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RESUMO

Recentemente, diversos processos de automação fazem uso de conhecimentos relacionados a visão
computacional, utilizando-se das informações digitalizadas que auxiliam na tomada de decisões
destes processos. O estudo de informações 3D é um assunto que vem sendo recorrente em comu-
nidades de visão computacional e atividades gráficas. Uma gama de métodos vem sendo propostos
visando obter melhores resultados de performance, em termos de acurácia e robustez. O objetivo
deste trabalho é contribuir com métodos de reconhecimento facial em dispositivos de baixa res-
olução de núvens de ponto. Neste trabalho realiza-se um processo de reconhecimento facial em
uma base de dados contendo 31 sujeitos, em que cada sujeito apresenta 3 imagens de profundidade
e 3 imagens de cor (RGB). As imagens de cor são utilizadas para detecção facial por uso de um
Haar Cascade, que permite a extração dos pontos da face da imagem de profundidade formando
uma nuvem de pontos 3D. Da nuvem de pontos foram extraídas a intensidade normal e a intensi-
dade do índice de curvatura de cada ponto permitindo a formação de uma imagem bidimensional,
intitulada de mapa de curvatura, a partir da qual extrai-se histogramas utilizados no processo de
reconhecimento facial. Junto com os mapas de curvature, Um novo método de correspondência é
proposto por meio da adaptação do algoritmo clássico de Bozorth, formando uma representação
3D de marcos faciais em nuvens de ponto de baixa resolução para prover um descritor dos pontos
chaves da nuvem e extrair uma representação única de cada indivíduo. A validação é realizada e
comparada com uma técnica de linha de base para reconhecimento facial 3D. O manuscrito apre-
sentado provê multiplos cenários de teste (faces frontais, acurácia, escala e orientação) para ambos
métodos atingindo uma acurácia de 98.92% no melhor caso dos mapas de curvature e uma acurácio
de 100% no melhor caso do algoritmo clássico de Bozorth adaptado.

Palavras Chave: Reconhecimento Facial, Nuvens de Pontos 3D, Haar Cascade, Normal e Cur-
vatura, Mapa de Curvatura, F-Measure, Equal Error Rate.

ABSTRACT

Recently, many automation processes make use of knowledge related to computer vision, exploiting
digital information in the form of images or data that assists the decision-making of these processes.
3D data recognition is a trending topic in computer vision and graphics tasks. Many methods had
been proposed for applications on 3D, expecting a better performance in accuracy and robustness.
The main goal of this manuscript is to contribute with face recognition methods for low-resolution
point cloud devices. In this manuscript, a face recognition process was accomplished in a 31 subject
database, using colorful images (RGB) and depth images for each subject. The colorful images are
utilized for face detection by a Haar Cascade algorithm, allowing the extraction of facial points in



the depth image and the generation of a face 3D point cloud. The point cloud is used to extract
the normal intensity and the curvature index intensity of each point, allowing the confection of
a bidimensional image, entitled curvature map, of which histograms are obtained to perform the
facial recognition task. Along with the curvature maps, a novel matching method is proposed by
an adaptation of the classic Bozorth’s algorithm, forming a net-based 3D representation of facial
landmarks in a low resolution point cloud in order to provide a descriptor of the cloud key points and
extract an unique representation for each individual. The validation was fulfilled and compared
with a baseline technique for 3D face recognition. The presented manuscript provide multiple
testing scenarios (frontal faces, accuracy, scale and orientation) for both methods, achieving an
accuracy of 98.92% in the best case of the curvature maps and an 100% accuracy in the best case
of the classic Bozorth’s algorithm adaptation.

Keywords: Facial Recognition, 3D Point Clouds, Haar Cascade, Normal and Curvature, Map
Curvature, F-Measure, Equal Error Rate.
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Chapter 1

Introduction

The increasing need to monitor and restrict access to information or environments has led to
significant efforts towards the development of a variety of security mechanisms, such as biometric
systems [1]. In addition to applications related to access control, there are also others associated
with civil identification and criminal investigation. To correctly identify a user, biometric sys-
tems must rely on traits that present sufficient levels of universality, distinctiveness, permanence,
collectability, acceptability, and circumvention [2].

1.1 Motivation

The proposed work presented in this manuscript aims to provide techniques that grants viable
face recognition performance in devices that generate low-resolution depth data, such as modern
cellphone cameras and sensors, instead of outperforming current commercial applications out-
standing performance [3]. This work is partially published in [4], presenting the description and
application of the first proposed method, and a second article is being prepared for publication
containing the second proposed method contained in Chapter 4.

1.2 Context of the Study

The advance of technology provides a favorable environment for the emergence of new fields
of study or previously presented approaches (that contained many drawbacks due to the lack of
structure and resources for a proper usage in the time they were presented) [5]. The acquisition,
composition, computation and exploitation of 3D data is included in these mentioned approaches
[5, 6, 7].

According to the survey study performed in [5], 3D data acquisition is provided by early
proposed techniques and machinery such as laser scanners (that provide high accuracy although
presenting a high cost of acquisition and operation), structured light systems [8, 9], stereo vision
systems [10, 11] and contact scanners [12]. The advance of this topic and the multiple interest of
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application of this type of data led to the emergence of low cost sensors for data acquisition like
Microsoft Kinect [13] and techniques available for mobile phones [14].

The usage of 3D data in modern society are found in diverse areas and applications. This kind
of technology is found in entertainment environments (video games [13], cinema and television
[15]), tracking and pattern recognition applications [14], construction industry and civil engineering
[16, 17], forensics and law enforcement [18] and biometric systems for recognition [4, 5, 19, 20, 21,
22, 23, 24].

The research and development of 3D data applications, products and services are promoted
by a few cluster of companies and big enterprises (e.g Microsoft) encouraging the emergence of
events and conferences for presentation and publication of related works, like the LowCost 3D
international workshop [25] and the Optical 3D Metrology conference [26].

1.2.1 Biometric System

A biometric system primarily consists of a pattern recognition system operating through the
biometric data acquisition of a subject and extracting a group of features from these data that
may correspond to previously mapped features of a known subject [27]. This type of application
is employed in various social areas currently and it is continuously studied at the academic level,
generating enhancement to known methods and arising new techniques.

Biometric systems represent a modern relevant field of study that includes the research of phys-
ical and behavioral assets of human beings in order to provide distinction and unique recognition
[28]. Biometric systems are constantly studied in order to improve society’s abilities of individual
recognition exploiting characteristics of universality (every person should present such characteris-
tics), uniqueness (each individual presents unique features, separating an individual from another),
permanence (measuring a feature variance along age and time) and collectability (presenting fea-
tures of easy acquisition) [28]. In a modern society revolved by technology and data storage, the
access to personal information in terms of security, authentication and practicality should present
alternatives to current methods (such as user passwords, identification cards and personal assis-
tance) guaranteeing safe solutions, leading to the application of biometric systems for identification
and verification of identity, granting relevance to the topic [29, 30, 31].

Among the various ways of performing biometrics, it is possible to highlight the facial recogni-
tion. Undoubtedly, facial recognition is the most natural and common form of biometric routinely
used by humans and one of the most promising areas in biometrics research [32]. In general, fa-
cial recognition algorithms uses facial shape and their spatial relationships to perform individuals
recognition [1]. A human being can recognize a human face in an unfamiliar environment in approx-
imately 100-200 ms, while in the early years of the 21st century this task used to be challenging to
a computer [33]. Nowadays a computer outperforms the human capability of facial recognition [3].
It is true that in the last decade, the reliability of face recognition algorithms has been improved.
However, in unconstrained environments, problems such as uncontrolled illumination, head pose,
facial expression, and partial occlusion are still a bottleneck to these algorithms to achieve higher
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efficiency [32].

Diverse contributions recently published displays the application of commonly known and inno-
vative techniques of face recognition to accomplish the recognition task in low resolution 3D inputs.
The works of various authors [34, 22, 21, 35] present the possibility of performing face recogni-
tion in low resolution 3D inputs like depth maps (with assistance of color images in few cases)
adapting previously attempted methods in color-based recognition approaches. These approaches
inspires the adaptation of classic biometric algorithms to solve a 3D data face recognition task
expecting efficient results even for algorithms that were not originally developed for the specific
task of biometric face recognition (adapting from other biometric approaches such as fingerprint
recognition).

Following the hypothesis that an adaptation of a classic biometric algorithm of another recog-
nition task that contain similar principles may present efficient results in the task of 3D face
recognition, this manuscript propose an adaptation of Bozorth’s fingerprint matching algorithm
[36], forming a net-based 3D representation of facial landmarks in a low resolution point cloud in
order to provide a descriptor of the cloud key points and extract an unique representation for each
individual.

The majority of traditional research and commercial use of facial recognition systems are fo-
cused on methods that explore 2D (two-dimensional) images of human faces [19]. These methods,
in general, are based on feature extraction that does not take into account the 3D shape of faces,
especially about the depth. This work presents methods based on Point Cloud, curvature map
and the linking net distribution of landmarks in reference to the normal vector of these landmarks
(adapted from Bozorth fingerprint matching and labeled Bozorth 3D) to perform face recognition.
To the best of our knowledge, although some works have already addressed the challenge of 3D
facial recognition [37, 19], the solution presented in this paper is the only one that uses Point
Cloud data and the FCM method or a variation of the fingerprint matching algorithm developed
by Bozorth [36], applied to a public dataset of 3D face images acquired by a low-cost sensor device,
to perform the task.

1.3 Manuscript Organization

In this work, a review of relevant concepts and the explanation of significant algorithms for
the proposed methodology is provided in Chapter 2, elucidating the core techniques applied in
the methodology. Next, an overview of Face Recognition concepts, involved tasks, and published
techniques and methods is developed in Chapter 3 to contextualize the field of study and present
state-of-art algorithms. These chapters supply the basic required knowledge for the best under-
standing of the proposed methodology.

The following chapter (Chapter 4) describes the methodology proposed by this work, show-
ing the task description, the elements of the used data set, and the data processing required to
achieve the desired output. Pipelines are provided depicting the following course of action of the
methodology, aiming to grant clear understanding. The next chapter (Chapter 5) provides the

3



testing scenarios elaborated to measure the performance of the proposed methodology and discuss
the viability and drawbacks. Finally, Chapter 6 concludes the researching emphasizing the best
results achieved, difficulties faced, and the future works available for the current approach.
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Chapter 2

Main Concepts and Techniques

The proposed implementation to perform the three dimensional biometric facial recognition is
based in point clouds, three dimensional geometrical assets and published techniques that solves
minor tasks along the methodology. The explanation of these concepts is important in order to
obtain a better understanding of the proposed methodology steps.

2.1 Point Clouds

According to [38], the surface of a three dimensional object is generally represented by triangular
meshes formed by a known mathematical estimation, interpolation or approximation of a cluster
of organized points, in terms of computer graphics.

Multiple applications in manufacturing, medicine, geography, design, and other areas of knowl-
edge require the scanning of three dimensional objects of certain complexity, aiming to incorporate
them to an assisted processing, usually performed by computer [38]. In order to supply the demands
of such areas, multiple measuring techniques were improved to easily produce a great amount of
points composing the objects surface. This cluster of points representing a three dimensional object
in a coordinate system is labeled point clouds, as rendered in the example of Figure 2.1.

Recently, multiple methods were proposed and developed for applications point cloud based,
aiming to structure and dispose practicality to handle the data. Some of these methods are:

• Surface reconstruction based on triangular meshes [38];

• Detection and Extraction of 3D features;

• Surface estimation;

• Surface normal and curvature estimation;

• 3D data Filtering;

• Depth image formation;
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• Pattern and Objects recognition [39];

• Objects detection and segmentation [40];

• Visualization Methods;

Figure 2.1: An example of Point Cloud [41].

Point Clouds are represented by points scattered spatially, generally represented by a Cartesian
coordinate system. In a three dimensional coordinate system, the points’ position is described in
terms of the Cartesian coordinates X, Y and Z. In a point cloud environment, the properties of the
cloud may encapsulate additional information to each point (other than position) such as normal
vector components, intensity level, color information (RGB, YUV, and others), gradient intensity,
among other information that the cloud manager consider relevant [42].

2.2 Algorithms

This sections is responsible for the exposure of the algorithms hereinafter. These algorithm are
necessary for minor tasks contained in the methodology, making their understanding fundamental
for this work. There are three main algorithms shown in this section, the Viola-Jones face detector
[43] responsible for data pre-processing, the Intrinsic Shape Signatures (ISS) used for point cloud
feature extraction [44] and the Bozorth Algorithm [36] responsible for the web formation and the
matching process.

2.2.1 Viola-Jones Algorithm (Haar Cascade)

The object detection based on Haar-like features cascade classifiers is an efficient method pro-
posed by Paul Viola and Micheal Jones [43], composing a machine learning algorithm where a
cascade function is trained by an image data set, generating a model that can be applied to detect
the same objects on other images.
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2.2.1.1 Haar-like Features

The called Haar-like features are descriptors used in digital images for object detection. These
features were applied on the first real time face detection application [45]. These descriptors usually
represent a color or gradient pattern of pixel values like the example displayed in Figure 2.2. These
descriptors received this nomenclature due to its intuitive similarity with Haar wavelets [45].

The algorithm developed by Viola-Jones is commonly known as Haar Cascade, composing a real
time detection method based on integral images, permitting the evaluation of features effectively in
terms of time and a scale invariant analysis. The structure of the classifiers is a relevant aspect of
the algorithm, supporting the selection of pertinent features, since the number of Haar-like features
in any sub-window of the image can be considerably large, surpassing even the pixel total. The
performance of the algorithm is enhanced by the third and last step that consists in the successive
combination of complex classifiers in a cascade formation, discarding unimportant features that
permits the algorithm to compute the facial detection only in promising regions of the image.

The algorithm’s classifiers are based on simple feature-values, due to its higher efficiency com-
pared to pixel value operations. The value of a Haar-like feature is computed as the difference
between the sums of pixel values inside sub-windows, with at least a common (adjacent) vertex
or edge, or the pixel value sum difference between clusters of sub-windows (usually represented by
color like shown in Figure 2.2). Three rectangular shaped Haar-features are used for classification
in this algorithm, where the first one consists of two rectangular regions side by side either ver-
tically and horizontally (depicted by blocks A and B in Figure 2.2), the second one is formed by
three rectangular regions disposed side by side and horizontally and the feature value is composed
by the difference between the center region and the edge regions (depicted by block C in Figure
2.2), and the third and last feature is formed by two clustered regions (formed by four rectangles)
disposed diagonally (depicted by block D in Figure 2.2). This type of feature is crucial for the
operation of the Viola-Jones algorithm that explores the shading caused by the facial structure
and the facial landmarks.

2.2.1.2 Integral Images

Rectangular features are rapidly computed in an image representation labeled integral image.
An integral image consists in an image transformation in which every pixel of the integral image
stores the sum of all the pixel values located in the top and/or left of its current (x,y) position.
The integral image allows a faster rectangular Haar-like feature value computation, since the sum
of pixels of each region is simply calculated, being reduced to a combination of differences between
the vertices values instead of a full traversal of the region with iterative sum computations.

2.2.1.3 Learning and Classification

The algorithm uses Machine Learning (ML) to train a classifier. Using the feature set displayed
in Figure 2.2, the extraction of a feature values set together with a set of training images (containing
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Figure 2.2: Rectangular Haar-like Feature. These features value are determined by the difference
between the sum of pixel values in the white rectangles and the sum of pixel values in the gray
rectangles [43].

face and non-faces images) the algorithm set a classifier training scenario. In Viola-Jones paper a
variant of AdaBoost [46] is applied for the feature set selection and as classifier.

Early experiments shows that a frontal face classifier built on 200 features presents a detection
rate of 95% with a ratio of 1 false positive for each 14084 [43].

In the face checking process, the AdaBoost starts selecting a feature focused on the eyes and the
nose/cheeks, since the eyes region is usually darker than the nose/cheeks region, due to the presence
of eye lids, eye lashes and the iris color, generating a high value gradient, next the AdaBoost select
a feature focused on the eyes and the nose bone, that presents the same principle of the last feature.
The Figure 2.3 presents an example of these features application.

2.2.1.4 Classifier Cascade

The general form of the detection process is depicted as a degenerative decision tree, called
by the term "cascade". This degenerative decision tree is displayed in Figure 2.4. The positive
classification of the first classifier activates the feature set evaluation in a second classifier with
tougher rejection criteria, repeating the process in cascade for a defined number of classifiers,
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Figure 2.3: Features used by AdaBoost for face checking. The first feature is a horizontal rectan-
gular feature that searches for the region of eyes and nose/cheeks. The second feature is a vertical
rectangular feature that searches the region of eyes and nose/bone [43].

resulting as output a super refined feature set with high probability of representing a face. The
rejection of the feature set in any level of the classifier results in the immediate rejection of the
sub-window.

Usually the classifiers that receive a higher number of features tend to reach higher detection
rates and less false positive rates, despite of the processing cost elevation that leads to slower
output rates. Therefore the principal aspects to be defined are the cascade size, stipulating the
number of classifying stages, and the rejection threshold within each stage. These aspects represent
a considerable problem to maximize the efficiency of the classifier.

An Equal Error Rate (ERR) approach is implemented by Viola-Jones in order to obtain an
optimal operation setting for the algorithm. The number of stages is increased until no further
significant change is noticed in the face checking procedure, then the threshold of these stages
are regulated until the false positive rate is similar to the detection rate. The results presented
in [43, 45] show that the algorithm presents high efficiency in terms of detection rate and the
execution time, turning it eligible for real time facial detection applications.

