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0.1 Introduction 1

0.1 Introduction

O objetivo deste trabalho é cobrir, de maneira concisa e pragmática, alguns dos aspéctos gerais do uso de
geometrias não comutativas no estudo das teorias em espaços AdS. A não comutatividade surge como uma
forma natural de acoplar, de maneira intrı́nseca, as relações de incerteza na estrutura fundamental da teoria,
visando evitar alguns problemas, quando queremos, por exemplo, considerar efeitos relativı́sticos nestes
espaços. Além disso, tentaremos verificar a validade da correspondência AdS/CFT para o caso mais geral,
aplica-la no contexto de alguns toy models visando mapear as propriedades que podem ser recuperadas
no limite comutativo da teoria. Seguirei como fonte principal o artigo [1] e buscarei generalizar alguns
aspectos para formular uma análise aplicável à correspondência AdSd+1/CFTd e suas respectivas correções
quânticas devido a não comutatividade, incorporando os efeitos quase-clássicos da gravitação quântica.

As justificativas para este trabalho remontam à época de Heisenberg. Este acreditava que, por meio
da geometria não comutativa, era possı́vel remover algumas quantidades infinitas antes da aplicação da
renormalização. Poucos pesquisadores compraram esta ideia, pois a grande maioria dos cientistas da época
percebeu que a renormalização, de fato, funcionava e conseguia render ótimos resultados. Isto mudou na
década de 90 quando os matemáticos conseguiram estruturar uma teoria formal para aneis e algebras não
comutativas e algumas possı́veis interpretações de efeitos provenientes da gravitação quântica poderiam
ser mais facilmente acoplados à teoria por meio de relações de comutação oriundas de geometrias não
comutativas. Na ausência de uma teoria completa de gravitação quântica, o caso não comutativo é o regime
quase-clássico de qualquer teoria quântica de campos. (Veja [22])

Para introduzir de forma única a não comutatividade no espaço AdS2 podemos impor que ele preserve
as isometrias do grupo SO(2,1). Este objetivo é alcançado quando construı́mos os vetores de Killing do
AdS2 no espaço não comutativo. Uma forma natural de verificar a validade dessa formulação seria analisar
a aplicação do ncAdS para as partı́culas livres. Começamos por quantizar a variedade de Poisson que define
o AdS2 comutativo por promover as variáveis de imersão X µ , que definem a métrica nesta variedade, à
operadores Hermitianos:

X̂ µ X̂µ =−`2
1 (0.1)

Onde `2 < 0 se associa com o vı́nculo definido no caso comutativo para que esta restrição defina um hiper-
boloide de duas folhas, representado pelos geradores do grupo SU(1,1). Seguindo os procedimentos ha-
bituais, promovemos o parentese de Poisson para comutadores e estes satisfazem as seguintes relações de
comutação:

[X̂ µ , X̂ν ] = iαε
µνρ X̂ρ (0.2)

Ambas relações (0.1) e (0.2) são preservadas pela ação do grupo SO(2,1) que é isomorfo localmente ao
grupo SU(1,1), sendo que estes elementos geram a algebra so(2,1). Os estados do ncAdS2 pertencem as
grupo de recobrimento universal SU(1,1), que geram as séries principais, suplementares e discretas. Como
o nosso interesse é recuperar o AdS comutativo no limite α → 0, utilizaremos apenas a série discreta, pois
esta possui esta propriedade. Os estados podem ser representados como auto-valores do operador r̂ definido
como:

r̂ =
X̂1− X̂2

`
(0.3)

Esses estados nesta representação dependem de polinômios de Laguerre que são representados como os
operadores diferenciais, agindo no espaço de funções L2(R,dx), considere i = 1,2:
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π̃(X̂0) = ŷ

π̃(X̂ i) =− 1
2`

ŷe−x̂ŷ− α2

2`
k(k+1)e−x̂ +(−1)i+1 `

2
ex̂

(0.4)

Sendo x e y as coordenadas canônicas do caso comutativo representadas como operadores que satisfazem as
relações de comutação de Heisenberg. Como estes operadores satisfazem as relações de comutação, estes
podem ser mapeados para seus respectivos sı́mbolos no plano de Moyal-Weyl, que é gerado pelas variaveis
x e y, que comutam entre si. A continuidade no processo se da por definir a fronteira do plano de Moyal-
Weyl que coincida com a fronteira do ncAdS2, no limite comutativo. Por utilizar o produto estrela no espaço
de MW, podemos construir os vetores de Killing que preservam paricialmente as isometrias do caso não
comutativo e com isto estudar quais caracterı́sticas da correspondência AdS/CFT serão preservadas neste
contexto. Um dos resultados demonstrados é que as simetrias conformes são preservadas, até determinada
ordem, na passagem para o caso não comutativo, revelando que as propriedades intrı́secas da geometria local
estão sendo deformadas, porém, mantendo algumas estruturas invariantes durante estas transformações.
Finalmente, verificaremos algumas propriedades como o Limite de Breitenlohner-Freedman para casos
massivos e analisaremos o caso massivo com interação com o objetivo de encontrar uma teoria consistente,
para tal, o cálculo da função de três pontos poderá auxiliar nesta empreitada.

No capı́tulo 1 introduzimos as principais coordenadas utilizadas na imersão do espaço AdS e como
podemos observar suas propriedades analisando alguns exemplos como o caso de uma partı́cula escalar
em um espaço-tempo AdS. Discutimos também as principais caracterı́sticas dos propagadores da teoria e
apresentamos de forma detalhada os passos necessários para a construção dos propagadores e campos. No
capı́tulo 2 fazemos uma breve apresentação da teoria conforme de campos introduzindo o grupo conforme,
campos primários e as funções de correlação. No capı́tulo 3 as principais ideias por trás do princı́pio da
correspondência AdS/CFT são apresentados de forma concisa e revisitamos o caso d = 1 apresentando o
modelo dAFF e sua relação com o grupo SU(1,1).

Apresentamos no capı́tulo 4 as motivações que levam a adoção de modelos não comutativos em teo-
rias quânticas, exploramos a quantização no espaço de fase e as ideias principais que subsidiam a corre-
spondência de Weyl e a definição do produto estrela. Terminamos o capı́tulo construindo as representações
e os vetores de Killing do grupo SU(1,1). O objetivo deste trabalho começa a ser desenvolvido no capı́tulo
5 e é finalizado no capı́tulo 6, onde iniciamos a análise dos modelos AdS/CFT não comutativos nos casos
com e sem massa e adicionamos a interação no capı́tulo 6 quando introduzimos um termo de interação
proporcional a Φ?Φ?Φ na ação, comparando os resultados comutativos com os não comutativos. Devido a
dificuldades técnicas, a comparação dos resultados comutativos e não comutativos se torna demasiadamente
complicada e recorremos a análise do efeito da deformação da quantização nos vetores de Killing da teoria
e isso nos mostra que essas transformações são, de fato, não triviais, gerando um conjunto de vetores de
Killing que carregam as simetrias do espaço comutativo para a teoria não comutativa.

Brası́lia, Agosto 2019 Felipe Rodrigues de Almeida Araújo



Chapter 1

AdS Spacetime

In this chapter we are going to present the main properties of the AdS spacetime. We are following the
presentation given in [2], [15], [17], [25] and [28]. As a first step we will study the most useful embeddings
of the AdS space in a most general spacetime. After this, we discuss the two-dimensional case, since it is
the focus of this work. Taking this example as a starting point, we continue deriving the equations of motion
for the general case and in the next step we apply the separation of variables in order to find a solution to
these equations. As the final part of this chapter we follow the construction given in [12] and [25] to define
the boundary-to-bulk and the boundary-to-boundary propagator.

1.1 The AdS Spacetime

Anti-deSitter spacetime is a non-compact, maximally symmetric spacetime with constant negative curva-
ture. By maximally symetric, we mean that it has the maximal number of symmetries for d+1 dimensions,
from now on, we will call it AdSd+1. The AdSd+1 has 1

2 (d+1)(d+2) symmetries, that is the same number
of the flat spacetime symmetries related to (d + 1) translations, d boosts and 1

2 d(d− 1) rotations. Usually
we study (d +1)-dimensional AdS spaces because the CFT dual of AdSd+1 have d spacetime dimensions.
It’s a solution to Einstein’s equations with negative cosmological constant. There are a variety of coordinate
systems for it and they satisfies the equation of the hyperboloid:

XAXA = X2
0 +X2

d+1−
d

∑
n=1

X2
n = `2 . (1.1)

And it can be embedded in a (d +2)-dimensional space as:

X0 = `
cos(t)
cos(r)

Xd+1 = `
sin(t)
cos(r)

Xn = `
sin(r)
cos(r)

Ω̂n ,

(1.2)

3



4 1 AdS Spacetime

this embedding defines the Minkowskian AdSd+1 which has the following metric

ds2 =
1

cos2
( r
`

) (dt2−dr2− sin2
( r
`

)
dΩ

2
d−1

)
. (1.3)

Here, ` is the length scale, which will be chosen in a convenient way in order to make the measurements of
the energies be in the right scale, that is, unless specified diferently we are taking from now ` = 1, r is the
radial coordinate r ∈ [0, π

2 ), while t ∈ (−∞,∞) and the angular coordinate Ω defines a (d−1)-dimensional
sphere Sd−1. In global coordinates we can imagine AdS as the interior part of a infinitely long cylinder. In
order to see the symmetries of AdS we can represent them directly by:

LAB = XA
∂

∂XB
−XB

∂

∂XA
, (1.4)

which generate the group SO(d,2) that leaves the equation (1.2) invariant. We will refer to this group as the
conformal group because it’s the same isometry group for CFTd . Note that the generator of translations in
the t-direction is easily obtained by:

L(d+1),0 = Xd+1
∂

∂X0
−X0

∂

∂Xd+1
= `

sin(t)
cos(r)

∂

∂X0
− `

cos(t)
cos(r)

∂

∂Xd+1
=

=−∂X0

∂ t
∂

∂X0
− ∂Xd+1

∂ t
∂

∂Xd+1
=− ∂

∂ t
. (1.5)

The other generators are the usual isometries of the sphere Sd−1 that form the group SO(d). One can choose
also another parametrization

X0 =
√
`2 + r2 sin

( t
`

)
Xd+1 =

√
`2 + r2 cos

( t
`

)
Xn = rx̂n , (1.6)

with
r ∈ [0,∞) , t ∈ [0,2π`] , x̂nx̂n = 1 , (1.7)

giving the following metric

(1.8)ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dΩ
2
d−1 .
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1.2 The Poincaré Patch

The Euclidean AdS and the Euclidean conformal group which is SO(d +1,1) can be better studied in this
embedding space:

X2
0 −

d+1

∑
j=1

X2
j = `2 . (1.9)

When we consider the global coordinates, the t term of the metric (1.3) changes the sign and it will just
swap the trigonometric functions for the hyperbolic trigonometric ones in the global mapping (1.2), giving
for τ = it:

X0 = `
cosh(τ)
cos(r)

Xd+1 = `
sinh(τ)
cos(r)

Xn = `
sin(r)
cos(r)

Ω̂ .

(1.10)

This embedding defines the Euclidean AdSd+1. There is a coordinate system that makes the d-dimensional
Poincaré subgroup of the conformal group clear and manifest, we call it Poincaré Patch (PP). The relation
between the Euclidean, Poicaré patch and global coordinates, respectively, is:

X0 =
z2 + xixi + `2

2z
= `

cosh(τ)
cos(r)

Xd+1 =
z2 + xixi− `2

2z
= `

sinh(τ)
cos(r)

Xn =
`

z
xi = `

sin(r)
cos(r)

Ω̂ ,

(1.11)

where x is a d-dimensional space vector, z runs from 0 to ∞ and τ is the global ”time” coordinate, this fix
the signal of X0. The dilatations can be obtained by direct calculation of L0,(d+1):

z(X0,Xd+1,Xi) =
`2

(X0−Xd+1)2

xi(X0,Xd+1,Xi) =
`Xi

(X2
0 −Xd+1)2 ,

(1.12)

with this, one can show that:

L0,(d+1) = (X0−Xd+1)
`2∂z + `Xi∂xi

(X0−Xd+1)2

=
`2

z

(
z2∂z + zxi∂xi

`2

)
= z∂z + xi∂xi .

(1.13)

Note that the dilatation generator acts in the same way L0,(d+1) does, this means that the Hamiltonian will
be associated to the dilatation operator. This operator acts on x, stretching the space, generating the ”time”
evolution.
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The Lorentzian case is the analytic continuation of the (d + 1)-dimensional version of the Lobachevski
space (via Wick rotation). The Euclidean Poincaré Patch covers the entire AdS space, however, in the
Lorentzian case, solving (t,z,xi) in terms of the global coordinates (τ,r,Ωi) we find

t = `
sin(t)

cos(τ)−Ωd sin(r)

z = `
cos(r)

cos(τ)−Ωd sin(r)

x̂i = `
sin(r)Ω̂i

cos(τ)−Ωd sin(r)
,

it shows us that the Lorentzian PP only cover a small region of the AdS spacetime. It’s convenient to switch
the labels, giving:

X0 =
z2 +(xi)

2− t2 + `2

2z
= `

cos(τ)
cos(r)

Xd =
z2 +(xi)

2− t2− `2

2z
= `

sin(τ)
cos(r)

Xi 6=d =
`

z
xi = ` tan(r)Ωi

Xd+1 =
`

z
t = ` tan(r)Ωd .

(1.14)

In this setting the global coordinates makes the sub-group SO(2)× SO(d) of the conformal group clearly
manifest in the embedding of the coordinates and the Poincaré Patch turns out to show us the Poincaré
symmetry of the AdS spacetime. The usual metric for the Poincaré Patch in these coordinates is

ds2 =
1
z2

(
dt2−dz2−

d−1

∑
i=1

dx2
i

)
. (1.15)

1.3 The d=1 Case

In this dissertation we will focus on the AdS2 case and the main reason for this is that after constructing
the causal structure by wrapping the τ-circle S1 and taking the universal covering of the hyperboloid, the
AdS2 exhibts two timelike boundaries that makes the dual CFT live in a disconnected manifold. Another
remarkable fact is that all theories of two dimensional quantum gravity are conformal field theories [32]. To
see this, we begin with the constraint equation for the Euclidean case

`2 = X2
0 −X2

1 −X2
2 , (1.16)

and the metric is

ds2 =
`2

z2 (dz2 +dt2) , (1.17)

with the embedding
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X0 =
z2 + t2 + `2

2z

X1 =
z2 + t2− `2

2z

X2 =
`

z
t .

(1.18)

One can verify (1.16) by direct calculation. Clearly, one can obtain the two boundaries just by taking z→
0. Since the limits for Xi are not the same, we get into two different regions and one should expect to
find different CFT duals for each boundary. One would like to study a single particle on AdS2 quantum
mechanically by naively trying to derive the AdS (written in the coordinates (1.16)) Schrodinger equation
quantising the classical action for a free particle with mass m

S = m
∫

dτ = m
∫

dt
√

gµν Ẋ µ Ẋν =
∫

dt
m

cos(r)

√
1− ṙ2 , (1.19)

with
L =

m
cos(r)

√
1− ṙ2 . (1.20)

Clearly the momentum canonically conjugate to r is

Pr =−
mṙ

cos(r)
√

1− ṙ2
→ ṙ2 =

P2
r

P2
r + m2

cos2(r)

. (1.21)

Using this results one obtains the Hamiltonian

H =

√
P2

r +
m2

cos2(r)
. (1.22)

Proceeding with the with the canonical quantization, we must impose the commutation relation [r,P] = i,
taking h̄ = 1. This can be achieved by taking P =−i∂r acting on the r-basis states. Looking to the equation
(1.22) it’s clear that we should consider the equation for −∂ 2

t ψ(t,r) = H2ψ(t,r), which gives

−∂
2
t ψ(r, t) =

(
m2

cos2(r)
−∂

2
r

)
ψ(r, t) . (1.23)

We will see later that the equation (1.23) is equivalent to the equation obtained via relativistic field theory
for AdSd+1. One also can solve (1.23) and find an answer that depends on hypergeometric functions as will
be shown later.



8 1 AdS Spacetime

1.3.1 AdS (d+1) Action and equations of motion

In this subsection we will use µ for d-dimensional Minkowski space index, A for (d+1)-dimensional AdS
index and i for (d− 1)-dimensional space index. First we start with the Einstein-Hilbert action in vacuum
with cosmological constant Λ, considering all other constants to be equal to 1, we write

S =
1
2

∫
dd+1x

√
−g(R−Λ) , (1.24)

where R is the Ricci scalar, and we are taking the metric in the form corresponding to any of the discussed
coordinates. If one consider that

Λ =− 1
`2 d(d−1) , (1.25)

one can calculate the equations of motion

0 = δS =
1
2

∫
dd+1x

δ

δgµν

(√
−g
[

R+
1
`2 d(d−1)

])
δgµν

=
1
2

∫
dd+1x

√
−gδgµν

(
δ
√
−g

δgµν

[
R√
−g

+
1

`2√−g
d(d−1)

]
+

δR
δgµν

)
,

(1.26)

since the equation above is zero for any variation δgµν , it means that the integrand is zero also and taking
the usual boundary conditions (δgµν vanishes near the boundary) we get

gµν

2

[
R+

1
`2 d(d−1)

]
=

δR
δgµν

= Rµν . (1.27)

One can readly recognize the Einstein equation from the expression above and this means that the space
is an Einstein manifold, i.e. the Ricci tensor is proportional to the metric tensor and the maximal symmetry
of the AdSd+1 space can be verified in the expressions below

Rµν =− d
`2 gµν , Rµνρσ =− 1

`2 (gµρ gνσ −gµσ gνρ) . (1.28)

Considering a scalar field φ(X) on an M = AdSd+1 background, one can write the action

S =−1
2

∫
M

dd+1X
√

g(gAB(∂Aφ)(∂Bφ)+m2
φ

2) , (1.29)

integrating by parts and taking φ(X)|∂M decays exponentially as z→ 0, we obtain

(1.30)S = −1
2

∫
M

dd+1X
√

gφ(X)

(
− 1
√

g
∂A(
√

ggAB
∂B) + m2

)
φ(X) +

+
∫

∂M
dd

σ
A√

γφ∂Aφ .

where γµν is the induced metric on the boundary of AdS, σA is the unit normal vector to the boundary.
Using the Poincaré Patch coordinates and the following metric
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ds2 =
`2

z2 (dz2 +η
µν dxµ dxν) , (1.31)

one can calculate
√

g

√
g =

√
|det(gµν)|=

√
`2(d+1)

z2(d+1) =
`d+1

zd+1 , (1.32)

and so the Laplacian ∆

∆ = ∇A∇
A =

1
√

g
∂A(
√

ggAB
∂B)

=
zd+1

`d+1

[
∂z

(
`d+1

zd+1
z2

`2 ∂z

)
+η

µν
∂µ

`d+1

zd+1
z2

`2 ∂ν

]
=

z2

`2

(
∂

2
z −

(d−1)
z

∂z +η
µν

∂µ ∂ν

)
.

(1.33)

Assuming that φ satisfies the equations of motion obtained by the variation of the action and evaluating
the action for this field, only the boudary term of (1.30) remain. Decomposing the surface of the boundary
in two parts, whose are normal to x and z respectively. Since the x part is related to the Minkowski part itself
φ must vanish as x =→±∞ then we only consider the part of the boundary that is normal to z knowing that
∂M is just the usual Minkowski space

S∂M =
∫

∂M
ddx
√

γφ∂zφ

∣∣∣
z=ε

. (1.34)

As the can be seen, the induced metric γ diverges as z→ 0, so we introduced a cut-off ε to avoid any
problem for now. Solving (1.34) trivially gives

(1.35)S∂M =
∫

∂M
ddxφ∂zφ

∣∣∣
z=ε

,

and the equation of motion is

(∆−m2)φ = 0 =
∂ 2φ

∂ z2 −
(d−1)

z
∂φ

∂ z
+η

µν ∂

∂xµ

∂

∂xν

φ − m2`2

z2 φ (1.36)
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1.4 Solutions of the equations of motion

We are going to discuss different aspects of the solutions to the Klein-Gordon equation (1.36).

1.4.1 Separation of variables

Looking for a solution to (1.36), we hope that we can separate variables because of the translation invariance
in the x direction due to the symmetries of AdS, we can write the fields as

(1.37)φ(x,z) = ψ(z)Φ(x) .

Substituting (1.37) in (1.36) and dividing the whole equation by φ(x,z)

1
ψ(z)

(
∂

2
z ψ(z)− (d−1)

z
∂zψ(z)− m2`2

z2

)
=−

∂ 2
η Φ(x)
Φ(x)

= k2 , (1.38)

where the notation ∂ 2
η refers to the Laplacian on Minkowski space and k2 is the norm of a d-dimensional

vector kµ ∈Mη . This separation gives us two equations

(∂ 2
η + k2)Φ(x) = 0 ,

(
∂

2
z −

(d−1)
z

∂z−
m2`2

z2 − k2
)

ψ(z) = 0 . (1.39)

Hence the solutions for Φ will be depending on the choice of k and the k2 sign, we must consider the
consequences for each case:

• k2 > 0 with k0 = 0 (Euclidean): This will lead to the Euclidean Green function, giving a real exponential
in z direction.

• k2 > 0 (Spacelike Minkowskian): The momentum is off-shell. The solution for z is again a real exponen-
tial.

• k2 < 0 (Timelike Minkowskian): On-shell mass condition for the momentum. The z equation will lead
to a imaginary exponential. (Advanced and retarded Green functions)

If we want to define mass of a particle in the d-dimensional space we should expect discrete values for
k2 in the spectrum of the z equation, that is not the case here, but if z is bound from above in the interior of
M then the conformal symmetry will be broken and k2 will assume discrete values. We will mostly work in
euclidean space without loss of generality. One can easily recognize the d-dimensional equation of (1.39)
as the Klein-Gordon equation, which gives plane-waves as solutions. Superposing them for all possible k
gives
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φ(z,x) =
∫ ddk

(2π)d ψ(z,k)eikµ xµ . (1.40)

Due to the translational invariance we get that φ(z,x) is just the Fourier transform of ψ(z,k) and by
inverting (1.40) we see that ψ(z,k) is the solution in momentum space. From now we will denote ψ(z,k) as
ψk(z). In order to solve the equation for z we can make the following change of variables ψk(z) = zd/2 fk(z)
to get

d
2z2

(
d
2
−1
)

zd/2 fk +
d
z

zd/2 f ′k + zd/2 f ′′k −
(d−1)

z

(
d
2z

zd/2 fk + zd/2 f ′k

)
− (1.41)(

m2`2

z2 + k2
)

zd/2 fk = 0 .

