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ABSTRACT

We study the spectral action approach to higher derivative gravity for the case of pure
gravity. Our goal is to establish a connection between the spectral action and higher
derivative gravity, and show the usefulness of the same. The spectral action has been
widely used in particle physics. However, its applications in the field of gravitation have
remained obscure so far. In this dissertation we attempt to apply the spectral action
approach motivated by non-commutative geometry to the higher derivative gravity and
study the equations of motion coming from the gravitational actions containing higher
derivatives, which are derived from asymptotic expansion using heat kernel techniques.
We consider the case of heat kernel coefficient a6 in a great detail and analyze it in
two bases, namely Riemann one and Weyl. In particular, we construct the action based
on a6 in Riemann and Weyl dominated forms and calculate the equations of motion
for the same. We apply these results to some black hole and cosmological solutions as
well. A brief review on higher derivative gravity is also given to make the dissertation
self-contained. We also discuss the spectral action approach with all of its details, which
are necessary for our purpose. Moreover, the actions for the heat coefficients a0, a2 and
a4 and corresponding equations of motion are also evaluated.
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1
INTRODUCTION

The conundrum of quantum gravity has remained unsolved so far. Although, many

approaches have been introduced in order to tackle with this one of the most convoluted

problems in theoretical physics, still there are not any considerable accomplishments.

In this work we introduce the approach based on spectral action, which is motivated

by non-commutative geometry. The spectral action has been widely used in the field of

particle physics. However, its applications in the field of gravity have remained limited

hitherto for some reasons. Even though, here we do not apply the spectral action ap-

proach explicitly to the problem of quantum gravity, but we set the stage to deal with the

problem by studying its classical part. This study may provide us deeper insight and a

stepping stone toward the solution of the most perplexing problem of quantum gravity.

Mainly we investigate if there is anything special about the spectral action approach.

More precisely, we try to see if it produces any kind of cancellations that may shed

some light on the hidden symmetries of theories under consideration. We consider the

higher derivative gravity emanating from the spectral action principle and construct the

gravitational actions containing higher derivatives of the metric. We exploit the heat

kernel coefficients coming from asymptotic expansion of the trace of heat operator to
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CHAPTER 1. INTRODUCTION

devise these actions. We also calculate the equations of motion (EOM) for the same. Fur-

thermore, we apply these EOM to evaluate some black hole and cosmological solutions.

The dissertation is organized as follows. Chapter 2 and 3 contain the review of higher

derivative gravity and the spectral action approach, respectively. We consider mainly

the case of pure gravity. Initially we discuss the core idea of higher derivative gravity,

some problems associated with it and possible solutions. Later we establish a connection

between the spectral action approach and higher derivative gravity. Next we present

a detailed review of the spectral action approach and calculate the heat kernel coef-

ficients explicitly to show that the higher derivative gravity arises quite naturally in

the framework of spectral action principle. Although, we mainly use the results of heat

kernel coefficients calculated on a base manifolds without boundaries, but we briefly

discuss the general case as well i.e. base manifolds with boundaries and try to see how

it modifies the heat kernel coefficients. Chapter 4 and 5 consist mainly of the original

work, which is based on our studies of higher derivative gravity and the spectral action

approach. In particular, first we simplify the existed form of an action for the heat kernel

coefficient a6 with higher derivatives (six) of the metric and formulate it in two bases,

namely Riemann one and Weyl. We also calculate corresponding EOM by varying these

two forms of the actions with respect to the covariant metric. Later on we analyze the

Ricci flat (Riemann) and conformally flat (Weyl) solutions by applying these equations.

Moreover, we briefly review the heat kernel coefficients a0, a2, a4 and EOM for the same

to make the dissertation complete in itself. Finally we conclude our work in ch. 6 by

discussing the main outcomes and future aspects of our studies.

It is advisable for the reader to go through the notations and conventions given in

appendix A before start reading the content of the dissertation. It will be also quite

fruitful to review appendices B and C, where some useful formulae are given which have

been used frequently in some of the derivations.
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2
A BRIEF REVIEW OF HIGHER DERIVATIVE GRAVITY

As the name suggests higher derivative theories contain higher derivatives, which are

higher than the second order derivatives that appear in the standard theories. It is quite

natural to expect such theories in different branches of physics due to some (quantum)

corrections to the classical action of the theory, which require to add some terms involv-

ing higher derivatives. For example, the corrections to general relativity to make the

theory renormalizable [16]; corrections in the case of cosmic strings [18–20], which are

motivated by the prediction of the terms of the type of R2 and higher in the framework of

non-linear sigma models of string theory studied in [17] and few changes in the classical

model of radiating electron [21]. The process of adding higher derivative terms in the

original action comes with the price. It makes the original form of the theory behaving

better purterbatively, but also gives rise to some problems such as more number of de-

grees of freedom compared to the normal (unperturbed) action, absence of ground energy

state and negative energy. We shall consider this topic in more detail in the context

of gravitational sector later. A detailed review on different classes of higher derivative

theories can be found in [15]. Here we are mainly interested to study the class of higher

derivative theories, which has to do with the corrections to general relativity [6], where

the corrections are added to the standard form of the Lagrangian in the form of higher
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CHAPTER 2. A BRIEF REVIEW OF HIGHER DERIVATIVE GRAVITY

powers of the curvature and/or higher derivatives of the Riemann tensor. This is known

as higher derivative gravity (HDG). It is crucial to note that such theories (especially

with six derivatives) having complex massive poles behave as Lee-Wick theories [43, 44].

For such cases the super-renormalizable model of higher derivative quantum gravity was

considered in [45]. Moreover, the multidimensional HDG with more number of degrees

of freedom than the standard graviton field studied in [46] suggests that it is possible

to make the theory finite in any dimension by introducing the local potential of the

Riemann tensor. The Newtonian singularities in such theories (local HDG compatible

with Lee-Wick theory), which are either renormalizable or super-renormalizable get

evanesced, when the poles of the propagator are real and simple [47]. For some others

studies on low energy effects in HDG models possessing real and complex massive poles

we refer to [48].

There exists another approach to quantum gravity, which is contrary to the idea dis-

cussed above. It is known as Hořava-Lifshitz gravity (HLG) [22], where instead of adding

the terms with higher derivatives in spacetime we include only the terms containing

spatial (space) higher derivatives. Because of this reason it is quite natural to expect

that it violates the Lorentz invariance, but HDG preserves the same, as it contains

higher derivatives in spacetime. However, there is a benefit with the price being paid

by breaking the Lorentz symmetry, that HLG does not have any problems with higher

time derivatives, whereas, HDG suffers with such problems. As we shall see in the next

chapter the spectral action approach to HDG depends on the choice of Dirac operator,

in principle one may choose another form of the same than the standard one and may

end up with different theory, such as HLG. There we shall consider briefly the relation

between HLG and spectral action approach. However, concerning about this work we

are mainly interested to study spectral action approach and its application to HDG.

Therefore, we shall focus only on the aspects of spectral action that lead us to HDG. Now,

in the next section we momentarily discuss the historical progress regarding HDG and

some recent developments concerning quantum properties for the same. Later we take
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2.1. HISTORICAL ANALYSIS OF HIGHER DERIVATIVE GRAVITY

into account the main idea of HDG for the case of pure gravity, some problems related

to the same and possible solutions. Finally, we conclude this chapter by explaining the

connection of spectral action with HDG, which is to be considered in detail in the next

chapter.

2.1 Historical Analysis of Higher Derivative Gravity

The standard form of the Einstein-Hilbert (EH) action involves the second order deriva-

tive of the metric, and obviously the EOM resulting from such an action has the same

characteristics. In few year of publishing these results (more precisely general relativity

in 1915), it was quite well understood that there might be some higher order derivative

corrections to the standard form of EH action. It all started with an unsuccessful attempt

to reconcile the gravity with electromagnetism [23, 24]. But due to the failure of this

approach it was ruled out in later stages. However, some progress in the direction of

the usefulness of HDG was seen in 1950, when Pais and Uhlenbeck [25] showed that it

might be helpful to consider higher order corrections in context of quantum field theory

in general. In particular by doing this it may help to tackle with the divergences in the

theory and shed a light on the problem of quantum gravity. A remarkable work was done

by Utiyama and DeWitt in 1962 [26] by studying the fact that singularities (especially

the singularity of the type of log ∞) of energy-momentum tensor can be removed by using

the counter term coming from the Lagrangian which was basically quadratic in Riemann

tensor i.e. with the four derivatives of the metric. They basically proved that it is possible

to renormalize the divergences arising due to quantum corrections to the interactions

of matter sector. This idea was put forward and strengthened by the work of t’Hooft

and Veltman [9] in 1974, where they were able to absorb all the physical divergences in

renormalization of a field for the case of pure gravity at one loop level. However, the use

of improved energy-momentum tensor was unfruitful to remove the divergences in the

case of gravitation interacting with scalar particles. Later on in 1977 Stelle [7] showed

that by incorporating the correction terms proportional to R2
µν and R2 in the standard

13



CHAPTER 2. A BRIEF REVIEW OF HIGHER DERIVATIVE GRAVITY

(undeformed) form of the Lagrangian of gravity, it is possible to stabilize the divergences,

consequently making the theory renormalizable, even with the matter part included.

This astonishing work clearly indicates that it worth to incorporate more correction

terms containing higher derivatives (higher than four derivatives) of the metric in the

gravitational Lagrangian and study its variational consequences such as EOM, and

beta functions in renormalization group. Getting inspired by this idea, we consider the

deformed gravitational action (for the case of pure gravity) consisting of the terms, which

comprise six derivatives of the metric [4] and calculate the EOM for such an action. We

shall discuss more about this later on, when we explicitly study the gravitational action

for the heat kernel coefficient a6 and corresponding EOM.

Before we move on to the actual review of HDG, it would be quite interesting to take a

look at some recent studies on quantum properties of HDG (concerning six and higher

derivatives for the general case) such as super-renormalizability and scattering am-

plitudes. For example, super-renormalization for the case of action consisting of large

number of higher derivatives of the metric was considered in [38], where the authors

were able to show that the ultraviolet divergences are free from the choice of field

reparametrization and the gauge fixing condition. Furthermore, quite recently the class

of non-polynomial HDG was studied substantially in [39], where it was proven that in

four dimension the extension of the theory turns out to be finite and more importantly all

the beta functions get vanished even at one loop level. The generalization of these studies

can be found in [40]. The scattering amplitudes for super-renormalizable gravitational

theory was analyzed in [41], and it was shown that the scattering amplitudes for such

theories are the same as that of Einstein gravity. The authors also managed to show that

the four graviton scattering amplitudes in Weyl conformal gravity get evanesced (become

zero), and these results turn out to be true for any number of external gravitons and in

any dimension in general. The renormalization group for super-renormalizable theories

was considered in [42] and the exact beta functions for the Newton constant derived by

performing perturbative one loop calculations.
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2.2. HIGHER DERIVATIVE GRAVITY, PROBLEMS AND SOLUTIONS

2.2 Higher Derivative Gravity, Problems and

Solutions

We consider the case of pure gravity i.e. in absence of matter, where we pay attention

to the geometrical part of the action only. There is a natural connection between HDG

and the spectral action approach, which we shall take into account in the next section

and detail analysis in the next chapter. Here we mainly discuss about the core idea of

HDG and some problems related to the same. There are some possible solutions to the

problems, and at the same time drawbacks arising from such solutions. However, as we

mentioned in previous section, HDG may provide a clue toward possible solutions of the

conundrum of quantum gravity by getting rid off the divergences at high energy level

and consequently making the theory renormalizable in the framework of quantum field

theory. This motivates us to study it more precisely in terms of heat kernel coefficients

with the powerful tool known as spectral action approach, where HDG emanates in a

quite natural way. Let us see below the conventional idea of HDG and how it gives rise

to some serious problems.

We know that the EH action in d = 4 dimensional Euclidean space with cosmologi-

cal constant included is given by,

SEH =
∫

d4x
p

g (α0 +α1R) , (2.1)

where α0 and α1 are arbitrary numerical constants, and Sconst ≡
∫

d4x α0
p

g represents

the cosmological term. Here we see that the action (2.1) and resulting EOM (excluding

cosmological term) from the same contain the second order derivative of the metric.

One might think that there must be a similar action involving the higher derivatives

of the metric, which act as correction terms in an undeformed action (2.1). This naive

way of thinking is actually right in some sense, and it leads us to the action containing

the four derivatives of the metric. As one may expect this deformed action consists of

the terms such as R2
µνρσ, R2

µν and R2 (written in Feynman’s notation, see the appendix A).
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CHAPTER 2. A BRIEF REVIEW OF HIGHER DERIVATIVE GRAVITY

Now momentarily let us consider the Gauss-Bonnet (GB) term, see the appendix (B.5),

which can also be written as [9],

RµναβRρσγδεµνρσεαβγδ = RµναβRρσγδ

∣∣∣∣∣∣∣∣∣∣∣∣∣

δµα δµβ δµγ δµδ

δνα δνβ δνγ δνδ

δρα δρβ δργ δρδ

δσα δσβ δσγ δσδ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= 4
(
R2
µνρσ−4R2

µσ−R2
)
= 4GB. (2.2)

with εµναβ being the standard Levi-Civita symbol. One can find the variation of the

following term by using the variational method that we shall explain in detail in sect.

the 5.1 and the table of variation (see the appendix C),

δ
(p

gRµνρσRαβγδη
µναβηρσγδ

)
= δ

(
1p
g

RµνρσRαβγδε
µναβερσγδ

)
=

= −4
p

g∇µ

(∇σhνρRαβγδηµναβηρσγδ
)
, (2.3)

where ηµναβ = 1p
gε

µναβ. It means that the variation of GB is the total derivative and

it should get vanished under the integral in d = 4. Moreover, the generalized Gauss-

Bonnet theorem (Chern-Guass-Bonnet theorem) states that integral of the Pfaffian of

the curvature 2-form of closed even dimensional Riemannian manifold equals to the

Euler characteristic of the same.

Therefore, in d = 4 one may write,∫
d4x

p
g

(
R2
µνρσ−4R2

µν+R2
)
= χ, (2.4)

where χ stands for a number (topological invariant) known as Euler characteristic.

Therefore, in d = 4 GB does not contribute to the gravitation action, and consequently

EOM does not get affected by any of such terms. We shall consider a great advantage

of the above results in a moment. At this point we know that the form of gravitational

action (in d = 4) containing higher derivatives might be written in terms of arbitrary

number coefficients as,

SHD−4 =
∫

d4x
p

g
(
α2R2

µνρσ+α3R2
µν+α4R2

)
, (2.5)
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2.2. HIGHER DERIVATIVE GRAVITY, PROBLEMS AND SOLUTIONS

where α2, α3 and α4 are arbitrary numerical constants. Along with the correction terms

the full form of the action is given by,

S = SHD−4 +SEH. (2.6)

Now in order to explain the main benefit of the above results for GB term we rewrite the

action (2.5) in terms of the square Weyl tensor (B.4) and GB as follows [2],

SHD−4 =
∫

d4x
p

g
(
α5C2

µνρσ+α6GB
)
, (2.7)

where the numerical constants α5 and α6 are uniquely determined once we know α2, α3

and α4 introduces in (2.5), the inverse is also true. Basically in the process of changing

the basis to go from (2.5) to (2.7) the coefficient of the term R2 gets vanished, which

clearly explains the presence of only two terms in (2.7) instead of three. We shall point

out this explicitely, when we reconsider the action (2.7) with the numerical values of the

coefficients in ch. 4. We see that the second term in the above action becomes redundant

due to the results (2.3) and (2.4), consequently it leaves only one term to vary to get the

EOM. The desired form of such EOM can easily be derived by using the method to be

considered in sect. 5.1. For this particular case one need to use (C.10) and simplify the

resulting expression. More details on EOM coming from (2.5) and (2.7), and benefits of

the same will be considered in chapter 5.

In a quite similar way one can go further and try to incorporate the terms with higher

derivatives (higher than four derivatives) such as R�R, Rµν�Rµν and so on. This way

of adding the terms may lead to the action of the type SHD−6 involving six derivatives of

the metric. However, eventually one may notice that this process of randomly adding

the correction terms creates serious problem with the theory. It is quite important to

note that these correction terms cannot to be added in randomly unorganized way that

consequently lead to the unstable theory due to the well known result so called the

theorem of Ostrogradsky [27]. In order to explain this we start with the Hamiltonian

formalism of classical mechanics.
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CHAPTER 2. A BRIEF REVIEW OF HIGHER DERIVATIVE GRAVITY

We know that the Euler-Lagrange equation for the standard form of Lagrangian L ≡
L(q, q̇) i.e. with one variable is given by,

∂L

∂q
= d

dt
∂L

∂q̇
, (2.8)

where the dot represents the derivative with respect to time. By taking into account the

non-degeneracy condition for the Lagrangian in (2.8) i.e. ∂2L
∂q̇2 6= 0 one may we rewrite

it in the form of Newtonian equations of motion. Thus, one may find that the solutions

to (2.8) require two independent variables, which are known as canonical coordinates.

These coordinates are conventionally defined as follows,

Q ≡ q and P ≡ ∂L

∂q̇
. (2.9)

Now by taking the advantage of non-degeneracy we invert the relation given in (2.9) to

find out the expression for q̇, and by applying the Legendre transformation on a resulting

expression we get,

H (Q,P)= Pq̇−L . (2.10)

The resulting Hamiltonian equations are written as,

Q̇ = ∂H

∂P
and Ṗ =−∂H

∂Q
. (2.11)

The generalization of the above results to N derivatives (eventually leading to 2N

independent coordinates) yields [27],

∂L

∂q
+

N∑
i=1

(
− d

dt

)i ∂L

∂q(i) = 0, (2.12)

where q(i) stands for the ith order derivative of the canonical coordinate q with respect

to time t. As we discussed above for the case of one variable, in a similar way eq. (2.12)

gives us,

H =
N∑

i=1
Pi q(i) −L , (2.13)

which is known as the general N Ostrogradsky’s Hamiltonian. Consequently, we have,

Q̇ i = ∂H

∂Pi
and Ṗi =−∂H

∂Q i
. (2.14)
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2.2. HIGHER DERIVATIVE GRAVITY, PROBLEMS AND SOLUTIONS

We note that the non-degeneracy of the Lagrangian i.e. in this case ∂2L
∂q(i)2 6= 0 plays es-

sential role to find out the Hamiltonian of the type of (2.13). Basically non-degeneracy

condition ensures the alterations of phase space transformations corresponding to canon-

ical coordinates, which lead us to the expression for q(i) and consequently to the Hamil-

tonian mentioned above. In other words generalized conjugate momentum expression

can be inverted to find out the higher time derivative of the canonical coordinate that

yields (2.13). This condition (non-degeneracy) is the core of the problem of Ostrogradsky

instability. The instability coming from the potential energy is quite different, where

the energy liberated as dynamical variable ends up as some special value (e.g. unstable

equilibrium). But the Ostrogradsky instability is related to the instability problem with

the kinetic energy arising from special dependence of dynamical variables on time.