2.2.2 Intrinsic Shape Signatures

The Intrinsic Shape Signatures (ISS) is a shape descriptor and a key point extractor developed
by Zhong [44] relying on region-wise quality measurements. The algorithm selects points based
on the smallest eigenvalue (representing large variations on principal directions) and filters dupli-
cates through successive eigenvalues ratio checking (discarding points with a similar spread along
principal directions) [47]. This algorithm provides invariant frames assisting in the elaboration of
consistent and discriminating feature vectors for subject description.

The ISS is based on 3D Shape Context (3DSC), described as a 3D histogram representing the
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Figure 2.4: Pipeline of the Degenerative Decision Tree of classifiers (Classifier Cascade). The
sub-windows are used as input in the first classifier, continuing through the process until a false
classification occurs or the data reaches the last classifier, heading to the next processing step (if
it exists) [43].

spatial distribution of data points in a surrounding support sphere at an oriented basis point, in
which the north pole is aligned with the surface normal, leading to a reference irresolution. To solve
this irresolution Zhong [44] proposed the eigen analysis of local points, obtaining four distinguishing
frames derived from Principal Component Analysis (PCA) subspaces, with each frame transforming
into another through a 180º rotation along one of its axes. This solution generates symmetrical
ambiguities that must be eliminated in order compute highly discriminating shape descriptors.

The ISS algorithm operates directly on point clouds, presenting a viable algorithm for further
exploitation in Chapter 4.

2.2.2.1 Definition

An Intrinsic Shape Signatures consists of an intrinsic reference frame enabling both view-
invariant feature extraction and fast pose registration, and a highly discriminating feature vector
encoding the 3D shape characteristics [44]. The ISS are composed by the intrinsic reference frame
and a set of basis vectors obtained from the eigenvectors.

2.2.2.2 Intrinsic Reference Frames

The idea behind the Intrinsic Reference Frames (IRF) is to generate shape descriptors view-
independent similarly to Local Reference Frames (LRF) [48]. The surface normal alone is not
enough to compose a 3D coordinate system, therefore other basis vectors are generated by algebraic
combination of the point eigenvectors.

Zhong defines an IRF Fi at a basis point pi with a supporting radius rframe using the eigen
analysis of the point covariance matrix as follows:

1. Compute a weight for each point pi inversely related to the number of points in its spheri-
cal neighborhood of radius rdensity, used to compensate for uneven sampling of 3D points,
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highlighting sparsely sampled regions contributions over dense sampled regions contributions;

2. Compute a weighted covariance matrix cov(pi) for pi using all points pj within a vicinity of
distance rframe;

3. Compute its eigenvalues {λ1i ,λ
2
i ,λ

3
i } in the order of decreasing magnitude and their eigenvec-

tors {e1i ,e
2
i ,e

3
i };

4. Use pi as the origin, use e1i , e
2
i and their cross product (e1i ⊗ e2i ) as the x−, y− and z−axes

to define a 3D coordinate system Fi at pi labeled intrinsic reference frame. The coordinate
system generated is displayed in Figure 2.5(a).

Figure 2.5: Four intrinsic reference frames computed from the covariance matrix eigenvectors
{e1i ,e

2
i ,e

3
i } of decreasing magnitude from eigenvalues [44].

The generated IRF presents a 180º orientation ambiguity, since the eigenvectors from the
covariance matrix computes a direction based on vicinity point distribution, leaving two options
for the orientation of each axis that results in four variants of IRF uniquely defined at a basis point
as shown in Figure 2.5, i.e., Fi as described above, and three others obtained by a 180º rotation
along x−, y− and z−axes (respectively shown in Figure 2.5(b)-(d)). The same ambiguity also
exists for the surface normal (unless a view-point is established, contradicting the view-invariant
purpose of the algorithm). The IRF is a generalization of the surface normal for view independent
shape feature extraction, however it defines unique and highly discriminating representations for
local 3D shape patches.

2.2.2.3 Key Point Selection

In [47] the filtered points of ISS algorithm contain highly discriminating shape representation,
containing a large variation along every principal direction. Tombari [48] defined a pipeline repre-
senting the steps of the ISS key point extraction (see Figure 2.6), based on the covariance matrix
computation, whose eigenvalues are used as measure for a pruning step to discard points with
a similar spread along principal directions, where a repeatable LRF cannot be defined, and the
eigenvalue of smallest magnitude is used as saliency, concluding the extraction with a Non-Maxima
Supression (NMS) over the saliency.

The pruning step consists in a threshold verification of the spread along principal directions.
Only points whose ratio between two successive eigenvalues are below a threshold are considered
eligible to contain discriminant local description [47]. Equation 2.1 represents the spread tolerance
checking to prune the original input set.
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Figure 2.6: Pipeline of the Key Point Extraction algorithm using the ISS. The 3D Data consists in
a point cloud data, which points are pruned by a threshold evaluation over the vicinity spread along
principal directions, followed by a saliency-based NMS to retrieve discriminating points described
as key points[48].

λ1(p)

λ2(p)
< Th12 ∧

λ2(p)

λ3(p)
< Th23 (2.1)

considering p a random input point and {λ1(p),λ2(p),λ3(p)} the eingenvalues of its covariance
matrix in decreasing order.

The output of the pruning represent candidates of efficient key points, presenting a highly
discriminative local shape description. In order to check the veracity of the point efficiency, a
saliency-based NMS is applied over the magnitude of the last eigeinvalue, that represents the
saliency of the point. This final operation returns only points that contain a large variation along
principal directions and consequently describe discriminating elements.

2.2.3 Bozorth Minutiae Matching Algorithm

The Bozorth Algorithm is a fingerprint matching system proposed by the National Institute of
Standards and Technology (NIST) in cooperation with the Federal Bureau of Investigation (FBI)
that uses detected fingerprint minutiae to determine if two fingerprints are from the same finger
of a subject. The system can analyze fingers two at a time or run in a batch mode comparing a
single finger (probe) against a large database of fingerprints (gallery) [36].

A Basic fingerprint image is formed by ridges, valleys, cores, deltas, pores, and other elements
that represents the fingerprint surface. Fingerprints minutiae are discrete features composed by
points in a finger’s friction skin where a ridge termination (labeled ridge ending) or splitting
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(labeled ridge bifurcation) is present [36]. The minutiae features simply formed by the ridge element
orientation and the point location where it occurs. The Figure 2.7 demonstrates an example of a
bifurcation and a ridge ending.

Figure 2.7: Example of two minutiae detected. The squared minutiae represents a bifurcation
point and the circled one represent a ridge ending. In both cases the white line represents the
orientation of the minutiae [36].

The algorithm is described as a pipeline composed by three steps [49], in which the first step
consists in the construction of an Intra-Fingerprint Comparison Table that stores pairs of minutiae
linked by a distance vector, the following step is the construction of an Inter-Fingerprint Compat-
ibility Table that compute matches between minutiae pairs in the Intra-Fingerprint Comparison
Table of two different fingerprints storing the minutiae index of each pair and the orientation
difference between the distance vector of both tables, and the finishing step traverses the Inter-
Fingerprint Compatibility Table to check for duplicates and matching quality.

The first step receives a set of minutiae from each picture to create a linked point web labeled as
Bozorth Composition, in which the minutiae are linked following parameters specifications, leading
to a Intra-Fingerprint Comparison Table, that represents a linked web of the minutiae that allows
the matching of two input fingerprints. The Intra-Fingerprint Comparison Table stores the distance
magnitude between two minutiae, the index of each minutiae, the angular difference between the
distance vector orientation and each minutiae orientation, and the angle of the distance vector.
Figure 2.8 presents the elements contained in the comparison table generated by a link between
two minutiae. Each minutiae is linked to others minutiae within a predefined radial distance.

After computing the Intra-Fingerprint Comparison Table for each input fingerprint (either
two fingerprint for verification or a probe and gallery for identification), the Inter-Fingerprint
Compatibility Table is generated, comparing the table elements of both fingerprints minutiae web,
representing an eligible matching table between two fingerprints. This compatibility table stores
all the matching minutiae pairs between two webs being compared, where the matching criteria
is described as a distance tolerance checking, followed by an angular tolerance checking applied
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Figure 2.8: Intra-Fingerprint minutiae link. A two-minutiae link example, where the distance
vector is represented by d, while k and j are the source and destiny minutiae index, respectively,
and {β1, β2} are the respective angular difference between the minutiae (k and j) vector orientation
and the distance vector orientation (Adapted from [49]).

to the distance vector orientation and the other angular elements stored in the Intra-Fingerprint
Comparison Table. If all the elements are within the threshold tolerance, the angular difference
between both distance vectors and the minutiae index (from the probe and the gallery) are stored
in the compatibility table, indicating a match between the current minutiae pairs. The result
of this procedure is a set of matching minutiae pairs between the probe and the current gallery
fingerprint being compared, that leads to a final step of match score computation.

The final step measures the quality of the matched pairs computed in the Inter-Fingerprint
Compatibility Table, outputting a numerical score of matches that fit the algorithm’s tolerances.
Figure 2.9 presents a full example of Bozorth’s original algorithm.
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Figure 2.9: Example of original Bozorth’s minutiae matching process (Adapted from [49]).
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Chapter 3

Related Works

Since the advance of computer vision, many face recognition related techniques were proposed
and developed over the years [5]. This chapter presents an overview of the face recognition study
scenario, granting information over the theme and proposed methods along the years.

3.1 Face Recognition

The facial recognition process consists in techniques of body measurement and feature analysis
(biometrics) to determine a person’s identity through data correlation [5]. The biometrics features
are a type of resource frequently studied and researched in modern days for multiple purposes,
specially automation.

The technologies based on biometrics features includes identification based in physiological
characteristics (such as face, fingerprints, fingers geometry, hands geometry, veins, palm shape, iris,
or other elements) and behavioral traits (like gait, signature, or tapping pattern) [50]. The facial
recognition tends to offer advantages in comparison with other biometrics recognition methods,
primarily because most of these other technologies require a voluntary action of the user, either by
placing hands or fingers in a physical sensor or by positioning or approaching in an specific pose a
capture spot (like in iris or retina scanning), avoiding any external stimulus that might jeopardize
the captured data quality. The facial recognition permits a passive data capture, without any
explicit action or participation performed by the user. However, according to [51] facial recognition
viability is bounded to a constricted environment, since the recognition process is sensitive to
extreme variations on illumination, pose and expression. However, recent works presenting deep
learning architectures reduce drastically the effects of extrinsic factors sensitivity [3, 52, 53, 54].

3.1.1 Applications

Facial Recognition is primarily applied in two task scenarios:

1. Verification (Unique-wise Comparison): This task is one for one matching verification, in
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which an unknown input face claims an identity, either returning a positive or a negative
output.

2. Identification (Group-wise Comparison): This task is one for many matching verification,
in which an unknown input face is compared to a gallery of stored known individuals’ face,
retrieving either the identity of the person or a matching rejection.

Numerous fields of modern society are evolving in terms of technological infrastructure, au-
tomating services for practicality and faster attendance. The facial recognition is an automation
asset that is exploited in the following areas:

• Security - Building access control, airports and seaports, ATM, border control, network and
computer safety, e-mail and multimedia workstation authentication;

• Surveillance - CCTVs monitoring (alerting authorities in case of outlaw recognition). The
facial recognition on CCTV resource was used in 2001 in a Super Bowl game in Florida [55];

• General Identity Verification - electoral register, banking operations, e-commerce, newborn
identification, passports, drivers license, employees recognition;

• Criminal Justice Systems - police booking/mug-shot systems, post-event analysis, forensics;

• Police Investigation Assistance - missing persons, illegal foreigners and criminal search;

• Smart-cards - authenticity check;

• Multimedia Environments with adaptive human-computer interface - context aware systems
for childcare and old people’s centers;

• Video Indexing - labeling faces throughout a video; and

• Witness Face Reconstruction;

• Social Media Indexing;

In addition to these applications, the underlying techniques in face recognition led to modifi-
cations to related fields of computer vision, e.g. gender classification, expression recognition and
facial features detection and tracking [5]. Each of these cases mentioned are valuable for various
dominions, like the medicine field for intensive treatments, a driver’s tiredness condition monitoring
by eyes tracking, and even the face recognition can be assisted by these techniques.

The face recognition is also used along with other biometrics algorithms, such as speech, iris,
fingerprint, ears and gait recognition in order to enhance the recognition result and the algorithms
performance [20, 56, 57, 58].
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3.1.2 General Difficulties

Face Recognition consists in an arduous specific object recognition case. The main challenge
of the face recognition is defined by faces’ small visual variability in general, even in its most
natural form (frontal vision). In 1998 face images were described as a dense group in images
space that leads to an inability to obtain accurate discrimination and high success rate through
standard pattern recognition techniques [59], but nowadays many published approaches achieve
results overcoming human recognition capability [3].

Furthermore, human faces are not an unique rigid object, and there are numerous factors that
interferes with facial visual appearance. The source of variation are categorized as extrinsic or in-
trinsic [60]. Intrinsic factors accrue from faces physical nature, being view-independent. This class
of factors is represented by subsets called intrapersonal and interpersonal, respectively represent-
ing unique person’s self appearance variability (caused by age, facial expression, cosmetics, facial
hair, glasses, and others) and the appearance variability among others (e.g. ethnicity and gender).
Extrinsic factors are derived from interactions between the environment and the observer. The el-
ements of the environment that may cause changes in a person’s appearance includes illumination,
pose, scale and data parameters (resolution, focus, noise, and others).

3.1.3 Main Face Recognition Methods

The acquisition method of facial images depends on the applications goal since there are numer-
ous sensors possibilities and scenarios with different constriction levels. For example, a surveillance
scenario usually retrieves the images from security cameras presenting a low level of constraining,
while a building access control or an ATM identity validation should present common cameras in
a highly constraining environment. Some application may even use 3D sensors for another layer of
security against fraud [61]. The data type of image that the sensor retrieves generate three cate-
gories of face recognition according to [5], those that operate on intensity images, video sequences
and other sensory data (like 3D images and infrared).

3.1.3.1 Intensity Images

There are two main categories that represent face recognition from intensity images, feature-
based and holistic. The first one explores the correlation of local features, while the second one
handle a global analysis of the image.

3.1.3.2 Feature-Based Recognition

Feature-based approaches primarily process an input data, retrieving crucial and discriminating
facial elements (labeled as fiducial marks), such as eyes, nose, mouth, chin bottom, cheekbone
and others. Through these features data correlation (usually represented by geometrical relation)
statistical techniques are applied in order to match correspondences between faces.
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The first automated face recognition techniques developed were mostly feature-based. Kanade[62]
applied simple image processing methods to extract a feature vector of 16 facial parameters, com-
posed of distance, area and angular proportions, using euclidean distances as comparison element,
that generated a 75% peak performance in a 20 subject database, containing 2 images of each.
Brunelli and Poggio [63], used Kanade’s approach as reference to compute 35 geometric features
(Figure 3.1) from 4 images of each 47 subjects contained in their data set, generating a 90%

recognition ratio and a 100% accuracy over a simple template-matching model.

Figure 3.1: Geometric Features computed by Brunelli and Poggio. These features explore the
correlation of some fiducial landmarks contained in a human face [63].

Along the years, new approaches based on sophisticated feature extraction techniques were
elaborated, exploring deformable templates, Reisfeld symmetric operator [64], Hough transforms
[65], Graf morphological operators [66], Elastic Bunch Graph Matching (EBGM)[67], Gabor Filters,
data structure correspondences and Histograms of Oriented Gradients (HOG) [68]. All these
methods are strongly heuristics-based, constraining the image search by geometric limitations and
the performance by template tolerance checking. Cox et al. [69] reported a performance of 95% in a
data set composed by 685 images and subjects using a feature vector of 30 dimensions derived from
35 facial landmarks, however all the landmarks selection was manual, that contributes to a better
performance compared to automated detections. Wiskott et al. [67] developed a dynamic data
struct-based solution, constructing a full connected graph for each face choosing a set of fiducial
points labeled by Gabor Filters’ responses applied to a window around it, and each arch of the graph
is labeled with the distance between the points. After a reasonable number of graphs are computed,
graphs of new faces are obtained automatically by EBGM. The comparison of graphs leads to a
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similarity score, which the highest value represents the probe identity. This solution provided a
recognition ratio of 98% for first-rank classification and up to 99% for the first 10 ranks using a
gallery composed by 250 subjects. The method was enhanced to allow pose variation (Figure 3.2),
presenting the same performance. Despite of the great performance, a manual construction of at
70 graphs were necessary in order to obtain viable EBGM outputs. Campadelli and Lanzarotti
[70] proposed an enhancement that does not require the manual placement of the graphs, using
deformable templates proposed in [71] for automatic fudicial landmarks detection. Other solution
substitutes the Gabor features with a graph correspondence strategy and HOGs application.

Figure 3.2: Full connected Graphs proposed by Wiskott et al. enhanced with pose variation [72].

Mainly face recognition algorithms are based in the most common form of face, represented
by a frontal view. However, considerable efforts were devoted to recognition over faces’ profile,
generally reducing the feature extraction to a simple one dimensional problem. Kaufman and
Breeding [73] reported a 90% recognition rate using faces’ profile of 10 subjects. Liposcal and
Loncaric [74] obtained a 90% accuracy rate using a subspace filter to extract a 20-dimensional
feature vector from the profile pictures correlating the data through euclidean distance in a 30
subject data set. Harmon et al. [75] achieved recognition accuracies up to 96% using a data set
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formed by 112 subjects, exploiting a 17-dimensional feature vector to describe the profile images,
corresponding the vectors through euclidean distance.

3.1.3.3 Benefits and Liabilities

The main benefit offered by feature-based techniques accrue to the fact that the feature ex-
traction precedes any matching analysis, and these methods are usually robust to pose variations.
Feature-based methods can also present invariability to scale, orientation and brightness. In terms
of processing cost, usually the facial data is represented in a compressed state (feature vectors)
that results in a fast comparison computation.

