
SPECIAL SECTION ON HEALTHCARE INFORMATION TECHNOLOGY FOR
THE EXTREME AND REMOTE ENVIRONMENTS

Received March 27, 2019, accepted May 28, 2019, date of publication July 5, 2019, date of current version July 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925735

Hy-SAIL: Hyper-Scalability, Availability and
Integrity Layer for Cloud Storage Systems
DINO MACEDO AMARAL1, JOÃO J. C. GONDIM1, ROBSON DE OLIVEIRA ALBUQUERQUE 1,
ANA LUCILA SANDOVAL OROZCO2, AND LUIS JAVIER GARCÍA VILLALBA 2
1PPEE Post Graduation in Electrical Engineering, Department of Electrical Engineering, University of Brasília, Brasília 70910-900, Brazil
2Group of Analysis, Security and Systems (GASS), Faculty of Computer Science and Engineering, Department of Software Engineering and Artificial
Intelligence (DISIA), Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain

Corresponding author: Luis Javier García Villalba (javiergv@fdi.ucm.es)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 700326, in part
by the Brazilian Research Council’s CNPq under Grant 465741/2014-2 (INCT on Cybersecurity), CAPES under Grant
23038.007604/2014-69 FORTE, and FAP-DF under Grant 0193.001366/2016 UIoT, Grant 0193.001365/2016 SSDDC, and Grant Call
01/2019, in part by the Institutional Security Office of the Presidency of the Republic of Brazil under Grant 002/2017, in part by the
LATITUDE/UnB Laboratory under Grant 23106.099441/2016-43 SDN, in part by the Ministry of the Economy under Grant
005/2016 DIPLA, Grant 011/2016 SEST, and Grant 083/2016 ENAP, in part by the EAGER: USBRCCR: Collaborative: Securing
Networks in the Programmable Data Plane Era project funded by the NSF and RNP (Brazilian National Research Network), and in part by
the Institutional Security Office of the Presidency of the Republic of Brazil under Grant 002/2017.

ABSTRACT Cloud storage has gained increasing attention from the industry and research communities
with concerns about data stored in cloud computing environments, despite its many advantages. The reasons
come from economic viability to the latency along with behavioral changes that may affect the applications
that use data stored remotely. Among those challenges, there is the problem of ensuring the integrity and
retrievability of users’ data in the cloud. Several schemas have been proposed: proof of data possession
(PDP), proof of retrievability (PoR), and proof of ownership (PoW) that differ on the approach to guarantee
the effective retrieval of data stored remotely. In this paper, a novel PoR protocol is proposed: hyper-
scalability, availability, and integrity layer (Hy-SAIL), where a new PoR scheme adds higher availability
to data stored and a flexible manner to perform integrity checks. It is demonstrated that Hy-SAIL leads to an
efficient and scalable cryptographic system that meets near-optimal bounds in terms of communication and
storage complexities. It is also proposed a new adversarial model that aggregates the main functionalities of
a realistic adversary in cloud computing environments. Hy-SAIL operates on data that are not affected by
any kind of incremental change or update, which is the characteristic of various file types stored in clouds,
such as stored video and audio streams. When compared to other systems, such as HAIL, Hy-SAIL is more
scalable and efficient. The results collected with an unoptimized implementation of Hy-SAIL point to a
better perspective than other approaches.

INDEX TERMS Cloud computing, cloud storage, proof of retrievability, message authentication code,
homomorphic hashing, fountain codes, erasure codes.

I. INTRODUCTION
As technology aggregates and collaborates in global busi-
nesses, large enterprises have realized data center scalability
is constrained by cost, subject to regulatory requirements and
geographic limitations. Adding to those requirements, it is
also mandatory to observe the way data center management
evolved over time. Most methods used in the last decade do
not provide the required agility that is now needed.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sabah Mohammed.

Recent technology has enabled the dissemination of cloud
computing services and, among others, there is a specific area
that take advantage over this new paradigm: cloud storage.
So far, the main attractive feature of cloud storage is possibly
the dramatic reduction in the cost of storing information with
the increase in reliability, elasticity, scalability for data stored
remotely. On this approach, even small companies will obtain
large enterprise grade services inexpensively [2].

Under this new paradigm, customers relinquish physical
control over their data and in return, obtain lower costs
and highly-available resources. This, however, increases the

90082 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-6717-3374
https://orcid.org/0000-0001-7573-6272

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

dependence over service providers and poses a number of
new security concerns. One major concern in cloud com-
puting is how to guarantee the integrity and availability of
data remotely stored in cloud providers. This concern is not
unrealistic since data loss events for leading service providers
have already been reported [3].

In response, the cryptography community has been supply-
ing new concepts as an answer to those demands. The leading
ones are known as Proof of Retrievability (PoR) [1], [7]–[10],
Proof of Data Possession (PDP) [4], Proof of Ownership
(PoW) [5]. Though they have the same purpose, the difference
lies in the ability of assuring recovery of stored data.

Current approaches for verifying file integrity (PoR, PDP,
PoW) do not match an unbounded enquiry solution with low
processing, storing and bandwidth cost. For each deployed
approach, there is the need to assess which item will be
sub-optimized in favor of a model deemed as acceptable.
A limitation on all models so far is the challenge of rebuilding
the file without the need to download entirely. The lack of
elasticity when adding or removing storing units to abstrac-
tion layers created by the PoR models is another restriction
that does not match with the ‘‘Cloud Computing’’ paradigm.

With those points observed, the question is which model
should be deployed in PoR protocolos: unbounded or
bounded. In an unbounded model, the user is not forced to
limit the amount of times that an integrity check will run,
however as shown in [8] this model requires a large amount
of information about the file. In the bounded model, like in
HAIL [1], the user computes and stores an amount of message
authentication code of each file block and by some properties
presented in homomorphic hash function, it will be possible
to execute a reasonable amount of integrity checks.

Here, Hy-SAIL (Hyper Scalability, Availability, Integrity
Layer) is presented, which focuses on two important con-
cerns for storing data in cloud computing environments:
availability and integrity. In order to provide availability,
Hy-SAIL opted to use a flexible type of error correcting
code, Online Codes [6] and distributing blocks generated by
error correcting codes among different storage providers, that
could be added at anymoment. Regarding periodical integrity
checks, ‘‘challenge-response’’ rounds are supported by alge-
braic properties explored in the polynomial representation of
Galois Field with characteristic 2 (GF(2n)), which provides
the theoretical approach to compute an homomorphic MAC
(Message Authentication Code) for any set of check blocks.
Hy-SAIL was conceived by the same PoR concept from

HAIL [1], however the internal blocking and coding structure
provides flexibility, scalability and availability with lower
computational and communication cost. Hy-SAIL’s scope
was designed for data that does not change or update once
stored remotely, like video and audio streams.

A. OUTLINE OF PAPER
This paper is structured as follows. In the following section,
the key contributions are presented. In Section II related work
is discussed. In Section III, the notation and polynomials

algebra are presented. An overview of how PoR works is
shown in IV. Then a brief explanation of how Hy-SAIL
is built is described in Section V and a provably secu-
rity approach concerning integrity and retrievability in
Section VI. In Section VII, the details of each Hy-SAIL’s
phase are explained. Finally, the implementation results are
presented in Section VIII and conclusion in Section in IX.