Since the Hamiltonian corresponds to the total energy of the system and it also de-

pends on conjugate momenta (kinetic energy), there exist positive and negative energy

solutions of the same. For example, it can be shown for the case of higher derivative

harmonic oscillator as a special case of the Hamiltonian (2.13) for N = 2 that the Ostro-

gradsky instability is inevitable due to negative energy solutions. For such a case the

Lagrangian and Hamiltonian are given by the following expressions [27].

L =− εm
2ω2 q̈2 + m

2
q̇2 − mω2

2
q2, (2.15)

where ε is a parameter representing the deviation of the system under consideration

from the standard one. That is for ε= 0 (2.15) coincides with the unperturbed Lagrangian

of a simple harmonic oscillator. One can substitute the general solutions of the eq. (2.12)

for N = 2 [27],


q(t)= C± cos(k±t)+S± sin(k±t),

P1 = mq̇+ εm
ω2 q(3),

P2 = − εm
ω2 q̈.

(2.16)
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CHAPTER 2. A BRIEF REVIEW OF HIGHER DERIVATIVE GRAVITY

and (2.15) in the eq. (2.13) (for N = 2) and find the Hamiltonian of the system that we

are interested in, which is given by [27],

H = εm
ω2

(
q̇q(3) − 1

2
q̈2

)
+ m

2
q̇2 + mω2

2
q2,

= m
2

(1−4ε)1/2 [
k2
+

(
C2

++S2
+
)−k2

−
(
C2

−+S2
−
)]

, (2.17)

where q(3) represents the third order derivative of canonical coordinate in time and k±

stands for the two frequencies corresponding to positive and negative energies, which

are given by k± ≡ω
(

1∓(1−4ε)1/2

2ε

)1/2
. Moreover, C± and S± are the constants related to the

positive and negative energy modes, which are written as functions of initial value data.

The forms of these constants are not useful for the discussion of a point of our interest,

but the interested reader can refer to [27].

As it is shown in [27], by analyzing the model described by (2.15), which yields (2.17)

one may see that the energy of the system has a lower bound at zero for any constant

value of the canonical coordinate q. However, it does not imply that the Ostrogradsky

instability is avoidable in this case. In fact the negative energies are accomplished either

by making q̈ more dominant than q(3) or simply by setting the large value of q(3) in

(2.17) but keeping the overall term q̇+ εq(3)

ω2 unchanged at the same time. Now once again

coming back to the gravitational action (2.6), where in some sense the terms of the type

of R2
µν with α3 6= 0 given in (2.5) can lead us to the negative energy solutions (in a quite

similar way as explained above in the case of harmonic oscillator) and give the unstable

theory. Such a theory does not make any physical sense (see for example [28] when the

system of self interacting particles carry both positive and negative energies).

In order to avoid such problems it is recommended (also explained in [31]) to spoil

the non-degeneracy condition of the Lagrangian such that the theory becomes degener-

ate and give rise to the constraints. By doing this it may inflict the couplings between

the canonical variables. For example, in our case it can be shown that by getting rid of

the terms of the type of R2
µν, that is by setting α3 = 0 one may find merely the positive
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energy solutions [29]. The generalization of this case, in particular for higher derivative

models can be found in [30]. Along with these changes the action (2.6) eventuates as,

S = S f (R) +Sconst, (2.18)

where S f (R) =
∫ p

g α7 f (R) with α7 being an arbitrary numerical constant. It is quite

clear that such theories, so called f (R) theories of gravity do not suffer with the problems

of negative energy solutions due to absence of the terms of the type of R2
µν (though they

do have their own problems, which are not the part of our discussion).

In spite of having all these problems with HDG, it remarkably turns out to be renor-

malizable [7, 9], even by incorporating the terms of the type of R2
µν. Inclusion of more

correction (higher derivative) terms in the standard theory may improve the dynamics of

the theory by making the theory renormalizable (even at higher loop levels) and give a

clue to the possible solution of the problem of quantum gravity (see some recent work

[38–42] on super-renormalization). With this motivation in mind we study HDG in more

depth (with six derivatives of the metric). More details on some other problems with

HDG, solutions and more importantly quantum aspects of the same can be found in [31].

2.3 A Connection to the Spectral Action Approach

We shall see that the HDG arises quite naturally in the framework of spectral action

principle and analyze it thoroughly in the next chapter. Here we present a brief preview

of our detailed analysis that we shall consider later on and discuss the solution of the

problem introduced in the previous section. In particular, the problem of finding the

unknown numerical constants. We saw in the previous section that one can add the

higher derivative terms in the standard form of the action and get HDG action. Apart

from the problems that it may create, there is another hurdle that needs to be eradicated.

One may note that the numerical constants which we introduced in gravitational actions

for HDG are unknown and they multiply rapidly for higher orders. The spectral action

approach provides a very accurate way to deal with this issue and at the same time it
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also takes care of the invariants that enter in the deformed gravitational actions.

As stated above we study the case of pure gravity in absence of matter. Therefore,

geometrical sector of the gravity can be studied in full detail by considering the spectral

action principle [2] as a special case (concerning about geometry). Let us consider the

generalized form of the geometrical part of the action coming from asymptotic expansion

of the trace of the heat operator,

Trχ(L)=
∞∑

q=0
f2qa2q(L), (2.19)

where f2q contain the complete information regarding the common numerical factor

for corresponding a2q, a2q are the heat kernel coefficients and L is some generalized

positively defined operator. We shall reconsider (2.19) in the next chapter and explain

the derivation and meaning of the above equation in detail. For the moment being we

consider its main features that basically provide the way to find the unknown numerical

constants which we introduced in HDG actions.

Let us take into account the right hand side the eq. (2.19) and note that all the higher

derivative terms of HDG action are encapsulated in a2q (including the unknown nu-

merical constants α0 to α6) and corresponding common factors (along with the scale

factor Λ, which is to be considered in the next chapter) in f2q. For example, a0, a2 and

a4 are equivalent to the cosmological constant introduced in (2.1), EH action (2.1) and

HDG action (2.5) respectively. If one manages to find the complete forms of heat kernel

coefficients a0, a2 and a4, and common factors i.e. f0, f2 and f4 then it will provide a very

precise and accurate forms of the actions. That is what we are going to do in a moment.

We shall also consider the case of the heat kernel coefficient a6 and corresponding numer-

ical constants (in particular how to find it) in a great detail. As we motioned above the

spectral action approach not only solves the problem of finding the unknown constants,

but it also helps to decide which terms (invariants) are supposed to be added to get the

higher derivative terms in a quite organize way. In other words it excludes the possibility

of adding the invariants in a haphazard manner and provide a very accurate way to
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incorporate them by using dimensional analysis (we shall study in the next chapter).

Moreover, the spectral action approach turns out to be quite useful to find out if there

will be any higher order corrections to the standard action on a particular background.

For example, in the case of S3 ×S1 the heat kernel coefficients a4 and a6 remarkably

transpire to be zero [1]. We shall comment on this when we consider the action coming

from a6 in Weyl basis, which renders a bit easier way to see the cancellations due to

conformal symmetry. But here these outcomes suggest that all the higher order terms

a2q get vanished on such background. It means there are not higher derivative correc-

tions to the undeformed action for this background. Therewithal, positivity of the theory

can be assured by taking the function χ ≥ 0 that gives the correct sign for the action

written in Euclidean formalism, which may eradicate the possibility of having any kind

of negative energy solutions. It would be also quite interesting to note that by quantizing

unperturbed (EH) gravitational action (on shell) at higher loop levels, one may produce

the higher derivative corrections (if the action is non-renormalizable) introduced in sect.

2.2 without actual numerical coefficients, which can easily be fixed in the framework of

spectral action principle. Furthermore, α’s given in the HDG actions can be related to

the beta functions resulting from quantization.

The overall points discussed above provide us a very good reason to apply the spec-

tral action approach to study HDG rigorously, which basically reinforces the idea of HDG

by making it more precise and solid in terms of the values of numerical constants (of

invariants of the actions) and invariants that need to be included in HDG actions with a

great care. In addition to that the spectral action also determines if there will be any

higher order corrections to the standard gravitational action as we mentioned above.

As such the spectral action turns out to be the indispensable part of our studies, which

basically makes the HDG well equipped by providing the necessary details, which the

HDG lacks otherwise. So, in the next chapter we consider the spectral action approach

coming from non-commutative geometry and analyze it thoroughly.
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3
THE SPECTRAL ACTION APPROACH

Our knowledge of the structure of spacetime is based on two main pillars of physics,

which are basically general theory of relativity (GR) and the standard model (SM) of

particle physics. The framework of GR depends on our understanding of Riemannian

geometry, which works perfectly fine at the large scale structure. However, it crumbles

at small scale, in particular at high energy level, where the quantum effects dominate.

On the other hand the SM contains our comprehension of the spacetime geometry at

very small scales. Thus, it is quite natural to look for a geometry coming out from the

quantum world, where the real coordinates are replaced by the self adjoint operators

in a Hilbert space, and such a geometry is known as non-commutative geometry (or

spectral geometry) [5]. This geometry can be used to comprehend the relation between

spacetime and SM [34], and merely gravitational aspects (GR and HDG) of theories

(see for example [1] for both cases). The non-commutative geometry basically provides

a way to deal with the spaces based on coordinates that do not commute with each

other. Moreover, this geometry is spectral in nature. Since experimental data and our

theoretical understanding of the nature from particle physics to astrophysics (SM to

GR) is presented in the form of some sort of spectra, it worth to apply this new model

of the geometry and study its results. However, due to the constraint for the compact
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space to be smooth manifold, such as Riemannian manifold and non-isometric properties

of the same [32], it is quite difficult to reformulate it and find the quantum version of

the same. The main tool leading to the non-commutative geometry is known as spectral

triple (or non-commutative space). It comprises the complete information corresponding

to geometrical and physical parts of the space as we shall see in a moment below. In

particular, it is made up of some algebra A , Hilbert space H on which this algebra is

represented and the standard Dirac operator D. As such we denote the spectral triple by

(A ,H, D). By choosing a particular spectral triple one may end up with different classes

of theories in physics. After making a suitable choice one assumes that the physics of the

system is described by the following action [33],

S =Tr f
(
D

Λ

)2
+〈Jψ,Dψ〉 ≡ Sgeom +Smatt, (3.1)

where f is some cut-off function, D is generalized Dirac operator, Λ is some characteristic

scale factor, J is real structure and ψ is the standard Dirac spinor. Here by taking J as a

real structure we emphasize that we consider the real non-commutative space as it is

explained in [5]. The spectral action principle studied in [2] lies in the core of spectral

geometry approach to physics, which can be seen in the studies of some remarkable

applications of the spectral action [1]. The spectral triple considered above plays essential

role to devise such an effective (spectral) geometry.

Now at this point we know that by making a particular choice of the Dirac operator one

can develop a proper framework for different theories. We stated at the very beginning

of chapter 2 that HLG can be accomplished with an appropriate choice of Dirac operator.

One of such studies can be found in [33], where the infrared action of HLG and matter

coupled to the same is constructed by preserving the foliation diffeomorphism. However,

as we specified before such theories do not respect the Lorentz symmetry. Concerning

about this work we make our choice of the Dirac operator in such a way that it yields

HDG. Moreover, we shall study merely Sgeom (pure gravity) part of the action (3.1) in

detail for our purpose.
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We review the spectral action approach and its applications to the HDG. More pre-

cisely, we discuss and analyze the model studied in [1–4] and derive the heat kernel

coefficients. In order to derive the heat kernel coefficients we mainly use the meth-

ods described in [8]. We consider the spectral action, which is principally based on

non-commutative geometry. We begin with two important results associated with the

standard Dirac operator, and derive the Lichnerowicz formula. Later on we consider

the generalized form of the spectral action and by choosing the standard form of Dirac

operator we boil it down to the particular case of our interest that leads us to HDG. In

order to find the heat kernel coefficients, two methods are reviewed for the case of base

manifolds without boundaries. These approaches were introduced by DeWitt and Gilkey.

Since DeWitt approach (depends on recursive relations) is limited in some sense, we

consider the powerful method devised by Gilkey, which is based on background manifolds.

Finally, we conclude this chapter by briefly reviewing the case of base manifolds with

boundaries. Below we start with few essential things and slowly move on to the core of

this chapter. We write all the terms having summed over indices in Feynman’s notation

(all the indices downstairs), see the appendix A.

Before we embark ourselves on deriving the heat kernel coefficients we set the stage by

calculating two important results, which will be used frequently in the following sections

and chapters. Let us consider the Dirac operator given by,

D = γµ
[(
∂µ+ωµ

)⊗ 1+ 1⊗(
− i

2
gAµ

)]
. (3.2)

where 
γµ ≡ γµ⊗ 1 := eµaγa,

ωµ := 1
4ωµabγab.

(3.3)

Here ωµ is a spin connection associated with the tetrads eµa and γa are chosen in such

a way that it satisfy the relation (A.2) in an Euclidean formalism i.e.
{
γa,γb

}=−2δab

and γab is defined by (A.1). We now introduce new notations and rewrite the eq. (3.2) as

follows.
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We define,

ωµ :=ωµ⊗ 1 and Aµ := 1⊗Aµ.

where Aµ :=− i
2 gAµ. Such that we get,

D = γµ
(
∂µ+ωµ+ Aµ

)≡ γµ (
∂µ+ ω̃µ

)
. (3.4)

where ω̃µ :=ωµ+ Aµ.

We note that since ⊗ is over C∞(M ) we have ∂µ := ∂µ (1⊗ 1), which has been used to get

(3.4). Now, let us consider the following theorems, which are quite useful to derive our

desired results. We shall not give the proof of these theorems here. However, in principle

one can easily prove it with the given information.

Theorem 1 : (
gµν∂µ∂ν+Aµ∂µ+B

)≡ (
gµν∇µω∇νω −E

)
, (3.5)

where ∇µω :=∇µ+ωµ
Aµ = 2ωµ−Γµ,

B=−E+ gµν
(
∂µων+ωµων−Γµνρωρ

)
.

(3.6)

Here ∇µ represents the usual Levi-Civita connection and ωµ is spin connection. Moreover,

we note that Γµ := gρσΓρσµ and Γµνρωρ ≡Γρµνωρ. Now, we quote the second theorem below,

which is basically the main result that will lead us to the equation for an endomorphism E.

Theorem 2 :

D2 =−(
gµν∂µ∂ν+Aµ∂µ+B

)
, (3.7)

where 
Aµ = 2ω̃µ−Γµ,

ω̃µ =ωµ+ Aµ,

B=
(
∂µω̃µ+ ω̃2

µ−Γµω̃µ
)
+ 1

4 R⊗ 1− 1
2γµν⊗Fµν.

(3.8)
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Here R is the Ricci scalar associated with gµν and Fµν := ∂µAν−∂νAµ+
[
Aµ,Aν

]
.

Therefore, by the using the Theorem 1 (3.5) we may write,

D2 =−(
gµν∇µω∇νω −E

)
, (3.9)

where E = −B+ gµν
(
∂µω̃ν+ ω̃µω̃ν−Γµνρω̃ρ

)
. The last relation (3.9) is well known Lich-

nerowicz formula for the twisted spinor bundle ε := S⊗W , with S and W being the usual

spinor bundles over the manifold M and some vector space, respectively. Finally by using

the relation for an endomorphism E and ( 3.8) we get,

E=−1
4
R⊗ 1+ 1

2
γµν⊗Fµν. (3.10)

The above result is one of the equations that we are interested in. Now, in order to derive

the second one we start with the standard form of the second Cartan structure equation.

It is given by the following relation,

dωab +ωac ∧ωcb = Rab, (3.11)

which can esily be rewritten as,

∂µωνab dxµ∧dxν+ωµac ωνcb dxµ∧dxν = 1
2

Rµνab dxµ∧dxν. (3.12)

By using the anti-symmetrization with respect to µ and ν, one can write the eq. (3.12) as,

∂µωνab −∂νωµab +ωµac ωνcb −ωνac ωµcb = Rµνab. (3.13)

We contract the eq. (3.13) with 1
4γab on both sides and use the definition of ωµ given in

(3.3) such that (3.13) takes the following form,

∂µων−∂νωµ+ 1
4
ωµacωνcbγab −

1
4
ωνacωµcbγab =

1
4

Rµνabγab. (3.14)

Now, let us consider the term ωµacωνcbγab and rewrite it as,

ωµacωνcbγab =
1
4
ωµadωνcb

(
δdcγab −δdbγac −δacγdb +δabγdc

)
. (3.15)
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We know that the generators of Lorentz group satisfy the following algebra,

[Σad,Σcb]= δdcΣab −δdbΣac −δacΣdb +δabΣdc. (3.16)

By using the eq. (3.16) in (3.15) with Σab := 1
2γab we simplify it as,

ωµacωνcbγab =
1
8
ωµadωνcb

[
γad,γcb

]
. (3.17)

Therefore, by plugging (3.17) in (3.14) and simplifying the resulting equation finally we

get,

Ωµν ≡ ∂µων−∂νωµ+ωµ ων−ων ωµ = 1
4

Rµνabγab. (3.18)

The above equation is the second and the final one that we wanted to find. Now, in this

dissertation we consider the case of pure gravity, for which (3.10) and (3.18) reduce to

the forms as given by (A.4).