Despite of the benefits that feature-based recognition provides, these techniques contain ob-
stacles related to landmark detection, that requires either the manually setting of points or the
implementation of a robust complex algorithm, and the landmarks (or features) selection based
on its discriminating capacity. These algorithms usually depicts a complex scenario hindering the
achievement of an optimal case.

3.1.3.4 Holistic

Holistic approaches try to identify faces using the global description of the image, focusing
mainly in the individuals appearance instead of the correlation between the facial landmarks.
These approaches are categorized in two subsets: statistical approaches and Artificial Intelligence
(AI)

3.1.3.5 Statistical Approaches

Statistical approaches usually represents the image as a two-dimensional vector of intensity
values extracted from the pixels. Since the recognition is based on appearance, the correspon-
dence is obtained through direct comparison of these vectors values or another a representation
derived from them. According to [76], this approach is proven functional, however its performance
is dependent on environmental constraints (illumination, scale, background and pose stability) and
sensor capability (noise intensity), besides presenting high computational cost due to the classifi-
cation in a high dimensional space. Most techniques aim to reduce the image representation into
sub-spaces, focusing on the conservation of significant discriminating data.

Sirovich and Kirb [77] were the first researchers to apply a Principal Component Analysis
(PCA) [78, 79] to obtain compact facial image representations. The method demonstrates that
any image image can be efficiently represented in eigenpictures coordinate spaces, and that any
face can be reconstructed through a small collection of its eigenpictures and their corresponding
projections. Through Sirovich and Kirb’s research, Turk and Pentland [80, 81] reported that
projection along eigenfeatures coordinates could be corresponded in order to classify and recognize
features. Exploiting this concept, a facial recognition system that builds Eigenfaces was developed,
corresponding the eigenvectors of dominant eigenvalues of facial covariance matrix to determine
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an image input identity. The Eigenfaces is an image representation that drastically reduces the
dimensionality of the original space. The method was tested in a scenario composed by 2500 images
of 16 subjects with different variations of orientation, scale, illumination and resolution, achieving
recognition rates of 96%, 85% and 64% for lightning, orientation and scale variation, respectively.
The algorithms capabilities was extended in several ways in [82], being tested in a data set with
3000 subjects and over 7562 images.

Turk and Pentland’s approach was enhanced to a modular "eigenfeatures" system to deal with
localized variations in facial appearance [82]. The description of the face in an eigen space is
augmented by additional higher resolution details in terms of fiducial landmarks (Figure 3.3).
This enhancement provide a slight upgrade in performance, producing better results than the ones
reported in the basic eigenfaces approach. The Figure 3.4 depicts an example of this outperforming.
PCA applications functions correctly in cases of a single image per subject, however in cases of
multiple images per subject (according to Belhumeur et al. [51]) choosing the projection that
maximizes the total dispersion results in conservation of unwanted variations due to illumination
and facial expressions.

(a) Examples of facial features training tem-
plates.

(b) Detection Result.

Figure 3.3: Training of feature detection template-based and detection result. These features are
used to enhance Turk and Pentland’s approach [82].

Moses et al. [83] states that “the variations between the images of the same face due to
illumination and lighting direction are almost always larger than image variations due to a change
in face identity” as shown in Figure 3.5. In order to overcome this liability, a method using Fisher’s
Linear Discriminant Analysis (LDA) [84] is proposed to maximize the ratio of the between-class
scatter and the within-class scatter, supposedly obtaining a better classification scenario than
PCA. Conducting numerous tests in 330 images of 5 subjects, the Fisherfaces’ (label granted for
the method) reported results indicates that this method is more efficient to handle the recognition
over simultaneous manipulated variations of illumination and expression. Swets and Wang [85]
previously announced similar results when the same procedures were applied not only in face
images, but in general objects as well (presenting an accuracy of 90% in a data set of 504 classes).
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(a) Test Inputs.

(b) Eigenfaces matches.

(c) Eigenfeatures matches.

Figure 3.4: Matching results of test images for the eigenfaces and eigenfeatures approaches [82].

Figure 3.5: Facial appearance variation towards different source illumination angles [51].

One main drawback of PCA and LDA techniques consists in the fact that their analysis occurs
merely on the euclidean structure of the space, failing to discover underlying structure if the face
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images lie on a non-linear description of the space image, since these algorithms’ nature present a
linear discriminant approach. Since face images possibly lie in non-linear sub-manifolds [86, 87],
non-linear techniques were proposed to focus on this theme, e.g. Isometric Feature Mapping
(ISOMAP) [87], Laplacian Eigenmaps [88], Embedded Manifold [89] and Laplacianfaces [90].

The eigenvectors found by PCA depends exclusively in pair-wise relations between pixels,
however existent methods provide base vectors that rely on higher-order relations among pixels.
Independent Component Analysis (ICA) [91] is a generalization of PCA that aim to decompose
an independent image representation rather than an uncorrelated one. Bartlett et al. [92] applied
ICA under two architectures, one treat images as random variables and pixels as outcome, and
the other is the inverse representation. Both ICA representation outperformed the PCA results
for expression and daylight variation (along the whole day). A classifier combined both the ICA
and PCA representation achieving a better performance. Other researches [93, 94] indicates that
ICA outperforms PCA in most circumstances.

Besides the mostly known sub-space methods and their variations, other sub-space represen-
tations were proposed. Foon et al. [95] integrated diverse wavelet transforms and non-negative
matrix factorization claiming to obtain higher verification rates in comparison to eigenfaces. In
[96], an intraclass sub-space is built and the classification distance-based, where weighted distances
between faces and each intraclass sub-space.

3.1.3.6 Machine Learning (ML) and Artificial Intelligence (AI)

Machine Learning and AI consist in techniques in which classifiers can learn new concepts
and draw useful conclusions from the acquired knowledge [97]. In terms of face recognition, the
approaches based on these elements learns either from select data extracted from known faces
(training set in a supervised learning) how to classify random faces identity or from pattern within
the data determines labels by itself and insert a random face in a determined label (unsupervised
learning). A combination of both cases can be applied on different subsets of data creating a
semi-supervised environment [98].

In the method proposed by [99], fifty principal components were extracted and an auto-
associative neural network reduced its representation to five dimensions, in which a standard
multi-layer perceptron (MLP) classify this final representation. Despite of the favorable results
perceived, the training and testing data set composition was relatively simple, without variations
in illumination, pose or scale.

Weng et al. [100] proposed an hierarchical neural network trained by unconventional techniques
(instead of the standard descendant gradient) for classification, reporting favorable results in a data
set composed of 10 subjects.

Lawrence et al. [101] reported a recognition rate of 96, 2% in a data set of 400 images of
40 subjects using a hybrid neural network composition that combined local image sampling, a
self-organizing map neural network for space dimensionality reduction and a convolution neural
network. The application of eigeinfaces [80, 81] led to an accuracy of 89, 5% in the same data set.
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The substitution of the self-organizing map for a Karhunen–Loève transform and the convolution
neural network for a MLP resulted in recognition rates of 94, 7% and 60% respectively. Figure 3.6
displays all the pipeline possibilities proposed in this work.

Figure 3.6: Pipeline of Lawrence et al. methods. The pipeline presents the combination of tech-
niques available to reach classification [101].

Li and Yin [102] introduced a system using wavelet transforms to decompose the image to
three levels. The Fisherfaces [51] method is applied to each of the three low-frequency levels.
This method fused individual classifiers using a Radial Basis Function (RBF) neural network,
outperforming the Fisherfaces and the individual classifiers results in a 40 subject composed data
set. Elyan and Demerial [103] proposed a PCA-based approach, in which the projection vectors
were classified using a feed forward neural network, outperforming an eigenfaces method combined
with a nearest-neighbor classifier.

Zhang et. al [104] proposed a solution that learns a similarity function describing the level of
confidence that two images belong to the same person, similar to [105]. Facial features are selected
generating Local Binary Pattern (LBP) histograms of sub-regions of the image and the Chi-square
distances between the correspondent LBP histograms are chosen as discriminating features. The
Adaboost [46] algorithm is applied to select highly-efficient LBP features and define a similarity
function based on the linear combination of weak learners LBP feature-based. Experimental results
reported from the use of FERET (Face Recognition Technology) [106] frontal face images an
outstanding recognition rate higher than 97, 9% using less features than other similar methods
proposed, like the ones presented in [107].

Melin et al. [108] divided the image faces in three region (eyes, nose and mouth) assigning a
neural network module to each region. A fuzzy Sugeno integral was used to merge the output of
each module and achieve a conclusion upon the input image identity. The tests were performed
in a small data set formed by 20 subjects, reporting that the modular solution outperformed the
monolitic network.
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A technique based on problem decomposition (dividing the recognition into a one against one
comparison) was developed to create multiple binary classifiers. Each binary classifier represents
a single class (subject), presenting as outcome if the input belongs to that class. The output of
all binary classifiers combined grants a global overview of the identity classification. For binary
classifiers presenting probabilistic outputs, Pair-Wise Coupling (PWC) can be used to cluster these
outputs into a set of posterior probabilities, however if a testing image does not belong to either
classes related to the binary classifier, then the output of that classifier is meaningless and has a
chance to interfere negatively in the global result. Based on this technique and aiming to correct
meaningless classifiers an algorithm proposed labeled PWC-Correcting Classifier (PWC-CC) [109]
trains a classifier to separate the outcome of a class separation classifier from all other classes, e.g.
for each binary classifier separating a class ci from a class cj a new classifier is trained to separate
these classes from all the other known classes. Despite of PWC-CC being more consistent and ef-
ficient than PWC, the algorithm still presents drawbacks. A new PWC-CC method (NPWC-CC)
[110] is proposed and their report states that NPWC-CC outperforms the PWC-CC on tests real-
ized on ORL data set. In [111], the optimal PWC (O-PWC) approach is presented demonstrating
better recognition rates than PWC method. Both the NPWC-CC and the O-PWC methods used
Support Vector Machines (SVM) as binary classifiers, and the posterior probabilities were com-
puted using Platt’s suggested method [112]. Support Vector Machines (SVM) is considered one
of the most effective machine learning techniques for pattern classification, and other researchers
proposed methods using SVM as binary classifiers [113, 114, 115, 116].

Another machine learning tool exploited to perform face recognition task are the Hidden Markov
Models (HMM) [117]. Samaria and Harter [118] used a one-dimensional HMM to achieve a peak
accuracy of 87% in the ORL data set, and a pseudo two-dimensional HMM [119] to enhance
performance to 95% accuracy rate. Nefian and Hayes [120] reached a recognition rate around 98%

in the same training and testing scenario using embedded HMM face models, claiming to achieve
a significantly faster and scale invariant algorithm compared to Samaria’s [119] implementation.

3.1.3.7 Multiple Classifier Algorithms

The performance of any classifier is susceptible to diverse factors data related such as dis-
tribution, variation and composition, however an specific classifier’s performance might be more
sensitive or invariant to a factor in comparison to others [5]. Due to this variant sensitivity between
classifiers, a trend emerged to combine individual classifiers in order to aggregate their comple-
mentary information in order to compose a robust system that overcome (even if partially) the
classifiers drawbacks. These algorithms are nominated as Multiple Classifier Systems (MCSs) [121]
and are extensively researched. An example of this approach is proposed by Lu et al. [122], that
merged results from PCA, ICA and LDA using an strategy to integrate a RBF neural network and
sum rule (depicted in Figure 3.7). Marcialis and Roli [123, 124, 125] combined the results of PCA
and LDA algorithms.

Achermann and Bunke [126] used simple fusion rules, like majority voting, rank sum, Baye’s
combination rule to integrate weighted responses from three classifiers based on profile and frontal
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Figure 3.7: Classifier combination proposed by [122].

view faces. Tolba and Abu-Rezq [127] fused the decision from RBF and LVQ networks. Wan et
al. [128] proposed a hybrid model of SVM and HMM. Kwak and Pedrycz [129] applied Fisherfaces
methods in three distinct subsets from the face images integrating the result through Choquet’s
fuzzy integral.

3.1.3.8 Deep Structured Algorithms

Until modern researches, most machine learning and signal processing techniques exploited
shallow-structured architectures that typically contained one or two non-linear feature transforma-
tions [130, 131]. Shallow architecture proved to be efficient in the solution of well-defined controlled
problems, however its modeling limitation and representing power may fail to perform in complex
real world application related to natural signals, like human speech, sounds and natural languages,
natural images and visual scenes.

Human information processing mechanism (like vision and audio) suggest that a deep archi-
tecture is needed to extract complex elements and construct a rich sensory input representation.
Therefore, it is expected that advanced researches focus on the development of efficient and effective
deep learning algorithms to handle favorably complex signal processing tasks [131]. These meth-
ods represent the state of the art of face recognition study field, surpassing the human recognition
capability in terms of accuracy and speed [3].

The deep learning concept originated from neural network researches aiming to create bio-
inspired methods (methods inspired in the theories of human body functioning) to realize a digital
learning process, also known as artificial neural networks (ANN) [132]. An ANN is based on a
cluster of connected units called artificial neurons. Each connection (synapse) between neurons can
transmit a signal, that may suffer transformation in each traversed neuron in the propagation path.
Neurons and synapses may present a weight associated to them in the learning process, intensifying
or diminishing the signal intensity forwarded. Deep Neural Networks (DNN) is a type of ANN
that contains numerous hidden layers between the input and the output layer [132, 133]. The DNN
have potential for modeling complex non-linear relations, clustering layers of data transformation
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and classification layers. Usually DNN are feedforward networks, where data flow exclusively from
the input to the output direction without returning to previous layers, but there are Recurrent
Neural Networks (RNN), in which dataflow has no unique direction.

Sun et al. [134] elaborates a hybrid network of Convolutional Neural Networks (CNN) and
a classification RBM (restricted Boltzmann machine) trained to perform verification. The lower
part of the network presents 12 groups of 5 CNNs (each responsible for a part of the face image),
presenting four convolutional layers and a max-pooling layer. After defining an average output and
reorganizing the data in groups, the data reach the last layer represented by a classification RBM
with two outputs that indicates same or different class for the pairs. The CNNs and RBM are
trained separately and later the whole model is jointly fine-tuned using back-propagation. Using a
training data set labeled "CelebFaces" containing 87,628 images of 5,436 celebrities they reported
91.75 ± 0.48% accuracy on the LFW in the unrestricted with label-free outside data protocol and
92.52±0.38% following the unrestricted with labeled outside data protocol. Later they proposed the
DeepID method [135] consisting in four convolutional layers, followed by a max-pooling layer, the
DeepID-layer consisting in 160-dimensional fully connected layer (connected to the third and fourth
convolution layers) and a softmax layer. This method globally align faces using five landmarks as
reference, then trains sixty CNNs (which output is reduced using PCA) followed by a joint Bayesian
model for classification. The reported accuracy was of 96, 05% using CelebFaces data set, and
97.45±0.26% using CelebFaces+[135] data set (which has 202,599 face images of 10,177 celebrities
from the web.) under the unrestricted with labeled outside data protocol. A DeepID2 method is
proposed [136] built based on DeepID [135] using cross-entropy loss and a verification signal for
network training, using PCA to reduce the face representation to a 180-dimensions representation.
A total of seven networks are trained using different subsets o selected patches, combining the joint
Bayesian scores with an SVM, achieving 99.15±0.13% accuracy under the unrestricted with labeled
outside data protocol. A DeepID2 enhanced version was proposed in [137] labeled as DeepID2+
increasing the number of feature maps to 128 in the four convolutional layers, the DeepID size
to 512 dimensions and expanding the training set merging CelebFaces+ and WDRef[138] data
sets. They report an accuracy of 99.47 ± 0.12% on unrestricted with labeled outside data LWF
protocol, using the joint Bayesian model from 25 trained networks. Another enhancement is
proposed in the DeepID2+ pipeline labeled DeepID3 [54], using a deeper network Inception layers
[139] and stacked convolution layers. Similar to DeepID2+, they include unshared weights in later
convolutional layers, max-pooling in early layers and the addition of joint identification-verification
loss functions to branched-out fully connected layers from each pooling layer in the network. They
train two networks, one using the stacked convolution and the other using the proposed Inception
layer [139], combining the feature from both networks into a 30000-dimensional vector, reduced to a
300-dimensional representation using PCA, followed by learning a joint Bayesian model, achieving
a 99.53± 0.10% verification accuracy on LFW unrestricted with labeled outside data protocol.

Face++ is an algorithm proposed by Fan et al. [140] creates a new structure nominated pyramid
CNN conducting supervised training of a deep neural network. A four-level Siamese network was
applied on four face landmarks, concatenating the outputs for classification. This method provided
a verification accuracy of 97, 3% on the LWF unrestricted with labeled outside data protocol. The
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same group proposed a ten-layer network trained on 5 million labeled faces of 20000 subjects
achieving an identification accuracy of 99.50± 0.36% [141].

Facebook developed a face recognition algorithm labeled DeepFace [142] that performed a
3D face frontalization method and trained a DNN for classification. 3D frontalized RGB face
images are taken as input in a networks composed by a convolutional filters layer, followed by a
max-pooling layer, another convolutional filters layer, localy connected layers and fully connected
layers. Three different input image types (3D aligned RGB, grayscale with gradient magnitude
and orientation and 2-D aligned RGB) are used, and their scores are combined using a kernel
support vector machine (SVM). Using the restricted protocol, this reaches 97.15% accuracy. Under
the unrestricted protocol, they train a Siamese network (initially using their own SFC data set,
followed by two epochs on LFW pairs), reaching 97.25% after combining the Siamese network with
the above ensemble. Finally, adding four randomly-seeded DeepFace networks to the ensemble a
final accuracy of 97.35± 0.25% is reached on LFW following the unrestricted with labeled outside
data protocol.

