaller scales 

might be more important to determine changes in trophic niche space of G. agilis than the 

evaluated landscape scale, probably because this small bodied species responds to finer 

grain environmental changes. In this sense, we suggest that future studies embrace 

multiscale approaches to advance in the comprehension of the full consequences of 

landscape change to biodiversity and trophic ecology (Delciellos et al. 2016; Hannibal et 

al. 2018, 2020); and most of all, we reinforce the need to evaluate the impacts of changes 

in habitat quality (which is species-specific and requires basic autoecological knowledge 

of the studied species), usually a neglected aspect of fragmentation effects in ecological 

research (Mortelliti et al. 2010; Delciellos et al. 2016).  
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Appendix I 

A 

 

B 

 

C 

 

D 

 

Figure AI. Correlation plots (based on Pearson’s correlation coefficients) investigating 

multicollinearity (r > 0.5) in the explanatory variable data set used as predictors of isotopic niche 

space. Variables are grouped into descriptors of habitat quality [(A) Forest structure: Height – 

Tree height (m); vines – number of vines; b_area – basal area (m²); understory – understory 

clutter (%); canopy – canopy cover (%); litter – litter volume (m³); cattle_intrusion – level of 

cattle intrusion inside the patch; (B) Food resources: fruit_total – total number of fruits; 

D.Hills_art – Hills Index of arthropod diversity; coleop – Coleoptera abundance; hemip – 

Hemiptera abundance; hymen – Hymenoptera abundance; isopt – Isoptera abundance], and 

spatial scales [(C) Patch: area – patch area (m²); perim – patch perimeter (m); core_area – patch 



131 

 

area excluding 50 m edges; NDVI_media – normalized difference vegetation index calculated 

with the mean values in the dry and rainy seasons; and, (D) Landscape: MPAR – mean 

perimeter-area ratio, indicating shape complexity; MNN – mean nearest neighbor distance, 

indicating mean patch isolation; TCA_m² – total core area (m²) in a 1-km buffer around the focal 

patch; TCAI_m² - total core area index, proportion of core area in the entire landscape].  

 

Table AI. Final regression models evaluating the influence of habitat quality (forest structure 

and food resources) and spatial scales (patch and landscape) on the isotopic niche space (Layman 

metrics) of Gracilinanus agilis in the Brazilian Savanna. Response variables: CR – δ¹³C range; 

NR – δ¹5N range; SEAc – standard ellipse area corrected for small sample size; SDNND – 

standard deviation of the mean nearest neighbor distance. Explanatory variables are grouped 

into descriptors of habitat quality (forest structure: Height – tree height (m); Vines – mean 

number of vines; B_area – basal area (m²); Understory – understory clutter (%); Canopy – 

canopy cover (%); Litter – litter volume (m³); food resources: Fruits – total number of fruits; 

H´_arth – Shannon Index of arthropod diversity; Coleoptera – Coleoptera abundance; Hemiptera 

– Hemiptera abundance; Isoptera – Isoptera abundance), and spatial scales (patch: Core area 

(m²) – patch area excluding 50-m edges; NDVI – normalized difference vegetation index based 

on mean values in the dry and rainy seasons; and landscape: MPAR – mean perimeter-area ratio, 

indicating shape complexity; MNN – mean nearest neighbor distance, indicating mean patch 

isolation; TCA_m² – total core area (m²) in a 1km buffer around focal patch). Significant p-

values are indicated in bold. Regression type: glm – Generalized linear model; lm – linear model. 

Final model (regression type) df Residual Deviance (glm) or F 

test (lm) 

p-value 

(ꭓ² or t) 

Habitat scale (forest structure)    

CR ~ 1 (GLM) 21 8.601 0.126 

NR ~ 1 (GLM) 21 9.361 0.223 

SEAc ~ 1 (GLM) 21 23.668 0.282 

SDNND ~ Vines (GLM) 20 14.870 0.003 

Habitat scale (food resources)    

CR ~ 1 (LM) 21 2.918 0.103 



132 

 

NR ~ 1 (GLM) 21 9.362 0.407 

SEAc ~ 1 (GLM) 21 23.668 0.125 

SDNND ~ log10(x+1) Isoptera (GLM) 20 13.536 0.0003 

Patch scale    

CR ~ 1 (LM) 21 3.893 0.063 

NR ~ Core area (LM) 20 1.441 0.038 

SEAc ~ 1 (GLM) 21 23.668 8.13 x 10-5 

SDNND ~ Core area (GLM)    