3.1 Prerequisites for the Heat Kernel Coefficients

In this section we study the heat kernel coefficients. But first and foremost we consider

the very general expression representing the trace of an arbitrary function of some

positive operator L on a Hilbert space. Let χ(L) be such a function, then we have,

Trχ(L). (3.19)

Later we shall see the spectral action as a special case of (3.19), where we shall take

L = −(D
Λ

)2
. Mainly we are interested to establish a relation between the expression

(3.19) and the object so called heat kernel, which we shall introduce later in this section.

Instead of being rigorous in deriving the result for (3.19) we briefly recapitulate the core

idea behind this. A detailed derivation can be found in [our paper]. Let us consider the

Mellin transform of the function χ given by,

φ(s)=
∫ ∞

0
dx xs−1χ(x). (3.20)
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The inverse Mellin transform takes the form,

χ(x)= 1
2πi

∫ c+i∞

c−i∞
ds x−sφ(s), (3.21)

where c is the constant belonging to the fundamental strip (0,+∞). Now by using the

spectral functional calculus and taking into account (3.21) we define a function of an

operator L as follows,

χ(L)= 1
2πi

∫ c+i∞

c−i∞
ds L−sφ(s), (3.22)

where φ(s) is the Mellin transform given by (3.20). Therefore, the trace of χ(L) takes the

form,

Trχ(L)= 1
2πi

∫ c+i∞

c−i∞
ds ζL(s)φ(s), (3.23)

where ζL(s) is the generalized zeta function defined as ζL(s) :=TrL−s. Now we consider

the standard gamma function,

Γ(s)=
∫ ∞

0
dx xs−1e−x for Re(s)> 0.

By formally changing the variable x → tL and using the functional calculus for a positive

operator we get,

L−s = 1
Γ(s)

∫ ∞

0
dt ts−1e−tL. (3.24)

So, by taking the trace on both sides we may write,

ζL(s)≡TrL−s = 1
Γ(s)

∫ ∞

0
dt ts−1Tr e−tL, (3.25)

where Tr e−tL is the trace of the heat operator and its asymptotic expansion for small t is

given by [14][our paper],

Tr e−tL ' ∑
p≥0

t
p−d
m ap(L)= 1

2πi

∫ c+i∞

c−i∞
ds t−sΓ(s)ζL(s), (3.26)

where m is the order of operator L, d is the dimension of the manifold M and ap are the

heat kernel coefficients for which we shall see the explicit relation with Seeley-DeWitt
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coefficients in the next section. Finally, by analyzing the poles of the expression ζL(s)φ(s)

given in (3.23) and finding the same by some indirect method as described in [our paper]

we get,

Trχ(L)=φ(2)a0(L)+φ(1)a2(L)+
∞∑

s=0
(−1)sχs(0)a2(s+2)(L)≡

∞∑
q=0

f2qa2q(L), (3.27)

where f0 = φ(2), f2 = φ(1), f2(2+q) = (−1)qχ(q)(0), q ≥ 0 and φ(s) is given by (3.20). Note

that the infinite parameters (higher order heat kennel coefficients) in (3.27) get sup-

pressed by the mass scale factor Λ for the particular choice of the operator L =−(D
Λ

)2
, for

which (3.27) takes the form as Trχ(L)=∑∞
q=0Λ

4−2q f2qa2q, that is basically the case of our

interest. Now, if χ(0) is a cutoff function then we note that for s = 1, χ(1)(0) gets vanished

and remarkably yields the contribution due to a6 to be zero. As such in general we have

χ(s)(0)= 0 ∀ s > 0. It means there are no further contributions coming from heat kernel

coefficients. However, in our studies we consider χ to be smooth cutoff function and an-

alyze below the heat kernel coefficients thoroughly by using some quite useful techniques.

From now on we study the heat kernel coefficients explicitly, we mainly use the tech-

niques and methods described in [8] to derive the same. Let us consider the heat equation

given by,

(∂t +L)u(x; t)= 0, (3.28)

where L is an elliptical second order differential operator acting on the sections of vector

bundles over the Euclidean Riemannian manifold M and t > 0. The initial condition for

the above equation is u(x; 0)= f (x) with f (x) being a function from L2−space (Hilbert

space of square integrable functions on M ). We find that the solution of the eq. (3.28)

takes the form as u(x; t)= exp(−tL) f (x). Here exp(−tL) represents the heat operator as

we mentioned earlier. With this information one can determine the heat kernel as,

u(x; t)=
∫

dd y K(x, y|t) f (y), (3.29)

Therefore, we rewrite the heat equation (3.28) for the heat kernel as follows,

(∂t +L)K(x, y|t)= 0. (3.30)
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where d represents an arbitrary number of dimensions and K(x, y|t) is the heat kernel

with the initial condition K(x, y|0) = δd(x, y). Here δd(x, y) is the kernel of the unit

operator, which simply turns out to be the Dirac delta function δd(x−y) when the operator

L is Laplacian on Rd. For example, in the case of scalar Laplacian operator L =∆=−∂2
µ

on a torus Td. Now, we expand the function f in a Fourier series as f = ∑
kαk fk(x),

where fk is a plane wave given by fk = (l1l2 . . . ld)exp(ikµxµ) and kµ = 2πqµ
lµ

with {qµ} ∈Zd.

Here kµ and lµ are the momenta and real numbers (radii), respectively. In this case

the action of the heat operator takes the form as e−t∆ : αk → e−tk2
αk. We note that for

t > 0 and kµ → ∞ the exponential e−tk2
converges and enhances the behavior of the

Fourier coefficients αk, ultimately it makes the function more smooth. Specifically, for

t > 0 the heat operator always exists and maps L2 → C∞ and for this reason sometimes

it is called the infinitely smoothing operator. Even the presence of some lower powers of

momenta does not affect the existence of the heat operator as e−tk2
prevails the universal

contribution. Moreover, we note that the property of self adjointness of the operator L is

not necessary for this purpose. The convergence of the heat operator for t > 0 and kµ→∞
forces the existence of the heat trace on the space L2. Therefore, we write,

K (Q, L; t)=TrL2 (Qexp(−tL)) , (3.31)

where Q represents the partial differential operator. In our analysis we are interested

for the cases when Q is a function i.e. zero order operator or when Q=1, for which we

define K (L; t)≡ K (1, L; t). The equation for this spectral function K (L; t) is given by,

K (L; t)=
∑
λ

e−tλ, (3.32)

where λ represents the eigenvalues of the operator L. Now, let us consider the Euclidean

Riemannian manifold M of dimension d being either compact or it has a boundary, on

which there exists the operator L, which is an elliptical second order partial differential

operator belonging to one of the classes of either f |x=0,l = 0 (Dirichlet) or ∂x f |x=0,l = 0

(Neumann) strongly elliptical boundary conditions for the interval [0, l].

The relation between the heat kernel and heat kernel coefficients is given by the following
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full asymptotic series for the function f as t → 0 (first it was calculated in [14]),

K ( f , L; t)=TrL2 ( f exp(−tL))'
∞∑

p=0
t

p−d
2 ap( f , L), (3.33)

where ap ( f , L) are the heat kernel coefficients, which we already know from (3.26). As

we shall see later on, in our case we consider L =−(D
Λ

)2 =− ∆
Λ2 (see (3.1)) with Λ being

some mass scale factor and D the standard Dirac operator such that the last relation

takes the form as,

K
(
f , L; t′

)=TrL2
(
f exp

(−t′L
))' ∞∑

p=0
t′

p−d
2 ap( f , L), (3.34)

where t → t′ =− t
Λ2 and ∆ is the Laplacian L =∆=−∇2 =−∇2

µ, which reduces to ∆=−∂2
µ

in the case of flat spacetime. Now, we evaluate the series of the heat trace at t → 0. In

order to do this let us consider the Poisson summation formula given by,

∞∑
−∞

h(2kπ)= 1
2π

∞∑
k=−∞

∫ ∞

−∞
d y h(y) e−iky, (3.35)

which is basically valid for any bounded function h(y). In order to show the usefulness of

the above formula we consider an asymptotic expansion of the sum of an exponential∑∞
k=−∞ e−tk2

at t → 0 and choose h(y)= exp
(
− 1

4π2 ty2
)

in (3.35) such that we have h(2kπ)=
e−tk2

. With this particular choice the resulting equation takes the form as,

∞∑
k=−∞

h(2kπ)= 1
2π

∞∑
k=−∞

∫ ∞

−∞
d y e−y((2π)−2ty+ik). (3.36)

One can easily calculate,∫ ∞

−∞
dx e−px2+qx = e

q2
4p

∫ ∞

−∞
dx e−p

(
x+ q

p

)2

=
√
π

p
e

q2
4p . (3.37)

Therefore, by comparing (3.36) and (3.37) we get,

1
2π

∫ ∞

−∞
d y e−y((2π)−2ty+ik) =

√
π

t
e−

k2π2
t . (3.38)

From (3.35), (3.36) and (3.38) along with given h(y), we see that in the sum of an

exponential e−tk2
or on the right hand side of the eq. (3.35), all the terms are significantly

small except at k = 0. Therefore, at t → 0 we may write,

∞∑
k=−∞

e−tk2 '
√
π

t
+O (e−

1
t ), (3.39)
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where O (e−
1
t ) indicates the higher order terms, which get vanished exponentially for

small t and are not relevant for our analysis. Now, one can find an asymptotic expansion

of the heat kernel for the Laplacian ∆=−∂2
1 −∂2

2 − . . .−∂2
d on d dimensional torus Td by

expanding exp
(
−t′k2

µ

)
at small t′, where kµ = 2πqµ

lµ
as we introduced above. This form of

the expansion is given by [8],

K
(
∆; t′

)= ∑
q∈Zd

exp

(
−t′

∑
µ

2πq2
µ

l2
µ

)
' l1l2 . . . ld

(4πt′)d/2 +O (e−
1
t ). (3.40)

Similarly, for the heat kernel on 2-sphere (S2) and 3-sphere (S3) we find [8],

K
(
∆S2 ; t′

)' 1
t′
+ 1

3
+ t′

15
+O (t′2), (3.41)

and

K
(
∆S3; t′

)' p
π

4

(
1

t′
3
2
+ 1

t′
1
2
+ t′

1
2

2

)
+O (e−

1
t′ ). (3.42)

We note that (3.40), (3.41) and (3.42) are of the form of (3.34). As we shall see below,

the above results are quite useful to find the unknown numerical constants of the heat

kernel coefficients for the general case. We begin with the DeWitt method, which is based

on the recursion relations between the heat kernel coefficients. We note that here we

consider our base manifolds without boundaries. Later on in the sect. 3.3 we shall also

study the case of heat kernel coefficients on base manifolds with boundaries.

3.2 Heat Kernel Coefficients on Manifolds Without

Boundaries

In this section we consider the base manifold namely the Euclidean Riemannian without

boundaries and find the heat kernel coefficients by using two effective techniques known

as DeWitt and Gilkey methods, which were introduced in 1965 and 1975 respectively.

3.2.1 DeWitt Method: Based on Recursive Relations

Let us consider the Laplacian L = −∂2
µ on Rd with a flat unit metric, as such one can

easily find the solution to the heat equation (3.30) by exploiting the relation (3.31) for
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Q = 1, the Laplacian under consideration and t → t′, which is given by the following flat

space kernel [8],

K(x, y|t′)= 1
(4πt′)d/2 exp

(
− (x− y)2

4t′

)
, (3.43)

for which the initial condition takes the form same as that of the eq. (3.30), i.e. K(x, y|0)=
δd(x− y). From the eq. (3.43) we try to estimate the heat kernel for the Laplacian on a

curved manifold without boundaries in the limit when x → y i.e. x is close to y and t′ is

very small, as such (3.43) remains valid up to curvature corrections. The DeWitt ansatz

for this case takes the form as,

K(x, y|t′)∼ 1
(4πt′)d/2

√
∆VV M(x, y) exp

(
−σ

2(x, y)
4t′

) ∞∑
p=0

bp(x, y)t′d. (3.44)

In the above relation a biscalar determinant i.e. ∆VV M(x, y) so called Van-Vleck-Morettee

determinant is given by,

∆VV M(x, y)= 1√
g(x)g(y)

∣∣∣∣−1
2
∂µ∂νσ

2(x, y)
∣∣∣∣ , (3.45)

where g(x) = |gµν(x)| and σ2(x, y) is the geodesic distance between two close points x

and y with coordinates xµ and yν respectively. We assume that geodesics lines form a

regular coordinate system close to x or y. We note that the above determinant (3.45)

makes the expression given in the eq. (3.44) covariant and the coefficients bp represent

the corrections due to the curvature. It is quite discernible that when x → y (3.43) and

(3.44) coincide.

Now, we proceed further and try to find the coefficients bp(x, y) for the scalar Laplacian

under consideration. We perform our calculations in the Riemann normal coordinates

or simply normal coordinates centered at point y such that L =−∇2
µ =−∂2

µ. In normal

coordinates the coordinates of the point x take the form as xµ = slµ, with s being the

length of geodesics connecting two points namely x and y, and lµ a unit vector at point

y, which is basically a tangent to the geodesic. Due to our assumption, since geodesic

lines form a regular coordinate system, there is a single geodesic line between any
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two points. Moreover, by the definition of the normal coordinates, the metric at point

y be as flat spacetime metric i.e. ηµν. Therefore, we have σ2(x, y) = xµxνηµν such that

∆VV M(x, y)=∆VV M(x)≡ 1p
g(x)

. We note that in the normal coordinates the geodesic equa-

tion coincides with the equation of flat spacetime, that is we have d2xµ
ds2 = 0. Consequently,

in the normal coordinates DeWitt ansatz (3.44) reduces to,

K(x, x|t′)= 1
(4πt′)d/2

√
∆VV M(x) exp

(
− x2

4t′

) ∞∑
p=0

bp(x)t′p. (3.46)

Here we see that as we need to perform the differentiation in the next step, the summed

over index p is written in the standard Einstein’s summation convention just like in the

case of variations. However, here we put explicit summation sign as well, in order to

emphasize that the summation is running over p from 0 to ∞. We now find out,

∂t′K(x, x|t′)= (4πt′)−d/2
√
∆VV M exp

(
− x2

4t′

) ∞∑
p=0

bp

((
p− d

2

)
t′p−1 + x2

4
t′p−2

)
. (3.47)

LK(x, x|t′)=−∇2
µK(x, x|t′) = (4πt′)−d/2exp

(
− x2

4t′

) ∞∑
p=0

t′p
[√
∆VV M bp×

×
(
−∇2x2

4t′
+

(∇x2)2

16t′2

)
− 1

t′
xµ∇µ

(√
∆VV M bp

)
+

+∇2
(√
∆VV M bp

)]
, (3.48)

where we have lowered all the summed over indices after performing the differentiation.

This point of raising the indices to differentiate the expression and lower once it is done

will be discussed in detail in ch. 5, particularly in order to explain the variation of the

action and to deal with the EOM in general. So, by plugging results (3.47) and (3.48) into

the heat kernel equation (3.30) or comparing (3.47) and (3.48) we get,

∞∑
p=0

bp

((
p− d

2

)
t′p−1 + x2

4
t′p−2

)
= 1p

∆VV M

∞∑
p=0

t′p
[√

∆VV M bp

(
−∇2x2

4t′
+

(∇x2)2

16t′2

)
−

−1
t′

xµ∇µ

(√
∆VV M bp

)
+∇2

(√
∆VV M bp

)]
. (3.49)

One can easily see that (∇x2)2 = (∂µx2)2 = 4x2 and by taking the advantage of nor-

mal coordinates we may write ∇2x2 = 1p
g∂µ

(p
ggµν∂νx2). One can use ∆VV M(x)= 1p

g(x)

37



CHAPTER 3. THE SPECTRAL ACTION APPROACH

in the last result and upon simplifying the resulting expression it produces ∇2x2 =
2xµ∆VV M∂µ∆

−1
VV M +2d. We substitute these results in (3.49) and expand the same, after

simplification it reduces to the following relation,

∞∑
p=0

p bp t′p−1 =
∞∑

p=0

(
−t′p−1xµ∂µbp + 1p

∆VV M
t′p∇2

(√
∆VV Mbp

))
. (3.50)

By comparing the powers of t in (3.50) we get the recursion relations as follows,

(p+1) bp+1 + xµ∂µbp+1 = 1p
∆VV M

∇2
(√
∆VV Mbp

)
. (3.51)

xµ∂µb0 = 0. (3.52)

Since K(x, y|0) = δd(x− y) from (3.52) we find b0 = 1. We substitute this value of the

coefficient b0 in (3.51) with p = 0. Therefore, we get,

b1 + xµ∂µb1 = 1p
∆VV M

∇2
√
∆VV M . (3.53)

Since we are working in normal coordinates and dxµ
ds = xµ

s one may find that the equations

for the Levi-Civita connection turns out to be Γσµν(x)xµxν = 0. Furthermore, the form of

the metric is compatible with the Levi-Civita connection equation, and under the normal

coordinates considered above it takes the form as follows,

gµν(x)= ηµν− 1
3

Rµρνσxρxσ+O (xd), (3.54)

where O (xd) represents higher order terms. Since ∆VV M(x)= 1p
g(x)

, one can easily find

that, 
|gµν(x)| = g(x)= 1− 1

3 Rµνxµxν+O (xd),
p
∆VV M = (g(x))−1/4 = 1+ 1

12 Rµνxµxν+O (xd).

In xµ = 0 limit we have,

√
∆VV M = 1 and ∇2

√
∆VV M = 1

6
R.
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We note that the higher order terms get vanished in the limit xµ = 0 for the second

derivative of VVM determinant. Now by substituting these results in (3.53) and taking

care of the limit xµ = 0 one can easily find,

b1(0)= 1
6

R. (3.55)

This results lead us to the asymptotic expansion of the heat kernel at small t on a

compact manifold without boundaries, which takes the form as given below,

K(−∇2; t′) =
∫
M

ddx
p

g K(x, x; t′)∼ (4πt′)−d/2
∫
M

ddx
p

g (b0 +b1t′+ . . .)=

= (4πt′)−d/2
∫
M

ddx
p

g
(
1+ 1

6
Rt′+ . . .

)
. (3.56)

Therefore, by comparing (3.34) and (3.56) we find the heat kenrel coefficients as follows,

a2p = (4π)−d/2
∫
M

ddx
p

g bp. (3.57)

We note that the above equation relates the Seeley-DeWitt coefficients bp with heat

kernel coefficients introduced in (3.26). Finally, we use (3.57) and obtain some initial

heat kernel coefficients below,
a0 = (4π)−d/2 ∫

M ddx
p

g = VolM
(4π)d/2 ,

a2 = (4π)−d/2 ∫
M ddx

p
g 1

6 R.
(3.58)

We note that the heat kernel coefficients with odd p get vanished i.e. a2p+1 = 0 with

p = 0,1,2, . . . and so on or ap = 0 ∀ odd p. Here we see that this method of finding the

heat kernel coefficients by using the recursion relations is a bit cumbersome and makes

it difficult to handle for higher order heat kernel coefficients. In order to deal with this

problem Gilkey introduced the new approach in 1975, which is based on a background

manifold to find the unknown number coefficients of preformed heat kernel coefficient

expressions (by using dimensional analysis), as we shall see below in a moment.