B. STATEMENT OF CONTRIBUTION
The main contributions provided by Hy-SAIL may be
summarized in the following aspects:
• High scalability to storage providers: Hy-SAIL sat-
isfies elastic storage demands, due to usage of Online
Codes [6] as error correcting codes, a special case of
Fountain codes, which make it possible to add servers
indistinctly to an abstraction layer built by Hy-SAIL.

• Flexible PoR scheme: In order to execute integrity
checks, Hy-SAIL has both approaches, bounded and
unbounded models, with low communication complex-
ity, compared to other approaches. It focuses on the
amounts of blocks not in storage providers and a com-
plete verification on entire file in one single query, which
also improves on previous work.

• Heterogeneous environment support: Hy-SAIL is
designed to support heterogeneous systems providing
storage capacity globally, as the abstraction layer encap-
sulates many restrictions found in other schemes. As a
result, it is possible to have a storage layer with com-
puting resources from providers, without any kind of
constraints.

• New adversarial model for distributed environment:
The adversarial model deployed for Hy-SAIL deals
with realistic aspects found in the cloud computing
approach. The attacker that tries to respond the chal-
lenges about MAC of given blocks has a negligible
probability to be successful, in according to section VI.

II. PREVIOUS RELATED WORK
The PoR concept is defined in [7], where Juels et al. present a
bounded model for verifying the integrity of files using ‘‘sen-
tinels’’ across them, which optimize the usage of bandwidth
in the ‘‘challenge-response’’ phase on the proposed PoR.
In this model, ‘‘sentinels’’ are inserted in random positions,
after the error correction code has been applied and, at the
time of verification, they are asked whether the positions
persist. If there is no relevant change on the ‘‘sentinels’’,
it is deemed as retrievable. However, this approach may be
compromised if some changes occur on the file that does not
match the position of one of the ‘‘sentinels’’.

In [8], Schacham et al. propose two PoR frameworks with
formal security definitions: the first has the security demon-
strated using the bilinear pairing concept [15] in the Random
Oracle model [16] and the second uses a pseudo-random
function (PRF) and is secured at the standard model.

According to the same approach, Bowers et al. [10] pro-
pose a theoretical framework that supports a Byzantine

VOLUME 7, 2019 90083

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

adversarial model and enhances the Juels-Kalisky [7] and
Schacham-Waters [8] models, limiting the adversary’s error
rate. Another approach in how to deal with an adversary is
presented in [26], where the authors treats PoR schemes in
the model of unconditional security, where an adversary has
unlimited computational power.

A practical approach of a PoR model is shown in [1],
with a more elaborated adversary model, where the attack-
ers can corrupt servers and change file blocks during a
pre-determined time round, the HAIL demands smaller com-
puting and bandwidth than the PoR’s already proposed.
Though it proposes to protect static elements, with minor
modifications HAIL can meet the demands of assuring
integrity of files with dynamic alterations. However, it still
needs an unbounded query model for integrity checks, since
it stores a limited quantity of authentication codes for files
stored with their respective keys. In [24], authors show that is
possible to obtain audit bandwidth that is independent of the
data size.

On PoR frameworks, the task of auditing stored files
is granted to a trustworthy third party to avoid possible
storage processing overload on user stations [12]. In [23],
authors present a scheme that is resilient against adversar-
ial corruptions using simple cryptographic tools with very
fast encoding/decoding times. With increasing offer of cloud
storage vendors, it is very common to spread data among
distinct providers. In [25] a study aboutMulti-prover Proof of
Retrievability (MPoR) is presented concerning the confiden-
tiality of the outsourced message. In [27], a notion called
multi-proof-of-retrievability is introduced, which allows a
verifier to check the availability of multiple files stored by
a server in one single pass.

Another concept regarding storage on remote sites is
defined in [4], where Ateniese et al. explain the Proof of
Data Possession (PDP) model, which is a probabilistic proof
that a trustworthy third party stores the file. In contrast with
other models, the server accesses a small portion of the file
to supply proof of its originality. This approach offers the
advantage of keeping a small quantity of information about
remotely stored data and a small amount of traffic generated
for the challenge-response protocol. In [11], the PDP concept
is applied for a hybrid approach, with public and private
clouds storing data.

Halevi et al. [5] show the concept of Proof of Owner-
ship (PoW), where there is a role inversion at the moment
when data possession is being verified. The concern of this
approach is to inhibit the attacker from downloading the file
from the server, having only a portion of the knowledge
regarding its information.

In [14] a scheme is presented with this gimmick, which
in addition to locate which servers have corrupted files,
also supports dynamic changes on files blocks, such as
update, add and remove data. In [13], authors propose
the combination of bilinear pairing signatures with Merkle
trees in order to support public auditability and data
dynamism.

III. BACKGROUND
A. NOTATION
In this subsection the notation used along this document is
introduced:

• F - A file with arbitrary size that will be processed,
distributed and stored by Hy-SAIL.

• n - File F is fragmented in n blocks for encoding, with
the form: F = {mi}ni=1 = {m1||m2|| . . . ||mn}.

• mi - Message block of file F with size |F |n . These blocks
will be used to compose check blocks cj.

• mi(x) - A polynomial representation of message block

(mi) over GF(2n), mi(x) =
n∑
i=1

ai−1x i−1.

• cj - Check blocks generated after encoding file F , which
content is the result of bitwise XOR of random message
blocks mi’s.

• δ - Loss rate that may occur when transmitted between
2(two) or more distinct nodes.

• ε - Redundancy rate that file F will be encoded to
support some kind of failure.

• n′ - Number of blocks after performing the first step in
the error correcting codes, it is equal to (1+kδ)n blocks.

• D - Maximum degree that a unique check block may
support. It is computed with parameters n, δ and ε. The
formula is presented in equation 11.

• d - Degree of each check block cj, which refers the
quantity of message blocksmi’s that composes the check
blocks.

• τmaximum - Maximum number of tolerable corrupted
check blocks in each cloud storage provider.

• τprovider - Number of check blocks corrupted in each
cloud storage provider.

B. POLYNOMIAL ALGEBRA AND GALOIS FIELD
Using well known facts of Polynomial Algebra [17], follows:
Definition 1: An irreducible polynomial f (x) ∈ Zp[x] of

degreem is said to be a primitive polynomial if x is a generator
of F∗pm , the multiplicative group of all the non-zero elements
in Fpm = Zp[x]/(f (x)). [17]
Lemma 1: In [17], it is shown that the irreducible poly-

nomial f (x) ∈ Zp[x] of degree m is called a primitive
polynomial if and only if f (x) divides xk − 1 for k = pm − 1
and for no smaller positive integer k .

In the light of lemma 1 and the fact that f (x) is a k-degree
primitive polynomial, we can conclude that f (x) is irre-
ducible. Also, the subset Z2[x]/f (x) defines a Galois Field
GF(2k), so:

• Polynomial f (x) is irreducible.
• The resulting set Z2[x]/f (x) defines a Galois Field
GF(2k).