Landscape scale    

CR ~ 1 (LM) 21 0.398 0.535 

NR ~ 1 (LM) 21 3.563 0.074 

SEAc ~ 1 (GLM) 21 23.668 0.496 

SDNND ~ 1 (GLM) 21 19.718 0.141 
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Conclusões  

Com o avanço rápido da destruição das florestas neotropicais para conversão em 

agricultura e pastagem, é de grande importância compreender como as populações e as 

comunidades animais respondem aos resultantes processos de fragmentação, perda de 

habitat e degradação dos remanescentes nativos, sob diferentes aspectos. Neste contexto, 

este trabalho conclui que: 

• Os efeitos da configuração da paisagem não foram dependentes da quantidade de 

habitat disponível na paisagem para determinar as comunidades de pequenos 

mamíferos. 

• De forma geral, o aumento da fragmentação e da perda de habitat levou a um 

aumento na abundância de pequenos mamíferos. 

• Espécies generalistas e especialistas de florestas responderam de formas distintas 

a esses processos de alteração dos habitats e das paisagens: a riqueza de espécies 

generalistas foi influenciada positivamente pela quantidade de habitat na 

paisagem, enquanto o número de espécies especialistas dependeu da qualidade 

das florestas remanescentes, apresentando uma relação positiva com a cobertura 

de dossel.    

• Os parâmetros da estrutura da paisagem (tamanho de fragmento e proporção de 

floresta na paisagem) foram mais determinantes para a mudança na composição 

de espécies do que os parâmetros da qualidade da estrutura remanescentes 

florestais ao longo do gradiente de fragmentação e perda de habitat.  

• As consequências da fragmentação e da perda de habitat vão muito além da perda 

de espécies, alterando não só os padrões de abundância e composição de espécies, 

como também a ecologia trófica, amplitude de nicho, estrutura trófica e uso do 

habitat pelas espécies sobreviventes. 

• Nosso estudo contribuiu para mostrar que a fragmentação e perda de habitat 

podem impactar severamente os papéis ecológicos das espécies. No caso de G. 

agilis, um consumidor onívoro, o avanço da perda de habitat e da fragmentação 

levou a um aumento da insetivoria em detrimento da frugivoria, prejudicando seu 

papel como dispersor de frutos e assim, diminuindo potencial de contribuir para a 

regeneração das florestas remanescentes em paisagens fragmentadas.  
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• Com relação ao nicho trófico, o efeito da fragmentação foi dependente do contexto 

de perda de habitat da paisagem, sendo mais intenso em paisagens intermediárias 

e mais conservadas.  

•  A espécie modelo não incorporou recursos alimentares presentes na matriz de 

pastagem, sendo dependente dos recursos presentes nos remanescentes, mesmo 

em fragmentos bem pequenos e em paisagens mais degradadas.  Este dado revela 

que mesmo fragmentos bem pequenos (menores do que 10 ha) podem ser de 

grande importância para a sobrevivência das espécies, mesmo para aquelas 

tolerantes a mudanças ambientais e com alta plasticidade trófica, como é o caso 

de G. agilis. 

• Avaliar diferentes aspectos da ecologia trófica de uma espécie e em várias escalas 

permite maior compreensão da complexidade das respostas ecológicas às 

alterações ambientais provocadas pela fragmentação e perda de habitat. 

• Verificamos que escalas menores (de fragmento e de habitat) se mostraram mais 

importantes para determinar mudanças no espaço de nicho trófico do marsupial 

estudado do a escala espacial mais ampla da paisagem.  

• A espécie incorporou maior diversidade de níveis tróficos em sua dieta em 

fragmentos maiores e mais conservados, assim como também apresentou maior 

dissimilaridade do espaço de nicho nessas áreas. Além disso, indivíduos da 

mesma população apresentaram nicho trófico mais similar em florestas mais 

alteradas (indicado pelo maior número de lianas) e quando houve maior 

abundância de térmitas, um recurso precioso em termos de água e nutrientes.  

• Por fim, nossos resultados ressaltam a importância de incluir a avaliação das 

mudanças na qualidade de habitat dos remanescentes nos estudos de ecologia de 

paisagem, pois podem ser tão ou mais importantes quanto as escalas espaciais para 

determinar as repostas das espécies às alterações ambientais resultantes da 

conversão da vegetação nativa. 

 

 