3.2.2 Gilkey Method: Based on Background Manifolds

In order to take the advantage of this method first we review few prerequisites below

and later on we move on to the detailed explanation of this powerful approach.
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On the product manifold M =M1 ×M2 the heat kernel coefficients maybe written as [8],

ak (x; L)=
∑

p+q=k
ap (x1; L1)aq (x2; L2) . (3.59)

where L is the Laplacian given by L = L1 ⊗1+1⊗L2.

Now, let us pay attention to the dimensional analysis in (3.34), which will directly

help us to write the heat kernel coefficients. Let us assign the dimension −1 to the

coordinate, dim(xµ) =−1, then the dimension of the derivative is +1, dim(∂µ) = 1. Nat-

urally the covariant derivative will also have the same dimension i.e. dim(∇µ) = 1.

We choose the dimension of f to be dim( f ) = 0 and keep the dimension of the metric

also dim(gµν) = 0. Now, we note that the exponential appearing in (3.34) must be di-

mensionless. In order to satisfy this condition we take dim(t′) = −dim(L) = −2 for the

second order operator. Let us consider the eq. (3.29) and note that since dim(xµ) =−1,

we have dim(ddx) = −d. By considering (3.29) and (3.34) we find that dim(ddx) = −d

cancels out with the dim(t′−d/2) = d leaving the dim(t′p/2) = −p. This will be compen-

sated by the dimension of the heat kernel coefficients ap. Consequently, the overall

term remains dimensionless. Therefore, any integrands appearing in the equations of

the heat kernel coefficients must have the dimension p. It is quite easy to see that

dim(E) = dim(Ωµν) = dim(Rµνρσ) = dim(Rµν) = dim(R) = 2. This says that all the in-

variants that appear as the integrands of the heat kernel coefficients will have even

dimensions. It implies that all the heat kernel coefficients with odd p should get vanished

in the case of base manifolds having no boundaries. Thus, in general it gives us a2p+1 = 0

for p = 0,1,2, . . . so on or ap = 0 ∀ odd p. Later on we shall see that, in the case of base

manifolds with boundaries not only the coefficients with odd p survive but the coefficients

with even p also get modified.

Now, one can write some initial heat kernel coefficients by using the dimensional analysis
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Invariant/Scalar Coeff. Manifold(s)/Supporting equation
f (x) c0 T4

E c1 K
(
f , L0 −E; t′

)= et′EK
(
f , L0; t′

)
R c2 S2

E;µµ c3 Gauge fields and potentials
ER c4 same as c1E2 c5

R;µµ c6 Conformal variations
R2 c7 M1 ×M2

R2
µν c8 S2 and S3R2

µνρσ c9

Ω2
µν c10 same as c3

Table 3.1: Table of invariants (or scalars) and corresponding background manifold(s) and
supporting equation for a0, a2 and a4.

as follows [4, 8],

a0 ( f , D)= (4π)−d/2
∫
M

ddx
p

g Tr(c0 f ) , (3.60)

a2 ( f , D)= (4π)−d/2

6

∫
M

ddx
p

g Tr( f (c1E+ c2R)) , (3.61)

a4 ( f , D) = (4π)−d/2

360

∫
M

ddx
p

g Tr
(
f
(
c3E;µµ+ c4ER+ c5E2 + c6R;µµ+

+c7R2 + c8R2
µν+ c9R2

µνρσ+ c10Ω
2
µν

))
, (3.62)

where the coefficients (4π)−d/2 are part of the definition, and 1
6 and 1

360 are quite arbitrary

and have been written only for the matter of convenience. Moreover, c0 to c10 are the

unknown numerical constants to be determined by using the different manifolds and

supporting equations as it is described in the table 3.1. We begin by finding the value

of c0. In order to do this we consider (3.34), (3.40) and (3.60), which take the following

forms for f = 1, p = 0, d = 4 and the unit radii ld = 1,
K

(
∆T4 ; t′

)∣∣
p=0 = 1

t′2 a0
(
∆T4

)
,

K
(
∆T4 ; t′

) = 1
16π2t′2 ,

a0
(
∆T4

) = c0
16π2 .

(3.63)
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It is clear from (3.63) that we have,

c0 = 1. (3.64)

Similarly, one can derive the remaining coefficients. However, it requires to consider

different backgrounds or supporting equations as mentioned above. We shall consider

the unit spheres S2 and S3 to find the next set of coefficients. We know that the Riemann

tensor, Ricci tensor and Ricci scalar on d-sphere (Sd) (having the radius r) are given by

the equations Rµνρσ =− 1
r2

(
gµρ gνσ− gµσgνρ

)
, Rµν = d−1

r2 gµν and R = d(d−1)
r2 , respectively.

By using these relations one can easily find the following relations for the unit sphere

(i.e. r = 1) Sd : R2 = d2 (d−1)2, R2
µν = d (d−1)2 and R2

µνρσ = 2d (d−1). We note that on

S2 and S3 we have E = 0 and Ωµν = 0. Therefore, only the terms containing curvature

contribute. Moreover, the volume of Sd can easily be found, which is given by the ex-

pression 2rdπ
d+1

2

Γ
(

d+1
2

) . So, we get Vol S2 = 4π and Vol S3 = 2π2 for the unit spheres S2 and

S3 respectively.

Now, we evaluate (3.61) and (3.62) over the unit spheres S2 and S3, which produce

the results (with f=1) as enumerated below,

a2
(
∆S2

)= 1
4π

c2

6
2(2−1)

∫
S2

d2x
p

g = c2

3
, (3.65)

a4
(
∆S2

) = 1
4π

1
360

(
c722 (2−1)2 + c82(2−1)2 + c92(2)(2−1)

)∫
S2

d2x
p

g =

= 1
90

(
c7 + 1

2
c8 + c9

)
, (3.66)

and

a4
(
∆S3

) = 1

(4π)
3
2

1
360

(
c732 (3−1)2 + c83(3−1)2 + c92(3)(3−1)

)∫
S3

d2x
p

g =

=
p
π

4
1

30
(3c7 + c8 + c9) . (3.67)

We also note that for the unit spheres S2 and S3 the eq. (3.34) turns out to be as follows,

K
(
∆S2 ; t′

)' ∞∑
p=0

t′
p−2

2 ap
(
∆S2

)
, (3.68)
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and

K
(
∆S3 ; t′

)' ∞∑
p=0

t′
p−3

2 ap
(
∆S3

)
. (3.69)

Now, we rewrite the kernel for S2 and heat coefficient a2 by using (3.68) and (3.65) as,

K
(
∆S2 ; t′

)∣∣
p=2 = a2

(
∆S2

)= c2
3 . (3.70)

Therefore, by comparing the coefficients of t0 in (3.41) and (3.70) we get,

c2 = 1. (3.71)

Once again we use (3.68) and (3.69), and re-write it for a4 as follows,

K
(
∆S2 ; t′

)∣∣
p=4 = t′a4

(
∆S2

)
, (3.72)

and

K
(
∆S3 ; t′

)∣∣
p=4 = t′

1
2 a4

(
∆S3

)
. (3.73)

Now, as we did before we rewrite (3.72) and (3.73) by using (3.66) and (3.67), such that

the resulting equations take the following forms,

K
(
∆S2 ; t′

)∣∣
p=4 = t′

1
90

(
c7 + 1

2
c8 + c9

)
, (3.74)

and

K
(
∆S3 ; t′

)∣∣
p=4 = t′

1
2

p
π

8
1
30

(3c7 + c8 + c9) . (3.75)

By comparing the coefficients of the terms t and t
1
2 given in (3.74) and (3.75) with the

coefficients of corresponding terms in (3.41) and (3.42) we get,

1
90

(
c7 + 1

2
c8 + c9

)
= 1

15
⇒ 2c7 + c8 +2c9 = 12, (3.76)

and
p
π

4
1

30
(3c7 + c8 + c9)=

p
π

8
⇒ 3c7 + c8 + c9 = 15. (3.77)
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Now, we take k = 4 in the eq. (3.59) and rewrite it as (with R = R1 +R2),
a4

(
x; ∆S2

)= a2
(
x1; ∆1S2

)
a2

(
x2; ∆2S2

)⇒
⇒ 1

4π
1

360
∫

S2
d2x

p
g

(
c7 (R1 +2R1 ·R2 +R2)+ c8R2

µν+ c9R2
µνρσ

)
=

= ( 1
4π

)2 ( c2
6

)2 ∫
S2

d2x1d2x2 gR1 ·R2.

By comparing the terms containing only the square of the scalar curvature we get,
1

4π
1

360
∫

S2
d2x

p
g (2c7R1 ·R2)= ( 1

4π

)2 ( c2
6

)2 ∫
S2

d2x1d2x2 gR1 ·R2 ⇒

⇒ 1
4π

1
3602c722 (2−1)2 (4π)= ( 1

4π

)2 ( c2
6

)2 22 (2−1)2 (4π)2 .

These calculations yield,

c7 = 5. (3.78)

Therefore, equations (3.76) and (3.77) give us,

c8 =−2, (3.79)

and

c9 = 2. (3.80)

Now, we consider the case when E is a constant and proportional to the unit matrix. We

expand K
(
f , L0 −E; t′

)= et′EK
(
f , L0; t′

)
in powers of t′ as,

K
(
f , L0 −E; t′

)= ∞∑
p=0

(
t′

p−d
2 ap ( f , L0)+Et′

p−d+2
2 ap ( f , L0)+ E2

2
t′

p−d+4
2 ap ( f , L0)+ . . .

)
.

We expand the above series and consider only the desired terms for our purpose such

that we have,

K
(
f , L0 −E; t′

) = . . .+E t′
2−d

2 a0 ( f , L0)+E t′
4−d

2 a2 ( f , L0)+ . . .+ E2

2 t′
4−d

2 a0 ( f , L0)+ . . .

By using (3.60) and (3.61) we rewrite the above equation as,

K
(
f , L0 −E; t′

) = . . .+ t′2
1

(4πt′)
d
2

∫
M

ddx
p

gTr(Ec0 f )+

+t′4
1

(4πt′)
d
2

1
6

∫
M

ddx
p

gTr
(
f
(
c1E2 + c2ER

))+
+ . . .+ t′4

2
1

(4πt′)
d
2

∫
M

ddx
p

gTr
(
E2c0 f

)+ . . . (3.81)
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Now, we consider the eq. (3.34) and expand it. In the resulting expression we take into

account only the terms containing undifferentiated E as follows,

K
(
f , L; t′

) = . . .+ t′2
1

(4πt′)
d
2

1
6

∫
M

ddx
p

g Tr( f c1E)+ t′4
1

(4πt′)
d
2

1
360

×

×
∫
M

ddx
p

g Tr
(
f
(
. . .+ c4ER+ c5E2 + . . .

))+ . . . (3.82)

By comparing (3.81) and (3.82) one can easily get,

c1
6 = c0 ⇒ c1 = 6,

c4
360 = c2

6 ⇒ c4 = 60,

c5
360 = c0

2 ⇒ c5 = 180.

(3.83)

Now, in the case of the part of heat expansion which depends on gauge fields and

potentials, and does not involve any curvature terms, the kernel takes the form as [8],

K
(
f , L; t′

) = 1

(4πt′)
d
2

∫
Td

ddx f (x)
[
1+ t′E+ t′2

(
1
2

E2 + 1
6

E;µµ+ 1
12
Ω2
µν

)]
. (3.84)

As we did before we compare (3.84) with (3.62) and take into account the eq. (3.34) such

that it yield,

c3 = 60 and c10 = 30. (3.85)

We note that the eq. (3.84) also gives the values of c0 (3.64), c1 and c5 (3.83). Still we

are left with one unknown numerical constant, i.e. c6, for which the calculations are bit

non-trivial and involve the conformal variations. We shall not discuss the derivation of

the same here, but it has been studies in [8]. It takes the value as follows,

c6 = 12. (3.86)

Therefore, finally we re-write (3.60), (3.61) and (3.62) with the known numerical constants

and f = 1 as,

a0 ( f , L)= (4π)−d/2Tr(1)
∫
M

ddx
p

g, (3.87)

a2 ( f , L)= (4π)−d/2

6

∫
M

ddx
p

g Tr(6E+R) , (3.88)
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Invariant Coeff. Invariant Coeff. Invariant Coeff.
Ri ji j;kkll −18/7! Ri jkuRilkpR jlup −80/9 ·7! E3 1/6

Ri ji j;kRulul;k 17/7! Ωi j;kΩi j;k 1/45 EΩi jΩi j 1/30
Ri jik;lRu juk;l −2/7! Ωi j; jΩik;k 1/180 Ωi jEΩi j 1/60
Ri jik;lRu jul;k −4/7! Ωi j;kkΩi j 1/60 Ωi jΩi jE 1/30
Ri jku;lRi jku;l 9/7! Ωi jΩi j;kk 1/60 Ri ji jE;kk −1/36
Ri ji jRkuku;ll 28/7! Ωi jΩ jkΩki −1/30 Ri jikE; jk −1/90
Ri jikRu juk;ll −8/7! Ri jklΩi jΩkl −1/60 Ri ji j;kE;k −1/30
Ri jikRu jul;kl 24/7! Ri jikΩ jlΩkl 1/90 E; jΩi j;i −1/60
Ri jklRi jkl;uu 12/7! Ri ji jΩklΩkl −1/72 Ωi j;iE; j 1/60

Ri ji jRklklRpqpq −35/9 ·7! Ri jikΩkl;l j 0 E2Ri ji j −1/12
Ri ji jRklkpRqlqp 14/3 ·7! Ri ji j;kΩkl;l 0 ERi ji j;kk −1/30
Ri ji jRkl pqRkl pq −14/3 ·7! Ri jkl;lΩi j;k 0 ERi ji jRklkl 1/72
Ri jikR juluRkpl p 208/9 ·7! E;ii j j 1/60 ERi jikRl jlk −1/180
Ri jikRupl pR jukl −64/3 ·7! EE;ii 1/12 ERi jklRi jkl 1/180
Ri jikR jul pRkul p 16/3 ·7! E;iiE 1/12 - -
Ri jkuRi jl pRkul p −44/9 ·7! E;iE;i 1/12 - -

Table 3.2: Table of invariants and corresponding numerical coefficients for a6.

and

a4 ( f , L) = (4π)−d/2

360

∫
M

ddx
p

g Tr
(
60E;µµ+60ER+180E2 +12R;µµ+

+5R2 −2R2
µν+2R2

µνρσ+30Ω2
µν

)
. (3.89)

We note that the Gilkey method provides a very powerful way to deal with heat kernel co-

efficients. However, the only drawback with this approach is that number of independent

invariants increase for the higher order heat kernel coefficients, and it requires more

number of background manifolds to tackle with the same. By using this approach one

can find the heat kernel coefficient a6 as well, which has been already done by Gilkey in

[3, 4]. We do not repeat the same here, but we just quote the table 3.2 [4] of 46 invariants

and corresponding numerical coefficients appearing in the expression of a6. One can find

these numerical coefficients for a6 in the same way as we did for a4.

Now in order to explain the simplification of the terms given in the table 3.2 we take into
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account few terms that resemble each other and can easily be eradicated by combining

with the similar term. Let us start with Ωi j;kkΩi j and Ωi jΩi j;kk, we see that these two

terms can be combined to yield one single term of such type, which reduces 46 terms

by one. Similarly, one can go further and consider other terms such as EE;ii and E;iiE;

EΩi jΩi j, Ωi jEΩi j and Ωi jΩi jE; E; jΩi j;i and Ωi j;iE; j etc., which after combining to a

single term in a respective group reduce 45 terms up to 40 terms. We note that the terms

E; jΩi j;i and Ωi j;iE; j having the same numerical constants get canceled out. Moreover,

the terms which have the null i.e. 0 numerical constant do not contribute further, and

consequently leave the total number of invariants 37 only. Finally these invariants can be

used to construct the action for the heat kernel coefficient a6. We shall see the complete

form of such an action in the next chapter.

3.3 Heat Kernel Coefficients on Manifolds With

Boundaries

As we mentioned in the previous section here we study the case of base manifolds with

boundaries. Our main goal in this section is only to introduce a notion of heat kernel

coefficients in the case of base manifolds having boundaries and see that by doing such,

the coefficients ap with odd p do not get vanished. That is contrary to the case considered

in the previous section. For this purpose we briefly summarize the idea and quote few

useful results. A detailed explanation on this topic can be found in [8].

We consider the usual form of scalar Laplacian on the interval N = [0, l] along with the

Dirichlet or Neumann boundary conditions on the boundaries of some manifold so called

half-space M =Rd−1×R+. In this case the generalized form of heat kernel is given by [8],

KD,N(x, y|t)= (4πt)−d/2
(
e−

(x−y)2
4t ∓ e−

(x−y′)2
4t

)
, (3.90)

where y′ = (y1, . . . , yd−1,−yd), and (3.90) satisfies the heat kernel equation (3.30) for x

and y inside the interval N . Furthermore, it also satisfies the same heat equation for
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both of the boundary conditions namely Dirichlet and Neumann if either x or y is on the

boundary. We note that when x and y both are near to the boundary one may write (3.90)

in the form of (3.44) and apply DeWitt method to find out the recursion relations.