IV. PROBLEM DESCRIPTION
As already mentioned, the use of cloud computing requires
the guarantee of integrity and availability of data remotely
stored in cloud providers. One possible approach to attack this

90084 VOLUME 7, 2019

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

problem is via a Proof of Retrievability Protocol (PorR) where
the user places a challenge to the cloud provider concerning
file availability and, possibly also, integrity; the provider then
responds to the challenge; and the user decides whether or not
to his satisfaction.

Proof of Retrievability protocols (PoR) were introduced
in [7] by Ari Juels et al. and allow a storage provider to prove
to a user that a file F previously stored is intact and the user
may retrieve it with high probability. The challenge found
in these protocols consists in storing the smallest amount
of information about file F . That information will be used
to perform periodical queries to the storage provider, which
must answer to a user giving irrefutable proof that the original
file is stored. The security of these protocols relies on the
unforgeability of those queries and on the existence of a
mechanism to retrieve the file F from any storage provider
with overwhelming probability.

A basic model of PoR is a keyed hash approach of a single
file, where the user possesses both the hash and the key. Prior
to storing file F in a remote provider, the user computes and
stores the hash hκ (F) with a random key κ . In order for the
‘‘challenge-response’’ protocol to be successful, the storage
provider receives the key and must return a hash value of
file F . For this type of approach, it seems obvious that a
single verification is quite enough for an attacker to capture
the keyed hash value, then modifies or deletes the content
of original F and in the following queries, just responds the
keyed hash value previously captured. For a practical and
ideal PoR protocol, it is necessary a model in which the
user performs an unbounded number of queries to a storage
provider with a minimum computational cost.

A PoR protocol in its elementary form has three distinct
phases: Encoding, Challenge, Response:
• Encoding: The user transforms file F into file F ′ after
applying an error correcting code. File F ′ is stored at the
cloud provider. This phase ensures that File F may be
retrieved even if a fraction ‘‘α’’ of it is corrupted, where
0 < α < 1. After encoding, the size of an encoded file
|F ′| is computed by the following formula: |F/(1− α)|.

• Challenge: In order to audit the integrity of a file
stored remotely, the user sends to storage provider t
positions (p1,p3,. . . ,pt) of file F ′ that must be veri-
fied and a key % to compute the keyed hash function
in these positions. The storage provider captures the
content in the requested positions from file F ′, Pos-
F’ = F ′[p1]||F ′[p3]|| . . . ||F ′[pt], computes the response,
Resp = hash%(Pos-F’) and sends back to user.

• Response: The user compares its own hash previously
computed against the response sent by the storage
provider. In this final step, it is possible to confirm the
integrity of files stored remotely at any provider.

In a naive PoR scheme, the user may download the entire
file ‘‘F ′’’ and compare the hash with one which was previ-
ously computed. In another approach, the client may replicate
the file three or four times across different storage providers
and to check for integrity the client sends a challenge to each

storage provider to compute a hash and compares the equality
between them. Thus, in both approaches the optimization of
computational items used is not a major concern (they are
inherently inefficient - the first refers to bandwidth usage
and second to computational and storage usage).

In this context, it is easy to notice that PoR protocols have
to satisfy some criteria to make them practical for cloud
computing industry: (1) an unbounded model that allows a
user to perform as many queries as needed; (2) minimal com-
putational and communication overhead for the ‘‘challenge-
response’’ phase; (3) the storage provider must access some
fraction of data to perform integrity checks, in the worst case
the full copy of the entire file.

Using the criteria described above which provide the
requirements for a realistic approach in terms of computa-
tional resources, the main purpose of Hy-SAIL is to supply
a simple model for distributing data in a cloud comput-
ing environment preserving their integrity and assuring their
retrievability. Essentially,Hy-SAIL has only two entities: user
and cloud storage provider. Integrity is verified through a
PoR mechanism that is initialized by user. In order to cor-
rectly respond to challenges submitted by the user, the cloud
provider must possess in its storage units the original file
contents. So, to assure the retrievability of original data,
an Online Codes is implemented and the integrity is checked
through a homomorphic MAC. The next section shows how
these requirements might be satisfied.

V. Hy-SAIL OVERVIEW
The Hy-SAIL has 2 components: the protocol which cor-
responds to the code implemented to support all phases is
described in VII, and the system that represents the archi-
tecture proposed. In figure 1 it is shown the cloud storage
architecture proposed by Hy-SAIL, with the entities covered
in a PoR scheme, and their respective attributions.
• User: In this context, the user must be authenticated and
wishes to store files, in any format, in a cloud storage
environment. The user is responsible for initializing the
challenge to storage provider, in order to ensure that the
stored files are available and have a minimum amount
of loss, not compromising retrievability.

• Storage Provider: This entity supplies storage and
processing services of a large amount of data in a dis-
tributed storing environment. Typically, these services
are performed together in a distributed file system,
such as HDFS (Hadoop Distributed File System) [20].
These computing resources are requested from different
providers, in order to ensure a higher level of availability,
retrievability and scalability.

In a cloud storage approach, one given provider may work
collaboratively with other providers, that possess redundant
servers scattered over the Internet without any technological
restriction. The storage interface in the Hy-SAIL (figure 1)
which may also work as gateway to other providers allows
a high degree of interaction among different distributed file
systems. This additional feature offers an effective way of

VOLUME 7, 2019 90085

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

FIGURE 1. An architecture proposed by Hy-SAIL.

making simultaneous downloads from multiple sources and
maximizes the use of providers’ resources.

In addition to the possibility of redundancy by cloud
providers, error correcting codes enable an additional per-
spective in order to ensure availability of stored content. With
erasure codes [6], it is possible to convert a file of ‘‘n’’ blocks
into an encoded message with ‘‘(1 + ε)n’’ blocks, where
ε > 0, such that the original file will be recoverable with
any given ‘‘n’’ blocks.

Upon receiving the parameters needed to encode a file,
which is described in subsection VII-A, Hy-SAIL outputs
check blocks c1, c2, . . . , cj. which are the bitwise XOR of
message blocks mi’s (mi’s are chosen randomly from a
set of ‘‘n’’ blocks). After generating these blocks, Hy-SAIL
distributes them randomly among cloud providers, which
provides a higher level of retrievability of files encoded by
Hy-SAIL.