Google team also proposed a method labeled FaceNet [53], basically mapping the images in
compact euclidean spaces (128-dimensional representation) followed by a triplet loss training, cre-
ating an output capable of classifying identity through euclidean distance. The structural model
of FaceNet is depicted in Figure 3.8. The FaceNet algorithm fulfills the verification task (through
threshold checking between two mapped entries), identification (represented by a k-Nearest Neigh-
bor classifying problem) and clustering (return a group of input-alike images, using agglomerating
clustering or k-Means). The method discuss the use of two main architectures of Deep Convolu-
tional Neural Network, one of them being Inception-based [139]. The neural networks are trained
using Stochastic Gradient Descent (SGD) with standard back-propagation and AdaGrad [53]. The
stated performance presents an accuracy of 98.87± 0.15% on unrestricted with labeled outside data
LFW protocol (using central image crops) and an accuracy of 99.6 ± 0.09% using a proprietary
face detector layer on the same protocol in both architectures.

Figure 3.8: Structural model of Google’s FaceNet Algorithm [53].

3.1.3.9 Advantages and Disadvantages

The main advantage of holistic approaches consists in not destroying any information origi-
nally present on the image, altering the global image representation instead of focusing in limited
regions around landmarks [69]. However this same property has drawbacks due to the fact that
most of these approaches follow the initial hypothesis that all pixels from the original image are
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equally important. Consequently, these applications turn computationally expensive and require a
high degree of correlation between the testing and training sets (if the method requires a learning
process), that may lead to high sensitivity to illumination, pose, scale and other significant image
variations. Many of these algorithms were modified and enhanced to compensate these variations’
interference and dimensionality reduction techniques have been explored to diminish processing
cost and discard irrelevant content (presents the collateral effect of potentially losing discriminat-
ing information [143]). In general, these methods achieve better performance rates compared to
feature-based techniques. A FERET assessment [144, 106] indicates that probabilistic eigenfaces
[105], Fisherfaces [51] and EBGM [67] (that despite of being a feature-based algorithm, its perfor-
mance depends on holistic neural networks for feature detection) were the best techniques in the
epoch for face recognition applications.

3.1.4 Hybrid Approaches

Due to the dimension of possibilities and researches performed along the years, the natural
course of the facial recognition approaches were to merge feature-based and holistic techniques
together into a single solution. Some works mentioned are actually classified as hybrid, for example
the EBGM [67] that uses holistic for feature extraction and based on feature relations classifies
the input identity, or the eigenfeatures [82] that uses holistic classification over sub-images formed
around features. The main idea of hybrid approaches consists in presenting at least one step that
extract features and their correlation, and one step based on a global analysis of data or sub-data
[145].

Heisele [146] developed two holistic methods and a component-based approach (hybrid between
feature-based and holistic), applying SVMs as classifiers. The global methods used sub-space
representation of square sub-windows of size 40, converting into feature vectors using the gray scale
pixel values of the region. The component-based approach used an automatic feature detection
method to acquire 14 features to compose a feature vector for SVM classification; The data set
tested contained a total of 9567 images of 5 subjects with variation in pose, illumination and scale.
One training and testing scenario was formed using a training set of 974 images and a testing
set of 8593 images, achieving recognition rates of 93% with the component-based approach and
78% in the best performing holistic approach. Another test was conducted with a training set of
1383 images, achieving recognition rates of approximately 90% and 68% for the component-based
approach and the best performing holistic approach, respectively.

A Probabilistic Decision-based Neural Networks (PDBNN) was used in the work of Lin et al.
[147] for both face detection and recognition, and feature detection (eyes). An experiment using a
data-set composed of 40 subjects containing 150 images of each subject with orientation and pose
variation without background elements interference tested the algorithm in two circumstances, the
first one use the whole data set (labeled as original set) providing a recognition rate of 84, 64%,
while the second scenario uses a data set (labeled valid-set) containing the images that correctly
detected faces and eyes location representing a total of 2176 images that generated a recognition
rate of 98, 34%. In both cases the training set presented 20% of the whole data-set.
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A compilation of information towards the main approaches research in this field of study is
presented in Table 3.1, granting an overview of general techniques, the benefits commonly present
in the methods and the usual drawbacks.

Table 3.1: Main Techniques and Approaches for Face Recognition.

Approach Features General
Techniques

Benefits Disadvantages

Feature-based Locals Geometric Relations
between fiducial
points (distance,
area, orientations,
etc), Dynamic-Link
Structures (Graph,
Grids).

Relatively Robust to pose
variation, rotation and can
be invariant to scale, illu-
mination. Compact repre-
sentation and fast process-
ing

Rely on efficient automatic
feature detection. Hard-
ship in arbitrary choice of
discriminating features.

Holistic Global Sub-spaces represen-
tation (PCA, LDA,
ICA), static classi-
fiers, machine learn-
ing and AI (neu-
ral networks, SVM,
HMM, deep architec-
tures).

Preserves image originality.
High generalization capa-
bility (dimensional reduc-
tion and enhancement).

May present high sensibil-
ity to environment vari-
ations. High processing
cost and may require train-
ing. Dimensional reduction
may cause discriminating
information loss.

Hybrids Locals and
Global

Combination be-
tween holistic and
feature-based tech-
niques (component-
based, eigenfea-
tures).

Select significant features
presenting low sensitivity
to appearance variation.
Avoid irrelevant informa-
tion.

Depends on appropriate
training for feature detec-
tion. Generalization capa-
bility reduced.

3.2 FERET and LFW

The Face Recognition Technology (FERET) initiative from the National Institute of Standard
Technology (NIST) and the Labeled Faces in the Wild (LFW) initiative are benchmarks developed
to standardize the face recognition research environment and stimulate face recognition researches
granting a fair comparative scenario for algorithms testing [3, 148, 144].

3.2.1 FRVT

The FERET presents the Face Recognition Vendor Test (FRVT) that presents a competition for
both identification (one against one comparison) and verification (one against many comparison),
besides related topics such as gender classification [149]. The FRVT measures advancement in
accuracy and speed of face recognition algorithms enrolled in galleries containing at least 10 million
identities. The evaluation primarily uses standardized portrait images, and quantifies how accuracy
depends on subject-specific demographics and image-specific quality factors.
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The FRVT 2018 evaluation used four datasets (frontal mugshots, profile views, webcam photos
and wild images). The primary dataset is comprised of 26.6 million reasonably well-controlled live
portrait photos of 12.3 million individuals. The three smaller datasets contain more unconstrained
photos: 3.2 million webcam images; 200 thousand side-view images; and 2.5 million photojour-
nalism and amateur photographer photos. These datasets are sequestered at NIST, meaning that
developers do not have access to them for training or testing. The last dataset, however, consists
of images drawn from the internet for testing purposes so while it is not truly sequestered, its
composition is unknown to the developers [52]. The evaluation was executed in three phases.

3.2.2 LFW

The Labeled Faces in the Wild project [148] was elaborated with the main goals of stimulat-
ing face recognition research in unconstrained images, providing an easily handled database with
low access conditions, composed by protocols to standardize assessments encouraging fair and
meaningful comparisons and grant full access to results for easy comparison and replication of the
algorithms.

The LFW presents an specific set of image pairs, previously organized for training purposes,
alongside a label identifying if the pair contains images of the same or different subjects. The
training specification and instructions are represented by protocols. Originally LFW proposed two
protocols of image-restricted and unrestricted images. The unrestricted protocol allows the creating
of new training pairs using combination of the already conceded pairs. Since many researchers
started to introduce additional training data (from outside LFW) to their methods aiming to
achieve better performance, new protocols were elaborated [3, 150], being those Unsupervised,
Image-Restricted with no outside data, Unrestricted with no outside data, Image-Restricted with
label-free outside data, Unrestricted with label-free outside data, and Unrestricted with labeled
outside data.

The work elaborated by [3] grants a discussion about the importance of studying restricted
protocols, bringing up topics like the utility of the methods for other tasks, the comparison of
statistical efficiency and assymptotic optimality, and the comparison of automated methods and
human efficiency.

3.3 Face Recognition from Other Sensory Inputs

A face recognition research is mainly focused in the identification of individuals in 2D intensity
images, however various studies have been directed to the exploration of other modalities, e.g. 3D
images, depth images, infrared and others [5].
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3.3.1 Infra-red

Infra-red images tend to present low sensitivity to illumination variation, leading to an exploita-
tion of these images in face detection and recognition tasks. Despite this fact, [151] states that since
infra-red facial images reveals veins and tissue structure that are ubiquitous to each subject (like
fingerprints), visible spectrum face recognition techniques should provide favorable results when
applied to such images. However there are multiple factors that discourage this type of application,
e.g. the substantial cost of thermal sensors, the low resolution and high noise sensitivity of images,
the lack of infra-red images’ data sets, the opacity property of infra-red radiation against glass
(leading to occlusion in subjects wearing glasses and other glass assets) [152], and infra-red images
sensitivity to environmental temperature changes and subjects’ metabolic processes [153].

In [151], the eigenface technique [80, 81] is applied to a data set containing 288 low resolution
images (manually aligned) of 24 subjects in 3 different poses. The recognition rates reported were
of 96% for frontal faces and 45 degrees orientation variation and 100% to profile pictures. Wilder et
al. [154] compared the performance of three algorithms in a data set of visible spectrum and infra-
red images of 101 subjects, concluding that there wasn’t significant improvements in recognition
taxes from one modality to another.

Socolinsky et al. [155] tested the application of eigenfaces [80, 81] and ARENA [156] in a data
set containing visible spectrum and infra-red images of 91 subjects (captured under varied condi-
tions of illumination, facial expression, glasses usage) using a sensor that capture images in both
modalities simultaneously (Figures 3.9,3.10, and 3.11) claiming that infra-red images significantly
outperformed the visible spectrum images in all classification experiments conducted. Selinger
and Socolinsky [153] used the same data set and tested the performance of four know algorithms
(PCA,LDA,LFA and ICA) achieving the same conclusion previously stated, although the authors
admitted that the superiority of infra-red approach may occur due to the fact that infra-red inter-
ference factors (temperature variation, ventilation, and others) were not measured nor manually
varied during the experiments.

Chen et al. [157] collected diverse image data sets (both visible spectrum and infra-red) of 240
subjects under expression variation and illumination condition (not all images were acquired simul-
taneously, presenting time lapses of ten weeks). The purpose of this data set was to study the facial
appearance change effects along time in the performance of eigenfaces algorithm in both modali-
ties, concluding that both modalities present similar accuracy rates, however the visible-spectrum
images surpassed infra-red modality whenever a significant time lapse was present between train
and test image acquisition. They attributed this low performance to variation in temperature
patterns on the same subject (from both environment and subjects’ metabolic variations) and to
infra-red images sensibility to eyes manual location. They also discovered that the FACEIT soft-
ware [158] provided better results than eigenfaces in both modalities, however these results were
outperformed by a combination of two classifiers using the sum rule [159]. Posterior experiments
[160] in a bigger data set preserved the same performance hierarchy. Other approaches proposed
the merge of visible spectrum and infra-red images to enhance the performance in recognition rates
[152, 161, 162, 163].
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Figure 3.9: Samples extracted from data set in [155].

Figure 3.10: First five visible eigenfaces [155].

Figure 3.11: First five LWIR eigenfaces (infra-red) [155].

3.3.2 3D Model/Data Methods

The main argument in favor of 3D information usage for facial recognition resides on the
exploration of shape features, based on curvature of face elements (like cheeks, jaw line, and
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shape of the forehead) without interference from illumination variation, orientation and background
confusion present in 2D systems [164, 165, 166, 145]. Another fact to use depth data is the
advance of technology, permitting direct manners of introduction and registration of complex
shape information for digital analysis. A consequence and drawback of this approach consists in
the complexity and cost in computational terms.

3.3.2.1 3D data acquisition

There are multiple forms of generating 3D data, varying from sensory reading and image-based
modeling reconstruction. Tibbalds [165] describe the following 3D model acquisition:

• Scanning Systems: Scanners laser-based are producing accurate models, however the com-
mercial cost of these are usually expensive (despite of recent low commercial cost sensors like
Kinect [13]).

• Structured Light Systems : Use stereo-graphic vision principles to determine depth data.
The main advantage is the equipment composition, requiring only cameras and a projection
system.

• Stereo-vision Systems: These systems aim to extract 3D information from two or more 2D
images from the same object with a baseline displacement (or angular variation). They are
limited by the object’s image feature extraction capability, the feature extraction algorithm
and its output quality and the feature matching algorithm to allow conclusive correspon-
dences.

• Reverse rendering/shade from shading: Focus on the model construction using illumination
and object’s physical properties knowledge.

The mostly used technique based on 3D model reconstruction from image consists in the multi-
view stereo (MVS) reconstruction. The goal of these techniques is to achieve complete 3D model
reconstruction of an object taken from know camera viewpoints [167]. The work in [167] focus on
methods that retrieve a dense object model from calibrated view, and according to it the multi-
view stereo algorithms are roughly categorized in four classes, voxel-based approaches [168, 169],
deforming polygonal meshes based algorithms [170, 171], multiple depth maps (merging them in a
single 3D model) [172] and patch-based methods [11] [10]. Figure 3.12 depicts a pipeline of patch
based a MVS model reconstruction proposed by [11]. According to [11] MVS can be used to obtain
objects, scenes and crowded scenes reconstruction. In [10], a Struct from Motion (SFM) approach
is presented to estimate camera view-points using a Batch Adjustment (BA) or a Partial Batch
Adjustment (PBA, faster than BA) permitting a dense point cloud generation using a patch-based
reconstruction.

In the past years, great interest arose in 3D face recognition supporting the elaboration of new
techniques. One of the first approaches described in [7], where the surface principal curvatures are
calculated through depth data and further used to locate fiducial landmarks (e.g. nose, forehead,
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Figure 3.12: An overall approach of a patch-based MVS model reconstruction. From left to right:
A sample input image; detected features; reconstructed patches after the initial matching; final
patches after expansion and filtering; and the mesh model [11].

eyes, neck, chin, and others). The faces are normalized in a standard position and re-interpolated
onto a regular cylindrical grid. The spatial volume between two normalized surfaces is used as
similarity measure. Experiments using 8 subject faces led to recognition rates of 97% for individual
landmarks (features) and 100% for the whole face. Another approach described in [173] uses
profile instead of frontal images, capturing 3D data through triangulation and comparing the
acquired data. The method requires user cooperation and background constraints to provide
efficient performance. [164] uses 3D data to normalize results from a facial detection algorithm to
properly construct an environment for face recognition, using the 3D as complementary enhancing
data.

Castellani et al. [174] approximate face depth images (estimated through stereoscopic analysis
using B-Splines Multi-level [175] and SVMs) using the numerical approximation coefficients for
classification. Other techniques [166, 176, 177] first project 3D data into 2D intensity images
and then process these new representation as standard intensity images. Varying recognition
approaches like 3D local feature-based recognition [178], local and global geometrical cues [179],
profile analysis [180, 181, 182, 183] were also proposed. In [5], methods using PCA and HMM are
noticed.

Diverse approaches proposed the integration of 2D texture and 3D shape information. These
methods use PCA in intensity images [184, 185, 186] and profile intensity images [187], Iterative
Closest Points (ICP [188]) [189, 190], Gabor wavelets [191], Local Feature Analysis [183] and other
known methods of data representation, extraction and correspondence. Wang et al. [191] extracted
3D shapes templates from depth images and texture templates from gray scale images, applying
PCA separately in both template modalities for spatial reduction, concatenating both texture
vectors and classifying the identity using SVM.

In Goswami et al. [34] a method is proposed to extract an entropy map from the depth map
and the RGB image of a person and a saliency map from the RGB image, computing a histogram
of gradient (HOG) from these maps and classifying them by a Random Forest (RDF). Other work
from Goswami et al. [22] has presented improvements adding a geometric attribute computation
from depth map fiducial points, creating the called RISE (entropy and saliency maps) and ADM
(geometric attribute relation) descriptors.
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In Hu et al. [192] was proposed a face recognition for a user tracking robotics application, using
the depth map from head detection and the RGB image for recognition by illumination normaliza-
tion, head pose correction and face space projection. Bormann et al. [193] implements a similar
algorithm to Hu et al. algorithm, using Fisherfaces[51] space parametrization, a Support Vector
Machine (SVM) and Nearest Neighbor techniques for classification. Zhou et al. [21] proposed a
three-dimensional face recognition using 7 feature points and a two-level Cascade Classifier, formed
by a Decision Tree Classifier in the first level, and an improved Euclidian Distance classifier in the
second level. Saleh and Edirisinghe [194] proposed an Eigenface-based method, training models
with eigenfaces applied to the normal images and depth images, under different illumination con-
ditions. Chowdhury et al. [35] proposed a method based on machine learning, that trains a Neural
Network to reconstruct the depth map from a color image, using the color image and the real depth
map as input elements, and classifying the reconstructed depth map through another multi-class
neural network.

The work in [19] presents a table containing varied methods of 3D facial recognition, describing
the number of subjects in the data set, the size of the utilized images, the total number of images,
the data type utilized, the main applied technique and the recognition rate of each.