Now we write the generalized forms of the Dirichlet and Neumann boundary condi-

tions that we quoted in the sect. 3.2 ( f |x=0,l = 0 (Dirichlet) or ∂x f |x=0,l = 0 (Neumann)),

f |∂M = 0, (3.91)

and

(∇d +J ) f |∂M = 0, (3.92)

where J represents a matrix valued function on the boundary of a manifold under

consideration, i.e. ∂M . In this case the heat kernel coefficients consist of two parts

namely bulk (the case of sect. 3.2) and boundary. By making the contribution coming

from boundary part zero one can easily recover the results for the case considered in

the sect. 3.2. Now, let us pay attention to the boundary ∂M and introduce the notion of

extrinsic curvature, which basically characterizes the way how the boundary is embedded

in the manifold M and it is given by,

Hµν =−wµρwνσηρ;σ, (3.93)

where wµν = δµν−ηµην is the projector on the space tangent to the boundary and ηµ is

the normal vector defined by the condition ηµdxµ = 0 or ηµd yν=0 on the boundary, with

an assumption that it is normalized i.e. ηµηµ = 1. We note that the extrinsic curvature

defined in (3.93) is symmetric with respect to µ and ν and orthogonal to the normal

vector i.e. Hµνην = 0.

Now, by doing the dimensional analysis of the invariants as we did in the sect. 3.2.2, we

see that dim(Hµν)= 1 and dim(L )= 1. Since the invariants are with odd dimensions, it

implies that the heat kernel coefficients ap with odd p do not get vanished. Consequently

with this fact we write the structure of heat kernel coefficients as follows [8].
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For Dirichlet boundary condition:

a0 ( f , L)= (4π)−d/2
∫
M

ddx
p

g Tr f , (3.94)

a1 ( f , L)= (4π)−(d−1)/2
∫
∂M

dd−1x
p

w Tr p1 ( f ) , (3.95)

a2 ( f , L) = (4π)−d/2

6

[∫
M

ddx
p

g Tr( f (6E+R)) +

+
∫
∂M

dd−1x
p

wTr
(
p2 f Hµµ+ p3 f;d

)]
. (3.96)

For Neumann boundary condition:

a0 ( f , L)= (4π)−d/2
∫
M

ddx
p

g Tr f , (3.97)

a1 ( f , L)= (4π)−(d−1)/2
∫
∂M

dd−1x
p

w Tr q1 ( f ) , (3.98)

a2 ( f , L) = (4π)−d/2

6

[∫
M

ddx
p

g Tr( f (6E+R)) +

+
∫
∂M

dd−1x
p

wTr
(
q2 f Hµµ+ q3 f;d + q4 f L

)]
. (3.99)

From the above results we clearly see that, by introducing the boundary conditions on

manifold not only the heat kernel coefficients ap with odd p survive but the same with

even p also get modified. Note that for the case under consideration in this section,

the boundary term a1 appearing in (3.95) and (3.98) is quite useful to study Gibbons-

Hawking effect in classical and quantum gravity [58–60].

In this dissertation we consider the heat kernel coefficients on base manifolds with-

out boundaries for further studies. Therefore, we work with the results derived in sect.

3.2 only.
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GRAVITATIONAL ACTIONS

In this chapter we discuss the gravitational action for the heat kernel coefficients a0, a2,

a4 and a6. We study the action resulting from the heat kernel coefficient a6 in detail.

In particular, we considerably simplify the original form of the action for a6 and reduce

the number of terms in the action by significant amount. We construct the action for a6

in two bases, namely Riemann and Weyl, which are useful to study the Ricci flat and

conformally flat solutions respectively, as we shall see in the next chapter. Here we write

all the formulae in terms of Feynman’s notation (see the appendix A).

We commence with the deduction of the heat kernel coefficients for the case of pure

gravity, for which we derived the generalized forms in the sect. 3.2.2. We enumerate

below the heat kernel coefficients, which are boiled down to the case of pure gravity and

studied over the base manifolds without boundaries in dimension d = 4. Let us start

with the heat kernel coefficient a0 (3.87), which is the cosmological constant given by,

a0 = (4π)−2Tr(1)
∫

d4x
p

g, (4.1)

where we left Tr(1), which equals to 4 in d = 4. Now, by taking into account the case of

pure gravity, i.e. (A.4) in (3.88) and (3.89), we have the standard form of the EH action
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and higher derivative action [1, 2] (containing four derivatives of the metric) as,

a2 = −(4π)−2 Tr(1)
12

∫
d4x

p
g R, (4.2)

a4 = (4π)−2 Tr(1)
360

∫
d4x

p
g

(
5R2 −8R2

µν−7R2
µνρσ

)
. (4.3)

The action for the heat kernel coefficient a4 (4.3) can be rewritten by using (B.4) and

(B.5), which takes the form as follows [2],

a4 = (4π)−2 Tr(1)
360

∫
d4x

p
g

(
−18C2

µνρσ+11GB
)
. (4.4)

We note that (2.7) coincides with (4.4), provided that α5 =−18c.f. and α6 = 11c.f. (see

(2.7)) with c.f. being the common factor given in the above expression. One can easily

deduce (4.4) from (4.3) by changing the basis and finding out corresponding coefficients

(see e.g. (4.10)), where the coefficient for the term R2 will get vanished. This action (4.4)

is quite useful to deal with conformally flat metric as we shall in the sect. 5.3 in detail.

The equation given below represents the next heat kernel coefficient, namely a6, which

has been studied in [3, 4] (recall the table 3.2 and simplification of the terms discussed

at the end of sect. 3.2.2). We shall use the following action to construct the Riemann and

Weyl dominated actions, which are the essential parts of this project,

a6(x) = (4π)−d/2Tr
{

1
7!

(−18Ri ji j;kkll +17Ri ji j;kRulul;k −2Ri jik;lRu juk;l−
−4Ri jik;lRu jul;k +9Ri jku;lRi jku;l +28Ri ji jRkuku;ll −8Ri jikRu juk;ll +
+24Ri jikRu jul;kl +12Ri jklRi jkl;uu

)+ 1
9 ·7!

(−35Ri ji jRklklRpqpq+
+42Ri ji jRklkpRqlqp −42Ri ji jRkl pqRkl pq +208Ri jikR juluRkpl p −
−192Ri jikRupl pR jukl +48Ri jikR jul pRkul p −44Ri jkuRi jl pRkul p −
−80Ri jkuRilkpR jlup

)+ 1
360

(
8Ωi j;kΩi j;k +2Ωi j; jΩik;k+

+12Ωi jΩi j;kk −12Ωi jΩ jkΩki −6Ri jklΩi jΩkl +4Ri jikΩ jlΩkl −
−5Ri ji jΩklΩkl

)+ 1
360

(
6E;ii j j +60EE;ii +30E;iE;i +60E3+

+30EΩi jΩi j −10Ri ji jE;kk −4Ri jikE; jk −12Ri ji j;kE;k −30Ri ji jE2 −
−12Ri ji j;kkE+5Ri ji jRklklE−2Ri jikRl jlkE+2Ri jklRi jklE

)}
. (4.5)
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4.1 Riemann Basis

Let us now simplify the eq. (4.5) to construct it in Riemann basis. We consider the

terms under the trace and calculate the same as it is explained in an appendix D. After

substituting those results in (4.5) we get,

a6(x) = (4π)−d/2Tr
{

1
7!

(−18Ri ji j;kkll +17Ri ji j;kRulul;k −2Ri jik;lRu juk;l−
−4Ri jik;lRu jul;k +9Ri jku;lRi jku;l +28Ri ji jRkuku;ll −8Ri jikRu juk;ll +
+24Ri jikRu jul;kl +12Ri jklRi jkl;uu

)+ 1
9 ·7!

(−35Ri ji jRklklRpqpq+
+42Ri ji jRklkpRqlqp −42Ri ji jRkl pqRkl pq +208Ri jikR juluRkpl p −
−192Ri jikRupl pR jukl +48Ri jikR jul pRkul p −44Ri jkuRi jl pRkul p −
−80Ri jkuRilkpR jlup

)− 1
360

R2
i jab;k −

1
720

Ria;bRia;b +
1

720
Ria;bRib;a −

− 1
240

Ri jabRi jab;kk −
1

240
RµνabRνρbcRρµac + 1

480
RµνρσRµνabRρσab +

+ 1
720

RµνRµρabRνρab −
1

576
RR2

µνab −
1

240
R;ii j j + 1

96
RR;ii + 1

192
R2

;i −

− 1
384

R3 + 1
384

RR2
µνab −

1
144

RR;ii − 1
360

R jkR; jk −
1

120
R2

;i +

+ 1
192

R3 − 1
120

RR;ii − 1
288

R3 + 1
720

R2
µνR− 1

720
R2
µνρσR

}
. (4.6)

The above equation (4.6) can be simplified further. We start with the possible contractions

of the indices. After doing the contractions, just for the purpose of convenience we rename

the indices as follows: i →µ, j → ν, k → ρ, l →σ, u →α, p →β, q → γ, a → δ, b →λ, c → τ.

The next step is to do the simplification of the resulting equation and collect identical

terms, so that the simplified form of the eq. (4.6) turns out to be the following,

a6(x) = (4π)−d/2Tr(1)
{

1
4032

R2
;ρ−

1
560

R2
νρ;σ+

1
1680

Rνρ;σRνσ;ρ− 1
1008

R2
µνρα;σ−

− 1
630

RνρRνρ;σσ+ 1
210

RνρRνσ;ρσ− 1
560

RµνρσRµνρσ;αα− 1
10368

R3 −

− 13
2835

RνρRνσRρσ− 4
945

RνρRασRναρσ+ 101
90720

RµνραRµνσβRρασβ+

+ 109
45360

RµνραRµσρβRνσαβ+ 1
3024

RµνRµρδλRνρδλ−
1

1680
R;µµνν+

+ 1
1440

RR;µµ− 1
360

RνρR;νρ+ 1
2160

RR2
µν+

7
17280

RR2
µνρσ

}
. (4.7)
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Furthermore, we multiply both the sides of (4.7) by
p

g and integrate with respect to

x in an arbitrary dimension d and use the integration by parts i.e.
∫

ddx
p

gABµ;µ =
−∫

ddx
p

gA;µBµ such that the resulting equation reduces as follows,∫
ddx

p
ga6(x) =

∫
ddx

p
g(4π)−d/2Tr(1)

{
− 1

4032
R�R+ 1

560
Rνρ�Rνρ+ 1

1008
Rµνρα�Rµνρα−

− 1
630

Rνρ�Rνρ+ 1
240

RνρRνσ;ρσ− 1
560

Rµνρσ�Rµνρσ− 1
10368

R3 −

− 13
2835

RνρRνσRρσ− 4
945

RνρRασRναρσ+ 101
90720

RµνραRµνσβRρασβ+

+ 109
45360

RµνραRµσρβRνσαβ+ 1
3024

RµνRµρδλRνρδλ+
1

1440
R�R−

− 1
360

RνρR;νρ+ 1
2160

RR2
µν+

7
17280

RR2
µνρσ

}
. (4.8)

Here we note that the term 1
1680 R;µµνν (given in eq. (4.7)) gets vanished under the

integral, because it is a total derivative. Now consider the term 1
240 RνρRνσ;ρσ, by using

the equation (B.6) one can simplify it as,∫
ddx

p
g

1
240

RνρRνσ;ρσ =
∫

ddx
p

g
(

1
960

R�R+ 1
240

RνρRβσRρσνβ+ 1
240

RρβRνρRνβ

)
.

In the process of simplifying the above term we used the eq. (B.11) and integrated by

parts. Next we consider the term − 1
360 RνρR;νρ and integrate by parts then once again

here also we apply eq. (B.11) on the resulting equation, which takes the following form

after simplification,

− 1
360

∫
ddx

p
gRνρR;νρ =− 1

720

∫
ddx

p
gR�R.

After plugging the above two results in the equation (4.8) and simplifying it we get the

action with 11 terms,∫
ddx

p
ga6(x) =

∫
ddx

p
g(4π)−d/2Tr(1)

{
1

10080
R�R+ 1

5040
Rνρ�Rνρ− 1

1260
Rµνρα�Rµνρα−

− 1
10368

R3 + 1
2160

RR2
µν−

19
45360

RρβRνρRνβ+ 7
17280

RR2
µνρσ−

− 1
15120

RνρRβσRρσνβ+ 1
3024

RµνRµρδλRνρδλ+

+ 101
90720

RµνραRµνσβRρασβ+ 109
45360

RµνραRµσρβRνσαβ

}
. (4.9)
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Now, in the next steps we shall focus on to eradicate the term − 1
1260 Rµνρα�Rµνρα. In

order to do this we consider the first three terms of the above action and call it S,

S = a1 R�R+a2 Rνρ�Rνρ+a3 Rµνρα�Rµνρα,

where a1, a2 and a3 are the known numerical constants given in the action (4.9). Now,

we change the basis of S in such a way that the result takes the form as,

S = b1 R�R+b2 Cµνρα�Cµνρα+b3 GB1, (4.10)

where b1, b2 and b3 are the numerical constants to be determined. The terms Cµνρα�Cµνρα

and GB1 are given by the following expressions,

Cµνρσ�Cµνρσ = Rµνρσ�Rµνρσ− 4
d−2

Rµρ�Rµρ+ 2
(d−2)(d−1)

R�R, (4.11)

and

GB1 := Rµναβ�Rµναβ−4Rµν�Rµν+R�R. (4.12)

Now, by performing some trivial calculations we find the unknown co-efficients and

substitute S (4.10) back to the action (4.9), which lead us to,∫
ddx

p
ga6(x) =

∫
ddx

p
g(4π)−d/2Tr(1)

{
d−6

6720(d−1)
R�R− d−2

1344(d−3)
Cµνρα�Cµνρα−

− d−18
20160(d−3)

GB1 − 1
10368

R3 + 1
2160

RR2
µν−

19
45360

RρβRνρRνβ+

+ 7
17280

RR2
µνρσ−

1
15120

RνρRβσRρσνβ+ 1
3024

RµνRµρδλRνρδλ+

+ 101
90720

RµνραRµνσβRρασβ+ 109
45360

RµνραRµσρβRνσαβ

}
. (4.13)

In order to find an expression for the term GB1 under the integral, we start with the

definition of the same (4.12). First we use the differential Bianchi identity to replace

an appropriate term by differentiated Riemann tensors, then we exploit the relation

(B.6) to make it useful for our purpose. After simplifying the outcomes, we perform the

integration by parts under the spacetime integral and once again simplify the results,

which yield the following expression for the term that we are interested in,∫
ddx

p
gGB1 =

∫
ddx

p
g

(−4RαµRβνRµναβ−4RαµRµβRαβ+4RµναβRγβµσRσνγα+
+RµναβRαβγσRµνγσ+2RασRµναβRµνσβ

)
, (4.14)
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where in between the simplification one may need to use the cyclicity of the Riemann

tensor. By substituting the integral of GB1 (4.14) in the action (4.13) and simplifying it

we get the following action with 10 terms,

∫
ddx

p
ga6(x)=

=
∫

ddx
p

g(4π)−d/2Tr(1)
{

d−6
6720(d−1)

R�R− d−2
1344(d−3)

Cµνρα�Cµνρα−

− 1
10368

R3 + 1
2160

RR2
µν+

7
17280

RR2
µνρσ−

2d+21
9072(d−3)

RαµRµβRαβ+

+ 2d−51
15120(d−3)

RαµRβνRµναβ+ 7d+24
30240(d−3)

RασRµναβRµνσβ+

+ 20d−33
9072(d−3)

RµνραRµσρβRνσαβ+ 193d−444
181440(d−3)

RµναβRµνγσRαβγσ

}
. (4.15)

Now, we re-write the eq. (4.15) in dimension d = 4 and use the identities given in the

eq. (B.13) to get rid of some terms so that the above action reduces to the following

form, which has only 8 terms. Basically we replace the terms RµνραRµσρβRνσαβ and

RασRµναβRµνσβ in the above action by using the identities in d = 4. Therefore, finally af-

ter simplifying the outcomes we get an elegant form of the action (4.15) in d = 4 as follows,

Riemann dominated action:

∫
d4x

p
ga6(x) = 1

4π2

∫
d4x

p
g

{
1

1120
R�R− 1

336
Rµν�Rµν+ 1

126
RµαRνβRµναβ−

− 43
15120

RαµRµβRαβ− 1
1120

R3 + 13
2016

RR2
µν−

1
5040

RR2
µνρσ−

− 1
15120

RµνραRµνσβRρασβ

}
. (4.16)

It is quite easy to see that the terms given in the action (4.16), which are quadratic and

cubic in either Ricci scalar or curvature will get vanished for the Ricci flat background.

Therefore, one needs to vary only the last two terms, which makes easier to deal with

the EOM for such cases. This is the main benefit to write two forms of the action, namely

Riemann and Weyl dominated. We shall see the same thing with Weyl dominated action

for the conformally flat background in the next section.
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4.2 Weyl Basis

In this section we derive the Weyl dominated form of the action. This form of the action

is very useful to study conformally flat backgrounds.

We rewrite the action (4.15) in terms of Weyl tensor. In order to do this we use the

definition of Weyl tensor (B.3) and replace Riemann tensor with Weyl tensor. This will

result into the following equation,

∫
ddx

p
ga6(x)=

=
∫

ddx
p

g(4π)−d/2Tr(1)
{

d−6
6720(d−1)

R�R− d−2
1344(d−3)

Cµνρα�Cµνρα−

− 1
10368

R3 + 1
2160

RR2
µν+

7
17280

R
(
C2
µνρσ+

4
d−2

R2
µρ−

2
(d−2)(d−1)

R2
)
−

− 2d+21
9072(d−3)

RαµRµβRαβ+

+ 2d−51
15120(d−3)

RαµRβν

(
Cµναβ− 1

d−2
4R[µ[αgν]β] +

1
(d−2)(d−1)

2g[µαgν]βR
)
+

+ 7d+24
30240(d−3)

Rασ

(
Cµναβ− 1

d−2
4R[µ[αgν]β] +

1
(d−2)(d−1)

2g[µαgν]βR
)
×

×
(
Cµνσβ− 1

d−2
4R[µ[σgν]β] +

1
(d−2)(d−1)

2g[µσgν]βR
)
+

+ 20d−33
9072(d−3)

(
Cµνρα− 1

d−2
4R[µ[ρ gν]α] +

1
(d−2)(d−1)

2g[µρ gν]αR
)
×

×
(
Cµσρβ− 1

d−2
4R[µ[ρ gσ]β] +

1
(d−2)(d−1)

2g[µρ gσ]βR
)
×

×
(
Cνσαβ− 1

d−2
4R[ν[αgσ]β] +

1
(d−2)(d−1)

2g[ναgσ]βR
)
+

+ 193d−444
181440(d−3)

(
Cµναβ− 1

d−2
4R[µ[αgν]β] +

1
(d−2)(d−1)

2g[µαgν]βR
)
×

×
(
Cµνγσ− 1

d−2
4R[µ[γgν]σ] +

1
(d−2)(d−1)

2g[µγgν]σR
)
×

×
(
Cαβγσ− 1

d−2
4R[α[γgβ]σ] +

1
(d−2)(d−1)

2g[αγgβ]σR
)}

. (4.17)

As it is explained below we split the eq. (4.17) into three parts and simplify it upto certain

extent. We also use the fact that Weyl tensor is totally trace-free i.e Cαβαγ = 0. Then we

add the outcomes altogether and once again simplify it in such a way that it results into
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the final expression for the Weyl dominated action with 10 terms.