The paradigm of cloud computing has a dynamic envi-
ronment, so it should be necessary to consider the possi-
bility that any device may be compromised, turned-off or
unplugged at anymoment, which may imply unavailability of
some check blocks. In order to mitigate this situation, Online
Codes [6], error correcting codes implemented in Hy-SAIL,
provide local encodability, which allows any check block of
an encodedmessage to be computed independently [18]. This
feature allows a redistribution mechanism (subsection VII-E)
to reconstruct any check blocks without the need to download
the whole file.
Hy-SAIL verifies the integrity of check blocks through

properties of Galois Field. In [19], the interested reader may
find a detailed explanation on how any element may be repre-
sented in some Galois Field. In a standard form, an element
in the GF(2n) may be represented as a polynomial a(x) =
an−1xn−1 + an−2xn−2 + . . .+ a1x + a0 of degree n− 1 with

coefficients belonging to GF(2). This type of representation
allows Hy-SAIL to compute theMAC of each message block
mi and is used to verify the integrity of check blocks.
In order to ensure the integrity of check blocks, a XOR

homomorphic function is necessary, since the storage
provider stores check blocks (ci = m1 ⊕ m2) and the user
possesses only the MAC’s of message blocks mi’s. It means
that for any group of messages (ex.: m1, m2), a function (f)
that builds theMAC forHy-SAIL must be additive homomor-
phic satisfying:

f (m1)⊕ f (m2) = f (m1 ⊕ m2). (1)

The MAC proposed by Hy-SAIL allows flexibility in the
Auditing phase as shown in subsection VII-D, enabling both
the Bounded and the Unbounded model to perform integrity
checks. To the best of the authors’ knowledge, it was not
found in literature a proposal with such approach, using
Online Codes to encode the original message to improve the
availability and make use of properties in the Galois Field to
build a homomorphic MAC to verify the integrity which is
provably secure, as shown in section VI. The communication
and storage complexities make this protocol attractive and
practical for distributing data in a cloud computing environ-
ment.

From a practical point of view, Hy-SAIL is organized in
5 phases: Encoding, Decoding, Auditing, Distribution, Redis-
tribution. All these phases are explained in section VII.

A. BUILIDING A MAC FOR Hy-SAIL
The challenge for PoR protocols consists in storing a mini-
mum amount of information about the file F to perform the
integrity checks over the entire file F .

Firstly, each message block is represented in polynomial
form over a Galois Field GF(2k) 1, so the message blocks

90086 VOLUME 7, 2019

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

m1,m2, . . ., mn, will be represented by the following poly-

nomials m1(x),m2(x),. . ., mn(x), in the form
t−1∑
i=1

aix i, where

ai ∈ {0, 1}.
In order to compute a MAC for each message block,

Hy-SAIL takes the remainder of a polynomial division of
each message block mi(x) against a set of primitive poly-
nomials Pj(x)’s over GF(2), so MAChysail = mi(x) mod
Pj(x). The arithmetic operations in GF(2) supply the theo-
retical basis required to perform integrity checks in the PoR
model used by Hy-SAIL. In order to execute the Auditing
phase (section VII-D) in the PoR protocol, the user stores
some MAC’s for each message block and the corresponding
challenges to each MAC.

As already known, blocks stored at cloud providers are
the result of bitwise XOR over the contents of message
blocks. However, the user has the remainder of the polyno-
mial division between the content of message blocks and a
challenge Pj. As exposed, it is clear that a function with XOR
homomorphic property is necessary to verify the integrity of
check blocks stored at cloud provider.

Assuming that a user has the authentication codes of ma
and mb blocks against one of the challenges already gener-
ated. Resulting in σa,j and σb,j, after computing the following
equations:

ma(x) mod Pj(x) = σa,j(x)

mb(x) mod Pj(x) = σb,j(x) (2)

Suppose that a cloud storage provider has in its file systems
the following check block: ce = ma ⊕ mb. The user sends to
some provider a primitive polynomial from a set of challenges
Pj’s, and asks the remainder of a polynomial division as
follows:

[ma(x)⊕ mb(x)] mod Pj(x) = σab,j(x) (3)

Since in GF(2), the sum is equivalent to bitwise XOR,
integrity will hold if the following equation is true:[
ma(x) mod Pj(x)

]
⊕
[
mb(x) mod Pj(x)

]
= [ma(x)⊕ mb(x)] mod Pj(x) (4)

In other words,

σa,j(x)⊕ σb,j(x) = σab,j(x) (5)

After this round, Hy-SAIL uses another challenge to proceed
in the PoR protocol, repeatedly until completes the set of Pj
challenges.

B. ADVERSARIAL MODEL
In a distributed storage environment, two important threats
are relevant: a dishonest cloud provider and an adversary who
aims at compromising the system. In the former, the cloud
provider may wish to store an amount of data bigger than its
total capacity (for example, by deleting rarely accessed files
or hiding possible failures in the storage system). In the later,
an adversarial entity may compromise a set of encoded blocks

in a given time interval so that the retrievability of a file F is
affected. So, it may be necessary to limit some parameters to
avoid compromising Hy-SAIL availability.
Assume that Hy-SAIL is connected to a set of N storage

providers, denoted by S = {S1,S2, . . . ,SN }, and a trusted
entity T . Clearly, the trusted entity T refers to the user’s
machine, while the set S refers to the set of storage providers.
It is assumed that a trusted entity T and each storage provider
SN are connected through a private and authenticated chan-
nel, such as Virtual Private Network.

Each storage provider contains in its setup two distinct
elements: a coding system and a storage system. The coding
system establishes the way the storage provider will reply to
challenges, while the storage system comprises a distributed
file segment.

In Hy-SAIL it is proposed a more general adversarial
model, here called the Bounded Corruption Model. In this
adversarial setting, the malicious entity is allowed to corrupt
all the N storage providers simultaneously, as long as it
affects only a bounded fraction of total check blocks. Thus,
the malicious entity may perform arbitrary actions to corrupt
check blocks stored in storage providers.

The description of the Bounded Corruption Model is as
follows:
Definition 2 (Bounded Corruption Model): Let C = {c1,

c2, . . . , ct } denote the set of generated check blocks, and |t|
the total amount of check blocks stored in the cloud. The
adversary is able to corrupt up to α|t| check blocks in a given
round, where 0 ≤ α < 1. The adversary has the capability to
perform bit flipping and erase actions in check blocks stored
in each target server. α is called the corruption density of the
system.

It is assumed that the adversaryA acts in time cycles, called
rounds. Each round comprises three phases:

1) The adversary gets access to an arbitrary set of storage
providers and corrupts up to (1 − δ)(1 + kδ)n check
blocks of encoded file F ′, where (1 − δ) is loss effect
that may corrupt some blocks and (1 + kδ)n is the
amount of blocks considering some loss.

2) The entity T performs an auditing process so it can
verify the integrity of check blocks.

3) If T detects any corruption in the auditing process,
it may perform a redistribution of check blocks so that
the original file can be retrieved.

VI. PROOF OF SECURITY
The proof of security involves the aspects addressed in Hy-
SAIL, namely integrity and availability. Initially, it is proved
that the probability of forging the MAC of selected check
blocks is negligible, and so integrity is preserved. Then, avail-
ability is also established showing that a file is successfully
retrieved with overwhelming probability. These results are
then combined, proving the Hy-SAIL is secure against file
corruption.

In this section specifically, our goals are: 1) prove that the
MAC proposed by Hy-SAIL is 2-Universal Hash Function

VOLUME 7, 2019 90087

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

(2-UHF) [21], which is defined bellow, and consequently any
attacker that compromises a cloud provider has negligible
probability to answer any challenge correctly; 2) limit the
adversarial advantage, defining a number of check blocks that
may be corrupted.