Cancelling all the terms and taking f as a function of z|k| instead of z alone, i.e. z→ |k|z, we obtain the
following

(|k|z)2 f ′′k (|k|z)+ |k|z f ′k(|k|z)−
(

d2

4
+ k2z2 +m2`2

)
fk(|k|z) = 0 , (1.42)

which is the modified Bessel equation. The general solution of (1.42) is given by

(1.43)fk(|k|z) = AkKν(|k|z) + BkIν(|k|z) ν =

√
d2

4
+ m2`2 .

Note that imposing that ν ∈ R in (1.43) gives the Breitenlohner-Freedman bound (see [7])

(1.44)m2`2 > −d2

4
.

In order to avoid any divergences we should analyse the assymptotic behavior of the modified Bessel
functions of first and second kind

z→ ∞ , Iµ(z)∼ ekz , Kν(z)∼ e−kz , (1.45)

imposing Bk = 0 we finnaly get the solution for ψk(z)

(1.46)ψk(z) = Ak(|k|z)d/2Kν(|k|z) .

Near the boundary z = 0 the behavior of the solution can be analyzed using
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Kν(|k|z) =
π

2sin(πν)
(I−ν(|k|z)− Iν(|k|z)) , (1.47)

using

π

sin(νπ)
= Γ(1−ν)Γ(ν) , (1.48)

and

I±ν(|k|z) =
∞

∑
n=0

1
n!Γ(n±ν +1)

(
|k|z
2

)2n( |k|z
2

)±ν

, (1.49)

for z→ 0 the main contribution comes from the n = 0 term in the summation

I±ν(|k|z)
∣∣∣
z→0
∼ 1

Γ(±ν +1)

(
|k|z
2

)±ν

, (1.50)

substituting (1.50) and (1.48) in (1.47) gives

Kν(|k|z)∼
Γ(1−ν)Γ(ν)

2

[
1

Γ(−ν +1)

(
|k|z
2

)−ν

− 1
Γ(ν +1)

(
|k|z
2

)ν
]

Kν(|k|z)∼

[
Γ(ν)

2

(
|k|z
2

)−ν

+
Γ(−ν)

2

(
|k|z
2

)ν
]
,

(1.51)

which gives

ψk(z)∼ zd/2Ak

[
Γ(ν)

2

(
2
|k|z

)ν

+
Γ(−ν)

2

(
|k|z
2

)ν]
. (1.52)

Defining

∆± =
d
2
±ν ,

φ0(k) = Ak2ν−1
Γ(ν)|k|∆− , φ1(k) = Ak2−(ν+1)

Γ(−ν)|k|∆+ . (1.53)

We get near the boundary

ψ(z,k)∼ φ0(k)z∆− +φ1(k)z∆+ . (1.54)

Note that we can deduce these results by plugging the ansatz ψk(z) = z∆ in (1.39) and find

∆(∆−d)−m2`2− k2z2 = 0 . (1.55)
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Since z→ 0 one can ignore the z2 term and solve this quadratic equation to recover ∆±. The solution for
∆+ corresponds to a bulk excitation that vanishes on the boundary giving a normalizable solution (∆+ > 0).
The solution for ∆− does not decay and represents a field on the boundary

φ0(k) = lim
z→0

z−∆−ψk(z) , (1.56)

now we use a cut-off to remove the limit

ψk(ε) = ε
∆−φ0(k) . (1.57)

One remarkable fact is that we need the non-normalizable modes in order to construct the Hilbert space
of the theory. The normalizable modes, which define the Hilbert space itself, are propagated in the bulk and
the non-normalizable modes are necessary to specify the boundary conditions of the background where the
normal modes propagate. For this we will use the method of Green’s functions to specify these propagators.

1.4.2 Free solution

Substituting (1.46) in (1.40), using the notation |kµ |= k and eikµ xµ = eikx

φ(z,x) =
∫ ddk

(2π)d Ak(kz)d/2Kν(kz)eikµ xµ , (1.58)

using the cutoff to avoid any divergence and inverting (1.57)

Ak =
21−ν k−∆−φ0(k)

Γ(ν)
, (1.59)

substituting (1.59) in (1.58) and taking the Fourier transform of φ0(k), one finds the free solution on position
space

φ(z,x) =
21−ν zd/2

Γ(ν)

∫
ddx′

ddk
(2π)d kν Kν(kz)φ0(x′)eik(x−x′) . (1.60)

In the following topics we will mainly focus on ∆+ boundary condition since φ0 can be interpreted as
a source on the boundary and when considering the Hamiltonian analysis φ1 is the canonical momentum
associated to φ0.
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1.5 AdS propagators

We will study in this section the general properties of the three propagators defined for the AdS background.

1.5.1 Bulk-to-bulk propagator

The bulk-to-bulk propagator is defined, for Euclidean time, as follows

(−∂
2
X +m2)G(X ;X ′) =

1
√

g
δ

d+1(X−X ′) . (1.61)

The delta function satisfies

∫
dd+1X ′δ d+1(X−X ′)φ(X ′) = φ(X) . (1.62)

With this we can solve the inhomogeneous Klein-Gordon equation with the source J(X) by using the
Green’s function convoluted with the source

φ(X) =
∫

dd+1X ′
√

gG(X ;X ′)J(X ′) . (1.63)

Really, applying the Klein-Gordon operator on φ(X) we get

(−∂
2
X +m2)φ(X) = (−∂

2
X +m2)

∫
dd+1X ′

√
gG(X ;X ′)J(X ′)

=
∫

dd+1X ′
√

g(−∂
2
X +m2)G(X ;X ′)J(X ′)

=
∫

dd+1X ′δ d+1(X−X ′)J(X ′) = J(X) ,

(1.64)

for any φh(X) that satisfies the homogeneous equation

(−∂
2
X +m2)φh(X) = 0 , (1.65)

we can write it as

φh(X) =
∫

dd+1X ′δ d+1(X−X ′)φh(X ′) , (1.66)

using (1.61)
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φh(X) =
∫

dd+1X ′
√

gφh(X ′)(−∂
2
X ′ +m2)G(X ;X ′) , (1.67)

integrating by parts and using e.o.m (1.65) we get

(1.68)φh(X) = −
∫

∂M
dd

σ
A√

γ

(
φh(X ′)∂AG(X ;X ′)− G(X ;X ′)∂Aφh(X ′)

)
,

there are several possibilities for the boundary conditions:

• If G(X ;X ′)|∂M= 0 then φ(X) is given by Dirichlet boundary conditions on ∂M .

• If ∂AG(X ;X ′)|∂M= 0 then φ(X) is given by Neumann conditions on ∂M

• If none vanishes then we have mixed conditions for the boundary.

We are interested in the Dirichlet boundary conditions since we have found that our solutions approaches
φ0 on the boundary after rescaling the field. In addition to this, if we have Dirichlet conditions on boundary
the solution for |k|> 0 is unique (see [5]). Now we can review the generic treatment employed in solving
field theories with the Green’s functions. Let’s start with the action for an interacting, massive scalar field
living in some manifold M

S[φ ] =
1
2

∫
M

dµ(M )
(

Dµ φDµ
φ +m2

φ
2
)
+Sint [φ ] , (1.69)

where dµ(M ) is the invariant volume measure on the manifold, Dµ is the covariant derivative and Sint is
the part of the action that contains all interaction terms and assuming that x and y are coordinates on M

and nµ is the normal vector to the boundary ∂M . Making the variation of the action we get the equation of
motion

(
−Dµ Dµ +m2

)
φ(x) =

δSint

δφ(x)
. (1.70)

Defining the Green’s function as the solution to the equation (1.61) with the Dirichlet boundary condi-
tions, we must have that

G(x− x′)Dµ φ(x′)
∣∣∣
x′∈∂M

= 0 −→ G(M )|∂M= 0 , (1.71)

we can write the solution in the general form

φ(x) =
∫

∂M
dy′

∂

∂y′µ
G(x,y′)

∣∣∣
y′∈∂M

nµ(y′)φ(y′)+
∫

M
dy G(x,y)

δSint

δφ(y)
, (1.72)

here, Sint is to be understood as pertubative series in φ0 and depends on the boundary conditions. From
equation (1.43) we have two linearly independent solutions which satisfy the homogeneous equation and
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we must take into account the time ordering to avoid any divergence. Now we can construct (ansatz) the
Green’s function

(1.73)
G0(X ,X ′) =

∫ ddk
(2π)d (zz′)d/2e−ikµ (xµ−x′µ )

(
θ(z− z′)Kν(kz)Iν(kz′)

+ θ(z′ − z)Iν(kz)Kν(kz′)
)
.

Defining

(1.74)ξ =
2zz′

z2 + (z′)2 + (x− x′)2 ,

one can represent (1.73) in terms of the hypergeometric function:

(1.75)G0(X ,X ′) =
2C∆+

ν

(
ξ

2

)∆+

2F1

(
∆

2
,

∆

2
+

1
2

;ν + 1;ξ
2
)

,

with C∆+ to be defined later.

To incorporate the boundary condition at z = ε we can add to (1.74) a solution to the homogeneous
equation that satisfies limε→0 Gε = G0

Gε(X ;X ′) = G0(X ;X ′)+
∫ ddk

(2π)d (zz′)d/2eikµ (xµ−x′µ )Kν(zk)Kν(kz′)
Iν(kε)

Kν(kε)
, (1.76)

it’s not necessary to perform the integration of (1.80), taking the derivative of Gε on the boundary

nµ
∂µ Gε(X ;X ′)

∣∣∣
z′=ε

=
zd/2ε∆+21−ν

Γ(ν)

∫ ddk
(2π)d eikµ (xµ−x′µ )Kν(kz)Kν(kε) , (1.77)

noting that

dµ(∂M )
∣∣∣
z=ε

= ε
−dddX , nµ = (−ε,0) . (1.78)

Subistituting the expression (1.78) in the equation (1.72) and considering Sint = 0 for a free field, we
recover the equation (1.60) as expected.
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1.5.2 Boundary-to-bulk propagator

When the point source is located at the boundary we must use the boundary to bulk propagator in this
situation with the following property for z→ 0

(1.79)K(z,x;x′) −→ z∆−δ
d(x− x′) .

In general the solution is given by the convolution of the propagator with a source

(1.80)φ(z,x) =
∫

ddx′K(z,x;x′)φ0(x′) .

In order to find an expression depending on G(X ;X ′) we must take φ(x′) to be located on the boundary
and use the equations (1.80) and (1.68) with the homogeneous field satisfying φh(X ′)

∣∣∣
∂M

= z∆−φ0(x′)

(1.81)
∫

ddx′K(z,x;x′)φ0(x′) =
∫

∂M
ddx′

(
`d

z′d

)( z
`

)
φh(x′)∂z′G(z,x;z′x′) ,

where ` comes from the metric. (1.85) implies that

(1.82)K(z,x;x′) = `d−1 lim
z′→0

(z′)∆++1
∂z′G(z,x;z′,x′) .

In order to get an expression without derivatives we use the Green’s theorem for G(X ′′;X) and K(X ′;X ′′)
and introducing a new notation �= (−∂ 2 +m2)

(1.83)
∫

dd+1X ′′
√

g
(

G�K − K�G
)
= −

∫
∂

ddx
√

γ

(
Gn · ∂K − Kn · ∂G

)∣∣∣
z′′=ε

Clearly, by definition

(1.84)�K(z,x;x′) = 0

The left hand side of the equation gives
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(1.85)
−
∫

dd+1X ′′
√

gK(X ′′;X ′)�G(X ′′;X) =
∫

dd+1X ′′δ (X − X ′′)K(X ′′;X ′)

= −K(X ;X ′)

with this, we have

(1.86)z∂zG(X ;X ′) = ∆+G(X ;X ′)

Solving the right hand side

−K(X ;X ′) =−
∫

∂

ddx′′
√

γ

(
Gnz′′ ·∂z′′K−Knz′′ ·∂z′′G

)∣∣∣
z′′=ε

=−`d−1
∫

∂

ddx′′z−d√
γ

(
Gz′′∂z′′K−Kz′′∂z′′G

)∣∣∣
z′′=ε

=−`d−1
∫

∂

ddx′′(z′′)−d
(
(∆−−∆+)G(X ′;X ′′)z∆−δ

d(x′− x′′)
)∣∣∣

z′′=ε

.

(1.87)

equalling both sides and using

(1.88)2F1

(
∆

2
,

∆

2
+

1
2

;ν + 1;0
)

= 1 .

We finally get

K(z,x;x′) = lim
z′=→0

2ν

(z′)∆+
G(z,x;z′x′) =C∆+

(
z

z2 +(x− x′)d

)∆+

. (1.89)

1.5.3 The Witten’s approach

First, we will derive the coefficient C∆.If we compactify Rd to Sd by adding the point z = ∞ the whole x
space shrinks to a point and the Green’s function becomes x-independent

(1.90)lim
z→∞

γµν = 0 .

Taking the Green’s equation in the neighbourhood of z = ∞
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(1.91)
(

zd+1 − ∂z(z−d+1
∂z) + m2`2

)
K(z) = 0 .

We have seen before that the solutions for this equation are power-law

K(z) =C∆z∆ −→ ∆± =
d
2
±
√

d2

4
+m2`2 . (1.92)

By the third expression in (1.91) we must take the bigger root. In order to map the point z = ∞ to finite
x = 0 we take two AdS isometries, an inversion followed by a translation. Let’s do first the inversion

X
′A =

XA

XBXB
=

{
z

z2 + x2 ,
xµ

z2 + x2

}
, (1.93)

where x2 = ηµν xµ xν . Now we follow with a translation x→ x− x′

X
′A =

{
z

z2 +(x− x′)2 ,
xµ − x′µ

z2 +(x− x′)2

}
, (1.94)

since it is an isometry of AdS it is still a solution in these coordinates for (1.95), and clearly when z = ∞−→
XA = (z,0). Note that the limit of K on the boundary z = 0 is

K(z,x;x′) =

{
C∆+z∆+ → 0, if x 6= x′

C∆+z−∆+ → ∞, if x = x′
. (1.95)

In order to check that K(z) has a finite measure in the neighbourhood of x = x′ we compute the integral∫
ddxK(z,x) =C∆+z∆+

∫
ddx

1
(z2 + x2)∆+

dµ(Rd)→ dµ(S
d
)→C∆+z∆+Ωd−1

∫
∞

0
dr

rd−1

(z2 + r2)∆+

Taking y = r/z→C∆+Ωd−1
z∆++d

z2∆+

∫
∞

0
dy

yd−1

(1+ y2)∆+

Taking x = y2→ 1
2

C∆+Ωd−1zd−∆+

∫
∞

0
dx

xd/2−1

(1+ x)∆+

. (1.96)

To evaluate the last integral, we just use the definition of the Beta function

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

=
∫

∞

0
da

ax

(1+a)x+y , (1.97)

and the formula for the surface of n-sphere
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(1.98)Ωn =
2π

n+1
2

Γ( n+1
2 )

,

to get that

∫
ddxK(z,x) =

1
2

C∆+

2πd/2

Γ(d/2)
zd/2−ν Γ(d/2)Γ(∆+−d/2)

Γ(∆+)
, (1.99)

remembering that ∆− = d/2−ν and defining

C∆+ =
Γ(∆+)

πd/2Γ(ν)
. (1.100)

Now, without loss of generality, consider a free scalar field φ on AdS2

(1.101)S[φ ] =
1
2

∫
R×R+

dz dt
{
(∂zφ)

2 + (∂tφ)
2 +

(m`

z

)2
φ

2
}

,

and with the e.o.m

∂
2
t φ

2 +∂
2
z φ

2 =
(m`

z

)2
φ

2 . (1.102)

If we set new coordinates from XA = (z, t) as (1.93) it is clear that the e.o.m will have the same form in
terms of X

′A = XA

XBXB
because

dX
′AdX ′A
X ′2

=
dXAdXA

X2 . (1.103)

Let us now look for t ′-independent solution, K∆(z′) = C∆z
′∆, applying the Klein-Gordon operator to it

gives

∆(∆−1)− (m`)2 = 0→ ∆± =
1
2
±
√

1
4
+(m`)2 . (1.104)

Then, the independent solution is of the form

K∆(z, t) =C∆

(
z

z2 + t2

)∆

. (1.105)

Let φ0 be a field on the boundary: φ0 = φ0(t), then
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φ(z, t) :=
∫
R

K∆(z, t− t ′)φ0(t ′)dt ′ =
∫
R

 1

1+
(

t−t ′
z

)2

φ0(t ′)dt ′ , (1.106)

is a solution. Changing the variables x = t−t ′
z and requiring that z→ +0 implies that φ → z1−∆φ0 and we

get to the following

φ(z, t) = z1−∆C∆

∫
R

1
1+ x2 φ0(xz+ t) . (1.107)

which gives the solution (1.99) and taking the cutoff clearly φ(z, t)|z=ε= ε1−∆φ0(t). Because ∆+ > ∆−, the
dominating solution corresponds to ∆ = ∆+ and

K∆+(z, t) := K(z, t) =
Γ(∆+)√

πΓ
(
∆+− 1

2

) ( z
z2 + t2

)∆+

. (1.108)

With this last expression we constructed both propagators that we will need in the next sections.





Chapter 2

Basics of Conformal Field Theory

In this chapter we expose the basics of CFT in a standard way following some well established material of
[32], [33] and [28]. The main objective here is to show the motivation behind the studies of the correlators
and OPE’s when we try to quantise some general background spacetime. The CFT’s are the other side of the
AdS/CFT correspondence, we will start discussing the ’axiomatic’ point of view from an AdS viewpoint,
stating the main ideas behind their relations.

• The conformal transformations consist of the Poincaré group plus scale transformations and special con-
formal transformations(SCT). One can derive the aditional symmetries by demanding Poincaré invari-
ance plus an additional symmetry under inversions i.e. xi→ xi/x2. This coordinate transformations leave
the metric locally invariant rescaling it by an overall spacetime-dependent factor i.e. gµν → Λ(x)gµν .

• The quantization proccess is done in the standard way along flat spacelike surfaces that evolve with time.
In the Euclidean space one can introduce an alternative quantization scheme, the radial quantization. In
this quantization one starts at a point and evolve outward on expanding speres.

• Using conformal symmetry we can classify states according to irreducible representations of the confor-
mal group Conf(R1,d+1) ' SO(1,d + 1) in Euclidean space and describe every state as a linear combi-
nation of primary states.

• The conformal symmetry also allow us to move operators, so that from O(0) at the origin we obtain
O(x) at any point x. The correlation function for any pair or trio of operators is fixed by symmetry, up to
a finite set of constants.

• We can multiply any two operators in order to obtain a new one. The operator state correspondence
applied to a product of operators leads us to the operator product expansion (OPE), which has a finite
radius of convergence in any CFT. This can be made explicitly if there is a path integral description of
the theory, but it is not necessary.

• Local conserved currents are extremely important, since they generate global symmetries. Convention-
ally a theory is only defined to be a CFT if there exist a spin-2 conserved current T µν , if that is not the
case the theory is called non-local.

• The special feature of CFT, for d > 2, is the existence of an infinite number of independent symmetries
of the system, leading to corresponding invariants of motion, reducing drastically the number of degrees
of freedom from a classical point of view.

23
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2.1 Basics of CFT in d Dimensions

2.1.1 Conformal transformations

Let gµν be a metric tensor on some d-dimensional manifold with respect to some set of coordinates xµ . We
define a conformal transformation as follows

g
′µν(x) = Λ(x)gµν(x) . (2.1)

For flat spaces the scale factor Λ(x) = 1 corresponding to the Poincaré group of translations, rotations
and boosts in Minkowski space.

2.1.2 Conformal group

For d ≥ 3 all the transformations satisfying (2.1) and the respective generators, are given by

• Translations: x
′µ = xµ +aµ , Generator: Pµ =−i∂µ ,

• Dilatation: x
′µ = λxµ , Generator: D =−ixµ ∂µ ,

• Rotation: x
′µ = Mµ

ν xν , Generator: Lµν = i(xµ ∂ν − xν ∂µ)

• SCT: x
′µ = xµ−x2bµ

1−2bµ xµ+b2x2 , Generator: Kµ =−i(2xµ xν ∂ν − x2∂µ) .

The special conformal transformation is to be understood as an inversion followed by a translation and
followed by other inversion at the end. We observe that the SCT as defined above is not globally defined. In
order to avoid it, one considers a conformal compactification that adds the infity as a point of the manifold.
Defining new generators

Jµ,ν = Lµν , J−1,µ = 1
2 (Pµ −Kµ)

J−1,0 = D , J0,µ = 1
2 (Pµ +Kµ)

, (2.2)

which satisfiy
[Jmn,Jrs] = i

(
ηnrJms−ηmrJns +ηmsJnr−ηnsJmr

)
, (2.3)

we obtain that in the case of dimensions p+q≥ 3 the conformal group is isomorphic to SO(p+1,q+1). In
the d = 2 case the conformal group is the set of all orientation preserving global conformal transformations
,Möbius group SL(2,C)/Z2 = PSL(2,C) , that forms a group with respect to composition and satisfies
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a b
c d

)
∈ SL(2,C) , (2.4)

such that the action on the complex plane is given ∀ φ ∈ SL(2C) and ∀ z ∈ C by φ(z) = az+b
cz+d with cz+

d 6= 0. If one looks at w the conformal Killing fields, i.e. the vector fields whose flows define conformal
transformations preserving gµν and the conformal structure. In this context, the Witt algebra W is the
complex vector space with basis {ln}n∈Z, ln := −zn+1∂z or ln := z1−n∂z with the respective z copy and
the Lie bracket

(2.5)[ln, lm] = (n− m)ln+m .