First of all we denote the terms given in first six lines of the eq. (4.17) by A1, the

terms with the coefficient + 20d−33
9072(d−3) by A2 and the remaining terms that appear with

the coefficient + 193d−444
181440(d−3) by A3. Then we simplify it and use Cαβαγ = 0 (trace-less Weyl

tensor), which give us the following results,

A1 ≡ d−6
6720(d−1)

R�R− d−2
1344(d−3)

Cµνρα�Cµνρα− 1
10368

R3 + 1
2160

RR2
µν+

+ 7
17280

(
RC2

µνρσ+
4

d−2
RR2

µρ−
2

(d−2)(d−1)
R3

)
− 2d+21

9072(d−3)
RαµRµβRαβ+

+ 2d−51
15120(d−3)

(
RαµRβνCµναβ+ 2

d−2
RαµRµνRνα+ 1

(d−2)(d−1)
R3−

− 2d−1
(d−2)(d−1)

RR2
µν

)
+ 7d+24

30240(d−3)

(
RασCµναβCµνσβ+ 4

d−2
RανRµβCµναβ+

+2(d−4)
(d−2)2 RασRµαRµσ+ 2(d+1)

(d−2)2(d−1)
RR2

µν−
2

(d−2)2(d−1)
R3

)
, (4.18)

A2 ≡ 20d−33
9072(d−3)

(
CµνραCµσρβCνσαβ+ 6

d−2
RµαCµσνβCνσαβ−

− 3
(d−2)(d−1)

RCασνβCνσαβ+ 3(d−4)
(d−2)2 RναRσβCνσαβ+

+2(3d−8)
(d−2)3 RβρRσρRσβ+ 2d2 −7d+4

(d−2)3(d−1)2 R3 + −3d2 +6d+6
(d−2)3(d−1)

RR2
νβ

)
, (4.19)

and

A3 ≡ 193d−444
181440(d−3)

(
CµναβCµνγσCαβγσ− 12

d−2
RµαCµβγσCαβγσ+

+ 24
(d−2)2 RµβRασCµαβσ+ 6

(d−2)(d−1)
RC2

αβγσ−

−8(d−4)
(d−2)3 RµαRµγRαγ− 24

(d−2)3(d−1)
RR2

µγ+
4d

(d−2)3(d−1)2 R3
)
. (4.20)
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Now, we combine (4.18), (4.19) and (4.20), and simplify the resulting expression in such

way that it yields the following action with 10 terms,∫
ddx

p
ga6(x)=

=
∫

ddx
p

g(4π)−d/2Tr(1)
{

d−6
6720(d−1)

R�R− d−2
1344(d−3)

Cµνρα�Cµνρα+

+−35d5 +280d4 −1121d3 +2912d2 −3260d+1968
362880(d−2)3(d−1)2 R3 +

+14d4 −57d3 +37d2 −288
30240(d−2)3(d−1)

RR2
µν+

−5d3 −21d2 +95d+120
22680(d−2)3 RαµRµβRαβ+

+ 49d2 −147d+470
120960(d−2)(d−1)

RC2
µνρσ+

2d2 +33d+112
15120(d−2)2 RαµRβνCµναβ+

+ 7d2 −176d+510
30240(d−3)(d−2)

RασCµναβCµνσβ+ 20d−33
9072(d−3)

CµνραCµσρβCνσαβ+

+ 193d−444
181440(d−3)

CµναβCµνγσCαβγσ

}
. (4.21)

Now, as we did in the previous section we rewrite the eq. (4.21) in dimension d = 4 by

using the identities given in the eq. (B.13). We utilize these identities in d = 4 for the

terms CµνραCµσρβCνσαβ and RασCµναβCµνσβ in (4.21), replace it by appropriate terms

and simplify the results. So, we get the action with only 8 terms as given below.

Weyl dominated action:∫
d4x

p
ga6(x) = 1

4π2

∫
d4x

p
g

{
− 1

10080
R�R− 1

672
Cµνρα�Cµνρα−

− 1
68040

R3 + 1
3024

RR2
µν−

13
15120

RαµRµβRαβ+ 1
1728

RC2
µνρσ+

+ 23
5040

RµαRνβCµναβ+ 19
4320

CµναβCµνγσCαβγσ

}
. (4.22)

As we discussed in the sect. 5.1 about the reduction of the terms of Riemann dominated

action in the case of Ricci flat solution, here also we see that for the locally conformally

flat background some terms containing Cn (Weyl) with degree n ≥ 2 get vanished leaving

the final equation with even less terms to vary. This makes it facile to get the EOM

for such cases. We also note that the eq. (4.22) helps a lot and reduces the efforts by

making it trivial to check that for the conformally flat background S3×S1 the heat kernel

coefficient a6 will get vanished. This remarkable result has been already studied in [1]

by the direct calculation of a6 for this background.
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We consider the gravitational actions studied in previous chapter and vary the same.

More specifically, by using the variational principle we derive the EOM for the action

defined by the heat kernel coefficients a0, a2, a4 and a6. Here also we study the EOM

for a6 in a great detail. We derive the EOM for a6 in Riemannian and Weyl (only for

the conformally flat background) bases. We reduce the Riemann dominated EOM to the

particular case of Ricci flat solution. We conlude this chapter by applying these two forms

of EOM (Riemann and Weyl) to some black hole and cosmological solutions.

We explicitly derive the EOM by varying the Riemann (4.16) and Weyl (4.22) domi-

nated forms of the action in sect. 5.1 and 5.2 respectively. Before we proceed to the main

problem, we enumerate the EOM coming from the heat kernel coefficients a0 (3.60),

a2 (3.61) and a4 (3.62). The following set of EOM can easily be derived by using the

techniques explained in detail in the next section (here we denote the variations of ap by

E(p)
µν ),

4π2E(0)
µν =

1
2

gµν, (5.1)

4π2E(2)
µν =

1
12

(
Rµν− 1

2
gµνR

)
, (5.2)
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4π2E(4)
µν = − 1

144π2 RRµν− 1
120π2∇µ∇νR− 1

240π2 gµν�R+ 1
576π2 gµνR2 +

+ 11
360π2 RαµνβRαβ+ 1

40π2�Rµν− 1
360π2 gµνR2

αβ+
7

720π2 RµβρσRνβρσ−

− 7
360π2 RµαRνα− 7

2880π2 gµνR2
αβρσ. (5.3)

Note that the EOM (5.1), (5.2) and (5.3) are completely symmetric with respect to µ and

ν. We would like to point out that the EOM deduced from the action (4.4) is the same

as (5.3). Although we do not provide the explicit result here, but in principle one can

easily derive it by exploiting either (2.3) or (2.4), which makes the action (4.4) easy to

vary in d = 4 by leaving only one term C2
µνρσ, and that can be done by using (C.10) and

variational method explained in sect. 5.1 to produce the desired EOM. In order to see

that (4.4) coincides with (5.3), it may require to replace all the Weyl tensors with the

Riemann tensors by using the relations (B.3) and (B.4) in the resulting EOM coming

from the action (4.4). Furthermore, we also observe that the EOM coming from the action

(4.4) contains 9 terms and upon comparison with the eq. (5.3) gives the tensor identity.

More importantly we see that conformally flat solutions do not get affected by a4. In

other words EOM coming from a4 does not contribute in the full EOM resulting from

full action (including a0, a2 and a6) for such solutions. It is quite easy to explain this

with the help of the action of the form of (4.4). Note that the second term in this action

gets vanished after doing the variation, because as we discussed before the variation of

GB is the total derivative in d = 4 (2.3). Moreover, this is true also due to generalized

GB theorem (2.4). The remaining term C2
µνρσ is trivially zero for the solutions under

consideration as explained in sect. 4.2. We shall see example of such a solution in sect. 5.3.

Throughout this chapter the symmetrization with respect to the indices µ and ν is

assumed (particularly for the final EOM) unless we specify it explicitly. In other words

we do not use the symmetrization brackets "()" for the final answers of EOM, but we

shall indicate wherever the equation is completely symmetric with respect to µ and ν,

and does not require any symmetrizations, as we did above.
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5.1 Riemann Basis

In this section we vary the Riemann dominated action (4.16) studied in the previous

chapter. The motivation behind the study of this action and corresponding EOM is that

it make easier to analyze Ricci flat solutions. We shall consider this point in detail when

we scrutinize the EOM for some solutions.

Now, as we have mentioned in an appendix A that while doing the variations one has

be cautious about summed over indices and it becomes quite necessary to use Einstein

summation convention instead of Feynman’s notation. Therefore, in order to illustrate

this idea we give a brief explanation with an example of the derivation of EOM for one of

the terms of the Riemann dominated action for a6 (4.16).

In principle one can consider any of the terms of the action, but just to present the

central idea of the method we take into account for example, the third term of the action

a6 (4.16), rewrite it in Einstein summation convention and vary it by using (C.1), (C.8)

and (C.4). The resulting equation takes the form as,

A ≡
∫

d4xδ
(p

gRαµRβνRµναβ

)
=

=
∫

d4x
(
δ
p

gRµαRνβRµναβ+p
gδRµαRνβRµναβ+p

gRµαδRνβRµναβ+

+pgRµαRνβδRµναβ

)
=

= 1
2

∫
d4x

p
ghRµαRνβRµναβ+

+
∫

d4x
p

g
(
−2h(µγRα)

γ+∇γ∇µhαγ− 1
2
∇µ∇αh− 1

2
�hµα

)
RνβRµναβ+

+
∫

d4x
p

gRµα

(
−2h(νγRβ)

γ+∇γ∇νhβγ− 1
2
∇ν∇βh− 1

2
�hνβ

)
Rµναβ+

+
∫

d4x
p

gRµαRνβ
(
Rµν[α

γhβ]γ−2∇[µ∇[βhν]α]
)
, (5.4)

where hµν = δgµν (C.1), and for the simplicity we neglected the numerical constants,

which we shall recover in the final result. Now, the eq. (5.4) can safely be rewritten in

terms of the Feynman’s notation. Next we collect the identical terms and perform the
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integration by parts (by using Stoke’s theorem) on the outcomes in order to make hαβ

and h free from any derivatives, which basically lead us to the following expression,

A = 1
2

∫
d4x

p
ghRµαRνβRµναβ−4

∫
d4x

p
ghνγRµαRβγRµναβ+

+2
∫

d4x
p

ghαγ∇µ∇γ

(
RνβRµναβ

)−∫
d4x

p
gh∇β∇ν

(
RµαRµναβ

)−
−

∫
d4x

p
ghνβ�

(
RµαRµναβ

)+∫
d4x

p
ghβγRµαRνβRµναγ−

−
∫

d4x
p

ghµβ∇α∇ν

(
RµαRνβ

)+∫
d4x

p
ghνβ∇α∇µ

(
RµαRνβ

)
. (5.5)

The next step is to do the simplification of the eq. (5.5) and use the relation (B.6) to

commute the covariant derivatives for some terms such that the resulting terms look

more simple than how it was. Then one can use Bianchi identities (B.9) and (B.11)

wherever it is possible in the outcomes and once again simplify it to yield,

A =
∫

d4x
p

gδgµν
[
2RαγRµβRνγαβ+2Rµβαγ∇ν∇αRγβ−2∇µRαβ∇νRαβ+

+2∇νRαβ∇βRµα+2∇αRγβ∇νRµβαγ−2Rαβ∇µ∇νRαβ+2Rαβ∇ν∇βRµα−
−2RγβRαµνηRαγηβ− gµνRαβγη∇β∇ηRγα−2gµν∇βRγα∇γRαβ+2gµν∇γRαβ∇γRαβ−
−1

2
gµνRαβ∇α∇βR− gµνRαβRαγRγβ− 1

2
gµνRαγRβηRαβγη+ gµνRαβ�Rαβ−

−Rµανγ�Rαγ−2∇γRαβ∇γRµανβ−Rαβ�Rµανβ−Rµα∇α∇νR−RµγRνβRγβ−
−∇βRµα∇αRνβ− 1

4
∇µR∇νR+ 1

2
Rµν�R+∇αR∇αRµν+Rαβ∇α∇βRµν

]
. (5.6)

Then by using the action principle we equate A to zero so that the bracketed terms in

(5.6) can be used to get the final answer. Next we change the dummy indices and rewrite

the variation of the third term with respect to the metric gµν as Eµν

3 = δ
(p

gRαγRβδRαβγδ

)
p

gδgµν
.

Now, it is easy to see that the bracketed terms in (5.6) give the final EOM E3µν (see

below) that we are interested in. We note that we write the final answer for all EOM

in terms of Feynman’s notation, because in between while doing the variation we have

lowered all the indices such that the final equation turns out to be with all indices down-

stairs. This process of deriving EOM can be applied to any of the terms of gravitational

actions (including a0, a2 and a4) in general. We enumerate the results below for the

contributions coming from all the 8 terms given in the action (4.16) to the final EOM .
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Here in order to avoid any confusions with the indices of EOM we change the dummy in-

dices of the terms given in the action (4.16), which involve µ and ν. Moreover, initially in

the final answer of EOM we write the indices µ and ν upstairs just to emphasize that the

variations have been done with respect to the covariant metric gµν, and later on we lower

the same to follow our convention. As we mentioned before, here the symmetrizations

with respect to the indices µ and ν are assumed.

Eµν

1 = 1
4π2

1
1120

δ
(p

gR�R
)

p
gδgµν

⇒ E1µν = 1
4π2

1
1120

[−2RµνR;αα+2R;ααµν−2gµνR;ααββ+R;µR;ν−

−1
2

gµνR2
;α

]
, (5.7)

Eµν

2 = 1
4π2

1
336

δ
(p

gRαβ�Rαβ

)
p

gδgµν
=

= 1
4π2

1
336

δ
(p

ggγδ∇γRαβ∇δRαβ

)
p

gδgµν

⇒ E2µν = 1
4π2

1
336

[
−5

2
gµνR2

αβ;γ−R;ααµν−3Rνα;µR;α−RµαR;αν−2Rαβ;µRβν;α−
−6RγβRµβ;γν+Rαβ;µRαβ;ν+2RαβRαβ;µν+4Rβανγ;µRβγ;α−4RνγαβRβγ;αµ+
+2RαµνβRαβ;γγ+ 1

2
gµνR;ααββ+ 1

2
gµνR2

;α+2gµνRαβR;αβ−2gµνRσαρβRαρRβσ+
+2gµνRαγRαβRγβ− gµνRαβRαβ;γγ+4gµνRγα;βRβγ;α+2gµνRαρσβRρβ;ασ+
+Rµν;ααββ+2RγµνβRγρRβρ−4RρµσβRρβRνσ+2RναRµβRαβ

]
, (5.8)

Eµν

3 = 1
4π2

1
126

δ
(p

gRαγRβδRαβγδ

)
p

gδgµν

⇒ E3µν = 1
4π2

1
126

[
2RαγRµβRνγαβ+2RµβαγRγβ;αν−2Rαβ;µRαβ;ν+

+2Rαβ;νRµα;β+2Rγβ;αRµβαγ;ν−2RαβRαβ;µν+2RαβRµα;βν−
−2RγβRαµνηRαγηβ− gµνRαβγηRγα;ηβ−2gµνRγα;βRαβ;γ+2gµνR2

αβ;γ−
−1

2
gµνRαβR;αβ− gµνRαβRαγRγβ− 1

2
gµνRαγRβηRαβγη+ gµνRαβRαβ;γγ−

−RµανγRαγ;ββ−2Rαβ;γRµανβ;γ−RαβRµανβ;γγ−RµαR;να−RµγRνβRγβ−
−Rµα;βRνβ;α− 1

4
R;µR;ν+ 1

2
RµνR;αα+R;αRµν;α+RαβRµν;αβ

]
, (5.9)
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Eµν

4 = 1
4π2

43
15120

δ
(p

gRα
γRγ

βRβ
α

)
p

gδgµν

⇒ E4µν = 1
4π2

43
15120

[
−3Rβµ;αRαβ;ν− 3

2
RµαR;να+3RµβRαηRανβη−

−3
2

R;αRαµ;ν−3RαβRµβ;να+ 3
2

gµνRαβR;αβ+ 3
8

gµνR2
;α+

3
2

gµνRαγ;βRγβ;α−

−3
2

gµνRαγRηβRβαγη+ gµνRαγRγβRαβ+3RγνRµγ;αα+3Rµβ;γRβν;γ

]
, (5.10)

Eµν

5 = 1
4π2

1
1120

δ
(p

gR3)
p

gδgµν

⇒ E5µν = 1
4π2

1
1120

[
−1

2
gµνR3 +3R2Rµν−6R;µR;ν−6RR;µν+6gµνR2

;α+
+6gµνRR;αα

]
, (5.11)

Eµν

6 = 1
4π2

13
2016

δ
(p

gRRαβRαβ

)
p

gδgµν

⇒ E6µν = 1
4π2

13
2016

[
1
2

gµνRR2
αβ−2gµνR2

αβ;γ−2gµνRαβRαβ;γγ−

−gµνR2
;α− gµνRαβR;αβ− 1

2
gµνRR;αα−RµνR2

αβ+2Rαβ;µRαβ;ν+
+2RαβRαβ;µν+R;µR;ν+2RµαR;να+2R;αRαµ;ν+RR;µν−
−2RRαβRαµνβ−RµνR;αα−2R;αRµν;α−RRµν;αα

]
, (5.12)

Eµν

7 = 1
4π2

1
5040

δ
(p

gRRαβγδRαβγδ

)
p

gδgµν

⇒ E7µν = 1
4π2

1
5040

[
−1

2
gµνRR2

αβρσ+2gµνR2
αβρσ;γ+2gµνRαβρσRαβρσ;γγ+

+RµνR2
αβρσ−2Rαβρσ;µRαβρσ;ν−2RαβρσRαβρσ;µν+2RRµβρσRνβρσ+

+8R;αRµν;α−8R;αRαµ;ν+4RαµνσR;σα−2RR;µν−4RRµαRνα+
+4RRσαRσµνα+4RRµν;αα

]
, (5.13)

and

Eµν

8 = 1
4π2

1
15120

δ
(p

gRαβ
γδRηλ

αβRγδ
ηλ

)
p

gδgµν

⇒ E8µν = 1
4π2

1
15120

[
−1

2
gµνRγηραRγησβRρασβ+3RµασβRναγηRσβγη−

−12Rµσ;βRνσ;β+12Rµσ;βRνβ;σ+24RµασβRνσ;βα−6Rµασβ;ρRνρσβ;α−
−6RργRµγσβRνρσβ+6RµγραRνρσβRαγσβ+12RµαγβRνρσβRαρσγ

]
. (5.14)
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We see that (5.7) and (5.11) are completely symmetric with respect to µ and ν. One can

easily verify all the EOM given above by checking the divergence of each EOM separately,

which should turn out to be zero due to the gauge symmetry of the theory. In the process

of checking divergence it may require to use cyclicity for the Riemann tensor. Now, after

collecting all the above 8 parts of EOM and simplifying the outcomes one can get the

final EOM as given below, which has 61 terms.