A. INTEGRITY PROOF
Theorem 1: The MAChysail is a 2-Universal Hash

Function.
It follows the definition of 2-UHF (2-Universal Hash

Function):
Definition 3 (2-Universal Hash Functions [21]): Let

U = {0, 1}∗ denote the set of all the binary finite strings
and let T = {0, 1}λ denote the set of all λ-bit strings. Let
h : U → T denote a hash function. A family H of hash
functions h is said to be 2-universal if:

Pr [h(x1) = h(x2)| h ∈R H] ≤ 2−λ, ∀x1 6= x2 ∈ U (6)

Proof: In the first step, it is necessary to know the size
of H, which corresponds to all primitive polynomials with
degree at most ‘‘λ ’’ in GF(2λ)[x]. Facts mentioned in III-B
are needed to support Theorem 1.
MAChysail maps values to a set T , through a familyH with

hash functions ‘‘h’’. In the case of Hy-SAIL, the remainder
of polynomial division has elements in the set T , with all
elements with polynomial representation in GF(2λ).
Hash functions h ∈ H have a key property: the polyno-

mials P(x) are uniformly taken from ‘‘h’’, the set of λ-degree
primitive polynomials. The setH has (2λ−1)/λ such polyno-
mials. As an example, in Hy-SAIL the familyH has approxi-
mately 2120 distinct hash functions for λ = 127.
According to the definition of congruency properties [17],

each polynomial mi(x) ∈ Z2[x] is congruent to a single
element of GF(2λ). We know that the residue of the division
of a polynomial by another over a given field is unique. Con-
sequently, the congruency between two distinct polynomials
will occur with probability |Z2[x]/p(x)|−1 = |GF(2λ)|−1 =
2−λ. So, it is possible to state that the probability that two
distinct elements have the same hash value is the inverse of
the cardinality of the result image, namely 1/M . As posted
before, ‘‘M’’ has 127 bits in its size, so:

Prh∈H [m1(x) mod p(x) ≡ m2(x) mod p(x)]

≤ 1/M (2−127) (7)

Therefore, according to equation 7, the MAChysail is
a 2-UHF. A corollary of Theorem 1 is that the probability of
an attacker forging a check code is negligible.

B. AVAILABILITY PROOF
The next step is related to retrievability and availability and
regards the limit of corrupted checks blocks. To achieve such
requirement, it is assumed that the adversary A is capable
of accessing the Encoding (VII-A) and Auditing (VII-D)
mechanisms. And as explained in V-B, the adversaryA must
corrupt more than (1−δ)(1+kδ)n blocks to make the original
file irretrievable.

As already indicated and will be further detailed in VII-A,
check blocks are built as an instance of Online Codes. It is
demonstrated in [6] that for given corruption rates used in
this approach, with parameters k , δ, n, the probability of
successfully retrieving file F is given by (1− δk).
Theorem 2: The probability of failing to recover the

original file is negligible.
Proof: Consider that |t| is total amount of check blocks

generated in the Encoding phase and ‘‘α’’ is a fraction of
check blocks that may be corrupted. The condition for suc-
cessful retrievability is that the number of non corrupted
blocks, (1 − α)|t| should be equal or greater than the min-
imum amount necessary to recover the original file F . So,
the probability for this requirement is:

Pr [(1− α)|t| ≥ (1− δ)(1+ kδ)n] = 1− δk (8)

Therefore, according to equation (8), it is clear to assume
that the probability to successfully recover the original
file goes to 1, as δk , the probability of failure, is smaller
than 2−40.

With Theorems 1 and 2 proved, it is possible to affirm that
Hy-SAIL is secure in terms of availability and integrity.
Theorem 3: Hy-SAIL is secure regarding integrity and

availability of remotely stored data.
Proof: As shown in equation (7), the probability of

forging a MAChysail is equal to 1/2λ. And as show in the
equation (8), the probability to fail in recoverability is approx-
imately to δk . Assuming that the modes of failure are inde-
pendent, the overall probability of failure is Pr[Fail] =
Pr[Failintegrity] + Pr[Failrecoverability]. So the probability of
overall success is:

1− Pr [Fail] = 1− (2−λ + δk) (9)

which asymptotically is very close to 1 as 2−λ and δk have
negligible values.

VII. Hy-SAIL IN DETAILS
In this section, a detailed description ofHy-SAIL is presented.
It consists of five phases: Encoding, Decoding, Distribution,
Auditing and Redistribution. Assuming that a user possesses
a file F and wishes to store it remotely in N cloud storage
providers. So, the following sequence of steps must be taken:

A. ENCODING
At first, the original file is encoded using Online Codes [6],
a special case of Fountain Codes [22], and then theMAChysail
of each message block is computed:
• File F is divided into n message blocks {mi}ni=1. If nec-
essary, some padding is added to mn to keep all of them
with the same size in bits.

• In order to add redundancy, an erasure coding is applied
over F . This process results in a composite file F ′ =
{m′i}

n′
i=1, with a total of n

′ blocks equals to (1+kδ)n. The
nkδ blocks added in this initial phase are called auxiliary
blocks, which are bitwise XOR of some number of the
original message blocks.

90088 VOLUME 7, 2019

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

FIGURE 2. Overview of Online Codes adopted at Hy-SAIL.

• The composite file is then supplied to the inner encoding
process. Consequently, a stream of check blocks {ci}ti=1
is generated, where each check block is the bitwise XOR
of a certain number of blocks from the composite file.
This process is depicted in figure 2.

• Finally, the user stores a data structure with information
about the check blocks ci and the message blocks labels
that generated each of them. The data structure has the
form 〈i, xi〉, where ‘‘i’’ is index of the check block and
‘‘xi’’ are blocks labels that generated the check blocks.

As an example of the encoding process, if the 8-th check
block is given by c8 = m1+m5+m11+m128 the data structure
has the form 〈8, {1, 5, 11, 128}〉.

‘‘δ’’ is the degree of suboptimality and its use in this phase
is significant when designing the system. Its value should take
into account a number of factors:

1) Corruption frequency of check blocks stored in the
cloud storage providers.

2) Storage capacity available in cloud storage providers.
3) Time spent to perform the encoding process.

Algorithm VII-B presentsMAChysail , a hash function algo-
rithm specially suited for the purposes. Assume that all
k-binary blocks are represented by polynomials belonging
to F2k [X] and let FindPrimitive be a routine that receives as
parameters an integer k , and returns a primitive polynomial
belonging to F2k [X]. The MAC algorithm MAChysail is to be
applied over a file F .

B. DISTRIBUTION
Unlike HAIL [1], Hy-SAIL does not make any distinction
between primary servers and secondary servers. It only
demands basic storage and connectivity requirements in each

provider. In other words, Hy-SAIL supports a cloud environ-
ment with heterogeneous providers.

Algorithm 1

Require: A file F = {mi}ni=1 = {m1(x)|| . . . ||mn(x)} A list
of primitive polynomials {P1(x),P2(x), . . . ,Pl(x)}.

Ensure: A list of MAC’s MAChysail(F) = {hi,j}
n,l
i=1,j=1 =

{h1,1(x), hi,j(x)|| . . . ||hn,l(x)}
for j = 1 to l do
Pj(x)←− FindPrimitive(F2k [X]).

end for
for i = 1 to n do
for j = 1 to l do
hi,j(x)←− mi(x) mod Pj(x)

end for
end for
return {h1,1(x)|| . . . ||hi,j(x)|| . . . ||hn,l(x)}

Hy-SAIL is suitable for implementing of P2P systems that,
even when exposed to high resources of volatility, allows the
successful reconstruction of stored files.