We will effectively treat z and z as independent variables on C2. The globally defined conformal trans-
formations on the Riemann sphere S2 ' C∪{∞} are generated by {l−1, l0, l−1}. The global generators will
be associated to the conformal group, for z = reiθ

• Generator of translations: l−1 =−∂z

• Generator of dilatations: l0 + l0 = r∂r

• Generator of rotations: i(l0− l0) =−∂θ

• Generator of Special conformal transformations: l1 = ∂ 1
z
=−z2∂z .

The central extension of the Witt algebra is called Virasoro algebra with the central charge c. It satisfies
the following commutation relation

[ln, lm] = (n−m)lm+n +
c

12
(n3−n)δ(m+n),0 . (2.6)

2.2 Chiral and Primary fields

Fields depending only on z are called chiral fields and fields depending only on z are called anti-chiral
fields. Let φ(z,z) be a field that transforms z→ λ z as

φ(z,z) −→ φ
′(z,z) = λ

h
λ

h
φ(λ z,λ z) . (2.7)

Then it is said to have conformal dimensions (h,h). If a field transforms under conformal transformations
z−→ f (z) as

φ(z,z) −→ φ
′(z,z) =

(
∂ f
∂ z

)h(
∂ f
∂ z

)h

φ( f (z), f (z)) , (2.8)
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it is called a primary field of concormal dimension (h,h). If the the equation (2.8) holds only for f (z) ∈
SL(2,C)/Z2, then φ is called a quasi-primary field. If a field is not a primary or quasi-primary field, then
we call it a secondary field.

2.3 Energy-momentum tensor, radial quantisation and the OPE

The energy-momentum tensor T µν can be deduced from the variation of the action with respect to the
metric, encoding this way the behaviour of the theory under infinitesimal transformations. To make all this
clearer, let us take a free massless scalar field and make a variation φ(x)−→ φ(z+ε)∼ φ(x)+εµ(x)∂ µ φ(x)
the Lagrangian transforms as

δL = ∂µ φ(x)∂ µ(ε(x)α ∂
α

φ(x)) = ∂µ εα

(
∂

µ
φ∂

α
φ − 1

2
η

µα(∂φ)2
)

∂µ εα T µα . (2.9)

When we take εα = λxα (dilatation), for example, we find that δL ∝ T µ

µ . In general, the energy-
momentum tensor is traceless for d = 2 dimensions. For a theory to be a CFT it must contain in the spectrum
of operators a spin 2 tensor with conformal dimension ∆ = d, the space-time dimension, or equivalently,
an energy-momentum tensor that is conserved, manifesting the conformal symmetries as local space-time
symmetries.

The process of radial quantisation is related to the choice of a foliation of space-time with fixed time
surfaces. In this formalism, the time evolution operator connects states in different surfaces. Each leaf of
this folation has its own Hilbert space. If we take w = ln(z) with w = x0 + ix1 relating x0 to the Euclidean
time, one can map an infinite cylinder to the entire complex plane. Clearly in this context, the generator of
time translations is related to the dilation operator and the generator of space translations is the momentum
operator corresponding to rotations on the complex plane. In order to define the in-out states, we must
expand an arbitrary field and take x0→±∞ and promote its Laurent modes to operators

(2.10)φ(z,z) = ∑
n,m∈Z

z−n−hz−h−m
φn,m ,

taking x0→−∞ on the infinite past we get z and z mapped to zero. With it we define the in-state

|φin〉= lim
z,z→0

φ(z,z)|0〉, with φn,m|0〉= 0, for n >−h and m >−h , (2.11)

considering that, by definition, the hermitian conjugate of φ that corresponds to z→ 1/z, is given by

φ
†(z,z) = z−2hz−2h

φ

(
1
z
,

1
z

)
with (φn,m)

† = φ−n,−m . (2.12)

With this one can make a simmilar approach for the out-state
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〈φout |= 〈0| lim
z,z→0

φ
†(z,z), with 〈0|φ−n,−m = 0, for n <−h and m < h . (2.13)

Since all momenta commute one can simultaneously diagonalize D, labeling its eigenstates by ∆ and we
get

D|∆〉= i∆|∆〉 , (2.14)

while Pµ will be the raising and Kµ the lowering operator with respect to the eigenvalues of D. One can
define as the vacuum |0〉 the state killed the conformal generators, associated to each primary state (states
anihilated by Kµ ), there is a primary operator O(0) and with it we get a discrete spectrum, with the unitary
time evolution operator obtained by taking eiDτ with τ = er. Associated to each primary state is a primary
operator O(0) with a scaling parameter τ and angular momentum `. But, what do we mean by a state? We
defined it as |φin〉 state if its foliation is defined for a past time. For the converse we defined it as |φout〉 state,
in which all foliations are constructed for times on the future. The overlap of in and out states is defined by
the two point function 〈φin|φout〉. In a scale invariant theory we can make the radial quantization by taking
concentric foliations of the spacetime varying only the radius, as we showed in the example explained
above.

When the in and out states live on different foliations there exists some unitary operator connecting them.
The associated correlating functions is easily defined as 〈φin|O|φout〉. For theories with Poincaré invariance,
the states on the foliations are defined by their 4-momenta and the Hamiltonian moves us between the
foliations of different radii. So considering a state that satisfies

O(0)|0〉= |τ, `〉= |∆〉 , (2.15)

this gives us the local state-operator correspondence (isomorphism). Note that if we analyse the path integral
formalism by defining the states as wave functionals on Cauchy surfaces, the path integral allows us to
evolve from one Cauchy surface to another. With it, the radial quantisation is immediate and the state-
operator correspondence follows if we evolve back in time towards a point, where the operator is obtained
as the insertion of a functional of fields directly in the path integral. Let’s take the Hilbert space spanned by
the eigenfunctions |φ∂R〉 on the Cauchy surface. One can take the path integral over the region R

〈0|φ∂R〉=
∫

φ∈R
Dφ(r)eS[φ ] . (2.16)

If we insert a unitary, primary operator inside this region we can prepare a diferent states on the boundary
∂R. Clearly we have obtained the state |∆〉 = O∆(0)|0〉 with scaling dimension ∆, this state at the origin
defines the absolute past on our foliation. One can finaly construct the operators A− and A+ that act as
ladder operators for the scaling dimensions. If we insert an operator somewhere other than origin we should
have:

|ψ〉 = e−∆A+(x)O∆(0)e∆A+(x)|0〉 = O∆(x)|0〉 ,

as we have on the quantum oscillator, once we hit the vacuum state, operating the descendant operator will
give us the null eigenvalue. This is the state operator correspondence , in which every state has a 1−2−1
correspondence to an unitary operator. With the assumption that
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[Pµ ,O(x)] =−i∂µO(x) , (2.17)

one entirely determines the action of the conformal algebra on the local operator O(x), assuming the com-
mutation relations of the conformal algebra. At a general point in flat Euclidean space, we have

[D,O(x)] =−i(∆+ xµ
∂µ)O(x)

[Pµ ,O(x)] =−i∂µO(x)

[Kµ ,O(x)] =−i(2xµ ∆+2xν
Σνµ +2xν xµ ∂ν − x2

∂µ)O(x)

[Lµν ,O(x)] =−i(Σµν + xµ ∂ν − xν ∂µ)O(x) ,

(2.18)

where Σµν is a finite dimensional spin matrix of the angular momentum representation of O(x). A key
property of all local quantum field theories is the existence of the Operator Product Expansion (OPE), for
CFTs this expansion converges in a finite region, so it can be used to make exact statements. The OPE says
that for any complete set of local field operators we have

φ1(x)φ2(0) = ∑
O

C(x,∂ )O(0) , (2.19)

in the CFT case one can derive it without any explicit action. Consider the operators O1(x1) and O2(x2)

where there is some circle of radius r located at some point x in which both x1 and x2 are inside this
circle and there aren’t any other operators defined in this region. Let us imagine the radial evolution from x
outwards. We start with the vacuum and as we evolve this state, it eventually hit the operators O1 and O2. It
means that there exists some state

|φ12(r)〉= O1(x1)O2(x2)|0〉 , (2.20)

which will be some linear combination of all states in the Hilbert space and by the state-operator correspon-
dence there exists some operator such that

O12(x)|0〉= |φ12(r)〉 , (2.21)

with it one can express O12 as a sum over all primary operators of the theory and their descendants

O1(x1)O2(x2) = ∑
∆,`

λ∆,`C∆,`(x1− x,x2− x,∂x)O∆,`(x) . (2.22)

This function is entirely determined by conformal symmetry and the only non-trivial information in the
OPE is the value of the coefficients, which are labelled by the spin and conformal dimension of the primary
operators.
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2.4 Two- and Three-Point Functions

Employing the global conformal symmetry we can derive both of the correlators. Lets start with the two-
point function of two chiral quasi-primary fields

〈φ1(z)φ2(w)〉= f (z,w) . (2.23)

The invariance under translations implies that f (z,w) = f (z−w) and the invariance under rescalings
implies that

f (z−w) = λ
h1+h2 f (λ (z−w)) . (2.24)

In addition to these properties, the two-point function must be invariant under inversions

f (z−w) = λ
−h1−h2 f (

1
z
− 1

w
) . (2.25)

Clearly (2.25) and (2.24) can only be satisfied simultaneously if h1 = h2. From these three assumptions
one can make the ansatz, for an structure constant c12

f (z−w) =
c12

(z−w)2h , (2.26)

which gives in general

〈φi(z)φ j(w)〉=
ci jδhi,h j

(z−w)2h . (2.27)

For the three-point function imposing the same requirements one find that

〈φ1(z)φ2(w)φ3(t)〉=
c123

(z−w)h1+h2−h3(w− t)h2+h3−h1(t− z)h3+h1−h2
. (2.28)

Since the results for the correlators have been derived using only the global conformal symmetries one
can extend these results to d > 2 dimensions, but by analogous reasoning, they have the same form as for
d = 2. In order to have a single-valued two-point function on the complex plane, the dimension of a chiral
quasi-primary field must be a integer or a half-integer.
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2.5 The d=1 case revisited

The most studied case of the correspondence is the d = 2, i.e. AdS3/CFT2, this is due to the fact that the
conformal symmetry in two dimensions is infinite dimensional and highly constraints the dynamics of the
fields, as consequence, this is very well studied CFT. For the d = 1 we have a special feature. Only in
this case the Lorentzian and the Euclidean AdS are defined by the same group of symmetries, and, in first
place, one can naively thinks that the case for d=1 is easier than the others, but there are some subtleties
concerning the boundaries and the vacuum of the theory that makes this case the most elusive and the least
understood. There is a realization of CFT1, known as the de Alfaro-Fubini-Furlan model (dAFF), which is
actually conformal quantum mechanics. We will briefly recall some aspects of this model

2.5.1 de Alfaro-Fubini-Furlan model

The simplest massless dilatation-invariant Lagrangian for a scalar field φ has the general form

L =
1
2
(∂ µ

φ)(∂µ φ)− 1
2

gφ
2d/(d−2) , (2.29)

where d is the number of space-time dimensions. Our main interest is for d = 1, which corresponds to
a single physical operator depending only upon time t, so setting the dimension in (2.29) the Lagrangian
becomes

L =
1
2

((dQ
dt

)2
− g

Q2

)
, (2.30)

the respective equation of motion is

d2Q
dt2 =

g
Q

. (2.31)

Considering g > 0 without loss of generality, and noting that the coupling constant is dimensionless
implies that the action S has invariance properties larger than just time translation. In fact, the set of trans-
formations that leaves the action invariant is SL(2,R) such that

t ′ =
at +b
ct +d

:= ω[t] , (2.32)

note that

dω

dt
=

ad−bc
(ct +d)2 = (ct +d)−2 , (2.33)

and hence, the transformation properties of Q are
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(2.34)Q′(t ′) = (ct + d)−1Q(t) .

Suppose that there exists a state vector |ψ〉, the action of the symmetries of the action on these states are
the symmetries of SL(2,R), for the time translation symmetry

H|ψ〉= i
d
dt
|ψ〉 , (2.35)

for dilations

D|ψ〉= it
d
dt
|ψ〉 , (2.36)

and for special conformal transformations

K|ψ〉= it2 d
dt
|ψ〉 , (2.37)

whose elements of the algebra satisfies the respective commutation relations

[H,D] = iH , [K,D] =−iK , [H,K] = 2iD . (2.38)

We can straightforwardly get the explicit symmetrized expressions of the generators H,K and D in terms
of the field operators Q(t) and Q̇(t)


H = 1

2

((
dQ
dt

)2
+ g

Q2

)
D = tH− 1

4

(
QQ̇+ Q̇Q

)
K = t2H− t

2

(
QQ̇+ Q̇Q

)
+ 1

2 Q2 .

(2.39)

Writing these operators in the Cartan basis, we have


R := 1

2

(
K
a +aH

)
L± := 1

2

(
K
a −aH

)
± iD ,

(2.40)

satisfying

[R,L±] =±L± , [L−,L+] = 2R . (2.41)



32 2 Basics of Conformal Field Theory

2.5.2 The group SU(1,1)

The algebra (2.41) is related to the group SO(2,1), which is locally isomorphic to SU(1,1), we will briefly re-
call some properties of this group. The group SU(1,1) is locally isomorphic to SO(2,1), being more precise,
SO(2,1) = SU(1,1)/C2, where C2 is the cyclic group containing only two elements. In addition, SU(1,1) is
locally isomorphic to Sp(2,R). Unless SU(2), SU(1,1) is noncompact and it is not simply connected, having
the topological structure of the direct product between the planar disk bounded with the unit circle and the
sphere S1. This space is the upper sheet of the two-sheet hyperboloid embedded on the three-dimensional
with the pseudo-Euclidean metric tensor ηµν , one can still obtain this through the stereographical projec-
tion.

For example, we can foliate the complex plane into three orbits via stereographical projection, i.e., the
interior of the unit circle, the circle itself and the exterior region of the circle. One can identify the group
G+, with γ ∈ C,δ ∈ R defined by:

g =

[
δ γ

γ δ

]
, δ

2−|γ|2= 1 , (2.42)

setting:

δ = cosh
(

θ

2

)
, γ = sinh

(
θ

2

)
e−iφ , θ > 0 .

We see that G+ is isomorphic to H = {(δ ,γ1,γ2) | δ 2− γ2
1 − γ2

2 = 1}, the set of unit vectors of the
form:

m = (cosh(θ),sinh(θ)cos(φ),sinh(θ)sin(φ)) , (2.43)

finally, one can write the elements of G+ as:

g+ = exp
(

θ

2
uµ

σ
ν
δµν

)
, (2.44)

where u = (sin(φ),−cos(φ)) and σν are the Pauli matrices. The matrix g+ describes a hyperbolic rotation
around the vector m with the rotation angle being θ . One can define an isomorphism between the unit circle
and the upper sheet of the hyperboloid just by setting:

η = tanh
(

θ

2

)
e−iφ .

It’s well known that there are three different types of nontrivial unitary irreducible representations of
SU(1,1), as is shown in [2], we have: the supplemental, principal and discrete series representations. Fol-
lowing [1], the Lorentzian AdS2 is obtained by the principal series representation, and by the physical con-
straints assigned to `, we shall not consider the supplemental case. For the discrete series representations
we should recover the Euclidean AdS2. From now on, we will be considering the representation D+(ε0).
Generally, we label the representation by two parameters ε0 and m, taking the the Hilbert space spanned
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by the states |ε0,m〉, where ε0 is the eigenvalue of the lowest state, the vacuum of R with respect to the
raising and lowering operators, L±. Associating an integer m to the raising and lowering operators one can
calculate the spectrum of R and the action of L± in these states. We begin with



[L−,L+] = 2R ,

L+|ε0,m〉= cm|ε0,m+1〉 ,
L−|ε0,m〉= cm−1|ε0,m−1〉 ,
R|ε0,m〉= (ε0 +m)|ε0,m〉 ,
C |ε0,m〉= ε0(ε0−1)|ε0,m〉 ,

(2.45)

where C stands for the Casimir element, let’s use the Casimir element, defined as C = 1
2 (HK+KH)−D2 =

R2−L+L−. Using the Casimir element, we can normalize these states by taking

C |ε0,m〉= ε0(ε0−1)|ε0,m〉= (R2−L+L−)|ε0,m〉 ,
ε0(ε0−1)|ε0,m〉= ((ε0 +m)2−|cm−1|2)|ε0,m〉 ,

(2.46)

with this one find that the ladder operators act as

cm =
√

(ε0 +m)(ε0 +m+1)− ε0(ε0−1) , (2.47)

implying that

|ε0,m〉=

√
Γ(2ε0)

m!Γ(2ε0 +m)
(L+)

m|ε0,0〉 . (2.48)

satisfying the orthonormality condition:

〈ε0,m|ε0,n〉= δm,n . (2.49)

Introducing the conjugate momentum

p =
∂L

∂ Q̇
= Q̇ , with [Q(t), p(t)] = i , (2.50)

one can realize the dAFF model with
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H =
1
2

(
p2 +

g
Q2

)
, g > 0 ,

D =
t
2

(
p2 +

g
Q2

)
− 1

4
(pq+qp) ,

K =−t2H +2tD+
1
2

Q2 ,

C =
g
4
− 3

16
,

ε0 =
1
2

(
1+

√
g+

1
4

)
.

(2.51)

There are a lot of puzzles of this realization, the first one is that there is not an invariant vacuum of the
theory. Another fact is that in this model all the invariant states are not normalizable, so forming the diagonal
matrix elements turns out to be a very dificult task. Another problem is that no state is invariant under all
three isometries of the conformal group. On the other hand, if one constructs non-invariant normalizable
states, these interfere with derivations of conformal constraints, and lastly looking to the AdS2 averaged
operators, they carry arbitrary dimensions while the canonical CFT models involves operators with fixed
conformal dimensions. To dodge these problems we have to modify the usual operator-state correspondence
taking a non-primary operator O∆ such that when we calculate the correlation functions with respect to a
specific state |Ω〉 one obtains the equation (2.27) for the two-point function. One possible explanation to
this is since the operator itself is not well suited to give the right results for the correlation function, one
chooses a specific vacuum state in order to correct the conformal dimension of this operator, showing in the
end the expected behaviour for these functions (see [9]).



Chapter 3

The AdS/CFT Correspondence

In this chapter we introduce the primordial ideas which conducted to the conjecture of a strong/weak duality
and the relation between the AdS and some CFT on the boundary. After this exposition we study the case
d = 1 in which the natural choice of a quantum mechanical system is the dAFF model. We end this chapter
discussing what are the real challenges in constructing a quantum mechanical system for AdS2/CFT1 and
the possible ways to avoid any undesired phenomena that may appear. We are following [3], [5], [9], [13],
[17] and [20].

Juan Maldacena conjectured in 1998 that a certain classical type IIB super-string theory on AdS5× S5

is dual to a highly symmetric N = 4 super Yang-Mills theory in the large N limit. We are not going to
explain in detail what are the properties of this two theories, from now on, we are assuming that the reader
is familiarized with both theories. Maldacena demanded that the ’t Hooft limit coupling be large compared
with r dependent term in the metric in units of string lenght, turning the metric of a type IIB supergravity
into

ds2 =
r2

`2 dt2 +
`2

r2 dr2 + `2dΩ
2
5 (3.1)

where t denotes the world volume coordinates of the black 3-brane solution. The form of the metric
shows that near the horizon the supergravity solution is AdS5× S5 with the lenght scale ` playing the role
of the radius of the five-spehe and the ’radius’ of AdS5. This duality has some intriguing properties. First,
it is a strong-weak coupling duality, secondly, it is non pertubative in the string coupling and also in the
Yang-Mills coupling gY M and lastly, its a classical-quantum duality, because that classical supergravity
is conjectured to be dual to a quantum gauge theory, being supressed by powers of 1/N.[5] The general
correspondence formula is

∫
∂φ∈∂R

Dφ0e−iSAdS[φ ] =

〈
exp

∫
ddxO(x)φ0(x)

〉
, (3.2)

where O denotes the conformal primary operators on the boundary and the left integral is over all fields
whose the assymptotic boundary values are φ0. In the classical limit one can make the saddle-point approx-
imation and find that

SAdS[φ0] =WCFT [φ0] , (3.3)

35
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where SAdS is the classical on-shell of an AdS theory and WCFT is the effective action given by minus the
logarithm of the right hand side of (3.2). Since the metric of AdS is divergent, one expect that the classical
action is also divergent. In order to extract the physical information from it, one must renormalize the
on-shell action by adding counter terms which cancel the infinities, giving

SR =WCFT , (3.4)

in the expression above SR stands for the renormalized on-shell action for AdS. Any field theory on the
AdS space, which includes gravity, as the boundary value of gravitons couples to the energy-momentum
tensor, which is an standard feature of any CFT, has a corresponding counter part CFT. Thus, the AdS/CFT
correspondence is an important tool for formulating non-trivial CFTs.

3.1 The Euclidean AdS2

Lets start with AdS2 spacetime with the metric defined by

ds2 =
dz2 +dt2

z2 , (3.5)

the embedding coordinates are X µ with µ = 0,1,2 and signature diag(1,1,−1) on the ambient space. This
space has three Killing vectors that generate SO(2,1) isometry group. These coordinates and the Killing
vector fields on AdS2 satisfies:

{X µ ,Xν}= ε
µνγ X , (3.6)

[Kµ ,Kν ] = ε
µνγ Kγ , (3.7)

(Kµ Xν) = ε
µνγ Xγ , (3.8)

X µ Xµ =−`2
0 , (3.9)

where the bracket on (3.6) is the Poisson bracket, on (3.7) is a commutation relation and (3.8) denote the
action of the Killing vector on the embedding coordinate. One can note that there is a direct correspondence
between the Killing vector field acting on a function and the Poisson bracket taken with respect to the
embedding coordinates. We summarize this below:

(Kµ ,◦) = {X µ ,◦} .