E(6)
µν = E1µν+E2µν+E3µν+E4µν+E5µν+E6µν+E7µν+E8µν

⇒ 4π2E(6)
µν = 13

15120
gµνRαβRαγRβγ− 13

2016
RµνR2

αβ−
1

504
RµαRνβRαβ+

+ 13
4032

gµνR2
αβR− 1

1260
RµαRναR+ 3

1120
RµνR2 − 1

2240
gµνR3 +

+ 1
160

gµνRαβRγδRαγβδ+
1

5040
RµνR2

αβγδ−
1

10080
gµνRR2

αβγδ−

− 1
30240

gµνRαβηλRαβγδRγδηλ+
61

5040
RRµανβRαβ+ 1

84
RµβαγRναRβγ−

− 1
168

RµβνγRαγRαβ+ 1
63

RµγνδRαβRαγβδ+
1

2520
RRµαβγRναβγ+

+ 1
5040

RµαβγRναδηRβγδη−
41

1680
RµαRνβαγRβγ− 1

2520
RµαγδRνβγδRαβ−

− 1
2520

RµαβγRνβδηRαγδη−
1

1260
RµαβγRνδβηRαδγη−

19
3360

RRµν;αα−

− 43
10080

RµνR;αα+ 43
20160

gµνRR;αα− 17
5040

Rµν;αR;α+ 41
40320

gµνR2
;α+

+ 1
126

Rµν;αβRαβ− 1
5040

gµνRαβR;αβ+ 43
5040

Rµα;ββRνα+ 1
336

Rµν;ααββ−

− 1
3360

gµνR;ααββ− 43
5040

Rµα;νβRαβ− 1
140

Rµα;βRνβ;α+ 13
1680

Rµα;βRνα;β−

− 1
1260

RµανβR;αβ− 1
126

gµνRαβRαβ;γγ− 1
72

RµανβRαβ;γγ− 1
126

Rµανβ;γγRαβ+

+ 1
3360

gµνRαγ;βRαβ;γ− 1
224

gµνR2
αβ;γ−

1
63

Rµανβ;γRαβ;γ+ 1
630

RµγαβRνα;βγ−

− 1
2520

Rµαβγ;δRνδβγ;α−
1

504
gµνRαγβδRαβ;γδ+

1
2520

gµνRαβγδRαβγδ;ηη+

+ 1
2520

gµνR2
αβγδ;η−

1
168

Rαβ;µRνα;β+ 1
420

Rµα;νR;α+ 1
84

Rµαβγ;νRαβ;γ+

+ 1
84

Rαβ;γµRναβγ+ 1
336

Rαβ;µνRαβ− 1
2520

Rαβγδ;µνRαβγδ+
37

5040
Rµα;βRαβ;ν−

− 43
10080

Rµα;νR;α− 1
2520

Rαβγδ;µRαβγδ;ν−
1
63

Rµαβγ;νRαβ;γ− 23
10080

RµαR;να−

− 1
504

Rµα;βνRαβ− 1
63

RµαβγRαβ;γν+ 1
1440

RR;µν− 1
840

R;ααµν. (5.15)
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The above EOM (5.15) is very useful to study the black hole solutions due to its dominance

in Riemann tensor. In particular, as we discussed at the beginning of this section, this

form of the EOM reduces a lot of calculations for the Ricci flat solutions for example,

Schwarzchild black hole solution, which is not the exact solution for the EOM (5.15)

coming from a6 (4.16). We shall discuss more about this in a moment.

5.2 Weyl Basis

In this section we vary the action (4.22) under the locally conformally flat background

such that the terms containing Cn (Weyl) with the degree n ≥ 2 will get vanished due

to the conformal symmetry. We note that most of the terms in this action (4.22), which

survive under the condition of the background being locally conformally flat, resemble

the terms given in the action (4.16) for which we calculated the EOM in the previous

section. The only term which is remained to be varied is the seventh term of the Weyl

dominated action. We calculate the EOM for the same by following the usual procedure

discussed in sect. 5.1 (see also the points regarding indices discussed right above the list

of EOM for all the 8 terms, which are equally valid here) as follows,

Eµν

7 = 1
4π2

23
5040

δ
(p

gRαγRβδCαβγδ

)
p

gδgµν

⇒ E7µν = 1
4π2

23
5040

[
gµνRαβRαγRβγ+ 4

3
RµνR2

αβ−4RµαRνβRαβ−

−13
12

gµνR2
αβR+3RµαRναR−RµνR2 + 1

4
gµνR3 − 1

2
RRµν;αα+

+ 1
12

gµνRR;αα− 1
24

gµνR2
;α+Rµν;αβRαβ+RµαRνα;ββ−

−Rµα;νβRαβ−Rµα;βRνβ;α+Rµα;βRνα;β− 1
3

gµνRαβRαβ;γγ+

+1
2

gµνRαγ;βRαβ;γ− 1
3

gµνR2
αβ;γ−Rαβ;µRνα;β+ 1

2
Rµα;νR;α+

+1
3

Rαβ;µνRαβ+ 1
3

Rαβ;µRαβ;ν− 1
12

R;µR;ν− 1
2

RµαRνα+ 1
6

RR;µν

]
.(5.16)

Here we note that in order to get the final answer given in (5.16), we replaced all the

Riemann tensors with Weyl tensors in the final equation resulting from the variation of

the term and used the condition (locally conformally flat background) on the outcomes
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5.2. WEYL BASIS

such that all the Weyl tensors became zero and led us to the above result. Now, by

combining the eq. (5.16) with the results of EOM for the terms, which survive under the

condition considered above, i.e. (5.7), (5.9), (5.10) and (5.11) we finally get the following

EOM with 32 terms for the Weyl dominated action.

E(6)
µν = E1µν+E3µν+E4µν+E5µν+E7µν

⇒ 4π2E(6)
µν = 29

4320
gµνRαβRαγRβγ+ 71

10080
RµνR2

αβ−
1

48
RµαRνβRαβ−

− 5
756

gµνR2
αβR+ 9

560
RµαRναR− 163

30240
RµνR2 + 397

272160
gµνR3 −

− 79
30240

RRµν;αα− 1
7560

RµνR;αα+ 11
36288

gµνRR;αα− 1
1512

Rµν;αR;α−

− 11
181440

gµνR2
;α+

23
5040

Rµν;αβRαβ+ 29
30240

gµνRαβR;αβ+

+ 1
140

RµαRνα;ββ+ 1
5040

gµνR;ααββ− 1
140

Rµα;νβRαβ−

− 23
5040

Rµα;βRνβ;α+ 1
140

Rµα;βRνα;β− 11
5040

gµνRαβRαβ;γγ+

+ 1
280

gµνRαβ;γRαγ;β− 11
5040

gµνR2
αβ;γ−

23
5040

Rαβ;µRνα;β+

+ 89
30240

Rµα;νR;α+ 11
5040

Rαβ;µνRαβ− 13
5040

Rµα;βRαβ;ν+

+ 11
5040

Rαβ;µRαβ;ν− 13
10080

Rµα;νR;α− 43
181440

R;µR;ν−

− 11
3780

RµαR;να+ 13
12960

R;µνR− 1
5040

R;ααµν. (5.17)

We note that in the derivation of the eq. (5.17) the condition of background being locally

conformally flat must be taken into account. Therefore, one should be cautious while

adding contributions coming from the remaining terms (excluding the term considered

in (5.16)) to the final EOM (5.17), where all the Riemann tensors must be replaced by

Weyl tensor. As such all the Weyl tensors will get vanished and yield the final answer

given in (5.17). We shall assess the EOM for the conformally flat FLRW metric by using

the eq. (5.17) in the next section.
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5.3 Analysis of the Equations of Motion

Here we study the Ricci flat EOM as a special case of (5.1) (and including EOM for a0,

a2 and a4). Furthermore, we also analyze the EOM for the full action for two ansatzs,

namely the Schwarzschild, and conformally flat FLRW of the form of,

g = a2(t)
(−dt2 +dr2 + r2dΥ2) , (5.18)

where dΥ2 ≡ dθ2 +sin2θdφ2. Let us consider the Ricci flat form of the eq. (5.15), which

can easily be obtained by setting Ricci tensor and scalar to zero in (5.15) and by using

some manipulations and applying (B.13) as,

4π2Eµν = Λ4 f0
1
2

gµν+Λ−2 f6

{
− 1

30240
gµνRαβηλRαβγδRγδηλ−

1
1260

RµαβγRνδβηRαδγη−

− 1
2520

Rµαβγ;δRνδβγ;α+
1

5040
∇λ∇η

[(
gµνgλη−δνλδµη

)
R2
αβγδ

]}
, (5.19)

where Λ and f2q (for q ≥ 0) are the relative coefficients coming from the spectral action

(3.27)
(
with L =−(D

Λ

)2 =− ∆
Λ2

)
. We note that the EOM (5.19) is completely symmetric

with respect to µ and ν, as such it does not require the symmetrization with respect to

the same. Moreover, it is the full form of EOM coming from the heat kernel coefficients a0

and a6. The contributions coming from the heat kernel coefficient a2 (or corresponding

EOM) are trivially zero
(
because Rµν = R = 0

)
. Furthermore, the EOM for a4 (5.3) gets

simplified and gives only two terms for the Ricci flat case, these remaining two terms

upon plugging the Schwarzschild ansatz produce zero. These points explain the complete

form of the Ricci flat EOM (5.19). It can be applied to the Schwarzschild metric and

checked whether it is an exact solution for the EOM for a6. For this purpose one may

neglect the first term (set f0 = 0) in (5.19) and plug the metric in the same, which yields

the equation given below. Now, as we discussed in sect. 5.1 and above, by plugging the

standard form of Schwarzschild metric in Ricci flat EOM (5.19) one can easily get (here

we adopt the mixed indices to present the results in simplest way),
Et

t = Λ−2 f6
M2(−298M+135r)

630r9 ,

Er
r = Λ−2 f6

M2(14M−9r)
90r9 ,

Eθ
θ = Eφ

φ =Λ−2 f6
M2(−442M+189r)

630r9 .

(5.20)

70



5.3. ANALYSIS OF THE EQUATIONS OF MOTION
In[5]:= Plot-298 + 135 Ξ   630 (Ξ)^9, 14 - 9 Ξ  90 (Ξ)^9, -442 + 189 Ξ  630 (Ξ)^9,

{Ξ, 0, 3}, PlotLegends → "Expressions", PlotRange → {-0.0002, 0.0002}

Out[5]=
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Figure 5.1: Graphs for the components of the EOM evaluated for Schwarzschild ansatz.

We use the components of EOM given in (5.20) and plot the graphs for three functions

formulated with the reduced variable, namely Ξ≡ r
M , which take the forms as shown

in the Fig: 5.1. We also take into account zeros for the components considered in the

above analysis, which are given by Ξ = 2.2, 1.55 and 2.34 for Et
t, Er

r and Eθ
θ = Eφ

φ,

respectively. We observe that energy density Et
t and azimuthal pressure Eθ

θ = Eφ
φ are

positive for significantly high radii. However, the radial pressure Er
r turns out to be

negative for large radii as it changes its sign at Ξ= 1.55 (see Fig: 5.1). This is contrary to

the ideal case, where all stress-energy sources should be positive. There lies the limita-

tion of an effective source interpretation. In other words the effective source description

cannot be applied inside the horizon (Schwarzschild radius), which is at Ξ= 2, where

around this point the substantial changes occur as we explained above. This assessment

and non-zero components of the EOM (5.20) imply that Schwarzschild metric is not the

solution and it gets modified by higher derivative corrections.

Now, in a quite similar way as we did above, by using the conformally flat FLRW

metric (5.18) either in (5.15) or (5.17) we find,

Et
t = 1

2
Λ4 f0 − 1

4
Λ2 f2

a′2

a4 +Λ−2 f6

[
a(3)2

560a8 + a′′3

63a9 + 137a′6

1008a12 − a(4)a′′

280a8+

+11a(3)a′3

84a10 − a(4)a′2

35a9 + a(5)a′

280a8 − 5a′4a′′

14a11 + 25a′2a′′2

168a10 − a(3)a′a′′

21a9

]
. (5.21)
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and

Er
r = Eθ

θ = Eφ

φ = 1
2
Λ4 f0 +Λ2 f2

[
−1

6
a′′

a3 + 1
12

a′2

a4

]
+Λ−2 f6

[
− 19a(3)2

1008a8 + a(6)

840a7+

+17a′′3

252a9 − 137a′6

336a12 − 73a(4)a′′

2520a8 − 107a(3)a′3

252a10 + 127a(4)a′2

1260a9 −

−13a(5)a′

840a8 + 617a′4a′′

504a11 − 415a′2a′′2

504a10 + 41a(3)a′a′′

126a9

]
. (5.22)

We recall the spectral expansion given in (3.27), i.e. Trχ(L)=∑∞
q=0 f2qa2q(L), where (as

we saw in the sect. 3.1) χ, L, f2q and a2q being an arbitrary function, positive definite op-

erator, common factors and heat kernel coefficients, respectively. We reformulate the last

expression for L =−(D
Λ

)2 =− ∆
Λ2 (note that Λ is some mass scale factor) and by expanding

the outcomes rewrite it as
∑∞

q=0Λ
4−2q f2qa2q =

(
Λ4 f0a0 +Λ2 f2a2 +Λ0 f4a4 +Λ−2 f6a6 + . . .

)
.

It means that the heat kernel coefficient a0 should get multiplied by Λ4 f0, a2 by Λ2 f2

and so on. This explains different powers of the mass scale factor Λ and appearance of

the common factors f2q in (5.19), (5.21) and (5.22). Moreover, we note that the EOM (5.3)

coming from the heat kernel coefficient a4 (4.3) does not contribute to the above EOM,

because (5.3) produces zero for the conformally flat FLRW metric (5.18). Furthermore,

recall also the other explanation based on the action (4.4), which we discussed at the

beginning of this chapter. We saw that it is even possible to see at the level of action

written in terms of Weyl and GB (4.4) that the EOM coming from a4 does not contribute

in the case of conformally flat solutions such as FLRW, because of (2.3) or (2.4) and Weyl

tensor that is trivially zero on conformally flat background. This is the reason for absence

of any of the terms with four derivatives of a scale factor a(t) in (5.21) and (5.22).

At this point it is worthwhile to note the exact classical solutions studied in [37]. In their

work the authors managed to find the exact solutions for the EOM coming from unitary

and super-renormalizable non local theories of gravity for the general case. It was shown

that metrics such as Schwarzschild, Kerr and AdS are the exact solutions of the EOM in

Riemann basis. At the same time FLRW was also presented as an exact solution of the

EOM written in Weyl basis.
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Moreover, we would like to point out the work on infinite derivative gravity (being

a subclass of general non-local theories), which turned out to be crucial, particularly to

solve the problems of cosmological and black hole singularities. For example, the effects

of higher derivative modifications on cosmology was considered in [52] and shown that

the singularity can be averted by making the gravity weak at short distances. For this

issue, it would be also nice to refer some historical work [49] on the isotropic cosmologi-

cal systems without having singularity, also an anisotropic field of gravitation and the

isotropization of the cosmological expansion concerning particle production analyzed in

[50, 51]. Various generalization of ghost free theories of gravity were studied in [53] and

the same for theories quadratic in curvature tensors along with the EOM (specifically a

method to get it) was analyzed extensively in [54]. In further studies [55] it was proven

that ghost free quadratic theories of gravity containing infinite derivatives do not allow

the Schwarzschild (1/r) singularity to exist in the whole spacetime. The investigation

done in [56] shows that ghost and singularity free theories of gravity (with infinite

derivatives) do not have the Ricci flat solutions, because of the non-local gravitational

interactions, which basically spoil the source, if it belongs to the spacetime. In addition

to that in such theories the Riemann tensor turns out to be non trace-free contrary to

the standard case, where it is traceless and does not coincide with the Weyl tensor. Such

studies for the compact rotating object along with the ring singularity can be found in

[57].
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CONCLUSION

We reviewed the spectral action approach and its applications that led us to HDG. More

precisely, we considered the case of pure gravity and studied the HDG in the context of

corrections to GR. We established a connection between the spectral action approach

and HDG, and explained it in a great detail by deriving some results explicitely. We

found that HDG emanates quite naturally in the framework of spectral action principle.

We also reviewed the heat kernel coefficients a0, a2, a4 and a6 coming from asymptotic

expansion of the trace of heat operator and calculated EOM for the respective actions. We

studied the heat kernel coefficient a6 with all of its classical features. More specifically,

we constructed the action for a6 in two bases, Riemann and Weyl, and calculated the

EOM for the same by varying these actions.