As previously mentioned, in the Distribution phase,
check blocks are randomly sent to cloud providers (Si).
The distribution must guarantee that check blocks of degree 1
be the first to be recovered in the Decoding phase. The idea
is to maintain check blocks in providers that supply a level of
retrievability with viable response times.

Assume that the user has a table containing the index of
all check blocks and is still in possession of composite file
‘‘F ′’’. The following steps are taken to distribute all check
blocks across all N cloud storage providers:

• With theMAChysail of each message block already com-
puted, the user starts the distribution of check blocks.

• In this process, the user selects a number |ti| of check
blocks and sends to a random cloud provider Si already
authenticated in a private channel.

• After sending all check blocks, the user stores all
MAC values {h1,1(x), . . . , hn,l(x)} and discards all check
blocks {ci}ti=1 generated in the encoding phase.

• And finally, the user stores a data structure with infor-
mation about the data that was distributed among cloud
storage providers. The data structure has the following
form 〈Si, ci〉, where Si is a server identifier and ci are
check blocks labels distributed to server Si

C. DECODING
In this phase, the goal is to reconstruct the original file ‘‘F’’
with at least (1 − δ)(1 + kδ)n random check blocks. First,
Hy-SAIL performs the search for check blocks with degree 1.
These check blocks are mere copies of an original message
block mi. This process is executed through one simple step:
find the check blocks that have all message blocks already
recovered, except for one. The missing message block is
recovered by solving a simple bitwise XOR operation.

VOLUME 7, 2019 90089

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

For example, suppose that c12 = m1 ⊕ m5 ⊕ m9 ⊕ m13,
such that m5, m9 and m13 are already known. Thus, m1 =

c12⊕m5⊕m9⊕m13. The process is iteratively repeated until
all n message blocks, that compose the original file F , are
recovered.

D. AUDITING
Hy-SAIL allows twomodels, bounded and unbounded, to val-
idate the integrity of check blocks. The difference between
them consists in the amount of information collected at the
encoding phase and the traffic load needed to perform the
auditing phase.

The challenge sent by user depends on the model used
in the proof of retrievability scheme. Suppose the user
chooses a bounded model in the number of queries, the user
sends to the cloud storage provider the following compo-
nent: a random polynomial Pl(x) from a set of l previ-
ously generated and the index of check blocks that will be
verified.

In this phase, the cloud storage provider must guarantee
the integrity of, at least, (1 − δ) random blocks of the (1 +
kδn) composite messages to retrieve original file F . After
each round, a new threshold (τprovider) is calculated which
guarantees the retrievability of the file with overwhelming
probability. Algorithm VII-D follows a simple example how
the bounded model may be applied.

E. REDISTRIBUTION
Unlike other models, Hy-SAIL keeps two thresholds that
are verified on each round. The first one is related to the
internal threshold of each cloud provider (τprovider) that limits
the quantity of check blocks that can be corrupted on each
epoch. The other is the global threshold (τglobal) that limits the
total number of check blocks that can be corrupted. This value
can be calculated in the Encoding phase with the parameters
of the error correcting codes.

In this phase, after a verification of integrity, the user
can require a new distribution of blocks. In the approach
adopted in Hy-SAIL, it is not necessary to download the
entire file to restore corrupted blocks. In order to achieve
this, it is performed the bitwise XOR operation in the
remaining check blocks that has message blocks which
compound the corrupted block. After that, a new one is
generated.

Figure 3 illustrates the reconstruction and redistribution of
encoded blocks:
• Step 1: If any problem occurs with the cloud storage
provider, the Redistribution mechanism is activated.

• Step 2: Upon receiving information about failure in the
integrity check of a given check block, the bitwise XOR
is performed with the content of two or more check
blocks to reconstruct the corrupted block. (For instance:
cj+1 = cj−6 ⊕ cj−1).

• Step 3: The recently obtained check block (cj+1) is sent
to another cloud storage provider.

Algorithm 2

Require:
• A list of MAC’s, which are represented by:
MAChysail(x) = {h1,1(x), . . . , hi,j(x)}.

• A list of check blocks ct ’s encoded in the Encoding
Phase.

• A list of primitive polynomials Pl(x) generated in the
Encoding Phase.

• Thresholds τprovider and τmaximum.

Ensure:
• Verification of the existence of corrupted blocks.

User
1 - The client chooses a random and primitive polynomial
Pj(x).

2 - The client chooses a random subset of ct ’s:
H⇒ list ←− cη
3 - The client sends a challenge list,Pj(x) to a random cloud
provider Si.

Cloud Storage Provider
1 - A(x)←− (

⊕
η∈list

cη(x)) mod Pj(x).

2 - Send the response A(x) to the User.

User

if
(⊕
i∈list

cη(x) mod Pj(x)
)
= A(x) then

The level of integrity is acceptable:
τprovider ≥ τmaximum

else
The client is left with two options:
1 - Perform the process of verification of integrity in
another cloud storage provider.
2 - Initiate the Redistribution phase.

end if

VIII. IMPLEMENTATION RESULTS
Hy-SAIL was implemented, as a proof of concept, in a non
optimized fashion in Python programming language, version
2.7.3, with different parameters for encoding a file F . The
experiments were conducted in a machine with the following
settings: MacBook Pro, Intel Core i7 quad core, 2,3GHz with
6MB cache L3, RAMmemory 8 GB, Hard Disk 500 GBwith
5400 RPM.

Check blocks were generated according to the probability
distribution shown in [6]. Each check block is obtained by
performing the bitwise XOR for a set of t randomly chosen
message blocks,. The value t is known as the check block’s
degree and is chosen according to a probability distribution

90090 VOLUME 7, 2019

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

TABLE 1. Comparison of PoR Models: ‘‘n’’ is the size of message and ‘‘k’’ is the safety parameter.

FIGURE 3. Redistribution of a new block.

ρ = (ρ1, . . . , ρt . . . , ρD), where ρt denotes the probability
of having a check block with degree t , and D is a constant
denoting themaximumdegree of a check block. For any given
ε and δ, the probability distribution ρ is defined as follows:

ρ1 = 1−
1+ 1/D
1+ ε

and ρi =
(1− ρ1)

(1− 1/D) i (i− 1)
,

(10)

where the maximum degree is given by:

D =
[
ln(ε/2)+ ln(δ)

ln (1− δ)

]
. (11)

Figure 4 shows the probability of each degree in the set of
check blocks. ‘‘Function 1’’ has parameters δ = 0, 005 and
ε = 0, 01, and ‘‘Function 2’’ has parameters δ = 0, 01 and
ε = 0, 02. In spite of the different parameters, both functions
have similar probability distributions in the construction of
check blocks.

Another relevant aspect is the value of n, which has direct
implications in the size and in the quantity of message blocks
mi. The size of the file F and the parameters chosen in the
Encoding phase (δ,ε,k ,n) reflects the computational effort

FIGURE 4. Probability X Degree of the encoded block.