With this fact, it’s the right time to show an algebraic way to calculate the action of AdS2 using only
the embedding coordinates, without concerning about on whose coordinates the Poisson bracket is defined.
First, consider the embedding coordinates and Killing vectors :

X0 =−`0t
z

, X1 =− `0

2z
(z2 + t2−1) , X2 =− `0

2z
(z2 + t2−1) , (3.10)
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K0 =−t∂t − z∂z , K1 =
1
2
(z2− t2 +1)∂ t− zt∂z , K2 =

1
2
(z2− t2−1)∂ t− zt∂ z ,

these are the Fefferman-Graham coordinates, covering the half plane {(z, t) ∈ R2 | z ≥ 0 , −∞ < t < ∞)}.
The action for a massless scalar field in the AdS2 background is

S[φ ] =
1
2

∫
R×R+

dtdz
[
(∂zφ)

2 +(∂tφ)
2
]
, (3.11)

note that

(Kµ
φ)(Kµ φ) = (K0

φ)2 +(K1
φ)2− (K2

φ)2

= t2(∂tφ)
2 +2zt(∂tφ)(∂zφ)+ z2(∂zφ)

2+

(z2− t2)(∂tφ)
2−2zt(∂zφ)(∂tφ)

= z2 ,

(3.12)

using this result on (3.11) one can rewrite the action in terms of Killing vectors as follows:

S =
1
2

∫
AdS2

d2x
√

g{X µ ,φ}{Xµ ,φ} , (3.13)

since

(Kµ
φ)(Kµ φ) = {X µ ,φ}{Xµ ,φ} , with

√
g =

1
z2 . (3.14)

As expected, one can obtain the equations of motion by calculating the variation of the action directly
in (3.13). All these equations are written on the Fefferman-Graham coordinates. The canonical laws of
transformation between these coordinates are:

x =− ln(z) , y =
`0t
z

, (3.15)

the Poisson bracket can be easily calculated for each set of coordinates

{x,y}= 1 , {t,z}= z2

`0
. (3.16)

To calculate the variation of the action we note that {X µ ,φ} = {t,z}ε i j∂iX µ ∂ jφ , with ε i j being the
Levi-Civita symbol of rank two. For a scalar field with mass, the variation of the action can be written as:

δS = 0 =
∫

AdS2

d2x
√

g({X µ ,φ}{Xµ ,δφ}+m2
φδφ) . (3.17)

Note that we have ignored the variations δ
√
−g and δX µ because they don’t influence directly the

dynamics of the motion, since they are the kinetic terms. Calculating the term of Poisson brackets one can
show that
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∫
AdS2

d2x
√

g{X µ ,φ}{Xµ ,δφ}= {t,z}2
∫

AdS2

d2x
√

gε
γν

ε
αβ

∂γ X µ
∂ν φ∂α Xµ ∂β δφ , (3.18)

contracting the skew-symmetric matrices on the RHS

{t,z}2
∫

AdS2

d2x
√

g(δ α
γ δ

β

ν −δ
β

γ δ
α
ν )∂γ X µ

∂ν φ∂α Xµ ∂β δφ , (3.19)

integrating by parts and relabelling the terms

{t,z}2

[∫
∂AdS2

dσ
γ√g∂γ X µ(εγν

∂γ Xµ ∂ν φ)δφ

−
∫

AdS2

dx2√g∂ν(∂γ X µ(εγν
∂γ Xµ ∂ν φ))δφ

]
,

(3.20)

applying the condition for the boundary of the AdS to cancel one of the terms and returning to the Poisson
bracket form, the equation of motion reads

0 = {X µ ,{Xµ ,φ}}−m2
φ . (3.21)

To see the direct correspondence between the Poisson brackets and the action of the Killing vector fields,
one can calculate

Kµ(Kµ φ)−m2
φ = K0(K0

φ)+K1(K1
φ)−K2(K2)−m2

φ . (3.22)

Defining K± = K2±K1, clearly one can show that:

K+ = (z2− t2)∂t −2zt∂z K− =−∂t , (3.23)

and with this two new vector fields, we can calculate:

K1(K1
φ) =

1
4
(
K+(K+

φ)−K−(K+
φ)−K+(K−φ)+K−(K−φ)

)
, (3.24)

for K2 we have

K2(K2
φ) =

1
4
(
K+(K+

φ)+K−(K+
φ)+K+(K−φ)+K−(K−φ)

)
, (3.25)

substituting these two terms on (3.22) we get to the main equation:

Kµ(Kµ φ)−m2
φ = K0(K0

φ)−K+(K−φ)− 1
2
[K+,K−]φ −m2

φ , (3.26)
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using the commutation relations defined on (3.7), the definition of the vector fields K+ and K− one can
easily show that [K+,K−] =−2K0, applying this on the equation above, we obtain:

K0(K0
φ)−K+(K−φ)+K0

φ −m2
φ = 0 . (3.27)

One can verify immediately that the action of the Killing vectors on the field yields an equation that is
very similar to the Klein-Gordon equation (Equation 1.36 for d=1):

Kµ(Kµ φ)−m2
φ = 0 =�φ −

`2
0m2φ

z2 . (3.28)

A deeper analysis on these results can be made by examining the behavior of the solutions. Any isom-
etry is generated by a Killing vector field Kν , with it we should have the conserved current jµ = T µν Kν ,
where T µν is the energy-momentum tensor which is covariantly conserved since ∇µ jµ = 0 implying the
conservation of the energy, there is not any energy leaving the AdS boundaries. Taking the variation of the
action and using the conservation equations, one can find that:

0 =
∫

AdS
d2x
√

g∇µ jµ =
∫

∂AdS

√
γ

∣∣∣
∂AdS

dσ
ν Kµ Tµν , (3.29)

where the boundary induced metric is considered on the second integral. If we let our killing vector be−K−

and we can take a big chunk of AdS restricted into two spacelike slices at t ∈ [t0, t f ] extending across all
space, which means z ∈ [0,∞). We should assume that all fields should decay exponentially when z→ ∞.
After all these considerations, the integral becomes:

∫
∞

0
dzTtt

∣∣∣∣t=t f

t=t0
−
∫ t=t f

t=t0
dtTtz

∣∣∣∣
z=0

, (3.30)

the first term is the energy inside the AdS, the second term is the flux of energy-momentum out the AdS
boundary. If we show that the second term is zero, then this equation implies a kind of energy conserva-
tion, since the fist integral should be constant for all spacelike slices at any arbitrary time interval. But, to
calculate this we should get an expression of the energy momentum tensor, it’s easy to do, we just take the
variation of the action with respect to the metric of the AdS (defined by canonical coordinates).

δS
δgµν

= T µν , (3.31)

one can calculate it with respect to the Poisson brackets:

Tµν =
√

g{Xµ ,φ}{Xν ,φ}−
gµν

2
√

g

(
{Xα ,φ}{Xα ,φ}+m2

φ
2) . (3.32)

Applying this on the integral of conservation one can deduce directly the conditions discussed on the
section 1.5 by other ways. We see clearly that when we take z−→ 0, the Killing vectors take the form
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K−→−∂t , K0→−t∂t , K+→−t2
∂t , (3.33)

they correspond to the generators explained on the section 2.1.2 showing that one recover the symmetries
of the conformal group as the killing vector fields on the boundary of the AdS space, giving some hints that
it is possible to realise this correspondence, that was once conjectured by Juan Maldacena for other specific
cases, and this realisation extends to AdS2/CFT1.



Chapter 4

Non-Commutative AdS/CFT

In this chapter we start by briefly reviewing some aspects of the non-commutative differential geometry
applied in physics following [1], [6], [21], [22], [23] and [24]. The main objective here is to give a real
meaning of what is the non-commutative geometry and why we would use it in physics to achieve some
goals that the standard ways of quantum field theory could not work.After, we discuss the one dimensional
case and we construct some representations to it and finish this chapter by constructing the set of Killing
vectors that preserves the SO(2,1) symmetries after the deformation quantization, following in the main part
[11] and [1].

4.0.1 Motivation

In the Euclidean geometry the notion of a point is ubiquitous and also necessary for most of it’s results
and applications. Extending this basic interpretation, for example, one can consider any finite-dimensional
commutative algebra which is a C∗-algebra can be as an algebra of functions on a finite set of points, in
which a C∗-algebra is a Banach algebra B over C with an involution that takes f → f ∗ and satisfies:

Let a and a∗ be elements of B and let the map ∗ : B−→ B be defined with the properties

(i) a∗∗ = (a∗)∗ = a , ∀ a ∈ B .

(ii) (ab+λc)∗ = b∗a∗+λc∗ , ∀ a,b,c ∈ B and λ ,λ ∈ C .

(iii) ‖ a∗a ‖=‖ a ‖ · ‖ a∗ ‖ , ∀ a ∈ B .

Clearly, the notion of a point can be extended to various types of spaces and situations, but this turn
out to be problematic when someone tries to quantize the classical mechanics. The standard procedure
of quantization can be naively described as the correspondence between the classical observables with
operators that acts in some separable Hilbert space of states, which don’t pose a real huge problem until
someone attempts to measure the amplitude of some quantum field at a precise given point in space-time,
resulting in a series of ultraviolet divergences. The aim of the non-commutative geometry is to rebuild the
geometry of manifolds in terms of an algebra of functions on it and then generalize the differential geometry
results to the case of a non-commutative algebra, causing loss of the notion of a point in space. Dirac in his

41
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first papers was aware of the absence of localization, as pointed by the Heisenberg uncertainty principle and
several physicists over the decades studied the algebra of observables considering the states as secondary
derived objects, which constitutes the transition to the non-commutative case where the notion of pure states
replace that of a point and vector fields are replaced by derivations of the algebra. The interest in this subject
increased lately because of the possibility that at very small length scales the space-time does not behave
as a differentiable manifold, pointing to the alternative formulation of the non-commutative quantum field
theory.

4.1 Phase-space quantization

There are three main alternative paths to quantization. The standard formulation that uses operators in
Hilbert space, the path integral formulation and the phase-space formulation based on Wigner’s quasi-
probability distribution function in phase space (WF) and Weyl’s correspondence between quantum opera-
tors and ordinary c-numbers phase-space functions, that relies on the star-product, that was fully understood
by Groenewold together with Moyal, which maps products of operators that act in some Hilbert space to
product of functions on the phase space, giving an alternative procedure to achieve the quantization.

4.1.1 The Wigner’s Function

The WF is defined as

f (x, p) =
1

2π

∫
dy ψ

∗
(

x− h̄
2

y
)

e−iyp
ψ

(
x+

h̄
2

y
)

. (4.1)

If ψ(x) ∈ L2(R), i.e. if ψ is a Lebesgue square-integrable complex-valued function on R satisfying
|ψ|2= 1, obviously the WF is normalized

∫
d p dx f (x, p) =

1
2π

∫
dy
∫

d p dx ψ
∗
(

x− h̄
2

y
)

e−iyp
ψ

(
x+

h̄
2

y
)

=
∫

dy dx ψ
∗
(

x− h̄
2

y
)

δ (y)ψ
(

x+
h̄
2

y
)

=
∫

dx |ψ(x)|2= 1 .

(4.2)

In the classical limit as h̄→ 0, it reduces to the probability density in coordinate space. The usual x- or
p-projections leads to probability densities in momentum or coordinate space. WF cannot be interpreted
as a probability distribution, it is therefore a quasi-probability distribution because it can assume negative
values for an arbitrary open set in the phase-space, but it leads to correct position and momentum probability
distributions given by quantum mechanics, replacing the wave-function in this formulation. It also provides
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the integration measure for functions on phase space that represents classical quantities in general. These
functions are associated to ordered operators upon quantization through the Weyl’s correspondence.

4.1.2 The Weyl’s Correspondence

The Weyl correspondence is the association of a quantum-mechanical operator W (g) in a given ordering
prescription with the classical c-number Fourier transformed function g on phase-space. This correspon-
dence reads

W (g) =G(x,p) =
1

(2π)2

∫
d p dx dα dβ g(x, p)exp(iα(p− p)+ iβ (x− x)) , (4.3)

where g(x, p) is the corresponding phase-space function, and x and p are the respective quantum operators
associated to x and p. The ordering prescription requires that an arbitrary operator written as a power
series of x and p be ordered in a completely symmetrized expression by use of Heisenberg’s commutation
relations, [x,p] = i h̄. Finally, Groenewold worked out how two classical c-number functions f (x, p) and
g(x, p) must compose in order to yield the product of operators G and H:

GH=
1

(2π)2

∫
dα dβ dx d p exp(iα(p− p)+ iβ (x− x))( f ?g)(x, p) , (4.4)

here ? stands for the star product. This is the original definition of the star product and it enables the
formulation of quantum mechanics in the phase-space.

4.1.3 Star Product

The star product a associative pseudo-differential deformation of ordinary products of phase-space c-
number functions. It is defined as

? := exp
[

ih
2
(
←−
∂ x
−→
∂ p−

←−
∂ p
−→
∂ x)

]
. (4.5)

It can be written in an expanded form as

F(x, p)?G(x, p) =
∞

∑
n=1

1
n!

(
i h̄
2

)n

ε
i1 j1 . . .ε in jn(∂i1 . . .∂inF)(∂ j1 . . .∂ jnG) , (4.6)

where i, j stands for x, p and the matrices ε i j are the Levi-Civita symbols of rank two. Since it involves
exponential of derivatives, it can be easily evaluated through translation of function arguments
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F(x, p)?G(x, p) = F
(

x+
i h̄
2
−→
∂ p, p− i h̄

2
−→
∂ x

)
G(x, p) . (4.7)

If one uses the Fourier representation of the star product as an integral kernel

F ?G =
1

(h̄π)2

∫
d p′ d p′′ dx′ dx′′ f (x′, p′)g(x′′, p′′)

×exp
(
−2i

h̄

(
p(x′− x′′)+ p′(x′′− x)+ p′′(x− x′)

))
, (4.8)

the expression on the exponent is twice the area of the phase-space triangle determined by the points
(x, p′), (x′, p′), and (x′′, p′′), simplifying the calculation of multiple star products. For more multiplica-
tions one can use the Almeida’s polygon theorem ([22],[24]), it associates multiple star products with the
sum of areas of triangles on phase space.

One can also define the star product using coherent states (CS). With the completeness relation, we can
assume that the CS form an overcomplete basis for the quantum-mechanical Hilbert space spanned by the
eigenvectors |ζ 〉, labelled by complex numbers ζ and usually satisfying 〈ζ |ζ 〉 = 1. To every operator Ô
acting on the Hilbert space, we can associate a function O(ζ ,ζ ), by definition:

O(ζ ,ζ ) := 〈ζ |Ô|ζ 〉 . (4.9)

Using the resolution of identity, one can define an associative product for two of such functions:

O(ζ ,ζ )?P(ζ ,ζ ) :=
∫

dµ(γ,γ)〈ζ |Ô|γ〉〈γ|P̂|ζ 〉= 〈ζ |ÔP̂|ζ 〉 . (4.10)

Using the normal (anti-normal) representations of the operator defined above, these functions are analytic
in ζ (ζ )and acting the translation operator twice in these states, we can construct directly the function
〈ζ |Ô|γ〉 by the action of the ordered exponential upon (ζ ,ζ ) depending functions:

: exp(γ−ζ )
−→
∂ ζ : O(ζ ,ζ ) :=

〈ζ |Ô|γ〉
〈ζ |γ〉

, (4.11)

the ordered derivatives acts to the right in each term of the Taylor expansion, we can similarly define an
ordered exponential that acts to the left (on the anti-analytic part of the functions) and finally substitute this
on the definition of the star product:

O(ζ ,ζ )?P(ζ ,ζ ) =
∫

dµ(γ,γ)O(ζ ,ζ ) : exp(γ−ζ )
←−
∂ ζ : |〈ζ |γ〉|2: exp(γ−ζ )

−→
∂

ζ
: P(ζ ,ζ ) . (4.12)

Consider the case that the CS are eigenvectors of some operator x̂. Trivially, the star product of two
analytic functions is the same as the ordinary product. For the anti-analytic functions we take the action of
the adjoint operator 〈ζ |x̂† = ζ 〈ζ | , and we recover trivially the same property for analytic functions. For
non-trivial results, we must consider the product:
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O(ζ )?P(ζ ) = O(ζ )P(ζ )+ 〈ζ |[Ô(x̂), P̂(x̂†)]|ζ 〉 . (4.13)

Once we know the commutation relations for the operators x̂ and x̂† we can evaluate these products.
Demanding that the commutation relations between these two operators could be expanded with respect to
h̄ and for the classical limit h̄→ 0

O(ζ ,ζ )?P(ζ ,ζ ) = O(ζ ,ζ )P(ζ ,ζ ) (4.14)

O(ζ ,ζ )?P(ζ ,ζ )−P(ζ ,ζ )?O(ζ ,ζ ) = O(h̄) , (4.15)

where the LHS of (4.15) is related to the classical Poisson bracket. Now we define the Moyal Bracket

{O,P}? = O?P−P?O , (4.16)

with, for the CS case

?= exp
(

h̄
2
←−
∂ ζ

−→
∂

ζ

)
. (4.17)

Any function F̂(x̂, ŷ) of canonical conjugate operators that satisfies [x̂, ŷ] = 1 can be mapped to the
Moyal-Weyl plane spanned by the commuting coordinates (x,y) and any product of functions of operators
is mapped to the star products of the symbols F(x,y).

4.2 The non-commutative d=1 AdS

Let’s start with the canonical coordinates (x,y) that satisfies (3.15) and (3.16). The embedding (3.10) and
the Killing vectors are written in these coordinates as

X0 =−y , X1 =− 1
2`0

e−xy2 + `0 sinh(x) , X2 =− 1
2`0

e−xy2− `0 cosh(x)

K0 = ∂x , K1 =
1
`0

e−xy∂x−X2
∂y , K2 =

1
`0

e−xy∂x−X1
∂y . (4.18)

Following the usual procedure for quantization, we replace the three embedding coordinates X µ by
Hermitian operators satisfying the analogues of equations (3.6) and (3.9), promoting Poisson brackets to
commutation relations

X̂ µ X̂µ =−`2
1 [X̂ µ , X̂ν ] = iαε

µνρ X̂ρ , (4.19)

where α stands for the non-commuting parameter with units of length. To recover the commutative AdS2 we
just take the commutative limit α→ 0 and `→ `0, with α playing the role ofh̄. This limit is achieved by tak-
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ing the coordinates to the boundary making r̂→ ∞ i.e. ẑ→ 0. These equations define the non-commutative
AdS2 satisfying the so(2,1) algebra. One can also define the radial operator

r̂ = ẑ−1 =
1
`
(X̂1− X̂2) , (4.20)

which will have a huge importance in the non-commutative AdS/CFT correspondence. The states of the
ncAdS2 belong to the universal cover of the group SU(1,1) and the algebra of the operators sastisfies (4.19).
Taking a slightly different approach from (3.8), one can take a basis in a given representation of the X2

eigenvectors

X̂+|ε0,k,m〉=−α cm |ε0,k,m+1〉 , (4.21)

X̂−|ε0,k,m〉=−α cm−1 |ε0,k,m−1〉 , (4.22)

X̂2|ε0,k,m〉=−α (ε0 +m) |ε0,k,m+1〉 , (4.23)

X̂µ X̂ µ |ε0,k,m〉=−α
2 k(k+1) |ε0,k,m+1〉 , (4.24)

where the coefficient is

cm =
√

(k+ ε0 +m+1)(ε0− k+m) . (4.25)

4.2.1 Representations

As discussed in the section 3.1.2, we will use the generalized Laguerre polynomials to construct a differen-
tial representation for the embedding coordinates for the discrete representation D+(k). Setting the lowest
state as |k,0〉 which is anihhilated by X̂− , since we are assuming ε0 =−k > 0, we expand the eigenvectors
of the radial operator |r,k〉 in terms of the X̂2 eigenbasis

|r,k〉=
∞

∑
m=0

ψ
+
k,m(r)|k,m〉 . (4.26)

Writing the radial operator in terms of the raising and lowering operators

r̂ =
1
2`

(X̂+− X̂−−2X̂2) , (4.27)

one can write the eigenvalue equation

r̂|r,k〉= 1
2`

(X̂+− X̂−−2X̂2)|r,k〉= r|r,k〉 . (4.28)

Using (4.21) and (4.23) we get to the following
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(4.29)−
√
(m + 1)(m− 2k)ψ+

m+1(r)−
√

m(m− 1− 2k)ψ+
m−1(r)

+ 2(k − m)ψ+
k,m(r) =

`r
α

ψ
+
k,m(r) ,

all the coeficients are determined by the recursion relation (4.29), agreeing with the generalized Laguerre
polynomials for m > 0

ψ
+
k,m(r) =

√
m!

(m−2k−1)!
L−2k−1

m

(
2`r
α

)
. (4.30)

These relations has the half line r > 0 as domain, this means that these states picks one of the boundaries
of the AdS2 to the non-commutative case finishing the boundary ambiguities for this model as r→ ∞. In
order to simplify the coefficients, lets use the orthogonality conditions of Lα

m(x)

∫
R+

dx xβ e−xLβ
m(x)L

β
n (x) =

δn,m

m!
Γ(m+β +1) , (4.31)

and defining

Cm =

√
m!