There are two major applications of these results. One is to study the higher derivative

corrections to Schwarzschild metric, which implies corrections to the Newton’s law of

gravitation in the weak-field limit. Basically we analyzed the Schwarzschild metric (5.20)

for the EOM for a6 (5.15) (Riemann dominated) or (5.19) (Ricci flat) and found peculiar

behavior (Fig: 5.1) of non-zero components of EOM (5.20). These outcomes clearly indi-

cates that Schwarzschild metric is not the solution for the theory based on a6 and it gets
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modified by higher derivative corrections, so the classical law of gravitation as well. It

would be quite intriguing to look for an exact solution for such an EOM with a big family

of parameters (see e.g. [37] in general). As the second application, we applied the Weyl

dominated EOM to the FLRW metric, which was calculated for the particular case of

conformally flat background. We saw that FLRW metric (5.18) produces the same results

(5.21) and (5.22) either we evaluate it by Riemann (5.15) or Weyl (5.17) dominated EOM.

On the other hand quantum aspects of these results may provide the answer to the

question whether there is anything special about the spectral action. It particular, it

would be quite interesting to see if the coefficients coming from the spectral action

approach produce any kind of cancellations (in some cases it is possible to see even at

classical level, see e.g. [1] for the case of S3 ×S1). One may try to find the beta functions

for this model under consideration in the framework of quantum field theory and check

the signs of beta functions that will explicitely depend on the coefficients coming from

the spectral action and provide a clue whether the theory will get crumbled at high

energy level or it will be renormalizable (see e.g. [7] for the case of four derivatives).

In our investigation we found that the spectrum of the system studied in our work for

a6 possesses one pair of complex conjugate poles. These poles of the propagator are

basically Lee-Wick pair so, we conclude that the theory based on a6 falls under the

category of Lee-Wick gravitational theory, for which some recent studies can be found

in [45–48]. We may consider this aspect of our results in our future studies. It would be

also nice to see whether the conformal background stays stable with quantum corrections.

The biggest breakthrough would be the direct quantization of the spectral action, but

it is one of the most difficult problems and there has not been much progress in this

direction. The main hurdle is to deal with the integral measure of the action and to find

the correct form of the same. Moreover, it is also not clear whether the spectral action

is directly quantizable in a way that usually works for the standard field theory. Some

attempts to quantize the spectral action can be found in [35, 36].
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APPENDIX A: NOTATIONS AND CONVENTIONS

We work in a natural unit system i.e. G = c = ~= kB = 1. We start with the Feynman’s

notation, which has been used in most of the formulae in this literature. Basically

this notation means all the indices must be lowered, including summed over indices.

For example, in this notation the standard Ricci tensor coming from the contraction of

covariant Riemann tensor can be written as,

Rab = gcdRacbd.

where the indices c and d are summed over.

The main goal to use this notation is to make the equations compact and easy to

write. Furthermore, by doing this we also follow the same notations used by Gilkey

[3, 4]. Just to give an example of the usefulness of this notation we quote some terms:

RµνρσRµνρσ = RµνρσRµνρσ = R2
µνρσ, RµνRµν = RµνRµν = R2

µν and so on. We also elucidate

couple of terms explicitly to avoid misunderstanding with this notation: ∇αRµν∇αRµν =
Rµν;αRµν;α = (

Rµν;α
)2 = R2

µν;α. Similarly, it is understood in the case of Riemann tensor

as well. However, one needs to be careful while doing the variation of the action, where

the summed over indices must be taken care. So, just for the purpose of doing variation
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we shall follow the Einstein summation convention i.e., one index should be upstairs and

the other one downstairs for the summed over indices.

Throughout the literature sRic and sRiem stand for the signs of Ricci and Riemann

tensors respectively, which basically depend on the convention under consideration, and

square brackets "[]" represent the anti-symmetrization of indices. The generalization

of the formulae written in terms of sRic and sRiem may help the reader to recollect the

results and compare with the results coming from other conventions at any stage of

calculations. As per our convention (same as [1]) sRic =−1 and sRiem =−1. Moreover, the

standard notation of the covariant derivative ";"(instead of ∇) has been used in most of

the formulue to make it compact.

We define the commutation relation of gamma matrices as,

γµν := 1
2

[γµ,γν]. (A.1)

Now, we note that the gamma matrices satisfy the following Clifford algebra,

γ{µν} := {γµ,γν}=−2gµν1. (A.2)

where the sign convention is taken in such a way that it remains the same either in

Euclidean or Minkowski formalism. In our convention Riemann tensor, Ricci tensor and

Ricci scalar take the following forms,
RµνρσVσ = sRiem

[∇µ,∇ν

]
Vρ,

Rµν = sRic gρσRµρνσ,

R = gµνRµν.

(A.3)

An endomorphism E→ E (for pure gravity) and tensor Ωµν, which have been used in the

action a6 for the case of pure gravity are given by (using (3.10) and (3.18)),
E =−R

4 ,

Ωµν = 1
4 Rµνabγab.

(A.4)
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APPENDIX B: USEFUL FORMULAE AND IDENTITIES

B.1 The Trace Identities of Gamma Matrices

The following set of trace identities of gamma matrices can easily be derived by using

the eq. (A.2).

Tr
(
γµγν

) =−gµνTr(1)=−4gµν,

Tr
(
γµγνγργσ

) =Tr(1)
(
gµνgρσ− gµρ gνσ+ gµσgνρ

)=
= 4

(
gµνgρσ− gµρ gνσ+ gµσgνρ

)
,

Tr
(
γµγνγργσγαγβ

) =−Tr(1)
[
gµν

(
gρσgαβ− gραgσβ+ gρβgσα

)− gµρ
(
gνσgαβ−

−gναgσβ+ gνβgσα
)+ gµσ

(
gνρ gαβ− gναgρβ+ gνβgρα

)−
−gµα

(
gνρ gσβ− gνσgρβ+ gνβgρσ

)+ gµβ
(
gνρ gσα−

−gνσgρα+ gναgρσ
)]

.

(B.1)

We also present below the trace identities of the pair of gamma matrices, which can be

deduced by using the results given in (B.1).
Tr

(
γabγcd

) =−2Tr(1)ga[c gd]b,

Tr
(
γabγcdγe f

) =−8Tr(1)g[c[a gb][e g f ]d].
(B.2)
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B.2 Formulae for Curvature Tensors and Contracted

Bianchi Identities

In the above set of euqations (B.2) γab is defined by the eq. (A.1). The standard form of

equation for the Weyl tensor in dimension d is given by,

Cµνρσ = Rµνρσ− 4sRic

d−2
R[µ[ρ gν]σ] +

2sRic

(d−2)(d−1)
g[µρ gν]σR. (B.3)

We note that the co-efficients in the above equations (B.3) and (4.11) are very similar,

provided that sRic = 1. With the given definition of Weyl tensor (B.3) the square of the

same in dimension d takes the form as,

C2
µνρσ = R2

µνρσ−
4

d−2
R2
µν+

2
(d−2)(d−1)

R2. (B.4)

The Gauss-Bonnet term is given by [9],

GB := R2
µναβ−4R2

µν+R2. (B.5)

Commutator of the covariant derivatives acting on generalized tensor can be written as,

[∇µ,∇ν]Tα1...αm
β1...βn =

m∑
i=1

sRiemRµν
αi
σTα1...αi−1σαi+1...αm

β1...βn +

+
n∑

i=1
sRiemRµνβi

σTα1...αm
β1...βi−1σβi+1...βn . (B.6)

Furthermore, commutator of the box operator and covariant derivative acting on an

arbitrary tensor is given by,

[�,∇ν]= [∇µ∇µ,∇ν

]= [∇µ,∇ν

]∇µ+∇µ

([∇µ,∇ν

] ·) . (B.7)

The box operator acting on the product of two functions takes the form as,

� ( f g)=� f g+2∇µ f∇µg+ f�g. (B.8)

Now, by doing the contraction of the first and third indices of Riemann tensor in the

standard form of the 2nd Bianchi identity or differential Bianchi identity we get the

following contracted Bianchi identity,

Rµνρσ;µ = sRic
(
Rνσ;ρ−Rνρ;σ

)
. (B.9)
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One can also contract the second and fourth indices of Riemann tensor to get,

Rµνρσ;ν = sRic
(
Rµρ;σ−Rµσ;ρ

)
. (B.10)

We note that equations (B.9) and (B.10) are the same.

It is quite easy to check this with the contraction for the other combinations. For

example, if we write the 2nd Bianchi identity as Rµνρσ;λ+Rµνσλ;ρ +Rµνλρ;σ = 0 then

one can check for the following pairs, (µσ), (µλ), (νρ), (νλ). Naturally, the results of

these combinations will coincide with the above results. Moreover, the remaining pairs

((ρλ), (ρσ), (σλ)) yield 0= 0.

Double contraction of the 2nd Bianchi identity, that is the contraction of either equation

(B.9) or (B.10) will lead us to,

Rµν;µ = 1
2

R;ν. (B.11)

B.3 Contracted Cubic Riemann Identities

The set of identities which we shall see in a moment below can easily be derived by using

the equation δ
pqrst
abcdeRab

pqRcd
rsRe

t = 0 studied in [13] and doing some trivial manipula-

tions. However, here we explain the derivation of the first identity explicitly that might

be helpful to the reader. The remaining identities can be derived in a quite similar way.

Let us consider R[ab
cdRe f

abRc]d
ef and rename the indices as a → 1, b → 2, e → 3, f → 4,

c → 5, where the square bracket "[]" emphasizes the anti-symmetrization of all five

indices. This renaming will help us to do the permutations, which result into 120 terms.

Initially these terms can be reduced upto 30 terms by using the anit-symmetrization of

all five indices under the consideration then, one may use symmetries of the Riemann
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tensors and reduce it further up to 11 terms as follows,

4 (1,2,3,4,5)−8 (1,2,3,5,4)−16 (1,3,2,4,5)+16 (1,3,2,5,4)−
−16 (1,3,4,5,2)−16 (1,5,2,3,4)−8 (1,5,3,4,2)+4 (3,4,1,2,5)−
−8 (3,4,1,5,2)−8 (3,5,1,2,4)+16 (3,5,1,4,2).

The above set of permutations can be applied to the upper indices of the product of three

Riemann tensors mentioned above so that the simplification of the resulting equation

leads us to,

R[ab
cdRe f

abRc]d
ef = 4RabcdRe f abRcde f −16RaecdR f cabRbde f +40sRicRdeRabdcRceab +

+32RcaRdeRaecd +16sRicRadReaRde +4sRicRRe f cdRcde f −
−8sRicRRedRde = 0. (B.12)

We note that on the left hand side of the above equation we have used the Einstein

summation convention just for the purpose of doing permutation and the final answer is

equation in the Feynman’s notations. Moreover, the right hand side of the above equation

turns out to be zero, because the identity has been derived in 5 dimensions so it has to be

zero in 4 dimensions that we are interested in. Similarly, one can derive the remaining

identities.

Whereas, the first identity requires some more calculations to make it useful for our

purpose. In order to proceed further we make the list of five invariants of the product of

three Riemann tensors as follows,

I1 = RabcdRabe f Rcde f ,

I2 = RabcdRabe f Rced f ,

I3 = RabcdRace f Rbed f ,

I4 = RabcdRaec f Rbed f ,

I5 = RabcdRaec f Rbf de.
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Let us consider the term −16RaecdR fcabRbde f . By using the above relations one can

derive the following set of equations,

4I1 = 16
(
I4 −RaecdR f cabRbde f

)
,

I4 = RabcdRaec f Rbde f + I5,

I3 = I4 − I5,

I2 = I1
2 ,

I2 = 2I3.

Therefore, we can write −16RaecdR f cabRbde f =−16RabcdRaec f Rbed f +4RabcdRe f abRcde f

and use in the preliminary result of the first identity (B.12). After doing the simplification

of the resulting expression it takes the form as it is given in the following equation. All

the four identities are enumerated below.

R[ab
cdRe f

abRc]d
ef = 8RabcdRe f abRcde f −16RabcdRaec f Rbed f +

+40sRicRdeRabdcRceab +32RcaRdeRaecd+

+16sRicRadReaRde +4sRicRR2
cde f −8sRicRR2

de = 0,

R[ab
ceRcd

abRd
e] = 16RdeRabceRcdab −4RR2

abce −32RacRbaRbc+

+32RR2
ae +32sRicRacRdbRdcab −4R3 = 0,

C[ab
ceCcd

abRd
e] = 16RdcCabecCedab −4RC2

abce = 0,

C[ab
cdCe f

abCc]d
ef = 8CabcdCe f abCcde f −16CabcdCaec f Cbed f = 0.

(B.13)
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APPENDIX C: A LIST OF VARIATIONS

The following list of the variations is not complete. However, we provide with the nec-

essary results which might be useful for the derivations which have been done in this

dissertation.

gµνhµν ≡ h.



δgµν = hµν,

δgµν = δgµµ = δδµν = 0,

δgµν =−hµν,

δdet gµν =−(det g)−1h,

δ|det gµν| = |det g|h,

δ
√|det gµν| = 1

2

√|det g|h.

(C.1)

δΓµνρ = 1
2

(∇ρhνµ+∇νhµρ−∇µhνρ
)
. (C.2)

δRµνρ
σ = −Rµν(ραhσ)α−2sRiem∇[µ∇[ρhν]

σ]. (C.3)
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δRµνρσ = Rµν[ρ
αhσ]α+2sRiem∇[µ∇[σhν]ρ]. (C.4)

δRµν
ρσ = h[ρ

βRµν
σ]β+2sRiem∇[µ∇[σhν]

ρ]. (C.5)

δRµνρσ = 2R[ναρσhµ]
α+Rµν[στhρ]

τ+2sRiem∇[µ∇[σhν]ρ]. (C.6)

δRµν = sRicsRiem

(
∇σ∇(µhν)σ−

1
2
∇µ∇νh− 1

2
�hµν

)
. (C.7)

δRµν = −2h(µαRν)
α+ sRicsRiem

(
∇σ∇µhνσ− 1

2
∇µ∇νh− 1

2
�hµν

)
. (C.8)

δR = −Rµνhµν+ sRicsRiem
(∇σ∇νhνσ−�h

)
. (C.9)

δCµνρσ = Cµν[ραhσ]
α− 2sRic

d−2
R[µαgν][ρhσ]

α+2sRiem∇[µ∇[σhν]ρ] −

−4sRiem

d−2
g[ν[σ

(
∇α∇(µ]hρ])α−

1
2
∇µ]∇ρ]h− 1

2
�hµ]ρ]

)
−

−2sRic

d−2
R[µ[ρhν]σ] +

2sRic

(d−2)(d−1)
R g[µ[ρhν]σ] +

+ 2sRic

(d−2)(d−1)
g[µρ gν]σ

(
−Rαβhαβ+ sRicsRiem

(
∇α∇βhβα−�h

))
. (C.10)

δ∇µTα1...αm
β1...βm = ∇µδTα1...αm

β1...βm +
+1

2

m∑
i=1

(∇ρhµαi +∇µhαi
ρ−∇αi hµρ)Tα1...αi−1ραi+1...αm

β1...βn −

−1
2

n∑
i=1

(∇βi hµ
ρ+∇µhρβi −∇ρhµβi )T

α1...αm
β1...βi−1ρβi+1...βn .(C.11)
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APPENDIX D: CALCULATING THE TRACE OF THE

ACTION

Here we present explicit calculations for the following term of eq. (4.5) and the remaining

terms can be calculated in a quite similar way. We note that the trace operator does not

affect the Riemann tensor, because the trace is taken over the different space.

Tr
(
Ωi j;kΩi j;k

) = 1
(4)2 Tr

(
(Ri jabγab);k(Ri jcdγcd);k

)
,

= 1
16

Tr
(
γabγcdRi jab;kRi jcd ;k

)
,

= 1
16

Tr
(
γabγcd

)
Ri jab;kRi jcd ;k,

= 1
16

(−2Tr(1)ga[c gd]b
)
Ri jab;kRi jcd ;k,

= −2Tr(1)
16

Ri jab;kRi jab;k,

= −Tr(1)
8

R2
i jab;k.

In the above calculations we applied the trace operator on the left hand side of the

equation and used the definition of Ωi j given in the eq. (A.4). Moreover, we also used the

eq. (B.2), and further steps involved just a simplification of the resulting equation which

led us to the final answer given in the above calculations. Similarly, one can calculate
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the following terms, where it may require to use the eq. (B.9) in order to simplify some

terms. Possible contraction of the indices must be taken care in the following results,

where the eq. (A.3) might be useful.

Tr
(
Ωi j; jΩik;k

)=−Tr(1)
4

(
Ria;bRia;b −Ria;bRib;a

)
.

Tr
(
Ωi jΩi j;kk

)=−Tr(1)
8

Ri jabRi jab;kk.

Tr
(
Ωi jΩ jkΩki

) = Tr(1)
8

RµνabRνρbcRρµac.

Ri jklTr
(
Ωi jΩkl

) = −Tr(1)
8

RµνρσRµνabRρσab.

Ri jikTr
(
Ω jlΩkl

) = Tr(1)
8

RµνRµρabRνρab.

Ri ji jTr
(
Ω2

kl
) = Tr(1)

8
RR2

µνab.

Tr
(
E;ii j j

)=−Tr(1)
4

R;ii j j.

Tr
(
EE;ii

)= Tr(1)
16

RR;ii.

Tr
(
E;iE;i

)= Tr(1)
16

R2
;i.

Tr
(
E3)=−Tr(1)

64
R3.

Tr
(
EΩ2

i j

)
= Tr(1)

32
RR2

µνab.

Ri ji jTr
(
E;kk

) = Tr(1)
4

RR;ii.
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Ri jikTr
(
E; jk

)= Tr(1)
4

R jkR; jk.

Ri ji j;kTr
(
E;k

)= Tr(1)
4

R2
;i.

Ri ji jE2Tr(1) = −Tr(1)
16

R3.

Ri ji j;kkTr(E)= Tr(1)
4

RR;ii.

Ri ji jRklklETr(1) = −Tr(1)
4

R3.

Ri jikRl jlkETr(1) = −Tr(1)
4

RR2
µν.

R2
i jklETr(1) = Tr(1)

4
RR2

µνρσ.
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