FIGURE 5. Encoding time.

required to generate check blocks. The main goal is to show
how the time behavior in according to value n.
With parameters δ = 0, 05 and ε = 0, 10, figures 5 and 6

show the time spent encoding and decoding files with sizes
50 MB, 100 MB, 500 MB for different values of n.
A concern regarding error correcting codes is the proba-

bility of retrieving the original file. Hy-SAIL allows the use
of a random number of check blocks to reconstruct the file.
Figure 7 shows the relation between the probability of failure
and the number of check blocks. It is used as parameters:
δ = ε/2, a fixed k = 3 and n = 500. The probability of
failure in the recovery process is given by δk , and the amount
of check blocks necessary to recover the original file is equal
to (1− δ)(1+ kδ)n.

VOLUME 7, 2019 90091

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

FIGURE 6. Decoding time.

FIGURE 7. Number of check blocks X Probability of failure on recovery.

IX. CONCLUSION
Hy-SAIL provides a high scalability, availability and integrity
layer which addresses themost common needs of data storage
in a cloud. Hy-SAIL has an abstraction layer implemented
through error correcting codes, ensuring availability against
a realistic adversarial model and retrievability of files stored
remotely even if a fraction is corrupted. It also implemented
an integrity check protocol that provides security and scala-
bility for PoR schemes and improves over previous proposals
concerning processing, storage and bandwidth complexity.
Hy-SAIL has interesting applications to explore, as a peer-

to-peer implementation which fits in its architecture, having
no distinction among storage providers. With its flexibility,
it is possible to construct two models for integrity checks:
Bounded and Unbounded. The difference between them is
the amount of information kept with the user and the traffic
generated to perform block integrity ‘‘challenge-response’’
checks. Compared to other schemes, Hy-SAIL still needs a
model for public verifiability, delegating to a trusted third
party periodical integrity checks.

With the results collected by the unoptimized proof of
concept implementation, it is clear thatHy-SAIL is viable and
practical.

Table 1 presents a comparison of Hy-SAIL with related
systems. It indicates that Hy-SAIL improves several aspects
like: less complexity to coding and decoding the file to store
remotely, the ability to redistribute the portions of file and

the possibility to check the integrity an unlimited number of
times.

Moreover, it offers novel contributions for file systems in
distributed environments and may serve as a basis for aggre-
gating other security properties, like confidentiality, on top
of integrity and availability, while preserving the approach’s
scalability characteristics.

ACKNOWLEDGMENT
The authors also thank Anderson Nascimento for insightful
remarks in early stages of this work, and Josias Gonzaga for
his contribution implementing the PoC version of Hy-SAIL.

REFERENCES
[1] K. D. Bowers, A. Juels, and A. Oprea, ‘‘HAIL: A High-availability and

integrity layer for cloud storage,’’ in Proc. 16th ACM Conf. Comput.
Commun. Secur., New York, NY, USA, 2009, pp. 187–198.

[2] N. Carr, The Big Switch—Rewiring the World, From Edison to Google.
New York, NY, USA: Norton, 2009.

[3] (2011). Amazon’s Cloud Crash Disaster Permanently Destroyed Many
Customers, Data. Accessed: Dec. 16, 2019. [Online]. Available:
http://www.businessinsider.com/amazon-lost-data-2011-4

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, ‘‘Provable data possession at untrusted stores,’’ in Proc.
14th ACM Conf. Comput. Commun. Secur., New York, NY, USA, 2007,
pp. 598–609.

[5] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Proofs of own-
ership in remote storage systems,’’ in Proc. 18th ACM Conf. Comput.
Commun. Secur. (CCS), New York, NY, USA, 2011, pp. 491–500.

[6] P. Maymounkov, ‘‘Online codes,’’ New York Univ., New York, NY, USA,
Tech. Rep. TR2002-833, 2002.

[7] A. Juels and B. S. Kaliski, Jr., ‘‘PORs: Proofs of retrievability for large
files,’’ in Proc. 14th ACM Conf. Comput. Commun. Secur. (CCS), 2007,
pp. 584–597.

[8] H. Shacham and B. Waters, ‘‘Compact proofs of retrievability,’’ in Proc.
AsiaCrypt, Springer-Verlag, 2008, pp. 90–107.

[9] Y. Dodis, S. Vadhan, and D. Wichs, ‘‘Proofs of retrievability via hardness
amplification,’’ in Proc. 6th Theory Cryptogr. Conf. Theory Cryptogr.
(TCC). San Francisco, CA, USA, Springer-Verlag, 2008, pp. 109–127.
Accessed: Dec. 16, 2018. doi: 10.1007/978-3-642-00457-5_8.

[10] K. D. Bowers, A. Juels, and A. Oprea, ‘‘Proofs of retrievability: Theory
and implementation,’’ in Proc. ACM Workshop Cloud Comput. Secur.
(CCSW), New York, NY, USA, 2009, pp. 43–54. Accessed: Dec. 16, 2018.
doi: 10.1145/1655008.1655015.

[11] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, ‘‘Efficient
provable data possession for hybrid clouds,’’ in Proc. 17th ACM Conf.
Comput. Commun. Secur. (CCS), NewYork, NY, USA, 2010, pp. 756–758.
doi: 10.1145/1866307.1866421.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, ‘‘Privacy-preserving pub-
lic auditing for data storage security in cloud computing,’’ in Proc.
29th Conf. Inf. Commun. (INFOCOM), Piscataway, NJ, USA: IEEE
Press, 2010, pp. 525–533. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1833515.1833620

[13] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, ‘‘Enabling public veri-
fiability and data dynamics for storage security in cloud computing,’’ in
Proc. 14th Eur. Conf. Res. Comput. Secur. (ESORICS), Berlin, Germany:
Springer-Verlag, 2009, pp. 355–370. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1813084.1813114

[14] C. Wang, Q. Wang, K. Ren, and W. Lou, ‘‘Ensuring data storage security
in cloud computing,’’ in Proc. 17th IEEE Int. Workshop Qual. Service
(IWQoS), 2009.

[15] D. Boneh, B. Lynn, and H. Shacham, ‘‘Short signatures from the weil pair-
ing,’’ in Proc. 7th Int. Conf. Theory Appl. Cryptol. Inf. Secur., Adv. Cryp-
tol. (ASIACRYPT). London, U.K.: Springer-Verlag, 2001, pp. 514–532.
[Online]. Available: http://portal.acm.org/citation.cfm?id=647097.717005

[16] M. Bellare and P. Rogaway, ‘‘Random oracles are practical: A paradigm
for designing efficient protocols,’’ in Proc. 1st ACM Conf. Com-
put. Commun. Secur. (CCS), New York, NY, USA, 1993, pp. 62–73.
doi: 10.1145/168588.168596.

90092 VOLUME 7, 2019

http://dx.doi.org/10.1007/978-3-642-00457-5_8
http://dx.doi.org/10.1145/1655008.1655015
http://dx.doi.org/10.1145/1866307.1866421
http://dx.doi.org/10.1145/168588.168596

D. M. Amaral et al.: Hy-SAIL for Cloud Storage Systems

[17] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, and R. L. Rivest,
Handbook of Applied Cryptography. 1997.