(m−2k−1)!
, (4.32)

we can reorder (4.30)

(4.33)L−2k−1
m

(
2`r
α

)
=

ψ
+
k,m(r)

Cm
,

substituting (4.33) in (4.31) we get to the following

∫
R+

dr
(

2`
α

)−2k

e−2`r/α r−2k−1
ψ

+
k,m(r)

Cm

ψ
+
k,n(r)

Cn
=

δn,m

m!
(m−2k−1)! , (4.34)

since (4.34) will not vanish for m = n we can impose that exists a function u+k,m(r) such that

∫
R

dr u+k,m(r)u
+
k,n(r) = δm,n , (4.35)

it implies that

u+k,m(r) =
(

2`
α

)−k

e−`r/α r−k−1/2
ψ

+
k,m(r) . (4.36)
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Now, to get a representation of the differential operator D̂ = (r̂− r) satisfying D̂ψ
+
k,m(r) = 0 we must use

the differential equation that defines the generalized Laguerre polynomials

x
d2

dx2 Lβ
m(x)+(β +1− x)

d
dx

Lβ
m(x)+mLβ

m(x) = 0 . (4.37)

Substituting (4.33) and (4.36) in (4.37) and using x = 2`r/α and β =−2k−1 one finds that

(
α(k+ 1

2 )
2

2`r
+

`r
2α

+
α(m− k)

2`
− d

dr

(
αr
2`

d
dr

))
u+k,m(r) = 0 . (4.38)

Comparing (4.38) with (4.23) we just found a differential representation πk of X2 on L2(R+,dr) by
multiplying the equation (4.38) by −α . To find the representations of the other operators lets calculate
πk([r̂, X̂2])

(
rπ

k(X̂2)−π
k(X̂2)r

)
[ψ(r)] = π

k([r̂, X̂2])[ψ(r)] , (4.39)

using (4.19) and (4.20) i.e. [r̂, X̂2] = 1
` [X̂

1, X̂2] = iα
`

α2

2`

(
r

d
dr

[
r

dψ

dr

]
− d

dr

[
rψ + r2 dψ

dr

])
=

iα
`

π
k(X̂0)[ψ(r)] . (4.40)

which simplifies to

π
k(X̂0) = iα

(
r

d
dr

+
1
2

)
. (4.41)

doing the same procedure for X̂1 using the commutator between X2 and X0 one finds that

π
k(X̂2) =−α2

2`

(
(k+ 1

2 )
2

r
+

`2r
α2 −

d
dr

(
r

d
dr

))
, (4.42)

π
k(X̂1) =−α2

2`

(
(k+ 1

2 )
2

r
− `2r

α2 −
d
dr

(
r

d
dr

))
. (4.43)

These operators acts linearly on L2(R+,dr), the space of square-integrable functions on the half real
line. Replacing r = ex we can recover the linear operators π̃(X̂ µ) that acts on L2(R,dx) spanned by { f (x) =
ex/2ψ(ex)}, in terms of the self-adjoint operators x̂ and ŷ, satisfying

[x̂, ŷ] = iα1 . (4.44)

In these coordinates the operators X µ acting on { f (x)} are

π̃
k(X̂0) =−ŷ , (4.45)
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π̃
k(X̂1) =− 1

2`
ŷex̂ŷ− α2

2`
k(k+1)e−x̂ +

`

2
ex̂ , (4.46)

π̃
k(X̂2) =− 1

2`
ŷex̂ŷ− α2

2`
k(k+1)e−x̂− `

2
ex̂ . (4.47)

The operators x̂ and ŷ satisfy the canonical commutation relations and can be mapped to their respective
symbols on the Moyal-Weyl plane spanned by coordinates (x,y). This mapping is an isomorphism and by
the Weyl correspondence, the product of functions of the operators FG(x̂, ŷ) is mapped to the star product on
the Moyal-Weyl plane F ?G (x,y) defined by (4.5) substituting α →h̄ and p→ y. The symbols of π̃k(X̂ µ)

are denoted by X µ and take the form

X 0 =−y , (4.48)

X 1 =− 1
2`

y? e−x ? y− α2

2`
k(k+1)e−x +

`

2
ex , (4.49)

X 2 =− 1
2`

y? e−x ? y− α2

2`
k(k+1)e−x− `

2
ex . (4.50)

These functions satisfy the same relations (4.19) when mapping the usual point-wise product to the star
product on the moyal plane.

X µ ?Xµ =−`2 , (4.51)

[X µ ,X ν ]? = X µ ?X ν −X ν ?X µ = iαε
µνρXρ . (4.52)

Clearly, taking α → 0 we recover the point-wise product and, as explained before, the leading term
on the α expansion in the star commutator is the Poisson bracket (3.39). For some calculations we will
need to write the embedding coordinates of ncAdS2 as functions of z and t, for this we must verify if this
transformation spoils the algebra on the Moyal-Weyl plane for some order in α . Starting with [x̂, ŷ] = iα Î,
we want to define new parameters as functions of x̂ and ŷ satisfying the ordering prescription as follows:

t̂ =
1

2`0

(
ŷe−x̂ + e−x̂ŷ

)
, ẑ = e−x̂ . (4.53)

We can calculate the commutator of the new operators following the relation which consider that x and y
are canonically conjugate. One can find that

[ f (x̂), ŷ] = iα
∂ f (x̂)

∂x
, (4.54)

one can easily show by induction

[x̂n, ŷ] = nx̂n−1[x̂, ŷ] , (4.55)

expanding on Taylor’s series
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[ f (x̂), ŷ] =

[
∞

∑
n=1

∂ n f
∂xn

x̂n−1iα
(n−1)!

, ŷ

]
= iα

ˆ∂ f
∂x

. (4.56)

With this useful result, we can calculate the commutator of z and t. Using [ f (x̂),g(x̂)] = 0, one can find
that by direct substitution:

[ẑ, t̂] =
1

2l0
([e−x̂, ŷe−x̂]+ [e−x̂,e−x̂ŷ]) =− iα ẑ2

`0
. (4.57)

In order to verify if the mapping to the Moyal-Weyl plane preserves this commutator, we must calculate
the Moyal-commutator of the symbols z and t, denoting as ?x,y the star product for the canonical coordinates
and ?z,t the transformed star product, one can calculate

[z, t]?x,y(x,y) = z(x,y)?x,y t(x,y)− t(x,y)?x,y z(x,y) , (4.58)

applying the definition of the star product

[z, t]?x,y(x,y) =
∞

∑
n=1

1
n!

(
iα
2

)n

ε
i1 j1 . . .ε in jn(∂i1 . . .∂in)e

−x(∂ j1 . . .∂ jn)
( y
`0

e−x
)
, (4.59)

calculating up to O(1)

[z, t]?x,y(x,y)' e−2xy− e−2xy = 0 , (4.60)

the term proportional to α is

[z, t]?x,y(x,y)'
iα
2

[
∂x(e−x)∂y

(e−xy
`0

)
+∂y

(e−xy
`0

)
∂x(e−x)

]
=−e−2xiα

`0
, (4.61)

the term proportional to α2 consist in products of two derivatives acting on z and t, clearly for any y-
derivative acting on z the respective term will be zero. Since all terms have at least one y derivative on z, all
of them are zero except the term that has two x-derivatives on z, but it’s clear that ∂ 2

y t(x,y) = 0. With this
analysis, it’s clear that the only non-vanishing term of the commutator is

[z, t]?x,y(x,y) =−
e−2xiα
`0

=− iα
`0

z2 , (4.62)

which is equivalent to (4.57). To see if the (z, t) star commutator of the new coordinates is preserved under
this transformation we must calculate the transformation rule for the derivatives

∂

∂x
=−t

∂

∂ t
− z

∂

∂ z
,

∂

∂y
=− z

`0

∂

∂ t
, (4.63)

calculating the commutator for (z, t) by definition:

[z, t]?z,t = z?z,t t− t ?z,t z , (4.64)
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we can apply a change of variables and using this notation, with n being the n-th derivative:

∂ν =
∂xµ

∂xν
∂µ , (∂ν)

(n) =

(
∂xµ

∂xν
∂µ

)(n)

. (4.65)

Using this on the star product we obtain:

F ?z,t G =
∞

∑
n=1

1
n!

(
iα
2

)n

ε
µ1ν1 . . .εµnνn

(
∂xi1

∂xµ1
∂i1 . . .

∂xin

∂xµn
∂inF

)(
∂x j1

∂xν1
∂ j1 . . .

∂x jn

∂xνn
∂ jnG

)
, (4.66)

one can easily find these relations

(∂x)
(n) =

n

∑
l=0

(
l
k

)
(−z∂z)

(k−l)(−t∂t)
(l) , (∂y)

(n) =
( z
`0 ∂t

)(n)
. (4.67)

For n > 1 the successive application of either (∂x)
(n) or (∂y)

(n) is zero because the remaining term will
be z and it will always be differentiated under respect to t at least one time resulting in zero for all terms
beyond the second order, so, as expected, we obtain from the non-vanishing high order terms the same result

[z, t]?z,t =−
iα
`0

z2 =− iα
`0

z? z . (4.68)

Therefore, we can’t calculate so easily these commutators on the new variables because after the order
α2 the differential operators turn out to be very complicated, leading to some tedious calculations as the
one that follows

?x,y = 1+
iα
2
(
←−
∂x
−→
∂y −

←−
∂y
−→
∂x )+ (4.69)

1
2

(
iα
2

)2

[
←−
∂x
←−
∂x
−→
∂y
−→
∂y +

←−
∂y
←−
∂y
−→
∂x
−→
∂x −

←−
∂x
←−
∂y
−→
∂y
−→
∂x −

←−
∂y
←−
∂x
−→
∂x
−→
∂y ]+O(α3) ,

using the definitions we can show that:


∂ 2

x = (t + z)(z∂z +1)∂t + t2∂ 2
t

∂ 2
y = z2

`2 ∂ 2
t

∂x∂y = ∂y∂x =− z
` (z∂z +1+ t∂t)∂t .

(4.70)

Clearly we can see that we have t and z dependence on order α2, generating non trivial terms on the star
product. The transformed star product up to order α is

?z,t = 1− iα
2

(←−
∂z z2−→

∂t −
←−
∂t z2−→

∂z

)
+O

(
α

2) . (4.71)
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4.2.2 Killing vectors

From (3.21) the isometry transformations of AdS2 on a scalar field can be obtained by taking the Poisson
bracket of this field with the embedding coordinates. In the non-commutative case for a function Φ̂ the
action of the SO(2,1) isometry group will induce an infinitesimal variation of the form

δncΦ̂ = εµ(K̂µ
Φ̂) = iεµ [X̂ µ ,Φ̂] , (4.72)

for some infinitesimal parameter εµ . A natural step is map these Killing vectors to the Moyal-Weyl plane.
From now on, the functions without ∧ will denote the symbols of the operators. Then, the equation (4.72)
becomes

δncΦ = εµ(K
µ
? Φ) = iεµ [X

µ ,Φ]? , (4.73)

where (Kµ
? Φ) is the symbol of (K̂µ Φ̂). To evaluate (4.73) we can use the identity (4.7) and do first the minor

steps

[e±x,Φ]? = e±x exp
(

iα
2

ε
i j←−

∂ i
−→
∂ j

)
Φ(x,y)−Φ(x,y)exp

(
iα
2

ε
i j←−

∂ i
−→
∂ j

)
e±x , (4.74)

using the translation property and the fact that the y-derivative on e±x vanishes, one gets

[e±x,Φ]? =±e±xe(iα/2)∂yΦ(x,y)∓ e±xe−(iα/2)∂y Φ(x,y) , (4.75)

and hence

[e±x,Φ]? =±e±x
(

Φ

(
x,y+

iα
2

)
−Φ

(
x,y− iα

2

))
, (4.76)

reorganizing (4.75) one can rewrite this as

±e±x
(

e(iα/2)∂y − e−(iα/2)∂y
)

Φ(x,y) =±2i e±x sin
(

α

2
∂y

)
Φ(x,y) . (4.77)

Defining

∆y =
2
α

sin
(

α

2
∂y

)
, (4.78)

the star commutator of (4.74) is
[e±x,Φ]? =±iα e±x

∆yΦ . (4.79)

To start the second step, we can calculate

y? (e−x ? y) = y? e−x
[

y− iα
2

]
= y
(

e−x+(iα/2)
←−
∂ y

[
y− iα

2
←−
∂ x

])
, (4.80)
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y? (e−x ? y) = e−x
(

y2 +
α2

4

)
.

After this, we proceed as the first step

[y? e−x ? y,Φ]? =

[
e−x
(

y2 +
α2

4

)
,Φ

]
, (4.81)

using the identities

e−x
(

y2 +
α2

4

)
?Φ = e−x+(iα/2)∂y

((
y− iα

2
∂x

)2
y2 +

α2

4

)
Φ(x,y) , (4.82)

and

Φ? e−x
(

y2 +
α2

4

)
= e−x−(iα/2)∂y

((
y+

iα
2

∂x

)2
y2 +

α2

4

)
Φ(x,y) , (4.83)

it gives

[y? e−x ? y,Φ]? = e−x
(

y2 +
α2

4
(1−∂

2
x )− iα y∂x

)
Φ

(
x,y− iα

2

)
− (4.84)

− e−x
(

y2 +
α2

4
(1−∂

2
x )+ iα y∂x

)
Φ

(
x,y+

iα
2

)
,

using (4.78) and defining

SyΦ(x,y) =
Φ

(
x,y+ iα

2

)
+Φ

(
x,y− iα

2

)
2

= cos
(

α

2
∂y

)
Φ(x,y) , (4.85)

we finally get the second commutator

[y? e−x ? y,Φ]? =−iα e−x

(
y2

∆y +2y∂xSy +
α2

4
(1−∂

2
x )∆y

)
Φ(x,y) . (4.86)

Now, with these expressions we can take the commutator of the symbols (4.48) - (4.50) with Φ to evaluate
the non-commutative variation of the field

δncΦ = αε0∂xΦ+
iε+
2`

[y? e−x ? y,Φ]?+
iε+α2

2`
k(k+1)[e−x,Φ]?+

iε−`
2

[ex
Φ]? . (4.87)

Following the definition of the raising and lowering operators, the non-commutative variation can be
written as δnc =

α

2

(
ε−K−? + ε+K+

?

)
+ ε0K0

? , with this the analogues of the Killing vectors are
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K−? =−`ex
∆y , K0

? = ∂x

K+
? =

e−x

`

(
2y∂xSy +

(
y2 + `2 +

α2

4
(1−∂

2
x )
))

.
(4.88)

In the commutative limit, these differential operators agree with (3.10) and they indeed satisfy the
so(2,1) algebra. K0

? is equivalent to K0, while the others are deformations containing infinite order polyno-
mials in ∂y. We can re-express (4.88) in terms of the Fefferman-Graham coordinates doing the same change
of variables of the section (4.3.1)

K−? =−`

z
∆t , K0

? =−t∂t − z∂z

K+
? =−2t(t∂t + z∂z)St +

`

z

(
t2 +

(
1+

α2

4`

)
z2

)
∆t −

α2z
4`

(t∂t + z∂z)
2
∆t

(4.89)

These expressions can be taken to the boundary by taking z→ 0, which corresponds exactly (3.33),
showing that the ncAdS2 is asymptotically AdS2, now we may try, in principle, to apply the AdS/CFT
correspondence. In the next sections we will explore briefly the massless scalar case, since it is deeply
discussed in [1], and we will be mainly interested in the case with mass and interactions. There are some
works (see [10] for example) pointing that the AdS/CFT correspondence holds for some nearly conformal
field theories on the boundary, since the whole symmetry of the conformal group cannot be attained by
some fields on AdS.



Chapter 5

Non-Commutative Field theories

In this section we are following [1]. Here we will write an expression for the massless scalar and the
massive field on ncAdS2, a similar discussion can be found in [35]. As an important feature, we find that
after the mapping to the non-commutative space, the field will present nontrivial nonlocal interactions that
desapears near the boundary. In sequence, we calculate the correlators of the theory and we show that after
the deformation, the usual two point correlator gain a non-commutative correction that depends on the
non-commutative scale factor.

5.1 Free Massless Scalar Field

Let Φ(0) be a massless scalar field on AdS2. The invariant SO(2,1) standard action can be written as in
(3.13)

S[Φ(0)] =
1

2`0

∫
AdS2

dµ {X µ ,Φ(0)}{Xµ ,Φ
(0)} , (5.1)

where dµ is an invariant measure on AdS2. Using the canonical coordinates defined on section 3, the equa-
tion reads

(5.2)S[Φ(0)] =
1

2`0

∫
R2

dx dy
[(

y∂yΦ
(0) + ∂xΦ

(0)
)2

+ `2
0(∂yΦ

(0))2
]
,

promoting Φ(0) to a field in ncAdS2 (see [1]), we generalize (5.1)

Snc[Φ̂] =− 1
2`

Tr[X̂ µ ,Φ̂][X̂µ ,Φ̂] , (5.3)

where Tr denotes the trace operation. Assuming that the scale parameter is the same for the two cases, we
can map the action to the Moyal-Weyl plane by replacing Tr→ 1

α2

∫
R2 dx dy as follows

55
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Snc[Φ] =− 1
2`α2

∫
R2

dx dy [X µ ,φ ]? ? [Xµ ,φ ]? . (5.4)

Without taking account of the boundary terms, we can express the action for the bulk field applying
(4.48) - (4.50), (4.79) and (4.86) to (5.4)

Snc[Φ] =
1
2`

∫
R2

dx dy
{
(∂xΦ)2 +∆yΦ

(
y2

∆yΦ+2y∂xSyΦ− α2

4
∂

2
x ∆yΦ

)
(5.5)

+α
2
(

k+
1
2

)2
(∆yΦ)2

}
,

note that

∫
R2

dx dy
{(

∂xSyΦ

)2
− α2

4

(
∂x∆yΦ

)2
− (∂xΦ)2

}
= (5.6)

=
∫
R2

dx dy
{(

cos2
(

α

2
∂y

)
+ sin2

(
α

2
∂y

))
(∂xΦ)2− (∂xΦ)2

}
= 0 ,

integrating (5.5) by parts under respect to x, using (4.19) and (4.24) we can show that α2k(k+ 1) = `2 in
addition to (5.6) one can simplify (5.5)

Snc[Φ] =
1
2`

∫
R2

dx dy
{(

y∆yΦ+∂xSyΦ

)2
+
(

α2

4
+ `2

)
(∆yΦ)2

}
. (5.7)

In order to see the behaviour of the action on the boundary, we express (5.7) in terms of Fefferman-
Graham coortinates

Snc[Φ] =
1
2

∫
R×R+

dt dz
{(`t

z
∆tΦ− (t∂t + z∂z)StΦ

)2
+
(

α2

4
+ `2

)
(∆tΦ)2

}
, (5.8)

as z goes to zero ∆tΦ→ z
`∂tΦ|z=0 and StΦ→Φ|z=0, the integrand goes to the action density of a massless

scalar field on commutative AdS2 with a rescaled time parameter t, satisfying the equation for a massless
scalar field on an asymptotically AdS2 space

(
1+

α2

4`2

)
(∂tΦ)2 +(∂zΦ)2 . (5.9)

Taking the variation of the action (5.4) under respect to Φ

δSnc[Φ] =− 1
2`α2

∫
R2

dx dy
(
[X µ ,δΦ]? ? [Xµ ,Φ]?+[X µ ,Φ]? ? [Xµ ,δΦ]?

)
=

1
`α2

∫
R2

dx dy
(

δΦ? [X µ , [Xµ ,Φ]?]?−
(
[X µ ,δΦ? [Xµ ,Φ]?]?

(5.10)

−[[X µ ,Φ]?, [Xµ ,δΦ]?]?

))
,



5.1 Free Massless Scalar Field 57

from the first term, the field equation in the bulk is

[X µ , [Xµ ,Φ]?]? = 0 . (5.11)

The remaining two terms are only defined on the boundary since the Moyal star commutator of any two
functions on the Moyal-Weyl plane is a total divergence. In order to show this let F and G be two arbitrary
functions on the Moyal-Weyl plane, it’s easy to see that

∫
R2

dx dy F ?G (x,y) =
∫
R2

dx dy FG (x,y)+boundary terms , (5.12)

evaluating the star commutator on a domain D

∫
D

dx dy [F ,G ]?(x,y) =
∫

D
dx dy iα

[(
∂xF∂yG −∂xG ∂yF

)
+O(α2)

]
, (5.13)

we can rearrange the terms using the symmetry of the equation

∫
D

dx dy [F ,G ]?(x,y) =
∫

D
dx dy iα

[(
∂y(G ∂xF )−∂x(G ∂yF )

)
+O(α2)

]
. (5.14)

Clearly the order α term is a total divergence. Up to order α3, we define

Vx =−iα
(

G ∂xF +
α2

24

(
∂

3
x F∂

2
y G +∂x∂

2
y F∂

2
x G −2∂

2
x ∂yF∂x∂yG

)
+O(α4)

)
(5.15)

Vy =−iα
(

G ∂yF +
α2

24

(
∂

3
y F∂

2
x G +∂y∂

2
x F∂

2
y G −2∂

2
y ∂xF∂y∂xG

)
+O(α4)

)
, (5.16)

then the integral of the star commutator can be written as a boundary integral

∫
D

dx dy [F ,G ]?(x,y) =
∫

D
[∂xVy−∂yVx](x,y) =

∫
∂D

(Vxdx+Vydy) . (5.17)

For us, the boundary is located at z = 0 which implies that

∫
∂D

(Vxdx+Vydy) =
∫

Vt |z=0 dt , (5.18)

where Vt =
`
z Vy . Now we set F = X µ and G = δΦ? [Xµ ,Φ]? in (5.10) to get up to order α

1
`α2

∫
D

dx dy[X µ ,δΦ? [Xµ ,Φ]?]? =−
1

`α2

∫
∂D

(
δΦ? [Xµ ,Φ]?∂xX

µ dx (5.19)

+X µ
∂y(δΦ? [Xµ ,Φ]?)dy

)
=−

∫
∂D

δΦ∂zΦ|z=0 dt ,
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which is the commutative result. As explained in [1], the α2 corrections to this go like zn for n ∈ N, which
vanish on the boundary. To evaluate (5.10)for the second boundary term we just set F = [X µ ,Φ]? and
G = [Xµ ,δΦ]? and then sum over µ . This procedure shows that all contributions to Vt go like zn for
n ∈N vanishing on the boundary. Since for all orders greater than α2 they involve higher derivatives, it will
produce higher powers of z meaning that all terms must vanish for O(αn) with n≥ 3. The last equality on
(5.19) means that we can fix the boundary value of the field

φ0(t) = Φ(0, t) , (5.20)

and the variational problem is well defined for Dirichlet boundary conditions. Then, the field equation of
motion following from (5.8) is

(
`∆t

t
z
− (t∂t + z∂z)St

)(
`∆t

t
z
− (t∂t + z∂z)St

)
Φ+

(
α2

4
+ `2

)
∆

2
t Φ = 0 . (5.21)

The expression (5.21) reduces to second order differential equations in both commutative and asymptotic
limits, then it can be solved given sufficient data at the AdS2 boudary. Using standard techniques (see [1],
[5] and [7]) and with the help of the Propagators defined in the first chapter, the on-shell action merely
undergoes an overall rescaling when extended to the non-commutative case.