Russ et al. [23] algorithm applies a Haussdorff distance in range images, the experiment used
a data set composed of 200 subjects and 398 images in total. The reported recognition rate was of
98% not presenting any false positive occurrences (erroneously classifying an input). A drawback
mentioned in the research is the execution time needed due to the algorithm’s high computational
cost. Lee et al. extracted geometrical features (curvature, length, angle) from geometrically local-
ized fiducial landmarks. A testing scenario was composed using two sensors for image capturing,
the first sensor consist of an structure light sensor (Genex 3D FaceCam) obtaining test images and
the second sensor is a full laser scan (Cyberware) to obtain model images (since laser scan provide
high detail and shape quality of scanned surfaces). Two classification architectures are presented,
the first uses curvature values extracted from landmarks as correspondence and the second applies
a SVM into a feature vector. The first classification scenario uses a 20 subjects data set claiming a
recognition rate of 95%, while the SVM-based scenario uses a data set composed by 100 subjects
claiming a rank-1 recognition rate of 96%.

Li et al. [24] presented a method based in descriptor correlation of 3D fiducial landmarks. The
proposed algorithm is inspired by SIFT (Scale-Invariant Feature Transform) descriptor method-
ologies aiming to develop a robust algorithm to deal with face recognition difficulties (occlusions,
expression and pose variation). The methodology is divided in three steps as depicted in Figure
3.13. Initially key points are detected in the point clouds, selecting the points through maximum
and minimum local curvature values (principal curvature), then key point local descriptors are
generated in form of histograms storing shape and gradient (extracted through canonical direction
attribution in a quasi-daisy configuration), finally a dictionary gallery of descriptors is formed and
a Fine-Grained Matcher is used to correlate the descriptors of testing images with the formed
training dictionary. The data set used by Li et al. is composed of 4666 3D faces of 105 subjects (61
men and 44 women), presenting 34 facial expression, 13 poses and 4 occlusions for each subject.
They reported a recognition rate of 98, 8%, 99, 2% and 91, 1% for expression variation, occlusions
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and pose variation, respectively. A scenario containing the whole data set provided a recognition
rate of 96, 6%. The algorithm generalization is tested in other data set.

Figure 3.13: General Representation of Li et al. [24] methodology. Initially key points are de-
tected (left block), then local descriptors of these points are built: attributing canonical directions,
descriptor configuration and histogram representation (middle block), and finally a key point cor-
respondence is made: dictionary construction and descriptors comparison (right block) [24].
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Chapter 4

Methodology

This chapter presents the proposed methodology applied in this facial recognition approach.
The following method is composed of two main algorithm pipelines, which both contain common
stage of data preparation, followed by classification criteria, and validation process. The commons
steps are related to the database pre-processing, downsampling the database to obtain only the
data of interest. Next, each algorithm presents a feature extraction process followed by a matching
procedure that provides a basis for the classification of an input subject.

During the whole elaboration of this work and the solution to the three-dimensional face recog-
nition problem, the analysis of raw features and aspects of two-dimensional images (that are also
present in the database) were avoided, to focus in a solution independent of any standard two-
dimensional image data, exclusively exploiting the three-dimensional data (despite of using it to
filter facial data). The database studied in this case consist of point clouds obtained from a low
resolution device, that should be carefully treated in order to avoid noise and interference from
external factors that may jeopardize the data description and feature identification in the pre-
processing step. The database pre-processing corresponds with facial data segmentation, building
a three-dimensional space represented in a point cloud structure. In both algorithms here pre-
sented, this step is equally implemented, loading the data stored on file into a data structure
containing only facial data.

Succeeding the pre-processing comes the feature extraction step of both methods’ pipelines.
That is the point of the methodology in which the techniques diverge since each procedure extracts
different features for data processing and classification criteria. The first approach exploits the
curvature projection of each point stated in the facial point cloud, composing a RGB image of
curvature projection entitled Face Curvature Map (FCM) [4]. The second approach selects a
subset sample of points, treating those as key points, either through salience or through a voxel
grid uniform spacing, and estimates their normal vector component through surface estimation
defined by neighborhood distribution to connect these key points in pairs (under various topology,
including Bozorth’s algorithm composition [36]), projecting their components in planes to exploit
their spacial correlation through angular and distance differentiation. The stochastic validation
finishes both pipelines based on F-measure analysis [195][196].
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Figure 4.1: Flowchart of FCM pipeline. The light-blue flow corresponds to the data input and pre-
processing to obtain the facial point cloud structure. The following green colored processes refer to
the feature extraction procedure, including the Covariation Matrix calculation and the curvature
index estimation, assembling the curvature maps. The red flow consists of the face curvature map
analysis, constructing the pixel values histograms for classification. The purple flow presents the
classification and validation steps, ending the pipeline.

The feature extraction and data processing are followed by the classification (which the proce-
dure is eccentric to each pipeline). The FCM-based approach generates histograms of the subjects,
storing the count of pixels values in determined regions of the FCM in interval bins, and compar-
ing these histograms to obtain a difference score between FCMs. The Bozorth’s based approach
generates a matching score between the data structure that contains the pairs of points, through
spatial and angular distribution analysis of these pairs, permitting induction of the subject’s iden-
tity. Both pipelines finish the methodology with a validation procedure, over stochastic evaluation
that applies thresholds over the scores obtained in the previous steps, measuring the performance
of both algorithms to deal with the task of recognizing a person in the presented scenarios.

To provide a better understanding of both pipelines, an overview flowchart of the main pro-
cedures in both pipelines was elaborated (FCM flowchart presented in Figure 4.1 and Bozorth’s
Approach flowchart presented in Figure 4.17), showing the sequential application of each step, the
input of each process and the main parameters involved in them.

4.1 Database Pre-Processing and Feature Extraction

This section is focused on detailing the procedures common to both pipelines developed, de-
scribing the database elements followed by the operations applied on specific items to prepare
data for later feature extraction (that will also be covered in details further in this section). The
pre-processing step loads the point clouds into memory and filter data to obtain only the points
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that belong to the face. Figure 4.2 presents the operations of the pre-processing stage.

Figure 4.2: Data pre-processing steps. The first step consists of a wrapper that receives input
data files to convert into whole scene point clouds. The second step applies the Viola-Jones [43]
algorithm in the RGB images to detect the face location. The last step filters the points in the
region defined from the previous step to generate a facial point cloud.

In the FCM pipeline, these initial steps head until the curvature maps formation, which will,
later on, be used for data comparison and classification of the subjects, being represented by the
light-blue and green operations in its flow chart. In the Bozorth’s pipeline, the light-blue steps
related to the pre-processing are precisely the same, only differentiating in the green operations
that lead to normal vector estimation and ending on key points extraction.

4.1.1 Database

The database presented in this work was used to check the functionality of both pipelines. The
data is provided by [197]. This database is composed of thirty-one subjects in thirteen different head
orientations as well as four different facial expressions (representing mixed emotions), presenting
three different samples for each one of these cases mentioned. The provided database was captured
within the same environment conditions using the Microsoft Kinect device (the first version of the
device) [13], and later published after smoothing the data through pre-processing (spikes removal,
gaps and holes fulfillment throughout the face surface).

The obtained samples previously mentioned are composed of an RGB image and the depth
information of the scene captured from Kinect stored in a data file (extension dat). The depth
values are represented in a numeric interval of [-1,4095], presenting a negative element (-1) to
inform an error in the depth acquisition in the current pixel. The neutral element(0) to report
depth values that are too close to the sensor, and the maximum value (4095) to inform that in
such pixel, there was either an object in the limit capacity of the sensor (or that was beyond the
reach of the sensor). The RGB images mentioned are sized in 1280x960 pixels, while the depth
maps are sized in 640x480 pixels, half the size of the RGB images. Figure 4.3 displays an example
of the database elements described.

This database was developed initially for facial detection in-depth analysis, adding the possi-
bility to find faces even if the person presents a different expression than a neutral look. However,
it is applied to verify the capability of the developed pipelines to execute an identity recognition
towards the low-resolution point cloud data.
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Figure 4.3: Samples of the database elements before the pipelines pre-processing. This illustration
provides two subjects in a frontal position, showing the RGB image to the left and the Depth map
representation (rendered as point clouds composed of black points) to the right [197].
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4.1.2 Facial Segmentation and Point Cloud Assembly

The database contains useless information (e.g. objects in the environment or the entire upper-
body of the subjects), thus a data filtering procedure must be performed to obtain only the region
of interest of the depth information (facial data). Since both the RGB image and the depth
information are taken from the same scene, they are correlated, being only differentiated by a
translation baseline. This information is exploited to delimit the facial region of the depth map
using the RGB image facial region. The first step of the pre-processing consists of removing the
irrelevant and corrupted data from the depth map, getting rid of the reading errors from the sensor,
and the limit values (too close and too far) obtained, remaining only the data represented in Figure
4.4. This filtering process is referent to the first block of operations of Figure 4.2.

Figure 4.4: Multiple views of the relevant data obtained after the first pre-processing phase (repre-
sented as point clouds). This filters the bad capture errors (bad readings, maximum and minimum
range) from the sensor.

To obtain the face location in the RGB image, the Viola-Jones algorithm [43] (also knows as a
Haar-cascade) is applied defining an area which the face is contained (represented in Figure 4.5).
Thenceforth a scale transformation is applied to this region, along with the baseline translation,
to determine the depth data correspondent to the face of the subject, obtaining the data shown in
Figure 4.6. In the pipeline, this method is represented by the second operation block of the section
present in Figure 4.2.

All results from this pre-processing step are defined as a subset(Sface) of three-dimensional
data points delimited by the horizontal and vertical spatial dimensions containing the face of the
individual/subject to be recognized/verified and described by Equation 4.1.

Sface ⊂ Ω ∈ R3 (4.1)

where Ω is a set of three-dimensional data in spacial domain R3. The subset Sface consists of
points pk(x, y, z) where k = 1 . . .m, and m is the total number of points composing this subset.

After discovering the facial region in the depth map, it is possible now to assemble the point
cloud referent to that region. The assembly is assisted by the Point Cloud Library [42], which
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Figure 4.5: Facial Segmentation on RGB Image using the Viola-Jones [43] algorithm. This image
represents one of the subjects from the database [197].

provides an appropriate data structure to load the desired data on memory and supplies the user
with many built-in functions focused on point cloud data structure. It assists in tasks such as
visualization, filtering, feature extraction, key point acquisition, registration, segmentation, etc.
For each subject, the point cloud is built point by point, since the parser defined by the library
couldn’t identify the data distribution of the depth map files. The output of such operation is the
point cloud of the subjects, which is represented by the third and fourth blocks in Figure 4.2.

Figure 4.6: Multiple viewpoints from the remaining relevant data of Figure 4.4 after the facial
segmentation.

To verify if the correct facial data was acquired, the visualization module of the Point Cloud
Library was used to render the remaining points, obtaining results like Figure 4.6.
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4.1.3 Points Neighborhood and Covariance Matrix

When it comes to point cloud data structure, a single point itself does not present enough
information to reach spatial conclusions of a region [198]. However, when a group of points in an
enclosed defined region is analyzed together, spatial features and descriptions may be estimated,
providing information about curvature, surface shape, local geometrical features, local spatial
distribution, and other spatial information. Due to the importance of these local characteristics,
a geometrical region is defined around each point to establish a neighborhood and compute the
spatial distribution of the cloud.

Figure 4.7: Spherical Neighborhood defined around a sample point. pq represents the current point,
while pki symbolize the neighbor points inside the spherical vicinity of radius r and pi neighbor
points outside the vicinity.

The neighborhood geometry chosen was a sphere around each point to obtain a determined
radial limited description, establishing this way the symmetrical bound around its center (Figure
4.7). To determine the spatial distribution of a point’s neighborhood the covariance matrix defi-
nition is applied, as mentioned in the pipeline of Figure 4.1. The covariance matrix is calculated
using the centroid of the sphere as a reference, achieving the spatial variation within its limits. The
covariance matrix is relevant to both pipelines since they are used either in the curvature index
estimation as in the normal vector component estimation. Figure 4.8 illustrates the covariance
matrix and the feature extraction operations in the pipeline.

Figure 4.8: After the conception of the Point clouds, the pipelines follow to the covariance matrix
calculation and the feature extraction (normal vector and curvature estimation).
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The covariance matrix is mathematically expressed by Equation 4.2, consisting of the square de-
viation of the points towards the centroid of the neighborhood of the current point being analyzed,
providing a 3x3 matrix of deviation towards the main axes representing the local three-dimensional
space. The matrix calculated can specify the local surface around the point and extract important
features crucial for the implemented methodology.

Mn =
1

x

x∑
i=1

(pi − p̄)T · (pi − p̄), (4.2)

in which:

Mn is the covariance Matrix of neighborhood n;

x is the number of points inside the neighborhood n;

p̄ represents the spatial vector of the centroid (dimension 1x3);

pi represents the spatial vector of a point contained in the neighborhood (dimension 1x3).

The matrix has crucial information to obtain discriminating features, possessing high value on
its eigenvalues and deviation elements. The eigenvalues of the covariance matrix can be mathe-
matically expressed as Equation 4.3.

Mn · ~vj = λj · ~vj , j ∈ {0, 1, 2} (4.3)

in which:

~vj are the eigenvectors of the covariance matrix Mn.

λj are the eigenvalues of the covariance matrix Mn.

j refers to the index of the eigenvalue/eigenvector. A 3x3 matrix is composed by three eigen-
vectors/eigenvalues, allowing the values of j to assume any value of the set {0,1,2}.

4.1.4 Normal Estimation and Curvature Index

As previously mentioned, the normal surface vectors and the shape of the surface are crucial
information to identify a pattern [41]. For the estimation of the normal vectors, a tangent plane is
estimated through least squares to fit the surface description of each neighborhood. It provides the
normal vector spherical coordinate angles [199], which through the manipulation of the covariance
matrix eigenvectors, generates the normalized (using the vector magnitude as a maximum value)
components of the normal vector [41].

The curvature index is obtained through eigenvalues correlation, verifying the ratio of spatial
deviation in the principal coordinate planes [198]. The curvature index is calculated by Equation
4.4 written below.
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(a) Normals (b) Curvature

Figure 4.9: Rendering of Normal Vectors (the parametrization chosen doesn’t render all the vectors)
and Curvature Index rendering.

σk =
λ0

λ0 + λ1 + λ2
, (4.4)

in which σk is the curvature index of the point k, the λ’s are the three eigenvalues of the covariance
matrix, and the λ0 is the eigenvalue with lowest magnitude. The normal estimation and curvature
index rendering result are shown in Figure 4.9.

Since the spherical radius previously defined determines the neighborhood of each point, this
radius is critical to the estimation of the curvature index and the normal vectors. Figure 4.10
shows an example of how the size of the neighborhood may interfere in the values of the curvature
index of curvature. In the normal vector estimation, the variation is less aggressive, not being able
to perceive visually (in the visualizer just as Figure 4.9).

Figure 4.10: The difference in curvature rendering between the outputs of the same subject for
different spherical radius set for the neighborhood: The left image is generated with the lower
radius value, while the right image is created with the highest radius value between the three
images.
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4.2 Face Curvature Map Pipeline

This section introduces the stage in which both pipelines diverge since the data pre-processing
is finished. This section will develop on the remaining process of the FCM pipeline shown in Figure
4.1, detailing the handling of the pre-processed data, the output of each method, and the progress of
the whole application to reach the identification of a facial input data. In short terms, this section
will explain how the face curvature maps are generated, followed by a gray color transformation
and a n-section division of the curvatures maps to extract the pixel value histograms. It ends with
the histograms comparison, to calculate a differentiation score between subjects, and a validation
process of the recognition over score ranking. Figure 4.11 shows the steps before validation.

Figure 4.11: FCM operations before the validation steps. After the Feature Extraction the FCMs
are formed, being divided in regions and converted to gray scale to form histograms that are
compared to generate a matching score.

4.2.1 Face Curvature Map Extraction

The Face Curvature Maps (FCM) consist of a projection transformation based on the viewpoint
of the three-dimensional space represented by the point clouds, resulting in an image (RGB), where
each pixel represents a point, and the color is related to the curvature index value, describing it as a
curvature-based method. The curvature index are normalized values (obtained in the Equation 4.4)
in which the bottom limit (zero value) represents the minimal curvature of the local face surface
(approaching or being equal to a plane surface), and the top limit (value equals one) represents
the maximum curvature of the local surface (the region with greater distribution).

The curvature maps idea came from the analysis of the Visualize class of the PCL, in which
the curvature index is represented by colors (translated by a Look Up Table), attributing a color
for each point, just like in Figure 4.9.

The PCL uses a data array of the VTK (Visual Tool-Kit) Library to store the values of the
curvature index of each point. Through this array, it is possible to create a visualization table
that normalizes the values of the curvature based on its range, returning the color levels for each
of the RGB spectrum colors (red, green and blue). In virtue of this function, a planar projection
of the points from any viewpoint can generate an RGB image, which allows a frontal projection of
the face to be transmuted into a frontal RGB facial image, as shown in Figure 4.12. This method
should be avoided in view-points that occur overlaps of points.
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Figure 4.12: Transposition of the Curvature Index Values to a Curvature Map: The left image is a
point cloud rendering in which the point colors represents the curvature intensity, while the right
image is the image projection generated from the curvature color map.

4.2.2 Division of the Face Curvature Map

The FCMs are a global representation of the subjects’ face surface curvature. Despite a notice-
able visual discrepancy of the subjects’ FCM, two different subjects may present similar average
pixel count distribution of their FCMs, that could generate high similarity scores and jeopardize the
classification results. It happens due to the scattered variability of local features, so to avoid this
circumstance, the FCM is divided in sub-windows to focus on local features and guarantee a better
discriminating description of the subject. The number of regions (either for height and width) is
defined as an input parameter (set as a dynamic variable label n) by the user. The height and
width division can also be settled by separate variables with the proper parameterization. Figures
4.13a, 4.13b, and 4.13c give a better understanding of the FCM division.