[18] P. Maymounkov and D. Mazières, ‘‘Rateless codes and big down-
loads,’’ in Peer-to-Peer Systems II (Lecture Notes in Computer Science),
vol. 2735, M. F. Kaashoek and I. Stoica, Eds. Berlin, Germany: Springer,
2003, pp. 247–255. [Online]. Available: http://dblp.uni-trier.de/db/conf/
iptps/iptps2003.html#MaymounkovM03

[19] J. Guajardo, T. Güneysu, S. S. Kumar, C. Paar, and J. Pelzl, ‘‘Efficient hard-
ware implementation of finite fields with applications to cryptography,’’
Acta Appl. Math., vol. 93, nos. 1–3, pp. 75–118, 2006.

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The hadoop dis-
tributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage Syst. Tech-
nol. (MSST). Washington, DC, USA: IEEE Comput. Soc., 2010, pp. 1–10.
doi: 10.1109/MSST.2010.5496972.

[21] A. Juels, J. Kelley, R. Tamassia, and N. Triandopoulos, ‘‘Falcon codes:
Fast, authenticated LT codes (Or: Making rapid tornadoes unstoppable),’’
in Proc. 9th Annu. ACM Symp. Theory Comput. (STOC), New York, NY,
USA, 1977, pp. 106–112. doi: 10.1145/800105.803400.

[22] D. J. C. Mackay, ‘‘Fountain codes,’’ IEEE Commun., vol. 152, no. 6,
pp. 1062–1068, Dec. 2005.

[23] A. Juels, J. Kelley, R. Tamassia, and N. Triandopoulos, ‘‘Falcon codes:
Fast, authenticated LT codes,’’ in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur., Denver, CO, USA, 2015, pp. 1032–1047.

[24] M.M. Etemad and A. Küpçü, ‘‘Generic efficient dynamic proofs of retriev-
ability,’’ in Proc. ACM Cloud Comput. Secur. Workshop (CCSW), Vienna,
Austria, 2016, pp. 85–96.

[25] M. B. Paterson, D. R. Stinson, and J. Upadhyay, ‘‘Multi-prover proof of
retrievability,’’ J. Math. Cryptol., vol. 12, no. 4, pp. 203–220, 2018.

[26] M. B. Paterson, D. R. Stinson, and J. Upadhyay, ‘‘A coding theory
foundation for the analysis of general unconditionally secure proof-of-
retrievability schemes for cloud storage,’’ J. Math. Cryptol., vol. 7, no. 3,
pp. 183–216, 2013.

[27] B.Wang and X. Hong, ‘‘Multi-file proofs of retrievability for cloud storage
auditing,’’ Cryptol. ePrint Arch., Tech. Rep. 2013/348, 2013.

DINO MACEDO AMARAL received the degree in
computer science and the M.Sc. and Ph.D. degrees
in electrical engineering from the University of
Brasília (UnB), in 2003, 2009, and 2013, respec-
tively. Since 2002, he has been a Senior Ana-
lyst with the Bank of Brazil, where he created a
protocol for two-factor authentication (2FA), with
a patent registered under Brazilian laws at INPI,
with 2 million active users without any incident
of fraud. His research interests include distributed

systems, big data, real-time systems, and machine learning.

JOÃO J. C. GONDIM received the degree in
electrical engineering (electronics) from the Fed-
eral University of Pernambuco (UFPE), Recife,
Brazil, in 1984, the M.Sc. degree in computing
science with the Imperial College, University of
London, in 1987, and the Ph.D. degree in electrical
engineering from the University of Brasília (UnB),
in 2017. Since 1994, he has been a Lecturer with
the Department of Computing Science (CIC), UnB
where he is currently a tenured member of faculty.

His research interests include information and cybersecurity.

ROBSON DE OLIVEIRA ALBUQUERQUE grad-
uated in computer science from the Catholic Uni-
versity of Brasília, in 1999. He received the MBA
degree in computer networks from the Educational
Union of Brasília, in 2001, the master’s degree
in electrical engineering from the University of
Brasília, in 2003, the D.E.A. degree from the Uni-
versity Complutense of Madrid, in 2007, the Ph.D.
degree in electrical engineering from the Univer-
sity of Brasília, Brazil, in 2008, and the Ph.D.

degree in information systems from the University Complutense of Madrid,
Spain, in 2016. He is currently a Researcher with the University of Brasília
and a member of the Group of Analysis, Security and Systems research
group, University Complutense of Madrid. His research interests include
cybersecurity, network security, information security, distributed systems,
and computer networks.

ANA LUCILA SANDOVAL OROZCO was born
in Chivolo, Magdalena, Colombia, in 1976. She
received the Engineering degree in computer sci-
ence from the Universidad Autónoma del Caribe,
Colombia, in 2001, and the M.Sc. degree in
research in computer science and the Ph.D. degree
in computer science from the Universidad Com-
plutense de Madrid, Spain, in 2009 and 2014,
respectively. She holds a Specialization Course
in computer networks from the Universidad del

Norte, Colombia, in 2006. She is currently a Postdoctoral Researcher with
the Universidad Complutense deMadrid. Her main research interests include
coding theory, information security, and its applications.

LUIS JAVIER GARCÍA VILLALBA received
the degree in telecommunication engineering
from the Universidad de Málaga, Spain, in 1993,
and theM.Sc. degree in computer networks and the
Ph.D. degree in computer science from the Univer-
sidad Politécnica de Madrid, Spain, in 1996 and
1999, respectively. He was a Visiting Scholar with
the Computer Security and Industrial Cryptog-
raphy (COSIC) Group, Department of Electrical
Engineering, Faculty of Engineering, Katholieke

Universiteit Leuven, Belgium, in 2000, and a Visiting Scientist with the
IBM Research Division, IBM Almaden Research Center, San Jose, CA,
USA, from 2001 to 2002. He is currently an Associate Professor with the
Department of Software Engineering and Artificial Intelligence, Universidad
Complutense de Madrid (UCM), and the Head of the Group of Analysis,
Security and Systems (GASS) research group, School of Computer Science,
UCM. His professional experience includes research projects with Hitachi,
IBM, Nokia, and Safelayer Secure Communications.

VOLUME 7, 2019 90093

http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1145/800105.803400

	INTRODUCTION
	OUTLINE OF PAPER
	STATEMENT OF CONTRIBUTION

	PREVIOUS RELATED WORK
	BACKGROUND
	NOTATION
	POLYNOMIAL ALGEBRA AND GALOIS FIELD

	PROBLEM DESCRIPTION
	Hy-SAIL OVERVIEW
	BUILIDING A MAC FOR Hy-SAIL
	ADVERSARIAL MODEL

	PROOF OF SECURITY
	INTEGRITY PROOF
	AVAILABILITY PROOF

	Hy-SAIL IN DETAILS
	ENCODING
	DISTRIBUTION
	DECODING
	AUDITING
	REDISTRIBUTION

	IMPLEMENTATION RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	DINO MACEDO AMARAL
	JOÃO J. C. GONDIM
	ROBSON DE OLIVEIRA ALBUQUERQUE
	ANA LUCILA SANDOVAL OROZCO
	LUIS JAVIER GARCÍA VILLALBA