Snc[Φsol ] =−
1

2π

∫
dt
∫

dt ′ φ0(t)φ0(t ′)
((

1− α2

8`2

) 1
(t− t ′)2 +O(α4)

)
. (5.22)

The usual AdS/CFT correspondence, for the commutative case (α = 0) comes from the equation of
motion

�Φ = (∂ 2
z +∂

2
t )Φ = 0 . (5.23)

The solutions for (5.23) which are everywhere regular can be expressed in terms of the boundary value of
the field using the boundary-to-bulk propagator

Φ(z, t) =
∫
R

dt ′ K(z, t; t ′)φ0(t ′) , (5.24)

substituting (5.24) on the usual commutative action, this will leave only the boundary term

S[Φ(z, t)] =− 1
2π

∫
R

dt
∫
R

dt ′
φ0(t)φ0(t ′)
(t− t ′)2 . (5.25)

In the correspondence, one indentifies the on-shell action with the generating functional of the connected
correlation functions for the operators O associated with φ0 at the boundary. The n-point function is

〈O(t1)...O(tn)〉=
δ nS[Φ[φ0]]

δφ0(t1)...δφ0(tn)

∣∣∣∣
φ0=0

. (5.26)
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For the two-point function, for example

〈O(t)O(t ′)〉=− 1
2π

1
(t− t ′)2 . (5.27)

In the non-commutative case, using (5.22), we see that the two-point function is just multiplied by a rescal-
ing factor at the leading order in α

〈O(t)O(t ′)〉=− 1
2π

(
1− α2

8`2

) 1
(t− t ′)2 , (5.28)

if ` depends on α , we should replace ` in the leading order correction by `0, as will be shown in the next
sections. From all the general arguments used in this section, we showed that the AdS/CFT correspondence
is applicable in the non-commutative case. The dynamics for the scalar field contains non-trivial non-local
interactions without seriously affecting the boundary conformal theory.

5.2 Massive Case

The whole discussion that will be conducted in the following sections is contained in the paper [35]. Starting
with the commutative case, we can use the Fefferman-Graham coordinates of the lower hyperboloid, which
in the Euclidean case, gives us the Laplacian

L (0) = z2(∂ 2
z +∂

2
t ) = Kµ Kµ (5.29)

Where the K is the Killing vectors defined in the last chapter, which are the quadratic casimir of
so(2,1).The action for a real massive scalar field Φ(0) in the Euclidean AdS2 is

S[Φ(0)] =
1
2

∫
R×R

dt dz
{
(∂zΦ

(0))2 +(∂tΦ
(0))2 +

(m0`0Φ(0)

z

)2
}
, (5.30)

where, m0 is the mass satisfying the Beitenlohner-Freedman Bound and the superscript (0) denotes the
commutative theory. The equations of motion for the action are

L (0) = (m0`0)
2
Φ

(0) . (5.31)

Near the boundary, the solutions will behave as (1.54), the leading term for z→ 0 is the power of ∆−.
Assuming that this solution is non-vanishing, the field will be singular in the limit (m0`0)

2 > 0. Away from
the boundary, the solutions can be expressed using the boundary to bulk propagator as (1.108), denoting
these solutions as Φ

(0)
sol [φ0] and substituting this in the action (5.30) it gives for |t− t ′|>> ε



60 5 Non-Commutative Field theories

(5.32)S
[
Φ

(0)
sol [φ0]

]
= −1

2

∫
R

dtΦ(0)
sol [φ0]∂zΦ

0
sol [φ0]

∣∣∣∣
z=ε

=
∆+Γ(∆+)

2
√

πΓ(ν)

∫
R2

dt dt ′
φ0(t)φ0(t ′)
|t − t ′|2∆+

,

using the correspondence, lets associate the on-shell action with the generating functional of the n-point
connected correlation function for some operator O defined on the boundary of this space, identifying the
source on the boundary with the field φ0. Taking the functional derivative of (5.32)

〈O(t)O(t ′)〉(0) = ∆+Γ(∆+)√
πΓ(ν)|t− t ′|2∆+

. (5.33)

Now, we are going to try the generalization of this method to the non-commutative theory (ncAdS2).
Starting with the quantization that preserves the full isometry group, we get into the action

Snc[Φ̂] =− 1
2`

Tr
{
[X̂ µ ,Φ̂]X̂µ ,Φ̂]− (α`m)2

}
. (5.34)

The commutative limit corresponds to (α, `,m)→ (0, `0,m0) and m is the mass of the scalar field. This
action can be mapped to the Moyal-Weyl plane as we did before in (5.4) adding the mass term to it. After
writing the action explicitly as (5.5), we find that

Snc[Φ] =
1
2`

∫
R2

dx dy
{
(∂xΦ)2 +∆yΦ

(
y2

∆yΦ+2y∂xSyΦ− α2

4
∂

2
x ∆yΦ

)
(5.35)

+ α
2
(

k+
1
2

)2
(∆yΦ)2 +(m`)2

Φ
2
}

,

in which we write the field equation for the variables (z, t)

(
`∆t

t
z
− (t∂t + z∂z)St

)(
`∆t

t
z
− (t∂t + z∂z)St

)
Φ+

(
α2

4
+ `2

)
∆

2
t Φ = (m`)2

Φ . (5.36)

We search for pertubative solutions to the field equations by expanding the non-commutative Laplacian,
as well `, in powers of α2

L = L (0)+α
2L (1)+O(α4) , (5.37)

using the expression for the non-commutative Killing vectors K? we can write L (1) in terms of (x,y) vari-
ables

L (1) =
1

12

{
− (`2

0 + y2)∂ 4
y +24

`1

`0
∂

2
y −4y∂

3
y (1+∂x)−3∂x∂

2
y (2+∂x)

}
, (5.38)

for
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`= `0 +
α2

`2
0
`1 +O

(
α4

`4
0

)
, (5.39)

we can simplify (5.38) by taking a similarity transformation (see Appendix A.1.)

ULU−1 = L (0)+α
2L

(1)
U , (5.40)

upon expanding U in powers of α2

U = 1+α
2G+O(α4) , (5.41)

we get

L
(1)

U = L (1)+[G,L (0)] . (5.42)

For a particular choice of G

G =
1
96

(
3+2y∂y +6∂x

)
∂

2
y +

1
`2

0

(32`1 +3
32`0

)
(y∂y +∂x) , (5.43)

we get the simple result for the transformed Laplace operator on the Fefferman-Graham Coordinates

ULU−1 = z2(∂ 2
z +∂

2
t )−α

2 1
8`2

0
z4

∂
4
t +O(α4) . (5.44)

By defining the transformed field ΦU =UΦ we get to the modified field equation

(ULU−1)ΦU = (m0`0)
2
ΦU . (5.45)

For simplicity, we set m = m0
`0
` in order to get (m`)2 = (m0`0)

2. By direct calculation of (5.42), we find
that

U = 1− α2

`2
0

( z2

96
(9+4t∂t +6z∂z)∂

2
t + cz∂z

)
+O

(
α4

`4
0

)
, (5.46)

with c = `1
`0
+ 3

32 . By direct verification, we can apply the inverse map on ΦU

Φ(z, t) =U−1
ΦU (z, t) =

(
1+

α2

`2
0

( z2

96
(9+4t∂t +6z∂z)∂

2
t + cz∂z

)
+O

(
α4

`4
0

))
ΦU (z, t) , (5.47)

note that the leading corrections of U−1 vanishes as we get closer to the boundary
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lim
ε→0

Φ

∣∣∣
z=ε

= lim
ε→0

ΦU

∣∣∣
z=ε

+O

(
α

`4
0

)
, (5.48)

the behaviour of ∂zΦ near the boundary is

lim
ε→0

∂zΦ

∣∣∣
z=ε

=

(
1+

α2

`2
0

c
)

lim
ε→0

∂zΦ

∣∣∣
z=ε

+O

(
α

`4
0

)
. (5.49)

In order to simplify the problem, we assume that the source is independent of the perturbation parameter.
Using the boundary to bulk propagator defined in the chapter 1, we expand the field in even powers of the
pertubation parameters

ΦU = Φ
(0)+

α2

`2
0

Φ
(1)+O

(
α4

`4
0

)
. (5.50)

The field Φ(0) satisfies the free equation. The field Φ(1) satisfies

(
L (0)− (m0`0)

2
)

Φ
(1)(z, t) =

1
8

z4
∂

4
t Φ

(0)(z, t) , (5.51)

using the expression

ΦU =
∫
R

dt ′Knc(z; t, t ′)φ0(t ′) , (5.52)

with the use of bulk to bulk propagator G(z, t;z′, t ′) we can derive a expression for Φ(1)

Φ
(1)(z, t) =

1
8

∫
∞

0
dz′z

′2
∫
R

dt ′G(z, t;z′, t ′)
∫
R

dt ′′∂ 4
t ′K(z′, t ′; t ′′)φ0(t ′′) , (5.53)

from the first order terms of the solutions (1.84) anolgue for the non commutative case and

K(z, t; t ′) =
Γ(∆+)√

πΓ(∆+− 1
2 )

(
z

z2 +(t− t ′)2

)∆+

, (5.54)

we can write down the expression for the non-commutative boundary to bulk propagator up to order α2

Knc(z, t; t ′) = K(z, t; t ′)− α2

8`2
0

∫
∞

0
dz′z

′2
∫
R

dt ′′G(z, t;z′, t ′′)∂ 4
t ′′K(z′, t ′; t ′′)+O

(
α4

`4
0

)
. (5.55)

Using the assymptotic behaviour of the propagators that we have already calculated on the chapter 1, it
follows that Knc(ε, t; t ′)→ K(ε, t; t ′) as ε→ 0. From the solution of ΦU we can denote them by Φ[φ0] since
they are functionals of φ0. Substituting the solution in the non-commutative action Snc we should obtain the
on-shell action. In order to facilitate the next step it is convenient to re-express the action as
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Snc[Φ] =
1

2`α2

∫
R2

dxdy
{

Φ?
(
[X µ , [Xµ ,Φ]?]?+(α`m)2

Φ

)
− [X µ ,Φ? [Xµ ,Φ]?]?

}
. (5.56)

Clearly the quantity in parenthesis vanishes on-shell from the field equation. The remaining term is only
defined on the boundary z = ε , since the Moyal star commutator is a total divergence. Thus

Snc [Φ[φ0]] =−
`0

2`

∫
R

dtΦ[φ0]∂zΦ[φ0]
∣∣∣
z=ε

, (5.57)

using the boundary behaviour (5.48) and (5.49) one can express the on-shell action up to order α2

`2
0

.

Snc

[
Φ[φ0]

]
=− `0

2`

(
1+

α2

`2
0

c
)∫

R
dt
(

ΦU ∂zΦU

)∣∣∣
z=ε

+O
(

α4

`4
0

)
, (5.58)

writing it in terms of the Green’s function

− `0

2`

(
1+

α2

`2
0

c
)∫

R
dt
∫
R

dt ′
∫
R

dt ′′Knc(ε, t; t ′)∂zKnc(z, t; t ′′)
∣∣∣
z=ε

φ0(t ′)φ0(t ′′)+O
(

α4

`4
0

)
. (5.59)

Now we can use this expression to calculate the two-point correlator

〈O(t)O(t ′)〉=− `0

2`

(
1+

α2

`2
0

c
)∫

R
dt
∫
R

dt ′
∫
R

dt ′′
[
Knc(ε, t; t ′)∂zKnc(z, t; t ′′)

∣∣∣
z=ε

(5.60)

+Knc(ε, t; t ′)∂zKnc(z, t; t ′′)
∣∣∣
z=ε

]
+O

(
α4

`4
0

)
,

expanding it in powers of α2

`2
0

and substituting the boundary behaviour of the propagator

〈O(t)O(t ′)〉= 〈O(t)O(t ′)〉(0)+ α2

`2
0
〈O(t)O(t ′)〉(1)+O

(
α4

`4
0

)
, (5.61)

〈O(t)O(t ′)〉(1) = 1
16

∫
R+

dz′(z′)2
∫
R

dt ′′
∫
R

dt ′′′
{

∂z

(
K(z, t ′′; t)G(z, t ′′;z′, t ′′′)

)∣∣∣
z=ε

∂
4
t ′′′K(z′, t ′′′; t ′) (5.62)

+∂z

(
K(z, t ′′; t ′)G(z, t ′′;z′, t ′′′)

)∣∣∣
z=ε

∂
4
t ′′′K(z′, t ′′′; t)

}
+
(

c− `1

`0

)
〈O(t)O(t ′)〉(0) ,

using the assymptotic behaviour of the propagators and the fact that two Green functions in ε commutes
with the limit, one can show that

∫
dt ′′∂z

(
K(z, t ′′; t)G(z, t ′′;z′, t ′′′)

)∣∣∣
z=ε

=
1

2ν
K(z′, t; t ′′′) , (5.63)

then, the first order corrections becomes

〈O(t)O(t ′)〉(1) = 1
32ν

(
I∆+(t, t

′)+ I∆+(t
′, t)
)
+

3
32
〈O(t)O(t ′)〉(0) , (5.64)
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where

I∆+(t, t
′) =

∫
R2

dt ′′dz z2K(z, t; t ′′)∂ 4
t ′′K(z, t; t ′′) . (5.65)

Since K(z, t; t ′′) is only a function of t− t ′′, we can bring the derivative outside the integral. To evaluate
the correlation function of two propagators we can make use of the conformal isometries that K has, using
the inversion to take this integral to the form (1.106) for a scaling dimension equal to 1−∆+. It bring us to
the expression (5.32). After this, the expression simplifies

I∆+(t, t
′) = ∂

4
t ′

(
C2

∆+

√
πΓ(∆++ 3

2 )Γ(∆+−2)

Γ(∆++ 1
2 )

2|t− t ′|2−4∆+

)
, (5.66)

using properties of the Gamma functions we can calculate I∆+

I∆+(t, t
′) =

4
3
(∆++ 1

2 )(∆+− 1
2 )

3(∆+− 3
2 )√

πΓ(∆++ 1
2 )

1
|t− t ′|2∆+

, (5.67)

substituting in (5.64)

〈O(t)O(t ′)〉(1) = Γ(∆+)

32
√

πΓ∆+− 1
2

[
8
3

(
∆

2
+−

1
4

)(
∆+−

3
2

)
−3∆+

]
1

|t− t ′|2∆+
. (5.68)

As we can see from the equation above, the leading order of the non-commutative correction to the
two point function is just a rescaling of the usual two-point correlator for the commutative case. Only the
conformal weight factor ∆+ depends on `0 and m0, and for the commutative limit, it doesn’t receive any
correction, as can be seen if we set ∆+ = 1 one should find the same result as using standard procedures.



Chapter 6

Interacting Theory

In this section we present the main results of [35] in a deeper level of detail, deducing most of the skiped
steps. First we analyse the usual interacting commutative theory and calculate the three point correlator.
After, we map the action to the Moyal-Weyl plane and separate the boundary and the bulk parts of the
action and solve them using the non-commutative propagators. We finish this chapter showing that the
undeformed conformal symmetries are preserved after the MW mapping.

6.1 The commutative case

We start this section by making a brief review of the interacting commutative theory. Initially, we add a
cubic term to the free scalar field action (5.1) to get

S[Φ(0)] =
1
2

∫
R×R+

dtdz
{
(∂zΦ

(0))2 + (∂tΦ
(0))2 +

(m0`0

z

)2
Φ

(0)2
+

2λ

3z2 Φ
(0)3}

, (6.1)

where λ is a real parameter, and the superscript still indicates that we are analising the commutative case.
The field equation is then (

L (0)− (m0`0)
2
)

Φ
(0) = λ Φ

(0)2
, (6.2)

with the same L (0) as in the last section. We still assume the asymptotic behavior in order to solve (6.2)
perturbatively in λ using the boundary-to-bulk and bulk-to-bulk propagators, K(z, t; t ′) and G(z, t;z′, t ′),
defined on the other sections. At zeroth order in λ the solution is (5.54). Up to first order one has

(6.3)Φ
(0)(z, t) =

∫
dt ′K(z, t; t ′)φ0(t ′)

− λ

∫ dz′dt ′

z′2
G(z, t;z′, t ′)

∫
dt1
∫

dt2 K(z′, t ′; t1)K(z′, t ′; t2)φ0(t1)φ0(t2) + O(λ 2) .

We again denote the solution by Φ[φ0]. The on-shell action now includes a bulk term, as well as a boundary
term

S[Φ] = Sbdy[Φ]+Sblk[Φ] , (6.4)

65
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Sbdy[Φ] =−1
2

∫
R

dt Φ ∂zΦ

∣∣∣
z=0

,

Sblk[Φ] =
λ

3

∫
R×R+

dtdz
z2 Φ

3 .

Substituting the solution Φ = Φ(0)[φ0] on the boundary term we will get

Sbdy
[
Φ

(0)[φ0]
]
=− 1

2

∫
dtdt ′dt ′′

[
K(z, t; t ′)∂zK(z, t; t ′′)

]
z=0 φ0(t ′)φ0(t ′′)

+
λ

2

∫
dt

dz′dt ′

z′2
dt1dt2dt3∂z

(
K(z, t; t1)G(z, t;z′, t ′)

)∣∣∣
z=0
×

×K(z′, t ′; t2)K(z′, t ′; t3)φ0(t1)φ0(t2)φ0(t3)+O(λ 2)

− ∆+Γ(∆+)√
πΓ(∆+− 1

2 )

∫
dt ′dt ′′

φ0(t ′)φ0(t ′′)
|t ′− t ′′|2∆+

+
λ∆+

4ν

∫ dz′dt ′

z′2
dt1dt2dt3K(z′, t ′; t1)K(z′, t ′; t2)K(z′, t ′; t3)×

×φ0(t1)φ0(t2)φ0(t3)+O(λ 2)

,

(6.5)

where we used the asymptotic expressions from the chapter 1. While the first term is exactly (5.32) and
will lead to the same 2-point function, the second term will give a non-trivial contribution to the 3-point
function. This should be combined with the bulk term (6.4), which after substitution of Φ(0) = Φ

(0)
sol [φ0]

takes the form

(6.6)
Sblk
[
Φ

(0)[φ0]
]
=

λ

3

∫ dtdz
z2

∫
dt1dt2dt3 ×

×K(z, t; t1)K(z, t; t2)K(z, t; t3)φ0(t1)φ0(t2)φ0(t3) + O(λ 2) .

Combining this with (6.5) and using the definition (5.26), the three-point function is

< O(t1)O(t2)O(t3)>(0)= λ

(3∆+

2ν
+2
)∫ dzdt

z2 K(z, t1; t)K(z, t; t2)K(z, t; t3) . (6.7)

Since these correlator functions are conformally covariant they must depend on the diferences t1, t2 and
t3 which set the form of the expression up to a constant factor

< O(t1)O(t2)O(t3)>(0)= λ

(3∆+

2ν
+2
) a∆+

|t1− t2|∆+ |t2− t3|∆+ |t3− t1|∆+
. (6.8)

To compute this coefficient, as done in [ref] we use the inversion t ′ = 1
t as change of variables and after

this we use the translational symmetry to take the boundary at the point 0, in order to use the assymptotics
for the propagator. The last integral can be calculated using the Feynman parameter method. Finally the
coeficient comes to be



6.2 Non-commutative Interacting theory 67

a∆+ =
Γ(∆+/2)3 Γ

(
(3∆+−1)/2

)
2π Γ(ν)3 . (6.9)

6.2 Non-commutative Interacting theory

Next we will try generalize all the results obtained on the last section to the non-commutative case. As
expected, we add a cubic term to the action (5.30)

Snc[Φ̂] =− 1
2`

Tr
{
[X̂ µ ,Φ̂][X̂µ ,Φ̂]− (α`m)2

Φ̂
2− 2

3
α

2
λ Φ̂

3
}
. (6.10)

Now, mapping this action to the Moyal-Weyl plane

Snc[Φ] =− 1
2`α2

∫
R2

dxdy
{
[X µ ,Φ]? ? [Xµ ,Φ]?− (α`m)2

Φ?Φ− 2
3

α
2
λ Φ?Φ?Φ

}
. (6.11)

The field equation following from (6.11) is

L Φ− (`m)2
Φ = λ Φ?Φ , (6.12)

where L is the noncommutative Laplace operator, defined in the last sub-section. We will re-express the
field equation for ΦU =UΦ with U defined in (5.46). The resulting equation is

[
ULU−1− `2m2

]
ΦU = λU

[
(U−1

ΦU )? (U−1
ΦU )

]
. (6.13)

For simplicity, we set m = m0`0
` . When we set λ = 0 the field equation reduces to the free non-

commutative one, and the solution is given by

ΦU (z, t) =
∫

R
dt ′ Knc(z, t; t ′)φ0(t ′) , (6.14)

taking small λ we can solve this equation by replacing the propagators by it’s non-commutative analogues,
Knc and Gnc. The main solution (6.14) expressed in terms of Fefferman-Graham coordinates with Knc ex-
panded up to order α2 is

Knc(z, t; t ′) = U−1
z,t KU

nc(z, t; t
′)

= KU
nc(z, t; t

′)+
α2

`2
0

Dz,tK(z, t; t ′)+O
(
α

4) , (6.15)

where
Dz,t =

1
8

z4
∂

4
t z . (6.16)

In order to define the bulk-to-bulk propagator, we require that it satisfies
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[
(ULU−1)z,t − (`m)2

]
GU

nc(z, t;z′, t ′) = −z2
δ (z− z′)δ (t− t ′) , (6.17)

so GU
nc(z, t;z′, t ′)→G(z, t;z′, t ′) when α→ 0 in the commutative limit. Upon expanding in λ , and substitut-

ing (6.14) and (6.17) into the field equation the solution to (6.12) is

Φ(z, t) =
∫

dt ′Knc(z, t; t ′)φ0(t ′)

− λ

∫ dz′dt ′

z′2
U−1

z,t GU
nc(z, t;z′, t ′)

∫
dt1dt2 Uz′,t ′ [K

(1)
nc ?K(2)

nc ](z′, t ′) φ0(t1)φ0(t2)

+ O(λ 2) , (6.18)

where K(n)
nc (z, t) denotes the function Knc(z, t; tn) and the star-product is with respect to the explicitly shown

variables. The non-commutative corrections on GU
nc(z, t;z′, t ′) can be computed perturbatively in powers of

α2. If we write

GU
nc(z, t;z′, t ′) = G(z, t;z′, t ′)+α

2G(1)(z, t;z′, t ′)+O(α4) , (6.19)

then the leading order non-commutative correction G(1)(z, t;z′, t ′) satisfies

[
L

(0)
z,t − (`m)2

]
G(1)(z, t;z′, t ′) =

1
`2

0
Dz,t G(z, t;z′, t ′) , (6.20)

The solution is

G(1)(z, t;z′, t ′) =− 1
8`2

0

∫
dz′′dt ′′z′′2G(z, t;z′′, t ′′)∂

4
t ′′G(z′′, t ′′;z′, t ′) . (6.21)

Upon substituting the solution to (6.18) in (6.11) we get the on-shell action. After this we can divide the
latter in two main contributions as we did in the commutative case

Snc[Φ] = Sbdy
nc [Φ]+Sblk

nc [Φ] , (6.22)

where Sbdy
nc [Φ] was defined in (5.56) as the remaining term after the cutoff and for the bulk term

Sblk
nc [Φ] =

λ

3`

∫
R2

dxdyΦ?Φ?Φ . (6.23)

Substituting the solution into the bulk and the boundary terms Sblk
nc [Φ] and Sbdy

nc [Φ], respectively, collecting
the third order terms in the solution and converting to Fefferman-Graham coordinates gives

Sblk
nc =

λ

3

∫ dzdt
z2 dt1 dt2 dt3 [K

(1)
nc ?K(2)

nc ?K(3)
nc ](z, t)φ0(t1)φ0(t2)φ0(t3) . (6.24)
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and

Sbdy
nc =

λ

2

∫ dz′dt ′

z′2
dt dt1 dt2 dt3 ∂z

(
Knc(z, t; t1)U−1

z,t GU
nc(z, t;z′, t ′)

)∣∣∣
z=0

× Uz′,t ′ [K
(2)
nc ?K(3)

nc ](z′, t ′)φ0(t1)φ0(t2)φ0(t3) . (6.25)

In the commutative limit, we recover the commutative boundary term (6.2). If we take α → 0 all the
non-commutative corrections vanish and we have Knc(z, t; t ′)→ K(z, t; t ′), GU

nc(z, t;z′, t ′)→G(z, t;z′, t ′) and
Uz,t → 1. Now we evaluate some assymptotics in order to calculate explicitly the solutions of the field equa-
tions. Using the definitions for K(z, t; t ′) = K∆(z, t; t ′) and G(ξ ) given by (5.54) and (1.79), respectively, and
we defined ∆+ = ∆, ∆− = 1−∆. Taking the derivative of K∆ with respect to z, one finds

∂zK∆(z, t; t ′) =
∆

z
K∆(z, t; t ′)− (2∆−1)K∆+1(z, t; t ′) .