(a) 3 region division (b) 6 region division (c) 9 region division

Figure 4.13: Division of the Curvature Map into equally spaced areas.
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4.2.3 Gray Scale Transformation

The grayscale transformation of the FCM consists of a simplification process for further his-
togram extraction and classification of the subject. The grayscale transformation converts the
data extraction from a multi-channel problem (Red, Green, and Blue) to a single-channel problem
(grayscale value), reducing the time complexity of the comparison of FCMs. Figure 4.14 shows an
example of RGB to grayscale transformation.

The OpenCV Library [200] adopted to provide such transformation describes the process math-
ematically as written in Equation 4.5.

RGB[A] to Gray : Y ←− 0.299 ·R+ 0.587 ·G+ 0.114 ·B (4.5)

in which Y is the grayscale value of the pixel and R, G, and B are the pixel values of the red, green
and blue channels, respectively.

Figure 4.14: Transformation of the FCM from RGB to gray scale. This transformation is performed
using Equation 4.5.

The division of the FCM and the grayscale transformation of the RGB concludes the last pro-
cesses directly applied on the FCMs, being followed by a pixel value count to obtain the histograms
for classification.

4.2.4 Histogram Construction

To transform the visual information provided by the grayscale FCMs into a better data-driven
numerical representation, histogram of normalized pixel values count is extracted for each area
obtained in the division process. The normalized pixel value count are stored into a parametrized
number of bins (set as input into a dynamic variable labeled as bins). The bins correspond to the
number of groups that the grayscale range (that fluctuates from 0 to 255) will be represented, so
whenever a pixel value is found inside the range of a group, the bin represented by this group is
incremented. To provide equally sized group values the total number of bins should be represented
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by a power of 2. After filling all the bins with the respective pixel values, the histogram is finished
with the normalization of the bins counts about the total pixel count of the image to avoid deception
in the classification process due to different-sized samples (FCMs). The histograms are submitted
to a similarity matching function, leading to a numerical score that represents the discrepancy
between histograms.

Figure 4.15 presents two examples of different histograms extracted from random FCMs in a
three region division, offering a visual notion of the constitution of a histogram of 8 bins and a
histogram of 16 bins.

(a) 8 bins Histogram for a 3 region division

(b) 16 bins Histogram for a 3 region division

Figure 4.15: Histogram structure of three regions from the FCM. Each bin of the histogram
represents a numerical interval of values from the grayscale, while the vertical component is the
normalized count (occurrence frequency) of the values contained in such intervals

4.2.5 Histogram Comparison, Scores and Classification

A human being giving a glance at the FCMs in Figure 4.16 could easily distinguish both
subjects achieving the same conclusion as presented, in which the first two images resemble the
same subject, while the second one does not. The expectation upon the histogram comparison is
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to obtain the same result through a numerical representation, being able to classify two curvature
maps as the same subject or different subjects. For numerical evaluation, a histogram comparison
is portrayed as a minimization function between the frequencies (normalized pixel count values)
represented by Equation 4.6. This function returns a numerical score representing the discrepancy
of the histograms, implying that the lower the score is, the higher the resemblance is.

Figure 4.16: Classification process between FCMs. Visually there is a clear similarity between the
first pair of subjects, while there is a clear variance between the second pair.

score(i,j) =
n∑

m=1

√√√√bins∑
k=1

(Hk
in[m]−Hk

(i,j)[m])2 (4.6)

in which:

Hin refers to an input histogram;

H(i,j) refers to one of the j-th samples of i-th subjects known as a database member.

k represents the current (k-th) bin of the histograms;

bins are the total number of bins contained in the histograms;

m represents the current (m-th) histogram since each region of the FCM produces a histogram;
and

n represents the total number of divisions (and the number of histograms) the curvature maps
were submitted.

Since the score represents the average discrepancy between histograms of two FCMs, the lower
similarity score should be chosen as the subject’s identity if the unique task consists in establishing
an identity to the input based on known subjects (it is not the case in this application). To discard
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input data that does not represent a person or represent a subject which the identity is unknown
(the subject does not belong to the database gallery), a threshold is applied to set an upper bound
to the lower score, implying that if the discrepancy of the input subject is above the expected, it
should be discarded, bypassing a false recognition. This process is also essential in the validation
step.

4.3 Bozorth Method

This Section introduces the Bozorth’s algorithm (as previously mentioned and explained in
Chapter 2). It consists in a fingerprint matching algorithm implemented by the National Institute
of Standards and Technology (NIST) [36], based on fingerprints minutiae that represent specific
edge features of fingerprint lines (as mentioned by the NIST[36] and Madalla[49]). This pipeline
resembles Bozorth’s algorithm by selecting specific key points (meant to surrogate the fingerprint
minutiae) through two different possible feature extraction applied on a point cloud context. This
one is followed by a topology selection of the features linkage and the matching process proposed
by Bozorth’s algorithm, which is finished in a validation procedure, as shown in Figure 4.17.

Figure 4.17: Flowchart of the Bozorth Pipeline. As previously mentioned the blue operations
represent the pre-processing steps, the green operations are related with the feature extraction
ending in the key point selection, the orange operations are related to the choice of topology of the
key point linkage, the gray operations represents the matching algorithm, followed by the ending
process of validation in purple.
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4.3.1 Key Point Selection

Bozorth’s pipeline follows a similar path to FCM pipeline after the data pre-processing, extract-
ing features to propose a score computation. However, FCM pipeline detains a global structure
of the face (despite the features describing the local environment of the point) for analysis, while
Bozorth’s pipeline diverges from this premise, choosing a select group of points expecting to pro-
vide only discriminating salient information to the matching algorithm. A key point extraction
is proposed based either on uniform sampling (by the application of a voxel grid) or a salience
approach (detailed by the Intrinsic Shape from Signature (ISS) algorithm [44]).

Both the uniform sampling and the ISS present their unique input parameters, and coinciden-
tally the primary setting consists of the radial argument. In uniform sampling, there is a parameter
labeled leaf radius, which determines the volume of the grid by electing the number of points that
must be contained in this same volume. The ISS presents the salience radius, which determines
(alongside other parameters) points that offer a high salient value to the cloud (as previously men-
tioned in Equation 2.1 in Chapter 2). The radius parameters are both set dynamically to provide
practicality in testing and validation. Figure 4.18 provides an example of both key point selection
and visual evaluation of them. Each of the selected key points contains their spatial location and
the normal vector components. crucial for the matching procedure.

Bozorth’s approach states that the points are linked in pairs to exploit their angular distribution
in consonance with the local feature direction. In order to do this, linking strategies must be
defined, leading to the choice of a topology between the points. The next step consists of defining
a topology for the points connection.

(a) Uniform Sampling (b) Intrisic Shape from Signature

Figure 4.18: Facial point cloud rendered in red and key points detected rendered in green from a
frontal perspective.

4.3.2 Topology Selection

The necessity to obtain a connection between pairs of points brings up the uncertainty about
the way these pairs should be connected. There are many possibilities available which presents
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different concerns about where to begin (which point), how to proceed to the next point, how
many pairs a single point may bare and how to avoid duplicates. To detain a vast understanding
of the behavior that may be caused by the topology choice throughout the matching process,
three different structure were proposed for pairing: two of them constitute a single paired net
(where a source point may present only one destination point). and the other constitute a multi-
paired net (where each source point may present more than one destination pair, applying the
proper arrangement to avoid pairs duplicates). The single-paired topologies are the top-left and
nearest neighbors organization, while the multi-paired topology is represented by a clust defined
in Bozorth’s original work (Bozorth compostion) [36].

The Top-Left topology starts from the point that is located geometrically farthest in the top
and to the left of the cloud, linking it to a destination point that represents the closest one to
the right until no point can be found to the right which will connect this point to the one that
comes closest in the bottom direction and farthest to the left, repeating the process until there
are no more available points. This process results in a single link per source point, generating a
single paired web. The Nearest Neighbor topology can start from any point since the principle
in this topology is to grow a radius around the point until it encloses one of the neighbors (and
destination point). Once again, these topologies provide a single link per source point. Figure 4.19
provides a visual representation of the web formation in both these topologies.

(a) Top-Left Topology (b) Nearest Neighbor Topology

Figure 4.19: Single Paired Web Topologies. The facial points clouds are rendered in red, The key
points and the link between them are rendered in green, and the normal vector of each key point
is rendered in white.

The Bozorth Composition topology original scope receives a sorted table containing the pixel
position and the angular direction of the fingerprint minutiae with the intent to avoid linking points
that were already treated previously (despite the implementation of data critics in case of input
modeling error). The adapted structure of key points elaborated to exploit Bozorth’s method in
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this application is typified the same way as the original input of Bozorth, sorting the input data
in a table containing the spatial information of the point and the angular description of the local
normal, aiming to acquire the best performance and similarity to the original application.

In this composition, the points are linked through a distance threshold, similarly to the neigh-
borhood radius, setting a destination pair to every point within the radial limit of a source point,
forming this way a multi-linked web. For each point linked, a content table is generated (labeled as
web in the original algorithm), storing the distance module between the points, the points’ index,
and the angular difference between the points’ normal vector direction and the distance vector
direction. This table of contents contains all the information necessary to proceed to the matching
algorithm.

4.3.3 Bozorth Matching and Score Evaluation

The matching process suffered minor adjustments to work in the elaborated scenarios of this
work. Bozorth’s matching algorithm consists of a few phases of comparison between two input
web of pairs, establishing thresholds between the angular variation stored in the content table to
define a correlation between the webs and a numerical matching score. The higher the matching
score, the higher is the similarity between the two webs, and most probably the closest to being
the same subject.

Before describing the alterations made to the matching algorithm and the score acquisition, the
matching process must be explained. It consists of three cascades of tolerance checking between
both webs, where every pair of the input web is compared through brute force with all the points
of the gallery web. The first content of the table to be verified is the pairs that are within the same
distance range, diminishing the number of pairs that may represent a match. It is followed by
the angular tolerance checking of the source point in the remaining pairs, once again diminishing
the number of pairs that may represent a match. And then, the last verification is made, which
is the angular checking of the destination point, that usually leaves just one pair as match or
none, applying data critics in case of mutual matching within other pairs. Equations 4.7, 4.8,
4.9 represents all the tolerance checking steps described in [49]. The matching score represents
the number of pairs between the webs that contain a high correlation in the distance and feature
orientation.

∆d(ds(Ipk), ds(Gpi,j) < T (d) (4.7)

∆β(β1(Ipk, β1(Gpi,j) < T (β) (4.8)

∆β(β2(Ipk, β2(Gpi,j) < T (β) (4.9)

where ∆d and ∆β represent the difference among these functions, Ip is the input’s pairs array, Gp
is the gallery’s (database) pairs array, k is the pair index of the input, j is the pair index of the
gallery subject, and i is the subject’s index in the database.
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4.3.3.1 Adaptation

The matching algorithm itself has not suffered many alterations. The main element to give
proceeding to the matching process consist of the input structure and the three-dimensional sce-
nario, which implies in the addition of more information to be analyzed. Figure 4.20 presents a
pipeline with the original Bozorth’s matching algorithm in comparison to the adapted Bozorth’s
matching algorithm.

Figure 4.20: Flowchart detailing the original and adapted algorithms’ pipeline. The original algo-
rithm is composed of a single path formed by an web formation from input key points, followed by
the matching process between a probe and the gallery webs that results in a final score, finished by
a score validation removing duplicates. The adapted algorithm is similar until the matching pro-
cess, which happens in three different projections, followed by score validation for each projection
with duplicates removal, and final score computation with the sum of each projection score.

4.3.3.2 Table of Content

When it comes to data amount, the three-dimensional scenario provided by the point cloud
environment is more plentiful compared to the original scenario (based on a grayscale fingerprint
image). Figure 4.21 displays all the variables that could compound the initial content table of the
algorithm, presenting more information than the original method illustrated in Figure 2.8.

A content table involving all the information that the three-dimensional space provides (dis-
played in Figure 4.21) would contain the complete information for a single execution of the matching
process, all at once. However, it would create a complex scenario to apply an eccentric threshold
for each one of the angular and spatial discrepancies. Avoiding this scenario, the three-dimensional
space formed by the points is manipulated to divide the content into projections of coordinate
planes (similarly to the FCM frontal viewpoint projection). The pairing is evaluated then into
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Figure 4.21: Example of two key points link, displaying the normal and distance vectors, the main
coordinate axes (z - red, y - green, z - blue) and the angular difference of the normal and distance
vector in relation to the coordinate planes (in their respective colors).

three projections (representing the coordinates planes), preserving the original structure of the al-
gorithm and allowing the application of a variant threshold for each projection, leading to eccentric
scores on each view-point. Figure 4.22 displays the three projections obtained from the example
of Figure 4.21.

(a) X Plane Projection (b) Y Plane Projection (c) Z Plane Projection

Figure 4.22: Projection of the coordinate planes illustrated in Figure 4.21.

The original matching algorithm is applied to each projection, using the tolerance verification
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expressed in Equations 4.7, 4.8, and 4.9, but with a few minor changes compared to the original
algorithm. The first change consists of the limitations of grouping to a source minutiae (in the
adapted scenario as a source point). It has a minimum and a maximum number of matches allowed,
limiting expansion to avoid minutiae conglomerations in a small area (ignoring low significant
minutiae). These limitations were removed in the adaptation to elevate the flexibility in cases of
few key points. The second change consists in the angular and distance tolerance variation for each
projection, providing a better suitability for the projections’ diversity. The last adaptation (which
in this case is not a modification) is the final score confection, obtained by the sum of matches
(score) of each projection.

TBozorth’s method was tested in a frontal projection as well, simulating the process of FCM in
a frontal projection (z plane), to provide a "two-dimensional" result for the proposed resolutions.

Equally to FCM pipeline, Bozorth’s pipeline ends in the acquisition of the scores, which in this
case define the identity of the input subject for the higher score obtained. For terms of validation,
a minimum score is also set to define if the input subject should be treated as an unknown identity
or random object, discarding the input. A minimum bound can be set for each of the projections
to avoid a single plane similarity as well.

The ending of the matching process in both pipelines results once again in a common process.
In this case, is the validation of the algorithm, necessary to observe the capability of these proposed
methods, and the effects of parameterization for both cases.

4.4 Validation

The Validation process consists in verifying the capability of the proposed method through a
statistical metric, establishing test scenarios that allow the count of hits and misses in subject
classification. An important topic to be discussed for classification is the similarity match, which
was in both pipelines described as a matter of score comparison. The statistical metric chosen is
an F-Measure [196] approach, which calculates the optimal parameters through an Equal Error
Rate (EER) analysis to provide a biometric evaluation [201].

4.4.1 Similarity Matching

In this case, the focus is to solve a face verification problem using a Similarity Matching schema
presented by [2]. It can be formally defined as: Given an input vector of curvature indexes features
Cv extracted from the 3D face data and an alleged identity I, determine if (I, Cv) belongs to the
class f1 or f2, where f1 indicates that the alleged identity is true and f2 that it’s false. Cv is
compared with CI , as the vector of biometric features of the individual I, to determine its class.
Thus

(I, Cv) ∈

f1, if S(Cv, CI) ≥ t

f2, otherwise
(4.10)
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where S is a function that measures the similarity score between the vectors Cv and CI ,
and t is the predefined threshold. S(Cv, CI) is called a similarity matching score between the
biometric features of the individual and the alleged identity. The identification problem can be
formally defined as: given as entry a vector of features Cv, determine if the identity Ik, where
k ∈ {1, 2, ..., N,N + 1}. Here I1, I2, ..., IN are the identities already in the system, and IN+1

indicates the rejected case, where no identity is compatible with the users. Thus

Cv ∈

Ik, if max
k
{S(Cv, CIk)} ≥ t, k = 1, 2, ..., N

IN+1, otherwise
(4.11)

where CIk is the vector of biometric features corresponding to the identity Ik, and t is a
predefined threshold.

In both pipelines presented, the feature vectors are reduced to a matching score. The determi-
nation of the subjects, identity and rejection, through threshold permits to resume the validation
through the F-Measure metric.

4.4.2 F-Measure

The F-Measure consists of the evaluation metrics disposed to measure a method’s quality based
on the hits and misses of the classification [196]. The members of the database are known due to
the nomenclature of the subject’s data files, which contains the numerical index assigned to each
subject.

The F-Measure elements rely on the concepts of truth and falsity along with positivity and
negativity, guaranteeing two classes of hits and misses. This hits and misses criteria establish the
following cases:

• True Positive (TP) - The input subject is not rejected, and the similarity matching returns
the right identity;

• False Positive (FP) - The input subject is not rejected, and the similarity matching returns
the wrong identity;

• True Negative (TN) - The input subject is rejected, and the subject does not belong to the
database;

• False Negative (FN) - The input subject is rejected, and the subject belongs to the database.

The validation process in both pipelines is represented by a brute force checking of identity
towards all the subjects present in the database. However, since a biometric system needs to
present a rejection state, 30% of the subjects were randomly selected to be labeled as an unknown
identity, forcing the negative state of the evaluation. This validation demands a repetition process
due to the randomness of the subjects’ state, which led to a fixed setting group in the EER phase
to provide equal conditions between the algorithms appraisal and parameter checking.
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The F-Measure calculation relies on two principles of this statistical analysis, which are Pre-
cision and Recall. The Precision is represented by Equation 4.12 expressing the fraction of the
positive cases, representing the select elements provided with a classification. The Recall is rep-
resented by Equation 4.13 expressing the relevant elements rejected. The F-Measure is calculated
by Equation 4.14 that obtains the ration of two times the product of the Precision and the Recall
and the sum of these properties.