Combining this with the asymptotics for K(z, t; t ′), which trivially follows from (1.83) and (5.54) one gets

K(z, t; t ′) −−→
z→0

z1−∆
δ (t− t ′) ,

∂zK(z, t; t ′) −−→
z→0

(1−∆)z−∆
δ (t− t ′) . (6.26)

Before taking the limit z→ 0 for K(z, t; t ′)∂zK(z, t; t ′′) first assume that |t ′− t ′′|� ε > 0. From (5.54) one
gets

K(z, t; t ′)∂zK(z, t; t ′′) = z∆−1K(z, t; t ′)∆C∆

(
1

z2 +(t− t ′′)2

)∆ −z2 +(t− t ′′)2

z2 +(t− t ′′)2 . (6.27)

Using (6.26) one more time and taking into account that |t ′− t ′′|� ε > 0 we obtain

K(z, t; t ′)∂zK(z, t; t ′′) −−→
z→0

∆C∆δ (t− t ′)
1

|t ′− t ′′|2∆
, (6.28)

which is now valid for any t ′ 6= t ′′ on the boundary.

To get the analogous results for the bulk-to-bulk propagator we just use the expansion of the hypergeo-
metric function in the definition (1.79)

G(ξ ) =
C∆

2∆−1

(
ξ

2

)∆
(

1+
∆

2

(
∆

2 +
1
2

)
∆+ 1

2

ξ
2 +O(ξ 4)

)
.

Then taking into account
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ξ =
2zz′

z′2 +(t− t ′)2 +O(z3) and ∂zξ =
1
z

ξ − 1
z′

ξ
2 , (6.29)

we immediately get

G(ξ ) −−→
z→0

C∆

∆−1

(
z′

z′2 +(t− t ′)2

)∆

z∆ ≡ 1
2∆−1

z∆K(z′, t ′; t) ,

∂zG(ξ ) −−→
z→0

∆

2∆−1
z∆−1K(z′, t ′; t) . (6.30)

We also need to evaluate z→ 0 behaviour of ∂z (K(z, t; t ′)G(z, t;z′′, t ′′)) which can be found using (6.26) and
(6.30)

∂z
(
K(z, t; t ′)G(z, t;z′′, t ′′)

)
−−→
z→0

1
2∆−1

δ (t− t ′)K(z′′, t ′′; t ′) . (6.31)

Now we return to the evaluation of the three point function. The sum of (6.25) and (6.24) gives all the
φ 3

0 terms in the non-commutative on-shell action. So the expression for the three-point function is easily
calculated from

< O(t1)O(t2)O(t3)>=
δ 3Snc

[
Φsol [φ0]

]
δφ0(t1)δφ0(t2)δφ0(t3)

∣∣∣∣
φ0=0

=

=
λ

2

∫ dzdt
z2

{∫
dt ′ ∂z′

(
Knc(z′, t ′; t1)U−1

z′,t ′G
U
nc(z

′, t ′;z, t)
)∣∣∣

z′=0
·Uz,t [K

(2)
nc ?K(3)

nc ](z, t)

+
2
3
[K(1)

nc ?K(2)
nc ?K(3)

nc ](z, t)
}
+ all permutations of (t1, t2, t3) .

(6.32)

Near the boundary the first term in the integrand can be expanded in α2 using the assymptotics calcu-
lated above. Using these asymptotics in the definitions (5.55), (6.15) and (6.19) one easily establishes the
following asymptotic formulas:

Knc(z, t; t ′)→ z1−∆+

(
1+

3
32

α2

`2 (1−∆+)
)

δ (t− t ′) + O
(
α

4) ,
∂zKnc(z, t; t ′)→ z−∆+

(
1−∆++

3
32

α2

`2 (1−∆+)
2
)

δ (t− t ′) + O
(
α

4) ,
U−1

z,t GU
nc(z, t;z′, t ′)→ 1

2∆+−1
z∆+KU

nc(z
′, t ′; t)

(
1+

3
32

α2

`2 ∆+

)
+O(α4) ,

∂z(U−1
z,t GU

nc(z, t;z′, t ′))→ ∆+

2∆+−1
z∆+−1KU

nc(z
′, t ′; t)

(
1+

3
32

α2

`2 ∆+

)
+O(α4) , (6.33)

which leads to the z→+0 value for the relevant term in
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(6.32)

∂z

(
Knc(z, t; t1)U−1

z,t GU
nc(z, t;z′, t ′)

)∣∣∣
z=0
→ 1

2∆+−1

(
1+

3
32

α2

`2

)
KU

nc(z
′, t ′; t)δ (t− t1)+O(α4) . (6.34)

Substituting into (6.32) gives

< O(t1)O(t2)O(t3)>

=
λ

2

∫ dzdt
z2

{
1

2∆+−1

(
1+

3
32

α2

`2

)
Uz,tK

(1)
nc (z, t) ·Uz,t [K

(2)
nc ?K(3)

nc ](z, t)

+
2
3
[K(1)

nc ?K(2)
nc ?K(3)

nc ](z, t)
}
+ all permutations of (t1, t2, t3)

+ O
(
α

4) . (6.35)

In the next sections we will analyze the result (6.35) and it would be expected that it has the same con-
formal properties as the commutative 3−point function (6.8) (at least up to leading order in α2). In addition
to this we will demonstrate that the non-commutative 3-point function has the scaling and translational
invariance.

6.3 Three Point Function and Conformal Invariance

6.3.1 Translational Invariance

Let’s try to show that the three point function has the translational symmetry, i.e.:

〈O(t1 +a)O(t2 +a)O(t3 +a)〉(0) = 〈O(t1)O(t2)O(t3)〉(0) . (6.36)

In order to do this, first I will show what is the result of the translation on every term that belongs to the
three point function. Starting with

K(z, t; t ′) =
(

z
z2 +(t− t ′)2

)∆+

(6.37)

Making the translation in t and t ′, one can show that

K(z, t +a; t ′+a) =
(

z
z2 +((t +a)− (t ′+a))2

)∆+

= K(z, t; t ′) . (6.38)
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Clearly, the Green Function G(z, t;z′, t ′) is also translational invariant because of it’s definition, i.e. that
depends on δ (t− t ′):

G(z, t +a;z′, t ′+a) =
C∆+

2ν

(
ξ

2

)∆+

2F1

(
∆+

2
,

∆+

2
+

1
2

;ν +1;ξ
2
)

, (6.39)

since, for the translated case

ξ (t +a, t ′+a) =
2z′z

z2 +(z′)2 +((t−a)− (t ′−a))2 = ξ (t, t ′) (6.40)

Now, lets use the definition of the non-commutative Boundary to Boundary Propagator:

Knc(z, t; t ′) = K(z, t; t ′)− α2

8`2
0

∫
R+

(z′)2dz′
∫
R

dt ′′G(z, t;z′, t ′′)∂ 4
t ′′K(z′, t ′; t ′′) , (6.41)

Using (6.38), we can show that the same procedure applies to Knc:

Knc(z, t +a; t ′+a) = K(z, t +a; t ′+a)− α2

8`2
0

∫
R+

(z′)2dz′
∫
R

dt ′′G(z, t +a;z′, t ′′)∂ 4
t ′′K(z′, t ′+a; t ′′)z, (6.42)

calling t ′′ = t̃ +a, clearly ∂t ′′ = (∂t ′′ t̃)∂t̃ = ∂t̃ , and dt ′′ = dt̃, we have:

Knc(z, t +a; t ′+a) = K(z, t +a; t ′+a)− α2

8`2
0

∫
R+

(z′)2dz′
∫
R

dt̃G(z, t +a;z′, t̃ +a)∂ 4
t̃ K(z′, t ′+a; t̃ +a) ,

(6.43)
since t̃ is a dummy variable and renaming the variables, i.e. t→ t, we have the following:

Knc(z, t +a; t ′+a) = Knc(z, t; t ′) . (6.44)

To go further ahead, lets apply U−1
z,t to Knc. Using the definition:

U−1
z,t =

(
1+

α2

`2
0

(
z2

96
(9+4t∂t +6z∂z)∂

2
t + cz∂z

))
+O

(
α4

`4
0

)
, (6.45)

and translating this operator, we find that:

U−1
z,t+a =U−1

z,t +
aα2z2

24`0
∂

3
t =U−1

z,t + J(a, t) , (6.46)

where

J(a, t) =
aα2z2

24`2
0

∂
3
t . (6.47)
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With this result, we just use the definition K̃nc =U−1
z,t Knc as follows:

K̃nc(z, t +a; t ′+a) =U−1
z,t+aKnc(z, t +a; t ′+a) = K̃nc(z, t; t ′)+ J(a, t)Knc(z, t; t ′) . (6.48)

In this step we found the first non-trivial term. From now, we will denote J(a, t) = Jz,t(a) and up to
order α2 we will have

K̃nc(z, t +a; t ′+a) = K̃nc(z, t; t ′)+Jz,t(a)Knc(z, t; t ′) . (6.49)

Clearly, when writing the star product for x, t variables, we expect that at least up to order 1 the star product
remains invariant on translations of the parameter t, up to order α2 as demonstrated on the equations (4.69)
and (4.70) and the non-trivial terms comes after the translation of the equation (4.71). To calculate the
O(α2) term lets explicitly calculate each product

(∂ 2
x A)(∂ 2

y B)+(∂ 2
x B)(∂ 2

y A) =
z2

`2

[
z2(∂ 2

t A∂
2
z B+∂

2
t B∂

2
z A)+

+2tz(∂z∂tA∂
2
t B+∂z∂tB∂

2
t A)+2t2

∂
2
t A∂

2
t B+

+
(

t(∂tA∂
2
t B+∂tB∂

2
t A)+ z(∂zA∂

2
t B+∂zB)∂ 2

t A
)]

,

(6.50)

the other product is

2(∂x∂yA)(∂y∂xB) =
2z2

`2

[
z2(∂t∂zA∂t∂zB)+ zt(∂ 2

t A∂z∂tB+∂
2
t B∂t∂zA)

+ t2(∂ 2
t A∂

2
t B)+ z(∂z∂tA∂tBa+∂z∂tB∂tA)+∂tA∂tB

+ t(∂tA∂
2
t B+∂tB∂

2
t A)
]
,

(6.51)

subtracting (6.50) from (6.51) and substituting it on the star product, the order α2 term is

O(α2) =
α2z2

8`2

(
z2(2∂z∂tA∂z∂tB−∂

2
z A∂

2
t B−∂

2
z B∂

2
t A)+2∂tA∂tB

+ z(2∂z∂tA∂tB+2∂z∂tB∂tA−∂zA∂
2
t B−∂zB∂

2
t A)

+ t(∂ 2
t A∂tB+∂

2
t B∂tA)

)
.

(6.52)

Up to order α2 the translated star product has a deformation

?z,t+a = ?z,t +S(z,t)(a) , (6.53)

where
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S(z,t)(a) =
aα2z2

8`2

(←−
∂

2
t
−→
∂ t +

←−
∂ t
−→
∂

2
t

)
. (6.54)

Now, lets use (6.35) written using the functions defined above:

(6.35) =
F(α, `,∆+)λ

2

∫
R×R+

dzdt
z2

{∫
R

dt ′∂z′
(
K̃nc(z′, t ′+a; t1 +a)G̃nc(z′, t ′+a;z, t +a)

)∣∣∣∣
z′=ε

×
[
K̃nc(z, t +a; t2 +a)?z,t+a K̃nc(z, t +a; t3 +a)

]
− (6.55)

+
2
3

K̃nc(z, t +a; t1 +a)?z,t+a K̃nc(z, t +a; t2 +a)?z,t+a K̃nc(z, t +a; t3 +a)
}

,

with

F(α.`,∆+) =
1

2∆+−1

(
1+

3
32

α2

`2

)
. (6.56)

The Gnc satisfies the following equation

[
(ULU−1)z,t − (`0m0)

2
]
Gnc(z, t;z′, t ′) =−z2

δ (t− t ′)δ (z− z′) . (6.57)

This Green’s function can be computed perturbatively by taking

Gnc(z, t;z′, t ′) = G(z, t;z′, t ′)+α
4G(1)(z, t;z′, t ′)+O

(
α2

`4
0

)
, (6.58)

using (6.57), (6.58) and the expression of the Lagrangian on (6.58) in written in corrdinates (z, t) one can
show that

Gnc(z, t;z′, t ′) = G(z, t;z′, t ′)− α2

8`2
0

∫
dz′′dt ′′(z′′)2G(z, t;z′′, t ′′)∂ 4

t ′′G(z′′, t ′′;z′, t ′) , (6.59)

upon transforming we obtain

G̃nc(z, t;z′, t ′) =U−1
z,t Gnc(z, t;z′, t ′) , (6.60)

with this, we can translate G̃ up to order α2

G̃nc(z, t +a;z′, t ′+a) = G̃nc(z, t;z′, t ′)+Jz,t(a)Gnc(z, t;z′, t ′) . (6.61)

Finally we will verify if the translational invariance holds for ti, to the other terms we just make permu-
tations over indices. Making ti→ ti +a, i = 1,3 and t→ t +a. To simplify the notation I will write only the
specific time dependence, i.e. K̃nc(z, t ′+ a; t1 + a) = K̃nc(t1), if I need to specify the other variables I will
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return to the original notation. Taking the first term on (6.55), using (6.44) and (6.47) the RHS up to order
α2 is

K̃nc(t1 +a)G̃nc(t +a, t ′+a) =
(

K̃nc(t1)+Jz,t ′Knc(t1)
)

(6.62)

×
(

G̃nc(t, t ′)+Jz,tGnc(t, t ′)
)
,

the translation of the second part of the first term is (Here, the other dependence is on t, not t ′):

K̃nc(t2 +a)?z,t+a K̃nc(t3 +a) =
(

K̃nc(t2)+JtKnc(t2)
)

(6.63)

×
(
?z,t +S(z,t)

)
×
(

K̃nc(t3)+JtKnc(t3)
)
.

In the last equation we omited the dependence of z of Jz,t . Now we define equations (A) and (B) up to
order α2 as

(A) = K̃nc(t1)G̃nc(t, t ′)+Gnc(t, t ′)
(
Jt ′Knc(t1)

)
+Knc(t1)JtGnc(t, t ′) ,

(B) = K̃nc(t2)?z,t K̃nc(t3)+Knc(t2)S(z,t)Knc(t3)+Knc(t3)JtKnc(t2)+Knc(t2)JtKnc(t3) .

The first term on (6.55) will be given by the product of (A) and (B). Doing the same for the second term
one gets

K̃nc(t1 +a)?z,t+a K̃nc(t2 +a)?z,t+a K̃nc(t3 +a) = K̃nc(t1)?z,t K̃nc(t2)?z,t K̃nc(t3)

+
(

Knc(t1)S(z,t)Knc(t2)
)

Knc(t3)+Knc(t1)
(

Knc(t2)S(z,t)Knc(t3)
)
+Knc(t2)

(
Knc(t1)S(z,t)Knc(t3)

)
(6.64)

+
(
JtK(t1)

)
K(t2)K(t3)+

(
JtK(t3)

)
K(t1)K(t2)+

(
JtK(t1)

)
K(t2)K(t3) ,

where we can use (6.54) to further simplify (6.64)

(
Knc(ti)?(z,t) Knc(t j)

)
?z,t K̃nc(tk) =

(
K(ti)S(z,t)K(t j)

)
K(tk)+

(
K(ti)K(t j)

)
S(z,t)K(tk)+O(α3) , (6.65)

note that using (6.47) and (6.41) we have:

JtKnc(ti) =
aα2z2

24`2
0

∂
3
t K(z, t; ti)+O

(
α4

`4
0

)
. (6.66)

Using (6.54) and (6.41) we also have

Knc(ti)S(z,t)Knc(t j) =
az2α2

8`0

(
(∂ 2

t K(z, t; ti))∂tK(z, t, t j)+(∂ 2
t K(z, t; t j))∂tK(z, t, ti)

)
(6.67)
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Similarly we can simplify the terms containing any combination of Gnc and J or S . On the translations
of G we used the fact that Gnc is translationaly invariant up to order α2 as can be seen in (6.40) in addition
to (6.61). Note that, by simply differentiation

α2z2a
4!`2

0
∂

3
t

(
K(t2)K(t3)

)
= K(t2)S(z,t)K(t3)+K(t2)JtK(t3)+K(t3)JtK(t2) , (6.68)

and

α2z2a
4!`2

0
∂

3
t

(
K(t1)K(t2)K(t3)

)
=
(

Knc(t1)S(z,t)Knc(t2)
)

Knc(t3)

Knc(t1)
(

Knc(t2)S(z,t)Knc(t3)
)
+Knc(t2)

(
Knc(t1)S(z,t)Knc(t3)

)
(6.69)

+
(
JtK(t1)

)
K(t2)K(t3)+

(
JtK(t3)

)
K(t1)K(t2)+

(
JtK(t2)

)
K(t3)K(t1)

+
(

K(t1)K(t2)
)
S(z,t)K(t3)+

(
K(t3)K(t1)

)
S(z,t)K(t2)+

(
K(t2)K(t3)

)
S(z,t)K(t1) ,

clearly

α2z2a
4!`2 ∂

3
t = Jt(a) , (6.70)

with this, the fist term of (6.55), obtained by the product of (A) and (B) is the usual 〈O(t1)O(t2)O(t3)〉 acted
by the operator Jt(a). Using the most simplified expression (6.35) applying the result found in (6.69) we
finally find that

< O(t1)O(t2)O(t3)>+
λ

2

∫ dzdt
z2

{
F(α, `,∆+)

(
JtK(1)(z, t)[K(2)K(3)](z, t)+K(1)(z, t)Jt [K(2)K(3)

nc ](z, t)
)

+
2
3

Jt [K(1)K(2)K(3)](z, t)
}
+ all permutations of (t1, t2, t3)

+ O
(
α

4) . (6.71)

we can see that none of the non-commutative terms influenced the final result since all the corrections are
of order α2 at least. Combining all the terms and using the translational invariance of KU

nc(z, t; t
′), we see

that the contribution of the boundary term to the 3-point function is explicitly translationally invariant. The
term corresponding to the bulk contribution to the correlator is also translationally invariant due to the fact
that the non-invariant term coming from (6.71) is given by integral of a total derivative, which will drop out
even without any symetrization.
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6.3.2 Scaling Invariance

First, we will establish the behaviour of (6.71) under the simultaneous scaling of ti, i = 1,2,3: ti → µti,
where µ is a constant parameter. Using (1.79), (5.54), (5.46), and (6.15) one can easily see that under the
simultaneous rescalling of all the variables the relevant quantities have the following behaviour, starting by
the propagator K(z, t; t ′)

K(µz,µt; µt ′) = µ
−∆+

(
z

z2 +(t− t ′)2

)∆+

.

Now, i will show that the transformed L operator doesn’t change under rescaling:

ULU−1(µz,µt) =
(
�µ

2z2(�µ
−2(∂ 2

t +∂
2
z )−

α2
�µ

4z4

8`4
0�µ

4 )∂ 4
t +O

(
α4

`4
0

))
=ULU−1(z, t) ,

since ξ does not change under rescaling, we have that G is invariant.

G(µz,µt; µz′,µt ′) =
C∆+

2ν

(
ξ

2

)∆+

2F1

(
∆+

2
,

∆+

2
+

1
2

;ν +1;ξ
2
)
, ξ =

2z′z��µ
2

��µ
2(z2 +(z′)2 +(t− t ′)2)

[ULU−1
µz,µt − (`0m0)

2]Gnc(µz,µt; µz′,µt ′) =− �µ
2

��|µ|
2 z2

δ (z− z′)δ (t− t ′) .

For the star product, lets define it this way, with i, j running between x,y:

?x,y = exp
(←−

∂i
iαε i j

2
−→
∂ j

)
(∂x)

n =
n

∑
l=0

(
l
k

)
(−1)n(z∂z)

k−l(t∂t)
l , ,(∂y)

n =
( z
`

∂t

)n
,

changing the variables to z and t and expanding this up to order O(α2), one should find that

?z,t = 1− iα
2

(←−
∂z z2−→

∂t −
←−
∂t z2−→

∂z

)
+O

(
α

2) ,
note that, for every combinations of x and y derivatives, the scaling factors cancel out:

∂x =−z∂z− t∂ t, ∂y =
z
`

∂t .

So, for all orders, the star commutator is invariant under the rescaling. Before tackling the main equation,
note that the U operator is also invariant under rescaling, by direct inspections is clear to see it. All the other
elements of the main equations are considered below:
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Knc(µz,µt; µt ′) = µ
−∆+K(z, t; t ′)− α2

8`2
0

∫
R+

(z′)2dz′
∫
R

dt ′′G(µz,µt;z′,µt ′)∂ 4
t ′′K(z′,µt ′; t ′′) ,

taking z̃ = z′
µ

, t̃ = t ′′
µ

, µdz̃ = dz′, µdt̃ = dt ′′ and ∂ 4
t ′′ = µ−4∂ 4

t̃ we get to the following:

Knc(µz,µt; µt ′) = µ
−∆+K(z, t; t ′)− α2

8`2
0

∫
R+

�µ
2z̃2

�µdz̃
∫
R�

µdt̃G(z, t; z̃, t ′)�µ
−4

∂
4
t̃ K(µ z̃,µt ′; µ t̃) ,

Knc(µz,µt; µt ′) = µ
−∆+

{
K(z, t; t ′)− α2

8`2
0

∫
R+

z̃2dz̃
∫
R

dt̃G(z, t; z̃, t ′)∂ 4
t̃ K(z̃, t ′; t̃)

}
+O(α4) ,

which implies that:

K̃nc(µz,µt; µt ′) =U−1
µz,µtKnc(µz,µt; µt ′) = µ

−∆+K̃nc(z, t; t ′) . (6.72)

Finally, we can apply the rescaling on the three point function. Rescaling z, t, t ′, t1, t2 and t3 by µ and
using the same procedure applied to Knc, one can show that:

λ`0

2`

∫
R×R+

�µ
2dzdt

�µ
2z2

{∫
R�

µdt ′�
�µ
−1

∂z̃
(
K̃nc(µ z̃,µt ′; µt1)Gnc(µ z̃,µt ′; µz,µt)

)∣∣∣∣
µ z̃=ε

×

[
K̃nc(µz,µt; µt2)?µz,µt K̃nc(µz,µt; µt3)

]
− 1

3
K̃nc(µz,µt; µt1)?z,t K̃nc(µz,µt; µt2)?z,t K̃nc(µz,µt; µt3)

}
= 〈O(µt1)O(µt2)O(µt3)〉(0) ,

with this, renaming the variables as we did before and reorganizing the terms using the previous results, we
finally show that:

λ`0

µ3∆+2`

∫
R×R+

dzdt
z2

{∫
R

dt ′∂z′
(
K̃nc(z′, t ′; t1)Gnc(z′, t ′;z, t)

)∣∣∣∣
z′=ε

×
[
K̃nc(z, t; t2)?z,t K̃nc(z, t; t3)

]
−

−1
3

K̃nc(z, t; t1)?z,t K̃nc(z, t; t2)?z,t K̃nc(z, t; t3)
}
= 〈O(µt1)O(µt2)O(µt3)〉(0) ,

〈O(µt1)O(µt2)O(µt3)〉(0) = µ
−3∆+〈O(t1)O(t2)O(t3)〉(0) . (6.73)

This result shows that the three point function has the equivalent conformal scaling behaviour when
compared to the commutative case.



Chapter 7

Conclusions

In our study of the relations between the commutative and non-commutative field theories we came to some
interesting aspects. We explored the possibilitu of extending the AdS/CFT correspondence to the case of
a non-commutative bulk by changing the gravity side. This approach makes sense and is motivated on the
following fact: the non-commutative space time can be interpreted as a quasi-classical regime for a theory of
quantum gravity because the correspondence assumes a duality between the full quantum gravity and CFT.
Another fact is that the deformation leading to the non-commutative case preserves the undeformed SO(2,1)
conformal symmetry. To test these assumptions we first calculated the non-commutative corrections for the
free particle case, and, as expected we found that the most relevant aspects of the commutative theory
weren’t lost. As demonstrated, most of the relevant results inside the commutative theory appeared in the
non-commutative case as the standard ones corrected by some scalings. In the calculation of the 2- and
3- point correlation functions we struggled with some complications in the effective calculations, but, we
managed to show that the overall effect caused by the non-commutative mapping was the addition of a re-
scaling factor to their commutative counterparts, supporting the conclusions of [1]. Most of the calculation
for the 2- point function were greatly simplified when compared to [1], however, to the 3- point correlator
we were not able to find a closed expression. We managed to implicitly study the transformation properties
of the correlator under conformal transformations which lead us to the conclusion that the main result should
have the form of the commutative one multiplied by a re-scaling factor as the 2- point correlator.

< O(t1)O(t2)O(t3)>=
(
1+ cα

2)< O(t1)O(t2)O(t3)>(0) +O
(
α

3) , (7.1)

where the coefficient c should be calculated by an explicit evaluation of the terms in (6.71) up to the order
α2. Another remarkable fact obtained was that the non-commutative Killing cannot be obtained from the
commutative ones in analogy to the Seiberg-Witten map for gauge theories, demonstrating the non-triviality
of this result.

Some questions arise from this result. The first question ask if it is possible to assign to the effect of the
non-commutativity on the correlations to some kind of renormalization of a boundary operator. To adress
this issue we should compare the factors that multiply the 2- and 3- correlators and due to some techinical
dificulties we weren’t able to show this explicitly, but, it is a good subject for future works.

Another question to ask is if is possible to generalize this for AdSd+1/CFTd? We started with the d = 1
case because it is the only case where we can define the Poisson structure of the AdS space in a compre-
hensive way, for d ≥ 2 it is not possible to do this, unless to the case AdS4 which we plan to report to it in
future papers. And finnaly one should try to quantize the Lorentzian case using other representations of the
group SU(1,1) and study what non-commutatity does to the structure of the correlators for this theory.
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Appendix A

Appendix

A.1 Non-triviality of ncAdS

In this appendix we want to study to what extent the Killing vectors of AdS2 can be mapped analogously to
ncAdS2 analysing if the main properties of the undeformed algebra are maintained after the transformation.
Both sets of Killing vectors, commutative and noncommutative, satisfy the same undeformed so(2,1) al-
gebra expressed on the equation (3.30). The expressions for the Killing vectors in terms of the coordinates
(z, t) are given in the equation (3.33), we define them for the canonical coordinates below


K0 = ∂x

K− =−`0ex ∂y

K+ = 1
`0

e−x
(
2y∂x +(y2 + `2

0)∂y
) , (A.1)

The non-commutative Killing vectors were constructed on the section 4.3 and from the equation (4.88)
we recall their equations


K0
? = ∂x ≡ K0

K−? =−`ex ∆y

K+
? = 1

` e−x
(

2y∂xSy +(y2 + `2 + α2

4 (1−∂ 2
x ))∆y

) , (A.2)

where ∆y and Sy were defined in (4.85) and (4.78). Generally, `= `(α), such that `(0) = `0.

One would ask if it is possible to find a similarity transformation between (A.1) and (A.2) that could
map these two set of vectors in a good way. More specifically, we ask if there exists a non-degenerate map
U such that

{
U−1KµU = Kµ

?

U |α=0= 1
. (A.3)
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If this were to be the case, then the two theories, would essentially be equivalent, as one would be able
to map all the solutions of one theory to the ones of the other. One of the consequences would be the
preservation of the conformal structure of the correlation functions after the mapping. The nonexistence of
such a map would imply that the noncommutative theory is really a non-trivial result, generating a deformed
set of solutions on the noncommutative realm. In the end of this appendix we will show the non-triviality
of the ncAdS2 .

Note that if we add to K+ a term proportional to `0e−x ∂y ≡ −e−2xK− does not affect the so(2,1) al-
gebra. In order to obtain the correct equations of motion as the kernel of the Casimir operator one might
define the Killing vectors using this shift term. But it is not needed to close the algebra, so it is more of
a physical origin. One question that may appear is, does exist a similarity transformation that takes the
commutative “shifted” operators to the non-commutative shifted ones? Towards this end we introduce the
“shifted” Killing vectors: 

K̃0 = K0 = ∂x

K̃− = K− =−`0ex ∂y

K̃+ = K+− `0e−x ∂y ≡ 1
`0

e−x
(
2y∂x + y2∂y

) . (A.4)

By “shifted” non-commutative generators we mean the following
K̃0
? = K0

?

K̃−? = K−?
K̃+
? = 1

` e−x
(

2y∂xSx +(y2− α2

4 ∂ 2
x )∆y

)
+ const× e−x∆y

. (A.5)

Of course, one can immediately notice that the trivial similarity transformation U0 = exp
(
− ln

(
`
`0

)
∂x

)
changes `0 to ` in (A.4), but this is not the case for the non-shifted generator (A.1) because `0 enters K+

via a common factor. From now on, we will assume that this similarity transformation has been done and
we will keep using the same notation swaping `0 → `. Another observation that can be made is that from
U−1K0U = K0

? it follows ∂xU = 0 and it reduces the number of dependencies of U =U(∂x,y,∂y)

Instead of attempting to find an exact expression for U , since we are working on perturbations about
α2-order, it’s wise to take this as our first step. To this order we have


K̃0
? = ∂x

K̃−? = K̃−+α2 `
24 ex∂ 3

x +O(α4)

K̃+
? = K̃+−α2 1

4`e−x
(
∂y∂ 2

x + y∂ 2
y ∂x +

1
6 y2∂ 3

y +κ∂y
)
+O(α4)

. (A.6)

Here the term proportional to the unknown constant κ is exactly the possible shift term. More specifically,
the constant in (A.5) is equal to −α2

4` κ . We see that there is no α-linear term, so it is natural to suggest the
following expansion for the map Ũ from K̃µ to K̃µ

? = Ũ−1K̃µŨ

Ũ = 1+α
2G (x,∂x,y,∂y)+O(α4) . (A.7)

Then we have the following conditions on G : α2[K̃µ ,G ] = K̃µ
? − K̃µ or in the components
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K̃0,G

]
= 0 , (A.8)[

K̃−,G
]
=

`

24
ex

∂
3
x , (A.9)[

K̃+,G
]
= − 1

4`
e−x
(

∂y∂
2
x + y∂

2
y ∂x +

1
6

y2
∂

3
y +κ∂y

)
. (A.10)

Let us analyze these conditions one by one.

1) The condition (A.8) is trivially satisfied since G does not depend on x.

2) The condition (A.9) is [ex∂y,G ] =− 1
24 ex∂ 3

x . We note that there is a trivial solution to it: G0 =− 1
24 y∂ 3

y ,
so, writing G = G0 + G̃ , this is equivalent to

[
ex∂y, G̃

]
= 0. Because the full form of the non-commutative

Killing vectors depends on derivatives with respect to x only up to ∂ 2
x , it is possible to argue that G̃ also

does not involve terms with ∂
(k)
x with k ≥ 3, i.e. G̃ takes the following form

G̃ = g2(y,∂y)∂
2
x +g1(y,∂y)∂x +g0(y,∂y) . (A.11)

Taking into account the independence of ∂
(k)
x for different k, we conclude that g2 is not a function of y and

g1 = 2yg2(∂y)∂y + g̃1(∂y) ; g0 = y2g2(∂y)∂
2
y + y(g2(∂y)+ g̃1(∂y))∂y + g̃0∂y (A.12)

In the last expression we indicated on what argument each function depends. Now it’s clear that all
the functions depends on ∂y and we arrive at the following most general form for the candidate for the
infinitesimal similarity transformation:

G =− 1
24

y∂
3
y + g2(∂y)∂

2
x +

(
2yg2(∂y)∂y + g̃1(∂y)

)
∂x +

+ 2y2g2(∂y)∂
2
y + y

(
g2(∂y)+ g̃1(∂y)

)
∂y + g̃0(∂y) , (A.13)

where g2 and g̃i are some arbitrary functions of the argument ∂y.

3) We can first calculate
[
K̃+,G0

]
[
K̃+,G0

]
=

1
4`

e−x
(

y∂
2
y ∂x +

5
6

y2
∂

3
y + y∂

2
y

)
(A.14)

Substituting this in (A.10) we need to find G in which this condition is satisfied[
e−x(2y∂x + y2

∂y), G̃
]
=−1

4
e−x(∂y∂

2
x +2y∂

2
y ∂x + y2

∂
3
y + y∂

2
y +κ∂y) (A.15)

Using the result of the previous step (A.13) in (A.10) and requiring that the term proportional to ∂ 3
x is

absent on the RHS of (A.10) we immediately conclude that g2(∂y) is actually a constant, i.e. the whole
dependence on it drops out. Continuing to compare the coefficients of ∂

(k)
x for different k = 0,1,2, we

arrive at the following result

g2 = a , g̃1 =
1

16
∂

2
y +b , g̃0 =

1
2

g̃1 , κ =−1
4
, (A.16)

where a and b are some arbitrary constants, which do not contribute at this level. We still keep the depen-
dence on a and b explicit to study the transformation of the shift term (see below).
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This completes the prove of the perturbative (up to α2-terms) equivalence of K̃µ and K̃µ
? (with the very

precise form of the generated shift term)

Ũ−1K̃0Ũ = K0
? = ∂x ,

Ũ−1K̃−Ũ = K̃−? +O(α4) ,

Ũ−1K̃+Ũ = K̃+
? +O(α4) =

1
`

e−x
(

2y∂xSx +(y2− α2

4
∂

2
x )∆y

)
+

α2

16`
e−x

∆y +O(α4) , (A.17)

where

Ũ = 1+α
2G (∂x,y,∂y)+O(α4) = 1+α

2
(
− 1

24
y∂

3
y +a(∂ 2

x +2y2
∂

2
y +2y∂y∂x + y∂y)+

+
1

32
(2y∂y +2∂x +1)∂ 2

y +b(y∂y +∂x)

)
+O(α4) . (A.18)

Note, that as it was stressed above, (A.17) does not depend on the arbitrary a and b.

For the future use, we consider a more general choice for g̃0: g̃0 = 1
2 (1+λ ) g̃1. Of course this will

produce some extra terms on the right hand side, but we will see how they are cancelled by the shift term.1

So, we have (including the contribution from U0)

Ũ = 1+α
2G (∂x,y,∂y)+O(α4) = 1+α

2
(
− 1

24
y∂

3
y +a(∂ 2

x +2y2
∂

2
y +2y∂y∂x + y∂y)+

+
1

32
(2y∂y +2∂x +1+λ )∂ 2

y +b(y∂y +∂x)−
1
`2

0

`1

`0
∂x

)
+O(α4) ,

Ũ−1K̃0Ũ = K0
? = ∂x ,

Ũ−1K̃−Ũ = K̃−? +O(α4) ,

Ũ−1K̃+Ũ = K̃+
? +O(α4) =

1
`

e−x
(

2y∂xSx +
(

y2− α2

4
∂

2
x

)
∆y

)
+

+
α2

16`0
(1−λ )e−x

∆y−
α2λ

8`0
(∂y∂x + y∂

2
y )+O(α4) . (A.19)

The problem with the shift term, const×e−x∂y, is immediately clear from the fact that neither expression
in front of the constants a and b in (A.19) commutes with this term. So, as the consequence, we will produce
terms explicitly depending on these constants. It is easy to obtain the perturbative form of the transformation
of the shift term (we expand `= `0 +

α2

`2
0
`1 +O(α4

`4
0
))

U−1U−1
0 (`0e−x

∂y)U0U = `e−x
∆y +α

2`0e−x
(

4a(∂x + y∂y)+2b− 2`1

`3
0
+

1
8

∂
2
y

)
∂y +O(α4) . (A.20)

While the first term has a correct form (which, of course, remains correct after the expansion in α is done),
the rest presents a correction (the difference between ` and `0 is of the next order in α .)

Combining (A.19) and (A.20) one can easily see that the choice λ = 32a`2
0 and b− a = 1

`2
0

(
`1
`0
+ 3

32

)
(the separate values of a and b turn out to be irrelevant) almost does the mapping between the two sets of
Killing vectors, (A.1) and (A.2) (we return to the “untilded” notation for U , because this is a map between
Kµ and Kµ

? as in (A.3))

1 Changing g2 or g̃1 immediately will produce higher x-derivatives that will not be possible to compensate.
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U = 1+α
2G(∂x,y,∂y)+O(α4) =

= 1+α
2
(

1
96

(2y∂y +6∂x +3)∂ 2
y +

1
`2

0

(`1

`0
+

3
32

)
(y∂y +∂x)−

1
`2

0

`1

`0
∂x

)
+O(α4) ,

U−1K0U = K0
? ,

U−1K−U = K−? +O(α4) ,

U−1K+U = K+
? +α

2 `0

8
e−x

∂
3
y +O(α4) . (A.21)

To conclude, we can almost map the commutative Killing vectors to the noncommutative ones. The
obstruction is the shift term, the presence of which leads to the appearance of the extra ∂ 3

y -term. This is not
only the proof of the “non-triviality” of ncAdS2 but also serves as very convenient technical tool to simplify
the perturbative analysis of the chapters 5 and 6.

A.2 Moyal star total divergence

Here we want to show that the commutative expression for the on-shell action (5.57) is valid in the non-
commutative case to all orders in α . Towards this end, let us re-write (5.56) in terms of the non-commutative
Killing vectors (A.2)

Sbdy
nc [Φ] =− 1

2`α2

∫
dxdy [X µ ,Φ? [Xµ ,Φ]?]? =

1
2`

∫∫
R2

dxdyKµ
?

(
Φ?K∗µ Φ

)
, (A.22)

where Kµ
? are defined as αKµ

? Φ := i[X µ ,Φ]?.

In two dimensions, the Stokes theorem takes the form (ω = ωµ dxµ is an arbitrary 1-form)∫∫
V

dxdy(∂xωy−∂yωx) =
∫

∂V

ωxdx+ωydy . (A.23)

Because the boundary of our space is located at z = 0 it is convenient to pass to Fefferman-Graham coordi-
nates. Then z = const corresponds to x = const with dy = `

z dt and for our case the Stokes formula takes the
form

∫∫
R2

dxdy(∂xωy−∂yωx) =

∞∫
−∞

[
`

z
ωy

]
z=0

dt . (A.24)

This means that while studying the integrand of (A.22) we need to keep track only of the term of the form
∂x(· · ·). Also, because `

z ωy is evaluated at z = 0, we only need to keep terms in ωy up to O(z2). This will
allow us to arrive at the exact result. Using{

[∆y,y] = Sy

[Sy,y] =−α2

4 ∆y
⇒ [∆y,y2] = 2ySy−

α2

4
∆y , (A.25)

where ∆y and Sy are defined in (4.78) and (4.85) respectively, the Killings (A.2) take the form
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K0
? = ∂x ≡ K0

K−? =−∆y`ex

K+
? = ∂x

2
` e−xySy +∆y

1
` e−x

(
y2 + `2− α2

4 ∂ 2
x

) , (A.26)

where we moved all the relevant derivatives to the left (note that ∆y has the form ∂y(· · ·)). Then we have

Kµ
?

(
Φ?K∗µ Φ

)
= K0

?

(
Φ?K0

?Φ
)
− 1

2
K+
?

(
Φ?K−? Φ

)
− 1

2
K−?
(
Φ?K+

? Φ
)
=

= ∂x

(
Φ?K0

?Φ− 1
`

e−xySy
(
Φ?K−? Φ

))
−∂y(· · ·) . (A.27)

So we need to find the form, up to O(z2), of the following expression

Φ?K0
?Φ− 1

`
e−xySy

(
Φ?K−? Φ

)
≡−Φ? (z∂z + t∂t)Φ+ t St

(
Φ?
(`

z
∆tΦ

))
, (A.28)

where we passed to FG coordinates and St = cos
(

α

2` z∂t
)

and ∆t = sin 2
α

(
α

2` z∂t
)
. Using these coordinates,

the derivatives are given by {
∂x =−z∂z− t∂t

∂y =
z
`∂t

(A.29)

it is obvious that the star-product

?=
∞

∑
k=0

1
k!

(
iα
2

)k

ε
i1 j1 · · ·ε ik jk

←−−−−−
∂i1 · · ·∂ik

−−−−−→
∂ j1 · · ·∂ jk , (x

1,x2) := (x,y) (A.30)

cannot lower the degree of z. Moreover, every time we apply the derivative ∂y, we raise the degree of z by
1. This, combined with the fact that

`

z
∆t = ∂t +O(z2) , St = 1+O(z2) ,

allows us to write

−Φ? (z∂z + t∂t)Φ+ t St

(
Φ?

(
`

z
∆tΦ

))
=−Φ? (z∂z + t∂t)Φ+ t (Φ?∂tΦ)+O(z2) . (A.31)

Using the explicit expression for the star-product (4.66), we see that it actually starts with the terms of the
order of z2 (also, see the discussion in the chapter 4 starting on the equation (4.58))

?= 1+
iα
2

(←−
∂t z2−→

∂z −
←−
∂z z2−→

∂t

)
+

∞

∑
k=2

1
k!

(
iα
2

)k

ε
i1 j1 · · ·ε ik jk

←−−−−−
∂i1 · · ·∂ik

−−−−−→
∂ j1 · · ·∂ jk , (A.32)

where the remaining sum is at least of the order of O(z2). This finally allows us to write

−Φ? (z∂z + t∂t)Φ+ t St

(
Φ?

(
`

z
∆tΦ

))
=−zΦ∂zΦ+O(z2) . (A.33)

Multiplying this by `
z , evaluating at z = 0, plugging into the boundary part of the action (A.22) and taking

into account (A.24), we get (5.57) as an exact result.