Precision =
TP

TP + FP
(4.12)

Recall =
TP

TP + FN
(4.13)

F-Measure = 2 ∗ Precision ∗Recall
Precision+Recall

(4.14)

The Equal Error Rate stipulates the optimal operation parameters that minimize the two types
of error (misses) determined by the classifier. The functions that demonstrate the progression of
these misses are the False Acceptance Rate (FAR) and the False Rejection Rate (FRR), which
are both respectively expressed by Equations 4.15 and 4.16. The EER is the point in which both
functions present the same value (Equation 4.17), or in a visual term, it is represented by the
crossing point of the EER curved defined by the plot of both the False Acceptance Rate (FAR)
and the False Rejection Rate (FRR) in a single graph.

FAR =
FP

n
(4.15)

FRR =
FN

n
(4.16)

EER = FAR ‖ FRR, if FAR = FRR (4.17)

where n refers to the number of recognition attempts.
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Chapter 5

Results

This chapter is responsible for explaining the testing scenarios built and the validation result
towards each of these scenarios. Each scenario provides constraints related to the data distribution
and selection, allowing to obtain a perception about the application performance capability to the
presented data set and the viability in a real general scenario.

In terms of parameters, the results of validation clarify the behavior of the algorithms against
the variation of their control variables, setting a dynamic environment to determine the best point
of operation and expose the best performance in a specific scenario. The parameters tested follows
the order of appearance in the algorithm’s flowchart, and whenever the optimal value of a parameter
is defined that value is set as constant to acquire the optimal value of following parameters.

The result is mostly presented in the form of the Equal Error Rate (ERR) that provides
a robust and valid biometric evaluation, and the F-Score of the optimal point extracted from
EER to grant a statistical measurement of the performance [28]. As discussed in the work of Jain
[28], biometric systems don’t necessarily present a machine learning classification method, thus the
determination of the optimal parameters’ values in a data set is acquired through the application of
the Equal Error Rate (EER). The presented methodology doesn’t contain any training of classifiers
for validation.

The main scenario consists of a frontal face position identification, performing a vast combi-
nation of the pipeline possibilities to determine the best solution and a comparison between the
algorithms and parameters. This scenario is divided into subsections in a few cases to determine
one at a time, the optimal settings. The last scenario is applied only to the FCM and Bozorth 3D
algorithm, checking the ability to deal with lesser orientation changes.

The result of the provided algorithms is also compared with other approaches of 3D facial
recognition that were related to the database (either cited or partially used by the proposed work)
to provide a comparative measurement.
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5.1 Settings and Materials

The programming was focused on structures to deal with image processing and point cloud
manipulation, and to take advantage of already implemented tools. The following libraries were
used:

• Point Cloud Library (PCL)

• OpenCV

being the OpenCV mainly applied to handle the image processing (e.g. the face detection,
the FMC grayscale conversion, and pixel value count), and the PCL provided the instrumental
necessary for building and manipulation of the point cloud operations.

5.1.1 Database

Despite the previous explanation of the database in Chapter 4, the database is one crucial
element to the following scenarios, worth mentioning again. The database consists of the VAP
RGB-D Face Database by [197], which contain a total of 31 subjects in 13 different head orientation
low-resolution clouds, obtained after reconstruction (holes and gap treatment) and smoothing
(spikes removal). Not all the orientations were used in the following scenarios. The selection of
the database focused in low resolution devices outputs of facial data that could be transformed
or translated to point cloud data, restricting the number of available databases that fulfilled this
characteristic, besides the approval of the database’s owner for such application.

5.2 Test Scenarios

This section is about the test scenarios developed, exposing the results of each algorithm to a
specific constraint level. The main objective of these scenarios is to determine the capability and
viability of these algorithms to be applied in a similar real-life scenario and define the impact of
obstacles to their performance.

The first Scenario presents a frontal face constraint, in which the biometric evaluation is per-
formed, applying the EER to determine the best point of operation of the determined parameters,
followed by an F-Measure observation towards this optimal environment.

The second Scenario presents the same constraint, in which the accuracy evaluation is per-
formed to obtain a comparative metric towards other developed approached towards the same
topic of three-dimensional facial recognition.

The Third Scenario applies a scale constraint towards the methods, to observe if a variation
in scale to the point cloud (the number of points remains the same, preserving density) brings
noticeable variation to the performance.
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The Fourth and last scenario applies a lesser orientation variation, adding four orientation and
its respective point clouds to the gallery, verifying the performance in the optimal point obtained
through EER.

5.2.1 First Scenario - Frontal Biometric Evaluation

In this scenario, each subject - in a recognition (classification application) system - can be
treated as a class. The used method to provide a possible identification (intra-personal score
minimization) is analog to a classifier described in Chapter 4. The Equal Error Rate (EER )[202]
can be defined as an objective, threshold-independent measure of the classifier’s performance for
statistical pattern recognition, which is used to evaluate this classifier and commonly used to
evaluate biometric systems.

The rejection criterion established to the ERR was based on the score obtained in each pipeline
method. The first criterion defined is the maximum threshold, avoiding false recognition from un-
known subjects, and refusing badly acquired sensor outputs. The second criterion is characterized
by a threshold interval limitation between the two best enroll matches, if they do not belong to
the same subject (since each subject has three images samples), allowing the system to presume
doubt between two subjects, and possibly reject the input.

During this test scenario, a random group of subjects was selected to establish a rejection base
to allow the biometrics evaluation, due to the necessity of refusing unknown subjects or non-facial
inputs, guaranteeing the negative condition concepts of the F-Measure (true and false negatives).
This group was fixed during all the different cases in each scenario to compare the algorithms
under the same circumstances, including the data distribution.

These scenarios implement the identification issue of the biometrics, in which an input subject
is compared one-by-one with all the known subjects of the gallery. The one-to-all comparison,
diverging from the verification issue, where there is usually an identity claim, and their comparison
is one-to-one. So to process all the scores and classify each input, a brute force comparison is made
towards every subject in the gallery database, traversing through the pipeline repeatedly.

5.2.1.1 FCM Biometric Evaluation

To evaluate and minimize the errors of the proposed methodology, the most influential variables
were selected (radius, bins). Then EER was applied to each one of these variables, defining the
optimal value for them. The parameters are fixed in the optimal value once defined, and they are
tested in the sequential order of appearance in the pipeline.

The radius, responsible for the vicinity description of a point and, consequently, the curvature
intensity was analyzed in step intervals of 5, generating different curvature maps and score for each
radius value from minimization function. In Figure 5.1 it is possible to visualize the rates values
of false acceptance and false rejection obtained for each radius values, obtaining an interception at
the radius of 26.67, resulting in an ERR of 3, 58% for acceptance and rejection. The interception
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is calculated by approaching the FRR and FAR to lines and equal the obtained expressions to find
the interception radius and the value of FAR and FRR at that point.

Figure 5.1: Equal Error Rate of Vicinity Radius. The blue curve depicts the False Acceptance Rate
(FAR), representing the ratio between false positives and total comparison numbers. The orange
curve depicts the False Rejection Rate (FRR), representing the ratio between false negatives and
total comparison numbers. The equal error occurs in the intersection point of the curves between
the 25 and 30 radius values.

The behavior observed in Figure 5.1 is expected when it comes to the radius progression.
As the radius presents a low value, the curvature values are almost randomly scattered due to
the resolution, which causes mass confusion without many discrepancies to be threshold limited,
resulting in false positives. As the radius increases massively, the neighborhood established involves
a lot of features that approach the surface descriptions to a whole face, which brings the similarity
between FCMs closer. It leads to mass rejection due to threshold limitations.

Once the radius is the most independent and the first required variable to be defined in the
flowchart of the proposed methodology (Figure 4.1), all remaining variables will use this optimal
radius value fixed as a reference to define their optimal values from the EER method.

The subsequently analyzed variable is the number of bins of the intensity histograms obtained
from the curvature maps. The ERR was applied with the same previously criterion, fixing the
optimal radius value obtained during this analysis, changing only the number of bins used to
represent the histogram resulting in the chart displayed in Figure 5.2.

Although it is expected to obtain a better classifier result using a higher number of bins repre-
sentation (and consequently intensity distribution), that doesn’t guarantee the best discriminating
value among subjects. In Figure 5.2, values from 8 up to 16 bins achieved an error of 2, 5%. Still,
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Figure 5.2: Equal Error Rate of the number of bins. The blue curve illustrates the False Acceptance
Rate (FAR) and the orange curve illustrates the False Rejection Rate (FRR). The equal error occurs
in the intersection point between 8 and 16 bins.

the number of bins is restricted to values that represent a power of 2 (to guarantee the equal
numerical distribution of the intensity values [ranged from 0 to 255]) and located in the exact
average of 8 and 16, both of these values are optimal for the number of bins in this application.
The use of values greater than 16 bins provided a higher disparity between the images of the
same subject, possibly due to the information loss (caused by mainly by filtering process) and the
occlusions filling estimation done by [197] preprocessing, which causes a higher rejection rate and
consequently false rejection as well.

In both cases, the division of the FCM was set in a fixed size of 3x3, because the n-region
division did not provide the required pattern of FFR and FAR for the biometric analysis.

5.2.1.2 Bozorth’s Algorithm - Biometric Evaluation

Bozorth’s Pipeline presents the same approach for biometric evaluation as described by the
FCM Pipeline. Still, there is some minimal variation related to the parameter composition and the
different structural combinations that the feature organization may assume. Bozorth’s algorithm
presents a mix of possible features due to the feature extractor that offers the choices of Uniform
Sampling and Intrinsic Shape From Signature. The topology of the web has three representations,
the Top-Left, Nearest Neighbor, and Bozorth Composition (2D and 3D), producing a considerable
number of setups to determine the optimal operation point. Each of these cases is based on an
extrinsic parameter that will be discussed in each specific case.
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Each of the combinations allowed by Bozorth’s Pipeline will be treated separately in items of
this subsection, comparing and discussing their results by the end. The first approaches will be
towards the 2D applications, further covering the 3D composition.

5.2.1.3 Uniform Sampling - Top Left Topology

The Uniform Sampling utilized was implemented by the PCL library, receiving as an input
parameter a search radius that acquires the average number of points. It determines the number
of leaves to build a Kd-Tree and determine the volume of each grid in the voxel (thus entitled Leaf
Radius). The higher the volume of the grids, the smaller will be the number of key points.

Figure 5.3: EER of the Uniform Sampling with a Top-Left topology. The equal error occurs in the
intersection point between the leaf radius of values 10 and 11.

Due to the behavior of the uniform sampling, the FAR and FRR should be inverted, because a
low-value radius will provoke a high number of key points that result in high rejection. In contrast,
a high-value radius will result in a small number of key points resulting in mass confusion. Figure
5.3 shows the EER obtained for the proposed configuration, with a leaf radius step increase of 1
unit, the intersection point is found in the leaf radius equals to 10, 17 presenting an error of 18, 84%

for false acceptance and rejection. The crossing point is calculated equally to the FCM procedure.

Compared to the FCM, the uniform sampling with a top-left topology showed lower perfor-
mance and capability to deal with the recognition issue. This leads to the next configuration of
Bozorth’s pipeline, composed by the uniform sampling and the nearest neighbor topology.

5.2.1.4 Uniform Sampling - Nearest Neighbor Topology

Continuing with the Uniform Sampling feature extractor, the following validation is also focused
on the leaf radius to determine the voxel grid division.
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Figure 5.4: EER of the Uniform Sampling with a Nearest Neighbor topology. The equal error
occurs in the intersection point in the value 12 of leaf radius.

Figure 5.4 presents the EER of the Uniform Sampling and the nearest neighbor topology, with
FRR and FAR curves similar to the ones displayed in the Top-Left topology (Figure 5.3). Still,
the overall performance was better, containing an intersection point in the exact value of 12 for
the leaf radius, reaching an error of 15, 1%. In this topology, there was a difference of 3, 74% in the
equal error, presenting a better performance in terms of biometrics, but still, a worse performance
than the one noticed in the FCM scenarios.

The last composition involving the Uniform Sampling as a feature extractor consists of the
combination with the Bozorth composition topology, which is the only one multi-linked based
web.

5.2.1.5 Uniform Sampling - Bozorth Composition

Finishing the Uniform Sampling combinations, there are both combinations of the Bozorth
Composition, which can be applied in a 2D manner (treating only the xy plane projecting the z co-
ordinate) and in a 3D way. The Bozorth Composition varies from both of the previous combinations
due to the multi-linked web, permitting a higher score range, and possibly a more discriminating
scenario. The 2D approach is introduced first in this subsection.

The 2D approach of Bozorth composition produces the results exhibited in Figure 5.5. The
multi-linked web outperformed the single-linked webs presenting an equal error rate of 12, 9%

when the leaf radius is equal to 12. The presence of more links between the points (permitting the
computation of a higher amount of matches) has provided a better discriminating environment,
which led to a reduction of the errors (false positive and negative). Despite this error reduction,
the two-dimensional Bozorth composition still unperformed the FCM algorithm, with a difference
of about 10% in the optimal operation points.
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Figure 5.5: EER of the Uniform Sampling with a Bozorth Composition (2D) topology. The equal
error occurs in the intersection point of leaf radius equal 12.

The main problem the Uniform Sampling might generate is the absence of discriminating points,
extracting information that does not represent salient facial locations. Due to this discrepancy of
performance towards the previously tested pipeline, the three-dimensional Bozorth composition
was skipped for this feature extraction, being later evaluated in the Intrinsic Shape Signatures
feature extractor configuration, that focuses on the structural environment of the cloud’s point to
obtain key points rich in local geometrical components, that may lead to better performance in
terms of biometrics.

5.2.1.6 Intrinsic Shape Signatures - Top Left Topology

The PCL implementation of the Intrinsic Shape Signatures (ISS) requests a salient radius to
determine the covariance matrix, using the eigenvectors as base for pruning points that cannot
define a repeatable Local Reference Frame (LRF) and define the salience module based on the
eigenvalues, finished by a non-maxima suppression as stated by [48]. The biometric evaluation is
analyzed towards the salient radius, responsible for the selection of the key points that contain
significant variations in each principal direction, possibly describing a fiducial facial point.

The ISS main parameter consists of the salient radius, which causes variation in the key points
selection and number of key points retrieval, which tends to rise along with the radius.

The combination of the ISS feature extractor and the top left topology provided the EER result
displayed in Figure 5.6. The resulting chart shows the same behavior previously noticed in the
FCM, where the FAR starts at a high level and decays along with the parameter increase. In
contrast, the FRR begins at a low level and increases along with the parameter expansion, inverse
to the Uniform Sampling behavior. The Salient Radius is increased in a step of 0, 2, providing the
optimal point of radius equals to 4, 8 with an error of 9, 7% in this operation point.
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Figure 5.6: EER of the Intrinsic Shape Signatures with a Top Left topology. The equal error
occurs in the intersection point of salient radius equal 4, 8.

The outcome of this evaluation outperformed all the compositions tested of the Uniform Sam-
pling, endorsing the argument that the Uniform Sampling operating in a distributed manner (and
not on an important key point selection) does not provide a viable contribution to this recognition
scenario.

The following configuration related to the single-linked web for the ISS feature extractor consists
of the application of the Nearest Neighbor topology.

5.2.1.7 Intrinsic Shape Signatures - Nearest Neighbor Topology

Resuming the evaluation of the whole Bozorth pipeline, the following assessment consists of
the web of points linked in the nearest neighbor topology.

This configuration followed the same standards in terms of the radius increasing step of the
previous topology, generating the results of Figure 5.7. The optimal point reported occurs in the
intersection point of radius equals to 5, 5 that leads to an error of 5, 8%. Regardless of the feature
extractor, the nearest neighbor topology outperformed the top left topology (considering the same
feature extractor applied) is these scenarios, turning the nearest neighbor the best option among
the single-linked web topologies.

The following topology consists of the multi-linked Bozorth composition, either applied in a
two and three-dimensional structure.
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Figure 5.7: EER of the Intrinsic Shape Signatures with a Nearest Neighbor topology. The equal
error occurs in the intersection point between the salient radius of values 5, 4 and 5, 6.

5.2.1.8 Intrinsic Shape Signatures - Bozorth Composition (2D)

This initial analysis of the Bozorth Composition using the Intrinsic Shape Signatures as a
feature extractor explores the two-dimensional approach defined in the pipeline.

Figure 5.8: EER of the Intrinsic Shape Signatures with Bozorth Composition (2D). The equal
error occurs in the intersection point between the leaf radius of values 4, 8 and 5.

The Equal Error Rate analysis of the Bozorth Composition (2D) is displayed in Figure 5.8.
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In Figure 5.8 the stated intersection point occurs when the radius value is 4, 9 stating an equal
error of 4, 85%. This analysis provided the best performance about the Bozorth’s pipeline settings
tested to this point. Compared to the results stated in the FCM, the performance did not reach
the same level of operation error. However, the discrepancy towards the FCM result has dropped
compared to the Uniform Sampling analysis, reaching an error discrepancy of 2, 35%, closing in
the FCM’s pipeline performance.

During this assessment of Bozorth’s pipeline, the parameters regarding Bozorth’s algorithm
remained unchanged to its original application, which could not be suitable for an application
with different standards. To sketch a more appropriate algorithm specifically to the data type and
arrangement and the recognition issue itself, the biometric evaluation is also measured against the
main effect parameter noted in the matching process, which is the angular threshold, redefining
the value that defines the angular difference tolerance between two pairs comparison, as stated in
Chapter 4.

The angular threshold (TXS) consists of the squared value of the max angle discrepancy allowed
(to include either positive and negative variations) between the angles of two pairs being compared,
discarding the matching possibility if any of the angular components overpass the value.

Figure 5.9: EER of the Instrinsic Shape Signatures with Bozorth Composition (2D) and parameters
redefinition. The equal error occurs in the intersection point where the angular tolerance presents
values between 15 and 16 degrees.

The EER showed in Figure 5.9 is the result of the combination of the optimal point of Figure
5.8 and the variation of the angular parameter

√
TXS. This parameter redefinition guaranteed an

error reduction to the value of 2, 71% in the intersection point of 15, 5, diminishing the discrepancy
towards the FCM error to the value of 0, 21%, which describes a similar performance of both
pipelines.
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This configuration exploits only the Z coordinate direction plane projection (considering only
the variations in the X and Y coordinates direction), making the subjects’ description in a single
view projection, this way, performing only in a two-dimensional manner (thus entitled 2D). The
projection in the other two different coordinate planes combined with this analyzed projection
creates a new three-dimensional complete description of the subjects’, which consists of the Bozorth
Composition 3D, finishing the last possible setting provided by Bozorth’s pipeline.

5.2.1.9 Intrinsic Shape Signatuures - Bozorth Composition (3D)

The evaluation of the three-dimensional version of Bozorth Composition consists of joining the
result obtained from the already computed two-dimensional settings with the other two coordinate
planes projection results, applying the equal error rate to define the optimal parameters of each
coordinate plane. The parametrization of the X and Y plane projections also rely on their extrinsic
angular threshold (TXS).

(a) Y Plane Projection (b) X Plane Projection

Figure 5.10: EER of the Bozorth Composition (3D) for the parameter redefinition of the remaining
coordinate plane projections (Y and X).

The application of the EER in all the coordinate plane projections of the Bozorth 3D provided
the optimal angular threshold for each of the projections. Figure 5.10 delivers the intersection
points of both plane Y and X projections, presenting an error of 4, 1% in the optimal point of
13, 86 and 2, 82% at the optimal point of 14, 62, respectively.

The conclusion of the parameters redefinition finishes the setup of the three-dimensional Bo-
zorth composition to exploit the best performance in the salient radius variation of the feature
extractor ISS.

The application of the EER on the coordinate plane projections did not provide any cases
without errors. However, the behavior noted when building the EER analysis for each case is
that the errors occurred in different indexes in the force brute comparison, meaning that the
errors which happened in each of the projections are different, presenting extrinsic variant subjects
recognition difficulty in each projections. This analysis implies that the sums of the scores of all
the coordinates projections may overcome their singular errors. The result of such investigation is
displayed in Figure 5.11 in which appears two cases of intersection point (radius equals 5, 2 and 5, 4)
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Figure 5.11: EER of the Intrinsic Shape Signatures with Bozorth Composition (3D) after
parametrization. The equal error occurs along the interval of 5, 2 and 5, 4 presenting a perfect
score with null error.

with a perfect matching score, meaning there are no errors for this scenario in such configuration,
beating the performance observed in the FCM pipeline application and thus presenting the best
performance among the ones presented.

Since the optimal points of each configuration are acquired with the EER biometric evalu-
ation, the average F-Measure is computed through these optimal points to determine the final
performance score of each case.

5.2.1.10 F-Measure

The F-Measure consists of a statistical analysis of binary classification, providing a performance
score based on the classifier precision and recall capabilities. In this evaluation, the F-Measure
is applied to the optimal points obtained from the EER analysis. In terms of Bozorth’s pipeline,
the F-Measure is applied only to the ISS feature extractor configurations since all the Uniform
Sampling configurations performance are outperformed in this current scenario.

The error value obtained from the EER simulates an approximation of the classification per-
formance, since a lower error indicates that a lower number of false statements of the F-Measure
are occurring, implying that a higher precision and recall are generated. This effect is noticed by
the F-Measures calculated in Figure 5.12, in which the performance of the proposed methods is
presenting a similar outcome of the comparison through the EER values. Due to the randomness
of the select set to test the rejection state for biometric evaluation, the F-Measure is computed for

74



Figure 5.12: F-Measure of the best performers obtained in 5 measurements. The last-placed
algorithm (in orange) consists in the Bozorth pipeline using ISS and Nearest Neighbor topology,
followed by the ISS with the 2D Bozorth Composition (in yellow) as third best, along with the
FCM pipeline (in blue), and ending with the best performance algorithm composed by the ISS and
the 3D Bozorth Composition (in green).

five different sets, randomly generated, to verify that the classifier provides a stable classification
score, maintaining the same behavior around an expected value related to the error calculated in
the validation. This analysis shows that the three-dimensional Bozorth composition, along with the
ISS feature extractor, guarantees the best performance among the proposed methods, followed by
the FCM and the two-dimensional Bozorth composition + ISS presenting a similar overall score,
in sequence with the ISS feature extractor in a nearest neighbor topology with a considerable
score discrepancy from the previous configurations. The other Bozorth pipelines settings are not
included in this analysis due to the lower performance shown in the biometrics evaluation.

The computation of the optimal operation points for each of the classifiers, followed by the
calculation of the F-Measure, concludes the biometrics validation and this first scenario of testing.
In this scenario, multiple classification settings were tested, demonstrating that three classifiers
generate high-interest performance, and a perfect score for this application, indicating that the
proposed methods are significant for a similar real scenario application.

5.2.2 Second Scenario - Accuracy

The following scenario provides a comparison between published methods and the proposed
methodology, projected to provide a comparative validation with related works.

To obtain a real performance evaluation, this scenario was developed to compare the perfor-
mance of the proposed methodology with other state-of-the-art techniques related to the used data
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type and the face recognition task. This evaluation is focused on the Rank-1 Accuracy [203] of the
facial recognition process, presented as the most usual evaluation method found in the techniques
used in the comparison.

The Rank-1 Accuracy is obtained by a ratio of the relevant samples from the recognition process
(true positives and true negatives) and the total subject’s enrollments in the database. From
extensive tests used to define parameters of the proposed methodology, presented in a previous
test scenario, the best recognition results achieved an accuracy of 100% followed by 98.92%. These
results are compared with the best performance of others state-of-the-art techniques as described
in Table 5.1.

Table 5.1: The best Rank 1 Accuracy of the face recognition algorithms related to the VAP RGB-D
database. (The external results are mentioned in the cited publications).

Data Type Method Rank 1 - Accuracy (%)
RGB Images + Depth Map Goswami et al.[22] 80.6
RGB Images + Depth Image Hu et al. [192] 90.0
RGB Images + Depth Image Bormann et al. [193] 96.0
RGB Images + Depth Map Zhou et al. [21] 95.9
Depth Map Saleh and Edirisinghe [194] 96.67
Point Cloud 2D Bozorth Composition Method 97.85
RGB Images + Depth Map Chowdhury et al. [35] 98.71
Point Cloud FCM Method 98.92
Point Cloud 3D Bozorth Composition Method 100.00

For a fair comparison, the selected techniques were obtained related to the database presenting
the identification task in facial recognition as well, based on different techniques. All presented
methods in Table 5.1 are either implemented methods in this work or related proposed methods
by other authors previously mentioned in Chapter 3.

The proposed methodology implemented is the unique approach from Table 5.1 that handles
point clouds as data type, using exclusively the geometric information provided by the depth and
pixel components.

5.2.3 Third Scenario - Scale Sensitivity

The scale is considered a relevant constraint related to biometrics and image processing. The
variation on the scale can interfere with feature extraction or data correlation, probably causing
classification errors. This scenario consists on the application of a scale transformation in a subset
of the data to notice the interference of such transformation in the algorithm performance. This
scenario is applied to the best performance configuration from each presented pipeline.

The scenario environment consists in the application of a random scale factor in the numeric
interval [0.5, 0.8] to a random subset composed by 30% of the database (including the rejection
subset), followed by an F-Measure computation in the optimal point of each algorithm, equivalent
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to the first scenario. The concept of this scenario is to analyze the variation of the classification
score, estimating the interference caused by the scale transform. Both algorithms are compared
with the same resultant random subsets to guarantee a fair comparison.

Figure 5.13: F-Measure of the algorithms in the optimal operation point with scale variation along
the data set. The FCM performance is represented by the blue line and squared dots, while the
Bozorth Composition 3D is represented by the orange line with diamond dots.

According to Figure 5.13, the FCM algorithm suffered a higher interference to scale transform
compared to the Bozorth Composition 3D. This result may imply that the curvature index of the
facial surface present a higher sensitivity to the scale factor than the normal vector estimation since
the FCM algorithm is curvature-based and Bozorth composition is normal vector-based, or either
the classifier applied in the FCM pipeline suffers a higher interference than the Bozorth matching
algorithm since the matching of Bozorth’s algorithm is highly dependent of the angular tolerance.
A scale transformation preserves these angular components, as long as the normal vector presents
the same orientation or negligible variance.

This scenario permits us to conclude that the FCM pipeline has a higher sensitivity to a scale
factor rather than Bozorth’s pipeline for this application. Thus Bozorth’s pipeline is more scale-
invariant (despite a drop in performance being noticed). This scenario also presents evidence that
the curvature index has a higher sensitivity than the normal vector estimation.

5.2.4 Fourth Scenario - Orientation Sensitivity

This last scenario has the objective of evaluating the interference that facial orientation varia-
tion generates in the proposed methods, determining if these methods are invariant to orientation
or not. To provide these results, a biometric evaluation is performed once again to determine the
optimal parameters of each algorithm, since the data set presents fewer constraints and includes
new inputs for each subject. The scenario consists of adding the four lesser orientation variation
(upwards, downwards, left and right) towards the frontal position contained in the database to
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a new data set and analyzing if it occurs changes to the performance. It is valid to remember
that since the sensor capturing position was fixed, lesser occlusions occur in orientation variation,
including another factor that may degrade the performance of the algorithms.

5.2.4.1 FCM Pipeline

The same procedures realized in the first scenario are repeated to acquire the optimal operation
point to the new data set content.

Figure 5.14: EER of the FCM algorithm for the vicinity radius with orientation variation among
the data set.

The new optimal operation point for the FCM algorithm consists in the intersection point
displayed in Figure 5.14, in which the radius value is equal 32, 31 generating an equal error of 9, 15%.
This data acquisition assumed the previous bins optimal value, which coincidentally matched the
previous evaluation result, obtaining a higher error for the previous and next possible bins values.
It is noted in this EER that the performance of the FCM has lowered with the orientation variation
among the data set.

5.2.4.2 Bozorth Pipeline (Bozorth Composition 3D)

Similarly to the FCM Pipeline evaluation, the procedure realized are the same as the first
scenario’s, aiming to acquire the optimal operation point of the salient radius for the newly formed
data set.

The intersection point and new optimal operation salient radius shown in Figure 5.15 presents
the value of 5, 2 generating an equal error of 3, 5%. The same assumption is made towards the
angular thresholds, noticing minor variations in the angular tolerance values that are discarded later
in the algorithm due to the threshold value handling as an integer (truncating the decimal part).
The result of this EER analysis indicates that the Bozorth Composition 3D presents sensitivity to
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Figure 5.15: EER of the Bozorth Composition 3D for the salient radius with orientation variation
among the data set.

orientation variation since there is no perfect classification result, as noted in the frontal orientation
biometrics evaluation.

In both cases, the orientation variation application resulted in the deterioration of the perfor-
mance, implying that the algorithms contain sensitivity to the orientation.

Figure 5.16: F-Measure of the FCM and Bozorth Composition 3D algorithms in an orientation
variation scenario. The blue line with squared dots represents the FCM performance, while the
orange line with diamong dots represents the Bozorth Composition 3D.

Analyzing the F-Measure values computed for both algorithms, a sensitivity to orientation
variation is noticed, since the values presented in 5.16 are lower than the previous scenarios, and
consequently containing a loss in performance. The performance variation seen in the FCM algo-
rithm is higher, displaying a maximum score variation of 0, 07. At the same time, the performance
of the Bozorth Composition 3D presented a maximum score variation of 0, 03, thus concluding
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that the FCM sensitivity to orientation is higher.

Despite the loss in performance, Bozorth’s algorithm continues to represent a viable method
for biometrics application, providing an F-Measure score above the 0, 95, guaranteeing a high
probability of proper recognition, while the FCM turns out to be a viable application in frontal
face constrained environments.

5.2.5 Evaluation Conclusions

The conclusion of these scenarios completes the validation process of both pipelines. This
process allowed the measurement of the performance for each pipeline configuration, determining
the optimal operational point in each case and the capability to deal with the facial recognition
issue. Between both pipelines, Bozorth’s approach stated a better performance overall with the 3D
configuration, presenting better results (including a perfect score in the first scenario) and lower
sensitivity to impediments such as scale and orientation. An interesting observation towards the
proposal of two pipelines and their evaluation consists in the difference of feature usage since the
FCM implementation is curvature-based while the Bozorth’s algorithm is normal vector-based.
The evaluation also allowed the comparison of the proposed methodology results with other re-
lated works, grating a comparative measure, and the application viability of the proposal for the
recognition issue.

5.3 Main Difficulties

During the proposed methodology implementation, some difficulties were evidenced related to
the data structure and quality, and the pre-processing steps.

Regarding the pre-processing, an observed difficulty occurred in the automated facial detection
applying the Viola-Jones algorithm. The facial detection failed to deliver a proper result in a few
cases, either returning multiple faces (as displayed in Figure 5.17) or returning an empty result (no
faces were detected). The first case occurrence is solved following the hypothesis that the subject’s
face is centered in the image due to the manner the database was developed, thus acquiring the
closest face to the center of the image as the subject’s face, and the second case is solved by using a
successful detection of the same subject as guide to the subject’s face location in the failed attempt,
although this solution doesn’t work in all scenarios (some orientation available returned no faces
for most subjects, adding an impediment for the whole database usage).

Concerning the database, the precision of the Kinect V1 along with the subject capture distance
(around 2 meters) and the filtering algorithm (spike and noise removal) during the base confection
generated low-resolution clouds, presenting holes and sparse representation in a few face locations,
creating wrong value computations in the covariance matrix formation and, consequently, feature
estimation and extraction.
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Figure 5.17: Multiple faces detected in the methodology pre-processing using the Viola-Jones [43]
face detection algorithm. This image was produced based on a subject image from the database
[197].
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Chapter 6

Conclusions and Further Works

The proposed and developed methodology aimed to perform a 3D face recognition exploring
features extracted from 3D point clouds representing facial data. To solve this task, curvature and
normal vector estimations were applied, transposing this information into colored face curvature
maps (FCMs) or linked point-based webs to verify the identity of an input data for each subject in
the data set using similarity functions or geometrical-based matched scores (Bozorth’s algorithm).

The possible combinations of algorithms were tested in four different scenarios, checking the ca-
pability against frontal faces, scale and pose (orientation) variation, and comparing rank-1 accuracy
against other related-works. Between the two proposed pipelines, Bozorth’s pipeline outperformed
the Face Curvature Map (FCM) pipeline in all proposed scenarios. In the first scenario, the best
Bozorth’s solution granted a case with no errors in classification. In contrast, FCM’s best result
provided an Equal Error Rate (EER) of 2, 5%, which led to an inferior F-Measure score than Bo-
zorth’s solution. In terms of accuracy, Bozorth’s solution stands out with a 100% accuracy rate
case, while FCM’s solution granted the best 98, 92% accuracy rate.

The third and fourth scenarios tested the capabilities of these best performers to face recognition
known drawbacks, scale, and pose (orientation) variation. Once again, the proposed architecture
of Bozorth’s pipeline outperformed the FCM’s pipeline proposition in both scenarios. In terms
of scale sensibility, FCM presented a higher sensitivity to scale, showing an average F-Measure
score of about 0, 91%. At the same time, Bozorth’s variation achieved an average F-Measure
score of about 0, 98%, displaying a better capability of handling scale variation. In terms of
orientation sensibility, the same hierarchy is noticed, with EERs of 9, 15% and 3, 5% for the FCM
and Bozorth’s adaptation, respectively, resulting in F-Measure scores of about 0, 92 and 0, 96 for
FCM and Bozorth’s adaptation, respectively.

Although the data set application not being specifically suitable for face recognition tasks due
to information low-density, it permitted to test the viability of the proposed methodology in low
resolution constrained scenarios, allowing the generalization of the proposed approach for low-
resolution similar-composition data sets. This data set also contains a low number of subjects for
identity classification, creating an uncertainty towards the generalization for bigger data sets. The
testing provided was not performed on other data sets due to availability issues (related to the
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data restriction of translation to low resolution point clouds).

The presented work displayed two main contributions to the 3D facial recognition field of
study. The first contribution consist of a curvature-based facial mapping of point clouds and
a simple histogram descriptor for comparative analysis. The second contribution consists of the
adaptation of a classic biometric algorithm properly developed for fingerprint matching tasks. This
adaptation portrayed a highly efficient algorithm for 3D facial recognition over low resolution point
clouds showing the capability of adapting classic biometric algorithms to solve different biometric
tasks over more complex biometric data.

6.1 Future Perspective

The proposed solutions’ outcome evinces that for similar environment-constrained scenarios, the
methodology could handle a task of face recognition identification with favorable results. However,
enhancements towards the proposed methodology permit a better generalization of the algorithms
and fewer constraints application in exchange for performance.

Enhancements towards pose and expression variation may be proposed to fully explore the
provided data set content, generating a pose and expression invariant system. In terms of feature
structuring, comparison and matching better representation methods or coordinate projections
might be chosen, searching for spatial reduction techniques or invariant discriminating descriptors.
For the FCM pipeline, a better matching algorithm and feature representation (current is intensity
value histogram) should enhance the performance achieved.

One important task to be developed with the FCM algorithm it the expansion of data set or
different data set testing scenarios application, acquiring more data to define the generalization
capability of the algorithm and more evidence towards its drawbacks. A data set creation was one
of the planned steps for this work (using a Struct From Motion approach), however diverse factors
prevented the idea to be implemented.

Finally, to provide a better independent 3D system, a face detection algorithm towards point
cloud data could be developed and integrated into the pre-processing steps, removing the necessity
of intensity-based images for facial region extraction.
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